
AWS Device Farm
Developer Guide

API Version 2015-06-23

AWS Device Farm Developer Guide

AWS Device Farm: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

AWS Device Farm Developer Guide

Table of Contents
What Is AWS Device Farm? 1

Automated App Testing 1
Supported Test Types and Built-in Tests ... 1

Remote Access Interaction 2
Terminology 2
Setting Up 3

Setting Up 4
Step 1: Sign Up for AWS 4
Step 2: Create or Use an IAM User in Your AWS Account 4
Step 3: Give the IAM User Permission to Access Device Farm 4
Next Step 5

Getting Started 6
Prerequisites ... 6
Step 1: Sign in to the Console 7
Step 2: Create a Project ... 7
Step 3: Create and Start a Run 7
Step 4: View the Run's Results ... 8
Next Steps 9

Concepts 10
Devices 10

Supported Devices 10
Device Pools ... 10
Device Branding 11
Device Slots ... 11
Pre-Installed Device Apps 11
Device Capabilities ... 11

Test Types 11
Android Test Types 11
iOS Test Types 12
Web Application Test Types 12

Runs 12
Run Configuration 13
Run Files Retention 13
Run Device State 13
Parallel Runs 13
Setting the execution timeout in test runs 13
Instrumenting Apps 13
Re-Signing Apps in Runs 13
Obfuscated Apps in Runs 14
Ads in Runs 14
Media in Runs 14
Common Tasks for Runs 14

Reports ... 14
Report Retention 14
Report Components 14
Performance Samples in Reports ... 15
Logs in Reports ... 15
Common Tasks for Reports ... 15

Sessions 15
Supported Devices for Remote Access 15
Session Files Retention 15
Instrumenting Apps 15
Re-Signing Apps in Sessions 16
Obfuscated Apps in Sessions 16

API Version 2015-06-23
iii

AWS Device Farm Developer Guide

Purchase Device Slots ... 17
Purchase Device Slots with the Device Farm Console 17
Purchase a Device Slot with the AWS CLI ... 18
Purchase a Device Slot with the Device Farm API ... 21

Working with Projects ... 22
Create a Project ... 22

Prerequisites ... 22
Create a Project with the Device Farm Console 22
Create a Project with the AWS CLI ... 23
Create a Project with the Device Farm API ... 23

View the Projects List ... 23
Prerequisites ... 23
View the Projects List with the Device Farm Console 24
View the Projects List with the AWS CLI ... 24
View the Projects List with the Device Farm API ... 24

Working with Test Runs 25
Create a Test Run 25

Prerequisites ... 26
Create a Test Run with the Device Farm Console 26
Create a Run with the AWS CLI ... 27
Create a Run with the Device Farm API ... 28
Next Steps 28

Set Execution Timeout 28
Prerequisites ... 28
Set the Execution Timeout for a Project ... 29
Set the Execution Timeout for a Test Run 29

Simulate Network Connections and Conditions 30
Set up Network Shaping When Scheduling a Test Run 30
Create your own Network Profile 31
Change Network Conditions During your Test ... 32

Stop a Run 33
Prerequisites ... 33
Stop a Run with the Device Farm Console 33
Stop a Run with the AWS CLI ... 34
Stop a Run with the Device Farm API ... 35

View a Runs List ... 35
Prerequisites ... 36
View a Runs List with the Device Farm Console 36
View a Runs List with the AWS CLI ... 36
View a Runs List with the Device Farm API ... 36

Create a Device Pool ... 36
Prerequisites ... 37
Create a Device Pool with the Device Farm Console 37
Create a Device Pool with the AWS CLI ... 38
Create a Device Pool with the Device Farm API ... 38

Analyze a Report ... 38
Prerequisites ... 38
Console Icons 38
Open a Report with the Device Farm Console 38
Analyze a Report's Summary Page with the Device Farm Console 39
Analyze a Report's Unique Problems with the Device Farm Console 39
Analyze a Report by Device with the Device Farm Console 40
Analyze a Report by Suite with the Device Farm Console 40
Analyze a Report by Test with the Device Farm Console 41
Analyze Performance Data for a Problem, Device, Suite, or Test in a Report with the Device
Farm Console 42

API Version 2015-06-23
iv

AWS Device Farm Developer Guide

Analyze Log Information for a Problem, Device, Suite, or Test in a Report with the Device Farm
Console 42

Working with Test Types 45
Built-in Test Types 45
Custom Test Types 45

Custom Android Test Types 45
Custom iOS Test Types 45
Custom Web Application Test Types 46

Android Tests ... 46
Built-in Test Types for Android 46
Custom Test Types for Android 46
Appium Java JUnit ... 46
Appium Java TestNG 50
Appium Python 54
Calabash 57
Instrumentation 59
UI Automator 60

iOS Tests ... 62
Built-in Test Types for iOS 62
Custom Test Types 62
Appium Java JUnit ... 62
Appium Java TestNG 66
Appium Python 70
Calabash 73
UI Automation 75
XCTest ... 76
XCTest UI ... 77

Web App Tests ... 78
Rules for Metered and Unmetered Devices 78
Appium Java JUnit ... 79
Appium Java TestNG 81
Appium Python 83

Built-in Tests ... 86
Built-in Test Types 86
Built-in: Explorer (Android) ... 86
Built-in: Fuzz (Android and iOS) ... 87

Working with Remote Access 89
Create a Session 89

Prerequisites ... 90
Create a Session with the Device Farm Console 90
Next Steps 90

Use a Session 90
Prerequisites ... 90
Use a Session in the Device Farm Console 91
Next Steps 91
Tips and Tricks 91

Get Session Results ... 91
Prerequisites ... 92
Viewing Session Details ... 92
Downloading Session Video or Logs 92

CloudTrail Integration 93
Device Farm Information in CloudTrail .. 93
Understanding Device Farm Log File Entries ... 94

AWS CLI Reference 96
Windows PowerShell Reference 97
API Reference 98
Troubleshooting 99

API Version 2015-06-23
v

AWS Device Farm Developer Guide

Android Applications 99
ANDROID_APP_UNZIP_FAILED 99
ANDROID_APP_AAPT_DEBUG_BADGING_FAILED 100
ANDROID_APP_PACKAGE_NAME_VALUE_MISSING 101
ANDROID_APP_SDK_VERSION_VALUE_MISSING 101
ANDROID_APP_AAPT_DUMP_XMLTREE_ FAILED 102
ANDROID_APP_DEVICE_ADMIN_PERMISSIONS 102

Appium Java JUnit ... 103
APPIUM_JAVA_JUNIT_TEST_PACKAGE_PACKAGE_UNZIP_FAILED 103
APPIUM_JAVA_JUNIT_TEST_PACKAGE_DEPENDENCY_DIR_MISSING 104
APPIUM_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR 105
APPIUM_JAVA_JUNIT_TEST_PACKAGE_TESTS_JAR_FILE_MISSING 105
APPIUM_JAVA_JUNIT_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR 106
APPIUM_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWN 107
APPIUM_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSION 108

Appium Java JUnit Web 109
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_UNZIP_FAILED 109
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_DEPENDENCY_DIR_MISSING 109
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR 110
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_TESTS_JAR_FILE_MISSING 111
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR 111
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWN 112
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSION 113

Appium Java TestNG 114
APPIUM_JAVA_TESTNG_TEST_PACKAGE_UNZIP_FAILED 114
APPIUM_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSING 115
APPIUM_JAVA_TESTNG_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR 115
APPIUM_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSING 116
APPIUM_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR 117

Appium Java TestNG Web 118
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_UNZIP_FAILED 118
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSING 119
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR 119
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSING 120
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR 121

Appium Python 122
APPIUM_PYTHON_TEST_PACKAGE_UNZIP_FAILED 122
APPIUM_PYTHON_TEST_PACKAGE_DEPENDENCY_WHEEL_MISSING 122
APPIUM_PYTHON_TEST_PACKAGE_INVALID_PLATFORM 123
APPIUM_PYTHON_TEST_PACKAGE_TEST_DIR_MISSING 124
APPIUM_PYTHON_TEST_PACKAGE_INVALID_TEST_FILE_NAME 124
APPIUM_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSING 125
APPIUM_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSION 126
APPIUM_PYTHON_TEST_PACKAGE_INSTALL_DEPENDENCY_WHEELS_FAILED 127
APPIUM_PYTHON_TEST_PACKAGE_PYTEST_COLLECT_FAILED 127

Appium Python Web 128
APPIUM_WEB_PYTHON_TEST_PACKAGE_UNZIP_FAILED 129
APPIUM_WEB_PYTHON_TEST_PACKAGE_DEPENDENCY_WHEEL_MISSING 129
APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PLATFORM 130
APPIUM_WEB_PYTHON_TEST_PACKAGE_TEST_DIR_MISSING 131
APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_TEST_FILE_NAME 131
APPIUM_WEB_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSING 132
APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSION 133
APPIUM_WEB_PYTHON_TEST_PACKAGE_INSTALL_DEPENDENCY_WHEELS_FAILED 133
APPIUM_WEB_PYTHON_TEST_PACKAGE_PYTEST_COLLECT_FAILED 134

Calabash 135
CALABASH_TEST_PACKAGE_UNZIP_FAILED_UNZIP_FAILED 135

API Version 2015-06-23
vi

AWS Device Farm Developer Guide

CALABASH_TEST_PACKAGE_FEATURES_DIR_MISSING_FEATURES_DIR_MISSING 136
CALABASH_TEST_PACKAGE_FEATURE_FILE_MISSING 137
CALABASH_TEST_PACKAGE_STEP_DEFINITIONS_DIR_MISSING 137
CALABASH_TEST_PACKAGE_SUPPORT_DIR_MISSING 138
CALABASH_TEST_PACKAGE_RUBY_FILE_MISSING_IN_STEP_DEFINITIONS_DIR 138
CALABASH_TEST_PACKAGE_RUBY_FILE_MISSING_IN_SUPPORT_DIR 139
CALABASH_TEST_PACKAGE_EMBEDDED_SERVER_MISSING 140
CALABASH_TEST_PACKAGE_DRY_RUN_FAILED 140

Instrumentation 141
INSTRUMENTATION_TEST_PACKAGE_UNZIP_FAILED 141
INSTRUMENTATION_TEST_PACKAGE_AAPT_DEBUG_BADGING_FAILED 142
INSTRUMENTATION_TEST_PACKAGE_INSTRUMENTATION_RUNNER_VALUE_MISSING 143
INSTRUMENTATION_TEST_PACKAGE_AAPT_DUMP_XMLTREE_FAILED 143
INSTRUMENTATION_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSING 144

iOS Applications 145
IOS_APP_UNZIP_FAILED 145
IOS_APP_PAYLOAD_DIR_MISSING 145
IOS_APP_APP_DIR_MISSING 146
IOS_APP_PLIST_FILE_MISSING 147
IOS_APP_CPU_ARCHITECTURE_VALUE_MISSING 147
IOS_APP_PLATFORM_VALUE_MISSING 148
IOS_APP_WRONG_PLATFORM_DEVICE_VALUE 149
IOS_APP_FORM_FACTOR_VALUE_MISSING 150
IOS_APP_PACKAGE_NAME_VALUE_MISSING 151
IOS_APP_EXECUTABLE_VALUE_MISSING 151

UI Automator 152
UIAUTOMATOR_TEST_PACKAGE_UNZIP_FAILED 152

XCTest ... 153
XCTEST_TEST_PACKAGE_UNZIP_FAILED 153
XCTEST_TEST_PACKAGE_XCTEST_DIR_MISSING 154
XCTEST_TEST_PACKAGE_PLIST_FILE_MISSING 154
XCTEST_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSING 155
XCTEST_TEST_PACKAGE_EXECUTABLE_VALUE_MISSING 156

XCTest UI ... 156
XCTEST_UI_TEST_PACKAGE_UNZIP_FAILED 157
XCTEST_UI_TEST_PACKAGE_PAYLOAD_DIR_MISSING 157
XCTEST_UI_TEST_PACKAGE_APP_DIR_MISSING 158
XCTEST_UI_TEST_PACKAGE_PLUGINS_DIR_MISSING 158
XCTEST_UI_TEST_PACKAGE_XCTEST_DIR_MISSING_IN_PLUGINS_DIR 159
XCTEST_UI_TEST_PACKAGE_PLIST_FILE_MISSING 160
XCTEST_UI_TEST_PACKAGE_PLIST_FILE_MISSING_IN_XCTEST_DIR 160
XCTEST_UI_TEST_PACKAGE_CPU_ARCHITECTURE_VALUE_MISSING 161
XCTEST_UI_TEST_PACKAGE_PLATFORM_VALUE_MISSING 162
XCTEST_UI_TEST_PACKAGE_WRONG_PLATFORM_DEVICE_VALUE 163
XCTEST_UI_TEST_PACKAGE_FORM_FACTOR_VALUE_MISSING 164
XCTEST_UI_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSING 165
XCTEST_UI_TEST_PACKAGE_EXECUTABLE_VALUE_MISSING 165
XCTEST_UI_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSING 166
XCTEST_UI_TEST_PACKAGE_TEST_EXECUTABLE_VALUE_MISSING 167

Access Permissions Reference 169
Create and Attach a Policy to an IAM User 169
Action Syntax for Performing Actions in Device Farm 170

Limits ... 172
Tools and Plugins 173

Jenkins CI Plugin 173
Step 1: Install the Plugin 176
Step 2: Create an IAM User 177

API Version 2015-06-23
vii

AWS Device Farm Developer Guide

Step 3: First-time configuration instructions 178
Step 4: Use the Plugin 178
Dependencies 178

Device Farm Gradle Plugin 178
Building the Device Farm Gradle Plugin 179
Setting up the Device Farm Gradle Plugin 179
Generating an IAM user ... 180
Configuring Test Types 181
Dependencies 183

Document History 184
AWS Glossary 186

API Version 2015-06-23
viii

AWS Device Farm Developer Guide
Automated App Testing

What Is AWS Device Farm?

Device Farm is an app testing service that enables you to test and interact with your Android, iOS, and
Web apps on real, physical phones and tablets that are hosted by Amazon Web Services (AWS). There are
two main ways to use Device Farm:

• Automated testing of apps using a variety of available testing frameworks
• Remote access of devices onto which you can load, run, and interact with apps in real time

Automated App Testing
Device Farm allows you to upload your own tests or use built-in, script-free compatibility tests. Because
testing is automatically performed in parallel, tests on multiple devices begin in minutes.

A test report containing high-level results, low-level logs, pixel-to-pixel screenshots, and performance
data is updated as tests are completed.

Device Farm supports testing of native and hybrid Android, iOS, and Fire OS apps, including those
created with PhoneGap, Titanium, Xamarin, Unity, and other frameworks. It supports remote access of
Android apps for interactive testing.

Supported Test Types and Built-in Tests
Device Farm currently provides support for the following test types:

For Android:

• Appium Java JUnit (p. 46)
• Appium Java TestNG (p. 50)
• Appium Python (p. 54)
• Calabash (p. 57)
• Instrumentation (p. 59) (JUnit, Espresso, Robotium, or any instrumentation-based tests)
• UI Automator (p. 60)
• Explorer (p. 86)

For iOS:

API Version 2015-06-23
1

AWS Device Farm Developer Guide
Remote Access Interaction

• Appium Java JUnit (p. 62)
• Appium Java TestNG (p. 66)
• Appium Python (p. 70)
• Calabash (p. 73)
• UI Automation (p. 75)
• XCTest (p. 76) (including KIF)
• XCTest UI (p. 77)

For Web Apps:

• Appium Java JUnit (p. 79)
• Appium Java TestNG (p. 81)
• Appium Python (p. 83)

If you do not have your own tests, you can use a built-in fuzz test. For more information, see Built-in:
Fuzz (Android and iOS) (p. 87).

Remote Access Interaction
Remote access allows you to swipe, gesture, and interact with a device through your web browser in real
time. There are a number of situations where real-time interaction with a device is useful. For example,
customer service representatives can guide customers through how to use or set up their device. They
can also walk customers through how to use apps running on a specific device. You can install apps on a
device running in a remote access session and then reproduce customer problems or reported bugs.

During a remote access session, Device Farm collects details about actions that take place as you interact
with the device. Logs with these details and a video capture of the session are produced at the end of the
session for your review.

Initially, a limited number of Android and Fire OS devices are supported for remote access. However, the
list of devices will grow during the beta period and as new devices enter the market.

Terminology
Device Farm introduces the following terms that define the way information is organized:

project

A logical workspace that contains runs, one run for each test of a single app against one or more
devices. Projects enable you to organize workspaces in whatever way you choose. For example, there
can be one project per app title, or there can be one project per platform. You can create as many
projects as you need.

run

A specific build of your app, with a specific set of tests, to be run on a specific set of devices. A run
produces a report that contains information about the results of the run. A run contains one or more
jobs. For more information, see Runs (p. 12).

report

Contains information about a run, which is a request for Device Farm to test a single app against one
or more devices. For more information, see Reports (p. 14).

API Version 2015-06-23
2

AWS Device Farm Developer Guide
Setting Up

job

A request for Device Farm to test a single app against a single device. A job contains one or more
suites.

meter

Metering refers to billing for devices, and you may encounter references to "metered devices" or
"unmetered devices" in the documentation and API reference. For more information about pricing,
see AWS Device Farm Pricing.

suite

The hierarchical organization of tests in a test package. A suite contains one or more tests.
test

An individual test within a test package.
session

An interactive session with a single device in the console.

Setting Up
To get set up to use Device Farm, see Setting Up (p. 4).

API Version 2015-06-23
3

https://aws.amazon.com/device-farm/pricing/

AWS Device Farm Developer Guide
Step 1: Sign Up for AWS

Setting Up AWS Device Farm

Before you use Device Farm for the first time, you must complete the following tasks:

Topics
• Step 1: Sign Up for AWS (p. 4)
• Step 2: Create or Use an IAM User in Your AWS Account (p. 4)
• Step 3: Give the IAM User Permission to Access Device Farm (p. 4)
• Next Step (p. 5)

Step 1: Sign Up for AWS
Sign up for Amazon Web Services (AWS).

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS

1. Open https://aws.amazon.com/ and choose Create an AWS Account.
2. Follow the online instructions.

Step 2: Create or Use an IAM User in Your AWS
Account

We recommend that you do not use your AWS root account to access Device Farm. Instead, create a new
AWS Identity and Access Management (IAM) user (or use an existing IAM user) in your AWS account, and
then access Device Farm with that IAM user.

To create a new IAM user, see Creating an IAM User (AWS Management Console).

Step 3: Give the IAM User Permission to Access
Device Farm

Give the IAM user permission to access Device Farm. To do this, create a new access policy in IAM, and
then assign the access policy to the IAM user, as follows.

API Version 2015-06-23
4

https://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console

AWS Device Farm Developer Guide
Next Step

Note
The AWS root account or IAM user that you use to complete the following steps must
have permission to create the following IAM policy and attach it to the IAM user. For more
information, see Working with Policies

To create the access policy in IAM

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. Choose Policies.
3. Choose Create Policy. (If a Get Started button appears, choose it, and then choose Create Policy.)
4. Next to Create Your Own Policy, choose Select.
5. For Policy Name, type a name for the policy (for example, AWSDeviceFarmAccessPolicy).
6. For Description, type Provides access to all Device Farm actions associated with the IAM

user.

7. For Policy Document, type the following statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "devicefarm:*"
],
 "Resource": [
 "*"
]
 }
]
}

8. Choose Create Policy.

To assign the access policy to the IAM user

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. Choose Users.
3. Choose the IAM user to whom you will assign the access policy.
4. In the Permissions area, choose Add permissions.
5. In the Grant permissions area, choose Attach existing policies directly.
6. Select the policy you just created (for example, AWSDeviceFarmAccessPolicy).
7. Choose Next: Review.
8. In the Permissions summary area, choose Add permissions.

Note
Attaching the policy provides the IAM user with access to all Device Farm actions associated
with that IAM user. To learn how to restrict IAM users to a limited set of Device Farm actions, see
Access Permissions Reference (p. 169).

Next Step
You are now ready to start using Device Farm. See Getting Started (p. 6).

API Version 2015-06-23
5

http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_manage.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Device Farm Developer Guide
Prerequisites

Getting Started with AWS Device
Farm

This walkthrough shows you how to use Device Farm to test an Android or iOS app. In this walkthrough,
you will use the Device Farm console to create a project, upload an .apk or .ipa file, run a suite of
standard tests, and then view the results.

Topics

• Prerequisites (p. 6)

• Step 1: Sign in to the Console (p. 7)

• Step 2: Create a Project (p. 7)

• Step 3: Create and Start a Run (p. 7)

• Step 4: View the Run's Results (p. 8)

• Next Steps (p. 9)

Prerequisites
Before you begin this walkthrough, make sure you have completed the following requirements:

• Complete the steps in Setting Up (p. 4), which include signing up for an AWS account, creating or using
an IAM user in the AWS account, and giving the IAM user permission to access Device Farm.

• For Android, you will need an .apk (Android app package) file, and for iOS you will need an .ipa (iOS
app archive) file, which you will upload to Device Farm later in this walkthrough.

Note
Make sure that your .ipa file is built for an iOS device and not for a simulator.

• Optionally, you will need a test from one of the test types supported by Device Farm. You will upload
this test package to Device Farm, and then run the test later in this walkthrough. (If you do not have
a test package available, you can specify and run a standard built-in test suite.) For more information,
see Working with Test Types in AWS Device Farm (p. 45).

API Version 2015-06-23
6

AWS Device Farm Developer Guide
Step 1: Sign in to the Console

Step 1: Sign in to the Console
You can use the Device Farm console to create and manage projects and runs for testing. You will learn
about projects and runs later in this walkthrough.

• Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

Step 2: Create a Project
To test an app in Device Farm, you must first create a project.

A project in Device Farm represents a logical workspace in Device Farm that contains runs, one run
for each test of a single app against one or more devices. Projects enable you to organize workspaces
in whatever way you choose. For example, there can be one project per app title, or there can be one
project per platform. You can create as many projects as you need.

1. In the Device Farm console page, type a name for your project (for example, MyDemoProject).

Note
If you type a project name other than MyDemoProject, be sure to use it throughout this
walkthrough.

2. Choose Create project. Refresh the page to see your new project.

Step 3: Create and Start a Run
Now that you have a project, you can create and then start a run.

A run in Device Farm represents a specific build of your app, with a specific set of tests, to be run on a
specific set of devices. A run produces a report that contains information about the results of the run. A
run contains one or more jobs. For more information, see Runs (p. 12).

1. Choose MyDemoProject.

2. On the Automated tests page, choose Create a new run.

3. On the Choose your application page, choose Upload.

4. Browse to and choose your Android or iOS app file. For Android, the file must be an .apk file. For iOS,
the file must be an .ipa file built for a device, not the simulator.

5. Choose Next step.

6. On the Configure a test page, choose one of the test suites.

API Version 2015-06-23
7

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Step 4: View the Run's Results

Note
If you do not have any tests available, choose Built-in: Fuzz to run a standard built-in test
suite. For this walkthrough, if you choose Built-in: Fuzz, leave the Event count, Event
throttle, and Randomizer seed boxes at their default values.

7. If you did not choose Built-in: Fuzz, then choose Upload, and browse to and choose the file that
contains your tests.

8. Choose Next step.

9. On the Select devices page, for Device pool, choose Top Devices to select the device pool, and then
choose Next step.

A device pool in Device Farm represents a collection of devices that typically share similar
characteristics such as platform, manufacturer, or model. For more information, see
Devices (p. 10).

10. On the Specify device state page, do any of the following:

• To provide additional data for Device Farm to use during the run, next to Add extra data, choose
Upload, and then browse to and choose the .zip file.

• To install an additional app for Device Farm to use during the run, next to Install other apps,
choose Upload, and then browse to and choose the .apk or .ipa file that contains the app. Repeat
for any additional apps you want to install. You can change the installation order by dragging and
dropping the apps.

• To specify whether Wi-Fi, Bluetooth, GPS, or NFC will be enabled during the run, next to Set radio
states, select the appropriate boxes.

• To preset the device latitude and longitude for the run, next to Device location, type the
coordinates.

• To preset the device locale for the run, choose the locale in Device Locale.

• To preset the network profile for the run, choose a profile in Network profile or choose Create a
new profile to create your own.

11. Choose Next step.

12. On the Review and start run page, choose Confirm and start run.

Device Farm should start the run as soon as devices are available, typically within a few minutes. Until
the run starts, Device Farm will display a calendar icon. After the run starts, results will appear as tests
are completed. During this time, Device Farm will display a progress icon.

Step 4: View the Run's Results
You'll know the run is complete when the progress icon changes to a result icon.

To view the run's results, choose the completed run in the Device Farm console. A summary page that
includes the following information is displayed.

• The total number of tests, by outcome.

• Lists of tests with unique warnings or failures.

• A list of devices and test results for each.

• Any screenshots captured during the run, grouped by device.

For more information, see Analyze a Report (p. 38).

You have now completed this walkthrough.

API Version 2015-06-23
8

AWS Device Farm Developer Guide
Next Steps

Next Steps
To learn more about Device Farm, see Concepts (p. 10).

API Version 2015-06-23
9

AWS Device Farm Developer Guide
Devices

AWS Device Farm Concepts

This section describes important Device Farm concepts.

• Devices (p. 10)
• Test Types in AWS Device Farm (p. 11)
• Runs (p. 12)
• Reports (p. 14)
• Sessions (p. 15)

Device Support in AWS Device Farm
The following sections contain information above device support in Device Farm.

Topics
• Supported Devices (p. 10)
• Device Pools (p. 10)
• Device Branding (p. 11)
• Device Slots (p. 11)
• Pre-Installed Device Apps (p. 11)
• Device Capabilities (p. 11)

Supported Devices
Device Farm provides support for hundreds of unique, popular Android, iOS, and Fire OS devices and
operating system combinations. The list of available devices grows as new devices enter the market. The
full list of devices can be found here: Device List.

Device Pools
Device Farm organizes its devices into device pools that you can use for your testing. These device pools
contain related devices, such as devices that run only on Android or that run only on iOS. Device Farm

API Version 2015-06-23
10

http://aws.amazon.com/device-farm/device-list/

AWS Device Farm Developer Guide
Device Branding

provides curated device pools, such as those for top devices. You can also create your own private device
pools. For more information about using private devices, see Device Farm Pricing.

Device Branding
Device Farm runs tests on physical, non-rooted devices that are both OEM- and carrier-branded.

Device Slots
Device slots correspond to concurrency in which the number of device slots you have purchased
determines how many devices you can run in tests or remote access sessions. There are two types of
device slots, remote access device slots and automated testing device slots. An automated testing device
slot is one on which you can run tests concurrently. A remote access device slot is one you can run in
remote access sessions concurrently.

If you have one automated testing device slot, then you can only run tests on one device at a time. If
you purchase additional automated testing device slots, then you can run multiple tests concurrently on
multiple devices to get test results faster. If you have one remote access device slot, you can only run one
remote access session at a time. If you purchase additional remote testing device slots, then you can run
multiple sessions concurrently.

You can purchase device slots based on the device family (Android or iOS devices for automated testing
and Android or iOS devices for remote access). For more information, see Device Farm Pricing.

Pre-Installed Device Apps
Devices in Device Farm include a small number of apps pre-installed by manufacturers and carriers.

Device Capabilities
All devices have a Wi-Fi connection to the Internet. They do not have carrier connections and cannot
make phone calls or send SMS messages.

You can take photos with any device that supports a front- or rear-facing camera. Due to the way the
devices are mounted, photos may look dark and blurry.

Google Play Services is installed on devices that support it, but these devices do not have an active
Google account.

Test Types in AWS Device Farm
AWS Device Farm provides many different built-in and custom test types for Android, iOS, and Web
applications. Built-in tests enable you to test your apps without writing scripts. Custom tests allow you to
test specific flows and business logic within your app. For more information, see Working with Test Types
in AWS Device Farm (p. 45).

Android Test Types
Device Farm provides the following built-in and custom test types for Android devices.

• Built-in: Explorer (Android) (p. 86)

API Version 2015-06-23
11

https://aws.amazon.com/device-farm/pricing/
https://aws.amazon.com/device-farm/pricing/

AWS Device Farm Developer Guide
iOS Test Types

• Built-in: Fuzz (Android and iOS) (p. 87)

• Appium Java JUnit (p. 46)

• Appium Java TestNG (p. 50)

• Appium Python (p. 54)

• Calabash (p. 57)

• Instrumentation (p. 59)

• UI Automator (p. 60)

iOS Test Types
Device Farm provides the following built-in and custom test types for iOS devices.

• Built-in: Fuzz (Android and iOS) (p. 87)

• Appium Java JUnit (p. 62)

• Appium Java TestNG (p. 66)

• Appium Python (p. 70)

• Calabash (p. 73)

• UI Automation (p. 75)

• XCTest (p. 76)

• XCTest UI (p. 77)

Web Application Test Types
Device Farm provides the following custom test types for Web applications.

• Appium Java JUnit (p. 79)

• Appium Java TestNG (p. 81)

• Appium Python (p. 83)

Runs in AWS Device Farm
The following sections contain information about runs in Device Farm.

A run in Device Farm represents a specific build of your app, with a specific set of tests, to be run on a
specific set of devices. A run produces a report that contains information about the results of the run. A
run contains one or more jobs.

Topics

• Run Configuration (p. 13)

• Run Files Retention (p. 13)

• Run Device State (p. 13)

• Parallel Runs (p. 13)

• Setting the execution timeout in test runs (p. 13)

• Instrumenting Apps (p. 13)

• Re-Signing Apps in Runs (p. 13)

API Version 2015-06-23
12

AWS Device Farm Developer Guide
Run Configuration

• Obfuscated Apps in Runs (p. 14)

• Ads in Runs (p. 14)

• Media in Runs (p. 14)

• Common Tasks for Runs (p. 14)

Run Configuration
As part of a run, you can supply settings Device Farm can use to override current device settings. These
include latitude and longitude coordinates, locale, radio states (such as Bluetooth, GPS, NFC, and Wi-Fi),
extra data (contained in a .zip file), and auxiliary apps (apps that should be installed before the app that
will be tested).

Run Files Retention
Device Farm stores your apps and files for 30 days and then deletes them from its system. You can delete
your files at any time, however.

Device Farm stores your run results, logs, and screenshots for 400 days and then deletes them from its
system.

Run Device State
Device Farm always reboots a device before making it available for the next job.

Parallel Runs
Device Farm runs tests in parallel as devices become available.

Setting the execution timeout in test runs
You can set a value for how long a test run should execute before you stop each device from running a
test. For example, if your tests take 20 minutes per device to complete, you should choose a timeout of
30 minutes per device.

To learn more, see Set the Execution Timeout for Test Runs in AWS Device Farm (p. 28).

Instrumenting Apps
You do not need to instrument your apps or provide Device Farm with the source code for your apps.
Android apps can be submitted unmodified. iOS apps must be built with the iOS Device target instead of
with the simulator.

Re-Signing Apps in Runs
For iOS apps, you do not need to add any Device Farm UUIDs to your provisioning profile. Device Farm
replaces the embedded provisioning profile with a wildcard profile and then re-signs the app. If you
provide auxiliary data, Device Farm will add it to the app's package before Device Farm installs it, so
that the auxiliary will exist in your app's sandbox. Re-signing the app removes entitlements such as App
Group, Associated Domains, Game Center, HealthKit, HomeKit, Wireless Accessory Configuration, In-App
Purchase, Inter-App Audio, Apple Pay, Push Notifications, and VPN Configuration & Control.

API Version 2015-06-23
13

AWS Device Farm Developer Guide
Obfuscated Apps in Runs

For Android apps, Device Farm re-signs the app. This may break any functionality that depends on
the app's signature, such as the Google Maps Android API, or it may trigger antipiracy or antitamper
detection from products such as DexGuard.

Obfuscated Apps in Runs
For Android apps, if the app is obfuscated, you can still test it with Device Farm if you use ProGuard.
However, if you use DexGuard with antipiracy measures, Device Farm will not be able to re-sign and run
tests against the app.

Ads in Runs
We recommend that you remove ads from your apps before you upload them to Device Farm. We cannot
guarantee that ads will be displayed during runs.

Media in Runs
You can provide media or other data to accompany your app. Additional data must be provided in a .zip
file no more than 4 GB in size.

Common Tasks for Runs
For more information, see Create a Test Run (p. 25) and Working with Test Runs (p. 25).

Reports in AWS Device Farm
The following sections contain information about Device Farm reports.

A report in Device Farm contains information about a run, which is a request for Device Farm to test a
single app against one or more devices.

Topics
• Report Retention (p. 14)
• Report Components (p. 14)
• Performance Samples in Reports (p. 15)
• Logs in Reports (p. 15)
• Common Tasks for Reports (p. 15)

Report Retention
Device Farm stores your reports for 400 days. These reports include metadata, logs, screenshots, and
performance data.

Report Components
Reports in Device Farm contain pass and fail information, crash reports, test and device logs, screenshots,
and performance data.

Reports include both detailed per-device data as well as high-level results, such as the number of
occurrences of a given problem.

API Version 2015-06-23
14

AWS Device Farm Developer Guide
Performance Samples in Reports

Performance Samples in Reports
During a test run, Device Farm captures performance samples every second.

Logs in Reports
Reports include complete logcat captures for Android tests and complete Device Console Logs for iOS
tests.

Common Tasks for Reports
For more information, see Analyze a Report (p. 38).

Sessions in AWS Device Farm
You can use Device Farm to perform interactive testing of Android apps through remote access sessions
in a web browser. This kind of interactive testing helps support engineers on a customer call to walk step
by step through the customer's issue. Developers can reproduce a problem on a specific device to isolate
possible sources of the problem. You can use remote sessions to conduct usability tests with your target
customers.

A session in Device Farm is a real-time interaction with an actual, physical device hosted in a web
browser.

Topics
• Supported Devices for Remote Access (p. 15)
• Session Files Retention (p. 15)
• Instrumenting Apps (p. 15)
• Re-Signing Apps in Sessions (p. 16)
• Obfuscated Apps in Sessions (p. 16)

Supported Devices for Remote Access
Device Farm provides support for a number of unique popular Android and Fire OS devices and operating
system combinations. The list of available devices grows as new devices enter the market and will grow
beyond the initial set during the beta period. The current list of Android and Fire OS devices available for
remote access is displayed in the console. For more information about devices, see Devices (p. 10).

Session Files Retention
Device Farm stores your apps and files for 30 days and then deletes them from its system. You can delete
your files at any time, however.

Device Farm stores your session logs and captured video for 400 days and then deletes them from its
system.

Instrumenting Apps
You do not need to instrument your apps or provide Device Farm with the source code for your apps.
Android apps can be submitted unmodified.

API Version 2015-06-23
15

AWS Device Farm Developer Guide
Re-Signing Apps in Sessions

Re-Signing Apps in Sessions
For Android apps, Device Farm re-signs the app. This may break any functionality that depends on
the app's signature, such as the Google Maps Android API, or it may trigger antipiracy or antitamper
detection from products such as DexGuard.

Obfuscated Apps in Sessions
For Android apps, if the app is obfuscated, you can still test it with Device Farm if you use ProGuard.
However, if you use DexGuard with antipiracy measures, Device Farm will not be able to re-sign the app.

API Version 2015-06-23
16

AWS Device Farm Developer Guide
Purchase Device Slots with the Device Farm Console

Purchase a Device Slot in AWS
Device Farm

To purchase a device slot, you can use the Device Farm console, the AWS CLI, or the Device Farm API.

Topics
• Purchase Device Slots with the Device Farm Console (p. 17)
• Purchase a Device Slot with the AWS CLI (p. 18)
• Purchase a Device Slot with the Device Farm API (p. 21)

Purchase Device Slots with the Device Farm
Console

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.
2. Scroll down to the UNLIMITED ACCESS section and choose the Learn more about unlimited testing

link to get to the packages page.

API Version 2015-06-23
17

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Purchase a Device Slot with the AWS CLI

3. On the Packages page, you can either choose one of the preconfigured packages (SINGLE
PLATFORM, CROSS PLATFORM, or CONTINUOUS INTEGRATION package) or create your own
custom package by choosing the number of slots of each type you wish to purchase.

Note
If you choose one of the preconfigured packages, you must check Automated testing,
Remote access, or both.

The text dynamically updates with the amount that will be added to your bill for each device slot
purchased. For more information, see Device Farm Pricing.

4. Choose Buy now for the package you wish to purchase.

If you choose Buy now, you'll see a Complete your purchase dialog. Choose Complete purchase to
complete your purchase.

Instead of Buy now, you may see Contact us or Contact us to purchase. This indicates that your
account is not yet approved to purchase the number of device slots you have requested.

If you choose Contact us or Contact us to purchase, you'll see a Send us feedback for the Device
Farm Console dialog. Tell us how many slots of each type you'd like to purchase and choose Contact
Support.

Once you have successfully purchased device slots, you'll see the Account settings page.

In the Account settings page, you'll see the You have xxx FREE TRIAL MINUTES remaining message
only if you have free trial minutes remaining. The number of minutes remaining is an estimate that
doesn't reflect usage by tests that are currently running.

You'll also see the number of device slots that you have currently. If you have increased or decreased
the number of slots, you'll also see the number of slots that you will have one month after the date you
made the change.

Purchase a Device Slot with the AWS CLI
You can run the purchase-offering command to purchase the offering.

To list your Device Farm account settings, including the maximum number of device slots you can
purchase before you need to contact us and the number of remaining free trial minutes that you have,
run the get-account-settings command. You will see output similar to the following:

API Version 2015-06-23
18

https://aws.amazon.com/device-farm/pricing/

AWS Device Farm Developer Guide
Purchase a Device Slot with the AWS CLI

{
 "accountSettings": {
 "maxSlots": {
 "GUID": 1,
 "GUID": 1,
 "GUID": 1,
 "GUID": 1
 },
 "unmeteredRemoteAccessDevices": {
 "ANDROID": 0,
 "IOS": 0
 },
 "maxJobTimeoutMinutes": 60,
 "trialMinutes": {
 "total": 1000.0,
 "remaining": 954.1
 },
 "defaultJobTimeoutMinutes": 60,
 "awsAccountNumber": "AWS-ACCOUNT-NUMBER",
 "unmeteredDevices": {
 "ANDROID": 0,
 "IOS": 0
 }
 }
}

To list the device slot offerings available to you, run the list-offerings command. You will see output
similar to the following:

{
 "offerings": [
 {
 "recurringCharges": [
 {
 "cost": {
 "amount": 250.0,
 "currencyCode": "USD"
 },
 "frequency": "MONTHLY"
 }
],
 "platform": "IOS",
 "type": "RECURRING",
 "id": "GUID",
 "description": "iOS Unmetered Device Slot"
 },
 {
 "recurringCharges": [
 {
 "cost": {
 "amount": 250.0,
 "currencyCode": "USD"
 },
 "frequency": "MONTHLY"
 }
],
 "platform": "ANDROID",
 "type": "RECURRING",
 "id": "GUID",
 "description": "Android Unmetered Device Slot"
 },
 {
 "recurringCharges": [
 {

API Version 2015-06-23
19

AWS Device Farm Developer Guide
Purchase a Device Slot with the AWS CLI

 "cost": {
 "amount": 250.0,
 "currencyCode": "USD"
 },
 "frequency": "MONTHLY"
 }
],
 "platform": "ANDROID",
 "type": "RECURRING",
 "id": "GUID",
 "description": "Android Remote Access Unmetered Device Slot"
 },
 {
 "recurringCharges": [
 {
 "cost": {
 "amount": 250.0,
 "currencyCode": "USD"
 },
 "frequency": "MONTHLY"
 }
],
 "platform": "IOS",
 "type": "RECURRING",
 "id": "GUID",
 "description": "iOS Remote Access Unmetered Device Slot"
 }
]
}

To list offering promotions that are available, run the list-offering-promotions command.

Note
This command returns only promotions that you have not yet purchased. As soon as you
purchase one or more slots across any offering using a promotion, that promotion will no longer
appear in the results.

You will see output similar to the following:

{
 "offeringPromotions": [
 {
 "id": "2FREEMONTHS",
 "description": "New device slot customers get 3 months for the price of 1."
 }
]
}

To get the offering status, run the get-offering-status command. You will see output similar to the
following:

{
 "current": {
 "GUID": {
 "offering": {
 "platform": "IOS",
 "type": "RECURRING",
 "id": "GUID",
 "description": "iOS Unmetered Device Slot"
 },
 "quantity": 1
 },
 "GUID": {

API Version 2015-06-23
20

AWS Device Farm Developer Guide
Purchase a Device Slot with the Device Farm API

 "offering": {
 "platform": "ANDROID",
 "type": "RECURRING",
 "id": "GUID",
 "description": "Android Unmetered Device Slot"
 },
 "quantity": 1
 }
 },
 "nextPeriod": {
 "GUID": {
 "effectiveOn": 1459468800.0,
 "offering": {
 "platform": "IOS",
 "type": "RECURRING",
 "id": "GUID",
 "description": "iOS Unmetered Device Slot"
 },
 "quantity": 1
 },
 "GUID": {
 "effectiveOn": 1459468800.0,
 "offering": {
 "platform": "ANDROID",
 "type": "RECURRING",
 "id": "GUID",
 "description": "Android Unmetered Device Slot"
 },
 "quantity": 1
 }
 }
}

Additional commands for this feature include renew-offering and list-offering-transactions. For
more information about specific operations, see the AWS CLI reference for Device Farm.

For information about using Device Farm with the AWS CLI, see AWS CLI Reference (p. 96).

Purchase a Device Slot with the Device Farm API
1. Call the GetAccountSettings operation to list your account settings.
2. Call the ListOfferings operation to list the device slot offerings available to you.
3. Call the ListOfferingPromotions operation to list the offering promotions that are available.

Note
This command returns only promotions that you have not yet purchased. As soon as you
purchase one or more slots using an offering promotion, that promotion will no longer
appear in the results.

4. Call the PurchaseOffering operation to purchase an offering.
5. Call the GetOfferingStatus operation to get the offering status.

Additional commands for this feature include RenewOffering and ListOfferingTransactions.

For information about using the Device Farm API, see API Reference (p. 98).

API Version 2015-06-23
21

http://docs.aws.amazon.com/cli/latest/reference/devicefarm/index.html
../../latest/APIReference/API_GetAccountSettings.html
../../latest/APIReference/API_ListOfferings.html
../../latest/APIReference/API_ListOfferingPromotions.html
../../latest/APIReference/API_PurchaseOffering.html
../../latest/APIReference/API_GetOfferingStatus.html
../../latest/APIReference/API_RenewOffering.html
../../latest/APIReference/API_ListOfferingTransactions.html

AWS Device Farm Developer Guide
Create a Project

Working with Projects in AWS Device
Farm

A project in Device Farm represents a logical workspace in Device Farm that contains runs, one run
for each test of a single app against one or more devices. Projects enable you to organize workspaces
in whatever way you choose. For example, there can be one project per app title, or there can be one
project per platform. You can create as many projects as you need.

You can use the Device Farm console, the AWS CLI, or the Device Farm service API to work with projects.

• Create a Project (p. 22)
• View the Projects List (p. 23)

Create a Project in AWS Device Farm
To create a project, you can use the Device Farm console, the AWS CLI, or the Device Farm API.

Topics
• Prerequisites (p. 22)
• Create a Project with the Device Farm Console (p. 22)
• Create a Project with the AWS CLI (p. 23)
• Create a Project with the Device Farm API (p. 23)

Prerequisites
• Complete the steps in Setting Up (p. 4), which include signing up for an AWS account, creating or

using an IAM user in the AWS account, and giving the IAM user permission to access Device Farm.

Create a Project with the Device Farm Console
1. Make sure you have set up an AWS account and an IAM user to access Device Farm.
2. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.
3. In the Device Farm console page, type a name for your project.

API Version 2015-06-23
22

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Create a Project with the AWS CLI

Note
You can also specify project settings, including the default timeout for a test run. Once
applied, these settings will apply to all test runs in a project. For more information, see Set
the Execution Timeout for Test Runs in AWS Device Farm (p. 28).

4. Choose Create project. Refresh the page to see your new project.

Create a Project with the AWS CLI
1. Make sure you have set up an AWS account and an IAM user to access Device Farm.
2. Run the create-project command.

Note
For information about using Device Farm with the AWS CLI, see AWS CLI Reference (p. 96).

Create a Project with the Device Farm API
1. Make sure you have set up an AWS account and an IAM user to access Device Farm.
2. Call the CreateProject API.

For information about using the Device Farm API, see API Reference (p. 98).

View the Projects List in AWS Device Farm
To view the list of available projects, you can use the Device Farm console, the AWS CLI, or the Device
Farm API.

Topics
• Prerequisites (p. 23)
• View the Projects List with the Device Farm Console (p. 24)
• View the Projects List with the AWS CLI (p. 24)
• View the Projects List with the Device Farm API (p. 24)

Prerequisites
• Create at least one project in Device Farm. To create a project, follow the instructions in Create a

Project (p. 22), and then return to this page.

API Version 2015-06-23
23

http://docs.aws.amazon.com/cli/latest/reference/devicefarm/create-project.html
http://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateProject.html

AWS Device Farm Developer Guide
View the Projects List with the Device Farm Console

View the Projects List with the Device Farm Console
1. Make sure that you have completed at least one project.
2. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.
3. If the list of available projects is not displayed, then on the secondary navigation bar, do one of the

following:

• Choose the Device Farm console home button.
• For Projects, choose View all projects.

View the Projects List with the AWS CLI
1. Make sure that you have completed at least one project.
2. To view the projects list, run the list-projects command.

Tip
To view information about a single project, run the get-project command.

Note
For information about using Device Farm with the AWS CLI, see AWS CLI Reference (p. 96).

View the Projects List with the Device Farm API
1. Make sure that you have completed at least one project.
2. To view the projects list, call the ListProjects API.

Tip
To view information about a single project, call the GetProject API.

For information about the Device Farm API, see API Reference (p. 98).

API Version 2015-06-23
24

https://console.aws.amazon.com/devicefarm
http://docs.aws.amazon.com/cli/latest/reference/devicefarm/list-projects.html
http://docs.aws.amazon.com/cli/latest/reference/devicefarm/get-project.html
http://docs.aws.amazon.com/devicefarm/latest/APIReference/API_ListProjects.html
http://docs.aws.amazon.com/devicefarm/latest/APIReference/API_GetProject.html

AWS Device Farm Developer Guide
Create a Test Run

Working with Test Runs in AWS
Device Farm

A run in Device Farm represents a specific build of your app, with a specific set of tests, to be run on a
specific set of devices. A run produces a report that contains information about the results of the run. A
run contains one or more jobs. For more information, see Runs (p. 12).

You can use the Device Farm console, the AWS CLI, or the Device Farm service API to work with runs.

Topics

• Create a Run in AWS Device Farm (p. 25)

• Set the Execution Timeout for Test Runs in AWS Device Farm (p. 28)

• Simulate Network Connections and Conditions for your AWS Device Farm Runs (p. 30)

• Stop a Run in AWS Device Farm (p. 33)

• View a Runs List in AWS Device Farm (p. 35)

• Create a Device Pool in AWS Device Farm (p. 36)

• Analyze a Report in AWS Device Farm (p. 38)

Create a Run in AWS Device Farm
To create a run, you can use the Device Farm console, the AWS CLI, or the Device Farm API.

For information about runs, see Runs (p. 12).

Topics

• Prerequisites (p. 26)

• Create a Test Run with the Device Farm Console (p. 26)

• Create a Run with the AWS CLI (p. 27)

• Create a Run with the Device Farm API (p. 28)

API Version 2015-06-23
25

AWS Device Farm Developer Guide
Prerequisites

• Next Steps (p. 28)

Prerequisites
• Create a project in Device Farm. Follow the instructions in Create a Project (p. 22), and then return to

this page.

Create a Test Run with the Device Farm Console
1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.
2. If you see the AWS Device Farm console home page, type a name for your project. and choose

Create project. Refresh the page to see your new project.
3. If you already have a project, you can upload your tests to an existing project.

Otherwise, choose Create a new project and specify a name to create your project.
4. Open your project, and then choose Create a new run.
5. On the Choose your application page, choose either Native application (the Android and Apple

button) or Web application (the HTML5 button).
6. Upload your application file. You can also drag and drop your file or choose a recent upload.

If you are uploading an iOS app, be sure to build for iOS device, as opposed to a simulator.
7. Optionally, you can provide a Run name.

If you don't specify a Run name, Device Farm uses the app filename as the run name.
8. Choose Next step.
9. On the Configure a test page, choose one of the available test suites.

Note
If you do not have any tests available, then choose Built-in: Fuzz to run a standard test
suite that is built-in to Device Farm. If you choose Built-in: Fuzz, and the Event count,
Event throttle, and Randomizer seed boxes appear, you can change or leave the values as
desired.

For information about the available test suites, see Working with Test Types in AWS Device
Farm (p. 45).

10. If you did not choose Built-in: Fuzz, then choose Upload, and browse to and choose the file that
contains your tests.

11. Choose Next step.
12. On the Select devices page, do one of the following:

• To choose a built-in device pool to run the tests against, for Device pool, choose Top Devices.
• To create your own device pool to run the tests against, follow the instructions in Create a Device

Pool (p. 36), and then return to this page.
• If you created your own device pool earlier, for Device pool, choose your device pool.

For more information, see Devices (p. 10).
13. Choose Next step.
14. On the Specify device state page, do none, some, or all of the following:

• To provide any additional data that Device Farm will use during the run, choose Upload next to
Add extra data, and then browse to and choose the .zip file that contains the additional data.

API Version 2015-06-23
26

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Create a Run with the AWS CLI

• To install an additional app that Device Farm will use during the run, choose Upload next to
Install other apps, and then browse to and choose the .apk, or .ipa, file that contains the app.
Repeat this for any additional apps that you want to install. You can change the apps' installation
order by dragging and dropping the apps after you upload them.

• To specify whether Wi-Fi, Bluetooth, GPS, or NFC will be enabled during the run, next to Set radio
states, select the appropriate boxes.

• To preset the device latitude and longitude for the run, next to Device location, type the
coordinates.

• To preset the device locale for the run, choose the locale in Device Locale.
15. Choose Review and start run.
16. On this page, you can specify the execution timeout for your test run.

17. Change the execution timeout by typing a value or using the slider bar. For more information, see
Set the Execution Timeout for Test Runs in AWS Device Farm (p. 28).

18. Choose Confirm and start run.

Device Farm will start the run as soon as devices are available, typically within a few minutes. Until the
run starts, Device Farm will display a calendar icon. After the run starts, results will appear as tests are
completed. During this time, Device Farm will display a progress icon.

Note
If you need to stop the test run, see Stop a Run in AWS Device Farm (p. 33).

Create a Run with the AWS CLI
For a tutorial on using the AWS CLI to create a test run, see this AWS Mobile blog post.

1. Make sure that you have created a project. For more information, see Create a Project with the AWS
CLI (p. 23).

2. Upload your application file by running the create-upload command.
3. Upload your tests by running the create-upload command.
4. Make sure that you have created a device pool. For more information, see Create a Device Pool with

the AWS CLI (p. 38).

API Version 2015-06-23
27

https://aws.amazon.com/blogs/mobile/get-started-with-the-aws-device-farm-cli-and-calabash-part-1-creating-a-device-farm-run-for-android-calabash-test-scripts/
http://docs.aws.amazon.com/cli/latest/reference/devicefarm/create-upload.html
http://docs.aws.amazon.com/cli/latest/reference/devicefarm/create-upload.html

AWS Device Farm Developer Guide
Create a Run with the Device Farm API

5. Schedule a test run by running the schedule-run command.

Note
For information about using Device Farm with the AWS CLI, see AWS CLI Reference (p. 96).

Create a Run with the Device Farm API
1. Make sure that you have created a project. For more information, see Create a Project with the

Device Farm API (p. 23).

2. Call the ScheduleRun API.

For information about using the Device Farm API, see API Reference (p. 98).

Next Steps
You'll know the run is complete when the progress icon changes to a result icon. A report corresponding
to the run will appear as soon as tests are complete. For more information, see Reports (p. 14).

To use the report, follow the instructions in Analyze a Report (p. 38).

Set the Execution Timeout for Test Runs in AWS
Device Farm

You can set a value for how long a test run should execute before you stop each device from running a
test. The default execution timeout is 60 minutes per device, but you can set a value as low as 5 minutes
using the console, the AWS Command Line Interface, or the API. If you need to set a duration value
longer than 60 minutes, contact us directly to set that up.

Important
The execution timeout option should be set to the maximum duration for a test run, along
with some added buffer. For example, if your tests take 20 minutes per device to complete, you
should choose a timeout of 30 minutes per device.

If execution exceeds your timeout, execution on that device will be forcibly stopped. Partial results will
be available if possible, and you will be billed for execution up to that point if you're using the metered
billing option. For more information about pricing, see AWS Device Farm Pricing.

You may want to use this feature if you know how long a test run is supposed to take to execute on each
device. When you specify an execution timeout for a test run, you can avoid the situation where a test
run is stuck for some reason and you are being billed for device minutes where no tests are executing.
In other words, using the execution timeout feature lets you stop that run if the test run is taking longer
than expected.

You can set the execution timeout in two places: at the project level and at the test run level. The
following procedures show you how to set up both using the Device Farm console.

Prerequisites
1. Complete the steps in Setting Up (p. 4), which include signing up for an AWS account, creating or

using an IAM user in the AWS account, and giving the IAM user permission to access Device Farm.

API Version 2015-06-23
28

http://docs.aws.amazon.com/cli/latest/reference/devicefarm/schedule-run.html
http://docs.aws.amazon.com/devicefarm/latest/APIReference/API_ScheduleRun.html
mailto:aws-devicefarm-support@amazon.com
http://aws.amazon.com/device-farm/

AWS Device Farm Developer Guide
Set the Execution Timeout for a Project

2. Create a project in Device Farm. Follow the instructions in Create a Project (p. 22), and then return to
this page.

Set the Execution Timeout for a Project
1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. If you have a project already, choose that project from the Device Farm page.

Otherwise, choose Create project and specify a name.

3. Choose Project settings.

4. Choose the General tab of your project.

5. Change the execution timeout by typing a value or using the slider bar.

6. Choose Save changes.

All test runs in your project will now use the execution timeout value you just specified, unless you
override the timeout value when scheduling a run.

Set the Execution Timeout for a Test Run
1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. If you have a project already, choose that project from the Device Farm page.

Otherwise, choose Create project and specify a name.

3. Choose Create a new run.

API Version 2015-06-23
29

https://console.aws.amazon.com/devicefarm
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Simulate Network Connections and Conditions

4. Follow the steps to choose an application, configure your test, select your devices, and specify a
device state.

5. When you get to Review and start run, you can specify the execution timeout for your test run.

6. Change the execution timeout by typing a value or using the slider bar.
7. Choose Confirm and start run.

Simulate Network Connections and Conditions for
your AWS Device Farm Runs

You can simulate network connections and conditions while testing your Android, iOS, FireOS, and web
apps using network shaping in Device Farm. For example, you may want to test your app behavior and
performance in different customer environments.

When you create a run using the default network settings, each device has a full, unhindered WiFi
connection with Internet connectivity. When you use network shaping, you can change the WiFi
connection to specify a network profile like 3G or Lossy WiFi that controls throughput, delay, jitter, and
loss for both inbound and outbound traffic.

Topics
• Set up Network Shaping When Scheduling a Test Run (p. 30)
• Create your own Network Profile (p. 31)
• Change Network Conditions During your Test (p. 32)

Set up Network Shaping When Scheduling a Test Run
When you schedule a run, you can choose from any of the Device Farm-curated profiles, or you can
create and manage your own.

1. From any Device Farm project, choose Create a new run.

API Version 2015-06-23
30

AWS Device Farm Developer Guide
Create your own Network Profile

If you don't have any projects yet, see Create a Project (p. 22).

2. Choose your application, and then choose Next step.

3. Configure your test, and then choose Next step.

4. Select your devices, and then choose Next step.

5. Choose a Network profile or choose Create a new network profile to create your own.

6. Choose Next step.

7. Review and start your test run.

Create your own Network Profile
When you create a test run, you can choose to create a new network profile.

1. Choose Create a new network profile.

The Create a new network profile dialog box appears.

API Version 2015-06-23
31

AWS Device Farm Developer Guide
Change Network Conditions During your Test

2. Specify the name and settings for your network profile.
3. Choose Save network profile.
4. Finish creating your test run and start the run.

Once created, you'll be able to see and manage your network profiles on the Project settings page.

Change Network Conditions During your Test
You can also simulate dynamic network conditions during your test execution. For example, you may
simulate a dropped connection or fluctuating network types. You can do this by utilizing an API from the
device host using a framework like Appium or Calabash.

We are still working on the API that simulates these conditions during your test execution, but you can
try them out and let us know about your experience. For more information about this API, please contact
us.

API Version 2015-06-23
32

mailto:aws-devicefarm-support@amazon.com
mailto:aws-devicefarm-support@amazon.com

AWS Device Farm Developer Guide
Stop a Run

Stop a Run in AWS Device Farm
You may want to stop a run after you have started it. For example, you may notice an issue while your
tests are running and wish to restart the run with an updated test script. This topic describes how to stop
a run and what the implications are for billing.

To stop a run, you can use the Device Farm console, the AWS CLI, or the Device Farm API.

For information about runs, see Runs (p. 12).

Topics

• Prerequisites (p. 33)

• Stop a Run with the Device Farm Console (p. 33)

• Stop a Run with the AWS CLI (p. 34)

• Stop a Run with the Device Farm API (p. 35)

Prerequisites
• To stop a test run, you must have a test run created and actively running. For more information, see

Create a Test Run (p. 25).

Stop a Run with the Device Farm Console
1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. From the Device Farm console home page, choose the project where you have an active test run.

3. On the Run results page, choose the test run.

Your screen should look like the following image (with the pending or in-progress icon to the left of
the device name).

4. Choose Stop run.

The button changes to Stopping, and after a short time the icon next to the device name also
changes to the Stopping icon (a pulsing orange circle with a square inside it). When completely
finished, the icon changes to an orange square.

API Version 2015-06-23
33

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Stop a Run with the AWS CLI

Important
If a test has already finished, Device Farm cannot stop it. If a test is in progress, Device
Farm will stop the test and you will see the total minutes for which you will be billed in the
Devices section. In addition, you will still be billed for the total minutes that Device Farm
takes to run the Setup Suite and the Teardown Suite. For more information, see Device
Farm Pricing.

The following image shows an example Devices section after a test run was successfully stopped.

Stop a Run with the AWS CLI
You can run the following command to stop the specified test run, where myARN is the Amazon Resource
Name (ARN) of the test run.

$ aws devicefarm stop-run --arn myARN

You will see output similar to the following:

{
 "run": {
 "status": "STOPPING",
 "name": "Name of your run",
 "created": 1458329687.951,
 "totalJobs": 7,
 "completedJobs": 5,
 "deviceMinutes": {
 "unmetered": 0.0,
 "total": 0.0,
 "metered": 0.0
 },
 "platform": "ANDROID_APP",
 "result": "PENDING",
 "billingMethod": "METERED",
 "type": "BUILTIN_EXPLORER",
 "arn": "myARN",
 "counters": {
 "skipped": 0,
 "warned": 0,
 "failed": 0,
 "stopped": 0,
 "passed": 0,
 "errored": 0,
 "total": 0
 }
 }

API Version 2015-06-23
34

http://aws.amazon.com/device-farm/faq/#pricing
http://aws.amazon.com/device-farm/faq/#pricing

AWS Device Farm Developer Guide
Stop a Run with the Device Farm API

}

To get the ARN of your run, use the list-runs command. The output will be similar to the following:

{
 "runs": [
 {
 "status": "RUNNING",
 "name": "Name of your run",
 "created": 1458329687.951,
 "totalJobs": 7,
 "completedJobs": 5,
 "deviceMinutes": {
 "unmetered": 0.0,
 "total": 0.0,
 "metered": 0.0
 },
 "platform": "ANDROID_APP",
 "result": "PENDING",
 "billingMethod": "METERED",
 "type": "BUILTIN_EXPLORER",
 "arn": "Your ARN will be here",
 "counters": {
 "skipped": 0,
 "warned": 0,
 "failed": 0,
 "stopped": 0,
 "passed": 0,
 "errored": 0,
 "total": 0
 }
 }
]
}

Note
For information about using Device Farm with the AWS CLI, see AWS CLI Reference (p. 96).

Stop a Run with the Device Farm API
• Call the StopRun operation to the test run.

For information about using the Device Farm API, see API Reference (p. 98).

View a Runs List in AWS Device Farm
To view a list of available runs for a project, you can use the Device Farm console, the AWS CLI, or the
Device Farm API.

Topics

• Prerequisites (p. 36)

• View a Runs List with the Device Farm Console (p. 36)

• View a Runs List with the AWS CLI (p. 36)

• View a Runs List with the Device Farm API (p. 36)

API Version 2015-06-23
35

../../latest/APIReference/API_StopRun.html

AWS Device Farm Developer Guide
Prerequisites

Prerequisites
• Create at least one run in Device Farm. To create a run, follow the instructions in Create a Test

Run (p. 25), and then return to this page.

View a Runs List with the Device Farm Console
1. Make sure that you complete the prerequisites (p. 36), including the creation of at least one run.

2. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

3. In the list of projects, choose the project that corresponds to the runs list you want to view.

Tip
If the list of available projects is not displayed, then on the secondary navigation bar, do
one of the following:

• Choose the Device Farm console home button, and then choose the project.

• For Projects, choose View all projects, and then choose the project.

View a Runs List with the AWS CLI
1. Make sure that you have completed the prerequisites (p. 36), including the creation of at least

one run.

2. To view a list of runs, run the list-runs command.

Tip
To view information about a single run, run the get-run command.

For general information about using Device Farm with the AWS CLI, see AWS CLI Reference (p. 96).

View a Runs List with the Device Farm API
1. Make sure that you have completed the prerequisites (p. 36), including the creation at least one

run.

2. To view a list of runs, call the ListRuns API.

Tip
To view information about a single run, call the GetRun API.

For general information about the Device Farm API, see API Reference (p. 98).

Create a Device Pool in AWS Device Farm
To create a device pool, you can use the Device Farm console, the AWS CLI, or the Device Farm API.

Topics

• Prerequisites (p. 37)

• Create a Device Pool with the Device Farm Console (p. 37)

• Create a Device Pool with the AWS CLI (p. 38)

API Version 2015-06-23
36

https://console.aws.amazon.com/devicefarm
http://docs.aws.amazon.com/cli/latest/reference/devicefarm/list-runs.html
http://docs.aws.amazon.com/cli/latest/reference/devicefarm/get-run.html
http://docs.aws.amazon.com/devicefarm/latest/APIReference/API_ListRuns.html
http://docs.aws.amazon.com/devicefarm/latest/APIReference/API_GetRun.html

AWS Device Farm Developer Guide
Prerequisites

• Create a Device Pool with the Device Farm API (p. 38)

Prerequisites
• Start by creating a run in the Device Farm console. Follow the instructions in Create a Test

Run (p. 25). When you get to the Select devices page in the Create a new run wizard, continue
with the instructions in this section.

Create a Device Pool with the Device Farm Console
1. Make sure you have started to create a run and stopped on the Select devices page in the Create a

new run wizard.
2. On the Select devices page, choose Create new device pool.
3. For Name, type a name that will make this device pool easy to identify in the future.
4. For Description, type a description that will make this device pool easy to identify in the future.
5. If you want to use one or more selection criteria for the devices in this device pool, do the following:

1. Choose Add rule.
2. For Field, choose one of the following:

• Choose Manufacturer to include devices by their manufacturer name.
• Choose Type to include devices by their Type value.

3. For Operator, choose the following:

• Choose EQUALS to include devices where the Field value equals the Operand value.
4. For Operand, type or choose the value you want to specify for the Field and Operator values.

Note that if you choose Platform for Field, then the only available selections are ANDROID and
IOS. Similarly, if you choose Type for Field, then the only available selections are PHONE and
TABLET.

5. To add another rule, choose Add rule again.
6. To delete a rule, choose the X icon next to the rule you want to delete.

After you create the first rule, then in the list of devices, the box next to each device that matches
the rule will be selected. After you create additional rules or change existing rules, then in the list
of devices, the box next to each device that matches those combined rules will be selected. Devices
with selected boxes will be included in the device pool. Devices with cleared boxes will be excluded
from the device pool.

6. If you want to manually include or exclude individual devices, select or clear the box next to each
device.

Note
You can select or clear the boxes only if you do not have any rules specified.

7. If you want to include or exclude all displayed devices, select or clear the box in the column header
row of the list.

Important
Although you can use the boxes in the column header row to change the list of displayed
devices, this does not mean that the remaining displayed devices will be the only ones
included or excluded. To confirm which devices will be included or excluded, be sure to clear
the contents of all of the boxes in the column header row. Then browse the boxes to see
which devices will be included or excluded.

8. Choose Save device pool.

API Version 2015-06-23
37

AWS Device Farm Developer Guide
Create a Device Pool with the AWS CLI

Create a Device Pool with the AWS CLI
• Run the create-device-pool command.

For information about using Device Farm with the AWS CLI, see AWS CLI Reference (p. 96).

Create a Device Pool with the Device Farm API
• Call the CreateDevicePool API.

For information about using the Device Farm API, see API Reference (p. 98).

Analyze a Report in AWS Device Farm
Use the Device Farm console to analyze a report. For more information, see Reports (p. 14).

Prerequisites
• Create a run in Device Farm, and verify the run is complete. Follow the instructions in Create a Test

Run (p. 25), and then return to this page.

Console Icons
Icon Description

Green check mark inside of a circle Success

Orange exclamation mark inside of a triangle Warning

Red exclamation mark inside of a circle Failure

Blue circle with a slash through it Skipped

Orange square Stopped

Open a Report with the Device Farm Console
1. Make sure the run is complete.
2. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.
3. In the list of projects, choose the project for the run that corresponds to the report that you want to

access.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, choose the
Device Farm console home button, and then choose the project.

4. In the list, choose the run with the finished icon that corresponds to the report you want to access.
The report's summary page is displayed.

To analyze the various parts of the report, follow the instructions in the following sections.

API Version 2015-06-23
38

http://docs.aws.amazon.com/cli/latest/reference/devicefarm/create-device-pool.html
http://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateDevicePool.html
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Analyze a Report's Summary Page

with the Device Farm Console

Analyze a Report's Summary Page with the Device
Farm Console
1. If the report's summary page is not already displayed, follow the instructions in Open a Report with

the Device Farm Console (p. 38).

2. At the beginning of the summary page, the total number of tests, by outcome, is displayed.

• An exclamation mark is displayed next to the number of tests with errors.

• A square is displayed next to the number of stopped tests.

• An exclamation mark inside of a circle is displayed next to the number of failed tests.

• A check mark is displayed next to the number of successful tests.

• A circle with a slash through it is displayed next to the number of skipped tests.

• An exclamation mark inside of a triangle is displayed next to the number of tests with warnings.

3. The summary page displays a list of test results as follows:

• The Unique problems section lists unique warnings and failures. To analyze unique problems,
follow the instructions in Analyze a Report's Unique Problems with the Device Farm
Console (p. 39).

• The Devices section displays the total number of tests, by outcome, for each device.

• Next to the device's name, one of the following icons is displayed:

• If there is at least one stopped test for the device, an orange square is displayed.

• If there is at least one test with errors, a red exclamation mark is displayed.

• If there is at least one failed test, a red exclamation mark inside of a circle is displayed.

• If there is at least one test with warnings, an orange exclamation mark inside of a triangle is
displayed.

• Otherwise, a green check mark inside of a circle is displayed.

• To analyze the results by device, follow the instructions in Analyze a Report by Device with the
Device Farm Console (p. 40).

• The Screenshots section displays a list of any screenshots Device Farm captured during the run,
grouped by device.

Analyze a Report's Unique Problems with the Device
Farm Console
1. If the report's summary page is not already displayed, follow the instructions in Open a Report with

the Device Farm Console (p. 38).

2. Following the total number of tests by outcome for the run, for Unique problems, choose the
problem that you want to analyze. The list of devices for the problem is displayed.

3. Choose the device whose results you want to analyze. The report displays information about the
problem.

4. The Video section displays a downloadable video recording of the test.

5. The Logs section displays any information Device Farm logged during the test. To analyze this
information, follow the instructions in Analyze Log Information for a Problem, Device, Suite, or Test
in a Report with the Device Farm Console (p. 42).

6. The Performance section displays information about any performance data Device Farm generated
during the test. To analyze this performance data, follow the instructions in Analyze Performance
Data for a Problem, Device, Suite, or Test in a Report with the Device Farm Console (p. 42).API Version 2015-06-23

39

AWS Device Farm Developer Guide
Analyze a Report by Device with the Device Farm Console

7. The Files section displays a list of tests for the suite and any associated files (such as log files) that
can be downloaded. To download a file, choose the file's link in the list.

8. The Screenshots section displays a list of any screenshots Device Farm captured during the test.

Analyze a Report by Device with the Device Farm
Console
1. If the report's summary page is not already displayed, follow the instructions in Open a Report with

the Device Farm Console (p. 38).
2. In the Devices section, choose the device whose results you want to analyze.
3. The Video section displays a downloadable video recording of the test.
4. The Suites section displays information about the suites for the device. For each suite, the following

test results are displayed:

• For Test Results, the total number of tests for the suite is displayed by outcome.
• Next to the suite's name, one of the following icons is displayed:

• An orange square is displayed if there is at least one stopped test for the suite.
• A red exclamation mark is displayed if there is at least one test with errors for the suite.
• A red exclamation mark inside of a circle is displayed if there is at least one failed test for the

suite.
• An orange exclamation mark inside of a triangle is displayed if there is at least one test for the

suite with warnings.
• Otherwise, a green check mark inside of a circle is displayed.

To analyze the results by suite, follow the instructions in Analyze a Report by Suite with the Device
Farm Console (p. 40).

The Logs section displays any information Device Farm logged for the device during the run. To
analyze this information, follow the instructions in Analyze Log Information for a Problem, Device,
Suite, or Test in a Report with the Device Farm Console (p. 42).

5. The Performance section displays information about any performance data Device Farm generated
for the device during the run. To analyze this performance data, follow the instructions in
Analyze Performance Data for a Problem, Device, Suite, or Test in a Report with the Device Farm
Console (p. 42).

6. The Files section displays a list of suites for the device and any associated files (such as log files) that
can be downloaded. To download a file, choose the file's link in the list.

7. The Screenshots section displays a list of any screenshots Device Farm captured during the run for
the device, grouped by suite.

Analyze a Report by Suite with the Device Farm
Console
1. If the report's summary page is not already displayed, follow the instructions in Open a Report with

the Device Farm Console (p. 38).
2. In the Devices section, choose the device that corresponds to the suite whose results you want to

analyze. The device's results page is displayed.
3. In the Suites section, choose the suite that you want to analyze for results. The suite's results page is

displayed.

API Version 2015-06-23
40

AWS Device Farm Developer Guide
Analyze a Report by Test with the Device Farm Console

4. The suite's results page displays information about the tests for the suite. For each test, the
following test results are displayed:

• For Tests, the outcome for the test is displayed as follows:
• If the test succeeded, the number 1 is displayed next to a green check mark inside of a circle.
• If the test has warnings, the number 1 is displayed next to an orange exclamation mark inside of

a triangle.
• If the test was skipped, the number 1 is displayed next to a blue circle with a slash through it.
• If the test failed, the number 1 is displayed next to a red exclamation mark inside of a circle.
• If the test has errors, the number 1 is displayed next to a red exclamation mark.
• If the test was stopped, the number 1 is displayed next to an orange square.

• These icons are also displayed next to the test's name.

To analyze the results by test, follow the instructions in Analyze a Report by Test with the Device
Farm Console (p. 41).

5. The Logs section displays any information Device Farm logged during the run for the suite. To
analyze this information, follow the instructions in Analyze Log Information for a Problem, Device,
Suite, or Test in a Report with the Device Farm Console (p. 42).

6. The Performance section displays information about any performance data Device Farm
generated during the run for the suite. To analyze this performance data, follow the instructions
in Analyze Performance Data for a Problem, Device, Suite, or Test in a Report with the Device Farm
Console (p. 42).

7. The Files section displays a list of tests for the suite and any associated files (such as log files) that
can be downloaded. To download a file, choose the file's link in the list.

8. The Screenshots section displays a list of any screenshots Device Farm captured during the run for
the suite, grouped by test.

Analyze a Report by Test with the Device Farm
Console
1. If the report's summary page is not already displayed, open the report by following the instructions

in Open a Report with the Device Farm Console (p. 38).
2. In the Devices section, choose the device that corresponds to the test you want to analyze for

results.
3. In the Suites section, choose the suite that corresponds to the test you want to analyze for results.
4. The Tests tab displays information about the test.

• If the test was stopped, an orange square is displayed.
• If the test contains errors, a red exclamation mark is displayed.
• If the test failed, a red exclamation mark inside of a circle is displayed.
• If the test had a warning, an orange exclamation mark inside of a triangle is displayed.
• Otherwise, a green check mark inside of a circle is displayed .

The Logs section displays any information Device Farm logged during the test. To analyze this
information, follow the instructions in Analyze Log Information for a Problem, Device, Suite, or Test
in a Report with the Device Farm Console (p. 42).

5. The Performance tab displays information about any performance data Device Farm generated
during the test. To analyze this performance data, follow the instructions in Analyze Performance
Data for a Problem, Device, Suite, or Test in a Report with the Device Farm Console (p. 42).

API Version 2015-06-23
41

AWS Device Farm Developer Guide
Analyze Performance Data for a Problem, Device,

Suite, or Test in a Report with the Device Farm Console

6. The Files tab displays a list of any of the test's associated files (such as log files) that can be
downloaded. To download a file, choose the file's link in the list.

7. The Screenshots tab displays a list of any screenshots Device Farm captured during the test.

Analyze Performance Data for a Problem, Device,
Suite, or Test in a Report with the Device Farm
Console
1. If the Performance tab is not already displayed, follow one of these sets of instructions and choose

the Performance tab:

• Analyze a Report's Unique Problems with the Device Farm Console (p. 39)
• Analyze a Report by Device with the Device Farm Console (p. 40)
• Analyze a Report by Suite with the Device Farm Console (p. 40)
• Analyze a Report by Test with the Device Farm Console (p. 41)

2. The following information is displayed:

• The CPU graph displays the percentage of CPU the app used on a single core during the selected
problem, device, suite, or test (along the vertical axis) over time (along the horizontal axis).

The vertical axis is expressed in percentages from 0% to the maximum recorded percentage.

This percentage may exceed 100% if the app used more than one core. For example, if three cores
are at 60% usage, this percentage will be displayed as 180%.

• The FPS graph displays the frame rate in frames per second (FPS) during the selected problem,
device, suite, or test (along the vertical axis) over time (along the horizontal axis).

The vertical axis is expressed in FPS from 0 FPS to the maximum number of recorded FPS.
• The Memory graph displays the number of MB the app used during the selected problem, device,

suite, or test (along the vertical axis) over time (along the horizontal axis).

The vertical axis is expressed in MB from 0 MB to the maximum number of recorded MB.
• The Threads graph displays the number of threads used during the selected problem, device,

suite, or test (along the vertical axis) over time (along the horizontal axis).

The vertical axis is expressed in number of threads from 0 threads to the maximum number of
recorded threads.

In all cases, the horizontal axis is represented, in seconds, from the start and end of the run for the
selected problem, device, suite, or test.

3. To display information for a specific data point, pause in the desired graph at the desired second
along the horizontal axis.

Analyze Log Information for a Problem, Device, Suite,
or Test in a Report with the Device Farm Console
1. If the Logs section is not already displayed, follow one of these sets of instructions and choose the

Logs tab:

• Analyze a Report's Unique Problems with the Device Farm Console (p. 39).

API Version 2015-06-23
42

AWS Device Farm Developer Guide
Analyze Log Information for a Problem, Device, Suite,

or Test in a Report with the Device Farm Console

• Analyze a Report by Device with the Device Farm Console (p. 40)

• Analyze a Report by Suite with the Device Farm Console (p. 40)

• Analyze a Report by Test with the Device Farm Console (p. 41)

2. The following information is displayed:

• Source represents the source of a log entry. Possible values include:

• Harness represents a log entry Device Farm created. These log entries are typically created
during start and stop events.

• Device represents a log entry the device created. For Android, these log entries are logcat-
compatible. For iOS, these log entries are syslog compatible.

• Test represents a log entry that either a test or its test framework created.

• Time represents the elapsed time between the first log entry and this log entry. The time is
expressed in MM:SS.SSS format, where M represents minutes and S represents seconds.

• PID represents the process identifier (PID) that created the log entry. All log entries created by an
app on a device will have the same PID.

• Level represents the logging level for the log entry. For example, Logger.debug("This is a
message!") would log a Level of Debug. Possible values include the following:

• Alert

• Critical

• Debug

• Emergency

• Error

• Errored

• Failed

• Info

• Internal

• Notice

• Passed

• Skipped

• Stopped

• Verbose

• Warned

• Warning

• Tag represents arbitrary metadata for the log entry. For example, Android logcat can use this to
describe which part of the system created the log entry (for example, ActivityManager).

• Message represents the message or data for the log entry. For example, Logger.debug("Hello,
World!") would log a Message of "Hello, World!".

3. To display only a portion of the information, do one or more of the following:

• To show all log entries that match a value for a specific column, type the value into the
corresponding column header box. For example, to show all log entries with a Source value of
Harness, type Harness in the Source column header box. Similarly, to show all log entries with a
PID value of 969 and a Tag value of ActivityManager, type 969 in the PID column header box, and
type ActivityManager in the Tag column header box.

• To show all log entries that contain zero or more unknown characters for a specific column, use
the wildcard character (*) to represent the unknown characters. For example, to show all log
entries with a Source value that contain an es (such as Harness and Test), type *es* in the Source
column header box. Similarly, to show all log entries that start with a Source value of H (such as
Harness) and have a Level value that contains an e (such as Passed), type H* in the PID column
header box, and type *e* in the Level column header box.API Version 2015-06-23

43

AWS Device Farm Developer Guide
Analyze Log Information for a Problem, Device, Suite,

or Test in a Report with the Device Farm Console

• To show log entries that contain a choice between one or more known characters for a specific
column, surround the set of choices in parentheses (()), and use the pipe character (|) to
separate each choice. For example, to show log entries with a Message value that contains either
started or starting, type *start(ed|ing)* in the Message column header box. Similarly, to show
all log entries with a Log value of Info or Debug, type *(Info|Debug)* in the Log column header
box.

• To remove all of the characters from a column header box, choose the X in that column header
box. Removing all of the characters from a column header box is the same as typing * in that
column header box.

4. To download all of the log information for the device, including all of the suites and tests that were
run, choose Download logs.

Note
Even if you display only a portion of the information, if you choose Download logs, all log
information for the device will be downloaded.

API Version 2015-06-23
44

AWS Device Farm Developer Guide
Built-in Test Types

Working with Test Types in AWS
Device Farm

Device Farm provides support for several automation test types.

Built-in Test Types
Built-in tests enable you to test your apps without writing scripts.

• Built-in: Explorer (Android) (p. 86)
• Built-in: Fuzz (Android and iOS) (p. 87)

Custom Test Types
Custom tests allow you to test specific flows and business logic within your app.

Custom Android Test Types
• Appium Java JUnit (p. 46)
• Appium Java TestNG (p. 50)
• Appium Python (p. 54)
• Calabash (p. 57)
• Instrumentation (p. 59)
• UI Automator (p. 60)

Custom iOS Test Types
• Appium Java JUnit (p. 62)
• Appium Java TestNG (p. 66)
• Appium Python (p. 70)

API Version 2015-06-23
45

AWS Device Farm Developer Guide
Custom Web Application Test Types

• Calabash (p. 73)
• UI Automation (p. 75)
• XCTest (p. 76)
• XCTest UI (p. 77)

Custom Web Application Test Types
• Appium Java JUnit (p. 79)
• Appium Java TestNG (p. 81)
• Appium Python (p. 83)

Working with Android Tests in AWS Device Farm
Device Farm provides support for several automation test types.

Built-in Test Types for Android
There are two built-in test types available for Android devices.

• Built-in: Explorer (Android) (p. 86)
• Built-in: Fuzz (Android and iOS) (p. 87)

Custom Test Types for Android
The following custom tests are available for Android devices.

• Appium Java JUnit (p. 46)
• Appium Java TestNG (p. 50)
• Appium Python (p. 54)
• Calabash (p. 57)
• Instrumentation (p. 59)
• UI Automator (p. 60)

Working with Appium Java JUnit for Android and
AWS Device Farm
Device Farm provides support for Appium Java JUnit for Android.

Device Farm also provides a sample Android application along with links to working tests in three
Android automation frameworks, including Appium. You can download the Device Farm sample app for
Android on GitHub.

Topics
• What Is Appium Java JUnit? (p. 47)
• Version Information (p. 47)
• Prepare Your Android Appium Java JUnit Tests (p. 47)

API Version 2015-06-23
46

https://github.com/awslabs/aws-device-farm-sample-app-for-android
https://github.com/awslabs/aws-device-farm-sample-app-for-android

AWS Device Farm Developer Guide
Appium Java JUnit

• Upload Your Android Appium Java JUnit Tests (p. 49)
• Taking Screenshots in Android Appium Java JUnit Tests (p. 50)
• Additional Considerations for Android Appium Java JUnit Tests (p. 50)

What Is Appium Java JUnit?
Appium is an open-source tool for automating native, mobile web, and hybrid applications on platforms
such as Android. For more information, see About Appium.

Version Information
Currently, Device Farm supports Appium versions 1.6.3 and 1.4.16 and Java version Java 8.

Prepare Your Android Appium Java JUnit Tests
Your Android Appium Java JUnit tests must be contained in a .zip file.

Build the Appium Java Test Package

The Appium Java test package you upload to Device Farm must be in .zip format and contain all of the
tests' dependencies. The following instructions will show you how to meet these requirements during the
package stage of a Maven build.

1. Modify pom.xml to set packaging as a JAR file:

<groupId>com.acme</groupId>
<artifactId>acme-android-appium</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

2. Modify pom.xml to use maven-jar-plugin to build your tests into a JAR file.

The following plugin will build your test source code (anything in the src/test directory) into a JAR
file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <goals>
 <goal>test-jar</goal>
 </goals>
 </execution>
 </executions>
</plugin>

3. Modify pom.xml to use maven-dependency-plugin to build dependencies as JAR files.

The following plugin will copy your dependencies into the dependency-jars directory:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.10</version>
 <executions>
 <execution>

API Version 2015-06-23
47

http://appium.io/slate/en/master/?ruby#about-appium

AWS Device Farm Developer Guide
Appium Java JUnit

 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${project.build.directory}/dependency-jars/</outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

4. Save the following XML assembly to src/main/assembly/zip.xml.

The following XML is an assembly definition that, when configured, instructs Maven to build a .zip
file containing everything in the root of your build output directory and the dependency-jars
directory:

<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/
assembly/1.1.0 http://maven.apache.org/xsd/assembly-1.1.0.xsd">
 <id>zip</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory>./</outputDirectory>
 <includes>
 <include>*.jar</include>
 </includes>
 </fileSet>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory>./</outputDirectory>
 <includes>
 <include>/dependency-jars/</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

5. Modify pom.xml to use maven-assembly-plugin to package tests and all dependencies into a
single .zip file.

The following plugin uses the preceding assembly to create a .zip file named zip-with-
dependencies in the build output directory every time mvn package is run:

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.5.4</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <finalName>zip-with-dependencies</finalName>

API Version 2015-06-23
48

AWS Device Farm Developer Guide
Appium Java JUnit

 <appendAssemblyId>false</appendAssemblyId>
 <descriptors>
 <descriptor>src/main/assembly/zip.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
</plugin>

6. Build, package, and verify. For example:

$ mvn clean package -DskipTests=true
$ tree target
.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 |— log4j-1.2.14.jar
 |— (and so on...)

7. Use the Device Farm console to upload the test package.

Tip
If you receive an error saying that annotation is not supported in 1.3, add the following to
pom.xml:

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
</plugin>

Upload Your Android Appium Java JUnit Tests

Use the Device Farm console to upload your tests:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project where you want to upload your tests.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your Android app file. The file must be an .apk file.

6. Choose Next step.

7. On the Configure a test page, choose Appium Java JUnit, and then choose Upload.

API Version 2015-06-23
49

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Appium Java TestNG

8. Browse to and choose the .zip file that contains your tests. The .zip file must follow the format
described in Prepare Your Android Appium Java JUnit Tests (p. 47).

9. Choose the Appium version you are using from the Appium version dropdown list.
10. Choose Next step, and then complete the remaining on-screen instructions to select devices and

start the run.

Taking Screenshots in Android Appium Java JUnit Tests
You can take screenshots as part of your Android Appium Java JUnit tests.

When Device Farm runs your Appium Java JUnit test, the service sets several Java system properties that
describe the configuration of the Appium server with which you're communicating. For example, Device
Farm sets the appium.screenshots.dir property to a fully qualified path on the local file system where
Device Farm expects Appium screenshots to be saved. The test-specific directory where the screenshots
are stored is defined at runtime. The screenshots are automatically pulled into your Device Farm reports
automatically. To view the screenshots, in the Device Farm console, choose the Screenshots section.

The following example shows how to use and consume the appium.screenshots.dir property to capture
an Appium screenshot that is pulled into your Device Farm report.

public boolean takeScreenshot(final String name) {
 String screenshotDirectory = System.getProperty("appium.screenshots.dir",
 System.getProperty("java.io.tmpdir", ""));
 File screenshot = ((TakesScreenshot) driver).getScreenshotAs(OutputType.FILE);
 return screenshot.renameTo(new File(screenshotDirectory, String.format("%s.png",
 name)));
 }

Additional Considerations for Android Appium Java JUnit Tests
Device Farm does not modify Android Appium Java JUnit tests.

Working with Appium Java TestNG for Android and
AWS Device Farm
Device Farm provides support for Appium Java TestNG for Android.

Device Farm also provides a sample Android application along with links to working tests in three
Android automation frameworks, including Appium. You can download the Device Farm sample app for
Android on GitHub.

Topics
• What Is Appium Java TestNG? (p. 50)
• Version Information (p. 51)
• Prepare Your Android Appium Java TestNG Tests (p. 51)
• Upload Your Android Appium Java TestNG Tests (p. 53)
• Taking Screenshots in Android Appium Java TestNG Tests (p. 53)
• Additional Considerations for Android Appium Java TestNG Tests (p. 54)

What Is Appium Java TestNG?
Appium is an open-source tool for automating native, mobile web, and hybrid applications on platforms
such as Android. For more information, see About Appium.

API Version 2015-06-23
50

https://github.com/awslabs/aws-device-farm-sample-app-for-android
https://github.com/awslabs/aws-device-farm-sample-app-for-android
http://appium.io/slate/en/master/?ruby#about-appium

AWS Device Farm Developer Guide
Appium Java TestNG

Version Information
Currently, Device Farm supports Appium versions 1.6.3 and 1.4.16 and Java version Java 8.

Prepare Your Android Appium Java TestNG Tests
Your Android Appium Java TestNG tests must be contained in a .zip file before you upload them to
Device Farm.

Build the Appium Java Test Package

The Appium Java test package you upload to Device Farm must be in .zip format and contain all of the
tests' dependencies. The following instructions will show you how to meet these requirements during the
package stage of a Maven build.

1. Modify pom.xml to set packaging as a JAR file:

<groupId>com.acme</groupId>
<artifactId>acme-android-appium</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

2. Modify pom.xml to use maven-jar-plugin to build your tests into a JAR file.

The following plugin will build your test source code (anything in the src/test directory) into a JAR
file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <goals>
 <goal>test-jar</goal>
 </goals>
 </execution>
 </executions>
</plugin>

3. Modify pom.xml to use maven-dependency-plugin to build dependencies as JAR files.

The following plugin will copy your dependencies into the dependency-jars directory:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.10</version>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${project.build.directory}/dependency-jars/</outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

API Version 2015-06-23
51

AWS Device Farm Developer Guide
Appium Java TestNG

4. Save the following XML assembly to src/main/assembly/zip.xml.

The following XML is an assembly definition that, when configured, instructs Maven to build a .zip
file containing everything in the root of your build output directory and the dependency-jars
directory:

<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/
assembly/1.1.0 http://maven.apache.org/xsd/assembly-1.1.0.xsd">
 <id>zip</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory>./</outputDirectory>
 <includes>
 <include>*.jar</include>
 </includes>
 </fileSet>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory>./</outputDirectory>
 <includes>
 <include>/dependency-jars/</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

5. Modify pom.xml to use maven-assembly-plugin to package tests and all dependencies into a
single .zip file.

The following plugin uses the preceding assembly to create a .zip file named zip-with-
dependencies in the build output directory every time mvn package is run:

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.5.4</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <finalName>zip-with-dependencies</finalName>
 <appendAssemblyId>false</appendAssemblyId>
 <descriptors>
 <descriptor>src/main/assembly/zip.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
</plugin>

6. Build, package, and verify. For example:

$ mvn clean package -DskipTests=true

API Version 2015-06-23
52

AWS Device Farm Developer Guide
Appium Java TestNG

$ tree target
.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 |— log4j-1.2.14.jar
 |— (and so on...)

7. Use the Device Farm console to upload the test package.

Tip
If you receive an error saying that annotation is not supported in 1.3, add the following to
pom.xml:

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
</plugin>

Upload Your Android Appium Java TestNG Tests
Use the Device Farm console to upload your tests:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project where you want to upload your tests.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your Android app file. The file must be an .apk file.

6. Choose Next step.

7. On the Configure a test page, choose Appium Java TestNG, and then choose Upload.

8. Browse to and choose the .zip file that contains your tests. The .zip file must follow the format
described in Prepare Your Android Appium Java TestNG Tests (p. 51).

9. Choose the Appium version you are using from the Appium version dropdown list.

10. Choose Next step, and then complete the remaining on-screen instructions to select devices and
start the run.

Taking Screenshots in Android Appium Java TestNG Tests
You can take screenshots as part of your Android Appium Java TestNG tests.

API Version 2015-06-23
53

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Appium Python

When Device Farm runs your Appium Java TestNG test, the service sets several Java system properties
that describe the configuration of the Appium server with which you're communicating. For example,
Device Farm sets the appium.screenshots.dir property to a fully qualified path on the local file system
where Device Farm expects Appium screenshots to be saved. The test-specific directory where the
screenshots are stored is defined at runtime. The screenshots are automatically pulled into your Device
Farm reports automatically. To view the screenshots, in the Device Farm console, choose the Screenshots
section.

The following example shows how to use and consume the appium.screenshots.dir property to capture
an Appium screenshot that is pulled into your Device Farm report.

public boolean takeScreenshot(final String name) {
 String screenshotDirectory = System.getProperty("appium.screenshots.dir",
 System.getProperty("java.io.tmpdir", ""));
 File screenshot = ((TakesScreenshot) driver).getScreenshotAs(OutputType.FILE);
 return screenshot.renameTo(new File(screenshotDirectory, String.format("%s.png",
 name)));
 }

Additional Considerations for Android Appium Java TestNG
Tests
Device Farm does not modify Android Appium Java TestNG tests.

Working with Appium Python for Android
Applications and AWS Device Farm
Device Farm provides support for Appium Python for Android apps.

Topics
• What Is Appium Python? (p. 54)
• Version Information (p. 54)
• Prepare Your Android Application Appium Python Tests (p. 54)
• Build the Appium Python Test Package (p. 55)
• Upload Your Android Application Appium Python Tests (p. 56)
• Taking Screenshots in Android Appium Python Tests (p. 57)
• Additional Considerations for Android Appium Python Tests (p. 57)

What Is Appium Python?
Appium is an open-source tool for automating native, mobile web, and hybrid applications on platforms
like Android. For more information, see About Appium.

Version Information
Currently, Device Farm supports Appium versions 1.6.3 and 1.4.16 and Python version 2.7.6 (pip version
1.5.4).

Prepare Your Android Application Appium Python Tests
The Appium Python tests for your Android application must be contained in a .zip file.

API Version 2015-06-23
54

http://appium.io/slate/en/master/?ruby#about-appium

AWS Device Farm Developer Guide
Appium Python

Build the Appium Python Test Package
The Appium Python test packages you upload to Device Farm must be in .zip format and contain all the
dependencies of your test. The following instructions show you how to meet these requirements.

Note
The instructions below are based on Linux x86_64 and Mac. In the currently supported scheme,
Device Farm requires that the packaging of your Appium Python tests be done on Linux x86_64
if your tests contain non-universal Python wheels dependencies. For the platform on which you
execute a command, the wheels tools gather your .whl dependent files under the wheelhouse/
folder. When you execute the Python wheel command on any platform other than Linux x86_64,
you would gather the flavor of a non-univesral wheel dependency for that particular platform
and may cause undesired effects. This would most likely lead to errors when executing your tests
on Device Farm.

1. We strongly recommend that you set up Python virtualenv for developing and packaging tests so
that unnecessary dependencies are not included in your app package.

Tip

• Do not create a Python virtualenv with the --system-site-packages option, because it
will inherit packages from /usr/lib/pythonx.x/site-packages or wherever your global
site-packages directory is. This can lead to you including dependencies in your virtual
environment that are not needed by your tests.

• You should also verify that your tests do not use dependencies that are dependent on
native libraries, as these native libraries may or may not be present on the instance where
these tests run.

2. Install py.test in your virtual environment.

An example flow of creating a virtual environment using Python virtualenv and installing pytest in
that virtual environment would look like the following:

$ virtualenv workspace
$ cd workspace
$ source bin/activate
$ pip install pytest

3. Store all Python test scripts under the tests/ folder in your work space.

─ workspace
 ── tests/ (your tests go here)

4. Make sure you have py.test installed in your virtual environment and test cases are discoverable by
the following command, which you should run from your virtual environment workspace folder.

$ py.test --collect-only tests/

Make sure the output of py.test command shows you the tests that you want to execute on Device
Farm.

5. Go to your work space and run the following command to generate the requirements.txt file:

$ pip freeze > requirements.txt

6. Go to your work space and run the following command to generate the wheelhouse/ folder:

$ pip wheel --wheel-dir wheelhouse -r requirements.txt

API Version 2015-06-23
55

http://pythonwheels.com/
https://pypi.python.org/pypi/virtualenv

AWS Device Farm Developer Guide
Appium Python

7. You can use the following commands to clean all cached files under your tests/ folder:

$ find . -name '__pycache__' -type d -exec rm -r {} +
$ find . -name '*.pyc' -exec rm -f {} +
$ find . -name '*.pyo' -exec rm -f {} +
$ find . -name '*~' -exec rm -f {} +

8. Zip the tests/ folder, wheelhouse/ folder, and the requirements.txt file into a single archive:

$ zip -r test_bundle.zip tests/ wheelhouse/ requirements.txt

Your work space will eventually look like this:

─ workspace
 ── tests/
 ── test_bundle.zip
 ── requirements.txt
 ── wheelhouse/

Upload Your Android Application Appium Python Tests

Use the Device Farm console to upload your tests.

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. If you see the AWS Device Farm console home page, choose Get started.

3. If you already have a project, you can upload your tests to an existing project or choose Create a
new project.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a project, follow the instructions in Create a Project (p. 22).

4. If the Create a new run button is displayed, choose it.

5. On the Choose your application page, choose Native Application (the Android and Apple logos).

API Version 2015-06-23
56

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Calabash

6. Next, choose Upload to upload your .apk file.

Device Farm processes your .apk file before continuing.
7. In the Run name field, type a name for your run.

Tip
Give the run a name that will help you identify a specific build of your app (for example,
Beta-0.1). For more information, see Working with Test Runs (p. 25).

8. Choose Appium Python to configure your test,
9. To add your Appium test scripts to the test run, choose Upload.
10. Choose the Appium version you are using from the Appium version dropdown list.
11. Choose Next step, and then complete the instructions to select devices and start the run.

Taking Screenshots in Android Appium Python Tests
You can take screenshots as part of your Android Appium Python tests.

When Device Farm runs your Appium Python test, the service sets several system properties that
describe the configuration of the Appium server with which you're communicating. For example, Device
Farm sets the SCREENSHOT_PATH property to a fully qualified path on the local file system where Device
Farm expects Appium screenshots to be saved. The test-specific directory where the screenshots are
stored is defined at runtime. The screenshots are pulled into your Device Farm reports automatically. To
view the screenshots, in the Device Farm console, choose the Screenshots section.

The following example shows how to use and consume the SCREENSHOT_PATH property to capture an
Appium screenshot that is pulled into your Device Farm report.

screenshot_folder = os.getenv('SCREENSHOT_PATH', '')
self.driver.save_screenshot(screenshot_folder + "/screenshot.png")

Additional Considerations for Android Appium Python Tests
Device Farm does not modify Android Appium Python tests.

Working with Calabash for Android and AWS Device
Farm
Device Farm provides support for Calabash for Android.

Device Farm also provides a sample Android application along with links to working tests in three
Android automation frameworks, including Calabash. You can download the Device Farm sample app for
Android on GitHub.

API Version 2015-06-23
57

https://github.com/awslabs/aws-device-farm-sample-app-for-android
https://github.com/awslabs/aws-device-farm-sample-app-for-android

AWS Device Farm Developer Guide
Calabash

What Is Calabash?
Calabash is a mobile testing framework that enables automated user interface acceptance tests written
in Cucumber to be run on Android apps. For more information, see the Welcome to Calabash for Android
repository on GitHub.

Version Information
Currently, Device Farm supports Calabash version 0.7.2.

Prepare Your Android Calabash Tests
Your Android Calabash tests must be contained in a .zip file before you upload them to Device Farm.
This .zip file must contain the following structure:

my-zip-file-name.zip
 `-- features (directory)
 |-- my-feature-1-file-name.feature
 |-- my-feature-2-file-name.feature
 |-- my-feature-N-file-name.feature
 |-- step_definitions (directory)
 | `-- (.rb files)
 |-- support (directory)
 | `-- (.rb files)
 `-- (any other supporting files)

Upload Your Android Calabash Tests
Use the Device Farm console to upload your tests:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project where you want to upload your tests.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your Android app file. The file must be an .apk file.

6. Choose Next step.

7. On the Configure a test page, choose Calabash, and then choose Upload.

8. Browse to and choose the .zip file that contains your tests. The .zip file must follow the format
described in Prepare Your Android Calabash Tests (p. 58).

9. Choose Next step, and then complete the remaining on-screen instructions to select devices and
start the run.

Taking Screenshots in Android Calabash Tests
You can take screenshots as part of your Android Calabash tests.

Android Calabash provides a set of predefined steps for taking screenshots. For details, see the
"Screenshots" section of the Canned steps page in the Calabash Android repository on GitHub.

API Version 2015-06-23
58

https://github.com/calabash/calabash-android
https://console.aws.amazon.com/devicefarm
https://github.com/calabash/calabash-android/blob/master/ruby-gem/lib/calabash-android/canned_steps.md

AWS Device Farm Developer Guide
Instrumentation

Alternatively, you can define a custom step inside of a Ruby (.rb) file to call the screenshot_embed
function, which creates a screenshot and saves it to a directory you define. For example, the following
code example creates a screenshot and saves it to the /my/custom/path directory with a file name of
screenshot_seconds-since-Epoch:

screenshot_embed(:prefix => "/my/custom/path", :name => "screenshot_─{Time.now.to_i}")

Additional Considerations for Android Calabash Tests
Device Farm replaces some Calabash hooks so that Android Calabash tests will run on devices in Device
Farm, but it does not modify Android Calabash tests.

Working with Instrumentation for Android and AWS
Device Farm
Device Farm provides support for Instrumentation (JUnit, Espresso, Robotium, or any Instrumentation-
based tests) for Android.

Device Farm also provides a sample Android application along with links to working tests in three
Android automation frameworks, including Instrumentation (Espresso). You can download the Device
Farm sample app for Android on GitHub.

Topics

• What Is Instrumentation? (p. 59)

• Upload Your Android Instrumentation Tests (p. 59)

• Taking Screenshots in Android Instrumentation Tests (p. 60)

• Additional Considerations for Android Instrumentation Tests (p. 60)

What Is Instrumentation?
Android instrumentation enables you to invoke callback methods in your test code. This allows you to
run through the lifecycle of a component step by step, as if you were debugging the component. For
more information, see Instrumentation in the Testing Fundamentals section of the Android Developer
Tools documentation.

Upload Your Android Instrumentation Tests
Use the Device Farm console to upload your tests:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project where you want to upload your tests.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your Android app file. The file must be an .apk file.

6. Choose Next step.

API Version 2015-06-23
59

https://github.com/awslabs/aws-device-farm-sample-app-for-android
https://github.com/awslabs/aws-device-farm-sample-app-for-android
http://developer.android.com/tools/testing/testing_android.html#Instrumentation
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
UI Automator

7. On the Configure a test page, choose Instrumentation, and then choose Upload.
8. Browse to and choose the .apk file that contains your tests.
9. Choose Next step, and then complete the remaining on-screen instructions to select devices and

start the run.

Taking Screenshots in Android Instrumentation Tests
You can take screenshots as part of your Android Instrumentation tests.

To take screenshots, call one of the following methods:

• For Robotium, call the takeScreenShot method (for example, solo.takeScreenShot();).
• For Spoon, call the screenshot method, for example:

Spoon.screenshot(activity, "initial_state");
/* Normal test code... */
Spoon.screenshot(activity, "after_login");

During a test run, Device Farm automatically gets screenshots from the following locations on the
devices, if they exist, and then adds them to the test reports:

• /sdcard/robotium-screenshots

• /sdcard/test-screenshots

• /sdcard/Download/spoon-screenshots/test-class-name/test-method-name

• /data/data/application-package-name/app_spoon-screenshots/test-class-name/test-method-
name

Additional Considerations for Android Instrumentation Tests
System Animations

Per the Android documentation for Espresso testing, it is recommended that system animations are
turned off when testing on real devices. Device Farm will automatically disable Window Animation
Scale, Transition Animation Scale, and Animator Duration Scale settings when executing with the
android.support.test.runner.AndroidJUnitRunner instrumentation test runner.

Test Recorders

Device Farm supports frameworks, such as Robotium, that have record-and-playback scripting tools.

Working with UI Automator for Android and AWS
Device Farm
Device Farm provides support for UI Automator for Android.

Note
This framework is currently in preview and may not work with all scripts and apps.

Topics
• What Is UI Automator? (p. 61)
• Prepare Your Android UI Automator Tests (p. 61)

API Version 2015-06-23
60

http://developer.android.com/training/testing/ui-testing/espresso-testing.html
http://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner.html

AWS Device Farm Developer Guide
UI Automator

• Upload Your Android UI Automator Tests (p. 61)

• Taking Screenshots in Android UI Automator Tests (p. 61)

• Additional Considerations for Android UI Automator Tests (p. 62)

What Is UI Automator?
The UI Automator testing framework provides a set of APIs to build user interface tests that perform
interactions on user and system apps for Android. The UI Automator APIs allow you to perform
operations such as opening the Settings menu or the app launcher in a test device. For more
information, see UI Automator in the Testing Support Library section of the Android Developer Tools
documentation.

Prepare Your Android UI Automator Tests
The Android UI Automator tests must be contained in a single JAR file before you upload them to Device
Farm. The package name in this file must match the package name used by the related Android app. For
example, if the Android app's package name is com.my.android.app.MyMobileApp, then the Android UI
Automator tests must be in a package named com.my.android.app.

Upload Your Android UI Automator Tests
Use the Device Farm console to upload your tests:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project where you want to upload your tests.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your Android app file. The file must be an .apk file.

6. Choose Next step.

7. On the Configure a test page, choose uiautomator, and then choose Upload.

8. Browse to and choose the JAR file that contains your tests. Make sure the Android tests are
organized according to the instructions in Prepare Your Android UI Automator Tests (p. 61).

9. Choose Next step, and then complete the remaining on-screen instructions to select devices and
start the run.

Taking Screenshots in Android UI Automator Tests
You can take screenshots as part of your Android UI Automator tests.

To take a screenshot, call the takeScreenshot method (for example, takeScreenshot("/sdcard/
uiautomator-screenshots/home-screen-1234.png");).

Note
All screenshots must be stored in the /sdcard/uiautomator-screenshots directory. You must
specify the full path (including the file name) of the screenshot to be stored.
The takeScreenshot method works for API Levels 17 and higher only. For API Level 16, UI
Automator is supported, but screenshots are not supported.

API Version 2015-06-23
61

https://developer.android.com/tools/testing-support-library/index.html#UIAutomator
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
iOS Tests

Additional Considerations for Android UI Automator Tests
Device Farm re-signs Android UI Automator test packages, but it does not modify Android UI Automator
tests.

Working with iOS Tests in AWS Device Farm
Device Farm provides support for several automation test types for iOS devices.

Built-in Test Types for iOS
There is currently one built-in test type available for iOS devices.

• Built-in: Fuzz (Android and iOS) (p. 87)

Custom Test Types
The following custom tests are available for iOS devices.

• Appium Java JUnit (p. 62)

• Appium Java TestNG (p. 66)

• Appium Python (p. 70)

• Calabash (p. 73)

• UI Automation (p. 75)

• XCTest (p. 76)

• XCTest UI (p. 77)

Working with Appium Java JUnit for iOS and AWS
Device Farm
Device Farm provides support for Appium Java JUnit for iOS. The following information describes how to
use this test framework with Device Farm test types.

Topics

• What is Appium Java JUnit? (p. 62)

• Version Information (p. 63)

• Prepare Your iOS Appium Java JUnit Tests (p. 63)

• Upload Your iOS Appium Java JUnit Tests (p. 65)

• Taking Screenshots in iOS Appium Java JUnit Tests (p. 66)

• Additional Considerations for iOS Appium Java JUnit Tests (p. 66)

What is Appium Java JUnit?
Appium is an open-source tool for automating native, mobile web, and hybrid applications on platforms
such as iOS. For more information, see About Appium.

API Version 2015-06-23
62

http://appium.io/slate/en/master/?ruby#about-appium

AWS Device Farm Developer Guide
Appium Java JUnit

Version Information
Currently, Device Farm supports Appium versions 1.6.3 (for iOS 10 and later) and 1.4.16 (for iOS 9 and
earlier) and Java version Java 8.

Prepare Your iOS Appium Java JUnit Tests
Before you upload your iOS Appium Java JUnit tests to Device Farm for testing, make sure that your iOS
Appium Java JUnit tests are contained within a .zip file.

Build the Appium Java Test Package

The Appium Java test package you upload to Device Farm must be in .zip format and contain all of the
tests' dependencies. The following instructions will show you how to meet these requirements during the
package stage of a Maven build.

1. Modify pom.xml to set packaging as a JAR file:

<groupId>com.acme</groupId>
<artifactId>acme-android-appium</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

2. Modify pom.xml to use maven-jar-plugin to build your tests into a JAR file.

The following plugin will build your test source code (anything in the src/test directory) into a JAR
file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <goals>
 <goal>test-jar</goal>
 </goals>
 </execution>
 </executions>
</plugin>

3. Modify pom.xml to use maven-dependency-plugin to build dependencies as JAR files.

The following plugin will copy your dependencies into the dependency-jars directory:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.10</version>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${project.build.directory}/dependency-jars/</outputDirectory>
 </configuration>
 </execution>
 </executions>

API Version 2015-06-23
63

AWS Device Farm Developer Guide
Appium Java JUnit

</plugin>

4. Save the following XML assembly to src/main/assembly/zip.xml.

The following XML is an assembly definition that, when configured, instructs Maven to build a .zip
file containing everything in the root of your build output directory and the dependency-jars
directory:

<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/
assembly/1.1.0 http://maven.apache.org/xsd/assembly-1.1.0.xsd">
 <id>zip</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory>./</outputDirectory>
 <includes>
 <include>*.jar</include>
 </includes>
 </fileSet>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory>./</outputDirectory>
 <includes>
 <include>/dependency-jars/</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

5. Modify pom.xml to use maven-assembly-plugin to package tests and all dependencies into a
single .zip file.

The following plugin uses the preceding assembly to create a .zip file named zip-with-
dependencies in the build output directory every time mvn package is run:

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.5.4</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <finalName>zip-with-dependencies</finalName>
 <appendAssemblyId>false</appendAssemblyId>
 <descriptors>
 <descriptor>src/main/assembly/zip.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
</plugin>

6. Build, package, and verify. For example:

API Version 2015-06-23
64

AWS Device Farm Developer Guide
Appium Java JUnit

$ mvn clean package -DskipTests=true
$ tree target
.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 |— log4j-1.2.14.jar
 |— (and so on...)

7. Use the Device Farm console to upload the test package.

Tip
If you receive an error saying that annotation is not supported in 1.3, add the following to
pom.xml:

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
</plugin>

Upload Your iOS Appium Java JUnit Tests

To run your iOS Appium Java JUnit tests on a set of iOS devices in Device Farm, you upload your tests
with the Device Farm console as follows:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project that you want to upload your tests to.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project that you want to upload your tests to.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your iOS app file. The file must be an .ipa file.

Note
Make sure that your app file is built for an iOS device and not for a simulator.

6. Choose Next step.

7. On the Configure a test page, choose Appium Java JUnit, and then choose Upload.

8. Choose the Appium version you are using from the Appium version dropdown list.

9. Choose Next step, and then complete the remaining on-screen instructions to select the devices to
run your tests on and to then start the run.

API Version 2015-06-23
65

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Appium Java TestNG

Taking Screenshots in iOS Appium Java JUnit Tests
You can take screenshots as part of your iOS Appium Java JUnit tests.

When Device Farm runs your Appium Java JUnit test, the service sets several Java system properties that
describe the configuration of the Appium server with which you're communicating. For example, Device
Farm sets the appium.screenshots.dir property to a fully qualified path on the local file system where
Device Farm expects Appium screenshots to be saved. The test-specific directory where the screenshots
are stored is defined at runtime. The screenshots are automatically pulled into your Device Farm reports
automatically. To view the screenshots, in the Device Farm console, choose the Screenshots section.

The following example shows how to use and consume the appium.screenshots.dir property to capture
an Appium screenshot that is pulled into your Device Farm report.

public boolean takeScreenshot(final String name) {
 String screenshotDirectory = System.getProperty("appium.screenshots.dir",
 System.getProperty("java.io.tmpdir", ""));
 File screenshot = ((TakesScreenshot) driver).getScreenshotAs(OutputType.FILE);
 return screenshot.renameTo(new File(screenshotDirectory,
 String.format("%s.png", name)));
 }

Additional Considerations for iOS Appium Java JUnit Tests
Device Farm does not modify iOS Appium Java JUnit tests.

Working with Appium Java TestNG for iOS and AWS
Device Farm
Device Farm provides support for Appium Java TestNG for iOS. The following information describes how
to use this test framework with Device Farm test types.

Topics
• What is Appium Java TestNG? (p. 66)
• Version Information (p. 66)
• Prepare Your iOS Appium Java TestNG Tests (p. 66)
• Upload Your iOS Appium Java TestNG Tests (p. 69)
• Taking Screenshots in iOS Appium Java TestNG Tests (p. 69)
• Additional Considerations for iOS Appium Java TestNG Tests (p. 70)

What is Appium Java TestNG?
Appium is an open-source tool for automating native, mobile web, and hybrid applications on platforms
such as iOS. For more information, see About Appium.

Version Information
Currently, Device Farm supports Appium versions 1.6.3 (for iOS 10 and later) and 1.4.16 (for iOS 9 and
earlier) and Java version Java 8.

Prepare Your iOS Appium Java TestNG Tests
Before you upload your iOS Appium Java TestNG tests to Device Farm for testing, make sure that your
iOS Appium Java TestNG tests are contained within a .zip file.

API Version 2015-06-23
66

http://appium.io/slate/en/master/?ruby#about-appium

AWS Device Farm Developer Guide
Appium Java TestNG

Build the Appium Java Test Package

The Appium Java test package you upload to Device Farm must be in .zip format and contain all of the
tests' dependencies. The following instructions will show you how to meet these requirements during the
package stage of a Maven build.

1. Modify pom.xml to set packaging as a JAR file:

<groupId>com.acme</groupId>
<artifactId>acme-android-appium</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

2. Modify pom.xml to use maven-jar-plugin to build your tests into a JAR file.

The following plugin will build your test source code (anything in the src/test directory) into a JAR
file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <goals>
 <goal>test-jar</goal>
 </goals>
 </execution>
 </executions>
</plugin>

3. Modify pom.xml to use maven-dependency-plugin to build dependencies as JAR files.

The following plugin will copy your dependencies into the dependency-jars directory:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.10</version>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${project.build.directory}/dependency-jars/</outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

4. Save the following XML assembly to src/main/assembly/zip.xml.

The following XML is an assembly definition that, when configured, instructs Maven to build a .zip
file containing everything in the root of your build output directory and the dependency-jars
directory:

<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

API Version 2015-06-23
67

AWS Device Farm Developer Guide
Appium Java TestNG

 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/
assembly/1.1.0 http://maven.apache.org/xsd/assembly-1.1.0.xsd">
 <id>zip</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory>./</outputDirectory>
 <includes>
 <include>*.jar</include>
 </includes>
 </fileSet>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory>./</outputDirectory>
 <includes>
 <include>/dependency-jars/</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

5. Modify pom.xml to use maven-assembly-plugin to package tests and all dependencies into a
single .zip file.

The following plugin uses the preceding assembly to create a .zip file named zip-with-
dependencies in the build output directory every time mvn package is run:

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.5.4</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <finalName>zip-with-dependencies</finalName>
 <appendAssemblyId>false</appendAssemblyId>
 <descriptors>
 <descriptor>src/main/assembly/zip.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
</plugin>

6. Build, package, and verify. For example:

$ mvn clean package -DskipTests=true
$ tree target
.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar

API Version 2015-06-23
68

AWS Device Farm Developer Guide
Appium Java TestNG

 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 |— log4j-1.2.14.jar
 |— (and so on...)

7. Use the Device Farm console to upload the test package.

Tip
If you receive an error saying that annotation is not supported in 1.3, add the following to
pom.xml:

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
</plugin>

Upload Your iOS Appium Java TestNG Tests
To run your iOS Appium Java TestNG tests on a set of iOS devices in Device Farm, you upload your tests
with the Device Farm console as follows:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project that you want to upload your tests to.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project that you want to upload your tests to.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your iOS app file. The file must be an .ipa file.

Note
Make sure that your app file is built for an iOS device and not for a simulator.

6. Choose Next step.

7. On the Configure a test page, choose Appium Java TestNG, and then choose Upload.

8. Choose the Appium version you are using from the Appium version dropdown list.

9. Choose Next step, and then complete the remaining on-screen instructions to select the devices to
run your tests on and to then start the run.

Taking Screenshots in iOS Appium Java TestNG Tests
You can take screenshots as part of your iOS Appium Java TestNG tests.

When Device Farm runs your Appium Java TestNG test, the service sets several Java system properties
that describe the configuration of the Appium server with which you're communicating. For example,
Device Farm sets the appium.screenshots.dir property to a fully qualified path on the local file system
where Device Farm expects Appium screenshots to be saved. The test-specific directory where the
screenshots are stored is defined at runtime. The screenshots are automatically pulled into your Device
Farm reports automatically. To view the screenshots, in the Device Farm console, choose the Screenshots
section.

API Version 2015-06-23
69

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Appium Python

The following example shows how to use and consume the appium.screenshots.dir property to capture
an Appium screenshot that is pulled into your Device Farm report.

public boolean takeScreenshot(final String name) {
 String screenshotDirectory = System.getProperty("appium.screenshots.dir",
 System.getProperty("java.io.tmpdir", ""));
 File screenshot = ((TakesScreenshot) driver).getScreenshotAs(OutputType.FILE);
 return screenshot.renameTo(new File(screenshotDirectory, String.format("%s.png",
 name)));
 }

Additional Considerations for iOS Appium Java TestNG Tests
Device Farm does not modify iOS Appium Java TestNG tests.

Working with Appium Python for iOS Applications
and AWS Device Farm
Device Farm provides support for Appium Python for iOS apps.

Topics
• What Is Appium Python? (p. 70)
• Version Information (p. 70)
• Prepare Your iOS Application Appium Python Tests (p. 70)
• Build the Appium Python Test Package (p. 70)
• Upload Your iOS Application Appium Python Tests (p. 72)
• Taking Screenshots in iOS Appium Python Tests (p. 73)
• Additional Considerations for Android Appium Python Tests (p. 73)

What Is Appium Python?
Appium is an open-source tool for automating native, mobile web, and hybrid applications on platforms
like web applications. For more information, see About Appium.

Version Information
Currently, Device Farm supports Appium versions 1.6.3 (for iOS 10 and later) and 1.4.16 (for iOS 9 and
earlier) and Python version 2.7.6 (pip version 1.5.4).

Prepare Your iOS Application Appium Python Tests
The Appium Python tests for your iOS application must be contained in a .zip file.

Build the Appium Python Test Package
The Appium Python test packages you upload to Device Farm must be in .zip format and contain all the
dependencies of your test. The following instructions show you how to meet these requirements.

Note
The instructions below are based on Linux x86_64 and Mac. In the currently supported scheme,
Device Farm requires that the packaging of your Appium Python tests be done on Linux x86_64
if your tests contain non-universal Python wheels dependencies. For the platform on which you
execute a command, the wheels tools gather your .whl dependent files under the wheelhouse/

API Version 2015-06-23
70

http://appium.io/slate/en/master/?ruby#about-appium
http://pythonwheels.com/

AWS Device Farm Developer Guide
Appium Python

folder. When you execute the Python wheel command on any platform other than Linux x86_64,
you would gather the flavor of a non-univesral wheel dependency for that particular platform
and may cause undesired effects. This would most likely lead to errors when executing your tests
on Device Farm.

1. We strongly recommend that you set up Python virtualenv for developing and packaging tests so
that unnecessary dependencies are not included in your app package.

Tip

• Do not create a Python virtualenv with the --system-site-packages option, because it
will inherit packages from /usr/lib/pythonx.x/site-packages or wherever your global
site-packages directory is. This can lead to you including dependencies in your virtual
environment that are not needed by your tests.

• You should also verify that your tests do not use dependencies that are dependent on
native libraries, as these native libraries may or may not be present on the instance where
these tests run.

2. Install py.test in your virtual environment.

An example flow of creating a virtual environment using Python virtualenv and installing pytest in
that virtual environment would look like the following:

$ virtualenv workspace
$ cd workspace
$ source bin/activate
$ pip install pytest

3. Store all Python test scripts under the tests/ folder in your work space.

─ workspace
 ── tests/ (your tests go here)

4. Make sure you have py.test installed in your virtual environment and test cases are discoverable by
the following command, which you should run from your virtual environment workspace folder.

$ py.test --collect-only tests/

Make sure the output of py.test command shows you the tests that you want to execute on Device
Farm.

5. Go to your work space and run the following command to generate the requirements.txt file:

$ pip freeze > requirements.txt

6. Go to your work space and run the following command to generate the wheelhouse/ folder:

$ pip wheel --wheel-dir wheelhouse -r requirements.txt

7. You can use the following commands to clean all cached files under your tests/ folder:

$ find . -name '__pycache__' -type d -exec rm -r {} +
$ find . -name '*.pyc' -exec rm -f {} +
$ find . -name '*.pyo' -exec rm -f {} +
$ find . -name '*~' -exec rm -f {} +

8. Zip the tests/ folder, wheelhouse/ folder, and the requirements.txt file into a single archive:

$ zip -r test_bundle.zip tests/ wheelhouse/ requirements.txt

API Version 2015-06-23
71

https://pypi.python.org/pypi/virtualenv

AWS Device Farm Developer Guide
Appium Python

Your work space will eventually look like this:

─ workspace
 ── tests/
 ── test_bundle.zip
 ── requirements.txt
 ── wheelhouse/

Upload Your iOS Application Appium Python Tests

Use the Device Farm console to upload your tests.

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. If you see the AWS Device Farm console home page, choose Get started.

3. If you already have a project, you can upload your tests to an existing project or choose Create a
new project.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a project, follow the instructions in Create a Project (p. 22).

4. If the Create a new run button is displayed, choose it.

5. On the Choose your application page, choose Native Application (the Android and Apple logos).

6. Next, choose Upload to upload your .ipa file.

Device Farm processes your .ipa file before continuing.

7. In the Run name field, type a name for your run.

Tip
Give the run a name that will help you identify a specific build of your app (for example,
Beta-0.1). For more information, see Working with Test Runs (p. 25).

API Version 2015-06-23
72

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Calabash

8. Choose Appium Python to configure your test.
9. To add your Appium test scripts to the test run, choose Upload.
10. Choose the Appium version you are using from the Appium version dropdown list.
11. Choose Next step, and then complete the instructions to select devices and start the run.

Taking Screenshots in iOS Appium Python Tests
You can take screenshots as part of your iOS Appium Python tests.

When Device Farm runs your Appium Python test, the service sets several system properties that
describe the configuration of the Appium server with which you're communicating. For example, Device
Farm sets the SCREENSHOT_PATH property to a fully qualified path on the local file system where Device
Farm expects Appium screenshots to be saved. The test-specific directory where the screenshots are
stored is defined at runtime. The screenshots are pulled into your Device Farm reports automatically. To
view the screenshots, in the Device Farm console, choose the Screenshots section.

The following example shows how to use and consume the SCREENSHOT_PATH property to capture an
Appium screenshot that is pulled into your Device Farm report.

screenshot_folder = os.getenv('SCREENSHOT_PATH', '')
self.driver.save_screenshot(screenshot_folder + "/screenshot.png")

Additional Considerations for Android Appium Python Tests
Device Farm does not modify iOS Appium Python tests.

Working with Calabash for iOS and AWS Device Farm
Device Farm provides support for Calabash for iOS. The following information describes how to use this
test framework with Device Farm test types.

Topics
• What is Calabash? (p. 73)
• Version Information (p. 73)
• Prepare Your iOS Calabash Tests (p. 73)
• Upload Your iOS Calabash Tests (p. 74)
• Taking Screenshots in iOS Calabash Tests (p. 74)
• Additional Considerations for iOS Calabash Tests (p. 74)

What is Calabash?
Calabash is a mobile testing framework that enables automated user interface acceptance tests that
are written in Cucumber to be run on iOS apps. For more information, see the Welcome to Calabash iOS
repository on GitHub.

Version Information
Currently Device Farm supports Calabash version 0.20.3.

Prepare Your iOS Calabash Tests
Before you upload your iOS Calabash tests to Device Farm for testing, make sure that your iOS Calabash
tests are contained within a .zip file. This .zip file must contain the following structure:

API Version 2015-06-23
73

https://github.com/calabash/calabash-ios

AWS Device Farm Developer Guide
Calabash

my-zip-file-name.zip
 `-- features (directory)
 |-- my-feature-1-file-name.feature
 |-- my-feature-2-file-name.feature
 |-- my-feature-N-file-name.feature
 |-- step_definitions (directory)
 | `-- (.rb files)
 |-- support (directory)
 | `-- (.rb files)
 `-- (any other supporting files)

Upload Your iOS Calabash Tests
To run your iOS Calabash tests on a set of iOS devices in Device Farm, you upload your tests with the
Device Farm console as follows:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.
2. In the list of projects, choose the option next to the project that you want to upload your tests to.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project that you want to upload your tests to.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.
4. On the Choose your application page, choose Upload.
5. Browse to and choose your iOS app file. The file must be an .ipa file.

Note
Make sure that your .ipa file is built for an iOS device and not for a simulator.

6. Choose Next step.
7. On the Configure a test page, choose Calabash, and then choose Upload.
8. Browse to and choose the .zip file that contains your tests. The .zip file must follow the format as

described in Prepare Your iOS Calabash Tests (p. 73).
9. Choose Next step, and then complete the remaining on-screen instructions to select the devices to

run your tests on and to then start the run.

Taking Screenshots in iOS Calabash Tests
You can take screenshots as part of your iOS Calabash tests.

iOS Calabash provides a predefined step for taking screenshots. For details, see the "Screenshots" section
of the Predefined steps page in the Calabash iOS repository on GitHub.

Alternatively, you can define a custom step inside of a Ruby (.rb) file to call the screenshot_embed
function, which creates a screenshot and saves it to a directory that you define. For example, the
following code example creates a screenshot in PNG format and saves it to the /my/custom/path
directory with a file name of screenshot_seconds-since-Epoch:

screenshot_embed(:prefix => "/my/custom/path", :name => "screenshot_─{Time.now.to_i}")

Additional Considerations for iOS Calabash Tests
Device Farm replaces certain Calabash hooks so that iOS Calabash tests will run on devices in Device
Farm, but Device Farm does not modify iOS Calabash tests themselves.

API Version 2015-06-23
74

https://console.aws.amazon.com/devicefarm
https://github.com/calabash/calabash-ios/wiki/02-Predefined-steps

AWS Device Farm Developer Guide
UI Automation

Working with UI Automation for iOS and AWS Device
Farm
Device Farm provides support for UI Automation for iOS. The following information describes how to use
this test framework with Device Farm test types.

Topics

• What is UI Automation? (p. 75)

• Upload Your iOS UI Automation Tests (p. 75)

• Taking Screenshots in iOS UI Automation Tests (p. 75)

• Additional Considerations for iOS UI Automation Tests (p. 76)

What is UI Automation?
You can use the Automation instrument to automate user interface tests in your iOS app through test
scripts that you write. These scripts run outside of your app and simulate user interaction by calling the
UI Automation API, a JavaScript programming interface that specifies actions to be performed in your
app as it runs in the simulator or on a connected device. For more information, see About Instruments in
the Instruments User Guide section of the iOS Developer Library.

Upload Your iOS UI Automation Tests
To run your iOS UI Automation tests on a set of iOS devices in Device Farm, you upload your tests with
the Device Farm console as follows:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project that you want to upload your tests to.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project that you want to upload your tests to.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your iOS app file. The file must be an .ipa file.

Note
Make sure that your .ipa file is built for an iOS device and not for a simulator.

6. Choose Next step.

7. On the Configure a test page, choose UI Automation, and then choose Upload.

8. Browse to and choose the .js file for a single test.

9. Choose Next step, and then complete the remaining on-screen instructions to select the devices to
run your tests on and to then start the run.

Taking Screenshots in iOS UI Automation Tests
You can take screenshots as part of your iOS UI Automation tests.

To take a screenshot, call the captureScreenWithName function, for example:
target.captureScreenWithName(lang + "_home");, where lang is the current language name.

API Version 2015-06-23
75

https://developer.apple.com/library/tvos/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/index.html
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
XCTest

Additional Considerations for iOS UI Automation Tests
Device Farm adds logging hooks so that it can monitor the execution flow of iOS UI Automation tests,
but Device Farm does not modify iOS UI Automation tests themselves.

Working with XCTest for iOS and AWS Device Farm
Device Farm provides support for XCTest (including KIF) for iOS, written both Objective-C and Swift. The
following information describes how to use this test framework with Device Farm test types.

Topics

• What is XCTest (and KIF)? (p. 76)

• Prepare Your iOS XCTest Tests (p. 76)

• Upload Your iOS XCTest Tests (p. 76)

• Taking Screenshots in iOS XCTest Tests (p. 77)

• Additional Considerations for iOS XCTest Tests (p. 77)

What is XCTest (and KIF)?
XCTest is the new testing framework introduced with Xcode 5. XCTest is a modernized reimplementation
of OCUnit, the previous-generation testing framework. For more information, see XCTest—the Xcode
Testing Framework and Transitioning from OCUnit to XCTest in the Testing with Xcode section of the iOS
Developer Library.

KIF (which stands for Keep It Functional) is a related iOS integration test framework. It allows for easy
automation of iOS apps by leveraging the accessibility attributes that the operating system makes
available for those with visual disabilities. KIF builds and performs the tests using a standard XCTest
testing target. For more information, see the KIF iOS Integration Testing Framework repository on
GitHub.

Prepare Your iOS XCTest Tests
Before you upload iOS XCTest tests to Device Farm for testing, make sure that your iOS XCTest tests are
contained within a .zip file. This .zip file must contain your my-project-name.xctest directory at the
root of the .zip file. The actual iOS XCTest bundle must be located within this my-project-name.xctest
directory.

Upload Your iOS XCTest Tests
To run your iOS XCTest tests on a set of iOS devices in Device Farm, you upload your tests with the
Device Farm console as follows:.

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project that you want to upload your tests to.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project that you want to upload your tests to.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your iOS app file. The file must be an .ipa file.

API Version 2015-06-23
76

https://developer.apple.com/swift/
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/03-testing_basics.html
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/03-testing_basics.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/A2-transitioning_ocunit_to_xctest.html
https://github.com/kif-framework/KIF
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
XCTest UI

Note
Make sure that your .ipa file is built for an iOS device and not for a simulator.

6. Choose Next step.
7. On the Configure a test page, choose XCTest, and then choose Upload.
8. Browse to and choose the .zip file that contains your iOS XCTest tests. In this .zip file, make sure that

the contents are organized according to the instructions as described in Prepare Your iOS XCTest
Tests (p. 76).

9. Choose Next step, and then complete the remaining on-screen instructions to select the devices to
run your tests on and to then start the run.

Taking Screenshots in iOS XCTest Tests
Device Farm currently supports taking screenshots as part of your iOS XCTest tests using KIF. By default,
KIF will automatically capture screenshots after any failed steps during your tests, and these will be
included in your Device Farm report. If you wish to take on-demand screenshots within your tests, you
should call the captureScreenshotWithDescription method.

Additional Considerations for iOS XCTest Tests
Device Farm supports any version of KIF that is based on OCUnit or XCTest.

Device Farm supports XCTest tests that are written in Objective-C and Swift.

Working with XCTest UI Testing Framework for iOS
and AWS Device Farm
Device Farm provides support for XCTest UI testing framework for iOS, written in both Objective-C and
Swift. The following information describes how to use this test framework with Device Farm test types.

Topics
• What is XCTest UI Testing Framework? (p. 77)
• Prepare Your iOS XCTest UI Tests (p. 77)
• Upload Your iOS XCTest UI Tests (p. 78)
• Taking Screenshots in iOS XCTest UI Tests (p. 78)
• Additional Considerations for iOS XCTest UI Tests (p. 78)

What is XCTest UI Testing Framework?
XCTest UI Framework is the new testing framework introduced with Xcode 7. XCTest UI framework
extends XCTest with UI testing capabilities. For more information, see User Interface Testing in the
Testing with Xcode section of the iOS Developer Library.

Prepare Your iOS XCTest UI Tests
Before you upload iOS XCTest UI tests to Device Farm for testing, make sure that your iOS XCTest UI test
runner bundle is contained within a properly formatted .ipa file. To create an .ipa file, you can place your
my-project-nameUITest-Runner.app bundle in an empty Payload directory. Next, archive the Payload
directory into a .zip file and then change the file extension to .ipa. The *UITest-Runner.app bundle is
produced by Xcode when you build your project for testing, and it can be found in the Products directory
for your project.

API Version 2015-06-23
77

http://cocoadocs.org/docsets/KIF/3.0.4/Classes/KIFSystemTestActor.html#//api/name/captureScreenshotWithDescription:
https://developer.apple.com/swift/
https://developer.apple.com/library/prerelease/ios/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html#//apple_ref/doc/uid/TP40014132-CH13-SW1

AWS Device Farm Developer Guide
Web App Tests

Upload Your iOS XCTest UI Tests
To run your iOS XCTest UI tests on a set of iOS devices in Device Farm, you upload your tests with the
Device Farm console as follows:.

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the list of projects, choose the option next to the project that you want to upload your tests to.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project that you want to upload your tests to.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.

4. On the Choose your application page, choose Upload.

5. Browse to and choose your iOS app file. The file must be an .ipa file.

Note
Make sure that your .ipa file is built for an iOS device and not for a simulator.

6. Choose Next step.

7. On the Configure a test page, choose XCTest UI, and then choose Upload.

8. Browse to and choose the .ipa file that contains your iOS XCTest UI test runner. In this .ipa file, make
sure that the contents are organized according to the instructions as described in Prepare Your iOS
XCTest UI Tests (p. 77).

9. Choose Next step, and then complete the remaining on-screen instructions to select the devices to
run your tests on and to then start the run.

Taking Screenshots in iOS XCTest UI Tests
XCTest UI tests capture screenshots automatically for every step of your tests. These screenshots will be
displayed in your Device Farm test report automatically. No additional code is required.

Additional Considerations for iOS XCTest UI Tests
Device Farm supports XCTest UI tests that are written in Objective-C and Swift.

Working with Custom Web App Tests in AWS
Device Farm

Device Farm provides support for the following test types for working with Web applications.

• Appium Java JUnit (p. 79)

• Appium Java TestNG (p. 81)

• Appium Python (p. 83)

Rules for Metered and Unmetered Devices
Metering refers to billing for devices. By default, Device Farm devices are metered and you are charged
per minute after the free trial minutes are used up. You can also choose to purchase unmetered devices,

API Version 2015-06-23
78

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Appium Java JUnit

which allow unlimited testing for a flat monthly fee. For more information about pricing, see AWS Device
Farm Pricing.

If you choose to start a run with a device pool that contains both iOS and Android devices, there are
rules for metered and unmetered devices. For example, if you have 5 unmetered Android devices and 5
unmetered iOS devices, your Web test runs will use your unmetered devices.

Here is another example: suppose you have 5 unmetered Android devices and 0 unmetered iOS devices.
If you select only Android devices for your Web run, your unmetered devices will be used. If you select
both Android and iOS devices for your Web run, the billing method will be metered, and your unmetered
devices will not be used.

Working with Appium Java JUnit for Web
Applications and AWS Device Farm
Device Farm provides support for Appium Java JUnit for Web apps.

Topics

• What Is Appium Java JUnit? (p. 79)

• Version Information (p. 79)

• Prepare Your Web Application Appium Java JUnit Tests (p. 79)

• Upload Your Web Application Appium Java JUnit Tests (p. 79)

• Taking Screenshots in Web Application Appium Java Junit Tests (p. 80)

• Additional Considerations for Web Application Appium Java JUnit Tests (p. 81)

What Is Appium Java JUnit?

Appium is an open-source tool for automating native, mobile web, and hybrid applications on platforms
such as Web applications. For more information, see About Appium.

Version Information

Currently, Device Farm supports Appium versions 1.6.3 and 1.4.16 and Java version Java 8.

Prepare Your Web Application Appium Java JUnit Tests

Your Web Application Appium Java JUnit tests must be contained in a .zip file.

Upload Your Web Application Appium Java JUnit Tests

Use the Device Farm console to upload your tests:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. If you see the AWS Device Farm console home page, choose Get started.

3. If you already have a project, you can upload your tests to an existing project or choose Create a
new project.

API Version 2015-06-23
79

https://aws.amazon.com/device-farm/
https://aws.amazon.com/device-farm/
http://appium.io/slate/en/master/?ruby#about-appium
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Appium Java JUnit

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a new project, follow the instructions in Create a Project (p. 22).

4. If the Create a new run button is displayed, then choose it.
5. On the Choose your application page, choose Web application (the HTML5 button).

6. Provide a name for your run in the Run name field.

Tip
Name the run something that helps you easily identify a specific build of your app (for
example, Beta-0.1. For more information, see Working with Test Runs (p. 25).

7. Configure your test by choosing Appium Java JUnit.
8. Next, choose Upload to upload your .zip file.

Device Farm processes your .zip file before continuing.
9. Choose the Appium version you are using from the Appium version dropdown list.
10. Choose Next step, and then complete the remaining on-screen instructions to select devices and

start the run.

Taking Screenshots in Web Application Appium Java Junit Tests
You can take screenshots as part of your Web Application Appium Java JUnit tests.

When Device Farm runs your Appium Java JUnit test, the service sets several system properties that
describe the configuration of the Appium server with which you're communicating. For example, Device
Farm sets the SCREENSHOT_PATH property to a fully qualified path on the local file system where Device
Farm expects Appium screenshots to be saved. The test-specific directory where the screenshots are
stored is defined at runtime. The screenshots are automatically pulled into your Device Farm reports
automatically. To view the screenshots, in the Device Farm console, choose the Screenshots section.

API Version 2015-06-23
80

AWS Device Farm Developer Guide
Appium Java TestNG

The following example shows how to use and consume the SCREENSHOT_PATH property to capture an
Appium screenshot that is pulled into your Device Farm report.

public boolean takeScreenshot(final String name) {
 String screenshotDirectory = System.getProperty("appium.screenshots.dir",
 System.getProperty("java.io.tmpdir", ""));
 File screenshot = ((TakesScreenshot) driver).getScreenshotAs(OutputType.FILE);
 return screenshot.renameTo(new File(screenshotDirectory, String.format("%s.png",
 name)));
 }

Additional Considerations for Web Application Appium Java
JUnit Tests

Device Farm does not modify Web application Appium Java JUnit tests.

Working with Appium Java TestNG for Web
Applications and AWS Device Farm
Device Farm provides support for Appium Java TestNG for Web applications.

Topics

• What Is Appium Java TestNG? (p. 81)

• Version Information (p. 81)

• Prepare Your Web Application Appium Java TestNG Tests (p. 81)

• Upload Your Web Application Appium Java TestNG Tests (p. 81)

• Taking Screenshots in Web Application Appium TestNG Tests (p. 82)

• Additional Considerations for Web Application Appium TestNG Tests (p. 83)

What Is Appium Java TestNG?

Appium is an open-source tool for automating native, mobile web, and hybrid applications on platforms
such as Web applications. For more information, see About Appium.

Version Information

Currently, Device Farm supports Appium versions 1.6.3 and 1.4.16 and Java version Java 8.

Prepare Your Web Application Appium Java TestNG Tests

Your Web application Appium Java TestNG tests must be contained in a .zip file before you upload them
to Device Farm.

Upload Your Web Application Appium Java TestNG Tests

Use the Device Farm console to upload your tests:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. If you see the AWS Device Farm console home page, choose Get started.

API Version 2015-06-23
81

http://appium.io/slate/en/master/?ruby#about-appium
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Appium Java TestNG

3. If you already have a project, you can upload your tests to an existing project or choose Create a
new project.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a new project, follow the instructions in Create a Project (p. 22).

4. If the Create a new run button is displayed, then choose it.
5. On the Choose your application page, choose Web application (the HTML5 button).

6. Provide a name for your run in the Run name field.

Tip
Name the run something that helps you easily identify a specific build of your app (for
example, Beta-0.1. For more information, see Working with Test Runs (p. 25).

7. Configure your test by choosing Appium Java TestNG.
8. Next, choose Upload to upload your .zip file.

Device Farm processes your .zip file before continuing.
9. Choose the Appium version you are using from the Appium version dropdown list.
10. Choose Next step, and then complete the remaining on-screen instructions to select devices and

start the run.

Taking Screenshots in Web Application Appium TestNG Tests
You can take screenshots as part of your Web Application Appium TestNG tests.

When Device Farm runs your Appium TestNG test, the service sets several system properties that
describe the configuration of the Appium server with which you're communicating. For example, Device
Farm sets the SCREENSHOT_PATH property to a fully qualified path on the local file system where Device
Farm expects Appium screenshots to be saved. The test-specific directory where the screenshots are

API Version 2015-06-23
82

AWS Device Farm Developer Guide
Appium Python

stored is defined at runtime. The screenshots are automatically pulled into your Device Farm reports
automatically. To view the screenshots, in the Device Farm console, choose the Screenshots section.

The following example shows how to use and consume the SCREENSHOT_PATH property to capture an
Appium screenshot that is pulled into your Device Farm report.

public boolean takeScreenshot(final String name) {
 String screenshotDirectory = System.getProperty("appium.screenshots.dir",
 System.getProperty("java.io.tmpdir", ""));
 File screenshot = ((TakesScreenshot) driver).getScreenshotAs(OutputType.FILE);
 return screenshot.renameTo(new File(screenshotDirectory, String.format("%s.png",
 name)));
 }

Additional Considerations for Web Application Appium TestNG
Tests
Device Farm does not modify Web application Appium TestNG tests.

Working with Appium Python for Web Applications
and AWS Device Farm
Device Farm provides support for Appium Python for web applications.

Topics
• What Is Appium Python? (p. 83)
• Version Information (p. 83)
• Prepare Your Web Application Appium Python Tests (p. 83)
• Build the Appium Python Test Package (p. 83)
• Upload Your Web Application Appium Python Tests (p. 85)
• Taking Screenshots in Web Application Appium Python Tests (p. 86)
• Additional Considerations for Web Application Appium Python Tests (p. 86)

What Is Appium Python?
Appium is an open-source tool for automating native, mobile web, and hybrid applications on platforms
like web applications. For more information, see About Appium.

Version Information
Currently, Device Farm supports Appium versions 1.6.3 and 1.4.16 and Python version 2.7.6 (pip version
1.5.4).

Prepare Your Web Application Appium Python Tests
The Appium Python tests for your web application must be contained in a .zip file.

Build the Appium Python Test Package
The Appium Python test packages you upload to Device Farm must be in .zip format and contain all the
dependencies of your test. The following instructions show you how to meet these requirements.

API Version 2015-06-23
83

http://appium.io/slate/en/master/?ruby#about-appium

AWS Device Farm Developer Guide
Appium Python

Note
The instructions below are based on Linux x86_64 and Mac. In the currently supported scheme,
Device Farm requires that the packaging of your Appium Python tests be done on Linux x86_64
if your tests contain non-universal Python wheels dependencies. For the platform on which you
execute a command, the wheels tools gather your .whl dependent files under the wheelhouse/
folder. When you execute the Python wheel command on any platform other than Linux x86_64,
you would gather the flavor of a non-univesral wheel dependency for that particular platform
and may cause undesired effects. This would most likely lead to errors when executing your tests
on Device Farm.

1. We strongly recommend that you set up Python virtualenv for developing and packaging tests so
that unnecessary dependencies are not included in your app package.

Tip

• Do not create a Python virtualenv with the --system-site-packages option, because it
will inherit packages from /usr/lib/pythonx.x/site-packages or wherever your global
site-packages directory is. This can lead to you including dependencies in your virtual
environment that are not needed by your tests.

• You should also verify that your tests do not use dependencies that are dependent on
native libraries, as these native libraries may or may not be present on the instance where
these tests run.

2. Install py.test in your virtual environment.

An example flow of creating a virtual environment using Python virtualenv and installing pytest in
that virtual environment would look like the following:

$ virtualenv workspace
$ cd workspace
$ source bin/activate
$ pip install pytest

3. Store all Python test scripts under the tests/ folder in your work space.

─ workspace
 ── tests/ (your tests go here)

4. Make sure you have py.test installed in your virtual environment and test cases are discoverable by
the following command, which you should run from your virtual environment workspace folder.

$ py.test --collect-only tests/

Make sure the output of py.test command shows you the tests that you want to execute on Device
Farm.

5. Go to your work space and run the following command to generate the requirements.txt file:

$ pip freeze > requirements.txt

6. Go to your work space and run the following command to generate the wheelhouse/ folder:

$ pip wheel --wheel-dir wheelhouse -r requirements.txt

7. You can use the following commands to clean all cached files under your tests/ folder:

$ find . -name '__pycache__' -type d -exec rm -r {} +
$ find . -name '*.pyc' -exec rm -f {} +
$ find . -name '*.pyo' -exec rm -f {} +

API Version 2015-06-23
84

http://pythonwheels.com/
https://pypi.python.org/pypi/virtualenv

AWS Device Farm Developer Guide
Appium Python

$ find . -name '*~' -exec rm -f {} +

8. Zip the tests/ folder, wheelhouse/ folder, and the requirements.txt file into a single archive:

$ zip -r test_bundle.zip tests/ wheelhouse/ requirements.txt

Your work space will eventually look like this:

─ workspace
 ── tests/
 ── test_bundle.zip
 ── requirements.txt
 ── wheelhouse/

Upload Your Web Application Appium Python Tests

Use the Device Farm console to upload your tests.

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. If you see the AWS Device Farm console home page, choose Get started.

3. If you already have a project, you can upload your tests to an existing project or choose Create a
new project.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you want to upload your tests.
To create a project, follow the instructions in Create a Project (p. 22).

4. If the Create a new run button is displayed, choose it.

5. On the Choose your application page, choose Web application (the HTML5 button).

API Version 2015-06-23
85

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Built-in Tests

6. In the Run name field, type a name for your run.

Tip
Give the run a name that will help you identify a specific build of your app (for example,
Beta-0.1). For more information, see Working with Test Runs (p. 25).

7. Choose Appium Python to configure your test.
8. Next, choose Upload to upload your .zip file.

Device Farm processes your .zip file before continuing.
9. Choose the Appium version you are using from the Appium version dropdown list.
10. Choose Next step, and then complete the instructions to select devices and start the run.

Taking Screenshots in Web Application Appium Python Tests
You can take screenshots as part of your Appium Python tests for your web application.

When Device Farm runs your Appium Python test, the service sets several system properties that
describe the configuration of the Appium server with which you're communicating. For example, Device
Farm sets the SCREENSHOT_PATH property to a fully qualified path on the local file system where Device
Farm expects Appium screenshots to be saved. The test-specific directory where the screenshots are
stored is defined at runtime. The screenshots are pulled into your Device Farm reports automatically. To
view the screenshots, in the Device Farm console, choose the Screenshots section.

The following example shows how to use and consume the SCREENSHOT_PATH property to capture an
Appium screenshot that is pulled into your Device Farm report.

screenshot_folder = os.getenv('SCREENSHOT_PATH', '')
self.driver.save_screenshot(screenshot_folder + "/screenshot.png")

Additional Considerations for Web Application Appium Python
Tests
Device Farm does not modify Appium Python tests for your web application.

Working with Built-in Tests in AWS Device Farm
Device Farm provides support for several automation test types.

Built-in Test Types
Built-in tests enable you to test your apps without writing scripts.

• Built-in: Explorer (Android) (p. 86)
• Built-in: Fuzz (Android and iOS) (p. 87)

Working with the Built-in Explorer Test for Device
Farm
Device Farm provides a built-in explorer test type.

API Version 2015-06-23
86

AWS Device Farm Developer Guide
Built-in: Fuzz (Android and iOS)

What Is the Built-in Explorer Test?
The built-in explorer test crawls your app by analyzing each screen and interacting with it as if it were an
end user. It takes screenshots as it explores, and you can provide Device Farm with credentials so the test
can log in.

Parameters

• Username (Optional). Specifies a user name the explorer will use if it encounters a login screen within
your app. If no user name is provided, Device Farm will not insert a user name.

• Password (Optional). Specifies a password the explorer will use if it encounters a login screen within
your app. If no password is provided, Device Farm will not insert a password.

Use the Built-in Explorer Test Type
Use the Device Farm console to run the built-in explorer test:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.
2. In the list of projects, choose the option next to the project where you want to run the built-in

explorer test.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you to run the built-in explorer test.
To create a new project, follow the instructions in Create a Project (p. 22).

3. If the Create a new run button is displayed, then choose it.
4. On the Choose your application page, choose Upload.
5. Browse to and choose your app file where you want to run the built-in explorer test.
6. Choose Next step.
7. On the Configure a test page, choose Built-in: Explorer.
8. Choose Next step, and then complete the remaining on-screen instructions to select devices and

start the run.

Working with the Built-in Fuzz Test for Device Farm
Device Farm provides a built-in fuzz test type.

What Is the Built-in Fuzz Test?
The built-in fuzz test randomly sends user interface events to devices and then reports results.

Use the Built-in Fuzz Test Type
Use the Device Farm console to run the built-in fuzz test:

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.
2. In the list of projects, choose the option next to the project where you want to run the built-in fuzz

test.

Tip
If the list of projects is not displayed, then on the secondary navigation bar, for Projects,
choose the name of the project where you to run the built-in fuzz test.
To create a new project, follow the instructions in Create a Project (p. 22).

API Version 2015-06-23
87

https://console.aws.amazon.com/devicefarm
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Built-in: Fuzz (Android and iOS)

3. If the Create a new run button is displayed, then choose it.
4. On the Choose your application page, choose Upload.
5. Browse to and choose your app file where you want to run the built-in fuzz test.
6. Choose Next step.
7. On the Configure a test page, choose Built-in: Fuzz.
8. If any of the following settings appear, you can either accept the default values or specify your own:

• Event count: Specify a number between 1 and 10,000, representing the number of user interface
events for the fuzz test to perform.

• Event throttle: Specify a number between 1 and 1,000, representing the number of milliseconds
for the fuzz test to wait before performing the next user interface event.

• Randomizer seed: Specify a number for the fuzz test to use for randomizing user interface events.
Specifying the same number for subsequent fuzz tests ensures identical event sequences.

9. Choose Next step, and then complete the remaining on-screen instructions to select devices and
start the run.

API Version 2015-06-23
88

AWS Device Farm Developer Guide
Create a Session

Working with Remote Access in AWS
Device Farm

Remote access allows you to swipe, gesture, and interact with a device through your web browser in real
time in order to test functionality and reproduce customer issues. You interact with a specific device by
creating a remote access session with that device.

A session in Device Farm is a real-time interaction with an actual, physical device hosted in a web
browser. A session displays the single device you select when you start the session. A user can start more
than one session at a time with the total number of simultaneous devices limited by the number of
device slots you have. You can purchase device slots based on the device family (for example, Android or
iOS devices). For more information, see Device Farm Pricing.

We currently offer a subset of our devices for remote access testing. We continue to add new devices to
the device pool all the time.

Device Farm captures video of each remote access session and generates logs of activity taking place
during the session. These results include any information you provide during a session.

Note
For security reasons, we recommend that you avoid providing or entering sensitive information
such as account numbers, personal login information, and other details during a remote access
session.

• Create a Session (p. 89)
• Use a Session (p. 90)
• Get Session Results (p. 91)

Create a Remote Access Session in AWS Device
Farm

For information about remote access sessions, see Sessions (p. 15).

• Prerequisites (p. 90)
• Create a Test Run with the Device Farm Console (p. 90)
• Next Steps (p. 90)

API Version 2015-06-23
89

http://aws.amazon.com/device-farm/faq/#pricing

AWS Device Farm Developer Guide
Prerequisites

Prerequisites
• Create a project in Device Farm. Follow the instructions in Create a Project (p. 22), and then return to

this page.

Create a Session with the Device Farm Console
1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.
2. If you see the AWS Device Farm console home page, choose Get started.
3. Choose a project from the Projects drop-down or choose Create a new project.
4. Choose the Remote access tab.
5. Choose the Start a new session button.
6. Choose a device for your session. You can choose from the list of available devices or search for a

device using the fields at the top of the list. You can search by:

• Name
• Platform
• Operating system
• Form factor

7. Type a name for the session in Session name.
8. Choose Confirm and start session to begin the session.

Next Steps
Device Farm will start the session as soon as the requested device is available, typically within a few
minutes. The Device requested dialog box appears until the session starts. To cancel the session request,
choose Cancel request.

After a session starts, if you should close the browser or browser tab without stopping the session or if
the connection between the browser and the Internet is lost, the session remains active for five minutes
from that time. After that, Device Farm ends the session automatically. Your account will be charged for
the idle time, however.

After the session begins, you can start interacting with the device in the web browser.

Use a Remote Access Session in AWS Device Farm
For information about sessions, see Sessions (p. 15).

• Prerequisites (p. 90)
• Use a Session in the Device Farm Console (p. 91)
• Next Steps (p. 91)
• Tips and Tricks (p. 91)

Prerequisites
• Create a session. Follow the instructions in Create a Session (p. 89), and then return to this page.

API Version 2015-06-23
90

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide
Use a Session in the Device Farm Console

Use a Session in the Device Farm Console
As soon the device you requested for a remote access session becomes available, the console displays
the device screen. The session has a maximum length of 60 minutes. The time remaining in the session
appears below the menu bar on the right side of the console.

Installing an Application
To install an application on the session device, in Install applications, choose Upload, and then choose
either the .apk file for an Android application or the .ipa file for an iOS application you want to install.
Applications you run in a remote access session don't require any test instrumentation or provisioning.

Note
At present, we do not display a confirmation once an app is finished installing. Try interacting
with the app icon to see if the app is ready to use.

Tip
When you upload an app, there is sometimes a delay before the app is available. Look at the
system tray to determine whether the app is available.

Controlling the Device
You can interact with the device displayed in the console as you would the actual physical device using
your mouse for touch and the device's on-screen keyboard. For Android devices, there are buttons
in View controls that function just as the Home and Back buttons on an Android device do. For iOS
devices, there is a Home button that functions just like the home button on an iOS device. You can also
switch between applications running on the device by choosing Recent apps.

Switching between Portrait and Landscape Mode
You can also switch between portrait (vertical) and landscape (horizontal) mode for the devices you are
using.

Next Steps
Device Farm will continue the session until you stop it manually or until the sixty-minute time limit is
reached. To end the session, choose the Stop session button. After it stops, you can access captured
video and logs generated by the session. For more information about getting session results, see Get
Session Results (p. 91).

Tips and Tricks
In some regions, you may experience performance issues with the remote access session. This is due in
part to latency in some regions. If you experience performance issues, give the remote session a chance
to catch up before interacting with the app again.

Get Results of a Remote Access Session in AWS
Device Farm

For information about sessions, see Sessions (p. 15).

• Prerequisites (p. 92)

API Version 2015-06-23
91

AWS Device Farm Developer Guide
Prerequisites

• Viewing Session Details (p. 92)
• Downloading Session Video or Logs (p. 92)

Prerequisites
• Complete a session. Follow the instructions in Use a Session (p. 90), and then return to this page.

Viewing Session Details
When a remote access session ends, the Device Farm console displays a table containing details about
activity that took place during the session. For more information about the details displayed, see
Analyzing Log Information (p. 42).

To return to the details of a session at a later time:

1. Choose the project you want to review from the Project drop-down list.
2. Choose the session you want to review from the list or View all sessions from the Runs & sessions

drop-down list then choose the session you want to review from the list of sessions displayed.

Downloading Session Video or Logs
When a remote access session ends, the Device Farm console provides access to a video capture of the
session along with logs about activity in the session. In the session results, choose the Files tab for a list
of links to the session video and logs. You can view these files in the browser or save them locally.

API Version 2015-06-23
92

AWS Device Farm Developer Guide
Device Farm Information in CloudTrail

Logging AWS Device Farm API Calls
by Using AWS CloudTrail

Device Farm is integrated with CloudTrail, a service that captures API calls made by or on behalf
of Device Farm in your AWS account and delivers the log files to an Amazon S3 bucket you specify.
Examples of these API calls include creating a new project or run in Device Farm. CloudTrail captures
API calls from the Device Farm console or the Device Farm APIs. Using the information collected by
CloudTrail, you can determine which request was made to Device Farm, the source IP address from
which the request was made, who made the request, when it was made, and so on. To learn more about
CloudTrail, including how to configure and enable it, see the AWS CloudTrail User Guide.

Device Farm Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to Device Farm actions are
tracked in log files. Device Farm records are written together with other AWS service records in a log file.
CloudTrail determines when to create and write to a new file based on a time period and file size.

All of the Device Farm actions are logged and documented in the AWS CLI Reference (p. 96) and the
API Reference (p. 98). For example, calls to create a new project or run in Device Farm generate entries
in CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials,
with temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

If you want to take quick action upon log file delivery, you can have CloudTrail publish Amazon SNS
notifications when new log files are delivered. For more information, see Configuring Amazon SNS
Notifications.

You can also aggregate Device Farm log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket.

API Version 2015-06-23
93

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

AWS Device Farm Developer Guide
Understanding Device Farm Log File Entries

Understanding Device Farm Log File Entries
CloudTrail log files can contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public
API calls.

The following example shows a CloudTrail log entry that demonstrates the Device Farm ListRuns action:

{
 "Records": [
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "Root",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:root",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-07-08T21:13:35Z"
 }
 }
 },
 "eventTime":"2015-07-09T00:51:22Z",
 "eventSource": "devicefarm.amazonaws.com",
 "eventName":"ListRuns",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"203.0.113.11",
 "userAgent":"example-user-agent-string",
 "requestParameters": {
 "arn":"arn:aws:devicefarm:us-west-2:123456789012:project:a9129b8c-
df6b-4cdd-8009-40a25EXAMPLE"},
 "responseElements": {
 "runs": [
 {
 "created": "Jul 8, 2015 11:26:12 PM",
 "name": "example.apk",
 "completedJobs": 2,
 "arn": "arn:aws:devicefarm:us-west-2:123456789012:run:a9129b8c-
df6b-4cdd-8009-40a256aEXAMPLE/1452d105-e354-4e53-99d8-6c993EXAMPLE",
 "counters": {
 "stopped": 0,
 "warned": 0,
 "failed": 0,
 "passed": 4,
 "skipped": 0,
 "total": 4,
 "errored": 0
 },
 "type": "BUILTIN_FUZZ",
 "status": "RUNNING",
 "totalJobs": 3,
 "platform": "ANDROID_APP",
 "result": "PENDING"
 },
 ... additional entries ...
]
 }
 }

API Version 2015-06-23
94

AWS Device Farm Developer Guide
Understanding Device Farm Log File Entries

 }
]
}

API Version 2015-06-23
95

AWS Device Farm Developer Guide

AWS CLI Reference for AWS Device
Farm

To use the AWS Command Line Interface (AWS CLI) to run Device Farm commands, see the AWS CLI
Reference for AWS Device Farm.

For general information about the AWS CLI, see the AWS Command Line Interface User Guide and the
AWS Command Line Interface Reference.

API Version 2015-06-23
96

http://docs.aws.amazon.com/cli/latest/reference/devicefarm/index.html
http://docs.aws.amazon.com/cli/latest/reference/devicefarm/index.html
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/reference/

AWS Device Farm Developer Guide

Windows PowerShell Reference for
AWS Device Farm

To use Windows PowerShell to run Device Farm commands, see the Device Farm Cmdlet Reference in the
AWS Tools for Windows PowerShell Cmdlet Reference. For more information, see Setting up the AWS
Tools for Windows PowerShell in the AWS Tools for Windows PowerShell User Guide.

API Version 2015-06-23
97

http://docs.aws.amazon.com/powershell/latest/reference/items/AWS_Device_Farm_cmdlets.html
http://docs.aws.amazon.com/powershell/latest/reference/Index.html
http://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html
http://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html

AWS Device Farm Developer Guide

API Reference for AWS Device Farm

Use HTTP to call the Device Farm APIs. For more information, see the AWS Device Farm API Reference.

API Version 2015-06-23
98

http://docs.aws.amazon.com/devicefarm/latest/APIReference/Welcome.html

AWS Device Farm Developer Guide
Android Applications

Troubleshooting Device Farm Errors

In this section, you will find error messages and procedures to help you fix common problems with
Device Farm.

Topics
• Troubleshooting Android Application Tests in AWS Device Farm (p. 99)
• Troubleshooting Appium Java JUnit Tests in AWS Device Farm (p. 103)
• Troubleshooting Appium Java JUnit Web Application Tests in AWS Device Farm (p. 109)
• Troubleshooting Appium Java TestNG Tests in AWS Device Farm (p. 114)
• Troubleshooting Appium Java TestNG Web Applications in AWS Device Farm (p. 118)
• Troubleshooting Appium Python Tests in AWS Device Farm (p. 122)
• Troubleshooting Appium Python Web Application Tests in AWS Device Farm (p. 128)
• Troubleshooting Calabash Tests in AWS Device Farm (p. 135)
• Troubleshooting Instrumentation Tests in AWS Device Farm (p. 141)
• Troubleshooting iOS Application Tests in AWS Device Farm (p. 145)
• Troubleshooting UI Automator Tests in AWS Device Farm (p. 152)
• Troubleshooting XCTest Tests in AWS Device Farm (p. 153)
• Troubleshooting XCTest UI Tests in AWS Device Farm (p. 156)

Troubleshooting Android Application Tests in AWS
Device Farm

The following topic lists error messages that occur during the upload of Android application tests and
recommends workarounds to resolve each error.

Note
The instructions below are based on Linux x86_64 and Mac.

ANDROID_APP_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

API Version 2015-06-23
99

AWS Device Farm Developer Guide
ANDROID_APP_AAPT_DEBUG_BADGING_FAILED

Warning
We could not open your application. Please verify that the file is valid and try again.

Make sure that you can unzip the application package without errors. In the following example, the
package's name is app-debug.apk.

1. Copy your test package to your working directory, and then run the following command:

$ unzip app-debug.apk

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid Android application package should produce output like the following:

.
|-- AndroidManifest.xml
|-- classes.dex
|-- resources.arsc
|-- assets (directory)
|-- res (directory)
`-- META-INF (directory)

For more information, see Working with Android Tests in AWS Device Farm (p. 46).

ANDROID_APP_AAPT_DEBUG_BADGING_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not extract information about your application. Please verify that the application is
valid by running the command aapt debug badging <path to your test package>, and try
again after the command does not print any error.

During the upload validation process, AWS Device Farm parses out information from the output of an
aapt debug badging <path to your package> command.

Make sure that you can run this command on your Android application successfully. In the following
example, the package's name is app-debug.apk.

• Copy your application package to your working directory, and then run the command:

$ aapt debug badging app-debug.apk

A valid Android application package should produce output like the following:

package: name='com.amazon.aws.adf.android.referenceapp' versionCode='1'
 versionName='1.0' platformBuildVersionName='5.1.1-1819727'
sdkVersion:'9'
application-label:'ReferenceApp'
application: label='ReferenceApp' icon='res/mipmap-mdpi-v4/ic_launcher.png'
application-debuggable
launchable-activity:
 name='com.amazon.aws.adf.android.referenceapp.Activities.MainActivity'
 label='ReferenceApp' icon=''

API Version 2015-06-23
100

AWS Device Farm Developer Guide
ANDROID_APP_PACKAGE_NAME_VALUE_MISSING

uses-feature: name='android.hardware.bluetooth'
uses-implied-feature: name='android.hardware.bluetooth' reason='requested
 android.permission.BLUETOOTH permission, and targetSdkVersion > 4'
main
supports-screens: 'small' 'normal' 'large' 'xlarge'
supports-any-density: 'true'
locales: '--_--'
densities: '160' '213' '240' '320' '480' '640'

For more information, see Working with Android Tests in AWS Device Farm (p. 46).

ANDROID_APP_PACKAGE_NAME_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the package name value in your application. Please verify that the application
is valid by running the command aapt debug badging <path to your test package>, and try
again after finding the package name value behind the keyword "package: name."

During the upload validation process, AWS Device Farm parses out the package name value from the
output of an aapt debug badging <path to your package> command.

Make sure that you can run this command on your Android application and find the package name value
successfully. In the following example, the package's name is app-debug.apk.

• Copy your application package to your working directory, and then run the following command:

$ aapt debug badging app-debug.apk | grep "package: name="

A valid Android application package should produce output like the following:

package: name='com.amazon.aws.adf.android.referenceapp' versionCode='1'
 versionName='1.0' platformBuildVersionName='5.1.1-1819727'

For more information, see Working with Android Tests in AWS Device Farm (p. 46).

ANDROID_APP_SDK_VERSION_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the SDK version value in your application. Please verify that the application
is valid by running the command aapt debug badging <path to your test package>, and try
again after finding the SDK version value behind the keyword sdkVersion.

During the upload validation process, AWS Device Farm parses out the SDK version value from the
output of an aapt debug badging <path to your package> command.

Make sure that you can run this command on your Android application and find the package name value
successfully. In the following example, the package's name is app-debug.apk.

• Copy your application package to your working directory, and then run the following command:

$ aapt debug badging app-debug.apk | grep "sdkVersion"

API Version 2015-06-23
101

AWS Device Farm Developer Guide
ANDROID_APP_AAPT_DUMP_XMLTREE_ FAILED

A valid Android application package should produce output like the following:

sdkVersion:'9'

For more information, see Working with Android Tests in AWS Device Farm (p. 46).

ANDROID_APP_AAPT_DUMP_XMLTREE_ FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the valid AndroidManifest.xml in your application. Please verify that the test
package is valid by running the command aapt dump xmltree <path to your test package>
AndroidManifest.xml, and try again after the command does not print any error.

During the upload validation process, AWS Device Farm parses out information from the XML parse tree
for an XML file contained within the package using the command aapt dump xmltree <path to your
package> AndroidManifest.xml.

Make sure that you can run this command on your Android application successfully. In the following
example, the package's name is app-debug.apk.

• Copy your application package to your working directory, and then run the following command:

$ aapt dump xmltree app-debug.apk. AndroidManifest.xml

A valid Android application package should produce output like the following:

N: android=http://schemas.android.com/apk/res/android
 E: manifest (line=2)
 A: android:versionCode(0x0101021b)=(type 0x10)0x1
 A: android:versionName(0x0101021c)="1.0" (Raw: "1.0")
 A: package="com.amazon.aws.adf.android.referenceapp" (Raw:
 "com.amazon.aws.adf.android.referenceapp")
 A: platformBuildVersionCode=(type 0x10)0x16 (Raw: "22")
 A: platformBuildVersionName="5.1.1-1819727" (Raw: "5.1.1-1819727")
 E: uses-sdk (line=7)
 A: android:minSdkVersion(0x0101020c)=(type 0x10)0x9
 A: android:targetSdkVersion(0x01010270)=(type 0x10)0x16
 E: uses-permission (line=11)
 A: android:name(0x01010003)="android.permission.INTERNET" (Raw:
 "android.permission.INTERNET")
 E: uses-permission (line=12)
 A: android:name(0x01010003)="android.permission.CAMERA" (Raw:
 "android.permission.CAMERA")

For more information, see Working with Android Tests in AWS Device Farm (p. 46).

ANDROID_APP_DEVICE_ADMIN_PERMISSIONS
If you see the following message, follow these steps to fix the issue.

Warning
We found that your application requires device admin permissions. Please verify that the
permissions are not required by run the command aapt dump xmltree <path to your test

API Version 2015-06-23
102

AWS Device Farm Developer Guide
Appium Java JUnit

package> AndroidManifest.xml, and try again after making sure that output does not contain
the keyword android.permission.BIND_DEVICE_ADMIN.

During the upload validation process, AWS Device Farm parses out permission information from the xml
parse tree for an xml file contained within the package using the command aapt dump xmltree <path
to your package> AndroidManifest.xml.

Make sure that your application does not require device admin permission. In the following example, the
package's name is app-debug.apk.

• Copy your application package to your working directory, and then run the following command:

$ aapt dump xmltree app-debug.apk. AndroidManifest.xml

You should find output like the following:

N: android=http://schemas.android.com/apk/res/android
 E: manifest (line=2)
 A: android:versionCode(0x0101021b)=(type 0x10)0x1
 A: android:versionName(0x0101021c)="1.0" (Raw: "1.0")
 A: package="com.amazonaws.devicefarm.android.referenceapp" (Raw:
 "com.amazonaws.devicefarm.android.referenceapp")
 A: platformBuildVersionCode=(type 0x10)0x16 (Raw: "22")
 A: platformBuildVersionName="5.1.1-1819727" (Raw: "5.1.1-1819727")
 E: uses-sdk (line=7)
 A: android:minSdkVersion(0x0101020c)=(type 0x10)0xa
 A: android:targetSdkVersion(0x01010270)=(type 0x10)0x16
 E: uses-permission (line=11)
 A: android:name(0x01010003)="android.permission.INTERNET" (Raw:
 "android.permission.INTERNET")
 E: uses-permission (line=12)
 A: android:name(0x01010003)="android.permission.CAMERA" (Raw:
 "android.permission.CAMERA")
 ……

If the Android application is valid, the output should not contain the following: A:
android:name(0x01010003)="android.permission.BIND_DEVICE_ADMIN" (Raw:
"android.permission.BIND_DEVICE_ADMIN").

For more information, see Working with Android Tests in AWS Device Farm (p. 46).

Troubleshooting Appium Java JUnit Tests in AWS
Device Farm

The following topic lists error messages that occur during the upload of Appium Java JUnit tests and
recommends workarounds to resolve each error.

Note
The instructions below are based on Linux x86_64 and Mac.

APPIUM_JAVA_JUNIT_TEST_PACKAGE_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your test ZIP file. Please verify that the file is valid and try again.

API Version 2015-06-23
103

AWS Device Farm Developer Guide
APPIUM_JAVA_JUNIT_TEST_PACKAGE_DEPENDENCY_DIR_MISSING

Make sure that you can unzip the test package without errors. In the following example, the package's
name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid Appium Java JUnit package should produce output like the following:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 46) or Appium Java JUnit (p. 62).

APPIUM_JAVA_JUNIT_TEST_PACKAGE_DEPENDENCY_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the dependency-jars directory inside your test package. Please unzip your test
package, verify that the dependency-jars directory is inside the package, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find the dependency-jars directory inside the
working directory:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)

API Version 2015-06-23
104

AWS Device Farm Developer Guide
APPIUM_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR

`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 46) or Appium Java JUnit (p. 62).

APPIUM_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a JAR file in the dependency-jars directory tree. Please unzip your test
package and then open the dependency-jars directory, verify that at least one JAR file is in the
directory, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find at least one jar file inside the dependency-
jars directory:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 46) or Appium Java JUnit (p. 62).

APPIUM_JAVA_JUNIT_TEST_PACKAGE_TESTS_JAR_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a *-tests.jar file in your test package. Please unzip your test package, verify
that at least one *-tests.jar file is in the package, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

API Version 2015-06-23
105

AWS Device Farm Developer Guide
APPIUM_JAVA_JUNIT_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find at least one jar file like acme-android-
appium-1.0-SNAPSHOT-tests.jar in our example. The file's name may be different, but it should end
with –tests.jar.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 46) or Appium Java JUnit (p. 62).

APPIUM_JAVA_JUNIT_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a class file within the tests JAR file. Please unzip your test package and then
unjar the tests JAR file, verify that at least one class file is within the JAR file, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find at least one jar file like acme-android-appium-1.0-SNAPSHOT-tests.jar in our
example. The file's name may be different, but it should end with –tests.jar.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)

API Version 2015-06-23
106

AWS Device Farm Developer Guide
APPIUM_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWN

`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

3. After you successfully extract the files, you should find at least one class in the working directory
tree by running the command:

$ tree .

You should see output like this:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing
everything built from the ./src/test directory)
|- one-class-file.class
|- folder
| `-another-class-file.class
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 46) or Appium Java JUnit (p. 62).

APPIUM_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWN
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a JUnit version value. Please unzip your test package and open the
dependency-jars directory, verify that the JUnit JAR file is inside the directory, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working-directory tree structure by
running the following command:

tree .

The output should look like this:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)

API Version 2015-06-23
107

AWS Device Farm Developer Guide
APPIUM_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSION

|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— junit-4.10.jar
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

If the Appium Java JUnit package is valid, you will find the JUnit dependency file that is similar to
the jar file junit-4.10.jar in our example. The name should consist of the keyword junit and its
version number, which in this example is 4.10.

For more information, see Appium Java JUnit (p. 46) and Appium Java JUnit (p. 62)

APPIUM_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSION
If you see the following message, follow these steps to fix the issue.

Warning
We found the JUnit version was lower than the minimum version 4.10 we support. Please
change the JUnit version and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find a JUnit dependency file like junit-4.10.jar in our example and its version number,
which in our example is 4.10:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies, built
 as JAR files)
 |— junit-4.10.jar
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

Note
Your tests may not execute correctly if the JUnit version specified in your test package is
lower than the minimum version 4.10 we support.

For more information, see Appium Java JUnit (p. 46) or Appium Java JUnit (p. 62).

API Version 2015-06-23
108

AWS Device Farm Developer Guide
Appium Java JUnit Web

Troubleshooting Appium Java JUnit Web
Application Tests in AWS Device Farm

The following topic lists error messages that occur during the upload of Appium Java JUnit Web
application tests and recommends workarounds to resolve each error.

APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your test ZIP file. Please verify that the file is valid and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid Appium Java JUnit package should produce output like the following:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 79).

APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_DEPENDENCY_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the dependency-jars directory inside your test package. Please unzip your test
package, verify that the dependency-jars directory is inside the package, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

API Version 2015-06-23
109

AWS Device Farm Developer Guide
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find the dependency-jars directory inside the
working directory:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 79).

APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a JAR file in the dependency-jars directory tree. Please unzip your test
package and then open the dependency-jars directory, verify that at least one JAR file is in the
directory, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find at least one jar file inside the dependency-
jars directory:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar

API Version 2015-06-23
110

AWS Device Farm Developer Guide
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_TESTS_JAR_FILE_MISSING

 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 79).

APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_TESTS_JAR_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a *-tests.jar file in your test package. Please unzip your test package, verify
that at least one *-tests.jar file is in the package, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find at least one jar file like acme-android-
appium-1.0-SNAPSHOT-tests.jar in our example. The file's name may be different, but it should end
with –tests.jar.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 79).

APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a class file within the tests JAR file. Please unzip your test package and then
unjar the tests JAR file, verify that at least one class file is within the JAR file, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

API Version 2015-06-23
111

AWS Device Farm Developer Guide
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWN

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find at least one jar file like acme-android-appium-1.0-SNAPSHOT-tests.jar in our
example. The file's name may be different, but it should end with –tests.jar.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

3. After you successfully extract the files, you should find at least one class in the working directory
tree by running the command:

$ tree .

You should see output like this:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing
everything built from the ./src/test directory)
|- one-class-file.class
|- folder
| `-another-class-file.class
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java JUnit (p. 79).

APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWN
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a JUnit version value. Please unzip your test package and open the
dependency-jars directory, verify that the JUnit JAR file is inside the directory, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

API Version 2015-06-23
112

AWS Device Farm Developer Guide
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSION

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working-directory tree structure by
running the following command:

tree .

The output should look like this:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— junit-4.10.jar
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

If the Appium Java JUnit package is valid, you will find the JUnit dependency file that is similar to
the jar file junit-4.10.jar in our example. The name should consist of the keyword junit and its
version number, which in this example is 4.10.

For more information, see Appium Java JUnit (p. 79).

APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSION
If you see the following message, follow these steps to fix the issue.

Warning
We found the JUnit version was lower than the minimum version 4.10 we support. Please
change the JUnit version and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find a JUnit dependency file like junit-4.10.jar in our example and its version number,
which in our example is 4.10:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)

API Version 2015-06-23
113

AWS Device Farm Developer Guide
Appium Java TestNG

|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies, built
 as JAR files)
 |— junit-4.10.jar
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

Note
Your tests may not execute correctly if the JUnit version specified in your test package is
lower than the minimum version 4.10 we support.

For more information, see Appium Java JUnit (p. 79).

Troubleshooting Appium Java TestNG Tests in AWS
Device Farm

The following topic lists error messages that occur during the upload of Appium Java TestNG tests and
recommends workarounds to resolve each error.

Note
The instructions below are based on Linux x86_64 and Mac.

APPIUM_JAVA_TESTNG_TEST_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your test ZIP file. Please verify that the file is valid and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid Appium Java JUnit package should produce output like the following:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar

API Version 2015-06-23
114

AWS Device Farm Developer Guide
APPIUM_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSING

 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 50) or Appium Java TestNG (p. 66).

APPIUM_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the dependency-jars directory inside your test package. Please unzip your
test package, verify that the dependency-jars directory is inside the package, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find the dependency-jars directory inside the
working directory.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 50) or Appium Java TestNG (p. 66).

APPIUM_JAVA_TESTNG_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a JAR file in the dependency-jars directory tree. Please unzip your test
package and then open the dependency-jars directory, verify that at least one JAR file is in the
directory, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

API Version 2015-06-23
115

AWS Device Farm Developer Guide
APPIUM_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSING

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find at least one jar file inside the dependency-
jars directory.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 50) or Appium Java TestNG (p. 66).

APPIUM_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a *-tests.jar file in your test package. Please unzip your test package, verify
that at least one *-tests.jar file is in the package, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find at least one jar file like acme-android-
appium-1.0-SNAPSHOT-tests.jar in our example. The file's name may be different, but it should end
with –tests.jar.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar

API Version 2015-06-23
116

AWS Device Farm Developer Guide
APPIUM_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR

 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 50) or Appium Java TestNG (p. 66).

APPIUM_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a class file within the tests JAR file. Please unzip your test package and then
unjar the tests JAR file, verify that at least one class file is within the JAR file, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find at least one jar file like acme-android-appium-1.0-SNAPSHOT-tests.jar in our
example. The file's name may be different, but it should end with –tests.jar.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

3. To extract files from the jar file, you can run the following command:

$ jar xf acme-android-appium-1.0-SNAPSHOT-tests.jar

4. After you successfully extract the files, run the following command:

$ tree .

You should find at least one class in the working directory tree:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing
everything built from the ./src/test directory)
|- one-class-file.class
|- folder
| `— another-class-file.class

API Version 2015-06-23
117

AWS Device Farm Developer Guide
Appium Java TestNG Web

|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 50) or Appium Java TestNG (p. 66).

Troubleshooting Appium Java TestNG Web
Applications in AWS Device Farm

The following topic lists error messages that occur during the upload of Appium Java TestNG Web
application tests and recommends workarounds to resolve each error.

APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your test ZIP file. Please verify that the file is valid and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid Appium Java JUnit package should produce output like the following:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 81).

API Version 2015-06-23
118

AWS Device Farm Developer Guide
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSING

APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the dependency-jars directory inside your test package. Please unzip your test
package, verify that the dependency-jars directory is inside the package, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find the dependency-jars directory inside the
working directory.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 81).

APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a JAR file in the dependency-jars directory tree. Please unzip your test
package and then open the dependency-jars directory, verify that at least one JAR file is in the
directory, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

API Version 2015-06-23
119

AWS Device Farm Developer Guide
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSING

If the Appium Java JUnit package is valid, you will find at least one jar file inside the dependency-
jars directory.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 81).

APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a *-tests.jar file in your test package. Please unzip your test package, verify
that at least one *-tests.jar file is in the package, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Java JUnit package is valid, you will find at least one jar file like acme-android-
appium-1.0-SNAPSHOT-tests.jar in our example. The file's name may be different, but it should end
with –tests.jar.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 81).

API Version 2015-06-23
120

AWS Device Farm Developer Guide
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR

APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a class file within the tests JAR file. Please unzip your test package and then
unjar the tests JAR file, verify that at least one class file is within the JAR file, and try again.

In the following example, the package's name is zip-with-dependencies.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip zip-with-dependencies.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find at least one jar file like acme-android-appium-1.0-SNAPSHOT-tests.jar in our
example. The file's name may be different, but it should end with –tests.jar.

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing everything
 built from the ./src/test directory)
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar
 `— log4j-1.2.14.jar

3. To extract files from the jar file, you can run the following command:

$ jar xf acme-android-appium-1.0-SNAPSHOT-tests.jar

4. After you successfully extract the files, run the following command:

$ tree .

You should find at least one class in the working directory tree:

.
|— acme-android-appium-1.0-SNAPSHOT.jar (this is the JAR containing everything built
 from the ./src/main directory)
|— acme-android-appium-1.0-SNAPSHOT-tests.jar (this is the JAR containing
everything built from the ./src/test directory)
|- one-class-file.class
|- folder
| `— another-class-file.class
|— zip-with-dependencies.zip (this .zip file contains all of the items)
`— dependency-jars (this is the directory that contains all of your dependencies,
 built as JAR files)
 |— com.some-dependency.bar-4.1.jar
 |— com.another-dependency.thing-1.0.jar
 |— joda-time-2.7.jar

API Version 2015-06-23
121

AWS Device Farm Developer Guide
Appium Python

 `— log4j-1.2.14.jar

For more information, see Appium Java TestNG (p. 81).

Troubleshooting Appium Python Tests in AWS
Device Farm

The following topic lists error messages that occur during the upload of Appium Python tests and
recommends workarounds to resolve each error.

APPIUM_PYTHON_TEST_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your Appium test ZIP file. Please verify that the file is valid and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid Appium Python package should produce output like the following:

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 54) or Appium Python (p. 70).

APPIUM_PYTHON_TEST_PACKAGE_DEPENDENCY_WHEEL_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a dependency wheel file in the wheelhouse directory tree. Please unzip your
test package and then open the wheelhouse directory, verify that at least one wheel file is in the
directory, and try again.

API Version 2015-06-23
122

AWS Device Farm Developer Guide
APPIUM_PYTHON_TEST_PACKAGE_INVALID_PLATFORM

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Python package is valid, you will find at least one .whl dependent file like the
highlighted files inside the wheelhouse directory.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 54) or Appium Python (p. 70).

APPIUM_PYTHON_TEST_PACKAGE_INVALID_PLATFORM
If you see the following message, follow these steps to fix the issue.

Warning
We found at least one wheel file specified a platform that we do not support. Please unzip your
test package and then open the wheelhouse directory, verify that names of wheel files end with
-any.whl or -linux_x86_64.whl, and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Python package is valid, you will find at least one .whl dependent file like the
highlighted files inside the wheelhouse directory. The file's name may be different, but it should end
with -any.whl or -linux_x86_64.whl, which specifies the platform. Any other platforms like windows
are not supported.

.

API Version 2015-06-23
123

AWS Device Farm Developer Guide
APPIUM_PYTHON_TEST_PACKAGE_TEST_DIR_MISSING

|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 54) or Appium Python (p. 70).

APPIUM_PYTHON_TEST_PACKAGE_TEST_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the tests directory inside your test package. Please unzip your test package,
verify that the tests directory is inside the package, and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Python package is valid, you will find the tests directory inside the working directory.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 54) or Appium Python (p. 70).

APPIUM_PYTHON_TEST_PACKAGE_INVALID_TEST_FILE_NAME
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a valid test file in the tests directory tree. Please unzip your test package and
then open the tests directory, verify that at least one file's name starts or ends with the keyword
"test", and try again.

API Version 2015-06-23
124

AWS Device Farm Developer Guide
APPIUM_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSING

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Python package is valid, you will find the tests directory inside the working directory.
The file's name may be different, but it should start with test_ or end with _test.py.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 54) or Appium Python (p. 70).

APPIUM_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the requirements.txt file inside your test package. Please unzip your test
package, verify that the requirements.txt file is inside the package, and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Python package is valid, you will find the requirements.txt file inside the working
directory.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)

API Version 2015-06-23
125

AWS Device Farm Developer Guide
APPIUM_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSION

| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 54) or Appium Python (p. 70).

APPIUM_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSION
If you see the following message, follow these steps to fix the issue.

Warning
We found the pytest version was lower than the minimum version 2.8.0 we support. Please
change the pytest version inside the requirements.txt file, and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the requirement.txt file inside the working directory.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `--test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

3. To get the pytest version, you can run the following command:

$ grep "pytest" requirements.txt

You should find output like the following:

pytest==2.9.0

It shows the pytest version, which in this example is 2.9.0. If the Appium Python package is valid, the
pytest version should be larger than or equal to 2.8.0.

For more information, see Appium Python (p. 54) or Appium Python (p. 70).
API Version 2015-06-23

126

AWS Device Farm Developer Guide
APPIUM_PYTHON_TEST_PACKAGE_INSTALL_DEPENDENCY_WHEELS_FAILED

APPIUM_PYTHON_TEST_PACKAGE_INSTALL_DEPENDENCY_WHEELS_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We failed to install the dependency wheels. Please unzip your test package and then open the
requirements.txt file and the wheelhouse directory, verify that the dependency wheels specified
in the requirements.txt file exactly match the dependency wheels inside the wheelhouse
directory, and try again.

We strongly recommend that you set up Python virtualenv for packaging tests. Here is an example flow
of creating a virtual environment using Python virtualenv and then activating it:

$ virtualenv workspace
$ cd workspace
$ source bin/activate

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. To test installing wheel files, you can run the following command:

$ pip install --use-wheel --no-index --find-links=./wheelhouse --requirement=./
requirements.txt

A valid Appium Python package should produce output like the following:

Ignoring indexes: https://pypi.python.org/simple
Collecting Appium-Python-Client==0.20 (from -r ./requirements.txt (line 1))
Collecting py==1.4.31 (from -r ./requirements.txt (line 2))
Collecting pytest==2.9.0 (from -r ./requirements.txt (line 3))
Collecting selenium==2.52.0 (from -r ./requirements.txt (line 4))
Collecting wheel==0.26.0 (from -r ./requirements.txt (line 5))
Installing collected packages: selenium, Appium-Python-Client, py, pytest, wheel
 Found existing installation: wheel 0.29.0
 Uninstalling wheel-0.29.0:
 Successfully uninstalled wheel-0.29.0
Successfully installed Appium-Python-Client-0.20 py-1.4.31 pytest-2.9.0 selenium-2.52.0
 wheel-0.26.0

3. To deactivate the virtual environment, you can run the following command:

$ deactivate

For more information, see Appium Python (p. 54) or Appium Python (p. 70).

APPIUM_PYTHON_TEST_PACKAGE_PYTEST_COLLECT_FAILED
If you see the following message, follow these steps to fix the issue.

API Version 2015-06-23
127

https://pypi.python.org/pypi/virtualenv

AWS Device Farm Developer Guide
Appium Python Web

Warning
We failed to collect tests in the tests directory. Please unzip your test package, very that the
test package is valid by running the command py.test --collect-only <path to your tests
directory>, and try again after the command does not print any error.

We strongly recommend that you set up Python virtualenv for packaging tests. Here is an example flow
of creating a virtual environment using Python virtualenv and then activating it:

$ virtualenv workspace
$ cd workspace
$ source bin/activate

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. To install wheel files, you can run the following command:

$ pip install --use-wheel --no-index --find-links=./wheelhouse --requirement=./
requirements.txt

3. To collect tests, you can run the following command:

$ py.test --collect-only tests

A valid Appium Python package should produce output like the following:

==================== test session starts ====================
platform darwin -- Python 2.7.11, pytest-2.9.0, py-1.4.31, pluggy-0.3.1
rootdir: /Users/zhena/Desktop/Ios/tests, inifile:
collected 1 items
<Module 'test_unittest.py'>
 <UnitTestCase 'DeviceFarmAppiumWebTests'>
 <TestCaseFunction 'test_devicefarm'>

==================== no tests ran in 0.11 seconds ====================

4. To deactivate the virtual environment, you can run the following command:

$ deactivate

For more information, see Appium Python (p. 54) or Appium Python (p. 70).

Troubleshooting Appium Python Web Application
Tests in AWS Device Farm

The following topic lists error messages that occur during the upload of Appium Python Web application
tests and recommends workarounds to resolve each error.

API Version 2015-06-23
128

https://pypi.python.org/pypi/virtualenv

AWS Device Farm Developer Guide
APPIUM_WEB_PYTHON_TEST_PACKAGE_UNZIP_FAILED

APPIUM_WEB_PYTHON_TEST_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your Appium test ZIP file. Please verify that the file is valid and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid Appium Python package should produce output like the following:

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 83).

APPIUM_WEB_PYTHON_TEST_PACKAGE_DEPENDENCY_WHEEL_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a dependency wheel file in the wheelhouse directory tree. Please unzip your
test package and then open the wheelhouse directory, verify that at least one wheel file is in the
directory, and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

API Version 2015-06-23
129

AWS Device Farm Developer Guide
APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PLATFORM

If the Appium Python package is valid, you will find at least one .whl dependent file like the
highlighted files inside the wheelhouse directory.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 83).

APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PLATFORM
If you see the following message, follow these steps to fix the issue.

Warning
We found at least one wheel file specified a platform that we do not support. Please unzip your
test package and then open the wheelhouse directory, verify that names of wheel files end with
-any.whl or -linux_x86_64.whl, and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Python package is valid, you will find at least one .whl dependent file like the
highlighted files inside the wheelhouse directory. The file's name may be different, but it should end
with -any.whl or -linux_x86_64.whl, which specifies the platform. Any other platforms like windows
are not supported.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 83).

API Version 2015-06-23
130

AWS Device Farm Developer Guide
APPIUM_WEB_PYTHON_TEST_PACKAGE_TEST_DIR_MISSING

APPIUM_WEB_PYTHON_TEST_PACKAGE_TEST_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the tests directory inside your test package. Please unzip your test package,
verify that the tests directory is inside the package, and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Python package is valid, you will find the tests directory inside the working directory.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 83).

APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_TEST_FILE_NAME
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a valid test file in the tests directory tree. Please unzip your test package and
then open the tests directory, verify that at least one file's name starts or ends with the keyword
"test", and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

API Version 2015-06-23
131

AWS Device Farm Developer Guide
APPIUM_WEB_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSING

If the Appium Python package is valid, you will find the tests directory inside the working directory.
The file's name may be different, but it should start with test_ or end with _test.py.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 83).

APPIUM_WEB_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the requirements.txt file inside your test package. Please unzip your test
package, verify that the requirements.txt file is inside the package, and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Appium Python package is valid, you will find the requirements.txt file inside the working
directory.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `-- test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

For more information, see Appium Python (p. 83).

API Version 2015-06-23
132

AWS Device Farm Developer Guide
APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSION

APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSION
If you see the following message, follow these steps to fix the issue.

Warning
We found the pytest version was lower than the minimum version 2.8.0 we support. Please
change the pytest version inside the requirements.txt file, and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the requirement.txt file inside the working directory.

.
|-- requirements.txt
|-- test_bundle.zip
|-- tests (directory)
| `--test_unittest.py
`-- wheelhouse (directory)
 |-- Appium_Python_Client-0.20-cp27-none-any.whl
 |-- py-1.4.31-py2.py3-none-any.whl
 |-- pytest-2.9.0-py2.py3-none-any.whl
 |-- selenium-2.52.0-cp27-none-any.whl
 `-- wheel-0.26.0-py2.py3-none-any.whl

3. To get the pytest version, you can run the following command:

$ grep "pytest" requirements.txt

You should find output like the following:

pytest==2.9.0

It shows the pytest version, which in this example is 2.9.0. If the Appium Python package is valid, the
pytest version should be larger than or equal to 2.8.0.

For more information, see Appium Python (p. 83).

APPIUM_WEB_PYTHON_TEST_PACKAGE_INSTALL_DEPENDENCY_WHEELS_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We failed to install the dependency wheels. Please unzip your test package and then open the
requirements.txt file and the wheelhouse directory, verify that the dependency wheels specified
in the requirements.txt file exactly match the dependency wheels inside the wheelhouse
directory, and try again.

API Version 2015-06-23
133

AWS Device Farm Developer Guide
APPIUM_WEB_PYTHON_TEST_PACKAGE_PYTEST_COLLECT_FAILED

We strongly recommend that you set up Python virtualenv for packaging tests. Here is an example flow
of creating a virtual environment using Python virtualenv and then activating it:

$ virtualenv workspace
$ cd workspace
$ source bin/activate

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. To test installing wheel files, you can run the following command:

$ pip install --use-wheel --no-index --find-links=./wheelhouse --requirement=./
requirements.txt

A valid Appium Python package should produce output like the following:

Ignoring indexes: https://pypi.python.org/simple
Collecting Appium-Python-Client==0.20 (from -r ./requirements.txt (line 1))
Collecting py==1.4.31 (from -r ./requirements.txt (line 2))
Collecting pytest==2.9.0 (from -r ./requirements.txt (line 3))
Collecting selenium==2.52.0 (from -r ./requirements.txt (line 4))
Collecting wheel==0.26.0 (from -r ./requirements.txt (line 5))
Installing collected packages: selenium, Appium-Python-Client, py, pytest, wheel
 Found existing installation: wheel 0.29.0
 Uninstalling wheel-0.29.0:
 Successfully uninstalled wheel-0.29.0
Successfully installed Appium-Python-Client-0.20 py-1.4.31 pytest-2.9.0 selenium-2.52.0
 wheel-0.26.0

3. To deactivate the virtual environment, you can run the following command:

$ deactivate

For more information, see Appium Python (p. 83).

APPIUM_WEB_PYTHON_TEST_PACKAGE_PYTEST_COLLECT_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We failed to collect tests in the tests directory. Please unzip your test package, very that the test
package is valid by running the command "py.test --collect-only <path to your tests directory>",
and try again after the command does not print any error.

We strongly recommend that you set up Python virtualenv for packaging tests. Here is an example flow
of creating a virtual environment using Python virtualenv and then activating it:

$ virtualenv workspace
$ cd workspace
$ source bin/activate

API Version 2015-06-23
134

https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenv

AWS Device Farm Developer Guide
Calabash

Make sure that you can unzip the test package without errors. In the following example, the package's
name is test_bundle.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip test_bundle.zip

2. To install wheel files, you can run the following command:

$ pip install --use-wheel --no-index --find-links=./wheelhouse --requirement=./
requirements.txt

3. To collect tests, you can run the following command:

$ py.test --collect-only tests

A valid Appium Python package should produce output like the following:

==================== test session starts ====================
platform darwin -- Python 2.7.11, pytest-2.9.0, py-1.4.31, pluggy-0.3.1
rootdir: /Users/zhena/Desktop/Ios/tests, inifile:
collected 1 items
<Module 'test_unittest.py'>
 <UnitTestCase 'DeviceFarmAppiumWebTests'>
 <TestCaseFunction 'test_devicefarm'>

==================== no tests ran in 0.11 seconds ====================

4. To deactivate the virtual environment, you can run the following command:

$ deactivate

For more information, see Appium Python (p. 83).

Troubleshooting Calabash Tests in AWS Device
Farm

The following topic lists error messages that occur during the upload of Calabash tests and recommends
workarounds to resolve each error.

CALABASH_TEST_PACKAGE_UNZIP_FAILED_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your test ZIP file. Please verify that the file is valid and try again.

Make sure that you can unzip the test package without errors. In the following example, the package's
name is features.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip features.zip

API Version 2015-06-23
135

AWS Device Farm Developer Guide
CALABASH_TEST_PACKAGE_FEATURES_DIR_MISSING_FEATURES_DIR_MISSING

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid Calabash package should produce output like the following:

.
`-- features (directory)
 |-- my-feature-1-file-name.feature
 |-- my-feature-2-file-name.feature
 |-- my-feature-N-file-name.feature
 |-- step_definitions (directory)
 | `-- (.rb files)
 |-- support (directory)
 | `-- (.rb files)
 `-- (any other supporting files)

For more information, see Calabash (p. 57) or Calabash (p. 73).

CALABASH_TEST_PACKAGE_FEATURES_DIR_MISSING_FEATURES_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the features directory inside your test package tree. Please unzip your test
package, verify that the features directory is inside the package, and try again.

In the following example, the package's name is features.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip features.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Calabash package is valid, you will find the features directory inside the working directory.

.
`-- features (directory)
 |-- my-feature-1-file-name.feature
 |-- my-feature-2-file-name.feature
 |-- my-feature-N-file-name.feature
 |-- step_definitions (directory)
 | `-- (.rb files)
 |-- support (directory)
 | `-- (.rb files)
 `-- (any other supporting files)

For more information, see Calabash (p. 57) or Calabash (p. 73).

API Version 2015-06-23
136

AWS Device Farm Developer Guide
CALABASH_TEST_PACKAGE_FEATURE_FILE_MISSING

CALABASH_TEST_PACKAGE_FEATURE_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a .feature file in the features directory tree. Please unzip your test package
and open the features directory, verify that at least one .feature file is in the directory, and try
again.

In the following example, the package's name is features.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip features.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Calabash package is valid, you will find at least one .feature file inside the features directory.

.
`-- features (directory)
 |-- my-feature-1-file-name.feature
 |-- my-feature-2-file-name.feature
 |-- my-feature-N-file-name.feature
 |-- step_definitions (directory)
 | `-- (.rb files)
 |-- support (directory)
 | `-- (.rb files)
 `-- (any other supporting files)

For more information, see Calabash (p. 57) or Calabash (p. 73).

CALABASH_TEST_PACKAGE_STEP_DEFINITIONS_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the step_definitions directory inside your test package. Please unzip your test
package and open the features directory, verify that the step_definitions directory is inside the
package, and try again.

In the following example, the package's name is features.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip features.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Calabash package is valid, you will find the step_definitions directory inside the features
directory.

API Version 2015-06-23
137

AWS Device Farm Developer Guide
CALABASH_TEST_PACKAGE_SUPPORT_DIR_MISSING

.
`-- features (directory)
 |-- my-feature-1-file-name.feature
 |-- my-feature-2-file-name.feature
 |-- my-feature-N-file-name.feature
 |-- step_definitions (directory)
 | `-- (.rb files)
 |-- support (directory)
 | `-- (.rb files)
 `-- (any other supporting files)

For more information, see Calabash (p. 57) or Calabash (p. 73).

CALABASH_TEST_PACKAGE_SUPPORT_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the support directory inside your test package. Please unzip your test package
and open the features directory, verify that the support directory is inside the package, and try
again.

In the following example, the package's name is features.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip features.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Calabash package is valid, you will find the support directory inside the features directory.

.
`-- features (directory)
 |-- my-feature-1-file-name.feature
 |-- my-feature-2-file-name.feature
 |-- my-feature-N-file-name.feature
 |-- step_definitions (directory)
 | `-- (.rb files)
 |-- support (directory)
 | `-- (.rb files)
 `-- (any other supporting files)

For more information, see Calabash (p. 57) or Calabash (p. 73).

CALABASH_TEST_PACKAGE_RUBY_FILE_MISSING_IN_STEP_DEFINITIONS_DIR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a ruby file in the step_definitions directory tree. Please unzip your test
package and open the step_definitions directory, verify that at least one ruby file is in the
directory, and try again.

API Version 2015-06-23
138

AWS Device Farm Developer Guide
CALABASH_TEST_PACKAGE_RUBY_FILE_MISSING_IN_SUPPORT_DIR

In the following example, the package's name is features.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip features.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Calabash package is valid, you will find at least one ruby file inside the step_definitions
directory.

.
`-- features (directory)
 |-- my-feature-1-file-name.feature
 |-- my-feature-2-file-name.feature
 |-- my-feature-N-file-name.feature
 |-- step_definitions (directory)
 | |-- one-ruby.rb
 | |-- folder
 | | `-- another-ruby.rb
 | `-- (any other supporting files)
 |-- support (directory)
 | `-- (.rb files)
 `-- (any other supporting files)

For more information, see Calabash (p. 57) or Calabash (p. 73).

CALABASH_TEST_PACKAGE_RUBY_FILE_MISSING_IN_SUPPORT_DIR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find a ruby file in the support directory tree. Please unzip your test package and
open the support directory, verify that at least one ruby file is in the directory, and try again.

In the following example, the package's name is features.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip features.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the Calabash package is valid, you will find at least one ruby file inside the support directory.

.
`-- features (directory)
 |-- my-feature-1-file-name.feature
 |-- my-feature-2-file-name.feature
 |-- my-feature-N-file-name.feature
 |-- step_definitions (directory)

API Version 2015-06-23
139

AWS Device Farm Developer Guide
CALABASH_TEST_PACKAGE_EMBEDDED_SERVER_MISSING

 | `-- (.rb files)
 |-- support (directory)
 | |-- one-ruby.rb
 | |-- folder
 | | `-- another-ruby.rb
 | `-- (any other supporting files)
 `-- (any other supporting files)

For more information, see Calabash (p. 57) or Calabash (p. 73).

CALABASH_TEST_PACKAGE_EMBEDDED_SERVER_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the embedded server inside your test package. Please verify that the server is
inside the package by running the command "calabash-ios check <path to your test package>",
and try again after finding the calabash framework.

Calabash tests contain an embedded web server within the iOS application.

Make sure that the embedded web server is inside your iOS application. In the following example, the
iOS application’s name is AWSDeviceFarmiOSReferenceApp.ipa.

• Copy your iOS application to your working directory, and then run the following command:

$ calabash-ios check AWSDeviceFarmiOSReferenceApp.ipa

A valid iOS application should produce output like the following:

Ipa: AWSDeviceFarmiOSReferenceApp.ipa *contains* calabash.framework
0.19.0

For more information, see Calabash (p. 57) or Calabash (p. 73).

CALABASH_TEST_PACKAGE_DRY_RUN_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We failed to quickly scan your .feature files. Please unzip your test package, verify that the files
are valid by running the command "calabash --dry-run <path to your features directory>", and
try again after the command does not print any error.

During the upload validation process, Device Farm quickly scans your features without actually running
them.

Make sure that your features are valid. In the following example, the package's name is features.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip features.zip

After you successfully unzip your package, you will find the features directory inside the working
directory.

API Version 2015-06-23
140

AWS Device Farm Developer Guide
Instrumentation

2. To scan your features, run the following command:

$ cucumber-ios --dry-run --format json features

A valid Calabash package should produce output like the following:

[
 {
 "uri": "features/homepage.feature",
 "id": "home-page",
 "keyword": "Feature",
 "name": "Home Page",
 "description": " As a Device Farm user\n I would like to be able to see examples
 of testing a static homepage\n So I can apply it to my future tests.",
 "line": 1,
 "elements": [
 {
 "id": "home-page;a-valid-homepage",
 "keyword": "Scenario",
 "name": "A Valid Homepage",
 "description": "",
 "line": 6,
 "type": "scenario",
 "steps": [
 {
 "keyword": "Given ",
 "name": "that I navigate to the \"Home\" menu category",
 "line": 7,
 "match": {
 "location": "/Library/Ruby/Gems/2.0.0/gems/cucumber-2.4.0/lib/cucumber/
step_match.rb:98"
 },
 "result": {
 "status": "skipped",
 "duration": 16000
 }
 }
]
 }
]
 }
]

For more information, see Calabash (p. 57) or Calabash (p. 73).

Troubleshooting Instrumentation Tests in AWS
Device Farm

The following topic lists error messages that occur during the upload of Instrumentation tests and
recommends workarounds to resolve each error.

INSTRUMENTATION_TEST_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your test APK file. Please verify that the file is valid and try again.

API Version 2015-06-23
141

AWS Device Farm Developer Guide
INSTRUMENTATION_TEST_PACKAGE_AAPT_DEBUG_BADGING_FAILED

Make sure that you can unzip the test package without errors. In the following example, the package's
name is app-debug-androidTest-unaligned.apk.

1. Copy your test package to your working directory, and then run the following command:

$ unzip app-debug-androidTest-unaligned.apk

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid Instrumentation test package will produce output like the following:

.
|-- AndroidManifest.xml
|-- classes.dex
|-- resources.arsc
|-- LICENSE-junit.txt
|-- junit (directory)
`-- META-INF (directory)

For more information, see Instrumentation (p. 59).

INSTRUMENTATION_TEST_PACKAGE_AAPT_DEBUG_BADGING_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not extract information about your test package. Please verify that the test package is
valid by running the command "aapt debug badging <path to your test package>", and try again
after the command does not print any error.

During the upload validation process, Device Farm parses out information from the output of the aapt
debug badging <path to your package> command.

Make sure that you can run this command on your Instrumentation test package successfully.

In the following example, the package's name is app-debug-androidTest-unaligned.apk.

• Copy your test package to your working directory, and then run the following command:

$ aapt debug badging app-debug-androidTest-unaligned.apk

A valid Instrumentation test package will produce output like the following:

package: name='com.amazon.aws.adf.android.referenceapp.test' versionCode=''
 versionName='' platformBuildVersionName='5.1.1-1819727'
sdkVersion:'9'
targetSdkVersion:'22'
application-label:'Test-api'
application: label='Test-api' icon=''
application-debuggable
uses-library:'android.test.runner'
feature-group: label=''
uses-feature: name='android.hardware.touchscreen'
uses-implied-feature: name='android.hardware.touchscreen' reason='default feature for
 all apps'

API Version 2015-06-23
142

AWS Device Farm Developer Guide
INSTRUMENTATION_TEST_PACKAGE_INSTRUMENTATION_RUNNER_VALUE_MISSING

supports-screens: 'small' 'normal' 'large' 'xlarge'
supports-any-density: 'true'
locales: '--_--'
densities: '160'

For more information, see Instrumentation (p. 59).

INSTRUMENTATION_TEST_PACKAGE_INSTRUMENTATION_RUNNER_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the instrumentation runner value in the AndroidManifest.xml. Please verify
the test package is valid by running the command "aapt dump xmltree <path to your test
package> AndroidManifest.xml", and try again after finding the instrumentation runner value
behind the keyword "instrumentation."

During the upload validation process, Device Farm parses out the instrumentation runner value from the
XML parse tree for an XML file contained within the package. You can use the following command: aapt
dump xmltree <path to your package> AndroidManifest.xml.

Make sure that you can run this command on your Instrumentation test package and find the
instrumentation value successfully.

In the following example, the package's name is app-debug-androidTest-unaligned.apk.

• Copy your test package to your working directory, and then run the following command:

$ aapt dump xmltree app-debug-androidTest-unaligned.apk AndroidManifest.xml | grep -A5
 "instrumentation"

A valid Instrumentation test package will produce output like the following:

E: instrumentation (line=9)
 A: android:label(0x01010001)="Tests for
 com.amazon.aws.adf.android.referenceapp" (Raw: "Tests for
 com.amazon.aws.adf.android.referenceapp")
 A:
 android:name(0x01010003)="android.support.test.runner.AndroidJUnitRunner" (Raw:
 "android.support.test.runner.AndroidJUnitRunner")
 A:
 android:targetPackage(0x01010021)="com.amazon.aws.adf.android.referenceapp" (Raw:
 "com.amazon.aws.adf.android.referenceapp")
 A: android:handleProfiling(0x01010022)=(type 0x12)0x0
 A: android:functionalTest(0x01010023)=(type 0x12)0x0

For more information, see Instrumentation (p. 59).

INSTRUMENTATION_TEST_PACKAGE_AAPT_DUMP_XMLTREE_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the valid AndroidManifest.xml in your test package. Please verify that the
test package is valid by running the command "aapt dump xmltree <path to your test package>
AndroidManifest.xml", and try again after the command does not print any error.

API Version 2015-06-23
143

AWS Device Farm Developer Guide
INSTRUMENTATION_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSING

During the upload validation process, Device Farm parses out information from the XML parse tree for
an XML file contained within the package using the following command: aapt dump xmltree <path to
your package> AndroidManifest.xml.

Make sure that you can run this command on your instrumentation test package successfully.

In the following example, the package's name is app-debug-androidTest-unaligned.apk.

• Copy your test package to your working directory, and then run the following command:

$ aapt dump xmltree app-debug-androidTest-unaligned.apk AndroidManifest.xml

A valid Instrumentation test package will produce output like the following:

N: android=http://schemas.android.com/apk/res/android
 E: manifest (line=2)
 A: package="com.amazon.aws.adf.android.referenceapp.test" (Raw:
 "com.amazon.aws.adf.android.referenceapp.test")
 A: platformBuildVersionCode=(type 0x10)0x16 (Raw: "22")
 A: platformBuildVersionName="5.1.1-1819727" (Raw: "5.1.1-1819727")
 E: uses-sdk (line=5)
 A: android:minSdkVersion(0x0101020c)=(type 0x10)0x9
 A: android:targetSdkVersion(0x01010270)=(type 0x10)0x16
 E: instrumentation (line=9)
 A: android:label(0x01010001)="Tests for
 com.amazon.aws.adf.android.referenceapp" (Raw: "Tests for
 com.amazon.aws.adf.android.referenceapp")
 A:
 android:name(0x01010003)="android.support.test.runner.AndroidJUnitRunner" (Raw:
 "android.support.test.runner.AndroidJUnitRunner")
 A:
 android:targetPackage(0x01010021)="com.amazon.aws.adf.android.referenceapp" (Raw:
 "com.amazon.aws.adf.android.referenceapp")
 A: android:handleProfiling(0x01010022)=(type 0x12)0x0
 A: android:functionalTest(0x01010023)=(type 0x12)0x0
 E: application (line=16)
 A: android:label(0x01010001)=@0x7f020000
 A: android:debuggable(0x0101000f)=(type 0x12)0xffffffff
 E: uses-library (line=17)
 A: android:name(0x01010003)="android.test.runner" (Raw: "android.test.runner")

For more information, see Instrumentation (p. 59).

INSTRUMENTATION_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the package name in your test package. Please verify that the test package is
valid by running the command "aapt debug badging <path to your test package>", and try again
after finding the package name value behind the keyword "package: name."

During the upload validation process, Device Farm parses out the package name value from the output
of the following command: aapt debug badging <path to your package>.

Make sure that you can run this command on your Instrumentation test package and find the package
name value successfully.

In the following example, the package's name is app-debug-androidTest-unaligned.apk.

API Version 2015-06-23
144

AWS Device Farm Developer Guide
iOS Applications

• Copy your test package to your working directory, and then run the following command:

$ aapt debug badging app-debug-androidTest-unaligned.apk | grep "package: name="

A valid Instrumentation test package will produce output like the following:

package: name='com.amazon.aws.adf.android.referenceapp.test' versionCode=''
 versionName='' platformBuildVersionName='5.1.1-1819727'

For more information, see Instrumentation (p. 59).

Troubleshooting iOS Application Tests in AWS
Device Farm

The following topic lists error messages that occur during the upload of iOS application tests and
recommends workarounds to resolve each error.

Note
The instructions below are based on Linux x86_64 and Mac.

IOS_APP_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your application. Please verify that the file is valid and try again.

Make sure that you can unzip the application package without errors. In the following example, the
package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid iOS application package should produce output like the following:

.
`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

IOS_APP_PAYLOAD_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

API Version 2015-06-23
145

AWS Device Farm Developer Guide
IOS_APP_APP_DIR_MISSING

Warning
We could not find the Payload directory inside your application. Please unzip your application,
verify that the Payload directory is inside the package, and try again.

In the following example, the package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the iOS application package is valid, you will find the Payload directory inside the working
directory.

.
`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

IOS_APP_APP_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the .app directory inside the Payload directory. Please unzip your application
and then open the Payload directory, verify that the .app directory is inside the directory, and
try again.

In the following example, the package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the iOS application package is valid, you will find an .app directory like
AWSDeviceFarmiOSReferenceApp.app in our example inside the Payload directory.

.
`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

API Version 2015-06-23
146

AWS Device Farm Developer Guide
IOS_APP_PLIST_FILE_MISSING

IOS_APP_PLIST_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the Info.plist file inside the .app directory. Please unzip your application and
then open the .app directory, verify that the Info.plist file is inside the directory, and try again.

In the following example, the package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the iOS application package is valid, you will find the Info.plist file inside the .app directory like
AWSDeviceFarmiOSReferenceApp.app in our example.

.
`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

IOS_APP_CPU_ARCHITECTURE_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the CPU architecture value in the Info.plist file. Please unzip your
application and then open Info.plist file inside the .app directory, verify that the key
"UIRequiredDeviceCapabilities" is specified, and try again.

In the following example, the package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like
AWSDeviceFarmiOSReferenceApp.app in our example:

.
API Version 2015-06-23

147

AWS Device Farm Developer Guide
IOS_APP_PLATFORM_VALUE_MISSING

`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

3. To find the CPU architecture value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/AWSDeviceFarmiOSReferenceApp-cal.app/
Info.plist')
print info_plist['UIRequiredDeviceCapabilities']

A valid iOS application package should produce output like the following:

['armv7']

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

IOS_APP_PLATFORM_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the platform value in the Info.plist file. Please unzip your application and then
open Info.plist file inside the .app directory, verify that the key "CFBundleSupportedPlatforms"
is specified, and try again.

In the following example, the package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like
AWSDeviceFarmiOSReferenceApp.app in our example:

.
`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

3. To find the platform value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:
API Version 2015-06-23

148

AWS Device Farm Developer Guide
IOS_APP_WRONG_PLATFORM_DEVICE_VALUE

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/AWSDeviceFarmiOSReferenceApp-cal.app/
Info.plist')
print info_plist['CFBundleSupportedPlatforms']

A valid iOS application package should produce output like the following:

['iPhoneOS']

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

IOS_APP_WRONG_PLATFORM_DEVICE_VALUE
If you see the following message, follow these steps to fix the issue.

Warning
We found the platform device value was wrong in the Info.plist file. Please unzip your
application and then open Info.plist file inside the .app directory, verify that the value of the key
"CFBundleSupportedPlatforms" does not contain the keyword "simulator", and try again.

In the following example, the package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like
AWSDeviceFarmiOSReferenceApp.app in our example:

.
`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

3. To find the platform value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/AWSDeviceFarmiOSReferenceApp-cal.app/
Info.plist')

API Version 2015-06-23
149

AWS Device Farm Developer Guide
IOS_APP_FORM_FACTOR_VALUE_MISSING

print info_plist['CFBundleSupportedPlatforms']

A valid iOS application package should produce output like the following:

['iPhoneOS']

If the iOS application is valid, the value should not contain the keyword simulator.

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

IOS_APP_FORM_FACTOR_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the form factor value in the Info.plist file. Please unzip your application
and then open Info.plist file inside the .app directory, verify that the key "UIDeviceFamily" is
specified, and try again.

In the following example, the package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like
AWSDeviceFarmiOSReferenceApp.app in our example:

.
`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

3. To find the form factor value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/AWSDeviceFarmiOSReferenceApp-cal.app/
Info.plist')
print info_plist['UIDeviceFamily']

A valid iOS application package should produce output like the following:

[1, 2]

API Version 2015-06-23
150

AWS Device Farm Developer Guide
IOS_APP_PACKAGE_NAME_VALUE_MISSING

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

IOS_APP_PACKAGE_NAME_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the package name value in the Info.plist file. Please unzip your application
and then open Info.plist file inside the .app directory, verify that the key "CFBundleIdentifier" is
specified, and try again.

In the following example, the package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like
AWSDeviceFarmiOSReferenceApp.app in our example:

.
`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

3. To find the package name value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/AWSDeviceFarmiOSReferenceApp-cal.app/
Info.plist')
print info_plist['CFBundleIdentifier']

A valid iOS application package should produce output like the following:

Amazon.AWSDeviceFarmiOSReferenceApp

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

IOS_APP_EXECUTABLE_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

API Version 2015-06-23
151

AWS Device Farm Developer Guide
UI Automator

Warning
We could not find the executable value in the Info.plist file. Please unzip your application and
then open Info.plist file inside the .app directory, verify that the key "CFBundleExecutable" is
specified, and try again.

In the following example, the package's name is AWSDeviceFarmiOSReferenceApp.ipa.

1. Copy your application package to your working directory, and then run the following command:

$ unzip AWSDeviceFarmiOSReferenceApp.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like
AWSDeviceFarmiOSReferenceApp.app in our example:

.
`-- Payload (directory)
 `-- AWSDeviceFarmiOSReferenceApp.app (directory)
 |-- Info.plist
 `-- (any other files)

3. To find the executable value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/AWSDeviceFarmiOSReferenceApp-cal.app/
Info.plist')
print info_plist['CFBundleExecutable']

A valid iOS application package should produce output like the following:

AWSDeviceFarmiOSReferenceApp

For more information, see Working with iOS Tests in AWS Device Farm (p. 62).

Troubleshooting UI Automator Tests in AWS Device
Farm

The following topic lists error messages that occur during the upload of UI Automator tests and
recommends workarounds to resolve each error.

UIAUTOMATOR_TEST_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

API Version 2015-06-23
152

AWS Device Farm Developer Guide
XCTest

Warning
We could not open your test JAR file. Please verify that the file is valid and try again.

Note
The instructions below are based on Linux x86_64 and Mac.

Make sure that you can unzip the application package without errors. In the following example, the
package's name is com.uiautomator.example.jar.

1. Copy your application package to your working directory, and then run the following command:

$ unzip com.uiautomator.example.jar

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid UI Automator package should produce output like the following:

.
|-- classes.dex
|-- META-INF (directory)
| `-- MANIFEST.MF
`-- (any other files)

For more information, see UI Automator (p. 60).

Troubleshooting XCTest Tests in AWS Device Farm
The following topic lists error messages that occur during the upload of XCTest tests and recommends
workarounds to resolve each error.

Note
The instructions below assume you are using MacOS.

XCTEST_TEST_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your test ZIP file. Please verify that the file is valid and try again.

Make sure that you can unzip the application package without errors. In the following example, the
package's name is swiftExampleTests.xctest-1.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swiftExampleTests.xctest-1.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid XCTest package should produce output like the following:

API Version 2015-06-23
153

AWS Device Farm Developer Guide
XCTEST_TEST_PACKAGE_XCTEST_DIR_MISSING

.
`-- swiftExampleTests.xctest (directory)
 |-- Info.plist
 `-- (any other files)

For more information, see XCTest (p. 76).

XCTEST_TEST_PACKAGE_XCTEST_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the .xctest directory inside your test package. Please unzip your test package,
verify that the .xctest directory is inside the package, and try again.

In the following example, the package's name is swiftExampleTests.xctest-1.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swiftExampleTests.xctest-1.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the XCTest package is valid, you will find a directory with a name similar to
swiftExampleTests.xctest inside the working directory. The name should end with .xctest.

.
`-- swiftExampleTests.xctest (directory)
 |-- Info.plist
 `-- (any other files)

For more information, see XCTest (p. 76).

XCTEST_TEST_PACKAGE_PLIST_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the Info.plist file inside the .xctest directory. Please unzip your test package
and then open the .xctest directory, verify that the Info.plist file is inside the directory, and try
again.

In the following example, the package's name is swiftExampleTests.xctest-1.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swiftExampleTests.xctest-1.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

API Version 2015-06-23
154

AWS Device Farm Developer Guide
XCTEST_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSING

$ tree .

If the XCTest package is valid, you will find the Info.plist file inside the .xctest directory. In our
example below, the directory is called swiftExampleTests.xctest.

.
`-- swiftExampleTests.xctest (directory)
 |-- Info.plist
 `-- (any other files)

For more information, see XCTest (p. 76).

XCTEST_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the package name value in the Info.plist file. Please unzip your test package
and then open Info.plist file, verify that the key "CFBundleIdentifier" is specified, and try again.

In the following example, the package's name is swiftExampleTests.xctest-1.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swiftExampleTests.xctest-1.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .xctest directory like swiftExampleTests.xctest in
our example:

.
`-- swiftExampleTests.xctest (directory)
 |-- Info.plist
 `-- (any other files)

3. To find the package name value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('swiftExampleTests.xctest/Info.plist')
print info_plist['CFBundleIdentifier']

A valid XCtest application package should produce output like the following:

com.amazon.kanapka.swiftExampleTests

API Version 2015-06-23
155

AWS Device Farm Developer Guide
XCTEST_TEST_PACKAGE_EXECUTABLE_VALUE_MISSING

For more information, see XCTest (p. 76).

XCTEST_TEST_PACKAGE_EXECUTABLE_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the executable value in the Info.plist file. Please unzip your test package and
then open Info.plist file, verify that the key "CFBundleExecutable" is specified, and try again.

In the following example, the package's name is swiftExampleTests.xctest-1.zip.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swiftExampleTests.xctest-1.zip

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .xctest directory like swiftExampleTests.xctest in
our example:

.
`-- swiftExampleTests.xctest (directory)
 |-- Info.plist
 `-- (any other files)

3. To find the package name value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('swiftExampleTests.xctest/Info.plist')
print info_plist['CFBundleExecutable']

A valid XCtest application package should produce output like the following:

swiftExampleTests

For more information, see XCTest (p. 76).

Troubleshooting XCTest UI Tests in AWS Device
Farm

The following topic lists error messages that occur during the upload of XCTest UI tests and recommends
workarounds to resolve each error.

API Version 2015-06-23
156

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_UNZIP_FAILED

Note
The instructions below are based on Linux x86_64 and Mac.

XCTEST_UI_TEST_PACKAGE_UNZIP_FAILED
If you see the following message, follow these steps to fix the issue.

Warning
We could not open your test IPA file. Please verify that the file is valid and try again.

Make sure that you can unzip the application package without errors. In the following example, the
package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

A valid iOS application package should produce output like the following:

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_PAYLOAD_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the Payload directory inside your test package. Please unzip your test
package, verify that the Payload directory is inside the package, and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the XCTest UI package is valid, you will find the Payload directory inside the working directory.

API Version 2015-06-23
157

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_APP_DIR_MISSING

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_APP_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the .app directory inside the Payload directory. Please unzip your test package
and then open the Payload directory, verify that the .app directory is inside the directory, and
try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the XCTest UI package is valid, you will find an .app directory like swift-sampleUITests-
Runner.app in our example inside the Payload directory.

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_PLUGINS_DIR_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the Plugins directory inside the .app directory. Please unzip your test package
and then open the .app directory, verify that the Plugins directory is inside the directory, and try
again.

API Version 2015-06-23
158

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_XCTEST_DIR_MISSING_IN_PLUGINS_DIR

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the XCTest UI package is valid, you will find the Plugins directory inside an .app directory. In our
example, the directory is called swift-sampleUITests-Runner.app.

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_XCTEST_DIR_MISSING_IN_PLUGINS_DIR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the .xctest directory inside the plugins directory. Please unzip your test
package and then open the plugins directory, verify that the .xctest directory is inside the
directory, and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the XCTest UI package is valid, you will find an .xctest directory inside the Plugins directory. In
our example, the directory is called swift-sampleUITests.xctest.

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)

API Version 2015-06-23
159

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_PLIST_FILE_MISSING

 `-- (any other files)

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_PLIST_FILE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the Info.plist file inside the .app directory. Please unzip your test package and
then open the .app directory, verify that the Info.plist file is inside the directory, and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

If the XCTest UI package is valid, you will find the Info.plist file inside the .app directory. In our
example below, the directory is called swift-sampleUITests-Runner.app.

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_PLIST_FILE_MISSING_IN_XCTEST_DIR
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the Info.plist file inside the .xctest directory. Please unzip your test package
and then open the .xctest directory, verify that the Info.plist file is inside the directory, and try
again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

API Version 2015-06-23
160

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_CPU_ARCHITECTURE_VALUE_MISSING

$ tree .

If the XCTest UI package is valid, you will find the Info.plist file inside the .xctest directory. In our
example below, the directory is called swift-sampleUITests.xctest.

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_CPU_ARCHITECTURE_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not the CPU architecture value in the Info.plist file. Please unzip your test
package and then open the Info.plist file inside the .app directory, verify that the key
"UIRequiredDeviceCapabilities" is specified, and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like swift-sampleUITests-Runner.app
in our example:

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

3. To find the CPU architecture value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

API Version 2015-06-23
161

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_PLATFORM_VALUE_MISSING

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/swift-sampleUITests-Runner.app/Info.plist')
print info_plist['UIRequiredDeviceCapabilities']

A valid XCtest UI package should produce output like the following:

['armv7']

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_PLATFORM_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the platform value in the Info.plist. Please unzip your test
package and then open the Info.plist file inside the .app directory, verify that the key
"CFBundleSupportedPlatforms" is specified, and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like swift-sampleUITests-Runner.app
in our example:

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

3. To find the platform value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/swift-sampleUITests-Runner.app/Info.plist')
print info_plist['CFBundleSupportedPlatforms']

API Version 2015-06-23
162

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_WRONG_PLATFORM_DEVICE_VALUE

A valid XCtest UI package should produce output like the following:

['iPhoneOS']

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_WRONG_PLATFORM_DEVICE_VALUE
If you see the following message, follow these steps to fix the issue.

Warning
We found the platform device value was wrong in the Info.plist file. Please unzip your test
package and then open the Info.plist file inside the .app directory, verify that the value of the
key "CFBundleSupportedPlatforms" does not contain the keyword "simulator", and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like swift-sampleUITests-Runner.app
in our example:

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

3. To find the platform value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/swift-sampleUITests-Runner.app/Info.plist')
print info_plist['CFBundleSupportedPlatforms']

A valid XCtest UI package should produce output like the following:

['iPhoneOS']

API Version 2015-06-23
163

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_FORM_FACTOR_VALUE_MISSING

If the XCTest UI package is valid, the value should not contain the keyword simulator.

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_FORM_FACTOR_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not the form factor value in the Info.plist. Please unzip your test package and then
open the Info.plist file inside the .app directory, verify that the key "UIDeviceFamily" is specified,
and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like swift-sampleUITests-Runner.app
in our example:

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

3. To find the form factor value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/swift-sampleUITests-Runner.app/Info.plist')
print info_plist['UIDeviceFamily']

A valid XCtest UI package should produce output like the following:

[1, 2]

For more information, see XCTest UI (p. 77).

API Version 2015-06-23
164

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSING

XCTEST_UI_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the package name value in the Info.plist file. Please unzip your test
package and then open the Info.plist file inside the .app directory, verify that the key
"CFBundleIdentifier" is specified, and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like swift-sampleUITests-Runner.app
in our example:

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

3. To find the package name value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/swift-sampleUITests-Runner.app/Info.plist')
print info_plist['CFBundleIdentifier']

A valid XCtest UI package should produce output like the following:

com.apple.test.swift-sampleUITests-Runner

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_EXECUTABLE_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

API Version 2015-06-23
165

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSING

Warning
We could not find the executable value in the Info.plist file. Please unzip your test package and
then open the Info.plist file inside the .app directory, verify that the key "CFBundleExecutable" is
specified, and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like swift-sampleUITests-Runner.app
in our example:

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

3. To find the executable value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/swift-sampleUITests-Runner.app/Info.plist')
print info_plist['CFBundleExecutable']

A valid XCtest UI package should produce output like the following:

XCTRunner

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the package name value in the Info.plist file inside the .xctest directory. Please
unzip your test package and then open the Info.plist file inside the .xctest directory, verify that
the key "CFBundleIdentifier" is specified, and try again.

In the following example, the package's name is swift-sample-UI.ipa.

API Version 2015-06-23
166

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_TEST_EXECUTABLE_VALUE_MISSING

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like swift-sampleUITests-Runner.app
in our example:

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

3. To find the package name value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/swift-sampleUITests-Runner.app/Plugins/swift-
sampleUITests.xctest/Info.plist')
print info_plist['CFBundleIdentifier']

A valid XCtest UI package should produce output like the following:

com.amazon.swift-sampleUITests

For more information, see XCTest UI (p. 77).

XCTEST_UI_TEST_PACKAGE_TEST_EXECUTABLE_VALUE_MISSING
If you see the following message, follow these steps to fix the issue.

Warning
We could not find the executable value in the Info.plist file inside the .xctest directory. Please
unzip your test package and then open the Info.plist file inside the .xctest directory, verify that
the key "CFBundleExecutable" is specified, and try again.

In the following example, the package's name is swift-sample-UI.ipa.

1. Copy your test package to your working directory, and then run the following command:

$ unzip swift-sample-UI.ipa

API Version 2015-06-23
167

AWS Device Farm Developer Guide
XCTEST_UI_TEST_PACKAGE_TEST_EXECUTABLE_VALUE_MISSING

2. After you successfully unzip the package, you can find the working directory tree structure by
running the following command:

$ tree .

You should find the Info.plist file inside an .app directory like swift-sampleUITests-Runner.app
in our example:

.
`-- Payload (directory)
 `-- swift-sampleUITests-Runner.app (directory)
 |-- Info.plist
 |-- Plugins (directory)
 | `swift-sampleUITests.xctest (directory)
 | |-- Info.plist
 | `-- (any other files)
 `-- (any other files)

3. To find the executable value, you can open Info.plist using Xcode or Python.

For Python, you can install the biplist module by running the following command:

$ pip install biplist

4. Next, open Python and run the following command:

import biplist
info_plist = biplist.readPlist('Payload/swift-sampleUITests-Runner.app/Plugins/swift-
sampleUITests.xctest/Info.plist')
print info_plist['CFBundleExecutable']

A valid XCtest UI package should produce output like the following:

swift-sampleUITests

For more information, see XCTest UI (p. 77).

API Version 2015-06-23
168

AWS Device Farm Developer Guide
Create and Attach a Policy to an IAM User

User Access Permissions for AWS
Device Farm

You can use IAM to enable IAM users in your AWS account to perform only certain actions in Device Farm.
You may want to do this, for example, if you have a set of IAM users that you want to allow to list, but
not create, resources in Device Farm; you may have another set of IAM users you want to allow to list and
create new resources; and so on.

For example, in the Setting Up (p. 4) instructions, you attached an access policy to an IAM user in your
AWS account that contains a policy statement similar to this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "devicefarm:*"
],
 "Resource": [
 "*"
]
 }
]
}

The preceding statement allows the IAM user in your AWS account to perform actions in Device Farm
to which your AWS account has access. In practice, you may not want to give the IAM users in your AWS
account this much access.

The following information shows how you can attach a policy to an IAM user to restrict the actions the
IAM user can perform in Device Farm.

Create and Attach a Policy to an IAM User
To create and attach an access policy to an IAM user that restricts the actions the IAM user can perform
in Device Farm, do the following:

API Version 2015-06-23
169

AWS Device Farm Developer Guide
Action Syntax for Performing Actions in Device Farm

1. Sign in to the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies, and then choose Create Policy. (If a Get Started button appears, choose it, and
then choose Create Policy.)

3. Next to Create Your Own Policy, choose Select.

4. For Policy Name, type any value that will be easy for you to refer to later, if needed.

5. For Policy Document, type a policy statement with the following format, and then choose Create
Policy:

{
 "Version": "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "action-statement"
],
 "Resource" : [
 "resource-statement"
]
 },
 {
 "Effect" : "Allow",
 "Action" : [
 "action-statement"
],
 "Resource" : [
 "resource-statement"
]
 }
]
}

In the preceding statement, substitute action-statement as needed, and add additional statements
as needed, to specify the actions in Device Farm the IAM user can perform. (By default, the IAM user
will not have the desired permissions unless a corresponding Allow statement is explicitly stated.)
The following section describes the format of allowed actions for Device Farm.

Note
Currently, the only allowed value for resource-statement in the preceding example is the
asterisk character (*). This means that while you can restrict the actions an IAM user can
perform in Device Farm, you cannot also restrict the Device Farm resources the IAM user can
access.

6. Choose Users.

7. Choose the IAM user to whom you want to attach the policy.

8. In the Permissions area, for Managed Policies, choose Attach Policy.

9. Select the policy you just created, and then choose Attach Policy.

Action Syntax for Performing Actions in Device
Farm

The following information describes the format for specifying actions an IAM user can perform in Device
Farm.

Actions follow this general format:

API Version 2015-06-23
170

https://console.aws.amazon.com/iam/

AWS Device Farm Developer Guide
Action Syntax for Performing Actions in Device Farm

devicefarm:action

Where action is an available Device Farm action:

• An asterisk character (*), which represents all of the available Device Farm actions.
• One of the available Device Farm actions, as described in the AWS Device Farm API Reference.
• A combination of an available Device Farm action prefix and an asterisk character (*). For example,

specifying List* enables the IAM user to perform all available Device Farm actions that begin with
List.

Some example action statements include:

• devicefarm:* for all Device Farm actions.
• devicefarm:Get* for only the Device Farm actions that begin with Get.
• devicefarm:ListProjects for just the ListProjects Device Farm action.

For example, the following policy statement gives the IAM user permission to get information about all
Device Farm resources that are available to the user's AWS account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "devicefarm:Get*",
 "devicefarm:List*",
],
 "Resource": [
 "*"
]
 }
]
}

API Version 2015-06-23
171

http://docs.aws.amazon.com/devicefarm/latest/APIReference/Welcome.html

AWS Device Farm Developer Guide

Limits in AWS Device Farm

The following list describes current Device Farm limits.

• The maximum app file size you can upload is 4 GB.
• There is no limit to the number of devices you can include in a test run. However, the maximum

number of devices that Device Farm will simultaneously test during a run is 5. (This number can be
increased on request.)

• There is no limit to the number of runs you can schedule.
• There is a sixty-minute limit to length of a remote access session.
• There is a 60 minute limit on automated testing. (This number can be increased to 150 minutes on

request.)

API Version 2015-06-23
172

AWS Device Farm Developer Guide
Jenkins CI Plugin

Tools and Plugins for AWS Device
Farm

This section contains links and information about working with AWS Device Farm tools and plugins. You
can find Device Farm plugins on AWS Labs on GitHub.

If you are an Android developer, we also have an AWS Device Farm sample app for Android on GitHub.
You can use the app and example tests as a reference for your own Device Farm test scripts.

Topics

• AWS Device Farm Integration with Jenkins CI Plugin (p. 173)

• AWS Device Farm Gradle Plugin (p. 178)

AWS Device Farm Integration with Jenkins CI
Plugin

This plugin provides AWS Device Farm functionality from your own Jenkins continuous integration (CI)
server. For more information, see Jenkins (software).

Note
To download the Jenkins plugin, go to GitHub and follow the instructions in Step 1: Install the
Plugin (p. 176).

This section contains a series of procedures to set up and use the Jenkins CI plugin with AWS Device
Farm.

Topics

• Step 1: Installing the Plugin (p. 176)

• Step 2: Creating an AWS Identity and Access Management User for your Jenkins CI Plugin (p. 177)

API Version 2015-06-23
173

https://github.com/awslabs
https://github.com/awslabs/aws-device-farm-sample-app-for-android
https://en.wikipedia.org/wiki/Jenkins_%28software%29
https://github.com/awslabs/aws-device-farm-jenkins-plugin

AWS Device Farm Developer Guide
Jenkins CI Plugin

• Step 3: First-time configuration instructions (p. 178)

• Step 4: Using the Plugin in a Jenkins Job (p. 178)

• Dependencies (p. 178)

The following images show the features of the Jenkins CI plugin.

API Version 2015-06-23
174

AWS Device Farm Developer Guide
Jenkins CI Plugin

The plugin can also pull down all the test artifacts (logs, screenshots, etc.) locally:

API Version 2015-06-23
175

AWS Device Farm Developer Guide
Step 1: Install the Plugin

Step 1: Installing the Plugin
There are two options for installing the Jenkins continuous integration (CI) plugin for AWS Device Farm.
You can search for the plugin from within the Available Plugins dialog in the Jenkins Web UI, or you can
download the hpi file and install it from within Jenkins.

Install from within the Jenkins UI
1. Find the plugin within the Jenkins UI by choosing Manage Jenkins, Manage Plugins, and then

choose Available.

2. Search for aws-device-farm.

3. Install the AWS Device Farm plugin.

4. Ensure that the plugin is owned by the Jenkins user.

5. Restart Jenkins.

Download the Plugin
1. Download the hpi file directly from http://updates.jenkins-ci.org/latest/aws-device-farm.hpi.

2. Ensure that the plugin is owned by the Jenkins user.

3. Install the plugin using one of the following options:

• Upload the plugin by choosing Manage Jenkins, Manage Plugins, Advanced, and then choose
Upload plugin.

• Place the hpi file in the Jenkins plugin directory (usually /var/lib/jenkins/plugins).

4. Restart Jenkins.

API Version 2015-06-23
176

http://updates.jenkins-ci.org/latest/aws-device-farm.hpi

AWS Device Farm Developer Guide
Step 2: Create an IAM User

Step 2: Creating an AWS Identity and Access
Management User for your Jenkins CI Plugin
We recommend that you do not use your AWS root account to access Device Farm. Instead, create a new
AWS Identity and Access Management (IAM) user (or use an existing IAM user) in your AWS account, and
then access Device Farm with that IAM user.

To create a new IAM user, see Creating an IAM User (AWS Management Console). Be sure to generate an
access key for each user and download or save the user security credentials. You will need the credentials
later.

Give the IAM User Permission to Access Device Farm
To give the IAM user permission to access Device Farm, create a new access policy in IAM, and then assign
the access policy to the IAM user as follows.

Note
The AWS root account or IAM user that you use to complete the following steps must
have permission to create the following IAM policy and attach it to the IAM user. For more
information, see Working with Policies

To create the access policy in IAM

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies.

3. Choose Create Policy. (If a Get Started button appears, choose it, and then choose Create Policy.)

4. Next to Create Your Own Policy, choose Select.

5. For Policy Name, type a name for the policy (for example, AWSDeviceFarmAccessPolicy).

6. For Description, type a description that helps you associate this IAM user with your Jenkins project.

7. For Policy Document, type the following statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DeviceFarmAll",
 "Effect": "Allow",
 "Action": ["devicefarm:*"],
 "Resource": ["*"]
 }
]
}

8. Choose Create Policy.

To assign the access policy to the IAM user

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Users.

3. Choose the IAM user to whom you will assign the access policy.

4. In the Permissions area, for Managed Policies, choose Attach Policy.

5. Select the policy you just created (for example, AWSDeviceFarmAccessPolicy).

6. Choose Attach Policy.

API Version 2015-06-23
177

http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_manage.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Device Farm Developer Guide
Step 3: First-time configuration instructions

Step 3: First-time configuration instructions
The first time you run your Jenkins server, you will need to configure the system as follows.

Note
If you are using device slots (p. 17), the device slots feature is disabled by default.

1. Log into your Jenkins Web user interface.
2. On the left-hand side of the screen, choose Manage Jenkins.
3. Choose Configure System.
4. Scroll down to the AWS Device Farm header.
5. Copy your security credentials from Step 2: Create an IAM User (p. 177) and paste your Access Key

ID and Secret Access Key into their respective boxes.
6. Choose Save.

Step 4: Using the Plugin in a Jenkins Job
Once you have installed the Jenkins plugin, follow these instructions to use the plugin in a Jenkins job.

1. Log into your Jenkins web UI.
2. Click the job you want to edit.
3. On the left-hand side of the screen, choose Configure.
4. Scroll down to the Post-build Actions header.
5. Click Add post-build action and select Run Tests on AWS Device Farm.
6. Select the project you would like to use.
7. Select the device pool you would like to use.
8. Select whether you'd like to have the test artifacts (such as the logs and screenshots) archived

locally.
9. In Application, fill in the path to your compiled application.
10. Select the test you would like run and fill in all the required fields.
11. Choose Save.

Dependencies
The Jenkins CI Plugin requires the AWS Mobile SDK 1.10.5 or later. For more information and to install
the SDK, see AWS Mobile SDK.

AWS Device Farm Gradle Plugin
This plugin provides AWS Device Farm integration with the Gradle build system in Android Studio. For
more information, see Gradle.

Note
To download the Gradle plugin, go to GitHub and follow the instructions in Building the Device
Farm Gradle Plugin (p. 179).

The Device Farm Gradle Plugin provides Device Farm functionality from your Android Studio
environment. You can kick off tests on real Android phones and tablets hosted by Device Farm.

This section contains a series of procedures to set up and use the Device Farm Gradle Plugin.

API Version 2015-06-23
178

https://aws.amazon.com/mobile/sdk/
https://gradle.org
https://github.com/awslabs/aws-device-farm-gradle-plugin

AWS Device Farm Developer Guide
Building the Device Farm Gradle Plugin

Topics
• Step 1: Building the AWS Device Farm Gradle Plugin (p. 179)
• Step 2: Setting up the AWS Device Farm Gradle Plugin (p. 179)
• Step 3: Generating an IAM User (p. 180)
• Step 4: Configuring Test Types (p. 181)
• Dependencies (p. 183)

Step 1: Building the AWS Device Farm Gradle Plugin
This plugin provides AWS Device Farm integration with the Gradle build system in Android Studio. For
more information, see Gradle.

Note
Building the plugin is optional. The plugin is published through Maven Central. If you wish to
allow Gradle to download the plugin directly, skip this step and jump to Setting up the Device
Farm Gradle Plugin (p. 179).

To build the plugin

1. Go to GitHub and clone the repository.
2. Build the plugin using gradle install.

The plugin is installed to your local maven repository.

Next step: Setting up the Device Farm Gradle Plugin (p. 179)

Step 2: Setting up the AWS Device Farm Gradle
Plugin
If you haven't done so already, clone the repository and install the plugin using the procedure here:
Building the Device Farm Gradle Plugin (p. 179).

To configure the AWS Device Farm Gradle Plugin

1. Add the plugin artifact to your dependency list in build.gradle.

 buildscript {

 repositories {
 mavenLocal()
 mavenCentral()
 }

 dependencies {
 classpath 'com.android.tools.build:gradle:1.3.0'
 classpath 'com.amazonaws:aws-devicefarm-gradle-plugin:1.0'
 }
 }

2. Configure the plugin in your build.gradle file. The following test specific configuration should
serve as your guide:

 apply plugin: 'devicefarm'

API Version 2015-06-23
179

https://gradle.org
https://github.com/awslabs/aws-device-farm-gradle-plugin

AWS Device Farm Developer Guide
Generating an IAM user

 devicefarm {

 projectName "My Project" // required: Must already exists.

 devicePool "My Device Pool Name" // optional: Defaults to "Top Devices"

 useUnmeteredDevices() // optional if you wish to use your un-metered devices

 authentication {
 accessKey "aws-iam-user-accesskey"
 secretKey "aws-iam-user-secretkey"

 // or

 roleArn "My role arn" // Optional, if role arn is specified, it will be
 used.
 // Otherwise use access and secret keys
 }

 // optional block, radios default to 'on' state, all parameters optional
 devicestate {

 extraDataZipFile file("relative/path/to/zip") // default null
 auxiliaryApps [file("path1"), file("path2")] // default empty list
 wifi on
 bluetooth off
 gps off
 nfc on
 latitude 47.6204 // default
 longitude -122.3491 // default
 }

 // Configure test type, if none default to instrumentation
 // Fuzz
 // fuzz { }

 // Instrumentation
 // See AWS Developer docs for filter (optional)
 // instrumentation { filter "my-filter" }

 // Calabash
 calabash {

 tests file("path-to-features.zip")

 }

 }

3. Run your Device Farm test using the following task: gradle devicefarmUpload.

The build output will print out a link to the Device Farm console where you can monitor your test
execution.

Next step: Generating an IAM user (p. 180)

Step 3: Generating an IAM User
AWS Identity and Access Management (IAM) helps you manage permissions and policies for working with
AWS resources. This topic walks you through generating an IAM user with permissions to access AWS
Device Farm resources.

API Version 2015-06-23
180

AWS Device Farm Developer Guide
Configuring Test Types

If you haven't done so already, complete steps 1 and 2 before generating an IAM user.

We recommend that you do not use your AWS root account to access Device Farm. Instead, create a new
IAM user (or use an existing IAM user) in your AWS account, and then access Device Farm with that IAM
user.

Note
The AWS root account or IAM user that you use to complete the following steps must
have permission to create the following IAM policy and attach it to the IAM user. For more
information, see Working with Policies.

To create a new user with the proper access policy in IAM

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. Choose Users.
3. Choose Create New Users.
4. Enter the user name of your choice.

For example, GradleUser.
5. Choose Create.
6. Choose Download Credentials and save them in a location where you can easily retrieve them later.
7. Choose Close.
8. Choose the user name in the list.
9. Under Permissions, expand the Inline Policies header by clicking the down arrow on the right.
10. Choose Click here where it says, There are no inline policies to show. To create one, click here.
11. On the Set Permissions screen, choose Custom Policy.
12. Choose Select.
13. Give your policy a name, such as AWSDeviceFarmGradlePolicy.
14. Paste the following policy into Policy Document.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DeviceFarmAll",
 "Effect": "Allow",
 "Action": ["devicefarm:*"],
 "Resource": ["*"]
 }
]
 }

15. Choose Apply Policy.

Next step: Configuring Test Types (p. 181).

For more information, see Creating an IAM User (AWS Management Console) or Setting Up (p. 4).

Step 4: Configuring Test Types
By default, the AWS Device Farm Gradle plugin runs the Instrumentation (p. 59) test. If you want to
run your own tests or specify additional parameters, you can choose to configure a test type. This topic
provides information about each available test type and what you need to do to configure it for use from
within Android Studio. For more information about the available test types in Device Farm, see Working
with Test Types in AWS Device Farm (p. 45).

API Version 2015-06-23
181

http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_manage.html
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console

AWS Device Farm Developer Guide
Configuring Test Types

If you haven't done so already, complete steps 1 – 3 before configuring test types.

Note
If you are using device slots (p. 17), the device slots feature is disabled by default.

Appium
Device Farm provides support for Appium Java JUnit and TestNG for Android.

• Appium Java JUnit (p. 46)

• Appium Java TestNG (p. 50)

You can choose useTestNG() or useJUnit(). JUnit is the default and does not need to be explicitly
specified.

 appium {
 tests file("path to zip file") // required
 useTestNG() // or useJUnit()
 }

Built-in: Explorer
Device Farm provides a built-in app explorer to test user flows through your app without writing custom
test scripts. You can specify a user name and password to test scenarios that require a login. Here is how
you configure user name and password:

 appexplorer {
 username "my-username"
 password "my-password"
 }

For more information:

• Built-in: Explorer (Android) (p. 86)

Built-in: Fuzz
Device Farm provides a built-in fuzz test type, which randomly sends user interface events to devices and
then reports the results.

 fuzz {

 eventThrottle 50 // optional default
 eventCount 6000 // optional default
 randomizerSeed 1234 // optional default blank

 }

For more information, see Built-in: Fuzz (Android and iOS) (p. 87).

Calabash
Device Farm provides support for Calabash for Android. To learn how to prepare your Android Calabash
tests, see Calabash (p. 57)

API Version 2015-06-23
182

AWS Device Farm Developer Guide
Dependencies

 calabash {
 tests file("path to zip file") // required
 tags "my tags" // optional calabash tags
 profile "my profile" // optional calabash profile
 }

Instrumentation
Device Farm provides support for instrumentation (JUnit, Espresso, Robotium, or any Instrumentation-
based tests) for Android. For more information, see Instrumentation (p. 59).

When running an instrumentation test in Gradle, Device Farm uses the .apk file generated from your
androidTest directory as the source of your tests.

 instrumentation {

 filter "test filter per developer docs" // optional

 }

UI Automator
Upload your app, as well as your UI Automator-based tests, packaged in a .jar file.

 uiautomator {
 tests file("path to uiautomator jar file") // required
 filter "test filter per developer docs" // optional

 }

For more information, see UI Automator (p. 60).

Dependencies
Runtime

• The Device Farm Gradle Plugin requires the AWS Mobile SDK 1.10.15 or later. For more information
and to install the SDK, see AWS Mobile SDK.

• Android tools builder test api 0.5.2
• Apache Commons Lang3 3.3.4

For Unit Tests

• Testng 6.8.8
• Jmockit 1.19
• Android gradle tools 1.3.0

API Version 2015-06-23
183

https://aws.amazon.com/mobile/sdk/

AWS Device Farm Developer Guide

Document History

The following table describes the important changes to the documentation since the last release of this
guide.

• API version: 2015-06-23
• Latest documentation update: March 21, 2017

Change Description Date
Changed

Support for Appium
1.6.3

You can now set the Appium version for your Appium custom
tests.

March 21,
2017

Set the execution
timeout for test runs

You can set the execution timeout for a test run or for all tests
in a project. Learn more about Set the Execution Timeout for
Test Runs in AWS Device Farm (p. 28).

February 9,
2017

Network Shaping You can now simulate network connections and conditions for
a test run. Learn more about Simulate Network Connections
and Conditions (p. 30).

December 8,
2016

New Troubleshooting
Section

You can now troubleshoot test package uploads using a set
of procedures designed to resolve error messages you might
encounter in the Device Farm console. Learn more about
Troubleshooting (p. 99).

August 10,
2016

Remote Access
Sessions

You can now remotely access and interact with a single device
in the console. Learn more about Working with Remote
Access (p. 89).

April 19,
2016

Device Slots Self-
Service

You can now purchase device slots using the AWS
Management Console, the AWS Command Line Interface,
or the API. Learn more about how to Purchase Device
Slots (p. 17).

March 22,
2016

How to stop test runs You can now stop test runs using the AWS Management
Console, the AWS Command Line Interface, or the API. Learn
more about how to Stop a Run in AWS Device Farm (p. 33).

March 22,
2016

API Version 2015-06-23
184

AWS Device Farm Developer Guide

Change Description Date
Changed

New XCTest UI test
types

You can now run XCTest UI custom tests on iOS applications.
Learn more about the XCTest UI (p. 77) test type.

March 8,
2016

New Appium Python
test types

You can now run Appium Python custom tests on Android
and iOS applications, as well as Web applications. Learn more
about Test Types in AWS Device Farm (p. 11).

January 19,
2016

Web Application test
types

You can now run Appium Java JUnit and TestNG custom tests
on Web applications. Learn more about Working with Custom
Web App Tests in AWS Device Farm (p. 78).

November 19,
2015

AWS Device Farm
Gradle Plugin

Learn more about how to install and use the Device Farm
Gradle Plugin (p. 178).

September
28, 2015

New Android Built-in
Test: Explorer

Learn more about Built-in: Explorer (Android) (p. 86). The
explorer test crawls your app by analyzing each screen as if it
were an end user and takes screenshots as it explores.

September
16, 2015

iOS support added Learn more about testing iOS devices and running iOS tests
(including XCTest) in Working with Test Types in AWS Device
Farm (p. 45).

August 4,
2015

Initial public release This is the initial public release of the AWS Device Farm
Developer Guide.

July 13, 2015

API Version 2015-06-23
185

AWS Device Farm Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

API Version 2015-06-23
186

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	AWS Device Farm
	Table of Contents
	What Is AWS Device Farm?
	Automated App Testing
	Supported Test Types and Built-in Tests

	Remote Access Interaction
	Terminology
	Setting Up

	Setting Up AWS Device Farm
	Step 1: Sign Up for AWS
	Step 2: Create or Use an IAM User in Your AWS Account
	Step 3: Give the IAM User Permission to Access Device Farm
	Next Step

	Getting Started with AWS Device Farm
	Prerequisites
	Step 1: Sign in to the Console
	Step 2: Create a Project
	Step 3: Create and Start a Run
	Step 4: View the Run's Results
	Next Steps

	AWS Device Farm Concepts
	Device Support in AWS Device Farm
	Supported Devices
	Device Pools
	Device Branding
	Device Slots
	Pre-Installed Device Apps
	Device Capabilities

	Test Types in AWS Device Farm
	Android Test Types
	iOS Test Types
	Web Application Test Types

	Runs in AWS Device Farm
	Run Configuration
	Run Files Retention
	Run Device State
	Parallel Runs
	Setting the execution timeout in test runs
	Instrumenting Apps
	Re-Signing Apps in Runs
	Obfuscated Apps in Runs
	Ads in Runs
	Media in Runs
	Common Tasks for Runs

	Reports in AWS Device Farm
	Report Retention
	Report Components
	Performance Samples in Reports
	Logs in Reports
	Common Tasks for Reports

	Sessions in AWS Device Farm
	Supported Devices for Remote Access
	Session Files Retention
	Instrumenting Apps
	Re-Signing Apps in Sessions
	Obfuscated Apps in Sessions

	Purchase a Device Slot in AWS Device Farm
	Purchase Device Slots with the Device Farm Console
	Purchase a Device Slot with the AWS CLI
	Purchase a Device Slot with the Device Farm API

	Working with Projects in AWS Device Farm
	Create a Project in AWS Device Farm
	Prerequisites
	Create a Project with the Device Farm Console
	Create a Project with the AWS CLI
	Create a Project with the Device Farm API

	View the Projects List in AWS Device Farm
	Prerequisites
	View the Projects List with the Device Farm Console
	View the Projects List with the AWS CLI
	View the Projects List with the Device Farm API

	Working with Test Runs in AWS Device Farm
	Create a Run in AWS Device Farm
	Prerequisites
	Create a Test Run with the Device Farm Console
	Create a Run with the AWS CLI
	Create a Run with the Device Farm API
	Next Steps

	Set the Execution Timeout for Test Runs in AWS Device Farm
	Prerequisites
	Set the Execution Timeout for a Project
	Set the Execution Timeout for a Test Run

	Simulate Network Connections and Conditions for your AWS Device Farm Runs
	Set up Network Shaping When Scheduling a Test Run
	Create your own Network Profile
	Change Network Conditions During your Test

	Stop a Run in AWS Device Farm
	Prerequisites
	Stop a Run with the Device Farm Console
	Stop a Run with the AWS CLI
	Stop a Run with the Device Farm API

	View a Runs List in AWS Device Farm
	Prerequisites
	View a Runs List with the Device Farm Console
	View a Runs List with the AWS CLI
	View a Runs List with the Device Farm API

	Create a Device Pool in AWS Device Farm
	Prerequisites
	Create a Device Pool with the Device Farm Console
	Create a Device Pool with the AWS CLI
	Create a Device Pool with the Device Farm API

	Analyze a Report in AWS Device Farm
	Prerequisites
	Console Icons
	Open a Report with the Device Farm Console
	Analyze a Report's Summary Page with the Device Farm Console
	Analyze a Report's Unique Problems with the Device Farm Console
	Analyze a Report by Device with the Device Farm Console
	Analyze a Report by Suite with the Device Farm Console
	Analyze a Report by Test with the Device Farm Console
	Analyze Performance Data for a Problem, Device, Suite, or Test in a Report with the Device Farm Console
	Analyze Log Information for a Problem, Device, Suite, or Test in a Report with the Device Farm Console

	Working with Test Types in AWS Device Farm
	Built-in Test Types
	Custom Test Types
	Custom Android Test Types
	Custom iOS Test Types
	Custom Web Application Test Types

	Working with Android Tests in AWS Device Farm
	Built-in Test Types for Android
	Custom Test Types for Android
	Working with Appium Java JUnit for Android and AWS Device Farm
	What Is Appium Java JUnit?
	Version Information
	Prepare Your Android Appium Java JUnit Tests
	Build the Appium Java Test Package

	Upload Your Android Appium Java JUnit Tests
	Taking Screenshots in Android Appium Java JUnit Tests
	Additional Considerations for Android Appium Java JUnit Tests

	Working with Appium Java TestNG for Android and AWS Device Farm
	What Is Appium Java TestNG?
	Version Information
	Prepare Your Android Appium Java TestNG Tests
	Build the Appium Java Test Package

	Upload Your Android Appium Java TestNG Tests
	Taking Screenshots in Android Appium Java TestNG Tests
	Additional Considerations for Android Appium Java TestNG Tests

	Working with Appium Python for Android Applications and AWS Device Farm
	What Is Appium Python?
	Version Information
	Prepare Your Android Application Appium Python Tests
	Build the Appium Python Test Package
	Upload Your Android Application Appium Python Tests
	Taking Screenshots in Android Appium Python Tests
	Additional Considerations for Android Appium Python Tests

	Working with Calabash for Android and AWS Device Farm
	What Is Calabash?
	Version Information
	Prepare Your Android Calabash Tests
	Upload Your Android Calabash Tests
	Taking Screenshots in Android Calabash Tests
	Additional Considerations for Android Calabash Tests

	Working with Instrumentation for Android and AWS Device Farm
	What Is Instrumentation?
	Upload Your Android Instrumentation Tests
	Taking Screenshots in Android Instrumentation Tests
	Additional Considerations for Android Instrumentation Tests

	Working with UI Automator for Android and AWS Device Farm
	What Is UI Automator?
	Prepare Your Android UI Automator Tests
	Upload Your Android UI Automator Tests
	Taking Screenshots in Android UI Automator Tests
	Additional Considerations for Android UI Automator Tests

	Working with iOS Tests in AWS Device Farm
	Built-in Test Types for iOS
	Custom Test Types
	Working with Appium Java JUnit for iOS and AWS Device Farm
	What is Appium Java JUnit?
	Version Information
	Prepare Your iOS Appium Java JUnit Tests
	Build the Appium Java Test Package

	Upload Your iOS Appium Java JUnit Tests
	Taking Screenshots in iOS Appium Java JUnit Tests
	Additional Considerations for iOS Appium Java JUnit Tests

	Working with Appium Java TestNG for iOS and AWS Device Farm
	What is Appium Java TestNG?
	Version Information
	Prepare Your iOS Appium Java TestNG Tests
	Build the Appium Java Test Package

	Upload Your iOS Appium Java TestNG Tests
	Taking Screenshots in iOS Appium Java TestNG Tests
	Additional Considerations for iOS Appium Java TestNG Tests

	Working with Appium Python for iOS Applications and AWS Device Farm
	What Is Appium Python?
	Version Information
	Prepare Your iOS Application Appium Python Tests
	Build the Appium Python Test Package
	Upload Your iOS Application Appium Python Tests
	Taking Screenshots in iOS Appium Python Tests
	Additional Considerations for Android Appium Python Tests

	Working with Calabash for iOS and AWS Device Farm
	What is Calabash?
	Version Information
	Prepare Your iOS Calabash Tests
	Upload Your iOS Calabash Tests
	Taking Screenshots in iOS Calabash Tests
	Additional Considerations for iOS Calabash Tests

	Working with UI Automation for iOS and AWS Device Farm
	What is UI Automation?
	Upload Your iOS UI Automation Tests
	Taking Screenshots in iOS UI Automation Tests
	Additional Considerations for iOS UI Automation Tests

	Working with XCTest for iOS and AWS Device Farm
	What is XCTest (and KIF)?
	Prepare Your iOS XCTest Tests
	Upload Your iOS XCTest Tests
	Taking Screenshots in iOS XCTest Tests
	Additional Considerations for iOS XCTest Tests

	Working with XCTest UI Testing Framework for iOS and AWS Device Farm
	What is XCTest UI Testing Framework?
	Prepare Your iOS XCTest UI Tests
	Upload Your iOS XCTest UI Tests
	Taking Screenshots in iOS XCTest UI Tests
	Additional Considerations for iOS XCTest UI Tests

	Working with Custom Web App Tests in AWS Device Farm
	Rules for Metered and Unmetered Devices
	Working with Appium Java JUnit for Web Applications and AWS Device Farm
	What Is Appium Java JUnit?
	Version Information
	Prepare Your Web Application Appium Java JUnit Tests
	Upload Your Web Application Appium Java JUnit Tests
	Taking Screenshots in Web Application Appium Java Junit Tests
	Additional Considerations for Web Application Appium Java JUnit Tests

	Working with Appium Java TestNG for Web Applications and AWS Device Farm
	What Is Appium Java TestNG?
	Version Information
	Prepare Your Web Application Appium Java TestNG Tests
	Upload Your Web Application Appium Java TestNG Tests
	Taking Screenshots in Web Application Appium TestNG Tests
	Additional Considerations for Web Application Appium TestNG Tests

	Working with Appium Python for Web Applications and AWS Device Farm
	What Is Appium Python?
	Version Information
	Prepare Your Web Application Appium Python Tests
	Build the Appium Python Test Package
	Upload Your Web Application Appium Python Tests
	Taking Screenshots in Web Application Appium Python Tests
	Additional Considerations for Web Application Appium Python Tests

	Working with Built-in Tests in AWS Device Farm
	Built-in Test Types
	Working with the Built-in Explorer Test for Device Farm
	What Is the Built-in Explorer Test?
	Use the Built-in Explorer Test Type

	Working with the Built-in Fuzz Test for Device Farm
	What Is the Built-in Fuzz Test?
	Use the Built-in Fuzz Test Type

	Working with Remote Access in AWS Device Farm
	Create a Remote Access Session in AWS Device Farm
	Prerequisites
	Create a Session with the Device Farm Console
	Next Steps

	Use a Remote Access Session in AWS Device Farm
	Prerequisites
	Use a Session in the Device Farm Console
	Installing an Application
	Controlling the Device
	Switching between Portrait and Landscape Mode

	Next Steps
	Tips and Tricks

	Get Results of a Remote Access Session in AWS Device Farm
	Prerequisites
	Viewing Session Details
	Downloading Session Video or Logs

	Logging AWS Device Farm API Calls by Using AWS CloudTrail
	Device Farm Information in CloudTrail
	Understanding Device Farm Log File Entries

	AWS CLI Reference for AWS Device Farm
	Windows PowerShell Reference for AWS Device Farm
	API Reference for AWS Device Farm
	Troubleshooting Device Farm Errors
	Troubleshooting Android Application Tests in AWS Device Farm
	ANDROID_APP_UNZIP_FAILED
	ANDROID_APP_AAPT_DEBUG_BADGING_FAILED
	ANDROID_APP_PACKAGE_NAME_VALUE_MISSING
	ANDROID_APP_SDK_VERSION_VALUE_MISSING
	ANDROID_APP_AAPT_DUMP_XMLTREE_ FAILED
	ANDROID_APP_DEVICE_ADMIN_PERMISSIONS

	Troubleshooting Appium Java JUnit Tests in AWS Device Farm
	APPIUM_JAVA_JUNIT_TEST_PACKAGE_PACKAGE_UNZIP_FAILED
	APPIUM_JAVA_JUNIT_TEST_PACKAGE_DEPENDENCY_DIR_MISSING
	APPIUM_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR
	APPIUM_JAVA_JUNIT_TEST_PACKAGE_TESTS_JAR_FILE_MISSING
	APPIUM_JAVA_JUNIT_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR
	APPIUM_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWN
	APPIUM_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSION

	Troubleshooting Appium Java JUnit Web Application Tests in AWS Device Farm
	APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_UNZIP_FAILED
	APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_DEPENDENCY_DIR_MISSING
	APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR
	APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_TESTS_JAR_FILE_MISSING
	APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR
	APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWN
	APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSION

	Troubleshooting Appium Java TestNG Tests in AWS Device Farm
	APPIUM_JAVA_TESTNG_TEST_PACKAGE_UNZIP_FAILED
	APPIUM_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSING
	APPIUM_JAVA_TESTNG_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR
	APPIUM_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSING
	APPIUM_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR

	Troubleshooting Appium Java TestNG Web Applications in AWS Device Farm
	APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_UNZIP_FAILED
	APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSING
	APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR
	APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSING
	APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR

	Troubleshooting Appium Python Tests in AWS Device Farm
	APPIUM_PYTHON_TEST_PACKAGE_UNZIP_FAILED
	APPIUM_PYTHON_TEST_PACKAGE_DEPENDENCY_WHEEL_MISSING
	APPIUM_PYTHON_TEST_PACKAGE_INVALID_PLATFORM
	APPIUM_PYTHON_TEST_PACKAGE_TEST_DIR_MISSING
	APPIUM_PYTHON_TEST_PACKAGE_INVALID_TEST_FILE_NAME
	APPIUM_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSING
	APPIUM_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSION
	APPIUM_PYTHON_TEST_PACKAGE_INSTALL_DEPENDENCY_WHEELS_FAILED
	APPIUM_PYTHON_TEST_PACKAGE_PYTEST_COLLECT_FAILED

	Troubleshooting Appium Python Web Application Tests in AWS Device Farm
	APPIUM_WEB_PYTHON_TEST_PACKAGE_UNZIP_FAILED
	APPIUM_WEB_PYTHON_TEST_PACKAGE_DEPENDENCY_WHEEL_MISSING
	APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PLATFORM
	APPIUM_WEB_PYTHON_TEST_PACKAGE_TEST_DIR_MISSING
	APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_TEST_FILE_NAME
	APPIUM_WEB_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSING
	APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSION
	APPIUM_WEB_PYTHON_TEST_PACKAGE_INSTALL_DEPENDENCY_WHEELS_FAILED
	APPIUM_WEB_PYTHON_TEST_PACKAGE_PYTEST_COLLECT_FAILED

	Troubleshooting Calabash Tests in AWS Device Farm
	CALABASH_TEST_PACKAGE_UNZIP_FAILED_UNZIP_FAILED
	CALABASH_TEST_PACKAGE_FEATURES_DIR_MISSING_FEATURES_DIR_MISSING
	CALABASH_TEST_PACKAGE_FEATURE_FILE_MISSING
	CALABASH_TEST_PACKAGE_STEP_DEFINITIONS_DIR_MISSING
	CALABASH_TEST_PACKAGE_SUPPORT_DIR_MISSING
	CALABASH_TEST_PACKAGE_RUBY_FILE_MISSING_IN_STEP_DEFINITIONS_DIR
	CALABASH_TEST_PACKAGE_RUBY_FILE_MISSING_IN_SUPPORT_DIR
	CALABASH_TEST_PACKAGE_EMBEDDED_SERVER_MISSING
	CALABASH_TEST_PACKAGE_DRY_RUN_FAILED

	Troubleshooting Instrumentation Tests in AWS Device Farm
	INSTRUMENTATION_TEST_PACKAGE_UNZIP_FAILED
	INSTRUMENTATION_TEST_PACKAGE_AAPT_DEBUG_BADGING_FAILED
	INSTRUMENTATION_TEST_PACKAGE_INSTRUMENTATION_RUNNER_VALUE_MISSING
	INSTRUMENTATION_TEST_PACKAGE_AAPT_DUMP_XMLTREE_FAILED
	INSTRUMENTATION_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSING

	Troubleshooting iOS Application Tests in AWS Device Farm
	IOS_APP_UNZIP_FAILED
	IOS_APP_PAYLOAD_DIR_MISSING
	IOS_APP_APP_DIR_MISSING
	IOS_APP_PLIST_FILE_MISSING
	IOS_APP_CPU_ARCHITECTURE_VALUE_MISSING
	IOS_APP_PLATFORM_VALUE_MISSING
	IOS_APP_WRONG_PLATFORM_DEVICE_VALUE
	IOS_APP_FORM_FACTOR_VALUE_MISSING
	IOS_APP_PACKAGE_NAME_VALUE_MISSING
	IOS_APP_EXECUTABLE_VALUE_MISSING

	Troubleshooting UI Automator Tests in AWS Device Farm
	UIAUTOMATOR_TEST_PACKAGE_UNZIP_FAILED

	Troubleshooting XCTest Tests in AWS Device Farm
	XCTEST_TEST_PACKAGE_UNZIP_FAILED
	XCTEST_TEST_PACKAGE_XCTEST_DIR_MISSING
	XCTEST_TEST_PACKAGE_PLIST_FILE_MISSING
	XCTEST_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSING
	XCTEST_TEST_PACKAGE_EXECUTABLE_VALUE_MISSING

	Troubleshooting XCTest UI Tests in AWS Device Farm
	XCTEST_UI_TEST_PACKAGE_UNZIP_FAILED
	XCTEST_UI_TEST_PACKAGE_PAYLOAD_DIR_MISSING
	XCTEST_UI_TEST_PACKAGE_APP_DIR_MISSING
	XCTEST_UI_TEST_PACKAGE_PLUGINS_DIR_MISSING
	XCTEST_UI_TEST_PACKAGE_XCTEST_DIR_MISSING_IN_PLUGINS_DIR
	XCTEST_UI_TEST_PACKAGE_PLIST_FILE_MISSING
	XCTEST_UI_TEST_PACKAGE_PLIST_FILE_MISSING_IN_XCTEST_DIR
	XCTEST_UI_TEST_PACKAGE_CPU_ARCHITECTURE_VALUE_MISSING
	XCTEST_UI_TEST_PACKAGE_PLATFORM_VALUE_MISSING
	XCTEST_UI_TEST_PACKAGE_WRONG_PLATFORM_DEVICE_VALUE
	XCTEST_UI_TEST_PACKAGE_FORM_FACTOR_VALUE_MISSING
	XCTEST_UI_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSING
	XCTEST_UI_TEST_PACKAGE_EXECUTABLE_VALUE_MISSING
	XCTEST_UI_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSING
	XCTEST_UI_TEST_PACKAGE_TEST_EXECUTABLE_VALUE_MISSING

	User Access Permissions for AWS Device Farm
	Create and Attach a Policy to an IAM User
	Action Syntax for Performing Actions in Device Farm

	Limits in AWS Device Farm
	Tools and Plugins for AWS Device Farm
	AWS Device Farm Integration with Jenkins CI Plugin
	Step 1: Installing the Plugin
	Install from within the Jenkins UI
	Download the Plugin

	Step 2: Creating an AWS Identity and Access Management User for your Jenkins CI Plugin
	Give the IAM User Permission to Access Device Farm

	Step 3: First-time configuration instructions
	Step 4: Using the Plugin in a Jenkins Job
	Dependencies

	AWS Device Farm Gradle Plugin
	Step 1: Building the AWS Device Farm Gradle Plugin
	Step 2: Setting up the AWS Device Farm Gradle Plugin
	Step 3: Generating an IAM User
	Step 4: Configuring Test Types
	Appium
	Built-in: Explorer
	Built-in: Fuzz
	Calabash
	Instrumentation
	UI Automator

	Dependencies

	Document History
	AWS Glossary

