
Marco Pessotto
Rationale

Why another wiki engine?

amusewiki.org

Rationale
Why another wiki engine?

Marco Pessotto

CMS out there are just doing the wrong thing, because they’re cou-
pling the texts with the application.

For Amusewiki, being that it’s archive- and library-oriented, I
wanted the texts stored in a directory tree under revision control.
Given that Git now is ubiquitous, choosing it was the easy part. Also,
the revision history and the possibility to have the archive distributed
and decentralized was just too good to be ignored.

To sum-up: the markup is decoupled by everything and can work
stand-alone on a single file or a whole tree. The archive is decoupled
by everything else and is just a git archive which follows some simple
directory-naming conventions.

The web application is then in charge to extract the relevant infor-
mation from the texts, store it into the database, keep them up-to-date,
and use it (hating databases doesn’t mean I don’t recognize their use-
fulness when properly used – it’s just using them as text archives that
it’s so bad).

DBIx::Class was handy to provide another layer of abstraction be-
tween the web application itself and the archive, so the code could be
shared among the Catalyst part, and the back-end part (which com-
piles the texts, updates the database and the git archive).

For the layout, which I admit was kind of hacked together by a
programmer (myself), not a designer, I went straight for bootstrap
and jquery and some other useful javascript libraries (many are used
around). It’s not the best out there, but I feel that definitively I could
have done much worse.

7

Once themarkupwas able to produceHTMLandTeX code, I needed
something to create the imposed versions of the PDF, i.e., a PDF file
which can be printed, folded and clipped to create booklets. During the
past years, I tried various different solutions, which worked (to some
extent), but weren’t really satisfying. This resulted in PDF::Imposition,
which so far appears to work well and is extensible enough to accomo-
date any future need (being Perl code, and not an hack).

I truly hate to read on screen. For the same reason, an EPUB output
would have been nice as well, and given that the HTML was already
there, a couple of CPANmoduleswere put together (notably Template
Toolkit and EBook::EPUB), and a module to wrap the pieces together
on the command line was created: Text::Amuse::Compile. This code
provides also a command line utility to generate the formats on the
command line.

Last but not the least, experience showed that people are used to
type the character ” and have it rendered as “ depending on the po-
sition and the language used. Same goes for the dash and other typo-
graphical elements. Also, therewas the need for some code capable (to
some extend) to take someHTML code and convert it into themarkup.
For this I wrote the code that later became Text::Amuse::Preprocessor.

The modules above provide a way to work locally on the texts with-
out needing any access to the internet (they install the command line
scripts as well).

The web front-end
Sometimes writing Amusewiki itself felt like reinventing the wheel

for the nth time, so, while for the coremodules I kept the dependencies
at the minimum, for the web pieces I used many available modules on
CPAN everywhere was possible.

The application itself is built on DBIx::Class, Catalyst and Template
Toolkit. The almost “standard” tools for web things written in Perl out
there. I considered Dancer as well, but given that the previous incar-
nation of amusewiki used Dancer (and I had the feeling it was already
becoming too messy), I chose to jump on the catalyst train, and I don’t
have any regret because it’s really elegant.

A note about the database. I’m not a database fan. Actually, I don’t
like them at all for managing texts. I think that the various db-driven

6

Contents
Markup and formats . 5
The web front-end . 6

3

Markup and formats
Apparently, the world is full of wiki engines, some of them good

or very good. So the question is if this particular engine was really
needed.

The problemAmuseWikiwants to address is, anyway, very practical.
I needed and wanted a decent range of output format. Not just a PDF
output (MediaWiki does that as well, for example), but a nice, good,
readable PDF. Now, given that the procedure needs to be completely
automated, the perfection is hardly reached, but we can do better than
simply render an HTML page and stuff the output in a PDF container.
TeX has been around more than 30 years by now. So the idea was of
course to use that.

Then I needed a markup, possibly an existing one. Markdown was
considered, of course, but then discarded, because the original spec-
ification didn’t support footnotes, explicitly permitted random inline
HTML, and some other questionable (in my very humble opinion) de-
sign choices. Creating anothermarkdowndialectwould have bringme
to square zero.

Given that I’m a Emacs user, I encountered Emacs Muse some years
ago, and I truly liked the syntax. By now the project is more or less
stalled, but the elisp code still works, is distributed in Debian, has a
nice manual, and provided a first reference implementation for the
output.

The other alternative would have been the org-mode markup, but,
beside to be very large and complicated by lots of plugins that peo-
ple would expect to work, it have some (again) questionable markup
elements for things often used as quotations.

All considered, the muse markup was small, compact and expres-
sive enough for my needs. The bottom line is: every lightweight
markup needs something like a couple of minutes to be learned, so
better choose one I like, not the one everyone uses, and have a manual
for that.

In turn, this could have been another questionable design choice,
but that’s the upside of being the author of some software: you write
it your way.

The markup implementation was developed in Perl and is available
on CPAN as Text::Amuse. I added the ”A” prefix because the markup
is not 1:1 compatible with the original one.

5

