
Using New Relic
Custom Metrics
to Monitor All
the Things
by Alan Skorkin

TUTORIAL

http://tutsplus.com/authors/alan-skorkin?utm_source=new-relic&utm_medium=download&utm_campaign=new-relic-tutorials
http://tutsplus.com/?utm_source=new-relic&utm_medium=download&utm_campaign=new-relic-tutorials

Using New Relic Custom Metrics to Monitor All the Things

2 © 2014 Envato Pty Ltd.

Contents
Introduction 3

How New Relic Tracks Transactions and How You Can Do the Same? 4

Monitoring Custom Frameworks & Background Jobs 5

Customizing a Transaction Even More 6

New Relic Custom Metrics & How They Are Useful 8

Monitoring Code New Relic Can’t See 8

Monitoring Code You Don’t Control 9

Monitoring Scripts 10

Monitoring Totally Custom Events 11

The Dangers of Monitoring Too Much 11

Conclusion 11

2

Using New Relic Custom Metrics to Monitor All the Things

3 © 2014 Envato Pty Ltd.

Using New Relic Custom
Metrics to Monitor All
the Things
by Alan Skorkin

When you first get introduced to New Relic, it’s easy to be overwhelmed by all the features.
But like with most tools, as you slowly climb the learning curve and get familiar with the features
provided out of the box, you begin to wonder how it all hangs together under the hood and if
there is more you can do with what you have at hand.

Today I will look at how New Relic actually monitors transactions and how you can hook into
the process. We will take a quick glance at the support provided by New Relic for monitoring
background jobs and we’ll also dig into New Relic custom metrics, how you would use them
and the benefits you get from doing so. By the end you will have a deeper understanding of
how New Relic works and be able to utilize it more fully. In other words, we will have a deeper
knowledge of our tools—something every developer should strive for.

Let’s begin by taking a quick look at how New Relic actually hooks-in to track the performance
of your application.

Sponsored Content

This content was commissioned by New Relic and was written and/or edited by the Tuts+
team. Our aim with sponsored content is to publish relevant and objective tutorials, case
studies, and inspirational interviews that offer genuine educational value to our readers
and enable us to fund the creation of more useful content.

http://tutsplus.com/authors/alan-skorkin?utm_source=new-relic&utm_medium=download&utm_campaign=new-relic-tutorials
http://code.tutsplus.com/articles/getting-started-with-newrelic-in-30-minutes--net-34876
http://code.tutsplus.com/articles/5-reasons-why-new-relic-is-a-developers-best-friend--net-34932
http://www.sw-engineering-candies.com/blog-1/top10thingseverysoftwareengineershouldknow#TOC-Know-your-Development-Tools
http://www.sw-engineering-candies.com/blog-1/top10thingseverysoftwareengineershouldknow#TOC-Know-your-Development-Tools
http://newrelic.com

Using New Relic Custom Metrics to Monitor All the Things

4 © 2014 Envato Pty Ltd.

How New Relic Tracks Transactions and How You
Can Do the Same
It may seem a little like magic, you include a gem in your Gemfile:

1 gem ‘newrelic_rpm’

And somehow New Relic monitors all your code. Of course it is just code, so let’s see how New Relic actually instruments your
app so it can begin monitoring it when the agent gem is required. We will do this in the context of a Rails 4 app.

The first place to look is newrelic_rpm.rb, which has the following relevant code in it:

01 ...
02 if Rails::VERSION::MAJOR.to_i >= 3
03 module NewRelic
04 class Railtie < Rails::Railtie
05
06 initializer “newrelic_rpm.start_plugin” do |app|
07 NewRelic::Control.instance.init_plugin(:config => app.config)
08 end
09 end
10 end
11 else
12 ...

So a Railtie gets created when the Rails version is above three, this gets a NewRelic::Control singleton instance (when it
is initialized) and calls init_plugin. When the NewRelic::Control instance is created it figures out what framework is
running (Rails 4 in our case) and loads some relevant code; we can see this in new_relic/control/class_methods#load_
framework_class. The init_plugin method that gets executed lives in new_relic/control/instance_methods.
The interesting code here is:

1 ...
2 if Agent.config[:agent_enabled] && !NewRelic::Agent.instance.started?
3 start_agent
4 install_instrumentation
5 load_samplers unless Agent.config[:disable_samplers]
6 ...

The install_instrumentation call is the important one. The implementation lives in new_relic/control/
instrumentation. Skipping over the boilerplate bits, this works out which instrumentation files it needs to load and then
requires them one by one. In our case, it will load files under new_relic/agent/instrumentation/rails4.
One of the files here is action_controller.rb, when this gets required it eventually executes the following code via some
metaprogramming magic:

http://api.rubyonrails.org/classes/Rails/Railtie.html
http://rubyonrails.org

Using New Relic Custom Metrics to Monitor All the Things

5 © 2014 Envato Pty Ltd.

1 executes do
2 class ActionController::Base
3 include NewRelic::Agent::Instrumentation::ControllerInstrumentation
4 include NewRelic::Agent::Instrumentation::Rails4::ActionController
5 end
6 NewRelic::Agent::Instrumentation::ActionControllerSubscriber \
7 .subscribe(/^process_action.action_controller$/)
8 end

And here we get to the crux of it: ActionController::Base (from which all your controllers inherit) gets a couple of
modules included in it, the most important of which is NewRelic::Agent::Instrumentation::Controller
Instrumentation. This is the start of how New Relic begins to monitor all your controller actions as ‘transactions’. Of course,
it’s a somewhat simplified view and we’re glossing over a lot of detail, but it gives you an idea of how New Relic monitors
your code. The question is, how can you use this information?

Monitoring Custom Frameworks & Background Jobs
You’re highly unlikely to find yourself in a situation where you’re using a web framework that New Relic does not already have
instrumentation for (in the Ruby world), but let’s say you did. Knowing what we know now, we can easily manually instrument the
controller actions of this custom framework. If we have a controller like this:

1 class CustomController
2 def custom_action
3 ...
4 end
5 end

We can instrument it like so:

1 class CustomController
2 include NewRelic::Agent::Instrumentation::ControllerInstrumentation
3
4 def custom_action
5 ...
6 end
7 add_transaction_tracer :custom_action
8 end

Now your controller method will be tracked like a transaction in the same way Rails actions get tracked. Of course, if you’ve rolled
your own web framework which includes database handling code, you will need to do extra work to instrument much of that
code, to allow New Relic to monitor more than just controller actions. But the general idea remains sound.

The above pattern becomes more useful when you want New Relic to track background jobs in your application. You’re a lot
more likely to have rolled some custom background job handling code than you are to have written your own web framework.
In fact, we did just this with Tuts+ initially, although we’re now migrating to Sidekiq. If you’re using one of the well-known
background jobs systems like Sidekiq, Resque or Delayed Job, New Relic already has instrumentation built in, but if you did
roll your own, the above pattern is all you need to monitor your tasks.

https://github.com/mperham/sidekiq
https://github.com/resque/resque
https://github.com/collectiveidea/delayed_job

Using New Relic Custom Metrics to Monitor All the Things

6 © 2014 Envato Pty Ltd.

For example, our custom Tuts+ background jobs were regular ruby classes that responded to the execute method, so all
we have to do is this:

1 class SomeBackgroundJob
2 include NewRelic::Agent::Instrumentation::ControllerInstrumentation
3
4 def execute
5 ...
6 end
7 add_transaction_tracer :custom_action, category: :task
8 end

The last bit, category: :task, is to ensure that New Relic does not track it as a web transaction, but instead treats it as a background
task and makes it appear under the background tasks tab in the New Relic UI. If we create a base class for all our jobs, we can
put the instrumentation there and child classes will inherit it, so we don’t have to worry about doing the above in every job class.

Customizing a Transaction Even More
Interestingly enough, even the web transactions that New Relic automatically monitors are not sacrosanct. You can, for example,
add some custom parameters to be sent to New Relic for the transaction that is currently executing (if you’ve switched on
capturing parameters).

Interestingly enough, even the web transactions that New Relic automatically monitors are not sacrosanct. You can, for example,
add some custom parameters to be sent to New Relic for the transaction that is currently executing (if you’ve switched on
capturing parameters).

You can do this at any point during the transaction. All you have to do is call::NewRelic::Agent.add_custom_
parameters(:key => ‘value’) at any time and the parameters you pass in will get added to the parameter data you see
inside New Relic. For example, if we had a controller that looked like this:

1 class HelloController < ApplicationController
2 def index
3 ::NewRelic::Agent.add_custom_parameters(:hello => ‘world’)
4 end
5 end

Using New Relic Custom Metrics to Monitor All the Things

7 © 2014 Envato Pty Ltd.

Slow transactions would give us the following:

This isn’t all we can do. We can segment a transaction while it’s running by renaming it. Let’s say we want to treat a transaction as
special when it is performed by a particular user. You may do something like this:

1 class HelloController < ApplicationController
2 def index
3 new_relic_name = NewRelic::Agent.get_transaction_name
4 if current_user.name == ‘Joe Customer’
5 NewRelic::Agent.set_transaction_name(“#{new_relic_name} - Joe Customer”)
6 end
7 end
8 end

Now this transaction will be treated as a separate transaction in the New Relic UI:

Using New Relic Custom Metrics to Monitor All the Things

8 © 2014 Envato Pty Ltd.

Even default New Relic instrumentation has some room for customization, but sometimes, just like Captain Kirk, you just need
more power. This is where custom metrics come in.

New Relic Custom Metrics & How They Are Useful
Back in the day, you would have used custom metrics to monitor things like external service communication and use of various
common tools like Redis. These days, New Relic has better ways of monitoring that stuff, so what do we need custom metrics for?
I’ve found custom metrics to be useful in four situations:

• monitoring code that New Relic can’t see

• monitoring code you don’t control

• monitoring scripts

• monitoring totally custom events

Let’s take a quick look at each of them.

Monitoring Code New Relic Can’t See
New Relic is pretty good at breaking down the performance of your various application methods in a transaction trace,
but sometimes you will see something like this in a trace:

It seems there is application code that New Relic couldn’t instrument for some reason. What we can do is help New Relic
(and ourselves) out with some custom metrics. We need to figure out which method New Relic had trouble monitoring and
hook in some custom metrics to track how long this method took to execute. This will then appear in all subsequent traces.
Let’s say we have a class with a method we want to monitor via custom metrics:

1 class Order
2 def amount
3 ...
4 end
5 end

http://en.wikipedia.org/wiki/James_T._Kirk
http://redis.io
http://docs.newrelic.com/docs/plugins/welcome-to-plugin-central

Using New Relic Custom Metrics to Monitor All the Things

9 © 2014 Envato Pty Ltd.

We can begin to track the amount method like so:

01 require ‘new_relic/agent/method_tracer’
02
03 class Order
04 include ::NewRelic::Agent::MethodTracer
05
06 def amount
07 ...
08 end
09 add_method_tracer :amount, ‘Custom/amount’
11 end

The second parameter to add_method_tracer is the name that this custom metric will get in the New Relic UI. Metric names
are slash separated strings and all custom metrics should start with ‘Custom/’. You could, for example, name your custom metric
as ‘Custom/<class_name>/<method_name>’. At this point you will begin seeing the amount method in your transaction traces,
in the New Relic UI. But, what if our amount method is highly complex and we want to monitor parts of it which we suspect are
slow? My advice is that you should refactor your method—it’s too big, but if you can’t do that, you can instrument random code
like so:

01 class Order
02 extend ::NewRelic::Agent::MethodTracer
03
04 def amount
05 ...
06 self.class.trace_execution_scoped([‘Custom/amount/complex_code’]) do
07 ...complex code...
08 end
09 ...
10 end
11 end

Now the instrumented part of the method will be reported separately in your transaction traces. If you’ve previously instrumented
the method itself, your new ‘inner’ metric will be grouped under the previous one.

This is by far the most common way you’ll end up using custom metrics in your code, but let’s look at the others anyway.

Monitoring Code You Don’t Control
Often you may be using a library which, you suspect, is slowing down your application. New Relic won’t instrument any random
gem for you by default, so what can you do? You can fork the gem and add some instrumentation using the method we saw above,
but an even simpler solution exists—use initializers. Let’s say you’re using the foobar library which has a class Foo with a method
bar that you suspect has some slow code in it. All you need to do is create an initializer foobar_instrumentation.rb, and
put the following in it:

Using New Relic Custom Metrics to Monitor All the Things

10 © 2014 Envato Pty Ltd.

1 require ‘new_relic/agent/method_tracer’
2
3 Foo.class_eval do
4 include ::NewRelic::Agent::MethodTracer
5
6 add_method_tracer :bar
7 end

As you can see the code is very similar to what we had above, New Relic will work out a sensible name for your new custom
metric based on the class and method name and you will begin to see it in your transaction traces. Use this to work out if that
suspicious library is actually making your code perform badly, but don’t keep this instrumentation around permanently. It spams
unnecessary initializers in your Rails app and pollutes your New Relic UI with custom metrics that you don’t really need to track
permanently.

Monitoring Scripts
One part of web applications that is often neglected is scripts. To paraphrase a presentation I did recently—they’re still production
code and should be treated as such. You don’t want production code to be performing badly, especially if you execute it on an
ongoing basis via cron jobs (or a similar method that is not a background job in your system), so we can use New Relic to figure
out if your scripts are slow.

You may instrument your script code using custom metrics as described above. It won’t show up in transaction traces as it won’t
be part of a transaction. What you will be able to do though, is create a custom dashboard from the metrics you collect which
should give you an idea if your script is performing badly.

The other thing you can do is to treat your script as a type of background job and instrument it accordingly (include
NewRelic::Agent::Instrumentation::ControllerInstrumentation and so on). It will get lumped together
with other background jobs in the UI, but you don’t have to worry about custom dashboards.

The only caveat with scripts is this: New Relic only sends data over the wire periodically. With a one-off script that executes
quickly you will need to ensure that the collected data actually gets sent, so you may need to shut down the New Relic agent
manually. A good rule of thumb is to manually start the agent at the beginning of each script and to shut it down at the end:

1 require ‘newrelic_rpm’
2
3 ::NewRelic::Agent.manual_start
4
5 ... codez ...
6
7 ::NewRelic::Agent.shutdown

This way you won’t ever need to wonder why your data is not appearing in the UI.

http://www.confreaks.com/videos/2606-lonestarruby2013-why-you-should-love-the-command-line-and-get-rid-of-your-rake-tasks-once-and-for-all
https://docs.newrelic.com/docs/dashboards-menu/custom-dashboards

Using New Relic Custom Metrics to Monitor All the Things

11 © 2014 Envato Pty Ltd.

Monitoring Totally Custom Events
One of the interesting things about New Relic is that it lets you take advantage of its UI and data aggregation facilities for metrics
that have nothing to do with performance (in theory). For example, you may want to have some visibility on how often users
sign up to your application, the frequency of sales, or the total amount users pay when they make purchases. These are more
business metrics than performance ones, but if it’s too much trouble to track these separately you can use New Relic to do so.

New Relic lets you record custom metrics directly via two API calls:

• record_metric

• increment_metric

You can use record_metric to track any metric that has an amount and increment_metric is pretty self explanatory.
So we may, for example, do this:

1 ...
2 def purchase(amount)
3 ...
4 ::NewRelic::Agent.record_metric(‘Custom/purchase_amount’, amount)
5 ::NewRelic::Agent.increment_metric(‘Custom/purchase_count’)
6 ...
7 end
8 ...

The only way for you to see these metrics in the UI would be to create some custom dashboards. I have to mention that this would
be a somewhat “creative” use of the New Relic API as it’s designed with performance data in mind, but it is certainly a handy
thing to know when you need to throw a quick dashboard together and don’t want to set up a bunch of extra infrastructure.

The Dangers of Monitoring Too Much
Of course, all this power has a cost. If you collect too many custom metrics, it can begin to slow down your application. It can also
slow down the New Relic UI and make it difficult to interpret the data as New Relic will collapse similar metrics into a summary
one. New Relic recommends keeping the number of custom metrics you collect below 2000. I have found that custom metrics
are best used periodically. Instrument the code you need, use the instrumentation to solve the problem you’re having and then
remove the instrumentation. This way you get to solve your performance issues and the number of custom metrics you use is
unlikely to grow too high.

Conclusion
We’ve dug into the internals of the newrelic_rpm gem and have learned how to tell New Relic about code that you consider
a web transaction. We’ve looked at how to alter transactions on the fly, how to monitor background jobs and the various situations
where it makes sense to use custom metrics. There is much you can do with New Relic beyond the functionality it provides out of
the box and you’re now much more able to utilize it to its full potential. But, there is always more to learn, like how to build custom
dashboards out of the metrics that you capture, or how to monitor infrastructure with plugins. We’ll be covering those topics and
more in subsequent articles, so make sure to check back often. And as always if you have a question, want to share your own New
Relic story or just want to say hi, don’t forget to leave a comment.

https://docs.newrelic.com/docs/ruby/ruby-custom-metrics
https://docs.newrelic.com/docs/features/custom-metrics
https://docs.newrelic.com/docs/dashboards-menu/custom-dashboards
https://docs.newrelic.com/docs/dashboards-menu/custom-dashboards
http://docs.newrelic.com/docs/plugins/welcome-to-plugin-central

	Table of Contents
	Introduction
	How New Relic Tracks Transactions and How You Can Do the Same
	Monitoring Custom Frameworks & Background Jobs
	Customizing a Transaction Even More
	New Relic Custom Metrics & How They Are Useful
	Monitoring Code New Relic Can’t See
	Monitoring Code You Don’t Control
	Monitoring Scripts
	Monitoring Totally Custom Events
	The Dangers of Monitoring Too Much
	Conclusion

	Button 1:
	Button 2:
	Button 3:
	Button 4:
	Button 5:
	Button 6:
	Button 8:
	Button 9:
	Button 10:
	Button 11:
	Button 7:

