
Evaluating Methods and Technologies in Software Engineering
with Respect to Developers’ Skill Level

Gunnar R. Bergersen and Dag I. K. Sjøberg
Department of Informatics, University of Oslo,

P.O. Box 1080, NO-0316 Oslo, Norway
{gunnab, dagsj}@ifi.uio.no

Abstract—Background: It is trivial that the usefulness of a
technology depends on the skill of the user. Several studies have
reported an interaction between skill levels and different
technologies, but the effect of skill is, for the most part, ignored
in empirical, human-centric studies in software engineering.
Aim: This paper investigates the usefulness of a technology as a
function of skill. Method: An experiment that used students as
subjects found recursive implementations to be easier to debug
correctly than iterative implementations. We replicated the
experiment by hiring 65 professional developers from nine
companies in eight countries. In addition to the debugging tasks,
performance on 17 other programming tasks was collected and
analyzed using a measurement model that expressed the effect of
treatment as a function of skill. Results: The hypotheses of the
original study were confirmed only for the low-skilled subjects in
our replication. Conversely, the high-skilled subjects correctly
debugged the iterative implementations faster than the recursive
ones, while the difference between correct and incorrect solutions
for both treatments was negligible. We also found that the effect
of skill (odds ratio = 9.4) was much larger than the effect of
the treatment (odds ratio = 1.5). Conclusions: Claiming that a
technology is better than another is problematic without taking
skill levels into account. Better ways to assess skills as an integral
part of technology evaluation are required.

Keywords: programming skill, pretest, experimental control,
debugging, performance, replication

I. INTRODUCTION
When studying the effects of software processes, products, or
resources, a researcher is often forced to keep constant or
control for factors that may influence the outcome of the
experiment. Because previous studies have shown large
variability in programming performance, it is important to
control for this. However, it is not a simple task to control for
programming skill [9, 18, 29, 42], which is one of several
factors that affect programming performance [13, 15].

Individual differences may also mediate the claimed
benefit of different technologies. In a one-day experiment on
professionals maintaining two different implementations of
the same system, seniority had an effect on which system
was better: The system that used a “poor” object-oriented
design was better for juniors, whereas the system that used a
“good” design was better for seniors [7]. The effect of pair
programming on the same system was also investigated in
[6]; overall, the juniors benefitted from working in pairs
whereas the seniors did not. Such results are clearly
problematic if one aims to generalize from the study

population to a target population specified only as “software
developers.”

When an independent variable, such as skill or seniority,
is correlated with the dependent (outcome) variable of
a study, it is relevant to address this variable in relation to
the experimental results [40]. Improved control can be
achieved during experiment design (e.g., through blocking or
matching) or in analysis (e.g., as a covariate). In both
instances, the statistical power increases [32].

Another way to increase statistical power in studies
is to reduce subject variability [40]. However, the individual
differences of developers are, perhaps, some of the largest
factors that contribute to the success or failure of software
development in general [19, 27]. Several studies report
an “individual-differences” factor (e.g., due to differences
in skill) that is highly variable across individuals [20],
teams [35], companies [1], and universities [30], thereby
complicating analysis and adding uncertainty to the results.
Meta-analysis has also confirmed that individual variability
in programming is large, even though it may appear less than
the 1:28 differences reported in the early days of software
engineering [36]. Nevertheless, large variability in skill
levels implies that one should be meticulous when defining
the sample population as well as the target population in
empirical studies in software engineering.

An indicator of programming skill that is easy to collect
is months of experience or lines of code written by the
subjects. Large meta-analyses have indicated that bio-
graphical measures, such as experience, generally have low
predictive validity in studies on job performance [39]. At the
same time, work sample tests that involve actual (job) tasks
have the highest degree of validity.

Using one set of tasks to predict performance on another
set of tasks is not new: Anderson studied the acquisition
of skills in LISP programming [2] and found that “the
best predictor of individual differences in errors on problems
that involved one LISP concept was number of errors on
other problems that involved different concepts” (p. 203).
Therefore, pretests appear to be better measures of skill than
biographical variables, even though they require a lot more
instrumentation.

Calls for better pretests for programmers can be traced
back to at least 1980 [see 18]. Yet, in a 2009 literature
review on quasi experiments in software engineering, only
42% of the reported 113 studies applied controls to account
for potential selection bias [29]. Among the studies that
applied controls, only three experiments involved actual

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

pretest tasks. (The remaining studies used covariates such as
lines of code, exam scores, or years of experience.) The
authors therefore restated previous calls [see 9, 18] for
initiatives where the interaction between different types of
technologies and software developer capabilities could be
investigated.

This article reports a replication of a debugging
study where a measure of programming skill is available
using a pretest. Unlike [6, 7], where a small pretest and a
comprehensive experiment were used, we conducted a
comprehensive pretest and a small replication. Our overall
research question is: what are the moderating effects of skill
levels on the purported benefit of different technologies
or methods? In this study, we investigated whether the
usefulness of recursive implementations in debugging is
invariant of skill level. Further, we also aimed to assess
the individual variability in skill, which is potentially a
confounding factor, with respect to different implement-
ations of two small debugging tasks.

To do so, we analyzed the effect of using different
debugging implementations in a specific measurement model
(the Rasch model) where the effect of treatment is expressed
as a function of skill. Moreover, we use professional soft-
ware developers, thereby addressing the common criticism
that researchers habitually use students in experiments [see,
e.g., 9, 18, 42]. Although debugging studies and replications
are interesting in their own right, the focus here is on
methodical issues: Specifically, we investigate the effect of
skill levels on the generalizability of the main conclusions of
two earlier studies.

Section 2 describes method and materials. Section 3
reports results and section 4 analyzes these results using
programming skill as a covariate. Section 5 discusses
implications, limitations, and suggestions for further work.
Section 6 concludes the study.

II. METHOD AND MATERIALS
Section 2.1 describes the material, experimental procedure
and results of the original study. Section 2.2 describes the
material and experimental procedure of our replication.
Section 2.3 introduces the Rasch measurement model, which
is used in the analysis in Section 4.

A. The original study
The original study involved 266 students who took a course
on data structures [11]. The students were presented with two
C implementation tasks: (1) a small (< 25 lines of code)
search program for a linked list (“Find” task) and (2) a linked
list that was to be copied (“Copy” task). Each task had either
a recursive or iterative implementation (the treatment of the
study). Both tasks contained a bug that had to be correctly
identified and corrected. The study found that significantly
more subjects identified the bug for the recursive versions
than they did for the iterative version. A similar result was
also found for one of the tasks in an earlier comprehension
study using PASCAL [10]. Regarding correcting the bug,
recursion also gave significantly better results with respect to
the proportion of correct solutions for the Copy task
(p = 0.019). However, the results for the Find task were in

weak (non-significant) favor of iteration. When the results of
the two tasks were combined, the recursive versions had
4.1% more correct solutions overall, a result that was not
significant (p = 0.311). For the time required to correctly
debug the tasks, the original study was not significantly in
favor of any of the treatments.

The original study used a randomized within-subject
(repeated measures) crossover design. Both treatments
were presented to all subjects. Either one of them used
the iterative treatment first and the recursive treatment
second or vice versa. However, the Find task was always
presented before the Copy task. Therefore, it is unknown to
what extent an ordering effect is present [see generally 40],
for example, whether iterative Find and then recursive Copy
is an easier order to solve the tasks than recursive Find and
then iterative Copy. The tasks were debugged manually
using “hand tracing”.

B. This replication
Our replication is part of an ongoing work for constructing
an instrument for assessing programming skill. We
conducted a study with sixty-five professional software
developers who were hired from nine companies for
approximately €40 000. The companies were located in eight
different Central or Eastern-European countries. All the
subjects were required to have at least six months of
recent programming experience in Java. The subjects used
the same development tools that they normally used in their
jobs. The programming tasks, which included code and
descriptions, were downloaded from an experiment support
environment [8] that was responsible for tracking the time
spent on implementing each solution. Neither the developers
nor their respective companies were given individual results.

The study lasted two days and consisted of 17 Java
programming tasks in total. A subset of 12 of these tasks
had previously been found to adequately represent a
programming skill as a single measure that is normally
distributed and sufficiently reliable to characterize individual
differences [13]. Further, this measure was also significantly
positively correlated with programming experience, a
commercially available test of programming knowledge,
and several tests of working memory, which is an important
psychological variable in relation to skill [see 44, 47]. The
overall results accorded with a previous meta-analysis on job
performance [see 39] and Cattell’s investment theory, which
describes how the development of skills in general is
mediated by the acquisition of knowledge [see 22].

In this replication, the subjects received the two
debugging tasks described above in addition to the 17 Java
programming tasks. Allocation to treatment version
(recursive or iterative) for both tasks was random. One
subject was removed because the subject was an extremely
low outlier regarding skill.

This resulted in 64 pairs of Find and Copy tasks in a
crossover design, as shown in Table I. To reduce the risk of
an ordering effect [see, e.g., 40], we improved the design of
the original study by randomizing on task order (Find versus
Copy first) and including the recursive-recursive and
iterative-iterative designs. Further, all the 19 tasks were

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

allocated to the subjects in random order on a subject-by-
subject basis.

The subjects were given 10 minutes to solve each
debugging task. They were also allowed three additional
minutes to upload the solution. Up to five minutes were
allowed for reading the task description prior to downloading
the code task. It was explicitly explained to the subjects that
the time they spent reading task descriptions was not
included in the time recorded for solving the tasks. Tasks
that were submitted too late (i.e., more than 13 minutes in
total) were scored as incorrect. This procedure was explained
to the subjects prior to the start of the study. Time was only
analyzed and reported for correct solutions.

In our replication, we focus only on differences for
whether a bug was corrected or not. Our study design and
available resources did not enable us to identify whether a
bug was correctly identified (see Section 2.1) and then
incorrectly corrected. The time to correctly debug a task in
our study was not comparable to the original study because
of differences in how the tasks were presented to the
subjects.

We used R [37] for statistical analysis. Unless otherwise
noted, Fisher’s exact test was used to test differences in
correctness, Welch’s t-test for differences in time, and
Spearman’s rho to report (non-parametric) correlations. A
common feature of all these statistics is that they do not
make strong assumptions about the distribution of the data.
We use Fisher’s test, which can report exact probabilities,
in the presence of few observations rather than the Chi-
squared differences test that calculates approximate p-values.
Welch’s t-test is similar to the Student’s t-test, but it does not
assume that the compared variables have equal variance.

We use two-tailed tests for differences when reporting
p-values. For standardized effect sizes, we use Cohen’s d
and follow the behavioral science conventions in [25] when
reporting the magnitude of an effect (see [28] for software
engineering conventions). We use [24] for effect size
conversions from odds ratio (OR) to d and report arithmetic
means.

C. The Rasch measurement model
A measurement model explicates how measurement is
conceptualized. Within psychological testing, the choice of
measurement model establishes how abilities, such as
intelligence or skills, are related to a person’s responses on

items [33]. An item is a generic term for any question, essay,
task, or other formulated problem presented to an individual
to elicit a response. The choice of measurement model
dictates how patterns in responses to items should and should
not appear. Failure to detect expected patterns and the
presence of unwanted patterns may invalidate a researcher’s
claims to what is measured by a psychological test [4].

The original Rasch model [38] was published in 1960
and conceptualizes measurement of abilities according to a
probabilistic framework. The model has similarities to
conditional logistic regression and is sometimes referred
to as a one-parameter Item Response Theory (IRT) model
(see e.g., [33, 34]). The use of IRT models has increased
in last half century. Nowadays, IRT models are central to
large, multi-national testing frameworks, such as the PISA
test [16], which is used to measure educational achievement
of students across approximately 40 OECD countries.

The Rasch model belongs to a class of models that
assumes unidimensionality, that is, the investigated ability
can be represented by a single numerical value [4, 33].
Central to the Rasch model is the invariant estimation of
abilities and item difficulties [4]. This is consistent with the
general test-theory requirements set forth by pioneers in
psychology nearly a century ago [see 46].

The original Rasch model only permits two score
categories when a person solves a task: incorrect = 0 or
correct = 1. Therefore, it is called the dichotomous Rasch
model. In this model, the probability of a person with skill β
to correctly answer a task with difficulty δ can be expressed
as

 Pr
.
 (1)

The parameters β and δ are represented in log odds (i.e.,
logits). When β equals δ, the probability for a correct
response is 0.50. The relative distance between skill and task
difficulty follows a logistic (sigmoid) function that is
S-shaped.

A generalization of the dichotomous Rasch model,
derived by Andrich [3], allows the use of more than two
score categories. It is therefore called the polytomous Rasch
model. Although this model is more complex to express
mathematically than the dichotomous model shown above
(1), the general principles are the same for both models.

Even though the Rasch model uses discrete score
categories, continuous variables such as time have previously
been adapted to the scoring structure of the polytomous
Rasch model. In [12, 15], we explicated the requirements
for including programming tasks that vary in both time and
quality dimensions simultaneously in the polytomous Rasch
model. We now use the same model to express the effect of
recursive versus iterative treatments for the two debugging
tasks conditional on skill.

The Rasch analysis was conducted using the Rumm2020
software package [5]. A difference of x logits has uniform
implications over the whole scale and is equal to an OR of ex.

TABLE I. THE DESIGN OF THE REPLICATED STUDY

Finda Copya
n

Recursive Iterative Recursive Iterative
X X 22
 X X 21

X X 9
 X X 12

a which of the two tasks were presented first was randomized

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

III. RESULTS
Table II shows the proportion of correct solutions in the
original study and the replicated one. There are three clear
differences. First, the professionals in the replicated study
clearly have a larger proportion of correct solutions than the
students of the original study when comparing the mean of
both tasks combined for the two studies (OR = 7.6, d = 1.12,
p < 0.001).

Second, the probability of a correct solution for the Find
task was higher in both studies (i.e., it is an easier task).
For our replication, the difference in mean correctness
between Find and Copy is large as well (OR = 4.5, d = 0.83,
p = 0.001).

Third, our prediction that recursion would have a
larger proportion of correct responses was disproved on
a task-by-task basis compared with the original study.
Our study supports the conclusion of the original study only
for the recursive Find task: we found a larger proportion
of correct solutions (OR = 6.5, d = 1.03, p = 0.106) with a
95% confidence interval (95CI) for the OR that ranges from
0.72 to 316. However, for the Copy task, the result was in
favor of iteration because the odds ratio is less than 1
(OR = 0.94, 95CI = [0.30, 3.0], d = -0.03, p = 1.0).

In the original study, the mean time required to fix the
debugging problem correctly yielded mixed and not
significant results that were slightly in favor of recursion.
(Mean time was in favor of recursion for the Find task and
in favor of iteration for the Copy task.) In this replication, the
mean time, which were measured in minutes, were not
in favor of any of the treatments (recursive Find = 5.48,
SD = 2.48; iterative Find = 5.65, SD = 2.82; recursive Copy
= 6.30, SD = 2.58; iterative Copy = 5.95, SD = 2.68).
However, the mean does not adequately represent the central
tendency of the data in the presence of outliers or when the
distribution is skewed.

Figure 1 shows boxplots of the time for correct solutions.
As indicated by the whiskers, the spread of the data is
somewhat wider for both iterative treatments. Further, the
median is much closer to the first quartile than the third
quartile, which indicates a positively skewed distribution.
The original study only reported mean differences for time
without referring to the distribution, standard deviation or
median values; it is therefore unclear whether the mean is a
good representation of the central tendency of their data or
not.

Within-subject designs permit pair-wise comparisons
that may limit the confounding effect of individual
variability [40]. In our replication, the recursive-recursive
and iterative-iterative designs (Table I) cannot be used in
such an analysis, because the same treatment is used for both
tasks. Nevertheless, two-thirds of our subjects (n = 43) were
given both treatments using a randomized crossover design.
There are two relevant outcomes to analyze: those who had a
correct recursive and incorrect iterative solution (i.e., in favor
of recursion) and vice versa (i.e., in favor of iteration).
Eleven subjects displayed results in favor of recursion and
six subjects in favor of iteration. (A total of 26 subjects
performed identically across treatments and are thus
excluded from this analysis.) A null hypothesis of “equal
probability in favor of either treatment” (i.e., in favor of
recursion = in favor of iteration = 0.5) can then be tested
against the alternative hypothesis of a higher probability
in favor of recursion, using a binomial test. However,
11 successes in favor of recursion over 17 trials (11 + 6) give
a p-value of only 0.167. Hence, the null hypothesis could not
be falsified. Only weak support in favor of recursion was
therefore present.

We have previously shown that the proportion of correct
responses is higher for Find than for Copy (Table II). It
is therefore interesting that 15 of the same 17 individuals
who were in favor of one of the treatments were also in favor
of the same treatment that they received for the (easiest) Find
task. A null hypothesis of “no differences between tasks”
using a binominal distribution could be falsified (p = 0.001).
Hence, there is support for that the effect of differences in
the difficulty between tasks appears larger than the effect of
treatment across both tasks in an analysis using pair-wise
comparisons.

In summary, only for the Find task, our replication
supported the overall finding of the original study that
recursion is associated with a larger proportion of correct
answers. This result is contrary to the findings of the original
authors who only found a significant difference in favor of
recursion for the Copy task.

Figure 1. Distribution of time for correct solutions in the replication.

TABLE II. PROPORTION OF CORRECT SOLUTIONS IN BOTH STUDIES

Task Treatment Original
study (n)

Replicated
study (n)

Find Recursive 34.1% (132) 96.8% (31)
Find Iterative 38.1% (134) 81.8% (33)
Copy Recursive 29.9% (134) 63.3% (30)
Copy Iterative 17.6% (131) 64.7% (34)
Mean of Find Both 36.1% (266) 89.1% (64)
Mean of Copy Both 23.8% (265) 64.0% (64)
Mean of both tasks Both 30.0% (531) 76.6% (128)

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

IV. RESULTS USING RASCH MODEL ANALYSIS
This section expands upon the previous section by including
results for skill differences (Section 2.2). Section 4.1 gives
justification as to why the measures of skill should be
included in the analysis. Section 4.2 addresses to what extent
random assignment to treatment was successful in our
replication. Finally, while Sections 4.1 and 4.2 treat skill
estimates as a “black box”, Section 4.3 shows how the
preference for iterative or recursive debugging tasks changes
when the results (Section 3) are reanalyzed as a function of
skill.

A. Justification for using skill in the analysis
In order to include a covariate such as skill in an analysis, the
covariate must be correlated with the outcome of the
experiment [40]. Table III shows the correlations between
skill and the dual experiment outcomes of correctness and
time to correctly debug the two tasks irrespective of
treatment. All four correlations were large and significant
with p-values below 0.003.

Correlations alone do not illustrate to what extent
differences in skill accounts for practical differences in
debugging performance on the two tasks. We therefore split
the study population into two groups: The more skilled
(variable MoreSkill) and the less skilled (variable LessSkill)
groups consist of individuals with skill above and below the
mean respectively. For the proportion of correct solutions for
the Find task irrespective of treatment, MoreSkill had all
tasks correct (100%), whereas LessSkill had 75.8% correct
(OR cannot be computed, 95CI = [2.0, ∞], p = 0.003).
For the Copy task, MoreSkill had a higher mean proportion
of correct answers as well (85.7% correct, LessSkill: 37.9%
correct, OR = 9.4, 95CI = [2.6, 41], d = 1.24, p < 0.001).

For the time to correctly debug the tasks irrespective
of treatment, LessSkill spent 73.1% more time than
MoreSkill on correctly solving the Find task, t(40) = 5.05,
p < 0.001, d = 1.38. Further, this group also spent 36.8%
more time on correctly solving the Copy task, t(21) = 2.32,
p = 0.030, d = 0.80, than MoreSkill. For Find, the mean time
for LessSkill was 7.21 minutes (SD = 2.59, n = 25) and
4.16 minutes (SD = 1.75, n = 32) for MoreSkill. For Copy,
the mean time for LessSkill was 7.49 minutes (SD = 2.69,
n = 13) whereas MoreSkill used 5.47 minutes (SD = 2.36,
n = 28). Moreover, when the results for Find and Copy were
combined, MoreSkill was faster in correctly debugging as
well (p < 0.001).

Hence, we can regard measures of skill as a relevant
predictor of the debugging performance in the replication
that may be used in the further analysis.

B. Random assignment in the replication
An implicit assumption in randomized designs is that
randomization limits systematic effects of unequal groups
with respect to factors that can significantly influence the
experiment outcome [29, 40]. Although this holds true for
large samples, when sample size is small it may pose a
serious threat to the validity of inferences.

The subjects who were assigned to the recursive
Find task had slightly higher mean skills than those who
were assigned to the iterative version. The difference in
mean skill, as estimated by the Rasch model, was 0.35 logits
(OR = 1.42, d = 0.19). For the Copy tasks, the effect of
randomized assignment to treatment was reversed; the
iterative group had slightly higher skills than the recursive
group on average (∆ = 0.13 logits, OR = 1.14, d = 0.07).
We now turn to the more detailed analysis where the effect
of recursive and iterative treatments for the two tasks can
be analyzed conditional on skill.

C. Results
In this section, we use Rasch analysis to expand the
previously reported results. Information about each
individual’s skill is now used to estimate the difficulty of
four treatment pairs: recursive Find, iterative Find, recursive
Copy and iterative Copy. The procedure uses the principles
of differential item functioning (DIF) that is commonly is
used to investigate whether questions in a psychological test
are biased towards subgroups such as non-native speakers of
a language or ethnic minorities [see 17]. However, we
perform some adaptations to traditional DIF analysis along
the lines discussed in [23].

We will use the term item to denote one of the four
treatment-task pairs above. The estimation process uses a
conditional maximum likelihood function where residual
(unexplained) variance is minimized. Further, unlike the
differences in mean skill we reported in Section 4.2, the
Rasch model accounts for skill differences on a person-by-
person level. This implies that even if a group of individuals
is more skilled on average, individual response patterns that
yield more relevant information in determining the difficulty
of tasks are used. Nevertheless, the inequality of treatment
groups with respect to skill (as reported in Section 4.2) is
now taken into consideration in determining the difficulty
estimates for the four items.

All the four items were scored identically using three
score categories: Incorrect = 0, correct and slow = 1, and
correct and fast = 2. This score structure is a monotonic
function of what “high performance” implies and uses an
ordinal scale [15]. We (operationally) defined six minutes as
the difference between “slow” and “fast” solutions, thereby
roughly splitting the observations of Figure 1 in half.
Although this procedure degrades time into a dichotomous
variable, it allows time and correctness to be co-located on
the same scale for more detailed analysis. This, in turn,
makes it possible to express the difficulty of all four items as
a function of skill.

Each individual’s aggregated debugging score over
both tasks (i.e., a sum score from 0–4) appeared normally

TABLE III. DEPENDENT VARIABLE CORRELATIONS WITH SKILL IN
THE REPLICATION

Task Correctnessa (n) Time (n)
Find 0.51 (64) -0.56 (57)

Copy 0.55 (64) -0.44 (41)
a point-biserial correlation

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

distributed according to the Kolmogorov-Smirnov statistic
(p = 0.058). Further, this sum score was also well predicted
by skill (rho = 0.673, 95CI1 = [0.484, 0.806], p < 0.001).

The Rasch model places item difficulty and a person’s
ability on the same interval scale [3]. An interval scale
implies that additive transformations are permitted but not
multiplicative transformations. Further, ratio interpretations
are not meaningful because the number zero is not
defined [45].

Figure 2 shows the expected probabilities for the
recursive Find item using the three score categories (0–2)
above. The mean population skill is transformed to be
located at 5 logits and has a standard deviation of 1.3 logits
(not shown) on the x-axis. Starting from the left, the figure
shows that the incorrect (score = 0) response category has
the highest probability for individuals with less skill than
about 1.2 logits. Further, the probability of an incorrect
solution decreases as skill increases, and the probability of an
incorrect response becomes negligible at about 5 logits and
above. Between 1.2 and 5.2 logits, the most probable
response category is 1 (correct and slow). Above 5.2 logits,
the most probable response category is 2 (correct and fast).
The sum of the probability for the three score categories
always equals 1.0 for any level of skill.

The dotted line that departs upwards from the “score = 1”
category shows the cumulative distribution function for
this score category. Because a score of 2 also implies that
the first threshold has been passed [see, e.g., 4, 15], the
probability of not achieving at least a correct and slow
solution when skill is above about 5 logits is also negligible.

A threshold is the location on the logit scale where one
response category replaces another one as being the most
likely response. This is indicated in Figure 2 by two
vertically dotted lines. There, the number of thresholds for
each item equals the number of score categories minus 1:
The first threshold is where score 0 and 1 intersect, and the
second threshold is where score 1 and 2 intersect.

Figure 3 shows the most likely response category for
all four items as a function skill. Although the exact
category probability curves for each item is not shown (as in
Figure 2), the differences in the location of thresholds

1 Calculated using PASW™ 18.0 for 2500 bootstrapped samples.

provide the needed information about differences in
difficulty between the four items. (The two thresholds in
Figure 2 can be found for “recursive Find” row in Figure 3.)
The standard error of measurement for each threshold is
represented by a horizontal bar. Overall, the lower difficulty
of the first threshold for both recursive tasks compared with
their iterative alternatives supports the findings of original
study: the recursive versions of the two tasks are easier to
debug correctly. The effect is much larger for the Find task
(∆ 2.1 logits) than for the Copy task (∆ 0.6 logits).

The second threshold represents the difficulty of
debugging an item correctly in a “slow” versus “fast”
manner. As expected, it is more difficult to achieve a correct
and fast solution than a correct and slow solution. The results
for the second thresholds were reversed with respect to what
the better treatment was for both tasks; the iterative versions
were easier to debug correctly and fast than the recursive
versions of the tasks. However, inspecting the width of the
standard errors in Figure 3 shows that none of the differences
in threshold locations are significant; a 95% confidence
interval for item thresholds can be obtained by roughly
doubling the width of each standard error bar.

Based on the information contained in the threshold map
in Figure 3, it is now possible to turn to a concrete example
of how “what is the better treatment” varies as a function of
skill. We first define three (hypothetical) groups: the low-
skilled group has a skill of 3 logits (at 7th percentile), the
average-skilled group has the mean skill of the investigated
population and the high-skilled group has a skill of 7 logits
(at 93rd percentile). (The low- and high-skilled groups are
about ±1.5 standard deviations below or above the mean
skill.)

In Figure 4 we have combined the probabilities for the
Find and Copy tasks. For the low-skilled group, the recursive
implementations appear best because the probability of
incorrectly debugging these tasks (0.45) is lower than for the
iterative versions (0.69). At the same time, the difference in
probability between the treatments for a correct and fast
implementation also appears negligible (0.05 for recursive
versus 0.06 for iterative).

For the high-skilled group, the iterative versions appear
best. The expected probability of a correct and fast
implementation for the iterative versions of the tasks
combined is 0.88, whereas the corresponding probability for

Figure 3. Estimated task difficulty thresholds by the Rasch model
(threshold map).

Figure 2. Category probability curves for different scores as a function

of skill for the recursive Find task.

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

the recursive versions is 0.77. At the same time, the
probability for an incorrect solution for both recursion and
iteration is only 0.01.

For the average-skilled group, the results are
inconclusive, because a choice must be made with respect
to preference in a time-quality tradeoff [see, e.g., 26].
For example, the iterative versions have a slightly higher
probability of being incorrect (0.20 versus 0.15), whereas
the probability of a correct and fast solution is also slightly
higher (0.44 versus 0.33). Whether recursion or iteration
is the better treatment for this group cannot be decided
because there are no negligible differences for any of the
score categories.

V. DISCUSSION
This section discusses and contrasts the results from the
original and replicated study, first with respect to implication
for research and then with respect to implications for
practice. We then address limitations of our replicated study
and discuss issues for future work.

A. Implications for research
In this study, the largest effect on debugging performance
was neither the treatment nor the task complexity; it was
the skill of the subjects. Overall, the two recursive
implementations were slightly easier to debug correctly
(OR = 1.50) than the iterative implementations. The original
study had a similar result, although the effect size was
smaller (OR = 1.21). By pooling the data from both
studies (Table II), the effect of recursion being easier to
debug correctly is marginal (OR = 1.18, 95CI = [0.85, 1.63],
d = 0.09, p = 0.34).

Both studies show that the difference in difficulty
between the tasks is larger than the effect of treatment.
Combining the studies, the standardized effect size of task
difficulty irrespective of treatment is between small and
medium (OR = 1.87, 95CI = [1.34, 2.6], d = 0.35, p < 0.001).

However, in our replication, these effect sizes are
dominated by the effect of individual differences in skill:
When correctness for Find and Copy was merged and
analyzed irrespective of treatment, the more skilled group
had 92.9% correct solutions and the less skilled group

had 56.9% correct solutions. This difference represents a
large standardized effect size (OR = 9.4, 95CI = [2.6, 41],
d = 1.25, p < 0.001) that ranks in the top 25th percentile of
284 software engineering experiments [see 28]. Differences
in skill must therefore be controlled for in empirical studies
of programmers.

Generalization over tasks usually requires that the results
be consistent across several tasks. The original study had
only two tasks. Consider Segal’s law: “a man with a watch
knows what time it is. A man with two watches is never
sure.” Only by having multiple operationalizations is it
possible to make more qualified inferences on the extent to
which a result can be generalized. When expressing the
effect of treatment as a function of skill by using the Rasch
model, we obtained results that were consistent across two
tasks despite the challenge that a large task difficulty factor
presented.

The combined results of three studies now support the
conclusion of the authors of the original study. Table IV
shows the overall results for the comprehension, original,
and replicated studies, where “+” denotes positive support of
the original authors’ conclusion with respect to debugging
correctness. Yet, their large study still failed to yield results
in support of the recursive version of the Find task as being
easier to debug. Although the difference of the effect size of
recursion versus iteration for the two tasks is relatively small
and difficult to detect, the sample size of the original study
requires us to conjecture why they did not find that the
recursive Find task was easier than the iterative one.

A practice effect is when performance increases for each

Figure 4. Expected score category probabilities for Find and Copy combined depending on skill and treatment.

TABLE IV. SUPPORT FOR RECURSION BEING MORE EASY TO DEBUG
CORRECTLY

Study # responses
(both tasks)

Debugging
phase

Task

Find Copy
Comprehension [10] 275

Identification
+ (–)

Original [11] 531
+ +

Correction
(–) +

This replication 128 (+) (+)
+ denote positive support and – denote negative support for the original authors’ conclusion

() represents non-significant results

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

new task in a study when the performance is supposed to be
stable in order not to bias the study [41]. Practice effects are
common threats to validity in within-subject designs [40]
and are known to increase individual variability and thereby
decrease the statistical power to detect differences. In the
skill instrument, we have previously reported the presence of
a small “warm-up” effect for the first three tasks (1–2 hours),
but it is not present afterwards [14]. It is therefore tenable
that the original study, which only involved two small
tasks, is influenced by a similar practice effect (any potential
practice effect in our replication is averaged over 19 tasks
using randomization).

The mean degree of correctness for Find and Copy for
the students in the original study and the professionals in
the replicated study (Table II) deserves to be addressed in
order to address a potential practice effect. The student’s
probability of correct solutions for their first (Find) task
was 0.53 lower than that for the professionals, but only a
difference of 0.40 separated the two populations for the
second (Copy) task. This indicates that the students
improved their performance on their second task more than
did the professionals. Typically, professionals are more
skilled than students and therefore learn less from
practice [see 26]. Nevertheless, a systematic improvement in
performance during a study is problematic, because it
implies that the subjects are not well versed in using the
technology; hence the results cannot be generalized [41].
An improvement of 0.13 (i.e., 0.53-0.40) in the proportion of
correct responses is almost equal in size to the difference in
mean difficulty of the two tasks (0.16). Hence, it may appear
that that a practice effect, in addition to the effect of skill and
task difficulty, may also be larger than the effect of treatment
in the original study.

B. Implications for practice
We found weak results in favor of iteration being easier to
debug fast and correctly than recursion. Although this result
was not significant, it was consistent over both tasks.

It is self-evidently true that a technology is better
when it is easier and faster to use than when it is not.
However, what if a “faster” technology comes at the price of
added complexity, which makes the technology harder to
use properly? Then the faster technology would require
more training to be used successfully. Without training, the
faster and more complex technology would be associated
with a higher proportion of incorrect uses, thereby making
the faster technology appear worse than the existing
alternative that is slow but easy to use correctly already.

There are several examples of occasions when a faster
technology is more difficult to use. For example, a bicycle is
a faster means of transportation than walking, but one must
know how to ride it. Similarly, a typewriter is easier to use
than a computer, but the computer is faster for text editing
when used correctly. More complex technologies frequently
require more training than less complex technologies; at the
same time, more complex technologies are adopted because
they add to productivity.

Fundamental to our reported results that the potential
advantage of different debugging implementations may

depend on skill levels are two basic assumptions. First, a
correct solution is better than an incorrect solution. Second, a
fast solution is better than a slow solution if both solutions
are correct [21]. As previously shown in Fig 4., when the
probabilities for an incorrect solution is high, it is normal to
take steps to improve the degree of correctness before less
time becomes an important factor. This seems to be the
case for our (hypothetically defined) low-skilled subjects.
An opposite situation was present for the high-skilled
subjects: because the proportion of incorrect and correct
answers was negligible whereas the difficulty of a fast and
correct solution was lower for the iterative versions, the
preference for what treatment was better was reversed. The
tradeoff between quality and time is certainly present
when practitioners evaluate the benefits of new software
engineering technologies.

C. Limitations
A limitation of this replication is low statistical power.
Although we had sufficient power to detect large and
systematic differences in the skills of the subjects and the
differences in the difficulty of the tasks, our results with
respect to the treatments were not significant. Further, even
though the study magnitude of our replication is large
according to the conventions of [43] (the professionals spent
more than 1000 hours combined), the Rasch model can be
data intensive when the purpose is to characterize individual
differences [see 31]. Because our research question considers
group differences (rather than individual differences), fewer
than the recommended number of subjects for using the
Rasch model is therefore acceptable. We also regard the
limitation of only having two debugging tasks to generalize
from as a greater concern than the statistical power at
present.

In this replication, there was only one response for
the “incorrect” score category for the recursive Find task.
This implies that the standard error associated with the first
threshold for this task is not adequately represented. Ideally,
all response categories should be well populated to obtain
accurate item thresholds in the Rasch model. For the two
tasks investigated here, a new sample of less skilled subjects
is needed to obtain lower standard errors of measurement in
the item difficulty thresholds.

D. Future work
To measure the skill of the subjects in this study we used
a specifically tailored research prototype. We are now
working on making the skill instrument industry strength.
New or replicated experiments may then be administered as
part of ongoing assessments of professionals and students,
something that facilitates the use of more statistically
powerful experimental designs (e.g., matching or pairing,
see [40]). Such designs are particularly relevant for studies
where few subjects are available, within-subject designs are
not feasible, or where random assignment to treatment is not
possible. We will also conduct more studies where skill is
taken into account when investigating the effect of a
technology. We welcome future collaborations.

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

VI. CONCLUSION
An implicit assumption in many research studies in software
engineering is that the benefit of a new technology or method
is invariant of skill levels. The study reported in this paper
illustrates why such an assumption is problematic. Using a
measurement model where the effect of recursive versus
iterative implementations of two small debugging tasks was
expressed as a function of skill, we provided additional
evidence that “what is the better” of two competing
technologies requires the additional qualifier “for whom?”

We found that for the low-skilled subjects, the results
were in favor of recursive implementations, which supports
the original study. An opposite result was found for the high-
skilled subjects; the iterative versions were debugged faster
while the difference in the proportion of correct answers
compared to the recursive version was negligible. Hence, the
benefit of debugging the iterative versions (less difficult to
debug fast but more difficult to debug correctly), is based on
an important principle: The probability of incorrectly using
both debugging alternatives must be low and negligible
before the faster technology can be assumed to be better.

This study does not stand in isolation; previous large-
scale experiments have reported similar interaction effects
between skill levels and the technology or method being
investigated. Still, there is often a gap between researcher
expectations and empirical results because one fails to
acknowledge that potentially more powerful technologies
may be more complex to use, or may require new skills in
order to use correctly. The community must raise its
awareness of how skill levels, which in this study was
much larger than the difference between treatments, affect
the claimed benefits of alternatives being evaluated.
Consequently, we need better ways to measure relevant skills
with respect to the product or process being investigated.

ACKNOWLEDGMENT
This research was supported by the Research Council of
Norway through the FORNY program, and by Simula
Research Laboratory. We thank Steinar Haugen and Gunnar
Carelius for technical assistance, and Magne Jørgensen for
reading through an earlier version of this manuscript. We
also thank Christian Brinch for pointing out that our pair-
wise comparison can be analyzed using a binominal test.

REFERENCES
[1] B. C. D. Anda, D. I. K. Sjøberg, and A. Mockus, “Variability and

reproducibility in software engineering: A study of four companies
that developed the same system,” IEEE T. Software Eng., vol. 37,
pp. 407–420, 2009.

[2] J. R. Anderson, “Skill acquisition:Compilation of weak-method prob-
lem solutions,” Psychol. Rev., vol. 94, pp. 192–210, 1987.

[3] D. Andrich, “A rating formulation for ordered response categories,”
Psychometrika, vol. 43, pp. 561–573, 1978.

[4] D. Andrich, Rasch models for measurement, CA: Sage Publications,
1988.

[5] D. Andrich, B. Sheridan, and G. Luo, RUMM2020 [computer
software]. Perth: RUMM Laboratory, 2006.

[6] E. Arisholm, H. Gallis, T. Dybå, and D. I. K. Sjøberg, “Evaluating
pair programming with respect to system complexity and programmer
expertise,” IEEE T. Software Eng., vol. 33, pp. 65–86, 2007.

[7] E. Arisholm and D. I. K. Sjøberg, “Evaluating the effect of a
delegated versus centralized control style on the maintainability of
object-oriented software,” IEEE T. Software Eng., vol. 30, pp. 521–
534, 2004.

[8] E. Arisholm, D. I. K. Sjøberg, G. J. Carelius, and Y. Lindsjørn, “A
web-based support environment for software engineering
experiments,” Nordic J. Comput., vol. 9, pp. 231–247, 2002.

[9] V. C. Basili, F. Shull, and F. Lanubile, “Building knowledge through
families of experiments,” IEEE T. Software Eng., vol. 25, pp. 456–
473, 1999.

[10] A. C. Benander, B. A. Benander, and H. Pu, “Recursion vs. iteration:
An empirical study of comprehension,” J. Syst. Software, vol. 32,
pp. 73–83, 1996.

[11] A. C. Benander, B. A. Benander, and J. Sang, “An empirical analysis
of debugging performance—differences between iterative and
recursive constructs,” J. Syst. Software, vol. 32, pp. 73–83, 1996.

[12] G. R. Bergersen, “Combining time and correctness in the scoring of
performance on items,” Proc. Probabilistic models for measurement
in education, psychology, social science and health, Copenhagen
Business School and the University of Copenhagen, Jun. 2010,
http://tiny.cc/pl1i1.

[13] G. R. Bergersen and J.-E. Gustafsson, “Programming skill, know-
ledge and working memory among professional software developers
from an investment theory perspective,“ J. Indiv. Diff., vol. 32,
pp. 201–209, 2011.

[14] G. R. Bergersen and J. E. Hannay, “Detecting learning and fatigue
effects by inspection of person-item residuals,” Proc. Probabilistic
models for measurement in education, psychology, social science
and health, Copenhagen Business School and the University of
Copenhagen, Jun. 2010, http://tiny.cc/dqiu2.

[15] G. R. Bergersen, J. E. Hannay, D. I. K. Sjøberg, T. Dybå, and
A. Karahasanović, “Inferring skill from tests of programming
performance: Combining time and quality,” Proc. International
Symposium on Empirical Software Engineering and Measurement
(ESEM), IEEE Computer Society, Sep. 2011, pp. 305–314.

[16] T. G. Bond and C. M. Fox, Applying the Rasch model: Fundamental
measurement in the human sciences. Mahwah, NJ: Erlbaum, 2001.

[17] D. Borsboom, “When does measurement invariance matter?” Med.
Care, vol. 44, pp. S176–S181, 2006.

[18] R. E. Brooks, “Studying programmer behavior experimentally: The
problems of proper methodology,” Commun. ACM, vol. 23, pp. 207–
213, 1980.

[19] F. P. Brooks, The Mythical Man-Month: Essays on Software
Engineering, Anniversary ed. Reading, MA: Addison-Wesley, 1995.

[20] A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood, Replication
of experimental results in software engineering. University of
Strathclyde, International Software Engineering Research Network
(ISERN) Technical Report, 10, 1996.

[21] J. B. Carroll, Human cognitive abilities. Cambridge: Cambridge
University Press, 1993.

[22] R. B. Cattell, Abilities: Their structure, growth, and action. Boston:
Houghton-Mifflin, 1971/1987.

[23] W.-C. Chang and C. Chan, “Rasch analysis for outcome measures:
Some methodological considerations,” Arch. Phys. Med. Rehabil.,
vol. 76, pp. 934–939, 1995.

[24] S. Chinn, “A simple method for converting an odds ratio to effect size
for use in meta-analysis,” Statist. Med., vol. 19, pp. 3127–3131, 2000.

[25] J. Cohen, “A power primer,” Psychol. Bull., vol. 112, pp. 155–159,
1992.

[26] P. M. Fitts and M. I. Postner, Human performance. Belmont, CA:
Brooks/Cole, 1967.

[27] R. R. Glass, “Frequently forgotten fundamental facts about software
engineering,” IEEE Software, pp. 110–112, May/June 2001.

[28] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg,
“A systematic review of effect size in software engineering
experiments,” Inform. Software Tech., vol. 49, pp. 1073–1086, 2007.

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

[29] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg, “A
systematic review of quasi-experiments in software engineering,”
Inform. Software Tech., vol. 51, pp. 71–82, 2009.

[30] J. J. Krein, C. D. Knutson, L. Prechelt, N. Juristo, “Report from
the 2nd International Workshop on Replication in Empirical Software
Engineering Research (RESER 2011),” SIGSOFT Software
Engineering Notes, vol. 37, pp. 27–30, 2012.

[31] J. M. Linacre, “Sample size and item calibration stability,” Rasch
Measurement Transactions, vol. 7:4, pp. 328, 1994.

[32] S. E. Maxwell, “Covariate imbalance and conditional size:
Dependence on model-based adjustments,” Stat. Med., vol. 12,
pp. 101–109, 1993.

[33] J. C. Nunnally and I. H. Bernstein, Psychometric theory, 3rd ed.
NY: McGraw-Hill, 1994.

[34] R. Ostini and M. L. Nering, Polytomous item response theory models.
CA: Sage Publications, 2006.

[35] L. Prechelt, “Plat_Forms: A web development platform comparison
by an exploratory experiment searching for emergent platform
properties,” IEEE T. Software Eng., vol. 37, pp. 95–108, 2011.

[36] L. Prechelt, The 28:1 Grant/Sackman legend is misleading, or: How
large is interpersonal variation really? University of Karlsruhe,
Technical report, 18, 1999.

[37] R Development Core Team (2008), R: A language and environment
for statistical computing [computer software v. 2.13.2]. R Foundation
for Statistical Computing, 2008. http://www.R-project.org.

[38] G. Rasch, Probabilistic models for some intelligence and attainment
tests. Copenhagen: Danish Institute for Educational Research, 1960.

[39] F. L. Schmitt and J. E. Hunter, “The validity and utility of selection
methods in personnel psychology: Practical and theoretical
implications of 85 years of research findings,” Psychol. Bull.,
vol.124, pp. 262–274, 1988.

[40] W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental
and quasi-experimental designs for generalized causal inference.
Boston: Houghton Mifflin, 2002.

[41] B. A. Sheil, “The psychological study of programming,” ACM
Comput. Surv., vol. 13, pp. 101–120, 1981.

[42] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen,
A. Karahasanovic, E. Koren, and M. Vokác, “Conducting realistic
experiments in software engineering,” Proc. First International
Symposium on Empirical Software Engineering (ISESE), IEEE
Computer Society, Oct. 2002, pp. 17–26.

[43] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes,
A. Karahasanovic, N.-K. Liborg, and A. C. Rekdal, “A survey of
controlled experiments in software engineering,” IEEE T. Software
Eng., vol. 31, pp. 733–753, 2005.

[44] V. J. Shute, “Who is likely to acquire programming skills?” J. Educ.
Comput. Res., vol. 7, pp. 1–24, 1991.

[45] S. S. Stevens, “On the theory of scales of measurement,” Science,
vol. 103, pp. 677–680, 1946.

[46] L. L. Thurstone, “Attitudes can be measured,” Am. J. Sociol., vol. 4,
pp. 529–554, 1928.

[47] D. J. Woltz, “An investigation of the role of working memory
in procedural skill acquisition,” J. Exp. Psychol. Gen., vol. 117,
pp. 319–331, 1988.

This is a preprint version of: Bergersen, G. R. and Sjøberg, D. I. K. (2012). Evaluating methods and technologies in software engineering
with respect to developers' skill level. In 16th International Symposium on Evaluation & Assessment in Software Engineering(EASE'2012)
(pp. 101-110). Ciudad Real, Spain: IET.

Accepted 2012-Mar-04 Not suitable for citation Copyright IET 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

