
Infrastructure Event
Readiness

AWS Guidelines and Best Practices

July 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents

Introduction 1

Infrastructure Event Readiness Planning 2

What is a Planned Infrastructure Event? 2

What Happens During a Planned Infrastructure Event? 2

Design Principles 3

Discrete Workloads 4

Automation 7

Diversity/Resiliency 9

Cost Optimization 13

Event Management Process 14

Infrastructure Event Schedule 14

Planning and Preparation 14

Operational Readiness (Day of Event) 23

Post-Event Activities 25

Conclusion 28

Contributors 28

Further Reading 28

Appendix 29

Detailed Architecture Review Checklist 29

Abstract
This whitepaper describes guidelines and best practices for customers with
production workloads deployed on Amazon Web Services (AWS) who want to
design and provision their cloud-based applications to handle planned scaling
events, such as product launches or seasonal traffic spikes, gracefully and
dynamically. We address general design principles as well as provide specific
best practices and guidance across multiple conceptual areas of infrastructure
event planning. We then describe operational readiness considerations and
practices, and post-event activities.

Amazon Web Services – Infrastructure Event Readiness

Page 1

Introduction
Infrastructure event readiness is about designing for and preparing for
anticipated and significant events that have an impact on your business. These
are events during which it is critical that the company web service is reliable,
responsive, and highly fault tolerant, under all conditions and changes in traffic
patterns. Such events can include expansion into new territories, new product
or feature launches, seasonal events, or significant business announcements or
marketing events.

An infrastructure event that is not properly planned for can have a negative
impact on your company’s business reputation, continuity, or finances.
Infrastructure event failures can take the form of unanticipated service failures,
load-related performance degradations, network latency, storage capacity
limitations, system limits such as API call rates, finite quantities of available IP
addresses, poor understanding of the behaviors of components of an application
stack due to insufficient monitoring, unanticipated dependencies on a third-
party service or component not set up for scale, or some other unforeseen error
condition.

To minimize the risk of unanticipated failures during an important event,
companies should invest time and resources to plan and prepare, to train
employees, and to design and document relevant processes. The amount of
investment in infrastructure event planning for a particular cloud-enabled
application or set of applications can vary depending on the system’s complexity
and global reach. Regardless of the scope or complexity of a company’s cloud
presence, the design principles and best practices guidance provided in this
whitepaper are the same.

With Amazon Web Services (AWS), your company can scale up its
infrastructure in preparation for a planned scaling event in a dynamic,
adaptable, pay-as-you-go basis. Amazon’s rich array of elastic and
programmable products and services gives your company access to the same
highly secure, reliable, and fast infrastructure that Amazon uses to run its own
global network and enables your company to nimbly adapt in response to its
own rapidly changing business requirements.

This whitepaper outlines best practices and design principles to guide your
infrastructure event planning and execution, and shows you how you can use

Amazon Web Services – Infrastructure Event Readiness

Page 2

AWS services to ensure that your applications will be ready to scale up and scale
out as your business needs dictate.

Infrastructure Event Readiness Planning
This section describes what constitutes a planned infrastructure event and the
kinds of activities that typically occur during such an event.

What is a Planned Infrastructure Event?
A planned infrastructure event is a business-driven, anticipated, and scheduled
event window during which it is business critical to maintain a highly
responsive, highly scalable, and fault-tolerant web service. This requirement can
be driven by marketing campaigns, news events related to the company’s line of
business, product launches, territorial expansion, or any similar activity that
results in additional traffic to a company’s web-based applications and
underlying infrastructure.

What Happens During a Planned Infrastructure
Event?
The primary concern in most planned infrastructure events is being able to add
capacity to your web infrastructure to meet higher traffic demands. In a
traditional on-premises environment provisioned with physical compute,
storage, and networking resources, a company’s IT department would have to
provision additional capacity based on their best estimates of a theoretical
maximum peak. This incurs the risk of insufficiently provisioning capacity and
the company suffering business loss due to overloaded web servers, slow
response times, and other run time errors.

Within the AWS Cloud, infrastructure is programmable and elastic. This means
it can be provisioned quickly in response to real-time demand. It also means
that it can be configured to respond to system metrics in an automated,
intelligent, and dynamic fashion—growing or shrinking resources such as web
server clusters, provisioned throughput, storage capacity, available compute
cores, number of streaming shards, and so on, as needed.

Additionally, many AWS services are fully managed. These services include
storage, database, analytic, application, and deployment services. This means

Amazon Web Services – Infrastructure Event Readiness

Page 3

that AWS customers don’t have to worry about the complexities of configuring
these services for a high-traffic event. AWS fully managed services are designed
for scalability and high availability.

Typically, in preparation for a planned infrastructure event, AWS customers
conduct a system review to evaluate their application architecture and
operational readiness, considering both scalability and fault tolerance. Traffic
estimates are taken into account and compared to normal business activity
performance, and capacity metrics and estimates of required additional capacity
are determined. Any potential bottlenecks and third-party upstream and
downstream dependencies are identified and addressed. Geography is also
considered, if the planned event includes an expansion of territory or
introduction of new audiences. Expansion into additional AWS Regions or
Availability Zones is undertaken in advance of the planned event. A review of
the customer’s AWS dynamic system settings, such as Auto Scaling, load
balancing, geo-routing, high availability, and failover measures is also
conducted to ensure these are configured to correctly handle the expected
increases in volume and transaction rate. Static settings such as AWS resource
limits and location of content delivery network (CDN) origin servers are also
considered and modified as needed.

Monitoring and notification mechanisms are also reviewed and enhanced as
needed to provide real-time transparency into events as they occur and for post-
mortem analysis after the planned event has completed.

During the planned event, AWS customers can also open support cases with
AWS if anything requires troubleshooting or real-time support, such as a server
going down. Customers who subscribe to the AWS Enterprise Support plan have
the additional flexibility of being able to talk with support engineers
immediately and to raise critical severity cases if rapid response is required.

After the event, AWS resources are designed to automatically scale down to
appropriate levels to match traffic levels, or continue to scale up, as events
dictate.

Design Principles
Preparation for planned events starts with a good design at the beginning of any
implementation of a cloud-based application stack or workload.

Amazon Web Services – Infrastructure Event Readiness

Page 4

Discrete Workloads
A good design is essential to the effective management of planned-event
workloads at both normal and elevated traffic levels. Make sure from the start to
design discrete and independent functional groupings of resources centered on
a specific business application or product. This section describes the multiple
dimensions to this design goal.

Tagging
Tags are used to label and organize resources. They are an essential component
of managing infrastructure resources during a planned infrastructure event. On
AWS, tags are customer-managed, key-value labels applied to an individual
managed resource, such as a load balancer or an Amazon Elastic Compute
Cloud (EC2) instance. By referencing well-defined tags that have been attached
to AWS resources, you can easily identify which resources within your overall
infrastructure comprise your planned event workload. Then, using this
information, you can do the work of analyzing it for preparedness. Tags can also
be used for cost-allocation purposes.

Tags can be used to organize EC2 instances, Amazon Machine Image (AMI)
images, load balancers, security groups, Amazon Relational Database Service
(RDS) resources, Amazon Virtual Private Cloud (VPC) resources, Amazon Route
53 health checks, and Amazon Simple Storage Service (S3) buckets, for
example.

For more information on effective tagging strategies, refer to AWS Tagging
Strategies.1

For examples of how to create and manage tags, and put them in Resource
Groups, see Resource Groups and Tagging for AWS.2

Loose Coupling
When architecting for the cloud, you should design every component of your
application stack to operate as independently as possible from each other. This
gives cloud-based workloads the advantage of resiliency and scalability.

You can reduce interdependencies between components in a cloud-based
application stack by designing each component as a black box with well-defined
interfaces for inputs and outputs (for example, RESTful APIs). If the

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://aws.amazon.com/blogs/aws/resource-groups-and-tagging/

Amazon Web Services – Infrastructure Event Readiness

Page 5

components aren’t applications, but are services that together comprise an
application, this is known as a microservices architecture. For communication
and coordination between application components, you can use event-driven
notification mechanisms such as AWS message queues to pass messages
between the components, as shown in Figure 1.

Figure 1. Loose coupling using RESTful interfaces and message queues

Using mechanisms such as these, a change or a failure in one component has
much less chance of cascading to other components. For example, if a server in
a multi-tiered application stack becomes unresponsive, applications that are
loosely coupled can be designed to bypass the unresponsive tier or switch to
degraded mode alternative transactions.

Amazon Web Services – Infrastructure Event Readiness

Page 6

Loosely coupled application components using intermediate message queues
can also be more easily designed for asynchronous integration. Because an
application’s components do not employ direct point-to-point communication
but instead use an intermediate and persistent messaging layer (for example, an
Amazon Simple Queue Service (SQS) queue or a streaming data mechanism like
Amazon Kinesis Streams), they can withstand sudden increases in activity in
one component while downstream components process the incoming queue. Or
if there is a component failure, the messages persist in the queues or streams
until the failed component can recover.

For more information on message queueing and notification services offered by
AWS, please refer to Amazon Simple Queue Service.3

Services, Not Servers
Managed services and service endpoints free you from having to worry about
security or access, backups or restores, patch management or change control,
setting up monitoring or reporting, or having to administer many of the
traditional systems management details. These cloud resources can be pre-
provisioned for high availability and resilience, using multiple Availability Zone
(or, in some cases, multiple Region) configurations. They can be scaled up or
down, often with no downtime, and you can configure them on the fly through
either the AWS Management Console or API/CLI calls.

Managed services and service endpoints can be used to power customer
application stacks with capabilities such as relational and NoSQL database
systems, data warehousing, event notification, object and file storage, real-time
streaming, big data analytics, machine learning, search, transcoding, and many
others. An endpoint is a URL that is the entry point for an AWS service. For
example, https://dynamodb.us-west-2.amazonaws.com is an entry point for the
Amazon DynamoDB service.

By using managed services and their service endpoints, you can leverage the
power of production-ready resources as part of your design solution for
handling increased volume, reach, and transaction rates during a planned
infrastructure event. You don’t need to provision and administer your own
servers that perform the same functions as managed services.

https://aws.amazon.com/sqs/

Amazon Web Services – Infrastructure Event Readiness

Page 7

For more information on AWS service endpoints, see AWS Regions and
Endpoints.4 See also Amazon EMR,5 Amazon RDS,6 and Amazon ECS7 for
examples of managed services that have endpoints.

Serverless Architectures
Another strategy that can effectively address the need to respond to dynamically
changing processing loads during a planned infrastructure event is to leverage
AWS Lambda. Lambda is an event-driven, serverless computing platform. It’s a
dynamically invoked service that runs Python, Node.js, or Java code in response
to events (via notifications) and automatically manages the compute resources
specified by that code. Lambda doesn’t require the pre-provisioning of Amazon
EC2 compute resources. The Amazon Simple Notification Service (Amazon
SNS) can be configured to trigger Lambda functions. For details about Amazon
SNS, see Amazon Push Notification Service.8

Lambda serverless functions can execute code that accesses or invokes other
AWS services such as database operations, data transformations, object or file
retrieval, or even scaling operations in response to external events or internal
system load metrics. AWS Lambda can also generate new notifications or events
of its own, and even launch other Lambda functions.

AWS Lambda provides the ability to exercise fine control over scaling
operations during a planned infrastructure event. For example, Lambda can be
used to extend the functionality of Auto Scaling operations to perform actions
such as notifying third-party systems that they also need to scale, or for adding
additional network interfaces to new instances as they are provisioned. See
Using AWS Lambda with Auto Scaling Lifecycle Hooks9 for examples of how to
use Lambda to customize scaling operations.

For more information on AWS Lambda see What is AWS Lambda?10

Automation
Auto Scaling
A critical component of infrastructure event planning is Auto Scaling. Being able
to automatically scale an application’s capacity up or down according to pre-
defined conditions helps to maintain application availability during fluctuations
in traffic patterns and volume that occur in a planned infrastructure event.

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/emr/
https://aws.amazon.com/rds/
https://aws.amazon.com/ecs/
https://aws.amazon.com/sns/
https://aws.amazon.com/blogs/compute/using-aws-lambda-with-auto-scaling-lifecycle-hooks/
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html

Amazon Web Services – Infrastructure Event Readiness

Page 8

AWS provides Auto Scaling capability across many its resources, including EC2
instances, database capacity, containers, etc.

Auto Scaling can be used to scale groupings of instances, such as a fleet of
servers that comprise a cloud-based application, so that they scale automatically
based on specified criteria. Auto Scaling can also be used to maintain a fixed
number of instances even when an instance becomes unhealthy. This automatic
scaling and maintaining of the number of instances is the core functionality of
the Auto Scaling service.

Auto Scaling maintains the number of instances that you specify by performing
periodic health checks on the instances in the group. If an instance becomes
unhealthy, the group terminates the unhealthy instance and launches another
instance to replace it.

Auto Scaling policies can be used to automatically increase or decrease the
number of running EC2 instances in a group of servers to meet changing
conditions. When the scaling policy is in effect, the Auto Scaling group adjusts
the desired capacity of the group and launches or terminates the instances as
needed, either dynamically or alternatively on a schedule, if there is a known
and predictable ebb and flow of traffic.

Restarts and Recovery
An important design element in any planned infrastructure event is to have
procedures and automation in place to handle compromised instances or
servers and to be able to recover or restart them on the fly.

EC2 instances can be set up to automatically recover when a system status check
of the underlying hardware fails. The instance will be rebooted (on new
hardware if necessary) but will retain its instance ID, IP address, Elastic IP
addresses, Amazon Elastic Block Store (EBS) volume attachments, and other
configuration details. For more information on auto recovery of EC2 instances,
see Auto Recovery of Amazon EC2.11

Configuration Management/Orchestration
Integral to a robust, reliable, and responsive planned infrastructure event
strategy is the incorporation of configuration management and orchestration
tools for individual resource state management and application stack
deployment.

https://aws.amazon.com/blogs/aws/new-auto-recovery-for-amazon-ec2/

Amazon Web Services – Infrastructure Event Readiness

Page 9

Configuration management tools typically handle the provisioning and
configuration of server instances, load balancers, Auto Scaling, individual
application deployment, and application health monitoring. They also provide
the ability to integrate with additional services such as databases, storage
volumes, and caching layers.

Orchestration tools, one layer of abstraction above configuration management,
provide the means to specify the relationships of these various resources,
allowing customers to provision and manage multiple resources as a unified
cloud application infrastructure, without worrying about resource
dependencies.

Because these tools define and describe individual resources as well as their
relationships as code, this code can be version controlled, facilitating the ability
to roll back to prior versions or try new branches of code for testing and
development purposes. It is also possible to define orchestrations and
configurations optimized for an infrastructure event, and then roll back to the
standard configuration following such an event.

Amazon Web Services recommends the following tools to achieve hardware as
code deployments and orchestrations:

• AWS Config with Config Rules or an AWS Config Partner to provide
a detailed, visual, and searchable inventory of AWS resources,
configuration history, and resource configuration compliance.

• AWS CloudFormation or third-party AWS-resource orchestration
tools to manage AWS resource provisioning, update, and termination.

• AWS OpsWorks, Elastic Beanstalk, or third-party server
configuration management tools to manage operating system (OS) and
application configuration changes.

See Infrastructure Configuration Management for more details about ways to
manage hardware as code.12

Diversity/Resiliency

https://aws.amazon.com/answers/configuration-management/aws-infrastructure-configuration-management/

Amazon Web Services – Infrastructure Event Readiness

Page 10

Removing Single Points of Failure and Bottlenecks
When planning for an infrastructure event you should analyze your application
stacks for any single points of failure (SPOF) or performance bottlenecks. Is
there any single instance of a server, data volume, database, NAT gateway, or
load balancer, for example, that would cause the entire application, or
significant portions of it, to stop working if it were to fail?

Secondly, as the cloud-based application scales up in traffic or transaction
volume, is there any part of the infrastructure that will encounter a physical
limit or constraint, such as network bandwidth, or CPU processing cycles as the
volume of data grows along the data flow path?

These risks, once identified, can be mitigated in a variety of ways.

Design for Failure
As mentioned earlier, using loose coupling and message queues with RESTful
interfaces is a good strategy for achieving resiliency against individual resource
failures or fluctuations in traffic or transaction volume. Another dimension of
resilient design is to configure application components to be as stateless as
possible.

Stateless applications require no knowledge of prior transactions and have loose
dependency on other application components. They store no session
information. A stateless application can scale horizontally, as a member of a
pool or cluster, since any request can be handled by any instance within the pool
or cluster. You can simply add more resources as needed using Auto Scaling and
health check criteria to programmatically handle fluctuating compute, capacity,
and throughput requirements. Once an application is designed to be stateless, it
could potentially be refactored onto serverless architecture, using Lambda
functions in the place of EC2 instances. Lambda functions also have built-in
dynamic scaling capability.

In the situation where an application resource such as a web server cannot avoid
having state data about transactions, you should consider designing your
applications so that the portions of the application that are stateful are
decoupled from the servers themselves. For example, an HTTP cookie or
equivalent state data could be stored in a database, such as DynamoDB, or in an
S3 bucket or EBS volume.

Amazon Web Services – Infrastructure Event Readiness

Page 11

If you have a complex multistep workflow where there is a need to track the
current state of each step in the workflow, Amazon Simple Workflow Service
(SWF) can be used to centrally store execution history and make these
workloads stateless.

Another resiliency measure is to employ distributed processing. For use cases
that require processing large amounts of data in a timely manner where one
single compute resource can’t meet the need, you can design your workloads so
that tasks and data are partitioned into smaller fragments and executed in
parallel across a cluster of compute resources. Distributed processing is
stateless, since the independent nodes on which the partitioned data and tasks
are being processed may fail. In this case, auto-restart of failed tasks on another
node of the distributed processing cluster is automatically handled by the
distributed processing scheduling engine.

AWS offers a variety of distributed data processing engines such Amazon EMR,
Amazon Athena, and Amazon Machine Learning, each of which is a managed
service providing endpoints and shielding you from any complexity involving
patching, maintenance, scaling, failover, etc.

For real-time processing of streaming data, Amazon Kinesis Streams can
partition data into multiple shards that can be processed by multiple consumers
of that data, such as Lambda functions or EC2 instances.

For more information on these types of workloads, see Big Data Analytics
Options on AWS.13

Multi-Zone and Multi-Region
AWS services are hosted in multiple locations worldwide. These locations are
composed of Regions and Availability Zones. A Region is a separate geographic
area. Each Region has multiple, isolated locations, which are known as
Availability Zones. AWS provides customers with the ability to place resources,
such as instances, and data in multiple locations.

You should design your applications so that they are distributed across multiple
Availability Zones and Regions. In conjunction with distributing and replicating
resources across Availability Zones and Regions, you should design your apps
using load balancing and failover mechanisms so that your application stacks

https://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS%20.pdf
https://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS%20.pdf

Amazon Web Services – Infrastructure Event Readiness

Page 12

automatically re-route data flows and traffic to these alternative locations in the
event of a failure.

Load Balancing
With the Elastic Load Balancing service (ELB), a fleet of application servers can
be attached to a load balancer and yet be distributed across multiple Availability
Zones. When the EC2 instances in a particular Availability Zone sitting behind a
load balancer fail their health checks, the load balancer stops sending traffic to
those nodes. When combined with Auto Scaling, the number of healthy nodes
are automatically rebalanced with the other Availability Zones and no manual
intervention is required.

It’s also possible to have load balancing across Regions by using Amazon Route
53 and latency-based DNS routing algorithms. See Latency Based Routing for
more information.14

Load Shedding Strategies
The concept of load shedding in cloud-based infrastructures consists of
redirecting or proxying traffic elsewhere to relieve pressure on the primary
systems. In some cases, the load shedding strategy can be a triage exercise,
where you can choose to drop certain streams of traffic or reduce functionality
of your applications to lighten the processing load and to be able to serve at
least a subset of the incoming requests.

There are numerous techniques that can be used for load shedding. Latency-
based DNS routing is one method. Another method is to use caching. Caching
can take place close to the application, using an in-memory caching layer such
as Amazon ElastiCache. Or you can use a caching layer that is closer to the
user’s edge, using a global content distribution network such as Amazon
CloudFront.

For more information about ElastiCache and CloudFront, see Getting Started
with ElastiCache15 and Amazon CloudFront CDN.16

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-latency
https://aws.amazon.com/elasticache/
https://aws.amazon.com/cloudfront/

Amazon Web Services – Infrastructure Event Readiness

Page 13

Cost Optimization
Reserved vs Spot vs On-Demand
Closely tied to the ability to dynamically provision resources in the cloud based
on systems metrics and other performance and health check criteria, is the
ability to control the costs of provisioning resources in the cloud. With Auto
Scaling, resource utilization can be closely matched to actual processing and
storage needs, minimizing wasteful expense and underutilized resources.

Another dimension of cost control in the cloud is being able to choose from
among On-Demand instances, Reserved Instances (RIs), or Spot Instances.
There is also a reservation capacity capability for DynamoDB.

With On-Demand instances you only pay for the EC2 instances you use. On-
Demand instances let you pay for compute capacity by the hour with no long-
term commitments.

Amazon EC2 Reserved Instances provide a significant discount (up to 75%)
compared to On-Demand instance pricing and provide a capacity reservation
when used in a specific Availability Zone. But aside from the availability
reservation and the billing discount, there is no functional difference between
Reserved Instances and On-Demand instances.

Spot Instances allow you to bid on spare Amazon EC2 computing capacity. Spot
Instances are often available at a discount compared to On-Demand pricing,
which significantly reduces the cost of running your cloud-based applications.

When designing for the cloud, some use cases are better suited for the use of
Spot Instances than others. For example, since Spot Instances can be retired at
any time once the bid price goes above your bid, you should consider running
Spot Instances only for relatively stateless and horizontally scaled application
stacks. For stateful applications or expensive processing loads, Reserved
Instances or On-Demand instances might be better. For mission-critical
applications where capacity limitations are out of the question, Reserved
Instances are the optimal choice.

 See Reserved Instances17 and Spot Instances18 for more details.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts-on-demand-reserved-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

Amazon Web Services – Infrastructure Event Readiness

Page 14

Event Management Process
Planning for an infrastructure event is a group activity involving application
developers, administrators, and business stakeholders. Weeks prior to an
infrastructure event, you should established a cadence of recurring meetings
involving the key technical staff who own and operate each of the key
infrastructure components of the web service.

Infrastructure Event Schedule
Planning for an infrastructure event should begin several weeks prior to the
date of the event. A typical timeline in the planned event lifecycle is shown in
Figure 2.

Figure 2. Typical infrastructure event timeline

Planning and Preparation
Schedule
We recommend the following schedule of activities in the weeks leading up to
an infrastructure event:

Week 1:

• Nominate a team to drive planning and engineering for the
infrastructure event.

Amazon Web Services – Infrastructure Event Readiness

Page 15

• Conduct meetings between stakeholders to understand the parameters
of the event (scale, duration, time, geo reach, affected workloads) and
the success criteria.

• Engage any downstream or upstream partners and vendors.

Week 2-3:

• Review architecture and make adjustments as needed.

• Conduct operational review; make adjustments as needed.

• Follow best practices described in this paper and in footnoted
references.

• Identify risks and develop mitigation plans.

• Develop a planned event runbook.

Week 4:

• Review all cloud vendor services that require scaling based on expected
load.

• Check service limits, and increase limits as needed.

• Set up monitoring dashboard and alerts on defined thresholds.

Architecture Review
An essential part of your preparation for an infrastructure event is an
architectural review of the application stack that will experience the upsurge in
traffic. The purpose of the review is to verify and identify potential areas of risk
to either the scalability or reliability of the application and to identify
opportunities for optimization in advance of the event.

AWS provides its Enterprise Support customers a framework for reviewing
customer application stacks that is centered around five design pillars. These
are Security, Reliability, Performance Efficiency, Cost Optimization, and
Operational Excellence, as described below.

Amazon Web Services – Infrastructure Event Readiness

Page 16

Table 1: Pillars of well-architected applications

Pillar Name Pillar Definition Relevant Area of Interest

Security The ability to protect information, systems,
and assets while delivering business value
through risk assessments and mitigation
strategies.

Identity Management, Encryption,
Monitoring, Logging, Key Management,
Dedicated Instances, Compliance,
Governance

Reliability The ability of a system to recover from
infrastructure or service failures, dynamically
acquire computing resources to meet demand,
and mitigate disruptions such as
misconfigurations or transient network issues.

Service Limits, Multiple Availability Zones
and Regions, Scalability, Health
Check/Monitoring, Backup/DR,
Networking, Self-Healing Automation

Performance
Efficiency

The ability to use computing resources
efficiently to meet system requirements, and
to maintain that efficiency as demand changes
and technologies evolve.

Right AWS Services, Resource Utilization,
Storage Architecture, Caching, Latency
Requirements

Cost
Optimization

The ability to avoid or eliminate unneeded cost
or suboptimal resources.

Spot/Reserved Instances, Environment
Tuning, Service Selection, Volume
Tuning, Account Management,
Consolidated Billing, Decommission
Resources

Operational
Excellence

The ability to run and monitor systems to
deliver business value and to continually
improve supporting processes and
procedures.

Runbooks, Playbooks, CI/CD, Game
Days, Infrastructure as Code, RCAs

A detailed checklist of architectural review items, which can be used to review
an AWS-based application stack, is available in the Appendix of this whitepaper.

Operational Review
In addition to an architectural review, which is more focused on the design
components of an application, you should review your cloud operations and
management practices to evaluate how well you are addressing the management
of your cloud workloads. The goal of the review is to identify operational gaps
and issues and take actions in advance of the event to minimize them.

AWS offers a cloud operations review to its Enterprise Support customers,
which can be a valuable tool for preparing for an infrastructure event. The
review focuses on assessing the following areas:

Amazon Web Services – Infrastructure Event Readiness

Page 17

• Preparedness–You must have the right mix of organizational structure,
processes, and technology. You should have clear roles and
responsibilities defined for the staff managing your application stack.
Processes should be defined in advance to align with the event.
Procedures should be automated where possible.

• Monitoring–Effective monitoring measures how an application is
performing. Monitoring is critical to detecting anomalies before they
become problems and provides opportunities to minimize impact from
adverse events.

• Operations–Operational activities need to be carried out in a timely and
reliable way leveraging automation wherever possible, while also dealing
with unexpected operational events that require escalations.

• Optimization–Conduct a post-mortem analysis using collected metrics,
operational trends, and lessons learned to capture and report
opportunities for improvement during future events. Optimization plus
preparedness creates a feedback loop to address operational issues and
prevent them from reoccurring.

Understand AWS Service Limits
During a planned infrastructure event, it is crucial to avoid exceeding any
service limits that may be imposed by a cloud provider while scaling an
application or workload.

Cloud services providers typically have limits on the different resources that you
can use. These are usually imposed on a per-account and per-region basis. The
resources affected include instances, volumes, streams, serverless invocations,
snapshots, number of VPCs, security rules, and so on. They are intended as a
safety measure against runaway code or rogue actors attempting to abuse
resources and as a control to help minimize billing risk.

Some service limits are raised automatically over time as you expand your
footprint in the cloud, though most of these services require that you request
limit increases by opening a support case. While some service limits can be
increased via support cases, other services have limits that can’t be changed.

AWS provides Enterprise and Business support customers with Trusted
Advisor, which provides a Limit Check dashboard to allow customers to
proactively manage all service limits.

Amazon Web Services – Infrastructure Event Readiness

Page 18

For more information on limits for various AWS services and how to check
them, see AWS Service Limits19 and Trusted Advisor.20

Understand Patterns
Baselines
You should document “back to healthy” values for key metrics prior to the
commencement of an infrastructure event. This helps you to determine when an
application/service is safely returned to normal levels following the
completion/end of the event. For example, identifying that the normal
transaction rate through a load balancer is 2,500 requests per second will help
determine when it is safe to begin wind down procedures after the event.

Data Flows and Dependencies
Understanding how data flows through the various components of an
application helps you identify potential bottlenecks and dependencies. Are the
application tiers or components that are consumers of data in a data flow right
sized and set up to auto scale correctly if the tiers or components in an
application stack that are producers of data scale upwards? In the event of a
component failure, can data be queued up until that component recovers? Are
any downstream or upstream data providers or consumers scalable in response
to your event?

Proportionality
Another consideration to review in preparing for an infrastructure event is the
proportionality of scaling required by the various components of an application
stack. This proportionality is not always one-to-one. For example, a ten-fold
increase in transactions per second across a load balancer might require a
twenty-fold increase in storage capacity or number of streaming shards or
number of database read and write operations, due to processing that might be
taking place in the front-facing application.

Communications Plan
Prior to the event, you should develop a communications plan. Gather a list of
internal stakeholders and support groups and identify who should be contacted
at various stages of the event in various scenarios, such as beginning of the
event, during the event, end of the event, post-event analysis, emergency
contacts, contacts during troubleshooting situations, etc.

Persons and groups to be contacted may include the following:

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://aws.amazon.com/about-aws/whats-new/2014/07/31/aws-trusted-advisor-security-and-service-limits-checks-now-free/

Amazon Web Services – Infrastructure Event Readiness

Page 19

• Stakeholders

• Operations managers

• Developers

• Support teams

• Cloud service provider teams

• Network operations center (NOC) team

As you gather a list of internal contacts you should also develop a contact list of
external stakeholders involved with the continuous live delivery of the
application. These stakeholders include partners and vendors supporting key
components of the stack, downstream and upstream vendors providing external
services, data feeds, authentication services, and so on.

This external contact list should also include the following:

• Infrastructure hosting vendors

• Telecommunications vendors

• Live data streaming partners

• PR marketing contacts

• Advertising partners

• Technical consultants involved with service engineering

Ask for the following information from each provider:

• Live points of contact during time of event

• Critical support contact and escalation process

• Name, telephone number, and email address

• Verification that live technical contacts will be available

AWS customers subscribed to Enterprise Support also have Technical Account
Managers (TAMs) assigned to their account who can coordinate and verify that
dedicated AWS support staff is aware of and prepared for support of the event.
TAMs are also on call during the event, present in the war room, and available
to drive support escalations if they are needed.

Amazon Web Services – Infrastructure Event Readiness

Page 20

NOC Preparation
Prior to the event, you should instruct your operations and/or developer team to
create a live metrics dashboard that monitors each critical component of the
web service in production as the event occurs. Ideally, the dashboard should
automatically present updated metrics every minute or at whatever interval is
suitable and effective during the event.

Consider monitoring the following components:

• Resource utilization of each server (CPU, disk, and memory utilization)

• Web service response time

• Web traffic metrics (users, page views, sessions)

• Web traffic per visitor region (global customer segments)

• Database server utilization

• Marketing flow conversion funnels, such as conversion rates and fallout
percentage

• Application error logs

• Canary monitoring

Amazon CloudWatch provides a means to gather most of these metrics from
AWS resources into a single pane of glass using CloudWatch custom
dashboards. Additionally, CloudWatch offers the capability to import custom
metrics into CloudWatch wherever AWS isn’t already providing that metric
automatically. See the Monitoring section of this paper for more details on AWS
monitoring tools and capabilities.

Runbook Preparation
You should develop a runbook in preparation for the infrastructure event. A
runbook is an operational manual containing a compilation of procedures and
operations that your operators will carry out during the event. Event runbooks
can be outgrowths of existing runbooks used for routine operations and
exception handling. Typically, a runbook contains procedures to begin, stop,
supervise, and debug a system. It should also describe procedures for handling
unexpected events and contingencies.

A runbook should include the following sections:

Amazon Web Services – Infrastructure Event Readiness

Page 21

• Event details: Briefly describes of the event, success criteria, media
coverage, event dates, and contact details of the main stakeholders from
the customer side and AWS.

• List of AWS services: Enumerates all AWS services to be used during
the event. Also, the expected load on these services, Regions affected,
and account IDs.

• Architecture and application review: Documents load testing
results, any stress points in the infrastructure and application design,
resiliency measures for the workload, single points of failure, and
potential bottlenecks.

• Operational review: Highlights monitoring setup, health criteria,
notification mechanisms, and service restoration procedures.

• Preparedness checklist: Includes such considerations as service
limits checks, pre-warming of application stack components such as load
balancers, pre-provisioning of resources such as stream shards,
DynamoDB partitions, S3 partitions, and so on. For more information,
see the Architecture Review Detailed Checklist in the Appendix of this
whitepaper.

Monitor
Monitoring Plan
Database, application, and operating system monitoring is crucial to ensure a
successful event. Comprehensive monitoring systems should be set up so that
you can effectively detect and respond immediately to serious incidents during
the infrastructure event. At a high level, an effective monitoring strategy ensures
that monitoring tools are instrumented at the appropriate level for an
application based on its business criticality. An effective incident management
strategy will incorporate both AWS and customer monitoring data with its event
and incident management tools and processes. Implementing a monitoring plan
that collectively gathers monitoring data from all of your AWS solution
segments will help immensely in debugging a complex failure if it occurs.

The monitoring plan should address the following questions:

• What monitoring tools and dashboards must be set up for the event?

• What are the monitoring objectives and the allowed thresholds? What
events will trigger actions?

Amazon Web Services – Infrastructure Event Readiness

Page 22

• What resources and what metrics from these resources will be
monitored and how often must they be polled?

• Who will perform the monitoring tasks? What monitoring alerts are in
place? Who will be alerted?

• What remediation plans have been set up for common and expected
failures? What about unexpected events?

• What is the escalation process in case of any failure?

The following AWS monitoring tools can be used as part of this strategy:

• Amazon CloudWatch: An out-of-the-box solution for AWS dashboard
metrics, monitoring, alerting, and automated provisioning.

• Amazon CloudWatch custom metrics: Used for operating systems,
application, and business metrics collection. The Amazon CloudWatch
API allows for the collection of virtually any type of custom metric.

• Amazon EC2 instance health: Used for viewing status checks and for
scheduling events for your instances based on their status, such as auto-
rebooting or restarting an instance.

• Amazon SNS: Used for setting up, operating, and sending event-driven
notifications.

• AWS X-Ray: Helps in debugging and analyzing distributed
applications and microservices architecture by analyzing data flows
across system components.

• Amazon Elasticsearch Service: Used for centralized log collection
and real-time log analysis. For rapid, heuristic detection of problems.

• Third-party tools: Used for a real-time analytics and full stack
monitoring and visibility.

• Standard operating system monitoring tools: Used for OS-level
monitoring.

For more details about AWS monitoring tools, see Automated and Manual
Monitoring.21 See also Using Amazon CloudWatch Dashboards22 and Publishing
Custom Metrics.23

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_automated_manual.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_automated_manual.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html

Amazon Web Services – Infrastructure Event Readiness

Page 23

Notifications
A crucial operational element in your design for infrastructure events is the
configuration of alarms and notifications to integrate with your monitoring
solutions. These alarms and notifications can be used with services such as AWS
Lambda to trigger actions based on the alert. Automating responses to
operational events is a key element to enabling mitigation, rollback, and
recovery with maximum responsiveness.

Tools should also be in place to centrally monitor workloads and create
appropriate alerts and notifications based on available logs and metrics that
relate to key operational indicators. This includes alerts and notifications for
out-of-bound anomalies, as well as service or component failures. Ideally, when
low-performance thresholds are crossed or failures occur, the system has been
architected to automatically self-heal or scale in response to such notifications
and alerts.

As previously noted, AWS offers services (Amazon SQS and Amazon SNS) to
ensure appropriate alerting and notification in response to unplanned
operational events, as well as for enabling automated responses.

Operational Readiness (Day of Event)
Plan Execution
On the day of the event, the core team involved with the infrastructure event
should be on a live conference call monitoring live dashboards. Runbooks
should be fully developed and available. Make sure that the communications
plan is well defined and known to all support staff and stakeholders, and that a
contingency plan is in place.

War Room
During the event, have a live conference bridge open with the following
participants:

• The primary responsible application and operations teams

• Operations team leadership

• Technical resources from external partners directly involved with
technical delivery

Amazon Web Services – Infrastructure Event Readiness

Page 24

• Business stakeholders

Throughout most of the event the conversation of this conference bridge should
be minimal. If an adverse operational event arises, the key people who can
respond to the event will already be on this bridge ready to act and consult.

Leadership Reporting
During the event, send an email hourly to key leadership stakeholders. This
update should include the following:

• Status summary: Green (on track), Yellow (issues encountered), Red
(major issue)

• Key metrics update

• Issues encountered, status of remedy plan, ETA to remedy

• Phone number of the war room conference bridge (in case anyone wants
to join)

At the conclusion of the event, a final summary email should be sent that
follows a similar format.

Contingency Plan
Each step in the preparation process for the event should have a corresponding
rollback plan that has been verified in a test environment.

Consider the following questions as you put together a rollback plan:

• What are the worst-case scenarios that can occur during the event?

• What type of events would cause a negative public relations impact?

• Which third-party components and services might fail during the event?

• Which metrics should be monitored that would indicate that a bad
scenario is occurring?

• What is the rollback plan for each possible scenario?

• How long will each rollback process take? What is the acceptable
Recovery Point Objective (RPO) and Recovery Time Objective (RTO)?
(See Using AWS for Disaster Recovery24 for more reading on these
concepts.)

https://aws.amazon.com/blogs/aws/new-whitepaper-use-aws-for-disaster-recovery/

Amazon Web Services – Infrastructure Event Readiness

Page 25

Consider the following types of rollbacks:

• Blue/Green Deployment: If rolling out a new production app or
environment, keep the prior production build online and available to
quickly switch back to.

• Warm Pilot: Launch a minimal environment in a second Region that
can quickly scale up if needed. In case of primary Region failure, quickly
scale up in the backup Region and switch traffic to the second Region.

• Maintenance Mode Error Pages: Check the error page facilities and
triggers at each layer of your web service. Be prepared to inject a more
specific message into these error pages as needed.

Test and document each rollback plan for each possible failure scenario.

Post-Event Activities
Post-Mortem Analysis
A post-mortem analysis is all too often overlooked because customers are
typically anxious to return to normal operations. However, we recommend that
you require a post-mortem analysis as part of any infrastructure event
management lifecycle. Post mortems allow you to collaborate with each team
involved and identify areas that might need further optimization, such as
operational procedures, implementation details, failover and recovery
procedures, etc. This is especially relevant if an application stack encountered
disruptions during the event. A post-mortem analysis of the event will also help
provide documentation if there is any need to develop root cause analysis (RCA)
documents.

Wind-Down Process
Immediately following the conclusion of the infrastructure event, the wind-
down process should begin. During this period, it’s advisable to continue
monitoring relevant applications and services to ensure traffic has reverted back
to normal production levels. Use any health dashboards created during the
preparation phase to verify the normalization of traffic and transaction rates.
Wind-down periods for some events may be linear and straightforward, while
others may experience uneven or more gradual reductions in volume. Some
traffic patterns may persist. For example, recovering from a surge in traffic
generally requires straightforward wind-down procedures, whereas something

Amazon Web Services – Infrastructure Event Readiness

Page 26

like an application deployment or expansion into a new geographical Region
may have long-lasting effects requiring you to carefully monitor new traffic
patterns and make additional monitoring part of the permanent application
stack.

At some point following the completion of the event, you must determine when
it is safe to end event management operations. Refer to the previously
documented “normal” values for key metrics to help determine when to declare
that an event is completed or ended. We recommend splitting wind-down
activities into two branches, which could have different timelines. Focus the
first branch on operational management of the event, such as sending
communications to internal and external stakeholders and partners, and the
resetting of service limits. Focus the second branch on technical aspects of the
wind-down such as scale-down procedures, validation of the health of the
environment, and criteria for determining whether architectural changes should
be reverted or committed.

The timeline associated with each of those branches can vary depending on the
nature of the event, key metrics, and customer comfort. We’ve outlined some
common tasks associated with each branch in the following table to help you
determine the appropriate time-to-end management for an event.

Table 2: Operational wind-down tasks

Task Description

Communications Notification to internal and external stakeholders that the event has ended. The
time-to-end communication should be aligned with the definition of the completion
of the event. Use “back to healthy” metrics to determine when it is appropriate to
end communication. Alternatively, you can end communication in tiers. For
example, you could end the war room bridge but leave the event escalation
procedures intact in case of post-event failures.

Service
Limits/Cost
Containment

Although it may be tempting to retain an elevated service limit after an event, keep
in mind that service limits are also used as a safety net. Service limits protect you
and your costs by preventing excess service usage, be that a compromised
account or misconfigured automation.

Reporting and
Analysis

Data collection and collation of event metrics, accompanied by analytical
narratives showing patterns, trends, problem areas, successful procedures, ad-
hoc procedures, timeline of event, and whether or not success criteria were met
should be developed and distributed to all internal parties identified in the
communications plan. A detailed cost analysis should also be developed, to show
the operational expense of supporting the event.

Amazon Web Services – Infrastructure Event Readiness

Page 27

Task Description

Optimization
Tasks

Enterprise organizations evolve over time as they continue to improve their
operations. Operational optimization requires the constant collection of metrics,
operational trends, and lessons learned from events to uncover opportunities for
improvement. Optimization ties back with preparation to form a feedback loop to
address operational issues and prevent them from reoccurring.

Table 3: Technical wind-down tasks

Task Description

Service
Limits/Cost
Containment

Although it may be tempting to retain elevated service limits after an event, keep in
mind that service limits also serve the purpose of being a safety net. Service limits
protect your operations and operating costs by preventing excess service usage, either
through malicious activity stemming from a compromised account or through
misconfigured automation.

Scale Down
Procedures

Revert resources that were scaled up during the preparation phase. These items are
unique to your architecture but the following examples are common:
EC2/RDS instance size
Auto Scaling configuration
Reserved capacity
Provisioned IOPS

Validation of
Health of
Environment

Compare to baseline metrics and review production health to verify that after the event
and after scale-down procedures have been completed, the systems affected are
reporting normal behavior.

Disposition
of
Architectural
Changes

Some changes made in preparation for the event may be worth keeping, depending on
the nature of the event and observation of operational metrics. For example expansion
into a new geographical Region might require a permanent increase of resources in
that Region, or raising certain service limits or configuration parameters, such as
number of partitions in a DB or shards in a stream of PIOPS in a volume, might be a
performance tuning measure that should be persisted.

Optimize
Perhaps the most important component of infrastructure event management is
the post-event analysis and the identification of operational and architectural
challenges observed and opportunities for improvement. Infrastructure events
are rarely one-time events. They might be seasonal or coincide with new
releases of an application, or they might be part of the growth of the company as
it expands into new markets and territories. Thus, every infrastructure event is
an opportunity to observe, improve, and prepare more effectively for the next
one.

Amazon Web Services – Infrastructure Event Readiness

Page 28

Conclusion
AWS provides building blocks in the form of elastic and programmable products
and services that your company can assemble to support virtually any scale of
workload. With AWS infrastructure event guidelines and best practices, coupled
with our complete set of highly available services, your company can design and
prepare for major business events and ensure that scaling demands can be met
smoothly and dynamically, ensuring fast response and global reach.

Contributors
The following individuals and organizations contributed to this document:

• Presley Acuna, AWS Enterprise Support Manager

• Kurt Gray, AWS Global Solutions Architect

• Michael Bozek, AWS Sr. Technical Account Manager

• Rovan Omar, AWS Technical Account Manager

• Will Badr, AWS Technical Account Manager

• Eric Blankenship, AWS Sr. Technical Account Manager

• Greg Bur, AWS Technical Account Manager

• Bill Hesse, AWS Sr. Technical Account Manager

• Hasan Khan, AWS Sr. Technical Account Manager

• Varun Bakshi, AWS Sr. Technical Account Manager

Further Reading
For additional reading on operational and architectural best practices, see
Operational Checklists for AWS.25 We recommend that readers review AWS
Well Architected Framework26 for a structured approach to evaluating their
cloud based application delivery stacks. AWS offers Infrastructure Event
Management (IEM) as a premium support offering for customers desiring more
direct involvement of AWS Technical Account Manager and Support Engineers
in their design, planning and day of event operations. For more details about
the AWS IEM premium support offering, please see Infrastructure Event
Management.27

http://media.amazonwebservices.com/AWS_Operational_Checklists.pdf
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-%20Architected_Framework.pdf
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-%20Architected_Framework.pdf
https://aws.amazon.com/premiumsupport/iem/
https://aws.amazon.com/premiumsupport/iem/

Amazon Web Services – Infrastructure Event Readiness

Page 29

Appendix
Detailed Architecture Review Checklist

Yes-No-
N/A

Security

�-�-� We rotate our AWS Identity and Access Management (IAM) access keys and user
password and the credentials for the resources involved in our application at most every
3 months as per AWS security best practices. We apply password policy in every
account, and we use hardware or virtual multifactor authentication (MFA) devices.

�-�-� We have internal security processes and controls for controlling unique, role-based,
least privilege access to AWS APIs leveraging IAM.

�-�-� We have removed any confidential or sensitive information including embedded
public/private instance key pairs and have reviewed all SSH authorized keys files from
any customized Amazon Machine Images (AMIs).

�-�-� We use IAM roles for EC2 instances as convenient instead of embedding any
credentials inside AMIs.

�-�-� We segregate IAM administrative privileges from regular user privileges by creating an
IAM administrative role and restricting IAM actions from other functional roles.

�-�-� We apply the latest security patches on our EC2 instances for either Windows or Linux
instances. We use operating system access controls including Amazon EC2 Security
Group rules, VPC network access control lists, OS hardening, host-based firewall,
intrusion detection/prevention, monitoring software configuration and host inventory.

�-�-� We ensure that the network connectivity to and from the organization’s AWS and
corporate environments uses a transport of encryption protocols.

�-�-� We apply a centralized log and audit management solution to identify and analyze any
unusual access patterns or any malicious attacks on the environment.

�-�-� We have Security event and incident management, correlation, and reporting processes
in place.

�-�-� We make sure that there isn’t unrestricted access to AWS resources in any of our
security groups.

�-�-� We use a secure protocol (HTTPS or SSL), up-to-date security policies, and ciphers
protocol for a front-end connection (client to load balancer). The requests are encrypted
between the clients and the load balancer, which is more secure.

�-�-� We configure our Amazon Route 53 MX resource record set to have a TXT resource
record set that contains a corresponding Sender Policy Framework (SPF) value to
specify the servers that are authorized to send email for our domain.

Amazon Web Services – Infrastructure Event Readiness

Page 30

Yes-No-
N/A

Reliability

�-�-� We deploy our application on a fleet of EC2 instances that are deployed into an Auto
Scaling group to ensure automatic horizontal scaling based on a pre-defined scaling
plans. Learn more.

�-�-� We use an Elastic Load Balancing health check in our Auto Scaling group configuration to
ensure that the Auto Scaling group acts on the health of the underlying EC2 instances.
(Applicable only if you use load balancers in Auto Scaling groups.)

�-�-� We deploy critical components of our applications across multiple Availability Zones, are
appropriately replicating data between zones. We test how failure within these
components affects application availability using Elastic Load Balancing, Amazon Route
53, or any appropriate third-party tool.

�-�-� In the database layer we deploy our Amazon RDS instances in multiple Availability Zones
to enhance database availability by synchronously replicating to a standby instance in a
different Availability Zone.

�-�-� We have defined processes for either automatic or manual failover in case of any outage
or performance degradation.

�-�-� We use CNAME records to map our DNS name to our services. We DON’T use A records.

�-�-� We configured a lower time-to-live (TTL) value for our Amazon Route 53 record set. This
avoids delays when DNS resolvers request updated DNS records when rerouting traffic.
(For example, this can occur when DNS failover detects and responds to a failure of one
of your endpoints.)

�-�-� We have at least two VPN tunnels configured to provide redundancy in case of outage or
planned maintenance of the devices at the AWS endpoint.

�-�-� We use AWS Direct Connect, and we have two Direct Connect connections configured at
all times to provide redundancy in case a device is unavailable. The connections are
provisioned at different Direct Connect locations to provide redundancy in case a location
is unavailable.

We have also configured the connectivity to our virtual private gateway to have multiple
virtual interfaces configured across multiple Direct Connect connections and locations.

�-�-� We use Windows instances, and we make sure that we are using the latest PV drivers. PV
driver helps to optimize driver performance and minimize runtime issues and security
risks. We have also made sure that EC2Config agent is running the latest version on our
Windows instance.

�-�-� We take snapshots of our Amazon Elastic Block Store (EBS) volumes to ensure a point-
in-time recovery in case of any failure.

�-�-� We use separate Amazon EBS volumes for the operating system and application/database
data where appropriate.

�-�-� We apply the latest kernel, software and drivers patches on any Linux instances.

http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScaling.html

Amazon Web Services – Infrastructure Event Readiness

Page 31

Yes-No-
N/A

Performance Efficiency

�-�-� We fully test our AWS-hosted application components, including performance testing,
prior to going live. We also perform load testing to ensure that we have used the right
EC2 instance size, number of IOPS, RDS DB instance size, etc.

�-�-� We run a usage check report against our services limits and make sure that the current
usage across AWS services is at or less than 80% of the service limits. Learn more

�-�-� We use Content Delivery/Distribution Network (CDN) to utilize caching for our
application (Amazon CloudFront) and as a way to optimize the delivery of the content
and the automatic distribution of the content to the nearest edge location to the user.

�-�-� We understand that some dynamic HTTP request headers that Amazon CloudFront
receives (User-Agent, Date, etc.) can impact the performance by reducing the cache hit
ratio and increasing the load on the origin. Learn more

�-�-� We ensure that the maximum throughput of an EC2 instance is greater than the
aggregate maximum throughput of the attached EBS volumes. We also use EBS-
optimized instances with PIOPS EBS volumes to get the expected performance out of the
volumes.

�-�-� We ensure that the solution design doesn’t have a bottleneck in the infrastructure or a
stress point in the database or the application design.

�-�-� We deploy monitoring on application resources and configure alarms based on any
performance breaches using Amazon CloudWatch or third-party partner tools.

�-�-� Our design avoids using a large number of rules in any security group attached to our
application instances. Large number of rules in a security group may degrade
performance.

Yes-No-
N/A

Cost Optimization

�-�-� We understand that the infrastructure event may involve some over-provisioned capacity
that needs to be cleaned up after the event to avoid any unnecessary cost.

�-�-� We use right sizing for all of our infrastructure components including EC2 instance size,
RDS DB instance size, caching cluster nodes size and numbers, Redshift Cluster nodes
size and numbers, and EBS volume size.

�-�-� We use Spot Instances when it’s convenient. Spot Instances are ideal for workloads that
have flexible start and end times. Typical use cases for Spot instances are: Batch
processing, report generation, and high performance computing workloads.

�-�-� We have predictable application capacity minimum requirements, and we take advantage
of Reserved Instances. . Reserved Instances allow you to reserve Amazon EC2 computing
capacity in exchange for a significantly discounted hourly rate compared to On Demand
instance pricing.

https://aws.amazon.com/premiumsupport/ta-faqs/#service-limits-check-questions
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/header-caching.html

Amazon Web Services – Infrastructure Event Readiness

Page 32

1 https://aws.amazon.com/answers/account-management/aws-tagging-
strategies/

2 https://aws.amazon.com/blogs/aws/resource-groups-and-tagging/

3 https://aws.amazon.com/sqs/

4 http://docs.aws.amazon.com/general/latest/gr/rande.html

5 https://aws.amazon.com/emr/

6 https://aws.amazon.com/rds/

7 https://aws.amazon.com/ecs/

8 https://aws.amazon.com/sns/

9 https://aws.amazon.com/blogs/compute/using-aws-lambda-with-auto-
scaling-lifecycle-hooks/

10 http://docs.aws.amazon.com/lambda/latest/dg/welcome.html

11 https://aws.amazon.com/blogs/aws/new-auto-recovery-for-amazon-ec2/

12 https://aws.amazon.com/answers/configuration-management/aws-
infrastructure-configuration-management/

13
https://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AW
S%20.pdf

14 http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-
policy.html#routing-policy-latency

15 https://aws.amazon.com/elasticache/

16https://aws.amazon.com/cloudfront/

17 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts-on-
demand-reserved-instances.html

18http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-
instances.html

19 https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

20 https://aws.amazon.com/about-aws/whats-new/2014/07/31/aws-trusted-
advisor-security-and-service-limits-checks-now-free/

Notes

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://aws.amazon.com/blogs/aws/resource-groups-and-tagging/
https://aws.amazon.com/sqs/
http://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/emr/
https://aws.amazon.com/rds/
https://aws.amazon.com/ecs/
https://aws.amazon.com/sns/
https://aws.amazon.com/blogs/compute/using-aws-lambda-with-auto-scaling-lifecycle-hooks/
https://aws.amazon.com/blogs/compute/using-aws-lambda-with-auto-scaling-lifecycle-hooks/
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/blogs/aws/new-auto-recovery-for-amazon-ec2/
https://aws.amazon.com/answers/configuration-management/aws-infrastructure-configuration-management/
https://aws.amazon.com/answers/configuration-management/aws-infrastructure-configuration-management/
https://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS%20.pdf
https://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS%20.pdf
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html%23routing-policy-latency
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html%23routing-policy-latency
https://aws.amazon.com/elasticache/
https://aws.amazon.com/cloudfront/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts-on-demand-reserved-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts-on-demand-reserved-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://aws.amazon.com/about-aws/whats-new/2014/07/31/aws-trusted-advisor-security-and-service-limits-checks-now-free/
https://aws.amazon.com/about-aws/whats-new/2014/07/31/aws-trusted-advisor-security-and-service-limits-checks-now-free/

Amazon Web Services – Infrastructure Event Readiness

Page 33

21

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_autom
ated_manual.html

22
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Cloud
Watch_Dashboards.html

23
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publish
ingMetrics.html

24 https://aws.amazon.com/blogs/aws/new-whitepaper-use-aws-for-disaster-
recovery/

25 http://media.amazonwebservices.com/AWS_Operational_Checklists.pdf

26 http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-
Architected_Framework.pdf

27 https://aws.amazon.com/premiumsupport/iem/

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_automated_manual.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_automated_manual.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html
https://aws.amazon.com/blogs/aws/new-whitepaper-use-aws-for-disaster-recovery/
https://aws.amazon.com/blogs/aws/new-whitepaper-use-aws-for-disaster-recovery/
http://media.amazonwebservices.com/AWS_Operational_Checklists.pdf
https://aws.amazon.com/premiumsupport/iem/

	Abstract
	Introduction
	Infrastructure Event Readiness Planning
	What is a Planned Infrastructure Event?
	What Happens During a Planned Infrastructure Event?

	Design Principles
	Discrete Workloads
	Tagging
	Loose Coupling
	Services, Not Servers
	Serverless Architectures

	Automation
	Auto Scaling
	Restarts and Recovery
	Configuration Management/Orchestration

	Diversity/Resiliency
	Removing Single Points of Failure and Bottlenecks
	Design for Failure
	Multi-Zone and Multi-Region
	Load Balancing
	Load Shedding Strategies

	Cost Optimization
	Reserved vs Spot vs On-Demand

	Event Management Process
	Infrastructure Event Schedule
	Planning and Preparation
	Schedule
	Architecture Review
	Operational Review
	Understand AWS Service Limits
	Understand Patterns
	Baselines
	Data Flows and Dependencies
	Proportionality

	Communications Plan
	NOC Preparation
	Runbook Preparation
	Monitor
	Monitoring Plan
	Notifications

	Operational Readiness (Day of Event)
	Plan Execution
	War Room
	Leadership Reporting
	Contingency Plan

	Post-Event Activities
	Post-Mortem Analysis
	Wind-Down Process
	Optimize

	Conclusion
	Contributors
	Further Reading
	Appendix
	Detailed Architecture Review Checklist

