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False positive rate = B/(B + D) – specific tests maximize the ability to ID ‘blanks’ or 
true negatives [D/(B + D)] 

False negative rate = C/(A + C) – sensitive tests maximize the ability to ID a target 
substance [A/(A + C)]

Model

+/present in real world -/absent in real world

+/present in dog’s opinion A B – false positive

-/absent in dog’s opinion C – false negative D



• Most training and certification programs permit some false positives 
and/or negatives.

• So…….How many target odors and how many blanks will you need for 
any given # of acceptable false positives and false negatives, given the 
calculated false positive or false negative rate?



Example:

• Constraint 1: The minimum criterion for passing is:

• false positive error rate less than or equal to 10% (α ≤ 0.10) 

• false negative error rate of less than or equal to 5% (β ≤ 0.05).

• Constraint 2: The dog can pass with: 

• 2 false positive errors ( δ= 2) and 

• 1 false negative error (ϒ= 1)

• What is the minimum test design that meets all of these criteria 
simultaneously?



• I. False positive constraint combination: The false positive 
error rate is less than or equal to 10% (α = 0.10) and the dog 
can make 2 false positive errors (δ = 2) and still pass the test. 

• Let Θ = the number of opportunities to make a false positive 
error during the test. 

• To meet the first constraint we require:

• δ / Θ ≤ α

• [2 / Θ] ≤ 0.1 

• Θ = 2 / 0.1 = 20 empty boxes. If you tolerate only a 5% (α = 
0.05) false positive rate, you would need 40 empty boxes



• II. False negative constraint calculation: The false negative 
error rate is less than or equal to 5% (β ≤ 0.05), and the dog 
can make 1 false negative error (ϒ= 1) and still pass. 

• Let Ω = the number of opportunities to make a false negative 
error during the test.

• To meet the second constraint we require:

• ϒ / Ω ≤ β 

• [1 / Ω] ≤ 0.05 

• Ω = 1 / 0.05 = 20 boxes with target substance



• The minimally acceptable test design is 40 boxes (20 empty 
and 20 with target) with target locations randomly assigned 
on each iteration of the test. 

• Using these statistical concepts in truly randomized, blinded 
test will enhance any program and provide true accuracy and 
reliability measures for dogs. 



General model – if you decide on or know 2 of the 
variables, you solve for the third

False positives:

• false positive error rate </= α

• false positive errors allowed  = δ

• number of opportunities to make a false positive error during the 
test = Θ

• δ / Θ ≤ α      Put your tolerance for false positive error rate here 
(eg, 5%/0.05)

Put # test containers here

Put # false positives errors allowed here



False negatives:
• false negative error rate of less than or equal to β
• false negative errors allowed =ϒ
• number of opportunities to make a false negative error during the 

test = Ω
• ϒ / Ω ≤ β Put your tolerance for false negative error rate here 

(eg, 5%/0.05)

Put # test containers here

Put # false negatives errors allowed here



Design
• 96 slot wheel
• Stainless steel design and containers food-grade stainless steel jars
• Industrial dishwasher – containers used once; apparatus cleaned each use
• 3 internal standards 
• 13 non-target compounds plus empty containers (container odor, only)
• 11 target compounds (some newly being trained and added incrementally 

over 17 trials)
• Randomized container assignment using a random number table
• Randomized location of wheel by spinning
• Randomized start quadrant
• One way glass
• 2 way radio
• Completely double blinded – separate tasks/people and handler signal as 

only indication, with tester blind to any info except the start quadrant and 
handler signal





Because the  probability (P) of choosing K correct bins (containing targets) out of N total bins of which only K 
are targets and the rest are non-target substances or blanks is given by:

𝑃(𝑁,𝐾) =
1

𝐶(𝑁,𝐾)

where,
For 3 targets in a total of 96 bins:

𝐶 96,3 =
96!

93! 3!
= 142,880

and,

The  probability (P) of choosing K correct bins (containing targets) from N total 
bins of which only K are targets and the rest are non-target substances or 
blanks is given by (C = # of combinations):

𝐶 𝑁,𝐾 =
𝑁!

𝑁 − 𝐾 !𝐾!



For 3 targets in a total of 96 bins:

𝐶 96,3 =
96!

93! 3!
= 142,880

𝑃 96,3 =
1

142880
= 6.99888 × 10−5



Conclusions – what this type of study can offer operational 
people:

• The use of such statistical designs, and the infrastructure that makes them 
possible, tells us what dogs know, what they don’t know and where we 
need improvement. These studies also tell us about which dogs are learning 
and how fast they do so (and so…perhaps who to breed).

• Such designs teach handlers to watch and understand their dogs.

• Such designs give organizations confidence that their teams perform as 
demanded and promised, while identifying weaknesses to be addressed. 

• The implementation of this type of strategy can keep us all safer, and allow 
handlers to do there jobs better, with maximal credibility. 
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