Cenozoic Sequence Stratigraphy of Southwestern Montana

Much of my research has been focused on Cenozoic sequence stratigraphy of continental basin-fill in southwestern Montana. This approach to the stratigraphy of continental deposits has facilitated correlation of stratigraphic units both within and among the various basins of this area. I recently gave a talk about my work in this area at Montana Tech of the University of Montana. Here’s the You Tube version of my talk:

The Field Season Is Going Strong in Southwestern Montana

My field season is in full swing. I recently spent time with students from the Webb Schools in Claremont, CA, during their annual sojourn to southwestern Montana. We prospected a few Tertiary localities, with the students making some good fossil mammal and fossil invertebrate finds. We were also extremely lucky to have a southwest Montana landowner give us a tour of a buffalo jump that is on his land. The following photos are from our various fossil site and buffalo jump field adventures.

woodin-snails
Tertiary fossil snails (about 25 My in age) at one locality captured the interest of students. Once one snail was found, everyone was intent on finding more.
Bob Haseman talks about a buffalo jump in the Toston Valley. He is standing by one of the many tepee rings associated with the jump site.
Bob Haseman talks about a buffalo jump in the Toston Valley of southwestern Montana. He is standing by one of the many tepee rings associated with the jump site. The small boulders on the surface between Bob and the students are part of a tepee ring.
Webb School students hiking up to the "Looking-Out" site associated with the buffalo jump. A eagle catchment area is immediately below the highest point of the "Looking-Out" site.
Webb School students hiked up to the “Looking-Out” site associated with the buffalo jump. A eagle catchment area is immediately below the highest point of the “Looking-Out” site.
eagle-catchment
The eagle catchment area is a shallow depression where a person would hide beneath brush awaiting the approach of an eagle. A nearby animal carcass would aid the quest to capture a eagle which was then used for its feathers.
Chadronian (about 36 Ma) age rocks yielded a few brontothere teeth and bone fragments.
Chadronian (about 36 My in age) rocks near Three Forks, Montana yielded a few brontothere teeth and bone fragments for the curious students.
Chadronian strata in this area contain brown to reddish, popcorn textured floodplain deposits and whitish-colored fine-sand channel deposits.
Chadronian strata in this area consist of brown to reddish popcorn-textured floodplain deposits that contain paleosols and whitish-colored fine-sand channel deposits.

 

 

Earl Douglass and the Tertiary Geology of Southwest Montana’s Madison Bluffs

Most vertebrate paleontologists probably think of the spectacular dinosaur finds near Jensen, Utah, when the name Earl Douglass is mentioned. Douglass’s discovery of a partial Apatosaurus near Jensen in 1909  did spark the beginning of his long career with finding more dinosaur material in what we now know as Dinosaur National Monument. But Douglass began his quest for fossil vertebrates while he was in southwestern Montana – several years before he was summoned by the Carnegie Museum of Natural History’s director William Jacob Holland to find dinosaurs.

From the spring of 1894 to 1896, Douglass taught at a one-room school in the lower Madison Valley of southwestern Montana. The school house was located in the lower Madison Valley, directly west of the area known as the Madison Bluffs. These bluffs contain strata that range in age from probably as old as Eocene through the late Miocene. The strata are continental units that include alluvial fan to fluvial trunk stream deposits.

The school house near the Madison Bluffs, southwestern Montana, that Earl Douglass taught at from 1894-1896.
The school house near the Madison Bluffs, southwestern Montana, that Earl Douglass taught at from 1894-1896.
The Madison Bluffs consist of Tertiary fluvail/alluvial fan strata of probably Eocene to late Miocene age.
The Madison Bluffs consist of Tertiary fluvial/alluvial fan strata of probably Eocene to late Miocene age. The Madison Buffalo Jump State Park is located at the northwest edge of this photo.

During his tenure at the lower Madison Valley school, Douglass spent much of his spare time exploring the Madison Bluffs. At the beginning of his teaching contract in 1894, he had very little knowledge of vertebrate paleontology and of the area geology. He initially considered the Madison Bluff beds as Cretaceous in age. But when he found a “tooth very much like a Protohippus” (Earl Douglass journal entry on May 12, 1894), Douglass knew that the beds were younger in age. As time passed, he began to find a significant quantity of fossil vertebrate mammal material within the bluff’s deposits. Consequently, he immersed himself into reading about comparative anatomy so he could readily identify the fossil material. Douglass eventually used his collected fossil material for his 1899 Master’s thesis at the University of Montana – ostensibly the first Master’s degree awarded by the University.

horse jaw from douglass madbluff

Douglass kept journals of his time in the lower Madison Valley, and often detailed both the area geology as well as his fossil finds. Alan Tabrum and volunteers from the Carnegie Museum of Natural History have transcribed many of his journal entries from southwestern Montana. I’ve included two portions of journal entries to illustrate his finding of a horse jaw from the bluffs (above diagram) and one of Douglass’s drawings of “Big Round Top” (an area in the bluffs near the one-room school house) as compared to that same area today in a photo that I took about a week ago.

earldouglass_bigrt

It’s not difficult to understand how Earl Douglass became enthralled with the geology and paleontology of the Madison Bluffs. In addition to the fossil vertebrates, the bluffs contain many other fascinating geological features. Towards the central part of the bluffs (immediately south of the Madison Buffalo Jump State Park), calcic paleosol stacks mark the boundary between most likely Eocene and Miocene strata. The calcic paleosol stacks contain at least two generations of soil profiles (typically minus the A and upper part of the B horizons). Rootlets and burrows are commonly associated with these paleosols.

Volcanic tuffs also occur within the bluff’s strata, which is really handy for those of us who like isotopic age control for southwestern Montana Tertiary deposits. The tuffs could potentially help age constrain the paleosol stacks and sedimentation within the so far non-fossil bearing part of the bluffs. And with the help of the New Mexico Geochronology Lab, a group of us are working on just that aspect of Madison Bluff geology.

Calcic paleosol stacks in the central part of the Madison Bluffs, southwest Montana.
Calcic paleosol stacks in the central part of the Madison Bluffs, southwest Montana.
Roots within the calcic paleosols found at the Madison Bluffs.
Roots within the calcic paleosols found at the Madison Bluffs.
Burrows at the base of a calcic paleosol.
Burrows and roots at the base of a calcic paleosol.
Gray tuff found below calcic paleosol stacks.
Gray tuff found below the calcic paleosol stacks.