Oboe.js: An approach to [/O for REST clients which
is neither batch nor stream; nor SAX nor DOM

Jim Higson, Kellogg College

November 2013

Supervised by Jeremy Gibbons

A dissertation submitted in partial fulfilment of the requirements for the degree of
Master of Science in Software Engineering.

Abstract

A new design is presented for HI'TP client libraries which incorporates HTTP
streaming, pattern matching, and incremental parsing, with the aim of improving
performance, fault tolerance, and encouraging a greater degree of loose coupling
between programs. A Javascript client library capable of progressively parsing
JSON resources is presented targeting both Node.js and web browsers. Loose
coupling is particularly considered in light of the application of Agile methodologies
to REST and SOA, providing a framework in which it is acceptable to partially
restructure the JSON format of a resource while maintaining compatibility with
dependent systems.

A critique is made of current practice under which resources are entirely
retrieved before items of interest are extracted programmatically. An alternative
model is presented allowing the specification of items of interest using a declarative
syntax similar to JSONPath. The identified items are then provided incrementally
while the resource is still downloading.

In addition to a consideration of performance in absolute terms, the usability
implications of an incremental model are also considered with regards to developer
ergonomics and user perception of performance.

Contents

1 Introduction
1.1 REST aggregation could be faster
1.2 Stepping outside the big-small tradeoft
1.3 Staying fast on a fallible network

1.4 Agile methodologies, frequent deployments, and compatibility today with
VEersions tOMOITOW« o . o it e

1.5 Deliverables

1.6 Criteria for success

2 Background
2.1 The web as an application platform
2.2 Nodejs. o e
2.3 JSON and XML data transfer formats
2.4 Common patterns for connecting to REST services
2.5 Little languages for descending into fetched data
2.6 Browser XML HTTP Request (XHR)
2.7 XHRs and streamingo
2.8 Browser streaming frameworks00

2.9 Parsing: SAX and DOM

3 Design and Reflection
3.1 Choice of selection language
3.2 Using JSONPath to detect higher-level types in JSON
3.3 Importing CSS4’s explicit capturing to JSONPath
3.4 Parsing the JSON response
3.5 APIdesign.
3.6 Earlier callbacks when paths are found prior to nodes
3.7 Choice of streaming data transport
3.8 Handling transport failures

3.9 Oboe.js as a micro-libraryo

Implementation 43

4.1 Componentisation of the project 43
4.2 Design for automated testing.o 44
4.3 Task automationo 46
4.4 Packaging to a single distributable file A7
4.5 Styles of programming Lo 49
4.6 Incrementally building the parsed content 50
4.7 Oboe JSONPath implementation 53
4.8 Differences in the working of programs that can be easily written using
Oboe.js 56
Conclusion 58
5.1 Benchmarking vs non-progressive REST 58
5.2 Comparative developer ergonomics 59
5.3 Performance under various Javascript engines L. 61
5.4 Status as a micro-libraryo oo 62
5.5 Potential future worko 63
5.6 Summing up 63
Bibliography 65

Appendix i: Limits to number of simultaneous connections under var-

ious HTTP clients 68
Appendix ii: Oboe.js source code listing 69
8.1 ascent.js 69
8.2 clarinetListenerAdaptor.js 70
8.3 events.jso 71
8.4 functional.js 72
8.5 incrementalContentBuilder.js 78
8.6 instanceApi.js 83
8.7 instanceController.js 89
8.8 jsonPath.js. 90

8.9 jsonPathSyntax.js 99

8.10 lists.js o 102
8.11 parseResponseHeaders.browser.js 107
8.12 patternAdapter.js 108
8.13 pubSub.js 111
8.14 publicApi.js 113
8.15 singleEventPubSub.jso 115
8.16 streamingHttp.browser.jso 118
8.17 streamingHttp.node.jso 122
818 utiljs. 125
8.19 wirejs L 127
Appendix iii: Benchmarking 128
9.1 benchmarkClient.js 128
9.2 benchmarkServer.js 132

List of Figures

1 Sequence diagram showing the aggregation of low-level REST resources
by an intermediary L

2 Revised aggregation sequence showing a client which progressively inter-
prets the resources e

3 Labelling nodes in an n-tier architecture

4 Major components of Oboe.js illustrating program flow from HTTP
transport to application callbacks

D The test pyramid Lo

6 List representation of an ascent rising from leaf to root through a JSON
tree . . . o L e e e

1 Introduction

HTTP was originally designed for the transfer of hypertext documents. REST (Fielding
2000) introduces no fundamentally new methods but extends the scope of HT'TP to
include the transfer of arbitrary data. Whereas the rival technology SOAP (Gudgin
et al. 2007) largely disregards HTTP’s principled design by adopting the protocol as
a transport on which to bootstrap its own semantics, REST adopts all of HT'TP’s
core phrasing. This includes the HTTP methods for fetching, creating and modifying
resources: GET, POST, PUT, PATCH, DELETE, and the locating of resources using
URLs. Under HT'TP’s original design hierarchical URLs are used to locate documents
without reference to the services which produce them. REST advances this same naming
strategy by likewise using URLs to locate data resources, not services. As with HTTP,
REST is stateless and therefore cacheable, allowing large-scale content distribution
networks to be built. Because HTTP’s inbuilt headers for content type, language
negotiation, and resource expiry are used according to the originally intended meanings
(Fielding et al. 1999), existing intermediaries such as load balancing proxies, gateways,
and caches need make no special accommodation for REST resources.

Despite REST adopting the mechanisms and semantics of HT'TP, whereas documents
received over the web are often interpreted in a streaming fashion, to date REST
resources are not commonly examined in this way. When we wish to increase the speed
of a system for most practical cases there is no reasonable distinction between acting
earlier and being quicker. In the interest of creating efficient software we should use
data at the first possible opportunity: examining content while it streams rather than
holding it unexamined until it is wholly available. The purpose of this dissertation is
to explore tangible benefits which may be realised if we fold HT'TP streaming into the
REST paradigm.

Natural languages encourage our thinking to follow patterns that they comfortably
support (Whorf 1956). This idea has been applied to programming, for example the
language Ruby is intentionally designed to discourage global variables by using a less
attractive notation (Yukihiro 2003). It may be useful when exploring new techniques
to question which established constructs are as they are because of languages which
unintentionally suggest that formulation; it is perhaps significant that REST clients tend
to style the calling of remote resources similarly to the call style of the host programming
language. In practice one of two schemas is generally followed: a synchronous, blocking
style in which an invocation halts execution for the duration of the request before
evaluating to the fetched resource; or an asynchronous, non-blocking form in which some
logic is specified to be applied to the response once it is available. Languages which
promote concurrency though threading generally consider blocking in a single thread to
be acceptable and will prefer the synchronous mode whereas languages with first class
functions are naturally conversant in callbacks and will prefer asynchronous 1/0. In
programming the language limits the patterns that we readily see and the schemes which
map most easily onto our languages are not necessarily the best possible organisation. For

any multi-packet message sent via a network some parts will arrive before others, at least
approximately in-order, but viewed from inside a language whose phasing encourages
statements to yield single, wholly evaluated results it is comfortable to conceptualise the
REST response as a discrete event. This establishment of a ‘limiting comfort’ extends to
graphical notations such as UML whose constructs strongly reflect the textual languages
of the day. UML sequence diagrams include the syntax for instantaneously delivered
return values but, despite being commonly used to draw network data transfer, provide
no corresponding notation for a resource whose data is progressively revealed.

No new computing techniques need be invented before this dissertation can be imple-
mented. As a minimum it requires an HTTP client which reveals the response whilst it
is in progress and a parser which can begin to interpret that response before it sees all
of it. Nor is it novel to use these parts together to produce a streaming interpretation.
Every current web browser already implements a similar pattern. Load any complex
webpage — essentially an aggregation of hypertext and other resources — and the HTML
will be parsed and displayed incrementally while it is downloading, with resources
such as images requested in parallel as soon as they are referenced. In the case of
progressive JPEG or SVG! the images themselves will also be presented incrementally.
The incremental display is achieved through specialised programming which applies only
to displaying web pages. The contribution of this dissertation is to provide a generic
analogue, applicable to any problem domain.

1.1 REST aggregation could be faster

Figures 1 and 2 comparatively illustrate how a progressive client may, without adjust-
ments to the server, be used to produce an aggregated resource sooner. This results
in a moderate improvement in the time taken to show the complete aggregation but
a dramatic improvement in the time to show the first content. The ability to present
the first content as early as possible is a desirable trait for system usability because
it allows the user to start reading earlier and a progressively rendered display in itself
increases the human perception of speed (Geelhoed et al. 1995). Note also how the
cadence of requests is more steady in figure 2 with four connections opened at roughly
equal intervals rather than a single request followed by a rapid burst of three. Both
clients and servers routinely limit the number of simultaneous connections per peer so
avoiding bursts is further to our advantage. Appendix i lists some actual limits.

for quite an obviously visible example of progressive SVG loading, try loading this SVG using a
recent version of Google Chrome: http://upload.wikimedia.org/wikipedia/commons/0/04/Marriage__
(Same-Sex_ Couples) Bill, Second_Reading.svg For the perfectionist SVG artist, not just the final
image should be considered but also the XML source order, for example in this case it would be helpful
if the outline of the UK appeared first and the exploded sections last.

http://upload.wikimedia.org/wikipedia/commons/0/04/Marriage_(Same-Sex_Couples)_Bill,_Second_Reading.svg
http://upload.wikimedia.org/wikipedia/commons/0/04/Marriage_(Same-Sex_Couples)_Bill,_Second_Reading.svg

Client Data service
Software

User wishes to
see recent
publications

GET /publications/authors/{authorld}

Links to many publications

GET /publications/article/{id1}
GET /publications/article/{id2}
GET /publications/article/{id3}

First publication is :
available for user |
to view :

All data is
available for user !
to view

Figure 1: Sequence diagram showing the aggregation of low-level REST re-
sources by an intermediary. A client fetches an author’s publication list and then
their first three articles. This sequence represents the most commonly used technique in
which the client does not react until the response is complete.

Client .
Data service
Software
User wishes to

see recent GET /publications/authors/{authorld}
publications : b

GET /publications/article/{id1}

Start of first

publication is
available for user : ' ‘ ,
to view ; b : GET /publications/article/{id2}

View is urt-of-artit
progressively :
added to

GET /publications/article/{id3}

Abohed

All data is
available for user :
to view :

Figure 2: Revised aggregation sequence showing a client which progressively
interprets the resources. Because UML sequence diagrams draw returned values
as a one-off happening rather than a continuous process, the lighter arrow notation is
added to represent fragments of an incremental response. Each request for an individual
publication is made as soon as its URL can be extracted from the publications list and
once all required links have been read from the original response it is aborted rather
than continuing to download unnecessary data.

Nodes in an n-tier architecture defy categorisation as ‘client’ or ‘server’ in a way that is
appropriate from all frames of reference. A node might be labeled as the ‘server’ from
the layer below and ‘client’ from the layer above. Although the “client software” labels
in the figures 1 and 2 hint at something running directly on a user’s own device, the same
benefits apply if this layer is running remotely. If this layer were generating a web page
on the server-side to be displayed by the client’s browser, the same perceptual speed
improvements apply because of HTTP chunked encoding (Stefanov 2009). If this layer
were a remote aggregation service, starting to write out the aggregated response early
provides much the same benefits to the client able to interpret it progressively and, even
if it is not, the overall delivery remains faster. Whilst HT'TP servers capable of streaming
are quite common, there seems to be no published general-purpose, streaming-receptive
REST client library.

1.2 Stepping outside the big-small tradeoff

Where a domain model contains a series of data from which continuous ranges are
requestable via REST there is often a tradeoff in the client design with regards to
how much should be requested with each call. Because at any time it shows only a
small window into a much larger model, the social networking site Twitter might be
a good example. The Twitter interface designers adopted a popular interface pattern,
Infinite Scrolling (Ahuvia 2013). Starting from an initial page showing some finite
number of tweets, once the user scrolls and reaches the end of the list the next batch
is automatically requested. When loaded, this new batch is converted to HTML and
added to the bottom of the page. Applied repeatedly the illusion of an infinitely long
page is maintained, albeit punctuated with pauses whenever new content is loaded.
There is a tradeoff in the presentation layer between sporadically requesting many items
and frequently requesting a few. At one extreme the interface would occasionally falter
for a longer time, whereas at the other it would pause momentarily but with greater
regularity.

Progressive loading could render this tradeoff unnecessary by simultaneously delivering
the best of both strategies. In the Twitter example this could be achieved by making
large requests but instead of deferring all rendering until the request completes, add
the individual tweets to the page as they are incrementally parsed out of the ongoing
response. With a streaming transport, the time taken to receive the first tweet should not
vary depending on the total number that are also being sent so there is no relationship
between the size of the request and the interval before the interface starts updating.

10

1.3 Staying fast on a fallible network

REST operates over networks whose reliability varies widely. On unreliable networks
connections are abruptly dropped and existing HT'TP clients handle unexpected ter-
minations wastefully. Consider the everyday situation of a person using a smartphone
browser to check their email. Mobile data coverage is often weak outside of major cities
(Gill 2013) so while travelling the signal will be lost and reestablished many times. The
web developer’s standard toolkit is structured in a way that encourages early terminated
connections to be considered as wholly unsuccessful rather than as partially successful.
For example, the popular AJAX library jQuery automatically parses JSON or XML
responses before passing back to the application but given an early disconnection there
is no attempt to hand over the partial response. To the programmer who knows where
to look the partial responses can be extracted as raw text but handling them involves
writing a special case and is not possible using standard parsers which are not amenable
to incomplete markup. Because of this difficulty the canonical webapp drops partial
messages without inspection. For the user checking her email, even if 90% of her inbox
had been retrieved before the signal was lost, the web application will behave as if it
received none and show her nothing. Later, when the network is available the inbox
will be downloaded from scratch including the 90% which has already been successfully
delivered. The system would be more user friendly and efficient if it used the 90% from
the first request when it arrives and fetched only the lost 10% when network connectivity
returns.

The delivered part of a partially successful message may be used if we turn away from
this polarised view of wholly successful and unsuccessful requests. A message may
be conceptualised as having many parts which are useful in themselves, in which the
successful delivery of each part is handled independently before knowing if the next
part will also arrive. As well as allowing partially successful messages to be used, seeing
the resource as a stream of small parts allows those parts to be used earlier if they
are made available to the application while the streaming is ongoing. Should an early
disconnection occur, the content delivered up to that point will have already been
handled so no special case is required to salvage it. In most cases the only recovery
necessary will be to make a new request for just the part that was missed. This approach
is not incompatible with a problem domain where the usefulness of an earlier part is
dependent on the correct delivery of the whole providing optimistic locking is used. In
this case earlier parts may be used immediately but their effect rolled back should the
transfer later fail.

1.4 Agile methodologies, frequent deployments, and compati-
bility today with versions tomorrow

In most respects a SOA architecture fits well with the fast release cycle encouraged by
Agile methodologies. Because in SOA we may consider that all data is local and that

11

the components are loosely coupled and autonomous, frequent releases of any particular
sub-system should pose no problem to the correct operation of the whole. In allowing a
design to emerge organically it should be possible for the structure of resource formats
to be realised slowly and iteratively while a greater understanding of the problem is
gained. Unfortunately in practice the ability to change often is hampered by tools which
encourage programming against rigidly specified formats. If a data consumer is tightly
coupled to the format it consumes it will resist changes to the programs which produce
data in that format. As an anecdote, working in enterprise I have seen the release of
dozens of components cancelled because of a single unit that failed to meet acceptance
criteria. By insisting on exact data formats, subsystems become tightly coupled and
the perfect environment is created for contagion whereby the updating of any single
unit may only be done as part of the updating of the whole. An effective response to
this problem would be REST clients which are able to use a resource whilst being only
loosely coupled to the overall shape of the message.

1.5 Deliverables

To avoid feature creep the scope of the software deliverables is pared down to the smallest
work which can be said to realise the goals of the project. Amongst commentators
on start-up companies this is known as a zoom-in pivot (Reis 2011 p172) and the
work it produces should be the Minimum Viable Product or MVP (Reis 2011 p106-
110). Given reasonable time constraints it would not be feasible to deliver a full stack
while concentrating on software quality so we are obliged to focus on solutions which
interoperate with existing deployments. To a third party wishing to adopt the technology
it is more inviting to add small enhancements to the existing architecture than to action
a shift which requires wholesale change.

Although an explicitly streaming server would improve the situation further, because all
network data transfer may be thought of as a stream, it is not required to start taking
advantage of progressive REST. A streaming client is the MVP and is the programming
deliverable for this project.

1.6 Criteria for success

In evaluating this project we may say it has been a success if non-trivial improvements
in speed can be made without a corresponding increase in the difficulty of programming
the client. This improvement may be in terms of the absolute total time required to
complete a representative task or in a user’s perception of application responsiveness.
Because applications in the target domain are much more I/O-bound than CPU-bound,
optimisation in terms of the execution time of algorithms will be de-emphasised unless
especially egregious. The delivered library should allow looser coupling to the format
of consumed resources than is possible with the current best tools so that it is less

12

disruptive when services are upgraded.

13

2 Background

server side client side

REST
8 Q /\ REST renders
EST
8 O«— REST

data tier : middleware | presentation layer

renders

Figure 3: Labelling nodes in an n-tier architecture. Although network topology is
often split about client and server side, for our purposes categorisation as data, middle,
and presentation tier is the more meaningful distinction. According to this split the
client- and server-side presentation layer serve the same purpose, generating mark-up
based on aggregated data prepared by the middle tier.

2.1 The web as an application platform

Application design has historically charted an undulating path pulled by competing
approaches of thick and thin clients. Having evolved from a document viewing system
to the preferred application platform for all but the most specialised interfaces, the web
perpetuates this narrative by resisting categorisation as either mode.

While the trend is generally towards more client scripting and for many sites a Javascript
runtime is now requisite, there are also counter-trends. In 2012 Twitter reduced load
times to one fifth of their previous design by moving much of their rendering back to the
server-side, commenting that “The future is coming and it looks just like the past” (Lea
2012). Under this architecture short, fast-loading pages are generated on the server-side
but Javascript also provides progressive enhancements. Although it does not generate
pages anew, the Javascript must know how to create most of the interface elements so
one weakness of this architecture is that much of the presentation layer logic must be
expressed twice.

14

Despite client devices taking on responsibilities which would previously have been
performed on a server, there is a limit to how much of the stack may safely be offloaded
in this direction. The client-side ultimately falls under the control of the user so no
important business decisions should be taken here. A banking site should not allow loan
approval to take place in the browser because for the knowledgeable user any decision
would be possible. Separated from data stores by the public internet, the client is also
a poor place to perform data aggregation or examine large data sets. In non-trivial
applications these restrictions encourage a middle tier to execute business logic and
produce aggregate data.

While REST may not be the only communications technology employed by an application
architecture, for this project we should examine where REST client libraries may fit into
the picture. REST is used by the presentation layer to pull data from the middle tier
regardless of where the presentation resides. Likewise, rather than connect to databases
directly, for portability the middle tier will often communicate with a thin REST layer
which wraps the data store. This suggests three uses:

e FFrom web browser to middle tier
e From server-side presentation layer to middle tier
e From middle tier to nodes in the data tier

Fortunately, each of these contexts requires a similar performance profile. The work
done is computationally light and answering a request involves more time waiting
than processing. As a part of an interactive system low latency is important whereas
throughput can be increased relatively cheaply by adding more hardware, especially
in a cloud hosted environment. As demand for the system increases the total work
required grows but the complexity in responding to any one of the requests remains
constant. Although serving any particular request might be done in series, the workload
as a whole is embarrassingly parallelisable.

2.2 Node.js

Node.js (Ryan 2009) is a general purpose tool for executing Javascript outside of a
browser. It has the aim of low-latency I/O and is used mostly for server applications and
command line tools. It is difficult to judge to what degree Javascript is a distraction from
Node’s design as a tool for I/O and to what degree the language defines the platform.

15

For most imperative languages the thread is the basic unit of concurrency, whereas
Node presents the programmer with a single-threaded abstraction. Threads are an
effective means to share parallel computation over multiple cores but are less well suited
to scheduling concurrent tasks which are mostly I/O dependent. Safely programming
threads to share mutable objects requires great care and experience, otherwise the
programmer is liable to create race conditions. Consider for example a Java HTTP
aggregator; because we wish to fetch in parallel each request is assigned to a thread.
These ‘requester’ tasks are computationally simple: make a request, wait for a complete
response, and then participate in a Barrier while the other requesters complete. Each
thread consumes considerable resources but during its multi-second lifespan requires
only a fraction of a millisecond on the CPU. It is unlikely that any two requests will
return closely enough in time to be processed in parallel, shedding threading’s chief
advantage, that it may process simultaneously utilising multiple cores. Even if requests
do return proximately, the actual CPU time required in making an HTTP request is so
short that any concurrent processing is a pyrrhic victory.

Node builds on a model of event-based, asynchronous I/O which was established by
browser Javascript execution. Although Javascript in a browser may be performing mul-
tiple tasks simultaneously, for example requesting several resources from the server side,
it does so from within a single-threaded virtual machine. Node facilitates concurrency
by managing an event loop of queued tasks and providing exclusively non-blocking 1/0.
Unlike Erlang, Node does not swap tasks out preemptively, it always waits for a task to
complete before moving onto the next. This means that each task must complete quickly
to avoid holding up others. Prima facie this might seem like an onerous requirement
to put on the programmer but in practice with only non-blocking I/O available each
task naturally exits quickly without any special effort. Accidental non-terminating
loops or heavy number-crunching aside, with no reason for a task to wait it is difficult
to write a node program in which the tasks do not complete quickly. In production
environments Node deployments usually take advantage of multiple cores by creating
one Node instance per processor code. The separate instances act independently and do
not normally use shared RAM.

Each task in Node is simply a Javascript function. Node is able to swap its single
Javascript thread between these tasks efficiently while providing the programmer with an
intuitive interface because of closures. Utilising closures, the responsibility of maintaining
state between issuing an asynchronous call and receiving the callback is removed from
the programmer by folding the storage invisibly into the language. This implicit data
store requires no syntax and feels so natural and inevitable that it is often not obvious
that the responsibility exists at all.

Consider the example below. The code schedules three tasks, each of which are very
short and exit quickly allowing Node to finely interlace them between other concurrent
concerns. The on method is used to attach functions as listeners to streams. However
sophisticated and performant this style of programming, to the developer it is hardly
any more difficult an expression than if blocking 1/O were used. It is certainly harder to

16

make mistakes programming in this way than managing synchronised access to mutable
objects that are shared between threads.

function printResourceToConsole(url) {

http.get (url)
.on(’response’, function(response){

// This function will be called when the response starts.
// It logs to the console, adds a listener and quickly
// exits.

// Because it is captured by a closure we are able to
// reference the URL parameter after the scope that
// declared it has finished.

console.log("The response has started for", url);

response.on(’data’, function(chunk) {
// This function is called each time some data is
// received from the HTTP request. The task writes
// the response to the console and quickly ezxits.
console.log(’Got some response’, chunk);

}).on(Cend’, function(){
console.log(’The response is complete’);

1))
}) .on("error", function(e){

console.log("There was an error", e.message);

B

console.log("The request has been made");

“Node Stream API, which is the core I/O abstraction in Node.js (which is
a tool for I/O) is essentially an abstract in/out interface that can handle

any protocol/stream that also happens to be written in JavaScript.” (Ogden
2012)

17

In Node I/O is performed using a unified data streaming interface regardless of the
source. The streams fit comfortably with the wider event-driven model by implementing
Node’s EventEmitter interface, a generic dispatcher capable of supporting any event
type. Although the abstraction provided by streams is quite a thin layer on top of
the host system’s sockets, it forms a powerful and intuitive interface. For many tasks
it is preferable to program in a ‘plumbing’ style by joining one stream’s output to
another’s input. In the example below a resource from the internet is written to the
local filesystem.

http.get (url)
.on(’response’, function(response){
response.pipe(fs.createWriteStream(pathToFile));

B

Following Node’s lead, traditionally thread-based environments are beginning to embrace
asynchronous, single-threaded servers. The Netty project (Netty 2010) can be thought
of as roughly an equivalent of Node for the Java Virtual Machine.

2.3 JSON and XML data transfer formats

Both XML and JSON are text based, tree-shaped data formats with human and machine
readability. One of the design goals of XML was to simplify SGML to the point that a
graduate student could implement a full parser in a week (Eberhart and Fischer 2002
p287). Continuing this arc of simpler data formats, JSON “The fat-free alternative to
XML” (Douglas 2009) isolates Javascript’s syntax for literal values into a stand-alone
serialisation language. For the graduate tackling JSON parsing the task is simpler still,
being expressible as fifteen context free grammars.

Whereas XML markup can be traced to document formats, JSON’s lineage is in a
programming language. From these roots it isn’t surprising that JSON maps more
directly to the metamodels that most programmers think in. XML parsers produce
items such as Element, Text, Attribute, Processinglnstruction, which require extra
translation before they are convenient to use inside a programming language. Because
JSON already closely resembles how a programmer would construct a runtime model of
their data, fewer steps are required before using the deserialised form. The JSON nodes:
strings, numbers, objects and arrays will in many cases map directly onto language types
and, for loosely typed languages at least, the parser output bears enough similarity to
domain model objects that it may be used directly without any further transformation.

people: [
{name: ’John’, townOrCity:’London’},

18

{name: ’Jack’, townOrCity:’Bristol’}
{townOrCity:’Cambridge’, name: ’Sally’}

Both JSON and XML are used to serialise orderless constructs but while expressed
as text the encoding is inevitably written according to some serialisation order. XML
specifically states that the order of attributes is not significant (Bray et al. 2008),
JSON has no such detailed specification but a similar order insignificance seems to be
implied by the JSON object’s likeness to Javascript objects whose iteration order is
indeterminate (ECMA 1999, 4.3.3). In the example above the people objects would
probably have been written based on either a class with two public properties or a
hash map. On receiving this data the text would be demarshalled into similar orderless
structures and it would be quickly forgotten that the data found an ordered expression
during transport. When viewing a document as a stream and interpreting while still
incomplete it is easier to mistakenly react differently according to field order. If nodes
from the example above were used when only the first field has arrived Sally would find
a different handling than John or Jack. Because the serialisation will contain items
which are written to follow an indeterminate order it will be important to ensure that,
despite the streaming, the REST client does not encourage programming in a way that
gives different results depending on the order that fields are received.

2.4 Common patterns for connecting to REST services

For languages such as Javascript or Clojure which use a loosely-typed representation of
objects as generic key-value pairs, when a JSON REST resource is received the output
from the parser resembles the normal object types closely enough that it is acceptable
to use it directly throughout the program. For XML this is not the case in any language
and some marshaling is required. In more strongly typed OO languages such as Java
or C+#, JSON’s classless, relatively freeform objects are less convenient. To smoothly
integrate the example JSON from the previous section, instances of a domain model
Person class with methods such as getName () and getLocation() would have to be
initialised, representing the remote objects no differently than if they had originated
locally. Automatic marshaling generalises this process by providing a two-way mapping
between the domain model and its serialisation, either completely automatically or based
on a declarative specification. It is common in strongly typed languages for REST client
libraries to automatically demarshal as part of receiving a fetched REST response. From
the programmer’s vantage it is as if the domain objects themselves had been fetched.
Another common design pattern intended to give a degree of isolation between remote
resources and the local domain model is to demarshal automatically only so far as Data
Transfer Objects (DTOs). DTOs are instances of classes which implement no logic other
than storage, and from these DTOs an additional layer programmatically instantiates

19

the local domain model objects. DTOs are more necessary when using XML. Reading
resources encoded as JSON we might say that the JSON objects are already DTOs.

The degree of marshaling that is used generally changes only the types of the entities
that the REST client library hands over to the application developer without affecting
the overall structure of the message. Regardless of the exact types, having received the
response model the developer will usually start by locating the pertinent parts of the
response by drilling down into its structure using the programming language itself.

// Java example - programmatic approach to domain model
// interrogation

// The methods used to drill down to desired components
// are all getters: getPeople, getName, and getTown.

void handleResponse(RestResponse response) {

for(Person p : response.getPeople()) {
addPersonToDb(p.getName(), p.getTown());
}

// equivalent Javascript - the programming follows the same basic
// process. This time using Javascript’s dot operator.
function handleResponse(response){

response.people.forEach(function(person){
addPersonToDb(p.name, p.town);
1)

One weakness of this method for locating resource parts is that the code making the
inspection is coupled to the precise structure of the thing that it is inspecting. Taking
the above example, if the resource being fetched were later refactored such that the
town concept were changed to a fuller address structure as a street-town-county-country
tuple, the code addressing the structure would also have to change just to continue
to do the same thing. Although this kind of drill-down programming is commonly
practiced and not generally recognised as a code smell, requiring knock-on changes when
an unrelated system is refactored should perhaps be seen as undesirable in relation to
format structures as it would be elsewhere. DTOs limit the spread of refactoring inside
the client because only the translation from DTO to domain object must be updated but
do not avoid change altogether if a service format is refactored. In the Red Queen’s race
it took “all the running you can do, to keep in the same place”. Ideally a programmer
should only have to expend effort so that their code does something new, or perform

20

better something that it already did, not to stay still. Following an object oriented
encapsulation of data such that a caller does not have to concern itself with the data
structures behind an interface, the internal implementation may be changed without
disruptions to the rest of the code base. However, when the structure of the inter-object
composition is revised, isolation from the changes is less often recognised as a desirable
trait. A method of programming which truly embraced extreme programming would
allow structural refactoring to occur without disparate parts having to be modified in
parallel.

Extraneous changes also dilute a VCS changelog, making it difficult to later follow a
narrative of updates to the logic expressed by the program. It is therefore harder to
later understand the thinking behind a change or the reason for the change.

2.5 Little languages for descending into fetched data

To address the problem of drilling down to pertinent fragments of a message without
tightly coupling to the format, consider if instead of programmatically descending step-
by-step, a language were used which allows the right amount of specificity to be given
regarding which parts to select. In VirtualStudio LINQ (Microsoft 2013), which is based
on lambda-calculus and resembles SQL, is used to drill-down into data structures and
may also modify the data that is found. However this style of programming requires the
application developer to write significantly more code than in the simple programmatic
access above so it does not meet the aims of this project.

Given model interrogation logic which is tightly coupled so that the model’s structure
cannot change, one suggested approach is Adaptive OOP (Lieberherr, Silva-Lepe, and
Cun 1994) in which no detailed class structure is committed to when constructing the
object oriented program. A REST resource could be dynamically configured into an OO
model according to a formal specification in a specialisation that is capable of answering
the desired queries. The model that is constructed would be sufficient to answer the
queries without the programmer having to suppose any rigid form.

Certain markup languages come with associated query languages whose coupling is
loose enough that not every node that is descended through must be specified. The best
known is XPATH but there is also JSONPath, a JSON equivalent (Goessner 2007). As
far as possible, JSONPath’s syntax resembles the equivalent Javascript:

// in Javascript we can get the town of the second person as:
let town = subject.people[2].town

// the equivalent JSONPath expression is identical:
let townSelector = "people[2].town"

// We would be wise not to write overly-specific selectors.

21

// JSONPath also provides an ancestor notation which is mot present
// in Javascript:
let betterTownSelector = "people[2]..town"

Consider the resource below:

{
people: [
{name: ’John’, town:’0Oxford’},
{name: ’Jack’, town:’Bristol’}
{town:’Cambridge’, name: ’Sally’}
]
}

The JSONPath people.*..town may be applied against the above JSON and would
continue to select correctly if the system were refactored to the version below:

{
people: [
{ name: ’John’,
address:{town:’0xford’, county:’0Oxon’, country:’uk’}
I
{ name: ’Jack’,
address:{town:’Bristol’, county:’Bristol’, country:’uk’}
b
{ address:{
town:’Cambridge’, county:’Cambridgeshire’,
country: ’uk’
I
name: ’Sally’
b
]
}

formats tend to grow, not shrink

22

Maintaining compatibility with unanticipated format revisions through selector lan-
guages is easier with JSON than XML. The XML metamodel contains overlapping
representations of equivalent entities which a format is liable to switch between when
being refactored. Each XML element has two distinct lists of child nodes, attribute
children and node list children. From one perspective attributes are child nodes of their
parent element but they can alternatively be considered as data stored in the element.
Because of this classification ambiguity an XML document can’t be said to form a single
n-way tree. XML attributes may only contain strings and have a lesser expressivity
than child nodes which allow recursive structure; it is a common refactor to change from
attributes to elements when a scalar value is upgraded to a compound. XPath selectors
written in the most natural way do not track this change.

<people>
<person name="John" town="0Oxford"></person>
</people>

The XPath //person@town identifies the town in the XML above but because of the
switch from attribute to sub-element fails in the revised version below.

<people>
<person>
<name>
John
</name>
<address>
<town>0xford</town> <county>0xon</county>
</address>
</person>
</people>

Reflecting its dual purpose for marking up documents or data, XML also invites ambigu-
ous interpretation of the whitespace between tags. Whitespace is usually meaningful
for documents but ignorable for data. Strictly, whitespace text nodes are a part of the
document model but in practice many tree walkers discard them as insignificant. In the
XML above the <person> element may be enumerated as either the first or second child
of <people> depending on whether the whitespace before it is considered. Likewise, the
text inside <name> might be ’John’ or ’ (newline) (tab) (tab)John’. Inheriting from
its programming language ancestry, in JSON there is no ambiguity. The space between
tokens is never significant.

23

Programming against a changing service is always going to present a moving target
but it would be easier to miss with XPATH than with JSONPath. In the JSON
metamodel each node has only one, unambiguous set of children so the format author
is not given a choice of logically equivalent features that must be addressed through
different mechanisms. If a scalar value is updated to a compound only the node changes,
the addressing of the node is unaffected.

Generally in descriptive hierarchical data there is a trend for ancestorship to signify the
same relationship regardless of the number of intermediate generations. In the example
above, town transitioned from a child to grandchild of person without disturbing the
implicit ‘lives in’ relationship. In JSONPath the .. operator provides matching through
zero or more generations, unperturbed when extra levels are added. This trend does not
hold for every way that message semantics may be built because it is possible that an
intermediate node on the path from ancestor to descendant will change the nature of
the expressed relationship. A slightly contrived example might be if we expanded our
model to contain fuzzy knowledge:

{
"people": [
{
"name" : {"isProbably":"Bob"},
"location": {"isNearTo":"Birmingham"}
}
]
}

Considering the general case, it will not be possible to safely track every refactoring.
By necessity a resource consumer should limit their ambitions to tracking ontology
expansions which do not change the meanings of existing concepts. In practice integration
testing against the beta version of a service will be necessary to be pre-warned of
upcoming, incompatible changes. If an incompatibility is found the ability to then
create an expression which is compatible with a present and known future version would
remain a valuable tool because it decouples the consumer and provider update schedules,
removing the need for the client to march perfectly in sync with the service.

2.6 Browser XML HTTP Request (XHR)

Making HTTP requests from Javascript, commonly termed AJAX, was so significant
in establishing the modern web architecture that it is sometimes used synonymously
with Javascript-rich web applications. Although AJAX is an acronym for Asynchronous
Javascript (and) XML, this reflects the early millennial enthusiasm for XML as the one
true data format and in practice any textual format may be transferred. During the

24

‘browser war’ years web browsers competed by adding non-standard features; Internet
Explorer made AJAX possible in 2000 by exposing Microsoft’s Active X Xml Http Request
(XHR) class to the Javascript sandbox. This was widely copied and near equivalents
were added to all major browsers. In 2006 the interface was eventually formalised by the
W3C (van Kesteren and Jackson 2006). XHR’s slow progress to standardisation reflected
a period of general stagnation for web standards. HTML4 reached Recommendation
status in 2001 but having subsequently found several evolutionary dead ends such as
XHTML, there would be no major updates until HTML5 started to gather pace some
ten years later.

Despite a reputation for being poorly standardised, as a language Javascript enjoys
consistent implementation. More accurately we would say that browser APIs exposed
to Javascript lack compatibility. Given this backdrop of vendor extensions and lagging
standardisation, abstraction layers predictably rose in popularity. Various abstractions
competed primarily on developer ergonomics with the popular jQuery and Prototype.js
libraries promoting themselves as “do more, write less” and “elegant APIs around
the clumsy interfaces of Ajax”. Written against the unadorned browser, Javascript
applications read as a maze of platform detection and special cases. Once applications
were built using abstractions over the underlying platform differences they could be
written purposefully and programmers were able to express more complex ideas.

Today JSON is generally the preferred format, especially for resources transmitted
to client-side web applications. Javascript programmers occupy a privileged position
whereby their serialisation format maps exactly onto the inbuilt types of their program-
ming language. As such there is never any confusion regarding which object structure
to de-serialise to. Should this advantage seem insubstantial, contrast with the plethora
of confusing and incompatible representations of JSON that are output by the various
Java parsers: JSON’s Object better resembles Java’s Map interface than Java Objects,
creating linguistic difficulties, and the confusion between JSON null, Java null, and
Jackson’s NullNode? is a common cause of errors. Emboldened by certainty regarding
deserialisation, AJAX libraries directly integrate JSON parsers, providing a call style for
working with remote resources so streamlined as to require hardly any additional effort.

ajax(’http://example.com/people.json’, function(people) {

// The parsing of the people JSON into a javascript object
// feels so natural that it is easy to forget from looking
// at the code that parsing happens at all.

console.log(’the first person is called’, peoplel[0].name);

3
2 http://jackson.codehaus.org/1.0.1/javadoc/org/codehaus/jackson/node/NullNode.html

25

http://jackson.codehaus.org/1.0.1/javadoc/org/codehaus/jackson/node/NullNode.html

2.7 XHRs and streaming

Browser abstraction layers brought an improvement in expressivity to web application
programming but were ultimately limited to supporting the lowest common denominator
of available browser abilities. When the call style above was developed the most popular
browser barred access to in-progress responses so the inevitable conceptualisation
was drawn of the response as a one-time event with no accommodation provided for
progressively delivered data.

The followup standard, XHR2 is now at Working Draft stage (van Kesteren 2012).
Given ambitions to build a streaming REST client, of greatest interest is the progress
event:

While the download is progressing, queue a task to fire a progress event
named progress about every 50ms or for every byte received, whichever is
least frequent.

The historic lack of streaming for data fetched using XHR stands incongruously with
the browser as a platform in which almost every other remote resource is interpreted
progressively. Examples include progressive image formats, HTML, SVG, and video.

The progress event is supported by the latest version of all major browsers. However,
Internet Explorer only added support recently with version 10 and there is a significant
user base remaining on versions 8 and 9.

2.8 Browser streaming frameworks

The web’s remit is increasingly widening to encompass scenarios which would have
previously been the domain of native applications. In order to use live data many current
webapps employ frameworks which push soft-real-time events to the client side. This
kind of streaming intersects only narrowly with the aims of the XHR2 progress event.
Whereas XHR2 enables downloads to be viewed as streams but does not otherwise
disrupt the sequence of HT'TP’s request-response model, streaming frameworks facilitate
an entirely different sequence, that of perpetual data. Consider a webmail interface;
initially the user’s inbox is downloaded via REST and although a streaming download
might be used to make its display more responsive, the inbox download is a standard
REST call and shares little in common with the push events which follow to provide
instant notification as new messages arrive.

26

Push tables sidestep the browser’s absent data streaming abilities by leaning on a
resource that it can stream: progressive HTML. On the client a page containing a
table is hidden in an off-screen iframe. The frame’s content is served as an HTML
page containing a table that never completes, fed by a connection that never closes.
When the server wishes to push a message to the client it writes a new row to the table
which is then noticed by Javascript monitoring the iframe on the client. More recently,
Websockets provides a standardised streaming transport on top of HT'TP’s chunked
mode. Websockets requires browser implementation and cannot be retrofitted to older
browsers through Javascript. It is a promising technology but for the time being patchy
support means it cannot be used without a suitable fallback.

These frameworks do not interoperate at all with REST. Because the resources they
serve never complete they may not be read by a standard REST client. Unlike REST
they also are not amenable to standard HT'TP mechanisms such as caching. A server
which writes to an esoteric format requiring a specific, known, specialised client also feels
quite anti-REST, especially when we consider that the format design reflects the nature
of the transport more so than the resource. This form of streaming is not, however,
entirely alien to a SOA mindset. The data formats, while not designed primarily for
human readability are nonetheless text based and a person may take a peek inside the
system’s plumbing simply by observing the traffic at a particular URL. For push tables,
because the transport is based on a presentation format, an actual table of the event’s
properties may be viewed from a browser as the messages are streamed.

2.9 Parsing: SAX and DOM

From the XML world two standard parser types exist, SAX and DOM, with DOM
by far the more popular. Both styles of parsers are also available for JSON. DOM
performs a parse as a single evaluation and returns an object model representing the
whole of the document. Conversely, SAX parsers are probably better considered as
enhanced tokenisers, providing a very low-level event driven interface that notifies the
programmer of each token separately as it is found. Working with DOM’s level of
abstraction the markup syntax is a distant concern whereas for SAX each element’s
opening and closing must be noted so the developer may not put the data’s serialisation
aside. SAX comes with the advantages that it may read a document progressively and
has lower memory requirements because it does not store the parsed tree. It is a popular
choice for embedded systems running on constrained hardware and may be used to
handle documents larger than the available RAM.

Suppose we have some JSON representing people and want to extract the name of the

first person. Given a DOM parser this may be written quite succinctly:

function nameOfFirstPerson(myJsonString) {

27

// All recent browsers provide JSON.parse as standard.
var document = JSON.parse(myJsonString);
return document.people[0] .name; // that was easy!

To contrast, the equivalent below uses the Javascript Clarinet SAX parser, expressed in
the most natural way for the technology®.

function nameOfFirstPerson(myJsonString, callbackFunction){

var clarinet = clarinet.parser(),

// With a SAX parser it is the developer’s responsibility
// to track where in the document the cursor currently is.
// Several vartables are required to maintain this state.
inPeopleArray = false,

inPersonObject = false,

inNameAttribute = false,

found = false;

clarinet.onopenarray = function(){
// For brevity we’ll cheat by assuming there is only one
// array in the document. In practice this would be overly
// brittle.
inPeopleArray = true;

};

clarinet.onclosearray = function(){
inPeopleArray = false;

};

clarinet.onopenobject = function(){
inPersonObject = inPeopleArray;

};

clarinet.oncloseobject = function(){
inPersonObject = false;

};

3For an example closer to the real world see https://github.com/dscape/clarinet/blob/master/
samples/twitter.js

28

https://github.com/dscape/clarinet/blob/master/samples/twitter.js
https://github.com/dscape/clarinet/blob/master/samples/twitter.js

clarinet.onkey = function(key){
inNameAttribute = (inPeopleObject && key == ’name’);
s

clarinet.onvalue = function(value)q{
if (!'found && inNameAttribute) {
// finally!
callbackFunction(value);
found = true;
}
};

clarinet.write(myJsonString) ;

The developer pays a high price for progressive parsing, the SAX version is considerably
longer and more difficult to read. SAX’s low-level semantics require a lengthy expression
and push onto the programmer the responsibility for managing state regarding the
current position in the document and storing data extracted from previously seen
nodes. This maintenance of state tends to be programmed once per usage rather than
assembled as the composition of reusable parts. The ordering of the code under SAX is
also quite unintuitive; event handlers cover multiple unrelated cases and each concern
spans multiple handlers. This lends to a style of programming in which separate concerns
do not find separate expression in the code. It is also notable that, unlike DOM, as
the depth of the document being interpreted increases, the length of the programming
required to interpret it also increases, mandating more state be stored and an increased
number of cases be covered per event handler.

While SAX addresses many of the problems raised in this dissertation, its unfriendly
developer ergonomics have presented too high a barrier for adoption for all but fringe
use cases.

29

3 Design and Reflection

The REST workflow is more efficient if we do not wait until we have everything before
we start using the parts that we do have. The main tool to achieve this is the SAX parser
whose model presents poor developer ergonomics because it is not usually convenient to
think on the markup’s level of abstraction. Using SAX, a programmer may only operate
on a convenient abstraction after inferring it from a lengthy series of callbacks. In terms
of ease of use, DOM is generally preferred because it provides the resource whole and
in a convenient form. It is possible to duplicate this convenience and combine it with
progressive interpretation by removing one restriction: that the node which is given is
always the document root. From a hierarchical markup such as XML or JSON, when
read in order, sub-trees are fully known before we fully know their parent tree. We may
select pertinent parts of a document and deliver them as fully-formed entities as soon
as they are known, without waiting for the remainder of the document to arrive. This
approach combines most of the desirable properties from SAX and DOM parsers into a
new, hybrid method.

The interesting parts of a document may be identified before it is complete if we
turn the established model for drilling-down inside-out. Under asynchronous I/O the
programmer’s callback traditionally receives the whole resource and then, inside the
callback, locates the sub-parts that are required for a particular task. Inverting this
process, the locating logic currently found inside the callback can be extracted, expressed
as a selector language, and used to declare the cases in which the callback should be
notified. The callback will receive complete fragments from the response once they have
been selected according to this declaration.

Javascript will be used to implement the software deliverables because it has good
support for non-blocking I/O and covers both environments where this project will be
most useful: web browser and web server. Focusing on the MVP, parsing will only be
implemented for one mark-up language. Although this technique could be applied to any
text-based, tree-shaped markup, JSON best meets the project goals because it is widely
supported, easy to parse, and defines a single n-way tree, making it more amenable to
selectors which span multiple format versions.

3.1 Choice of selection language

JSONPath is well suited for selecting nodes while the document is being read because it
specifies only constraints on paths and ‘contains’ relationships. Because of the top-down
serialisation order, on encountering any node in a JSON stream we will have already
seen enough of the prior document to know its full path. JSONPath would not be so
amenable if it expressed sibling relationships because there is no similar guarantee of
having seen other nodes on the same level when any particular node is encountered. A
new implementation of the language is required because the existing JSONPath library

30

is implemented only as a means to search through already gathered objects and is too
narrow in applicability to be useful in a streaming context.

Given that we are selecting specifically inside a REST resource it is unlikely that we
will be examining a full model. Rather, the selectors will be applied to a subset that we
requested and was assembled on our behalf according to parameters that we supplied.
We can expect to be interested in all of the content belonging to a particular category
so search-style selections such as ‘books costing less than X’ are less useful than queries
which identify nodes because of their type and position such as ‘all books in the discount
set’, or, because we know we are examining /books/discount, simply ‘all books’. In
creating a new JSONPath implementation the existing language is followed somewhat
loosely, specialising the matching by adding features which are likely to be useful when
detecting entities in REST resources while avoid unnecessary code by dropping others.
Later adding new features to a language is easier than removing them once a userbase
has built up so where the utility of a feature is not clear the default position should be
to not include it. It is difficult to anticipate all real-world matching requirements but it
should be possible to identify a core 20% of features that are likely to be useful in 80%
of cases. For the timebeing any functionality which is not included may be implemented
by registering a more permissive selection and then further filtering programmatically
from inside the callback. Patterns of programmatic filtering which arise from use in the
wild can later be mined and added to the selection language.

3.2 Using JSONPath to detect higher-level types in JSON

As seen in the ‘all books’ example above, it is intuitive to support identifying sub-trees
according to a categorisation by higher-level types. JSON markup describes only a few
basic types. On a certain level this is also true for XML — most nodes are either of
type Element or Text. However, the XML metamodel provides tagnames; essentially,
a built-in type system for subclassifying the elements. JSON has no similar notion of
types beyond the basic constructs: array, object, string, number. To understand data
written in JSON’s largely typeless model it is often useful if we think in terms of a
more complex type system. This imposition of type is the responsibility of the observer
rather than of the observed. The reader of a document is free to choose the taxonomy
they will use to interpret it and this decision will vary depending on the purposes of
the reader. The required specificity of taxonomy differs by the level of involvement in a
field; whereas ‘watch’ may be a reasonable type for most data consumers, to a horologist
it is likely to be unsatisfactory without further sub-types. To serve disparate purposes,
the JSONPath variant provided for node selection will have no inbuilt concept of type,
the aim being to support programmers in creating their own.

<I--

XML leaves mo doubt as to the labels we give to an Element’s type
type. Although we might further interpret, this is a ’person’.

31

-—>
<person name=’...’ gender="male"

age="45" height="175cm" profession="architect">
</person>

/* JSON meanwhile provides mo built-in type concept.
This node’s type might be ’thing’, ’animal’, ’human’, ’male’,
‘man’, ’architect’, ’artist’ or any other of many overlapping
tmpositions depending on our rTeason for examining this data
*/
{ "name":"...", "gender":"male", "age":"45"
"height":"172cm" "profession':"architect">

3

In the absence of node typing beyond categorisation as objects, arrays and various
primitives, the key immediately mapping to an object is often taken as a loose marker
of its type. In the below example we may impose the the type ‘address’ on two nodes
prior to examining their contents because of the field name which maps to them from
the parent node.

{
"name": "..."
, '"residence": {
"address": [
"47", "Cloud street", "Dreamytown"
]
}
, "employer": {
"name": "Mega ultra-corp"
, "address":[
"Floor 2", "The Offices", "Alvediston", "Wiltshire"
]
}
}

This means of imposing type is simply expressed as JSONPath. The selector address
would match all nodes whose parent maps to them via an address key.

As a loosely typed language, Javascript gives no protection against lists which store
disparate types but by sensible convention this is avoided. Likewise, in JSON, although
type is a loose concept, the items in a collection will generally be of the same type.
From here follows a sister convention illustrated in the example below, whereby each
item from an array is typed according to the key in the grandparent node which maps
to the array.

32

"residences": {
"addresses": [
["10", "Downing street", "London"]
, ["Chequers Court", "Ellesborough", "Buckinghamshire"]
, ["Beach Hut", "Secret Island", "Bahamas"]

]

In the above markup, addresses.* would correctly identify three address nodes. The
pluralisation of field names such as ‘address’ becoming ‘addresses’ is common when
marshaling from OO languages because the JSON keys are extracted from getter names
which reflect the method’s cardinality: public Address getAddress() or public
List<Address> getAddresses(). To identify members of a type held singularly or
plurally it might help if a system that understands natural language pluralisation such
as Ruby on Rails were investigated. Unions were also considered as a simpler solution,
resembling address|addresses.*. It was decided that until the usefulness is better
demonstrated, with no obvious best solution, it is simplest to handle plurals outside
of the JSONPath language by expecting the programmer to register two selection
specifications against the same handler function.

In the below example types may not be easily inferred from ancestor keys.

{
llname”: II. . .ll
, '"residence": {
"number":"...", "street":"...", "town":"..."
}
, "employer":{
Ilname“: II. . .Il
, "premises":[
{ "number":"...", "street":"...", "town":"..." }
{ "number":"...", "street":"...", "town":"..." }
, 1 "number":"...", "street":"...", "town":"..." }
]
, '"registeredOffice":{
"number":"...", "street":"...", "town":"..."
}
}
}

33

Here, the keys which map onto addresses are named by the relationship between the
parent and child nodes rather than by the type of the child. The type classification
problem could be solved using an ontology with ‘address’ subtypes ‘residence’; ‘premises’,
and ‘office” but this solution feels quite heavyweight for a simple selection language.
Instead the idea of duck typing was imported from Python, as named in a 2000 usenet
discussion:

In other words, don’t check whether it IS-a duck: check whether it QUACKS-
like-a duck, WALKS-like-a duck, etc, etc, depending on exactly what subset
of duck-like behaviour you need (Martelli 2000)

An address ‘duck-definition’ for the above JSON would say that any object which has
number, street, and town properties is an address. Applied to JSON, duck typing
takes an individualistic approach by deriving type from the node itself rather than
the situation in which it is found. As discussed in section 2.5, JSONPath’s syntax is
designed to resemble the equivalent Javascript accessors but Javascript has no syntax
for a value-free list of object keys. The closest available Javascript notation is that
for object literals so a derivative duck-type syntax was created by omitting the values,
quotation marks, and commas. The address type described above would be written as
{number street town}. Field order is insignificant so {a b} and {b a} are equivalent.

It is difficult to generalise but when selecting items it is often useful if subtypes, nodes
which are covariant with the given type, are also matched. We may consider that there
is a root duck type {} which matches any node, that we create a sub-duck-type if we
add to the list of required fields, and a super-duck-type if we remove from it. Because
in OOP extended classes may add new fields, this idea of the attribute list expanding
for a sub-type applies neatly to resources marshaled from an OO representation. To
conform to a duck-type a node must have all of the required fields but could also have
any others.

3.3 Importing CSS4’s explicit capturing to JSONPath

JSONPath naturally expresses a ‘contained in’ relationship using the dot notation but no
provision is made for the inverse ‘containing’ relationship. Cascading Style Sheets, CSS,
the web’s styling language, has historically shared this restriction but a proposal for
extended selectors which is currently at Editor’s Draft stage (Etemad and Atkins 2013)
introduces an elegant solution. Rather than add an explicit ‘containing’ relationship,
the draft observes that CSS has previously always selected the element conforming to
the right-most of the selector terms, allowing only the deepest mentioned element to be
styled. This restriction is lifted by allowing terms to be prefixed with $ in order to make
them explicitly capturing; a selector without an explicit capturing term continues to
work as before. The CSS selector form. important input.mandatory selects manda-
tory inputs inside important forms but $form.important input.mandatory selects

34

important forms with mandatory fields.

(CSS4 selector capturing will be incorporated into this project’s JSONPath implemen-
tation. By duplicating a syntax which the majority of web developers should become
familiar with over the next few years the learning curve should appear more gradual.
Taking on this feature, the selector person.$address.town would identify an address
node with a town child, or $people.{name, dob} can be used to locate the same
people array repeatedly whenever a new person is added to it. Javascript frameworks
such as d3.js and Angular are designed to work with whole models as they change.
Consequently, the interface they present converses more fluently with collections than
individual entities. If we are downloading data to use with these libraries the integration
is more convenient with explicit capturing because we can hand over the collection as it
expands.

3.4 Parsing the JSON response

While SAX parsers provide an unappealing interface to application developers, as a
starting point to handle low-level parsing in higher-level libraries they work very well —
most XML DOM parsers are built in this way. The pre-existing Clarinet project (Job
2011) is well tested, liberally licenced, and compact, appropriately meeting our needs.
The version of Clarinet used in Oboe when delivered to the browser has been customised
to remove Node-specific parts and to work better with browser compiler optimisers, for
example by removing non-literal case labels from switch statements. The name of this
project, Oboe.js, was chosen in tribute to the value delivered by Clarinet, itself named
after the SAXophone.

3.5 API design

Everything that Oboe is designed to do can already be achieved by combining a SAX
parser with imperatively coded node selection. This has not been widely adopted
because it requires verbose, difficult programming in a style which is unfamiliar to most
programmers. With this in mind it is a high priority to design a public API for Oboe
which is concise, simple, and resembles other commonly used tools. If Oboe’s API is
made similar to common tools a lesser modification should be required to switch existing
projects to streaming HTTP.

35

For some common use cases it should be possible to create an API which is a close
enough equivalent to popular tools that it can be used as a direct drop-in replacement.
Although used in this way no progressive loading would be enacted, when refactoring
towards a goal the first step is often to create a new expression of the same logic (Martin
2008, 212). By giving basic support for non-progressive downloading the door is open
for apps to incrementally refactor towards a progressive expression. Allowing adoption
as a series of small, easily manageable steps rather than a single leap is especially helpful
for teams working under Scrum because all work must be self-contained and fit within a
fairly short timeframe.

jQuery is by far the most popular library for AJAX today. The basic call style for
making a GET request is as follows:

jQuery.ajax("resources/shortMessage.txt")
.done (function(text) {
console.log("Got the text:", text);
b.
.fail(function() {
console.log("the request failed");

B

The jQuery API is callback-based, it does not wrap asynchronously retrieved content in
event objects, and event types are expressed by the name of the method used to add
the listener. These names, done and fail, follow generic phrasing and are common to
all asynchronous functionality that jQuery provides. Promoting brevity, the methods
are chainable so that several listeners may be added from one statement. Although
Javascript supports exception throwing, for asynchronous failures a fail event is used
instead. Exceptions are not applicable to non-blocking I/O because at the time of the
failure the call which provoked the exception will already have been popped from the
stack.

jQuery.ajax is overloaded so that the parameter may be an object, allowing more
detailed information to be given:

jQuery.ajax({ "url":"resources/shortMessage.txt",
"accepts": "text/plain",
"headers": { "X-USER-ID": "123ABC" }
3

This pattern of passing arguments as object literals is common in Javascript for functions
which take a large number of parameters, particularly if some are optional. This avoids
having to pad unprovided optional arguments in the middle of the list with null values
and, because the purpose of the values is given at the call site, avoids an anti-pattern
where a call may only be understood after counting the position of the arguments.

36

Taking on this style while extending it to incorporate progressive parsing, we arrive at
the following API:

oboe("resources/people.json")

.node("person.name", function(name) {
console.log("There is somebody called", name);

b))

.done(function(wholeJson) {
console.log("That is everyone!");

D

.fail(function() {
console.log("There might may be more people but",

"we do not know who they are yet.");

B

In jQuery the whole content is given back at once so usually only one done handler is
added to a request. Under Oboe each separately addressed area of interest inside the
JSON resource requires its own handler so it is helpful to provide a shortcut style for
adding several selector-handler pairs at a time.

oboe("resources/people. json")

.node ({
"person.name": function(personName, path, ancestors) {
console.log("You will hear about", name, "...");
1,
"person.address.town": function(townName, path, ancestors) {
console.log("...they live in", townName);
}
B

Note the path and ancestors parameters in the example above. These provide ad-
ditional information regarding the context in which the identified node was found.

Consider the following JSON:

{
"event": "Mens’ 100m sprint",
"date": "5 Aug 2012",
"medalWinners": {
"gold": {"name": "Bolt", "time": "9.63s"7},
"silver": {"name": "Blake", "time": "9.75s"},
"bronze": {"name": "Gatlin", "time": "9.79s"}
}
}

37

In this JSON we may extract the runners using the pattern {name time} or
medalWinners.* but nodes alone are insufficient because their location communicates
information which is as important as their content. The path parameter provides the
location as an array of strings plotting a descent from the JSON root to the found node.
For example, Bolt has path [’medalWinners’, ’gold’]. Similarly, the ancestors
array lists the ancestors starting with the JSON root node and ending at the immediate
parent of the found node. For all but the root node, which in any case has no ancestors,
the nodes given by the ancestor list will have been only partially parsed.

oboe ("resources/someJson. json")
.node("medalWinners.*", function(person, path) {
let metal = lastO0f(path);
console.log(person.name, "won the", metal,
"medal with a time of ", person.time);

)

Being loosely typed, Javascript does not enforce that ternary callbacks are used as
selection handlers. Before a callback is made the application programmers must have
provided a JSONPath selector specifying the locations in the document that they are
interested in. The programmer will already be aware enough of the node location so for
most JSON formats the content alone will be sufficient, the API purposefully orders the
callback parameters so that in most cases a unary function can be given.

Under Node.js the code style is more obviously event-based. Listeners are normally
added using an .on method where the event name is a string given as the first argument.
Adopting this style, Oboe’s API design also allows events to be added as:

oboe("resources/someJson. json")
.on("node", "medalWinners.x", function(person) {

console.log("Well done", person.name);

B

While allowing both styles creates an API which is larger than it needs to be, the dual
interface is designed to encourage adoption on the client and server side. The two styles
are similar enough that a person familiar with one should be able to work with the
other without difficulty. Implementing the duplicative parts of the API should require
only a minimal degree of extra coding because they may be expressed in common and
specialised using partial completion. Because ’ !’ is the JSONPath for the root of the
document, for some callback ¢, .done(c) is a equal to .node(’!’, c¢). Likewise, .node
is easily expressible as a partial completion of .on with ’node’.

When making PUT, POST or PATCH requests the API allows the body to be given as
an object and serialises it as JSON because it is expected that REST services which
emit JSON will also accept it.

38

oboe.doPost ("http://example.com/people", {
"body": {
"name" :"Arnold", "location":"Sealands"
}
b

3.6 Earlier callbacks when paths are found prior to nodes

Following the project’s aim of giving callbacks as early as possible, sometimes useful
work can be done when a node is known to exist but before we have the contents of
the node. Under Oboe each node found in the JSON document can potentially trigger
notifications at two stages: when it is first addressed and when it is complete. The API
facilitates this by providing a path event following much the same style as node.

oboe("events. json")

.path("medalWinners", function() {
// We do mot know the winners yet but we know we have some
// so we can start drawing the table:
gui.showMedalTable();

b

.node("medalWinners.*", function(person, path) {
let metal = lastO0f(path);
gui.addPersonToMedalTable(person, metal);

b

.fail(function(){
// Revert!
gui.hideMedalTable();

IF

Implementing path notifications requires little extra code, only that JSONPath expres-
sions can be evaluated when items are found in addition to when they are completed.

3.7 Choice of streaming data transport

As discussed in section 2.8, current techniques to provide streaming over HTTP encourage
a dichotomous split of traffic as either stream or download. This split is not a necessary
consequence of the technologies used and streaming may instead be viewed as the most
efficient means of downloading. Streaming services implemented using push pages or
websockets are not REST. Under these frameworks a stream has a URL but the data
in the stream is not addressable. This is similar to STREST, the Service Trampled
REST anti-pattern (Cragg 2006) in which HTTP URLs are viewed as locating endpoints

39

for services rather than the actual resources. Being unaddressable, the data in the
stream is also uncacheable: an event which is streamed live cannot later, when it is
historic, be retrieved from a cache which was populated by the stream. Like SOAP,
these frameworks use HTTP as the underlying transport but do not follow HTTP’s
principled design.

Although Oboe is not designed for live events, it is interesting to speculate whether it
could be used as a REST-compatible bridge to unify live-ongoing feeds with ordinary
REST resources. Consider a REST service which gives per-constituency results for UK
general elections. If historic results are requested the data is delivered in JSON format
much as usual. Requesting the results for the current year on the night of the election,
an incomplete JSON with the constituencies known so far would be immediately sent,
followed by the remainder dispatched individually as the results are called. When all
results are known the JSON would finally close leaving a complete resource. A few
days later, somebody wishing to fetch the results would use the same URL for the
historic data as was used on the night for the live data. This is possible because the
URL refers only to the data that is required, not to whether it is current or historic.
Because it eventually forms a complete HT'TP response, the data that was streamed is
not incompatible with HTTP caching and a cache which saw the data while it was live
could later serve it from cache as historic. More sophisticated caches located between
client and service would recognise when a new request has the same URL as an already
ongoing request, serve the response received so far, and then continue by giving both
inbound requests the content as it arrives from the already established outbound request.
Hence, the resource would be cacheable even while the election results are streaming
and a service would only have to provide one stream to serve the same live data to
multiple users fronted by the same cache. An application developer programming with
Oboe would not have to handle live and historic data as separate cases because the node
and path events they receive are the same. Without branching, the code which displays
results as they are announced would automatically be able to show historic data.

Taking this idea one step further, Oboe might be used for infinite data which intentionally
never completes. In principle this is not incompatible with HTTP caching although
more research would have to be done into how well current caches handle requests which
do not finish. A REST service which provides infinite length resources would have
to confirm that it is delivering to a streaming client, perhaps with a request header.
Otherwise, if a non-streaming REST client were to use the service it would try to get
‘all” of the data and never complete its task.

Supporting only XHR as a transport unfortunately means that on older browsers which
do not fire progress events (section 2.7) a progressive conceptualisation of the data
transfer is not possible. Streaming workarounds such as push tables will not be used
because they would result in a client which is unable to connect to the majority of
REST services. Degrading gracefully, the best compatible behaviour is to wait until
the document completes and then interpret the whole content as if it were streamed.
Because nothing is done until the request is complete, the callbacks will be fired later

40

than on a more capable platform but will have the same content and be in the same
order. By reverting to non-progressive AJAX on legacy platforms, an application author
will not have to write special cases and the performance should be no worse than with
traditional AJAX libraries such as jQuery. On legacy browsers Oboe could not be used
to receive live data — in the election night example no constituencies would be shown
until they had all been called.

One benefit of a unified model for streamed and finite-size content is that it allows a
simpler security model. Because the demands of the transport are different, streaming
security is usually implemented separately from other HT'TP requests. Schneier often
argues that “complexity is the worst enemy of security” (Schneier 2000 Software Com-
plexity and Security) and in one online debate paints a buildings analogy (Schneier and
Harris 2013):

Simplicity tends to completely remove potential avenues of attack. An easy
example might be to think of a building. Adding a new door is an additional
complexity, and requires additional security to secure that door. This leads
to an analysis of door materials, lock strength, and so on. The same building
without that door is inherently more secure, and requires no analysis or
assumptions about how it will be secured. Of course, this isn’t to say that
buildings with doors are insecure, only that it takes more work to secure
them. And it takes more work to secure a building with ten doors than with
one door.

Unifying two means of data transfer into a single model is analogous to a building having
only one entrance. A better level of security should be possible given the same effort
taken to secure it.

Node’s standard HTTP library provides a view of the response as a standard Read-
ableStream so there will be no problems programming to a streaming interpretation of
HTTP. In Node because all streams provide a common API regardless of their origin
allowing arbitrary sources to be read is no extra work. Although Oboe is intended
primarily as a REST client, under Node it will be capable of reading data from any
source. Oboe might be used to read from a local file, an ftp server, a cryptography
source, or the process’s standard input.

3.8 Handling transport failures

Oboe cannot know the correct behaviour when a connection is lost so this decision
is left to the containing application. On failure one of two behaviours is expected: if
the actions performed in response to data so far remain valid in the absence of a full
transmission their effects will be kept and a new request made for just the missed part;
alternatively, if all the data is required for the actions to be valid, the application should
take an optimistic locking approach and perform rollback.

41

3.9 Oboe.js as a micro-library

HTTP traffic is often compressed using gzip so that it transfers more quickly, particularly
for entropy-sparse text formats such as Javascript. When measuring a library’s download
footprint it usually makes more sense to compare post-compression. Smaller is better to
encourage adoption because site creators are sensitive to the download size of their sites.
Javascript micro-libraries are listed at microjs.com, which includes this project. A library
qualifies as being micro if it is delivered in 5kb or less, 5120 bytes, but micro-libraries
also tend to follow the ethos that it is better for an application developer to gather
together several tiny, simple libraries than find a complex one which aims to solve many
problems. As well as being small, a micro-library should impose as few restrictions as
possible on its use and be agnostic as to which other libraries or programming styles it
will be combined with, echoing the UNIX philosophy for small, easily combined programs
(MclIlroy 1978).

This is the Unix philosophy:

Do one thing and do it well.

Write programs to work together.

Write programs to handle text streams, because that is a universal interface.

Working to a maximum post-gzip size introduces some unintuitive challenges. Because
duplication compresses well, code which would normally be considered to have been
written compactly doesn’t necessarily produce a smaller deliverable than code which is
repetitive. In many cases staying DRY (Hunt and Thomas 1999 p.27) by extracting
a common component from two similar algorithms actually creates a larger gzipped
form. The DRY principle is not primarily for the sake of compactness, there are better
reasons to avoid duplicating logic - wherever something is expressed twice there is the
possibility for the two versions to diverge. Code which disagrees with itself cannot
be self-documenting because there is no single authoritative version. In Oboe, for
maintainability DRY code has generally been preferred over code which compresses well,
but experimentation has been used to find the best gzipped size when choosing between
equally DRY alternatives.

42

http://microjs.com

4 Implementation

4.1 Componentisation of the project

/ Either a Browser \ checks ascent
XMLHttpRequest object, or a Node for matches compiled
http object are created, depending against JSONPath

expression

on environment. streaming ~.CONTENT_DONE
[http
"""" N
NEW_CONTENT(text)» 7/ callback
Browser Node - O adaptor
XHR http
J

N

closes on
http complete

passes new

calls with text to

matching object,

fegisters callbacks
with

clarinet JSON
SAX parser

PATH_FOUND(ascént)}

NODE_FOUND(ascent)} | SAX EVENTS

application

content
builder

traces

Figure 4: Major components of Oboe.js illustrating program flow from HTTP
transport to application callbacks. UML facet/receptacle notation is used to show
the flow of events and event names are given in capitals. For clarity events are depicted
as transferring directly between publisher and subscriber but this is actually performed
through an intermediary.

Oboe’s architecture describes a fairly linear pipeline visiting a small number of tasks
between receiving HTTP content and notifying application callbacks. The internal
componentisation is designed primarily so that automated testing can provide a high
degree of confidence regarding the correct working of the library. A local event bus
facilitates communication inside an Oboe instance and most components interact solely
by using this bus: receiving events, processing them, and publishing further events in
response. The use of an event bus removes the need for each unit to locate other units
before it may listen to their output, giving a highly decoupled shape to the library
in which each part knows the events it requires but not who publishes them. Once
everything is wired into the bus no central control is required and the larger behaviours

43

emerge as a consequence of the interactions between finer ones.

4.2 Design for automated testing

performance tests monitor
for a worsening in library speed

~15j
verify the whole [Nrary

~80 component tests O
verify behaviours emerging O
from the composition of units

~140 unit tests O O
verify individual units O

Figure 5: The test pyramid. Many tests specify the low-level components, fewer on
their composed behaviours, and fewer still on a whole-system level.

80% of the code written for this project is test specification. Because the correct behaviour
of a composition requires the correct behaviour of its components, the majority are unit
tests. The general style of a unit test is to plug the item under test into a mock event
bus and check that when it receives certain input events the expected output events are
consequently published.

The Component tests step back from examining individual components to a position
where their behaviour in composition may be examined. Because the compositions are
quite simple there are fewer component tests than unit tests. The component tests
do not take account of how the composition is drawn and predominantly examine the
behaviour of the library through its public API. One exception is that the streamingXHR
component is switched for a stub so that HTTP traffic can be simulated.

44

At the apex of the test pyramid are a small number of integration tests. These verify
Oboe as a black box without any knowledge of, or access to, the internals, using the
same API as is exposed to application programmers. These tests are the most expensive
to write but a small number are necessary in order to verify that Oboe works correctly
end-to-end. HTTP traffic cannot be faked without access to the internals so before these
tests are performed a corresponding REST service is started. This test service is written
using Node and returns known content progressively according to predefined timings,
somewhat emulating a slow internet connection. The integration tests particularly verify
behaviours where platform differences could cause inconsistencies. For example, the
test URL /tenSlowNumbers writes out the first ten natural numbers as a JSON array
at a rate of four per second. The test registers a JSONPath selector that matches the
numbers against a callback that aborts the HTTP request on seeing the fifth. The
correct behaviour is to get no sixth callback, even when running on a platform lacking
support for XHR2 where all ten will have already been downloaded.

Confidently black-box testing a stateful unit is difficult. Because of side-effects and
hidden state we can only rely on inductive reasoning to say that similar future calls won’t
later result in different behaviours. Building up the parse result from SAX events is a
fairly complex process which cannot be implemented efficiently using wholly side-effect
free Javascript. To promote testability the state is delegated to a simple state-storing
unit. The intricate logic may then be expressed as a separately tested set of side-effect
free functions which transition between one state and the next. For whichever results
the functions give while under test, uninfluenced by state one may be confident that
they will later yield the same result if given the same input. The separate unit to
maintain the state has exactly one responsibility, to hold the incremental parse output
between function calls, and is trivial to test. This approach slightly breaks with the
object oriented principle of encapsulation by hiding state behind the logic which acts
on it but the departure will be justified if a more testable codebase promotes greater
reliability.

To enhance testability Oboe has also embraced dependency injection. Components do
not instantiate their dependencies but rather rely on them being passed in by an inversion
of control container during the wiring phase. For example, the network component
which hides browser differences does not know how to create the underlying XHR that
it adapts. Undoubtedly, by not instantiating its own transport this component presents
a less friendly interface: its data source is no longer a hidden implementation detail
but exposed as a part of its API as the responsibility of the caller. This disadvantage
is mitigated by the interface being purely internal. Dependency injection allows the
tests to be written more simply because it is easy to substitute the real XHR for a stub.
Unit tests should test exactly one unit; were the streaming HTTP object to create its
own transport, the XHR would also be under test, plus whichever external service it
connects to. Because Javascript allows redefinition of built in types the stubbing could
have also been done by overwriting the XHR constructor to return a mock. However
this is to be avoided as it opens up the possibility of changes to the environment leaking

45

between test cases.

4.3 Task automation

The Grunt task runner (Alman 2012) is used to automate routine tasks such as executing
the tests and building, configured so that the unit and component tests run automatically
whenever a change is made to a source file or specification. As well as executing correctly,
the project is required not to surpass a certain size so this also checked on every save.
Because Oboe is a small, tightly focused project the majority of the programming time
is spent refactoring already working code; running tests on save provides quick when
refactoring so that equivalence is demonstrated before starting to thinking about the
next context. Agile practitioners emphasise the importance of tests that execute quickly
(Martin 2008 p.314:T9) — Oboe’s 220 unit and component tests run in less than a second
so discovering programming mistakes is nearly instant.

If the “content of any medium is always another medium” (McLuhan 1964 p.8), we
might say that the content of programming is the process that is realised by its execution.
A sculptor or painter works while seeing the thing that they are making. No decision
was made to work in this way, the immediacy is a natural attribute of the medium.
For digital artists, freed from restrictions of physical mediums, we may design abstract
tools in any way that we can imagine. However far the effect of a digital paintbrush
on the canvas might have diverged from physical manipulation, most of the common
toolbox assumes a workflow of interactive editing and real-time feedback, simulating the
physicality of traditional mediums. This is not so in programming: a person writing a
computer program does not usually see its execution until seconds or even minutes after
their edit — a lag which would be intolerable elsewhere. Conway notes that an artisan
works by transform-in-place “start with the working material in place and you step by
step transform it into its final form,” but software is created through proxies; he posits
that we may close this gap by merging programming with the results of programming
(Conway 2004 pp.8-9). If we bring together the medium and the message by viewing the
result of code while we write it, we can build in a series of small, iterative, correct steps
and programming can be more explorative and expressive. Running the tests subtly,
automatically, hundreds of times per day is not merely time-saving, this build process
noticeably improved the quality of the project’s programming.

Integration tests are not run on save. They intentionally simulate a slow network so by
the time they complete a programmer will have already context-switched to the next
micro-task. Oboe’s source is version controlled using Git and hosted on Github. The
integration tests are used as the final check before a branch in Git is merged into the
master.

46

For every commit which is pushed to Github the Travis (Travis CI GmbH 2013)
continuous integration environment automatically builds and tests the distributable
form. This is a hosted service provided gratis to open source projects. When a third-
party contributes a bug fix the changes are automatically annotated with their test
status so that no pull request which breaks the build may be accepted. This automation
encourages collaboration by making it very cheap to accept third party patches.

4.4 Packaging to a single distributable file

As an interpreted language Javascript may be run without any prior compilation.
Directly running the files that are open in the editor is convenient while programming
but unless a project is written as a single file in practice some build phase is required
to create an easily distributable form. Dependency managers have not yet become
standard for client-side web development so dependant libraries are usually manually
downloaded. For a developer wishing to include Oboe in their own project a single file
is much more convenient than the multi-file raw source. If they are not using a similar
build process on their site, a single file is also faster to transfer to their users, mostly
because the HT'TP overhead is of constant size per request.

Javascript files are interpreted in series by the browser so load-time dependencies must
precede dependants. If several valid Javascript files are concatenated in the same order
as delivered to the browser the joined version is functionally equivalent to the individual
files. This is a common technique so that code can be written and debugged as many
files but distributed as one. Several tools exist to automate this stage of the build
process that topologically sort the dependency graph before concatenation in order to
find a suitable script order.

Early in the project Require.js (Burke 2011) was chosen for this task. Javascript does not
have an import statement; Require adds one from inside the language as an asynchronous
require function. Calls to require AJAX in and execute the imported source, passing
any exported items to the given callback. For non-trivial applications loading each
dependency individually over AJAX is intended only for debugging because making so
many requests is slow. For efficient delivery Require provides the optimise command
which concatenates an application into a single file by using static analysis to deduce
a workable source order. Because the require function may be called from anywhere,
this is undecidable in the general case so when a safe concatenation order cannot be
found Require falls back to lazy loading. In practice this is no problem because imports
are not generally subject to branching. For larger webapps lazy loading is actually
a feature because it speeds up the initial page load. The technique of Asynchronous
Module Definition, AMD intentionally imports rarely-loaded modules in response to
events; by resisting static analysis the dependant Javascript will not be downloaded
until it is needed. AMD is mostly of interest to applications with a central hub but
also some rarely used parts. For example, most visits to online banking will not need

47

to create standing orders so it is better if this part is loaded on-demand rather than
increase the initial page load time.

Require’s optimise was originally chosen to automate the creation of a combined
Javascript file for Oboe. Oboe would not benefit from AMD because everybody who
uses it will need all of the library but using Require to find a working source order would
avoid having to manually implement one. Unfortunately this was not feasible. Even
after optimisation, Require’s design necessitates that calls to the require function are
left in the code and that the Require run-time component is available to handle them.
At more than 5k gzipped this would have more than doubled Oboe’s download footprint.
With about 15 source files and a fairly sparse dependency graph, finding a working
order on paper proved a simpler task than integrating with tools offering to automate
the process. After finding a Grunt plugin analogous to the unix cat command it was
trivial to create a build process which produces a distributable library while requiring
no dependency management code to be loaded at run-time.

For future consideration there is Browserify (Browserling Inc. 2012). This library
reverses the ‘browser first’ Javascript mindset by viewing Node as the primary target
for Javascript development and adapting the browser environment to match. Browserify
converts applications written for Node into a single file packaged for delivery to a web
browser. Significantly, other than adaptors wrapping browser APIs in the call style of
their Node equivalents, Browserify leaves no trace of itself in the final Javascript. When
run on browsers supporting progress events Browserify’s HT'TP adaptor® presents XHRs
using Node’s streaming interface so it should be capable of adapting the Node version
of Oboe to run under modern browsers.

Javascript source can be made significantly smaller by minification techniques such as
reducing scoped symbols to a single character or deleting the comments. For Oboe
the popular minifier library, Uglify (Bazon 2010) was chosen. Uglify performs surface
optimisations, rearranging the syntax tree locally to create a compact expression.
Consider the code below:

// If the ’cached’ flag is set, add a query parameter ’_’ with the wvalue
// of the current timestamp to the url. This guarantees the the request
// will not be served from browser cache

if (cached === false) {
if (baseUrl.index0f(’?’) == -1) {
baseUrl += 77,
} else {

baseUrl += ’&’;

3

4https://github.com /substack /http-browserify

48

https://github.com/substack/http-browserify

baseUrl += ’ =’ + new Date().getTime();

3

return baseUrl;
Uglify compresses this example into a single statement, reducing the size by about 55%.

return b === 11 && (a += -1 == a.index0f("?") 7
neno gh, a += " =" + (new Date).getTime()), a

An alternative minifier would be Google Closure Compiler (Google 2009), a more
sophisticated project which leverages a deeper understanding of the programming it
reduces. Unfortunately, proving equivalence in highly dynamic languages is often
impossible and Closure Compiler is only safe given a well-advised subset of Javascript.
It delivers no reasonable guarantee of equivalence if code is not written as the Closure
team expected. Integration tests would catch any such failures but for the time being it
was decided that even constrained by micro-library size limits, a slightly larger file is a
worthwhile tradeoff for a safer build process.

4.5 Styles of programming

Oboe does not follow any single paradigm and is written as a mix of procedural,
functional and object-oriented programming styles. Classical object orientation is used
only so far as the library exposes an OO public API. Although Javascript supports
them, classes and constructors are not used, nor is there any inheritance or notable
polymorphism. Closures form the primary means of data storage and hiding. Most
entities do not give a Javascript object on instantiation, they are constructed as a set of
event handlers attached to the central bus which, as inner-functions inside the same
outer function, share access to values caught in a common closure. From outside the
closure the values are not only private as would be seen in a Java-style OO model, they
are inherently unaddressable.

Although not following an established object-oriented metamodel, the high-level compo-
nentisation has not departed very far from how the project might be divided following
that style and OO design patterns have influenced the layout considerably. If we wished
to think in terms of the OO paradigm we might say that values trapped inside closures
are private attributes and that the handlers registered on the event bus are public
methods. In this regard the high-level internal design of Oboe can be discussed using
the terms from a more standard object oriented metamodel.

49

Even where it creates a larger final deliverable, short functions that can be combined to
form longer ones have been generally preferred. Writing a program using short functions
reduces the size of the minimum testable unit and because each test specifies a very
small unit of functionality, encourages the writing of very simple unit tests. When the
tests are simple there is less room for unanticipated cases to hide. Due to pressures on
code size a general purpose functional library was not chosen, one was created containing
only the necessary functions (functional.js, Appendix p.72). Functional programming in
Javascript is known to be slower than other styles, particularly in Firefox which lacks
optimisations such as Lambda Lifting (Guo 2013) but the effect should be insignificant,
particularly when considered alongside the performance advantages that streaming 1/0
offers. Because of its single-threaded execution model, in the browser any Javascript is
run during script execution frames, interlaced with frames for other concurrent concerns.
To minimise the impact on other concerns such as rendering it is important that no
task occupies the CPU for very long. Since most monitors refresh at 60Hz, about 16ms
is a fair target for the maximum duration of a browser script frame. In Node no limit
can be implied from a display but any CPU-hogging task degrades the responsiveness
of concurrent work. Switching tasks is cheap so effective CPU sharing prefers many
small execution frames over a few larger ones. Whether running in a browser or server,
the bottleneck is more often I/O than processing speed; providing no task contiguously
holds the CPU for an unusually long time an application can usually be considered
fast enough. Oboe’s progressive model favours sharing because it naturally splits the
work over many execution frames which by a non-progressive mode would be performed
during a single frame. Although the overall CPU time will be higher, Oboe should share
the processor more cooperatively and because of better I/O management the overall
system responsiveness should be improved.

4.6 Incrementally building the parsed content

As shown in figure 4 on page 43, there is an incremental content builder and ascent
tracer which handle SAX events from the Clarinet JSON parser. Taken together these
components might be considered as an Adaptor (Gamma et al. 1994 p.139) that wraps
Clarinet with a simpler interface, albeit a modified version of the pattern which is event-
driven rather than call-driven: we receive six event types and in response emit from
a vocabulary of two, NODE_FOUND and PATH_FOUND. The events received from Clarinet
are low level, reporting the sequence of tokens in the markup; those emitted are at
a much higher level of abstraction, reporting the JSON nodes and paths as they are
discovered. Testing a JSONPath expression for a match against any particular node
requires the node itself, the path to the node, and the ancestor nodes. For each newly
found item in the JSON this information is delivered as the payload of the two event
types emitted by the content builder. When the callback adaptors receive these events
they have the information required to test registered patterns for matches and notify
application callbacks if required.

20

emptyList

¥

cons(namedNode(ROOT,q),)

t

cons(namedNode('animals’, 1),)

t

cons(namedNode('mammals’, 1),)

insects mammals

cons(namedNode('humans', l),)

ascent

Figure 6: List representation of an ascent rising from leaf to root through a
JSON tree. Note the special ROOT value which represents the location of the pathless
root node. The ROOT value is an object, taking advantage of object uniqueness to
ensure that its location is unequal to all others.

o1

The path to the current node is maintained as a singly linked list in which each item
holds the node and the field name that links to the node from its parent. The list
and the items it contains are immutable, enforced in newer Javascript engines by using
frozen objects.” The list is arranged as an ascent with the current node at the near end
and the root at the far end. Although paths are typically written as a descent, ordering
as an ascent is more efficient because every SAX event can be processed in constant
time by adding to or removing from the head of the list. For familiarity, where paths

are passed to application callbacks they are first reversed and converted to arrays.

For each Clarinet event the builder provides a corresponding handler which, working
from the current ascent, returns the next ascent after the event has been applied. For
example, the openobject and openarray event types are handled by adding a new item
at the head of the ascent but for closeobject and closearray one is removed. Over
the course of parsing a JSON resource the ascent will in this way be manipulated to
visit every node, allowing each to be tested against the registered JSONPath expressions.
Internally, the builder’s handlers for SAX events are declared as the combination of a
smaller number of basic reusable parts. Several of Clarinet’s event types differ only by
the type of the node that they announce but Oboe is largely unconcerned regarding
a JSON node’s type. On picking up openobject and openarray events, both pass
through to the same nodeFound function, differing only in the type of the node which
is first created. Similarly, Clarinet emits a value event when a string or number is
found in the markup. Because primitive nodes are always leaves the builder treats
them as a node which instantaneously starts and ends, handled programmatically as
the composition of the nodeFound and nodeFinished functions.

Although the builder functions are stateless and side-effect free, between SAX events the
current ascent needs to be stored. This is handled by the ascent tracker which serves as
a holder for this data. Starting with the ascent initialised as the empty list, on receiving
a SAX event it passes the ascent to the handler and stores the result so that when the
next SAX event is received the updated ascent can be given to the next handler.

Linked lists were chosen for the ascents in preference to the more conventional approach
of using native Javascript arrays for several reasons. A program is easier to test and
debug given immutable data but employing the native Arrays without mutating would
be very expensive because on each new path the whole array would have to be copied.
During debugging, unpicking a stack trace holding immutable data requires less mental
stress because every value revealed is the value that has always occupied that space and
the programmer does not have to project along the time axis by imagining which values
were in the same space earlier or might be there later. The lack of side effects means
that new commands may be tried during a pause in execution without worrying about
breaking the working of the program. In terms of speed, array-type structures are poorly

5See https://developer.mozilla.org/en-US/docs/Web/JavaScript /Reference/Global/__Objects/
Object/freeze. Although older engines provide no facility to create immutable objects, we can be fairly
certain that the code does not mutate these objects or the tests would fail with attempts to modify in
environments which are able to enforce it.

52

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global/_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global/_Objects/Object/freeze

suited to frequent growing and shrinking so for tracking ascents whose length changes
with every event received, arrays are relatively unperformant. Taking into account the
receiver of the ascent data, lists are also a convenient format for the JSONPath engine
to match against as will be discussed in the next section. The Javascript file lists.js
(Appendix p.102) implements various list functions: cons, head, tail, map, foldR, all,
without as well as providing conversions to and from arrays.

4.7 Oboe JSONPath implementation

With the initial commit the JSONPath implementation was little more than a series of
regular expressions® but has slowly evolved into a featureful and efficient implementation.
A total rewriting was possible because the correct behaviour is well defined by test
specifications’. The JSONPath compiler exposes a single higher-order function. This
function takes the JSONPath as a string and, proving it is a valid expression, returns
a function which tests for matches to the pattern. The type is difficult to express in
Javascript but expressed as Haskell would be:

String -> Ascent —-> JsonPathMatchResult

The match result is either a hit or a miss. If a hit, the return value is the node
captured by the match. Should the pattern have an explicitly capturing clause the
node corresponding to that clause is captured, otherwise it is the node at the head
of the ascent. Implementation as a higher-order function was chosen even though it
might have been simpler to create a first-order version as seen in the original JSONPath
implementation:

(String, Ascent) -> JsonPathMatchResult

This version was rejected because the pattern string would be freshly reinterpreted on
each evaluation, repeating computation unnecessarily. Because a pattern is registered
once but then evaluated perhaps hundreds of times per JSON file the most pressing
performance consideration is for matching to execute quickly. The extra time needed to
compile a pattern when new application callbacks are registered is relatively insignificant
because it is performed much less often.

6JSONPath compiler from the first commit can be found at line 159 here: https://github.com/
jimhigson/oboe.js/blob/al7db7accc3a371853a2a0fd755153b10994c91e/src/main/progressive.js#L159
for contrast, the current source can be found in the appendix on page 90 or at
https://github.com/jimhigson/oboe.js/blob/master/src/jsonPath.js

"The current tests are viewable at https://github.com/jimhigson/oboe.js/blob/master/
test/specs/jsonPath.unit.spec.js and https://github.com/jimhigson/oboe.js/blob/master/test /specs/
jsonPathTokens.unit.spec.js

23

https://github.com/jimhigson/oboe.js/blob/a17db7accc3a371853a2a0fd755153b10994c91e/src/main/progressive.js
https://github.com/jimhigson/oboe.js/blob/a17db7accc3a371853a2a0fd755153b10994c91e/src/main/progressive.js
https://github.com/jimhigson/oboe.js/blob/master/src/jsonPath.js
https://github.com/jimhigson/oboe.js/blob/master/test/specs/jsonPath.unit.spec.js
https://github.com/jimhigson/oboe.js/blob/master/test/specs/jsonPath.unit.spec.js
https://github.com/jimhigson/oboe.js/blob/master/test/specs/jsonPathTokens.unit.spec.js
https://github.com/jimhigson/oboe.js/blob/master/test/specs/jsonPathTokens.unit.spec.js

The compilation is performed by recursively examining the left-most side of the string
for a JSONPath clause. For each clause type there is a function which tests ascents for
that clause, for example by checking the field name; by partial completion the field name
function would be specialised to match against one particular name. Having generated
a function to match against the left-most clause, compilation continues recursively by
passing itself the remaining unparsed right-side of the string, which repeats until the
terminal case where there is nothing left to parse. On each recursive call the clause
function generated wraps the result from the last recursive call, resulting ultimately in a
concentric series of clause functions. The order of these functions mirrors the ordering of
paths as an ascent, so that the outermost function matches against the node at the near
end of the ascent, and the innermost against the far end. When evaluated against an
ascent, each clause function examines the head of the list and, if it matches, passes the
list onto the next function. A special clause function, skip1 is used for the . (parent)
syntax and places no condition on the head of the list, unconditionally passing the tail
on to the next clause, thus moving matching on to the parent node. Similarly, there is a
function skipMany which maps onto the .. (ancestor) syntax and recursively consumes
the minimum number of ascent items necessary for the next clause to match or fails if
this cannot be done. In this way, we peel off layers from the ascent as we move through
the function list until we either exhaust the functions, indicating a match, or cannot
continue, indicating a fail.

This JSONPath implementation allows the compilation of complex expressions into an
executable form by combining many very simple functions. As an example, the pat-
tern !.$person..{height tShirtSize} once compiled would resemble the Javascript
functional representation below:

statementExpr (// outermost wrapper, added when JSONPath
// is zero-length
duckTypeClause (// token 5, {height tShirtSizel}
skipMany (// token 4, ’..°, ancestor relationship
capture(// token 3, ’$’ from ’$person’
nameClause(// token ‘person’ from ’$person’

3,

skip1(// token 2, ’.’, parent relationship
rootExpr // token 1, ’!’, matches only the root

)

’person’)

)
), [’height’, ’tShirtSize’])

o4

Because the matching is implemented using a side-effect free subset of Javascript it would
be safe to use a functional cache. As well as saving time by avoiding repeated execution
this could potentially also save memory because where two JSONPath strings contain a
common left side they could share the inner part of their functional expression. Given
the patterns ! .animals.mammals.human and !.animals.mammals.cats, the JSONPath
engine will currently create two identical evaluators for !.animals.mammals. Likewise,
while evaluating several sibling elements against a pattern that requires matches at
multiple depths in the JSON hierarchy, the same JSONPath term evaluator

will be tested many times against the parent element, always with the same result.
Although Javascript comes without functional caching, it can be added using the
language itself, probably the best known example being memoize from Underscore.js
(Ashkenas 2008). It is likely however that hashing the function parameters would be
slower than performing the matching. Although the parameters are all immutable and
could in theory be hashed by object identity, in practice there is no way to access an
object ID from inside the language so any hash function for a node parsed out of JSON
would have to walk the entire subtree rooted from that node, requiring time proportional
to the size of the tree. Current Javascript implementations also make it difficult to
manage caches in general from inside the language because there is no way to occupy
only spare memory. Weak references are proposed in the ECMAScript 6th edition draft
(Harmony 2013) but currently only experimentally supported®. If the hashing problem
were solved the WeakHashMap would be ideal for adding functional caching in future.

Functions describing the tokenisation of the JSONPath language are given their own
source file and tested independently of the compilation. Regular expressions are used
because they are the simplest form able to express the clause patterns. Each regular
expression starts with ~ so that they only match at the head of the string, the ‘y’ flag
would be a more elegant alternative but as of now this lacks wider browser support”.
By verifying the tokenisation functions through their own tests it is simpler to create
thorough specification because the tests may focus on the tokenisation more clearly
without having to observe its results though another layer. For JSONPath matching we
might consider the unit test layer of the test pyramid (figure 5, p.44) to be split into two
further sub-layers. Arguably, the upper of these sub-layers is not a unit test because
it is verifying more than one unit, the tokeniser and the compiler, and there is some
redundancy since the tokenisation is tested both independently and through a proxy. A
more purist approach would stub out the tokeniser functions before testing the compiled
JSONPath expressions. This would be desirable if a general purpose compiler generator
were being implemented but since the aim of the code is to work with only one language,
removing the peculiarities of the tokenisation from the tests would only decrease their
ability to demonstrate the correct interpretation of the JSONPath language as a whole.

8At time of writing, Mozilla Firefox is the only browser supporting WeakHashMap by default.
In Google Chrome it is implemented but not available to Javascript unless explicitly enabled by a
browser flag. https://developer.mozilla.org/en-US/docs/Web/JavaScript /Reference/Global/ _Objects/
WeakMap retrieved 11th October 2013

https://developer.mozilla.org/en-US/docs/ Web /JavaScript/Guide/Regular/__Expressions

95

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global/_Objects/WeakMap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global/_Objects/WeakMap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular/_Expressions

One limitation is that Oboe currently only supports selections which are decidable at
the time that the candidate node is discovered. This forbids some seemingly simple
selections such as the last element of the array because when an element is found, without
looking ahead and possibly finding an array closing token we cannot know if our node is
the last element. Removing this restriction would require a fairly substantial rewrite
of the JSONPath engine. One strategy would be to take an event-driven approach to
the matching. At present matching is triggered by events but the tests themselves are
expressed synchronously. Under an event-driven matching implementation, instead of
returning a value, each JSONPath term evaluator would be given a callback to pass
the result to. Under most circumstances it should be able to decide if a match has
taken place at the time that it is called, handing the result immediately to the callback.
However, for cases where more of the document must be revealed before a match can be
decided the term evaluators would have the option of listening to the parse until further
document nodes are revealed, replying later when the necessary information is available.
While a wider selection vocabulary might be useful, such an expansion would make it
difficult to offer a predictable callback order and could cause confusion for application
developers. A language containing only selectors which may be evaluated against nodes
as they are detected is powerful enough to handle most cases. Until a strong need is
demonstrated the selector language will be kept in its current form.

4.8 Differences in the working of programs that can be easily
written using Oboe.js

Because of assumptions implicit in either technique, a program written using Oboe.js
will perform subtly different actions from one written using more conventional libraries,
even if the programmer means to express the same thing. Consider the two examples
below in which Node.js is used to read a local JSON file and write to the console.

oboe(fs.createReadStream("/home/me/secretPlans.json"))
.on("node", {
"schemes.*": function(scheme){

console.log("Aha!", scheme);
1,
"plottings.*": function(deviousPlot){
console.log("Hmmm!," deviousPlot);
}

D
.on("done", function(){
console.log("*twiddles moustachex");

i)

.on("fail", function(){

o6

console.log("Drat! Foiled again!");

1)

fs.readFile("/home/me/secretPlans. json", function(err, plansJson){
if(err) {
console.log("Drat! Foiled again!");
return;
+

var plans = JSON.parse(err, plansJson);

plans.schemes.forEach(function(scheme){
console.log("Aha!", scheme);

3

plans.plottings.forEach(function(deviousPlot){
console.log("Hmmm!", deviousPlot);

B

console.log("*twiddles moustachex*");

1)

While the behaviours intended by the programmer are similar, some accidental side-
behaviours differ between the two. It is likely that most programmers would not think
of these differences as they write so it is important that they are not destructive. In the
first example the order of the output for schemes and plans will match their order in
the JSON, whereas for the second scheming is always done before plotting. The error
behaviours are also different — the first prints until it has an error, the second prints if
there are no errors. In the second example it is almost mandatory to check for errors
before starting the output whereas in the first it feels most natural to register the error
listener at the end of the chained calls. It is unusual in describing a system’s desirable
behaviour to state the reaction to abnormal cases first so I find that the Oboe example
follows the more natural ordering.

Considering the code style that is encouraged, the first example takes a more declarative
form by specifying the items of interest using patterns whereas the second is more
imperative by explicitly looping through the items. If several levels of selection were
required, such as schemes.*.steps.*, other than a longer JSONPath pattern the first
example would not grow in complexity whereas the second would require nested looping.
The cyclic complexity of programming using Oboe would stay roughly constant whereas
using programmatic drill-down it increases linearly with the number of levels that must
be traversed.

27

5 Conclusion

5.1 Benchmarking vs non-progressive REST

I feel it is important to experimentally answer the question, is this way actually any
faster? To measure performance the Oboe repository contains a small benchmarking
suite that runs under Node.js. One of the advantages of incremental parsing suggested
in the introduction was a perceptual improvement in speed. The experiments do not
directly gauge user perception because it would require subjective judgement and human
participants, an undertaking large enough to be a project in itself. In lieu of perceptual
experiments the benchmarks measure the time taken to provide the first output. This
correlates with how quickly the first interface elements may be drawn and should be
a good proxy indicator of perceptual speed. Node is used to host the tests because it
is a minimalist platform and should give repeatable results whereas browsers may be
running any number of simultaneous background tasks and are less predictable. Node
also has the advantage that small changes in memory use are not overwhelmed by a
memory hungry environment.

The benchmark involves two node processes, one acting as a REST client and the other
as a REST server, mimicking a service backed by a relational database. Relational
database client libraries pass data from a result cursor one tuple at a time to be used by
the application, the service simulates this by writing out forty tuples as JSON objects,
one every ten milliseconds. Half the tuples contain a URL to a further resource which
will also be fetched so that an aggregation can be created. To simulate real network
conditions, Apple’s Network Line Conditioner was used with the presets 3G, Average
Case and Cable modem to represent poor and good internet connections respectively.
Three client versions were implemented using JSON.parse DOM-style parsing, Clarinet
SAX-style parsing and Oboe. Memory was measured on the client using Node’s built in
memory reporting tool, process.memoryusage () and the largest figure reported during
each run is taken. The test server and client can be found in the project’s benchmark
directory, or in the appendix on pages 9.1 and 9.2.

Client Strategy Network First output Total time Max. Memory

Oboe.js Good 40ms 804ms 6.2Mb
Oboe.js Poor 60ms 1,526ms 6.2Mb
JSON.parse Good 984ms 1,064ms 9,0Mb
JSON.parse Poor 2550ms 2,609ms 8.9Mb
Clarinet Good 34ms 781ms 5.5Mb
Clarinet Poor 52ms 1,510ms 5.5Mb

o8

In comparison with JSON.parse, Oboe shows a dramatic improvement of about 96%
regarding the time taken for the first output to be produced and a smaller but significant
improvement of about 40% in the total time required to create the aggregation. Oboe’s
aggregation on a good network is about 15% slower than Clarinet; since Oboe depends
on Clarinet for parsing it could not be faster but I had hoped for the gap to be smaller.

Clarinet is known to be slower than JSON.parse for input which is already held in
memory (Job 2012) but when reading from a stream this is more than offset by the
ability to parse progressively. Compared to JSON.parse, the extra computation time
needed by Oboe and Clarinet is shown to be relatively insignificant in comparison to the
advantage of better [/O management. Reacting earlier using slower handlers is shown
to be faster overall than reacting later with quicker ones. I feel that this vindicates a
project focus on efficient management of 1/O over faster algorithms.

Oboe shows an unexpected improvement in terms of memory usage compared to
JSON.parse. It is not clear why this would be but it may be attributable to the large
dependency tree brought in by the get-json (NPM 2013) library used in the JSON.parse
client version. As expected, Clarinet has the smallest memory usage because it never
stores a complete version of the parsed JSON. Clarinet’s memory usage remains roughly
constant as the parsed resource increases in size while the other two will rise linearly.
Node is popular on RaspberryPi type devices with constrained RAM and Clarinet
might be preferable to Oboe where code clarity is less important than a small memory
footprint.

5.2 Comparative developer ergonomics

Writing less code is not in itself a guarantee of a better developer ergonomics but it is a
good indicator so long as the program isn’t forced to be overly terse. The table below
reports the quantity of code required to implement the benchmark REST client under
each strategy. Each version is written in the most natural expression for the library
used.

Strategy Code Required (lines) Code required (chars)

Oboe.js 3 64
JSON.parse 5 102
Clarinet 30 lots!

Oboe was the shortest:

oboe(DB_URL) .node(’{id url}.url’, function(url){
oboe(url) .node(’name’, function(name)q{

29

console.log(name);
s
B

Non-progressive parsing with JSON.parse was slightly longer, requiring a loop and an if
statement, both necessary to drill down into the results. The code below is shortened
by using get-json package which combines parsing implicitly with the download:

getJson(DB_URL, function(err, records) {
records.data.forEach(function(record){
if(record.url) {
getJson(record.url, function(err, record) {
console.log(record.name) ;
B
+
b
b

This version is tightly coupled with the JSON format that it reads. We can see this
in the fragments records.data, record.url, and record.name which will only work
if they find the desired subtree at exactly the anticipated location. The code might
be said to contain a description of the format that it is for rather than a description
of what is required from the format. The Oboe version describes the format only so
far as is needed to identify the desired parts; the remainder of the JSON could change
and the code would continue to work. I believe this demonstrates a greater tolerance to
changing formats and that this would be useful when programming against evolving
services.

The Clarinet version of the code is too long to include here but may be seen in the
appendix, on page 128. By using SAX directly the code is more verbose and its purpose
is obfuscated. A person looking at this source would find it difficult to deduce what is
being done without considering it for some time. The functions receiving SAX events
must handle several different cases and so tend to have generic parameter names such as
‘key’ or ‘value’ which represent the token type. By contrast, Oboe and JSON.parse both
allow names such as ‘record’ or ‘url’ which are chosen according to the semantics of the
value. This naming aids understandability because it allows the programmer to think in
terms of the domain model rather than working on the level of serialisation artifacts.

60

5.3 Performance under various Javascript engines

The file oboe.performance.spec.js'’ contains a benchmark which concentrates on
measuring the performance of Oboe’s pattern matching. This test registers a complex
pattern which intentionally uses all features from the JSONPath language and then
fetches a JSON file containing approximately 800 nodes, 100 of which will match.
Although actual HTTP is used, it is over an unthrottled connection to localhost so
network delay should be negligible. The tests were executed on a relatively low-powered
Macbook Air laptop running OS X 10.7.5, except for Chrome Mobile which was tested
on an iPhone 5 with iOS 7.0.2. Test cases requiring Microsoft Windows were performed
inside a VirtualBox virtual machine. Curl is a simple download tool that writes the
resource to stdout without any parsing and is included as a baseline.

Platform Total Time Throughput (nodes/ms)
Curl 42ms unparsed, n/a
Chrome 31.0.1650.34 84ms 9.57
Node.js v0.10.1 172ms 4.67
Chrome 30.0.1599 202ms 3.98
Safari 6.0.5 231ms 3.48
IE 10.0.0 (Windows 8) 349ms 2.30
Chrome Mobile iOS 30.0.1599 431ms 1.86
Firefox 24.0.0 54 7Tms 1.47
IE 8.0.0 (Windows XP) 3,048ms 0.26

Table 3: time taken to match approximately 800 JSON
nodes against a complex JSONPath expression under
several Javascript engines

From table 3 we can see that Firefox executes the library more slowly than other
modern desktop browsers. This is probably explicable by SpiderMonkey, the Mozilla
just-in-time Javascript compiler being poor at optimising functional Javascript (Guo
2013). The JSON nodes are not of a common type so many of the library’s internal
callsites are not monomorphic which is also optimised poorly (Guo 2013). When the test
was later repeated with a simpler pattern Firefox showed by far the largest improvement,
indicating that the functional JSONPath matching accounts for Firefox’s lower than
expected performance.

10Tn git repository, test/specs/oboe.performance.spec.js

61

https://github.com/jimhigson/oboe.js/blob/master/test/specs/oboe.performance.spec.js

Version 31 of Chrome for OSX was released during the project and due to an updated
version of the v8 Javascript engine performs more than twice as quickly as version
30. This reflects Javascript engine writers targeting functional optimisation now that
functional Javascript is becoming a more popular style. Node and Chrome for iOS also
use v8 and should catch up when they are next updated.

Of these results I find only the performance under old versions of Internet Explorer poor
enough to be concerning. An improvement over the traditional model was known not
to be possible since this platform forbids progressively interpreting the XHR response
but I did not expect the performance to degrade by so much. Adding three seconds to
a REST call will unacceptably impair the user experience of a webapp so it might be
reasonable to conclude that for complex use cases Oboe is currently unsuited to legacy
platforms. If we desired to improve performance on older platforms one solution might
be to create a simpler, non-progressive implementation of the Oboe API for selective
delivery to older browsers. However, I would argue that the time spent writing a basic
legacy version would be better employed waiting for these moribund platforms to die.

For an imperative language coded in a functional style the compiler may not optimise
as effectively as if a functional language were used. This is especially the case for
a highly dynamic language in which everything, even the basic built-in types, are
mutable. Presenting a convenient API to application developers means passing eagerly
evaluated parameters to application callbacks even when the parameters are of secondary
importance, such as the path and ancestor arrays that are created for every matching
node, and will be predominantly ignored. Under a functional language these could be
lazily evaluated without requiring any special effort by the application programmer. The
choice of Javascript gives a very large number of client- and server-side applications that
may potentially adopt the library. However, server-side Oboe would be very amicable
to implementation using a purer functional language and it would be interesting to see
how much faster it could be.

5.4 Status as a micro-library

The file oboe-browser.min. js is the minified, built version of Oboe ready to be sent
to web browsers and can be found in the project’s dist directory. The size fluctuates as
commits are made but after gzip it comes to about 4800 bytes; close to but comfortably
under the 5120 byte limit. At roughly the size of a small image the download footprint
of Oboe should not discourage adoption.

62

5.5 Potential future work

Although all network traffic can be viewed as a stream, the most obvious future expansion
would be to create a matching server-side component that provides an intuitive interface
for writing JSON streams. So far, sending streaming JSON has required that the
resource be written out using programmer-assembled strings but this approach is error
prone and would scale badly as messages become more complex. A server-side library for
stream writing would allow Oboe to be used as a REST-compatible streaming solution
for situations which currently employ push tables or Websockets. This would provide
a form of REST streaming that operates according to the principled design of HT'TP
rather than by sidestepping it.

Although JSON is particularly well suited, there is nothing about Oboe that precludes
working with other tree-shaped formats. If there is demand, an XML/XPATH version
seems like an obvious expansion. This could be implemented by allowing resource
formats to be added using plugins which would allow programmers to create a progressive
interpretation of any resource type. As a minimum, a plug-in would require a SAX-like
parser and a DSL for node selection.

Oboe stores all parsed nodes for the duration of its lifetime so despite being similar to
a SAX parser in terms of being progressive, it consumes as much memory as a DOM
parser. The nodes remain held so that all possible JSONPath expressions may later be
tested. However, in most cases memory could be freed if the parsed content were stored
only so far as is required to test against the patterns which have actually been registered.
For selectors which match near the root this would allow large subtrees to be pruned,
particularly after the patterns have matched and the nodes have already been handed
back to the application. Likewise, the current implementation takes a rather brute
force approach when examining nodes for pattern matches by checking every registered
JSONPath expression against every node parsed from the JSON. For many expressions
we should be able to say that there will be no matches inside a particular JSON subtree,
either because we have already matched or because the subtree’s ancestors invariably
imply failure. A more sophisticated implementation might subdue provably unsatisfiable
handlers until the SAX parser leaves an unmatchable subtree.

5.6 Summing up

The community reaction to Oboe has been overwhelmingly positive with several projects
already adopting it and reporting performance gains which are large enough to be
obvious. While some attention may be required for optimisation under Firefox, this
project meets all of its intended aims, presenting a REST client library which in the
best case allows the network to be used much more efficiently and in the worse case is
very close to the previous best solution, at least when used with capable platforms. At
the same time the produced solution requires less code, is less tightly coupled to JSON

63

format specifics, and with a declarative style, I believe is easier to use than the previous
simplest solution.

64

6 Bibliography

Ahuvia, Yogev. 2013. “Design Patterns: Infinite Scrolling: Let’s Get To The Bot-
tom Of This Http://uxdesign.smashingmagazine.com/2013/05/03/infinite-scrolling-get-
bottom/.” Smashing Magazine.

Alman, Ben. 2012. “Grunt: The Javascript Task Runner.” http://gruntjs.com/.
Ashkenas, Jeremy. 2008. “Underscore.js: Memoize.” http://underscorejs.org/#memoize.
Bazon, Mihai. 2010. “UglifyJs.” https://github.com/mishoo/UglifyJS.

Bray, Tim, Jean Paoli, C M Sperberg-McQueen, Eve Maler, and Frangois Yergeau. 2008.
“Extensible Markup Language (XML) 1.0 (Fifth Edition).” http://www.w3.org/TR/
REC-xml/#sec-starttags.

Browserling Inc. 2012. “Browserify Website.” http://browserify.org/.
Burke, James. 2011. “Require.js.” http://requirejs.org/.

Conway, Mel. 2004. Humanizing Application Building: An Anthropological Perspective.
http://melconway.com/Home/pdf/humanize.pdf.

Cragg, Duncan. 2006. “Duncan Cragg on Declarative Architectures: STREST
(Service-Trampled REST) Will Break Web 2.0.” http://duncan-cragg.org/blog/post/
strest-service-trampled-rest-will-break-web-20/.

Douglas, Crockford. 2009. “JSON: The Fat-free Alternative to XML.” http://json.org.

Eberhart, Andreas, and Stefan Fischer. 2002. Java Tools: Using XML, EJB, CORBA,
Servlets and SOAP.

ECMA. 1999. “ECMAScript Language Specification 3rd Edition.” http:
//www.ecma-international.org/publications/files/ ECMA-ST-ARCH/ECMA-262,
%203rd%20edition, %20December%201999.pdf.

Etemad, Elika J, and Tab Atkins. 2013. “Selectors Level 4.” http://dev.w3.org/csswg/
selectorsd /.

Fielding, R. 2000. “Principled Design of the Modern Web Architecture.”

Fielding, R, J Gettys, J Mogul, H Frystyk, et al. 1999. “Hypertext Transfer Proto-
col -- HTTP/1.1: Header Field Definitions.” http://www.w3.org/Protocols/rfc2616/
rfc2616-sec14.html#sec14.5.

Gamma, FErich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software.

Geelhoed, Erik, Peter Toft, Suzanne Roberts, and Patrick Hyland. 1995. “To Influence
Time Perception.” Hewlett Packard Labs. http://www.sigchi.org/chi95/proceedings/
shortppr/egd_ bdy.htm.

Gill, Brendan. 2013. “OpenSignal.”

65

http://gruntjs.com/
http://underscorejs.org/#memoize
https://github.com/mishoo/UglifyJS
http://www.w3.org/TR/REC-xml/#sec-starttags
http://www.w3.org/TR/REC-xml/#sec-starttags
http://browserify.org/
http://requirejs.org/
http://melconway.com/Home/pdf/humanize.pdf
http://duncan-cragg.org/blog/post/strest-service-trampled-rest-will-break-web-20/
http://duncan-cragg.org/blog/post/strest-service-trampled-rest-will-break-web-20/
http://json.org
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://dev.w3.org/csswg/selectors4/
http://dev.w3.org/csswg/selectors4/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.5
http://www.sigchi.org/chi95/proceedings/shortppr/egd_bdy.htm
http://www.sigchi.org/chi95/proceedings/shortppr/egd_bdy.htm

Goessner, Stefan. 2007. “JSONPath - XPath for JSON.” http://goessner.net/articles/
JsonPath/.

2

Google. 2009. “Google Closure Compiler.” https://developers.google.com/closure/

compiler/.

Gudgin, Martin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk
Nielsen, Anish Karmarkar, and Yves Lafon. 2007. “SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition).” http://www.w3.org/TR/soapl2-partl/.

Guo, shu-yu. 2013. “Two Reasons Functional Style Is Slow in SpiderMonkey.” http://rfrn.
org//~shu/2013/03/20/two-reasons-functional-style-is-slow-in-spidermonkey.html.

Harmony. 2013. “Draft Specification for ES.next (Ecma-262 Edition 6).” http://wiki.
ecmascript.org/doku.php?id=harmony:specification_drafts.

Hunt, Andrew, and David Thomas. 1999. The Pragmatic Programmer: From Journey-
man to Master. Addison-Wesley Professional.

Job, Nuno. 2011. “Clarinet - SAX Based Evented Streaming JSON Parser in JavaScript.”
https://github.com/dscape/clarinet.

2012. “Clarinet - SAX Based Evented Streaming JSON Parser in
JavaScript for the Browser and Nodejs.” http://writings.nunojob.com/2011/12/
clarinet-sax-based-evented-streaming-json-parser-in-javascript-for-the-browser-and-nodejs.
html.

Lea, Tom. 2012. “Improving Performance on Twitter.com.” {[}https://blog.twitter.
com,/2012/improving-performance-twittercom{] }.

Lieberherr, Karl J, Ignacio Silva-Lepe, and Xiao Cun. 1994. “Adaptive Ob Ject-Oriented
Programming Using Graph-Based Customization.” http://www.csg.ci.i.u-tokyo.ac.jp/
old-pages/muga/paper/others/gpce gese/ap graf.pdf.

Martelli, Alex. 2000. “Discussion of Typing in Python Language, 2000.” https://groups.
google.com /forum/?hl=en/#!msg/comp.lang.python/CCs20Jdyuzc/NYjlabHKMOIJ.

Martin, Robert “Uncle Bob”. 2008. Clean Code: A Handbook of Agile Software
Craftsmanship.

Mellroy, Doug. 1978. “Basics of the Unix Philosophy.” http://www.fags.org/docs/artu/
ch01s06.html.

McLuhan, Marshall. 1964. Understanding Media: The Eztensions of Man.

Microsoft. 2013. “LINQ (Language-Integrated Query).” http://msdn.microsoft.com/
en-us/library /vstudio/bb397926.aspx.

Netty. 2010. “Netty Project.” http://netty.io/.
NPM. 2013. “Get JSON.” https://npmjs.org/package/get-json.

66

http://goessner.net/articles/JsonPath/
http://goessner.net/articles/JsonPath/
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
http://www.w3.org/TR/soap12-part1/
http://rfrn.org//~shu/2013/03/20/two-reasons-functional-style-is-slow-in-spidermonkey.html
http://rfrn.org//~shu/2013/03/20/two-reasons-functional-style-is-slow-in-spidermonkey.html
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://github.com/dscape/clarinet
http://writings.nunojob.com/2011/12/clarinet-sax-based-evented-streaming-json-parser-in-javascript-for-the-browser-and-nodejs.html
http://writings.nunojob.com/2011/12/clarinet-sax-based-evented-streaming-json-parser-in-javascript-for-the-browser-and-nodejs.html
http://writings.nunojob.com/2011/12/clarinet-sax-based-evented-streaming-json-parser-in-javascript-for-the-browser-and-nodejs.html
{[}https://blog.twitter.com/2012/improving-performance-twittercom{]}
{[}https://blog.twitter.com/2012/improving-performance-twittercom{]}
http://www.csg.ci.i.u-tokyo.ac.jp/old-pages/muga/paper/others/gpce_gcse/ap_graf.pdf
http://www.csg.ci.i.u-tokyo.ac.jp/old-pages/muga/paper/others/gpce_gcse/ap_graf.pdf
https://groups.google.com/forum/?hl=en/#!msg/comp.lang.python/CCs2oJdyuzc/NYjla5HKMOIJ
https://groups.google.com/forum/?hl=en/#!msg/comp.lang.python/CCs2oJdyuzc/NYjla5HKMOIJ
http://www.faqs.org/docs/artu/ch01s06.html
http://www.faqs.org/docs/artu/ch01s06.html
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://netty.io/
https://npmjs.org/package/get-json

Ogden, Max. 2012. “Streaming XHR.” http://maxogden.com/a-proposal-for-streaming-xhr.
html.

Reis, Eric. 2011. The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Business Publishing.

Ryan, Dahl. 2009. “Node.js.” http://nodejs.org/.

Schneier, Bruce. 2000. “Crypto-Gram Newsletter.” https://www.schneier.com/
crypto-gram-0003.html#8.

Schneier, Bruce, and Sam Harris. 2013. “To Profile or Not to Profile? - a De-
bate Between Sam Harris and Bruce Schneier.” http://www.samharris.org/blog/item/
to-profile-or-not-to-profile.

Stefanov, Stoyan. 2009. “Progressive Rendering via Multiple Flushes.” http://www.
phpied.com /progressive-rendering-via-multiple-flushes/.

Travis CI GmbH. 2013. “Travis Continuous Integration.” http://travis-ci.org.

van Kesteren, Anne. 2012. “XMLHttpRequest Level 2 Working Draft.” http://www.w3.
org/TR/XMLHttpRequest2/#make-progress-notifications.

van Kesteren, Anne, and Dean Jackson. 2006. “The XMLHttpRequest Object.” http:
//www.w3.org/TR /2006 /WD-XMLHttpRequest-20060405/.

Whorf, B. L. 1956. “Language, Thought and Reality (Ed. J. B. Carroll).” Cambridge,
MA: MIT Press.

Yukihiro, Matsumoto. 2003. “The Power and Philosophy of Ruby.” http://www.rubyist.
net /~matz/slides/oscon2003/index.html.

67

http://maxogden.com/a-proposal-for-streaming-xhr.html
http://maxogden.com/a-proposal-for-streaming-xhr.html
http://nodejs.org/
https://www.schneier.com/crypto-gram-0003.html#8
https://www.schneier.com/crypto-gram-0003.html#8
http://www.samharris.org/blog/item/to-profile-or-not-to-profile
http://www.samharris.org/blog/item/to-profile-or-not-to-profile
http://www.phpied.com/progressive-rendering-via-multiple-flushes/
http://www.phpied.com/progressive-rendering-via-multiple-flushes/
http://travis-ci.org
http://www.w3.org/TR/XMLHttpRequest2/#make-progress-notifications
http://www.w3.org/TR/XMLHttpRequest2/#make-progress-notifications
http://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/
http://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/
http://www.rubyist.net/~matz/slides/oscon2003/index.html
http://www.rubyist.net/~matz/slides/oscon2003/index.html

7 Appendix i: Limits to number of simultaneous
connections under various HTTP clients

connection limit per

HTTP Client server

Firefox 6

Internet Explorer 4

Chrome / 32 sockets per proxy, 6

Chromium sockets per destination
host, 256 sockets per
process

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
http://msdn.microsoft.com/de-de/magazine/ee330731.aspx#httpl1__max_ con

http://dev.chromium.org/developers/design-documents /network-stack#TOC-
Connection-Management

68

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
http://msdn.microsoft.com/de-de/magazine/ee330731.aspx
http://dev.chromium.org/developers/design-documents/network-stack

8 Appendix ii: Oboe.js source code listing

8.1 ascent.js

VLT
* Get a new key->node mapping
*
* Q@param {String|Number} key
* @param {0bject|Array|String|Number|null} node a walue found in the json
*/
function namedNode(key, node) {
return {key:key, node:node};

3

/** get the key of a namedNode */
var keyOf = attr(’key’);

/** get the node from a namedNode */
var nodeOf = attr(’node’);

69

8.2 clarinetListener Adaptor.js
J k¥
* A bridge used to assign stateless functions to listen to clarinet.

As well as the parameter from clarinet, each callback will also be passed
the result of the last callback.

This may also be used to clear all listeners by assigning zero handlers:

¥ % %X X %X * *

clarinetListenerddaptor(clarinet, {})
*/

function clarinetListenerAdaptor(clarinetParser, handlers){
var state;
clarinet.EVENTS.forEach(function(eventName){
var handlerFunction = handlers[eventName] ;
clarinetParser[’on’+eventName] = handlerFunction &&
function(param) {
state = handlerFunction(state, param);

};
P

70

8.3 events.js

J k¥

* This file declares some constants to use as names for event types.
*/
var // the events which are never ezported are kept as
// the smallest possible representation, in numbers:

S =1,

// fired whenever a mode is found in the JSON:

NODE_FOUND = _S++,

// fired whenever a path ts found in the JSON:
PATH FOUND = _S++,

FAIL_EVENT = ’fail’,

ROOT_FOUND = S++,

HTTP_START = ’start’,

STREAM_DATA = ’content’,

STREAM END = _S++,

ABORTING = _S++;

function errorReport(statusCode, body, error) {
try{
var jsonBody = JSON.parse(body) ;
}catch(e){}

return {
statusCode:statusCode,
body:body,
jsonBody: jsonBody,
thrown:error

};

71

8.4 functional.js

J k¥
Jk*
* Partially complete a function.
*
* Eg:
* var add3 = partialComplete(function add(a,b){return a+b}, 3);
*
* add3(4) // gives 7
*
*
* function wrap(left, right, cen){return left + " " + cen + " " + right;}
*
* var pirateGreeting = partialComplete(wrap , "I’m", ", a mighty pirate!");
*
* pirateGreeting ("Guybrush Threepwood");
* // gives "I’m Guybrush Threepwood, a mighty pirate!"
*/

var partialComplete = varArgs(function(fn, args) {
// this isn’t the shortest way to write this but it does
// avoid creating a new array each time to pass to fn.apply,
// otherwise could just call boundArgs.concat(callArgs)
var numBoundArgs = args.length;
return varArgs(function(callArgs) {
for (var i = 0; i < callArgs.length; i++) {
args [numBoundArgs + i] = callArgs[i];
args.length = numBoundArgs + callArgs.length;
return fn.apply(this, args);
3
b,
J k¥

* Compose zero or more functions:
*

* compose(f1, f2, f3)(z) = f1(f2(f3(z))))

72

The last (inner-most) function may take more than one parameter:

¥ % % %

compose(f1, f2, f3)(xz,y) = f1(f2(f3(x,y))))
*/
compose = varArgs(function(fns) {
// TODO: can this be written using foldrl and compose2?

var fnsList = arrayAsList(fns);

function next(params, curFn) {
return [apply(params, curFn)];

}
return varArgs(function(startParams){

return foldR(next, startParams, fnsList) [0];
b;
b;

J/*x
* A more optimised version of compose that takes exactly two functions
* Qparam f1
* Q@param f2
*/
function compose2(f1, £2){
return function(){
return f1.call(this,f2.apply(this,arguments));

function attr(key) {
return new Function(’o’, ’return o["’ + key + "]’);

3

VAT
* Call a list of functions with the same args until one returns a
* truthy result. Similar to the [/ operator.
*
* So:
* lazyUnion([f1,f2,f3 ... fnl)(pl1, p2 ... pn)

*

73

* Is equivalent to:

* apply([pl, p2 ... pnl, f1) [/

* apply([p1, p2 ... pnl, f2) [/

* apply([p1, p2 ... pnl, f3) ... apply(fn, [pl, p2 ... pnl)
*

*

Q@returns the first return wvalue that is given that is truthy.
*/

lazyUnion = varArgs(function(fns) {
return varArgs(function(params){
var maybeValue;
for (var i = 0; i < len(fns); i++) {
maybeValue = apply(params, fns[i]);

if (maybeValue) {
return maybeValue;
+
}
3
1)

VLT
* This file declares wvarious pieces of functional programming.
*
* This tsn’t a general purpose functional library, to keep things small <t

* has just the parts useful for Oboe.js.
*/

VLT
Call a single function with the given arguments array.

Basically, a functional-style version of the 0O0-style Function#apply for
when we don’t care about the context (’this’) of the call.

* % %X % %

The order of arguments allows partial completion of the arguments array
*/

function apply(args, fn) {

return fn.apply(undefined, args);

3

74

VLT

¥ % X X X X X X X X X X X ¥ X * X * X *

Define wariable argument functions but cut out all that tedious messing about
with the arquments object. Delivers the wvariable-length part of the arguments
list as an array.

Eg:
var myFunction = wvarArgs(

function(fizedArgqument, otherFizedArgument, wvariableNumberOfArguments){
console.log(variableNumberOfArguments);

}

myFunction(’a’, ’b’, 1, 2, 3); // logs [1,2,3]

var myOtherFunction = vardrgs(function(variableNumberOfArquments){
console.log(variableNumberOfArguments);

F

myFunction(1, 2, 3); // logs [1,2,3]

*/

function varArgs(fn){

var numberOfFixedArguments = fn.length -1,
slice = Array.prototype.slice;

if (numberOfFixedArguments == 0) {
// an optimised case for when there are no fized args:
return function(){
return fn.call(this, slice.call(arguments));
} else if(numberOfFixedArguments == 1) {

// an optimised case for when there are is one fized args:

return function(){
return fn.call(this, arguments[0], slice.call(arguments, 1));

75

// general case

// we know how many arguments fn will always take. Create a
// fized-size array to hold that many, to be re-used on

// every call to the returned function

var argsHolder = Array(fn.length);

return function(){

for (var i = 0; i < numberOfFixedArguments; i++) {
argsHolder[i] = arguments[i];

argsHolder [numberOfFixedArguments] =
slice.call(arguments, numberOfFixedArguments);

return fn.apply(this, argsHolder);

/*x
* Swap the order of parameters to a binary funciion
*
* A bit like this flip: http://zvon.org/other/haskell/Outputprelude/flip_f.html
*/
function flip(fn){
return function(a, b){
return fn(b,a);

X
X
J k¥
* Create a function which is the intersection of two other functions.
*
* Like the &9 operator, if the first is truthy, the second is mnever called,

* otherwise the return wvalue from the second is returned.
*/

function lazyIntersection(fnl, fn2) {

return function (param) {

76

return fnl(param) && fn2(param);

};

VLT
* A function which does nothing
*/

function noop(){}

function always(){return true}
function functor(val){

return function(){
return val;

7

8.5 incrementalContentBuilder.js

J k¥

This file provides wvartous listeners which can be used to build up

a changing ascent based on the callbacks provided by Clarinet. It listens
to the low-level events from Clarinet and emits higher—level ones.

The building up is stateless so to track a JSON file
clarinetListenerAddaptor. js is required to store the ascent state
between calls.

* % X X %X % %

VLT
* A special wvalue to use in the path list to represent the path ’to’ a root
* object (which doesn’t really have any path). This prevents the need for
* special-casing detection of the root object and allows it to be treated
* like any other object. We might think of this as being similar to the
* ’unnamed root’ domain ".", eg if I go to
* http://en.wikipedia.org./wiki/En/Main_page the dot after ’org’ deliminates
* the unnamed rToot of the DNS.
*
*
*
*

This is kept as an object to take advantage that in Javascript’s 00 objects
are guaranteed to be distinct, therefore no other object can possibly clash
with this ome. Strings, numbers etc provide no such guarantee.
*x/
var ROOT_PATH = {};

VLS
* Create a new set of handlers for clarinet’s events, bound to the emit
* function given.
*/

function incrementalContentBuilder(oboeBus) {

var emitNodeFound = oboeBus(NODE_FQOUND) .emit,
emitRootFound = oboeBus(ROOT_FOUND) .emit,
emitPathFound = oboeBus(PATH_FOUND) .emit;

function arrayIndicesAreKeys(possiblyInconsistentAscent, newDeepestNode) {

/* for wvalues in arrays we aren’t pre-warned of the coming paths

78

(Clarinet gives mo call to onkey like it does for values in objects)
so 1f we are in an array we need to create this path ourselves. The
key will be len(parentNode) because array keys are always sequential

numbers. */

var parentNode = node0f(head(possiblyInconsistentAscent));

return is0fType(Array, parentNode)
?
pathFound(possiblyInconsistentAscent,
len(parentNode),
newDeepestNode

// mothing needed, return unchanged
possiblyInconsistentAscent

function nodeFound(ascent, newDeepestNode) {
if(lascent) {
// we discovered the root node,

emitRootFound(newDeepestNode) ;

return pathFound(ascent, ROOT_PATH, newDeepestNode) ;

// we discovered a mon-root mode

arrayIndicesAreKeys(ascent, newDeepestNode),
tail(arrayConsistentAscent),
key0f (head(arrayConsistentAscent));

var arrayConsistentAscent
ancestorBranches
previouslyUnmappedName

appendBuiltContent (
ancestorBranches,
previouslyUnmappedName,
newDeepestNode

)

return cons(
namedNode (previouslyUnmappedName, newDeepestNode),

ancestorBranches

79

VAT
* Add a mew wvalue to the object we are building up to represent the
* parsed JSON
*/

function appendBuiltContent(ancestorBranches, key, node){

nodeOf (head(ancestorBranches)) [key] = node;

VLT
* For when we find a new key in the json.
*

* @param {String|Number|Object} newDeepestName the key. If we are in an

* array witll be a number, otherwise a string. May take the special

* value ROOT_PATH <f the root mode has just been found

*

* Qparam {String|Number|Object|Array|Null|undefined} [maybeNewDeepestNode]
* usually this won’t be known so can be undefined. Can’t use null

* to represent unknown because null is a wvalid value in JSON

*%/

function pathFound(ascent, newDeepestName, maybeNewDeepestNode) {
if(ascent) { // if not root
// If we have the key but (unless adding to an array) no known value

// yet. Put that key in the output but against no defined value:
appendBuiltContent (ascent, newDeepestName, maybeNewDeepestNode) ;

var ascentWithNewPath = cons(
namedNode (newDeepestName,
maybeNewDeepestNode) ,
ascent

);
emitPathFound(ascentWithNewPath);

return ascentWithNewPath;

80

VAT
* For when the current node ends
*/

function nodeFinished(ascent) {
emitNodeFound(ascent);

// pop the complete node and its path off the list:
return tail(ascent);

return {
openobject : function (ascent, firstKey) {
var ascentAfterNodeFound = nodeFound(ascent, {});

/* It is a perculiarity of Clarinet that for non-empty objects it
gives the first key with the openobject event instead of
in a subsequent key event.

firstKey could be the empty string in a JSON object like
{’’:’foo’} which is technically wvalid.

So can’t check with !firstKey, have to see if has any

defined value. */
return defined(firstKey)
?

/* We know the first key of the newly parsed object. Notify that
path has been found but don’t put firstKey permanently onto
pathList yet because we haven’t identified what ts at that key
yet. Give null as the value because we haven’t seen that far
into the json yet */

pathFound(ascentAfterNodeFound, firstKey)

ascentAfterNodeFound

I

openarray: function (ascent) {

81

return nodeFound(ascent, [1);

},

// called by Clarinet when keys are found in objects
key: pathFound,

/* Emitted by Clarinet when primitive values are found, te Strings,
Numbers, and null.
Because these are always leaves in the JSON, we find and finish the
node in one step, expressed as functional composition: */

value: compose2(nodeFinished, nodeFound),

// we make mo distinction in how we handle object and arrays closing.
// For both, interpret as the end of the current node.

closeobject: nodeFinished,

closearray: nodeFinished

82

8.6 instanceApi.js

J k¥
* The instance API is the thing that is returned when oboe() is called.
* 2t allows:
*
* - listeners for warious events to be added and removed
* - the http response header/headers to be read
*/

function instanceApi(oboeBus){

var oboeApi,
fullyQualifiedNamePattern = /~ (node|path):./,
rootNodeFinishedEvent = oboeBus(’node:!’),

Jkk

* Add any kind of listener that the instance apt exposes
*/

addListener = varArgs(function(eventId, parameters){

if (oboeApileventId]) {

// for events added as .on(event, callback), tf there is a
// .event() equivalent with special behaviour , pass through

// to that:
apply(parameters, oboeApi[eventId]);
} else {

// we have a standard Node.js EventEmitter 2-argument call.

// The first parameter is the listener.
var event = oboeBus(eventId),
listener = parameters[0];

if (fullyQualifiedNamePattern.test(eventId)) {

// allow fully-qualified node/path listeners
// to be added
addForgettableCallback(event, listener);

} else {

// the event has no special handling, pass through

// directly onto the event bus:
event.on(listener);

83

b
return oboeApi; // chaining
b,
VEL
* Remove any kind of listener that the instance apt exposes
*/

removelListener = function(eventId, p2, p3){
if(eventId == ’done’) {
rootNodeFinishedEvent.un(p2);
} else if(eventId == ’node’ || eventId == ’path’) {

// allow removal of node and path
oboeBus.un(eventId + ’:’ + p2, p3);
} else {

// we have a standard Node.js EventEmitter 2-argument call.

// The second parameter is the listener. This may be a call
// to remove a fully-qualified node/path listener but requires
// mo special handling

var listener = p2;

oboeBus (eventId) .un(listener);

+
return oboeApi; // chaining
I
VLS
* Add a callback, wrapped in a try/catch so as to not break the
* execution of Oboe if an exception ts thrown (fail events are
* fired instead)
*
* The callback is used as the listener td so that it can later be
* removed using .un(callback)

*/
function addProtectedCallback(eventName, callback) {
oboeBus (eventName) . on(protectedCallback(callback), callback);

84

return oboeApi; // chaining

J**
* Add a callback where, if .forget() is called during the callback’s
* execution, the callback will be de-registered
*/
function addForgettableCallback(event, callback) {
var safeCallback = protectedCallback(callback);

event.on(function() {
var discard = false;
oboeApi.forget = function(){
discard = true;
s
apply(arguments, safeCallback);
delete oboeApi.forget;
if(discard) {
event.un(callback) ;
}
}, callback)
return oboeApi; // chaining
function protectedCallback(callback) {
return function() {
try{
callback.apply(oboeApi, arguments);
Ycatch(e) A

// An error occured during the callback, publish it on the event bus
oboeBus (FAIL_EVENT) .emit(errorReport(undefined, undefined, e));

VLT

85

* Return the fully qualified event for when a pattern matches
* either a node or a path
*
* Qparam type {String} either ’node’ or ’path’
*/
function fullyQualifiedPatternMatchEvent(type, pattern) {
return oboeBus(type + ’:’ + pattern);

by

VLT
* Add several listeners at a time, from a map
*/

function addListenersMap(eventId, listenerMap) {

for(var pattern in listenerMap) {
addForgettableCallback(
fullyQualifiedPatternMatchEvent (eventId, pattern),

listenerMap [pattern]
);
}
}
J k¥
* implementation behind .onPath() and .onNode()
*/

function addNodeOrPathListenerApi(eventId, jsonPathOrListenerMap, callback){

if (isString(jsonPathOrListenerMap)) {
addForgettableCallback(
fullyQualifiedPatternMatchEvent (eventId, jsonPathOrListenerMap),
callback
)
} else {
addListenersMap(eventId, jsonPathOrListenerMap);

return oboeApi; // chaining

// some interface methods are only filled in after we recieve
// values and are moops before that:
oboeBus (ROOT_FOUND) .on(function(root) {

86

oboeApi.root = functor(root);

19N

VLTS
* When content starts make the headers readable through the
* gnstance API
*/

oboeBus (HTTP_START) .on(function(_statusCode, headers) {

oboeApi.header = function(name) {
return name ? headers[name]
: headers

IR

/*x
* Construct and return the public API of the Oboe instance to be
* returned to the calling application

*/

return oboeApi = {
on : addListener,
addListener : addListener,
removelListener : removelListener,
emit : oboeBus.emit,
node : partialComplete(addNodeOrPathListenerApi, ’node’),
path : partialComplete(addNodeOrPathListenerApi, ’path’),
done : partialComplete(addForgettableCallback, rootNodeFinishedEvent),
start : partialComplete(addProtectedCallback, HTTP_START),

// fail doesn’t use protectedCallback because
// could lead to mon-terminating loops
fail : oboeBus(FAIL_EVENT) .on,

// public apti calling abort fires the ABORTING event
abort : oboeBus (ABORTING) .emit,

// initially return nothing for header and Toot

header : noop,
root . noop

87

88

8.7 instanceController.js

J k¥
* This file implements a light-touch central controller for an instance
* of Oboe which provides the methods used for interacting with the instance
* from the calling app.
*/

function instanceController(oboeBus,
clarinetParser, contentBuilderHandlers) {

oboeBus (STREAM DATA) .on(clarinetParser.write.bind(clarinetParser));

/* At the end of the http content close the clarinet parser.

This will provide an error <f the total content provided was not

valid json, ie if not all arrays, objects and Strings closed properly */
oboeBus (STREAM _END) .on(clarinetParser.close.bind(clarinetParser));

/* If we abort this Oboe’s request stop listening to the clarinet parser.
This prevents more tokens being found after we abort in the case where
we aborted during processing of an already filled buffer. */

oboeBus (ABORTING) .on(function() {
clarinetListenerAdaptor(clarinetParser, {});

b;
clarinetListenerAdaptor(clarinetParser, contentBuilderHandlers);

// react to errors by putting them on the event bus
clarinetParser.onerror = function(e) {
oboeBus (FAIL_EVENT) .emit(
errorReport (undefined, undefined, e)

)

// note: don’t close clarinet here because if it was not expecting
// end of the json it will throw an error

};

89

8.8 jsonPath.js

N
*
*

The jsonPath evaluator compiler used for Oboe.js.

One function ts ezxzposed. This function takes a String JSONPath spec and
returns a function to test candidate ascents for matches.

String jsonPath -> (List ascent) -> Boolean/Object

This file s coded in a pure functional style. That <s, mno function has
side effects, every function evaluates to the same wvalue for the same

¥ % %X %X X %X ¥ % * *

arguments and no variables are reassigned.

*/
// the call to jsonPathSyntaxz injects the token syntazes that are needed
// inside the compiler
var jsonPathCompiler = jsonPathSyntax(function (pathNodeSyntax,
doubleDotSyntax,
dotSyntax,
bangSyntax,
emptySyntax) {

var CAPTURING_INDEX = 1;
var NAME INDEX = 2;
var FIELD_LIST_INDEX = 3;

var headKey = compose2(key0f, head),
headNode = compose2(node0f, head);

Jk*
* Create an evaluator function for a nmamed path node, expressed in the
* JSONPath like:

* foo

* [”ba,'r"’]
* [2]

*/

function nameClause(previousExpr, detection) {

var name = detection[NAME INDEX],

matchesName = (!name || name == ’*’)
? always
function(ascent){return headKey(ascent) == name};

90

return lazyIntersection(matchesName, previousExpr);

/*x
* Create an evaluator function for a a duck-typed node, expressed like:
*

* {spin, taste, colour}

* .particle{spin, taste, colourt
* *{spin, taste, colourt

*/

function duckTypeClause(previousExpr, detection) {
var fieldListStr = detection[FIELD LIST_INDEX];

if (!fieldListStr)
return previousExpr; // don’t wrap at all, return given expr as-is

var hasAllrequiredFields = partialComplete(
hasAllProperties,
arrayAsList(fieldListStr.split(/\W+/))
),

isMatch = compose2(
hasAllrequiredFields,
headNode
)

return lazyIntersection(isMatch, previousExpr);
/*x
* Expression for $, returns the evaluator function
*/

function capture(previousExpr, detection) {

// extract meaning from the detection
var capturing = !!detection[CAPTURING_INDEX];

if (!capturing)
return previousExpr; // don’t wrap at all, return given expr as-is

91

return lazyIntersection(previousExpr, head);

VLS
* Create an evaluator function that moves onto the next item on the
* lists. This function is the place where the logic to move up a
* level in the ascent exists.
*
* Eg, for JSONPath ".foo" we need skipl(nameClause(always, [,’foo’]))
*/

function skipl(previousExpr) {

if (previousExpr == always) {
/* If there is no previous expression this consume command
ts at the start of the jsonPath.
Since JSONPath specifies what we’d like to find but not
necessarily everything leading down to it, when running
out of JSONPath to check against we default to true */
return always;

/**% return true if the ascent we have contains only the JSON root,
* false otherwise
*/
function notAtRoot(ascent){
return headKey(ascent) != ROOT_PATH;

return lazyIntersection(
/* If we’re already at the root but there are more
expressions to satisfy, can’t consume any more. No match.

This check ts why none of the other exprs have to be able
to handle empty lists; skipl is the only evaluator that
moves onto the next token and it refuses to do so once <t
reaches the last item in the list. */

notAtRoot,

/* We are not at the root of the ascent yet.

Move to the next level of the ascent by handing only
the tatl to the previous expression */

92

compose2(previousExpr, tail)

/*x
* Create an evaluator function for the .. (double dot) token. Consumes
* zero or more levels of the ascent, the fewest that are required to find
* a match when given to previousEzpr.
*/

function skipMany(previousExpr) {

if (previousExpr == always) {
/* If there is no previous expresston this consume command
15 at the start of the jsonPath.
Since JSONPath specifies what we’d like to find but not
necessartly everything leading down to it, when running
out of JSONPath to check against we default to true */
return always;

var
// In JSONPath .. is equivalent to !.. so if .. reaches the root
// the match has succeeded. Ie, we might write ..foo or !..foo
// and both should match tdentically.
terminalCaseWhenArrivingAtRoot = rootExpr(),
terminalCaseWhenPreviousExpressionIsSatisfied = previousExpr,
recursiveCase = skipl(skipManyInner),

cases = lazyUnion(
terminalCaseWhenArrivingAtRoot
, terminalCaseWhenPreviousExpressionIsSatisfied
, recursiveCase

)
function skipManyInner(ascent) {
if(lascent) {

// have gome past the start, not a match:
return false;

return cases(ascent);

93

return skipManylInner;

VAT
* Generate an evaluator for ! - matches only the root element of the json
* and i1gnores any previous erpressions since nothing may precede !.
*/

function rootExpr() {

return function(ascent){
return headKey(ascent) == ROOT_PATH;
s

Generate a statement wrapper to sit around the outermost
clause evaluator.

Handles the case where the capturing is implicit because the JSONPath
did not contain a ’$’ by returning the last node.
*/

function statementExpr(lastClause) {
return function(ascent) {

// kick off the evaluation by passing through to the last clause
var exprMatch = lastClause(ascent);

return exprMatch === true 7 head(ascent) : exprMatch;

};

VET:
* For when a token has been found in the JSONPath input.
Compiles the parser for that token and returns in combination with the
parser already generated.

the token that was found
@param {Function} parserGeneratedSoFar the parser already found

*
*
*
* Qparam {Function} exzprs a list of the clause evaluator generators for
*
*
* Q@param {Array} detection the match given by the regex engine when

94

* the feature was found
*/

function expressionsReader(exprs, parserGeneratedSoFar, detection) {
// if exprs is zero-length foldR will pass back the
// parserGeneratedSoFar as-is so we don’t need to treat

// this as a special case

return foldR(
function(parserGeneratedSoFar, expr){

return expr(parserGeneratedSoFar, detection);

+,

parserGeneratedSoFar,

exprs

);
X
VLS

* If gsonPath matches the gtven detector function, creates a function which
* evaluates against every clause in the clauseEvaluatorGenerators. The
* created function is propagated to the onSuccess function, along with
* the remaining unparsed JSONPath substring.
*
* The intended use is to create a clauseMatcher by filling in
* the first two arguments, thus providing a function that knows
* some syntax to match and what kind of generator to create 1f <t
* finds it. The parameter list once completed 7s:
*
* (jsonPath, parserGeneratedSoFar, onSuccess)
*
* onSuccess may be compileJsonPathToFunction, to recursively continue
* parsing after finding a match or returnFoundParser to stop here.
*/

function generateClauseReaderIfTokenFound (
tokenDetector, clauseEvaluatorGenerators,
jsonPath, parserGeneratedSoFar, onSuccess) {

var detected = tokenDetector(jsonPath);

95

if (detected) {
var compiledParser = expressionsReader(
clauseEvaluatorGenerators,
parserGeneratedSoFar,
detected

),
remainingUnparsedJsonPath = jsonPath.substr(len(detected[0]));

return onSuccess(remainingUnparsedJsonPath, compiledParser);

J k¥
* Partially completes generateClauseReaderIfTokenFound above.
*/

function clauseMatcher(tokenDetector, exprs) {

return partialComplete(
generateClauseReaderIfTokenFound,
tokenDetector,
exprs

);

VAT

* clauseForJsonPath is a function which attempts to match against
several clause matchers in order until one matches. If nmon match the
jsonPath expression ts invalid and an error is thrown.

*
*
*
* The parameter list ts the same as a single clauseMatcher:
*
*

(jsonPath, parserGeneratedSoFar, onSuccess)
*/

var clauseForJsonPath = lazyUnion(
clauseMatcher (pathNodeSyntax , list(capture,
duckTypeClause,
nameClause,

skipl))

, clauseMatcher(doubleDotSyntax , list(skipMany))

96

// dot is a separator only (like whitespace in other languages) but
// rather than make it a special case, use an empty list of
// expressions when this token is found

, clauseMatcher(dotSyntax , list())

, clauseMatcher (bangSyntax , list(capture,
rootExpr))

, clauseMatcher (emptySyntax , list(statementExpr))

, function (jsonPath) {
throw Error(’"’ + jsonPath + ’" could not be tokenised’)
b
);

VELS
One of two possible wvalues for the onSuccess argument of
generateClauseReaderIfTokenFound.

When this function is used, generateClauseReaderIfTokenFound simply
returns the comptiledParser that it made, regardless of ©1f there is
any remaining jsonPath to be compiled.

¥ % X %X X %

*/
function returnFoundParser(_remainingJsonPath, compiledParser){
return compiledParser

3

Jk*

Recursively compile a JSONPath expression.

Thts function serves as one of two possible walues for the onSuccess
argument of generateClauseReaderIfTokenFound, meaning continue to
recursively compile. Otherwise, returnFoundParser is given and

¥ % X X X *

compilation terminates.

*/
function compileJsonPathToFunction(uncompiledJsonPath,
parserGeneratedSoFar) {

VAT
* On finding a match, <f there is remaining text to be compiled
* we want to etther continue parsing using a recursive call to
* compileJsonPathToFunction. Otherwise, we want to stop and return

97

3

* the parser that we have found so far.

*/
var onFind = uncompiledJsonPath
? compileJsonPathToFunction
returnFoundParser;

return clauseForJsonPath(

uncompiledJsonPath,
parserGeneratedSoFar,
onFind
)
b
VLS

* This 1s the function that we expose to the rest of the library.
*/

return function(jsonPath){

try {
// Kick off the recursive parsing of the jsonPath
return compileJsonPathToFunction(jsonPath, always);

} catch(e) {
throw Error(’Could not compile "’ + jsonPath +
’" because ’ + e.message

)

98

8.9 jsonPathSyntax.js

var jsonPathSyntax = (function() {

var

k¥
* Export a regular expression as a simple function by exposing just
* the Regex#exec. This allows regex tests to be used under the same
* 4nterface as differently implemented tests, or for a user of the
* tests to mot concern themselves with their implementation as regular
* erpressions.
*
* This could also be expressed point-free as:
* Function.prototype.bind.bind (RegEzp.prototype.ezxec),
*
* But that’s far too confusing! (and not even smaller once mintified
* and gzipped)

*/
regexDescriptor = function regexDescriptor(regex) {
return regex.exec.bind(regex);

}

J k¥
* Join several regular expressions and express as a function.
* This allows the token patterns to reuse component regular expressions
* gnstead of being expressed in full using huge and confusing regular
* erpressions.
*/

, jsonPathClause = varArgs(function(componentRegexes) {

// The regular expressions all start with ~ because we
// only want to find matches at the start of the

// JSONPath fragment we are inspecting
componentRegexes.unshift(/7/);

return regexDescriptor(
RegExp (
componentRegexes.map(attr(’source’)).join(’)
)
)
b

99

possiblyCapturing = /(\$?)/

namedNode = /C\w=_T+|*)/
namePlaceholder = /07
nodeInArrayNotation = /ANCCT"TIH)"N\]/
numberedNodeInArrayNotation = /\[(\d+|*)\]/
fieldList = /{C\w 1x7)}/
optionalFieldlList = /(7 {(IN\w 1x?7)}) 7/
// foo or *
jsonPathNamedNodeInObjectNotation = jsonPathClause(
possiblyCapturing,
namedNode,
optionalFieldList
)
// ["foo"]
jsonPathNamedNodeInArrayNotation = jsonPathClause(
possiblyCapturing,
nodeInArrayNotation,
optionalFieldList
)

/7 [2] or [*]
jsonPathNumberedNodeInArrayNotation = jsonPathClause(

possiblyCapturing,
numberedNodeInArrayNotation,
optionalFieldList
)
// {a b c}
jsonPathPureDuckTyping = jsonPathClause(
possiblyCapturing,
namePlaceholder,
fieldList
)
/.
jsonPathDoubleDot = jsonPathClause(/\.\./)
/.
jsonPathDot = jsonPathClause(/\./)

100

/!

, jsonPathBang = jsonPathClause(
possiblyCapturing,
/v
)
// mnada!
, emptyString = jsonPathClause(/$/)

/* We ezport only a single function. When called, this function injects
into another function the descriptors from above.
*/
return function (fn){
return fn(
lazyUnion(
jsonPathNamedNodeInObjectNotation
jsonPathNamedNodeInArrayNotation
jsonPathNumberedNodeInArrayNotation
jsonPathPureDuckTyping

3
3

b

)
jsonPathDoubleDot

, JjsonPathDot
, jsonPathBang
, emptyString

101

8.10 lists.js

J k¥
* Like cons in Lisp
*/

function cons(x, xs) {
/* Internally lists are linked 2-element Javascript arrays.

So that lists are all immutable we Object.freeze in newer
Javascript runtimes.

In older engines freeze should have been polyfilled as the
identity function. */
return Object.freeze([x,xs]);

}
VELS
* The empty list
*/
var emptyList = null,
VELS
* Get the head of a list.
*
* ITe, head(cons(a,b)) = a
*/
head = attr(0),
VLT
* Get the tail of a list.
*
* Te, head(cons(a,b)) = a
*/

tail = attr(1l);

VLT
* Converts an array to a list
*
* asList([a,b,c])
*

* 45 equivalent to:

102

* cons(a, cons(b, cons(c, emptyList)))
*x/

function arrayAsList(inputArray){

return reverselList(
inputArray.reduce(
flip(cons),
emptylList

J k¥
* A wvarargs wversion of arrayAsList. Works a bit like list
* 4n LISP.

*
* list(a,b,c)
*
* 45 equivalent to:
*
* cons(a, cons(b, cons(c, emptyList)))
*/
var list = varArgs(arrayAsList);
J/*x
* Convert a list back to a js mative array
*/

function listAsArray(list){
return foldR(function(arraySoFar, listItem){

arraySoFar.unshift(listItem);
return arraySoFar;

+, [0, list)
i
J Kk
* Map a function over a list
*/

function map(fn, list) {

103

return list
? cons(fn(head(list)), map(fn,tail(list)))
: emptyList

J k¥
* foldR implementation. Reduce a list down to a single wvalue.
*

* @pram {Function} fn (rightEval, curVal) -> result
*/
function foldR(fn, startValue, list) {

return list
? fn(foldR(fn, startValue, tail(list)), head(list))
startValue

VAT
* foldR implementation. Reduce a list down to a single wvalue.
*

* @pram {Function} fn (rightEval, curVal) -> result
*/
function foldR1(fn, list) {

return tail(list)
? fn(foldR1(fn, tail(list)), head(list))
: head(list)

Jk*
* Return a list like the one given but with the first instance equal
* to ttem removed

*/
function without(list, test, removedFn) {

return withoutInner(list, removedFn || noop);

function withoutInner (subList, removedFn) {

104

return subList
? (test(head(subList))
? (removedFn(head(subList)), tail(subList))
cons (head(subList), withoutInner(tail(subList), removedFn))

)
: emptyList

/*x
* Returns true <1f the given function holds for every item in
* the list, false otherwise
*/

function all(fn, list) {

return !list ||
(fn(head(1list)) && all(fn, tail(list)));

VLT

Call every function in a list of functions with the same arguments

This doesn’t make any sense 1if we’re doing pure functional because
1t doesn’t return anything. Hence, this ts only really useful <f the
functions being called have side-effects.

*/
function applyEach(fnList, arguments) {

¥ % %X *x %

if (fnList) {
head(fnList) .apply(null, arguments);

applyEach(tail(fnList), arguments);

VAT
* Reverse the order of a list
*/

function reverseList(list){

// js re-implementation of 3rd solution from:
// http://www. haskell.org/haskel lwikt/99_questions/Solutions/5

105

function reverseInner(list, reversedAlready) {
if (11list) {
return reversedAlready;

return reverselnner(tail(list), cons(head(list), reversedAlready))

return reverselnner(list, emptyList);

function first(test, list) {
return list &&
(test(head(list))
? head(list)
: first(test,tail(list)));

106

8.11 parseResponseHeaders.browser.js

// based on gist https://gist.github.com/monsur/ 706839

/*x
* XmlHttpRequest’s getAllResponseHeaders() method returns a string of response
* headers according to the format described here:
* http://www.w3.orq/TR/XMLHttpRequest/#the-getallresponseheaders—-method
* This method parses that string into a user-friendly key/value pair object.
*/
function parseResponseHeaders(headerStr) {
var headers = {};

headerStr && headerStr.split(’\u000d\u000a’)
.forEach(function(headerPair){

// Can’t use split() here because it does the wrong thing
// if the header wvalue has the string ": " in 4t.
var index = headerPair.index0f (’\u003a\u0020’);

headers [headerPair.substring(0, index)]
= headerPair.substring(index + 2);

B;

return headers;

107

8.12 patternAdapter.js
function patternAdapter (oboeBus, jsonPathCompiler) {
var predicateEventMap = {
node: oboeBus (NODE_FQUND)
, path:oboeBus(PATH_FOUND)
s

function emitMatchingNode(emitMatch, node, ascent) {

/*
We’re now calling to the outside world where Lisp-style
lists will not be familiar. Convert to standard arrays.
Also, reverse the order because i1t s more common to
list paths "root to leaf" than "leaf to root" */

var descent = reverselList(ascent);

emitMatch(
node,

// To make a path, strip off the last item which is the spectial
// ROOT_PATH token for the ’path’ to the root node

listAsArray(tail (map(keyOf,descent))), // path
listAsArray(map(nodeOf, descent)) // ancestors

)
function addUnderlyinglistener(fullEventName, predicateEvent, compiledJsonPath){
var emitMatch = oboeBus(fullEventName) .emit;
predicateEvent.on(function (ascent) {
var maybeMatchingMapping = compiledJsonPath(ascent);
/* Posstible values for maybeMatchingMapping are now:

false:
we did not match

an object/array/string/number/null:

108

we matched and have the node that matched.
Because nulls are wvalid json values this can be null.

undefined:

we matched but don’t have the matching mnode yet.

1e, we know there ©s an upcoming node that matches but we
can’t say anything else about 7t.

*/
if (maybeMatchingMapping !== false) {
emitMatchingNode (
emitMatch,
node0f (maybeMatchingMapping),
ascent
)
}

}, fullEventName);
oboeBus (’removelListener’) .on(function(removedEventName){

// if the match even listener is later removed, clean up by removing
// the underlying listener if mothing else is using that pattern:

if (removedEventName == fullEventName) {

if (loboeBus(removedEventName) .listeners()) {
predicateEvent.un(fullEventName);

}
3
oboeBus ("newListener’).on(function(fullEventName){
var match = /(node|path):(.*)/.exec(fullEventName) ;

if(match) {
var predicateEvent = predicateEventMap[match[1]];

if (!predicateEvent.hasListener(fullEventName)) {

addUnderlyingListener(
fullEventName,

109

H

)

predicateEvent,
jsonPathCompiler(match[2])

110

8.13 pubSub.js

J k¥

pubSub is a curried interface for listening to and emitting

events.

If we get a bus:
var bus = pubSub();

We can listen to event ’foo’ like:
bus(’foo’).on(myCallback)

And emit event foo like:
bus(’foo’).emit ()

or, with a parameter:
bus(’foo’).emit (’bar’)

All functions can be cached and don’t need to be
bound. Ie:

var fooEmitter = bus(’foo’).emit
fooEmitter(’bar’); // emit an event
fooEmitter(’baz’); // emit another

There’s also an uncurried[1] shortcut for .emit and .on:

bus.on(’foo’, callback)
bus.emit (’foo’, ’bar’)

¥ X X X X X X X X X X X X X ¥ X X X X X X X X ¥ ¥ ¥ ¥ ¥ ¥ %X % %

[1]: http://zvon.orqg/other/haskell/Outputprelude/uncurry_f.html
*/
function pubSub(){

var singles = {7,
newListener = newSingle(’newListener’),

removelistener = newSingle(’removelistener’);

function newSingle(eventName) {

111

return singles[eventName] = singleEventPubSub(
eventName,
newlListener,
removelListener

)
/**% pubSub instances are functions */
function pubSubInstance(eventName){
return singles[eventName] || newSingle(eventName) ;
// add convenience EventEmitter-style uncurried form of ’emit’ and ’on’
[’emit’, ’on’, ’un’].forEach(function(methodName){

pubSubInstance [methodName] = varArgs(function(eventName, parameters){
apply(parameters, pubSubInstance(eventName) [methodName]) ;
1)
b

return pubSubInstance;

112

8.14 publicApi.js

// export public API
function oboe(argl, arg2) {

if(argl) {
if (argl.url) {

// method signature %s:
// oboe({method:m, url:u, body:b, headers:{...}})

return wire(

(argl.method || ’GET’),
url(argl.url, argl.cached),
argl.body,
argl.headers
);
} else {

// simple version for GETs. Signature is:

// oboe(url)

//

return wire(
’GET’,
argl, // url
arg? // body. Deprecated, use {url:u, body:b} instead

)

}
} else {

// wire up a no—-AJAX Oboe. Will have to have content
// fed in externally and fed in using .emit.
return wire();

function url(baseUrl, cached) {

if (cached === false) {
if (baseUrl.index0f(’?’) == -1) {
baseUrl += 77,
} else {

baseUrl += ’&’;

113

baseUrl += ’ =’ + new Date().getTime();

}

return baseUrl;

114

8.15 singleEventPubSub.js

J k¥
* A pub/sub which is responsible for a single event type. A
* multi-event type event bus ts created by pubSub by collecting
* several of these.
*
* @param {String} eventType
* the name of the events managed by this singleEventPubSub
* Q@param {singleEventPubSub} /[newlListener]
* place to notify of new listeners
* @param {singleEventPubSub} /[removelListener]
*

place to notify of when listeners are removed
*/

function singleEventPubSub(eventType, newListener, removelListener){

/** we are optimised for emitting events over firing them.
* As well as the tuple list which stores event ids and
* listeners there is a list with just the listeners which
* can be tterated more quickly when we are emitting
*/
var listenerTuplelist,
listenerList;

function hasId(id){
return function(tuple) {

return tuple.id == id;
I
b
return {
/**

* Qparam {Function} listener
* Qparam {*} listenerId

* an td that this listener can later by removed by.
* Can be of any type, to be compared to other ids using ==
*/

on:function(listener, listenerId) {
var tuple = {

listener: listener
, id: listenerId || listener // when no id is given use the

115

// listener function as the id

};

if (newListener) {
newListener.emit(eventType, listener, tuple.id);

}
listenerTuplelList = cons(tuple, listenerTuplelList);
listenerList = cons(listener, listenerList)

return this; // chaining

}:

emit:function () {
applyEach(listenerList, arguments);
I

un: function(listenerId) {
var removed;

listenerTupleList = without(
listenerTuplelist,
hasId(listenerId),
function(tuple)
removed = tuple;

}
)

if (removed) {
listenerList = without(listenerList, function(listener){
return listener == removed.listener;

1)

if (removeListener) {
removeListener.emit(eventType, removed.listener, removed.id);

1,
listeners: function(){

// differs from Node EventEmitter: returns list, not array
return listenerList;

116

T,

hasListener: function(listenerId){
var test = listenerId? hasId(listenerId) : always;

return defined(first(test, listenerTuplelList));

117

8.16 streamingHttp.browser.js

function httpTransport(){
return new XMLHttpRequest();

3

/*x
A wrapper around the browser XmlHttpRequest object that raises an
event whenever a new part of the response is available.

In older browsers progressive reading s tmpossible so all the
content <s given im a single call. For newer ones several events
should be raised, allowing progressive interpretation of the response.

*
*
*
*
*
*
*
* Q@param {Function} oboeBus an event bus local to this Oboe instance

* Q@param {XMLHttpRequest} zhr the zhr to use as the transport. Under normal
* operation, will have been created using httpTransport() above

* but for tests a stub can be provided instead.

* Q@param {String} method one of ’GET’ ’POST’ ’PUT’ ’PATCH’ ’DELETE’

* Q@param {String} url the url to make a request to

* @param {String|Object} data some content to be sent with the request.

* Only valid if method <s POST or PUT.

* Q@param {0bject} [headers]/ the hitp request headers to send

*/

function streamingHttp(oboeBus, xhr, method, url, data, headers) {

var emitStreamData = oboeBus(STREAM DATA) .emit,
emitFail oboeBus (FAIL _EVENT) .emit,
number0fCharsAlreadyGivenToCallback = 0;

// When an ABORTING message is put on the event bus abort
// the ajaz request
oboeBus (ABORTING).on(function(){

// i1f we keep the onreadystatechange while aborting the XHR gives
// a callback like a successful call so first remove this listener
// by assigning null:

xhr.onreadystatechange = null;

xhr.abort () ;
b;

/** Given a value from the user to send as the request body, return in

118

* a form that is suitable to sending over the wire. Returns either a
* string, or null.

*/
function validatedRequestBody(body) {
if (!'body)

return null;

return isString(body)? body: JSON.stringify(body) ;

VAT
* Handle imput from the underlying xzhr: either a state change,
* the progress event or the request being complete.

*/
function handleProgress() {

var textSoFar = xhr.responseText,
newText = textSoFar.substr(number0fCharsAlreadyGivenToCallback) ;

/* Raise the event for new text.
On older browsers, the new text s the whole response.
On newer/better ones, the fragment part that we got since
last progress. */

if (newText) {

emitStreamData(newText);

number0fCharsAlreadyGivenToCallback = len(textSoFar);

if (’onprogress’ in xhr){ // detect browser support for progressive delivery
xhr.onprogress = handleProgress;

¥

xhr.onreadystatechange = function() {
switch(xhr.readyState) {

case 2:

119

oboeBus (HTTP_START) .emit(
xhr.status,
parseResponseHeaders (xhr.getAl1ResponseHeaders()));

return;
case 4:
// is this a 2zx http code?
var sucessful = String(xhr.status) [0] == 2;

if (sucessful) {
// In Chrome 29 (not 28) no onprogress is emitted when a response
// is complete before the onload. We need to always do handleInput
// in case we get the load but have not had a final progress event.
// This looks like a bug and may change in future but let’s take
// the safest approach and assume we might not have received a
// progress event for each part of the response
handleProgress();

oboeBus (STREAM_END) .emit () ;
} else {

emitFail(errorReport(
xhr.status,
xhr .responseText

));

}
};

try{
xhr.open(method, url, true);
for(var headerName in headers){
xhr.setRequestHeader (headerName, headers[headerName]) ;
xhr.send(validatedRequestBody(data));
} catch(e) {

// To keep a consistent interface with Node, we can’t emit an event here.
// Node’s streaming http adaptor receives the error as an asynchronous

120

// event rather than as an exception. If we emitted now, the Oboe user
// has had mo chance to add a .fail listener so there is no way
// the event could be useful. For both these reasons defer the
// firing to the next JS frame.
window.setTimeout (
partialComplete(emitFail, errorReport(undefined, undefined, e))
, O
)

121

8.17 streamingHttp.node.js

function httpTransport(){
return require(’http’);

3

/*x
A wrapper around the browser XmlHttpRequest object that raises an
event whenever a new part of the response is available.

In older browsers progressive reading s tmpossible so all the
content s given in a single call. For newer ones several events
should be raised, allowing progressive interpretation of the response.

*
*
*
*
*
*
*

* Q@param {Function} oboeBus an event bus local to this Oboe instance

* @param {XMLHttpRequestl} http the http implementation to use as the transport. Unc

* operation, will have been created using httpTransport() above

* and therefore be Node’s htip

* but for tests a stub may be provided instead.

* Q@param {String} method one of ’GET’ °POST’ ’PUT’ ’PATCH’ ’DELETE’

* Q@param {String} contentSource the url to make a request to, or a stream to read |

* @param {String|Object} data some content to be sent with the request.

* Only wvalid <f method 4s POST or PUT.

* Q@param {0bject} [headers]/ the http request headers to send

*/
function streamingHttp(oboeBus, http, method, contentSource, data, headers) {

"use strict";

function readStreamToEventBus(readableStream) {

// use stream in flowing mode
readableStream.on(’data’, function (chunk) {

oboeBus (STREAM_DATA) .emit (chunk.toString());
b;

readableStream.on(’end’, function() {

oboeBus(STREAM END) .emit();
B

function readStreamToEnd(readableStream, callback){

122

var content = ’’;
readableStream.on(’data’, function (chunk) {

content += chunk.toString();

B
readableStream.on(’end’, function() {

callback(content);
B

function fetchHttpUrl(url) {
if (!contentSource.match(/http:\/\//)) {
contentSource = ’http://’ + contentSource;

}
var parsedUrl = require(’url’).parse(contentSource);

var req = http.request({
hostname: parsedUrl.hostname,
port: parsedUrl.port,
path: parsedUrl.pathname,
method: method,
headers: headers

B

req.on(’response’, function(res){
var statusCode = res.statusCode,
sucessful = String(statusCode) [0] == 2;

oboeBus (HTTP_START) .emit (res.statusCode, res.headers);
if (sucessful) {
readStreamToEventBus (res)
} else {
readStreamToEnd(res, function(errorBody){
oboeBus (FAIL _EVENT) .emit(
errorReport (statusCode, errorBody)

);

123

1)
}
1)

req.on(’error’, function(e) {
oboeBus (FAIL_EVENT) .emit(
errorReport (undefined, undefined, e)
)
1)

oboeBus (ABORTING) .on(function(){
req.abort();
B

if (data) {
var body = isString(data)? data: JSON.stringify(data);
req.write(body) ;

req.end();

if (isString(contentSource)) {
fetchHttpUrl(contentSource) ;

} else {
// contentsource is a stream
readStreamToEventBus (contentSource) ;

124

8.18 util.js

J k¥
* This file defines some loosely associated syntactic sugar for
* Javascript programming

*/

J k¥
* Returns true <f the given candidate is of type T
*/
function is0fType(T, maybeSomething){
return maybeSomething && maybeSomething.constructor === T;

3

var len = attr(’length’),
isString = partialComplete(isOfType, String);

J k¥
* I don’t like saying this:

foo !=== undefined
because of the double-negative. I find this:

defined(foo)

* X X X X X X %

easier to read.

*/
function defined(value) {
return value !== undefined;

Jk*
* Returns true <f object o has a key named like every property in
* the properties array. Will give false 2f any are missing, or if o
* 45 not an object.
*/
function hasAllProperties(fieldList, o) {

return (o instanceof Object)

&&
all (function (field) {

125

return (field in o);
}, fieldList);

126

8.19 wire.js

J k¥
* This file sits just behind the API which ts used to attain a new
* Oboe tnstance. It creates the new components that are required
* and introduces them to each other.

*/

function wire (httpMethodName, contentSource, body, headers){
var oboeBus = pubSub();
// Wire the input stream in if we are given a content source.
// This will usually be the case. If mot, the instance created
// will have to be passed content from an external source.
if (contentSource) {

streamingHttp(oboeBus,

httpTransport(),
httpMethodName, contentSource, body, headers);

}
instanceController(
oboeBus,
clarinet.parser(),
incrementalContentBuilder (oboeBus)
)

patternAdapter (oboeBus, jsonPathCompiler);

return new instanceApi(oboeBus);

127

9 Appendix iii: Benchmarking

9.1 benchmarkClient.js
/* call this script from the command line with first argument either
oboe, jsonParse, or clarinet.
This script won’t time the events, I’m using ‘time‘ on the command line
to keep things simple.
*/

require(’color’);

var DB_URL = ’http://localhost:4444/db’;

function aggregateWithOboe() {
var oboe = require(’../dist/oboe-node.js’);
oboe(DB_URL) .node(’{id url}.url’, function(url){
oboe(url) .node(’name’, function(name){
console.log(name) ;

this.abort();
console.log(process.memoryUsage() .heapUsed);

IF
1)
function aggregateWithJsonParse() {
var getJson = require(’get-json’);
getJson(DB_URL, function(err, records) {

records.data.forEach(function(record){

var url = record.url;

128

getJson(url, function(err, record) {
console.log(record.name) ;
console.log(process.memoryUsage() .heapUsed) ;
3
s

1)

function aggregateWithClarinet() {

var clarinet = require(’clarinet’);

var http = require(’http’);

var outerClarinetStream = clarinet.createStream();
var outerKey;

var outerRequest = http.request(DB_URL, function(res) {

res.pipe(outerClarinetStream) ;

b;
outerClarinetStream = clarinet.createStream();
outerRequest.end();

outerClarinetStream.on(’openobject’, function(keyName){
if (keyName) {
outerKey = keyName;
}
3

outerClarinetStream.on(’key’, function(keyName){
outerKey = keyName;

B

outerClarinetStream.on(’value’, function(value)q
if (outerKey == ’url’) {
innerRequest (value)
}
B

129

function innerRequest(url) {
var innerRequest = http.request(url, function(res) {

res.pipe(innerClarinetStream) ;

b

var innerClarinetStream = clarinet.createStream();
innerRequest.end () ;

var innerKey;

innerClarinetStream.on(’openobject’, function(keyName){
if (keyName) {
innerKey = keyName;
}
3

innerClarinetStream.on(’key’, function(keyName){
innerKey = keyName;

b

innerClarinetStream.on(’value’, function(value){
if (innerKey == ’name’) {
console.log(value)
console.log(process.memoryUsage() .heapUsed) ;

B

var strategies = {
oboe: aggregateWithOboe,
jsonParse: aggregateWithJsonParse,
clarinet: aggregateWithClarinet

var strategyName = process.argv([2];

// use any of the above three strategies depending on a command line argument:
console.log(’benchmarking strategy’, strategyName);

130

strategies[strategyName] O ;

131

9.2 benchmarkServer.js

J k¥
*/

"use strict";

var PORT = 4444;

var TIME BETWEEN_RECORDS = 15;

// 80 records but only every other one has a URL:

var NUMBER_OF_RECORDS = 80;

function sendJsonHeaders(res) {
var JSON_MIME _TYPE = "application/octet-stream";
res.setHeader ("Content-Type", JSON_MIME_TYPE);
res.writeHead (200);

function serveltemList(_req, res) {
console.log(’slow fake db server: send simulated database data’);
res.write(’{"data": [’);
var i = 0;
var inervalld = setInterval(function () {

if(i%2=0)H

res.write(JSON.stringify ({

"id": i,
"url": "http://localhost:4444/item/" + i
)
} else {
res.write(JSON.stringify({
"id": i
1)

if (i == NUMBER_OF RECORDS) {

132

res.end(’]1}7);
clearInterval (inervalld);

console.log(’db server: finished writing to stream’);
} else {
res.write(’,’);

i++;

b

}, TIME_BETWEEN RECORDS) ;

function serveltem(req, res){
var id = req.params.id;
console.log(’will output fake record with id’, id);

setTimeout (function(){
// the items served are all the same except for the id field.
// this is realistic looking but randomly generated object fro
// <project>/test/json/oneHundredrecords. json
res.end (JSON.stringify({
"id" : id,
"url": "http://localhost:4444/item/" + id,
"guid": "046447ee-da78-478c-b518-b612111942ab5",
"picture": "http://placehold.it/32x32",

"age": 37,

"name": "Humanoid robot number " + id,
"company": "Robotomic",

"phone": "806-587-2379",

"email": "payton@robotomic.com"

»);

}, TIME_BETWEEN RECORDS);

function routing() {
var Router = require(’node-simple-router’),
router = Router();

133

router.get(’/db’, serveltemList) ;
router.get(’/item/:id’, serveltem) ;

return router;

var server = require(’http’).createServer(routing()).listen(PORT);

console.log(’Benchmark server started on port’, String(PORT));

134

	Introduction
	REST aggregation could be faster
	Stepping outside the big-small tradeoff
	Staying fast on a fallible network
	Agile methodologies, frequent deployments, and compatibility today with versions tomorrow
	Deliverables
	Criteria for success

	Background
	The web as an application platform
	Node.js
	JSON and XML data transfer formats
	Common patterns for connecting to REST services
	Little languages for descending into fetched data
	Browser XML HTTP Request (XHR)
	XHRs and streaming
	Browser streaming frameworks
	Parsing: SAX and DOM

	Design and Reflection
	Choice of selection language
	Using JSONPath to detect higher-level types in JSON
	Importing CSS4's explicit capturing to JSONPath
	Parsing the JSON response
	API design
	Earlier callbacks when paths are found prior to nodes
	Choice of streaming data transport
	Handling transport failures
	Oboe.js as a micro-library

	Implementation
	Componentisation of the project
	Design for automated testing
	Task automation
	Packaging to a single distributable file
	Styles of programming
	Incrementally building the parsed content
	Oboe JSONPath implementation
	Differences in the working of programs that can be easily written using Oboe.js

	Conclusion
	Benchmarking vs non-progressive REST
	Comparative developer ergonomics
	Performance under various Javascript engines
	Status as a micro-library
	Potential future work
	Summing up

	Bibliography
	Appendix i: Limits to number of simultaneous connections under various HTTP clients
	Appendix ii: Oboe.js source code listing
	ascent.js
	clarinetListenerAdaptor.js
	events.js
	functional.js
	incrementalContentBuilder.js
	instanceApi.js
	instanceController.js
	jsonPath.js
	jsonPathSyntax.js
	lists.js
	parseResponseHeaders.browser.js
	patternAdapter.js
	pubSub.js
	publicApi.js
	singleEventPubSub.js
	streamingHttp.browser.js
	streamingHttp.node.js
	util.js
	wire.js

	Appendix iii: Benchmarking
	benchmarkClient.js
	benchmarkServer.js

