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Abstract The occurrence of large, high-intensity wildfires requires plant biomass, or fuel, that is sufficiently
dry to burn. This poses the question, what is “sufficiently dry”? Until recently, the ability to address this question
has been constrained by the spatiotemporal scale of available methods to monitor the moisture contents of
both dead and live fuels. Here we take advantage of recent developments in macroscale monitoring of fuel
moisture through a combination of remote sensing and climatic modeling. We show there are clear thresholds
of fuel moisture content associated with the occurrence of wildfires in forests and woodlands. Furthermore, we
show that transformations in fuel moisture conditions across these thresholds can occur rapidly, within a
month. Both the approach presented here, and our findings, can be immediately applied and may greatly
improve fire risk assessments in forests and woodlands globally.

1. Introduction

Large, high-intensity wildfires posemajor threats to people, property, and infrastructure and play a major role
in shaping many ecosystems worldwide [Moritz et al., 2014]. The incidence of large wildfires is contingent
upon the presence of spatially continuous arrays of plant biomass sufficiently dry to burn, weather conditions
conducive to the rapid spread of fire, and the occurrence of ignitions [Bradstock, 2010; Meyn et al., 2007].
Bradstock [2010] hypothesized that these processes could be characterized as “switches” that have to be
synchronously activated for fires to occur. The switch concept implies that there can be transformations in
the states of these processes so that rapid shifts between nonflammable and flammable states can occur
across large spatial scales.

Evidence for such rapid transformations in biomass (fuel), fuel dryness, and ambient fire weather (high tem-
peratures, strong winds, and low humidity) exist in a variety of ecosystems. Major rainfall events can
transform nonflammable deserts by stimulating widespread growth of herbaceous plants, increasing fuel
connectivity [O’Donnell et al., 2011; Turner et al., 2008]. Forests are transformed into highly flammable states
by the occurrence of major droughts [Aragao et al., 2007; Bradstock et al., 2014], while particular weather sys-
tems such as cold fronts, mountain winds, and upper atmospheric instability can cause the rapid onset of
severe fire weather [Hasson et al., 2009; Sharples, 2009].

In high-biomass ecosystems, such as temperate forests and shrublands, spatially continuous arrays of surface
litter and dead and live aerial foliage are ever present, except in the immediate aftermath of fires. The
principal preconditions for major wildfires in such ecosystems are therefore the availability of fuel to burn
(i.e., its dryness), severe ambient fire weather, and ignitions. Fire danger indices condense information about
fire weather and fuel dryness, via drought indices that are assumed to characterize the moisture content of
live and dead fuels via a simple index of climatic moisture availability [Bradshaw et al., 1983; McArthur, 1967;
Van Wagner, 1987; Yebra et al., 2013].

Correlations exist between major wildfires and fire danger indices in temperate shrublands [Verdon et al.,
2004], but fire danger indices may lack the accuracy and precision for forecasting the timing and locations
of highest potential for wildfires. For example, drought indices may not accurately reflect actual moisture
values of key fuel elements in these ecosystems because (i) the fuel moisture (FM) of live foliage is dependent
upon species-specific attributes, such as rooting depth and drought adaptation strategies, and (ii) the FM of
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fine, dead fuels responds to atmospheric conditions [Caccamo et al., 2012b; Resco de Dios et al., 2015; Yebra
et al., 2013]. By contrast studies involving direct estimation of either live [Agee et al., 2002; Dennison et al.,
2008] or dead [Dowdy and Mills, 2012; Nash and Johnson, 1996] FM have indicated the potential for nonlinear
relationships between FM and wildfire activity at local to landscape scales [Jurdao et al., 2012; Schoenberg
et al., 2003; Viegas et al., 1992]. Thus, thresholds in FM may need to be crossed to provide the potential for
the spread of major wildfires, possibly reflecting critical levels of connectivity of dry patches across
landscapes [Caccamo et al., 2012b].

The ability to forecast wildfire risk at large scales, across varying terrain and vegetation communities, will
therefore depend on the robustness and consistency of threshold relationships between area burned and
FM and the consequent capability to adequately monitor spatiotemporal variations in FM across large-scale
bioclimatic gradients. Currently, robust methods for estimating FM dynamics at relevant scales remain
limited [Yebra et al., 2013], and the robustness of the threshold relationships between both dead and live
FM and area burned by wildfires therefore remains largely unexplored across large bioclimatic gradients. A
notable exception is Jurdao et al. [2012] who examined relationships between live FM, estimated from satel-
lite observations, and fire occurrence across 492,175 km2 of the Iberian Peninsula in Spain. Integration of
dynamic changes to the moisture content of both live (e.g., green foliage) and dead fuels is also required
to be able to predict the potential for major wildfire events.

In this study, we test the hypothesis that the area burned by wildfires at the regional or subcontinental scale is
governed by discrete FM thresholds. We also test whether such thresholds are robust across major variations
in climatic and vegetation groups. We examined recent wildfires in eucalypt forests and woodlands across
southeastern Australia, a region prone to major wildfires, and concurrent spatial patterns of FM, using
recently developed methods for macroscale, spatially explicit prediction of both live [Caccamo et al.,
2012b] and dead FM [Nolan et al., 2016]. The study is novel as it (i) provides the first test at a
subcontinental-scale of whether the area burned by wildfire is governed by thresholds in both dead and live
FM and (ii) provides an assessment of the capacity for monitoring and assessing wildfire risk using remotely
sensed or modeled estimates of both live and dead FM.

2. Materials and Methods
2.1. Study Area

The study area incorporates forests and woodlands across 117,059 km2 of southeastern Australia (Figure 1
a). There is a broad climate gradient within the study area, which extends for 760 km from north to south
and from sea level to over 2000m in altitude. Across the study area average annual precipitation ranges
from 600 to 3000mm, and average daily temperature ranges from 6 to 18°C [Bureau of Meteorology,
2013]. Wildfires generally occur from early spring to early autumn, with the period of peak fire activity mov-
ing progressively south over this period as a function of cold frontal activity [Hasson et al., 2009]. We
divided the study area into two distinct zones based on seasonal rainfall patterns, modified from the
agro-climate classification of Hutchinson et al. [2005]. The eastern climate zone has rainfall distributed
throughout the year, while the western climate zone has rainfall predominately in winter or spring, with
drier summers (Figure 1b). Vegetation was classified as either eucalypt forest or eucalypt woodland, with
either a grassy, shrubby, or wet understory (i.e., six vegetation groups in total; Table 1). Vegetation was
identified from the major vegetation groups of the National Vegetation Information System, version
4.1 (http://www.environment.gov.au).

2.2. Area Burned

Fire history data sets were obtained from the Victorian Department of Environment, Land, Water and
Planning and from the New South Wales Rural Fire Service. These data sets consist of polygons of the areas
burnt by wildfire and the start date of the fire. The study period covers the 2000 to 2013 fire seasons, with a
fire season spanning from July to the following June (i.e., the 2000 fire season runs from July 2000 to June
2001). This period was chosen because the total area burned was exceptional in recent history (39,642 km2;
Figure 1b) [Bradstock et al., 2014] and high-resolution climatic data and reliable remote sensing imagery, i.e.,
Moderate Resolution Imaging Spectroradiometer (MODIS), were available.
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2.3. Dead Fuel Moisture

Dead FM was estimated for suspended fuels in the 10 h fuel class (6.35–25mm diameter) from a semimecha-
nistic model originally developed by Resco de Dios et al. [2015] and with its spatial application developed by
Nolan et al. [2016]. Although we focus on 10 h fuels here, moisture content of fuels in the finer, 1 h class (litter
<6.35mm) is related to 10 h FM [Resco de Dios et al., 2015]. The dead FM model is based on an exponential
relationship between moisture content and vapor pressure deficit, D [Nolan et al., 2016]:

Dead FM %ð Þ ¼ 6:79þ 27:43e �1:05 Dð Þ (1)

Figure 1. Map of the study area in southeastern Australia showing (a) the extent of the vegetation groups used in this study
and (b) the extent of wildfires in the study area dating from the 2000–2013 fire seasons and the climate boundary deli-
neating different precipitation patterns. Vegetation data were obtained from the National Vegetation Information System;
fire history data sets obtained from the Victorian Department of Environment, Land, Water and Planning and from the New
South Wales Rural Fire Service; and the climate boundary modified from Hutchinson et al. [2005] separating the region with
uniform or summer precipitation to the east, from that with winter or spring precipitation to the west.
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D was obtained from the SILO climate database (http://www.longpaddock.qld.gov.au/silo/index.html). SILO
climate data are estimated from interpolated weather station measurements and are available across
Australia on a regular 0.05° grid [Jeffrey et al., 2001].

2.4. Live Fuel Moisture

Live FM was estimated with data products from the MODIS Terra satellite, following the methods of Caccamo
et al. [2012b], and recalibrated using field observations across a wider range of environmental conditions
(Table S1 in the supporting information). The Visible Atmospherically Resistant Index (VARI) and
Normalized Difference Infrared Index (NDIIb6) were calculated from the MODIS 8 day composite data set
MOD09A1 (collection 5), with a 500m spatial resolution. We used only these indices because they were
the ones that best corresponded with live FM data in Caccamo et al. [2012b]. Data anomalies in MOD09A1,
including cloud cover, were masked using MODIS quality assurance layers. VARI was calculated as (band
4� band 1)/(band 4 +band 1�band 3) [Gitelson et al., 2002]. NDIIb6 was calculated as (band 2�band 6)/
(band 2+ band 6) [Hunt and Rock, 1989; Jackson et al., 2004]. For each spectral index (SI; i.e., VARI and
NDIIb6), a normalization approach was applied, whereby the relative variation of a pixel at a given time com-
pared to the minimum and maximum value observed for that pixel over the image time series (February
2000–December 2014) was calculated as

SImax�min i ¼ SIi � SImin

SImax � SImin

� �
(2)

where SImax�min i is the normalized SI of a given pixel at time i, SIi is the SI at time i, and SImin and SImax are the
minimum and maximum observed values of the SI for the time series of images analyzed [Chuvieco et al.,
2002; Stow and Niphadkar, 2007]. Pixels were excluded from analyses if wildfire had occurred in the previous
5 years, since this is the length of time after which fire alters the spectral reflectance of vegetation [Caccamo
et al., 2012a].

The live FM model of Caccamo et al. [2012b] predicted live FM values between 86 and 127%. FM is a ratio of
the mass of water within a fuel sample to the oven-dry weight of that fuel [Chuvieco et al., 2002]. We recali-
brated and tested this model with live FM data collected across a larger region and a larger range of moisture
values (65–188%). Further details on these methods are provided in Text S1 in the supporting information.

2.5. Data Analyses
2.5.1. Critical Fuel Moisture Thresholds
For each wildfire footprint we calculated themedian value of dead and live FM across the footprint, and sepa-
rately for each of the climate zones, and again for each of the vegetation groups found within that footprint.
Median FMwas calculated for both dead and live fuels (due to the non normal distribution of FM; Figure S3 in
the supporting information). For dead fuels, calculations were undertaken with daily time step data for the

Table 1. Description of the Study Area

Study Area Description Total Area (km2) Area Burnt (km2)

Entire study area Forests and woodlands across southeastern Australia 117,059 39,642
Study area divided by climate zone
Eastern zone Rainfall distributed throughout the year 97,221 35,108
Western zone Rainfall occurs predominately in winter or spring,

with drier summers
19,838 4,533

Study area divided by
vegetation group
Grassy forest Eucalyptus open forests with a grassy understorey 13,430 3,722
Shrubby forest Eucalyptus open forests with a shrubby understorey 29,998 11,817
Wet forest Eucalyptus open forests with tree ferns, sedges, rushes,

or wet tussock grassland
34,768 12,946

Grassy woodland Eucalyptus woodlands with a grassy understorey, including
tussock and hummock grasses

20,214 3,241

Shrubby woodland Eucalyptus woodlands with a shrubby or chenopod understorey 15,152 7,399
Wet woodland Eucalyptus woodlands with ferns, sedges, rushes,

or wet tussock grassland
3,497 517
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recorded start date of the fire. While for live fuels FM was calculated with 8 day composite data for the period
immediately preceding the start date, because fire alters spectral reflectance properties. Although some
wildfires may burn for several days to weeks, only start date information is recorded in the fire history data
set. We then calculated the cumulative area burnt by wildfire as a function of FM, following Dennison and
Moritz [2009]. Briefly, segmented regression was used to fit linear regressions to either side of breakpoints
in the regressions between FM and cumulative area burnt by wildfire. The number of breakpoints included
in the regression was determined by progressively increasing the number of breakpoints used in fitting
the model. Akaike’s information criterion (AIC) [Akaike, 1974] was calculated for each model, and the model
with the lowest AIC was selected [Burnham and Anderson, 2002].
2.5.2. Temporal Dynamics of Fuel Moisture and Area Burned
Temporal dynamics in FM and area burned were identified across a dry (2006/2007) and a wet (2010/2011)
fire season. For each day of the fire season, median dead FM and total area burned were calculated across
all forest and woodland types, while live FM was calculated using sequential 8 day data. Separate analyses
of fuel dryness and area burned were undertaken for each of the two climate zones.

All analyses were undertaken in R [R Development Core Team, 2015] using the raster [Hijmans, 2013], shapefiles
[Stabler, 2013], and segmented [Muggeo, 2003] packages.

3. Results
3.1. Live Fuel Moisture Model Calibration

For both VARImax�min and NDIIb6max�min, an exponential model fitted the calibration data set (n= 43)
better than a linear model. For VARImax�min r

2 = 0.61 and 0.63 for the linear and exponential models respec-
tively; for NDIIb6max�min r2 = 0.03 and 0.05. The exponential model was statistically significant for
VARImax�min (p< 0.001) but not NDIIb6max�min (p=0.14). Thus, the following VARImax�min model was used
for subsequent calculations of live FM:

Live FM %ð Þ ¼ 52:51 e1:36 VARImax�min (3)

Validation of this model (n=30) showed it to perform well, with observed FM values being only slightly
underpredicted: mean absolute error= 9.5%,mean bias error=�7.1%, and r2 = 0.69 (Figure S3 in the supporting
information), with one outlier (observed FM=189%) with a Cook’s D of 2.2 excluded.

3.2. Critical Fuel Moisture Thresholds

The relationships between area burned and both live and dead FM were nonlinear, with steep rises in area
burned evident once FM fell below threshold values (Figure 2). Across the entire study area, there were
two thresholds identified for live FM that demarcated a major increase in area burned. The first was at
156.1% (95% CI: 152.6–159.6%) while the second was at 101.5% (95% CI: 100.9–101.8%; Figure 2a). This repre-
sents 99.9% and 78.5% of the total area burnt, for each threshold, respectively. There was an additional
threshold identified at 72.4% (95% CI: 71.89–72.8%), but this was not associated with increasing area burned
(i.e., the slope of the regression line was shallower than between the live FM values of 152.6–101.5%).
Similarly, there were two thresholds identified for dead FM across the entire study area that demarcated a
major increase in area burned. The first was at 14.6% (95% CI: 14.5–14.7%) while the second was at 9.9%
(95% CI: 9.8–10.1; Figure 2b). This represents 96.9% and 53.7% of the total area burnt, for each
threshold, respectively.

When the analysis was repeated for each of the two climate zones separately, we found that the western
climate zone had critical thresholds of live FM that were similar to those previously identified: 155.6% (95%
CI: 155.4–159.8%) and 101.5% (95% CI: 100.9–102.1%; Figure 2c). However, the eastern climate zone had
significantly lower thresholds (i.e., confidence intervals did not overlap): 113.6% (95% CI: 113.0–114.3%)
and 81.6% (95% CI: 81.5–81.76%; Figure 2d). For dead FM, although the two climate zones had significantly
different thresholds, these values were quite close to each other, particularly for the threshold at the wetter
end of FM: 15.1% (95% CI: 14.7–15.7%) and 14.2% (95% CI: 14.1–14.3%) for the eastern and western climate
zones, respectively, and for the drier threshold: 8.2% (95% CI: 8.2–8.2%) and 6.9% (95% CI: 6.9–6.9%) for the
eastern and western climate zones, respectively (Figure 2d).
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For the differing vegetation groups, all had a live FM threshold similar to the 101.5% identified across the
entire study area: 98.5–105.9% (Figures 2e and 2g). However, the live FM threshold at the wetter range of
FM values was more variable across the different vegetation groups: 136.9–167.8%, and in the case of
shrubby forests and shrubby woodlands, no wetter threshold was identified at all. For dead FM, all vegetation
groups had a similar FM threshold at the wetter range of values: 12.4–15.0% (Figures 2f and 2g). There was

Figure 2. Relationship between live and dead fuel moisture and cumulative areas burnt by wildfire. Fuel moisture is the
median value calculated across the footprint for a given fire event. Fitted to the data are segmented regressions which
identify fuel moisture thresholds demarcating a substantial increase in fire activity. (a and b) The vertical grey bars repre-
sent the 95% CI of critical FM thresholds; (c–h) for clarity, these are not presented. The r2 values for each of the segmented
regressions were all ≥0.96.
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also a similar threshold identified across the vegetation groups at the drier end of dead FM values: 7.4–8.9%,
except for wet forests, where only one threshold was identified.

3.3. Temporal Dynamics of Fuel Moisture and Area Burned

As expected for both dead and live fuels, FM thresholds were reached more frequently during the dry year of
2006/2007 than for thewet year of 2010/2011, and lower FMwas associatedwith greater fire activity (Figure 3).
While small fires (<1 km2) occurred throughout 2006/2007, larger fires were associated with the periods when
both dead and live FM were below identified thresholds.

Day-to-day variation in dead FM was high, as expected. For example, during both the wet and dry fire seasons,
dead FM crossed from a wet state above the upper threshold (14.6%) to below the lower threshold (9.9%),
within a week. FM transformations were slower for live fuels, though could still occur over a period of weeks.
For example, during the dry year FM changed from 109% to 75% (well below the lower threshold of 101.5%)
over 4weeks (Figure 3c). Changes in live FM occurred more rapidly when FM was in the recovery, rather than
drying, phase. For example, recovery of moisture content in live fuels occurred more rapidly, with FM increasing
from 83% to 122% over a 24day time period (Figure 3c).

4. Discussion and Conclusions

The occurrence of wildfire in forests and woodlands across southeastern Australia was clearly associated with
the incidence of critical thresholds of macroscale, mean live and dead FM during the 2000 to 2013 fire
seasons (Figure 2). The first major novel outcome of this study was the formal demonstration that dynamic

Figure 3. Median values of (a and b) dead FM and (c and d) live FM and (e–h) area burnt by wildfire over a dry year (2006/
2007 fire season) and a wet year (2010/2011 fire season). Data are divided into the two different climate zones due to
differences in timing of wildfires between the two climate zones. Also shown are the dead and live FM thresholds
calculated from segmented regression. These thresholds were calculated across the entire study area.
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transformations in FM associated with major wildfires can occur rapidly for dead fuels and within several
weeks to months for live fuels (Figure 3). Therefore, relatively small changes in FM close to these thresholds,
across landscapes, can transform the potential for major wildfires in these vegetation types, consistent with
the switch hypothesis proposed by Bradstock [2010]. The second major novel outcome of this study was the
confirmation of the capacity to monitor such critical, rapid transformations in wildfire potential via remote
sensing and climatic modeling. This, combined with the potential to forecast D, and thus dead FM, provides
a significant new capacity for monitoring FM to assist in operational planning and risk assessment for major
wildfires that is robust across major climatic and vegetation gradients at a subcontinental scale.

4.1. Critical Thresholds of Fuel Moisture

For dead fuels, we found that small wildfires (<0.15 km2; Figure 2) occurred with FM as high as 30.8% (Figure 2b),
which is consistent with previously reported moisture of extinction (ME) values of 25–35% for woody fuel
[Burgan and Rothermel, 1984; Fernandes et al., 2008; Rothermel, 1972]. Remarkably, the wetter dead FM
threshold of 12.4–15.1% (which represents the thresholds calculated across all analyses) is similar to thresh-
olds found in subalpine and boreal forests in North America, where dead FM below 14% was associated with
increased probability of lightning strikes initiating fire [Nash and Johnson, 1996]. This threshold corresponded
to a D of 1.1–1.5 kPa in our study, similar to that found byWilliams et al. [2015] who showed that annual area
burned in southwestern U.S. forests increased rapidly when D was between 1.3 and 1.4 kPa. This suggests
that this threshold value of dead FM is applicable across forests and woodlands generally and not just in
the eucalypt forests and woodlands used in this study. This is consistent with our use of a dead FM model
based on D, which was found to be robust across different woody vegetation types in Australia and
California [Nolan et al., 2016; Resco de Dios et al., 2015]. The second threshold of dead FM (6.9–9.9%) repre-
sents a further increase in the rate of area burnt with declining FM and is also associated with an increase
in the occurrence of large fire events.

For live fuels, we found that small fires occurred with FM as high as 205%. This is similar to shrublands, where
the upper value of live FM that supports wildfire has been reported at 200% and 211% in some studies
[Chuvieco et al., 2009; Schoenberg et al., 2003], although lower values have also been reported: 160–170%
[Dennison and Moritz, 2009; Jurdao et al., 2012]. The first live FM threshold (113.6–167.8%), although highly
variable across climate zones and vegetation groups, is consistent with similar research in shrublands, where
burn area increases substantially faster when live FM declines below 140% [Schoenberg et al., 2003]. The sec-
ond live FM threshold (98.5–105.9%) is similar to results reported elsewhere for forests, with live FM thresh-
olds of between 100 and 120% identified for Pacific Northwest conifer forests [Agee et al., 2002]. Thresholds
reported for shrublands are generally lower: 79–111% [Chuvieco et al., 2009; Dennison and Moritz, 2009;
Dennison et al., 2008]. The slightly higher thresholds found in this study compared to shrublands may be a
function of the relatively high inherent flammability of the tree foliage in the Eucalyptus-dominated wood-
lands and forests of our study area. Dimitrakopoulos and Papaioannou [2001] also reported a higher ME for
Eucalyptus camaldulensis (>140%), compared to other common Mediterranean fuels. Additionally, forests
and woodlands typically occur in wetter parts of the landscape than shrublands and therefore are likely to
have higher live FM compared to shrublands, even when dead FM is critically low and ambient weather is
conducive to the rapid spread of fire.

In general, with the exception of some restricted wet vegetation types, the live and dead threshold FM values
found in our study may have reflected the large sampling scales which inherently aggregate moisture values
across diverse terrain and vegetation variations within the broad vegetation types. Continuity of dry patches
is required to provide the potential for large fires [Caccamo et al., 2012a]. For this to occur, many parts of the
landscape that are normally moist (e.g., shaded slopes and gullies) must dry out (e.g., FMmust fall belowME).
While this drying is occurring, FM in other parts of the landscape, such as ridges and north facing slopes, may
reach levels considerably lower than hypothetical ME values. Thus, the FM thresholds reported here were
likely to reflect these dynamics and variability.

At the wetter range of FM values, we found that FM thresholds were inconsistent across climate zones and
vegetation groups. This is likely a function of the differing data set sizes, rather than a reflection of any inher-
ent differences between live fuels across climate zones or vegetation groups. For example, for woodlands
with a wet understorey, which represented the smallest data set (only 1.3% of the total area of fires sampled),
we identified three distinct FM thresholds from segmented regression for both live and dead fuels. However,
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the increase in fire activity across FM thresholds was only marginal, particularly when compared with other
vegetation groups (Figures 2g and 2h). This highlights a limitation of this approach to identifying FM
thresholds, with smaller data sets likely to generate less accurate estimates of FM thresholds than larger data
sets, as expected from statistical first principles.

4.2. Temporal Dynamics of Fuel Moisture and Area Burned

The moisture content of fine, suspended, dead fuels is driven by ambient atmospheric conditions. As a result,
dead FM can rapidly transform from a wet to dry state. In contrast, live fuels dry out more slowly, in response
to declining soil moisture. Because of these temporal differences in wetting and drying cycles, dead fuels are
more consistently available to burn over the summer months, while the availability of live fuels shows greater
interannual variability, coincident with wildfire activity (Figure 3). Thus, critical moisture values of dead fuels
may be considered the first necessary precondition, or switch, that must be activated for wildfires to occur,
followed by critical moisture values of live fuels. Further, the calculated live FM thresholds are likely to be
dependent to some extent on dead FM. For example, if dead FM is low enough to ignite a fire, the fire
may not be sustained if live FM is above critical values. These potential interdependencies between fuel com-
ponents are worthy of examination in future studies. By examining live and dead FM separately we are max-
imizing the potential for other uses of this approach. For example, land managers may target prescribed
burning ignitions for when dead FM is low enough to burn litter but live FM high enough that the fire does
not spread into the crown. This could also be examined in future studies.

While the moisture content of fuels is clearly an important precondition for fire occurrence, it may not be the
most important, particularly given that dead FM can remain below critical threshold values for several
months of the year. The occurrence of weather conditions conducive to the rapid spread of fire and the
occurrence of ignitions are also necessary switches that must occur in order to exploit the potential for large
wildfires provided by landscape-level templates of highly continuous dry fuels.

Although live fuels dry out more slowly than dead fuels, live FM can still move across critical thresholds of FM
in as little as a month (Figure 3 [Caccamo et al., 2012a]). This demonstrates the importance of monitoring live
FM at high temporal resolution to detect shifts in moisture content. Here we demonstrated the capacity of
MODIS 8 day composite data to detect such shifts. This, combined with daily time step climatic data for cal-
culating dead FM, has the potential to immediately improve fire risk assessments in forests and woodlands
globally. Moreover, the approach presented here can be readily used within Earth systemmodels to examine
future climate variability and associated fire risk.
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