
Using New Relic
to Monitor Your
Android App
by Alan Skorkin

TUTORIAL

http://tutsplus.com/authors/alan-skorkin?utm_source=new-relic&utm_medium=download&utm_campaign=new-relic-tutorials
http://tutsplus.com/?utm_source=new-relic&utm_medium=download&utm_campaign=new-relic-tutorials

Using New Relic to Monitor Your Android App

2 © 2014 Envato Pty Ltd.

Contents
Introduction	 3

Why Monitor Mobile Apps At All?	 4

Building A Basic Android App	 4

Setting Up New Relic For You App	 6

Exploring the Dashboards	 10

Conclusion	 14

2

Using New Relic to Monitor Your Android App

3 © 2014 Envato Pty Ltd.

Using New Relic to
Monitor Your Android App
by Alan Skorkin

As interesting as web applications are, they are not the only game in town. These days, mobile
applications are a massive part of the software development landscape. Just like with web apps,
we want our mobile application code to be performant.

Sponsored Content

This content was commissioned by New Relic and was written and/or edited by the Tuts+
team. Our aim with sponsored content is to publish relevant and objective tutorials, case
studies, and inspirational interviews that offer genuine educational value to our readers
and enable us to fund the creation of more useful content.

Fortunately, in the last year or two, New Relic has focused hard on building out a solution for
monitoring the performance of your mobile apps. Today we will look at how you can start using
New Relic to monitor the performance of an Android application.

http://tutsplus.com/authors/alan-skorkin?utm_source=new-relic&utm_medium=download&utm_campaign=new-relic-tutorials
http://newrelic.com
http://newrelic.com/mobile-monitoring
http://www.android.com

Using New Relic to Monitor Your Android App

4 © 2014 Envato Pty Ltd.

Why Monitor Mobile Apps At All?
The great thing about building a web app is that you can always deploy a new version, instantly forcing your whole user base
to use your new code. So if you weren’t monitoring your code before, you can easily hook up New Relic or hack up something
custom, push it out, and start getting metrics within a few minutes.

With mobile apps, you’re not so fortunate. You can, of course, release a new version any time you want, but the process is
potentially longer—app store approval, for example. And even when your new version is out there, you can’t force your users to
upgrade. It’s therefore important to think about any kind of monitoring you might want to do before you ever release the first
version of your app.

Even if you don’t need to worry about the performance of your app for a while, once you do, your monitoring solution will already
be in place, you just need to start interpreting the metrics.

In addition, it’s a rare mobile app these days that doesn’t also have a web component to it. Just about every application these
days makes HTTP requests to an API—and often many different APIs.

As we know, network calls are not always the most reliable things. It would be great if we could find out how often API calls fail for
our users and, more importantly, how slow our API calls are on average. It’s the only way to know if our users are having a good
experience with our application or if they are being frustrated by lag.

If you’re not monitoring your application you can only guess about this kind of stuff. I don’t know about you, but I am usually
much more comfortable with cold hard data.

There are many other important questions that a good monitoring solution can help us answer, but we can cover those as we’re
working with our Android application, so let’s get cracking.

Building A Basic Android App
Normally, for an introductory article like this one, I like to focus on the subject at hand—in this case New Relic for mobile—and
keep the rest of the code as Hello World as possible.

It’s easy to build a Hello World Android app, Google even has a tutorial about it. Unfortunately, that app is just a little too basic.
It makes no network calls, which means we wouldn’t be able to look at a large part of what New Relic offers for mobile app
monitoring. So, we’ll slightly modify our basic app.

Our app will have two screens, on the first screen we will be able to enter a Twitter handle and submit it. At this point our app will
go to the second screen and display some placeholder text. In the meantime our application will go off to Twitter and fetch the
latest tweet for that handle. Once the tweet is available, we will update the second screen to display it. The app is still pretty basic,
but hopefully it is complex enough that we’ll be able to get some interesting data from New Relic.

I’m not going to walk through setting up the whole application, but here are the interesting parts. As per the Google tutorial,
when we press the button on the first screen, it will pass along the value of the text field to the second screen, but in our case it
will be a Twitter handle:

http://code.tutsplus.com/articles/getting-started-with-new-relic-in-30-minutes--net-34876
http://code.tutsplus.com/articles/writing-robust-web-applications-the-lost-art-of-exception-handling--net-36395
http://en.wikipedia.org/wiki/Hello_world_program
http://developer.android.com/training/basics/firstapp/index.html
https://twitter.com
http://developer.android.com/training/basics/firstapp/index.html

Using New Relic to Monitor Your Android App

5 © 2014 Envato Pty Ltd.

1 public void sendMessage(View view) {
2 Intent intent = new Intent(this, DisplayMessageActivity.class);
3 EditText editText = (EditText) findViewById(R.id.edit_message);
4 String message = editText.getText().toString();
5 intent.putExtra(EXTRA_MESSAGE, message);
6 startActivity(intent);
7 }

On the second screen, we want to fetch the latest tweet for that handle. But we can’t do it on the UIThread, we need
an AsyncTask. We’ll create one and kick it off inside the onCreate method of the second activity:

01 @Override
02 protected void onCreate(Bundle savedInstanceState) {
03 super.onCreate(savedInstanceState);
04 setContentView(R.layout.activity_display_message);
05 setupActionBar();
06
07 String handle = getIntent().getStringExtra(MainActivity.EXTRA_MESSAGE);
08
09 TextView textView = new TextView(this);
10 textView.setTextSize(40);
11
12 new FetchLatestTweetTask(textView, handle).execute();
13
14 // Set the text view as the activity layout
15 setContentView(textView);
16 }

The actual task looks like this:

01 public class FetchLatestTweetTask extends AsyncTask<Void, Void, String> {
02 private TextView textView;
03 private String handle;
04
05 public FetchLatestTweetTask(TextView textView, String handle) {
06 this.textView = textView;
07 this.handle = handle;
08 }
09
10 @Override
11 protected String doInBackground(Void... args) {
12 Twitter twitter = new TwitterFactory().getInstance();
13
14 String status = null;
15
16 try {
17 User user = twitter.showUser(handle);

http://developer.android.com/training/basics/firstapp/starting-activity.html
http://stackoverflow.com/questions/3652560/what-is-the-android-uithread-ui-thread
http://developer.android.com/reference/android/os/AsyncTask.html

Using New Relic to Monitor Your Android App

6 © 2014 Envato Pty Ltd.

18 status = user.getStatus().getText();
19 } catch (Exception e) {
20 e.printStackTrace();
21 }
22 return status;
23 }
24
25 protected void onPreExecute() {
26 textView.setText(String.format(“Fetching tweet by @%s ...”, handle));
27 }
28
29 protected void onPostExecute(String tweet) {
30 textView.setText(tweet);
31 }
32 }

We display some placeholder text before fetching the tweet and update the placeholder text with the tweet’s content after we’ve
fetched it. We use Twitter4J to talk to the Twitter API. In order for the API library to work, I’ve dumped a twitter4j.properties
file in the /src folder of the project so that it ends up on the classpath as per the documentation.

The properties file contains the OAuth consumer key, consumer secret, access token key, and access token secret for the
Twitter app that I set up just for this.

This is all the interesting code in our application, the rest is just generic boilerplate as per the introductory Google tutorial.

Setting Up New Relic For You App
Setting up New Relic to start monitoring your Android app is very easy. In your New Relic account, click on Mobile in the menu.
This is where all your mobile apps will live, just like the web apps live under the Applications menu item.

Now click the Add a new app button:

http://twitter4j.org/en/index.html
http://twitter4j.org/en/configuration.html
http://oauth.net
https://apps.twitter.com
http://developer.android.com/training/basics/firstapp/index.html

Using New Relic to Monitor Your Android App

7 © 2014 Envato Pty Ltd.

This will take you to another screen where New Relic will walk you through setting up a new app:

We click on Android and give our app a name. Once you’ve given your app a name, you need to press Continue so that
New Relic generates a new API key for your application.

Next, we need to install the New Relic agent. I’m using Eclipse so I go to Help > Install New Software... and add New Relic as a site:

Using New Relic to Monitor Your Android App

8 © 2014 Envato Pty Ltd.

Click Next and wait for Eclipse to do its thing. Once it’s done, you need to restart Eclipse. At this point, you should be able to
right-click your project in Eclipse and there should be an Install New Relic menu option. When we click it, the New Relic agent
jar will end up in the /libs folder of our project.

Incidentally, if a new version of the New Relic agent comes along, you update it in the same way. First, do Help > Check for Updates
to get the latest updates. After that, just right-click your project and there should be an Update New Relic menu option, which will
update the New Relic jar when clicked:

Now we need to give our app permissions for INTERNET and ACCESS_NETWORK_STATE as New Relic will need to send data
back to their servers. Our AndroidManifest.xml will look like this:

Using New Relic to Monitor Your Android App

9 © 2014 Envato Pty Ltd.

01 <?xml version=”1.0” encoding=”utf-8”?>
02 <manifest xmlns:android=”http://schemas.android.com/apk/res/android”
03 package=”com.tutsplus.helloworld”
04 android:versionCode=”1”
05 android:versionName=”1.0” >
06
07 <uses-permission android:name=”android.permission.INTERNET” />
08 <uses-permission android:name=”android.permission.ACCESS_NETWORK_STATE” />
09
10 <uses-sdk android:minSdkVersion=”8” android:targetSdkVersion=”19” />
11
12 ...
13
14 </manifest>

Now we just need to launch the agent. In our MainActivity.java we import New Relic:

1 import com.newrelic.agent.android.NewRelic;

We then start the agent inside the onCreate method:

1 protected void onCreate(Bundle savedInstanceState) {
2 super.onCreate(savedInstanceState);
3 setContentView(R.layout.activity_main);
4 NewRelic.withApplicationToken(“XXXXXXXXXXXXXXXXXXX”).start(this.
		 getApplication());
5 }

Note the application token. If you pressed Continue when you gave your application a name, this should already be pre-filled
for you. Once your app is up and running, you can always look it up again in the Settings menu for your application.

After this step, we build the project and deploy it to an emulator or a physical device. I prefer to deploy to a test device as I find it
to be faster, more responsive, and easier to work with. I will use my Nexus 4.

If we look at the LogCat tab when the application is deploying, we should see output similar to this:

1	 02-23 17:25:17.004: I/com.newrelic.agent.android(25592): Loaded configuration:
	 HarvestConfiguration{collect_network_errors=true, cross_process_id=’null’, data_
	 report_period=60, data_token=[0, 0], error_limit=50, report_max_transaction_age=600,
	 report_max_transaction_count=1000, response_body_limit=2048, server_timestamp=0,
	 stack_trace_limit=100, activity_trace_max_size=65534, activity_trace_max_report_
	 attempts=1, activity_trace_min_utilization=0.30000001192092896, at_
	 capture=ActivityTraceConfiguration{maxTotalTraceCount=1}}
2	 02-23 17:25:17.054: I/com.newrelic.agent.android(25592): Application state monitor
	 has started
3	 02-23 17:25:17.104: I/com.newrelic.agent.android(25592): Measurement Engine initialized.
4	 02-23 17:25:17.114: I/com.newrelic.agent.android(25592): New Relic Agent
	 v3.264.0

http://www.google.com.au/nexus/4/
http://developer.android.com/tools/help/logcat.html

Using New Relic to Monitor Your Android App

10 © 2014 Envato Pty Ltd.

This is how we know that New Relic has loaded. After that, if we keep looking at LogCat we’ll see something like this every
minute or so:

1 02-23 17:55:40.410: I/com.newrelic.agent.android(31413): Harvester: connected
2 02-23 17:55:40.410: I/com.newrelic.agent.android(31413): Harvester: Sending 2 HTTP
	 transactions.
3 02-23 17:55:40.410: I/com.newrelic.agent.android(31413): Harvester: Sending 0 HTTP
	 errors.
4 02-23 17:55:40.410: I/com.newrelic.agent.android(31413): Harvester: Sending 0
	 activity traces.

This is New Relic calling home to send data. If we now go back to the New Relic user interface we should start seeing data.

Exploring the Dashboards
When you go to look at your app in New Relic, you will first hit the Overview screen. Similar to the web application overview
screen, it displays several important metrics about your app such as Http response time, Slowest Interactions, etc.

The activity on those graphs is sporadic since we only have one client sending back data and we’ve only done a couple
of interactions.

So what are some of the more interesting things that you can see in New Relic for your mobile app? Well, there is the
App > Devices tab that shows you which devices people are using your app on. This is interesting since you can tell at a glance
what sort of phones/tables most of your user base is using. Are people mostly on older devices or newer ones? Are they mostly
on tablets or phones? This is valuable data.

Using New Relic to Monitor Your Android App

11 © 2014 Envato Pty Ltd.

You can drill down into each device and see how well your app is doing there. Is the interaction time for that device slower than
what you would expect? What about the Http response time? How many active users are currently using your app on this type of
device? In our case:

There is only one device, so there isn’t that much to see. But if a large percentage of your user base was on a device where your
app wasn’t performing very well, you would see it straight away and be able to address the issue.

Similar to the Devices tab, there is the OS versions tab, which breaks down the usage of your app by the version of Android that
your users have installed:

Using New Relic to Monitor Your Android App

12 © 2014 Envato Pty Ltd.

You can tell if you need to focus more of your attention on newer versions of Android or if most of your user base is still on
an older version.

Then there’s the Network tab and its children. In the Map tab, you can see which APIs your app connects to and how well each
one of them is doing. What’s the throughput, response time, and error rate:

In our case, we only have the Twitter API and it’s pretty slow actually. Maybe we might consider caching some of the responses for
a period of time.

In the Networks > Http requests tab, we can drill down into each endpoint of every API that we use in a similar way to
how we drill down into devices and OS versions. We can find out which endpoints are used most and which are the slowest.
This gives us some solid leads regarding where to direct our optimization efforts. This is especially true if we also control the APIs
that are being used.

In the Network > Geography tab, you can tell where most of your users are coming from and in the Carriers tab you can see what
kind of internet connection your users have. In our case, I am on Wi-Fi:

Using New Relic to Monitor Your Android App

13 © 2014 Envato Pty Ltd.

It’s very valuable to know if your user base is using Wi-Fi, 3G, or 4G as your optimization efforts can be completely different
depending on the breakdown.

Under Settings > Alerts, you can also define some conditions for your external APIs for New Relic to notify you if response
times exceed a certain threshold or if error rates go above a certain percentage.

This is potentially less valuable for APIs you don’t control, but still a good indicator if an API you’re using is unstable or not
very performant.

The last two interesting ones are Usage > Versions and Usage > Monthly Uniques. The first one shows you which versions of
your app are being used in the wild. This allows you to tell how eagerly users download updates of your app. It also shows
you how well each version of your app is performing on the device. Is the new version using more memory than the previous
version?

Using New Relic to Monitor Your Android App

14 © 2014 Envato Pty Ltd.

The monthly uniques basically gives you an idea if people are actually interacting with your app. You may have 10 million
downloads, but if the number of monthly uniques is low, then things aren’t as great as they seem to be.

Conclusion
This is a basic overview of some—but not all—interesting features of New Relic for Android apps. In and of themselves, none of the
features are mind blowing, but it is good solid data that, for a mobile app, you can’t get any other way.

How your app is being used and on which devices, how well your network calls are performing on a slow connection, this is the
type of data that forces you to stop guessing and make informed decisions about how to improve your app and give your users
a better experience.

Remember, performance is just as important for mobile apps as it is for web apps, and there’s no reason to guess about what’s
making your app slow when there’s a much better way readily available.

	Table of Contents
	Introduction
	Why Monitor Mobile Apps At All?
	Building A Basic Android App
	Setting Up New Relic For You App
	Exploring the Dashboards
	Conclusion

	Button 1:
	Button 2:
	Button 3:
	Button 4:
	Button 5:
	Button 6:

