
Lumberyard
Developer Guide

Version 1.8

Lumberyard Developer Guide

Lumberyard: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Lumberyard Developer Guide

Table of Contents
Lumberyard for Programmers ... 1
AI ... 3

AI System Concepts ... 3
AI System Overview ... 4
Pathfinding Costs ... 7
Sensory Models .. 10
Flight ... 15
AI C++ Class Hierarchy ... 16
AI System Concept Examples ... 16

AI Bubbles System ... 18
Message Display Types ... 18
Specifying Notification Display Types ... 19

AI Tactical Point System .. 20
Tactical Point System Overview .. 21
TPS Query Execution Flow .. 22
TPS Querying with C++ ... 22
TPS Querying with Lua .. 24
TPS Query Language Reference ... 25
Point Generation and Evaluation ... 28
Integration with the Modular Behavior Tree System .. 30
Future Plans and Possibilities ... 30

Navigation Q & A ... 31
Big Triangles and Small Links Between Them ... 31
Path Following .. 32
Auto-Disabling .. 32

Path Following .. 32
Goalop "Followpath" .. 32
COPTrace::ExecuteTrace and COPTrace::Execute .. 33
COPTrace::Execute2D ... 33

Movement System .. 33
Using the Movement System .. 34
Potential Improvements .. 34

Auto-Disable ... 35
Global auto-disable ... 35
Per-AI auto-disable ... 35

AI Scripting .. 35
Communication System ... 36
Factions ... 42
Modular Behavior Tree .. 43
Refpoints ... 85
Signals .. 86

Animation .. 97
Animation Overview .. 97

Linear Animations ... 97
Interactive Animations .. 98
Scripted Animations .. 99

Animation Events .. 100
Marking Up Animations with Events ... 100
Receiving Animation Events in the Game Code ... 100

Limb IK Technical ... 100
Setting Up .. 100
Using LimbIK from Code .. 100

Animation Streaming .. 101
Animation Data ... 101

Version 1.8
iii

Lumberyard Developer Guide

Animation Header Data .. 101
Animation Controller Data ... 101

Animation Debugging ... 103
Layered Transition Queue Debugging .. 103
CommandBuffer Debugging .. 107
Warning Level .. 108

Fall and Play .. 108
Time in the Animation System .. 109

Segmentation ... 110
Playback Speed .. 111
Segmented Parametric Animation .. 111
Animation with Only One Key ... 111
Direction of Time .. 112
Time within Controllers ... 112

Asset Builder API .. 113
Builder Modules .. 113
Creating a Builder Module .. 113

Main Entry Point ... 114
Lifecycle Component ... 114
Creating a Builder ... 116

Message Loggging .. 119
AZ Code Generator ... 120

Workflow Summary ... 121
Waf ... 121
Clang .. 121
Intermediate JSON Data .. 121
AZ Code Generator and Python .. 122
Template Drivers and Template Rendering ... 123
Generated Files .. 123
AZ Code Generator Integration with Waf .. 124

Basic Integration ... 125
Advanced Integration ... 125
Input Files .. 126
Template Drivers ... 126
Command Line Parameters .. 126
Waf Specific Options ... 127

AZ Code Generator Parameters .. 127
Waf Parameters .. 127
Clang Compilation Parameters .. 127
Intermediate Data .. 128
Front End ... 128
AZ Code Generator Parameter List .. 128

Code Generation Templates ... 130
Simple Example .. 131
Complex Example ... 131
Template Data .. 132

Template Drivers ... 133
Specifying Drivers in Waf ... 133
Creating a Template Driver in Python ... 133
Minimal Template Driver ... 135
Rendering Templates ... 135
Configuring Automatic Build Injection ... 136
Preprocessing Intermediate Data ... 136

Custom Code Generator Annotations ... 137
Reference Annotations ... 137
Helper Macros .. 137
Example Annotations ... 138

Version 1.8
iv

Lumberyard Developer Guide

Waf Debugging with AZ Code Generator .. 141
Prerequisites .. 141
Identifying and Configuring Debug Output ... 142
Setting Up PyCharm for Debugging Waf ... 142

Template Driver Debugging .. 143
Debugging the AZ Code Generator Utility ... 144

Prerequisites .. 144
Debugging the AZ Code Generator Utility from the Waf build ... 145
Setting Visual Studio Debug Arguments .. 145
Setting Xcode Debug Arguments .. 145

Intermediate JSON Data Format .. 146
AZ Modules (Preview) .. 148

Comparing AZ Modules to Legacy Modules ... 148
A Self-Aware Method of Initialization ... 149

Relationship with the AZ Framework ... 150
Smarter Singletons ... 150
Current Lumberyard AZ Modules .. 150

LmbrCentral .. 150
LmbrCentralEditor .. 150

Parts of an AZ Module, Explained ... 150
The Module Class ... 151
The EBus ... 152
The System Component Class .. 153
Calling the Module from External Code .. 155

System Components .. 155
Smart Initialization Order .. 155
Easily Configurable Components ... 156
Writing System Components ... 156
Required System Components .. 157

Gems and AZ Modules .. 157
Structure of a Gem ... 157
Waf Integration ... 158
Gems Built as AZ Modules ... 158

Creating an AZ Module That Is Not a Gem ... 158
A. Start with a Gem .. 158
B. Modify the AZ Module Declaration ... 159
C. Remove CryEngine References (Optional) ... 159
D. Modify the Wscript and Waf Spec Files .. 160
E. Configure Your Project to Load the New Module ... 160
F. Add the Module's Public Interfaces to Your Project's Include Paths 161

Configuring System Entities .. 161
Application Descriptor Files ... 162

The AZ Bootstrapping Process .. 163
Cloud Canvas ... 165

Features .. 165
Example Uses .. 165
Tools ... 166
Knowledge Prerequisites .. 166
Cloud Canvas Overview ... 167

Prerequisites ... 167
AWS, Cloud Canvas, and Lumberyard .. 167
Amazon Web Services Supported by Cloud Canvas ... 168
Understanding Cloud Canvas Resource Manager ... 169
Cloud Gems Overview ... 172
Pricing ... 173
Tutorial: Getting Started with Cloud Canvas .. 173
Don't Die Sample Project ... 182

Version 1.8
v

Lumberyard Developer Guide

Cloud Canvas Game Play Design and Engineering Guide ... 187
Cloud Canvas Tools in Lumberyard Editor .. 187
Managing Cloud Canvas Profiles ... 188
Using Resource Manager in Game Design .. 188
Cloud Gems ... 189
Cloud Canvas Flow Graph Node Reference .. 200

Cloud Canvas Software Engineering Guide ... 219
Resource Manager in Depth ... 219
Cloud Gems Framework ... 254

Administering Cloud Canvas ... 285
Setting Up a Project to Use Resource Manager ... 285
Working with Deployments ... 287
Understanding the Resource Manager Security System .. 292

Using the Cloud Canvas Command Line .. 298
Syntax ... 298
Configuration .. 298
Common Arguments .. 299
Command Summary .. 299
Commands ... 300

Component Entity System .. 315
Programmer's Guide to Entities and Components ... 315

Creating a Component ... 316
Registering Your Component .. 318
Reflecting a Component for Serialization and Editing .. 318
Defining and Using Component Services .. 323
Editor Components .. 324
Creating System Components ... 327
Components and EBuses ... 328
Tick Bus and Components ... 332
Exposing Custom Components to Track View for Animation ... 333
Components and EBuses: Best Practices ... 336

Behavior Context ... 338
Reflection API ... 338
Example .. 341

Slices and Dynamic Slices ... 343
Anatomy of a Slice .. 343
Working with Dynamic Slices .. 343
Instantiating Dynamic Slices ... 344

Controller Devices and Game Input ... 345
Action Maps ... 345

Initializing the Action Map Manager .. 345
Receiving Actions During Runtime ... 345

CryInput ... 346
IInput ... 346
IInputEventListener .. 346
SInputEvent .. 346
IInputDevice ... 346

Setting Up Controls and Action Maps ... 347
Action Maps ... 348
Action Filters .. 349
Controller Layouts ... 349
Working with Action Maps During Runtime .. 350
Default Controller Mapping ... 350
Key Naming Conventions ... 351

CryCommon ... 354
CryExtension .. 354

Composites .. 355

Version 1.8
vi

Lumberyard Developer Guide

Shared and raw interface pointers ... 355
GUIDs ... 355
ICryUnknown .. 356
ICryFactory ... 357
ICryFactoryRegistry ... 357
Additional Extensions ... 358
Glue Code Macros .. 360
CryExtension Samples ... 365
Using Extensions .. 366
Implementing Extensions Using the Framework ... 368

CryString .. 377
How to Use Strings as Key Values for STL Containers ... 377
Further Usage Tips ... 377

ICrySizer .. 378
How to use the ICrySizer interface .. 378

Serialization Library ... 378
Tutorial .. 378
Use Cases ... 381

Demo and Video Capture ... 389
Capturing Video and Audio ... 389

Preparation ... 389
Video Settings .. 389
Starting and Ending the Video Recording .. 391
Audio Settings .. 391
Configuration Files .. 392

Recording Time Demos .. 393
Overview .. 393
Recording Controls .. 393
Related Console Variables ... 393

Entity System ... 395
Entity Property Prefixes .. 395
Creating a New Entity Class ... 396
Entity Pool System .. 398

Editor Usage .. 398
Static versus Dynamic Entities .. 399
Entity Pool Definitions .. 399
Entity Pool Creation ... 401
Creating and Destroying Static Entities with Pools .. 401
Creating and Destroying Dynamic Entities with Pools .. 404
Serialization .. 404
Listener/Event Registration ... 405
Debugging Utilities .. 406

Entity ID Explained .. 407
Adding Usable Support on an Entity .. 407

Overview .. 407
Preparing the Script ... 408
Implementing IsUsable ... 408
Implementing OnUsed .. 408

Entity Scripting .. 408
Structure of a Script Entity .. 408
Using Entity State ... 412
Using Entity Slots .. 413
Linking Entities ... 414
Exposing an Entity to the Network ... 415

Event Bus (EBus) ... 418
Bus Configurations .. 418

Single Handler ... 418

Version 1.8
vii

Lumberyard Developer Guide

Many Handlers ... 419
EBus with Addresses and a Single Handler ... 420
EBus with Addresses and Many Handlers ... 422

Synchronous vs. Asynchronous ... 423
Additional Features .. 423
Usage and Examples ... 424

Declaring an EBus .. 424
EBus Configuration Options ... 425
Implementing a Handler ... 426
Sending Messages to an EBus ... 426
Retrieving Return Values .. 427
Return Values from Multiple Handlers ... 427
Asynchronous/Queued Buses .. 428

File Access .. 429
CryPak File Archives ... 429

Features .. 429
Unicode and Absolute Path Handling ... 429
Layering ... 429
Slashes ... 430
Special Folder Handling ... 430
Internals ... 430
Creating a pak file using 7-Zip .. 430
Dealing with Large Pak Files .. 430
Accessing Files with CryPak ... 431

Tracking File Access ... 437
CVars .. 437
Where invalid access is defined .. 437

Graphics and Rendering .. 439
Render Nodes .. 439

Creating a New Render Node ... 440
TrueType Font Rendering ... 443

Supported Features ... 443
Useful Console Commands .. 444

Generating Stars DAT File ... 444
File Format .. 444

Anti-Aliasing and Supersampling ... 445
Controlling Anti-Aliasing .. 445
Controlling Supersampling .. 447

Lua Scripting .. 448
Working with Lua Scripting ... 448

Running Scripts .. 448
Reloading Scripts During Runtime ... 449
Recommended Reading ... 449
Lua Editor .. 449
Using the Lua Remote Debugger .. 453
Using the Lua XML Loader ... 454

Component Entity Lua Scripting Reference ... 457
Writing Lua Scripts for the Component Entity System ... 457
Loading Canvases in Lua ... 465
Lua API Reference .. 466

Legacy Lua Scripting Reference .. 529
Entity System Script Callbacks .. 530
Game Rules Script Callbacks .. 531
Common Lua Globals and Functions .. 533
EntityUtils Lua Functions .. 537
Lua Vector and Math Functions ... 540
Physics Lua Functions ... 550

Version 1.8
viii

Lumberyard Developer Guide

Lua ScriptBind Reference ... 551
Integrating Lua and C++ .. 752

Networking System .. 754
Tutorial: Getting Started with Multiplayer .. 754

Prerequisites .. 754
Step 1: Creating a Level and Adding a Sphere and a Box ... 755
Step 2: Binding Sphere Transform Components to the Network .. 756
Step 3: Connecting a Client to the Server ... 756
Related Tasks and Tutorials ... 756
Configuring the Multiplayer Sample for Amazon GameLift .. 757

Overview .. 758
NetBinding ... 759
GridMate .. 759
Other GridMate Features .. 760
CryNetwork Backward Compatibility (Deprecated) .. 760
Networking Architecture .. 761
Carrier ... 761
Marshalling ... 765
Sessions .. 769
Replicas ... 777
Replica Manager ... 787

Using Lumberyard Networking ... 789
Synchronizing Game State Using Components .. 790
Synchronizing Game State Using Scripts .. 795
Using Encyrption ... 795
Controlling Bandwidth Usage .. 799
Setting up a Lobby .. 801
Using Amazon GameLift ... 801
Useful Console Commands .. 802

CryNetwork Backward Compatibility ... 803
RMI Functions .. 803
Network Serialization and Aspects ... 806

Physics .. 807
Physics Scripting Guide ... 807

Threading ... 807
Physics Scripting Tips and Tricks .. 808
Scripting with Physics Example ... 809

Geometries ... 809
Geometry Management Functions ... 810

Physical Entities .. 811
Creating and managing entities ... 811

Functions for Entity Structures .. 813
Common Functions ... 814
Living Entity-Specific Functions ... 816
Particle Entity-Specific Functions ... 817
Articulated Entity-Specific Functions ... 818
Rope Entity-Specific Functions .. 819
Soft Entity-Specific Functions .. 820

Collision Classes ... 821
Setup .. 821
Code ... 821
Types .. 822
Filtering the collision .. 822
Interface .. 823

Functions for World Entities .. 823
Advancing the Physical World Time State .. 823
Returning Entities with Overlapping Bounding Boxes .. 823

Version 1.8
ix

Lumberyard Developer Guide

Casting Rays in an Environment ... 825
Creating Explosions ... 825

Profiler ... 827
Profiler Tutorial ... 827

Registering Your Application ... 828
Launching Profiler ... 828
Capturing Data ... 828
Inspecting Data ... 829
Playing Back Data ... 829
Exporting Data .. 830

Creating and Using Annotations .. 830
Using Annotations .. 831
Creating Annotations .. 831
Viewing Annotations in Trace Messages Profiler ... 832

Using Profiler for Networking .. 832
Prerequisites ... 832
Carrier Profiler .. 832
Replica Activity Profiler .. 833

Using the Profiler for CPU Usage .. 835
Understanding the Tree View .. 835
Controlling the Display ... 836

Using Profiler for VRAM ... 837
Notes .. 838
Understanding the Captured Data .. 838
Inspecting the Data ... 838

Using GridHub .. 839
Registering an Application in GridHub .. 839
Viewing and Configuring GridHub ... 840
Troubleshooting GridHub .. 840

System .. 842
Memory Handling .. 842

Hardware Memory Limitations ... 842
Choosing a Platform to Target .. 842
Budgets ... 843
Allocation Strategy with Multiple Modules and Threads ... 843
Caching Computational Data ... 843
Compression .. 843
Disk Size ... 843
Total Size .. 843
Address Space ... 844
Bandwidth .. 844
Latency .. 844
Alignment ... 844
Virtual Memory ... 844
Streaming .. 845

Streaming System ... 845
Low-level Streaming System ... 845
Streaming and Levelcache Pak Files .. 850
Single Thread IO Access and Invalid File Access ... 852
High Level Streaming Engine Usage .. 852

Text Localization and Unicode Support ... 853
Terminology .. 853
What encoding to use? .. 854
How does this affect me when writing code? ... 856
How does this affect me when dealing with text assets? .. 857
Utilities provided in CryCommon .. 857
Further reading ... 857

Version 1.8
x

Lumberyard Developer Guide

CryLog ... 858
CryLog Logging Functionality .. 858
Verbosity Level and Coloring .. 858
Log Files .. 859
Console Variables ... 859

CryConsole .. 859
Color coding ... 859
Dumping all console commands and variables ... 860
Console Variables ... 860
Adding New Console Commands .. 860
Console Variable Groups ... 861
Deferred execution of command line console commands ... 862
CVar Tutorial .. 863

Lumberyard Blog, Forums, and Feedback ... 866

Version 1.8
xi

Lumberyard Developer Guide

Lumberyard for Programmers

The Lumberyard Developer Guide is intended for programmers or anyone working directly with the
Lumberyard code.

This guide includes the following sections:

• AI (p. 3)

Describes a variety of AI features that process navigation and individual and group behaviors, and
describes convenient tools such as a Visual AI debugger, behavior tree visual editor, and a visual flow
graph editor.

• Animation (p. 97)

Contains tools to create both linear (video) and interactive animation. Interactive animation conveys AI
and avatar (player) behavior, with sequences dependent on player choices in gameplay.

• Asset Builder API (p. 113)

Use the asset builder API to develop a custom asset builder that can process any number of asset types,
generate outputs, and return the results to the asset processor for further processing. A custom builder
can be especially useful in a large project that has custom asset types.

• AZ Code Generator (p. 120)

AZ Code Generator is a command line utility that generates source code (or any data or text) from
specially tagged source code. You can use it when the structure of the intended code is known in
advance.

• AZ Modules (Preview) (p. 148)

AZ modules are new, Amazon-created code libraries that plug into Lumberyard games and tools. These
AZ modules implement specific initialization functions. When a Lumberyard application starts, it loads
each AZ module and calls the corresponding

• Cloud Canvas (p. 165)

Cloud Canvas is Lumberyard's technology for connecting your game to Amazon Web Services. With
Cloud Canvas, you can use AWS to implement cloud-hosted features and create asynchronous
multiplayer games. Using AWS means you no longer have to acquire, configure, or operate host servers
to implement connected gameplay.

• Component Entity System (p. 315)

The component entity system is a new Amazon-created way of creating components that is superior to
(and that will eventually replace) the legacy Entity System (p. 395).

Version 1.8
1

Lumberyard Developer Guide

• Controller Devices and Game Input (p. 345)

Describes Lumberyard's support for input devices such as keyboards, mice, and joysticks, and shows
how to set up controls and action maps.

• CryCommon (p. 354)

Describes game engine interfaces, including CryExtension, which you can use to refactor Lumberyard
features into extensions for ease of use; CryString, which is a custom reference-counted string class; and
a serialization library, which separates user serialization code from actual storage format and makes it
easy to change formats.

• Demo and Video Capture (p. 389)

Describes how to use Lumberyard Editor or the Lumberyard standalone Launcher to record
benchmarking videos and capture audio.

• Entity System (p. 395)

Describes the creation and management of entities, which are objects placed inside a level that players
can interact with. This section contains topics such as creating a new entity class, entity pools, and entity
scripting.

• Event Bus (EBus) (p. 418)

Event buses are Lumberyard's general purpose system for dispatching messages. EBuses minimize hard
dependencies between systems, are event-driven (which eliminates polling), handle concurrency well,
and enable predictability by providing support for the ordering of handlers on a given bus.

• File Access (p. 429)

Describes how to compress game content files and how to track invalid file reads that can potentially stall
the performance of a game.

• Graphics and Rendering (p. 439)

Lumberyard's shading core uses the same physical parameters that are used in high end film rendering
pipelines. This section covers render nodes, true type font rendering, and the star data used in sky
rendering. It also describes how to control anti-aliasing so that you can produce graphics from very sharp
images to softer blurred images.

• Lua Scripting (p. 448)

Lua is Lumberyard's scripting language. This section contains a Lua scripting reference and provides
topics on Lua script usage, Lua and C++ integration, the Lua remote debugger, and the Lua XML Loader.

• Networking System (p. 754)

Describes GridMate, Lumberyard's networking subsystem, and contains topics on multiplayer setup, the
session service, controlling bandwidth usage, and synchronizing game state using the GridMate replica
framework.

• Physics (p. 807)

Describes the Lumberyard physics system and how to interact with the physics engine. This section
shows you how to create a physical world object, fill the world with geometries and physical entities, and
control the entities with the functions described.

• Profiler (p. 827)

Profiler is a Lumberyard tool that can capture, save, and analyze network, CPU, and VRAM usage
statistics. You can used the saved data to analyze network usage frame by frame, fix problems in the use
of network bandwidth, and optimize the performance of your game.

• System (p. 842)

Contains topics on memory handling, streaming, localization, logging, and console tools.

Version 1.8
2

Lumberyard Developer Guide
AI System Concepts

AI

This section describes the AI system. It includes a general overview of key concepts, describes system
components, and provides an AI scripting manual.

This section includes the following topics:

• AI System Concepts (p. 3)

• AI Bubbles System (p. 18)

• AI Tactical Point System (p. 20)

• Navigation Q & A (p. 31)

• Path Following (p. 32)

• Movement System (p. 33)

• Auto-Disable (p. 35)

• AI Scripting (p. 35)

AI System Concepts
Key features of the AI system include the following:

Navigation

• Navigation with little or no assistance from the designers

• Multi-layer navigation (flying, swimming, zero-gravity) or simple 2D navigation

• Smart objects for special navigation and interactions

Individual AI

• Easy-to-use static and dynamic covers (such as behind movable vehicles)

• Dynamic tactical points (such as cover points, ambush points, patrol waypoints)

Version 1.8
3

Lumberyard Developer Guide
AI System Overview

• Behavior trees, to select behaviors based on values of Boolean variables

• Customizable perception (such as vision, sound, memory, sixth sense)

Group and Global AI

• Group behavior trees, to define group tactics

• Formations, to move AI characters in some orderly fashion

• Factions (such as friends, neutrals, enemies)

• Visual flow graphs of game logic, with macro-nodes for reused sub-flow graphs

MMO-ready

• Support for streaming big maps

User-friendly

• Visual AI debugger to log signals, behavior changes, goal changes, user comments

• Behavior tree visual editor

• Visual flow graph editor and debugger (with visual flow propagation and break points)

This section includes the following topics:

• AI System Overview (p. 4)

• Pathfinding Costs (p. 7)

• Sensory Models (p. 10)

• Flight (p. 15)

• AI C++ Class Hierarchy (p. 16)

• AI System Concept Examples (p. 16)

AI System Overview
This section outlines basic concepts related to the AI system.

Navigation

• Default navigation system

• Triangulation

• 2D terrain-based navigation

• Uses cylindrical objects (such as trees) and forbidden areas

• Navigation modifiers

• Human waypoints – Need to be place manually but connections can be generated automatically

• Flight – Information about navigable volumes for flying entities

• Volume – General volume navigation, such as for oceans

• Multi-layer navigation system

• Smart object system: allows AI agents to move in special ways

• AI territories & waves

• Control number of active AI agents (through flow graph logic)

Version 1.8
4

Lumberyard Developer Guide
AI System Overview

• Activate, deactivate, and spawn all AI agents assigned to a territory using a single FG node

• AI waves can be attached to AI territories and allow independent AI activations

• AI waves automatically handle entity pool issues for assigned AI agents, such as loading/unloading

In general, a search is time-sliced to use 0.5 ms per AI frame (configured using the console variable
ai_PathfinderUpdateTime). Options for pathfinding techniques include high priority, straight, and partial.
Updates for human waypoints are heavy but time-sliced. The navigation graph is optimized but needs
memory. Navigation data is generated offline in Editor. With multi-layer navigation, the navigation mesh is
regenerated when the designer modifies the map.

Decision Making

• Behavior selection system – Uses behavior trees to select AI behaviors

• Cover system – Provides AI agents with static and dynamic covers

• Smart object system – Allows AI agents to interact with their environment

• Interest system – Allows AI agents to perform intelligent actions when not alerted

Tactical

• Tactical point system (TPS) – Allows AI agents to ask intelligent questions about their environment (such
as where to hide or where to attack)

• Faction system – Determines levels of hostility between AI agents

• Group coordination system – Uses coordination selection trees to select group behaviors

• Formation system – Allows AI agents to move in formations

• Cluster detector – detects clusters of points in space and subdivides them into separate groupings that
satisfy specific properties (using a modified K-mean algorithm); used with AISquadManager to group
different AI agents into dynamic squads

World-Interfacing

• Signals – To trigger events and/or change behaviors

• Perception system

• Perception handler (legacy, usually per game)

• Target track system – Uses configurable ADSR envelopes to represent incoming stimuli

• Communication system – Allows AI agents to play sound/voice/animation events

Development Environment

The design and development environment includes the following components:

• Game object model – Entity, movement controller, extensions

• Actor & vehicle system – Health, camera, IK, weapons, animation, etc.

• Flow graph – Visual definition of game logic

• AI debug renderer – HUD, geometric primitives, text labels, graphs, etc.

• Editor

• AI entities – Properties, flow graphs, scripts

Version 1.8
5

Lumberyard Developer Guide
AI System Overview

• Entity archetypes – Templates for properties of individual AI agents

• AI shapes – AI territories, AI paths, forbidden areas

• Navigation – Navigation modifiers used instead of triangulation

• Cover surfaces – CoverSurface anchors to indicate where cover should be

• Visual AI debugger – Recording AI signals, active behaviors, goals, stimuli, etc.

• Scripting with Lua

• Entity definitions (including entity flow graph nodes)

• AI behavior definitions

• Group behavior definitions

• Library or shared Lua code (game rules, basic entities)

• Blackboards to share information globally or among groups

• Examples of AI functionality available in Lua:

• AI.Signal

• AI.FindObjectOfType

• AI.GetAttentionTargetType (Visual, Memory, Sound, None)

• AI.GetAttentionTargetAIType (Actor, Grenade, Car, etc.)

• AI.GetRefPointPosition

• AI.DistanceToGenericShape

• AI.SetBehaviorVariable (to change behavior)

• AI.CanMelee

• AI.RecComment (make comment for Visual AI Debugger

• Scripting with XML

• Behavior/coordination trees

• AI communications

• Items (e.g., weapons)

• Entity system

• Spatial queries – GetPhysicalEntitiesInBox()

• AI agents and vehicles are entities in the Entity system

• To spawn an entity, its Entity class is required – Can be defined either using the .ent file in Game
\Entities OR through a C++ call to RegisterFactory() in game code

• An entity pool can be used to limit the number of active AI agents per each specified Entity class.

• AI Debugger and AI Debug Draw

• Use AI Debugger to track multiple features, including active behavior, signal received, attention target,
comments, etc.

• ai_DebugDraw

• 1 – Basic info on AI agents (selected by ai_DrawAgentStats)

• 74 – All of the navigation graph (can be slow)

• 79 – Parts of the navigation graph around the player

• ai_statsTarget <AI name> – Detailed info for the specified AI

• ai_DebugTargetTracksAgent <AI name> – Perception information on the specified AI

• ai_Recorder_Auto – Record AI activity in Editor game mode for AI Debugger

• ai_DebugTacticalPoints – Debug TPS queries

• ai_DrawPath <AI name> – Draw the path of the specified AI (optionally specify "all" for all AI agents)

• ai_DrawPathFollower – Draw the actual path being followed

• ai_DrawSmartObjects – Display smart objects and their classes and attributes

• ai_DebugDrawEnabledActors – List currently enabled AI agents.

Version 1.8
6

Lumberyard Developer Guide
Pathfinding Costs

Execution Context

• AI update is called every frame, but are fully updated only at ~10Hz

• Some AI subsystems use independent time-slicing (pathfinding, tactical point, dynamic waypoints
updating, smart object, interest, and dead bodies removal)

• Some services can be called synchronously from game code (such as tactical point system (TPS)
queries)

Pathfinding Costs
For agents to behave in a believable way, they need to find paths that are appropriate for their current
state. Sometimes these paths will take the most direct route; other times they will be longer paths to
maximize use of roads, cover, or other properties of the environment. The current system needs to be
extended to support this. The pathfinding system uses A* to find minimal-cost paths.

The cost of a path is given by the sum of the costs of the links that make up that path. Currently the cost
traversing a link in the navigation graph is normally simply the physical (3D) length of that link. However,
the A* implementation makes it easy for the requester to modify these distance-based costs with simple
code changes to extend the current system . For example, the cost of traveling between two road nodes
can be scaled by a factor of 0.1 so that road-traveling agents have a strong preference for finding road-
based paths.

The cost of a path link connecting two graph nodes should be determined by two sets of properties:

• Link properties, including the path's length.

• Pathfinding agent properties in relation to link properties. For example, a stealthy agent might evaluate a
link passing through trees as a lower cost-per-unit-length than one passing along a road. However, the
same agent might reach a different conclusion when leading a convoy containing vehicles.

In general, the cost of a link is determined by the product of these two factors: the link-length multiplied by a
relative cost-per-unit-length. The latter is what needs to be determined.

Problem: Calculating Costs at Run Time
We want to use the same navigation graph for different kinds of agents. This means that link cost should be
calculated at run time by combining the inherent link properties with the agent properties.

Link properties

Associate these properties with each link:

Link.Length

Length of the link (in meters).

Link.Resistance

The link's resistance to traversal. A road would be close to 0, off-road would be larger, water deep
enough to require swimming might be close to 1.

Link.Exposure

How exposed the link is. Trees and dense vegetation would be close to 0, low vegetation would be
larger, and a road/open space would be close to 1.

Link.DeepWaterFraction

Fraction of the link that contains deep water (e.g., > 1.5m).

Version 1.8
7

Lumberyard Developer Guide
Pathfinding Costs

Link.DestinationDanger

Additional "danger value" associated with the destination node. A dead body might be 1. This value
can be stored in the destination node itself to save memory.

Agent properties

Associate these properties with each agent (normally set when the agent is created):

Agent.CanTraverseTriangular

True/false indicator determining if the agent can traverse triangular nodes.

Agent.CanTraverseWaypoint

True/false indicator determining if the agent can traverse waypoint nodes.

Associate these properties with an agent if relevant for the link type:

Agent.CanSwim

True/false indicator determining if the agent can swim.

Pathfinder request properties

Associate these properties with each agent pathfinder request:

Agent.TriangularResistanceFactor

Extra link cost factor when the link is of type Triangular and its resistance is 1.

Agent.WaypointResistanceFactor

Extra link cost factor when the link is of type Waypoint and its resistance is 1.

Agent.RoadResistanceFactor

Extra link cost factor when the link is of type Road and its resistance is 1.

Associate these properties with an agent pathfinder request if relevant for the link type (note: if a path link
has different start/end node types, the result is obtained by averaging):

Agent.SwimResistanceFactor

Extra link cost factor when the link deep water fraction is 1.

Agent.ExposureFactor

Extra link cost factor when the link's exposure is 1.

Agent.DangerCost

Extra link cost when the link danger value is 1.

All link properties, except for Link.DestinationDanger, are calculated when the triangulation is generated.
Link.DestinationDanger is initially set to 0 and then calculated as the game runs. For example, whenever
a character dies, each link going into the death node will have its DestinationdangerCost incremented by
1. This will cause an agent with Agent.DangerCost = 100 to prefer paths up to 100m longer (assuming no
other path cost differences) in order to avoid this death node. These link modifications need to be serialized
to support load/save.

Version 1.8
8

Lumberyard Developer Guide
Pathfinding Costs

In addition, extra costs can be calculated at run time. For example, an extra cost associated with exposure
could be added when an agent wishes to find a path that avoids the player; this can be done by using
raycasts in the A* callback that calculates costs.

When determining pathfinding costs, there are two problems that need to be solved:

• How should the link properties be calculated?

• How should the link and agent properties be combined to give a numerical cost for traversing each graph
link?

Keep in mind that link properties represent the average nature of the environment over the length of the
link. If the region has not been triangulated reasonably finely, this may negatively impact the quality of
pathfinding results. If the impact is significant, it may be necessary to add additional triangulation points.

An additional issue to consider: should pathfinding differentiate between variable visibility conditions, such
as night vs. day or fog vs. clear weather? This would involve splitting the link exposure into terms derived
from physical cover and shadow cover. Given the number of links involved, adding too much information of
this type to each link should be considered carefully. A simpler solution might be to have stealthy agents be
less likely to request a stealthy path in these conditions, or to set the agent's ExposureFactor lower.

Solution

Calculating link properties

Because link resistance is only dependant on the actual type of nodes involved in the link, it can be stored
in a lookup table. Here's an example set of resistance values for each node type:

Node type Resistance

Triangular-no-water 0.5

Triangular-water 1.0

Waypoint 0.6

Road 0

Flight/Volume 0

Note

• Consider adding a separate resistance for Flight/Volume in underwater terrain.

• For links between nodes of different types, the resistance values can be averaged.

The Link.Exposure value, which is stored in the link, is determined by the environment properties sampled
over the length of the link. For triangular, waypoint and volume navigation regions, this can be done by
firing rays from points along the link. (This is done by using IPhysicalWorld::RayWorldIntersection and
checking for HIT_COVER | HIT_SOFT_COVER with COVER_OBJECT_TYPES.) It does not make sense
to try to get a really accurate value, because in practice the beautified path will not follow the link directly.

Combining link and agent properties

Link cost must account for intersections between link properties and agent properties. For example: if a link
is marked as containing deep water and the agent cannot swim, the link should be treated as impassable.

Version 1.8
9

Lumberyard Developer Guide
Sensory Models

A factor representing the extra costs associated with travel resistance and exposure will be calculated, and
the total link cost should be set as follows:

Cost = Link.DestinationDanger * Agent.DangerCost + (1 + Factor) * Link.Length

where

Factor = Agent.[link-type]ResistanceFactor * Link. [link-type]Resistance +
 Agent.ExposureFactor * Link.Exposure

Consider this scenario: with no exposure/destination costs, and assuming that road links have
Link.Resistance {{0}} while off-road links have Link.Resistance {{0.5}}, then in order to make road
travel ten times more attractive than off-road (such as if the agent is a car), the agent could have
Agent.TriangularResistanceFactor set to {{(10-1)/0.5}} (or 18) and Agent.RoadResistanceFactor set to 0.

If the agent is a human character that always moves at about the same speed whether or not it is on or off
a road, then it could have both Agent.TriangularResistanceFactor and Agent.RoadResistanceFactor set to
0.

Assuming the agent can traverse deep water or is not affected by water (such as a hovercraft),
Agent.SwimResistanceFactor could be set to 0. For a human agent, this factor might be set to a value as
high as 3.0, so that the agent will take significant detours to avoid swimming across a river.

Sensory Models

Overview
This topic describes the modelling and principal operation of the sensors implemented in the Lumberyard AI
system. These include the visual sensors, sound sensors, and a general-purpose signalling mechanism.

Sensory information is processed during a full update of each enemy (the actual time that a sensory event
was received is asynchronous). These sensors are the only interface the enemy has with the outside
world, and provide the data that the enemy will use to assess their situation and select potential targets. All
sensors are completely configurable, and they can be turned on/off at run-time for any individual enemy.

Vision
The visual sensory model is the heart of the AI system. It is an enemy's most important sense. The model is
designed to simulate vision as realistically as possible, while still maintaining a low execution cost, using a
combination of compromises and optimizations.

During a full update for an individual enemy, the system traverses all potential targets from the enemy’s
point of view and runs each one through a visibility determination routine. All targets that survive this
filtering procedure are placed in a visibility list that is maintained until the next full update. For a target to
persist as "visible" it must pass the visibility test in each full update. Targets that change from visible to
not visible during an update are moved to a memory targets list. If a previously visible target becomes
visible again, it is moved from the memory target list back to the visibility list. Memory targets have an
expiration time to simulate the enemy "forgetting" the target; this time interval is determined by several
factors, including the threat index of the target and the length of time it was visible. Visible targets are given
the highest priority and will become the current attention target even if there is another target with a higher
threat index. This approach simulates the natural tendency of humans to act based on what they see faster
than on what they remember (or hear).

Visibility Determination
The visibility determination routine determines whether a target is considered visible to an enemy. It is run
against each of the enemy's potential targets during a full update.

Version 1.8
10

Lumberyard Developer Guide
Sensory Models

Identifying Targets

Visibility determination can be very CPU intensive; to mitigate this cost, only potential targets are evaluated
for visibility. There is a mechanism to register any AI object as an object that should be included in the
visibility determination (including user-defined objects). This includes objects such as the grenades in
Lumberyard, flashlights, etc. There are also special objects called attributes, which will be discussed in
more detail later in this topic.

To be considered a potential target, an AI object must be:

• currently active

• of a different species than the enemy (enemies don't need to keep track of members of their own team)

In addition, the visibility determination test is performed automatically against the player, even if the player
is of the same species as the enemy. This rule ensures that the player is accurately specified as an object
type and is always taken into account when checking visibility.

The game developer can also designate certain AI object types for visibility determination. These user-
defined types are added to a list maintained by the AI system identifying object types to be included in the
visibility check. Objects can be freely added to and removed from this list, even from script. To include an
object in the list, specify an assessment multiplier to the desired object type. For example, refer to the file
aiconfig.lua, which can be found in the /scripts directory. For more about assessment multipliers, see
the topics on threat assessment.

Checking Visibility

Each potential target identified is evaluated for visibility using a series of tests. In situations where the
player is facing a single species, no visibility determination is performed between AI enemy objects, only
against the player.Key measures determining visibility include:

Sight-range test

This check is done first, as it is fast and cheap to filter out all AI objects that are outside the enemy's sight
range. This is done by comparing the distance between enemy and target against the enemy's sight range
value.

enemy sight range

Floating point value that determines how far the enemy can see (in meters); the value represents the
radius of a sphere with the enemy at the center.

Field-of-view test

Objects that are inside the enemy's sight range sphere are then checked for whether they are also inside
the enemy's field of view (FOV).

enemy field of view

Floating point value that determines the angle of the enemy's visibility cone (in degrees); the cone's tip
is at the enemy's head and extends outward in the direction the enemy is facing.

The FOV is the angle that determines how far the enemy can see to the left and to the right of his current
forward orientation (that is, the scope of his peripheral vision). For example, an FOV of 180 degrees means
that the enemy can see everything which is 90 degrees or less to the left and 90 degrees or less to the right
of the direction in which he is currently facing. An FOV of 90 degrees means that he can see 45 degrees or
less to the left and 45 degrees to the right of his current forward orientation. The FOV check is performed

Version 1.8
11

Lumberyard Developer Guide
Sensory Models

using a simple dot product between the enemy's orientation vector and the vector created as the difference
between the positions of the potential target and the enemy. The resulting scalar is then compared to the
value of the FOV. Note that by using a conical shape, FOV is not limited to 2D representations.

Physical ray test

Objects that survive the two initial checks are very likely to be seen. The next check is an actual ray trace
through the game world, which is an expensive process. Because the low layer of the AI system performs
distributed updates over all frames, it is very seldom that a large number of rays needs to be shot per
frame. Exceptions include scenes with a high number of objects belonging to different species and huge
combat scenes, such as those with more than 20 participants per species.

The visibility physical ray is used to determine whether there are any physical obstacles between the
enemy and the target. It originates from the head bone of the enemy character (or if the enemy does not
have an animated character, it originates from the entity position – which is often on the ground) and is
traced to the head bone of the target (if it has one, otherwise the entity position is used). If this visibility ray
hits anything in its path, then the target is considered not visible. If the ray reaches the target without hitting
any obstacles, then the target has passed this tests and can be added to the visibility list for this update.

Not all obstacles are the same. The physical ray test distinguishes between hard cover and soft cover
obstacles. For more information on how cover type affects enemy behavior, see the section on soft cover
later in this topic.

Perception test

This test is for player AI objects only (and other AI objects as defined by the game developer). Once the
player has passed all the visibility tests for an enemy, this final test determines whether or not the enemy
can see the player object. Each enemy calculates a perception coefficient for the player target, which
ultimately describes the likelihood that the enemy can see the target.

perception coefficient (SOM value)

Floating point value (between 0 and 10) that defines how close the enemy is to actually seeing the
target.

The perception coefficient is calculated based on a range of factors, including the distance between enemy
and target, height of the target, and whether the target is moving. The value must reach the maximum value
(currently 10) before it can receive a definite visual stimulus--that is, see the target.

For more details on how a perception value is derived, see the section on calculating perception later in this
topic.

Soft Cover Visibility and Behavior

The physical ray test also evaluates the surface type of obstacles when determining visibility. The AI
system can discriminate between two types of surfaces: soft cover and hard cover. The primary difference
in a physical sense is that game players can pass through soft cover but cannot pass through had cover.
Players can hide behind soft cover objects but the visibility determination is slightly “skewed” when a target
is behind a soft cover object rather than a hard cover object or just in the open. When determining a target's
visibility behind soft cover, the AI system takes into account whether or not the enemy already identified the
target as "living" (not a memory, sound or other type of target). If the enemy does not have a living target,
then the soft cover is considered equal to hard cover and normal visibility determination is performed. This
occurs when the enemy is idle--or when the enemy is looking for the source of a sound but has not yet
spotted it.

However, the behavior is slightly different when the enemy already has a target identified. During the
physical ray test, if only soft cover is detected between the enemy and their target, then the target will
remain visible for short length of time--between 3 and 5 seconds. If the target remains behind soft cover

Version 1.8
12

Lumberyard Developer Guide
Sensory Models

during this time, the enemy will eventually lose the target and place a memory target at the last known
position. However, if the target leaves soft cover within this time, then the timer is reset and normal visibility
rules are put into effect.

This behavior simulates the following example: when a soldier perceives that the target has run inside a
bush, they do not immediately forget about it because they can make out the target’s silhouette even inside
the bush. But following a target like that is difficult over time, and after a while the soldier will lose track of
the target. The same rules apply to covers made of penetrable cover, like wood, but the rationale is a bit
different. If a target runs behind a thin wooden wall, the soldier knows that bullets will still pierce the wall,
so for a short time the target's position is still known, and the enemy continues to shoot through it. This can
make for some really intense situations in a Lumberyard game.

In order for this process to work in a closed and rational system, all surfaces in the game need to be
properly physicalized (wood, grass, and glass should be soft cover, while rock, concrete, metal should be
hard cover). This is consistently done in Lumberyard.

Perception Calculation

Unlike visibility between AI agents, visibility of player objects to enemy AI agents in Lumberyard is not an
on/off switch. This added layer of complexity is designed to allow for variations in game playing style (such
as action versus stealth). Perception allows the player to make a certain number of mistakes and still be
able to recover from them. (This is one of the reasons why a player AI object is specifically defined even
in the lowest layer of the AI system hierarchy.) It is not used with other AI objects, where “switch” vision
is used (that is, the target is visible as soon as a ray can be shot to its position). Note that it is possible to
declare some AI objects should also trigger use of a perception coefficient.

An enemy is given a perception coefficient that describes how close the enemy is to actually seeing a
particular target. The initial value of the perception coefficient is 0 and increases or decreases based
on a defined set of rules. If a player target passes all prior visibility tests, the enemy begins applies the
perception coefficient. Once the maximum value has been reached, the player target is visible to the
enemy. This statement contains several corollaries:

• Each enemy has a perception coefficient for each player target it is processing.

• Each enemy will receive notification that the player target is visible only after the perception coefficient
reaches maximum value.

• The perception coefficient of two different enemies are unrelated, even for the same player target.

• There is no game-level perception coefficient (that is, a value that determines how any enemy perceives
a player target), although this information could be derived by statistics.

When an enemy starts receiving notification that a player target is passing the visibility determination
routine, it begins calculating the perception coefficient. This is done by evaluating the following factors, all
of which impact the rate at which the coefficient increases. Keep in mind that a player target must still pass
all other phases of the visibility determination routine before the perception coefficient is applied.

Distance

Distance between the enemy and the player target has the highest influence on perception. The closer
the player target is to the enemy, the faster the coefficient rises, while greater distances cause the
coefficient to rise slower. The increase function is a basic quadratic function. At distances very close
to the enemy, the time to reach maximum perception is almost non-existent and the target is instantly
seen. In contrast, a player target may be able to move more freely along the boundaries of the enemy's
sight range, as the perception value rises more slowly.

Height from ground

This factor takes into account the player target’s distance above the ground. The rationale for this
behavior is that a prone target is much harder to spot than one who is standing upright. The AI system

Version 1.8
13

Lumberyard Developer Guide
Sensory Models

measures the distance of the target from the ground based on the “eye height” property of an AI object.
This property is set when the AI object is initialized, and can be changed at any time during execution
of the game. If enemies and players are represented in the game by animated characters, the eye
height is calculated using the actual height of the character's head bone. This factor influences the rate
of increase in the perception coefficient as follows: if the player target has a height above ground of
less than one meter, the increase due to distance is lowered by 50%.

Target motion

The perception coefficient is affected by whether or not the player target is moving. Movement attracts
attention, while stationary targets are harder to spot. This factor influences the rate of increase in the
perception coefficient as follows: if the player target is standing still, the increase due to other factors is
lowered by additional 50%.

Artificial modifiers

Additional values can define how fast the perception coefficient increases. Some affect all enemies
in the game world, while some affect only particular targets. An example of a modifier that affects all
enemies is the console variable ai_SOM_SPEED. Its default value varies depending on a game's difficulty
level, but it provides a constant multiplier that is applied on top of all other calculations, and it applies to
all enemies. In contrast, it is possible to set a custom multiplier for a specified object type that is used
only for certain player targets; however, this setting is limited to the lowest level of the AI system and is
not available for tweaking.

The effect of perception is cumulative while the target is considered visible to the enemy. A floating
point value is calculated based on the factors described above, and each time the enemy fully updated,
this value is added to the perception coefficient (along with an updated visibility determination). So, for
example, a player target that is within the enemy's range of sight might remain unperceived by the enemy
significantly longer if they are crouching and motionless.

At the same time, a non-zero perception coefficient can fall back to zero over time if value is not increased
constantly with each full update. For example, a player target might become visible for a few seconds,
raise the coefficient up to 5, and then break visual contact. In this scenario, the coefficient will drop slowly
to zero. This scenario was implemented to reward players that tactically advance and then pause before
continuing; players can wait for the coefficient to drop to zero before continuing to sneak.

A statistical overview of the perception coefficients of all enemies for a player is used for the HUD stealth-
o-meter, showing as a small gauge to the left and right of the radar circle in the HUD. It represents the
highest perception coefficient of the player across all enemies that currently perceive him. In effect, it shows
the perception coefficient of the one enemy that is most likely to see the player. so, a full stealth-o-meter
does not mean that all enemies see the player; it means that there is at least one enemy that can. An
empty stealth-o-meter means that currently no enemy can see the player.

Attribute Objects

An attribute object is not a full AI object; instead, it is more of a special helper that can be attributed to an
existing AI object. The attribute is a special class of AI object, specifically defined at the lowest level in the
AI system. Every attribute object must have a principal object associated with it. The principal object can be
any type of an object (including puppet, vehicle, player, etc,.) but cannot be an attribute.

Attributes can impact visibility determination. When an enemy determines that it sees an attribute object,
the system will switch the attribute with the principal object before adding it into the visibility list of the
enemy. Thus, an enemy who sees an attribute will believe it is seeing the principal object attached to the
attribute.

Essentially, attributes are a systematic way of connecting certain events to a single target. For example, a
player switches on a flashlight and the beam hits a nearby wall. The light hitting the wall creates an attribute
object associated with the principal object, which is the player. In this scenario, the player is hidden, but
because an enemy sees the attribute object (the light on the wall), it will in fact "see" the player. The

Version 1.8
14

Lumberyard Developer Guide
Flight

rationale is that enemies have enough intelligence to interpolate the origin of the light ray and thus know the
player’s position.

This feature is also used with regard to rocks, grenades, rockets etc. It can be extended to add more
features to a game; for example, a target might leave footprints on the ground that evaporate over time.
The footprints spawn attribute objects, which enable any enemy who sees them to perceive the location of
the target who left them. Another application might be blood tracks.

To ensure that attribute objects are included in the visibility determination, they must have an assessment
multiplier set. Refer to aiconfig.lua in the Scripts\AI directory to see where the AI system defines the
multiplier for attribute objects.

Flight
Use these archetypes and flow nodes in conjunction with entities to control flying vehicles. See these
archetypes in the characters archetype library:

• CELL/Helicopter.Regular

• Ceph/Dropship.Regular

• Ceph/Gunship.Regular

The following flow nodes to be used with these entities are found under the Helicopter category.

FollowPath
This flow node sets the current path that the flight AI uses.

• When the AI is not in combat mode.

• If the AI is set to loop through the flow node path, the AI tries to go from its current location to the
closest point of the path and then follows it to the end. The node outputs indicating that the AI has
reached the end of the path is sent once only.

• Without looping, the AI tries to go from its current location to the beginning of the path and then follows
it to the end.

• When the AI is in combat mode.

• If the target is visible, the path is used to position the AI in the best location to attack the target. It is
also used to navigate between positions within the path.

• If the target is not visible, the path is used as a patrol path. Where possible, it simplifies setup to have
paths in combat mode be set to loop.

EnableCombatMode
This flow node enables or disables the AI's ability to position itself within the combat path in order to engage
and shoot at its current target. By default, an AI is not in combat mode until it's explicitly allowed to go into
combat mode.

• When an AI is in combat mode and has identified a target location, it will try to reposition itself within the
current path to a position from which it can engage.

• Any character of an opposing faction is a good candidate for a target.

EnableFiring
This flow node enables or disables the ability of the AI to shoot at its current target when in combat mode.
By default, an AI is allowed to fire when in combat mode until it's explicitly disabled using this node.

Version 1.8
15

Lumberyard Developer Guide
AI C++ Class Hierarchy

AI C++ Class Hierarchy
C++ classes for AI objects are structured as follows.

CAIObject

Defines basic AI object properties (entity ID, position, direction, group ID, faction, etc.)

CAIActor

Basic perception and navigation, behavior selection, coordination, blackboard, AI territory awareness,
AI proxy

CAIPlayer

AI system's representation of an actual game player

CPuppet

Aiming, firing, stances, covers, a full-fledged AI agent

CAIVehicle

Vehicle-specific code

AI System Concept Examples
This section includes the following topics:

Version 1.8
16

Lumberyard Developer Guide
AI System Concept Examples

• AI Multi-Layered Navigation (p. 17)

• Individual AI: Dynamic Covers (p. 17)

• Individual AI: Tactical Points (p. 17)

• Group and Global AI: Factions (p. 18)

• Group and Global AI: Flow Graphs (p. 18)

AI Multi-Layered Navigation

Useful AI debug draw:

• ai_useMNM=1

• ai_DebugDraw=1

• ai_DebugDrawNavigation=1

• ai_DrawPath=all

• ai_DrawPathFollower=1

Individual AI: Dynamic Covers

Example: CoverSurface and HMMWV

This example shows the use of dynamic covers that are generated offline and adjusted during run time.

Useful AI debug draw:

• ai_DebugDraw=1

• ai_DebugDrawCover=2

• [AI/Physics] is on

Individual AI: Tactical Points

Example: A very shy civilian who always wants to hide from the player

• Tactical point system (TPS) query:

AI.RegisterTacticalPointQuery({
 Name = "Civilian_HideFromEnemy",
 {
 Generation =
 {
 cover_from_attentionTarget_around_puppet = 25
 },
 Conditions =
 {
 reachable = true,
 },
 Weights =
 {
 distance_from_puppet = -1,
 },
 },
});

• Useful AI debug draw:

Version 1.8
17

Lumberyard Developer Guide
AI Bubbles System

• ai_DebugTacticalPoints=1

• ai_StatsTarget=Grunt1

• ai_TacticalPointsDebugTime=10

• For more realism, add the following before goalop TacticalPos:

<Speed id="Sprint"/>

Group and Global AI: Factions

Example: AI formations of different factions

Place on a map three grunts of the following factions. Note who is hostile to who.

• grunts

• assassins

• civilians

For example:

<Factions>
 <Faction name = "Players">
 <Reaction faction- "Grunts" reaction="hostile"/>
 <Reaction faction- "Civilians" reaction="friendly"/>
 <Reaction faction- "Assassins" reaction="hostile"/>
 </Faction>
 <Faction name="Civilians default="neutral"/>
 ...
</Factions>

(see Game/Scripts/AI/Factions.xml)

Group and Global AI: Flow Graphs

Flow Graph Editor allows non-programmers to build global AI logic visually. Experiment with flow graph
debugger features, such as signal propagation highlighting and breakpoints.

AI Bubbles System
The AI Bubbles system collects AI error messages for level designers to address. This system streamlines
the debugging process by helping to track down which system(s) are connected to a problem. To use the AI
Bubbles system, programmers need to push important messages into the system, which will then provide
notification to the level designers when a problem is occurring.

Message Display Types
Message include a set of information (agent name, position, etc.) that help the designer to understand that
something is wrong in the normal flow. Message notifications can be displayed in any of the following ways:

• Speech bubble over the AI agent

• Error message in the console

Version 1.8
18

Lumberyard Developer Guide
Specifying Notification Display Types

• Blocking Windows message box

Specifying Notification Display Types
Use one of the following ways to specify a display type for error messages:

Console

ai_BubblesSystem

Enables/disables the AI Bubbles System.

ai_BubblesSystemDecayTime

Specifies the number of seconds a speech bubble will remain on screen before the next message can
be drawn.

ai_BubblesSystemAlertnessFilter

Specifies which notification types to show to the designer:

• 0 - No notification types

• 1 - Only logs in the console

• 2 - Only bubbles

• 3 - Logs and bubbles

• 4 - Only blocking popups

• 5 - Blocking popups and logs

• 6 - Blocking popups and bubbles

• 7 - All notifications types

ai_BubblesSystemUseDepthTest

Specifies whether or not the notification needs to be occluded by the world geometries.

ai_BubblesSystemFontSize

Specifies the font size for notifications displayed in the 3D world.

C++

In C++, use the method AIQueueBubbleMessage() to define how to display the message notification.

Method signature:

bool AIQueueBubbleMessage(const char* messageName, const IAIObject* pAIObject, const char*
 message, uint32 flags);

Parameters:

messageName

String describing the message. This is needed to queue the same message error more than once. (The
message can be pushed into the system again when it expires is deleted from the queue.)

pAIObject

Pointer to the AI object that is connected to the message.

Version 1.8
19

Lumberyard Developer Guide
AI Tactical Point System

message

Text of the message to be displayed.

flags

Notification type. This parameter can include one or more flags; multiple flags are separated using a
pipe (|).

• eBNS_Log

• eBNS_Balloon

• eBNS_BlockingPopup

Example:

AIQueueBubbleMessage("COPStick::Execute PATHFINDER_NOPATH non continuous", pPipeUser, "I
 cannot find a path.", eBNS_Log|eBNS_Balloon);

Lua Script

local entityID = System.GetEntityIdByName("Grunt.AlienGrunt1");
 AI.QueueBubbleMessage(entityID,"I cannot find a path.");

AI Tactical Point System
The Tactical Point System (TPS) provides the AI system with a powerful method of querying an AI agent's
environment for places of interest. It includes the GetHidespot functionality and expands on the "hide"
goalop.

TPS is a structured query language over sets of points in the AI's world. Using TPS, AI agents can ask
intelligent questions about their environment and find relevant types of points, including hidespots, attack
points, and navigation waypoints. The TPS language is simple, powerful, and designed to be very readable.

For example, this query requests all points that match the following criteria:

• Generate locations within 7 meters of my current location where I can hide from my attention target.

• Only accept places with excellent cover that I can get to before my attention target can.

• Prefer locations that are closest to me.

hidespots_from_attentionTarget_around_puppet = 7
coverSuperior = true, canReachBefore_the_attentionTarget = true
distance_from_puppet = -1

TPS uses a highly efficient method to rank points, keeping expensive operations like raycasts and
pathfinding to an absolute minimum. Queries are optimized automatically.

This section includes the following topics:

• Tactical Point System Overview (p. 21)

• TPS Query Execution Flow (p. 22)

• TPS Querying with C++ (p. 22)

Version 1.8
20

Lumberyard Developer Guide
Tactical Point System Overview

• TPS Querying with Lua (p. 24)

• TPS Query Language Reference (p. 25)

• Point Generation and Evaluation (p. 28)

• Integration with the Modular Behavior Tree System (p. 30)

• Future Plans and Possibilities (p. 30)

Tactical Point System Overview
Key features of the Tactical Point system (TPS) include:

• Use of a structured query language

• Powerful and quick to change in C++ and Lua

• Query support for a variety of point characteristics, beyond conventional hiding places behind objects:

• Points near entity positions

• Points along terrain features

• Points suggested by designers

• Arbitrary resolutions of nearby points in the open or on terrain

• Query combinations, such as:

• "Find a point somewhere behind me AND to my left, AND not soft cover, AND not including my current
spot"

• "Find a point hidden from my attention target AND visible to the companion"

• Preferential weighting, such as:

• Find a point nearest to (or furthest from) a specified entity

• Balance between points near an entity and far from the player

• Prefer points in solid cover over soft cover

• Query fallback options, such as:

• Prioritize good cover nearby; if none exists, go backwards to any soft cover

• Query visualization:

• See which points are acceptable and which are rejected, as well as their relative scores

• See how many expensive tests are being used by a query and on which points

• Automatic query optimization

• Understands the relative expense of individual evaluations comprising queries

• Dynamically sorts points based on potential fitness, according to weighting criteria

• Evaluates the "fittest" points first, in order to minimize the use of expensive tests

• Recognizes when the relative fitness of a point indicates that it can't be beat, in order to further reduce
evaluations

• Provides framework for further optimization specific to architecture, level, or locale

In addition to these key feature benefits, this framework offers these advantages from a coding perspective:

• Separates query from action

• Arbitrary queries can be made at any time without changing the agent's state

• Query language is easy to expand

• Easily adapted for time-slicing (and in principle multi-threading):

• Progression through query is fine-grained

• Progress is tracked as state, so it can be easily paused and resumedVersion 1.8
21

Lumberyard Developer Guide
TPS Query Execution Flow

• Provides mechanism for delaying expensive validity tests on generated points until needed

TPS Query Execution Flow
The following steps summarize the definition and execution stages of a TPS query. Note that only stages 3
and 4 have a significant impact on performance.

1. Parse query:

• Parse query strings and values.

• This step is usually performed once and cached.

2. Make query request:

• Query is made using C++, ScriptBind, goalops, etc.

• A query is stateless; it does not imply a movement operation.

3. Generate points:

• Create a set of candidate points.

• Point candidates are based on the query's Generation criteria.

4. Evaluate points (this is by far the most intensive stage):

• Accept or reject points based on Conditions criteria.

• Assign relative scores to points based on Weights criteria.

5. Consider query fallbacks:

• If no point matches the Conditions criteria, consider fallback options.

• Where there is a fallback, return to step 3.

6. Visualize points:

• If visualization is required, draw all points to screen.

• Include point data such as its accepted/rejected status and relative scores.

7. Return results:

• Return one or more points, if any fit the query conditions.

• Each point is returned as a structure that describes the selected point.

There are some optimizations possible that depend on the execution flow. For example, relevant query
results can be cached between fallback queries.

TPS Querying with C++
These C++ interfaces allow you to use TPS from other C++ code and within goalops. Lua queries are
translated through it.

There are two C++ interfaces:

• Internal - For use only within the AI system

• Uses a CTacticalPointQuery object to build queries

• Allows you to create or adapt queries on the fly

• Provides greater access to relevant AI system classes

• External - For use from any module

• Suitable for crossing DLL boundaries

• Simpler, not object-oriented, just as powerful

• Uses stored queries for efficiency Version 1.8
22

Lumberyard Developer Guide
TPS Querying with C++

Internal Interface Syntax

In the example below, some parsing is obviously taking place here. This is crucial to the generality of the
system.

// Check for shooter near cover using TPS
static const char *sQueryName = "CHitMiss::GetAccuracy";
ITacticalPointSystem *pTPS = gEnv->pAISystem->GetTacticalPointSystem();
int iQueryId = pTPS->GetQueryID(sQueryName);
if (iQueryId == 0)
{
 // Need to create query
 iQueryId = pTPS->CreateQueryID(sQueryName);
 pTPS->AddToGeneration(iQueryId, "hidespots_from_attentionTarget_around_puppet", 3.0f);
 pTPS->AddToWeights(iQueryId, "distance_from_puppet", -1.0f);
}
pTPS->Query(iQueryId, CastToIPuppetSafe(pShooter->GetAI()),vHidePos, bIsValidHidePos);

TPS Syntax Examples

The following examples and explanations illustrate the use of TPS query syntax. For a more detailed
discussion of the TPS query language, see the topic on TPS Query Language Syntax and Semantics.

option.AddToGeneration("hidespots_from_attTarget_around_puppet", 50.0)

This query request is expressed as generation criteria and specifies a float to represent distance. The query
is broken up into five words:

• "hidespots" indicates that generated points should positioned behind known cover as is conventional

• "from" and "around" are glue words to aid readability

• "target" specifies the name of the object to hide from

• "puppet" identifies a center location that points will be generated around

• The float value indicates the radial distance, measured from the center location, that defines the area
within which points should be generated

Note that no raycasts are performed at this stage. We have here considerable flexibility, for example, how
we choose to hide from a player: (1) somewhere near the player, (2) somewhere near us, or (3) somewhere
near a friend. We can also specify a completely different target to hide from, such as an imagined player
position. By providing flexibility at the point generation stage, we can support more powerful queries and
allow users to focus computations in the right areas.

option2.AddToConditions("visible_from_player",true)

This query request is expressed as condition criteria, so we can expect a Boolean result. The query
specifies points that are visible to the player, which is curious but perfectly valid. The term "visible" specifies
a ray test, with "player" specifying what object to raycast to from a generated point.

option2.AddToConditions("max_coverDensity",3.0)

This query is expressed as a condition, so we can expect a Boolean result. The term "Max" specifies that
the resulting value must be compared to the given float value--and be lower than. The term "coverDensity"
identifies this as a density query (measuring the density of things like cover, friendly AI agents, etc.) and
specifies measurement of covers.

option1.AddToWeights("distance_from_puppet",-1.0)

Version 1.8
23

Lumberyard Developer Guide
TPS Querying with Lua

This query is expressed as a weight component; the query result will be a value between zero and one
(normalized as required). Boolean queries are allowed to indicate preference (such as primary cover over
secondary cover), with return values of 0.0 for false and 1.0 for true.

This query component indicates a preference for points at a certain location relative to an object. The term
"distance" identifies this as a distance query, with the given float values specifying the distance amount.
The term "puppet" identifies the object to measure the distance from.

TPS Querying with Lua
In Lua, there are two ways to use the TPS:

• Scriptbinds allow you to use TPS queries from a Lua behavior and have the results returned as a table
without any side-effects. This can be useful for higher-level environmental reasoning, such as:

• Choose behaviors based on suitability of the environment (for example, only choose a "sneaker"
behavior if there's lots of soft cover available).

• Run final, very specific tests on a short list of points, rather than adding a very obscure query to the
TPS system.

• Enable greater environmental awareness (for example, tell me three good hidespots nearby, so I can
glance at them all before I hide).

• With goal pipes, you can use goalops to pick a point and go there, using a predefined TPS table:

• Use a "tacticalpos" goalop, which is equivalent to a previous "hide" goalop.

• Use fallback queries to avoid lists of branches in goalpipes.

• More flexible goalops can be provided to decouple queries from movement.

Both methods define query specifications using the same table structure, as shown in the following
example:

Hide_FindSoftNearby =
{
 -- Find nearest soft cover hidespot at distance 5-15 meters,
 -- biasing strongly towards cover density
 {
 Generation= { hidespots_from_attentionTarget_around_puppet = 15 },
 Conditions= { coverSoft = true,
 visible_from_player = false,
 max_distance_from_puppet = 15,
 min_distance_from_puppet = 5},
 Weights = { distance_from_puppet = -1.0,
 coverDensity = 2.0},
 },
 -- Or extend the range to 30 meters and just accept nearest
 {
 Generation ={ hidespots_from_attentionTarget_around_puppet = 30 },
 Weights = { distance_from_puppet = -1.0}
 }
}
AI.RegisterTacticalPointQuery(Hide_FindSoftNearby);

Note
Registering a query returns a query ID that then refers to this stored query.

Querying with Scriptbind

The following script runs a query using an existing specification. See comments in Scriptbind_AI.h for
details.

Version 1.8
24

Lumberyard Developer Guide
TPS Query Language Reference

AI.GetTacticalPoints(entityId, tacPointSpec, pointsTable, nPoints)

Querying with Goalops

The following script runs an existing query. Because queries can have fallbacks built in, branching is
usually unnecessary (the branch tests are still supported).

AI.PushGoal("tacticalpos",1, Hide_FindSoftNearby);

TPS Query Language Reference
There are ways to define a query in both C++ and Lua (and potentially in XML), but the same core
syntax is used. This page formally defines the TPS query language, with query components expressed in
Generation, Conditions or Weights, and defines and discusses the query language semantics.

Query Syntax
Note
Non-terminal symbols are in bold. Not all of the symbols are implemented, but are shown for
illustration.

Generator ::= GenerationQuery '_' 'around' '_' Object
Condition ::= BoolQuery | (Limit '_' RealQuery)
Weight ::= BoolQuery | (Limit '_' RealQuery) | RealQuery
GenerationQuery ::= ('hidespots' '_' Glue '_' Object)
 | 'grid' | 'indoor'
BoolQuery ::= BoolProperty | (Test '_' Glue '_' Object)
BoolProperty ::= 'coverSoft' | 'coverSuperior' | 'coverInferior' | 'currentlyUsedObject' |
 'crossesLineOfFire'
Test ::= 'visible' | 'towards' | 'canReachBefore' | 'reachable'
RealQuery = ::= RealProperty | (Measure '_' Glue '_' Object)
RealProperty ::= 'coverRadius' | 'cameraVisibility' | 'cameraCenter'
Measure ::= 'distance' | 'changeInDistance' | 'distanceInDirection' | 'distanceLeft' |
 'directness' | 'dot' | 'objectsDot' | 'hostilesDistance'
Glue ::= 'from' | 'to' | 'at' | 'the'
Limit ::= 'min' | 'max'
Object ::= 'puppet' | 'attentionTarget' | 'referencePoint' | 'player'
 | 'currentFormationRef' | 'leader' | 'lastOp'

Query Semantics
Note

• "Tunable" denotes that the exact values used should be possible to tweak/tune later.

• "Real" means that it returns a float value (rather than a boolean).

Objects

puppet

AI agent making a query

attentionTarget

Object that is the target of the AI agent's attention

Version 1.8
25

Lumberyard Developer Guide
TPS Query Language Reference

referencePoint

AI agent's point of reference, perspective

player

Human player (chiefly useful for debugging and quick hacks)

Glue

from | to | at | the

Glue words used for readability in a query statement. Each query must have a glue word, but it has not
active function and the parser doesn't distinguish between them. Readability is encouraged to aid in
debugging and long-term maintenance.

Generation

Hidespot

Individual point just behind a potential cover object with respect to a "from" object (as in "hide from
object"). There is typically one point per cover object. Use of this symbol should generate multiple
points behind large cover objects and cope with irregularly shaped and dynamic objects.

Around

A glue word with special meaning. This word should be followed by the name of an object around
which to center the generation radius.

Conditions/Weight Properties (use no object)

These properties relate to a specified point:

coverSoft

Boolean property, value is true if the specified point is a hidespot using soft cover.

coverSuperior

Boolean property, value is true if the specified point is a hidespot using superior cover.

coverInferior

Boolean property, value is true if the specified point is a hidespot using inferior cover.

currentlyUsedObject

Boolean property, value is true if the specified point is related to an object the puppet is already using
(such as the puppet's current hide object).

coverRadius

Real (float) property, representing the approximate radius of the cover object associated with the
specified point, if any, or 0.0 otherwise. When used for condition tests, returns an absolute value in
meters. When used as a weight, returns a normalized value, mapping the range [0.0-5.0m] to [0.0-1.0].
(Tunable)

coverDensity

Real property, representing the number of potential hidespots that are close by to the specified point.
When used for condition tests, returns an absolute value representing an estimate of the number of
hidespots per square meter using a 5m radius sample. When used as a weight, returns a normalized
value, mapping the range (0.0-1.0) to [0.0-1.0] (hidespots per square meter). (Tunable)

Version 1.8
26

Lumberyard Developer Guide
TPS Query Language Reference

Conditions/Weight Test/Measures (require object)

These properties relate to a specified object, such as distance_to_attentionTarget or
visible_from_referencePoint.

distance

Real (float) measure, representing the straight-line distance from a point to the specified object.
When used for condition tests, returns an absolute value in meters. When used as a weight, returns a
normalized value, mapping the range [0.0-50.0m] to [0.0-1.0]. (tunable)

changeInDistance

Real (float) measure representing how much closer the puppet will be to the specified object if it moves
to a certain point. Takes the distance to the specified object from the current location and subtracts it
from the distance to the object from the proposed new location. When used for condition tests, returns
an absolute value in meters. When used as a weight, returns a normalized value, mapping the range
[0.0-50.0m] to [0.0-1.0]. (tunable)

distanceInDirection

Real (float) measure representing the distance of the point in the direction of the specified object.
Takes the dot product of the vector from the puppet to the point and the normalized vector from the
puppet to the object. When used for tests, returns an absolute value in meters. When used as a weight,
returns a normalized value, mapping the range [0.0-50.0m] to [0.0-1.0]. (tunable)

directness

Real (float) measure representing the degree to which a move to a certain point approaches the
specified object. Takes the difference in distance to the object (changeInDistance) and divides it by
the distance from the puppet to the point. Always uses the range [-1.0 to 1.0], where 1.0 is a perfectly
direct course and negative values indicate movement further away from the object.

Limits

min | max

Limits can be used to test a real value in order to product a Boolean. Useful for conditions that can also
be used as coarse Weights; for example, the condition MAX_DISTANCE = 10 can be used to express
that a distance of less than 10 is preferable, but without favoring nearer points in a more general way.

Failing Queries

There are a few different ways queries can fail, and it's important to understand how each case is handled.

• No points matched the conditions of the query. This is a valid result, not a failure; the AI can move to
fallback queries or try a different behavior.

• The query does not make sense in the context of an individual point. Sometimes a query doesn't
make sense for a certain point or at a certain time. In this case, the query tries to return the "least
surprising" results. For example: a query about a point generated in the open asks "is this soft cover?"
The result will be "false", because this isn't any kind of cover. Query names should be chosen carefully to
help avoid potential confusion.

• The query does not make sense in the context of the puppet, at this time and for any point. As
with the point context issue, the query tries to return the "least surprising" results. For example: a query
about a puppet asks "am I visible to my attention target?" when the puppet doesn't have an attention
target. The query could return false, but it would disqualify every point. This case will usually indicate a
code error--the puppet should have an attention target at this point, but does not. Note: This situation

Version 1.8
27

Lumberyard Developer Guide
Point Generation and Evaluation

can cause a similar problem in the point generation phase, with a query like "generate hidespots from my
attention target". both of these situations are flagged as code errors.

• The query failed due to a code error. You can test for errors in the TPS queries and raise them there
also. For example, a query or combination hasn't been fully implemented yet or is being used as a kind of
assert to test variables.

Point Generation and Evaluation
An AI agent makes a TPS point generation query in order to generate a set of points for consideration.
Once generated, each point can be evaluated based on its position and any available metadata.

Generating Points

Input

The following information are required to generate points:

• Specific criteria defining the types of points to generate.

• A central or focal position around which to generate points. This might be the current position of the
puppet itself, an attention target, or some other given position.

• For some queries, the position of a secondary object, such as a target to hide from.

It is possible to specify multiple sets of point generation criteria. For example, a query might request point
generation around both the puppet and an attention target.

Processing

Based on the input, TPS begins generating points to evaluate. All points fall into two main types:

• Hidepoints. These are generated based on the following calculations:

• Hideable objects

• Generated only if a position to hide from was provided

• Hidepoints represent final positions, for example calculating positions behind cover

• Using the object and delaying finding an actual point is a possibility

• Open points. These are generated based on query specifications and the following calculations:

• Usually on terrain, but may be on surfaces, etc.

• Resolution/pattern (such as triangular with 1-meter spacing)

• Potentially may perform more general sampling to find an exact point, but an initial resolution is still
required

• Radial/even distributions

Output

The result of a point generation query is a list of point objects. Each point object includes the point's
position and available metadata, such as any associated hide objects.

Evaluating Points

Once a generation query generates a set of points, they can be evaluated. Point evaluation tries to
establish the "fitness" of each point, that is, how well the point matches the specified criteria. The goal is to
choose either one good point, or the best N number of good points.

Version 1.8
28

Lumberyard Developer Guide
Point Generation and Evaluation

Input

The following elements are required to evaluate points:

• List of candidate points from the point generator

• Point evaluation criteria:

• Boolean – Condition criteria used to include or exclude a point independently of any other points

• Weight – Criteria that, combined, give a measure of fitness relative to other points (those included by
the boolean criteria)

Processing

The primary goal is to find an adequately good point as quickly as possible. Often, "adequately good" also
means "the best", but there is a lot of potential for optimization if a user-specified degree of uncertainty is
allowed.

The order of evaluation has a non-trivial and crucial impact on query efficiency. As a result, evaluation uses
the following strategy to minimize the number of expensive operations:

1. Cheap booleans, with an expense on the order of one function call or some vector arithmetic. These
allow the system to completely discount many points without significant cost. For example: Is this point a
primary or secondary hidespot? Is this point less than 5 meters from the target?

2. Cheap weights, with an expense similar to cheap booleans. These allow the system to gauge the
likelihood that a given point will eventually be the optimal choice; by focussing on points with a high
likelihood, the number of expensive tests can be reduced. For example: closeness_to_player * 3 +
leftness * 2.

3. Expensive booleans, approximately 100 times costlier. These are yes/no questions that will require
expensive calculations to answer, but further eliminate points from contention. For example, the question
Is this point visible by the player? requires an expensive ray test.

4. Expensive weights, with an expense similar to expensive booleans. These help to rank the remaining
points. For example: nearby_hidepoint_density * 2

Algorithmic Details

It turns out that the system can go further with this by interleaving the final two steps and making evaluation
order completely dynamic. Unlike conditions (booleans), weights don't explicitly discount points from further
evaluation. However, by tracking the relative "fitness" of points during evaluation, we can still employ
weights to dramatically reduce evaluations by employing two basic principles:

• Evaluate points in order of the their maximum possible fitness, to fully evaluate the optimal point as
quickly as possible.

• If, based on the initial weight evaluation, a point can be established as better than any other point, then
immediately finish evaluating it against the remaining conditions. If the point passes all condition criteria,
then it is the optimal point and no other points need to be evaluated. In addition, this point does not need
to be evaluated on any remaining weights.

This implementation is based on a heap structure that orders points according to their maximum possible
fitness and tracks the evaluation progress of each point separately. Each weight evaluation collapses some
of the uncertainty around the point, adjusting both the minimum and maximum possible fitness. If the weight
evaluation scored highly, the maximum will decrease a little and the minimum increase a lot; if it scored
badly, the maximum will decrease a lot and the minimum increase a little.

In each iteration, the next most expensive evaluation is done on the point at the top of the heap, after which
the point is re-sort into place if necessary. If all evaluations on a point have been completed and it still has

Version 1.8
29

Lumberyard Developer Guide
Integration with the Modular Behavior Tree System

the maximum possible fitness, then it must be the optimal point. This approach tends towards evaluation of
the optimal point with relatively few evaluations on all other points.

Output

The result of point generation evaluation is a single point or group of N number of points, and the
opportunity to request all metadata leading to its selection. As a result, behaviors can adapt their style to
reflect the nature the hidepoint received.

Integration with the Modular Behavior Tree System
From inside the Modular Behavior Tree (MBT), the <QueryTPS> node can be used to call pre-defined TPS
queries by name. The <QueryTPS> node will return either success or failure.

The most common usage pattern involving the <QueryTPS> node is to use it in conjunction with the
<Move> node inside a <Sequence> to determine the status of a specified position. The example below
illustrates a call to a pre-defined TPS query called SDKGrunt_TargetPositionOnNavMesh, with the
expected inputs. If the query succeeds, the AI agent will move to the queried position.

<Sequence>
 <QueryTPS name="SDKGrunt_TargetPositionOnNavMesh" register="RefPoint"/>
 <Move to="RefPoint" speed="Run" stance="Alerted" fireMode="Aim" avoidDangers="0"/>
</Sequence>

The definition of the pre-defined query SDKGrunt_TargetPositionOnNavMesh is as follows.

AI.RegisterTacticalPointQuery({
 Name = "SDKGrunt_TargetPositionOnNavMesh",
 {
 Generation =
 {
 pointsInNavigationMesh_around_attentionTarget = 20.0
 },
 Conditions =
 {
 },
 Weights =
 {
 distance_to_attentionTarget = -1.0
 },
 },
});

Future Plans and Possibilities
The following topics represent potential areas of development for TPS.

Higher-level environmental reasoning

One possible application of TPS: rather than simply using TPS to choose a point and move to it, there is the
potential for some nice environmental deductions based on results.

For example: The player runs around a corner, followed by an AI puppet. When the AI puppet turns the
corner, the player is no longer visible. The puppet queries TPS for places it would choose to hide from
itself, with the following possible results.

• TPS returns that 1 hidepoint is much better than any other. This is because there's a single large box in
the middle of an empty room. The AI puppet assumes the player is there and charges straight at the box,
firing.

Version 1.8
30

Lumberyard Developer Guide
Navigation Q & A

• TPS returns that there are several good hiding places. This is because there's a stand of good cover
trees. All the hidepoints are stored in a group blackboard, and the AI puppet (or a group) can approach
each spot in turn to discover the player.

This scenario is workable with some extra code, and much easier when built upon TPS.

Sampling methods

When generating points in the open, generate points in a grid or radially around objects and treat each
point individually. This supports a basic sampling method. Where an area must be sampled, some kind
of coherency in the evaluation functions can be assumed, and so could use some adaptive sampling
approaches instead.

Dynamic cost evaluation

A crucial aspect of optimizing TPS involves adjusting the relative expense function of queries. The costs of
evaluations will vary across platforms, levels, and even locations within levels, and will change over time as
the code changes. It is critical to make sure that the evaluation order is correct, to prevent more expensive
evaluations from being favored over cheaper ones. The need to profile the evaluation function in all these
difference circumstances suggests an automatic profiling solution at run-time.

In addition, the relative weighting of weight criteria should also be considered; a cheap query may not
be worth doing first if it only contributes 10% of the final fitness value, while an expensive query that
contributes 90% may actually save many other evaluations.

Relaxing the optimality constraint

When evaluating points the maximum and minimum potential fitness is always known at every stage; this
provides the error bounds, or a relative measure of uncertainty about the point.

It may make sense to relax the optimality constraint and accept a point when it becomes clear that no other
point could be significantly better. For example, the minimum potential fitness of a point may be less than
5% lower than the maximum potential fitness of the next best point. This information could be used to stop
evaluation early and yield a further performance saving.

Navigation Q & A

Big Triangles and Small Links Between Them
Q: I have created a big flat map, placed an AI agent on it, and generated AI navigation triangulation.
I noticed that the AI agent doesn't always take the shortest straight path from point A to point B.
Why?

A: To illuminate the issue, use the following tools:

• AI debug console variable ai_DebugDraw set to "74". This value draws the AI navigation graph.
(Note: a value of 79 will run faster, but limits the result to the area close to the player (with 15 m).

• AI debug console variable ai_DrawPath set to "all". This variable draws AI agent paths, including
links (the corridors between adjacent triangles).

• The Ruler tool in Editor, used to visualize paths. You don't even need actual AI agents on the map to
run experiments. (Note: this tool is located between Snap Angle and Select Object(s).)

The AI navigation triangulation is intended to be fast and have a small memory footprint. One of the
decisions made in this regard was to use 16-bit signed integers to store corridor (or "link") radius
measurements between two adjacent triangles. Using centimeters as the uint of measure, this means

Version 1.8
31

Lumberyard Developer Guide
Path Following

that the maximum link radius is 32767 cm (327.67 m). When an AI agent moves to another triangle, it
can only go through this corridor, which is naturally very narrow if the triangles are still very large. This
problem does not exist for triangles with edges less than 2 * 327.67 = 655.34 m.

This problem can only appear in the very initial stages of map development. Every forbidden area, tree
or other map irregularity makes triangulation more developed, which results in more triangles that are
smaller in size. As a result, the problem goes away.

Path Following
Q: How does path following actually work? Where to start?

A: See the topic on Path Following (p. 32).

Auto-Disabling
Q: How do you keep patrols always active, regardless of their distance from the player?

A: See the topic on Auto-Disable (p. 35).

Path Following
This topic provides some high-level insight on how path following is done in Lumberyard. To illustrate some
concepts, we'll use the relatively simplistic example of Racing HMMWVs, which is a good representation of
classic path following as presented in many AI texts.

Path following with Racing HMMWVs adheres to the following sequence.

1. Get the closest (to the AI agent) point on path.

2. Get the path parameter of this point. Paths usually have some kind of parametrization, t -> (x,y,z).

3. Add a certain value, usually called a "lookahead", to this parameter.

4. Get the path point that corresponds to this new parameter. This is called the look-ahead position.

5. Use this point as the navigation target.

6. If the vehicle is stuck, beam it straight to the closest point on the path.

Goalop "Followpath"
Use the goalop followpath to instruct an AI agent to follow a path. You can observe this sequence in action
by setting a breakpoint at the beginning of a call to COPFollowPath::Execute. In the call stack window in
Visual Studio, you'll be able to see the update operations for all (active) AI agents being called as part of
the AI system update procedure. This action in turn calls the execute operations of the currently active
goalops being run by the AI.

COPFollowPath::Execute accomplishes the following tasks:

• Uses the goalop pathfind to find a path leading to the beginning of a path. Optionally, it finds a path to the
closest point on a path using a parameter passed to the followpath goalop.

• Traces the path by following it using the goalop trace

• Listens for the signal "OnPathFollowingStuck" to make sure the AI agent isn't stuck

Version 1.8
32

Lumberyard Developer Guide
COPTrace::ExecuteTrace and COPTrace::Execute

The goalops pathfind and trace are commonly used for navigational goalops, including approach and stick.

COPTrace::ExecuteTrace and COPTrace::Execute
COPTrace::ExecuteTrace is used to clean up path-following issues, including handling edge cases and
smart objects. The core of this call is as follows:

IPathFollower* pPathFollower = gAIEnv.CVars.PredictivePathFollowing ? pPipeUser-
>GetPathFollower() : 0;
bTraceFinished = pPathFollower ? ExecutePathFollower(pPipeUser, bFullUpdate,
 pPathFollower) : Execute2D(pPipeUser, bFullUpdate);

COPTrace::Execute does the same work plus a bit more. For the AI following a path, when its lookahead
position hits the end of the path, this operation sends the signal "OnEndWithinLookAheadDistance" to the
AI. In the sample scenario, this allows our racing HMMWVs to start looking for a new path to follow while
they're still moving along the current path. Normally AI agents stop moving when the path following process
is completed. The following Lua script is also useful to maintain movement:

AI.SetContinuousMotion(vehicle.id, true);

COPTrace::Execute2D
This operation can be used as a fallback if an AI agent (CPipeUser, at least) doesn't have a path follower.
COPTrace::Execute2D accomplishes the following tasks:

• Gets the lookahead path position and the path direction at this position.

• Executes a maneuver, if necessary. For example, it makes cars go backwards to make a U-turn.

• Considers a number of reasons to slow down, including:

• The angle between current and desired (aforementioned path direction) directions.

• The curvature of the path.

• Approaching the end of the path.

• Approaching the top of a hill.

It then sets members fDesiredSpeed and vMoveDir of the AI agent's SOBJECTSTATE structure, which are
brought to the game code later. For an example of how this data can be used for actual steering, take a
look at CVehicleMovementArcadeWheeled::ProcessAI.

Note that COPTrace::Execute2D is not the only operation that sets vMoveDir. For example, obstacle
avoidance code can overwrite it.

Movement System
Key priorities for the AI Movement system include the following features.

• Robust and predictable. Navigation can be very unreliable, with no guarantee that a character will carry
out the requested movement and end up at the desired destination. This is a very organic problem with
no clear resolutions. The AI Movement system solves this by providing more explicit information about
failure reasons.

• Central, clear ownership and easy debugging. Rather than having contextual movement information
– style, destination, requester, etc. – tied to a specific goalop and getting lost when a behavior switch

Version 1.8
33

Lumberyard Developer Guide
Using the Movement System

occurs, Lumberyard maintains this information in a central location and separated from the goalop. In
practice, a movement request can be sent from anywhere and the movement system handles it centrally.
when the goalop requester is no longer interested, it simply cancels the request. This doesn't mean
the character stops immediately and all information is lost, it just means that interest in the request has
expired.

• Planning. In Lumberyard, logic is handled in blocks for ease of use and organization. Movement blocks
are responsible for their own isolated tasks, such as FollowPath, LeaveCover and UseSmartObject. A
collection of blocks in sequence make up a plan, which is produced by a controller with a string-pulled
path as input. This types of organization helps clarify a larger picture about what is being processed right
now and what is coming up.

Note
This system is still a work in progress, and it's design was focused on solving some critical
problems with an existing code base. It may not be suitable for all game titles.

Using the Movement System
Using the movement system is pretty straightforward. Create a MovementRequest object with
information about the destination, style and a callback. Queue it in MovementSystem and receive a
MovementRequestID. Use this if you want to cancel the request. Then wait for MovementSystem to
process to your request. Once your request is processed, you'll be notified via the callback.

Here's what's happening internally to process your request:

1. Once MovementSystem receives your request, it creates an internal representation of the character,
called a MovementActor. This is a container for all internal states and the proxy to all external states/
logic related to a character. It binds a MovementController to the actor. Currently there's only one
controller available – GenericController, which is the result of what was done before. (The term
"controller" is also used on the game side for a similar but different entity. These entities may be
merged in the future, and multiple types of controllers added, such as for the Pinger, Scorcher, or
BipedCoverUsed.)

2. MovementSystem informs the controller that there's a new request to start working on. GenericController
kicks off the path finder.

3. Once the pathfinding result is in, the GenericController produces a plan that it starts to follow.

4. When the GenericController finishes the last block in the plan, it informs MovementSystem that the task
is finished.

5. MovementSystem notifies the requester of success, and moves on to the next request.

Potential Improvements
The following areas of improvement or enhancement are under consideration:

• Change request processing. Currently there is a request queue, with movement requests processed one
at a time, in FIFO order. Requests are immutable, so it's impossible to change a request once it's been
queued; as a result, the only option is to cancel a request and queue a new one. These issues could be
resolved by removing the request queue and allowing only one request at a time. If a request comes in
while one is already being processed, interrupt the current one and report it.

• Validate a pipe user before proceeding with the update.

• When a UseSmartObject block detects that the exact positioning system fails to position a character at
the start of a smart object, it reports this failure through the agent's bubble and in the log. It then resolves
the problem by teleporting the character to the end of the smart object and proceeds to the next block in
the plan.

Version 1.8
34

Lumberyard Developer Guide
Auto-Disable

• The GenericController is only allowed to start working on a new request while it is executing a FollowPath
block. It then shaves off all subsequent blocks so that the actor doesn't find itself in the middle of a smart
object when planning takes place. This could be improved by allowing the controller to produce a part of
the plan, looking further ahead, and then patch it with the current plan.

• The plan isn't removed when a request is canceled. This is because a subsequent 'stop' or 'move'
request should follow the cancellation. However, until this request has been received, the controller has
no way to know what to do.

• The pathfinding request is being channeled through the pipe user, and the result is returned to the pipe
user as well as stored in m_path. This path is then extracted by the movement controller. It would be
better if the pathfinder could be employed directly by the movement controller and skip the pipe user as a
middle layer.

• The movement controller code would fit better on the game side, since that's where the information about
the characters should live. It could be merged with the movement transitions that are handled on the
game side.

• Being able to pull out a movement request at any time makes the code slightly more complex, because
we can't rely on that fact that the controller is always working on a request that still exists. It may be
better to keep the request, flag it as abandoned and clear the callback.

• The code could be improved by separating planning and plan execution into two different code paths
instead of one.

Auto-Disable
You can save CPU time by not updating distant AI agents. Use the auto-disable feature to controlled
updates either on a per-AI basis or globally.

Global auto-disable
• To control auto-disable for all vehicles: use the console variable v_autoDisable.

• To control auto-disable for all AI agents: use the console variable ai_UpdateAllAlways.

Per-AI auto-disable
Per-AI auto-disable is controlled by the entity property AutoDisable. Refer to the Lumberyard User Guide
for more details on AI and vehicle entities. You can also change this property (and behavior) at run time.

• C++: pAIActorProxy->UpdateMeAlways(true);

• Lua: AI.AutoDisable(entity.id, 1);

• In Flow Graph Editor: turn AI:AutoDisable on or off for each AI.

AI Scripting
This collection of topics describes how to handle some key AI capabilities using scripting.

This section includes the following topics:

• Communication System (p. 36)

• Factions (p. 42)

• Modular Behavior Tree (p. 43)

• Refpoints (p. 85)

Version 1.8
35

Lumberyard Developer Guide
Communication System

• Signals (p. 86)

Communication System
AI communication is about playing sound/voice and/or animations at the right times in the course of the
game.

Setting up communication for an AI agent requires the following steps:

• General set up:

• Define communication channels. Channels are used to track the status of communication events for an
AI.

• Define communications. Communications detail specifically what activity should occur (and how) when
the communication is called for. Communications are grouped into configurations.

• Set up voice libraries. Voice libraries support localized dialogs, subtitles, and lip-syncing.

• Specify communication types for an AI using AI properties:

• Point an AI's CommConfig property to a communication configuration, which contains the set of
communications for that AI.

• Point an AI's esVoice property to a voice library to use for that AI.

• Trigger a communication event:

• Specify the name of a communication channel for the event.

• Specify the name of a communication to fire.

Communications, channels, and voice libraries are defined in a set of XML files. At game start-up, the
directory Game/Scripts/AI/Communication and all subfolders are scanned for XML files containing these
configurations.

Defining Communication Channels
A communication channel determines whether an AI can play a communication at a given moment,
depending on whether or not the communication channel is occupied. Channels are a self-contained
concept, independent of other AI communication concepts. They have a sole purpose: to be in one of two
possible states, "occupied" or "free".

AI communication channels are defined in an XML file stored in Game/Scripts/AI/Communication. The
SDK includes a template channel configuration XML file, called ChannelConfg.xml. Communication
channels are configured in a hierarchy of parent and child channels. The hierarchical structure determines
how a channel's occupied status affects the status of other channels (for example, a parent of an occupied
child channel).

Channel Elements & Attributes

Communication channels are defined in a <ChannelConfig> element with the following attributes:

name

Channel name.

priority

minSilence

Minimum time (in seconds) that the channel should remain occupied after a communication has been
completed.

Version 1.8
36

Lumberyard Developer Guide
Communication System

flushSilence

Time (in seconds) that the channel should remain occupied after it has been flushed. This value
overrides the imposed silence time (minSilence) after playing a communication. If not specified, the
value set for minSilence is used.

actorMinSilence

Minimum time (in seconds) to restrict AI agents from playing voice libraries after starting a
communication.

ignoreActorSilence

Flag indicating that AI agent communication restrictions from the script should be ignored.

type

Type of communication channel. Valid values are "personal", "group" or "global".

Example

Game/Scripts/AI/Communication/ChannelConfig.xml

<Communications>
 <ChannelConfig>
 <Channel name="Global" minSilence="1.5" flushSilence="0.5" type="global">
 <Channel name="Group" minSilence="1.5" flushSilence="0.5" type="group">
 <Channel name="Search" minSilence="6.5" type="group"/>
 <Channel name="Reaction" priority="2" minSilence="2" flushSilence="0.5"
 type="group"/>
 <Channel name="Threat" priority="4" minSilence="0.5" flushSilence="0.5"
 type="group"/>
 </Channel>
 <Channel name="Personal" priority="1" minSilence="2" actorMinSilence="3"
 type="personal"/>
 </Channel>
 </ChannelConfig>
</Communications>

Configuring Communications for an AI

Communication configurations determine what communication activity AI agents can perform and how it
will manifest. Communications for a particular type of AI are grouped into configurations. For example, your
game might have both human and non-human AI agents, each with its own set of communication activities.
In this scenario, you might group all the human communications into a configuration object named "human"
while communications for non-humans might be grouped into a "non-human" configuration. For a particular
AI, you'll specify the configuration to use with the AI's CommConfig property. With this configuration
structure, you can define a communication (such as "surprise") differently in each configuration so that,
when triggered, the communication activity fits the AI involved.

For each communication, you also have the option to define multiple variations of action and specify how
the variations are used.

AI communication channels are defined in one or more XML files stored in Game/Scripts/
AI/Communication. The SDK includes a template channel configuration XML file, called
BasicCommunications.xml.

Communication Elements & Attributes

Communications are configured using the following elements and attributes:

Version 1.8
37

Lumberyard Developer Guide
Communication System

Config

Communication configurations are grouped into <Config> elements and use the following attributes. Each
configuration must contain at least one communication.

name

Configuration name, which can be referenced in the AI's CommConfig property.

Communication

A communication is defined in a <Communication> element with the following attributes. Each
communication should contain at least one variation.

name

Communication name.

choiceMethod

Method to use when choosing a variation. Valid values include "Random", "Sequence",
"RandomSequence" or "Match" (uses only the first variation).

responseName

responseChoiceMethod

Similar to choiceMethod.

forceAnimation

Boolean flag.

Variation

Each variation is defined in a <Variation> element with the following attributes.

animationName

Animation graph input value.

soundName

voiceName

lookAtTarget

Boolean flag indicating whether or not the AI should look at the target during the communication.

finishMethod

Method that determines when communication is finished, such as after the communication type has
finished or after a time interval. Valid values include "animation", "sound", "voice", "timeout" or "all".

blocking

AI behavior to disable during communication. Valid values include "movement", "fire", "all", or "none".

animationType

Valid values include "signal" or "action".

Version 1.8
38

Lumberyard Developer Guide
Communication System

timeout

Example

Game/Scripts/AI/Communication/BasicCommunications.xml

<Communications>
<!--sound event example-->
 <Config name="Welcome">
 <Communication name="comm_welcome" finishMethod="sound" blocking="none">
 <Variation soundName="sounds/dialog:dialog:welcome" />
 </Communication>
 </Config>
<!--example showing combined animation + sound event (needs state using action/signal in
 the animation graph)-->
 <Config name="Surprise">
 <Communication name="comm_anim" finishMethod="animation" blocking="all"
 forceAnimation="1">
 <Variation animationName="Surprise" soundName="sounds/
interface:player:heartbeat" />
 </Communication>
 </Config>
</Communications>

Setting Up Voice Libraries
To support localized dialogs, subtitles, and lip syncing, you need to set up voice libraries. Once set up, you
can assign a voice library to an AI (or entity archetype) using the AI's esVoice property.

Voice libraries are defined in a set of XML Excel files stored in GameSDK/Libs/Communication/Voice. The
SDK includes a template voice library file at GameSDK/Libs/Communication/Voice/npc_01_example.xml.

Each voice library must include the following information.

Language

Localization type for this library.

File Path

Location where the sound files for this library are stored.

Signal

Communication name associated with a sound file.

Sound File

File name of a sound file, listed by signal.

Example

Comment field used to describe or illustrate a sound file.

Example

GameSDK/Libs/Communication/Voice/npc_01_example.xml

Language American English

Version 1.8
39

Lumberyard Developer Guide
Communication System

File Path languages/dialog/ai_npc_01/

Signal Sound File SDK NPC 01 Example

see

 see_player_00 i see you

 see_player_01 hey there you are

 see_player_02 hey i have been looking for you

pain

 pain_01 ouch

 pain_02 ouch

 pain_03 ouch

death

 death_01 arrrhh

 death_02 arrrhh

 death_03 arrrhh

alerted

 alerted_00 watch_out

 alerted_01 be careful

 alerted_02 something there

Setting Communication for an AI

An AI's communication methods are set using the AI agents properties. You can set AI properties in several
ways. For information about using the Lumberyard Editor to set AI properties, see "Using Database View to
Set AI Communication" in the Lumberyard User Guide).

Set the following properties:

• CommConfig – Set this property to the name of the communication configuration you want this AI to
use. Communication configurations are defined in XML files in Game/Scripts/AI/Communication, using
<Config> elements.

• esVoice – Set this property to the name of the XML file containing the voice library you want this AI to
use. Voice libraries are defined in XML files in GameSDK/Libs/Communication/Voice.

Turning Animation and Voice Off

Communication animation and/or voice can be turned off for an AI agent using the agent's Lua script (as in
the example below) or the entity properties in Lumberyard Editor Editor.

Example

Game/Scripts/Entities/AI/Shared/BasicAITable.lua

Version 1.8
40

Lumberyard Developer Guide
Communication System

Readability =
{
 bIgnoreAnimations = 0,
 bIgnoreVoice = 0,
},

Triggering a Communication Event

To trigger a communication event, use the goalop communicate with the following attributes. Note that
communication animations are not played if the AI is currently playing a smart object action.

name

Name of the communication to trigger (sound, voice, and/or animation). Communication names are
defined in an XML file referred to by the CommConfig property of this AI.

channel

Communication channel being used by this AI. An AI's communication channel is defined in an XML
file in Game/Scripts/AI/Communication.

expirity (expiry)

Maximum allowable delay in triggering the communication when the communication channel is
temporarily occupied. If a communication can't be triggered within this time period, it is discarded.

To trigger communications using flow graph logic, use the Flow Graph node AI:Communication.

Example

<GoalPipe name="Cover2_Communicate">
 <Communicate name="comm_welcome" channel="Search" expirity="0.5"/>
</GoalPipe>

Debugging

To get debug information on AI communication issues, use the following console variables (ai_DebugDraw
should be set to "1"):

• ai_DebugDrawCommunication

• ai_DebugDrawCommunicationHistoryDepth

• ai_RecordCommunicationStats

Debug output is shown in the console as illustrated here:

Playing communication: comm_welcome[3007966447] as playID[84]
CommunicationPlayer::PlayState: All finished! commID[-1287000849]
CommunicationManager::OnCommunicationFinished: comm_welcome[3007966447] as playID[84]
CommunicationPlayer removed finished: comm_welcome[3007966447] as playID[84] with
 listener[20788600]

Troubleshooting

[Warning] Communicate(77) [Friendly.Norm_Rifle1] Communication failed to start

Version 1.8
41

Lumberyard Developer Guide
Factions

You may get this message or a similar one if your AI's behavior tree calls a communication but the
communication configuration is not set up properly. In this example message, "77" refers to line 77 in your
AI's behavior tree script (or goalop script). This line is probably communication trigger such as this:

<Communicate name="TargetSpottedWhileSearching" channel="Reaction" expirity="1.0"
 waitUntilFinished="0" />

Some things to check for::

• Does the specified communication name "TargetSpottedWhileSearching" exist in your communication
configuration files (XML files located in Game/Scripts/AI/Communication/)?

• Check the CommConfig property for the AI. Is it set to the name of a <Config> element defined in your
communication configuration files? If so, is the communication name "TargetSpottedWhileSearching"
defined inside this <Config> element? This issue, calling communications that aren't configured for the AI
is a common source of this error.

• Check the communication's variation definition. Does it point to a resource (animation, sound) that
exists? If using a voice library, does it point to a valid voice library file name?

Factions
AI agents use factions to determine their behavior when encountering other AI agents. There are a base
set of behaviors such as neutral, friendly and hostile. For example, when an AI in the "Grunt" faction
encounters an AI in the "Players" faction, the encounter will be hostile. Players encountering "Civilians" will
be friendly, etc.

To set up faction communications:

• Create an XML file that defines all the factions in your game and their reactions to each other (see the
example). This file should be placed in \Games\Scripts\AI\. The SDK includes a template faction XML
file, called Factions.xml.

• Set the Faction property for all of your AI agents to one of the defined factions. You can also set factions
using Flow Graph

Example: Faction setup

Factions.xml

<Factions>
 <Faction name="Players">
 <Reaction faction="Grunts" reaction="hostile" />
 <Reaction faction="Civilians" reaction="friendly" />
 <Reaction faction="Assassins" reaction="hostile" />
 </Faction>
 <Faction name="Grunts">
 <Reaction faction="Players" reaction="hostile" />
 <Reaction faction="Civilians" reaction="neutral" />
 <Reaction faction="Assassins" reaction="hostile" />
 </Faction>
 <Faction name="Assassins">
 <Reaction faction="Players" reaction="hostile" />
 <Reaction faction="Civilians" reaction="hostile" />
 <Reaction faction="Grunts" reaction="hostile" />
 </Faction>
 <Faction name="HostileOnlyWithPlayers" default="neutral">
 <Reaction faction="Players" reaction="hostile" />
 </Faction>
 <Faction name="Civilians" default="neutral" />

Version 1.8
42

Lumberyard Developer Guide
Modular Behavior Tree

 <Faction name="WildLife" default="neutral" />
</Factions>

Modular Behavior Tree
Modular behavior tree (MBT) is a collection of concepts for authoring behaviors for artificial intelligent (AI)
agents in your game. Instead of writing complicated code in C++ or other general purpose programming
language, MBT lets you describe AI behaviors at a high level without having to think about mechanics such
as pointers, memory, and compilers. MBT concepts and implementation are optimized for rapid iteration
and re-use.

Core Concepts
Conceptually, MBT is based on two key objects: the node and the tree.

Node

The node is the most fundamental concept; it is a building block that can be combined with others to
build behaviors. A node consists of a block of code that represents a simple task. All nodes have the
same interface: when processed, they carry out a task and either succeed or fail.

Nodes can be standalone or may have child nodes, which are processed as part of the parent node
processing. When processed, the success of a parent node often (but not always) depends on the
success of each child node.

Nodes follow several common patterns, such as action, composite, and decorator nodes. These
common node patterns are more fully described in later in this topic.

Game developers can create the nodes needed for their game. In addition, Lumberyard provides a
set of standard nodes for general use. These include nodes for tasks related to AI, animation, flying,
and common game activities, as well as generic nodes useful when building behaviors, such as for
timeouts and looping tasks. These provided nodes are documented in the Modular Behavior Tree Node
Reference (p. 52).

Tree

Behaviors are constructed by building trees of nodes, collections of individual tasks that, when
positioned as a root with branches that extend out into leaves, define how an AI agent will behave in
response to input.

Common Node Patterns

Action Nodes

An action node represents some sort of simple action. Action nodes might cause the AI agent to speak,
play an animation, or move to a different location.

Composite Nodes

A composite node represents a series of actions to be performed in a certain order. Composite nodes
consist of a parent node and two or more child nodes. Whether or not a child node is processed (and in
what order) can depend on the success or failure of previously processed nodes. Common composite
patterns include sequential, selector, and parallel.

Sequential node

This composite pattern describes child nodes that are processed consecutively in a specified
sequence. All child nodes are processed regardless of whether the previous child node succeeded or

Version 1.8
43

Lumberyard Developer Guide
Modular Behavior Tree

failed. For example, a sequential node might cause an AI monster to point at the player, roar, and then
run toward the player. In this pattern, each child node in the sequence must succeed for the next child
node to start processing; if any child node fails, the parent node immediately fails and processing is
stopped.

Selector node

This composite pattern describes child nodes that are processed consecutively and in sequence only
until one succeeds. As soon as one child node succeeds, the parent node succeeds immediately
and stops processing child nodes. If all child nodes are attempted and all fail, the parent node fails.
This pattern is useful for setting up AI agents to try multiple different tactics, or for creating fallback
behaviors to handle unexpected outcomes.

Imagine, for example, that we want our AI monster to chase the player, but if it can't reach the player it
should scream “Come and fight me, you coward!” To implement this scenario, a selector parent node
is set up with two children, one for each possible action. The parent node first processes the “chase
player” child node. If it succeeds, then the selector node stops there. However, if the “chase player
node fails, then the parent node continues and processes the “taunt player” child node.

Parallel node

This composite pattern describes child nodes that are processed concurrently. In this scenario,
Imagine we want our AI monster to scream and chase the player at the same time rather than one after
the other.

Decorator Nodes

A decorator node represents some sort of functionality that can be added to another node and behaves
regardless of how the other node works or what it does. Common decorator functionality includes looping
and limiting concurrent functionality.

Looping

Looping functionality can be used to process any other node multiple times. Rather than creating
custom nodes every time you want to repeat a task, you can wrap any node in a parent loop decorator
node. By setting a parameter for the loop node, you can dictate the number of times the child nodes
will be processed. Each time the child node succeeds, the loop node count is updated and the child
node is re-processed. Once the loop count meets the set parameter, the loop node succeeds.

Limiting concurrent users

This functionality lets you specify how many users should be allowed to concurrently use a specified
node. It is a good way to ensure variations in behavior among a group of AI agents. A typical scenario
illustrating this function is as follows: The player is spotted by a group of three monsters. You want one
monster to sound an alarm while the others chase the player.

Limiting concurrent users works with a selector node, which steps through a sequence of child nodes
until one succeeds. By wrapping one of a selector node’s child nodes in a limit decorator node, you can
cause the child node to fail due to concurrent users, which in turn causes the selector node to move to
the next child.

To handle the scenario described, the selector node would have two child nodes, “sound alarm” and
“chase player”. The “sound alarm” node is wrapped in a limit node, with the user limit set to 1. Monster
#1 flows through the selector node to the limit node; as there is no one currently using the “sound
alarm” node, the Monster #1 takes this action. The limit node records that one AI agent is processing
the child node, so effectively locks the door to it. Monsters #2 and #3 also flow through the selector
node to the limit node, but because the limit node has reached its limit of user, it reports a failure.
Consequently, the selector node moves on to the next child node in the sequence, which is “chase
player”. So monsters #2 and #3 chase the player.

Version 1.8
44

Lumberyard Developer Guide
Modular Behavior Tree

Describing Behavior Trees in XML

Behavior trees are described using XML markup language. Behavior trees are hot-loaded every time the
user jumps into the game in the editor.

The following XML example describes the behavior tree for a group of monsters. In this example, only
one monster at a time is allowed to chase the player. The remaining monsters stand around and taunt the
player.

<BehaviorTree>
 <Root>
 <Selector>
 <LimitConcurrentUsers max=”1”>
 <ChasePlayer />
 </LimitConcurrentUsers>
 <TauntPlayer />
 </Selector>
 </Root>
</BehaviorTree>

C++ Implementation

You'll find all MBT code encapsulated in the BehaviorTree namespace.

Understanding the Memory Model

MBT has a relatively small memory footprint. It accomplishes this by (1) sharing immutable (read-only) data
between instances of a tree, and (2) only allocating memory for things that are necessary to the current
situation.

Memory is divided into two categories: configuration data and runtime data. In addition, MBT uses smart
pointers.

Configuration data

When a behavior tree such as the following example is loaded, a behavior tree template is created that
holds all the configuration data shown in the example. This includes a sequence node with four children:
two communicate nodes, an animate node, and a wait node. The configuration data is the animation name,
duration, etc., and this data never changes.

<Sequence>
 <Communicate name=”Hello” />
 <Animate name=”LookAround” />
 <Wait duration=”2.0” />
 <Communicate name=”WeShouldGetSomeFood” />
</Sequence>

Memory for the configuration data is allocated from the level heap. When running the game through the
launcher, this memory is freed on level unload; alternatively, it is freed when the player exits game mode
and returns to edit mode in Lumberyard Editor.

Runtime data

When spawning an AI agent using a behavior tree, a behavior tree Instance is created and associated with
the agent. The instance points to the behavior tree template for the standard configuration data, which
means that the instance contains only instance-specific data such as variables and timestamps.

Version 1.8
45

Lumberyard Developer Guide
Modular Behavior Tree

When the tree instance is accessed for the AI agent, it begins by executing the Sequence node. If the core
system detects that this is the first time the behavior has been run for this AI agent, it allocates a runtime
data object specifically for this node and agent. This means that every AI agent gets its own runtime data
object when executing a behavior tree node. The runtime data object persists as long as the AI agent is
executing a node (this can be several frames) but is freed when the AI agent leaves a node.

Memory for runtime data is allocated from a bucket allocator. This design minimizes memory fragmentation,
which is caused by the fact that runtime data is usually just a few bytes and is frequently allocated and
freed. The bucket allocator is cleaned up on level unload.

Smart pointers

MBT uses Boost smart pointers to pass around data safely and avoid raw pointers as much as possible.
Memory management is taken care of by the core system. (While there are circumstances in which a
unique_ptr from C++11 would work well, Lumberyard uses Boost's shared_ptr for compatibility reasons.)

Implementing an MBT Node

To implement a new MBT node in C++, you'll need to do the following tasks:

• Create the node

• Expose the node to the node factory

• Set up error reporting for the node

Creating a node

The following code example illustrates a programmatic way to create a behavior tree node. When naming
new nodes, refer to Recommended Naming Practices (p. 51).

#include <BehaviorTree/Node.h>

class MyNode : public BehaviorTree::Node
{
 typedef BehaviorTree::Node BaseClass;

 public:
 // Every instance of a node in a tree for an AI agent will have a
 // runtime data object. This data persists from when the node
 // is visited until it is left.
 //
 // If this struct is left out, the code won't compile.
 // This would contain variables like 'bestPostureID', 'shotsFired' etc.
 struct RuntimeData
 {
 };

 MyNode() : m_speed(0.0f)
 {
 }

 // This is where you'll load the configuration data from the XML file
 // into members of the node. They can only be written to during the loading phase
 // and are conceptually immutable (read-only) once the game is running.
 virtual LoadResult LoadFromXml(const XmlNodeRef& xml, const LoadContext& context)
 {
 if (BaseClass::LoadFromXml(xml, context) == LoadFailure)
 return LoadFailure;
 xml->getAttr("speed", m_speed);
 return LoadSuccess;
 }

Version 1.8
46

Lumberyard Developer Guide
Modular Behavior Tree

protected:
 // Called right before the first update
 virtual void OnInitialize(const UpdateContext& context)
 {
 BaseClass::OnInitialize(context);

 // Optional: access runtime data like this
 RuntimeData& runtimeData = GetRuntimeData<RuntimeData>(context);
 }

 // Called when the node is terminated
 virtual void OnTerminate(const UpdateContext& context)
 {
 BaseClass::OnTerminate(context);

 // Optional: access runtime data like this
 RuntimeData& runtimeData = GetRuntimeData<RuntimeData>(context);
 }

 virtual Status Update(const UpdateContext& context)
 {
 // Perform your update code and report back whether the
 // node succeeded, failed or is running and needs more
 // time to carry out its task.

 // Optional: access runtime data like this
 RuntimeData& runtimeData = GetRuntimeData<RuntimeData>(context);
 return Success;
 }

 // Handle any incoming events sent to this node
 virtual void HandleEvent(const EventContext& context, const Event& event)
 {
 // Optional: access runtime data like this
 RuntimeData& runtimeData = GetRuntimeData<RuntimeData>(context);
 }

private:
 // Store any configuration data for the node right here.
 // This would be immutable things like 'maxSpeed', 'duration',
 // 'threshold', 'impulsePower', 'soundName', etc.
 float m_speed;
};

// Generate an object specialized to create a node of your type upon
// request by the node factory. The macro drops a global variable here.
GenerateBehaviorTreeNodeCreator(MyNode);

Exposing a node

To use the newly created node, you'll need to expose it to the node factory, as shown in the following code
snippet.

BehaviorTree::INodeFactory& factory = gEnv->pAISystem->GetIBehaviorTreeManager()-
>GetNodeFactory();
ExposeBehaviorTreeNodeToFactory(factory, MyNode);

Setting up error reporting

Use the class ErrorReporter to report errors and warnings in the new node. It will let you log a printf-
formatted message and automatically include any available information about the node, such as XML line
number, tree name, and node type.

Version 1.8
47

Lumberyard Developer Guide
Modular Behavior Tree

ErrorReporter(*this, context).LogError("Failed to compile Lua code '%s'", code.c_str());

Variables

Variables are statically declared in XML, with information about how they will change in response to signals
from AI agents (named text messages within the AI system).

The following code snippet illustrates the use of variables to receive input from the AI system. In this
example, the AI agent takes action based on whether or not it can "see" the target.

<BehaviorTree>
 <Variables>
 <Variable name="TargetVisible" />
 </Variables>
 <SignalVariables>
 <Signal name="OnEnemySeen" variable="TargetVisible" value="true" />
 <Signal name="OnLostSightOfTarget" variable="TargetVisible" value="false" />
 </SignalVariables>
 <Root>
 <Selector>
 <IfCondition condition=”TargetVisible”>
 <Move to=”Target” />
 </IfCondition>
 <Animate name=”LookAroundForTarget” />
 </Selector>
 </Root>
</BehaviorTree>

Lua Scripting

Lua code can be embedded in a behavior tree and executed along with the tree nodes. This is useful for
running fire-and-forget code or for controlling the flow in a tree. It's useful for prototyping or extending
functionality without having to create new nodes.

The code is compiled once when the level is loaded in pure game to reduce fragmentation. Only code for
behavior trees that are actually used in that level will be compiled.

All Lua nodes provide access to the entity variable.

• ExecuteLua runs a bit of Lua code. It always succeeds.

<ExecuteLua code=”DoSomething()” />

• LuaWrapper inserts a bit of Lua code before and after running child node. The post-node code is run
regardless of whether the child node succeeded or failed.

<LuaWrapper onEnter=”StartParticleEffect()” onExit=”StopParticleEffect()”>
 <Move to=”Cover” />
</LuaWrapper>

• LuaGate uses a bit of Lua code to control whether or not a child node should be run. If the Lua code
returns true, the child node is run and LuaGate returns the status of the child node (success or failure). If
the code returns false or fails to execute, the child node is not run, and LuaGate returns failure.

<LuaGate code=”return IsAppleGreen()”>
 <EatApple />
</LuaGate>

• AssertLua lets you make a statement. If the statement is true, the node succeeds; if it's false the node
fails.

Version 1.8
48

Lumberyard Developer Guide
Modular Behavior Tree

<Sequence>
 <AssertLua code=”return entity.someCounter == 75” />
 <AssertCondition condition=”TargetVisible” />
 <Move to=”Target” />
</Sequence>

Timestamps

A timestamp identifies a point in time when an event happened. A lot of AI behavior depends on tracking
the timestamp of certain events and measuring the amount of time from those points. For example, it can
be useful to tie behavior to how long it's been since the AI agent was last shot at or hit, when it last saw the
player, or how long it's been since moving to the current cover location.

Timestamps can be declared as mutually exclusive, that is, both timestamps can't have a value at the same
time. For instance, TargetSpotted and TargetLost can both have a value because the AI agent can't see
a player and at the same time consider them lost. With exclusive timestamps, when one timestamp has a
value written to it, the other timestamp is automatically cleared.

The following code snippet illustrates the use of timestamps.

<BehaviorTree>
 <Timestamps>
 <Timestamp name="TargetSpotted" setOnEvent="OnEnemySeen" />
 <Timestamp name="ReceivedDamage" setOnEvent="OnEnemyDamage" />
 <Timestamp name="GroupMemberDied" setOnEvent="GroupMemberDied" />
 </Timestamps>
 <Root>
 <Sequence>
 <WaitUntilTime since=”ReceivedDamage” isMoreThan=”5” orNeverBeenSet=”1” />
 <Selector>
 <IfTime since="GroupMemberDied" isLessThan=”10”>
 <MoveCautiouslyTowardsTarget />
 </IfTime>
 <MoveConfidentallyTowardsTarget />
 </Selector>
 </Sequence>
 </Root>
</BehaviorTree>

Events

Communication with AI agents is done using AI signals, which essentially are named text messages.
Signals such as OnBulletRain and OnEnemySeen communicate a particular event, which, when broadcast
to other AI agents, can be reacted to based on each AI agent's behavior tree. This design allows AI
behavior to remain only loose coupled with AI signals. AI Signals are picked up and converted to MBT
events, then dispatched to the root node, which passes them along down the running nodes in the tree.

<Sequence>
 <WaitForEvent name=”OnEnemySeen” />
 <Communicate name=”ThereHeIs” />
</Sequence>

Debugging and Tree Visualization

This section provides help with debugging behavior trees by providing a tree visualization view during
debugging. This view allows you to track an AI agent's progress through the tree as the game progresses.

Version 1.8
49

Lumberyard Developer Guide
Modular Behavior Tree

"Slashing" Agents

This feature allows you to view the behavior tree for a specific AI agent in DebugDraw. To enable this
feature:

1. Set ai_DebugDraw to 0 or 1 (default is -1).

2. Select the AI agent you want to view a behavior tree for:

• Place the selected AI agent in the center of the camera view and press the numpad "/" key.

• Call "ai_DebugAgent closest" to select the agent closest to the camera.

• Call "ai_DebugAgent centerview" to select the agent closest to the center of the camera view (same as
slash).

• Call "ai_DebugAgent <AgentName>" to select a specific agent by its name.

• Call "ai_DebugAgent" without a parameter to remove the tree visualization.

The tree visualization displays the AI agent's name at the top of the screen and identifies the agent on the
screen with a small green dot. Tree nodes are displayed and color coded as follows, with line numbers from
the XML file shown on the left.

• White – nodes with custom data

• Blue – leaf nodes, which often carry special weight when debugging

• Gray – all other nodes

Adding Custom Debug Text

Tree visualization supports custom node information. This allows you to get a more in-depth view of
the currently running parts of a behavior tree. For example, you can see the name of the event that the
WaitForEvent node is waiting for, or how much longer Timeout is going to run before it times out.

To use this feature, override GetDebugTextForVisualizer, as follows.

#ifdef STORE_INFORMATION_FOR_BEHAVIOR_TREE_VISUALIZER
virtual void GetDebugTextForVisualizer(
 const UpdateContext& updateContext,
 stack_string& debugText) const
{
 debugText.Format("Speed %f", m_speed);
}
#endif

Logging and Tracing

Tracing log messages is a critical tool for diagnosing problems. Lumberyard provides native support for
logging, as shown in the following code snippet.

<Sequence>
 <QueryTPS name="CoverFromTarget" _startLog="Finding cover" _failureLog="Failed to find
 cover" />
 <Move to="Cover" _startLog="Advancing" _failureLog="Failed to advance"
 _successLog="Advanced" />
</Sequence>

(The reserved attributes _startLog, _successLog, and _failureLog are automatically read in.)

Log messages are routed through an object deriving from the BehaviorTree::ILogRouter interface. This
allows you to determine where the logging messages end up. For example, one option would be to route

Version 1.8
50

Lumberyard Developer Guide
Modular Behavior Tree

the info to a personal log and store a short history of log messages for each AI agent; with this approach,
log messages can be displayed when debugging as part of an AI agent's tree visualization.

The AI Recorder also retains all log messages; use this tool to explore sequences of events.

Compiling with Debug Information

To compile a game with debug information, you need to define DEBUG_MODULAR_BEHAVIOR_TREE.

#if !defined(_RELEASE) && (defined(WIN32) || defined(WIN64))
define DEBUG_MODULAR_BEHAVIOR_TREE
#endif

Viewing Completed Trees

When a behavior tree finishes executing—either by failing or succeeding all the way through the root node,
a notification is displayed in the console window along with a list of recently visited nodes and their line
numbers.

[Error] Modular Behavior Tree: The root node for entity 'HumanSoldier' FAILED. Rebooting the tree
next frame. (124) Move. (122) Selector. (121) Sequence.

Note that in the example above the tree will be rebooted in the next frame. This suggests that the behavior
tree was not designed to handle a failure at this point.

Recommended Naming Practices

The following suggestions help streamline code clarity and communication in a development team.

Naming Nodes

For action nodes, use names that identify the action the node will perform. These are usually action verbs.

Good

• Loop

• Animate

• LimitConcurrentUsers

• ExecuteLua

• Shoot

• AdjustCoverStance

Bad

• Fast

• PathPredictor

• Banana

• Script

• ActivationProcess

Naming Timestamps

Name timestamps based on the event they’re related to. Because timestamps describe an event that has
already happened, use the past tense (TargetSpotted, not TargetSpots).

Version 1.8
51

Lumberyard Developer Guide
Modular Behavior Tree

• TargetSpotted

• ReceivedDamage

• GroupMemberDied

Modular Behavior Tree Node Reference

This section contains reference information on modular behavior tree (MBT) node types. MBT node types
are organized here based on the system they are defined into.

It is possible to expose MBT nodes from anywhere in Lumberyard code. A node can have parameters that
configure the behavior of its execution. If an invalid value is passed to the node, causing the node's parsing
to fail, an error message is written to either Editor.log or Game.log.

Node Index

Generic Nodes (p. 54)

• Loop (p. 54)

• LoopUntilSuccess (p. 54)

• Parallel (p. 54)

• Selector (p. 55)

• Sequence (p. 55)

• StateMachine (p. 56)

• State & Transitions (p. 56)

• SuppressFailure (p. 57)

• Timeout (p. 57)

• Wait (p. 58)

AI Nodes (p. 58)

• AdjustCoverStance (p. 58)

• Aim (p. 59)

• AimAroundWhileUsingAMachingGun (p. 59)

• Animate (p. 59)

• AnimationTagWrapper (p. 60)

• AssertCondition (p. 60)

• AssertLua (p. 61)

• AssertTime (p. 61)

• Bubble (p. 62)

• CheckIfTargetCanBeReached (p. 62)

• ClearTargets (p. 62)

• Communicate (p. 63)

• ExecuteLua (p. 63)

• GroupScope (p. 64)

• IfCondition (p. 64)

• IfTime (p. 64)

• Log (p. 65)

Version 1.8
52

Lumberyard Developer Guide
Modular Behavior Tree

• Look (p. 65)

• LuaGate (p. 66)

• LuaWrapper (p. 66)

• MonitorCondition (p. 67)

• Move (p. 67)

• Priority & Case (p. 68)

• PullDownThreatLevel (p. 69)

• QueryTPS (p. 69)

• RandomGate (p. 70)

• SendTransitionSignal (p. 70)

• SetAlertness (p. 70)

• Shoot (p. 71)

• ShootFromCover (p. 72)

• Signal (p. 72)

• SmartObjectStatesWrapper (p. 73)

• Stance (p. 73)

• StopMovement (p. 74)

• Teleport (p. 74)

• ThrowGrenade (p. 75)

• WaitUntilTime (p. 75)

CryAction Nodes (p. 76)

• AnimateFragment (p. 76)

Game Nodes (p. 76)

• InflateAgentCollisionRadiusUsingPhysicsTrick (p. 76)

• KeepTargetAtADistance (p. 77)

• Melee (p. 77)

• ScorcherDeploy (p. 78)

• SuppressHitReactions (p. 80)

Flying Nodes (p. 80)

• Hover (p. 80)

• FlyShoot (p. 80)

• WaitAlignedWithAttentionTarget (p. 81)

• Fly (p. 81)

• FlyForceAttentionTarget (p. 82)

• FlyAimAtCombatTarget (p. 83)

• HeavyShootMortar (p. 83)

• SquadScope (p. 84)

• SendSquadEvent (p. 84)

• IfSquadCount (p. 85)

Version 1.8
53

Lumberyard Developer Guide
Modular Behavior Tree

Generic Nodes

These nodes provide the basic functionality of MBT.

Loop

Executes a single child node a specified number of times or until the child fails its execution.

Parameters

count

Maximum number of times the child node will be executed. If left blank, it is assumed to be infinite and
the node will continue running until failure.

Success/Failure

The node SUCCEEDS if the maximum number of repetitions is reached. The node FAILS if execution of
the child node FAILS.

Example

<Loop count="3">
 <SomeChildNode />
</Loop>

LoopUntilSuccess

Executes a child node a specified number of times or until the child node succeeds its execution.

Parameters

attemptCount

Maximum number of times the child node will be executed. If left blank or set to <=0, it is assumed to
be infinite and the node will continue running until success.

Success/Failure

The node SUCCEEDS if the child SUCCEEDS. The node FAILS if the maximum amount of allowed
attempts is reached.

Example

<LoopUntilSuccess attemptCount="5">
 <SomeChildNode />
</LoopUntilSuccess>

Parallel

Executes its child nodes in parallel.

Note

• A maximum number of 32 child nodes is allowed.

• When success and failure limits are reached at the same time, the node will succeed.

Version 1.8
54

Lumberyard Developer Guide
Modular Behavior Tree

Parameters

failureMode

Method to use to evaluate when the node fails. Acceptable values include "any" or "all". Default: "any".

successMode

Method to use to evaluate when the node succeeds. Acceptable values include "any" or "all". Default:
"all".

Success/Failure

When successMode is set to "all", the node SUCCEEDS if all the child nodes SUCCEEDS.

When successMode is set to "any", the node SUCCEEDS if any of the child nodes SUCCEED.

When failureMode is set to "any", the node FAILS if any of the child nodes FAILS.

When failureMode is set to "all", the node FAILS if all of the child nodes FAIL.

Example

<Parallel successMode="any" failureMode="all">
 <SomeChildNode1 />
 <SomeChildNode2 />
 <SomeChildNode3 />
</Parallel>

Selector

Executes its child nodes consecutively, one at a time, stopping at the first one that succeeds.

Parameters

None.

Success/Failure

The node executes the child nodes in sequential order and SUCCEEDS as soon as one of the child
SUCCEEDS. Once the node succeeds, the child nodes that follow are not executed. The node FAILS if all
the child nodes FAIL.

Example

<Selector>
 <SomeChildNode1 />
 <SomeChildNode2ToExecuteIfSomeChildNode1Fails />
 <SomeChildNode3ToExecuteIfSomeChildNode2Fails />
</Selector>

Sequence

Executes its child nodes one at a time in order.

Note
A maximum of 255 child nodes is allowed.

Parameters

None.

Version 1.8
55

Lumberyard Developer Guide
Modular Behavior Tree

Success/Failure

The node SUCCEEDS if all the child nodes SUCCEED. The node FAILS if any of the child nodes FAILS.

Example

<Sequence>
 <SomeChildNode1 />
 <SomeChildNode2 />
 <SomeChildNode3 />
</Sequence>

StateMachine

Executes child nodes of type State one at a time. The first child node defined is the first to be executed.
The current status of a StateMachine node is the same as that of the child that is currently being executed.

Parameters

None.

Success/Failure

The node SUCCEEDS if the current State child node SUCCEEDS. The node FAILS if the current State
child node FAILS.

Example

<StateMachine>
 <State />
 <State name="State1" />
 <State name="State2" />
</StateMachine>

State & Transitions

Executes the content of its BehaviorTree node. This node can transition to another state (or itself). If a
State node is instructed to transition into itself while running, it will first be terminated, re-initialized, and
then updated again.

A State node has the following characteristics:

• Is a basic block of a StateMachine node.

• MUST have a BehaviorTree node.

• MAY have a Transitions element.

Transitions

Transitions elements are described inside a State node, and can contain the definitions of as many
transitions as are needed. The transitions elements are not MBT nodes. If a transition specifies a
destination state that doesn't exist, an error message will be displayed when parsing the MBT node.

Parameters

<State /> elements must include the following parameters:

name

Name of the state. It must be unique within the scope of the StateMachine it is in.

Version 1.8
56

Lumberyard Developer Guide
Modular Behavior Tree

<Transition /> elements must include the following parameters:

onEvent

Name of the event that may cause the transition to happen. These events are of type AISignal.

to

Name of the state to transition to.

Success/Failure

The node SUCCEEDS if the content of the BehaviorTree node SUCCEEDS.

The node FAILS if the content of the BehaviorTree node FAILS.

Example

<State name="StateName">
 <Transitions>
 <Transition onEvent="EventOrTransitionSignalName" to="OtherStateName" />
 </Transitions>
 <BehaviorTree>
 <SomeChildNode />
 </BehaviorTree>
</State>

SuppressFailure

Owns and executes one child node. This node will succeed regardless of whether the child node succeeds.

Parameters

None.

Success/Failure

The node always SUCCEEDS once the child node has been executed.

Example

<SuppressFailure>
 <SomeChildThatCanFail />
</SuppressFailure>

Timeout

Fails once a certain amount of time has passed.

Parameters

duration

Amount of time (in seconds) before failure occurs.

Success/Failure

The node FAILS if it runs for more than the amount of time specified in the duration parameter.

Version 1.8
57

Lumberyard Developer Guide
Modular Behavior Tree

Example

<Timeout duration=5" />

Wait

Succeeds once a certain amount of time has passed.

Parameters

duration

Amount of time (in seconds) before the request succeeds.

variation

Maximum additional amount of time that may be randomly added to the value of duration, in the range
[0, variation]. Setting this value causes the wait time to have random variations between different
executions of the node.

Success/Failure

The node SUCCEEDS once it has run the duration specified (plus random variation).

Example

<Wait duration="5" variation="1" />

AI Nodes

These nodes provide MBT functionality for the AI system.

AdjustCoverStance

Updates the AI agent's cover stance based on the maximum height at which its current cover is effective.

Parameters

duration

(Optional) Length of time (in seconds) the node will execute. Set to continuous to specify an unlimited
time span.

variation

(Optional) Maximum additional time (in seconds) that may be randomly added to the value of
duration, in the range [0, variation]. Setting this value causes the wait time to have random
variations between different executions of the node.

Success/Failure

The node SUCCEEDS if execution of the child runs the length of the specified duration. The node FAILS if
the child is not in cover.

Example

<AdjustCoverStance duration="5.0" variation="1.0"/>

Version 1.8
58

Lumberyard Developer Guide
Modular Behavior Tree

Aim

Sets a location for the AI agent to aim at, and then clears the location when the node stops executing.

Parameters

at

Location to aim at. Allowed values include:

• RefPoint

• Target

angleThreshold

(Optional) Tolerance angle for aim accuracy.

durationOnceWithinThreshold

(Optional) Amount of time (in seconds) to continue aiming.

Success/Failure

The node SUCCEEDS after aiming at the desired location for the specified duration, if the location is not
valid or if the timeout elapses.

Example

<Aim at="Target" durationOnceWithinThreshold="2.0" />

AimAroundWhileUsingAMachingGun

Updates the aim direction of the AI agent when using a mounted machine gun.

Parameters

maxAngleRange

(Optional) Maximum angle to deviate from the original direction.

minSecondsBeweenUpdates

(Optional) Minimum amount of delay (in seconds) between updates.

useReferencePointForInitialDirectionAndPivotPosition

Boolean.

Success/Failure

The node does not succeed or fail.

Example

<AimAroundWhileUsingAMachingGun minSecondsBeweenUpdates="2.5" maxAngleRange="30"
 useReferencePointForInitialDirectionAndPivotPosition="1"/>

Animate

Sets the AI agent to play an animation.

Version 1.8
59

Lumberyard Developer Guide
Modular Behavior Tree

Parameters

name

Animation to be played.

urgent

(Optional) Boolean indicating whether or not to add the urgent flag to the animation.

loop

(Optional) Boolean indicating whether or not to add the loop flag to the animation.

setBodyDirectionTowardsAttentionTarget

(Optional) Boolean indicating whether or not to change the AI's body target direction to face the
attention target.

Success/Failure

The node SUCCEEDS when the animation has finished playing, or if the animation failed to be initialized.

Example

<Animate name="LookAround" loop="1" />

AnimationTagWrapper

Adds an animation tag to the execution of a child node and clears it at the end.

Parameters

name

Animation tag to be set.

Success/Failure

The node returns the result of the execution of its child node.

Example

<AnimationTagWrapper name="ShootFromHip">
 <Shoot at="Target" stance="Stand" duration="5" fireMode="Burst" />
</AnimationTagWrapper>

AssertCondition

Checks whether or not a specified condition is satisfied.

Parameters

condition

Condition to be checked.

Success/Failure

The node SUCCEEDS if the condition is true, otherwise it FAILS.

Version 1.8
60

Lumberyard Developer Guide
Modular Behavior Tree

Example

<AssertCondition condition="HasTarget" />

AssertLua

Executes a Lua script that returns true/false and translates the return value to success/failure. The result
can be used to build preconditions in the MBT.

Parameters

code

Lua script to be executed.

Success/Failure

The node SUCCEEDS if the Lua script returns a value of true, otherwise it FAILS.

Example

<AssertLua code="return entity:IsClosestToTargetInGroup()" />

AssertTime

Checks whether or not a time condition is satisfied.

Parameters

since

Name of the time stamp to check for the condition.

isMoreThan

Condition statement used to test whether the time stamp is greater than a specified value. Cannot be
used with the parameter isLessThan.

isLessThan

Condition statement used to test whether the time stamp is less than a specified value. Cannot be used
with the parameter isMoreThan.

orNeverBeenSet

(Optional) Boolean indicating whether or not to set the node to succeed if the time stamp was never
set.

Success/Failure

The node SUCCEEDS if the time condition is true, and FAILS if it is false. If the specified time stamp
was not previously set, the node FAILS, unless the parameter orNeverBeenSet is true, in which case it
SUCCEEDS.

Example

<AssertTime since="GroupLostSightOfTarget" isLessThan="10" orNeverBeenSet="1" />

Version 1.8
61

Lumberyard Developer Guide
Modular Behavior Tree

Bubble

Displays a message in a speech bubble above the AI agent. See AI Bubbles System (p. 18).

Parameters

message

Message string to be shown in the speech bubble.

duration

Number of seconds to display the message. Default is 0.0.

balloon

Boolean indicating whether or not to display the message in a balloon above the AI agent. Default is
true.

log

Boolean indicating whether or not to write the message to the general purpose log. Default is true.

Success/Failure

The node SUCCEEDS immediately after having queued the message to be displayed.

Example

<Bubble message="MessageToBeDisplayedAndOrLogged" duration="5.0" balloon="true"
 log="true" />

CheckIfTargetCanBeReached

Checks whether or not the AI agent's attention target can be reached.

Parameters

mode

Target to check for. Allowed values include:

• UseLiveTarget

• UseAttentionTarget

Success/Failure

The node SUCCEEDS if the target can be reached, otherwise it FAILS.

Example

<CheckIfTargetCanBeReached mode="UseLiveTarget" />

ClearTargets

Clears the AI agent's targets information.

Parameters

None.

Version 1.8
62

Lumberyard Developer Guide
Modular Behavior Tree

Success/Failure

The node always SUCCEEDS.

Example

<ClearTargets />

Communicate

Sends a request to the communication manager to play one of the AI agent's communications. See
Communication System (p. 36).

Parameters

name

The name of the communication to be played.

channel

The channel on which the communication is to be set.

waitUntilFinished

(Optional) Specifies if the execution should wait for the end of the communication before finishing.

timeout

(Optional) The threshold defining the maximum amount of seconds the node will wait.

expiry

(Optional) The amount of seconds the communication can wait for the channel to be clear.

minSilence

(Optional) The amount of seconds the channel will be silenced after the communication is played.

ignoreSound

(Optional) Sets the sound component of the communication to be ignored.

ignoreAnim

(Optional) Sets the animation component of the communication to be ignored.

Success/Failure

If the node is set to wait, the node SUCCEEDS when the communication is complete. Otherwise, it
SUCCEEDS once the timeout elapses.

Example

<Communicate name="Advancing" channel="Tactic" expiry="1.0" waitUntilFinished="0" />

ExecuteLua

Executes a Lua script.

Parameters

code

Script to be executed.

Version 1.8
63

Lumberyard Developer Guide
Modular Behavior Tree

Success/Failure

The node always SUCCEEDS.

Example

<ExecuteLua code="entity:SetEyeColor(entity.EyeColors.Relaxed)" />

GroupScope

Makes execution of a child node conditional on entering the AI agent in a group scope. Groups allow a
limited number of concurrent users.

Parameters

name

Name of the group scope to enter.

allowedConcurrentUsers

(Optional) Maximum number of simultaneous users allowed in the specified group scope.

Success/Failure

The node FAILS if the AI agent cannot enter the group scope; otherwise, it returns the result of executing
the child node.

Example

<GroupScope name="DeadBodyInvestigator" allowedConcurrentUsers="1">
 <SendTransitionSignal name="GoToPrepareToInvestigateDeadBody" />
</GroupScope>

IfCondition

Executes a child node if a specified condition is satisfied.

Parameters

condition

Condition statement to be checked.

Success/Failure

If the condition is satisfied, the node returns the result of executing the child node. If the condition is not
satisfied, the node FAILS.

Example

<IfCondition condition="TargetVisible">
 <Communicate name="AttackNoise" channel="BattleChatter" expiry="2.0"
 waitUntilFinished="1" />
</IfCondition>

IfTime

Executes a child node if a time condition is satisfied.

Version 1.8
64

Lumberyard Developer Guide
Modular Behavior Tree

Parameters

since

Name of the time stamp to check for the condition.

isMoreThan

Condition statement test whether the time stamp is greater than a specified value. Cannot be used with
the parameter isLessThan.

isLessThan

Condition statement test whether the time stamp is less than a specified value. Cannot be used with
the parameter isMoreThan.

orNeverBeenSet

(Optional) Boolean indicating whether or not to set the node to succeed if the time stamp was never
set.

Success/Failure

If the time condition is true, the node returns the result of executing the child node. It FAILS if the time
condition is false. If the specified time stamp was not previously set, the node FAILS, unless the parameter
orNeverBeenSet is true, in which case it SUCCEEDS.

Example

<IfTime since="FragGrenadeThrownInGroup" isMoreThan="5.0" orNeverBeenSet="1">
 <ThrowGrenade type="frag" />
</IfTime>

Log

Adds a message to the AI agent's personal log.

Parameters

message

Message to be logged.

Success/Failure

The node always SUCCEEDS.

Example

<Log message="Investigating suspicious activity." />

Look

Adds a location for the AI agent to look at, and clears it when the node stops executing.

Parameters

at

Location to look at. Allowed values are:

Version 1.8
65

Lumberyard Developer Guide
Modular Behavior Tree

• ClosestGroupMember

• RefPoint

• Target

Success/Failure

This node does not succeed or fail.

Example

<Look at="ClosestGroupMember" />

LuaGate

Executes a child node only if the result from running a Lua script is true.

Parameters

code

Lua script to be executed.

Success/Failure

The node SUCCEEDS if the result of the Lua script is true, and FAILS if the result is not true. On success,
the node returns the result of executing the child node.

Example

<LuaGate code="return AI.GetGroupScopeUserCount(entity.id, 'DeadBodyInvestigator') == 0">
 <Animate name="AI_SearchLookAround" />
</LuaGate>

LuaWrapper

Runs a Lua script before and/or after the execution of a child node.

Parameters

onEnter

(Optional) Script to be executed at the start.

onExit

(Optional) Script to be executed at the end.

Success/Failure

The node returns the result of executing the child node.

Example

<LuaWrapper onEnter="entity:EnableSearchModule()" onExit="entity:DisableSearchModule()">
 <Animate name="AI_SearchLookAround" />
</LuaWrapper>

Version 1.8
66

Lumberyard Developer Guide
Modular Behavior Tree

MonitorCondition

Continuously checks the state of a specified condition.

Parameters

condition

Specifies the condition to be checked.

Success/Failure

The node SUCCEEDS when the condition is satisfied.

Example

<MonitorCondition condition="TargetVisible" />

Move

Moves the AI agent from its current position to a specified destination. If the destination is a target, then the
end position is updated if it is not reached when the target moves. See Movement System (p. 33).

Parameters

speed

Speed of movement. Allowed values include:

• Walk

• Run

• Sprint

stance

Body stance while moving. Allowed values include:

• Relaxed

• Alerted

• Stand (default)

bodyOrientation

Direction the AI agents body should face during the move. Allowed values include:

• FullyTowardsMovementDirection

• FullyTowardsAimOrLook

• HalfwayTowardsAimOrLook (default)

moveToCover

Boolean indicating whether or not the AI agent is moving into cover. Default is false.

turnTowardsMovementDirectionBeforeMovingx

Boolean indicating whether or not the AI agent should first turn to the direction of movement before
actually moving. Default is false.

strafe

Boolean indicating whether or not the AI agent is allowed to strafe. Default is false.

Version 1.8
67

Lumberyard Developer Guide
Modular Behavior Tree

glanceInMovementDirection

Boolean indicating whether or not the AI agent can glance in the direction of movement. If false, the AI
agent will always look at its look-at target. Default is false.

to

Movement destination. Allowed values include:

• Target - Current attention target.

• Cover - Current cover position.

• RefPoint - Current reference position.

• LastOp - Position of the last successful position-related operation.

stopWithinDistance

Distance from the target that the AI agent can stop moving. Default is 0.0.

stopDistanceVariation

Maximum additional distance that may be randomly added to the value of stopDistanceVariation, in
the range [0, stopDistanceVariation]. Setting this value causes the stop distance to vary randomly
between different executions of the node. Default is 0.0.

fireMode

Firing style while moving. Allowed values are listed for the Shoot (p. 71) node.

avoidDangers

Boolean indicating whether or not the AI agent should avoid dangers while moving. Default is true.

avoidGroupMates

Boolean indicating whether or not the AI agent should avoid group mates while moving. Default is true.

considerActorsAsPathObstacles

Boolean indicating whether or not an AI agent's pathfinder should avoid actors on the path. Default is
false.

lengthToTrimFromThePathEnd

Distance that should be trimmed from a pathfinder path. Use positive values to trim from the path end ,
or negative values to trim from the path start. Default is 0.0.

Success/Failure

The node SUCCEEDS if the destination is reached. The node FAILS if the destination is deemed
unreachable.

Example

<Move to="Target" stance="Alerted" fireMode="Aim" speed="Run" stopWithinDistance="3" />

Priority & Case

Prioritizes to selects from a set of possible child nodes to execute. Within a <Priority> node, each child
node is listed inside a <Case> node, which defines a condition statement. A child node is selected and
executed based on (1) the first child to have its condition met, and (2) in the case of ties, the order the child
nodes are listed in. All but the last child must have a condition statement; the last child listed is the default
case, so it's condition must always be true.

Version 1.8
68

Lumberyard Developer Guide
Modular Behavior Tree

Parameters

The <Priority> node has no parameters.

The <Case> node has the following parameters:

condition

Condition statement used to prioritize a child node.

Success/Failure

The node returns the result of the executed child node.

Example

<Priority>
 <Case condition="TargetInCloseRange and TargetVisible">
<Melee target="AttentionTarget" />
 </Case>
 <Case>
<Look at="Target" />
 </Case>
</Priority>

PullDownThreatLevel

Lower's the AI agent's perception of the target's threat.

Parameters

to

Success/Failure

The node always SUCCEEDS.

Example

<PullDownThreatLevel to="Suspect" />

QueryTPS

Performs a TPS query to find a tactical position for the AI agent, and waits for a result. See AI Tactical Point
System (p. 20).

Parameters

name

Name of the TPS query to run.

register

Location to store the result of the TPS query. Allowed values include:

• RefPoint

• Cover (default)

Version 1.8
69

Lumberyard Developer Guide
Modular Behavior Tree

Success/Failure

The node SUCCEEDS if the TPS returns a tactical position, or FAILS if it does not find a tactical position.

Example

<QueryTPS name="queryName" register="Cover" />

RandomGate

Executes a child node (or not) based on random chance.

Parameters

opensWithChance

Probability to use to determine whether the child node will be executed. Allowed values include floats
0.0 to 1.0.

Success/Failure

The node FAILS if the child node is not executed. If it is executed, the node SUCCEEDS AND returns the
result of the execution of its child node.

Example

<RandomGate opensWithChance="0.5">
 <ThrowGrenade type="frag" />
</RandomGate>

SendTransitionSignal

Sends a signal, destined for a state machine node on the behavior tree, with the explicit intent of causing a
change of state.

Parameters

name

Name of the signal to be sent.

Success/Failure

This node does not succeed or fail.

Example

<SendTransitionSignal name="LeaveSearch" />

SetAlertness

Sets the AI agent's alertness level.

Parameters

value

Alertness level. Allowed values include integers 0 to 2.

Version 1.8
70

Lumberyard Developer Guide
Modular Behavior Tree

Success/Failure

The node always SUCCEEDS.

Example

<SetAlertness value="1" />

Shoot

Sets the AI agent to shoot at a target or location.

Parameters

duration

Length of time (in seconds) the AI agent should continue shooting.

at

Location to shoot at. Allowed values include:

• AttentionTarget

• ReferencePoint

• LocalSpacePosition

fireMode

Firing style. Allowed values include:

• Off - Do not fire (default).

• Burst - Fire in bursts at living targets only.

• Continuous - Fire continuously at living targets only.

• Forced - Fire continuously at any target.

• Aim - Aim only at any target.

• Secondary - Fire secondary weapon (grenades, etc.).

• SecondarySmoke - Fire smoke grenade.

• Melee - Melee.

• Kill - Shoot at the target without missing, regardless of the AI agent's aggression/attackRange/
accuracy settings.

• BurstWhileMoving - Fire in bursts while moving and too far away from the target.

• PanicSpread - Fire randomly in the general direction of the target.

• BurstDrawFire - Fire in bursts in an attempt to draw enemy fire.

• MeleeForced - Melee without distance restrictions.

• BurstSwipe - Fire in burst aiming for a head shot.

• AimSweep - Maintain aim on the target but don't fire.

• BurstOnce - Fire a single burst.

stance

Body stance while shooting. Allowed values include:

• Relaxed

• Alerted

• Crouch

Version 1.8
71

Lumberyard Developer Guide
Modular Behavior Tree

• Stand

position

(Required if the target is a local space position) Local space position to be used as the target.

stanceToUseIfSlopeIsTooSteep

(Optional) Alternative stance style if the slope exceeds a specified steepness. Allowed values are the
same as for stance.

allowedSlopeNormalDeviationFromUpInDegrees

(Optional) Maximum allowed steepness (in degrees of inclination above horizontal) to set the primary
stance. At positions that exceed this slope, the alternative stance is used.

aimObstructedTimeout

(Optional) Length of time (in seconds) the AI agent's aim can be obstructed before the node will fail.

Success/Failure

The node SUCCEEDS if it executes for the specified duration. The node FAILS if the aim is obstructed for
longer than the specified timeout.

Example

<Shoot at="Target" stance="Crouch" fireMode="Burst" duration="5"
 allowedSlopeNormalDeviationFromUpInDegrees="30" stanceToUseIfSlopeIsTooSteep="Stand" />

ShootFromCover

Sets the AI agent to shoot at the target from cover and adjusts its stance accordingly.

Parameters

duration

Length of time (in seconds) the node should execute.

fireMode

Firing style. Allowed values are listed for the Shoot (p. 71) node.

aimObstructedTimeout

(Optional) Length of time (in seconds) the AI agent's aim can be obstructed before the node will fail.

Success/Failure

The node SUCCEEDS if it executes for the specified duration. The node FAILS if the AI agent is not in
cover, if there's no shoot posture, or if the aim is obstructed for longer than the specified timeout.

Example

<ShootFromCover duration="10" fireMode="Burst" aimObstructedTimeout="3" />

Signal

Sends a signal to the AI system. See Signals (p. 86).

Version 1.8
72

Lumberyard Developer Guide
Modular Behavior Tree

Parameters

name

Name of the signal to be sent.

filter

(Optional) Signal filter to use when sending the signal, which determines which AI agents will receive it.

Success/Failure

The node always SUCCEEDS.

Example

<Signal name="StartedJumpAttack" />

SmartObjectStatesWrapper

Sets the states of certain smart objects immediately before and/or after the execution of a child node.

Parameters

onEnter

(Optional) Smart object states to set at the start.

onExit

(Optional) Smart object states to set at the end.

Success/Failure

The node returns the result of executing the child node.

Example

<SmartObjectStatesWrapper onEnter="InSearch" onExit="-InSearch">
 <Animate name="LookAround" />
</SmartObjectStatesWrapper>

Stance

Sets the stance of the AI agent.

Parameters

name

Primary stance style. Allowed values include:

• Relaxed

• Alerted

• Crouch

• Stand

stanceToUseIfSlopeIsTooSteep

(Optional) Alternative stance style if the slope exceeds a specified steepness. Allowed values are the
same as for stance.

Version 1.8
73

Lumberyard Developer Guide
Modular Behavior Tree

allowedSlopeNormalDeviationFromUpInDegrees

(Optional) Maximum allowed steepness (in degrees of inclination above horizontal) to set the primary
stance. At positions that exceed this slope, the alternative stance is used.

Success/Failure

The node always SUCCEEDS.

Example

<Stance name="Crouch" allowedSlopeNormalDeviationFromUpInDegrees="30"
 stanceToUseIfSlopeIsTooSteep="Stand" />

StopMovement

Sends a request to the Movement system to stop all movements. See Movement System (p. 33).

Note
This may not immediately stop the AI agent The Movement system may be dependent on
animations and physics that dictate a 'natural' stop rather than an immediate cessation of
movement.

Parameters

waitUntilStopped

Boolean indicating whether or not the node should wait for the Movement System to finish processing
the request.

waitUntilIdleAnimation

Boolean indicating whether or not the node should wait until the Motion_Idle animation fragment begins
running in Mannequin.

Success/Failure

The node SUCCEEDS if the stop request has been completed.

Example

<StopMovement waitUntilStopped="1" waitUntilIdleAnimation="0" />

Teleport

Moves the AI agent when both the destination point and source point are outside the camera view.

Parameters

None.

Success/Failure

The node always SUCCEEDS.

Example

<Teleport />

Version 1.8
74

Lumberyard Developer Guide
Modular Behavior Tree

ThrowGrenade

Triggers the AI agent to attempt a grenade throw.

Parameters

timeout

Maximum length of time (in seconds) to wait for the grenade to be thrown.

type

Grenade type to throw. Allowed values include:

• emp

• frag

• smoke

Success/Failure

The node SUCCEEDS if a grenade is thrown before it times out, otherwise the node FAILS.

Example

<ThrowGrenade type="emp" timeout="3" />

WaitUntilTime

Executes until a time condition is satisfied.

Parameters

since

Name of the time stamp to check for the condition.

isMoreThan

Condition statement used to test whether the time stamp is greater than a specified value. Cannot be
used with the parameter isLessThan.

isLessThan

Condition statement used to test whether the time stamp is less than a specified value. Cannot be used
with the parameter isMoreThan.

succeedIfNeverBeenSet

(Optional) Boolean indicating whether or not to set the node to succeed if the time stamp was never
set.

Success/Failure

The node SUCCEEDS if the time condition is true. If the specified time stamp was not previously set, the
node FAILS, unless the parameter succeedIfNeverBeenSet is true, in which case it SUCCEEDS.

Example

<WaitUntilTime since="BeingShotAt" isMoreThan="7" />

Version 1.8
75

Lumberyard Developer Guide
Modular Behavior Tree

CryAction Nodes

These nodes provide MBT functionality for CryAction features.

AnimateFragment

Plays a Mannequin animation fragment and waits until the animation finishes.

Parameters

name

Name of the animation to play.

Success/Failure

The node SUCCEEDS if the animation is correctly played or if no operation was needed. The node FAILS if
an error occurs while trying to queue the animation request.

Example

<AnimateFragment name="SomeFragmentName" />

Game Nodes

These nodes offer game-specific MBT functionality. These allow a game with multiple character types to
trigger specific logic and perform actions involving each type's peculiarities. Game-specific nodes not likely
to be good for "general use" will probably need customization for each game.

Character types are defined in a Lua file, which contains a table of settings for game nodes.

InflateAgentCollisionRadiusUsingPhysicsTrick

Enlarges an AI agent's capsule radius for collisions with a player. This node employs a trick in the physics
system inflate the capsule radius for agent-player collisions while leaving the radius unchanged for
collisions between the agent and the world.

Note
This trick is entirely isolated within this node. The node does not clean up after itself, so the
capsule remains inflated after it has been used.

This trick works as follows:

1. Sets the player dimensions with the agent-vs.-player collision radius. The physics system is multi-
threaded, so there's a short wait while until the player dimensions are committed.

2. Periodically inspects the player dimensions to check that the agent-vs.-player collision radius has been
successfully committed. This can sometimes fail to happen, such as when the AI agent is in a tight spot
and can't inflate.

3. Once the agent-vs.-player radius has been committed, goes into the geometry and sets the capsule's
radius in place, using the agent-vs.-world radius. This will not affect the agent-vs.-player dimensions.

Parameters

radiusForAgentVsPlayer

Size of capsule to use when calculating collisions between the AI agent and the player.

radiusForAgentVsWorld

Size of capsule to use when calculating collisions between the AI agent and the world.

Version 1.8
76

Lumberyard Developer Guide
Modular Behavior Tree

Success/Failure

The node does not SUCCEED or FAIL. Once executed, it continues running until it is out of the scope of
the executed nodes.

Example

<InflateAgentCollisionRadiusUsingPhysicsTrick radiusForAgentVsPlayer="1.0"
 radiusForAgentVsWorld="0.5" />

KeepTargetAtADistance

Keeps the live target at a distance by physically pushing the target away when it is within a specified
distance. This node is useful when there is some sort of action close to the player and you want to avoid
clipping through the camera. Use of this node is preferable over increasing the AI agent's capsule size,
which will also affect how the character fits through tight passages. This node is generally used in parallel
with other actions that need to be performed while the player cannot come too close to the AI agent; for
example, when playing an animation on the spot that can move the AI agent without moving the locator,
causing camera clipping.

Parameters

distance

Minimum distance allowed between the player and the AI agent.

impulsePower

Amount of impulse used to keep the player at least at the minimum distance.

Success/Failure

The node does not SUCCEED or FAIL. Once executed, it continues running until it is out of the scope of
the executed nodes.

Example

<KeepTargetAtADistance distance="1.8" impulsePower="1.5" />

Melee

Triggers a melee attack against the AI agent's target. The melee attack is performed if the following
condition are satisfied:

• If failIfTargetNotInNavigationMesh is set, the target must be on a valid walkable position. Some
melee animations can move the character to a position outside the navigable area if trying to melee a
target outside the navigation mesh.

• If the target is not within the threshold angle specified by the entity Lua value melee.angleThreshold.

Parameters

target

Target of the melee attack. This parameter could be set with the AI agent's AttentionTarget or a
generic RefPoint.

cylinderRadius

Radius of the cylinder used for the collision check of the hit.

Version 1.8
77

Lumberyard Developer Guide
Modular Behavior Tree

hitType

Type of hit that will be reported to the game rules. Default is CGameRules::EHitType::Melee.

failIfTargetNotInNavigationMesh

Boolean indicating whether or not the node should try to melee a target that is outside the navigation
mesh.

materialEffect

Name of the material effect used when the melee attack hits the target.

Success/Failure

This node succeeds regardless of whether or not a melee attack is executed and, if it is, whether or not the
attack damages the target. This is because a failure in this node is not important for behavior tree logic. If
it's important for the game to react to this situation, a fail option can be added.

Example

<Melee target="AttentionTarget" cylinderRadius="1.5" hitType="hitTypeName"
 materialEffect="materialEffectName" />

Lua table settings

The Lua table melee contains the following settings:

melee =
{
 damage = 400,
 hitRange = 1.8,
 knockdownChance = 0.1,
 impulse = 600,
 angleThreshold = 180,
},

damage

Amount of damage a melee attack inflicts on the target.

hitRange

Height of the cylinder used to check whether or not the melee attack can hit the target.

knockdownChance

Probability that a successful melee attack knocks down the player.

impulse

Amount of impulse applied to the player in the case of a successful melee attack.

angleThreshold

Maximum angle allowed between the AI agent's direction of movement and the direction of a path
between the AI agent and the target for melee attack to be attempted.

ScorcherDeploy

Manages how the Scorcher character type handles certain activity while deploying or undeploying as part of
its shooting phase. This node relies on some external Lua scripts and various signals to work properly, but
is useful in obfuscating some common functionality in the AI libraries.

Version 1.8
78

Lumberyard Developer Guide
Modular Behavior Tree

Before and after the node runs, the following Lua functions are called: EnterScorchTargetPhase()
and LeaveScorchTargetPhase(). When the node starts running, the "ScorcherScorch" animation tag is
requested by Mannequin. When the node stops , if it stops normally, the "ScorcherNormal" tag is requested
again. If it is terminated prematurely, it is up to the behavior tree script to define a proper exit strategy, such
as requesting the "ScorcherTurtle" tag.

On requesting animation tags, the node waits for the following animation events to be received (this
ensures that the transition blend animations are not interrupted):

1. "ScorcherDeployed" – when the scorcher is ready to start firing

2. "ScorcherUndeployed" – when the scorcher is again ready to walk around

The node encapsulates the following child nodes: RunWhileDeploying and RunWhileDeployed, each of
which can contain exactly one child node.

RunWhileDeploying

Causes activity to happen while the Scorcher is in the process of deploying, that is, getting ready for an
attack. As an example, this node might be used to control aiming before actually shooting.

The node will continue running until one of the following events occur, after which the node will be forcefully
stopped:

• ScorcherFriendlyFireWarningModule sends one of these signals to the entity: "OnScorchAreaClear" or
OnScorchAreaNotClearTimeOut"

• Mannequin animation sequence sends a "ScorcherDeployed" signal

• An internal timeout elapses

The node does not support any parameters. The node SUCCEEDS or FAILS depending on whether the
child node succeeds or fails. The node is allowed to SUCCEED prematurely.

RunWhileDeployed

Controls actual aiming and firing during an attack. Duration and execution of the attack is controlled via this
node.

The node does not support any parameters. The node SUCCEEDS or FAILS depending on whether the
child node succeeds or fails. The node is allowed to SUCCEED prematurely. If the node SUCCEEDS, this
triggers the parent node to start the undeployment sequence.

Parameters

maxDeployDuration

Length of time (in seconds) to allow the "RunWhileDeploying" child node to run. Default is 2.0.

Success/Failure

The node SUCCEEDS if the entire deploy and undeploy sequence is completed. The node FAILS if either
the RunWhileDeploying or RunWhileDeployed nodes FAILED.

Example

<ScorcherDeploy maxDeployDuration="1.0">
 <RunWhileDeploying>
 <SomeChildNode>

Version 1.8
79

Lumberyard Developer Guide
Modular Behavior Tree

 </RunWhileDeploying>
 <RunWhileDeployed>
 <SomeOtherChildNode>
 </RunWhileDeployed>
</ScorcherDeploy>

SuppressHitReactions

Enables or disables the Hit Reaction system for the AI agent.

Parameters

None.

Success/Failure

The node SUCCEEDS or FAILS based on success of failure of its child node.

Example

<SuppressHitReactions>
 <SomeChildNode />
</SuppressHitReactions>

Flying Nodes

These nodes provide MBT functionality related to flying vehicles.

Hover

Causes a flying AI agent to hover at its current position.

Parameters

None.

Success/Failure

The node does not SUCCEED or FAIL. Once executed, it continues running until forced to terminate.

Example

<Hover />

FlyShoot

Allows the AI agent to shoot at its attention target when possible from its current position.

If the AI agent's secondary weapon system is used, the node will only open fire if the weapons are able to
hit close enough to the target. Otherwise normal firing rules are applied.

Parameters

useSecondaryWeapon

Boolean indicating whether or not the secondary weapon system (such as rocket launchers) should be
used. Default is 0.

Version 1.8
80

Lumberyard Developer Guide
Modular Behavior Tree

Success/Failure

The node does not SUCCEED or FAIL. Once executed, the AI agent continues to shoot until forced to
terminate.

Example

<FlyShoot useSecondaryWeapon="1" />

WaitAlignedWithAttentionTarget

Waits until the AI agent is facing its attention target.

Parameters

toleranceDegrees

Maximum angle (in degrees) between the attention target and the forward direction of the AI agent to
consider the AI agent to be "facing" the attention target. Allowed values include the range [0.0,180.0].
Default is 20.0.

Success/Failure

The node SUCCEEDS if the angle between the AI agent's forward direction and its attention target is within
the allowed range. The node FAILS if the AI agent has no attention target.

Example

<WaitAlignedWithAttentionTarget toleranceDegrees="40" />

Fly

Allows an AI agent to fly around by following a path. Paths should be assigned to the AI agent using Flow
Graph.

Parameters

desiredSpeed

Speed of movement (in meters per second) along the path to move along the path. Default is 15.0.

pathRadius

Radius of the path (in meters). While flying, the AI agent tries to stay within this distance from the
path's line segments. Defaults is 1.0.

lookAheadDistance

Distance (in meters) to look forward along the path for 'attractor points' to fly to. Default is 3.0.

decelerateDistance

Distance (in meters) from the end of the path that the AI agent starts to decelerate. Default is 10.0.

maxStartDistanceAlongNonLoopingPath

Maximum distance (in meters) to look ahead for the closest point to link with another path. This
parameter is used to link with non-looping paths; for example, it is useful to prevent the AI agent from

Version 1.8
81

Lumberyard Developer Guide
Modular Behavior Tree

snapping to the new path at a position that seems closer but is actually behind a wall after a U-turn.
Defaults is 30.0.

loopAlongPath

Boolean indicating whether or not the AI agent should follow a path in an endless loop. Default is 0.

startPathFromClosestLocation

Boolean indicating at what point the AI agent should start following a path. Default is 0.

• 1 - at its closest position

• 2 - at the first path waypoint

pathEndDistance

Distance (in meters) from the end of the path that this node should start sending arrival notification
events. Defaults is 1.0.

goToRefPoint

Boolean indicating whether or not the current reference point should be appended to the end of the
path. Default is 0.

Success/Failure

The node SUCCEEDS if the AI agent reached the end of the path. The node FAILS if no valid path was
assigned to the AI agent.

Example

<Fly lookaheadDistance="25.0" pathRadius="10.0" decelerateDistance="20.0"
 pathEndDistance="1" desiredSpeed="15" maxStartDistanceAlongNonLoopingPath="30"
 loopAlongPath="0" goToRefPoint="1" startPathFromClosestLocation="1" />

Lua table settings

The following properties in the AI agent's Lua script table can override the default XML tags. This will allow
for changes to be made at run-time through (Flow Graph) scripting.

When Lua variable XML tag

Each node tick Helicopter_Speed desiredSpeed

Node activation Helicopter_Loop loopAlongPath

Node activation Helicopter_StartFromClosestLocation startPathFromClosestLocation

Upon arrival, the following events will be emitted:

• ArrivedCloseToPathEnd

• ArrivedAtPathEnd

FlyForceAttentionTarget

Keeps an attention target on a flying vehicle by force. The attention target is acquired during each tick
of the node from the Helicopter_ForcedTargetId Lua script variable. When the node is deactivated, a
ForceAttentionTargetFinished event is emitted.

Version 1.8
82

Lumberyard Developer Guide
Modular Behavior Tree

Parameters

None.

Success/Failure

The node does not SUCCEED or FAIL. Once executed, it continues to force the attention target until
deactivation.

Example

<FlyForceAttentionTarget />

FlyAimAtCombatTarget

Aims a flying AI agent at its target, taking into account special aiming adjustments for weapons.

Parameters

None.

Success/Failure

The node does not SUCCEED or FAIL. Once executed, it continues to force the AI agent to rotate its body
towards the attention target until termination.

Example

<FlyAimAtCombatTarget />

HeavyShootMortar

Controls shooting the mortar (or Heavy X-Pak) weapon. It tries to simplify and centralize the pre-condition
check and initialization of the weapon, plus re-selection of the primary weapon.

Parameters

to

(Optional) Shooting target. Allowed values include:

• Target (default)

• Refpoint

fireMode

(Optional) Type of firing. Allowed values include:

• Charge (default)

• BurstMortar

timeout

(Optional) Maximum time (in seconds) to continue shooting. Default is 5.0.

aimingTimeBeforeShooting

(Optional) Time (in seconds) to spend aiming before starting to shoot. Value must be longer than the
global timeout. Default is 1.0.

minAllowedDistanceFromTarget

(Optional) Minimum distance (in meters) to the target required to start shooting. Default is 10.0.

Version 1.8
83

Lumberyard Developer Guide
Modular Behavior Tree

Success/Failure

The node FAILS if the weapon is closer to the target than the value of minAllowedDistanceFromTarget.
The node FAILS if there are obstructions less than two meters in front of the weapon; a cylinder check
is done to avoid this. The node FAILS if the timeout is reached. The node SUCCEEDS if the shooting
SUCCEEDS.

Example

<HeavyShootMortar to="RefPoint" fireMode="Charge" aimingTimeBeforeShooting="2"
 timeout="7" />

SquadScope

Makes execution of a child node conditional on adding the AI agent to a squad scope. Squads allow a
limited number of concurrent users.

Note
The dynamic squad system uses the AI system's cluster detector. This tool is used with
AISquadManager to group AI agents into dynamic squads.

Parameters

name

Name of the squad scope to enter.

allowedConcurrentUsers

(Optional) Maximum number of simultaneous users allowed in the specified squad scope. Default is 1.

Success/Failure

The node SUCCEEDS when the child SUCCEEDS. The node FAILS if the AI agent can't enter the squad
scope or if the child FAILS.

Example

<SquadScope name="SomeScopeName" allowedConcurrentUsers="5">
 <SomeChildNode />
</SquadScope>

SendSquadEvent

Sends an event to squad members only.

Note
The dynamic squad system uses the AI system's cluster detector. This tool is used with
AISquadManager to group AI agents into dynamic squads.

Parameters

name

Name of the event to be sent.

Success/Failure

The node always SUCCEEDS after sending the event.

Version 1.8
84

Lumberyard Developer Guide
Refpoints

Example

<SendSquadEvent name="SomeEventName" />

IfSquadCount

Makes execution of a child node conditional on whether or not the number of squad members meets a
specified condition. Although all parameters are optional, at least one parameter must be used.

Note
The dynamic squad system uses the AI system's cluster detector. This tool is used with
AISquadManager to group AI agents into dynamic squads.

Parameters

isGreaterThan

(Optional) Condition statement used to test whether the number of squad members exceeds a
specified value.

isLesserThan

(Optional) Condition statement used to test whether the number of squad members is under a specified
value.

equals

(Optional) Condition statement used to test whether the number of squad members exactly equals a
specified value.

Success/Failure

The node SUCCEEDS if the number of squad members satisfies the specified condition statement, and
FAILS if not.

Example

<IfSquadCount isGreaterThan="1">
 <SomeChildNode />
</IfSquadCount>

Refpoints
A refpoint, or reference point, is a special AI object used by goalpipes. It primarily specifies a position and,
as needed, a direction. The following examples illustrate how refpoints are used.

Example 1: Updating a refpoint involving sub-goalpipes

In this example, a refpoint position is set, and a goalpipe is created containing three goalops: Locate, Stick,
and Signal. Using the refpoint, Locate sets a value called LASTOP, which is used in Stick to pinpoint a
destination.

Notice that the goalop Stick is defined as "+stick". This ensures that Stick is grouped with the previous
goalop (Locate). As a result, if the interrupting goalpipe affects values that Stick depends on (such as
LASTOP), it will return to the appropriate goalop to update the dependent values.

ACT_GOTO = function(self, entity, sender, data)

Version 1.8
85

Lumberyard Developer Guide
Signals

 if (data and data.point) then
 AI.SetRefPointPosition(entity.id, data.point);

 -- use dynamically created goal pipe to set approach distance
 g_StringTemp1 = "action_goto"..data.fValue;
 AI.CreateGoalPipe(g_StringTemp1);
 AI.PushGoal(g_StringTemp1, "locate", 0, "refpoint");
 AI.PushGoal(g_StringTemp1, "+stick", 1, data.point2.x, AILASTOPRES_USE, 1,
 data.fValue); -- noncontinuous stick
 AI.PushGoal(g_StringTemp1, "signal", 0, 1, "VEHICLE_GOTO_DONE",
 SIGNALFILTER_SENDER);
 entity:InsertSubpipe(AIGOALPIPE_SAMEPRIORITY, g_StringTemp1, nil, data.iValue);
 end
end,

Example 2: Using an AI anchor to set a refpoint

In this example, the Smart Object system spots a relevant AI anchor using OnBiomassDetected. This
anchor is used to set both the position and direction of the refpoint. As a result, the AI agent walks to the
refpoint, turns to the indicated direction, and then selects the next goalpipe.

OnBiomassDetected = function(self, entity, sender, data)
 entity:SetTargetBiomass(sender);
 entity:SelectPipe(0, "AlienTick_ReachBiomass");
end,

function AlienTick_x:SetTargetBiomass(biomass)
 self.AI.targetBiomassId = biomass.id;
 AI.SetRefPointPosition(self.id, biomass:GetWorldPos());
 AI.SetRefPointDirection(self.id, biomass:GetDirectionVector(1));
end

<GoalPipe name="AlienTick_ReachBiomass">
 <Speed id="Walk"/>
 <Locate name="refpoint"/>
 <Stick distance="0.3" useLastOp="true"/>
 <Signal name="OnBiomassReached"/>
</GoalPipe>

OnBiomassReached = function(self, entity)
 entity.actor:SetForcedLookDir(AI.GetRefPointDirection(entity.id));
 entity:SelectPipe(0, "AlienTick_CollectBiomass");
end,

Note
The tag <Group> was not used in this example because this particular goalpipe is not intended to
be interrupted (which is not generally the case).

Signals
The Lumberyard AI system includes a fully customizable Signal system that enables AI entities to
communicate with each other. Communication consists of signal events that can be sent by an AI agent to
another single agent (including itself), or to a group of AI agents currently active in the game.

This topic describes how to send and receive signals between AI agents.

Signals Reference (p. 89)

Version 1.8
86

Lumberyard Developer Guide
Signals

Sending Signals

Signals are sent from an AI agent's behavior to one or more other AI agents using the method
AI:Signal().

AI:Signal(Signal_filter, signal_type, *MySignalName*, sender_entity_id);

Signal_filter

Group of AI agents to receive the signal. Allowed values include:

• 0 – AI agent specified with the entity_id parameter (usually but not always the sender itself).

• SIGNALFILTER_LASTOP – AI agent's last operation target (if it has one).

• SIGNALFILTER_TARGET – AI agent's current attention target.

• SIGNALFILTER_GROUPONLY – All AI agents in the sender's group (same group id) within
communication range.

• SIGNALFILTER_SUPERGROUP – All AI agents in the sender's group (same group id) within the
whole level.

• SIGNALFILTER_SPECIESONLY – All AI agents of the sender's species within communication
range.

• SIGNALFILTER_SUPERSPECIES – All AI agents of the sender's species within the whole level.

• SIGNALFILTER_HALFOFGROUP – Half the AI agents in the sender's group, randomly selected.

• SIGNALFILTER_NEARESTGROUP – Nearest AI agent in the sender's group.

• SIGNALFILTER_NEARESTINCOMM – Nearest AI agent in the sender's group within communication
range.

• SIGNALFILTER_ANYONEINCOMM – All AI agents within communication range.

• SIGNALID_READIBILITY – Special signal used to make the recipient perform a readability event
(sound/animation).

signal_type

Type of signal, which determines how the recipient will process it. Allowed values include:

• 1 – Recipient processes signal only if it is enabled and not set to "ignorant" (see
AI:MakePuppetIgnorant).

• 0 – The entity receiving the signal will process it if it's not set to ignorant.

• -1 – The entity receiving the signal will process it unconditionally.

MySignalName

The actual identifier of the signal. It can be any non-empty string; for the signal recipient, it must exist
a function with the same name either in its current behavior, its default behavior or in the Scripts/AI/
Behaviors/Default.lua script file in order to react to the received signal.

entity_id

The entity id of the signal's recipient. Usually you may want to put entity.id (or self.id if it's called from
the entity and not from its behavior), to send the signal to the sender itself, but you can also put any
other id there to send the signal to another entity.

Receiving Signals

The action to be performed once a signal is received is defined in a function like this:

MySignalName = function(self, entity, sender)

Version 1.8
87

Lumberyard Developer Guide
Signals

self

The recipient entity's behavior.

entity

The recipient entity.

sender

The signal's sender.

This function is actually a callback which, exactly like the system events, can be defined in the recipient
entity's current behavior, the default idle behavior (if it's not present in current behavior) or in the Scripts/
AI/Behaviors/Default.lua script file (if not present in the default idle behavior).

As for system events, a signal can be used also to make a character change its behavior; if we add a line
like the following in a character file:

Behaviour1 = {
 OnEnemySeen = *Behaviour1*,
 OnEnemyMemory = *Behaviour2*,
 …
 MySignalName = *MyNewBehaviour*,
}

This means that if the character is currently in Behaviour1, and receives the signal MySignalName, after
having executed the callback function above it will then switch its behavior to MyNewBehaviour.

Signal Example

A typical example is when a player's enemy spots the player: its OnEnemySeen system event is called, and
let's suppose he wants to inform his mates (The guys with his same group id). In his default idle behavior
(i.e., CoverAttack.lua if the character is Cover), we modify its OnEnemySeen event like this:

OnEnemySeen = function(self, entity, fDistance)
 -- called when the enemy sees a living enemy

 AI:Signal(SIGNALFILTER_GROUPONLY, 1, "ENEMY_SPOTTED",entity.id);
end,

Here we have defined a new signal called ENEMY_SPOTTED.

The next step is to define the callback function. Let's assume the other members in the group have the
same character, we then add the callback function to the same idle behavior in which we have just modified
OnEnemySeen.

ENEMY_SPOTTED = function (self, entity, sender)
 entity:Readability("FIRST_HOSTILE_CONTACT");
 entity:InsertSubpipe(0, "DRAW_GUN");
End,

This will make the guys (including the signal sender itself, who has the same behavior) change their
animation and producing some kind of alert sound (readability), and then draw their gun. Notice that
by modifying its idle behavior, we create a default callback which will be executed for any behavior the
character is in. Later on, we may want to override this callback in other behaviors. For example, if we
wanted the character to react differently whether it's in idle or attack behavior, we'll add the following
callback function in the CoverAttack.lua file:

Version 1.8
88

Lumberyard Developer Guide
Signals

ENEMY_SPOTTED = function (self, entity, sender)
 entity:SelectPipe(0, "cover_pindown");
End,

Where "cover_pindown" is a goalpipe that makes the guy hide behind the nearest cover place to the target.

We can extend this to other characters: if there are group members with different characters (i.e. Scout,
Rear etc) and we want them to react as well, we must add the ENEMY_SPOTTED callback also to their
idle/attack behavior. Finally, we want the guys to switch their behavior from idle to attack if they see an
enemy.

We'll then add the following line to the character (Scripts/AI/Characters/Personalities/Cover.lua in
the example):

CoverIdle = {
 …
 ENEMY_SPOTTED = *CoverAttack*,
},

Behavior Inheritance

If specific signals are to be used in more than one behavior, there is an inheritance mechanism.
Behavior classes can either directly inherit a more general implementation by keyword Base =
[CRYENGINE:ParentBehaviorName] or indirectly, as a character's Idle behavior as well as the default
behavior (defined in file DEFAULT.lua) are considered as fallback behaviors if a signal is not implemented
in the current behavior.

Signals Reference

A typical signal handler looks something like this:

OnEnemySeen = function(self, entity, distance)
 -- called when the AI sees a living enemy
end,

Parameters self (behavior table) and entity (entity table) are passed to every signal. Additional parameters
are specific to the signal being used.

See also: \Game\Scripts\AI\Behaviors\Template.lua.

Perception Signals

The following signals are sent to AI agents when perception types of their attention targets change.

Note that AITHREAT_SUSPECT < AITHREAT_INTERESTING < AITHREAT_THREATENING <
AITHREAT_AGGRESSIVE.

No Target

Name Parameters Description

OnNoTarget Attention target is lost

Sound

Sound heard (no visible target).

Version 1.8
89

Lumberyard Developer Guide
Signals

Name Parameters Description

OnSuspectedSoundHeard Threat is AITHREAT_SUSPECT

OnInterestingSoundHeard Threat is AITHREAT_INTERESTING

OnThreateningSoundHeard Threat is AITHREAT_THREATENING

OnEnemyHeard Threat is AITHREAT_AGGRESSIVE

Memory

The target is not visible and is in memory.

Name Parameters Description

OnEnemyMemory Threat is AITHREAT_THREATENING

OnLostSightOfTarget Threat is AITHREAT_AGGRESSIVE

OnMemoryMoved Threat is AITHREAT_AGGRESSIVE and its
location or owner has changed

Visual

The target is visible.

Name Parameters Description

OnSuspectedSeen Threat is AITHREAT_SUSPECT

OnSomethingSeen Threat is AITHREAT_INTERESTING

OnThreateningSeen Threat is AITHREAT_THREATENING

OnEnemySeen distance Threat is AITHREAT_AGGRESSIVE

OnObjectSeen distance, data AI sees an object registered for this
signal. data.iValue = AI object type (e.g.
AIOBJECT_GRENADE or AIOBJECT_RPG)

OnExposedToExplosion data AI is affected by explosion at data.point

OnExplosionDanger Destroyable object explodes

Awareness of Player

Name Parameters Description

OnPlayerLooking sender, data Player is looking at the AI for
entity.Properties.awarenessOfPlayer seconds.
data.fValue = player distance

OnPlayerSticking sender Player is staying close to the AI since
<entity.Properties.awarenessOfPlayer> seconds

OnPlayerLookingAway sender Player has just stopped looking at the AI

Version 1.8
90

Lumberyard Developer Guide
Signals

Name Parameters Description

OnPlayerGoingAway sender Player has just stopped staying close to the AI

Awareness of Attention Target

Name Parameters Description

OnTargetApproaching

OnTargetFleeing

OnNewAttentionTarget

OnAttentionTargetThreatChanged

OnNoTargetVisible

OnNoTargetAwareness

OnSeenByEnemy sender AI is seen by the enemy

Weapon Damage

Name Parameters Description

OnBulletRain sender Enemy is shooting

OnDamage sender, data AI was damaged by another friendly/unknown AI.
data.id = damaging AI's entity id

OnEnemyDamage sender, data AI was damaged by an enemy AI. data.id =
damaging enemy's entity id

Proximity

Name Parameters Description

OnCloseContact enemy gets at a close distance to an AI (defined by
Lua Property "damageRadius" of this AI)

OnCloseCollision

Vehicles

Name Parameters Description

OnVehicleDanger sender, data vehicle is going towards the AI. data.point = vehicle
movement direction, data.point2 = AI direction with
respect to vehicle

OnEndVehicleDanger

OnTargetTooClose sender, data attention target is too close for the current weapon
range (it works only if AI is a vehicle)

Version 1.8
91

Lumberyard Developer Guide
Signals

Name Parameters Description

OnTargetTooFar sender, data attention target is too close for the current weapon
range (it works only if AI is a vehicle)

OnTargetDead

User-defined

Custom signals can be sent when an attention target enters or leaves certain ranges. This is configured
using the following Lua functions:

AI.ResetRanges(entityID);
AI.AddRange(entityID,range, enterSignal, leaveSignal);
AI.GetRangeState(entityID, rangeID);
AI.ChangeRange(entityID, rangeID, distance);

Weapon-Related Signals

Name Parameters Description

OnLowAmmo

OnMeleeExecuted

OnOutOfAmmo

OnReload AI goes into automatic reload after its clip is empty

OnReloadDone reload is done

OnReloaded

Navigation Signals

Pathfinding

Name Parameters Description

OnEndPathOffset sender AI has requested a path and the end of path is far
from the desired destination

OnNoPathFound sender AI has requested a path which is not possible

OnPathFindAtStart

OnBackOffFailed sender AI tried to execute a "backoff" goal which failed

OnPathFound sender AI has requested a path and it's been computed
successfully

Steering

Name Parameters Description

OnSteerFailed

Version 1.8
92

Lumberyard Developer Guide
Signals

Smart Objects

Name Parameters Description

OnEnterNavSO

OnLeaveNavSO

OnUseSmartObject

Navigation Shapes

Name Parameters Description

OnShapeEnabled

OnShapeDisabled

Tactics Signals

Tactical Point System

Name Parameters Description

OnTPSDestNotFound

OnTPSDestFound

OnTPSDestReached

Cover

Name Parameters Description

OnHighCover

OnLowCover

OnMovingToCover

OnMovingInCover

OnEnterCover

OnLeaveCover

OnCoverCompromised

Groups Signals

Name Parameters Description

OnGroupChanged

OnGroupMemberMutilated

Version 1.8
93

Lumberyard Developer Guide
Signals

Name Parameters Description

OnGroupMemberDiedNearest

Formation

Name Parameters Description

OnNoFormationPoint sender AI couldn't find a formation point

OnFormationPointReached

OnGetToFormationPointFailed

Group Coordination

Group target is the most threatening target of the group.

Name Parameters Description

OnGroupTargetNone

OnGroupTargetSound

OnGroupTargetMemory

OnGroupTargetVisual

PerformingRole

Flow Graph Signals

These are signals sent by corresponding Flow Graph nodes when they are activated.

Name Parameters Description

ACT_AIMAT AI:AIShootAt

ACT_ALERTED AI:AIAlertMe

ACT_ANIM AI:AIAnim

ACT_ANIMEX AI:AIAnimEx

ACT_CHASETARGET Vehicle:ChaseTarget

ACT_DIALOG AI:ReadabilityDialog (also sent by Dialog System)

ACT_DIALOG_OVER Sent by Dialog System

ACT_DUMMY

ACT_DROP_OBJECT AI:AIDropObject

ACT_ENTERVEHICLE Vehicle:Enter

ACT_EXECUTE AI:AIExecute

ACT_EXITVEHICLE Vehicle:Exit, Vehicle:Unload

Version 1.8
94

Lumberyard Developer Guide
Signals

Name Parameters Description

ACT_FOLLOW AI:AIFollow

ACT_FOLLOWPATH AI:AIFollowPath, AI:AIFollowPathSpeedStance,
Vehicle:FollowPath

ACT_GRAB_OBJECT AI:AIGrabObject

ACT_GOTO AI:AIGoto, AI:AIGotoSpeedStance, and the AI
Debugger when the user clicks the middle mouse
button.

ACT_JOINFORMATION AI:AIFormationJoin

ACT_SHOOTAT AI:AIShootAt

ACT_USEOBJECT AI:AIUseObject

ACT_VEHICLESTICKPATH Vehicle:StickPath

ACT_WEAPONDRAW AI:AIWeaponDraw

ACT_WEAPONHOLSTER AI:AIWeaponHolster

ACT_WEAPONSELECT AI:AIWeaponSelect

Other Signals

Forced Execute

Name Parameters Description

OnForcedExecute

OnForcedExecuteComplete

Animation

Name Parameters Description

AnimationCanceled

Game

Name Parameters Description

OnFallAndPlay

Vehicle-related

Name Parameters Description

OnActorSitDown Actor has entered a
vehicle

Version 1.8
95

Lumberyard Developer Guide
Signals

Squads

Name Parameters Description

OnSomebodyDied

OnBodyFallSound

OnBodyFallSound

OnUnitDied

OnSquadmateDied

OnPlayerTeamKill

OnUnitBusy

OnPlayerDied

Name Parameters Description

OnFriendInWay sender AI is trying to fire and another friendly AI is on his
line of fire

URPRISE_ACTION

OnActionDone data AI action of this agent was finished.
data.ObjectName is the action name, data.iValue
is 0 if action was cancelled or 1 if it was finished
normally, data.id is the entity id of "the object" of
the AI action

Version 1.8
96

Lumberyard Developer Guide
Animation Overview

Animation

This section describes Lumberyard's Animation system. It includes discussions of key concepts and
provides information on working with the system programmatically.

This section includes the following topics:

• Animation Overview (p. 97)

• Animation Events (p. 100)

• Limb IK Technical (p. 100)

• Animation Streaming (p. 101)

• Animation Debugging (p. 103)

• Fall and Play (p. 108)

• Time in the Animation System (p. 109)

Animation Overview
One of Lumberyard’s goals is to push the boundaries of animations, which are all rendered in real time.
Lumberyard provides tools to create both linear and interactive animations:

• Linear animation is the kind of animation seen in movies and cut-scenes, which play as a video.

• Interactive animation is used to convey AI and avatar (player) behavior, with sequences dependent on
player choices in gameplay.

There is a big difference between how each type of animation is incorporated into a game, although this
difference may not be obvious to the player, who simply sees characters moving on-screen. The key
difference is in the decision-making process: who decides what a character on the screen is going to do
next?

Linear Animations
In linear animation, the decision-making process happens inside the head of the people designing the
animation. During this process, an animator has direct control over every single keyframe. They don’t
need to deal with collision detection, physics and pathfinding; characters only run into walls or collide with
each other when the animator wants them to. AI behavior does not need to react to player behavior; the

Version 1.8
97

Lumberyard Developer Guide
Interactive Animations

person who writes the storyboard decides how intelligent or stupid the characters are. To show interactions
between characters, you can put them in motion-capture suits and record their performances.

A linear animation sequence needs to show action from a single camera angle because the audience
won't be moving during the animation; as a result, animators don't need to deal with transitions and motion
combinations; they control every aspect of the motion clip. Because everything is fixed and predicable, it's
possible to guarantee a consistent motion quality. Animators can always go back and adjust details in the
scene, such as add or delete keyframes, adjust the lighting, or change the camera position.

The technical challenges with creating linear animation primarily involve rendering issues, such as not
dropping the frame rate and ensuring that facial and body animations are in sync.

All linear animations in Lumberyard are created with Track View editor.

Interactive Animations
Creating interactive animations presents significantly tougher challenges. Animators and programmers do
not have direct control over a character's on-screen movements. It is not always obvious where and how
the decision-making process happens. It is usually a complex combination of AI systems, player input, and
sometimes contextual behavior.

By definition, interactive animation is responsive. It looks visibly different depending on an individual
user's input and adapts automatically to actions on the screen. Moving from linear animation to interactive
animation requires more than just a set of small tweaks or a change in complexity—it requires a completely
different technology under the hood. With interactive animation, an animator cannot precisely plan and
model a character's behavior. Instead, animators and programmers develop a system that allows them to
synthesize motion automatically and define rules for character behavior.

Automatic motion synthesis is a crucial feature in making animation more interactive. A system that
synthesizes motion must be very flexible, because it is difficult to predict the sequence of actions that a
character may take, and each action can start at any time.

Imagine, for example, a character moving through an outdoor environment. At a minimum, the designer
needs to specify the style, speed, and direction of the character's locomotion. There should also be
variations in motion while running uphill or downhill, leaning when running around corners or carrying
objects of different sizes and weights—the character should run faster while carrying a pistol than when
hefting a rocket launcher. It might also be necessary to interactively control emotional features such as
happiness, anger, fear, and tiredness. Additionally, the character may need to perform multiple tasks
simultaneously, such as walking in one direction, turning head and eyes to track a bird in another direction,
and aiming a gun at a moving object in third direction. Providing unique animation assets for every possible
combination and degree of freedom is nearly impossible and would involve an incredibly large amount of
data. A mechanism for motion modifications is needed to keep the asset count as low as possible.

Developing such a system involves close collaboration and a tight feedback loop between programmers,
animators, and designers. Problems with the behavior and locomotion systems (either responsiveness or
motion quality) are usually addressed from several sides.

Interactive animation can be divided into two categories: Avatar control and AI control. In both cases,
animators and programmers have indirect control over the actual behavior of a character in gameplay,
because decision making for the character's next action happens elsewhere. Let's take a closer look at the
situation in game environments.

Avatar control
An avatar character is controlled by the game player, whose decisions determine all of the avatar's actions.
The locomotion system takes the player's input and translates it on the fly into skeleton movements (using
procedural and data-driven methods). With avatar control, high responsiveness is the top priority, while
motion quality might be limited by the game rules. This means that many well-established rules for 'nice'-
looking animations are in direct conflict with the responsiveness you need for certain types of gameplay.

Version 1.8
98

Lumberyard Developer Guide
Scripted Animations

The quality of animations as executed on the screen depends largely on the skills and decisions of each
player controlling the character—they decide what the avatar will do next. Because a player's actions
are unpredictable, motion planning based on predictions is not possible. Complex emotional control is
not possible (and probably not needed). It's only possible on a raw level, such as soft punch versus an
aggressive punch. However, it might be possible to let the player control the locomotion of the avatar, and
to let the game code control the emotional behavior of the avatar by blending in "additive animations" based
on the in-game situation.

In all these scenes, the player is controlling the character with a game pad. The character's presentation on
the screen is using animation assets created by animators.

AI control

For AI characters, the decision-making process happens entirely inside the game code. Game developers
design a system to generate behavior, which acts as an intermediary between the game creators and
players. For the system to perform this task, it is necessary for game designers to explicitly specify
behavioral decisions and parameters for AI characters, including a clear definition of the rules of
movements for each character type. Interactive animation for AI characters is much harder to accomplish
than animations for avatars, but at the same time it offers some (not always obvious) opportunities to
improve motion quality. High responsiveness is still the primary goal but, because character choices
happen inside the game code, it is possible in certain circumstances to predict a character's actions. If the
AI system knows what the AI character wants to do next, then it is possible to incorporate this knowledge
into motion planning. With good motion planning, interactive animation might be able to use more classical
or 'nice' animation rules. As a result, AI control can have a somewhat higher motion quality than avatar
control, though at the cost of having more complex technology under the hood.

The only source of uncertainty in such a prediction system is the player: the AI reacts to the player, and
predicting the player's actions is impossible. As a result, it's nearly impossible to create the right assets for
every in-game situation, and this in turn makes it impossible to guarantee a consistent motion quality. For
an animator working on interactive animation, it can be a significant problem to have no direct control over
the final animation—it's never clear when the work is complete. This is one reason why the linear animation
in movies and cut-scenes look superior, and why interactive animations can be troublesome.

Lumberyard tackles the problem with interactive animation in multiple levels:

• In the low-level CryAnimation system library, the engine provides support for animation clips,
parametrized animation, and procedural modification of poses. Animations can be sequenced together or
layered on top of each other in a layered transition queue.

• In the high-level CryAction library, the CryMannequin system helps to manage the complexity of
animation variations, transitions between animations, animations that are built up out of many others,
sequencing of procedural code, links to game code, and so on.

Scripted Animations
Because interactive animation is much more difficult than linear animation, many games blur the line
between cut-scenes and in-game actions by using interactive scripted sequences.

In this case, characters act on a predefined path. The quality of this kind of motion can be very high.
Because it is not fully interactive, animators have more control over the entire sequence, a kind of manually
designed motion planning. These are perfectly reasonable cheats to overcome hard-to-solve animation
problems. It may be even possible to script the entire AI sequence to allow near-cut-scene quality. The
action feels interactive and looks absolutely cinematic, but it is actually more an illusion of interactivity.

In the game Crysis, Crytek designers made use of scripted animations in many scenes. In the "Sphere"
cut-scene, the Hunter is shown walking uphill and downhill and stepping over obstacles. This is a scripted
sequence where the assets were made for walking on flat ground, but Crytek used CCD-IK to adapt the

Version 1.8
99

Lumberyard Developer Guide
Animation Events

character's legs to the uneven terrain. In the "Fleet" cut-scene with the Hunter on the carrier deck, the
player can move around while the Hunter is fighting other non-playing characters.

Both scenes look and feel highly interactive but they are not. The Hunter doesn't respond to the player
and the player cannot fight the Hunter. The scenes are fully linear and scripted, basically just animated
background graphics. These sequences were created in Track View editor. Some of them used the Flow
Graph Editor. When the cut-scene is over, the Hunter turns into an AI-controlled interactive character.

Animation Events
Animations in Lumberyard can be marked up to send custom events at a specific time in an animation.
This markup is used for time-aligned blending; for example, to match footplants in animations. Another
application of animation events is to spawn particle effects at the right moment.

These events can also be used by a variety of systems that need to receive information about when an
animation has reached a certain point, such as in combination with a melee system.

Marking Up Animations with Events
Events for animations are stored in an XML file that is loaded when the character starts up. For this to
happen automatically, the database must be included in the chrparams file.

Receiving Animation Events in the Game Code
Animation events are passed on to the game object once they have been triggered. The Actor and Player
implementations both handle these animation events. See either Actor.cpp or Player.cpp for the function:

void AnimationEvent(ICharacterInstance *pCharacter, const AnimEventInstance &event)

Limb IK Technical
Lumberyard's animation system allows the setup of IK chains for characters.

When an IK chain is active, the system calculates the joint angles in the chain so that the end effector
(typically a hand or foot) reaches the target position.

Setting Up
IK chains are defined in the chrparams file.

Using LimbIK from Code
To activate a Limb IK chain from outside the Animation system, use the function SetHumanLimbIK,
accessible through the ISkeletonPose interface. The SetHumanLimbIK function needs to be called in
each frame in which you want the IK chain to be active. The name of the Limb IK chain is defined in the
chrparams file:

ISkeletonPose& skeletonPose = ...;
skeletonPose.SetHumanLimbIK(targetPositionWorldSpace, "RgtArm01");

Version 1.8
100

Lumberyard Developer Guide
Animation Streaming

Animation Streaming
Animation is very memory-intensive and tends to use a large amount of resources. Limited memory
budgets, high numbers of animated joints, and requirements for high animation quality make it wasteful for
a project to keep all animations constantly loaded in memory.

Lumberyard's animation system alleviates this issue by streaming in animation resources (file granularity
level) when needed, and unloading them when not needed. Streaming of asset files is achieved by using
the DGLINK Streaming System. Streaming assets in and out allows the system to keep only the needed
resources in memory—which is done at the expense of complexity, as you must now plan how and when
animation resources are used.

Animation Data
Animation data usage is divided into two main sections:

• The header section contains generic information for an animation (filename, duration, flags, etc).

• The controller section contains the animation curves. For each joint involved, this section contains
information on all the position and orientation values that the joint needs in order to play that animation.
Even when compressed, controller data can easily take up more than 95% of the total memory required
for an animation.

Animation Header Data
Header data for animations is stored in CAF files and in the animations.img file.

CAF files contain the header information on a single animation, while animations.img contains header
information for all animations in the build. The animations.img is obtained as a result of processing all the
animations with the Resource Compiler.

The engine usually loads all the animation files' headers from the animations.img file instead of loading
from individual files (reading the information from individual files can considerably slow down loading time).

Because of the extreme size difference between controllers and headers, Lumberyard streams only the
controller data in and out of memory. The header data for all animations is kept at all times in memory, as it
is practical to have that information available at all times.

Note
During development—for example, when working with local animation files—you must disable
usage of animations.img and load the header information from individual CAF files instead. To do
so, set the ca_UseIMG_CAF console variable to 0 before the engine starts.

Animation Controller Data
The controller data for animations is stored in CAF files or DBA files.

• CAF files contain controller information for a single animation.

• DBA files contain controller information for a group of animations.

When a DBA is loaded, controllers for all animations contained in that DBA are available until the DBA is
unloaded. For this reason, it is useful to group animations that are used together in the same DBA. An extra
benefit of putting similar animations together in a DBA is that equal controllers are only stored once. This
reduces the memory usage of your animations.

Version 1.8
101

http://docs.cryengine.com/display/SDKDOC4/Streaming+System

Lumberyard Developer Guide
Animation Controller Data

Loading Controller Data

The animation system properly plays animations only when their controllers are in memory.

If controller data is not available when playback of an asset is requested, the animation system streams it in
from disk. Streaming of controller data is performed asynchronously—the animation system does not wait
until after asset playback is requested. This prevents stalling the system.

If high level systems fail to notify the animation system that they require controller data (see the preload
functions section), the animation system does not know that an asset is required until it is requested to play.
This is dangerously close to when the controller data is needed. If the controller data is not available in
time, it typically leads to visual glitches, which can sometimes be observed, for example, only the first time
an animation is played.

Therefore, it is important to have controller data streamed in before playback of an animation is requested.
This minimizes undesired glitches that occur while waiting for animation streaming to end.

The amount of time required for streaming to complete depends on many factors, such as the current
system load, streaming speed of the target system, size of the resource that needs to be loaded, and so on.

Unloading Controller Data

The animation system will not unload controller data that is currently in use.

It is possible to prevent unloading of animation data entirely by setting ca_DisableAnimationUnloading to
1.

Controllers in CAF files are unloaded after the system detects that they are no longer in use. To prevent
controllers in CAF files from being unloaded, set ca_UnloadAnimationCAF to 0.

Controllers in DBA files remain in memory until a certain amount of time passes after the animations in
them are used. However, if the DBA is locked, controllers are not unloaded until the lock status is set back
to 0.

To change the time that the animation system waits to unload controllers in DBA files, use the following
cvars:

• ca_DBAUnloadUnregisterTime – Timeout in seconds after the last usage of a controller and all
animations using that DBA; when this timeout is reached, the DBA marks their controller data as
'unloaded'.

• ca_DBAUnloadRemoveTime – Timeout in seconds after the last usage of a controller in a DBA; when this
timeout is reached, the DBA performs an actual unload from memory. This value should be greater than
or equal to ca_DBAUnloadUnregisterTime.

The following section describes how to lock individual resources in memory to prevent the system from
unloading them.

Preloading and Keeping Controllers in Memory

Preload functions are performed by high level systems or user code (usually game code), as these contain
most of the information on when and how assets are accessed. For example, trackview looks a number of
seconds ahead in the timeline for any animations that appear, and calls the preload functions.

Preloading Controllers in DBA files

To preload and trigger the streaming of a DBA file:

Version 1.8
102

Lumberyard Developer Guide
Animation Debugging

gEnv->pCharacterManager->DBA_PreLoad(dbaFilename, priority);

To trigger the streaming of a DBA file, and request a change to the locked state (which specifies whether it
should be locked in memory):

gEnv->pCharacterManager->DBA_LockStatus(dbaFilename, lockStatus, priority);

To unload all controller data in a DBA from memory (unloads data only if none of the controllers are
currently being used):

gEnv->pCharacterManager->DBA_Unload(dbaFilename);

Note
To make the system automatically load and lock a DBA file while a character is loaded, use the
flags="persistent" in the chrparams file.

Preloading Controllers in CAF files

To increase the reference count of a CAF file:

gEnv->pCharacterManager->CAF_AddRef(lowercaseAnimationPathCRC);

Controllers for a CAF file start streaming in when its reference count goes from 0 to 1.

To decrease the reference count of a CAF file:

gEnv->pCharacterManager->CAF_Release(lowercaseAnimationPathCRC);

Controllers for a CAF file are unloaded by the animation system only after the reference count reaches 0
(the animation system, when playing a CAF file, also increases this reference count, so that an animation is
not unloaded while in use).

To check whether the controllers for a CAF file are loaded:

gEnv->pCharacterManager->CAF_IsLoaded(lowercaseAnimationPathCRC);

To synchronously load the controllers for a CAF file:

gEnv->pCharacterManager->CAF_LoadSynchronously(lowercaseAnimationPathCRC);

Synchronously loading CAF assets is strongly discouraged unless absolutely necessary, as it will likely
result in stalls.

Animation Debugging
Several tools are available for debugging animation issues.

Layered Transition Queue Debugging
You can enable on-screen debug information to see which animations are queued and playing, as well as
information about the applied pose modifiers and IK.

Version 1.8
103

Lumberyard Developer Guide
Layered Transition Queue Debugging

Show Per Entity

To show the transition queue for all the character instances of a specified entity:

es_debuganim <entityname> [0 | 1]

<entityname>

Name of the entity to debug. In a single player game, the player is typically called "dude." Note that the
GameSDK example player has both a first person and a third person character instance.

[0 | 1]

Specify 1 or no second parameter to turn it on for this specific entity. Specify 0 to turn it off.

Examples

To turn on debugging for a player with the entity name "dude":

es_debuganim dude 1

To turn off debugging for an entity called "npc_flanker_01":

es_debuganim npc_flanker_01 0

Show Per CharacterInstance

You can show the transition queue for all character instances or the ones that have a specific model name.

ca_debugtext [<modelname-substring> | 1 | 0]

<modelname-substring>

Shows information for all character instances whose modelname contains the specified string.

[0 | 1]

If 1 is specified, all character instances are shown. If 0 is specified, the debug text is turned off.

Examples

To show information on all character instances with "player" in their model name:

ca_debugtext player

To turn off all transition queue information:

ca_debugtext 0

Interpreting the Output

Each animation in the transition queue is displayed as in the following example. Key elements of this
display are described following the example.

Version 1.8
104

Lumberyard Developer Guide
Layered Transition Queue Debugging

AnimInAFIFO 02: t:1043 _stand_tac_idle_scar_3p_01 ATime:0.84 (1.17s/1.40s) ASpd:1.00
 Flag:00000042 (----------I-K----) TTime:0.20 TWght:1.00 seg:00 inmem:1
(Try)UseAimIK: 1 AimIKBlend: 1.00 AimIKInfluence: 1.00 (Try)UseLookIK: 0 LookIKBlend: 0.00
 LookIKInfluence: 0.00
MoveSpeed: 4.49 locked: 1
PM class: AnimationPoseModifier_OperatorQueue, name: Unknown
...
LayerBlendWeight: 1.00
...
ADIK Bip01 RHand2RiflePos_IKTarget: 0.24 Bip01 RHand2Aim_IKTarget: 1.00 Bip01
 LHand2Aim_IKTarget: 0.00

Text Color

• When an animation is not yet active, it is in black or green.

• When an animation is active, it is in red or yellow.

Or in detail:

• Red Channel = Animation Weight

• Green Channel = (layerIndex > 0)

• Alpha Channel = (Weight + 1)*0.5

AnimInAFIFO Line (one per animation)

AnimInAFIFO 02: t:1043 _stand_tac_idle_scar_3p_01 ATime:0.84 (1.17s/1.40s) ASpd:1.00
 Flag:00000042 (----------I-K----) TTime:0.20 TWght:1.00 seg:00 inmem:1

AnimInAFIFO 02

Layer index (decimal, zero-based)

t:1043

User token (decimal)

_stand_tac_idle_scar_3p_01

Animation name (alias) of the currently playing animation, aim/look-pose or bspace

ATime:0.84 (1.17s/1.40s)

ATime:XXXX (YYYYs/ZZZZs)

• XXXX = Current time in 'normalized time' (0.0...1.0) within the current segment

• YYYY = Current time (seconds) within the current segment

• ZZZZ = Expected duration (seconds) of the current segment

ASpd:1.00

Current animation speed (1.0 = normal speed)

Flag:00000042 (----------I-K----)

Animation Flags

Flag:XXXXXXXX (+ybVFx3nSIAKTRLM)

The first number is the animation flags in hexadecimal

Between parentheses you see the individual flags:

Version 1.8
105

Lumberyard Developer Guide
Layered Transition Queue Debugging

charflagvalue

+CA_FORCE_TRANSITION_TO_ANIM0x008000

yCA_FULL_ROOT_PRIORITY0x004000

bCA_REMOVE_FROM_FIFO0x002000

VCA_TRACK_VIEW_EXCLUSIVE0x001000

FCA_FORCE_SKELETON_UPDATE0x000800

xCA_DISABLE_MULTILAYER0x000400

3CA_KEYFRAME_SAMPLE_30Hz0x000200

nCA_ALLOW_ANIM_RESTART0x000100

SCA_MOVE2IDLE0x000080

ICA_IDLE2MOVE0x000040

ACA_START_AFTER0x000020

KCA_START_AT_KEYTIME0x000010

TCA_TRANSITION_TIMEWARPING0x000008

RCA_REPEAT_LAST_KEY0x000004

LCA_LOOP_ANIMATION0x000002

MCA_MANUAL_UPDATE0x000001

TTime:0.20

Transition Time

Total length of transition into this animation in seconds (this is static after pushing the animation)

TWght:1.00

Transition Weight

Current weight of this animation within the transition (0 = not faded in yet, 1 = fully faded in)

seg:00

Current segment index (zero-based)

inmem:1

Whether or not the animation is in memory (0 basically means it's not streamed in yet)

Aim/Look-IK Line

(Try)UseAimIK: 1 AimIKBlend: 1.00 AimIKInfluence: 1.00 (Try)UseLookIK: 0 LookIKBlend: 0.00
 LookIKInfluence: 0.00

(Try)UseAimIK: 1

Whether Aim IK is turned on or not (set using PoseBlenderAim::SetState)

Version 1.8
106

Lumberyard Developer Guide
CommandBuffer Debugging

AimIKBlend: 1.00

Weight value requested for Aim IK (could go up and down based on fade times, etc.)

AimIKInfluence: 1.00

Final influence weight value of AimIK (== smoothed(clamped(AimIKBlend)) * weightOfAllAimPoses)

(Try)UseLookIK: 0

Whether Look IK is turned on or not

LookIKBlend: 0.00

Weight value requested for Look IK (could go up and down based on fade times, etc.)

LookIKInfluence: 0.00

Final influence weight value of LookIK (== smoothed(clamped(LookIKBlend)) * weightOfAllLookPoses)

Parameter Line(s) (only for blend spaces)

MoveSpeed: 4.500000 locked: 1
TravelAngle: 0.000000 locked: 0

MoveSpeed: 4.500000

Value for the specified blend space parameter (MoveSpeed in this case)

locked: 1

Whether or not the parameter is locked (= unable to change after it is set for the first time)

PoseModifier Lines (if running)

PM class: AnimationPoseModifier_OperatorQueue, name: Unknown

Displays which pose modifiers are running in this layer. Shows the class as well as the name (if available).

LayerBlendWeight Line (not on layer 0)

LayerBlendWeight: 1.00

The weight of this layer (0.00 - 1.00)

ADIK Line(s) (only if animation driven IK is applied)

ADIK Bip01 RHand2RiflePos_IKTarget: 0.24 Bip01 RHand2Aim_IKTarget: 1.00 Bip01
 LHand2Aim_IKTarget: 0.00

Displays a list of the animation driven IK targets and their current weight. For more detailed position/rotation
information, use the separate cvar ca_debugadiktargets 1.

CommandBuffer Debugging
At the lowest level, the animation system executes a list of simple commands to construct the final
skeleton's pose.

Version 1.8
107

Lumberyard Developer Guide
Warning Level

These commands are, for example, "sample animation x at time t, and add the result with weight w to the
pose". Or "clear the pose".

To enable on-screen debug information to see what is pushed on the command buffer (for all characters),
use the following command:

ca_debugcommandbuffer [0 | 1]

Warning Level
To control when the animation system produces warnings using the ca_animWarningLevel cvar:

ca_animWarningLevel [0 | 1 | 2 | 3]

0

Non-fatal warnings are off.

1

Warn about illegal requests.

For example, requesting to start animations with an invalid index.

2

Also warn about things like 'performance issues.'

For example, animation-queue filling up. This might 'spam' your console with a dump of the animation
queue at the time of the issue.

3 (default)

All warnings are on. This includes the least important warnings; for example, a warning when playing
uncompressed animation data.

Fall and Play
"Fall and Play" activates when a character is ragdollized (on an interface level, it is called
RelinquishCharacterPhysics) with a >0 stiffness. This activates angular springs in the physical ragdoll
that attempts to bring the joints to the angles specified in the current animation frame. The character also
tries to select an animation internally based on the current fall and play stage. If there are none, or very few,
physical contacts, this will be a falling animation; otherwise it will be the first frame of a standup animation
that corresponds to the current body orientation.

Standup is initiated from outside the animation system through the fall and play function. During the
standup, the character physics is switched back into an alive mode and his final physical pose is blended
into a corresponding standup animation. This, again, is selected from a standup anims list to best match
this pose.

Filename convention for standup animations: When an animation name starts with "standup", it is
registered as a standup animation. Also, a type system exists which categorizes standup animations by the
string between "standup_" and some keywords ("back", "stomach", "side"). You can control which type to
use with CSkeletonPose::SetFnPAnimGroup() methods. At runtime, the engine checks the most similar
standup animation registered to the current lying pose and blends to it.

Some example filenames:

Version 1.8
108

Lumberyard Developer Guide
Time in the Animation System

• standUp_toCombat_nw_back_01

• standUp_toCombat_nw_stomach_01

While the character is still a ragdoll, it is also possible to turn off the stiffness with a GoLimp method.

Time in the Animation System
The Animation system uses different units of 'time,' depending on the system. How those units of time
compare is best explained using an example.

The definition of 'frames': The Animation system uses a fixed rate of 30 frames per second (fps). Of course,
games can run at higher frame rates, but some operations in the Editor that use the concept of 'frames'—or
operations that clamp the animation duration to 'one frame'—assume a frame rate of 30 fps.

Assume then that you have an animation with a duration of 1.5 seconds. This means that the animation
has 46 frames (note that this includes the final frame). So, in the case of Real Time, assume an animation
starts at time 0, has no segmentation, and is played back at normal speed. However, rather than using Real
Time, the Animation system typically uses Animation Normalized Time. This is compared with Real Time in
the following table:

Frame Index Real Time (seconds)* Animation Normalized Time**

0 0.0 s 0.0

1 0.033.. s = 1/30 s 0.022.. = 1/45

..

30 1.0 s 0.666.. = 30/45

..

44 1.466.. s = 44/30 s 0.977.. = 44/45

45 1.5 s = 45/30 s 1.0

* Real time is used to define duration:

• Duration = lastFrame.realTime - firstFrame.realTime. That's 1.5s in our example.

• IAnimationSet::GetDuration_sec() returns the duration of an animation.

Note: For a parametric animation, this returns only a crude approximation—the average duration of all its
examples, ignoring parameters or speed scaling.

• CAnimation::GetExpectedTotalDurationSeconds() returns the duration of an animation that is currently
playing back.

Note: For a parametric animation, this returns only a crude approximation, assuming the parameters are
the ones that are currently set and never change throughout the animation.

• No function exists that returns the Real Time of an animation. To calculate that, you must manually
multiply Animation Normalized Time with the duration.

** Animation Normalized Time:

• Time relative to the total length of the animation.

Version 1.8
109

Lumberyard Developer Guide
Segmentation

• Starts at 0 at the beginning of the animation and ends at 1 (= RealTime/Duration = Keytime/
LastKeyTime).

• Used by functions such as ISkeletonAnim::GetAnimationNormalizedTime() and
ISkeletonAnim::SetAnimationNormalizedTime().

• Is not well-defined for parametric animations with examples that have differing numbers of segments. For
more information, see the following section, Segmentation.

Segmentation
In practice, the animation system does not use Animation Normalized Time; this terminology was used to
make the introduction easier to understand. Typically, Segment Normalized Time is used. To understand
Segment Normalized Time, you must first understand segmentation.

For time warping (phase matching) purposes, animations can be split into multiple segments. For example,
to time warp from a walk animation with 2 cycles to a walk animation with 1 cycle, you have to annotate
the first animation and split it into two (these are segments). To achieve this segmentation, you must add a
segment1 animation event at the border between the cycles.

Note
An animation without segmentation has exactly 1 segment, which runs from beginning to end.

Segmentation introduces a new unit for time, Segment Normalized Time, which is time relative to the
current segment duration.

Extending our example further, observe what happens when a segment1 animation event at 1.0s is added
to split the animation into two segments.

Frame Index Real Time AnimEvents (Animation)
Normalized
Time

Segment
Index*

Segment
Normalized
Time**

0 0.0 s 0.0 0 0.0

1 0.033.. s 0.022.. 0 0.033.. = 1/30

..

30 1.0 s segment1 0.666.. 1 0.0

..

44 1.466.. s 0.977.. 1 0.933.. = 14/15

45 1.5 s 1.0 1 1.0

* Segment index:

• Identifies which segment you are currently in. Runs from 0 to the total number of segments minus 1.

• While an animation is playing, you can use CAnimation::GetCurrentSegmentIndex() to retrieve it.

• When using ca_debugtext or es_debuganim, then this index is displayed after "seg:".

** Segment normalized time:

• Time relative to the current segment's duration.

Version 1.8
110

Lumberyard Developer Guide
Playback Speed

• 0 at the beginning of the segment, 1 at the end (only 1 for the last segment, as you can see in the table).

• While an animation is playing, you can use CAnimation::Get/SetCurrentSegmentNormalizedTime() to
get or set the Segment Normalized Time.

• As the names suggest, CAnimation::GetCurrentSegmentIndex() retrieves the current segment index
and CAnimation::GetCurrentSegmentExpectedDurationSecondsx() retrieves the duration of the current
segment.

• When representing time within parametric animations, it is more convenient to use Segment Normalized
Time than Animation Normalized Time; therefore, Segment Normalized Time is used at runtime.

• AnimEvent time is specified using Animation Normalized Time (except for the special case of parametric
animation; see the following section).

• When using ca_debugtext or es_debuganim, Segment Normalized Time is displayed after "ATime:".
Following that, the real time within the segment and the segment duration are displayed within the
parentheses.

Playback Speed
Playback speed does not impact the functions that compute duration of playing
animations, such as CAnimation::GetExpectedTotalDurationSeconds() or
ISkeletonAnim::CalculateCompleteBlendSpaceDuration().

Segmented Parametric Animation
Animation Normalized Time, Segment Index, and Duration all create ambiguity for segmented parametric
animations. This is because each example animation within the parametric animation can have its own
number of segments. To avoid ambiguity, animation events in or on segmented parametric animations use
Segment Normalized Time. As a result, an animation event will be fired multiple times (once per segment)
during the animation.

• ISkeletonAnim::GetAnimationNormalizedTime() uses a heuristic: It currently looks for the example
animation with the largest number of segments and returns the animation normalized time within that
example.

• ISkeletonAnim::GetCurrentSegmentIndex() uses a different heuristic: It currently returns the segment
index in the example animation, which happens to be the first in the list.

Given this, we are considering redefining the above based on the following observation: You can define the
total number of segments in a parametric animation as the number of segments until repetition starts.

So, say you have a parametric animation consisting of 2 examples—one with 2 segments and the other
with 3 segments. This will start to repeat after 6 segments (the lowest common multiple of 2 and 3).
However, you can uniquely identify each possible combination of segments using any number from 0 to 5.

The Character Tool uses this method to achieve a well-defined duration. The
ISkeletonAnim::CalculateCompleteBlendSpaceDuration() function calculates the duration until the
parametric animation starts to repeat (assuming the parameters remain fixed). It reverts to the regular
GetExpectedTotalDurationSeconds() implementation for non-parametric animations so that the function
can be used in more general situations.

Animation with Only One Key
Normally your animations have at least two keys. However, when you convert these into additive
animations, the first frame is interpreted as the base from which to calculate the additive, leaving only 1
frame in the additive animation (this means that, in respect to the asset, both the start and end time of the
asset are set to 1/30 s).

Version 1.8
111

Lumberyard Developer Guide
Direction of Time

Functions retrieving the total duration of this animation will return 0.0 (for example,
IAnimationSet::GetDuration_sec(), ISkeletonAnim::CalculateCompleteBlendSpaceDuration(), and
CAnimation::GetExpectedTotalDurationSeconds()).

However, for playback purposes, the animation system handles these animations as if they have a duration
of 1/30th of a second. For example, Animation Normalized Time still progresses from 0 to 1, while real time
goes from 0 to 1/30th of a second. CAnimation::GetCurrentSegmentExpectedDurationSecondsx() also
returns 1/30th of a second in this case.

Direction of Time
Time typically cannot run backward when playing an animation. You can move time
backward only if you do it manually by setting the flag CA_MANUAL_UPDATE on the animation
and using CAnimation::SetCurrentSegmentNormalizedTime. See the example DGLINK
CProceduralClipManualUpdateList::UpdateLayerTimes().

Time within Controllers
Different units are used for controllers that contain the actual key data and are used for animation sampling.

Frame Index Real Time I_CAF Ticks* Keytime**

0 0.0 s 0 0.0

1 0.033.. s 160 1.0

..

30 1.0 s 4800 30.0

..

44 1.466.. s 7040 44.0

45 1.5 s 7200 45.0

* I_CAF Ticks:

• Used within I_CAF files to represent time

• There are 4800 I_CAF ticks per second (this is currently expressed by the fact that TICKS_CONVERT =
160 in Controller.h, which assumes 30 keys/second)

** Keytime

• Used at runtime to pass time to the controllers for sampling animation

• Used within CAF files to represent time

• A floating point version of 'frame index'

• Can represent time in between frames

• Use GlobalAnimationHeaderCAF::NTime2KTime() to convert from Animation Normalized Time to
Keytime

• All animation controllers in the runtime use Keytime

Animation assets can also have a StartTime other than 0.0s—this complicates matters slightly, but only for
the controllers. Typically, for everywhere but the controllers, time is taken relative to this StartTime.

Version 1.8
112

Lumberyard Developer Guide
Builder Modules

Asset Builder API

The asset builder API and builder SDK are in preview release for Lumberyard 1.5. and are subject to
change as they undergo improvements.

You can use the asset builder API to develop a custom asset builder that creates your own asset types.
Your asset builder can process any number of asset types, generate outputs, and return the results to the
asset processor for further processing. This can be especially useful in a large project that has custom
asset types.

Builder Modules
A builder module is a .dll module that contains a lifecycle component and one or more builders. The
lifecycle component is derived from AZ::Component. The builders can be of any type and have no particular
base class requirements.

The job of the lifecycle component is to register its builders during the call to Activate() and to make sure
that resources that are no longer being used are removed in the calls to Deactivate and Destructor.

Creating a Builder Module
To create a builder module, you must perform the following steps.

• Create the exported .dll entry point functions and invoke the REGISTER_ASSETBUILDER macro, which
creates a forward declaration for the entry point functions.

• Register your lifecycle component's Descriptor

• Add your lifecycle component to the Builder entity

• Register your builder instances when your lifecycle component's Activate() function is called

Version 1.8
113

Lumberyard Developer Guide
Main Entry Point

• Shut down safely

Note
A complete example of a builder module is in the Lumberyard dev\Code\tools\AssetProcessor
\Builders directory. We recommend that you follow the commented example as you read this
documentation. The asset builder SDK is located in the Lumberyard directory \dev\Code\Tools
\AssetProcessor\AssetBuilderSDK\AssetBuilderSDK.

Main Entry Point
The following code shows an example of a main.cpp file for an asset builder module.

#include <AssetBuilderSDK/AssetBuilderSDK.h>
#include <AssetBuilderSDK/AssetBuilderBusses.h>

// Use the following macro to register this module as an asset builder.
// The macro creates forward declarations of all of the exported entry points for you.
REGISTER_ASSETBUILDER

void BuilderOnInit()
{
 // Perform any initialization steps that you want here. For example, you might start a
 third party library.
}

void BuilderRegisterDescriptors()
{
 // Register your lifecycle component types here.
 // You can register as many components as you want, but you need at least one component
 to handle the lifecycle.
 EBUS_EVENT(AssetBuilderSDK::AssetBuilderBus, RegisterComponentDescriptor,
 ExampleBuilder::BuilderPluginComponent::CreateDescriptor());
 // You can also register other descriptors for other types of components that you might
 need.
}

void BuilderAddComponents(AZ::Entity* entity)
{
 // You can attach any components that you want to this entity, including management
 components. This is your builder entity.
 // You need at least one component that is the lifecycle component.
 entity->CreateComponentIfReady<ExampleBuilder::BuilderPluginComponent>();
}

void BuilderDestroy()
{
 // By the time you leave this function, all memory must have been cleaned up and all
 objects destroyed.
 // If you have a persistent third party library, you could destroy it here.
}

Lifecycle Component
The lifecycle component reflects the types that you want to serialize and registers the builder or builders in
your module during its Activate() function.

The following shows example code for the lifecycle component.

//! This is an example of the lifecycle component that you must implement.

Version 1.8
114

Lumberyard Developer Guide
Lifecycle Component

//! You must have at least one component to handle your module's lifecycle.
//! You can also make this component a builder by having it register itself as a builder
 and
//! making it listen to the builder bus. In this example it is just a lifecycle component
 for the purposes of clarity.

class BuilderPluginComponent
 : public AZ::Component
{
public:
 AZ_COMPONENT(BuilderPluginComponent, "{8872211E-F704-48A9-B7EB-7B80596D871D}")
 static void Reflect(AZ::ReflectContext* context);

 BuilderPluginComponent(); // Avoid initializing here.

 //
 // AZ::Component
 virtual void Init(); // Create objects, allocate memory and initialize without reaching
 out to the outside world.
 virtual void Activate(); // Reach out to the outside world and connect to and register
 resources, etc.
 virtual void Deactivate(); // Unregister things, disconnect from the outside world.
 //

 virtual ~BuilderPluginComponent(); // free memory and uninitialize yourself.

private:
 ExampleBuilderWorker m_exampleBuilder;
};

In the following example, the Activate() function registers a builder, creates a builder descriptor, and then
provides the details for the builder.

void BuilderPluginComponent::Activate()
{
 // Activate is where you perform registration with other objects and systems.

 // Register your builder here:
 AssetBuilderSDK::AssetBuilderDesc builderDescriptor;
 builderDescriptor.m_name = "Example Worker Builder";

 builderDescriptor.m_patterns.push_back(AssetBuilderSDK::AssetBuilderPattern("*.example",
 AssetBuilderSDK::AssetBuilderPattern::PatternType::Wildcard));
 builderDescriptor.m_createJobFunction = AZStd::bind(&ExampleBuilderWorker::CreateJobs,
 &m_exampleBuilder, AZStd::placeholders::_1, AZStd::placeholders::_2);
 builderDescriptor.m_processJobFunction = AZStd::bind(&ExampleBuilderWorker::ProcessJob,
 &m_exampleBuilder, AZStd::placeholders::_1, AZStd::placeholders::_2);

 builderDescriptor.m_busId = ExampleBuilderWorker::GetUUID(); // Shutdown is
 communicated on this bus address.
 m_exampleBuilder.BusConnect(builderDescriptor.m_busId); // You can use a global
 listener for shutdown instead of
 // for each builder; it's up to
 you.

 EBUS_EVENT(AssetBuilderSDK::AssetBuilderBus, RegisterBuilderInformation,
 builderDescriptor);
}

Notes

• The example calls an EBus to register the builder. After you register a builder, the builder receives
requests for assets from its two registered callback functions.

Version 1.8
115

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html

Lumberyard Developer Guide
Creating a Builder

• If the application needs to shut down, the asset processor broadcasts the Shutdown() message on the
builder bus using the address of the registered builder's UUID.

• Your builders do not have to be more than functions that create jobs and then process those jobs. But if
you want your builder to listen for Shutdown() messages, it must have a listener that connects to the bus.

Creating a Builder
Your next step is to create a builder. You can have any number of builders, or even all of your builders,
inside your module. After registering your builders as described in the previous section, implement the two
CreateJobFunction and ProcessJobFunction callbacks.

The following example code declares a builder class:

#include <AssetBuilderSDK/AssetBuilderSDK.h>

class ExampleBuilderWorker : public AssetBuilderSDK::AssetBuilderCommandBus::Handler //
 This handler delivers the "shut down!"
 //
 message on another thread.
{
 public:
 ExampleBuilderWorker();
 ~ExampleBuilderWorker();

 //! Asset Builder Callback Functions
 void CreateJobs(const AssetBuilderSDK::CreateJobsRequest& request,
 AssetBuilderSDK::CreateJobsResponse& response);
 void ProcessJob(const AssetBuilderSDK::ProcessJobRequest& request,
 AssetBuilderSDK::ProcessJobResponse& response);

 //
 //!AssetBuilderSDK::AssetBuilderCommandBus interface
 void ShutDown() override; // When this is received, you must fail all existing jobs
 and return.
 //

 static AZ::Uuid GetUUID();

 private:
 bool m_isShuttingDown = false;
};

The asset processor calls the Shutdown() function to signal a shutdown. At this point, the builder should
stop all tasks and return control to the asset processor.

Notes

• Failure to terminate promptly can cause a hang when the asset processor shuts down and restarts. The
shutdown message comes from a thread other than the ProcessJob() thread.

• The asset processor calls the
CreateJobs(const CreateJobsRequest& request, CreateJobsResponse& response) function when it
has jobs for the asset types that the builder processes. If no work is needed, you do not have to create
jobs in response to CreateJobsRequest, but the behavior of your implementation should be consistent.

• For the purpose of deleting stale products, the job that you spawn is compared with the jobs spawned in
the last iteration that have the same input, platform, and job key.

• You do not have to check whether a job needs processing. Instead, at every iteration, emit all possible
jobs for a particular input asset on a particular platform.

Version 1.8
116

Lumberyard Developer Guide
Creating a Builder

• In general, in the CreateJobs function, you create a job descriptor for each job that you want to emit, and
then add the job to the list of job descriptors for the response.

The following code shows an example CreateJobs function.

// This function runs early in the file scanning pass.
// This function should always create the same jobs, and should not check whether the job
 is up to date.

void ExampleBuilderWorker::CreateJobs(const AssetBuilderSDK::CreateJobsRequest& request,
 AssetBuilderSDK::CreateJobsResponse& response)
{
 // The following example creates one job descriptor for the PC platform.
 // Normally, you create a job for each platform that you can make assets for.
 if (request.m_platformFlags & AssetBuilderSDK::Platform_PC)
 {
 AssetBuilderSDK::JobDescriptor descriptor;
 descriptor.m_jobKey = "Compile Example";
 descriptor.m_platform = AssetBuilderSDK::Platform_PC;

 // You can also place whatever parameters you want to save for later into this map:
 descriptor.m_jobParameters[AZ_CRC("hello")] = "World";
 response.m_createJobOutputs.push_back(descriptor);

 response.m_result = AssetBuilderSDK::CreateJobsResultCode::Success;
 }
}

The asset processor calls the ProcessJob function when it has a job for the builder to begin processing:

ProcessJob(const AssetBuilderSDK::ProcessJobRequest& request,
 AssetBuilderSDK::ProcessJobResponse& response)

ProcessJob is given a job request that contains the full job descriptor that CreateJobs emitted, as well as
additional information such as a temporary directory for it to work in.

This message is sent on a worker thread, so the builder must not spawn threads to do the work. Be careful
not to interact with other threads during this call.

Warning
Do not alter files other than those in the temporary directory while ProcessJob is running. After
your job indicates success, the asset processor copies your registered products to the asset
cache, so be sure not to write to the cache. You can use the temporary directory in any way that
you want.

After your builder has finished processing assets, your response structure should list all of the assets that
you have created. Because only the assets that you list are added to the cache, you can use the temporary
directory as a scratch space for processing.

The following code shows an example ProcessJob function.

// This function is called for jobs that need processing.
// The request contains the CreateJobResponse you constructed earlier, including the
// keys and values you placed into the hash table.

void ExampleBuilderWorker::ProcessJob(const AssetBuilderSDK::ProcessJobRequest& request,
 AssetBuilderSDK::ProcessJobResponse& response)
{
 AZ_TracePrintf(AssetBuilderSDK::InfoWindow, "Starting Job.");

Version 1.8
117

Lumberyard Developer Guide
Creating a Builder

 AZStd::string fileName;
 AzFramework::StringFunc::Path::GetFullFileName(request.m_fullPath.c_str(), fileName);
 AzFramework::StringFunc::Path::ReplaceExtension(fileName, "example1");
 AZStd::string destPath;

 // Do all of your work inside the tempDirPath.
 // Do not write outside of this path
 AzFramework::StringFunc::Path::ConstructFull(request.m_tempDirPath.c_str(),
 fileName.c_str(), destPath, true);

 // Use AZ_TracePrintF to communicate job details. The logging system automatically
 places the
 // text in the appropriate log file and category.

 AZ::IO::LocalFileIO fileIO;
 if (!m_isShuttingDown && fileIO.Copy(request.m_fullPath.c_str(), destPath.c_str()) ==
 AZ::IO::ResultCode::Success)
 {
 // If assets were successfully built into the temporary directory, push them back
 into the response's product list.
 // The assets that you created in your temporary path can be specified using paths
 relative to the temporary path.
 // It is assumed that your code writes to the temporary path.
 AZStd::string relPath = destPath;
 response.m_resultCode = AssetBuilderSDK::ProcessJobResult_Success;

 AssetBuilderSDK::JobProduct jobProduct(fileName);
 response.m_outputProducts.push_back(jobProduct);
 }
 else
 {
 if (m_isShuttingDown)
 {
 AZ_TracePrintf(AssetBuilderSDK::ErrorWindow, "Cancelled job %s because shutdown
 was requested", request.m_fullPath.c_str());
 response.m_resultCode = AssetBuilderSDK::ProcessJobResult_Cancelled;
 }
 else
 {
 AZ_TracePrintf(AssetBuilderSDK::ErrorWindow, "Error during processing job %s.",
 request.m_fullPath.c_str());
 response.m_resultCode = AssetBuilderSDK::ProcessJobResult_Failed;
 }
 }
}

Notes

• So that critical files are not missed, the editor is blocked until all jobs are created. For this reason,
you should execute the code in CreateJobs as quickly as possible. We recommend that your code do
minimal work during CreateJobs and save the heavy processing work for ProcessJob.

• In CreateJobs, you can place arbitrary key–value pairs into the descriptor's m_jobParameters field. They
key–value pairs are copied back when ProcessJob executes, which removes the need for you to add
them again.

• All of the outputs for your job should be placed into your temporary workspace. However, if you just need
to copy an existing file into the asset cache as part of your job, you can emit as a product the full absolute
source path of the file without copying it into your temporary directory first. The asset processor then
copies the file into the cache and registers it as part of the output of your job. All other files are moved
from your temporary directory into the asset cache in an attempt to perform an atomic cache update in
case your job succeeds.

Version 1.8
118

Lumberyard Developer Guide
Message Loggging

Message Loggging
You can use BuilderLog(AZ:Uuid builderId, char* message, ...) to log any general builder related
messages or errors, but BuilderLog cannot be used during job processing.

For job related messages, use AZ_TracePrintf(window, msg). This function automatically records the
messages in the log file for the job.

Version 1.8
119

Lumberyard Developer Guide

AZ Code Generator

AZ Code Generator is a command line utility that generates source code (or any data or text) from specially
tagged source code. You can use it when the structure of the intended code is known in advance so
that templates can be made for it. For example, you could generate boilerplate code for serialization or
reflection.

AZ Code Generator parses a list of existing C++ source files and/or header files and generates
intermediate data in JSON format. It passes the intermediate data to a series of templates.

The templates provide the format for the code that is generated. Templates make increased coding
efficiency possible because they enable automatic updates of boilerplate code. When a template is
updated, all related generated code is regenerated in the next build. This removes the need to update the
glue code manually or to use error-prone find-and-replace operations.

Topics

• Workflow Summary (p. 121)

• Waf (p. 121)

• Clang (p. 121)

• Intermediate JSON Data (p. 121)

• AZ Code Generator and Python (p. 122)

• Template Drivers and Template Rendering (p. 123)

• Generated Files (p. 123)

• AZ Code Generator Integration with Waf (p. 124)

• AZ Code Generator Parameters (p. 127)

• Code Generation Templates (p. 130)

• Template Drivers (p. 133)

• Custom Code Generator Annotations (p. 137)

• Waf Debugging with AZ Code Generator (p. 141)

• Template Driver Debugging (p. 143)

• Debugging the AZ Code Generator Utility (p. 144)

• Intermediate JSON Data Format (p. 146)

Version 1.8
120

Lumberyard Developer Guide
Workflow Summary

Workflow Summary
The following steps describe how AZ Code Generator works with Waf to generate code.

1. The Waf build system invokes AZ Code Generator for the .h and .cpp source files that are specified in
the wscript file.

2. AZ Code Generator runs one or more passes with the specified files.

3. Each pass includes the following:

a. AZ Code Generator uses the Clang front-end compiler to produce an abstract syntax tree (AST) for
each provided source file. The Clang parser attempts to compile the input. For increased speed,
Clang can be instructed to not follow #include statements and to suppress all errors.

b. The AST is translated into an intermediate JSON format.

c. The intermediate JSON object is passed into a template driver as a Python script and then into a
Jinja2 template. Each driver and template implements specific code generation tasks.

d. The template driver performs any preprocessing that you want on the intermediate JSON object.

e. The intermediate JSON is then passed to Jinja2 templates.

f. Each template driver can have an arbitrary number of templates, which can output to an arbitrary
number of output files. Multiple templates can have the same output file or different output files as the
template driver creator wants.

4. AZ Code Generator returns a list of generated files to the Waf build system.

5. The Waf build system completes the build process, including the generated code in the build.

The following sections provide more detail about this process.

Waf
The AZ Code Generator is fully integrated into the Waf build system. You can use the Waf az_code_gen
feature to invoke the AZ Code Generator. We recommend that you use Waf rather than the command line
to start the AzCodeGenerator.exe utility.

For examples and more information about the Waf integration, see AZ Code Generator Integration with Waf
 (p. 124).

Clang
The default front end of the AZ Code Generator is a Clang parser/compiler for C++ source code. AZ Code
Generator uses Clang to parse source code (which might include user-defined tags) and generate the
intermediate JSON data object. AZ Code Generator fully controls Clang's parser and compilation phase
so that it can selectively suppress or enable features such as diagnostics. This gives AZ Code Generator
the flexibility to ignore source code that might fail to compile and still attempt to generate a complete
intermediate object.

Intermediate JSON Data
The Clang front end compiler outputs an intermediate JSON data structure that the generator passes to
templates for further processing. An example intermediate JSON data object follows.

Version 1.8
121

http://docs.aws.amazon.com/lumberyard/latest/userguide/waf-intro.html
http://clang.llvm.org/index.html

Lumberyard Developer Guide
AZ Code Generator and Python

[
 {
 'name' : 'Component',
 'qualified_name' : 'AZ::Component',
 'fields' : [],
 'bases' : [],
 'meta' : {
 'path' : 'D:\\Repo\\Ly\\branches\\AzComponents\\Code\\Tools\\AzCodeGenerator\
\CodeGenTest.h'
 },
 'type' : 'class',
 'annotations' : {},
 'methods' : []
 },
 {
 'name' : 'TestingClass',
 'qualified_name' : 'TheNamespace::TestingClass',
 'fields' : [
 {
 'type' : 'float',
 'name' : 'm_field2',
 'qualified_name' : 'TheNamespace::TestingClass::m_field2',
 'annotations' : {}
 }
],
 'bases' : [
 {
 'name' : 'Component',
 'qualified_name' : 'AZ::Component'
 }
],
 'meta' : {
 'path' : 'D:\\Repo\\Ly\\branches\\AzComponents\\Code\\Tools\\AzCodeGenerator\
\CodeGenTest.h'
 },
 'type' : 'class',
 'annotations' : {},
 'methods' : [
 {
 'params' : ['type', 'int', 'name', 'version'],
 'name' : 'CreateArgumentAnnotation',
 'qualified_name' : 'TheNamespace::TestingClass::CreateArgumentAnnotation',
 'annotations' : {}
 }
]
 }
]

For complete syntax of the intermediate JSON data object, see Intermediate JSON Data Format (p. 146).

AZ Code Generator and Python
AZ Code Generator depends on Python 2.7 to run template drivers and render Jinja templates. The Python
C API is used to extend Python with methods in the azcg_extension module that permit template drivers
to report dependencies, errors, and useful informational output. In Windows, Python 2.7 is included in the
Lumberyard dev/Tools/Python directory. On macOS, AZ Code Generator uses the version of Python that
is included with the operating system.

Note
To debug Python C API calls when using AZ Code Generator, you must download CPython. Then
make a build for your intended debug platform.

Version 1.8
122

http://jinja.pocoo.org/
https://www.python.org/downloads/

Lumberyard Developer Guide
Template Drivers and Template Rendering

Template Drivers and Template Rendering
You can use template drivers written in Python to alter the intermediate data structure before passing it
to the template engine. After preprocessing, the template driver might direct the Jinja2 template engine to
render one or many templates, depending on the generated code that you want.

AZ Code Generator uses the Jinja2 template engine, which is downloaded by the Python easy_install
script in the \dev\Tools\Python\2.7.11\windows\Scripts directory. The engine is then copied into the
Lumberyard 3rdParty\jinja2 directory. Lumberyard also provides a jinja_extensions module, which
contains helper methods that you can use inside templates. These extensions are stored in the dev/Code/
Tools/AzCodeGenerator/Scripts/jinja_extensions/ directory. For examples and more information
about Jinja templates, see Code Generation Templates (p. 130).

Generated Files
The following sample output was generated from a serialization template. The reference JSON object has
been formatted for readability.

///
///
// THIS CODE IS AUTOGENERATED, DO NOT MODIFY
///
///
#include "stdafx.h"
#include <AZCore/Rtti/ReflectContext.h>
#include <AzCore/Rtti/Rtti.h>
#include <AzCore/Serialization/SerializeContext.h>
#include <AzCore/Math/Vector3.h>
#include "D:/Repo/Ly/branches/AzComponents/Code/Tools/AzCodeGenerator/CodeGenTest.h"
namespace Components
{
 void TestingClassReflect(AZ::ReflectContext* reflection)
 {
 AZ::SerializeContext* serializeContext =
 azrtti_cast<AZ::SerializeContext*>(reflection);
 if (serializeContext)
 {
 serializeContext->Class<TestingClass>()
 ->SerializerForEmptyClass() ;
 }
 }
}
///
/*
// Reference JSON object
[{
 'name':'Component',
 'qualified_name':'AZ::Component',
 'fields':[

],
 'bases':[

],
 'meta':{
 'path':'D:\\Repo\\Ly\\branches\\AzComponents\\Code\\Tools\\AzCodeGenerator\
\CodeGenTest.h'
 },
 'type':'class',

Version 1.8
123

http://jinja.pocoo.org/
http://peak.telecommunity.com/DevCenter/EasyInstall

Lumberyard Developer Guide
AZ Code Generator Integration with Waf

 'annotations':{

 },
 'methods':[

]
},
{
 'name':'TestingClass',
 'qualified_name':'TheNamespace::TestingClass',
 'fields':[
 {
 'type':'float',
 'name':'m_field2',
 'qualified_name':'TheNamespace::TestingClass::m_field2',
 'annotations':{

 }
 }
],
 'bases':[
 {
 'name':'Component',
 'qualified_name':'AZ::Component'
 }
],
 'meta':{
 'path':'D:\\Repo\\Ly\\branches\\AzComponents\\Code\\Tools\\AzCodeGenerator\
\CodeGenTest.h'
 },
 'type':'class',
 'annotations':{

 },
 'methods':[
 {
 'params':[
 'type',
 'int',
 'name',
 'version'
],
 'name':'CreateArgumentAnnotation',
 'qualified_name':'TheNamespace::TestingClass::CreateArgumentAnnotation',
 'annotations':{

 }
 }
]
}]
*/

AZ Code Generator Integration with Waf
AZ Code Generator is fully accessible for any Waf target as the feature az_code_gen. The dev/Code/
Tools/waf-1.7.13/lmbrwaflib/az_code_generator.py file contains the core of the Waf integration code.
It includes the az_code_gen feature that can be used by any wscript file.

The minimum required information is a list of the files to pass into the code generator and at least one
template driver. This list feeds the code generator one file at a time and invokes the templates specified by
the driver. The files output from the driver are added as dependencies of the build task. Output files also
have the option to be reinjected back into the C++ build for compilation. Output file paths are automatically

Version 1.8
124

Lumberyard Developer Guide
Basic Integration

added as include paths both for the current target build and as export_header entries. This allows written
source code to reference the generated source code from both internal and external targets.

Topics

• Basic Integration (p. 125)

• Advanced Integration (p. 125)

• Input Files (p. 126)

• Template Drivers (p. 126)

• Command Line Parameters (p. 126)

• Waf Specific Options (p. 127)

Basic Integration
In the wscript file for the target requiring generated code, add the az_code_gen feature as follows.

features = ['az_code_gen'],

Next, specify the files to pass as input to the code generator, as in the following example.

az_code_gen = [
 {
 'files' : ['MySourceFile.h'],
 'scripts' : ['MyTemplateDriver.py']
 }
],

The paths given are relative to the target path in both cases.

Whenever the specified target is compiled, a code generation task passes in the MySourceFile.h file to the
code generator. It also invokes the MyTemplateDriver.py file to control the output. For information on how
to write a template driver, see Template Drivers (p. 133).

Advanced Integration
The AZ Code Generator Waf integration uses passes to define the code generator tasks that must be run
during build time. Each pass determines the set of files, drivers, and environment settings with which to
run the code generator. Currently, all passes are run in parallel without any dependency checking between
passes.

The following example shows the configuration of multiple passes.

az_code_gen = [
 {
 'files' : ['MyCode/MySourceFile.h'],
 'scripts' : ['MyCode/MyTemplateDriver.py']
 },
 {
 'files' : ['MyOtherCode/MyOtherSourceFile.h'],
 'scripts' : ['MyOtherCode/MyOtherTemplateDriver.py']
 }
],

This example generates the following two code generation tasks.

1. Pass in the MyCode/MySourceFile.h file to the code generator and invoke the MyCode/
MyTemplateDriver.py file to control the output.

Version 1.8
125

Lumberyard Developer Guide
Input Files

2. Pass in MyOtherCode/MyOtherSourceFile.h to the code generator and invoke MyOtherCode/
MyOtherTemplateDriver.py to control the output.

Input Files
Each pass provides a list of files that will be used as input to the code generator. This list can also contain
string paths, nodes, and lists. Top-level string paths and nodes are passed individually to the code
generator. Note the following:

• If you provide a list, all files or nodes in that list are used by the code generator at the same time. This
allows for maximum flexibility, but typical usage is one input per task.

• The overhead of the Waf task and AZ Code Generator bootstrapping can be significant. To improve
performance, you can pass in multiple input files in one list.

• The code generator invokes the same Clang and template driver pipeline for each input file.

The following example shows several input file specifications.

Finds this file relative to the build context source node
'files' : [bld.srcnode.find_or_declare('Code/Framework/AzCore/Tests/CodeGen.h')],

'files' : [
Pass both MyClass.h and MyClass.cpp at the same time to code generator to get more
information about MyClass than just the header. Note the nested lists.
 ['MyClass.h', 'MyClass.cpp']
]

'files' : [
 # Any and all variations are allowed, but because lists provide only one layer of
 grouping,
 # lists are allowed only at the top level.
 'MySourceFile.h',
 'MyOtherSourceFile.cpp',
 bld.srcnode.find_or_declare('Code/Framework/AzCore/Tests/CodeGen.h'),
 ['MyClass.h', 'MyClass.cpp']
]

Template Drivers
To specify template drivers to use for each code generation pass, provide a list of string paths, relative to
the target path, as in the following example.

'scripts' : [
 '../../../Framework/AzFramework/CodeGen/AzClassCpp.py',
 '../../../Framework/AzFramework/CodeGen/AzEBusInline.py',
 '../../../Framework/AzFramework/CodeGen/AzReflectionCpp.py',
 '../../../Framework/AzFramework/CodeGen/AzClassInline.py'
],

Command Line Parameters
All command line parameters for the code generation utility can be specified in each code generation pass.
To do this, provide a list of arguments, as in the following example.

'arguments' : [
 '-OnlyRunDiagnosticsOnMainFile=true',
 '-SuppressDiagnostics=false',

Version 1.8
126

Lumberyard Developer Guide
Waf Specific Options

 '-SuppressErrorsAsWarnings=false',
 '-output-redirection=file',
],

For a full list of parameters, see AZ Code Generator Parameters (p. 127).

Waf Specific Options
The Waf integration provides additional options that can be specified in a list for each code generation
pass, as in the following example.

'options' : ['PrintOutputRedirectionFile'],

PrintOutputRedirectionFile – This option, when used in combination with the -output-
redirection=file parameter, directs Waf to provide AZ Code Generator a path to save extra output during
code generation. The path to this file is listed for each task during the build if errors occur.

Profile – This option enables profiler timings of clang parsing and script execution within the AZ Code
Generator tool.

AZ Code Generator Parameters
For best results, pass the options for AZ Code Generator in to the Waf build system. However, you can also
specify the parameters for AzCodeGenerator.exe on the command line.

Topics

• Waf Parameters (p. 127)

• Clang Compilation Parameters (p. 127)

• Intermediate Data (p. 128)

• Front End (p. 128)

• AZ Code Generator Parameter List (p. 128)

Waf Parameters
Most parameters for AZ Code Generator are specified by the Waf integration. Parameters such as
input, output, and include paths are automatically detected and forwarded. Other AZ Code Generator
parameters control how AZ Code Generator deals with the source code input and the intermediate data that
is generated.

Specify any of these in the arguments section of the az_code_gen pass in the wscript file.

Clang Compilation Parameters
The following AzCodeGenerator.exe parameters apply to Clang compilation.

Parameter Description

-

SuppressIncludeNotFoundError

Suppresses unknown #include statements at compile time.

-

OnlyRunDiagnosticsOnMainFile

Ignores build warnings and errors on all except the main file specified for
compilation.

Version 1.8
127

Lumberyard Developer Guide
Intermediate Data

Parameter Description

-SuppressDiagnostics Ignores build warnings and errors on all files.

-

SuppressErrorsAsWarnings

Downgrades any build errors to warnings. Allows Clang to succeed even if
there are errors.

Intermediate Data
To include information about code outside of the input file in the intermediate JSON data, use the following
option.

-inclusion-filter=<wildcard filter for files to allow>

Front End
You can choose the front end to use by specifying either the -Clang (the default) or -JSON option.

AZ Code Generator Parameter List
The following list shows all AZ Code Generator parameters.

Usage: AzCodeGenerator.exe [options]

Option Category Description

-Clang General Uses the Clang compiler front end.

-clang-settings-

file=<string>

Code
parsing

The path to the file that contains Clang configuration settings.

-codegen-

script=<string>

Python The absolute path and file name of the code generation script to
invoke.

-debug General Enables debug output.

-debug-buffer-

size=<uint>

General Buffers the last n characters of debug output until program
termination. The default is 0, which specifies immediate print out.

-debug-only=<debug

string>

General Enables a specific type of debug output.

-define=<string> Code
parsing

Specifies a preprocessor definition.

-

DelayedTemplateParsing

AST
traversal

Consumes and stores template tokens for parsing at the end of the
translation unit.

-

EnableIncrementalProcessing

AST
traversal

Enables incremental processing.

-force-

include=<string>

Code
parsing

List of headers to forcibly include in Clang parsing.

-help General Displays basic options in categorized format.

Version 1.8
128

Lumberyard Developer Guide
AZ Code Generator Parameter List

Option Category Description

-help-hidden General Displays all available options in categorized format.

-help-list General Displays basic options in list format.

-help-list-hidden General Displays all available options in list format.

-include-

path=<string>

Code
parsing

The header includes the path.

-inclusion-

filter=<string>

Code
filtering

Specifies a wildcard filter so that files other than those specified by
input-files are parsed by Clang into intermediate data.

-info-output-

file=<filename>

General File to which to append -stats output.

-input-file=<string> Code
parsing

(Required) Path to input file relative to the value of input-path.

-input-path=<string> Code
parsing

(Required) The absolute path to input folder. All input-file paths
must be relative to this folder.

-intermediate-

file=<string>

Code
parsing

Path to a file that stores the JSON AST from Clang parsing.

-JSON General Uses raw JSON input for the front end.

-noscripts General Disables the running of code generation scripts.

-

OnlyRunDiagnosticsOnMainFile

Clang
compilation

Runs diagnostics (error and warning checking) only on the main file
that is compiled. Ignores errors and warnings from all other files.

-output-

path=<string>

Code
parsing

(Required) The absolute path to the output folder.

-output-redirection Output Redirects output and error messages from Clang and Python internal
utilities.

Options:

=none – No output redirection. Clang and Python output to stdout
and stderr.

=null – Redirect Clang and Python to null, effectively suppressing
output.

=file – Redirect Clang and Python to disk. Use redirect-output-
file to specify the path.

-output-using-json Output Outputs using JSON objects instead of plain text. Use this option to
ease parsing for calling applications.

-print-all-options General Prints all option values after command line parsing.

-print-options General Prints nondefault options after command line parsing.

-profile General Enables AZ Code Generator's internal profiler and emits timings for
Clang parsing and script execution.

Version 1.8
129

Lumberyard Developer Guide
Code Generation Templates

Option Category Description

-python-debug-

path=<string>

Python Path to Python debug libraries and scripts for AzCodeGenerator.exe
to use in debugging.

-python-

home=<string>

Python (Required) The equivalent of the PYTHONHOME environment variable,
which is ignored.

-python-home-

debug=<string>

Python The equivalent of the debug Python PYTHONHOME environment
variable, which is ignored.

-python-

path=<string>

Python The path to Python libraries and scripts for AzCodeGenerator.exe.

-redirect-output-

file=<string>

Output The file path for redirected output. Use in combination with the
-output-redirection=file option. The default file name is
output.log.

-resource-

dir=<string>

Code
parsing

The path to the resource directory for Clang.

-stats General Enables statistics output from program (available with asserts). Use
the -info-output-file=<filename> option to specify the output file.

-SkipFunctionBodies AST
traversal

Does not traverse function bodies.

-SuppressDiagnostics Clang
compilation

Hides Clang compilation diagnostic information.

-

SuppressErrorsAsWarnings

Clang
compilation

Suppresses compilation errors during parsing by reporting them as
warnings.

-

SuppressIncludeNotFoundError

AST
traversal

Suppresses #include not found errors.

-track-memory General Enables -time-passes memory tracking. Performance might be slow
when this option is used.

-v General Outputs verbose debug information.

-version General Displays the version of AzCodeGenerator.exe.

-view-background General Executes the graph viewer in the background. This option creates a
.tmp file that must be deleted manually.

Code Generation Templates
AZ Code Generator uses the Jinja2 template engine for Python to render its output. The Jinja
template engine outputs plain text with embedded variable and logic statements.

Jinja templates are designed to be highly readable and mimic the overall structure of the desired output.
They are processed top to bottom. Any text outside of the control block in the template is sent directly to the
output.

The following are some example templates. For more information about creating Jinja templates, refer to
the Jinja Template Designer Documentation.

Topics

Version 1.8
130

http://jinja.pocoo.org/
http://jinja.pocoo.org/docs/dev/templates/

Lumberyard Developer Guide
Simple Example

• Simple Example (p. 131)

• Complex Example (p. 131)

• Template Data (p. 132)

Simple Example
A Jinja template can use text variables to replace text at predetermined locations in the output, as in the
following example:

// Here's a {{ variable_name }} !!
int {{ variable_name }} = {{ variable_value }};

In this example, the Jinja template is given the following input.

{
 'variable_name' = 'foo',
 'variable_value' = 42
}

The following output results.

// Here's a foo !!
int foo = 42;

Complex Example
Jinja allows for fairly complicated logic, branching and looping control structures. The following example
template generates a class that has the public and private variables specified by the input:

// This class is auto-generated!
class {{ class.name }}
{
public:
 virtual ~{{ class.name }}() = default;

{% if class.members is defined %}
 {% for member_var in class.members if member_var.visibility is 'public' -%}
 {{ member_var.type }} m_{{ member_var.name }}{{ if member_var.value is defined }} =
 {{ member_var.value }}{{ endif }};
 {%- endfor %}
{% endif %}
private:
{% if class.members is defined %}
 {% for member_var in class.members if member_var.visibility is 'private' -%}
 {{ member_var.type }} m_{{ member_var.name }}{{ if member_var.value is defined }} =
 {{ member_var.value }}{{ endif }};
 {%- endfor %}
{% endif %}
};

In this example, the Jinja template is given the following input.

{
 'class' : {
 'name' : 'MyClass',
 'members' : [

Version 1.8
131

Lumberyard Developer Guide
Template Data

 {
 'name' : 'foo',
 'type' : 'int',
 'visibility' : 'public'
 },
 {
 'name' : 'bar',
 'type' : 'long',
 'visibility' : 'public',
 },
 {
 'name' : 'secretSauce',
 'type' : 'float',
 'visibility' : 'private',
 'value' : '98.6f'
 }
]
 }
}

The template produces the following output.

// This class is auto-generated!
class MyClass
{
public:
 virtual ~MyClass() = default;

 int m_foo;
 long m_bar;
private:
 float m_secretSauce = 98.6f;
};

Template Data
The data that is available to the template is fully controlled by the Python template driver (p. 133).

The following table lists the variables that are automatically added to the Jinja environment.

Variable Description

extra_data Python object that contains data returned by the apply_transformations (p. 134)
method of the template driver.

extra_str String that contains the contents of extra_data in JSON format.

json_object Python object that contains the decoded intermediate JSON after it has been processed
by the template driver.

json_str String that contains the encoded intermediate JSON after it has been processed by the
template driver.

For information about the intermediate output, see Intermediate JSON Data Format (p. 146).

Note
Because Jinja contains a limited feature set, attempting to do complex data transformations in
Jinja templates produces overly complicated and generally unreadable templates. For this reason,
we recommend that you perform any major data manipulation in the template driver before it is
passed into the Jinja template engine. For more information, see Template Drivers (p. 133).

Version 1.8
132

Lumberyard Developer Guide
Template Drivers

Template Drivers
Template drivers are Python scripts that process the intermediate JSON data and route it into the
Jinja2 output templates. The scripts preprocess the data from the Clang front end, execute the template
rendering, and control where the generated output is written to disk.

These scripts are usually called by one or more code generation passes in WAF wscript files. Each
Python script can reference multiple templates. This offers great flexibility in implementation, especially
when multiple templates rely on the same preprocessed data.

Topics

• Specifying Drivers in Waf (p. 133)

• Creating a Template Driver in Python (p. 133)

• Minimal Template Driver (p. 135)

• Rendering Templates (p. 135)

• Configuring Automatic Build Injection (p. 136)

• Preprocessing Intermediate Data (p. 136)

Specifying Drivers in Waf
Drivers are specified by file name in each code generation pass. The file path is relative to the root of the
wscript target. All drivers are invoked on each input file.

The following shows the structure of a sample Waf entry.

'az_code_gen' = [
 {
 'files': [<files to gen>],
 'scripts': [<list of script file paths relative to current wscript folder>]
 }
]

For more details on how to specify passes, see AZ Code Generator Integration with Waf (p. 124).

Creating a Template Driver in Python
To create a template driver in Python, you must import the TemplateDriver base class and override
its methods. The code for the class can be found in the dev/Code/Tools/AzCodeGenerator/Scripts/
az_code_gen/base.py file.

This class is automatically injected into Python by AZ Code Generator and only needs to be imported as
az_code_gen.base, as in the following example.

from az_code_gen.base import *

Methods to Override in the TemplateDriver Class

To implement your template driver, override the following methods in the TemplateDriver class.

add_dependency

Call the add_dependency method to manually add a dependency to the az_code_gen task in Waf. The
file path given should be absolute so that the render template can specify additional dependencies that

Version 1.8
133

Lumberyard Developer Guide
Creating a Template Driver in Python

Waf does not automatically include. These dependencies might be external data files used to render the
templates, or files that were used to generate the input data.

Syntax

add_dependency(self, dependency_file)

apply_transformations

Override the apply_transformations method to manipulate the raw JSON object, which is passed in
as the obj parameter. Manipulations are performed in place on the object. The object is then forwarded
through the pipeline and is eventually passed to jinja_args of render_templates. Any object returned by
this method is provided to the Jinja environment as extra_data.

Syntax

apply_transformations(self, obj)

For an example of this method, see Preprocessing Intermediate Data (p. 136).

get_expected_tags

Override the get_expected_tags method to return a list of tags that must be found in any input file. If the
required tags are not present, this driver is skipped.

Important
This method is deprecated as of Lumberyard v1.6. After Lumberyard v1.6, all scripts will be
processed regardless of expected tags, and get_expected_tags will not be invoked.

Syntax

get_expected_tags(self)

render_template_to_file
Renders a template to disk. This method also adds the value of output_file as a dependency of the
az_code_gen task in Waf.

Syntax

render_template_to_file(self, template_file, template_kwargs, output_file,
 should_add_to_build=False)

Parameters

Parameter Description

template_file Specifies the path to a template relative to the directory that contains the template
driver .py file.

template_kwargs Specifies a dictionary of key–value pairs to be passed to Jinja. Generally
this should be treated as a passthrough variable for the jinja_args given to
render_templates, but you can add additional key–value pairs.

output_file Specifies the target file for the rendered Jinja output. The path is relative to the
target output folder.

Version 1.8
134

Lumberyard Developer Guide
Minimal Template Driver

Parameter Description

should_add_to_buildA Boolean value that specifies whether Waf should add this file to the C++ build and
linker. The default is false.

render_templates

Override render_templates to invoke template rendering by calling render_template_to_file.

Syntax

render_templates(self, input_file, **jinja_args)

Parameters

Parameter Description

input_file The path relative to the input path that is used to invoke Clang.

jinja_args The raw data from the intermediate JSON object after the template driver performs
preprocessing on the object.

Minimal Template Driver
The minimum code required for a template driver is to derive from the TemplateDriver base class and
implement a factory function to construct the template driver.

from az_code_gen.base import *

class MyTemplateDriver(TemplateDriver):
 pass

Factory function - called from launcher
def create_drivers(env):
 return [MyTemplateDriver(env)]

The az_code_gen module is automatically provided by AZ Code Generator. It contains the TemplateDriver
and other useful methods from the base.py file.

The create_drivers function simply forwards the Jinja environment that is used to render templates.
However, you can alter the function to perform other work when the driver is instantiated.

Note
The above bare-bones implementation works but does not generate any output.

Rendering Templates
To generate some output, you must implement the render_templates method, as in the following example.

from az_code_gen.base import *

class MyTemplateDriver(TemplateDriver):
 def render_templates(self, input_file, **jinja_args):
 self.render_template_to_file("MyTemplate.tpl", jinja_args, 'GeneratedCode.cpp')

Version 1.8
135

Lumberyard Developer Guide
Configuring Automatic Build Injection

Factory function - called from launcher
def create_drivers(env):
 return [MyTemplateDriver(env)]

The render_templates method takes the relative input_file path and any arguments that were passed
in from the AZCodeGenerator.exe utility. The input_file path usually contains inputs such as the
intermediate json_object created by Clang.

Template drivers can extend this information by implementing the apply_transformations method. For
more information, see Preprocessing Intermediate Data (p. 136).

The render_template_to_file method takes a template file and argument key–value pairs to pass into the
template engine directly and an output path to write the template engine render output to disk.

Configuring Automatic Build Injection
At this point, the example generates a minimal .cpp file. The example above does not compile or link the
.cpp file. This is appropriate if you intend to include the generated code manually using an #include in
another file.

To inject the generated file automatically, add the should_add_to_build parameter to the
render_template_to_file method and pass the parameter the value of true. The should_add_to_build
parameter informs Waf that the generated file needs to be built and linked into the current target.

Note

Using the should_add_to_build parameter is not recommended for header files or other generated files
that are not C++ code that must be compiled and linked.

The following example shows some build injected output.

from az_code_gen.base import *

class MyTemplateDriver(TemplateDriver):
 def render_templates(self, input_file, **jinja_args):
 self.render_template_to_file("MyTemplate.tpl", jinja_args, 'GeneratedCode.cpp',
 should_add_to_build=True)

Factory function - called from launcher
def create_drivers(env):
 return [MyTemplateDriver(env)]

Preprocessing Intermediate Data
Some cases require preprocessing of the intermediate data for easier consumption by the template engine.
To do this, implement the apply_transformations method in your template driver. You can use this
method to access the intermediate JSON data object directly before it gets passed to render_templates.
An example follows.

from az_code_gen.base import *

class MyTemplateDriver(TemplateDriver):
 def render_templates(self, input_file, **jinja_args):
 self.render_template_to_file("MyTemplate.tpl", jinja_args, 'GeneratedCode.cpp')

 def apply_transformations(self, obj):
 obj['my_custom_data'] = 42

Version 1.8
136

Lumberyard Developer Guide
Custom Code Generator Annotations

Factory function - called from launcher
def create_drivers(env):
 return [MyTemplateDriver(env)]

For information on the contents of the obj variable, see Intermediate JSON Data Format (p. 146).

Custom Code Generator Annotations
You can provide additional data to your template driver by attaching annotations and tags to your source
code.

Topics

• Reference Annotations (p. 137)

• Helper Macros (p. 137)

• Example Annotations (p. 138)

Reference Annotations
When you create custom code generator annotations, it is a good idea to refer for examples to the existing
annotations in the dev/Code/Framework/AZCore/AZCore/Preprocessor/CodeGen.h file. The existing
annotations use macros extensively as a workaround for the lack of proper annotations in C++.

Clang provides an annotate attribute that can be read at parse time. You can use the helper macros
provided to create new annotations, as in the following example.

__attribute__((annotate("<Some string here>")))

This attribute is wrapped with a macro that converts its contents into strings that can be parsed by the AZ
Code Generator utility.

Helper Macros
AZ Code Generator has two helper macros for annotations: AZCG_CreateAnnotation and
AZCG_CreateArgumentAnnotation.

AZCG_CreateAnnotation

AZCG_CreateAnnotation is the core macro that exposes the underlying Clang annotate attribute. The
macro definition follows.

// AZCG_CreateAnnotation
#define AZCG_CreateAnnotation(annotation) __attribute__((annotate(annotation)))

Any argument passed to AZCG_CreateAnnotation must be a string.

AZCG_CreateArgumentAnnotation

The AZCG_CreateArgumentAnnotation macro is commonly used for annotation macros. The macro
definition follows.

// AZCG_CreateArgumentAnnotation

Version 1.8
137

Lumberyard Developer Guide
Example Annotations

#define AZCG_CreateArgumentAnnotation AZCG_CreateAnnotation(AZ_STRINGIZE(annotation_name)
 "(" AZ_STRINGIZE((__VA_ARGS__)) ")")

The AZCG_CreateArgumentAnnotation macro takes an annotation_name argument and a number of
variable arguments. The values passed to the variable arguments are collapsed into a single string for
parsing by the AZ Code Generator.

Example Annotations
This section provides example annotations. One example forwards arguments to the underlying macro, one
places an annotation inside a class, and one injects code back into the originating file.

Simple Annotation

The following example creates a new annotation called AzExample that forwards its arguments to the
underlying macro.

//Sample Annotation
#define AzExample(...) AZCG_CreateArgumentAnnotation(AzExample, __VA_ARGS__)

In this example, the private and public names of the annotation are the same. However, the external and
internal names do not have to match.

You can attach the AzExample annotation to most items in C++, as in the following example.

// Sample Tag Usage
class ExampleClass
{
 AzExample(description("I am data!"))
 int m_myData;
}

The tags inside the annotation are placed in JSON format in the generated intermediate data object, as in
the following example. Some data has been removed for readability.

// Sample Tag JSON
{
 "type": "class",
 "name": " ExampleClass",
 "annotations" : {},
 "fields": [
 {
 "name": "m_myData",
 "annotations" : {
 "description" : "I am data!"
 }
 }
 }
]
}

Class Annotation Example

The following example directs the AZ Code Generator utility to attach a free-floating annotation to a class.

// Class Tag Macro

Version 1.8
138

Lumberyard Developer Guide
Example Annotations

#define AzExampleClass(...) AZCG_CreateArgumentAnnotation(AzExampleClass, Class_Attribute,
 __VA_ARGS__) int AZ_JOIN(m_azCodeGenInternal, __COUNTER__);

AzExampleClass – Specifies the annotation name AzExampleClass (instead of AzExample, as in the
previous example).

Class_Attribute – Causes the AZ Code Generator utility to attach the attribute to the class that contains
the annotation. The annotation belongs to the annotations property of the class object.

__VA_ARGS__ – Specifies additional parameters that are converted into a single string and passed into the
AZ Code Generator utility for parsing.

int AZ_JOIN(m_azCodeGenInternal, __COUNTER__) – AZ_JOIN is a helper macro that takes two macro-
level entries and joins them together without converting them to strings. Because Clang requires annotation
attributes be attached to a function or variable, this example uses AZ_JOIN and a temporary integer
member variable to do this. The temporary integer member variable is then ignored.

Adding the new tag to the previous example produces the following code:

//Class Tag Example
class ExampleClass
{
 AzExampleClass(MyExampleClassTags::description("I am an example class!"));
 AzExample(MyExamplePropertyTags::description("I am data!"))
 int m_myData;
}

This produces the following intermediate JSON object. Some data has been removed for ease of
comprehension.

// Class Tag JSON
"type": "class",
"name": "SampleClass",
"annotations" : {
 "MyExampleClassTags::description" : "I am an example class!"
},
"fields": [
 {
 "name": "m_myData",
 "annotations" : {
 "MyExamplePropertyTags::description" : "I am data!"
 }
 }
]

Notice that the above JSON does not look exactly like the JSON in the intermediate files provided as part
of AZ framework. This is because Lumberyard uses namespaces on its tags to also provide a hierarchy for
the tags on its drivers and templates. We recommend that you import the clang_cpp.py file and run the
format_cpp_annotations(json_object) function on the intermediate JSON. When you do, you can use all
of the convenient patterns and functions in our drivers and scripts.

The following example shows the same intermediate JSON object after processing by
format_cpp_annotations().

// Output of format_cpp_annotations()
"type": "class",
 "name": "SampleClass",
 "annotations" : {
 "MyExampleClassTags": {

Version 1.8
139

Lumberyard Developer Guide
Example Annotations

 "description" : "I am an example class!"
 }
 },
 "fields": [
 {
 "name": "m_myData",
 "annotations" : {
 "MyExamplePropertyTags": {
 "description" : "I am data!"
 }
 }
 }
]

Generated Code Injection Example

The following example shows how to automatically inject generated code back into the original file. The
example extends the previously created AzExampleClass annotation by injecting code into the example
class.

// Code Injection Macro
#if defined(AZ_CODE_GENERATOR)
define AzExampleClass(ClassName, ...) AZCG_CreateArgumentAnnotation(AzExampleClass,
 Class_Attribute, identifier(ClassName), __VA_ARGS__) int AZ_JOIN(m_azCodeGenInternal,
 __COUNTER__);
#else
define AzExampleClass(ClassName, ...) AZ_JOIN(AZ_GENERATED_CODE_,ClassName)
#endif // AZ_CODE_GENERATOR

The updated annotation adds a new required parameter called ClassName, which is an identifier that is used
to inject the code. The identifier is passed in to Clang as identifier(ClassName), and the data is provided
to the intermediate JSON.

Up until this point, the annotation macro outside of AZ_CODE_GENERATOR has been blank. The next step is to
have it expand to the identifier of the code-generated macro. This causes the generated code to replace the
macro annotation when the generated file is put in an #include statement.

To implement this, the example sets the macro to become AZ_JOIN(AZ_GENERATED_,ClassName). As
before, AZ_JOIN in this example renders this as AZ_GENERATED_CODE_ExampleClass. The ClassName
parameter provides a name at compile time for the generated macro.

Note
It is not required that ClassName be the actual name of the class where the tag is used. Other tags
that use this mechanism can simply require any unique identifier.

When the previous example code is updated, the following code is produced:

// Generated Injection Code
class ExampleClass
{
 AzExampleClass(ExampleClass, description("I am an example class!"));
 AzExample(description("I am data!"))
 int m_myData;
}

This code produces the following intermediate JSON. Note the new identifier annotation on the class. Some
data has been removed for readability.

// Generated Code Injection JSON

Version 1.8
140

Lumberyard Developer Guide
Waf Debugging with AZ Code Generator

"type": "class",
"name": "SampleClass",
"annotations" : {
 "AzExampleClass" : {
 "identifier" : "ExampleClass",
 "description" : "I am an example class!"
 }
},
"fields": [
 {
 "name": "m_myData",
 "annotations" : {
 "AzExample" : {
 "description" : "I am data!"
 }
 }
 }
]

This result doesn't compile until the following template code used with the annotation produces the intended
macro.

// Template Code
{% if class.annotations.identifier is defined %}
#define AZ_GENERATED_CODE_{{ asStringIdentifier(class.annotations.identifier) }}\
public: \
{# This method is injected for all classes with the AzExampleClass tag #}
bool IsExampleClass(void) { return true; }
{% endif %}

This code generates the following code for injection:

// Generated Code for Injection
#define AZ_GENERATED_CODE_ExampleClass \
 bool IsExampleClass(void) { return true; }

If the generated header is placed in an #include statement in the original code, any code in this macro will
be injected into ExampleClass.

Waf Debugging with AZ Code Generator
You can debug the integration output of Waf's Python scripts by using PyCharm and a few key debugging
entry points. For more information about Waf integration itself, see AZ Code Generator Integration with Waf
 (p. 124).

Topics

• Prerequisites (p. 141)

• Identifying and Configuring Debug Output (p. 142)

• Setting Up PyCharm for Debugging Waf (p. 142)

Prerequisites
Before you start, follow the instructions for Setting Up PyCharm for Debugging Waf (p. 142). The
PyCharm debugger must be set up to debug lmbr_waf before you can continue.

Version 1.8
141

Lumberyard Developer Guide
Identifying and Configuring Debug Output

Identifying and Configuring Debug Output
All AZ Code Generator Waf integration output is prefixed with az_code_gen. To see additional output from
both task creation and task execution, add --zones=az_code_gen to the Waf command line. This exposes
the commands that invoke AZ Code Generator and are useful for debugging the AZ Code Generator utility
itself. For more information, see Debugging the AZ Code Generator Utility (p. 144).

Debugging Wscript Configuration

To debug most configuration problems, it is best to set a breakpoint in the create_code_generator_tasks
method in Code\Tools\waf-<version>\lmbrwaflib\az_code_generator.py . This method is called for
each wscript file that uses the az_code_gen feature. It directly interprets the given passes and generates
an az_code_gen task for each input file in each pass.

Debugging az_code_gen Task Creation

The create_az_code_generator_task feature creates az_code_gen tasks. It gathers most information and
inserts it into the task. Each task gets added to the az_code_gen_group Waf task to ensure it is executed
prior to other tasks.

Debugging az_code_gen Task Execution

The run and handle_code_generator_output commands are important points in task execution.

The run command takes the available information and generates a Clang-style arguments file prefixed with
the @ symbol. The arguments file is passed on the command line to the AZ Code Generator utility.

handle_code_generator_output - The AZ Code Generator utility returns a JSON object with one or more
entries that are parsed by handle_code_generator_output. If the AZ Code Generator utility returns an
invalid, non-JSON response due to errors during execution, the Waf task returns the error message No
JSON-Object could be decoded. To discover the return value that could not be handled, run the command
outside of Waf.

Setting Up PyCharm for Debugging Waf
PyCharm is an integrated development environment for Python which includes a graphical debugger that is
useful for debugging Waf.

To set up PyCharm and Waf for debugging

1. Download PyCharm Community Edition.

2. Start PyCharm.

3. At the welcome screen, choose Open Directory.

4. From the Lumberyard root directory, navigate to any branch that contains a _WAF_ or dev directory.
There should be a file called wscript and waf_branch_spec.py under this folder.

5. Configure the Python interpreter.

a. Choose File, Settings, Project:dev, Project Interpreter to open the project interpreter page.

b. Click the gear icon on the right of the Project Interpreter and choose Add Local.

c. Navigate to the folder where python.exe resides. The Python executable file must be in the same
folder as the project or you may have issues running Waf.

6. Set up a debugging profile for Waf.

Version 1.8
142

https://www.jetbrains.com/pycharm/download/

Lumberyard Developer Guide
Template Driver Debugging

a. To set up Waf for debugging, use the project explorer in the left pane. If you don't see the project
explorer, press Alt+1). Navigate to the Code/Tools/waf-<version> node and expand it. You
should see a file called lmbr_waf inside this node.

b. Right-click lmbr_waf and choose Create lmbr_waf

Note
The Indexing... operation must finish before the option appears. You can verify status in
the bar at the bottom.

c. In the Create Run/Debug Configuration dialog, ensure that the following values are configured
correctly:

• Single instance only should be selected.

• Script Parameters is the command to use to run Waf for the run/debug session.

• Python Interpreter should be the interpreter that you specified earlier.

• The Working directory must be the root of the project (for example, the dev directory).

Next, you must to set up wscript files as debuggable Python files. Waf uses files called wscript
to define the build rules per project. These are dynamically loaded Python modules that can be
debugged like any other Python module.

d. Choose File, Settings, Editor, File Types, Python.

e. To add a registered pattern for wscript, choose Python in Recognized File Types.

f. Under Registered Patterns, click the green plus sign (+).

g. In the Add Wildcard dialog box, type in wscript.

7. Make sure IncrediBuild is turned off.

a. Open the _WAF_/usersettings.options file.

b. Verify that use_incredibuild is set to false, as in the following example. use_incredibuild =
False

8. (Optional) Enable file outlining.

By default, file outlining is switched off in PyCharm. This feature facilitates navigation in the source
files, as the following image shows.

To enable file outlining, right-click the Project tab and choose Show Members.

Template Driver Debugging
Because template drivers are run from the AZ Code Generator executable using Python, you can't debug
them directly. However, you can debug your driver and template code (and even Jinja2 itself) by using the
debug.py file included with AZ Code Generator.

To debug a template driver with a Python debugger like PyCharm or Visual Studio

1. Set the debugger to execute the Bin64\azcg\debug.py file. This file launches the utility to generate
input JSON and emulates a code-generation pass in Python so that you can debug as if you were
attached to the utility.

2. Set the working directory to Bin64\azcg.

3. Type the arguments for AzCodeGenerator.exe into a file with one argument per line. Or use a Waf-
generated arguments file as described in Waf Debugging with AZ Code Generator (p. 141).

4. Set the arguments file, prefixed with @, as the argument to the script.

Version 1.8
143

Lumberyard Developer Guide
Debugging the AZ Code Generator Utility

The following arguments are required:

• -codegen-script – Absolute path to the driver script that you want to debug.

• -input-path – Absolute path on which source file paths are based. Usually this path is the same as
the location of the wscript for a given target.

• -input-file – Relative path from input path to the source file that is used for input.

• -output-file – Absolute path where generated code will be written.

After you have completed the preceding steps, you should be able to launch your debugger and set
breakpoints in your driver script.

For complete AZ Code Generator parameter information, see AZ Code Generator Parameters (p. 127).

Debugging the AZ Code Generator Utility
When using Waf and the AZ Code Generator utility, you might need to debug Waf Python scripts (p. 141)
and your template drivers (p. 143). You can also debug the AZ Code Generator utility itself, although
it is less likely to be necessary. You can debug the AZ Code Generator utility by using Visual Studio in
Windows or Xcode in macOS.

Topics

• Prerequisites (p. 144)

• Debugging the AZ Code Generator Utility from the Waf build (p. 145)

• Setting Visual Studio Debug Arguments (p. 145)

• Setting Xcode Debug Arguments (p. 145)

Prerequisites
The required preliminary steps depend on your operating system.

Windows Debugging
To debug AZ Code Generator using Visual Studio in Windows, you must generate a Visual Studio
HostTools solution (.sln) file.

To generate a Visual Studio HostTools solution file

1. Run the following command line from the dev folder.

lmbr_waf.bat configure --enabled-game-projects= --specs-to-include-in-project-
generation=host_tools --visual-studio-solution-name=HostTools

2. In Visual Studio, open the dev/Solutions/HostTools.sln file.

macOS Debugging
To enable Waf support for Xcode, perform the following steps to generate an Xcode project.

To generate an Xcode project

1. Open the dev/_WAF_/specs/all.json file.

Version 1.8
144

Lumberyard Developer Guide
Debugging the AZ Code Generator Utility from the Waf build

2. Temporarily add AzCodeGenerator to modules.

3. Run ./lmbr_waf.sh configure to regenerate the Xcode project.

4. Open the dev/Solutions/LumberyardSDK.xcodeproj file.

Debugging the AZ Code Generator Utility from the Waf
build
To debug the AZ Code Generator Utility from the Waf build, you must find the arguments file generated by
Waf.

Waf generates an arguments file that is passed to AZ Code Generator as a command line parameter. All
command line parameters from Waf for AZ Code Generator are contained inside the arguments file. This
file is useful for debugging specific Waf AZ Code Generator invocations. To make the arguments file that
you use available to Waf, add the --zones=az_code_gen option to the Waf command line.

When you use the --zones=az_code_gen option, the output looks like the following.

lmbr_waf build_win_x64_vs_2013_release -p all --zones=az_code_gen
[1/3150] az_code_gen (win_x64|release): BinTemp\win_x64_release\Code\Launcher
\WindowsLauncher\GameSDKWindowsLauncherStaticModules.json
14:24:17 az_code_gen Invoking code generator with command: g:\lyengine\Systems\dev
\Bin64\azcg\AzCodeGenerator.exe @g:\lyengine\Systems\dev\BinTemp\win_x64_release
\CodeGenArguments\arguments_file_ee625f9186107e30ab3126cc30cc9b49.args

In this example Waf output, the following is the arguments file.

@g:\lyengine\Systems\dev\BinTemp\win_x64_release\CodeGenArguments
\arguments_file_ee625f9186107e30ab3126cc30cc9b49.args

Setting Visual Studio Debug Arguments
To set up debugging of AZ Code Generator from Visual Studio, perform the following steps.

To debug AZ Code Generator from Visual Studio

1. Perform the steps to set up Windows debugging as described in Prerequisites (p. 144).

2. In the Visual Studio Solution Explorer, right-click AzCodeGenerator, and then select Properties.

3. Under Debugging, paste the path to the arguments file into Command Arguments.

4. Click OK to close the Property window.

5. Right-click AzCodeGenerator and then click Set as StartUp Project.

6. Press F5 to launch the debugger.

Setting Xcode Debug Arguments
To set up debugging of AZ Code Generator from Xcode, perform the following steps.

To debug AZ Code Generator from Xcode

1. Perform the steps to set up macOS debugging as described in Prerequisites (p. 144).

2. In Xcode, under the Product, Scheme menu, choose AzCodeGenerator.

3. At the bottom of the Product, Scheme menu, choose Edit Scheme.

Version 1.8
145

Lumberyard Developer Guide
Intermediate JSON Data Format

4. Under Arguments, add a new entry to Arguments Passed On Launch that contains your debug
arguments.

5. Under Info, from the Executable drop down, select Other.

a. Navigate to the directory dev/BinMac64.Debug/azcg/AzCodeGenerator.

b. Click Choose.

6. Close the scheme editor.

7. Choose Product, Run to launch the debugger.

Intermediate JSON Data Format
The following JSON shows the intermediate data format consumed by Jinja2 user-defined templates.

{
 "meta": {
 "path": "<Path/To/Code/Generator/Input/File.ext>"
 },
 "objects": [
 {
 "name": "<Name of class/struct>",
 "qualified_name": "<Fully qualified name of class or struct>",
 "fields": [
 {
 "type": "<member variable type>",
 "canonical_type": "<member variable canonical type>",
 "name": "<member variable name>",
 "qualified_name": "<fully qualified member variable name>",
 "annotations": {
 "<annotation name>": {
 "<annotation variable name>": "<annotation variable value (can
 be empty string)>",
 ...
 },
 ...
 }
 },
 ...
],
 "traits": {
 "isAbstract": <true if abstract class, false if concrete>,
 "isPOD": <true of plain old data type; otherwise, false>,
 "isPolymorphic": <true if polymorphic type; otherwise, false>
 },
 "bases" : [
 {
 "name" : "<Base Class Name>",
 "qualified_name" : "<Fully qualified name of base class>"
 },
 ...
],
 "meta": {
 "path": "<Path/To/File/Containing/This/Object.ext>"
 },
 "type": <"class" or "struct">,
 "annotations": {
 "<annotation name>": {
 "<annotation variable name>": "<annotation variable value (can be empty
 string)>",
 ...
 },

Version 1.8
146

Lumberyard Developer Guide
Intermediate JSON Data Format

 ...
 },
 "methods": [
 {
 "name" : "<method_name>",
 "qualified_name": "<Fully qualified name of method>",
 "is_virtual": <true if virtual method; otherwise, false>,
 "annotations": {
 "<annotation name>": {
 "<annotation variable name>": "<annotation variable value (can
 be empty string)>",
 ...
 },
 "access": "<Access level of method, one of: public, private,
 protected>",
 "params" : [
 {
 "type" : "<parameter type>",
 "canonical_type" : "<parameter canonical type>",
 "name" : "<parameter name>"
 },
 ...
],
 "uses_override": <true if override keyword is present; otherwise,
 false>,
 "return_type": "<return type of method>"
 },
 ...
]
 },
 ...
]
}

Version 1.8
147

Lumberyard Developer Guide
Comparing AZ Modules to Legacy Modules

AZ Modules (Preview)

AZ modules are in preview release and subject to change.

AZ modules are code libraries designed to plug into Lumberyard games and tools. An AZ module is a
collection of C++ code built as a static or dynamic library (.lib or .dll file) that implements specific
initialization functions. When a Lumberyard application starts, it loads each module and calls these
initialization functions. These initialization functions allow the module to connect to core technologies such
as reflection, serialization, event buses (p. 418), and the Component Entity System (p. 315).

Modules are not a new concept in Lumberyard. In fact, the Lumberyard game engine is a collection of
older style modules. These legacy modules have served the game engine well, but they have a number of
shortcomings which are addressed by AZ modules, as presented in the next section.

Lumberyard currently supports both legacy modules and AZ modules but going forward will use AZ
modules. Beginning in Lumberyard 1.5, a gem can contain AZ module code. Creating a new gem is the
easiest way to get up a new AZ module up and running.

Note
AZ is the namespace of the AZCore C++ library upon which AZ modules are built. The letters AZ
refer to Amazon; the term is a preview name that has nothing to do with Amazon Availability Zones
and may be subject to change.

Comparing AZ Modules to Legacy Modules
AZ modules have significant advantages over legacy modules, as the following table shows:

Topic Legacy Modules AZ Modules

Compatibility Modules can be converted to
AZ modules with no loss of
functionality.

Anything that can be done in
a legacy module can also be
done in an AZ module. Most
AZ module code could live
within a legacy module, but
legacy modules are not likely
to be compatible with future AZ
module–based Lumberyard tools.

Version 1.8
148

https://aws.amazon.com/about-aws/global-infrastructure/

Lumberyard Developer Guide
A Self-Aware Method of Initialization

Ease of adding services
(singleton classes) to modules

Adding services usually requires
editing files in CryCommon. A file
for the singleton's class interface
must exist in the CryCommon
directory, and a variable to hold
the singleton in gEnvmust exist.

Modules create components and
attach them to the system entity.
No editing of game engine files is
required.

Ease of use for low-level
application features

Modules load late, which
prevents them from contributing
low-level features to an
application. All critical features
must be in a single module that
loads before others.

Modules load early in the
application's startup sequence
and are initialized in discrete
stages. This allows any module
to provide a low-level feature at
an early stage that other modules
can take advantage of later.

Exposure of properties Modules have no uniform way
to let users control settings for
their service. Some services read
settings from .xml files in the
assets directory, which must be
edited by hand.

AZ modules expose the
properties of system components
to the Lumberyard reflection
system. The reflection system
makes information about these
properties available to all other
components.

Game engine dependency Modules must run in the game
engine and are difficult to extend
for use in tools that do not have
game code.

Modules are not specific to the
game engine and can be used
outside it.

Initialization functions Function parameters are specific
to CryEngine.

Function parameters are specific
to the AZ framework; for more
information, see the following
section.

Order of initialization Singleton code often depends
on services offered by other
singletons, so modules must
be initialized in a very particular
order. However, the order is not
obvious. If someone is unfamiliar
with the code in the modules,
their loading order is difficult to
ascertain.

Each module explicitly states
its dependencies on system
components. After all system
components are examined, they
are sorted according to these
dependencies and initialized
in the appropriate order. Each
module is a first-class citizen.

A Self-Aware Method of Initialization
Legacy modules are loaded in a particular order. Because CrySystem is loaded and initialized before the
game module, it must provide all low-level systems such as logging and file I/O that a subsequent module
might depend on. The game module itself cannot provide such low-level systems because it’s initialized too
late.

AZ modules, on the other hand, are all loaded as early as possible, and then initialized in stages. Because
each module explicitly states its dependencies on system components, all system components can be
examined beforehand, sorted according to dependencies, and initialized in the appropriate order (p. 155).
This makes it possible for low-level functionality (like a custom logging system) to be implemented from a
game module. For more information about the initialization order of components, see The AZ Bootstrapping
Process (p. 163).

Version 1.8
149

Lumberyard Developer Guide
Relationship with the AZ Framework

Relationship with the AZ Framework

AZ modules are designed to work with the AZ framework, which is a collection of Lumberyard technologies
such as reflection, serialization, event buses (p. 418), and the component entity system. The AZ
framework supports game development but can also be used outside it. For example, Lumberyard tools
like the Setup Assistant, Asset Processor and the component entity system use the AZ framework and AZ
modules, but contain no game code. When the Resource Compiler builds slices, it loads AZ modules to
extract reflection information about components within them.

AZ modules are code libraries that are built to use the AZ framework. When an AZ framework application
loads an AZ module, the AZ module knows how to perform tasks such as gathering reflection information
about the data types defined within that library.

Smarter Singletons
AZ modules build their services (which are singleton classes) by using the same component entity system
that Lumberyard uses to build in-game entities. A module simply places a system component on the system
entity. This solves many of the problems associated with singletons in legacy modules.

The GUI in Lumberyard Editor uses the reflection system to expose the properties of entities (gameplay
components) to designers. In the same way, Lumberyard uses the reflection system to expose the
properties of system components so that you can customize your settings for a particular game.
Because system components are really no different from gameplay components, you can use the Project
Configurator to edit the properties of system components (p. 161) just as you edit the properties of in-
game components.

Current Lumberyard AZ Modules
The gems (p. 157) provided with Lumberyard are all built as AZ modules. In addition, there are two AZ
modules that are not built as gems.

LmbrCentral
LmbrCentral contains components that wrap functionality from legacy modules. For example, the
MeshComponent utilizes IRenderNode under the hood. LmbrCentral is used by game applications.

LmbrCentralEditor
Components can have editor-specific implementations that integrate with technology not available in the
game runtime environment. Therefore, a separate module, LmbrCentralEditor, is used by Lumberyard
Editor. This module contains all the code from LmbrCentral, plus code that is only for use in tools. The
LmbrCentralEditor module is not for use in standalone game applications.

Parts of an AZ Module, Explained
AZ modules are in preview release and subject to change.

Version 1.8
150

http://docs.aws.amazon.com/lumberyard/latest/userguide/component-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/asset-pipeline-processor.html

Lumberyard Developer Guide
The Module Class

An AZ module has three key components: a class that inherits from AZ::Module, one or more public facing
event buses, and a system component class.

This page describes module initialization, the use of system components as singletons, how EBus calls
communicate with this singleton, and how to call the module externally after you have created it.

The Module Class
Each AZ module must contain a class that inherits from AZ::Module. When the module is loaded by an
application, an instance of the class is created very early in the application's lifetime and its virtual functions
are called at the appropriate times as the application goes through its bootstrapping process (p. 163).
This class reflects (p. 318) the components declared in the module and adds critical components to the
system entity.

The following skeleton code shows the basic structure of an AZ::Module class.

namespace AZ
{
 /**
 * AZ::Module enables static and dynamic modules (aka LIBs and DLLs) to
 * connect with the running \ref AZ::ComponentApplication.
 *
 * Each module should contain a class which inherits from AZ::Module.
 * This class must perform tasks such as reflecting the classes within
 * the module and adding critical components to the system entity.
 */
 class Module
 {
 public:
 Module();
 virtual ~Module();

 /// Override to require specific components on the system entity.
 virtual ComponentTypeList GetRequiredSystemComponents() const;
 };
}

The AZ::Module class exposes all points of integration with the AZ framework as virtual functions. These
points of integration have been created as virtual functions on a class so that, whether initialization
code is in a static or dynamic library, it’s written the same way as much as possible. The very first actual
initialization calls do need to be different for static and dynamic libraries. Lumberyard provides a macro
to define this uninteresting glue code and let you write the interesting initialization code within your
AZ::Module class.

We recommend that your AZ::Module class contain as little implementation code as possible. When the
AZ::Module class is created, the application is just starting up and many systems are unavailable. If the
AZ::Module class spawns a singleton or manager class, there is no guarantee that the systems on which
this singleton relies will be ready for use. Instead, you should build your singletons as Lumberyard system
components (p. 155), which can control their initialization order.

Beginning in Lumberyard 1.5, gems are built using AZ modules. The following example "HelloWorld" AZ
module was made by creating a new gem. The CryHooksModule class in this example is a helper wrapper
around AZ::Module and provides your entire module access to gEnv.

// dev/Gems/HelloWorld/Code/Source/HelloWorldModule.cpp
#include "StdAfx.h"
#include <platform_impl.h>

#include "HelloWorldSystemComponent.h"

Version 1.8
151

http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gems.html

Lumberyard Developer Guide
The EBus

#include <IGem.h>

namespace HelloWorld
{
 class HelloWorldModule
 : public CryHooksModule
 {
 public:
 AZ_RTTI(HelloWorldModule, "{39C21561-D456-413F-8C83-4214F6DBC5A5}",
 CryHooksModule);

 HelloWorldModule()
 : CryHooksModule()
 {
 // Create descriptors for components declared within this module.
 m_descriptors.insert(m_descriptors.end(), {
 HelloWorldSystemComponent::CreateDescriptor(),
 });
 }

 // Add required system components to the system entity.
 AZ::ComponentTypeList GetRequiredSystemComponents() const override
 {
 return AZ::ComponentTypeList{
 azrtti_typeid<HelloWorldSystemComponent>(),
 };
 }
 };
}

// DO NOT MODIFY THIS LINE UNLESS YOU RENAME THE GEM
// The first parameter should be GemName_GemIdLower
// The second should be the fully qualified name of the class above
AZ_DECLARE_MODULE_CLASS(HelloWorld_010c14ae7f0f4eb1939405d439a9481a,
 HelloWorld::HelloWorldModule)

The EBus
External code can call into your module, and receive events from your module, through the module's public
event buses (p. 418) (EBus). The EBus allows simple and safe function calls between different modules
of code.

A new gem comes with one EBus by default, as shown in the following example.

// dev/Gems/HelloWorld/Code/Include/HelloWorld/HelloWorldBus.h
#pragma once
#include <AzCore/EBus/EBus.h>
namespace HelloWorld
{
 class HelloWorldRequests
 : public AZ::EBusTraits
 {
 public:
 //
 // EBusTraits overrides
 // These settings are for a "singleton" pattern.
 // A single handler can connect to the EBus.
 static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Single;
 // A single address exists on the EBus.
 static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::Single;
 //

 // Put your public methods here

Version 1.8
152

Lumberyard Developer Guide
The System Component Class

 virtual void SayHello(const char* name) = 0;
 };
 using HelloWorldRequestBus = AZ::EBus<HelloWorldRequests>;
} // namespace HelloWorld

Calls to this EBus are handled by the system component, as described in the following section.

The System Component Class
Any major systems in your module that require a singleton should be built as system
components. New gems come with a system component by default. The system component
class is created during application startup and attached to the system entity (see
GetRequiredSystemComponents() in HelloWorldModule.cpp).

In the current example, the system component class handles calls to the public EBus declared in
HelloWorldBus.h. The following code shows the HelloWorldSystemComponent class.

// dev/Gems/HelloWorld/Code/Source/HelloWorldSystemComponent.h
#pragma once
#include <AzCore/Component/Component.h>
#include <HelloWorld/HelloWorldBus.h>

namespace HelloWorld
{
 // The HelloWorldSystemComponent is placed on the system entity
 // and handles calls to the HelloWorldRequestBus.
 class HelloWorldSystemComponent
 : public AZ::Component
 , protected HelloWorldRequestBus::Handler
 {
 public:
 // Every component definition must contain the AZ_COMPONENT macro,
 // specifying the type name and a unique UUID.
 AZ_COMPONENT(HelloWorldSystemComponent, "{72DFB0EE-7422-4CEB-9A40-426F26530A92}");

 static void Reflect(AZ::ReflectContext* context);

 static void GetProvidedServices(AZ::ComponentDescriptor::DependencyArrayType&
 provided);
 static void GetIncompatibleServices(AZ::ComponentDescriptor::DependencyArrayType&
 incompatible);
 static void GetRequiredServices(AZ::ComponentDescriptor::DependencyArrayType&
 required);
 static void GetDependentServices(AZ::ComponentDescriptor::DependencyArrayType&
 dependent);

 protected:
 //
 // AZ::Component interface implementation
 void Init() override;
 void Activate() override;
 void Deactivate() override;
 //

 //
 // HelloWorldRequestBus interface implementation
 void SayHello(const char* name) override;
 //
 };
}
// dev/Gems/HelloWorld/Code/Source/HelloWorldSystemComponent.cpp
#include "StdAfx.h"
#include <AzCore/Serialization/SerializeContext.h>

Version 1.8
153

Lumberyard Developer Guide
The System Component Class

#include <AzCore/Serialization/EditContext.h>
#include "HelloWorldSystemComponent.h"

namespace HelloWorld
{
 void HelloWorldSystemComponent::Reflect(AZ::ReflectContext* context)
 {
 // Reflect properties that developers may want to customize.
 if (AZ::SerializeContext* serialize = azrtti_cast<AZ::SerializeContext*>(context))
 {
 serialize->Class<HelloWorldSystemComponent, AZ::Component>()
 ->Version(0)
 ->SerializerForEmptyClass();

 if (AZ::EditContext* ec = serialize->GetEditContext())
 {
 ec->Class<HelloWorldSystemComponent>("HelloWorld", "Says hello")
 ->ClassElement(AZ::Edit::ClassElements::EditorData, "")
 ->Attribute(AZ::Edit::Attributes::AppearsInAddComponentMenu,
 AZ_CRC("System"))
 ->Attribute(AZ::Edit::Attributes::AutoExpand, true)
 ;
 }
 }
 }

 void
 HelloWorldSystemComponent::GetProvidedServices(AZ::ComponentDescriptor::DependencyArrayType&
 provided)
 {
 provided.push_back(AZ_CRC("HelloWorldService"));
 }

 void
 HelloWorldSystemComponent::GetIncompatibleServices(AZ::ComponentDescriptor::DependencyArrayType&
 incompatible)
 {
 // Enforce singleton behavior by forbidding further components
 // which provide this same service from being added to an entity.
 incompatible.push_back(AZ_CRC("HelloWorldService"));
 }

 void
 HelloWorldSystemComponent::GetRequiredServices(AZ::ComponentDescriptor::DependencyArrayType&
 required)
 {
 // This component does not depend upon any other services.
 (void)required;
 }

 void
 HelloWorldSystemComponent::GetDependentServices(AZ::ComponentDescriptor::DependencyArrayType&
 dependent)
 {
 // This component does not depend upon any other services.
 (void)dependent;
 }

 void HelloWorldSystemComponent::Init()
 {
 }

 void HelloWorldSystemComponent::Activate()
 {
 // Activate() is where the component "turns on".
 // Begin handling calls to HelloWorldRequestBus

Version 1.8
154

Lumberyard Developer Guide
Calling the Module from External Code

 HelloWorldRequestBus::Handler::BusConnect();
 }

 void HelloWorldSystemComponent::Deactivate()
 {
 // Deactivate() is where the component "turns off".
 // Stop handling calls to HelloWorldRequestBus
 HelloWorldRequestBus::Handler::BusDisconnect();
 }

 void HelloWorldSystemComponent::SayHello(const char* name)
 {
 AZ_Printf("HelloWorld", "Hello %s, you certainly look smashing tonight.", name);
 }
}

For more information about system components, see System Components (p. 155).

Calling the Module from External Code
To call your module, invoke your public function through EBus. This example uses the SayHello function.

#include <HelloWorld/HelloWorldBus.h>

void InSomeFunctionSomewhere()
{
 // ...
 // Invoke the call through EBus.
 EBUS_EVENT(HelloWorld::HelloWorldRequestBus, SayHello, "Bruce");
 // ...
}

System Components
AZ modules are in preview release and subject to change.

A traditional game engine contains many singleton classes, each in charge of a major system. In
Lumberyard, these singletons are built using the same component entity system that powers gameplay
entities. When an application is starting up, a system entity is created. Any components placed on this
entity are known as system components. The system entity always has the ID AZ::SystemEntityId (0).

When you build singletons as Lumberyard system components, you are using a powerful suite of
complementary technologies that facilitate problem resolution through established patterns. This topic
describes system components in detail.

Smart Initialization Order
As a game engine grows in size, it tends to develop many singleton classes. A singleton class often
requires communication with other singletons to function. This means that the order in which singletons are
initialized is very important. Lumberyard solves this by building singletons as components.

A component can declare which services it provides, and it can declare which other services it depends
on. When components are activated, they are sorted according to these declared dependencies, ensuring
proper initialization order.

The following example shows two components that Lumberyard has ordered for initialization.

Version 1.8
155

http://docs.aws.amazon.com/lumberyard/latest/developerguide/component-entity-system-intro.html

Lumberyard Developer Guide
Easily Configurable Components

class AssetDatabaseComponent : public Component
{
 ...

 static void GetProvidedServices(ComponentDescriptor::DependencyArrayType& provided)
 {
 provided.push_back(AZ_CRC("AssetDatabaseService"));
 }

 ...
};

class AssetCatalogComponent : public AZ::Component
{
 ...
 static void GetRequiredServices(AZ::ComponentDescriptor::DependencyArrayType& required)
 {
 required.push_back(AZ_CRC("AssetDatabaseService"));
 }
 ...
};

The example shows how AssetDatabaseComponent is activated before AssetCatalogComponent. In the
AssetDatabaseComponent class, the GetProvidedServices function reveals that the class provides a
service called AssetDatabaseService. In the AssetCatalogComponent class, the GetRequiredServices
function reveals that AssetCatalogComponent depends on AssetDatabaseService. Lumberyard
understands this dependency and orders the initialization order accordingly.

For more information about the initialization order of components, see The AZ Bootstrapping
Process (p. 163).

Easily Configurable Components
Often, a singleton has settings that are configurable for each game. It can be difficult for a low-level
singleton to access configuration data because the system used to process this data hasn't yet started.
Therefore, low-level singletons often rely on simple data sources such as command line parsers or .ini
files.

A system component can expose its configuration through AZ reflection. The Advanced Settings dialog
box in the Project Configurator (p. 161) uses this feature to enable you to configure system components
on a per-game basis. The Project Configurator saves an application descriptor file (p. 162) that contains
the settings for each system component, and this file is used to bootstrap the application and configure
each component before it is activated. This is the same technology that the Entity Inspector uses to
configure gameplay entities in the Lumberyard Editor. For more information, see Configuring System
Entities (p. 161).

Writing System Components
To designate a component as a system component, rather than a gameplay component, you must set
the AppearsInAddComponentMenu field to System when you reflect to the EditContext.

The following example code designates the MemoryComponent as a system component.

void MemoryComponent::Reflect(ReflectContext* context)
{
 if (SerializeContext* serializeContext = azrtti_cast<SerializeContext*>(context))
 {
 ...
 if (EditContext* editContext = serializeContext->GetEditContext())
 {

Version 1.8
156

http://docs.aws.amazon.com/lumberyard/latest/developerguide/component-entity-system-reflect-component.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/component-entity-inspector.html

Lumberyard Developer Guide
Required System Components

 editContext->Class<MemoryComponent>("Memory System", "Manages memory
 allocators")
 ->ClassElement(AZ::Edit::ClassElements::EditorData, "")
 ->Attribute(AZ::Edit::Attributes::AppearsInAddComponentMenu,
 AZ_CRC("System"))
 ...
 }
 }
}

Required System Components
Often, a module requires the existence of a system component. This requirement can be established
through the module's GetRequiredSystemComponents() function. Any component type declared here is
guaranteed to exist when the application starts.

In the following example, the OculusDevice component is required by the Oculus Gem.

AZ::ComponentTypeList OculusGem::GetRequiredSystemComponents() const override
{
 return AZ::ComponentTypeList{
 azrtti_typeid<OculusDevice>(),
 };
}

If a system component is optional, you can add it from Advanced Settings in the Project
Configurator (p. 161).

Gems and AZ Modules
AZ modules are in preview release and subject to change.

The gems system was developed to make it easy to share code between projects. Gems are reusable
packages of module code and/or assets which can be easily added to or removed from a Lumberyard
game. Gems also promote writing code in a way that is more modular than that found in legacy libraries.
For example, each gem has its own include folder for its public interface code files. Gems also come with
package management metadata such as semantic versioning and the ability to state dependencies on
other gems.

Structure of a Gem
A gem's directory contents are organized as follows:

GemDirectory/
 Assets/
 (assets usable to projects)
 Code/
 Include/
 (public interface code files)
 Source/
 (private implementation code files)
 Tests/
 (code files for tests)
 wscript (waf build info)

Version 1.8
157

Lumberyard Developer Guide
Waf Integration

 gem.json (gem metadata)

Waf Integration
Each game project must explicitly list the gems that it uses. When the Waf build system runs, it builds only
those gems which are actively in use. Waf also makes a gem’s include/ directory accessible to any gems
or projects that explicitly depend upon the gem.

Gems Built as AZ Modules
Beginning with Lumberyard 1.5, all gems that ship with Lumberyard are built as AZ modules. When you
build a gem as an AZ module, the gem uses the initialization functions expected by the AZ framework. An
AZ module gem has public interfaces that are event buses (p. 418) and is better integrated with the new
component entity system. Although legacy gems are still supported, it is highly recommended that you use
gems based on AZ modules going forward. For information on migrating a legacy gem, see Converting
Your Gems.

When you use the Project Configurator to enable or disable a gem, Lumberyard updates the application
descriptor file (p. 162) accordingly to ensure it references all AZ modules. If you edit the dev
\<project_asset_directory>\gems.json list of gems by hand, you can use the following command to
bring the application descriptor file up to date:

dev\Bin64\lmbr.exe projects populate-appdescriptors

About Gem Versioning
The GemFormatVersion value is versioning for how a gem is built. Gem version numbers like 0.1.0 refer to
the gem's API version.

Gems from Lumberyard 1.4 and earlier (legacy gems) all have a GemFormatVersion value of 2. Starting in
Lumberyard 1.5, all the gems included with Lumberyard are AZ modules and have a GemFormatVersion
value of 3. This tells Lumberyard that the gem is an AZ module and that it should be loaded accordingly.

A gem may also have an API version number like 0.1.0. This is independent of the GemFormatVersion.
The API version alerts your users to API changes. If the API version number changes, then users of the
gem may need to make changes to their code. For example, the Rain Gem will stay at version 0.1.0 until
its API changes. If you were using the Rain Gem from Lumberyard 1.4, you can still use the Rain Gem from
Lumberyard 1.5 without changing any of your data or code.

For more information about gems, see Gems in the Amazon Lumberyard User Guide.

Creating an AZ Module That Is Not a Gem
AZ modules are in preview release and subject to change.

Beginning with Lumberyard 1.5, gems are AZ modules, so the preferred way to build an AZ module is to
simply create a new gem. However, if your project requires an AZ module that must not be built as a gem,
follow the steps provided here.

A. Start with a Gem
Because gems have all the required code for an AZ module, it's easier to create a gem first and then modify
it not to be a gem. As an added convenience, the new gem names the code for you in an intuitive way. For
an explanation of the code that you get in a new gem, see Parts of an AZ Module, Explained (p. 150).

Version 1.8
158

http://docs.aws.amazon.com/lumberyard/latest/userguide/waf-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/component-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-migrating.html#converting-gems
http://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-migrating.html#converting-gems
http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gems.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/

Lumberyard Developer Guide
B. Modify the AZ Module Declaration

To create and modify a gem

1. First, create a gem by performing the following steps:

a. Go to your Lumberyard \dev\Bin64\ directory, then run ProjectConfigurator.exe.

b. Select your project (the default is SamplesProject).

c. Click Enable Gems.

d. Click Create a New Gem.

e. Type the name for your new module. (The example on this page uses the name "HelloWorld".)

f. Click Ok.

2. Move and rename the code directory from the new gem to your desired location. For example, move
the directory

dev/Gems/HelloWorld/Code

to

dev/Code/<optional subfolder>/HelloWorld

3. To remove the remaining noncode pieces of the gem, delete the directory dev/Gems/HelloWorld.

B. Modify the AZ Module Declaration
AZ modules that are not gems must not have UUIDs in their names, so you must modify the gem's .cpp file
accordingly.

To modify the .cpp file

1. Remove the code that looks like the following:

// DO NOT MODIFY THIS LINE UNLESS YOU RENAME THE GEM
// The first parameter should be GemName_GemIdLower
// The second should be the fully qualified name of the class above
AZ_DECLARE_MODULE_CLASS(HelloWorld_010c14ae7f0f4eb1939405d439a9481a,
 HelloWorld::HelloWorldModule)

2. Replace the AZ_DECLARE_MODULE_CLASS declaration with one that follows this syntax:

AZ_DECLARE_MODULE_CLASS(HelloWorld, HelloWorld::HelloWorldModule)

The first argument (HelloWorld) is a unique identifier to be included in your project.json file, and
should match the target field of your wscript. You will do these steps later. The second argument is
the same fully qualified name of the class already defined in your .cpp file.

C. Remove CryEngine References (Optional)
If your module does not access code from CryEngine (for example, it does not access gEnv), perform these
additional steps.

To remove CryEngine references

1. Make the following changes to your .cpp file (in this example, HelloWorldModule.cpp).

a. Remove #include <platform_impl.h>

b. Remove #include <IGem.h>

Version 1.8
159

Lumberyard Developer Guide
D. Modify the Wscript and Waf Spec Files

c. Add #include <AzCore/Module/Module.h>

d. Change HelloWorldModule to inherit directly from AZ::Module instead of from CryHooksModule.

2. Remove the following include statement from the StdAfx.h file:

#include <platform.h> // Many CryCommon files require that this be included first.

D. Modify the Wscript and Waf Spec Files
Next, you must modify the default wscript file to remove gem-specific commands, add your module
directory to the wscript file, and add your module to the appropriate waf spec files.

To modify the wscript and waf spec files

1. Modify the wscript contents to resemble the following:

def build(bld):
 bld.CryEngineModule(
 target = 'HelloWorld',
 vs_filter = 'Game', # visual studio filter path
 file_list = 'HelloWorld.waf_files',
 platforms = ['all'],
 configurations = ['all'],
 pch = ['source/StdAfx.h'],
 use = ['AzFramework'],
 includes = ['include', 'source'],
)

2. Modify the wscript in a parent directory so that waf recurses your module's directory, as in the following
example.

...

SUBFOLDERS = [
 # ...,
 'HelloWorld'
]

...

3. To enable waf to build your module, add the module to the appropriate waf spec files in your
Lumberyard directory (dev_WAF_\specs*.json), as in the following example:

{
 // ...
 "modules":
 {
 // ...
 "HelloWorld"
 }
 // ...
}

E. Configure Your Project to Load the New Module
When your project launches, it loads the modules listed in the dev/<project_assets>/Config/
Game.xml file (the Editor.xml file is used when the Lumberyard Editor is launched). These files are
automatically generated and should not be edited by hand.

Version 1.8
160

http://docs.aws.amazon.com/lumberyard/latest/userguide/waf-files-spec-file.html

Lumberyard Developer Guide
F. Add the Module's Public Interfaces

to Your Project's Include Paths

To configure your project to load your AZ module

1. To ensure your non-gem module is included in these automatically generated lists, add the following
lines to your project.json file (path location dev/<project_asset_folder>/project.json):

{
 // ...
 "flavors": {
 "Game": {
 "modules": [
 "LmbrCentral",
 "HelloWorld"
]
 },
 "Editor": {
 "modules": [
 "LmbrCentralEditor",
 "HelloWorld"
]
 }
 }
}

Note
The flavors section may be missing from your project. If it is not present,
Lumberyard assumes that the LmbrCentral module is used for Game, and that the
LmbrCentralEditor module is used for Editor.

2. From the dev directory, run the following command from a command prompt.

Bin64\lmbr.exe projects populate-appdescriptors

This command modifies the Game.xml and Editor.xml files to list the HelloWorld module.

F. Add the Module's Public Interfaces to Your Project's
Include Paths
Finally, to make your AZ module's public interfaces available to the rest of your project, you must inform
them project of your module's include directory.

To make your AZ modules public interfaces available to your project

• In your project's wscript file, edit the includes line to point to your project's include directory, as in the
following example.

...
includes = [..., bld.Path('Code/Engine/HelloWorld/include')],
...

Configuring System Entities
AZ modules are in preview release and subject to change.

Version 1.8
161

Lumberyard Developer Guide
Application Descriptor Files

A single system entity lives at the heart of every Lumberyard application. This entity's components, known
as system components (p. 155), power major systems within Lumberyard. You can use the Advanced
Settings dialog of the Project Configurator to choose the components for your project and configure them.
Editing a system entity is like editing an entity in the Entity Inspector.

To configure system entities

1. Compile a profile build of your project so that the Project Configurator can load your project's compiled
code.

2. Go to your Lumberyard \dev\Bin64\ directory, and then launch ProjectConfigurator.exe

3. In Project Configurator, select your project.

4. Click Advanced Settings.

The first time a system entity configuration is loaded, you are prompted to add any required
components that are missing from the system entity.

Some system components are optional, and some are required. Both the Lumberyard engine and the
gems used by your project may require certain components.

5. Click Yes. Even if you decline, the required components are created at run time.

6. Use the Project option at the top of the Advanced Settings dialog box to select the project that you
want to edit. For the Configuration option, choose Game if you want to make changes to the Game
(launcher) system entity, or Editor to modify the Editor system entity.

The System Entity tab lists components that have been added.

7. Click Add Component to select from a variety of components to add.

8. To remove a component, right-click the component in the list and choose Remove Component
"<ComponentName>".

9. On the Memory Settings tab, expand System memory settings to configure system memory options.

10. Click Save to save your changes to disk. The changes are saved to an application descriptor file,
described next.

Application Descriptor Files
When you edit a system entity's configuration by using the Advanced Settings dialog box of Project
Configurator, you are actually editing an application descriptor file.

Application descriptor files are new to Lumberyard 1.5 and list all modules that a project uses. Currently,
each project requires two application descriptor files in its asset directory:

dev/<project_asset_directory>/Config/Game.xml

dev/<project_asset_directory>/Config/Editor.xml

In the Project Configurator Advanced Settings dialog box, these files correspond to the Game and Editor
options in the Configuration menu.

The following example shows the beginning of a Game.xml file. Both the Game.xml file and the Editor.xml
file have the same structure.

<ObjectStream version="1">
 <Class name="ComponentApplication::Descriptor"
 type="{70277A3E-2AF5-4309-9BBF-6161AFBDE792}">
 <Class name="bool" field="useExistingAllocator" value="false" type="{A0CA880C-
AFE4-43CB-926C-59AC48496112}"/>
 <Class name="bool" field="grabAllMemory" value="false" type="{A0CA880C-
AFE4-43CB-926C-59AC48496112}"/>

Version 1.8
162

http://docs.aws.amazon.com/lumberyard/latest/userguide/component-entity-inspector.html

Lumberyard Developer Guide
The AZ Bootstrapping Process

 <Class name="bool" field="allocationRecords" value="true" type="{A0CA880C-
AFE4-43CB-926C-59AC48496112}"/>
 <Class name="bool" field="autoIntegrityCheck" value="false" type="{A0CA880C-
AFE4-43CB-926C-59AC48496112}"/>
 <Class name="bool" field="markUnallocatedMemory" value="true" type="{A0CA880C-
AFE4-43CB-926C-59AC48496112}"/>
 <Class name="bool" field="doNotUsePools" value="false" type="{A0CA880C-
AFE4-43CB-926C-59AC48496112}"/>
 <Class name="bool" field="enableScriptReflection" value="true" type="{A0CA880C-
AFE4-43CB-926C-59AC48496112}"/>
 <Class name="unsigned int" field="pageSize" value="65536"
 type="{43DA906B-7DEF-4CA8-9790-854106D3F983}"/>
 <Class name="unsigned int" field="poolPageSize" value="4096"
 type="{43DA906B-7DEF-4CA8-9790-854106D3F983}"/>
 <Class name="unsigned int" field="blockAlignment" value="65536"
 type="{43DA906B-7DEF-4CA8-9790-854106D3F983}"/>
 <Class name="AZ::u64" field="blockSize" value="0" type="{D6597933-47CD-4FC8-
B911-63F3E2B0993A}"/>
 <Class name="AZ::u64" field="reservedOS" value="0" type="{D6597933-47CD-4FC8-
B911-63F3E2B0993A}"/>
 <Class name="AZ::u64" field="reservedDebug" value="0" type="{D6597933-47CD-4FC8-
B911-63F3E2B0993A}"/>
 <Class name="char" field="recordsMode" value="2" type="{3AB0037F-AF8D-48CE-BCA0-
A170D18B2C03}"/>
 <Class name="unsigned char" field="stackRecordLevels" value="5"
 type="{72B9409A-7D1A-4831-9CFE-FCB3FADD3426}"/>
 <Class name="bool" field="enableDrilling" value="true" type="{A0CA880C-
AFE4-43CB-926C-59AC48496112}"/>
 <Class name="AZStd::vector" field="modules" type="{2BADE35A-6F1B-4698-
B2BC-3373D010020C}">
 <Class name="DynamicModuleDescriptor" field="element" type="{D2932FA3-9942-4FD2-
A703-2E750F57C003}">
 <Class name="AZStd::string" field="dynamicLibraryPath" value="LmbrCentral"
 type="{EF8FF807-DDEE-4EB0-B678-4CA3A2C490A4}"/>
 </Class>
[…]

The list of system components in the application descriptor file corresponds to the list of components on
the System Entity tab in the Advanced Settings dialog box. Each component can have its own settings.
The application descriptor file also contains properties that determine how to allocate memory. These
correspond to the settings on the Memory Settings tab in the Advanced Settings dialog box.

The AZ Bootstrapping Process
AZ modules are in preview release and subject to change.

An AZ framework application initializes modules based on the dynamic libraries listed in the application
descriptor file (p. 162), and the static libraries referenced from the CreateStaticModules() function.

When an AzFramework::Application starts, the following order of events takes place:

1. The executable starts.

2. The AzFramework::Application class is initialized. It takes a path to an application descriptor file and a
pointer to a function that will create the AZ::Modules from static libraries.

3. The application bootstraps itself just enough to read the application descriptor file.

4. The application descriptor file is read to get memory allocator settings and the list of dynamic libraries to
load. Lumberyard is not yet able to read the system entity from the file.

Version 1.8
163

Lumberyard Developer Guide
The AZ Bootstrapping Process

5. Lumberyard shuts down the bootstrapped systems, configures them according to the settings it just
loaded, and starts these systems back up.

6. Each dynamic library is loaded.

7. Each dynamic library’s InitializeDynamicModule() function is run, which attaches the DLL to the
global AZ::Environment.

8. Each static library’s AZ::Module instance is created using the function pointer passed in during step 2.

9. Each dynamic library’s AZ::Module instance is created by its CreateModuleClass() function.

10.Each AZ module's RegisterComponentDescriptors() function is called. Now the application knows how
to serialize any components defined within a library.

11.The application descriptor file is read again to extract the system entity along with its components and
their settings.

12.Each AZ module's GetRequiredSystemComponents() function is called. If any components are missing
from the system entity, they are added.

13.The system entity is activated, and all of its system components are activated in the proper order.

At this point, initialization has been completed and the game is running.

Version 1.8
164

Lumberyard Developer Guide
Features

Cloud Canvas

Deeply integrated with AWS, Cloud Canvas is a suite of tools and solutions (cloud gems, resource groups,
flow nodes) designed to achieve two main goals:

1. Make it easy for you to build cloud-connected features, so you can focus on innovation rather than on
undifferentiated backend infrastructure.

2. Make it possible for you to create fantastic new experiences made possible by the availability of the on-
demand, global storage and compute provided by AWS.

With Cloud Canvas, you can add a cloud-connected feature to your game in as little as 30 minutes. A single
engineer can do this, freeing up the rest of your team to think about innovation and player experience.

Features
Cloud Canvas offers a wide range of helpful components:

• The Cloud Gem Framework, on top of which cloud gems are built, allows you to add pre-packaged,
cloud-connected features in a few clicks.

• Tools to enable a team to build a game with cloud-connected features.

• Flow graph nodes to communicate directly from within the client to AWS services such as Amazon S3,
Amazon DynamoDB, Amazon Cognito, AWS Lambda, Amazon SQS, and Amazon SNS.

• Tools to manage AWS resources and permissions that determine how developers and players access
them.

• Management of AWS deployments so that development, test, and live resources are maintained
separately.

• Methods for players to be authenticated (anonymous and authenticated). Players can be authenticated
from a variety of devices and access their game data by logging in with an Amazon, Facebook, or Google
account.

Example Uses
Consider the many ways you can use Amazon Web Services for connected games:

Version 1.8
165

Lumberyard Developer Guide
Tools

• Store and query game data such as player state, high scores, or world dynamic content: Amazon S3 and
DynamoDB

• Trigger events in real time and queue data for background processing: Amazon SQS and Amazon SNS

• Execute custom game logic in the cloud without having to set up or manage servers: AWS Lambda

• Employ a daily gift system that tracks user visits and rewards frequent visits: Amazon Cognito, Amazon
S3, DynamoDB, AWS Lambda

• Present a message of the day or news ticker that provides updates on in-game events: Amazon Cognito,
Amazon S3, AWS Lambda

To see how Cloud Canvas uses AWS services in a sample project, see Don't Die Sample
Project (p. 182). For a tutorial on Cloud Canvas, see Lumberyard Tutorials.

Tools
You can access Cloud Canvas functionality by using any of the following:

• Cloud Gems (p. 189) – Fully fledged cloud-connected features such as Message of the Day,
Leaderboards, and Dynamic Content that can be used in a few clicks as is, or as samples to fuel your
custom developments and ideas.

• Cloud Gem Portal (p. 189) – A web application that makes backend administration and management
accessible to everyone.

• Flow Nodes – For designers to leverage the AWS cloud. For detailed information on the Cloud Canvas
flow graph nodes, see the Cloud Canvas Flow Graph Node Reference (p. 200).

• Cloud Canvas C++ APIs – For software development.

• Using the Cloud Canvas Command Line (p. 298) – For managing resource groups, mappings,
deployments, and projects.

• Cloud Canvas Tools in Lumberyard Editor (p. 187) – For managing AWS resources, deployments,
and credentials, and for navigating directly to the AWS consoles supported by Cloud Canvas.

To see how AWS services used for the Don't Die sample project, see Don't Die Sample Project (p. 182).

Knowledge Prerequisites
You need the following to take advantage of Cloud Canvas:

• An understanding of AWS CloudFormation Templates – Cloud Canvas uses the AWS
CloudFormation service to create and manage AWS resources. Our goal is for Cloud Canvas to minimize
what you need to know about AWS CloudFormation and AWS in general.

• Familiarity with JSON – Cloud Canvas leverages JSON for storing configuration data, including AWS
CloudFormation Templates. Currently, you'll need to be familiar with this text format to work with the
Cloud Canvas resource management system. A JSON tutorial can be found here.

Topics

• Cloud Canvas Overview (p. 167)

• Cloud Canvas Game Play Design and Engineering Guide (p. 187)

• Cloud Canvas Software Engineering Guide (p. 219)

• Administering Cloud Canvas (p. 285)

• Using the Cloud Canvas Command Line (p. 298)

Version 1.8
166

http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
http://docs.aws.amazon.com/sns/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com//cognito/devguide/
http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com//cognito/devguide/
http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://docs.aws.amazon.com/lambda/latest/dg/
https://gamedev.amazon.com/forums/tutorials
http://docs.aws.amazon.com/lumberyard/latest/userguide/fg-nodes-managing.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
http://www.json.org/
http://www.w3resource.com/JSON/introduction.php

Lumberyard Developer Guide
Cloud Canvas Overview

Cloud Canvas Overview
Cloud Canvas helps you manage cloud resources and connect your game with the AWS cloud.
Understanding its concepts will benefit anyone on your team who interacts with the cloud-connected
components of your game, including designers, programmers, and testers.

This section covers the following:

• What Cloud Canvas is and how it relates to your AWS account

• The Amazon Web Services that Cloud Canvas supports

• How Cloud Canvas helps you manage your resources

• How your game can communicate with the cloud through the flow graph visual scripting system

Prerequisites
Before reading this topic, you should have a basic understanding of the Lumberyard engine and the flow
graph system.

AWS, Cloud Canvas, and Lumberyard
Amazon Web Services (AWS) is an extensive and powerful collection of cloud-based services. You can
use these services to upload or download files, access databases, execute code in the cloud, and perform
many other operations. A cloud service saves you the trouble of maintaining the infrastructure that it relies
on.

Cloud-Based Resources
When you want to use an AWS cloud service, you do so through a resource, a cloud-based entity that is
available for your use, help, or support. Resources include a database, a location for storing files, the code
that a service runs, and more.

When you create a resource, it exists in the cloud, but you can use it and manage its content. You also
specify the permissions that individuals or groups have to access or use the resource. For example, you
might allow anyone in the public to read from your database but not write to it or modify it.

Resource Groups
In order to create a connected game feature such as a high score table, you create a resource group in
Cloud Canvas. The resource group defines the AWS resources that your feature requires. Each connected
game feature therefore is implemented as a resource group in Cloud Canvas.

AWS Accounts
Your resources are owned by an AWS account. The AWS account allows you and your team to share
access to the same resources. For example, your team’s AWS account might own a database resource so
that you and your teammate can both work with the same database.

You, or someone on your team, is an administrator. The administrator creates the AWS account for your
team and gives individuals on the team access to the account's resources.

Lumberyard, Cloud Canvas, and Flow Graph
Cloud Canvas is a Lumberyard Gem (extension) that enables your Lumberyard games to communicate
with AWS resources. To integrate the communication with Amazon Web Services directly into your game
logic, you use Lumberyard's flow graph visual scripting system.

Version 1.8
167

http://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/fg-editor-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/fg-editor-intro.html

Lumberyard Developer Guide
Amazon Web Services Supported by Cloud Canvas

The flow graph nodes that you create use Cloud Canvas to make the actual calls from your game to AWS
resources. For example, when a player’s game ends, you can add flow graph nodes to submit the player's
score to a high score table in the cloud. Later, you can use flow graph to call the high score table to request
the top 10 scores.

Amazon Web Services Supported by Cloud Canvas
Several AWS offerings are available through Cloud Canvas that can enhance your game.

File Storage in the Cloud

For storing files in the cloud, Cloud Canvas supports Amazon Simple Storage Service (Amazon S3).
Amazon S3 offers a storage resource called a bucket, which you can think of as a large folder. You can
build a directory structure in an Amazon S3 bucket just like a directory on a local computer. Amazon S3
buckets have a number of uses in games, including the following:

• Storing files that your game can download. These files can be levels, characters, or other extensions for
your game. You can add new files after your game has shipped. Because your game uses Cloud Canvas
to download and integrate this content, your customers do not need to download a new client.

• Your game can upload user-generated content. For example, your game might take a screenshot
whenever a player beats the last boss. Cloud Canvas uploads the screenshot to your bucket, and your
game makes the screenshot available on a website or to other players of the game.

Databases

For storing data like a person’s name, phone number, and address in the cloud, Cloud Canvas supports the
Amazon DynamoDB database service. Amazon DynamoDB operates on resources called tables. These
tables grow and adapt as you build and iterate your game.

Here are some ways in which you can use Amazon DynamoDB table resources in your game:

• Track account details and statistics for a player. Give each player a unique ID so that you can look up a
player's hit points, inventory, gold, and friends.

• Add or remove fields to accommodate new resource groups in your game.

• Perform data analyses. For example, you can run complex queries to find out how many players have
unlocked a particular achievement.

• Manage game-wide resource groups or events such as a querying a high score table or retrieving a
message of the day.

Executing Cloud-Based Logic

For executing code in the cloud, Cloud Canvas supports the AWS Lambda service. AWS Lambda executes
resources called functions. You provide the code for a Lambda function, and your game calls the Lambda
service through Cloud Canvas to run the function. The Lambda service returns the data from the function to
the game.

Your Lambda functions can even call other Amazon Web Services like Amazon DynamoDB and perform
operations on their resources. Following are some examples:

• Submit a high score – A Lambda function can accept a player's ID and new score, look up the player ID
in the database, compare the score with existing scores, and update the highest score if necessary.

• Sanitize your data – A Lambda function can check for malicious or unusual input. For example, if a
player tries to upload a new high score of 999,999,999 when the best players can't reach 1,000, your
Lambda function can intercept the submission and either reject it or flag it for review.

Version 1.8
168

Lumberyard Developer Guide
Understanding Cloud Canvas Resource Manager

• Perform server-side authoritative actions – Cloud Canvas can call your Lambda functions to control
in-game economies. For example, when a player tries to purchase an item, your Lambda function can
check a database to verify that the player has enough money to pay for the item. The function can then
deduct the amount from the player's account, and add the item to the player’s inventory.

Identity and Permissions
For managing the identity of the player and controlling access to AWS resources in the cloud, Cloud
Canvas supports the Amazon Cognito service.

Amazon Cognito can create unique anonymous identities for your users tied to a particular device. It can
also authenticate identities from identity providers like Login with Amazon, Facebook, or Google. This
provides your game with a consistent user IDs that can seamlessly transition from anonymous use on a
single device to authenticated use across multiple devices. Consider these examples:

• Players start playing your game anonymously and store their progress locally on their device. Later,
to "upgrade" their experience, you ask them to be authenticated through one of the login providers
mentioned. After players provide an authenticated ID, you can store their progress in the cloud, and they
can access their progress across multiple devices.

• You can specify which AWS resources players are allowed to access. For example, you can enable
the "Get the Latest High Scores" Lambda function to be called not only by your game, but by anyone,
including external websites. But you could specify that the "Submit High Scores" function only be called
by players of your game so that your high score table remains secure. You can use Cloud Canvas to
manage these permissions.

Understanding Cloud Canvas Resource Manager
Game development is an inherently local activity. You have a local copy of your game code, assets, and
other resources. You build, test, and tweak over and over on your local computer.

The cloud is different. It is an alien environment. You put resources "out there" that the game depends on.
But those resources don’t live on your computer system. The process of using and modifying the resources
in the cloud isn’t the same as for resources that are local.

Cloud Canvas Resource Manager bridges this gap. It lets you have local descriptions of the AWS
resources in the cloud that your game needs and provides ways to create and interact with the actual
instances of those resources in AWS. Your resource could be a database table, a file storage bucket, or
code that runs in response to an event.

For team projects, the source code and assets that you are using likely come from a source control system.
The changes you make are shared with other people who work on the project through that source control
system. Different people can be working at the same time with different versions (“branches”) of the code
and with different versions of assets without interfering with each other.

When you develop a game that uses cloud resources in AWS, those resources may be shared by different
people who work on the game at the same time. Sometimes you need different versions of those resources
to exist in the cloud. You also want to ensure that the people developing the game use the version of the
resources in the cloud that matches the version of the code and assets they are working with.

After the game is released, the players will use a production copy while your team uses another, private
copy to work on bug fixes and new content.

You'll also want to do the following:

• Be sure that players cannot access the development versions of game resources

• Prevent the development team from making changes that could break the released game

Version 1.8
169

Lumberyard Developer Guide
Understanding Cloud Canvas Resource Manager

• Protect player information like e-mail addresses from unauthorized access by team members

The Cloud Canvas Resource Manager provides the tools you need to do the following:

• Maintain descriptions of the AWS resources that your game depends on

• Create as many copies of the AWS resources as needed for your releases and development teams

• Help you secure access to those resources

The Role of AWS CloudFormation

The Cloud Canvas Resource Manager integrates the use of AWS CloudFormation into the Lumberyard
game development environment. With AWS CloudFormation you can maintain descriptions of the AWS
resources you need in text file templates that you can check into your source control system. These
descriptions can be branched and merged along with the rest of your game code and assets. When
you need actual instances of the resources to be created in AWS, Cloud Canvas Resource Manager
passes the descriptions to AWS CloudFormation, which uses the template files to create, update, or delete
resources in AWS to match the descriptions.

You can use resource manager to organize your descriptions into any number of resource groups. Each
group can describe all the resources needed by a game feature, such as a high score tracking system. For
details, see Resource Definitions.

With resource manager you can create as many deployments of the resources as you need. You could
have a deployment for the dev team, another for the QA team, and another for the released game, or
any other arrangement that suits your needs. Each deployment contains a complete and independent
instance of all of the project's resources. Deployments are implemented using AWS CloudFormation stack
resources. For details, see Resource Deployments.

You can choose the deployment that you want to work with in Lumberyard Editor. For example, if you
create a "QA" deployment and use it to test your game, Lumberyard Editor automatically maps the
references to resources in your game code and Flow Graphs to the "QA" instance of those resources.

Similarly, you can also specify the deployment to be used for release builds of the game. For details, see
Resource Mappings.

Each deployment comes with an AWS managed policy and an AWS role that you can use to grant specific
AWS users and groups access to that deployment. For example, players are granted access to specific
resources within a deployment. For details, see Access Control and Player Identity.

A Closer Look at AWS CloudFormation Stacks

A Cloud Canvas Resource manager project consists of one or more AWS CloudFormation stacks. All stack
templates are stored as files in the project's source control system.

• A single [Definition: project stack] that contains the resources that support Cloud Canvas Resource
Manager itself. The project stack template is stored as a file in the project's source control system.

• Any number of [Definition: deployment stacks]. A deployment represents a complete and independent set
of all the resources needed by the game. Each deployment stack contains a child stack for each resource
group. All deployment stacks are defined using a single AWS CloudFormation stack template.

• One [Definition: deployment access stack] per deployment stack. A deployment's access stack defines
the resources used to grant access to a deployment, including IAM Roles and Amazon Cognito Identity
Pools. They are distinct from deployment stacks because developers need to be able to update
deployment stacks while not being able to change the permissions associated with the deployment.

• Any number of [Definition: resource group stacks]. Each resource group represents a set of resources
related to an arbitrary game feature. Resource group stacks exists only as children of deployment stacks.

Version 1.8
170

https://aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-deployments.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/fg-editor-intro.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-mappings.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-access-control-and-player-identity.html

Lumberyard Developer Guide
Understanding Cloud Canvas Resource Manager

Each resource group has its own stack template, which defines the that resource group's stack for each
deployment.

So, if there are 3 deployments and 4 resource groups, you have a total of 12 resource group stacks, 3
deployment stacks, 3 deployment access stacks, and 1 project stack (19 stacks total). You'll also have
a total of 7 stack templates, one for the project stack, one for all the deployment stacks, one for all the
deployment access stacks, and one each for each resource group. The following image illustrates this
scenario.

Cloud Canvas Resource Management
In addition to communicating with Amazon Web Services, Cloud Canvas can also help you manage your
resources. Amazon Web Services can help create and manage any cloud resources that a game resource
group needs. Once you implement the resource group you can use Cloud Canvas deployments to manage
the resources for development, test, and live versions of your game.

Defining the Resources

You can create cloud resources by using AWS CloudFormation templates. AWS CloudFormation is an
Amazon Web Service with which you can define, create, and manage AWS resources predictably and
repeatedly by using templates. The templates are JSON-formatted text files that you use to specify the
collection of resources that you want to create together as a single unit (a stack).

In a template, each resource gets its own AWS CloudFormation definition in which you specify the
parameters that govern the resource. AWS CloudFormation templates are beyond the scope of this
topic, but for now it’s enough to understand that you can define (for example) a template with an Amazon
DynamoDB table and two AWS Lambda functions. For an example AWS CloudFormation template that
creates an Amazon DynamoDB table, see the AWS CloudFormation User Guide.

Deployments

While you are working on a new resource group, your quality assurance team might have to test it. You
want to provide a version of your resource group that the test team can use while you continue to work on
your own version. To keep the corresponding resources of the different versions distinct, Cloud Canvas
gives you the ability to create separate deployments. Deployments are distinct instances of your product’s
features.

In a scenario like the one described, you might create three deployments: one for the development team,
one for the test team, and one for live players. Each deployment's resources are independent of each other
and can contain different data because (for example) you don’t want the data entered by the test team to be
visible to players.

With Cloud Canvas you can manage each of these deployments independently of one another, and you
can switch between deployments at will. After making changes, you can use Cloud Canvas to update your
feature or deployment and update the corresponding AWS resources.

Team Workflow Using Deployments

The following workflow example illustrates how Cloud Canvas deployments work:

1. The test team finds a bug. You fix the bug in your Lambda code.

2. You switch to the dev deployment and upload the new version of the Lambda function. The Lambda
code in the test and live deployments remain untouched for now, and they continue working as is.

3. After you are satisfied that the bug has been fixed, you update the Lambda code in the test deployment.
The test team can now test your fix. The live deployment continues unchanged.

4. After the test team approves the fix, you update the live deployment, propagating the fix to your live
players without requiring them to download a new version of the game.

Version 1.8
171

https://aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/sample-templates-services-us-east-1.html#d0e121894

Lumberyard Developer Guide
Cloud Gems Overview

Communicating with Cloud Resources using Flow Graph

As your game communicates with its AWS resources, you can use Lumberyard's flow graph system to
implement the interaction between your game and AWS. Cloud Canvas-specific flow graph nodes function
just like other flow graph nodes, but they make calls to AWS services. For example, if your feature uses two
Lambda functions that are needed in different situations, you can use the Lumberyard flow graph system to
specify that the functions get called under the appropriate conditions in your game.

You can also use flow graph to take appropriate actions depending on the success or failure of a function.
For example, your function might return failure when no Internet connection exists, or when the function
lacks sufficient permissions to contact the resource. Your game can parse any failures and handle them
appropriately, such as asking the user to retry or skip retrying.

When you have multiple deployments, Cloud Canvas keeps an internal mapping of friendly names to
AWS instances so that your game knows which AWS resources to use. Cloud Canvas maps the currently
selected deployment to the corresponding set of resources.

Thus, when you release your game to customers, you use a deployment specifically set aside for live
players. If you are using the dev version of one feature and switch your deployment to test, your game calls
the Lambda function associated with the test deployment.

Managing Permissions Using Cloud Canvas

Managing permissions is an important part of building a secure cloud-connected game. Maintaining
separate and distinct permissions is important in the phases of development, testing, and production. You
can apply permissions to your development and test teams, to the AWS resources that your game uses,
and to the players of your game. A key objective is to secure your game’s AWS resources against hackers
and other forms of abuse.

You can use permissions to specify exactly who is allowed to do what to the AWS resources that are part of
your game. For example, if you have a game feature that uploads screenshots, you can create an Amazon
S3 bucket to store the screenshots. You can set permissions for the game to be able to write (send files) to
the bucket, but not read from the bucket. This prevents inquisitive users from examining the files that have
been uploaded. On the other hand, you can give your team members permissions to read files from the
bucket so that they can review and approve them. With Cloud Canvas you can also set the permissions for
individual deployments. For example, live and test deployments can have different permission sets.

Like features, you can define permissions through AWS CloudFormation templates. The permissions are
applied any time that you update your cloud resources using the Cloud Canvas resource management
tools.

For more information, see Access Control and Player Identity in Depth (p. 294).

Cloud Gems Overview
A Lumberyard gem is an individual package of specific functionality and assets. The gem includes
everything required for you to include that functionality in your project.

Lumberyard cloud gems are Lumberyard gems that provide AWS functionality for a game. A more
complete definition of a cloud gem might be the following:

A cloud gem is an individual package of specific cloud-connected functionality, assets
and AWS resource definitions. A cloud gem includes everything required for you to
include that cloud-connected functionality in your project.

Cloud Gems Included with Lumberyard
Lumberyard includes the following cloud gems. They can be enabled in a project using the Lumberyard
Project Configurator tool.

Version 1.8
172

http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gems.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gems.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html

Lumberyard Developer Guide
Pricing

• Message of the Day (p. 190) – Schedules the delivery of messages (for example, new product
announcements or holiday greetings) to game clients.

• Leaderboard (p. 191) – Stores a player's high scores and provides "leader boards" that show player
rankings.

• Dynamic Content (p. 193) – Allows Lumberyard .pak files that contain new and updated game assets
to be uploaded to the cloud for subsequent automatic download to the game client.

Cloud Gem Portal

The Cloud Gem Portal allows a cloud gem to provide web pages that can be used to configure the cloud
gem and perform maintenance operations. The Cloud Gem Portal also provides access to Cloud Canvas
Resource Manager functionality such as deployment management. For more information, see Cloud Gem
Portal (p. 189).

Cloud Gem Framework

The Cloud Gem Framework is a software development kit (SDK) that is included with Lumberyard. The
framework is used to implement the cloud gems that come with Lumberyard, but you can also use it to
implement your own cloud gems. For more information, see Cloud Gems Framework (p. 254).

Pricing
Cloud Canvas uses AWS CloudFormation templates to deploy AWS resources to your account. Although
there is no additional charge for Cloud Canvas or AWS CloudFormation, charges may accrue for using
the associated AWS services. You pay for the AWS resources created by Cloud Canvas and AWS
CloudFormation as if you created them manually. You only pay for what you use as you use it. There are
no minimum fees and no required upfront commitments, and most services include a free tier.

For pricing information on the AWS services that Cloud Canvas supports, visit the following links.

Amazon Cognito Pricing

Amazon DynamoDB Pricing

AWS Lambda Pricing

Amazon S3 Pricing

Amazon SNS Pricing

Amazon SQS Pricing

To see pricing for all AWS services, visit the Cloud Services Pricing page.

To see the AWS services used for the Don't Die sample project, see Don't Die Sample Project (p. 182).

Tutorial: Getting Started with Cloud Canvas
This tutorial walks you through the steps of getting started with Cloud Canvas, including signing up for an
Amazon Web Services (AWS) account, providing your AWS credentials, and using the command line tools
to initialize Cloud Canvas. At the end of the tutorial you will have used your AWS credentials to administer a
Cloud Canvas-enabled Lumberyard project.

Specifically, this tutorial guides you through the following tasks:

• Obtain an Amazon Web Services account.

Version 1.8
173

https://aws.amazon.com/cognito/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/sns/pricing/
https://aws.amazon.com/sqs/pricing/
https://aws.amazon.com/pricing/services/

Lumberyard Developer Guide
Tutorial: Getting Started with Cloud Canvas

• Navigate the AWS Management Console.

• Create an AWS Identity and Access Management (IAM) user with suitable permissions to administer a
Cloud Canvas project.

• Get credentials from your IAM user and type them into the Cloud Canvas tools.

• Use the command line tool to initialize a Lumberyard project for use with Cloud Canvas.

• Dismantle the project, removing all AWS resources that were allocated by Cloud Canvas.

Prerequisites

Before starting this tutorial, you must complete the following:

• Install a working version of Lumberyard Editor.

• Set up a Lumberyard project with the Cloud Canvas Gem (extension) enabled.

• Read through the Cloud Canvas introduction and Cloud Canvas concepts.

Step 1: Sign up for AWS

When you sign up for Amazon Web Services (AWS), you can access all its cloud capabilities. Cloud
Canvas creates resources in your AWS account to make these services accessible through Lumberyard.
You are charged only for the services that you use. If you are a new AWS customer, you can get started
with Cloud Canvas for free. For more information, see AWS Free Tier.

If you or your team already have an AWS account, skip to Step 2 (p. 174).

To create an AWS account

1. Open https://aws.amazon.com/ and then choose Create an AWS Account.

2. Follow the instructions to create a new account.

Note

• As part of the sign-up procedure, you will receive a phone call and enter a PIN using your
phone.

• You must provide a payment method in order to create your account. Although the tutorials
here fall within the AWS Free Tier, be aware that you can incur costs.

3. Wait until you receive confirmation that your account has been created before proceeding to the next
step.

4. Make a note of your AWS account number, which you will use in the next step.

You now have an AWS account. Be sure to have your AWS account number ready.

Step 2: Create an AWS Identity and Access Management (IAM)
User for Administering the Cloud Canvas Project

After you confirm that you have an AWS account, you need an AWS Identity and Access Management
(IAM) user with adequate permissions to administer a Cloud Canvas project. IAM allows you to manage
access to your AWS account.

AWS services require that you provide credentials when you access them to verify that you have the
appropriate permissions to use them. You type these credentials into Lumberyard Editor as part of setting
up your project.

Version 1.8
174

http://docs.aws.amazon.com/lumberyard/latest/userguide/setting-up-intro.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-intro.html
https://aws.amazon.com/free/
https://aws.amazon.com/
https://aws.amazon.com/free/

Lumberyard Developer Guide
Tutorial: Getting Started with Cloud Canvas

The IAM user that you will create will belong to a group that has administrator permissions to install the
Cloud Canvas resources and make them accessible through Lumberyard. Administrative users in this
group will have special permissions beyond the scope of a normal Cloud Canvas user.

In a team environment, you—as a member of the administrator's group—can create IAM users for each
member of your team. With IAM you can set permissions specifically for each person’s role in a project.
For example, you might specify that only designers may edit a database, or prevent team members from
accidentally writing to resources with which your players interact.

For more information on IAM and permissions, see the IAM User Guide.

This section guides you through IAM best practices by creating an IAM user and an administrator group in
your account to which the IAM user belongs.

Create an IAM User and an Administrator Group

It's time to create your IAM administrative user.

To create an IAM user in your account

1. Sign into the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, click Users.

3. Click Add user.

4. For User name, type a user name. This tutorial uses the name CloudCanvasAdmin. The name can
consist of letters, digits, and the following characters: plus (+), equal (=), comma (,), period (.), at
(@), underscore (_), and hyphen (-). The name is not case sensitive and can be a maximum of 64
characters in length.

5. Select the check box next to Programmatic access.

6. Select the check box next to AWS Management Console access, select Custom password, and
then type the new password in the text box.

Note
When you create a user for someone other than yourself, you can select Require password
reset to force the user to create a new password when first signing in.

7. Click Next: Permissions.

8. Click Create group.

9. In the Create group dialog box, type the name for the new group. The name can consist of letters,
digits, and the following characters: plus (+), equal (=), comma (,), period (.), at (@), underscore (_),
and hyphen (-). The name is not case sensitive and can be a maximum of 128 characters in length.
This tutorial uses the name CloudCanvasAdministrators.

10. In the Policy name list, select the check box next to AdministratorAccess. This policy provides the
necessary permissions for creating and administering a Cloud Canvas project.

Warning
The AdministratorAccess policy allows almost all permissions within the AWS account and
should be attached only to the administrator of the account. Otherwise, other team members
could perform actions that incur unwanted charges in your AWS account.

11. Click Create group.

12. Back in the list of groups, select the check box for your new group if it is not already selected. If
necessary, click Refresh to see the group in the list.

13. Click Next: Review to review your choices. When you are ready to proceed, choose Create user.

Your IAM user is created along with two important credentials: an access key and a secret access key.
Later, you will enter these credentials into Cloud Canvas in order to access the AWS resources in your
project.

Version 1.8
175

http://docs.aws.amazon.com/IAM/latest/UserGuide/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Lumberyard Developer Guide
Tutorial: Getting Started with Cloud Canvas

14. Click Show to view your secret access key and password, or click Download .csv to download the
credentials in a .csv file. You can also click Send email to receive login instructions by email. Make
sure you preserve the credentials in a safe place before you proceed. After this point, you cannot view
the secret access key from the AWS Management Console.

Important
Do not share your credentials with anyone. Anyone with access to these credentials can
access your AWS account, incur charges, or perform malicious acts.

15. You have now created an IAM user called CloudCanvasAdmin and a CloudCanvasAdministrators
administrator group to which the user belongs. To confirm this, click Groups in the navigation pane.
Under Group Name, click CloudCanvasAdministrators. The CloudCanvasAdmin user appears in the
list of users for the group.

In this tutorial, you add only one IAM user to the administrator group, but you can add more if required.

Step 3: Sign in as Your IAM User

Now you're ready to try out your new user.

To sign in as your IAM user

1. Get the AWS account ID that you received when you created your AWS account. To sign in as your
CloudCanvasAdmin IAM user, use this AWS account ID.

2. In a web browser, type the URL https://<your_aws_account_id>.signin.aws.amazon.com/
console/, where <your_aws_account_id> is your AWS account number without the hyphens.
For example, if your AWS account number is 1234-5678-9012, your AWS account ID would be
123456789012, and you would visit https://123456789012.signin.aws.amazon.com/console/.

For convenience, you might want to bookmark your URL for future use.

3. Type the CloudCanvasAdmin IAM user name you created earlier.

4. Type the password for the user and choose Sign In.

You are now successfully signed into the AWS Management Console.

Note
Throughout the tutorial, you must be signed into the AWS Management Console. If you are signed
out, follow the preceding steps to sign back in.

Step 4: Enabling the Cloud Canvas Gem (extension) Package

Cloud Canvas functionality is enabled in Lumberyard through a Gem package. Gem packages, or Gems,
are extensions that share code and assets among Lumberyard projects. You access and manage Gems
through the Project Configurator.

This section of the tutorial shows you how to use the SamplesProject, and how to enable the Cloud Canvas
Gem package in a new project if you are not using the SamplesProject.

Cloud Canvas in the SamplesProject

The default SamplesProject is already configured to use the Cloud Canvas Gem package. If you are
using the SamplesProject, no additional steps are needed. Go to Step 5: Add Administrator Credentials to
Lumberyard (p. 177).

Enable Cloud Canvas in a New Project

If you are working on a new project, follow these steps to enable Cloud Canvas functionality.

Version 1.8
176

http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gems.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html

Lumberyard Developer Guide
Tutorial: Getting Started with Cloud Canvas

Note
Adding the Cloud Canvas Gem package to a project that is not already configured requires
rebuilding the project in Visual Studio.

To enable Cloud Canvas in a new project

1. Launch ProjectConfigurator.exe from your Lumberyard dev\Bin64\ binary directory.

2. Click Enable packages to navigate to the Gems packages screen.

3. Ensure that the check box for the Cloud Canvas (AWS) Gem package is checked. If it is already
checked, close the ProjectConfigurator and go to Step 5: Add Administrator Credentials to
Lumberyard (p. 177).

4. Click Save, and then close the ProjectConfigurator.

5. If you had to add the Cloud Canvas (AWS) Gem to the project, open a command line window and run
lmbr_waf configure to configure your new project.

6. Recompile and build the resulting Visual Studio solution file. Your Lumberyard project is now ready for
Cloud Canvas.

Step 5: Add Administrator Credentials to Lumberyard

In order to begin managing a Cloud Canvas project, you add the IAM user credentials that you generated
earlier to a profile that Cloud Canvas can easily reference. To do this, you can use either Lumberyard
Editor or a command line prompt.

To enter your credentials in Lumberyard Editor

1. In Lumberyard Editor, click AWS, Credentials manager.

2. In the Credentials Manager dialog, click Add profile.

3. In the Add profile dialog box, enter the information requested. For Profile name, type a name of your
choice (for example,CloudCanvasAdminProfile). For AWS access key and AWS secret key, type the
secret key and access key that you generated in Step 2 (p. 174).

4. Click Save.

5. In Credentials Manager, click OK.

To add your credentials by using the command line

1. Open a command line window and change to the root Lumberyard directory, which is the dev
subdirectory of your Lumberyard installation directory (for example, C:\lumberyard\dev).

2. Type the following at the command prompt, and then press Enter. Replace <profile-name> with a
name of your choice (for example, CloudCanvasAdminProfile). Replace <secret-key> and <access-
key> with the secret key and access key that you generated in Step 2 (p. 174).

lmbr_aws add-profile --profile <profile-name> --make-default --aws-secret-key <secret-
key> --aws-access-key <access-key>

The profile name is now associated with your credentials, and saved locally on your machine in your
AWS credentials file. This file is normally located in your C:\Users\<user name>\.aws\ directory. As a
convenience, other tools such as the AWS Command Line Interface or the AWS Toolkit for Visual Studio
can access these credentials.

The profile has also been established as your default profile for Cloud Canvas. The default profile
eliminates the need to specify the profile each time you use Lumberyard Editor or run an lmbr_aws
command.

Version 1.8
177

https://aws.amazon.com/cli/
https://aws.amazon.com/visualstudio/

Lumberyard Developer Guide
Tutorial: Getting Started with Cloud Canvas

Important
Do not share these credentials with anyone, and do not check them into source control. These
grant control over your AWS account, and a malicious user could incur charges.

You have now created a profile for administering a Cloud Canvas project.

Step 6: Initializing Cloud Canvas from the Command Line
In this step, you configure your Lumberyard project to use Cloud Canvas capabilities. It sets up all of the
initial AWS resources required by Cloud Canvas. You perform this step only once for any project.

To initialize Cloud Canvas

1. If you are using SamplesProject and have checked Lumberyard into source control, ensure that the
<root>\SamplesProject\AWS\project-settings.json file has been checked out and is writeable. If
you are using a new project, this file will be created during the initialization process, along with other
files in the project’s AWS directory.

2. Open a command line window and change to your Lumberyard \dev directory.

3. You must provide Cloud Canvas with the region to which AWS resources will be deployed. Cloud
Canvas requires selecting a region that is supported by the Amazon Cognito service. You can check
the availability of this service by visiting the Region Table. This tutorial deploys resources to US East
(N. Virginia), which supports Amazon Cognito.

Type the following command:

lmbr_aws create-project-stack --region us-east-1

The command initializes the contents of the <root>\<game>\AWS directory and creates the resources
Cloud Canvas needs in order to manage your project in your AWS account.

Wait until the initialization process is complete before you proceed. The initialization process can take
several minutes.

Note
The initialization process has to be done only once for a given Lumberyard project.

4. You can see the resources created in your AWS account by typing the following command:

lmbr_aws list-resources

5. If you are using source control, check in the contents of the <root>\<game>\AWS directory so that other
users on your team can access the AWS resources.

Your Lumberyard project is now ready to use Cloud Canvas.

Step 7: Locating and Adding Resource Groups
Cloud Canvas lets you organize the AWS resources required by your Lumberyard project into any number
of separate resource groups. This step shows you how to locate the DontDieAWS resource group already
defined for you by the SamplesProject. If you're using a different project, it also shows you how to add a
resource group and optionally add some example resources.

Locating the Resource Group Defined by SamplesProject

The SamplesProject defines a single resource group named "DontDieAWS". The resource definitions
for this resource group are found in the <root>\SamplesProject\AWS\resource-group\DontDieAWS
\resource-template.json file. This file is an AWS CloudFormation template. It will be used to create the
AWS resources required by SamplesProject in the next step of this tutorial.

Version 1.8
178

https://aws.amazon.com/cognito/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Lumberyard Developer Guide
Tutorial: Getting Started with Cloud Canvas

You can see that the resource group is part of SamplesProject by typing the following at the command
prompt, and then pressing Enter.

lmbr_aws list-resource-groups

Adding a Resource Group to a New Project

To add a resource group to a new project

1. If you have checked your Lumberyard project into source control, ensure that the <root>\<game>\AWS
\deployment-template.json file has been checked out and is writeable.

2. Add a new resource group definition by typing the following command:

lmbr_aws add-resource-group --resource-group Example --include-example-resources

After executing this command, the resource definitions for the resource group can be found in the
<root>\<game>\AWS\resource-group\Example\resource-template.json file. This file is an AWS
CloudFormation template. It will be used to create the AWS resources required by your project in the
next step of this tutorial.

3. You can see that the resource group is part of the Lumberyard project by typing the following
command:

lmbr_aws list-resource-groups

Step 8: Creating Deployments
To create the AWS resources in your AWS account for a project resource group, you create a Cloud
Canvas deployment. Cloud Canvas allows you to create any number of deployments. Each deployment will
have a complete and independent set of the resources needed by your Lumberyard project. This can be
useful when you want to have (for example) separate development, test, and production resources for your
game. This step shows you how to create a deployment for a project.

Note
Only project administrators (anyone with full AWS account permissions) can add or remove
deployments.

Create a deployment from Cloud Canvas Resource Manager

1. If you have checked your Lumberyard project into source control, ensure that the <root>\<game>\AWS
\project-settings.json file has been checked out and is writeable.

2. In Lumberyard Editor, click AWS, Cloud Canvas, Cloud Canvas Resource Manager.

3. In the Cloud Canvas configuration navigation pane, expand Administration (advanced), and then
select Deployments.

4. In the details pane, click Create deployment.

5. In the Create deployment dialog, provide a name for the deployment.

Lumberyard appends the name that you provide to the project stack name to create an AWS
CloudFormation stack for the deployment.

6. Click OK to start the deployment creation process.

In the Resource Manager navigation tree, a node for the deployment appears under Deployments.
In the detail pane, the Viewing the Cloud Canvas Progress Log (p. 222) provides details about the
creation process.

7. To make the deployment the default, see Making a Deployment the Default (p. 289).

Version 1.8
179

Lumberyard Developer Guide
Tutorial: Getting Started with Cloud Canvas

Create a deployment from the command line

1. If you have checked your Lumberyard project into source control, ensure that the <root>\<game>\AWS
\project-settings.json file has been checked out and is writeable.

2. Create a deployment by typing the following command:

lmbr_aws create-deployment --deployment TestDeployment

3. You can see that the deployment is now part of the Lumberyard project by typing the following
command:

lmbr_aws list-deployments

4. To make the deployment that you created the default deployment in Lumberyard Editor, type the
following command:

lmbr_aws default-deployment --set TestDeployment

5. You can see the resources created with the deployment by typing the following command:

lmbr_aws list-resources --deployment TestDeployment

Step 9: Inspecting Your Resources in AWS

This step in the tutorial shows you the AWS CloudFormation stacks that the previous steps of this tutorial
created for you.

To inspect your resources in AWS

1. In a web browser, use your IAM credentials to sign in to the AWS Management Console (see Step
3 (p. 176)).

2. Ensure the AWS region, which appears on the upper right of the console screen, is set to the one that
you specified when you had Cloud Canvas deploy its resources in Step 6 (p. 178). If you selected the
region in this tutorial, you will see N. Virginia.

3. Click Services, CloudFormation.

4. Note that a number of other stacks have been created as a result of the previous tutorial steps. If a
stack update operation is still under way, the stack will show the status UPDATE_IN_PROGRESS.
Otherwise, the status shows CREATE_COMPLETE. You may need to click Refresh to update the
status.

The next step shows how, as an administrator, you can grant your team members access to Cloud Canvas.

Step 10: Using IAM to Administer a Cloud Canvas Team

In this step, you create Cloud Canvas IAM users for your team, create a group for your users, attach a
Cloud Canvas managed policy to the group, and then add the users to the group. This helps you manage
your users' access to AWS resources.

The policies that Cloud Canvas creates for your IAM users are much more restrictive than those for an
administrator. This is so that your team members don't inadvertently incur charges without administrator
approval.

As you add new resource groups and AWS resources to your project, Cloud Canvas automatically updates
these managed policies to reflect the updated permissions.

Version 1.8
180

Lumberyard Developer Guide
Tutorial: Getting Started with Cloud Canvas

Create IAM users

You start by creating one or more IAM users.

To create IAM users

1. Sign in to the AWS Management Console using your CloudCanvasAdmin credentials (see Step
3 (p. 176)).

2. Click Services, IAM.

3. In the navigation pane, click Users.

4. Click Create New Users.

5. Type IAM user names for each team member.

6. Be sure that the Generate an access key for each user check box is checked.

7. Click Create.

8. Choose the option to download the access key and secret access key for each user. The keys for all
users that you created are downloaded in a single .csv file. Make sure you preserve the credentials in
a safe place now. After this point, you cannot view the secret access key from the AWS Management
Console. You must deliver each user his or her keys securely.

9. Click Close.

Create a group

Next, you create an IAM group for the newly created users.

To create a group for the Cloud Canvas IAM users

1. In the left navigation pane of the IAM console, click Groups.

2. Click Create New Group.

3. Give the group a name. This tutorial uses the name CloudCanvasDevelopers.

4. Click Next Step.

5. To find the IAM managed policy that Cloud Canvas created for you, click the link next to Filter and
click Customer Managed Policies.

6. Select the check box next to the policy that includes your project name. If you are using the
SamplesProject, the name begins with SamplesProject-DontDieDeploymentAccess.

7. Click Next Step.

8. Review the proposed group that you are about to create.

9. Click Create Group.

Add IAM users to a group

Finally, you add your IAM users to the group you just created.

To add your Cloud Canvas IAM users to the group

1. If it is not already selected, click Groups in the left navigation pane.

2. Click the name of the newly created CloudCanvasDevelopers group (not the check box adjacent to it).

3. If it is not already active, click the Users tab.

4. Choose Add Users to Group.

5. Select the check boxes next to the IAM users that you want to belong to the CloudCanvasDevelopers
group.

6. Click Add Users. The team's user names now appear in the list of users for the group.

Version 1.8
181

Lumberyard Developer Guide
Don't Die Sample Project

7. Open the credentials.csv file that you downloaded earlier. Securely deliver the secret and access
keys to each user in the group. Stress the importance to each user of keeping the keys secure and not
sharing them.

8. Have each user in the CloudCanvasDevelopers group perform the following steps:

a. In Lumberyard Editor, click AWS, Cloud Canvas, Permissions and Deployments.

b. Type a new profile name and his or her access and secret access keys.

Important
As an administrator, it is your responsibility to keep your team and your AWS account secure.
Amazon provides some best practices and options for how to manage your team’s access keys on
the Managing Access Keys for IAM Users page. You are encouraged to read this thoroughly.

For information regarding limits on the number of groups and users in an AWS account, see Limitations on
IAM Entities and Objects in the IAM User Guide.

Step 11: Remove Cloud Canvas Functionality and AWS
Resources

To remove the Cloud Canvas functionality and AWS resources from your project, see Deleting Cloud
Canvas Deployments and Their Resources (p. 291).

Don't Die Sample Project
This sample project shows how you can use the AWS Cloud Canvas Resource Management system and
AWS Lambda for a game. Don't Die also uses Project Configurator, which is a standalone application
included with Lumberyard that you use to specify to the Waf Build system the game project and assets
(Gems) that you want to include in a build.

AWS resources used in the Don't Die project may be subject to separate charges and additional terms.
There is a free tier for all the AWS services used in this project. See the end of this topic to learn more
about AWS services used in this project.

Setup

Setting up the sample project involves a few tasks.

Creating the AWS Project Stack

All AWS resources associated with Don't Die, such as DynamoDB tables, S3 buckets, and Lambda, are
created through the Cloud Canvas Resource Management system. The cloud-connected features of Don't
Die, such as High Score and Daily Gift, will not work until you set up their associated AWS resources.
Before you can set up the resources, you must:

• Have an AWS account with administrator permissions credentials.

• Make your AWS account available for use with Lumberyard Editor and the Cloud Canvas command line if
you have not yet done so. To do this, perform one of the following:

• Use the Lumberyard Editor Credentials Manager to add an AWS profile. For more information, see
Managing Cloud Canvas Profiles (p. 188).

• At a command line prompt on the Lumberyard \dev folder, type the following:

lmbr_aws add-profile --aws-access-key {accesskey} --aws-secret-key {secretkey} --
profile {profilename} --make-default

Version 1.8
182

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Lumberyard Developer Guide
Don't Die Sample Project

Replace {accesskey} and {secretkey} keys with the corresponding keys from your AWS account.
Replace {profilename} with a name of your choice for the profile. The --make-default argument
optionally makes this set of credentials your default profile when you use the Cloud Canvas command
line.

Note
When you use Credentials Manager, the profile that you specify becomes the default.

• Ensure that SamplesProject is selected in Project Configurator, which you can run from Lumberyard
folder location \dev\Bin64\ProjectConfigurator.exe. This configuration points the AWS Resource
Management System to \SamplesProject\AWS, which contains all the files, templates, and project code
for creating the required AWS resources.

• In Project Configurator, ensure that the Cloud Canvas Gem and the Static Data Gem are enabled.

• Ensure that the SamplesProject\AWS\project-settings.json file is writable. During the resource setup
process, the Amazon Resource Name (ARN) for the AWS CloudFormation stack is added into this file.

• Select the region where the AWS resources will live. Don't Die relies on a service called Amazon Cognito
for player identity, which is currently only supported in the following regions: US East (N. Virginia) (us-
east-1), EU (Ireland) (eu-west-1), and Asia Pacific (Tokyo) (ap-northeast-1). This example uses US East
(N. Virginia).

To create the project stack

1. From a command line prompt on the Lumberyard \dev folder, type the following (the example assumes
that you are using the US East region):

lmbr_aws create-project-stack --region us-east-1

Creating the stack will take a few minutes.

Next, you will create a deployment, which is a complete set of your game's cloud resources. You can
have separate deployments (p. 247) that correspond to the different stages of a release (for example,
an internal deployment for developers, and a release deployment for players). To keep your project
simple, you will create just one deployment.

2. From the same command line prompt, type the following to create a deployment called
"DontDieDeployment":

lmbr_aws create-deployment --deployment DontDieDeployment

Test the Game

At this point you can test the game and its AWS connected High Scores feature. You can run the game
either from Lumberyard Editor or from the standalone SamplesProject launcher.

To run the game from Lumberyard Editor

1. Open Lumberyard Editor.

2. In the Welcome to the Lumberyard Editor dialog, click Open Level.

3. In the Open a Level dialog, choose Levels, Samples, Dont_Die, and then click Open.

4. To upload the resources for your game, do one of the following:

• On the command line, type

lmbr_aws upload-resources

Version 1.8
183

Lumberyard Developer Guide
Don't Die Sample Project

• In Lumberyard Editor, perform the following steps:

1. Click AWS, Cloud Canvas, Cloud Canvas Resource Manager.

2. In Resource Groups, click Upload all resources.

3. Exit Lumberyard Editor and restart it.

Note
This step and the next are workarounds for a bug that will be fixed in a later release.

4. Follow the previous steps to load the Dont_Die level in Lumberyard Editor.

5. To play the game in Lumberyard Editor, press Ctrl-G.

Your high scores will be recorded in the cloud and will reappear if you play again.

You can also run the game from the SamplesProject standalone launcher, although a few more steps are
required.

To run the game from the standalone launcher

1. In Lumberyard Editor, click File, Export to Engine or press Ctrl-E to export the level.

2. In Lumberyard Editor, click AWS, Cloud Canvas, Cloud Canvas Resource Manager.

3. In Cloud Canvas Resource Manager navigation tree, expand Administration (advanced), and then
select project-settings.json. You can use resource manager to edit the JSON text, or open the dev
\SamplesProject\AWS\project-settings.json file and edit the file with a text editor.

4. Under the line

"DefaultDeployment": "DontDieDeployment",

add the line:

"ReleaseDeployment": "DontDieDeployment",

5. Save the file.

6. At a command line prompt, run the command

lmbr_aws update-mappings --release

7. Run the program dev\Bin64\SamplesProjectLauncher.exe.

8. Type ~ (the tilde character) to open the SamplesProject launcher console.

9. In the console, type

map dont_die

and then press Enter.

The game opens directly in the SamplesProject launcher so that you can play it. Your high scores will
be recorded in the cloud and will reappear if you play again.

Viewing Lambda Code in Visual Studio

You can view the Lambda source code for the Don't Die project in Visual Studio 2013. However, you must
install the following tools first:

Version 1.8
184

Lumberyard Developer Guide
Don't Die Sample Project

• AWS Toolkit for Visual Studio

• Node.js

• Node JS Tools for Visual Studio 2013

Acquiring the Mappings File

All of the Lambda code in the Don't Die project refers to AWS resources by friendly names like "High Score
Table." Lambda functions use a mappings file to translate friendly names to the physical names of the
actual AWS resources in your account. This file is generated by the AWS Resource Management System
but is only inserted in the Lambda function right before the system uploads the code to AWS. In order to run
the Lambda functions from Visual Studio, copy the mappings file locally, as follows:

To acquire the mappings file

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Filter for DontDie and click the linked name of one of the Lambda functions in the list (one function
should contain the text DontDieMain). The detail page for the function appears.

3. Click Actions, and then click Download function code.

4. Download the .zip file to your computer.

5. Open the .zip file and extract the CloudCanvas directory together with the settings.js file in it to the
\dev\SamplesProject\AWS\resource-group\DontDieAWS\lambda-function-code\ directory. This file
enables Visual Studio to find the correct resources for the Lambda function.

6. To view the solution, open the dev\SamplesProject\AWS\SamplesProjectAWS.sln file in Visual Studio.

Lambda Code Overview

Within the Visual Studio project, under the apps folder, there is a folder called don't-die-main. This folder
contains the dont-die-main Lambda function that is used throughout the game. The function executes
commands such as start-game, end-game, and get-high-score-table that are sent to it from the client,
and then it sends back the result. Commands can be batched together in an effort to minimize the number
of calls to other AWS services. For example, if two commands that update the player table are sent
together, the Lambda function combines the commands into a single DynamoDB update.

The don’t-die-main folder contains three files: _sampleEvent.json, _testdriver.js, and app.js. The
first two files are not uploaded to AWS (this is controlled by the .ignore file) but are used for local testing
only. The _sampleEvent.json file contains test data that represents the data that the client sends. The
_testdriver.js file executes the Lambda code locally, emulating the AWS service that calls the Lambda
function. Both files are generated by the AWS toolkit, although they have been somewhat modified. The
third file, app.js, contains the entry point for the exports.handler Lambda function in this sample.

To test the Lambda function locally, right-click the _testdriver.js file, select Set as Node.js Startup File,
and click Debug > Start Debugging.

The general behavior of the Lambda function is as follows:

• Each time the dont-die-main Lambda function is executed, a DontDie object is created, and Start is
called on it.

• The DontDie object waits for each game system in the systemModuleList array to initialize.

• If a game system has a set of static data that it relies on, it tries to load it. If AWS executes the Lambda
function on a computer on which the Lambda function has been recently used, it uses the data already
loaded from the previous execution.

• After all game systems are initialized, the commands sent by the client are executed. This step
corresponds to the code in the app.js file.

Version 1.8
185

https://aws.amazon.com/visualstudio/
https://nodejs.org/en/download/
https://github.com/Microsoft/nodejstools/releases/tag/v1.1
https://console.aws.amazon.com/lambda/

Lumberyard Developer Guide
Don't Die Sample Project

• After all commands have executed serially, Finish is called on the DontDie object. This call gives each
game system a chance to save any changes to state that have been made. For example, if player data
has changed, it is saved to DynamoDB.

Deleting the AWS Project Stack

After ensuring that your Amazon S3 bucket is empty, you can delete your deployment, resources, and
project stack.

Empty Your S3 Bucket

Don't Die creates one Amazon S3 bucket. Before you can delete the project stack, ensure this S3 bucket
is empty. Otherwise, the AWS Resource Management system cannot delete the S3 bucket, which blocks it
from deleting the project stack.

Note
The following steps are necessary only if you manually added files to the Don’t Die mainbucket. If
you didn't add any files, you can skip this step.

To empty an S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Find the samplesproject bucket that has mainbucket somewhere in the title, and click that bucket.

3. Select each item in the bucket, and then click Actions, Delete.

After the Amazon S3 bucket is empty, you can delete the project stack.

Remove Your Deployment and its Resources

To remove your deployment, its resources, and your project stack, you can use either the Cloud Canvas
Resource Manager or the Cloud Canvas command line to delete the DontDieDeployment. For steps, see
Deleting Cloud Canvas Deployments and Their Resources (p. 291).

AWS Services Used

The Don't Die sample project implements game back-end features on AWS. By default, this project uses
the services listed in the table below. When you use certain features in the sample project, you are using
the AWS services that power them. You can add additional services by customizing the templates or writing
your own templates.

When you initialize the Don't Die sample project, you are prompted to deploy AWS services to your account
by using the included AWS CloudFormation templates.

There is no additional charge for using Cloud Canvas. AWS resources you use for Don't Die may be
subject to separate charges and additional terms. You pay for AWS resources created using Cloud Canvas,
such as Lambda functions, DynamoDB tables, and IAM in the same manner as if you created them
manually. You only pay for what you use, as you use it; there are no minimum fees and no required upfront
commitments, and most services include a free tier.

AWS Services Table

Feature AWS Services Used

Setup AWS CloudFormation, Lambda, DynamoDB, Amazon S3, Amazon
Cognito, IAM

Version 1.8
186

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
https://aws.amazon.com/iam/

Lumberyard Developer Guide
Cloud Canvas Game Play Design and Engineering Guide

Feature AWS Services Used

Message of the Day example AWS CloudFormation, Lambda, DynamoDB,

Achievements example AWS CloudFormation, Lambda, DynamoDB,

High Scores example AWS CloudFormation, Lambda, DynamoDB, Amazon S3

Daily Gift example AWS CloudFormation, Lambda, DynamoDB,

Item Manager example AWS CloudFormation, Lambda, DynamoDB,

Mission example AWS CloudFormation, Lambda, DynamoDB,

Cloud Canvas Game Play Design and Engineering
Guide

You can use Cloud Canvas's deployments, resource groups, and cloud gems (provided by yourself or
others) to design and engineer the cloud connected features of your game.

Topics

• Cloud Canvas Tools in Lumberyard Editor (p. 187)

• Managing Cloud Canvas Profiles (p. 188)

• Using Resource Manager in Game Design (p. 188)

• Cloud Gems (p. 189)

• Cloud Canvas Flow Graph Node Reference (p. 200)

Cloud Canvas Tools in Lumberyard Editor
Lumberyard Editor provides tools that make it easy for you to connect your game to AWS. To get started,
click AWS in the Lumberyard Editor toolbar:

The AWS menu has the following options:

• Credentials manager – Select or manage one or more AWS profiles that provide credentials required to
access your AWS account. For more information, see Managing Cloud Canvas Profiles (p. 188).

• GameLift – Use the Amazon GameLift service to rapidly deploy and scale session-based multiplayer
games with no upfront costs. For more information, see Amazon GameLift. The GameLift menu itself
also has links to more information.

• Cloud Canvas – The Cloud Canvas menu has the following options:

• Select a deployment – Specify the set of AWS resources for the project that you want Lumberyard
Editor to work with. For more information, see Making a Cloud Canvas Deployment Active (p. 288).

• Cloud Canvas Resource Manager – Define and manage the AWS resources for your Lumberyard
project. For a conceptual introduction to resource manager, see Understanding Cloud Canvas
Resource Manager (p. 169).

• Open an AWS Console – Get quick access to the main AWS Management Console and to consoles for
Amazon Cognito, DynamoDB, Amazon S3, and Lambda:

These links use your currently active AWS profile to connect to AWS. You can use the Managing Cloud
Canvas Profiles (p. 188) to select which profile is active.

Version 1.8
187

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/gamelift/

Lumberyard Developer Guide
Managing Cloud Canvas Profiles

Managing Cloud Canvas Profiles
Use the Credentials Manager in Lumberyard Editor or the command line to manage one or more AWS
profiles that provide the credentials required to access your AWS account.

The profile is saved locally on your machine in your AWS credentials file. This file is normally located in
your C:\Users\<user name>\.aws\ directory. The AWS Command Line Interface and the AWS Toolkit for
Visual Studio can access these credentials.

Important
Do not share these credentials with anyone, and do not check them into source control. These
grant control over your AWS account, and a malicious user could incur charges.

For more information, see AWS Security Credentials.

To open Credentials Manager

• To open Credentials Manager, do one of the following:

• In Lumberyard Editor, click AWS, Credentials manager.

• In Cloud Canvas Resource Manager, click the name of the current profile in the Resource
Manager toolbar:

You can use the Credentials Manager to select an existing AWS profile, edit an AWS profile, or add a new
AWS profile.

To edit an existing AWS profile, click Edited selected profile. To add an AWS profile, click Add profile.

When adding or editing a profile, Lumberyard prompts you for the following:

Profile name – The name used for the profile.

AWS Secret Key – The AWS secret key needed to access the account.

AWS Access Key – The AWS access key needed to access the account.

To add your credentials by using the command line

1. Open a command line window and change to the root Lumberyard directory, which is the dev
subdirectory of your Lumberyard installation directory (for example, C:\lumberyard\dev).

2. Type the following at the command prompt, and then press Enter. Replace <profile-name> with a
name of your choice (for example, CloudCanvasAdminProfile). Replace <secret-key> and <access-
key> with the secret key and access key of your AWS account.

lmbr_aws add-profile --profile <profile-name> --make-default --aws-secret-key <secret-
key> --aws-access-key <access-key>

The --make-default option establishes the profile as your default profile for Cloud Canvas. The default
profile eliminates the need to specify the profile each time you use Lumberyard Editor or run an lmbr_aws
command.

Using Resource Manager in Game Design
You can use Cloud Canvas Resource Manager to make deployments active, test mappings, use protected
deployments, and to delete deployments and resources.

Version 1.8
188

https://aws.amazon.com/cli/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/visualstudio/
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

Lumberyard Developer Guide
Cloud Gems

For information, see the following links in the Working with Deployments (p. 287) section of the Cloud
Canvas documentation.

• Making a Cloud Canvas Deployment Active (p. 288)

• Testing Different Mappings (p. 289)

• Using Protected Deployments (p. 290)

• Deleting Cloud Canvas Deployments and Their Resources (p. 291)

Cloud Gems
A cloud gem is an individual package of specific cloud-connected functionality, assets and AWS resource
definitions. A cloud gem includes everything required for you to include cloud-connected functionality in
your project.

Lumberyard includes the following cloud gems. You can enable them in a project by using the Lumberyard
Project Configurator tool.

• Message of the Day (p. 190) – Schedules the delivery of messages (for example, new product
announcements or holiday greetings) to game clients.

• Leaderboard (p. 191) – Stores a player's high scores and provides leader boards that show player
rankings.

• Dynamic Content (p. 193) – Allows Lumberyard .pak files that contain new and updated game assets
to be uploaded to the cloud for subsequent automatic download to the game client.

Topics

• Cloud Gem Portal (p. 189)

• Setting Up and Accessing the Cloud Gem Portal (p. 190)

• Message Of The Day Cloud Gem Portal (p. 190)

• Leaderboard Cloud Gem Portal (p. 191)

• Using Dynamic Content Manager (p. 193)

• Managing Dynamic Content Packages (p. 195)

• Using lmbr_aws for Dynamic Content (p. 196)

• Dynamic Content Engineering Details (p. 198)

Cloud Gem Portal
A cloud gem (p. 172) is a gem in Lumberyard that contains scripts and assets that use AWS resources
to implement cloud-connected game features. A cloud gem creates a cloud gem portal (CGP) for you
that you can use to manage the cloud data for your game. For example, the Leaderboard Cloud Gem
Portal (p. 191) can provide a way for a support person to remove fraudulent high scores. The cloud gem
portal is hosted in your AWS account and is a website that you own. The cloud gem portal is part of the
Cloud Gems Framework (p. 254) and can be customized.

How a Cloud Gem Portal Works

Cloud gem portals use Amazon Web Services to implement their functionality, as shown in the following
diagram.

Amazon S3 stores a cloud gem portal as a web application. AWS Lambda functions implement the required
server side logic. JavaScript code that runs in the web browser accesses the Lambda functions through the
Amazon API Gateway. The configuration for the API Gateway is handled by the Cloud Canvas Cloud Gem
Framework Service API.

Version 1.8
189

http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html
https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/

Lumberyard Developer Guide
Cloud Gems

Cloud Gem Workflow

A cloud gem provides content (for example, HTML, JavaScript, or images) from its /dev/Gems/<gem>/
AWS/cgp-resource-code subdirectory. When you deploy a cloud gem, the Cloud Canvas Resource
Manager (p. 169) uploads this content to the project’s configuration bucket. To determine which cloud
gems are available to it, the cloud gem portal page uses the cloud gem portal service API to call the
cloud gem portal lambda function. When you select a cloud gem, its content is loaded into the cloud gem
portal web page. To query the state of the cloud gem or perform other operations, JavaScript code can
use a service API defined for the cloud gem. The service API calls the cloud gem's Lambda function that
implements the cloud gem's functionality.

Setting Up and Accessing the Cloud Gem Portal

Before you can use a cloud gem portal, you must install one or more cloud gems.

To add a cloud gem to your project

1. Open Project Configurator.

2. Click Enable Gems next to the project for which you want to enable the new gems. In this example,
the CloudGemSamples project is selected.

3. Select the cloud gems that you want to enable. In this example, the Cloud Gem Leaderboard and
Cloud Gem Message Of The Day gems are selected.

4. After you have enabled a cloud gem, you must build the project so that the .dll libraries for the gem
are included. For information on building your project, see Compiling Game Code.

Accessing the Cloud Gem Portal

To access the Cloud Gem Portal, you can use either Lumberyard Editor or a shared link.

To access the Cloud Gem Portal through Lumberyard Editor, click AWS, Open Cloud Gem Portal.
Your default browser opens a link to the Cloud Gem Portal page. Clicking Open Cloud Gem Portal in
Lumberyard Editor also generates a link to the web page with a unique key-pair that you can share. Apart
from Lumberyard Editor, this link is the only way to access your project's Cloud Gem Portal. To share the
link, click the share icon next to the project stack name in the upper-left section of the Cloud Gem Portal
navigation bar. When you generate a link, all previously generated links cease to function. Because this
shareable link is temporary, it is recommended that you always use Lumberyard Editor to launch the Cloud
Gem Portal.

Note
You can override the session length by going to your Lumberyard installation directory and
executing the the following command.

lmbr_aws cloud-gem-framework cloud-gem-portal
 --duration-seconds 7200

Message Of The Day Cloud Gem Portal

You can use the Message Of The Day Cloud Gem to schedule messages that you game consumes. You
can customize your project's message of the day using the cloud gem portal.

Prerequisites

This tutorial assumes the following:

• You are using a Lumberyard project that has the Message Of The Day Cloud Gem enabled (in Project
Configurator, select Cloud Gem Message Of The Day).

Version 1.8
190

http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/game-build-game-code.html

Lumberyard Developer Guide
Cloud Gems

• You have created a project stack in Cloud Canvas Resource Manager (p. 169).

• You have created a deployment stack in Resource Manager.

• You have opened the cloud gem portal. In Lumberyard Editor, click AWS, Open Cloud Gem Portal.

If you don't meet the prerequisites, follow the steps in Setting Up and Accessing the Cloud Gem
Portal (p. 190) to add Cloud Gem Message Of The Day in Project Configurator.

Accessing and Using the Message Of The Day Cloud Cloud Gem

To customize the Message Of The Day Cloud Gem

1. To view the cloud gems in the cloud gem portal, click View all Cloud Gems in the banner, or click
Cloud Gems on the upper right.

2. Click Message of the day.

3. Click Add Message of the Day to create a new message.

4. In the Add Message dialog box, enter the following information:

• Message Content – Enter a message that to be displayed to the players of your game.

• For Scheduling – Clear the No Start and/or No End options and specify the Start and/or End time
during which players see the message. Currently, all times are in UTC. The message is shown to
players that have a game clock that is between -12 hours or +12 hours of the set UTC time.

• To make the message permanent, specify both No Start and No End.

• If you have more than one message, you can use the Priority option to specify the priority of each.
By default, 0 is the highest priority. The game client determines how to use the priority value. If you
have only one active message, the priority does not make a difference.

5. Click Save. A confirmation message appears.

The message of the day dashboard has three categories: Active Messages, Planned Messages, and
Expired Messages.

Active Messages – The currently active messages that are returned by the game client.

Planned Messages – Messages that are not currently active but will be when the planned start date
and time arrives.

Expired Messages – Expired messages are stored in the History tab so that you can edit and reuse
them if you want.

You can now use the message in your game.

Other Cloud Gems

Visit the following links for other cloud gems that might interest you.

• Leaderboard Cloud Gem: Leaderboard Cloud Gem Portal (p. 191)

• Dynamic Content Cloud Gem: Using Dynamic Content Manager (p. 193)

Leaderboard Cloud Gem Portal

You can use the Leaderboard cloud gem portal to create, view, and customize leaderboards by deleting
scores, banning players, and removing bans.

Version 1.8
191

Lumberyard Developer Guide
Cloud Gems

Prerequisites

This tutorial assumes the following:

• You are using a Lumberyard project that has the Leaderboard Cloud Gem enabled (in Project
Configurator, select Cloud Gem Leaderboard).

• You have created a project stack in Cloud Canvas Resource Manager (p. 169).

• You have created a deployment stack in Resource Manager.

If you don't meet the prerequisites, follow the steps in Setting Up and Accessing the Cloud Gem
Portal (p. 190) to add Cloud Gem Leaderboard in Project Configurator.

Accessing and Using the Leaderboard Cloud Gem Portal

To access and use the Leaderboard cloud gem portal

1. Opening the Cloud Gem Portal

In Lumberyard Editor, click AWS, Open Cloud Gem Portal and then choose the Leaderboard cloud
gem.

2. Creating a Leaderboard

You must create a leaderboard for your game before you can start posting scores to it. In the
Leaderboard Gem, click Add Leaderboard to create a leaderboard so that your game can use it.
If your game tries to send data to a leaderboard that doesn't exist, the data is not be sent or saved
anywhere.

When you create a leaderboard, there are four options. These options are described in the following
list.

• Leaderboard ID – This is the identifier for your leaderboard. The game client uses this ID to send
data to the leaderboard. Currently, this ID does not support spaces. If you're creating a leaderboard
for a particular region or language, it's good to put that information in the ID. For example, you could
designate scores for North America with the ID "scores-NA" instead of just "scores".

• Mode – At launch, leaderboards have two modes: Overwrite and Increment. Overwrite mode
overwrites a previous score for a user. Increment mode adds the value passed in from the game
client to the previous value to keep a running total of a particular statistic. For example, you might
use increment mode to track career statistics in a game.

• Minimum Value Allowed – The minimum value for the leaderboard. If the game client sends scores
below the minimum value allowed, the scores are not recorded.

• Maximum Value Allowed – The maximum value for the leaderboard. If the game client sends
scores above the maximum value allowed, the scores are not recorded.

3. Editing a Leaderboard

To edit all options (except for Leaderboard ID), click the cogwheel icon on the right side of the
leaderboard. If you want to change the value for Leaderboard ID, you must delete and recreate the
leaderboard. When you delete a leaderboard, its data is also deleted.

4. Viewing Leaderboards

To view a leaderboard, click it. This shows you a list of players and their scores in the leaderboard.
You can also delete a player's scores or ban a player from all leaderboards.

5. Deleting Scores

To delete a score, click the trashcan icon on the right of the player's score. Then click Delete in the
confirmation window.

Version 1.8
192

Lumberyard Developer Guide
Cloud Gems

6. Banning a Player

To ban a player, click the ban symbol on the rightside of the player table next to the trashcan icon.
When you ban a player, the player's scores are removed from all leaderboards, and the player is
prevented from posting on other leaderboards. This is a reversible action; you can remove a ban if
done by mistake.

7. Removing a ban

To remove a ban, click the Banned Players tab. The tab displays a list of banned players in all your
leaderboards. Click the ban icon again, and then click Save in the confirmation window.

Next Steps

Now that you have your cloud gem portal set up with leaderboards, you can setup your game client to send
data to your new leaderboard.

Using Dynamic Content Manager

You can use the Dynamic Content Cloud Gem and its Dynamic Content Manger to manage dynamic
content updates for your game through AWS. You can use Dynamic Content Manger to create manifests
and packages, add files to the packages, and upload the manifest and packages to the AWS cloud. This
ensures that your clients have the latest content for your game.

Prerequisites

This tutorial assumes the following:

• You are using a Lumberyard project that has the Dynamic Cloud Gem enabled (in Project Configurator,
select Cloud Gem Dynamic Content).

• You have created a project stack and deployment stack in Cloud Canvas Resource Manager (p. 169)
with the CloudGemDynamicContent resource group.

Note
If you do not have a deployment with the CloudGemDynamicContent resource group, the Dynamic
Content Manager interface is disabled.

To upload dynamic content using Dynamic Content Manager

1. In Lumberyard Editor, choose AWS, Cloud Canvas, Dynamic Content Manager.

2. In Dynamic Content Manager, click Create a new manifest.

A manifest is a file that keeps track of the dynamic content files that you deliver to customers. A
manifest records the following information:

• The content files that have changed locally.

• The files that are included in any file packages.

• Differences beween the local packages and the packages in the cloud that are staged for delivery to
customers.

You can create as many manifests as you require. For example, you can create specialized manifests
for different types of assets.

3. Choose a name for the manifest. The name should reflect the purpose of the manifest.

4. When you create a manifest, the manifest is empty and has no files or packages.

Version 1.8
193

http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html

Lumberyard Developer Guide
Cloud Gems

Click Add Files.

5. In the file browser, choose the files that you want to add to the manifest.

Because the original assets might not be in a form that your game can consume, the file browser
opens to location of your game projects asset cache. For example, your game platform might require
textures to be in DDS format, but the original asset for a texture might be a .png file. The asset
processor converts the files to the appropriate format and stores them in the asset cache, so the asset
cache is your safest choice. However, if you have processed assets elsewhere in your file system, you
are free to include them.

6. The left pane of Dynamic Content Manager shows the files that you added to the manifest.

Now you are ready to add a package to the manifest.

Click New Package.

7. Type a name for the package.

8. The new package appears in the right pane of Dynamic Content Manager.

Each package is stored in a.pak file, which is the archived file format that Lumberyard uses for its
released game assets. You can have one or more packages per manifest, and you can assign the
same file to multiple packages. This is useful when you have common files and platform specific files
that you need to deliver in one package. It is also useful if you want to create bundles of items that
might share assets.

9. To add files to the package that you created, drag the files from the manifest on the left to the package
on the right. You can drag multiple files into the same .pak file.

The icons that appear in Packages pane are described as follows.

Icon Description

A file in a package has been updated in the asset cache. The contents of the package have
been updated, so you might want to upload the package again.

The package is not in the cloud. This can occur when the package has not yet been
uploaded.

A package has changed with respect to its copy in the cloud. The contents of the package
have been updated, so you might want to upload the package again.

The local package matches the package in the cloud. No action is necessary.

Notes

• You can remove individual files from a package, but to help prevent inadvertent removal, this action
is limited to one file at a time.

• You can also use Dynamic Content Manager to delete packages, but deleting a package does not
delete the staged packages in the cloud. To delete staged packages in the cloud, you must use the
web-based Cloud Gem Portal that manages the service side of a cloud gem.

10. To optionally generate key pairs to sign your package, click Generate Signing Keys. This security
option is useful if you have concerns that third parties might tamper with your packages.

11. Click Yes at the confirmation prompt.

Generating new keys is non-destructive. A time-stamped backup is always created for each key pair.

12. When you are ready, click Upload Packages. This action both creates the package files locally and
uploads them to your private staging bucket in the AWS cloud.

Version 1.8
194

Lumberyard Developer Guide
Cloud Gems

The packages appear in the Dynamic Content section of the Cloud Gem Portal. By default,
Lumberyard marks them as Private. When you are ready, you can move the packages to the Public
stage to make them available for download by game clients. For more information on this step, see
Managing Dynamic Content Packages (p. 195).

Managing Dynamic Content Packages
The Dynamic Content Cloud Gem provides an easy way for you to update your game content for your
customers. After a release, you can update content without an app submission or traditional patch process.
The Dynamic Content Cloud Gem provides a framework for you to group assets to be updated into
manifests. You can assign groups of assets together into .pak files (.zip files), and distribute these files to
customers according to your own rules or schedules.

Prerequisites

• You must be using a Lumberyard Editor project that has the Dynamic Content Cloud Gem enabled (in
Project Configurator, select Cloud Gem Dynamic Content).

• You have a project stack created in Cloud Canvas Resource Manager (p. 169).

• You have created a deployment stack in Resource Manager.

• You have created dynamic content packages that contain the updates. For more information, see Using
Dynamic Content Manager (p. 193).

• Open the cloud gem portal. In Lumberyard Editor, click AWS, Open Cloud Gem Portal.

To view packages in the Dynamic Content Gem Portal

1. On the welcome page of the Cloud Gem Portal, click Cloud Gems or View all Cloud Gems.

2. In the list of enabled cloud gems, mouse over the thumbnail for the Dynamic Content Gem.

The thumbnail shows the number of files in the gem and the the status of the cloud API (Online or
Offline). The online status comes from an API Gateway call to the Dynamic Content Cloud Gem.

3. Click the thumbnail. The dynamic content might take a few seconds to appear as AWS resources load.

The loaded page shows the packages (.pak files) that you added when you used Dynamic Content
Manager.

Dynamic Content Package Stages

You can use separate deployment stacks to handle different release workflows. For this purpose, the
Dynamic Content Cloud Gem currently supports the following publishing stages.

• Private – The packages are never downloaded by the game client. When you upload new or altered
content to the cloud from Dynamic Content Manager, your packages and manifest are always put in the
Private stage. This empowers you to choose when and how your changes are released to customers.

By default, , including the manifest itself, is placed into a private state.

• Scheduled – The packages are conditionally downloaded by the game client based on a specific date
and time.

• Public – The packages are available to everyone that uses the deployment.

You can use these stages to add an additional layer of protection against inadvertent deployments of
dynamic content to your players.

Version 1.8
195

Lumberyard Developer Guide
Cloud Gems

Package Nesting

Each stage includes entries for your manifests and packages. Packages are nested according to the
hierarchy that you determined when you created them. In the following example, the two root level manifest
packages highlighted in yellow have one child asset package each which are highlighted in gold.

The icons next to the package names show the actions available on the packages.

Icon Description

You can edit or delete root level packages.

You can only delete child packages.

Editing Packages

Editing is triggered when you drag and drop a root level package from one stage to another.

When you edit a package, you can alter its Transition, Scheduling, and Children, as the following image
shows.

• Transition –This section allows you to choose the target stage that you want to move the package to.

• Scheduling – Packages can be scheduled or be set to indefinite. Packages that you place in the
public stage cannot have a date; they are always indefinite.

• Package Children – This section allows you to select which children of the root package

you would like to include in this transition. By default all children are included to

move with the root package. If you uncheck some the children they will become zombies in

the current stage and no longer visible to the game client.

Deleting Packages

Deleting a root package causes its child packages to become orphans that are no longer visible to the
game client. Accordingly, when you delete a package, the following confirmation message appears.

Displaying Package Metadata

To display the metadata for a package, click next to the package name. The metadata for the package
appears at the bottom of the browser.

Using lmbr_aws for Dynamic Content
When you enable the Dynamic Content cloud gem, associated commands become available in the
lmbr_aws CLI. You can use these commands to update dynamic content and perform operations on
manifest files and buckets.

Updating Dynamic Content with lmbr_aws

To perform dynamic content updates, type the following command.

lmbr_aws dynamic-content upload-manifest-content --manifest-path <manifest name> --staging-
status <PUBLIC|PRIVATE>

• <manifest name> – specifies the name of the manifest in the manifests folder (for example,
DynamicContentTest.json).

• <PUBLIC|PRIVATE> – Optional. Specify PUBLIC to release the content immediately. The default is
PRIVATE.

Version 1.8
196

Lumberyard Developer Guide
Cloud Gems

Note
For information on using the Lumberyard user interface to upload content, see Using Dynamic
Content Manager (p. 193) and Managing Dynamic Content Packages (p. 195).

lmbr_aws Extensions

The following lmbr_aws CLI commands are enabled by the Dynamic Content cloud gem.

add-manifest-file

Adds a file to the content manifest for the project.

The command has the following arguments.

• --file-name <filename> – Required. The name of the file, including the local folder (for example,
staticdata/csv/gameproperties.csv, where local folder is staticdata/csv/.

• --cache-root <cache folder> – The reference for the local cache folder (for example, @assets@. The
default is @assets@.

• --bucket-prefix <prefix> – The bucket prefix under which to store the file in the content bucket.

• --manifest-path <path> – The path to a manifest other than the default.

• --output-root <default directory path> – The path to the default directory to which to write. The
default is @user@.

• --platform-type <platform type> – The type of platform type to which the asset belongs. The value
defaults to the current platform. Blank specifies all platforms.

compare-bucket-content

Compares manifest content to the bucket contents.

The command has the following argument.

• --manifest-path <path> – The path to a manifest other than the default.

empty-content-bucket

Empties the content bucket contents.

The command has the following argument.

• --manifest-path <path> – The path to a manifest other than the default.

list-bucket-content

Lists the manifest files in the content bucket.

The command has the following argument.

• --manifest-path <path> – The path to a manifest other than the default.

Version 1.8
197

Lumberyard Developer Guide
Cloud Gems

remove-manifest-file

Removes a file from the content manifest for the project.

The command has the following arguments.

• --file-name <filename> – Required. Removes a file from the content manifest for the project. The file
removed matches the value for --file-name specified in the add-manifest-file command.

• --manifest-path <path> – The path to a manifest other than the default.

update-manifest

Updates the manifest with current file hashes.

The command has the following argument.

• --manifest-path <path> – The path to a manifest other than the default.

upload-manifest-content

Updates the manifest and uploads changed manifest content to the content bucket.

The command has the following arguments.

• --manifest-path <path> – The path to a manifest other than the default.

• --staging-status <PUBLIC|PRIVATE> – Optional. Specify PUBLIC to make the new content public
immediately. The default is PRIVATE.

• --all – Optional. Updates all content in the manifest regardless of whether it appears to have been
updated already.

Dynamic Content Engineering Details
This topic provides programmatic details about the dynamic content update process. This includes manifest
file information, Dynamic Content Cloud Gem EBus events, and Dynamic Content Cloud Gem Service
API. For information about the lmbr_aws CLI extensions enabled by the Dynamic Content Cloud Gem, see
Using lmbr_aws for Dynamic Content (p. 196).

Manifest File

In your Lumberyard installation, the default location of the manifest file is <GameFolder>/AWS/
DynamicContent/DynamicContentManifest.json.

The following is a simple example manifest for the SamplesProject DontDie sample.

"Files": [
{
"hash": "3bebdb5bdb8cff74642e5f7f3dc4e900",
"outputRoot": "@user@",
"bucketPrefix": "static-data",
"keyName": "gameproperties.csv",
"cacheRoot": "@assets@",
"platformType": "",
"localFolder": "staticdata/csv"

Version 1.8
198

Lumberyard Developer Guide
Cloud Gems

}
]

The following table describes the properties in the manifest file.

Property Description

hash MD5 hash of the file.

outputRoot Base output folder.

bucketPrefix Prefix inside the bucket for the file

keyName Name of the file key in the bucket which will be prepended with the hash. The final key
name has the format bucketPrefix/keyName.

cacheRoot Root folder to search for copies of the file asset to be updated.

platformType pc/osx_gl/linux. Blank specifies all platforms.

localFolder Folder to write locally underneath the outputRoot. The full output has the format
outputRoot/localFolder/keyName.

EBus Events

The Dynamic Content cloud gem provides an EBus API and includes calls exposed to Lua. The basic top
level update request is:

EBUS_EVENT_RESULT(requestSuccess,
 CloudCanvas::DynamicContent::DynamicContentRequestBus,
 RequestManifest, manifestName)

requestSuccess (bool) – Specifies whether the request was successfully sent.

manifestName(char*) – Specifies the plain text name of the manifest (for example,
DynamicContentTest.json). The system handles .pak file and platform naming conventions (for example,
DynamicContentTest.shared.pak)

Note
A legacy RequestManifest flow graph node exists which calls the same EBus.

Manifest Received

The following are the EBus events triggered when a manifest has been received successfully or
unsuccessfully.

Success

EBUS_EVENT(CloudCanvas::DynamicContent::DynamicContentRequestBus, ManifestUpdated,
 bucketName, bucketPrefix)

When all .pak files have completed, a RequestCompleted event is broadcast.

Failure

EBUS_EVENT(CloudCanvas::DynamicContent::DynamicContentRequestBus, ManifestFailed,
 bucketName, bucketPrefix, errorStr)

Version 1.8
199

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Service API

The Dynamic Content Cloud Gem exposes API calls through API Gateway for both the cloud gem portal
and the game client.

The following tables lists the calls for the portal.

Portal API Call Description

/service/status GET Returns the service's status.

/portal/info/{file_name} GET Return detailed information about a specific file. This inclues the
file's name, staging status, staging start and end dates (optional),
and parent (optional).

/portal/info/{file_name}

DELETE

Request deletion of an existing item from the bucket and table.

/portal/content GET Request the list of files to display in the web portal.

/portal/content DELETE Request to deletion of all content from the bucket and staging table.

/portal/content POST Request alteration of the staging settings on a provided list of files.

The following table lists the calls for the client.

Client API Call Description

/client/content POST Request presigned URLs for a list of files. Returns the URLs or a failure
message.

Cloud Canvas Flow Graph Node Reference
This section provides a reference of the flow graph nodes available for Cloud Canvas.

• Cloud Canvas Configuration Nodes (p. 200)

• Cognito (Player Identity) Nodes (p. 203)

• DynamoDB (Database) Nodes (p. 204)

• Lambda (Cloud Functions) Node (p. 210)

• S3 (Storage) Nodes (p. 210)

• SNS (Notification Service) Nodes (p. 212)

• SQS (Message Queuing Service) Nodes (p. 214)

• Static Data (PROTOTYPE) Nodes (p. 215)

For general information on how to use flow graph nodes, see Flow Graph System.

Cloud Canvas Configuration Nodes

You can use these flow graph nodes to configure Cloud Canvas settings.

Topics

Version 1.8
200

http://docs.aws.amazon.com/lumberyard/latest/userguide/fg-editor-intro.html

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

• ApplyConfiguration node (p. 201)

• SetConfigurationVariable node (p. 201)

• ConfigureProxy node (p. 201)

• GetConfigurationVariableValue node (p. 202)

• SetDefaultRegion node (p. 202)

ApplyConfiguration node

Applies AWS configuration to all managed clients.

Inputs

Port Type Description

Apply Any Applies the current AWS configuration to all managed clients

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value of the port is
the error message

SetConfigurationVariable node

Sets a configuration parameter value.

Inputs

Port Type Description

Configure Any Sets the parameter value

Name String Name of the parameter to set

Value String Value to which the parameter will be set; may
contain $param-name$ substrings

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

ConfigureProxy node

Sets the proxy configuration used by all AWS clients.

Version 1.8
201

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Inputs

Port Type Description

Configure Any Sets the proxy configuration

Host String Proxy host

Port Integer Proxy port

UserName String Proxy user name

Password String Proxy password

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

GetConfigurationVariableValue node

Inserts configuration value parameters into a string.

Inputs

Port Type Description

Expand Any Expands parameter references

Value String Value containing $param-name$ substrings

Outputs

Port Type Description

Success Any Activated upon a successful
operation

Error String Activated upon an error being
detected; the value of the port is
the error message

Value String Value with $param-name$
substring replaced by parameter
values

SetDefaultRegion node

Sets (overrides) the region for all AWS clients in the current project.

Version 1.8
202

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Inputs

Port Type Description

Activate Any Sets the region for all AWS clients in the current
project

Region String The region name to set as the default region for all
AWS clients

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Choose Apply if you want to apply the configuration change to all AWS clients immediately. If Apply is set
to false, you must add an ApplyConfiguration (p. 201) flow node to activate the changes.

Cognito (Player Identity) Nodes

Use Amazon Cognito to configure player identity with these flow graph nodes.

Topics

• ConfigureAnonymousPlayer node (p. 203)

• ConfigureAuthenticatedPlayer node (p. 204)

ConfigureAnonymousPlayer node

Creates an anonymous identity on the device in your AWS account.

Inputs

Port Type Description

Configure Any Configure your game to use Amazon Cognito for anonymous
players

AWSAccountNumber String Your AWS account number. This is needed to access Amazon
Cognito.

IdentityPoolID String The unique ID of your Amazon Cognito identity pool. To create an
identity pool ID, sign in to the AWS Management Console and use
the Amazon Cognito console at https://console.aws.amazon.com/
cognito/.

CachingFileLocationOverrideString If specified, causes the Amazon Cognito ID to be cached to the path
specified instead of to <HOME_DIR>/.aws/.identities.

Version 1.8
203

https://console.aws.amazon.com/cognito/
https://console.aws.amazon.com/cognito/

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value of the port is the
error message

CognitoIdentityID String The unique ID of the user

The first time the player runs the game and this node is triggered, an anonymous ID is generated for the
player. This ID is persisted locally, and future runs of the game use the same identity.

ConfigureAuthenticatedPlayer node

Creates an authenticated identity on the device in your AWS account.

Inputs

Port Type Description

Configure Any Configure your game to use Amazon Cognito with
the values specified.

AWSAccountNumber String Your AWS account number. This is needed for
configuring Amazon Cognito.

IdentityPoolID String The unique ID of your Amazon Cognito identity
pool. To edit your identity pool ID, open the AWS
Management Console and choose Cognito.

ProviderName String Specifies the provider that authenticates the user

ProviderToken String Provider token with which to authenticate the user

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

CognitoIdentityID String The unique ID of the user

The first time the player runs the game and this node is triggered, an authenticated ID is generated for the
player. The same ID is returned any time the user logs in with the same account, even on a second device.

DynamoDB (Database) Nodes

You can use these flow graph nodes to connect your game to Amazon DynamoDB.

Topics

• AtomicAdd node (p. 205)

Version 1.8
204

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

• DeleteItem node (p. 205)

• GetItem node (p. 206)

• PutItem node (p. 206)

• Query node (p. 207)

• ScanTable node (p. 208)

• UpdateItem node (p. 208)

• GetStringSet node (p. 209)

AtomicAdd node

Add a number to an attribute in DynamoDB and return the number.

Inputs

Port Type Description

Add Any Writes the val specified in the Value port to
DynamoDB

TableName String The name of the DynamoDB table to which to write

TableKeyName String The key name used in the table

Key String Specifies the key to which to write

Attribute String Specfies the attribute to which to write

Value Integer Specifes the value to write

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

NewValue String The value of the attribute after the addition.

This is an atomic operation. You do not need to create the attribute before you use it.

DeleteItem node

Deletes a record in DynamoDB.

Inputs

Port Type Description

DeleteItem Any Deletes the specified item from DynamoDB.

TableName String The name of the DynamoDB table from which to delete

TableKeyNameString The key name used in the table

Version 1.8
205

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Port Type Description

KeyValue String Specifies the key to delete

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value of the port is the error message

DeletedItemsAny Activated when matches were found to delete

NoResults Any No matching results were found

GetItem node

Gets values from DynamoDB.

Inputs

Port Type Description

GetItem Any Retrieves the item specified from DynamoDB

TableName String The name of the DynamoDB table from which to
read

TableKeyName String The key name used in the table

KeyValue String Specifies the key to read

AttributeToReturn String Specfies the attribute to read

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

DataOut String String data that was read from DynamoDB

NumberOut String Number data that was read from DynamoDB

BoolOut String Boolean value that was read from DynamoDB

NoResults Any No matching results were found for the table, key,
and attribute specified

PutItem node

Writes values to DynamoDB.

Version 1.8
206

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Inputs

Port Type Description

PutItem Any Writes the item specified to DynamoDB

TableName String The name of the DynamoDB table to which to write

TableKeyName String The key name used in the table

KeyValue String Specifies the key to write

AttributeToWrite String Specfies the attribute to write

DataIn String The data to write

DataType String The data type that the data will be written as

KeyMustNotExist Boolean When true, specifies that the key must not already
exist; the default is true. Setting this to false allows
you to overwrite an existing key in the table,
including all of its existing attributes, and replace
them with the new key and attribute values.

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

KeyAlreadyExists Any The key already exists; no change was made

Query node

Queries values in DynamoDB.

Inputs

Port Type Description

Query Any Queries table data in DynamoDB

TableName String The name of the DynamoDB table to query

TableKeyName String The name of the table key to query

KeyValue String The value of the key to query

AttributeToCheck String The attribute to query

AttributeComparisonType String The comparison type to make against the attribute; the
default is EQUALS. Other possible values are GREATER_THAN,
GREATER_THAN_OR_EQUALS, LESS_THAN, LESS_THAN_OR_EQUALS.

AttributeComparisonValue String The value to compare against the attribute

Version 1.8
207

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Port Type Description

AttributeComparisonValueTypeString The data type of AttributeComparisonValue (string, bool, or
number); the default is string

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

MatchFound Any A match was found

NoMatch Any No match was found

ScanTable node

Scans for entries which pass a comparison test in DynamoDB.

Inputs

Port Type Description

Scan Any Scans for matches in DynamoDB table data using the specified
attributes

TableName String The name of the DynamoDB table to scan

Attribute String The attribute to query for

AttributeComparisonType String The comparison type to make against the attribute; this defaults to
EQUALS.

AttributeComparisonValue String The value to compare against the attribute

AttributeComparisonValueTypeString The data type of AttributeComparisonValue (string, bool, or
number); the default is string

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value of the port is the error message

MatchesFoundAny The number of matches found on a successful scan

UpdateItem node

Updates attribute values of an existing item in DynamoDB.

Version 1.8
208

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Inputs

Port Type Description

UpdateItem Any Updates an item in DynamoDB

TableName String The name of the DynamoDB table to use

TableKeyName String The name of the key in the table

KeyValue String The value of the key to write

AttributeToWrite String The attribute to write to

DataIn String The data to write

DataType String The data type to write the data as

KeyMustExist Boolean True if the key specified must already exist in the
table; the default is true.

AttributeMustExist Boolean True if the attribute must exist for the key specified;
the default is true

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value of the port is the error message

ConditionsFailedAny Key or attribute not found (either the KeyMustExist or AttributeMustExist condition
failed)

GetStringSet node

Retrieves the members of a string set.

Inputs

Port Type Description

GetItem Any Reads data from DynamoDB

TableName String The name of the DynamoDB table to use

TableKeyName String The name of the key in the table

KeyValue String The value of the key to write

AttributeToWrite String The attribute to write to

Outputs

Port Type Description

Success Any Activated upon a successful operation

Version 1.8
209

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Port Type Description

Error String Activated upon an error being detected; the value
of the port is the error message

DataOut String The data read from DynamoDB. The DataOut port
fires once for each member of the set.

The success port indicates that all members of the set have been output.

Lambda (Cloud Functions) Node

You can use this flow graph node to invoke AWS Lambda functions.

Invoke node

Inputs

Port Type Description

Invoke Any Invokes a Lambda function, optionally providing JSON data as arguments through the
Args port. For more information, see AWS Lambda Invoke Request Syntax.

FunctionNameString The name of the Lambda function to call

Args String The input data that will be sent to the Lambda function call as arguments in JSON
format. For more information, see AWS Lambda Invoke Request Syntax.

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Result String The data that was output by the Lambda function if
no error occured

S3 (Storage) Nodes

You can use these flow graph nodes to download and upload files from the Amazon Simple Storage
Service (Amazon S3), and to generate a public URL that points to a specific location in Amazon S3.

Topics

• DownloadFile node (p. 210)

• UploadFile node (p. 211)

• GeneratePublicUrl node (p. 212)

DownloadFile node

Downloads a file from Amazon S3.

Version 1.8
210

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Inputs

Port Type Description

DownloadFile Any Reads file data from an Amazon S3 bucket

BucketName String The name of the Amazon S3 bucket to use

KeyName String The name of the file to download from Amazon S3

FileName String The filename to use for the downloaded object

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

UploadFile node

Uploads a file to Amazon S3.

Inputs

Port Type Description

UploadFile Any Uploads a file to an Amazon S3 bucket

BucketName String The name of the Amazon S3 bucket to use

KeyName String What to name the uploaded object on Amazon S3.
If this value is not updated on subsequent uses, the
existing Amazon S3 object is overwritten.

ContentType String The mime-content type to use for the uploaded
object (for example, text/html, video/mpeg,
video/avi, or application/zip). The type is
stored in the Amazon S3 record. You can use this
type to help identify or retrieve a specific type of
data later. The default is application/octet-
stream.

FileName String The name of the file to upload

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Version 1.8
211

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

GeneratePublicUrl node

Generates a presigned URL that points to an Amazon S3 location that you specify.

Inputs

Port Type Description

PresignUrl Any Generates a presigned URL for the Amazon S3
location specified

BucketName String The name of the Amazon S3 bucket to use

KeyName String What to name the uploaded object on Amazon S3.
If this value is not updated on subsequent uses, the
existing Amazon S3 object is overwritten.

Http Request Method String The HTTP method against which to presign
(DELETE, GET, POST, or PUT)

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Url String The signed URL

SNS (Notification Service) Nodes

You can use these flow graph nodes to process Amazon Simple Notification Service (Amazon SNS)
messages.

Topics

• ParseMessage node (p. 212)

• Notify node (p. 213)

• CheckArnSubscribed node (p. 213)

• SubscribeToTopic node (p. 214)

ParseMessage node

Inputs

Port Type Description

Parse Any Extract the subject and body text in JSON format
from an Amazon SNS message

Message String The JSON message to deserialize.

Version 1.8
212

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Body String The message body

Subject String The message subject

Notify node

Publishes messages to an Amazon SNS topic.

Inputs

Port Type Description

Notify Any Sends a notification to an Amazon SNS topic

Message String The message to send

Subject String The subject of the message

TopicARN String The Amazon Resource Name for your Amazon
SNS topic

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

CheckArnSubscribed node

Checks if an ARN is subscribed to an Amazon SNS topic.

Inputs

Port Type Description

Check Any Checks if an ARN is subscribed to an Amazon SNS
topic

TopicARN String The Amazon SNS topic ARN to check

Endpoint String The endpoint to check for subscription to the
specified topic. The endpoint can be an email
address, an Amazon SQS queue, or any other
endpoint type supported by Amazon SNS.

Version 1.8
213

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value of the port is the error message

True Any The ARN is subscribed to the Amazon SNS topic

False Any The ARN is not subscribed to the Amazon SNS topic

SubscribeToTopic node

Subscribes to an Amazon SNS topic.

Inputs

Port Type Description

Subscribe Any Subscribes to a topic to receive messages
published to that topic. For more information, see
Subscribe to a Topic.

Protocol String The protocol of the endpoint to which to subscribe

TopicARN String The ARN of the Amazon SNS topic to which to
subscribe

Endpoint String The address of the endpoint to subscribe (for
example, an email address). For information on
sending to HTTP or HTTPS, see Sending Amazon
SNS Messages to HTTP/HTTPS Endpoints.

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

SubscriptionArn String The ARN of the created subscription

For more information on Amazon SNS, see the Amazon Simple Notification Service Developer Guide.

SQS (Message Queuing Service) Nodes

You can use these flow graph nodes to start polling AWS queues and to push messages to AWS queues.

Topics

• PollAndNotify node (p. 215)

• Push node (p. 215)

Version 1.8
214

http://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html
http://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.html
http://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.html
http://docs.aws.amazon.com/sns/latest/dg/

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

PollAndNotify node

Inputs

Port Type Description

Start Any Start polling an AWS queue

QueueName String The name of an AWS queue that has already been
created

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

OnMessageReceived String The most recent message on the stack

QueueArn String The ARN (Amazon Resource Name) of the queue

Push node

Pushes a message to an AWS queue

Inputs

Port Type Description

Push Any Pushes a message to an AWS queue

QueueName String The name of an AWS queue that has already been
created

Message String The message to send

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Static Data (PROTOTYPE) Nodes
Static Data is a Lumberyard system for managing game data that changes less frequently through
monitored Amazon S3 buckets. You can use these flow graph nodes to update or query your buckets at will
and/or monitor them at regular intervals for changes.

Topics

Version 1.8
215

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

• Add Monitored Bucket node (p. 216)

• Get Static Data node (p. 216)

• Load Static Data node (p. 217)

• Remove Monitored Bucket node (p. 217)

• Request Bucket node (p. 218)

• Set Update Frequency node (p. 218)

Add Monitored Bucket node

Adds an Amazon S3 bucket to monitor.

Inputs

Port Type Description

AddBucket Void Adds a bucket to watch for updates

BucketName String The name of the Amazon S3 bucket to watch

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Finished String The bucket was added

Get Static Data node

Retrieves a field from a static data definition.

Inputs

Port Type Description

Get Void Retrieves a value from static data

StaticDataType String The type of the static data to retrieve

StaticDataId String The identifier for the static data definition in the
table

StaticDataField String The field name of the data to retrieve

ActivateOnUpdate Void Fire the node again the next time an update of the
data takes place

Outputs

Port Type Description

Success Any Activated upon a successful operation

Version 1.8
216

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Port Type Description

Error String Activated upon an error being detected; the value
of the port is the error message

StringOut String The output of a string field

NumberOut Integer The output of a numeric field

BoolOut Boolean The output of a Boolean

FloatOut Integer The output of a floating point numeric field

Load Static Data node

Attempts to load static data of the type specified.

Inputs

Port Type Description

Load Any Load a type of static data

StaticDataType String The type of static data to load

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Finished String Finished attempting to load

Remove Monitored Bucket node

Removes a bucket name from the list of monitored buckets.

Inputs

Port Type Description

Remove Any Removes a bucket from the list of monitored
buckets

BucketName String The name of the bucket to remove

Outputs

Port Type Description

Success Any Activated upon a successful operation

Version 1.8
217

Lumberyard Developer Guide
Cloud Canvas Flow Graph Node Reference

Port Type Description

Error String Activated upon an error being detected; the value
of the port is the error message

Finished String Finished removing the bucket

Request Bucket node

Requests an update of a specific bucket, or of all monitored buckets.

Inputs

Port Type Description

RequestBucket Any Requests an update of a specific bucket or of all
monitored buckets

BucketName String The name of the bucket for which to request an
update. To request updates for all buckets, leave
this value blank.

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Finished String Finished sending the request

Set Update Frequency node

Sets or clears a recurring timer to poll monitored buckets.

Inputs

Port Type Description

SetTimer Void Sets a recurring timer to the value specified in
TimerValue

TimerValue Integer The time interval at which to poll. Possible values
are from 0 to 100. A value of 0 clears the timer; 0 is
the default.

Outputs

Port Type Description

Success Any Activated upon a successful operation

Error String Activated upon an error being detected; the value
of the port is the error message

Version 1.8
218

Lumberyard Developer Guide
Cloud Canvas Software Engineering Guide

Port Type Description

Set String The timer has been set

Cloud Canvas Software Engineering Guide
This section provides in-depth information for Cloud Canvas Resource Manager and the cloud gem
framework.

Topics

• Resource Manager in Depth (p. 219)

• Cloud Gems Framework (p. 254)

Resource Manager in Depth
The effective use of Cloud Canvas Resource Manager is key to the success of any cloud-connected game
project. This section provides in-depth information for software engineers.

For information on permissions in Resource Manager, see Understanding the Resource Manager Security
System (p. 292).

Topics

• Understanding Resource Status Descriptions (p. 219)

• Editing Resource Manager Files (p. 220)

• Working with JSON Files (p. 221)

• Viewing the Cloud Canvas Progress Log (p. 222)

• Working with Resource Groups (p. 222)

• Resource Definitions (p. 224)

• Importing Resource Definitions into Cloud Canvas (p. 244)

• Resource Deployments (p. 247)

• Resource Mappings (p. 249)

• Resource Manager Resource Group Parameters (p. 250)

• Custom Resources (p. 250)

Understanding Resource Status Descriptions

The status of AWS resources is displayed in the Cloud Canvas Resource Manager in places such as the
progress log. The following list provides descriptions of common resource status codes. To see the reason
for the current status, you can pause your mouse on the status text in the resource manager.

Create pending – The resource is defined in the local configuration but doesn’t exist in AWS.

Create in progress – The resource is in the process of being created in AWS.

Create complete – The resource has been successfully created in AWS.

Create failed – The resource could not be created in AWS.

Update in progress – The resource is in the process of being updated in AWS.

Version 1.8
219

Lumberyard Developer Guide
Resource Manager in Depth

Update complete – The resource was successfully updated in AWS.

Update failed – The resource could not be updated in AWS.

Delete pending – The resource is not defined in the local configuration but it does exist in AWS.

Delete in progress – The resource is in the process of being deleted in AWS.

Delete complete – The resource has been deleted in AWS.

Rollback in progress – An operation has failed and AWS CloudFormation is attempting to restore the
resource to its previous state.

Rollback failed – A rollback has failed. The AWS resources in a CloudFormation stack that have this
status are in an inconsistent state. You may have to delete and recreate the stack.

Editing Resource Manager Files

The navigation pane in the Cloud Canvas Resource Manager dialog contains a number of nodes that
represent text files that are stored on disk. The resource-template.json (p. 221) node is one example.

The child nodes of template files each represent one section of the parent node template file. These child
nodes can help you locate and edit the resource definition sections of the parent node template file.

Using the Internal Editor

When you select a text file node in the navigation pane, the file content and text editing options are shown
in the detail pane of Cloud Canvas Resource Manager. You can use the detail pane to view and edit the
contents of the file. Use the Edit, Search menu item to search for text, and the Previous and Next buttons
to navigate from one match to the next. After you have modified a file, you can save it by clicking Save in
the toolbar or by choosing File, Save.

Note
The changes that you make in the template file child nodes are always saved to the parent node
template file.

Using an External Editor

You can use an external script editor instead of the Cloud Canvas Resource Manager to edit files. You
can specify which editor to use in Lumberyard Editor.

To specify an external script editor

• In Lumberyard Editor, click File, Global Preferences, Editor Settings, General Settings, Files,
External Editors, Scripts Editor.

To open a file in an external script editor

• Right-click the file in the navigation pane and choose Open in script editor:

To copy the path of the template file to the clipboard, right-click the file in the navigation pane and choose
Copy path to clipboard.

Notes

Note the following:

• Opening a child node of a template file in a script editor opens the full (parent) file for editing.

Version 1.8
220

Lumberyard Developer Guide
Resource Manager in Depth

• If your project files are under source control, Lumberyard prompts you to check out files before they can
be edited. The source control icon on the toolbar dynamically displays the status of a selected file in
source control.

• If the contents of the file change on disk while there are unsaved changes in the editor, Lumberyard
prompts you to load the updated contents from disk and replace the modified contents in the editor.

Working with JSON Files

Some of the nodes in the Cloud Canvas Resource Manager navigation pane represent JSON template
or settings files for your project. The content of these files is described in detail in Resource Definitions.
When you select one of these nodes in the navigation pane, the detail pane shows the contents of that file.
You can edit the file directly in the resource manager or use an external editor. For more information, see
Editing Resource Manager Files (p. 220).

In the navigation pane, some template file nodes have child nodes. Each of the child nodes represents one
section of its parent node template file. These child nodes make it easier to find and edit the corresponding
sections of the parent node template file. Any changes that you make in a child node are always saved in
the corresponding section of the parent template file.

The following template is found in each resource group under the Resource Groups node:

resource-template.json

Each resource group has a resource-template.json node and a lambda-function-code child node.
The resource-template.json file defines the group’s resources. For more information, see Resource
Definitions. In the navigation pane, each of the nodes under resource-template.json represents one of the
resources defined in a section of the resource-template.json file.

The following templates are found under the Administration (advanced) node:

project-settings.json

The project-settings.json file contains project configuration data. For more information, see Resource
Definitions.

project-template.json

The project-template.json file defines the resources used by Cloud Canvas Resource Manager. For
more information, see Resource Definitions.

deployment-template.json

The deployment-template.json file defines the AWS CloudFormation stack resources for each of the
projects resource groups. For more information, see Resource Definitions.

deployment-access-template.json

The deployment-access-template.json file defines the AWS CloudFormation stack resources that control
access to each deployment’s resources. For more information, see Resource Definitions and Access
Control and Player Identity.

user-settings.json

The user-settings.json file contains user specific settings. For more information, see Resource
Definitions.

Version 1.8
221

http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-resource-template
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-resource-template
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-project-settings
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-project-settings
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-project-template
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-deployment-template
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-deployment-access-template
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-access-control-and-player-identity.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-access-control-and-player-identity.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-user-settings
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-user-settings

Lumberyard Developer Guide
Resource Manager in Depth

Viewing the Cloud Canvas Progress Log

The Cloud Canvas Resource Manager Progress log shows the progress of AWS CloudFormation stack
updates. During the update, the progress log expands from the bottom of the detail pane to display the
progress of the update. You can adjust the amount of space the log uses by dragging the divider line
between the panes.

To hide the progress log, drag the divider downward.

Working with Resource Groups

When you select Resource Groups in the Cloud Canvas Resource Manager Cloud Canvas
configuration navigation pane, the detail pane shows the status of the resource groups that belong to the
current deployment of your project. Note the following:

• If you select Resource Groups and no AWS profile is configured, Lumberyard prompts you to provide
one. A profile is required for Lumberyard to display the status of your project’s resources. For more
information, see Managing Cloud Canvas Profiles (p. 188).

• If you select Resource Groups and deployments exist but no deployment is active, Lumberyard prompts
you to select one. For more information, see Making a Cloud Canvas Deployment Active (p. 288).

Resource Groups

The Resource Groups detail pane lists the resource groups in your current deployment:

The Resource Groups detail pane has the following options:

Upload all resources

The Upload all resources option starts the process of modifying your resources in AWS as needed
to match all of the definitions in all of your local resource groups. As the update proceeds, resource
groups with the status of Create pending will change to Create complete. The update might take a
few minutes.

Note the following:

• If you have not yet initialized your Lumberyard project with an AWS account for the resources that
you want to upload, Lumberyard prompts you to do so. To prepare your Lumberyard project for use
with AWS, you must be the administrator of the AWS account that you use. For more information,
see Initializing Cloud Canvas Resource Manager (p. 285).

• After you have initialized the project, Lumberyard prompts you to create a deployment for it. A
deployment creates all the AWS resources specified by your resource group definition. For more
information, see Create Deployment (p. 287).

For information about the Progress log, see Viewing the Cloud Canvas Progress Log (p. 222).

Add resource group

Use the Add resource group option to add a new resource group definition to your Lumberyard
project. A resource group definition represents a single game feature like a high score system. The
definition specifies the AWS resources that the feature will use.

Clicking Add resource group opens the New resource group dialog:

Provide the following information:

Version 1.8
222

Lumberyard Developer Guide
Resource Manager in Depth

• Resource group name – The name of the resource group. The name must be alphanumeric.
Lumberyard uses this name to create an AWS CloudFormation stack resource definition in the
deployment-template.json file.

• Example resources – (Optional) Choose to include example resources in the resource group.
You can study the examples to see how resources are defined in a resource group, or modify the
examples to turn them into a feature for your project.

Resource group status

The Resource group status table shows the status of the AWS CloudFormation stack of each
resource group in the active deployment. Resource group shows the resource group name. For
descriptions of the remaining fields in this table, see Stack Resources Table (p. 286) in the Working
with Project Stacks (p. 286) section.

Individual Resource Group

Each child node of Resource Groups represents a resource group in your Lumberyard project. When you
select one of these resource groups, the detail pane shows the status of the resource group.

Note the following:

• If you select a resource group and no AWS profile is configured, Lumberyard prompts you to provide
one. A profile is required for Lumberyard to display the status of your project’s resources. For more
information, see Managing Cloud Canvas Profiles (p. 188).

• If you select a resource group and deployments exist but no deployment is active, Lumberyard prompts
you to select one. For more information, see Making a Cloud Canvas Deployment Active (p. 288).

Adding Resources in a New Resource Group

When you create a resource group, the group does not yet have any AWS resource definitions. Use the
Add resource option to add one:

The definitions are created locally and only describe the AWS resources that you want to use. The
resources themselves are not created in AWS until you click Create resources:

Individual Resource Group Status

You can use a resource group's status pane to manage the resource group. The following image shows the
status details for the DontDieAWS resource group:

The status pane for a resource group has the following options:

Upload resources

After you have created one or more resource definitions, you click Upload resources to start the
process of creating the resources in AWS specified by the local resource definitions that you created
with the Add resource option.

As the update proceeds, the resources with the status of Create pending will change to Create
complete.

Note the following:

• If you have not yet initialized your Lumberyard project with an AWS account for the resources that
you want to upload, Lumberyard prompts you to do so. To prepare your Lumberyard project for use
with AWS, you must be the administrator of the AWS account that you use. For more information,
see Initializing Cloud Canvas Resource Manager (p. 285).

Version 1.8
223

http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-deployment-template

Lumberyard Developer Guide
Resource Manager in Depth

• If you do not yet have a deployment for your project, Lumberyard prompts you to create one. A
deployment creates all the AWS resources specified by your resource group definition. For more
information, see Create Deployment (p. 287).

Remove resource group

Click Remove resource group to remove the selected resource group from your local configuration.

To delete the actual resources from AWS, use the Delete resources option as described in the section
that follows.

Note
The remove resource operation does not remove the resource group's configuration data
from the local disk. As long as that data exists on disk, you can restore the resource group by
adding a new resource group with the same name.

Delete resources

The Delete resources option appears after you have removed a resource group from your local
configuration (for example, by using the Remove resource group option) when the resources defined
by the resource group still exist in AWS.

When you click Delete resources, Lumberyard prompts you to confirm the deletion of resources in
AWS for the deployment that is currently active in Lumberyard Editor:

After you click Yes, the deletion operation may take several minutes to complete.

Stack resources

The Stack resources table shows the status of each of the AWS resources that you defined for the
resource group. For descriptions of the fields in this table, see Stack Resources Table (p. 286) in the
Working with Project Stacks (p. 286) section.

resource-template.json

For information about this node, see Working with JSON Files (p. 221).

lambda-function-code

The lambda-function-code node and its child nodes correspond to the lambda-function-code directory
in your project. The lambda-function-code directory contains the code that implements the AWS Lambda
function resources defined by your resource group. For more information, see lambda-function-code
Directory. Also see related information for the project-code (p. 224) node.

project-code

This node is located at the bottom of the Administration (advanced) section in the resource manager
navigation tree. The project-code directory contains the code that implements the AWS Lambda function
resources that Cloud Canvas Resource Manager uses. For more information, see Resource Definitions.
The project-code node contains file and directory child nodes. Click a file node to see or edit its contents in
the detail pane. For more information, see Editing Resource Manager Files (p. 220).

Resource Definitions

Resource definitions are specifications in the form of AWS CloudFormation template files that determine
the resources (for example, DynamoDB databases, Lambda functions, and access control information)
that will be created in AWS for the game. Game code and flow graphs use AWS resources and expect

Version 1.8
224

http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-lambda-function-code-subdirectory
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-lambda-function-code-subdirectory
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-project-code-subdirectory

Lumberyard Developer Guide
Resource Manager in Depth

those resources to exist and to be configured in a specific way. The resource definitions determine this
architecture and configuration.

Resource Definition Location

A description of the resources required by the game is stored in files under the {root}\{game}\AWS
directory, where {root} is the Lumberyard installation \dev subdirectory and {game} is the directory
identified by the sys_game_folder property in the {root}\bootstrap.cfg file. For example, if your game
is the SamplesProject, your resource definition path might be C:\lumberyard\dev\SamplesProject\AWS.
These files should be checked into the project's source control system along with your other game code
and data.

The default {game}\AWS directory contents are created by the lmbr_aws create-project-stack (p. 302)
command.

In addition, some user-specific configuration data is kept in the {root}\Cache\{game}\pc\user\AWS
directory. The contents of this directory should not be checked into the project's source control system.

The following shows the contents of these AWS directories.

{root}\{game}\AWS\
 project-settings.json
 project-template.json
 deployment-template.json
 deployment-access-template.json
 project-code\
 (Lambda function Code)
 resource-groups\
 {resource-group}\
 resource-template.json
 lambda-function-code\
 (Lambda function Code)

{root}\Cache\{game}\pc\user\AWS\
 user-settings.json

Each of these .json files is described in the following sections.

project-settings.json

The project-settings.json file contains project configuration data.

Note
As of Lumberyard 1.8, the project-settings.json file is stored in the project's configuration
bucket. The bucket is defined by the project's AWS CloudFormation stack template.

The structure of the project-settings.json file is as follows:

{
 "{key}": "{value}",
 "deployment": {
 "{deployment}": {
 "{key}": "{value}",
 "resource-group": {
 "{resource-group}": {
 "{key}": "{value}"
 }
 }
 }
 }

Version 1.8
225

Lumberyard Developer Guide
Resource Manager in Depth

}

The {key} and {value} pairs represent individual settings. The pairs at the root apply to the project. The
pairs under {deployment} apply to that deployment. The pairs under {resource-group} apply to that
resource group. Either or both of {deployment} and {resource-group} can be *, to indicate the settings
they contain apply to all deployments or resource groups, respectively. Settings under a named entry take
precedence over settings under a * entry.

An example project-settings.json settings file follows.

{
 "ProjectStackId": "arn:aws:cloudformation:us-west-2:...",
 "DefaultDeployment": "Development",
 "ReleaseDeployment": "Release",
 "deployment": {
 "*": {
 "resource-group": {
 "HelloWorld": {
 "parameter": {
 "WriteCapacityUnits": 1,
 "ReadCapacityUnits": 1,
 "Greeting": "Hi"
 }
 }
 }
 },
 "Development": {
 "DeploymentStackId": "arn:aws:cloudformation:us-west-2:..."
 "DeploymentAccessStackId": "arn:aws:cloudformation:us-west-2:..."
 "resource-group": {
 "HelloWorld": {
 "parameter": {
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 5
 }
 }
 }
 }
 }
}

ProjectStackId Property

The ProjectStackId property identifies the AWS CloudFormation stack for the project. This stack contains
the resources used by Cloud Canvas to manage your Lumberyard project.

Note
As of Lumberyard 1.8, the ProjectStackId property is stored in the dev\<project name>\local-
project-settings.json file.

The ProjectStackId property is set by the create-project-stack (p. 302) command. If for some reason
you want to associate the project with an existing project stack, you can use the AWS Management
Console to look up the stack's ARN and paste it into the project-settings.json file (navigate to AWS
CloudFormation, select the stack, select Overview, and then copy the value of the Stack Id property).

DefaultDeployment Property

The DefaultDeployment property identifies the deployment that is to be used by default when working in
Lumberyard Editor. The DefaultDeployment property in the user-settings.json (p. 227) file overrides
this setting. The project and user defaults can be set using the lmbr_aws default-deployment (p. 303)
command. The DefaultDeployment setting is also used by the lmbr_aws update-mappings (p. 312)
command.

Version 1.8
226

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html

Lumberyard Developer Guide
Resource Manager in Depth

ReleaseDeployment Property

The ReleaseDeployment property identifies the deployment that is to be used in release builds of the game.
The ReleaseDeployment setting is used by the lmbr_aws update-mappings (p. 312) command.

DeploymentStackId Property

The DeploymentStackId property identifies the AWS CloudFormation stack for a deployment. The project's
resource groups are children of these stacks. For more information, see Resource Deployments (p. 247).

The DeploymentStackId property is set by the create-deployment (p. 302) command. If for some reason
you want to associate the deployment with an existing deployment, you can use the AWS Management
Console to look up the stack's ARN and paste it into the project-settings.json file (navigate to AWS
CloudFormation, select the stack, select Overview, and then copy the value of the Stack Id property).

DeploymentAccessStackId Property

The DeploymentAccessStackId property identifies the AWS CloudFormation stack for the resources that
control access to a deployment.

The DeploymentAccessStackId is set by the create-deployment (p. 302) command. If for some
reason you want to associate the deployment with an existing deployment stack, you can use the AWS
Management Console to look up the stack's ARN and paste it into the project-settings.json file
(navigate to AWS CloudFormation, select the stack, select Overview, and then copy the value of the Stack
Id property).

parameter Property

The parameter property provides the values for resource template parameters. The property must be in the
following format.

{
 ...
 "parameter": {
 "{template-parameter-name-1}": {template-parameter-value-1},
 ...
 "{template-parameter-name-n}": {template-parameter-value-n}
 }
 ...
}

user-settings.json

The user-settings.json file contains user-specific configuration data.

File Location

The user-settings.json file is found at {root}\Cache\{game}\pc\user\AWS\user-settings.json. It is
not in the {root}\{game}\AWS directory along with the other files described in this section because it should
not be checked into the project's source control system.

An example user-settings.json file follows.

{
 "DefaultDeployment": "Test",
 "Mappings": {
 "HelloWorld.SayHello": {
 "ResourceType": "AWS::Lambda::Function",
 "PhysicalResourceId": "MyGame-Test-xxxxxxxxxxxxx-HelloWorld-yyyyyyyyyyyy-
SayHello-zzzzzzzzzzzz"
 }

Version 1.8
227

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html

Lumberyard Developer Guide
Resource Manager in Depth

 }
}

DefaultDeployment Property

The DefaultDeployment property identifies the deployment that is to be used by default when working
in Lumberyard Editor. The DefaultDeployment property in the user-settings.json file overrides the
property from the project-settings.json (p. 225) file. The project and user defaults can be set using
the lmbr_aws default-deployment (p. 303) command.

Mappings Property

The Mappings property specifies the mapping of friendly names used in Lumberyard Editor to
actual resource names. For example, the DailyGiftTable DynamoDB table would get mapped to
a name like SamplesProject-DontDieDeployment-78AIXR0N0O4N-DontDieAWS-1I1ZC6YO7KU7F-
DailyGiftTable-1G4G33K16D8ZS.

This property is updated automatically when the default deployment changes or when the default
deployment is updated. It can be refreshed manually by using the lmbr_aws update-mappings (p. 312)
command.

project-template.json

The project-template.json file is an AWS CloudFormation template that defines resources that support
the Cloud Canvas resource management system.

An example project-template.json file follows.

{
 "AWSTemplateFormatVersion": "2010-09-09",

 "Metadata": {
 "CloudCanvas": {
 "Id": "$Revision: #6 $"
 }
 },

 "Parameters": {
 "ConfigurationKey": {
 "Type": "String",
 "Description": "Location in the configuration bucket of configuration data."
 }
 },

 "Resources": {

 "Configuration": {
 "Type": "AWS::S3::Bucket",
 "DeletionPolicy": "Retain",
 "Properties": {
 "VersioningConfiguration": {
 "Status": "Enabled"
 },
 "LifecycleConfiguration": {
 "Rules": [
 {
 "Id": "DeleteOldVersions",
 "NoncurrentVersionExpirationInDays": "2",
 "Status": "Enabled"
 },
 {
 "Id": "DeleteUploads",

Version 1.8
228

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

Lumberyard Developer Guide
Resource Manager in Depth

 "Prefix": "uploads",
 "ExpirationInDays": 2,
 "Status": "Enabled"
 }
]
 }
 }
 },

 "ProjectPlayerAccessTokenExchangeHandlerRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 }
 }
]
 },
 "Policies": [
 {
 "PolicyName": "PlayerAccessTokenExchange",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteLogs",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Sid": "GetAuthSettings",
 "Action": [
 "s3:GetObject",
 "s3:HeadObject"
],
 "Effect": "Allow",
 "Resource": [
 { "Fn::Join": ["", ["arn:aws:s3:::", { "Ref":
 "Configuration" }, "/player-access/auth-settings.json"]] }
]
 },
 {
 "Sid": "DescribeStacks",
 "Action": [
 "cloudformation:DescribeStackResources",
 "cloudformation:DescribeStackResource"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 }
]
 }
 }

Version 1.8
229

Lumberyard Developer Guide
Resource Manager in Depth

]
 }
 },

 "ProjectResourceHandlerExecution": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 }
 }
]
 },
 "Policies": [
 {
 "PolicyName": "ProjectAccess",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteLogs",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Sid": "ReadAndWriteUploadedConfiguration",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": { "Fn::Join": ["", ["arn:aws:s3:::",
 { "Ref": "Configuration" }, "/upload/*"]] }
 },
 {
 "Sid": "DescribeStacksAndResources",
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribeStackResources",
 "cloudformation:DescribeStackResource",
 "cloudformation:DescribeStacks"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "ManagePlayerAndFunctionRoles",
 "Effect": "Allow",
 "Action": [
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:GetRole",
 "iam:DeleteRolePolicy",
 "iam:PutRolePolicy"

Version 1.8
230

Lumberyard Developer Guide
Resource Manager in Depth

],
 "Resource": { "Fn::Join": ["", ["arn:aws:iam::",
 {"Ref": "AWS::AccountId"}, ":role/", {"Ref": "AWS::StackName"}, "/*"]] }
 },
 {
 "Sid": "CreateUpdateCognitoIdentity",
 "Effect": "Allow",
 "Action": [
 "cognito-identity:*"
],
 "Resource": { "Fn::Join": ["", ["arn:aws:cognito-
identity:", {"Ref": "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":identitypool/
*"]] }
 },
 {
 "Sid": "ReadPlayerAccessConfiguration",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": { "Fn::Join": ["", ["arn:aws:s3:::",
 { "Ref": "Configuration" }, "/player-access/auth-settings.json"]] }
 }
]
 }
 }
]
 }
 },

 "ProjectResourceHandler": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Description": "Implements the custom resources used in this project's
 templates.",
 "Handler": "custom_resource.handler",
 "Role": { "Fn::GetAtt": ["ProjectResourceHandlerExecution", "Arn"] },

 "Runtime": "python2.7",
 "Timeout" : 90,
 "Code": {
 "S3Bucket": { "Ref": "Configuration" },
 "S3Key": { "Fn::Join": ["/", [{ "Ref": "ConfigurationKey" },
 "project-code.zip"]] }
 }
 }
 },

 "ProjectPlayerAccessTokenExchangeHandler": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Description": "Implements the token exchange for oAuth and openid used for
 player access.",
 "Handler": "auth_token_exchange.handler",
 "Role": { "Fn::GetAtt": ["ProjectPlayerAccessTokenExchangeHandlerRole",
 "Arn"] },
 "Runtime": "python2.7",
 "Code": {
 "S3Bucket": { "Ref": "Configuration" },
 "S3Key": { "Fn::Join": ["/", [{ "Ref": "ConfigurationKey" },
 "project-code.zip"]] }
 }
 }
 }

 }

Version 1.8
231

Lumberyard Developer Guide
Resource Manager in Depth

}

ConfigurationKey Parameter

The ConfigurationKey parameter identifies the location of configuration data in the configuration
bucket. The parameter value is set by Cloud Canvas when you use the template to update the AWS
CloudFormation stack.

Configuration Resource

The Configuration resource describes the Amazon S3 bucket that is used to store project configuration
data.

ProjectPlayerAccessTokenExchangeHandlerRole Resource

The ProjectPlayerAccessTokenExchangeHandlerRole resource describes the IAM role that is used to
grant permissions to the ProjectPlayerAccessTokenExchangeHandler resource.

ProjectResourceHandlerExecution Resource

The ProjectResourceHandlerExecution resource describes the IAM role that is used to grant permissions
to the ProjectResourceHandler Lambda function resource.

ProjectResourceHandler Resource

The ProjectResourceHandler resource describes the Lambda function that implements the AWS
CloudFormation custom resource handler that implements the custom resources used in the project's AWS
CloudFormation templates. The code for this Lambda function is uploaded from the {game}\AWS\project-
code directory by the lmbr_aws create-project-stack (p. 302) and update-project-stack (p. 313)
commands. For more information, see Custom Resources (p. 250).

ProjectPlayerAccessTokenExchangeHandler Resource

The ProjectPlayerAccessTokenExchangeHandler resource describes the Lambda function that
implements the token exchange process for player access. The code for this Lambda function is uploaded
from the {game}\AWS\project-code directory by the lmbr_aws create-project-stack (p. 302) and update-
project-stack (p. 313) commands. For more information, see Access Control and Player Identity in
Depth (p. 294).

deployment-template.json

The deployment-template.json file is an AWS CloudFormation Template that defines a child AWS
CloudFormation stack resource for each of the project's resource groups. As described below, each
resource group is an arbitrary grouping of the AWS resources that a game uses.

An example deployment-template.json file follows.

{
 "AWSTemplateFormatVersion": "2010-09-09",

 "Metadata": {
 "CloudCanvas": {
 "Id": "$Revision: #4 $"
 }
 },
 "Parameters" : {

 "ProjectResourceHandler": {
 "Type": "String",

Version 1.8
232

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html

Lumberyard Developer Guide
Resource Manager in Depth

 "Description": "Service token of the custom resource handler."
 },

 "ConfigurationBucket": {
 "Type": "String",
 "Description": "Bucket that contains configuration data."
 },
 "ConfigurationKey": {
 "Type": "String",
 "Description": "Location in the configuration bucket of configuration data."
 } ,
 "DeploymentName": {
 "Type": "String",
 "Description": "The name of the deployment associated with this stack."
 },
 "ProjectStackId": {
 "Type": "String",
 "Description": "The ARN of the project stack associated with this deployment."
 }

 },
 "Resources": {
 "HelloWorldConfiguration" : {
 "Type": "Custom::ResourceGroupConfiguration",
 "Properties": {
 "ServiceToken": { "Ref": "ProjectResourceHandler" },
 "ConfigurationBucket": { "Ref": "ConfigurationBucket" },
 "ConfigurationKey": { "Ref": "ConfigurationKey" },
 "ResourceGroup": "HelloWorld"
 }
 },

 "HelloWorld": {
 "Type": "AWS::Cloud Formation::Stack",
 "Properties": {
 "TemplateURL": { "Fn::GetAtt": ["HelloWorldConfiguration",
 "TemplateURL"] },
 "Parameters": {
 "ProjectResourceHandler": { "Ref": "ProjectResourceHandler" },
 "ConfigurationBucket": { "Fn::GetAtt": ["HelloWorldConfiguration",
 "ConfigurationBucket"] },
 "ConfigurationKey": { "Fn::GetAtt": ["HelloWorldConfiguration",
 "ConfigurationKey"] }
 }
 }
 }
 },
 "Outputs": {
 "StackName": {
 "Description": "The deployment stack name.",
 "Value": {"Ref": "AWS::StackName"}
 }
 }
}

Parameters

The deployment-template.json file has the following parameters. The parameter values are provided by
Cloud Canvas when it uses the template to update an AWS CloudFormation stack.

ProjectResourceHandler Parameter

The ProjectResourceHandler parameter identifies the custom resource handler Lambda function used for
the project.

Version 1.8
233

Lumberyard Developer Guide
Resource Manager in Depth

ConfigurationBucket Parameter

The ConfigurationBucket parameter identifies the configuration bucket.

ConfigurationKey Parameter

The ConfigurationKey parameter identifies the location of configuration data in the configuration bucket.

DeploymentName Parameter

The DeploymentName parameter identifies the deployment name associated with this stack.

ProjectStackId Parameter

The ProjectStackId parameter identifies project stack associated with this deployment.

Resources

The deployment-template.json file defines two resources:

HelloWorldConfiguration Resource

The HelloWorldConfiguration resource describes a ResourceGroupConfiguration (p. 252) custom
resource that is used to configure the HelloWorld resource.

The deployment-template.json file contains a similar ResourceGroupConfiguration resource for each of
the project's resource groups.

HelloWorld Resource

The HelloWorld resource describes the AWS CloudFormation stack that implements the project's
HelloWorld resource group.

The deployment-template.json file contains a similar AWS CloudFormation stack resource for each of the
project's resource groups.

Outputs

The Outputs section of the template defines values that the template generates.

deployment-access-template.json

The deployment-access-template.json file is an AWS CloudFormation Template that defines the
resources used to secure a deployment.

An example deployment-access-template.json file follows.

{
 "AWSTemplateFormatVersion": "2010-09-09",

 "Metadata": {
 "CloudCanvas": {
 "Id": "$Revision: #6 $"
 }
 },

 "Parameters": {

 "ProjectResourceHandler": {
 "Type": "String",
 "Description": "The the project resource handler lambda ARN."
 },

Version 1.8
234

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

Lumberyard Developer Guide
Resource Manager in Depth

 "ConfigurationBucket": {
 "Type": "String",
 "Description": "Bucket that contains configuration data."
 },

 "ConfigurationKey": {
 "Type": "String",
 "Description": "Key that contains the current upload location."
 },

 "ProjectPlayerAccessTokenExchangeHandler": {
 "Type": "String",
 "Description": "ARN for the lambda that the login cognito-identity pool needs
 access to."
 },

 "ProjectStack": {
 "Type": "String",
 "Description": "The name of the project stack."
 },

 "DeploymentName": {
 "Type": "String",
 "Description": "The name of the deployment."
 },

 "DeploymentStack": {
 "Type": "String",
 "Description": "The name of the deployment stack."
 },

 "DeploymentStackArn": {
 "Type": "String",
 "Description": "The ARN of the deployment stack."
 }

 },

 "Resources": {

 "OwnerPolicy": {
 "Type": "AWS::IAM::ManagedPolicy",
 "Properties": {
 "Description": "Policy that grants permissions to update a deployment
 stack, and all of it's resource group stacks.",
 "Path": { "Fn::Join": ["", ["/", { "Ref": "ProjectStack" }, "/", { "Ref":
 "DeploymentName" }, "/"]] },
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadProjectDeploymentAndResourceGroupStackState",
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribeStackResource",
 "cloudformation:DescribeStackResources",
 "cloudformation:DescribeStackEvents"
],
 "Resource": [
 { "Fn::Join": ["", ["arn:aws:cloudformation:", { "Ref":
 "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":stack/", { "Ref": "ProjectStack" },
 "/*"]] },
 { "Fn::Join": ["", ["arn:aws:cloudformation:", { "Ref":
 "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":stack/", { "Ref": "ProjectStack" },
 "-*"]] },

Version 1.8
235

Lumberyard Developer Guide
Resource Manager in Depth

 { "Fn::Join": ["", ["arn:aws:cloudformation:",
 { "Ref": "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":stack/", { "Ref":
 "DeploymentStack" }, "/*"]] },
 { "Fn::Join": ["", ["arn:aws:cloudformation:",
 { "Ref": "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":stack/", { "Ref":
 "DeploymentStack" }, "-*"]] }
]
 },
 {
 "Sid": "InvokeProjectResourceHandler",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 { "Ref": "ProjectResourceHandler" }
]
 },
 {
 "Sid": "ReadAndWriteDeploymentAndResourceGroupConfiguration",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject"
],
 "Resource": [
 { "Fn::Join": ["", ["arn:aws:s3:::", { "Ref":
 "ConfigurationBucket" }, "/upload/*/deployment/", { "Ref": "DeploymentName" }, "/*"]] }
]
 },
 {
 "Sid": "UpdateDeploymentStack",
 "Effect": "Allow",
 "Action": [
 "cloudformation:UpdateStack"
],
 "Resource": [
 { "Fn::Join": ["", ["arn:aws:cloudformation:",
 { "Ref": "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":stack/", { "Ref":
 "DeploymentStack" }, "/*"]] }
]
 },
 {
 "Sid": "CreateUpdateAndDeleteResourceGroupStacks",
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:UpdateStack",
 "cloudformation:DeleteStack"
],
 "Resource": [
 { "Fn::Join": ["", ["arn:aws:cloudformation:",
 { "Ref": "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":stack/", { "Ref":
 "DeploymentStack" }, "-*"]] }
]
 },
 {
 "Sid": "FullAccessToDeploymentAndResourceGroupResources",
 "Effect": "Allow",
 "Action": [
 "dynamodb:*",
 "s3:*",
 "sqs:*",
 "sns:*",
 "lambda:*"
],

Version 1.8
236

Lumberyard Developer Guide
Resource Manager in Depth

 "Resource": [
 { "Fn::Join": ["", ["arn:aws:dynamodb:",
 { "Ref": "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":table/", { "Ref":
 "DeploymentStack" }, "-*"]] },
 { "Fn::Join": ["", ["arn:aws:s3:::", { "Ref":
 "DeploymentStack" }, "-*"]] },
 { "Fn::Join": ["", ["arn:aws:sqs:", { "Ref":
 "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":", { "Ref": "DeploymentStack" }, "-
*"]] },
 { "Fn::Join": ["", ["arn:aws:sns:*:", { "Ref":
 "AWS::AccountId" }, ":", { "Ref": "DeploymentStack" }, "-*"]] },
 { "Fn::Join": ["", ["arn:aws:lambda:", { "Ref":
 "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":function:", { "Ref":
 "DeploymentStack" }, "-*"]] }
]
 },
 {
 "Sid": "PassDeploymentRolesToLambdaFunctions",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 { "Fn::Join": ["", ["arn:aws:iam::", {"Ref":
 "AWS::AccountId"}, ":role/", {"Ref": "ProjectStack"}, "/", {"Ref": "DeploymentName"}, "/
*"]] }
]
 },
 {
 "Sid": "CreateLambdaFunctions",
 "Effect": "Allow",
 "Action": "lambda:CreateFunction",
 "Resource": "*"
 }
]
 }
 }
 },

 "Owner": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "Path": { "Fn::Join": ["", ["/", { "Ref": "ProjectStack" }, "/", { "Ref":
 "DeploymentName" }, "/"]] },
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccountUserAssumeRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": { "AWS": {"Ref": "AWS::AccountId"} }
 }
]
 },
 "ManagedPolicyArns": [
 { "Ref": "OwnerPolicy" }
]
 }
 },

 "Player": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "Path": { "Fn::Join": ["", ["/", { "Ref": "ProjectStack" }, "/", { "Ref":
 "DeploymentName" }, "/"]] },

Version 1.8
237

Lumberyard Developer Guide
Resource Manager in Depth

 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Principal": {
 "Federated": "cognito-identity.amazonaws.com"
 }
 }
]
 }
 }
 },

 "PlayerAccess": {
 "Type": "Custom::PlayerAccess",
 "Properties": {
 "ServiceToken": { "Ref": "ProjectResourceHandler" },
 "ConfigurationBucket": { "Ref": "ConfigurationBucket" },
 "ConfigurationKey": { "Ref": "ConfigurationKey" },
 "DeploymentStack": { "Ref": "DeploymentStackArn" }
 },
 "DependsOn": ["Player"]
 },

 "PlayerLoginRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Principal": {
 "Federated": "cognito-identity.amazonaws.com"
 }
 }
]
 },
 "Policies": [
 {
 "PolicyName": "ExchangeTokenAccess",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PlayerLoginExecution",
 "Effect": "Allow",
 "Action": ["lambda:InvokeFunction"],
 "Resource": { "Ref":
 "ProjectPlayerAccessTokenExchangeHandler" }
 }
]
 }
 }
]
 }
 },

 "PlayerLoginIdentityPool": {
 "Type": "Custom::CognitoIdentityPool",
 "Properties": {
 "ServiceToken": { "Ref": "ProjectResourceHandler" },
 "AllowUnauthenticatedIdentities": "true",

Version 1.8
238

Lumberyard Developer Guide
Resource Manager in Depth

 "UseAuthSettingsObject": "false",
 "ConfigurationBucket": { "Ref": "ConfigurationBucket" },
 "ConfigurationKey": { "Ref": "ConfigurationKey" },
 "IdentityPoolName": "PlayerLogin",
 "Roles": {
 "unauthenticated": { "Fn::GetAtt": ["PlayerLoginRole", "Arn"] }
 }
 }
 },

 "PlayerAccessIdentityPool": {
 "Type": "Custom::CognitoIdentityPool",
 "Properties": {
 "ServiceToken": { "Ref": "ProjectResourceHandler" },
 "AllowUnauthenticatedIdentities": "true",
 "UseAuthSettingsObject": "true",
 "ConfigurationBucket": { "Ref": "ConfigurationBucket" },
 "ConfigurationKey": { "Ref": "ConfigurationKey" },
 "IdentityPoolName": "PlayerAccess",
 "Roles": {
 "unauthenticated": { "Fn::GetAtt": ["Player", "Arn"] },
 "authenticated": { "Fn::GetAtt": ["Player", "Arn"] }
 }
 }
 }
 }
}

Parameters

The deployment access stack defines parameters that identify the deployment and other resources that are
needed to set up security for the deployment. A value for each of these parameters is provided by Cloud
Canvas when a deployment is created.

Resources

This section describes the resources defined in the example deployment-access-template.json file.

OwnerPolicy Resource

The OwnerPolicy resource describes an IAM Managed Policy that gives owner level access to the
deployment. The AWS account administrator always has full access to the deployment, but may want to
limit other users' access to specific deployments. That can be done by attaching OwnerPolicy to an IAM
User (or you can use the Owner role, which is also defined by the deployment access template).

Owner access includes the following:

• The ability to update the deployment and all of its resource groups.

• Full access to the group's resources created for the deployment.

For more information, see Project Access Control (p. 294).

Owner Resource

The Owner resource describes an IAM role with the OwnerPolicy attached.

For more information, see Project Access Control (p. 294).

Player Resource

The Player resource describes the IAM role that determines the access granted to the player. For example,
for the game to invoke a Lambda function, the player must be allowed the lambda:InvokeFunction action
on the Lambda function resource.

Version 1.8
239

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Lumberyard Developer Guide
Resource Manager in Depth

The role's policies are determined by the PlayerAccess metadata elements found on resources in the
project's resource templates (see resource-template.json (p. 240)). The role's policies are updated by
the PlayerAccess custom resources that appear in the deployment-access-template.json (p. 234) and
in the resource-template.json (p. 240) files. The PlayerAccessIdentityPool Amazon Cognito identity
pool resource allows players to assume this role.

For more information, see PlayerAccessIdentityPool Resource (p. 240) and Access Control and Player
Identity in Depth (p. 294).

PlayerAccess Resource

The PlayerAccess resource describes a PlayerAccessIdentityPool Resource (p. 240). This resource
is responsible for configuring the player role using the PlayerAccess metadata found on the resources to
which the player should have access.

For more information, see Access Control and Player Identity in Depth (p. 294).

PlayerLoginRole Resource

The PlayerLoginRole resources describes the IAM role that is temporarily assumed by the player as part
of the login process.

For more information, see Access Control and Player Identity in Depth (p. 294).

PlayerLoginIdentityPool Resource

The PlayerLoginIdentityPool resource describes the Amazon Cognito identity pool that provides the
player with a temporary identity during the login process.

For more information, see Access Control and Player Identity in Depth (p. 294).

PlayerAccessIdentityPool Resource

The PlayerAccessIdentityPool resource describes the Amazon Cognito identity pool that provides the
player with a temporary identity during the login process.

For more information, see Access Control and Player Identity in Depth (p. 294).

The project-code Subdirectory

The project-code subdirectory contains the source code for the AWS CloudFormation Custom Resource
handler that is used in the project's AWS CloudFormation templates. For information about custom
resources, see Custom Resources (p. 250).

It also contains the code that implements the token exchange step of the player login process. For more
information, see Access Control and Player Identity in Depth (p. 294).

resource-group\{resource-group} subdirectories

The AWS resources used by the game are organized into separate resource groups, as represented by
individual {resource-group} subdirectories under the parent resource-group directory. The resource-
group directory may contain any number of {resource-group} subdirectories, each typically named after
your game project.

resource-template.json

A resource-template.json file is an AWS CloudFormation template that defines the AWS resources
associated with each resource group. You can specify any AWS resource type supported by AWS
CloudFormation in your resource-template.json file. For a list of the available resource types, see the
AWS CloudFormation AWS Resource Types Reference.

Version 1.8
240

https://docs.aws.amazon.com/cognito/devguide/identity/identity-pools/
https://docs.aws.amazon.com/cognito/devguide/identity/identity-pools/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/cognito/devguide/identity/identity-pools/
https://docs.aws.amazon.com/cognito/devguide/identity/identity-pools/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

Lumberyard Developer Guide
Resource Manager in Depth

The example resource-template.json file that follows defines a SayHello Lambda function that
is executed by the game to generate a greeting for a player. The generated message is stored in a
DynamoDB table.

{
 "AWSTemplateFormatVersion": "2010-09-09",

 "Metadata": {
 "CloudCanvas": {
 "Id": "$Revision: #3 $"
 }
 },

 "Parameters": {

 "ProjectResourceHandler": {
 "Type": "String",
 "Description": "Service token of the custom resource handler."
 },

 "ConfigurationBucket": {
 "Type": "String",
 "Description": "Bucket that contains configuration data."
 },

 "ConfigurationKey": {
 "Type": "String",
 "Description": "Location in the configuration bucket of configuration data."
 },

 "ReadCapacityUnits": {
 "Type": "Number",
 "Default": "1",
 "Description": "Number of game state reads per second."
 },

 "WriteCapacityUnits": {
 "Type": "Number",
 "Default": "1",
 "Description": "Number of game state writes per second."
 },

 "Greeting": {
 "Type": "String",
 "Default": "Hello",
 "Description": "Greeting used by the SayHello Lambda function."
 }
 },

 "Resources": {

 "Messages": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "PlayerId",
 "AttributeType": "S"
 }
],
 "KeySchema": [
 {
 "AttributeName": "PlayerId",
 "KeyType": "HASH"
 }

Version 1.8
241

Lumberyard Developer Guide
Resource Manager in Depth

],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": { "Ref": "ReadCapacityUnits" },
 "WriteCapacityUnits": { "Ref": "WriteCapacityUnits" }
 }
 },
 "Metadata": {
 "CloudCanvas": {
 "FunctionAccess": [
 {
 "FunctionName": "SayHello",
 "Action": "dynamodb:PutItem"
 }
]
 }
 }
 },

 "SayHelloConfiguration": {
 "Type": "Custom::LambdaConfiguration",
 "Properties": {
 "ServiceToken": { "Ref": "ProjectResourceHandler" },
 "ConfigurationBucket": { "Ref": "ConfigurationBucket" },
 "ConfigurationKey": { "Ref": "ConfigurationKey" },
 "FunctionName": "SayHello",
 "Runtime": "python2.7",
 "Settings": {
 "MessagesTable": { "Ref": "Messages" },
 "Greeting": { "Ref": "Greeting" }
 }
 }
 },

 "SayHello": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Description": "Example of a function called by the game to write data into
 a DynamoDB table.",
 "Handler": "main.say_hello",
 "Role": { "Fn::GetAtt": ["SayHelloConfiguration", "Role"] },
 "Runtime": { "Fn::GetAtt": ["SayHelloConfiguration", "Runtime"] },
 "Code": {
 "S3Bucket": { "Fn::GetAtt": ["SayHelloConfiguration",
 "ConfigurationBucket"] },
 "S3Key": { "Fn::GetAtt": ["SayHelloConfiguration",
 "ConfigurationKey"] }
 }
 },
 "Metadata": {
 "CloudCanvas": {
 "PlayerAccess": {
 "Action": "lambda:InvokeFunction"
 }
 }
 }
 },

 "PlayerAccess": {
 "Type": "Custom::PlayerAccess",
 "Properties": {
 "ServiceToken": { "Ref": "ProjectResourceHandler" },
 "ConfigurationBucket": { "Ref": "ConfigurationBucket" },
 "ConfigurationKey": { "Ref": "ConfigurationKey" },
 "ResourceGroupStack": { "Ref": "AWS::StackId" }
 },
 "DependsOn": ["SayHello"]

Version 1.8
242

Lumberyard Developer Guide
Resource Manager in Depth

 }

 }

}

Resource Template Parameters

This section describes the parameters defined in the example resource-template.json file. Parameter
values are provided by Cloud Canvas when it uses the template to update an AWS CloudFormation stack.

ProjectResourceHandler Parameter

The ProjectResourceHandler parameter identifies the custom resource handler Lambda function used for
the project.

ConfigurationBucket Parameter

The ConfigurationBucket parameter identifies the configuration bucket.

ConfigurationKey Parameter

The ConfigurationKey parameter identifies the location of configuration data in the configuration bucket.

ReadCapacityUnits and WriteCapacityUnits Parameters

The ReadCapacityUnits and WriteCapacityUnits parameters are used to configure the Messages
resource defined by the template. Values for parameters such as these are typically provided by the
project-settings.json (p. 225) and can be customized for each deployment.

Resource Template Resources

This section describes the resources defined in the example resource-template.json file.

Messages Resource

The Messages resource describes a DynamoDB Table. See AWS::DynamoDB::Table for a description of
the AWS CloudFormation DynamoDB table resource definition format.

The Metadata.CloudCanvas.FunctionAccess property of the resource definition is used by the
SayHelloConfiguration custom resource to grant the SayHello Lambda function resource permission to
write data into the table. For more information, see Lambda Function Access Control (p. 295).

SayHelloConfiguration Resource

The SayHelloConfiguration resource describes a LambdaConfiguration (p. 252) resource that provides
various configuration inputs for the SayHello Lambda function resource.

The Settings property for this resource is used to pass configuration data to the SayHello Lambda
function. For more information, see LambdaConfiguration (p. 252).

SayHello Resource

The SayHello resource describes a Lambda function resource that implements some of the game logic.
See AWS::Lambda::Function for a description of the AWS CloudFormation Lambda function resource
definition format.

The Lambda function's Execution Role, which determines the AWS permissions the function
has when it executes, is created by the SayHelloConfiguration resource, which uses the
Metadata.CloudCanvas.FunctionAccess properties that appear on the resources that the function can
access.

Version 1.8
243

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Lumberyard Developer Guide
Resource Manager in Depth

The Metadata.CloudCanvas.PlayerAccess property of the resource definition determines the access that
players have to the SayHello resource. In this case, they can only invoke the lambda function.

PlayerAccess Resource

The PlayerAccess resource in the resource template is a PlayerAccess (p. 253) custom resource. It
grants players access to resources specified by the Metadata.CloudCanvas.PlayerAccess properties on
the definitions of the resources to which they have access.

Note that the PlayerAccess DependsOn property lists the resources that define this metadata property. This
ensures that AWS CloudFormation creates or updates the PlayerAccess resources after the resources with
the metadata property have been created or updated.

The lambda-function-code Subdirectory

The lambda-function-code subdirectory is present when a resource template defines Lambda function
resources. This directory is where you put the source files that implement those functions.

Lumberyard provided tools uploads the code from this directory when using the template to update the
AWS CloudFormation stack.

Importing Resource Definitions into Cloud Canvas

You can use the Cloud Canvas resource importer to add definitions of existing AWS resources to a
Cloud Canvas resource group. You can add resources by using the Cloud Canvas Resource Manager in
Lumberyard Editor or at a command line prompt.

Importing Resources using Lumberyard Editor

In Lumberyard Editor, you can import a resource by specifying an Amazon Resource Name (ARN) or by
choosing from a list.

To import a resource by using an ARN

1. From the Lumberyard Editor top menu, choose AWS, Cloud Canvas, Resource Manager.

2. In the navigation pane, select a resource group.

3. In the detail window, click Import resource, Import using ARN. You can also open the context (right-
click) menu for the resource in the navigation pane and choose Import resource, Import using ARN.

4. In the Import using ARN dialog box, provide the ARN and name of the resource that you are going to
import. Both are required.

After you have provided both items of information, the Import button is enabled.

5. Import.

To import a resource by choosing from a list

1. From the Lumberyard Editor top menu, choose AWS, Cloud Canvas, Resource Manager.

2. In the navigation pane, select a resource group.

3. In the detail window, choose Import resource, Import using ARN. You can also open the context
(right-click) menu for the resource in the navigation pane and choose Import resource, Import using
ARN.

4. In the Import from list dialog box, choose the AWS Region of the resource for Region. The default
value is the region of the project stack if it exists. Resources start loading in the list as soon as you
choose a region that has importable resources.

5. You can use the AWS service selector to filter the resources by service, and then use the Search box
to filter resources by name.

Version 1.8
244

http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Lumberyard Developer Guide
Resource Manager in Depth

6. Select the check box to the left of each resource that you want to import.

7. Configure.

8. In the Configuration dialog box, provide a reference name for each resource, or accept the default.
The default name is the original name of the resource on AWS.

9. To delete a selected resource from the list, open the context (right-click) menu for the resource and
choose Delete.

10. When you are ready, click Import. A progress bar displays. An Import Error message informs you of
any errors that occur.

11. Click X to close the Import from list dialog box. The resources that you imported are listed in the
details pane of Cloud Canvas Resource Manager.

Importing Resource Definitions Using the Command Line

To list and import resources using the Cloud Canvas command line, see list-importable-
resources (p. 306) and import-resource (p. 306).

Understanding Resource Definitions

When you use the Cloud Canvas resource importer to import the definition of a resource, it is important to
understand that you are importing the resource's definition, not the resource itself. For example, suppose
you use the AWS console to create a high score table in DynamoDB called Table A. You create a game
client that uploads scores, and send out the client to your players. Table A begins to populate with data
from the users who play your game.

You then decide to use Cloud Canvas to manage your resources and deployments. Using the Cloud
Canvas Resource Manager, you import Table A because it has the exact configuration values that you
want, and it has worked well for your use cases.

When you create a deployment with the imported resource, the deployment contains Table B, which is a
new table with Table A's structure but not its data. Table B is managed by Cloud Canvas and has the same
behavior as Table A. However, Table B is not a reference to Table A, and it does not have Table A's data or
history. Keep this distinction in mind when you import resource definitions.

Automatically Imported Resource Definitions

Some of the existing resources that you select might be related to other resources. For example, Lambda
functions can respond to events from the selected triggers. You can use event notifications from an
Amazon S3 bucket to send alerts or trigger workflows. Cloud Canvas imports the related resources for you
automatically.

Cloud Canvas uses the following naming conventions for automatically imported resource definitions.

Source Naming Convention Example Name of Imported
Resource

DynamoDB table, Lambda
function, Amazon SNS topic,
Amazon SQS queue

<resource_name> + "AutoAdded"
+ <resource_type> + <counter>

LambdaFunctionAutoAddedtable0

Lambda function configuration
resource

<lambda_function_name> +
"Configuration"

LambdaFunctionConfiguration

Lambda function policy resource <lambda_function_name> +
"Permission"

LambdaFunctionPermission

Version 1.8
245

Lumberyard Developer Guide
Resource Manager in Depth

Source Naming Convention Example Name of Imported
Resource

DynamoDB table Lambda
function event source

<DynamoDB_table_name> +
"EventSource"

DynamoTableEventSource

Resources Supported for Import

The following sections list the resource attributes and related resources that Cloud Canvas imports for each
supported AWS service.

Dynamo DB Tables

For DynamoDB tables, Cloud Canvas imports the following resource attributes:

• AttributeDefinitions

• GlobalSecondaryIndexes

• KeySchema

• LocalSecondaryIndexes

• ProvisionedThroughput

• StreamSpecification

Amazon S3 Buckets

For Amazon S3 buckets, Cloud Canvas imports the following resource attributes:

• CorsConfiguration

• LifecycleConfiguration

• NotificationConfiguration

• Tags

• VersioningConfiguration

• WebsiteConfiguration

For Amazon S3 buckets, Cloud Canvas also imports the following related resources:

• Lambda functions

• Amazon SQS queues

• Amazon SNS topics

Lambda Functions

For Lambda functions, Cloud Canvas imports the following resource attributes:

• Code

• Description

• Handler

• MemorySize

• Role

• Runtime

• Timeout

• VpcConfig

Version 1.8
246

Lumberyard Developer Guide
Resource Manager in Depth

For Lambda functions, Cloud Canvas also imports the following related resources:

• Lambda function configurations

• Lambda function permissions

• DynamoDB tables

• Event source mappings

Amazon SNS Topics

For Amazon SNS topics, Cloud Canvas imports the following resource attributes:

• DisplayName

• Subscription

For Amazon SNS topics, Cloud Canvas also imports any Lambda functions that are related resources.

SQS Queues

For SQS queues, Cloud Canvas imports the following resource attributes:

• DelaySeconds

• MaximumMessageSize

• MessageRetentionPeriod

• ReceiveMessageWaitTimeSeconds

• RedrivePolicy

• VisibilityTimeout

Resource Deployments

You implement deployments using AWS CloudFormation stacks. You create and manage the stacks using
tools provided by Lumberyard.

A project may define any number of deployments, up to the limits imposed by AWS CloudFormation (for
more information, see AWS CloudFormation Limits). Each deployment contains a completely independent
set of the resources that the game requires. For example, you can have separate development, test, and
release deployments so that your development and test teams can work independently of the deployment
used for the released version of the game.

An AWS account that hosts a Lumberyard project contains the following resources:

• {project} – An AWS CloudFormation stack that acts as a container for all the project's deployments.

• {project}-Configuration – An S3 bucket used to store configuration data.

• {project}-ProjectResourceHandler – A Lambda function that implements the handler for the custom
resources used in the templates. See Custom Resources (p. 250).

• {project}-ProjectResourceHandlerExecution – An IAM role that grants the permissions used by the
ProjectResourceHandler Lambda function when it is executing.

• {project}-ProjectPlayerAccessTokenExchangeHandler – A Lambda function that implements the token
exchange step in the player login process. For more information, see Access Control and Player Identity
in Depth (p. 294).

• {project}-ProjectPlayerAccessTokenExchangeHandlerRole – An IAM role that grants the permissions
used by the ProjectPlayerAccessTokenExchangeHandler Lambda function when it runs.

• {project}-{deployment} – AWS CloudFormation stacks for each of the project's deployments.

Version 1.8
247

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html

Lumberyard Developer Guide
Resource Manager in Depth

• {project}-{deployment}Access – AWS CloudFormation stacks that control access to each of the
project's deployments.

{project}-{deployment}Access-OwnerPolicy – An IAM managed policy that grants "owner" access to a
deployment. See Project Access Control (p. 294).

• {project}-{deployment}Access-Owner – An IAM role that grants "owner" access to a deployment. See
Project Access Control (p. 294).

• {project}-{deployment}Access-Player – An IAM role that grants "player" access to a deployment. See
Access Control and Player Identity in Depth (p. 294).

• {project}-{deployment}Access-PlayerLoginRole – An IAM role that grants players temporary
anonymous access used during the player login process. See Access Control and Player Identity in
Depth (p. 294).

• {project}-{deployment}Access-PlayerAccessIdentityPool – An Amazon Cognito identity pool used
for player identity. For more information, see Access Control and Player Identity in Depth (p. 294).

• {project}-{deployment}Access-PlayerLoginIdentityPool – An Amazon Cognito identity pool that
provides the temporary player identity used during the player login process. For more information, see
Access Control and Player Identity in Depth (p. 294).

• {project}-{deployment}-{resource-group} – An AWS CloudFormation stack for each resource group
of the project.

• {project}-{deployment}-{resource-group}-{resource} – The resources defined by a resource group.
Because of how AWS CloudFormation works, parts of these names have unique identifiers appended
to them. For example, for a project named MyGame with a deployment named Development and a
feature named HighScore, the actual name of a Scores resource would be something like: MyGame-
Development-1FLFSUKM3MC4B-HighScore-1T7DK9P46SQF8-Scores-1A1WIH6MZKPRI. The tools provided
by Lumberyard hide these actual resource names under most circumstances.

Configuration Bucket

The configuration Amazon S3 bucket is used to store configuration data for the project. The tools provided
with Cloud Canvas manage uploads to this bucket.

The configuration bucket contents are as follows.

/
 upload/
 {upload-id}/
 project-template.json
 project-code.zip
 deployment/
 {deployment}/
 deployment-template.json
 resource-group/
 {resource-group}/
 resource-template.json
 lambda-function-code.zip
 lambda-function-code.zip.{function-name}.configured
 player-access/
 auth-settings.json

All the /upload/{upload-id}/* objects in this bucket , except the *.configured objects, are uploaded
from the {game}/AWS directory by the Cloud Canvas tools when stack management operations are
performed. The uploads for each operation get assigned a unique {upload-id} value to prevent concurrent
operations from impacting each other.

The lambda-function-code.zip.{function-name}.configured objects in this bucket are created
by the LambdaConfiguration custom resources when settings are injected into the code. See
LambdaConfiguration (p. 252) for more information.

Version 1.8
248

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

Lumberyard Developer Guide
Resource Manager in Depth

The /player-access/auth-settings.json file stores the security credentials used to implement player
login by using social networks such as Facebook or by using the player's Amazon credentials. This file is
created and updated by the lmbr_aws add-login-provider (p. 300), update-login-provider (p. 311), and
remove-login-provider (p. 310) commands.

Resource Mappings

Resource mappings map the friendly names used in a game's Resource Definitions (p. 224) to the
actual names of the resources created for one or more specific Resource Deployments (p. 247). For
example, a DynamoDB table name like DailyGiftTable would get mapped to a name like SamplesProject-
DontDieDeployment-78AIXR0N0O4N-DontDieAWS-1I1ZC6YO7KU7F-DailyGiftTable-1G4G33K16D8ZS

where SamplesProject is the name of the project, DontDieDeployment is the name of a deployment, and
DontDieAWS is the name of a resource group. The 78AIXR0N0O4N, 1I1ZC6YO7KU7F and 1G4G33K16D8ZS parts
of the resource name are inserted by AWS CloudFormation to guarantee that the resource name is unique
over time. Thus, even if a resource is deleted and a new one with the same logical name is created, the
physical resource ID will be different.

Usually different deployments, and consequently different mappings, are used for game development and
for the released version of a game. Furthermore, different development, test, and other teams often work
with their own deployments so that each team has distinct mappings.

The deployment used by default during development is specified in the {root}\{game}\AWS\project-
settings.json (p. 225) file and can be overridden for each user by the {root}\Cache\{game}\pc\user
\AWS\user-settings.json (p. 227) file. You can change the default deployment by using the lmbr_aws
default-deployment (p. 303) command or by using the Cloud Canvas Resource Manager (p. 289).

The mappings used during development when the game is launched from the Lumberyard IDE by
pressing Ctrl+G are stored in the user-settings.json (p. 227) file just mentioned. This file is
updated automatically when the default deployment changes, when the default deployment is updated,
and when Lumberyard Editor is started. It can be refreshed manually by using the lmbr_aws update-
mappings (p. 312) command.

When a game launcher application created in Lumberyard launches a release build of a game, the
mappings for the game are stored in the {root}\{game}\Config\awsLogicalMappings.json file. These
mappings can be updated manually using the lmbr_aws update-mappings --release (p. 312) command,
which produces the awsLogicalMappings.json file. You can specify the deployment for the release
mappings in the ReleaseDeployment property of the project-settings.json (p. 225) file.

For more information, see Running AWS API Jobs Using the Cloud Gems Framework (p. 258)

Using Mappings in AWS Flow Nodes

AWS flow nodes that define TableName (DynamoDB), FunctionName (Lambda), QueueName (Amazon SQS),
TopicARN (Amazon SNS), or BucketName (Amazon S3) ports work with mappings. Set the port to a value
like {resource-group}.{resource} where {resource-group} is the name of the resource group that
defines the resource, and where {resource} is the name of the resource that appears in the Resources
section of the resource group's resource-template.json file. For detailed information on the Cloud
Canvas flow graph nodes, see the Cloud Canvas Flow Graph Node Reference (p. 200).

Using Mappings with the AWS C++ SDK

For information, see Running AWS API Jobs Using the Cloud Gems Framework (p. 258).

Using Mappings in Lambda Functions

Lambda function resources defined as part of a resource group often need to access other resources
defined by that resource group. To do this, the function code needs a way to map a friendly resource
name to the actual resource name used in AWS API calls. The LambdaConfiguration resource provides

Version 1.8
249

Lumberyard Developer Guide
Resource Manager in Depth

a way to such mappings, as well as other settings, to the lambda code. For more information, see
LambdaConfiguration (p. 252).

Resource Manager Resource Group Parameters

Cloud Canvas Resource Manager uses AWS CloudFormation templates to describe the AWS resources
needed for a project. AWS CloudFormation allows templates to have parameters. You must provide the
values for these parameters when a template creates or updates a stack.

AWS CloudFormation template parameters are useful when you want separate deployments of a resource
group to be configured differently. For example, you could configure an internal test instance of Amazon
DynamoDB to use lower throughput than a public instance.

Follow the steps below to use AWS CloudFormation template parameters for your resource groups.

To use template parameters

1. Define a parameter in the AWS CloudFormation template. You must provide a default value for the
parameter. Be sure not to remove or modify the parameter definitions used by Cloud Canvas (for
example, ConfigurationBucket or ConfigurationKey).

2. Reference the parameter when defining a resource. You can use parameters to provide values
for resource properties, including passing settings to Lambda functions through the Cloud Canvas
Custom::LambdaConfiguration (p. 252) resource.

3. Use the lmbr_aws list-parameters, set-parameter, and clear-parameter commands to view and
set parameter values. These commands are described later in this document.

4. Update (or create) the resource group stack using the lmbr_aws upload-resources command, or click
Upload Resources in the Cloud Canvas Resource Manager window in Lumberyard Editor.

Parameter Configuration

A project's parameter configuration is stored in a project-settings.json (p. 225) file object in the project's
configuration bucket. The bucket is defined by the project's AWS CloudFormation stack template.

You can specify parameter values for a specific deployment or for all deployments by using * instead of a
deployment name. You can also specify parameter values for a specific resource group or for all resource
groups by using * instead of a resource group name. If you provide a parameter value for both a * entry and
a named entry, the value from the named entry overrides the value from the * entry.

The following table lists the lmbr_aws commands for listing, setting, and clearing parameter values. Your
project must be initialized (that is, a project stack must have been created) before you can list, set, or clear
parameter values. For usage details, visit the the corresponding links in the table.

lmbr_aws command Description

list-parameters (p. 307) Lists the parameters currently configured for your project.

set-parameter (p. 311) Sets parameter configuration for your project.

clear-parameter (p. 302) Clears the specified parameter configuration for your
project.

Custom Resources

Cloud Canvas provides a number of AWS CloudFormation custom resources that can be used in the
project, deployment, and resource group AWS CloudFormation template files. These custom resources are

Version 1.8
250

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html

Lumberyard Developer Guide
Resource Manager in Depth

implemented by the Lambda function code found in the {root}\{game}\AWS\project-code directory and
the ProjectResourceHandler resource defined in the {root}\{game}\AWS\project-template.json file.
Rather than static entities, these resources act more like library functions. Each custom resource has input
and output properties.

A summary list of custom resources follows.

• CognitoIdentityPool (p. 251) – Manages Amazon Cognito identity pool resources.

• EmptyDeployment (p. 252) – Used in the deployment-template.json when there are no resource
groups defined.

• ResourceGroupConfiguration (p. 252) – Provides configuration data for a resource-group's AWS
CloudFormation stack resource.

• LambdaConfiguration (p. 252) – Provides configuration data for Lambda function resources and
maintains the Lambda function's execution role.

• PlayerAccess (p. 253) – Maintains the policies on the player role.

CognitoIdentityPool

The Custom::CognitoIdentityPool resource is used in the deployment-access-template.json file to
create and configure Amazon Cognitoidentity pool resources.

Input Properties

• ConfigurationBucket

Required. The name of the Amazon S3 bucket that contains the configuration data.

• ConfigurationKey

Required. The Amazon S3 object key prefix where project configuration data is located in the
configuration bucket. This property causes the custom resource handler to be executed by AWS
CloudFormation for every operation.

• IdentityPoolName

Required. The name of the identity pool.

• UseAuthSettingsObject

Required. Must be either true or false. Determines whether the Amazon Cognito identity pool is
configured to use the authentication providers created using the add-login-provider command.

• AllowUnauthenticatedIdentities

Required. Must be either true or false. Determines whether the Amazon Cognito identity pool is
configured to allow unauthenticated identities. See Identity Pools for more information on Amazon
Cognito's support for authenticated and unauthenticated identities.

• Roles

Optional. Determines the IAM role assumed by authenticated and unauthenticated users. See
SetIdentityPoolRoles for a description of this property.

Output Properties

• IdentityPoolName

The name of the identity pool (same as the IdentityPoolName input property).

• IdentityPoolId

Version 1.8
251

http://docs.aws.amazon.com/cognito/latest/developerguide/identity-pools.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_SetIdentityPoolRoles.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_SetIdentityPoolRoles.html

Lumberyard Developer Guide
Resource Manager in Depth

The physical resource name of the identity pool.

EmptyDeployment

The Custom::EmptyDeployment resource is used in the deployment-template.json file when there are no
resource groups defined. This is necessary to satisfy the AWS CloudFormation requirement that a template
define at least one resource.

This resource supports no input or output properties.

ResourceGroupConfiguration

The Custom::ResourceGroupConfiguration resource is used in the deployment-template.json to identify
the location of the copy of the resource-template.json file in the configuration bucket that should be used
for a specific resource group.

Input Properties

• ConfigurationBucket

Required. The name of the Amazon S3 bucket that contains the configuration data.

• ConfigurationKey

Required. The Amazon S3 object key prefix where the deployment configuration data is located in the
configuration bucket.

• ResourceGroup

Required. The name of the resource group that is to be configured.

Output Properties

• ConfigurationBucket

The name of the Amazon S3 bucket that contains the configuration data. This is always the same as the
ConfigurationBucket input property.

• ConfigurationKey

The Amazon S3 object key prefix where the specified resource group's configuration data is located in
the configuration bucket. This is the input ConfigurationKey with the string "ResourceGroup" and the
value of ResourceGroup appended.

• TemplateURL

The Amazon S3 URL of the resource group's copy of the resource-template.json in the configuration
bucket. This value should be used as the resource group's TemplateURL property value.

LambdaConfiguration

The Custom::LambdaConfiguration resource is used in resource-template.json files to provide
configuration data for Lambda function resources.

Input Properties

• ConfigurationBucket

Required. The name of the Amazon S3 bucket that contains the configuration data.

Version 1.8
252

Lumberyard Developer Guide
Resource Manager in Depth

• ConfigurationKey

Required. The Amazon S3 object key prefix where configuration data for the resource group is located in
the configuration bucket.

• FunctionName

Required. The friendly name of the Lambda Function resource being configured.

• Settings

Optional. Values that are made available to the Lambda function code.

• Runtime

Required. Identifies the runtime used for the Lambda function. Cloud Canvas currently supports the
following Lambda runtimes: nodejs, python2.7.

Output Properties

• ConfigurationBucket

The name of the Amazon S3 bucket that contains the configuration data. This is always the same as the
ConfigurationBucket input property.

• ConfigurationKey

The Amazon S3 object key prefix where the specified function's zipped up code is located in the
configuration bucket.

• Runtime

The Lambda runtime used by the function. This is always the same as the input Runtime property value.

• Role

The ID of the Lambda function execution created for this function.

For information on how the LambdaConfiguration custom resource is used to allow Lambda functions to
perform specified actions on specific project resources, see Lambda Function Access Control (p. 295).

PlayerAccess

The Custom::PlayerAccess resource is used in resource-template.json files to update the player role so
that players have the desired access to the resource group's resources. It is also used in the deployment-
access-template.json file to update the player role so that players have the desired access to the
deployment's resources.

Input Properties

• ConfigurationBucket

Required. The name of the Amazon S3 bucket that contains the configuration data.

• ConfigurationKey

Required. The Amazon S3 object key prefix where configuration data for the deployment is located in the
configuration bucket. The value of this property isn't actually used, however since the Cloud Canvas tools
insure that the key is different for each AWS CloudFormation operation, the presences of this property
has the effect of forcing the custom resource handler to be executed by AWS CloudFormation on for
every operation.

• ResourceGroup

Version 1.8
253

Lumberyard Developer Guide
Cloud Gems Framework

Optional. The ID of the resource group for which the player role is updated.

• DeploymentStack

Optional. The ID of the deployment for which the pcolayer role is updated.

Only one of the ResourceGroup and DeploymentStack properties must be provided.

Output Properties

The PlayerAccess custom resource does not produce any output values.

PlayerAccess Metadata Format

This custom resource looks for Metadata.CloudCanvas.PlayerAccess properties on the project's resource
group definitions and constructs a policy which is attached to the player role. The policy allows the indicated
actions on those resources. The Metadata.CloudCanvas.PlayerAccess property has the following form:

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "...": {
 "Type": "...",
 "Properties": {
 ...
 },
 "Metadata": {
 "CloudCanvas": {
 "PlayerAccess": {
 "Action": ["{allowed-action-1}", ..., "{allowed-action-n}"]
 }
 }
 }
 },
 ...
 }
}

The required Action property is the same as defined for an IAM policy and is described in detail in the IAM
Policy Elements Reference. Note that a single value can be provided instead of a list of values.

Cloud Gems Framework

The Cloud Gems Framework and this documentation are in preview release and are subject to change.
More topics are planned.

The Lumberyard Cloud Gems Framework makes it easy to build popular cloud-connected features, such
as dynamic content, leaderboards, and daily messages. The Cloud Gems Framework is made up of the
Cloud Gem Portal, a web application that lets you visually manage and administer your cloud features
(like scheduling messages, releasing dynamic content, or deleting a fraudulent leaderboard score), and
Cloud Gems – modular packages of discrete functionality and assets that include everything necessary for
a developer to include that functionality into their project, including backend and client functionality. Cloud
Gems can be used out of the box in production, and they come with full source code in case you want to
customize their behavior in any way you choose.

Topics

• Getting Started with the Cloud Gems Framework (p. 255)

Version 1.8
254

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Action
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Action

Lumberyard Developer Guide
Cloud Gems Framework

• Making HTTP Requests Using the Cloud Gems Framework (p. 257)

• Running AWS API Jobs Using the Cloud Gems Framework (p. 258)

• Cloud Gems Framework Service API (p. 261)

Getting Started with the Cloud Gems Framework

Lumberyard cloud gems make it easy to create cloud-connected functionality for your games. You can use
the cloud gems included with Lumberyard, or create your own cloud gems by using Lumberyard's Cloud
Gems Framework.

Cloud Gems

Cloud gems are Lumberyard gems that use Cloud Canvas Resource Manager (p. 169) (CCRM) to define
AWS resources that support their operation. CCRM provides the infrastructure needed to create, configure
and access AWS resources. A cloud gem defines resources and implements the required operations to
create a complete game subsystem.

Cloud gems use general purpose AWS features that operate in your AWS account. They are not game
specific services operated by Amazon. Cloud gems follow a serverless microservice architecture that
makes use of AWS Lambda functions for computation, and Amazon DynamoDB, RDS, and Amazon S3 for
data storage. However, a cloud gem can use any AWS service.

For example, a cloud gem could provide a leaderboard system that uses a DynamoDB table to store high
scores. The gem could use an AWS Lambda function to validate submitted scores and allow fraudulent
high scores to be deleted.

In this scenario, CCRM performs the following tasks:

• Creates the DynamoDB table and Lambda function defined by the gem.

• Enables the game client to invoke the API to submit a score.

• Protects the integrity of the leaderboard by removing fraudulent scores automatically.

• Permits the creation of a user interface that enables an authorized employee to remove fraudulent scores
manually.

Cloud Gems Framework

The Cloud Gems Framework is a collection of tools and APIs that support the creation and operation of
Cloud Gems.

The following diagram shows a high-level view of the Cloud Gems Framework architecture.

The Cloud Gems Framework contains the following major components:

• Cloud Gem Portal (p. 189) – A web application for operating and managing cloud gems.

• Cloud Gems Framework Service API (p. 261) – An API that provides a secure interface to a cloud
gem's functionality.

• AWS API Jobs (p. 258) – Integrates the AWS API with the Lumberyard job execution systems (not
illustrated).

• HTTP Request Job (p. 257) – A Lumberyard job for executing HTTP requests (not illustrated).

Creating a Cloud Gem

Lumberyard includes some cloud gems, such as a leaderboards and dynamic content distribution, that
provide fully featured services. You can use these gems in your games with a minimum of effort. Because

Version 1.8
255

https://aws.amazon.com/blogs/compute/microservices-without-the-servers/
https://en.wikipedia.org/wiki/Microservices

Lumberyard Developer Guide
Cloud Gems Framework

full source code for these cloud gems is included with Lumberyard, you can customize them or use them as
examples for developing your own cloud gems.

To create a cloud gem entirely on your own, perform the following steps.

To create a new cloud gem

1. Use the Lumberyard Project Configurator to create a new gem.

2. In Project Configurator, enable the gem for your project.

3. In Project Configurator, enable the Cloud Gem Framework gem for your project.

4. In the \dev\Gems\<gem-name> directory for your new gem, add the following dependency to the
gem.json file.

"Dependencies": [
 {
 "Uuid" : "6fc787a982184217a5a553ca24676cfa",
 "VersionConstraints": ["~>0.1"],
 "_comment": "CloudGemFramework"
 },
 {
 "Uuid" : "102e23cf4c4c4b748585edbce2bbdc65",
 "VersionConstraints": [
 "~>0.1"
],
 "_comment": "CloudCanvasCommon"
 }
],

5. Type the following command line to add a CCRM Resource Group to your Gem. The command
creates a \dev\Gems\<gem-name>\AWS directory with a resource-template.json file and a lambda-
function-code directory.

lmbr_aws resource-group add --gem --resource-group <gem-name>

6. Type the following command line to add service API resources to the resource group.

lmbr_aws cloud-gem-framework add-service-api-resources --resource-group <gem-name>

The add-service-api-resources command adds ServiceApi, ServiceLambda, and
ServiceLambdaConfiguration resources to the resource group. It also adds an Output for the
service API's URL. The AccessControl resource is configured as described in Setting Access
Permissions (p. 292). The add-service-api-resources command also creates a swagger.json file
that describes the API for the cloud gem. For more information, see Cloud Gems Framework Service
API (p. 261).

7. Add any additional resource definitions to the resource-template.json file that the cloud gem
requires.

8. Implement the cloud gem's functionality by adding code to the lambda-function-code directory. You
will upload this code to the ServiceLambda Lambda function resource that you created earlier.

9. Add paths and operations to the swagger.json file to create an API that exposes the cloud gem's
functionality. For more information, see Cloud Gems Framework Service API (p. 261).

10. Create a CCRM project stack and deployment stack by following the guidance in the Getting Started
with Cloud Canvas (p. 173) tutorial. This process uses the resource descriptions in your resource-
template.json file to create resources in AWS for your cloud gem.

11. Type the following command to generate a service API client for the cloud gem.

lmbr_aws cloud-gem-framework generate-service-api-code --resource-group <gem-name>

Version 1.8
256

Lumberyard Developer Guide
Cloud Gems Framework

The generate-service-api-code command reads the cloud gem's API definitions from the
swagger.json file and generates C++ code in the /dev/Gems/<gem-name>/Code/AWS directory. This
code implements a Lumberyard component that you can use to invoke the cloud gem's service APIs
from C++ or Lua.

12. Use Lumberyard components, EBuses, and other features to implement game client functionality for
the gem. Place the code in the cloud gem's /dev/Gems/<gem-name>/Code directory. You can use the
service API client that you generated to access the functionality in the cloud gem's ServiceLambda
Lambda function.

Making HTTP Requests Using the Cloud Gems Framework

The Cloud Gems Framework and this documentation are in preview release and are subject to change.

The Cloud Gems Framework Gem provides C++ classes and EBus interfaces to execute HTTP requests
using the AZ::Job system. Your game client can use this feature to make HTTP requests for data from a
public API such as Twitter or from a custom API. For example, your game could make HTTP requests to
Twitter to see who is tweeting about your game.

To enable your game code to make HTTP requests

1. In Lumberyard Project Configurator, enable the Cloud Canvas Common and Cloud Gem Framework
gems for your project.

2. In Lumberyard Editor, in Entity Inspector, click Add Component.

3. From the Cloud Gem Framework section, add the HttpClientComponent to an entity in your scene.

4. To make HTTP requests from your game code, perform one of the following steps:

• From a Lua Script Component attached to your entity, add code based on the following example.

self.requestSender = HttpClientComponentRequestBusSender(self.entityId);
local url = "https://my.url.com"
local http_method = "GET"
local json_body = "{}"
self.requestSender:MakeHttpRequest(url, http_method, json_body);

• From C++, use Lumberyard's Event Bus (EBus) (p. 418), as in the following example.

AZStd::string url = "https://my.url.com"
AZStd::string httpMethod = "GET"
AZStd::string jsonBody= "{}"
EBUS_EVENT(HttpClientComponentRequestBus, MakeHttpRequest, url, httpMethod,
 jsonBody);

• From C++, use HttpRequestJob, as in the following example.

AZStd::string url = "https://my.url.com"
AZStd::string httpMethod = "GET"
AZStd::string jsonBody= "{}"

auto job = aznew HttpRequestJob(true, ServiceJob::GetDefaultConfig(),
 [this](int responseCode, AZStd::string content)
 {
 // handle success
 },
 [this](int responseCode)
 {

Version 1.8
257

http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html

Lumberyard Developer Guide
Cloud Gems Framework

 // handle failure
 }
);
job->SetUrl(url.c_str());
job->SetHttpMethod(httpMethod);
job->SetJsonBody(jsonBody.c_str());
job->Start();

Getting HTTP Responses Using Script

To get responses from a HTTP request, your script class needs to have a
HttpClientComponentNotificationBusHandler as in the following example.

function httpClientUsageExample:OnActivate()
 self.notificationHandler = HttpClientComponentNotificationBusHandler(self,
 self.entityId);
end

Next, your script class must implement the HttpClientComponentNotificationBusHandler functions
OnHttpRequestSuccess and OnHttpRequestFailure as in the following example.

function myscript:OnHttpRequestSuccess(responseCode, responseBody)
 Debug.Log("HTTP RESPONSE -- " .. responseCode);
 Debug.Log("HTTP BODY -- " .. responseBody);
end

function myscript:OnHttpRequestFailure(errorCode)
 Debug.Log("HTTP Error-- " .. errorCode);
end

Getting HTTP Responses Using C++

To get the notifications in C++, you need to create a component that inherits from
HttpClientComponentNotificationBus::Handler. This class must implement OnHttpRequestSuccess
and OnHttpRequestFailure and should be placed on the same entity as the HttpClientComponent in your
level.

Running AWS API Jobs Using the Cloud Gems Framework

The Cloud Gem Framework and this documentation are in preview release and are subject to change.

The Cloud Gem Framework Gem provides C++ classes that can execute any C++ AWS API call using the
Lumberyard job execution system. This allows the operation to be performed on background threads that
are managed by the job system.

To use AWS API Jobs in your project

1. In Lumberyard Project Configurator, enable the Cloud Canvas Common and Cloud Gem Framework
gems for your project.

2. We recommend that you put the code that uses AWS in a gem, but this is not required. If you do use a
gem, make the Cloud Gem Framework and Cloud Canvas Common gems dependencies by adding
the following to your gem's gem.json file.

"Dependencies": [
 {
 "Uuid" : "6fc787a982184217a5a553ca24676cfa",

Version 1.8
258

http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html

Lumberyard Developer Guide
Cloud Gems Framework

 "VersionConstraints": ["~>0.1"],
 "_comment": "CloudGemFramework"
 },
 {
 "Uuid" : "102e23cf4c4c4b748585edbce2bbdc65",
 "VersionConstraints": [
 "~>0.1"
],
 "_comment": "CloudCanvasCommon"
 }
],

3. Activate your gem for your project.

4. In your gem or game project's .wscript file, make the following changes:

a. To the list of includes, add:

bld.Path('Code/SDKs/AWSNativeSDK/include')

b. To the list of used static libraries, add CloudGemFrameworkStaticLibrary.

c. Add AWS_CPP_SDK_CORE and other AWS API dynamic libraries as required. For a list of available
aliases like AWS_CPP_SDK_LAMBDA and other library names, see the dev_WAF_\3rd_party
\aws_native_sdk_shared.json file.

d. Add the security libraries for platforms other than Windows, as in the following .wscript file for a
gem.

SUBFOLDERS = []

def build(bld):

 import lumberyard_sdks

 bld.DefineGem(
 includes = [bld.Path('Code/SDKs/AWSNativeSDK/include')],
 file_list = ['cloudcanvassample.waf_files'],
 use = ['CloudGemFrameworkStaticLibrary'],
 uselib = ['AWS_CPP_SDK_CORE', 'AWS_CPP_SDK_LAMBDA'],
 darwin_lib = ['curl'],
 linux_lib = ['curl'],
 ios_lib = ['curl'],
 appletv_lib = ['curl'],
 durango_lib = ['msxml6'],
 ios_framework = ['security'],
 appletv_framework = ['security']
)

 bld.recurse(SUBFOLDERS)

5. Include the CloudGemFramework\AwsApiJob.h header and the AWS SDK header files that are required
for calling an API, as in the following example.

#include <CloudGemFramework/AwsApiRequestJob.h>

#pragma warning(disable: 4355) // <future> includes ppltasks.h which throws a C4355
 warning: 'this' used in base member initializer list
#include <aws/lambda/LambdaClient.h>
#include <aws/lambda/model/InvokeRequest.h>
#include <aws/lambda/model/InvokeResult.h>
#include <aws/core/utils/Outcome.h>
#include <aws/core/utils/memory/stl/AWSStringStream.h>
#pragma warning(default: 4355)

Version 1.8
259

Lumberyard Developer Guide
Cloud Gems Framework

6. Using code similar to the following, run an AWS API job. An alternative approach is to extend the job
class (like LambdaInvokeRequestJob in the example) and provide overrides for the OnSuccess and
OnFailure methods.

using LambdaInvokeRequestJob = AWS_API_REQUEST_JOB(Lambda, Invoke);

auto job = LambdaInvokeRequestJob::Create(
 [](LambdaInvokeRequestJob* job) // OnSuccess handler - runs on job thread
 {
 Aws::IOStream& stream = job->result.GetPayload();
 std::istreambuf_iterator<AZStd::string::value_type> eos;
 AZStd::string content =
 AZStd::string{std::istreambuf_iterator<AZStd::string::value_type>(stream),eos};
 AZ_Printf("Example", "Got response %s", content.c_str());
 },
 [](LambdaInvokeRequestJob* job) // OnError handler (optional) - runs on job thread
 {
 AZ_Printf("Example", "Was error %s", job->error.GetMessageA().c_str());
 }
);

AZStd::string content = "...";

std::shared_ptr<Aws::StringStream> stream = std::make_shared<Aws::StringStream>();
*stream << content.c_str();

job->request.SetFunctionName("...");
job->request.SetBody(stream);
job->Start();

7. If your project uses Cloud Canvas Resource Manager, get the physical resource ID and the logical
resource ID of the AWS resource for each resource group. These IDs cause your AWS API call to use
the correct resource for the active deployment. This ensures that your development, test, and released
versions of a game don't interfere with each other.

#include <CloudCanvasCommon/CloudCanvasCommonBus.h>

AZStd::string functionName;
EBUS_EVENT_RESULT(functionName, CloudCanvasCommon::CloudCanvasCommonRequestBus,
 GetLogicalToPhysicalResourceMapping, "RESOURCE-GROUP.RESOURCE");

job->request.SetFunctionName(functionName.c_str());

8. If your project uses Cloud Canvas Resource Manager, the AWS API is called using the player's AWS
credentials. These credentials are provided by the anonymous Amazon Cognito Identitypool that Cloud
Canvas creates for your project. If you do not use Cloud Canvas Resource Manager or want to use
other credentials, you can use code like the following to override the default configuration.

#include <aws/core/auth/AWSCredentialsProvider.h>

LambdaInvokeRequestJob::Config config(LambdaInvokeRequestJob::GetDefaultConfig());
const char* accessKey = "...";
const char* secretKey = "...";
config.credentialsProvider =
 std::make_shared<Aws::Auth::SimpleAWSCredentialsProvider>(accessKey, secretKey);
config.requestTimeoutMs = 20000;

auto job = LambdaInvokeRequestJob::Create(
 ..., // OnSuccess handler
 ..., // OnError handler
 &config
);

Version 1.8
260

Lumberyard Developer Guide
Cloud Gems Framework

Cloud Gems Framework Service API

This documentation is preliminary and is subject to change.

Lumberyard cloud gems provide services like the Cloud Gem Portal (p. 189) (CGP) that configure and
manage a game's operation. The services are implemented by AWS Lambda function resources. The
game and tools access these services through the Amazon API Gateway. The code that you provide runs
in a Lambda function. API Gateway manages access to the service, provides caching for frequently used
results, and supports request throttling. It can can even publish your APIs, potentially bringing in revenue.

The following high-level diagram shows how the Cloud Gems Framework service API interacts with the
game client, the Cloud Gem Portal, AWS Lambda, and API Gateway.

Cloud Gem Swagger API Descriptions

The Lumberyard game and tools use APIs to communicate with your cloud gem service. These APIs are
described in the cloud gem's /dev/Gems/<gem-name>/AWS/swagger.json file. The swagger.json file uses
the swagger API definition format, which is an open source framework for RESTful APIs.

Cloud Canvas uses these API descriptions to generate Lumberyard engine components that execute
service APIs for the game. The Cloud Gem Portal (p. 189) web application also uses the API descriptions
when it makes service requests. In addition, the API descriptions are used to configure API Gateway to
work with your service.

Topics

• Resources (p. 261)

• Operations (p. 263)

• Security (p. 265)

• Cloud Gems Framework Extension Object (p. 267)

• Game Clients (p. 268)

• Generated Game Client Code Example (p. 269)

• Calling Your Game APIs (p. 282)

• Publishing Your APIs (p. 285)

Resources

A cloud gem's service API is implemented based on the resources as defined in the cloud gem's resource-
template.json file. The following are the key resources for a cloud gem:

• ServiceAPI – An AWS Cloud Formation custom resource provided by the Cloud Gems Framework. The
handler for this resource configures API Gateway to use the cloud gem's swagger.json file.

• ServiceLambda – An AWS Lambda function that implements the cloud gem's functionality.

• ServiceLambdaConfiguration – An AWS Cloud Formation custom resource provided by Cloud Canvas
Resource Manager that configures (p. 252) the ServiceLambda resource.

To add definitions for these resources to a resource-template.json file, type the following command.

lmbr_aws cloud-gem-framework add-service-api-resources --resource-group <gem-name>

In addition to adding the resources mentioned, the add-service-api-resources command does the
following:

Version 1.8
261

https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/
http://swagger.io/
http://docs.aws.amazon.com/apigateway/latest/developerguide/create-api-using-import-export-api.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-resource-template
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-resource-definitions.html#cloud-canvas-resource-template

Lumberyard Developer Guide
Cloud Gems Framework

• Adds a swagger.json file to the cloud gem's AWS directory, if one doesn't already exist.

• Adds the ServiceAPI and ServiceLambda resources to the AccessControl resource definition's
DependsOn property. This insures that the AccessControl resource is processed by AWS Cloud
Formation after the ServiceAPI and ServiceLambda resources have been processed.

To use the service API resources that you add to a resource-template.json file, you must upload those
resources to AWS. To upload them, you can use the lmbr_aws upload-resources command or click
Upload Resources in the Resource Manager feature in Lumberyard Editor.

Custom::ServiceApi Resource

The handler for the Custom::ServiceApi Cloud Formation resource is provided by the Cloud Gems
Framework. This handler creates, updates, and deletes API Gateway REST API, operation, deployment,
and stage resources as needed.

ServiceApi resource definitions accept the following parameters:

{
 "Resources": {
 ...
 "ServiceApi": {
 "Type": "Custom::ServiceApi",
 "Properties": {
 "ServiceToken": { "Ref": "ProjectResourceHandler" },
 "ConfigurationBucket": { "Ref": "ConfigurationBucket" },
 "ConfigurationKey": { "Ref": "ConfigurationKey" },
 "CacheClusterSize": { "Ref": "ServiceApiCacheClusterSize" },
 "CacheClusterEnabled": { "Ref": "ServiceApiCacheClusterEnabled" },
 "MethodSettings": { ... },
 "SwaggerSettings": {
 "ServiceLambdaArn": { "Fn::GetAtt": ["ServiceLambda", "Arn"] }
 }
 },
 ...

ServiceToken – Identifies the Lambda function that implements the custom resource handler.

ConfigurationBucket – Identifies the bucket that contains the uploaded swagger.json file.

ConfigurationKey – Identifies the location in the bucket where the swagger.json file is uploaded.

CacheClusterSize – Provides the API Gateway cacheClusterSize value when you create or update the API
Gateway stage.

CacheClusterEnabled – Provides the API Gateway cacheClusterEnabled value when your create or update
the API Gateway stage.

MethodSettings – Not implemented.

SwaggerSettings – Provides values that you insert into the uploaded swagger.json file before it is passed
to API Gateway. For example, you can use $ServiceLambdaArn$ in the swagger.json file to insert the
value of the SwaggerSettings ServiceLambdaArn property. The following settings are automatically defined
for you:

ResourceGroupName – The name of the resource group that is defined the ServiceApi resoruce.

DeploymentName – The name of the deployment that the ServiceApi resource is in.

RoleArn – The ARN of the role that grants API Gateway the permission to invoke the ServiceLambda (or
other permissions configured by the Cloud Canvas Resource Manager Security System (p. 292)).

Region – The AWS region where the RESTful API resides.

Version 1.8
262

https://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-create/#cacheClusterSize
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-create/#cacheClusterEnabled
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

Lumberyard Developer Guide
Cloud Gems Framework

RestApiResourceName – The name to use for the API Gateway REST API resource. API Gateway takes
this value from the swagger infoObject title property (set to $RestApiResourceName$ in the default
swagger.json file). This is the resource group stack name with the ServiceApi logical resource ID
appended (usually -ServiceApi).

Operations

A cloud gem's service API can implement multiple distinct operations. You define operations in the
swagger.json file by adding operationObject instances to a pathItemObject. For each operation, you
can define the input data that the operation requires and the output data that it produces. The input data
can include path, query, and body parameters. For more information on using swagger to define APIs, see
http://swagger.io/ .

API Gateway is used to route API requests to the cloud gem's Lambda function. When you upload the
cloud gem's resources to AWS, the cloud gem's swagger.json file is processed. This processing creates
the request and response mappings that API Gateway uses to call the cloud gem's Lambda function. This
configuration is controlled by the x-amazon-cloud-canvas-lambda-dispatch (p. 267) extension objects in
the swagger.json file.

Service API operations are implemented in the ServiceLambda AWS Lambda function resource. The
code for the Lambda function comes from the cloud gem's lambda-function-code directory. The Cloud
Gems Framework provides a service request dispatch module. For more information, see Request
Execution (p. 264).

The following diagram illustrates both request and upload processing.

Topics

• Default Request Mapping (p. 263)

• Default Response Mapping (p. 264)

• Request Execution (p. 264)

Default Request Mapping

A JSON object that implements the request operation is sent to the Lambda function. The JSON object
contains the module and function name and the operation's parameters, as the following skeletal syntax
shows.

{
 "module": "<module-name>",
 "function": "<function-name>",
 "parameters": {
 "<parameter-name>": <parameter-value>,
 ...
 }
}

The default module name is derived from the operation path. A path like /player/{id}/highscores results
in a module name like player_highscores. Parameters in the path are skipped. The paths /player and
/player/{id} both map to the module name player. In this case the handler function in that module can
use the existence of an id parameter value to determine the desired behavior. The path / (and /{param})
are mapped to the module name root.

The default function name is the operation name like GET, POST, or PUT.

These defaults can be overridden by specifying the module and/or function properties of an x-amazon-
cloud-canvas-lambda-dispatch extension object. For more information, see Cloud Gems Framework
Extension Object (p. 267).

Version 1.8
263

http://swagger.io/specification/#infoObject
http://swagger.io/specification/#operationObject
http://swagger.io/specification/#pathItemObject
http://swagger.io/

Lumberyard Developer Guide
Cloud Gems Framework

Parameter names are taken from the parameter definitions in the swagger.json file. Path, query, and body
parameter types are supported.

Default Response Mapping

The Lambda function returns the value to the client in the form of a JSON object such as the following.

{
 "result":<lambda-return-value>
}

If the Lambda function exits with an error (for example, by raising an unhandled exception), it returns the
JSON object in the following format.

{
 "errorMessage":"<error-message>",
 "errorType":"<error-type>"
}

If the error message received from the Lambda function starts with the text Client Error: then an HTTP
400 response is sent to the client. The errorMessage and errorType properties received from the Lambda
function are forwarded to the client.

If the error message received from the Lambda function does not start with Client Error:, or no error
message is received at all, an HTTP 500 response is sent to the client. As a security measure, the
errorMessage returned to the client is always An internal server error has occurred, and errorType is
ServiceError. This is to avoid sending the exception message to the client. Doing so could provide
information that could allow an attacker to discover exploits in your service implementation.

In both the HTTP 400 and HTTP 500 cases, no other information (such as a stack trace) is sent to the client;
this also is a security measure.

Request Execution

The Cloud Gems Framework has built-in support for service API Lambda functions that are implemented in
Python. No built-in support is provided for Node.js or Java Lambda functions. To support these languages,
implement the Lambda function handler to look for the module and function properties on the event
object that the Lambda function provides. You also might need to override the default values generated
for the x-amazon-cloud-canvas-lambda-dispatch (p. 267) module and function properties during the
swagger.json file processing.

A service.py module file is provided for you in the service's AWS Lambda function. This module's
dispatch function uses the module and function properties of the event object to dispatch the request
to the service code that you provide. These properties are set by the request mapping that configures API
Gateway.

Place your service code in your resource group's lambda-function-code\api directory. The dispatcher
uses importlib.import_module to load the modules from that directory. If the specified function has the
@service.api decorator, the dispatcher invokes the function on that module, as in the following example.

import service

@service.api
def post(request, submission, user_id):
 ...

The first argument passed to the function is a dispatch.Request object. The request object has the
following properties.

Version 1.8
264

Lumberyard Developer Guide
Cloud Gems Framework

• event – The event object that AWS Lambda passes to the dispatch handler. The contents of the object
are determined by the request template. Additional properties added to the template through the x-
amazon-cloud-canvas-lambda-dispatch object's additional-request-template-content property are
also located here.

• context – The Python context object that AWS Lambda passes to the dispatch handler.

The request object's parameters are passed to the handler function as key word arguments (that is, by
using Python **parameters).

Error Handling

A ClientError class is provided in the errors.py file. This class extends RuntimeException and ensures
that the error message is prefixed with Client Error:. This triggers an HTTP 400 response from API
Gateway as described in Default Response Mapping (p. 264).

If other exceptions are raised during processing, a generic Internal Service Error message is sent to
the client.

Security

When you make APIs available on the internet, you must be concerned with security. A best practice is to
limit API access to only the people who require it. However, some APIs must be called by the game client.
These APIs can be called by any game player or potentially anyone on the internet.

For all APIs, consider the following:

• Use the Access Control mechanism described in the next section to limit API access to only those who
require it.

• Don't trust parameter values provided by the client. Verify that the parameter values match expectations
before you use them. Be careful when inserting parameter values into query strings that are sent to
DynamoDB or other services. For more information, see code injection.

• API Gateway automatically protects your backend systems from distributed denial-of-service (DDoS)
attacks, whether attacked with counterfeit requests (Layer 7) or SYN floods (Layer 3). However, this
does not protect from less frequent requests that do not trigger API Gateway's protections. These other
requests might still have a significant impact on your operating costs due to excessive I/O or on game
performance.

Access Control

Configuring access control for a service API involves setting three distinct sets of permissions:

1. The execute-api operation, enforced by API Gateway.

2. The Lambda Invoke function, enforced by AWS Lambda

3. Access to the cloud gem resource, enforced by the resource's AWS service (for example, Amazon
DynamoDB or Amazon S3.)

In all three cases, you use the Cloud Canvas Resource Manager Security (p. 292) system to configure
access. This involves putting Permissions metadata on the ServiceApi and ServiceLambda resource
definitions, as well as on the definitions of resources accessed by the ServiceLambda code. This is
illustrated in the following diagram:

The permissions granted by ServiceApi are described in detail in the next section. ServiceLambda
gives ServiceApi permission to invoke the Lambda function. Other resources give ServiceLambda the
permissions that the Lambda function requires.

Version 1.8
265

http://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
https://en.wikipedia.org/wiki/Code_injection
https://aws.amazon.com/api-gateway/faqs/#security
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Lumberyard Developer Guide
Cloud Gems Framework

Service Api Permissions

You can secure service APIs on an operation-by-operation basis. For example, you could give permission
to submit high scores to the game, and permission to delete fraudulent high scores to someone who
manages operations.

By default, only valid AWS IAM credentials can execute operations. This is done using swagger
security requirement and security definitions objects that are added to each operation during upload
processing (p. 267), unless the swagger operation object already defines a security object. You can
configure API Gateway to use other forms of security, or none at all, by putting security objects in swagger
object definitions in your swagger.json file.

To grant permission to execute an operation, modify your resource-template.json file to include metadata
on the ServiceApi resource definition, as in the following example.

{
 "Resources": {
 ...
 "ServiceApi": {
 "Type": "Custom::ServiceApi",
 "Properties": { ... },
 "Metadata": {
 "CloudCanvas": {
 "Permissions": [
 {
 "AbstractRole": ["ProjectOwner", "DeploymentOwner"],
 "Action": "execute-api:*",
 "ResourceSuffix": "/*"
 },
 {
 "AbstractRole": "Player",
 "Action": "execute-api:Invoke",
 "ResourceSuffix": "/*/POST/score/*"
 },
 {
 "AbstractRole": "DevOps",
 "Action": "execute-api:Invoke",
 "ResourceSuffix": "/*/DELETE/score/*"
 }
]
 }
 }
 }
 ...
}

The AbstractRole property determines who has permission to call the API. Cloud Canvas has built in
Player, ProjectOwner, and DeploymentOwner roles. You can create others as required. The abstract role
specified here is mapped to an actual AWS IAM Role using metadata on the role definitions. For details,
see Understanding the Resource Manager Security System (p. 292).

The Action and ResourceSuffix are used by the Cloud Canvas Resource Manager Access Control to
generate an AWS IAM policy document statement. This process is described in Statement Reference of
IAM Policies for Executing API in API Gateway.

The Action property determines what the permission allows someone to do. When you grant permissions
to the Player abstract role, specify the permission execute-api:Invoke. This gives the player permission
to invoke the API. When you grant permissions to the ProjectOwner and DeploymentOwner abstract roles,
specify the permission execute-api:*. This grants permission to invoke the API and manage the API's
cache. For other roles, use your own requirements to determine whether to grant a role permission to
manage the cache, invoke the API, or both.

Version 1.8
266

http://swagger.io/specification/#securityRequirementObject
http://swagger.io/specification/#securityDefinitionsObject
http://docs.aws.amazon.com/apigateway/latest/developerguide//api-gateway-control-access-using-iam-policies-to-invoke-api.html#api-gateway-calling-api-permissions
http://docs.aws.amazon.com/apigateway/latest/developerguide//api-gateway-control-access-using-iam-policies-to-invoke-api.html#api-gateway-calling-api-permissions

Lumberyard Developer Guide
Cloud Gems Framework

The access control system calculates the ARN of the API Gateway REST API resource to which the action
can be applied. The ResourceSuffix property from the Permission metadata provides only the /stage-
name/HTTP-VERB/resources-path-specifier part of the ARN described in the Statement Reference of IAM
Policies for Executing API in API Gateway.

For ServiceAPI, the stage-name is always api. You can specify either /api/... or /*/... in the
ResourceSuffix property value. A ResourceSuffix value of /api/* or /* grants permissions for all
operations on all paths of the service API.

Cloud Gems Framework Extension Object

The swagger specification allows tools like the Cloud Gems Framework and API Gateway to define
extension objects. These objects allow the swagger.json file to provide custom configuration data for the
tool. The extension object that the Cloud Gems Framework uses is x-amazon-cloud-canvas-lambda-
dispatch. This extension object simplifies the configuration of API Gateway for use with an AWS Lambda
function.

You can place the x-amazon-cloud-canvas-lambda-dispatch object in any of the following swagger
objects.

• swagger object – Sets the defaults for all paths and operations.

• path item object – Sets the defaults for all the path's operations and overrides the defaults set on the
parent swagger object.

• operation object – Sets values for the operation and overrides the defaults set on the parent path and
swagger objects.

The x-amazon-cloud-canvas-lambda-dispatch object supports the following properties:

• lambda – The ARN of the Lambda function that the operation invokes.

• module – The name of the module that defines the service function that processes the request.

• function – The name of the function that processes the request. The dispatch module in the Lambda
function uses the function property and the module property to call your code when it receives a
request. The dispatch module is described in the Upload Processing (p. 267) section that follows.

• additional-properties – An object that provides properties that are added to the generated x-amazon-
apigateway-integration object described in the next section.

• additional-request-template-content – A string that will be inserted into the generated application/
json request template described in the next section.

• additional-response-template-content – An object that specifies additional content that will be
inserted into the generated application/json response template described in the next section.
Properties named 200, 400, and 500 are supported. These correspond to the successful (200) and error
(400 and 550) responses.

See the API Gateway documentation for more information about mapping templates.

Upload Processing

Before the swagger.json file is uploaded to API Gateway, the x-amazon-cloud-canvas-lambda-dispatch
extension objects in the file are processed. This produces the x-amazon-apigateway-integration
extension objects that configure API Gateway to call your Cloud Gem's AWS Lambda function.

The x-amazon-cloud-canvas-lambda-dispatch object and processing hide a lot of the complexity, and
flexibility, of the x-amazon-apigateway-integration extension object. The Cloud Gems Framework
provides a straightforward, best-practices based mapping to the APIs that are implemented in Lambda
functions. API Gateway offers many other features that can be invaluable when you must match the an API
that was implemented elsewhere or use API Gateway as a proxy for existing backend implementations.

Version 1.8
267

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-control-access-using-iam-policies-to-invoke-api.html#api-gateway-calling-api-permissions
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-control-access-using-iam-policies-to-invoke-api.html#api-gateway-calling-api-permissions
http://swagger.io/specification/#vendorExtensions
http://swagger.io/specification/#swagger-object-14
http://swagger.io/specification/#pathItemObject
http://swagger.io/specification/#operationObject
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-swagger-extensions.html#api-gateway-swagger-extensions-integration-requestTemplates
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-swagger-extensions.html#api-gateway-swagger-extensions-integration-responseTemplates
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-swagger-extensions.html#api-gateway-swagger-extensions-integration

Lumberyard Developer Guide
Cloud Gems Framework

You can still use all the power of the x-amazon-apigateway-integration object in your cloud gem APIs. If
you include the object in the operation objects of your swagger.json file, the processing described here is
skipped for the operation.

Note
You can also use the lmbr_aws cloud-gem-framework service-api-process-swagger command
to process the swagger.json file.

At minimum, the swagger object can include an x-amazon-cloud-canvas-lambda-dispatch object with a
Lambda property. You can allow the module and function for each operation be determined automatically,
or you can use x-amazon-cloud-canvas-lambda-dispatch objects to specify them.

The default swagger.json file provided by the Cloud Gems Framework contains the following x-
amazon-cloud-canvas-lambda-dispatch object. The string $ServiceLambdaArn$ is replaced with the
ServiceLambdaArn SwaggerSettings property value provided in the ServiceApi resource definition.

"x-amazon-cloud-canvas-lambda-dispatch": {
 "lambda": "$ServiceLambdaArn$"
}

When the swagger.json file is processed, a x-amazon-apigateway-integration object is added to every
swagger operation object that does not have one. These objects have the following properties:

• type – Specify "AWS" to enable AWS Lambda function integration.

• uri – The URI of the Lambda function that is constructed by using the value of the x-amazon-cloud-
canvas-lambda-dispatch object's lambda property.

• credentials – The ARN of a role created by the Custom::ServiceApi resource. The role has a policy
constructed as described in Access Control (p. 265).

• requestTemplates – A application/json template that causes a request as described in Default
Request Mapping (p. 263). You can include additional content by using the x-amazon-cloud-canvas-
lambda-dispatch object's additional-request-template-content property. This property can be
used to pass other values, such as those defined by the $context object, to the Lambda function. The
additional request template content should start with a ',' (and for consistent formatting, should start
with ',\n ' and use ',\n ' between properties).

• responses Specifies – application/json templates for 200 (success), 400 (client error) and 500 (service
error) responses as described in Default Response Mapping (p. 264). The 400 and 500 responses are
inserted into the swagger responses object. However, you should define a 200 response that specifies a
scheme that describes the data that the operation returns.

• Additional properties as specified by the x-amazon-apigateway-integration-properties property.

Game Clients

The Cloud Gems Framework can generate game clients for your service API. These clients are usable from
C++ and Lua.

The game client can call some API operations on behalf of the player. Other operations are callable only
by other roles for use in the Cloud Gem Portal (p. 189) or other tools. By default, the client uses the AWS
credentials by assuming the Player role through an Amazon Cognito identity pool. This process, described
in detail in Player Identity (p. 296), is illustrated in the following diagram.

Generating a Game Client

Generating a game client is straightforward. To generate a game client, type the following command:

lmbr_aws cloud-gem-framework generate-service-api-code --resource-group <group>

Version 1.8
268

Lumberyard Developer Guide
Cloud Gems Framework

The generate-service-api-code command reads the swagger.json file that contains definitions for the
resource group's service API. The command creates a C++ header file that implements a Lumberyard
component. The header file is named <group>ClientComponent.h.

The directory location of the header file depends on whether <group> refers to a cloud gem or a project-
defined resource group.

Generated Component Header File Locations

Parameter Type Header File Location

cloud gem Gems\<gem>\Code\AWS\ServiceApi

resource group Code\<game>\AWS\<group>\ServiceAPI

Component Header File Accessibility

For a gem, the default location of the generated header file does not make it accessible outside of that
gem. Typically, a cloud gem's service API is private to the gem, and the gem exposes its functionality
through its own custom component. If you want to provide direct access to the cloud gem's API from other
gems or game code, you can move the generated header file into the gem's Code\Include directory.

Notes

• To use the generated client, add the generated file to your gem or project's WAF file list, and then rebuild
the gem or project.

• You can use the generated client component to invoke the API from C++ or Lua. For more information,
see Calling Your Game APIs (p. 282).

• For sample code, see Generated Game Client Code Example (p. 269).

Generated Game Client Code Example

The following client code was generated by the swagger.json file for the Message of the Day cloud gem
that is included with Lumberyard. The swagger file for the gem defines many operations. For brevity, the
example shows client code for only the following GET and PUT operations:

• GET /admin/messages?index={index}&count={count}&filter={filter}

• PUT /admin/messages/{msg_id}

For comments, see the Examining the Generated Game Client Code (p. 280) section that follows the
example.

// Example Generated Game Client
 1 #pragma once
 2 #include <AzCore/Component/Component.h>
 3 #include <AzCore/Component/Entity.h>
 4 #include <AzCore/Component/ComponentBus.h>
 5 #include <AzCore/EBus/EBus.h>
 6 #include <AzCore/Memory/SystemAllocator.h>
 7 #include <AzCore/Rtti/BehaviorContext.h>
 8 #include <AzCore/Serialization/EditContext.h>
 9 #include <AzCore/Serialization/SerializeContext.h>
 10 #include <AzCore/std/smart_ptr/scoped_ptr.h>
 11 #include <AzCore/std/string/conversions.h>
 12

Version 1.8
269

Lumberyard Developer Guide
Cloud Gems Framework

 13 #if defined (PLATFORM_SUPPORTS_AWS_NATIVE_SDK)
 14 #include <aws/core/http/HttpRequest.h>
 15 #include <aws/core/http/HttpResponse.h>
 16 #endif // (PLATFORM_SUPPORTS_AWS_NATIVE_SDK)
 17
 18 #include <LmbrAWS/ILmbrAWS.h>
 19
 20 #include <CloudGemFramework/ServiceRequestJob.h>
 21
 22 #include "StdAfx.h"
 23
 24 namespace CloudGemMessageOfTheDay {
 25 namespace ServiceAPI {
 26
 27 const char* LmbrAWS_CodeGen_PutAdminMessagesReturnType_UUID= "{ec889bb0-c329-11e6-
b753-80a589a02a3d}";
 28 const char* LmbrAWS_CodeGen_Component_UUID= "{ec8874a1-c329-11e6-
accd-80a589a02a3d}";
 29 const char* LmbrAWS_CodeGen_ResponseHandler_UUID= "{ec8874a4-c329-11e6-
a067-80a589a02a3d}";
 30 const char* LmbrAWS_CodeGen_NotificationBus1_UUID= "{ec8874a2-c329-11e6-
a661-80a589a02a3d}";
 31 const char* LmbrAWS_CodeGen_RequestBus1_UUID= "{ec8874a3-c329-11e6-
a1e9-80a589a02a3d}";
 32 const char* LmbrAWS_CodeGen_DeleteAdminMessagesReturnType_UUID= "{ec889bb1-
c329-11e6-aa94-80a589a02a3d}";
 33 const char* LmbrAWS_CodeGen_DetailedMessageList_UUID= "{ec889bb4-
c329-11e6-8650-80a589a02a3d}";
 34 const char* LmbrAWS_CodeGen_ServiceStatus_UUID= "{45baaccf-c88b-11e6-
b813-80a589a02a3d}";
 35 const char* LmbrAWS_CodeGen_DetailedMessageData_UUID= "{ec889bb3-c329-11e6-
bf48-80a589a02a3d}";
 36
 37
 38 // redefs
 39
 40
 41 bool WriteJson(CloudGemFramework::JsonWriter& writer, const int& item)
 42 {
 43 return writer.Int(item);
 44 }
 45
 46 bool WriteJson(CloudGemFramework::JsonWriter& writer, const AZStd::string& item)
 47 {
 48 return writer.String(item);
 49 }
 50
 51 bool WriteJson(CloudGemFramework::JsonWriter& writer, const float& item)
 52 {
 53 return writer.Double(static_cast<double>(item));
 54 }
 55
 56 struct PutAdminMessagesReturnType
 57 {
 58
 59 AZ_TYPE_INFO(PutAdminMessagesReturnType,
 LmbrAWS_CodeGen_PutAdminMessagesReturnType_UUID)
 60 AZ_CLASS_ALLOCATOR(PutAdminMessagesReturnType, AZ::SystemAllocator, 0)
 61
 62 bool OnJsonKey(const char* key, CloudGemFramework::JsonReader& reader);
 63 static void Reflect(AZ::ReflectContext* reflection);
 64
 65 };
 66
 67 bool WriteJson(CloudGemFramework::JsonWriter& writer, const
 PutAdminMessagesReturnType& item)

Version 1.8
270

Lumberyard Developer Guide
Cloud Gems Framework

 68 {
 69 bool ok = true;
 70 ok = ok && writer.StartObject();
 71 ok = ok && writer.EndObject();
 72 return ok;
 73 }
 74
 75 struct DetailedMessageData
 76 {
 77
 78 AZ_TYPE_INFO(DetailedMessageData, LmbrAWS_CodeGen_DetailedMessageData_UUID)
 79 AZ_CLASS_ALLOCATOR(DetailedMessageData, AZ::SystemAllocator, 0)
 80
 81 int priority;
 82 AZStd::string message;
 83 AZStd::string endTime;
 84 AZStd::string UniqueMsgID;
 85 AZStd::string startTime;
 86
 87 bool OnJsonKey(const char* key, CloudGemFramework::JsonReader& reader);
 88 static void Reflect(AZ::ReflectContext* reflection);
 89
 90 };
 91
 92 bool WriteJson(CloudGemFramework::JsonWriter& writer, const DetailedMessageData&
 item)
 93 {
 94 bool ok = true;
 95 ok = ok && writer.StartObject();
 96 ok = ok && writer.Key("priority");
 97 ok = ok && WriteJson(writer, item.priority);
 98 ok = ok && writer.Key("message");
 99 ok = ok && WriteJson(writer, item.message);
100 ok = ok && writer.Key("endTime");
101 ok = ok && WriteJson(writer, item.endTime);
102 ok = ok && writer.Key("UniqueMsgID");
103 ok = ok && WriteJson(writer, item.UniqueMsgID);
104 ok = ok && writer.Key("startTime");
105 ok = ok && WriteJson(writer, item.startTime);
106 ok = ok && writer.EndObject();
107 return ok;
108 }
109
110 using DetailedMessageListPropertyList = AZStd::vector<DetailedMessageData>;
111
112 bool WriteJson(CloudGemFramework::JsonWriter& writer, const
 DetailedMessageListPropertyList& list)
113 {
114 bool ok = true;
115 ok = ok && writer.StartArray();
116 for (auto item : list)
117 {
118 ok = ok && WriteJson(writer, item);
119 }
120 ok = ok && writer.EndArray();
121 return ok;
122 }
123
124 struct DetailedMessageList
125 {
126
127 AZ_TYPE_INFO(DetailedMessageList, LmbrAWS_CodeGen_DetailedMessageList_UUID)
128 AZ_CLASS_ALLOCATOR(DetailedMessageList, AZ::SystemAllocator, 0)
129
130 DetailedMessageListPropertyList list;
131

Version 1.8
271

Lumberyard Developer Guide
Cloud Gems Framework

132 bool OnJsonKey(const char* key, CloudGemFramework::JsonReader& reader);
133 static void Reflect(AZ::ReflectContext* reflection);
134
135 };
136
137 bool WriteJson(CloudGemFramework::JsonWriter& writer, const DetailedMessageList&
 item)
138 {
139 bool ok = true;
140 ok = ok && writer.StartObject();
141
142 ok = ok && writer.Key("list");
143 ok = ok && WriteJson(writer, item.list);
144
145 ok = ok && writer.EndObject();
146 return ok;
147 }
148
149 // Service RequestJobs
150 CLOUD_GEM_SERVICE(CloudGemMessageOfTheDay);
151
152 void Configure()
153 {
154 // Insert any necessary CloudGemFramework configuration here
155 }
156
157 class PutAdminMessagesRequest
158 : public CloudGemFramework::ServiceRequest
159 {
160 public:
161 SERVICE_REQUEST(CloudGemMessageOfTheDay, HttpMethod::HTTP_PUT, "/admin/
messages/{msg_id}");
162
163 struct Parameters
164 {
165
166 AZStd::string msg_id;
167
168 MessageData msg;
169
170
171 bool BuildRequest(CloudGemFramework::RequestBuilder& request)
172 {
173 bool ok = true;
174
175 ok = ok && request.SetPathParameter("{""msg_id""}", msg_id);
176
177
178 ok = ok && request.WriteJsonBodyParameter(*this);
179 return ok;
180 }
181
182 bool WriteJson(CloudGemFramework::JsonWriter& writer) const
183 {
184 bool ok = true;
185
186 ok = ok && CloudGemMessageOfTheDay::ServiceAPI::WriteJson(writer,
 msg);
187
188 return ok;
189 }
190 };
191
192
193 PutAdminMessagesReturnType result;
194

Version 1.8
272

Lumberyard Developer Guide
Cloud Gems Framework

195
196 Parameters parameters;
197 };
198
199
200 using PutAdminMessagesRequestJob =
 CloudGemFramework::ServiceRequestJob<PutAdminMessagesRequest>;
201
202 class GetAdminMessagesRequest
203 : public CloudGemFramework::ServiceRequest
204 {
205
206 public:
207
208 SERVICE_REQUEST(CloudGemMessageOfTheDay, HttpMethod::HTTP_GET, "/admin/
messages");
209
210 struct Parameters
211 {
212
213 int index;
214 int count;
215 AZStd::string filter;
216
217 bool BuildRequest(CloudGemFramework::RequestBuilder& request)
218 {
219 bool ok = true;
220 ok = ok && request.AddQueryParameter("index", index);
221 ok = ok && request.AddQueryParameter("count", count);
222 ok = ok && request.AddQueryParameter("filter", filter);
223 ok = ok && request.WriteJsonBodyParameter(*this);
224 return ok;
225 }
226
227 bool WriteJson(CloudGemFramework::JsonWriter& writer) const
228 {
229 bool ok = true;
230 return ok;
231 }
232
233 };
234
235 DetailedMessageList result;
236 Parameters parameters;
237
238 };
239
240 using GetAdminMessagesRequestJob =
 CloudGemFramework::ServiceRequestJob<GetAdminMessagesRequest>;
241
242 // Notification bus for this component
243 class CloudGemMessageOfTheDayNotifications
244 : public AZ::ComponentBus
245 {
246 public:
247
248 /**
249 * Sent when the request is a success
250 *
251 * Params:
252 * jsonOutput: The output receieved from the lambda call
253 * request: The AWS Lambda request object
254 */
255 virtual void OnPutAdminMessagesRequestSuccess(const PutAdminMessagesReturnType
 response) { }
256

Version 1.8
273

Lumberyard Developer Guide
Cloud Gems Framework

257 /**
258 * Sent when the request fails
259 *
260 * Params:
261 * error: The output receieved from the lambda call,
262 * could be function error or an issue with the request
263 * request: The AWS Lambda request object
264 */
265 virtual void OnPutAdminMessagesRequestError(const CloudGemFramework::Error
 error) { }
266
267 /**
268 * Sent when the request is a success
269 *
270 * Params:
271 * jsonOutput: The output receieved from the lambda call
272 * request: The AWS Lambda request object
273 */
274
275 virtual void OnGetAdminMessagesRequestSuccess(const DetailedMessageList
 response) { }
276
277 /**
278 * Sent when the request fails
279 *
280 * Params:
281 * error: The output receieved from the lambda call,
282 * could be function error or an issue with the request
283 * request: The AWS Lambda request object
284 */
285 virtual void OnGetAdminMessagesRequestError(const CloudGemFramework::Error
 error) { }
286
287 };
288
289 using CloudGemMessageOfTheDayNotificationBus =
 AZ::EBus<CloudGemMessageOfTheDayNotifications>;
290
291 class BehaviorCloudGemMessageOfTheDayNotificationBusHandler
292 : public CloudGemMessageOfTheDayNotificationBus::Handler, public
 AZ::BehaviorEBusHandler
293 {
294 public:
295 AZ_EBUS_BEHAVIOR_BINDER(BehaviorCloudGemMessageOfTheDayNotificationBusHandler,
 LmbrAWS_CodeGen_NotificationBus1_UUID, AZ::SystemAllocator
296 , OnPutAdminMessagesRequestSuccess
297 , OnPutAdminMessagesRequestError
298 , OnGetAdminMessagesRequestSuccess
299 , OnGetAdminMessagesRequestError
300);
301
302 void OnPutAdminMessagesRequestSuccess(const PutAdminMessagesReturnType
 response) override
303 {
304 Call(FN_OnPutAdminMessagesRequestSuccess, response);
305 }
306
307 void OnPutAdminMessagesRequestError(const CloudGemFramework::Error error)
 override
308 {
309 Call(FN_OnPutAdminMessagesRequestError, error);
310 }
311
312 void OnPostAdminMessagesRequestSuccess(const DetailedMessageData response)
 override
313 {

Version 1.8
274

Lumberyard Developer Guide
Cloud Gems Framework

314 Call(FN_OnPostAdminMessagesRequestSuccess, response);
315 }
316
317 void OnPostAdminMessagesRequestError(const CloudGemFramework::Error error)
 override
318 {
319 Call(FN_OnPostAdminMessagesRequestError, error);
320 }
321
322 };
323
324 class CloudGemMessageOfTheDayResponseHandler;
325
326 // Request bus for this component
327 class CloudGemMessageOfTheDayRequests
328 : public AZ::ComponentBus
329 {
330
331 public:
332
333 virtual ~CloudGemMessageOfTheDayRequests() {}
334
335 virtual void PutAdminMessages(const AZStd::string& msg_id, const MessageData&
 msg, CloudGemMessageOfTheDayResponseHandler* responseHandler) { }
336 virtual void GetAdminMessages(const int& index, const int& count, const
 AZStd::string& filter, CloudGemMessageOfTheDayResponseHandler* responseHandler) { }
337
338 };
339
340 using CloudGemMessageOfTheDayRequestBus =
 AZ::EBus<CloudGemMessageOfTheDayRequests>;
341
342 // This class is used as a parameter for all requests and throws the response on
 the CloudGemMessageOfTheDayNotificationBus
343 // Inherit from this to define custom behavior.
344 class CloudGemMessageOfTheDayResponseHandler
345 {
346 public:
347 AZ_TYPE_INFO(CloudGemMessageOfTheDayResponseHandler,
 LmbrAWS_CodeGen_ResponseHandler_UUID)
348 AZ_CLASS_ALLOCATOR(CloudGemMessageOfTheDayResponseHandler,
 AZ::SystemAllocator, 0)
349
350 virtual ~CloudGemMessageOfTheDayResponseHandler() {}
351
352 virtual void HandlePutAdminMessagesSuccess(PutAdminMessagesRequestJob* job,
 AZ::Entity* entity)
353 {
354 EBUS_EVENT_ID(entity->GetId(), CloudGemMessageOfTheDayNotificationBus,
 OnPutAdminMessagesRequestSuccess, job->result);
355 }
356
357 virtual void HandlePutAdminMessagesError(PutAdminMessagesRequestJob* job,
 AZ::Entity* entity)
358 {
359 EBUS_EVENT_ID(entity->GetId(), CloudGemMessageOfTheDayNotificationBus,
 OnPutAdminMessagesRequestError, job->error);
360 }
361
362 virtual void HandleGetAdminMessagesSuccess(GetAdminMessagesRequestJob* job,
 AZ::Entity* entity)
363 {
364 EBUS_EVENT_ID(entity->GetId(), CloudGemMessageOfTheDayNotificationBus,
 OnGetAdminMessagesRequestSuccess, job->result);
365 }
366

Version 1.8
275

Lumberyard Developer Guide
Cloud Gems Framework

367 virtual void HandleGetAdminMessagesError(GetAdminMessagesRequestJob* job,
 AZ::Entity* entity)
368 {
369 EBUS_EVENT_ID(entity->GetId(), CloudGemMessageOfTheDayNotificationBus,
 OnGetAdminMessagesRequestError, job->error);
370 }
371
372 };
373
374 class CloudGemMessageOfTheDayClientComponent
375 : public AZ::Component
376 , public CloudGemMessageOfTheDayRequestBus::Handler
377 {
378 public:
379 AZ_COMPONENT(CloudGemMessageOfTheDayClientComponent,
 LmbrAWS_CodeGen_Component_UUID);
380 virtual ~CloudGemMessageOfTheDayClientComponent() = default;
381
382 AZStd::scoped_ptr<CloudGemMessageOfTheDayResponseHandler>
 m_defaultResponseHandler;
383
384 void Init() override
385 {
386 m_defaultResponseHandler.reset(new
 CloudGemMessageOfTheDayResponseHandler());
387 CloudGemMessageOfTheDay::ServiceAPI::Configure();
388 }
389
390 void Activate() override
391 {
392 CloudGemMessageOfTheDayRequestBus::Handler::BusConnect(m_entity->GetId());
393 }
394
395 void Deactivate() override
396 {
397 CloudGemMessageOfTheDayRequestBus::Handler::BusDisconnect();
398 }
399
400 static void Reflect(AZ::ReflectContext* reflection)
401 {
402 MessageData::Reflect(reflection);
403 PutAdminMessagesReturnType::Reflect(reflection);
404 DetailedMessageData::Reflect(reflection);
405 DetailedMessageList::Reflect(reflection);
406 MessageList::Reflect(reflection);
407
408 AZ::SerializeContext* serializeContext =
 azrtti_cast<AZ::SerializeContext*>(reflection);
409 if (serializeContext)
410 {
411 // we must include any fields we want to expose to the editor or lua
 in the serialize context
412 serializeContext->Class<CloudGemMessageOfTheDayClientComponent>()
413 ->Version(1);
414
415 AZ::EditContext* editContext = serializeContext->GetEditContext();
416 if (editContext)
417 {
418 editContext-
>Class<CloudGemMessageOfTheDayClientComponent>("CloudGemMessageOfTheDayClientComponent",
 "CloudGemMessageOfTheDay Component")
419 ->ClassElement(AZ::Edit::ClassElements::EditorData, "")
420 ->Attribute(AZ::Edit::Attributes::Category, "Cloud Canvas
 Gems")
421 -
>Attribute(AZ::Edit::Attributes::AppearsInAddComponentMenu, AZ_CRC("Game"));

Version 1.8
276

Lumberyard Developer Guide
Cloud Gems Framework

422 }
423 }
424
425 AZ::BehaviorContext* behaviorContext =
 azrtti_cast<AZ::BehaviorContext*>(reflection);
426 if (behaviorContext)
427 {
428 behaviorContext-
>EBus<CloudGemMessageOfTheDayRequestBus>("CloudGemMessageOfTheDayRequestBus")
429 // one of these for each function
430 ->Event("PutAdminMessages",
 &CloudGemMessageOfTheDayRequestBus::Events::PutAdminMessages)
431 ->Event("GetAdminMessages",
 &CloudGemMessageOfTheDayRequestBus::Events::GetAdminMessages)
432 ;
433 behaviorContext-
>EBus<CloudGemMessageOfTheDayNotificationBus>("CloudGemMessageOfTheDayNotificationBus")
434 ->Handler<BehaviorCloudGemMessageOfTheDayNotificationBusHandler>()
435 ;
436 }
437 }
438
439 // Functions from the swagger definitions
440
441
442 void PutAdminMessages(const AZStd::string& msg_id, const MessageData& msg,
 CloudGemMessageOfTheDayResponseHandler* responseHandler) override
443 {
444
445
446 if (responseHandler == nullptr)
447 {
448 responseHandler = AZStd::get_pointer(m_defaultResponseHandler);
449 }
450
451 // create job
452 PutAdminMessagesRequestJob* job = PutAdminMessagesRequestJob::Create(
453 [responseHandler, this](PutAdminMessagesRequestJob* job)
454 {
455 // handle success
456 responseHandler->HandlePutAdminMessagesSuccess(job, m_entity);
457 },
458 [responseHandler, this](PutAdminMessagesRequestJob* job)
459 {
460 // handle error
461 responseHandler->HandlePutAdminMessagesError(job, m_entity);
462 }
463);
464
465 job->parameters.msg = msg;
466 job->parameters.msg_id = msg_id;
467
468 job->Start();
469
470 }
471
472 void GetAdminMessages(const int& index, const int& count, const AZStd::string&
 filter, CloudGemMessageOfTheDayResponseHandler* responseHandler) override
473 {
474
475 if (responseHandler == nullptr)
476 {
477 responseHandler = AZStd::get_pointer(m_defaultResponseHandler);
478 }
479
480 // create job

Version 1.8
277

Lumberyard Developer Guide
Cloud Gems Framework

481 GetAdminMessagesRequestJob* job = GetAdminMessagesRequestJob::Create(
482 [responseHandler, this](GetAdminMessagesRequestJob* job)
483 {
484 // handle success
485 responseHandler->HandleGetAdminMessagesSuccess(job, m_entity);
486 },
487 [responseHandler, this](GetAdminMessagesRequestJob* job)
488 {
489 // handle error
490 responseHandler->HandleGetAdminMessagesError(job, m_entity);
491 }
492);
493
494 job->parameters.index = index;
495 job->parameters.count = count;
496 job->parameters.filter = filter;
497
498 job->Start();
499
500 }
501
502 };
503
504 bool MessageData::OnJsonKey(const char* key, CloudGemFramework::JsonReader&
 reader)
505 {
506
507 if (strcmp(key, "priority") == 0) return reader.Accept(priority);
508
509 if (strcmp(key, "message") == 0) return reader.Accept(message);
510
511 if (strcmp(key, "endTime") == 0) return reader.Accept(endTime);
512
513 if (strcmp(key, "startTime") == 0) return reader.Accept(startTime);
514
515 return reader.Ignore();
516 }
517
518 void MessageData::Reflect(AZ::ReflectContext* reflection)
519 {
520 AZ::SerializeContext* serializeContext =
 azrtti_cast<AZ::SerializeContext*>(reflection);
521
522 if (serializeContext)
523 {
524 serializeContext->Class<MessageData>()
525 ->Version(1);
526 }
527
528 AZ::BehaviorContext* behaviorContext =
 azrtti_cast<AZ::BehaviorContext*>(reflection);
529 if (behaviorContext)
530 {
531 behaviorContext->Class<MessageData>("CloudGemMessageOfTheDay_MessageData")
532 ->Attribute(AZ::Script::Attributes::Storage,
 AZ::Script::Attributes::StorageType::Value)
533
534 ->Property("priority", BehaviorValueProperty(&MessageData::priority))
535
536 ->Property("message", BehaviorValueProperty(&MessageData::message))
537
538 ->Property("endTime", BehaviorValueProperty(&MessageData::endTime))
539
540 ->Property("startTime",
 BehaviorValueProperty(&MessageData::startTime))
541

Version 1.8
278

Lumberyard Developer Guide
Cloud Gems Framework

542 ;
543 }
544 }
545
546 bool PutAdminMessagesReturnType::OnJsonKey(const char* key,
 CloudGemFramework::JsonReader& reader)
547 {
548 return reader.Ignore();
549 }
550
551 void PutAdminMessagesReturnType::Reflect(AZ::ReflectContext* reflection)
552 {
553 AZ::SerializeContext* serializeContext =
 azrtti_cast<AZ::SerializeContext*>(reflection);
554
555 if (serializeContext)
556 {
557 serializeContext->Class<PutAdminMessagesReturnType>()
558 ->Version(1);
559 }
560
561 AZ::BehaviorContext* behaviorContext =
 azrtti_cast<AZ::BehaviorContext*>(reflection);
562 if (behaviorContext)
563 {
564 behaviorContext-
>Class<PutAdminMessagesReturnType>("CloudGemMessageOfTheDay_PutAdminMessagesReturnType")
565 ->Attribute(AZ::Script::Attributes::Storage,
 AZ::Script::Attributes::StorageType::Value)
566
567 ;
568 }
569 }
570
571 bool DetailedMessageData::OnJsonKey(const char* key,
 CloudGemFramework::JsonReader& reader)
572 {
573 if (strcmp(key, "priority") == 0) return reader.Accept(priority);
574 if (strcmp(key, "message") == 0) return reader.Accept(message);
575 if (strcmp(key, "endTime") == 0) return reader.Accept(endTime);
576 if (strcmp(key, "UniqueMsgID") == 0) return reader.Accept(UniqueMsgID);
577 if (strcmp(key, "startTime") == 0) return reader.Accept(startTime);
578 return reader.Ignore();
579 }
580
581 void DetailedMessageData::Reflect(AZ::ReflectContext* reflection)
582 {
583
584 AZ::SerializeContext* serializeContext =
 azrtti_cast<AZ::SerializeContext*>(reflection);
585
586 if (serializeContext)
587 {
588 serializeContext->Class<DetailedMessageData>()->Version(1);
589 }
590
591 AZ::BehaviorContext* behaviorContext =
 azrtti_cast<AZ::BehaviorContext*>(reflection);
592 if (behaviorContext)
593 {
594 behaviorContext-
>Class<DetailedMessageData>("CloudGemMessageOfTheDay_DetailedMessageData")
595 ->Attribute(AZ::Script::Attributes::Storage,
 AZ::Script::Attributes::StorageType::Value)
596 ->Property("priority",
 BehaviorValueProperty(&DetailedMessageData::priority))

Version 1.8
279

Lumberyard Developer Guide
Cloud Gems Framework

597 ->Property("message",
 BehaviorValueProperty(&DetailedMessageData::message))
598 ->Property("endTime",
 BehaviorValueProperty(&DetailedMessageData::endTime))
599 ->Property("UniqueMsgID",
 BehaviorValueProperty(&DetailedMessageData::UniqueMsgID))
600 ->Property("startTime",
 BehaviorValueProperty(&DetailedMessageData::startTime))
601 ;
602 }
603
604 }
605
606 bool DetailedMessageList::OnJsonKey(const char* key,
 CloudGemFramework::JsonReader& reader)
607 {
608 if (strcmp(key, "list") == 0) return reader.Accept(list);
609 return reader.Ignore();
610 }
611
612 void DetailedMessageList::Reflect(AZ::ReflectContext* reflection)
613 {
614
615 AZ::SerializeContext* serializeContext =
 azrtti_cast<AZ::SerializeContext*>(reflection);
616
617 if (serializeContext)
618 {
619 serializeContext->Class<DetailedMessageList>()->Version(1);
620 }
621
622 AZ::BehaviorContext* behaviorContext =
 azrtti_cast<AZ::BehaviorContext*>(reflection);
623 if (behaviorContext)
624 {
625 behaviorContext-
>Class<DetailedMessageList>("CloudGemMessageOfTheDay_DetailedMessageList")
626 ->Attribute(AZ::Script::Attributes::Storage,
 AZ::Script::Attributes::StorageType::Value)
627 ->Property("list", BehaviorValueProperty(&DetailedMessageList::list))
628 ;
629 }
630
631 }
632
633 } // ServiceAPI
634 } // CloudGemMessageOfTheDay

Examining the Generated Game Client Code

The following table provides additional information for the generated game client code example in the
previous section. The line numbers indicate the location in the code that the comments refer to.

Line Number Description

24,25 The C++ namespace for the API. This is always <resource-group-
name>::ServiceApi.

56, 75, 110, 124 The PutAdminMessageReturnType struct contains the PUT operation's
return data as defined by the swagger file. In this case, it is an empty
object and has no properties.

Version 1.8
280

Lumberyard Developer Guide
Cloud Gems Framework

Line Number Description

67, 92, 112, 137 The WriteJson method is generated to handle the serialization of
PutAdminMessageReturnType objects to JSON text format. JSON format
is required for the data to be sent to the service. A similar function is
generated for each of the type definitions in the swagger.json file.

150 The CLOUD_GEM_SERVICE macro defines a class that provides information
that is common to all of the service's requests.

152 The Configure function is called when the generated component is
initialized. You can add code to this function to change the default
configuration for the service. For example, the following code increases
the timeout for GetServiceStatus requests.

void Configure()
{
 GetServiceStatusRequestJob::GetDefaultConfig()-
>requestTimeoutMs = 20000;
}

Note
If you regenerate the client, your changes to the Configure
method are lost.

157, 202 A Request class such as PutAdminMessagesRequest is generated for
each of the operations defined in the swagger.json file. This class
encapsulates the HTTP method and path that are used to make the
request. The Parameters struct in the class defines the fields for each of
the request's parameters specified by the swagger file.

200, 240 The Lumberyard job system executes API requests asynchronously.
This work is performed by the CloudGemFramework::ServiceRequestJob
class and specialized by the PutAdminMessagesRequest class declared
previously. The C++ using statement creates an alias for that type.

243 Defines the CloudGemMessageOfTheDayNotifications EBus that signals
when a request has completed. Both a success and an error notification
method are defined for each operation specified in the swagger.json
file.

291 Defines a handler
(BehaviorCloudGemMessageOfTheDayNotificationBusHandler) for the
notification EBus that forwards notifications to Lua code.

340 Defines an EBus (CloudGemMessageOfTheDayRequestBus) that initiates
requests.

344 Defines a class (CloudGemMessageOfTheDayResponseHandler) that
handles responses. By default, responses are dispatched to the
notification EBus previously defined.

374 Defines a client component
(CloudGemMessageOfTheDayClientComponent) that uses the using
the request job classes PutAdminMessagesRequest (line 157) and
GetAdminMessagesRequest (line 202) to implement the request EBus
handler BehaviorCloudGemMessageOfTheDayNotificationBusHandler
(line 291).

Version 1.8
281

Lumberyard Developer Guide
Cloud Gems Framework

Calling Your Game APIs

To call your APIs, you can use C++, the client component, a request job, or Lua.

Topics

• Calling APIs From C++ (p. 282)

• Using Lua to Call APIs (p. 284)

Calling APIs From C++

To invoke a service API from C++, you can use an EBus event handler from the generated client
component. You can also use the generated service request job class directly. If you want to make
requests from a component, consider using the client component. If you want to perform a sequence of
operations, consider using the job class.

Using the Client Component to Call APIs

The following example from the CloudGemLeaderboard service API shows a component that invokes
GetServiceStatusRequestJob. There are two ways to receive the request's response:

1. Use an object that inherits from the service's response handler.

2. Connect to the generated component's notification bus.

The example shows both methods.

// Sample API Caller
#include <AzCore/Component/Component.h>
#include <AzCore/Component/Entity.h>
#include <AzCore/Serialization/EditContext.h>
#include <AzCore/Serialization/SerializeContext.h>
#include <AzCore/EBus/EBus.h>

#include <AWS/ServiceAPI/CloudGemLeaderboardClientComponent.h>
#include <CloudGemLeaderboard/CloudGemLeaderboardBus.h>
class SampleResponseHandler
 : public CloudGemLeaderboard::ServiceAPI::CloudGemLeaderboardResponseHandler
{
public:
 void
 HandleGetServiceStatusSuccess(CloudGemLeaderboard::ServiceAPI::GetServiceStatusRequestJob*
 job, AZ::Entity* entity) override
 {
 //look at job->result for response data
 AZ_Printf("Got response: %s", job->result.status.c_str());
 }

 void
 HandleGetServiceStatusError(CloudGemLeaderboard::ServiceAPI::GetServiceStatusRequestJob*
 job, AZ::Entity* entity) override
 {
 //look at job->error for error data
 }
};

class SampleAPICallerComponent
 : public AZ::Component
 , public CloudGemLeaderboard::ServiceAPI::CloudGemLeaderboardNotificationBus::Handler
{
public:
 SampleResponseHandler* m_responseHandler;

Version 1.8
282

Lumberyard Developer Guide
Cloud Gems Framework

 AZ_COMPONENT(SampleAPICallerComponent, "{aedd6408-e2f0-4250-a181-b0ef41085a94}");
 virtual ~SampleAPICallerComponent() = default;
 static void Reflect(AZ::ReflectContext* reflection)
 {
 AZ::SerializeContext* serializeContext =
 azrtti_cast<AZ::SerializeContext*>(reflection);
 if (serializeContext)
 {
 // we must include any fields we want to expose to the editor or lua in the
 serialize context
 serializeContext->Class<SampleAPICallerComponent>()
 ->Version(1);

 AZ::EditContext* editContext = serializeContext->GetEditContext();
 if (editContext)
 {
 editContext->Class<SampleAPICallerComponent>("SampleAPICallerComponent",
 "Component to call CloudGemLeaderboard GetServiceStatus")
 ->ClassElement(AZ::Edit::ClassElements::EditorData, "")
 ->Attribute(AZ::Edit::Attributes::AppearsInAddComponentMenu,
 AZ_CRC("Game"));
 }
 }
 }
 void Activate() override
 {

 CloudGemLeaderboard::ServiceAPI::CloudGemLeaderboardNotificationBus::Handler::BusConnect(m_entity-
>GetId());
 CallGetServiceStatus();
 }

 void CallGetServiceStatus()
 {
 // To get the response on the CloudGemLeaderboardNotificationBus
 EBUS_EVENT_ID(m_entity->GetId(),
 CloudGemLeaderboard::ServiceAPI::CloudGemLeaderboardRequestBus, GetServiceStatus,
 nullptr);
 // To get the response in a special response handler
 m_responseHandler = new SampleResponseHandler();
 EBUS_EVENT_ID(m_entity->GetId(),
 CloudGemLeaderboard::ServiceAPI::CloudGemLeaderboardRequestBus, GetServiceStatus,
 m_responseHandler);
 }

 void OnGetServiceStatusRequestSuccess(const
 CloudGemLeaderboard::ServiceAPI::ServiceStatus response) override
 {
 // handle success
 AZ_Printf("Got response: %s", response.status.c_str());
 }

 void OnGetServiceStatusRequestError(const CloudGemFramework::Error error) override
 {
 // handle failure
 }

 void Deactivate() override
 {

 CloudGemLeaderboard::ServiceAPI::CloudGemLeaderboardNotificationBus::Handler::BusDisconnect();
 delete m_responseHandler;
 }
};

Version 1.8
283

Lumberyard Developer Guide
Cloud Gems Framework

Using the Request Job to Call APIs

In some situations you might want more control over how your background jobs are executed. For example,
you might want to change the thread pool that certain requests use or perform multiple requests on a
background thread. You can use the generated request job classes directly to make these changes.

In its simplest form, you can use the request job class in the following example. This is the same code that
is in line 452 of the generated request component.

PutAdminMessagesRequestJob* job = PutAdminMessagesRequestJob::Create(
 [responseHandler, this](PutAdminMessagesRequestJob* job)
 {
 // handle success
 responseHandler->HandlePutAdminMessagesSuccess(job, m_entity);
 },
 [responseHandler, this](PutAdminMessagesRequestJob* job)
 {
 // handle error
 responseHandler->HandlePutAdminMessagesError(job, m_entity);
 }
);

job->parameters.msg = msg;
job->parameters.msg_id = msg_id;

job->Start();

To learn about other ways to use the request job class, explore the ServiceApiRequestJob class definition
and see Running AWS API Jobs Using the Cloud Gems Framework (p. 258).

Using Lua to Call APIs

The following code example shows how to call service APIs from Lua script.

-- Service status getter
local leaderboardstatusgetter = {
 Properties = {
 }
}

function leaderboardstatusgetter:OnActivate()
 self.notificationHandler = CloudGemLeaderboardNotificationBus.Connect(self,
 self.entityId)
 CloudGemLeaderboardRequestBus.Event.GetServiceStatus(self.entityId, nil)
end

function leaderboardstatusgetter:OnDeactivate()
 self.notificationHandler:Disconnect()
end

function leaderboardstatusgetter:OnGetServiceStatusRequestSuccess(response)
 Debug.Log(response.status)
end

function leaderboardstatusgetter:OnGetServiceStatusRequestError(error)
 Debug.Log(error.message)
end

return leaderboardstatusgetter

Version 1.8
284

Lumberyard Developer Guide
Administering Cloud Canvas

Publishing Your APIs

Service APIs are implemented by API Gateway, which has an open source serverless web application that
you can use to create your own developer portal. A developer portal on API Gateway can enable you to do
the following:

• List your APIs in catalog form.

• Allow developers to sign up.

• Display documentation that helps developers understand your API.

• Let developers test your API and provide feedback.

• Grow a developer ecosystem.

• Monetize your APIs and grow API product revenue.

For more information, see Generate Your Own API Gateway Developer Portal.

Administering Cloud Canvas
This section provides information for administering your Lumberyard project's AWS account and its use of
the AWS cloud.

Topics

• Setting Up a Project to Use Resource Manager (p. 285)

• Working with Deployments (p. 287)

• Understanding the Resource Manager Security System (p. 292)

Setting Up a Project to Use Resource Manager
After initializing Cloud Canvas Resource Manager so that your Amazon Lumberyard project can use AWS,
you can use Resource Manager to configure the stacks for your project.

Topics

• Initializing Cloud Canvas Resource Manager (p. 285)

• Working with Project Stacks (p. 286)

Initializing Cloud Canvas Resource Manager

When you perform an operation that requires an AWS account, and no account has been associated with
your Lumberyard project, the Initialize Cloud Canvas Resource Manager dialog prompts you for the
required information.

To initialize Cloud Canvas Resource Manager

1. When prompted to initialize the Cloud Canvas Resource Manager, provide the following information:

• For Project stack name, type the name of an AWS CloudFormation stack that you will create. The
stack will contain the AWS resources that Cloud Canvas Resource Manager will use for your
project. By default, Lumberyard uses the name of your project for the stack name. A stack with the
name that you specify must not already exist in your AWS account for the region you select.

Version 1.8
285

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/blogs/compute/generate-your-own-api-gateway-developer-portal/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#d0e3545

Lumberyard Developer Guide
Setting Up a Project to Use Resource Manager

• For AWS Credentials, select from the list of available profiles or create a new one. If you have no
AWS profiles on your computer, you are prompted for an AWS secret key and an AWS access key.
You can also edit an existing one.

In order to use Lumberyard with AWS, you must provide administrative credentials for your AWS
account either directly, or through an AWS profile. For information on how to get these credentials
from AWS, see the Getting Started with Cloud Canvas Tutorial.

• For AWS region, specify the AWS data center where your resources will reside. You must choose
a region that supports all the AWS services that your game uses. The region you choose must also
support the Amazon Cognito service, which Lumberyard uses to establish player identity, and AWS
CloudFormation, which Lumberyard uses to create and manage resources. For more information
about the capabilities of different regions, see AWS Regions and Endpoints.

2. Click Create to start the initialization process. In the navigation tree, the Working with Project
Stacks (p. 286) node is selected, and in the detail pane, the Viewing the Cloud Canvas Progress
Log (p. 222) shows the progress of the initialization.

Working with Project Stacks

When you select the Project stack node in the Cloud Canvas Resource Manager navigation pane, the
detail pane shows information about the AWS CloudFormation stack that Cloud Canvas is using.

Note the following:

• If you select a project stack node and no AWS profile is configured, Lumberyard prompts you to provide
one. A profile is required for Lumberyard to display the status of your project’s resources. For more
information, see Managing Cloud Canvas Profiles (p. 188).

• If you select the Project stack node when the project has not been initialized for use with Cloud Canvas,
Lumberyard prompts you to initialize the project and create a project stack. For more information, see
Initializing Cloud Canvas Resource Manager (p. 285).

Project Stack Status Table

The Project stack status table shows the status of the AWS CloudFormation stack that contains the
resources used by your project's resource groups.

This table has the following columns:

Status – The status of the AWS CloudFormation stack. See Understanding Resource Status
Descriptions (p. 219) for a description of the values this column may have. To see additional status
information, pause your mouse on the status indicator.

Created – The time the stack was created.

Updated – The time the stack status was updated.

ID - A truncated version of the AWS ID for the stack. To see the full ID, pause your mouse on the truncated
ID.

Upload Resources

Click Upload resources to start the process of modifying, creating, or deleting resources in AWS so that
they match your local definitions of them.

Stack Resources Table

The Stack resources table shows the status of the resources that your project is using.

Version 1.8
286

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
http://docs.aws.amazon.com/lumberyard/latest/developerguide/cloud-canvas-tutorial.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Lumberyard Developer Guide
Working with Deployments

This table has the following columns:

Resource Name – The logical name of the resource. You can reference the resource in Flow Graph nodes
by adding this resource name to the resource group name.

Type – The type of the resource (for example, a Lambda function, Amazon S3 bucket, or a custom
resource).

Status – The current condition of the resource. For a description of the possible status values, see
Understanding Resource Status Descriptions (p. 219). To see additional status information, pause your
mouse on the status.

Timestamp – The time of the most recent change.

ID - A truncated version of the AWS ID for the stack. To see the full ID, pause your mouse on the truncated
ID.

Working with Deployments
A deployment is an independent copy of the AWS resources that your game uses. Deployments are useful
for maintaining a safe separation among game lifecycle phases such as development, test, and production.
In the resource manager navigation pane, the Deployments node shows you the status of your project’s
deployments. You can also use it to create a new deployment.

Note: If the Deployments node is selected when no AWS profile is configured, Lumberyard prompts you to
provide a profile. The status of the project’s deployments cannot be displayed unless a profile is provided.
For more information, see Managing Cloud Canvas Profiles (p. 188).

Create Deployment

Click Create deployment to start the creation of a deployment:

When uploading resources for the first time, you may see this version of the dialog:

Provide a name for Deployment name. Lumberyard appends this name to the project stack name to create
an AWS CloudFormation stack for the deployment.

To start the deployment creation process, click OK. In the resource manager navigation pane, a node for
the deployment appears under Deployments. In the detail pane, the Viewing the Cloud Canvas Progress
Log (p. 222) provides details about the creation process.

Deployment Status Table

The Deployment status table shows the status of the AWS CloudFormation stack for each deployment.
Deployment shows the deployment name. For descriptions of the remaining fields in this table, see Stack
Resources Table (p. 286) in the Working with Project Stacks (p. 286) section.

Individual Deployment Nodes

The child nodes of the Deployment node each represent one of the Lumberyard project’s deployments.
When a Deployment node is selected, the detail pane shows the current status of the selected
deployment.

Note
If a Deployment node is selected when no AWS profile is configured, Lumberyard prompts you to
provide a profile. The status of the project’s deployments cannot be displayed unless a profile is
provided. For more information, see Managing Cloud Canvas Profiles (p. 188).

Version 1.8
287

http://docs.aws.amazon.com/lumberyard/latest/userguide/fg-editor-intro.html

Lumberyard Developer Guide
Working with Deployments

Individual Deployment Status Table

The <Deployment Name> deployment status table shows the status of the AWS CloudFormation
stack for the selected deployment. For descriptions of the contents of this table, see Project Stack Status
Table (p. 286) in the Working with Project Stacks (p. 286) section.

Upload All Resources

Click Upload all resources to start the process of modifying, creating, or deleting resources in the current
AWS deployment so that they match your local definitions for all resource groups.

Delete Deployment

Click Delete deployment to start the process of deleting the deployment’s resources from AWS. The
resources defined by all resource groups will be deleted.

For more information about deleting deployments, see Deleting Cloud Canvas Deployments and Their
Resources (p. 291).

Stack Resources Table

The Stack resources table shows the status of each of the resources defined by all the resource
groups for the selected deployment. For descriptions of the fields in this table, see Stack Resources
Table (p. 286) in the Working with Project Stacks (p. 286) section.

Topics

• Making a Cloud Canvas Deployment Active (p. 288)

• Testing Different Mappings (p. 289)

• Using Protected Deployments (p. 290)

• Deleting Cloud Canvas Deployments and Their Resources (p. 291)

Making a Cloud Canvas Deployment Active

You can select the deployment that you want Lumberyard Editor to consider active. The active deployment
is the deployment that you work with in Lumberyard Editor. Lumberyard Editor uses the active deployment's
resources when you launch your game. When you select the Working with Resource Groups (p. 222)
node or an Individual Resource Group (p. 223) node in the Cloud Canvas Resource Manager
navigation pane, the status information that appears corresponds to the active deployment.

You can also select the deployment that you want to be active by default for all team members.

Note
To select a deployment, you must have initialized Cloud Canvas Resource Manager to work
with your AWS account and created a deployment. For more information, see Initializing Cloud
Canvas Resource Manager (p. 285) and Create Deployment (p. 287).

Making a Deployment Active

You have several ways to make a deployment active in Cloud Canvas Resource Manager.

To make a deployment active

• To make a deployment active, do one of the following:

• In Lumberyard Editor, click AWS, Cloud Canvas, Select a deployment.

Version 1.8
288

Lumberyard Developer Guide
Working with Deployments

• In the Cloud Canvas Resource Manager toolbar, click the name of the current deployment, or click
(none) if none is configured:

When prompted, choose the deployment that you want to make active:

One or more of the deployments may be marked protected. For more information, see Using
Protected Deployments (p. 290).

• In the Cloud Canvas Resource Manager navigation pane, right-click the deployment that you want
to make active, and then click Make active deployment:

Making a Deployment the Default

You can use the Cloud Canvas Resource Manager to make a deployment the default.

To make a deployment active by default for all team members

1. In Lumberyard Editor, click AWS, Cloud Canvas, Cloud Canvas Resource Manager.

2. In the Cloud Canvas configuration navigation tree, expand Administration (advanced), and then
expand Deployments.

3. Right-click the deployment that you want to make the default, and then click Make default
deployment:

To use the command line to make a deployment the default

• To use the command line to make a deployment the default, type the following command:

lmbr_aws default-deployment --set <deployment name>

Testing Different Mappings

To test your client with different Cloud Canvas resource deployments, you can export mappings by using
Cloud Canvas Resource Manager or the lmbr_aws command line.

To export a mapping from Cloud Canvas Resource Manager

• In Resource Manager, do one of the following:

• Left click a deployment and click Export Mapping in the main window.

• Right click the name of a deployment name the list, and then select Export Mapping from the
context menu.

The following image shows both options.

To exporting a mapping from the command line

• Type the following command, where <name> is the name of your deployment.

lmbr_aws update-mappings --deployment <name>

The mapping file for the specified deployment is created in the <project_directory>\Config directory and
has the format <deployment_name>.awsLogicalMappings.json.

Version 1.8
289

Lumberyard Developer Guide
Working with Deployments

Tip
Using the command line to export mappings makes it easy for you to create scripts for testing or
development.

Selecting a Deployment with a PC Launcher

After you have exported one or more mappings, you can choose the mapping to use when you run a game
launcher such as the one at dev\Bin64\SamplesProjectLauncher.exe.

To direct the launcher to use a specific deployment, use the command line option
cc_override_resource_map, as in the following example.

SamplesProjectLauncher.exe -cc_override_resource_map Config\dev.awsLogicalMappings.json

The argument for the cc_override_resource_map parameter specifies the mapping file that you want to
use.

If you have exported a single mapping file to the launcher, the launcher uses that mapping file by default.
If you have exported multiple mapping files to the launcher, you must select a mapping by using the
cc_override_resource_map parameter. If you don't specify a mapping after multiple mappings have been
exported, the launcher gives an error message, and no mapping is loaded.

Using Protected Deployments

You can use Cloud Canvas to mark specific deployments as protected. Protected status makes it more
difficult for users (typically, testers or developers) to inadvertently connect a development game client to
live resources.

When a user starts a protected game, a message box notifies the user that he or she is attempting to use
a protected deployment. The user is given the option to not connect before any potentially harmful data is
transmitted.

The protection feature purposely uses a message box that "breaks" automation. If the scripts that run
tests are configured to use a protected deployment, the Lumberyard client will not continue without human
intervention.

When Protected Deployments Are Detected

When a game is run from Lumberyard Editor, protection is always detected. When a game is run from a
Windows launcher, protection is detected only when the launcher is running in debug mode.

Marking a Deployment as Protected

Currently, you must set the protection from the lmbr_aws command line tool by using the protect-
deployment command.

The protect-deployment command uses the following parameters.

--set <deployment_name> – Specifies that the deployment is protected.

--clear <deployment_name> – Specifies the deployment is not protected.

--show - Displays a list of currently protected deployments.

To display the protected status of deployments, you can also use either the list-deployments or list-
mappings command.

Version 1.8
290

Lumberyard Developer Guide
Working with Deployments

Viewing Protected Status in Cloud Canvas Resource Manager

In Cloud Canvas Resource Manager, you can view, but not change, the status of protected deployments.
The ability to change the protected status of deployments from Lumberyard Editor is planned for a future
release.

Note
Setting a deployment to protected does not prevent you from deploying or deleting resources
by using Cloud Canvas Resource Manager or the lmbr_aws command line tool; it only enables
the warning functionality. For this reason, be careful not to make unnecessary changes to critical
deployments. A more comprehensive model for protecting deployments is planned for a future
version of Lumberyard.

Deleting Cloud Canvas Deployments and Their Resources

To remove Cloud Canvas functionality from your Lumberyard project and the AWS resources related to it,
you can use Cloud Canvas Resource Manager or the Cloud Canvas command line.

Warning
Only administrators should perform these actions. If you remove all AWS resources managed by
Cloud Canvas for your Lumberyard project, the players of your game will not be able to access any
of the Cloud Canvas resource groups that implement your game's cloud connected features.

To use Cloud Canvas Resource Manager to delete Cloud Canvas deployments and their
resources

1. If you have checked Lumberyard into source control, ensure that the <root>\<game>\AWS\project-
settings.json file has been checked out and is writeable.

2. In Lumberyard Editor, choose AWS, Cloud Canvas, Cloud Canvas Resource Manager.

3. In the Cloud Canvas configuration navigation pane, expand Administration (advanced), and then
expand Deployments. The list of the deployments in the project appears.

4. Select the deployment to delete and click Delete deployment.

5. When prompted to confirm, click Yes to start the process of deleting the deployment’s resources from
AWS. The process might take a few minutes.

6. To remove all of the project's resources from AWS, follow the same steps to delete each of the
project’s deployments.

To use the command line to delete Cloud Canvas deployments and their resources

1. If you have checked Lumberyard into source control, ensure that the <root>\<game>\AWS\project-
settings.json file has been checked out and is writeable.

2. Open a command line prompt and change to your the Lumberyard \dev directory.

3. Determine the project’s deployment names by typing the following command:

lmbr_aws list-deployments

4. Type the following command for each of the deployments that you want to delete:

lmbr_aws delete-deployment --deployment <deployment name>

Note
To remove all Cloud Canvas functionality from your project, use the delete-deployment
command to delete all of deployments that were listed by list-deployments. Then remove
the project stack as described in the step that follows.

Version 1.8
291

Lumberyard Developer Guide
Understanding the Resource Manager Security System

5. After you have deleted all deployments, you can delete the resources that Cloud Canvas uses to
manage your project by typing the following command:

lmbr_aws delete-project-stack

This removes all AWS resources that are related to your Cloud Canvas project.

Understanding the Resource Manager Security
System
Cloud Canvas Resource Manager provides a robust set of features for securing your Amazon Lumberyard
project and its cloud-connected resources. You can control the access to project resources of team
members, players, Lambda functions, and specify other custom access control configuration for your
project.

Topics

• Setting Access Permissions (p. 292)

• Access Control and Player Identity in Depth (p. 294)

Setting Access Permissions

Setting access permissions correctly is key to ensuring that Cloud Canvas Resource Manager manages
your project's cloud-connected features securely.

Access Scenarios and ProjectResourceHandler

Cloud Canvas Resource Manager requires that the following access scenarios be supported. Additional
roles with more nuanced permissions can be created, but the table below describes the core access
requirements.

A project team member must be able to create resource group stacks that contain arbitrary resources, but
not be able to create or modify roles and policies. This introduces a significant complexity. Some resources
like Lambda functions require that the developer also provide a role that is assumed by the resource. The
developer must be able to create such roles and manage their policies. However, granting IAM permissions
such as these directly to team members would effectively make them administrators.

To enable the required functionality while still limiting what a project team member can do directly, Cloud
Canvas Resource Manager uses AWS CloudFormation custom resources. The custom resource handlers
for Cloud Canvas Resource Manager are implemented in the ProjectResourceHandler Lambda function
in the project stack. The Lambda function's execution role (ProjectResourceHandlerExecution) grants
permissions that Cloud Canvas Resource Manager requires. These permissions are not granted to project
team members.

For example, the Custom::AccessControl resource, described in detail later in this document, is
responsible for managing inline policies on various roles. It can perform these actions on the project team
member's behalf. However, the Custom::AccessControl handler also must know what to put into these
policies. It can't trust the project team member to provide this information directly. Instead, it must construct
the information from trusted sources. To do this, AccessControl uses metadata on resource definitions
from Cloud Formation. It also constructs ARNs for the stack's resources identified by Cloud Formation. In
this way, only a user with permission to update the stack can influence the policies that are constructed for
the resources in that stack.

Version 1.8
292

Lumberyard Developer Guide
Understanding the Resource Manager Security System

Access Control

As described above, Cloud Canvas Resource Manager security depends on IAM Roles and the credentials
used from assuming such roles. The Access Scenarios and ProjectResourceHandler (p. 292) section
earlier in this topic explains why Cloud Canvas Resource Manager has the responsibility of managing the
inline policies attached to these roles.

This section describes the data used by the Custom::AccessControl resource handler to configure the
project's roles. A Custom::AccessControl resource must be defined in the following templates:

• project-template.json – Causes policies on the roles defined in the project-template.json file to
be updated. These roles can provide access to any resource defined in any resource groups across all
deployments.

• deployment-access-template.json –Causes policies on the roles defined in the deployment-access-
template.json file to be updated. These roles can provide access to any resource in any resource of a
given deployment.

• resource-group-template.json –Causes policies on the roles defined in the project-template.json
and deployment-access-template.json files to be updated. Only permissions for the resource defined
in the resource-group-template.json file are updated. For roles defined in the deployment-access-
template.json file, only the instances of those roles for the deployment that contains the resource group
stack are updated.

This process is illistrated in the following diagram. The diagram shows the metadata that is read and roles
that are updated when a resource group stack, deployment access stack, or project stack is updated.

Custom::AccessControl Resource Definitions

The Custom::AccessControl resource supports the following properties:

• ConfigurationBucket - The name of the project's configuration bucket. This property must be provided.

• ConfigurationKey - Identifies the location in the configuration bucket where data for the stack operation
is stored. However, the custom resource handler depends on this value changing on each update.
Property changes such as this cause AWS CloudFormation to invoke the custom resource handler on
each stack operation.

• ServiceToken - Identifies the Lambda function that is invoked for the custom resource. This should
be the project global ProjectResourceHandler Lambda function that is defined in the project-
template.json file.

The DependsOn attribute of the Custom::AccessControl resource definition must list the following
resources.

• All the resources in the project-template.json, deployment-access-template.json, or resource-
group-template.json files that provide permissions metadata.

• All the AWS::IAM::Role resources that have RoleMapping metadata.

• Any custom resources that create implicit roles, such as Custom::LambdaConfiguration and
Custom::ServiceApi resources.

When you use the AWS CLI to manage roles and permissions, these resources are listed for you. However,
if you edit these files yourself, it is important that you maintain these dependencies. Without these
dependencies, the Custom::AccessControl resource might be updated before the other resources have
been updated. If this occurs, the Custom::AccessControl no longer has access to the latest metadata from
the resources, and the changes that were intended might not be made.

Version 1.8
293

Lumberyard Developer Guide
Understanding the Resource Manager Security System

Access Control and Player Identity in Depth

Cloud Canvas helps you control access to your game's AWS resources in three ways:

• Project Access Control (p. 294)

• Player Access Control (p. 294)

• Lambda Function Access Control (p. 295)

Project Access Control

It is often necessary to limit project team member access to the project's resources. This can help prevent
different development teams from accidentally updating the resources being used by another development
team. It is also necessary to prevent project team members from accessing the resources used by the
released version of the game, both to prevent accidental changes that could impact the operation of
the game but in some cases to also prevent project team members from accessing player's personal
information, such as e-mail addresses, which may be stored in those resources.

The default deployment-access-template.json (p. 234) file provided by Cloud Canvas defines an
OwnerPolicy Resource (p. 239) IAM managed policy resource, which allows a deployment AWS
CloudFormation stack to be updated, including creating, updating, and deleting the resources defined by
the project's resource groups. This template also defines an Owner Resource (p. 239). IAM role resource
that has the OwnerPolicy attached.

If desired, the OwnerPolicy resource definition in the deployment-access-template.json file can be
modified or additional policies can be created. However, be sure that you really understand how IAM
permissions work before doing so. Incorrectly using this resource definition can make your AWS account
vulnerable to attack and abuse, which could result in unexpected AWS charges (in addition to any other
repercussions).

Authorize AWS Use in Lumberyard Editor

To authorize a group of developers to use AWS via Lumberyard Editor, perform the following steps.

To authorize AWS use in Lumberyard Editor

1. Create an IAM user for each developer.

2. Generate the access key and secret keys for each user.

3. Attach a policy to the IAM user that determines what that user is allowed to do. These policies are
generated when a project is initialized, or you can apply your own.

4. Deliver the access key and secret key to the developer by a secure method.

Caution
You should not deliver access or secret keys by using email, or check them into source
control. Such actions present a significant security risk.

5. In Lumberyard Editor, have each developer navigate to AWS, Cloud Canvas, Permissions and
deployments.

6. Have the developer add a new profile that uses the access key and secret key that he or she has been
provided.

Player Access Control

In order for the game to access AWS resources at runtime, it must use credentials that grant the necessary
access when calling AWS APIs. This could be done by creating an IAM user with limited privileges and

Version 1.8
294

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Lumberyard Developer Guide
Understanding the Resource Manager Security System

embedding that user's credentials (both the AWS access key and the secret key) in the game code. But
AWS Amazon Cognito identity pools provide a more powerful and secure solution for this problem.

How Cloud Canvas uses Amazon Cognito identity pools is described in the Player Identity (p. 296)
section.

Ultimately player access is controlled by the player role defined in the default Cloud Canvas deployment-
access-template.json (p. 234) file. The policies attached to this role are set by the PlayerAccess
Resource (p. 244) custom resources that appear in the resource-template.json (p. 240) files.

Lambda Function Access Control

When an AWS Lambda function is executed, it assumes an IAM role that determines the access the
function has to other AWS resources. Creating and configuring such roles requires IAM permissions that
cannot safely be granted to all the project's team members; doing so would allow them to circumvent the
security measures that limit their access to specific deployments.

To implement Lambda-function access control without requiring that the project team members be granted
these IAM privileges, you use the Cloud Canvas LambdaConfiguration (p. 252) custom resource. Using
the Metadata.CloudCanvas.FunctionAccess entries on each of the group resources to which a Lambda
function requires access, the handler for the LambdaConfiguration resource creates and configures a
role for each Lambda function that allows the function to perform the indicated actions on the resources it
requires.

The Metadata.CloudCanvas.Function property has the following form:

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "...": {
 "Type": "...",
 "Properties": {
 ...
 },
 "Metadata": {
 "CloudCanvas": {
 "FunctionAccess": {
 "Action": ["{allowed-action-1}", ..., "{allowed-action-n}"],
 "ResourceSuffix": "{resource-suffix}"
 }
 }
 }
 },
 ...
 }
}

The required Action property is the same as defined for an IAM policy and is described in detail in the IAM
Policy Elements Reference. Note that a single value can be provided instead of a list of values.

The optional ResourceSuffix property value is appended to the resource's ARN in the generated policy.
This can be used to further restrict access to the resource. For example, for Amazon S3 buckets it can be
used to restrict access to objects with matching names. For more information, see Resource in the IAM
Policy Elements Reference.

The following diagram illustrates how different elements of Lumberyard access control work together.

In the diagrammed example, Lambda functions do things like submit a player's high scores to a DynamoDB
database or retrieve the top ten scores from it.

Version 1.8
295

http://docs.aws.amazon.com/cognito/devguide/identity/identity-pools/
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Action
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Action
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Resource
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Lumberyard Developer Guide
Understanding the Resource Manager Security System

The Player Access Control IAM policy allows the game to call Lambda functions on behalf of the player. In
turn, the Function Access Control policy determines the AWS resources that Lambda functions can access
(in the example, it's a DynamoDB database). This secure arrangement prevents the player from accessing
the DynamoDB database directly and offers the following benefits:

• It enables you to validate the input from the client and remove insecure or unwanted inputs. For example,
if a client self-reports an impossibly high or low score, you can reject the unwanted value before it can be
written to the database.

• It prevents a customer from trying to access another customer’s data.

• It prevents malicious attacks.

To create (and later, update as required) the DynamoDBdatabase, Lambda functions, and access
control policies, AWS CloudFormation reads the AWS CloudFormation templates from the Amazon
S3 configuration bucket and executes the instructions they contain. AWS CloudFormation reads the
deployment-access-template.json file and creates a Deployment Access Control IAM policy, which
determines which resources AWS CloudFormation can create or update for a particular deployment. This is
key in keeping development, test, and live deployments separate and secure from one another.

The templates also use custom resources to implement functionality that AWS CloudFormation by itself
cannot perform. In Lumberyard, custom resources are like library functions. For example, the deployment-
access-template.json file calls the CognitoIdentityPool custom resource to create Amazon Cognito
identity pools. To create the Function Access Control IAM policy for each Lambda function, the template
calls the LambdaConfiguration custom resource. The custom resource reads the FunctionAccess
metadata entries for the particular resources to which the Lambda function should have access and creates
the Function Access Control policy that is needed for the current user and deployment.

Similarly, the resource-template.json template PlayerAccess custom resource is called to create the
Player Access Control policy, which determines the Lambda functions and other resources that the game
can call and use on behalf of the player.

Player Identity

As described in the preceding section Player Access Control (p. 294), the game must use AWS
credentials that grant the desired access when calling AWS APIs (using either the C++ AWS SDK or the
AWS flow nodes). Cloud Canvas uses an Amazon Cognito identity pool to get these credentials.

Using a Amazon Cognito identity pool has the benefit of providing the game with a unique identity for each
individual player. This identity can be used to associate the player with their saved games, high scores, or
any other data stored in DynamoDB tables, Amazon S3buckets, or other locations.

Amazon Cognito identity pools support both unauthenticated and authenticated identities. Unauthenticated
identities are associated with a single device such as a PC, tablet, or phone, and have no associated user
name or password.

Authenticated identities are associated with the identity of an user as determined by an external identity
provider such as Amazon, Facebook, or Google. This allows Amazon Cognito to provide the game with
the same player identity everywhere a user plays a game. The user's saved games, high scores, and other
data effectively follow the user from device to device.

Amazon Cognito allows a user to start with an unauthenticated identity and then associate that identity with
an external identity at a later point in time while preserving the Amazon Cognito-provided identity.

Cloud Canvas supports both anonymous (unauthenticated) and authenticated player identities, but
authenticated identity support is more complex and requires additional setup and coding.

Anonymous (Unauthenticated) Player Login

The login process for anonymous (unauthenticated) players is shown in the diagram below:

Version 1.8
296

http://docs.aws.amazon.com/cognito/devguide/identity/identity-pools/

Lumberyard Developer Guide
Understanding the Resource Manager Security System

This process takes place automatically when the Cloud Canvas client configuration system is initialized
by calling gEnv->lmbrAWS->GetClientManager()->ApplyConfiguration(), or by using a Cloud Canvas
(AWS):Configuration:ApplyConfiguration Flow Node.

Authenticated Player Login

In order to understand how to use Cloud Canvas to implement authenticated player identities for your
game, you must be familiar with Amazon Cognito's Enhanced (Simplified) Authflow. For information, see
the article Authentication Flow in the Amazon Cognito Developer Guide.

The login process for authenticated player identities, shown in the diagram that follows, is more complex
than the anonymous player login process. This login process requires additional setup beyond what Cloud
Canvas provides by default.

The authenticated player login process takes place automatically when the Cloud Canvas
client configuration system is initialized by calling gEnv->lmbrAWS->GetClientManager()-
>ApplyConfiguration(), or by using a Cloud Canvas (AWS):Configuration:ApplyConfiguration flow
node.

The presence of the auth_token cvar triggers the Cloud Canvas authenticated player login flow. If the cvar
is not set, the anonymous player login process is used. The value of the cvar must be a string of the form
{provider}:{id}, where {provider} identifies an external identity provider that you have configured for
your game (see Configuring External Identity Providers (p. 297) in the section that follows) and {id} is the
player's identity as returned by the login process for that provider.

When auth_token is set, Cloud Canvas will pass the provided {id} value to the
ProjectPlayerAccessTokenExchangeHandler Lambda function. The Lambda function calls the external
provider's API to with the specified ID and receives a value that is passed to Amazon Cognito to get the
player's identity and credentials. The calls made by ProjectPlayerAccessTokenExchangeHandler use
application IDs and the secret values you provide as part of the external identity provider configuration
process.

As shown in the diagram above, Cloud Canvas uses one Amazon Cognito identity pool to get the
credentials used to invoke the ProjectPlayerAccessTokenExchangeHandler and a different Amazon
Cognito identity pool to get the credentials used to access the rest of your game's resources. This is
required because access ProjectPlayerAccessTokenExchangeHandler is always anonymous.

All the code that implements the authenticated login flow can be found in the {root}\Code\CryEngine
\LmbrAWS\Configuration directory. A description of the files follows.

• ClientManagerImpl.* – Configures the game's AWS clients to use the
TokenRetrievingPersistentIdentityProvider identity provider.

• ResourceManagementLambdaBasedTokenRetrievalStrategy.* – implements the token exchange
process that calls the ProjectPlayerAccessTokenExchangeHandler Lambda function.

• TokenRetrievingPersistentIdentityProvider.* – An implementation of the
PersistentCognitoIdentityProvider interface defined in the AWS SDK that uses
ResourceManagementLambdaBasedTokenRetrievalStrategy instances to implement the token exchange
process.

Configuring External Identity Providers

Cloud Canvas does not automate the process of retrieving an auth code from an external identity provider
and setting the auth_token cvar. This is your responsibility as a game developer. Following are some
possible implementation methods:

• On a PC, you can have your identity provider redirect its URI to a static web page that redirects the
user to a custom URI. You can use the custom URI to launch the game and pass the auth code as a

Version 1.8
297

http://docs.aws.amazon.com/cognito/devguide/identity/concepts/authentication-flow/
http://docs.aws.amazon.com/cognito/devguide/

Lumberyard Developer Guide
Using the Cloud Canvas Command Line

command line argument (for example, yourGame.exe +auth_token=provider:code). Cloud Canvas
detects this command line argument and logs the user into your game. This only has to be done once
since the auth tokens are cached locally.

• You can have your game retrieve the auth code itself (but for many external identity providers, this may
require using an embedded web browser). After retrieving the auth code, you can call gEnv->lmbrAWS->-
>GetClientManager()->Login(providerName, code), or just set the cvar auth_token.

• If you have a launcher for your game, you can embed a web browser window in the launcher to allow the
player to log in to the external identity provider. You can then retrieve the auth code and launch the game
by using the +auth_token=provider:code parameter.

External identity providers are configured using the lmbr_aws add-login-provider (p. 300), update-
login-provider (p. 311), and remove-login-provider (p. 310) commands. These commands save the
configuration in a /player-access/auth-settings.json object in the project's configuration bucket so that
the ProjectPlayerAccessTokenExchangeHandler Lambda function can access it.

Note
You must run lmbr_aws update-project after running add-login-provider, update-login-
provider, or remove-login-provider so that the PlayerAccessIdentityPool Resource (p. 240)
configuration will be updated to reflect the change.

Automatic Token Refresh

When using Amazon Cognito with external identity providers, it is necessary to periodically
refresh the token from that provider and then get updated credentials for that token from
Amazon Cognito. Cloud Canvas performs this token refresh process automatically by using the
ProjectPlayerAccessTokenExchangeHandler Lambda function.

Using the Cloud Canvas Command Line
Cloud Canvas provides the \dev\lmbr_aws.cmd command line tool for working with AWS resources. The
tool invokes Python code that is located in the \dev\Tools\lmbr_aws directory.

Syntax

lmbr_aws {command} {command-arguments}

{command} is one of commands in the command summary section that follows. {command-arguments}
are the arguments accepted by the command. Arguments common to most commands are listed in the
Common Arguments (p. 299) section. Arguments unique to a command are listed in the detail section for
the command.

Configuration
The tool gets its default AWS configuration from the same ~/.aws/credentials and ~/.aws/config files
as the AWS command line tools (for information, see Configuring the AWS Command Line Interface). The
lmbr_aws tool does not require that the AWS command line interface be installed.

Environment Variables

As with the AWS command line tools, the default AWS configuration can be overridden by using the
following environment variables.

• AWS_ACCESS_KEY_ID The access key for your AWS account.

Version 1.8
298

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Lumberyard Developer Guide
Common Arguments

• AWS_SECRET_ACCESS_KEY The secret key for your AWS account.

• AWS_DEFAULT_REGION The default region to use; for example, us-east-1.

• AWS_PROFILE The default credential and configuration profile to use, if any.

Configuration Arguments

The following arguments can be used to override the AWS configuration from all other sources:

• --profile {profile} The AWS command line tool profile that is used.

• --aws-access-key {access-key} The AWS access key that is used.

• --aws-secret-key {secret-key} The AWS secret key that is used.

Common Arguments
Most of the lmbr_aws commands accept the following arguments, in addition to their own individual
arguments:

• -h or --help – Display help for the command.

• --root-directory {root} – Identifies the Lumberyard\dev directory. The default is the current working
directory.

• --aws-directory {aws} – Identifies the {game}\AWS directory to use. The default is the value of the
sys_game_folder property from {root}\bootstrap.cfg with AWS appended.

• --game-directory {directory} – Location of the game project directory. The default is {root}\{game}
where {game} is determined by the sys_game_folder setting in the {root}\bootstrap.cfg file.

• --user-directory {user} – Location of the user cache directory. The default is {root}\Cache
\{game}\AWS where {game} is determined by the sys_game_folder setting in the {root}\bootstrap.cfg
file.

• --verbose – Shows additional output when executing commands.

Command Summary
This topic describes the following commands:

• add-login-provider (p. 300) – Add a player login provider to the Amazon Cognito identity pool
configuration.

• add-profile (p. 301) – Add an AWS profile to the AWS command line tool configuration.

• add-resource-group (p. 301) – Add a group of related resources to the project.

• clear-parameter (p. 302) – Clears the specified parameter configuration for your project.

• create-deployment (p. 302) – Create an independent copy of your project's resources.

• create-project-stack (p. 302) – Create the AWS resources needed for a Lumberyard project. If the
{game}\AWS directory contains no resource definitions, default resource definitions are created.

• default-deployment (p. 303) – Show or set the default deployment.

• default-profile (p. 304) – Set, clear, or show the default profile from the AWS command line tool
configuration.

• delete-deployment (p. 304) – Delete an independent copy of your project's resources.

delete-project-stack (p. 305) – Delete a project stack. This command will not delete projects with
deployments.

• get-function-log (p. 305) – Retrieves data from a CloudWatch Logs log file.

Version 1.8
299

Lumberyard Developer Guide
Commands

• import-resource (p. 306) – Import a resource to a resource group.

• list-deployments (p. 306) – List all deployments in the local project.

• list-importable-resources (p. 306) – List all supported resources currently existing on AWS.

• list-mappings (p. 307) – Show the logical to physical resource name mappings.

• list-parameters (p. 307) – Lists the parameters currently configured for your project.

• list-profiles (p. 307) – List the AWS profiles that have been configured.

• list-resource-groups (p. 307) – List the resource groups for the project.

• list-resources (p. 308) – List all of the resources associated with the project.

• protect-deployment (p. 309) – Mark a deployment as protected.

• remove-login-provider (p. 310) – Remove a login provider from your player access template.

• remove-profile (p. 310) – Remove an AWS profile from the AWS command line tool configuration.

• remove-resource-group (p. 310) – Remove a resource group from the project.

• rename-profile (p. 311) – Rename an AWS profile in the AWS command line tool configuration.

• set-parameter (p. 311) – Sets parameter configuration for your project.

• update-login-provider (p. 311) – Update an existing login provider to your Player Access template, so
that you can connect your application to Amazon Cognito.

• update-mappings (p. 312) – Update the logical to physical resource name mappings to reflect the
current default deployment.

• update-profile (p. 312) – Update an AWS profile.

• update-project-stack (p. 313) – Update the AWS resources used by a Lumberyard project.

• upload-resources (p. 314) – Upload and apply changes made to local resource-template.json files.

Commands
Following are details of the lmbr_aws commands.

add-login-provider

Add a player login provider to the Amazon Cognito identity pool configuration. Login providers allow your
game's players to log in using their social network identity, such as Facebook or using their Amazon user
identity. For more information, see Access Control and Player Identity in Depth (p. 294).

In addition to the Common Arguments (p. 299), the add-login-provider subcommand accepts the
following arguments:

• --provider {provider-name}

Required. The name of the provider. The name must be amazon, google or facebook, or, if you are using
a generic OpenID provider, a name that you choose.

• --app-id {application-id}

Required. The application id from your login provider (this is usually different from your client ID).

• --client-id {client-id}

Required. The unique application client ID for the login provider.

• --client-secret {client-secret}

Required. The secret key to use with your login provider.

• --redirect-uri {redirect-uri}

Required. The redirect URI to use with your login provider.

Version 1.8
300

Lumberyard Developer Guide
Commands

• --provider-uri {provider-uri}

Optional. The URI for a generic open ID connect provider. This is only use for generic OpenID providers.

• --provider-port {provider-port}

Optional. The port your provider listens on for its API. This is only used for generic OpenID providers.

• --provider-path {provider-path}

Optional. The path portion of your provider's URI. This is only used for generic OpenID providers.

This command saves its configuration in a player-access/auth-settings.json object in the project's
configuration bucket so that the ProjectPlayerAccessTokenExchangeHandler Lambda function can
access it.

Note
You must run lmbr_aws update-project-stack after running this command so that the
PlayerAccessIdentityPool Resource (p. 240) configuration is updated to reflect the change.

add-profile

Add an AWS profile to the AWS command line tool configuration.

In addition to the Common Arguments (p. 299), the add-profile subcommand accepts the following
arguments:

• --aws-access-key{accesskey}

Required. The AWS access key associated with the added profile.

• --aws-secret-key{secretkey}

Required. The AWS secret key associated with the added profile.

• --profile {profilename}

Required. The name of the AWS profile to add.

• --make-default

Optional. Make the new profile the default profile.

add-resource-group

Add a ResourceGroupConfiguration and AWS CloudFormation stack resources to your deployment-
template.json file. The added resources will be similar to the HelloWorldConfiguration Resource (p. 234)
and HelloWorld Resource (p. 234) in the example deployment-template.json (p. 232) file.

The command also creates a {game}\resource-group\{resource-group-name} directory with a default
resource-template.json file and lambda-function-code subdirectory.

In addition to the Common Arguments (p. 299), the add-resource-group subcommand accepts the
following argument:

• --resource-group {resource-group-name}

Required. The name of the resource group to add.

• --include-example-resources

Optional. Includes "Hello World" example resources.

Version 1.8
301

Lumberyard Developer Guide
Commands

clear-parameter

Clears the specified parameter configuration for your project. The project must be initialized (a project stack
must have been created) before you can clear parameters.

In addition to the Common Arguments (p. 299), the clear-parameter subcommand accepts the following
arguments:

• --deployment {deployment-name}

Optional. Clears the parameter value for the specified deployment. {deployment-name} can be *, in
which case the parameter value used for all deployments that do not override the value is cleared. If
omitted, the parameter value is cleared for all deployments, including *.

• --resource-group {resource-group-name}

Optional. Clears the parameter value for the specified resource-group. {resource-group-name} can be *,
in which case the parameter value used for all resource groups that do not override the value is cleared.
If omitted, the parameter value is cleared for all resource groups, including *.

• --parameter {parameter-name}

Required. The parameter to clear.

create-deployment

Create a complete and independent copy of all the resources needed by the Lumberyard project.

In addition to the Common Arguments (p. 299), the create-deployment subcommand accepts the
following arguments:

• --deployment {deployment-name}

Required. The name of the deployment to create.

• --enable-capability{capability}

Optional. A list of capabilities that you must specify before AWS CloudFormation can create or
update certain stacks. Some stack templates might include resources that affect permissions in your
AWS account. For those stacks, you must explicitly acknowledge their capabilities by specifying this
parameter. Possible values include: CAPABILITY_IAM.

• --confirm-aws-usage

Optional. Confirms that you know that the create-deployment command will create AWS resources
for which you may be charged and that may perform actions that can affect permissions in your AWS
account. If not specified, you are prompted for confirmation.

create-project-stack

Initialize Cloud Canvas resource management for a Lumberyard project. This includes creating a set of
default Resource Definitions (p. 224) in the {root}\{game}\AWS directory and a AWS CloudFormation
stack that contains the resources that the Cloud Canvas resource manager uses to manage your game
resources.

In addition to the Common Arguments (p. 299), the create-project-stack subcommand accepts the
following arguments:

• --stack {stack-name}

Version 1.8
302

Lumberyard Developer Guide
Commands

Optional. The name used for the project's AWS CloudFormation stack. The default is the name of the
{game} directory.

• --confirm-aws-usage

Optional. Confirms that you know this command will create AWS resources for which you may be
charged and that it may perform actions that can affect permissions in your AWS account. Also disables
the prompt for confirmation during the command's execution.

• --enable-capability {capability} [{capability} ...]

Optional. A list of capabilities that you must specify before AWS CloudFormation can create or update
certain stacks. Some stack templates might include resources that can affect permissions in your
AWS account. For those stacks, you must explicitly acknowledge their capabilities by specifying this
parameter. Possible values include CAPABILITY_IAM.

• --files-only

Optional. Writes the default configuration data to the {game}\AWS directory and exits. The directory must
be empty or must not exist.

• --region {region}

Required. The AWS region in which the project stack will be created.

Note
The region option can be used only with the create-project-stack and list-importable-
resources commands.

How create-project-stack works

1. The create-project-stack command creates the project's AWS CloudFormation stack using a
bootstrap template that defines only the Configuration Bucket (p. 248) resource.

2. The project-template.json (p. 228) file and the zipped up contents of the project-code
subdirectory (p. 240) are uploaded to the Configuration Bucket (p. 248).

3. An AWS CloudFormation stack update operation is performed by using the uploaded project-
template.json file. The project-code .zip file is used to create the Lambda function resources defined
by the project-template.json file.

Note

• If the {root}\{game}\AWS directory is empty or does not exist, create-project-stack
creates the directory if necessary and copies the contents of the {root}\Tools\lmbr_aws
\AWSResourceManager\default-project-content directory to that directory.

• create-project-stack fails if a stack with the specified name already exists in the configured
AWS account and region. In this case you can use the --stack option to specify a different
name for the project stack.

• create-project-stack fails if the {root}\{game}\AWS\project-settings.json file has a non-
empty ProjectStackId property. The ProjectStackId property will be set to the project's AWS
CloudFormation stack ID after the project stack is created in step 1.

• If the stack update process in step 2 fails on the first attempt, you can retry by using the update-
project-stack command.

default-deployment

Set or show the default deployment.

Version 1.8
303

Lumberyard Developer Guide
Commands

In addition to the Common Arguments (p. 299), the default-deployment subcommand accepts the
following arguments:

• --set {deployment}

Optional. Sets the default to the provided deployment name.

• --clear

Optional. Clears the defaults.

• --show

Optional. Shows the defaults.

• --project

Optional. Applies --set and --clear to the project default instead of the user default. Ignored for --show.

Only one of the --set, --clear, and --show arguments is allowed.

If --set or --clear is specified, this command updates the {root}\user\AWS\user-settings.json file.
If --project is provided, the {root}\{game}\AWS\project-settings.json file is updated.

default-profile

Set, clear, or show the default profile in the AWS command line tool configuration.

In addition to the Common Arguments (p. 299), the default-profile subcommand accepts the following
arguments:

• --set {deploymentname}

Optional. Set the default profile to the provided deployment name.

• --clear

Optional. Clear the default profile.

• --show

Optional. Show the default profile.

delete-deployment

Delete a complete and independent copy of all the resources needed by the Lumberyard project.

In addition to the Common Arguments (p. 299), the delete-deployment subcommand accepts the
following arguments:

• --deployment {deployment-name}

Required. The name of the deployment to delete.

• --enable-capability{capability}

Optional. A list of capabilities that you must specify before AWS CloudFormation can create or update
certain stacks. Some stack templates might include resources that can affect permissions in your
AWS account. For those stacks, you must explicitly acknowledge their capabilities by specifying this
parameter. Possible values include: CAPABILITY_IAM.

• --confirm-resource-deletion

Version 1.8
304

Lumberyard Developer Guide
Commands

Optional. Acknowledges that the command will permanently delete the resources belonging to the
specified deployment. If not specified, the user is prompted to confirm the deletion.

Note
AWS CloudFormation cannot delete stacks that define Amazon S3 buckets that contain data. To
allow project stacks to be deleted, the project-template.json file specifies a DeletionPolicy
of Retain for the configuration bucket. This causes AWS CloudFormation to not delete the bucket
when the project stack is deleted. After the project stack has been deleted, the command removes
all the objects from the configuration bucket and then deletes the bucket.

delete-project-stack

Delete the AWS CloudFormation stack that contains your project's resources. You must delete all of the
project’s deployments before deleting the project stack. After deleting the project stack, you must create a
new project stack before you can use AWS CloudFormation resource manager for your project.

In addition to the Common Arguments (p. 299), the delete-project-stack subcommand accepts the
following argument:

• --confirm-resource-deletion

Optional. Confirms your acknowledgement and approval that the operation will delete resources
permanently. If this option is not specified, you will be prompted to confirm completion of the operation.
Specifying this option disables the default confirmation prompt.

AWS CloudFormation cannot delete stacks that define Amazon S3 buckets that contain data. To allow
project stacks to be deleted, the project-template.json file specifies a DeletionPolicy of Retain for
the configuration bucket. This causes AWS CloudFormation to not delete the bucket when the project
stack is deleted. After the project stack has been deleted, the command removes all the objects from the
configuration bucket and then deletes the bucket.

get-function-log

Retrieves data from a CloudWatch Logs log file.

In addition to the Common Arguments (p. 299), the get-function-log subcommand accepts the
following arguments:

• --function {function-name}

Required. The logical name of a Lambda function resource.

• --deployment {deployment-name}

Optional. The name of a deployment. If this argument is specified, the --resource-group argument must
also be specified. If this argument is omitted, then the function must exist in the project stack.

• --resource-group {resource-group-name}

Optional. The name of a resource group. If specified, the --deployment argument must also be specified.

• --log-stream-name {partial-stream-name}

Optional. The log stream name, or part of a log stream name. If omitted, the most recent log stream is
shown.

Version 1.8
305

Lumberyard Developer Guide
Commands

import-resource
Import a resource to a resource group.

In addition to the Common Arguments (p. 299), the import-resource subcommand accepts the following
arguments:

• --type {dynamodb|s3|lambda|sns|sqs}

Optional. The type of the AWS resource to import. Choose from dynamodb, s3, lambda, sns or sqs.

• --arn ARN

Required. The ARN of the AWS resource to import.

• --resource-name {resource-name}

Required. The name of the resource to import.

• --resource-group {resource-group}

Required. The name of the resource group to import.

• --download

Optional. If specified, downloads the contents of the Amazon S3 bucket.

list-deployments
List all deployments in the local project.

Example output:

Name Status Reason
 Timestamp Id
----------------- ---------------
 --

 --
AnotherDeployment CREATE_PENDING Resource is defined in the local project template but
 does not exist in AWS.
Development CREATE_COMPLETE
 03/04/16 18:43:11 arn:aws:cloudformation:us-
east-1:<ACCOUNTID>:stack/foo-hw-Development-ZDLXUB7FKR94/8e6492f0-
e248-11e5-8e7e-50d5ca6e60ae

User Default Deployment: (none)
Project Default Deployment: Development
Release Deployment: (none)

list-importable-resources
List all supported resources currently existing on AWS.

In addition to the Common Arguments (p. 299), the list-importable-resources subcommand accepts
the following arguments:

• --type {dynamodb|s3|lambda|sns|sqs}

Required. The type of the AWS resource to list. Choose from dynamodb, s3, lambda, sns or sqs.

• --region {region}

Version 1.8
306

Lumberyard Developer Guide
Commands

Optional. The AWS region of the resources. The default value is the region of the project stack, if it
exists.

Note
The region option can be used only with the list-importable-resources and create-
project-stack commands.

list-mappings
Show the logical to physical resource name mappings.

Example output:

Name Type Id
--------------------------------------- ---------------------------
 --
HelloWorld.SayHello AWS::Lambda::Function foo-hw-Development-
ZDLXUB7FKR94-HelloWo-SayHello-1FADMFNE5M1CO
PlayerAccessIdentityPool Custom::CognitoIdentityPool us-east-1:108f6d6a-
f929-4212-9947-a03269b9582e
PlayerLoginIdentityPool Custom::CognitoIdentityPool us-
east-1:3020e175-0ddd-4860-8dad-1db57162cbb2
ProjectPlayerAccessTokenExchangeHandler AWS::Lambda::Function foo-hw-
ProjectPlayerAccessTokenExchangeHandler-1BG6JJ94IZAUV
account_id Configuration <ACCOUNTID>
region Configuration us-east-1

list-parameters
Lists the parameters currently configured for your project. The project must be initialized (a project stack
must have been created) before you can list parameters.

In addition to the Common Arguments (p. 299), the list-parameters subcommand accepts the following
arguments:

• --deployment {deployment-name}

Required. Limits the list to the specified deployment. {deployment-name} can be *, in which case
parameters that apply to all deployments are listed.

• --resource-group {resource-group-name}

Required. Limits the list to the specified resource group. {resource-group-name} can be *, in which case
parameters that apply to all resource groups are listed.

• --parameter {parameter-name}

Optional. Limits the list to the specified parameter.

list-profiles
List the AWS profiles that have been configured.

list-resource-groups
List all the resource groups found in the local deployment template and in the selected deployment in AWS.

In addition to the Common Arguments (p. 299), the list-resource-groups subcommand accepts the
following argument:

Version 1.8
307

Lumberyard Developer Guide
Commands

• --deployment {deployment-name}

Optional. The name of the deployment to list resource groups for. If not given, the default deployment is
used.

Example output:

Name Status Reason
 Timestamp Id
-------------- ---------------

 --
AnotherResourceGroup CREATE_PENDING Resource is defined in the local deployment template
 but does not exist in AWS.
HelloWorld CREATE_COMPLETE
 03/04/16 18:42:57 arn:aws:cloudformation:us-
east-1:<ACCOUNTID>:stack/foo-hw-Development-ZDLXUB7FKR94-HelloWorld-WSGZ15EUWX52/9b909d20-
e238-11e5-a98d-50fae987c09a

list-resources

List all of the resources associated with the project.

In addition to the Common Arguments (p. 299), the list-resources subcommand accepts the following
arguments:

• --stack-id {stackid}

Optional. The ARN of the stack to list resources for. Defaults to project, deployment, or resource group id
as determined by the --deployment and --resource-group parameters.

• --deployment {deployment-name}

Optional. The name of the deployment to list resources for. If not specified, lists all the project's
resources.

• --resource-group {resource-group-name}

Optional. The name of the resource group to list resources for. If specified, deployment must also be
specified. If not specified, all deployment or project resources are listed.

Example output:

Name Type Status
 Timestamp Id
-- -------------------------------
 --------------- -----------------
 --
Configuration AWS::S3::Bucket
 CREATE_COMPLETE 03/04/16 18:38:25 foo-hw-configuration-vxaq1g44s0ef
Development AWS::CloudFormation::Stack
 CREATE_COMPLETE 03/04/16 18:43:11 arn:aws:cloudformation:us-east-1:<ACCOUNTID>:stack/
foo-hw-Development-ZDLXUB7FKR94/8e6492f0-e238-11e5-8e7e-50d5ca6e60ae
Development.HelloWorld AWS::CloudFormation::Stack
 CREATE_COMPLETE 03/04/16 18:42:57 arn:aws:cloudformation:us-east-1:<ACCOUNTID>:stack/
foo-hw-Development-ZDLXUB7FKR94-HelloWorld-WSGZ15EUWX52/9b909d20-e238-11e5-
a98d-50fae987c09a
Development.HelloWorld.Messages AWS::DynamoDB::Table
 CREATE_COMPLETE 03/04/16 18:41:24 foo-hw-Development-ZDLXUB7FKR94-HelloWorld-
WSGZ15EUWX52-Messages-W8398CX6EB7C

Version 1.8
308

Lumberyard Developer Guide
Commands

Development.HelloWorld.PlayerAccess Custom::PlayerAccess
 CREATE_COMPLETE 03/04/16 18:42:54 CloudCanvas:PlayerAccess:foo-hw-Development-
ZDLXUB7FKR94-HelloWorld-WSGZ15EUWX52
Development.HelloWorld.SayHello AWS::Lambda::Function
 CREATE_COMPLETE 03/04/16 18:42:45 foo-hw-Development-ZDLXUB7FKR94-HelloWo-
SayHello-1FADMFNE5M1CO
Development.HelloWorld.SayHelloConfiguration Custom::LambdaConfiguration
 CREATE_COMPLETE 03/04/16 18:42:39 CloudCanvas:LambdaConfiguration:foo-hw-Development-
ZDLXUB7FKR94-HelloWorld-WSGZ15EUWX52:SayHello:6e3be3f1-933b-47b7-b3f6-21a045cbdda7
Development.HelloWorldConfiguration Custom::ResourceGroupConfiguration
 CREATE_COMPLETE 03/04/16 18:40:39 CloudCanvas:LambdaConfiguration:foo-hw-Development-
ZDLXUB7FKR94:HelloWorld
DevelopmentAccess AWS::CloudFormation::Stack
 CREATE_COMPLETE 03/04/16 18:44:58 arn:aws:cloudformation:us-east-1:<ACCOUNTID>:stack/
foo-hw-DevelopmentAccess-14RNG9550IZMJ/f56ff7f0-e238-11e5-a77e-50d5cd148236
DevelopmentAccess.Owner AWS::IAM::Role
 CREATE_COMPLETE 03/04/16 18:44:38 foo-hw-DevelopmentAccess-14RNG9550IZMJ-
Owner-1H1MHLAZOKELJ
DevelopmentAccess.OwnerPolicy AWS::IAM::ManagedPolicy
 CREATE_COMPLETE 03/04/16 18:43:23 arn:aws:iam::<ACCOUNTID>:policy/foo-hw/Development/
foo-hw-DevelopmentAccess-14RNG9550IZMJ-OwnerPolicy-1CE1PRKWZCVRW
DevelopmentAccess.Player AWS::IAM::Role
 CREATE_COMPLETE 03/04/16 18:44:33 foo-hw-DevelopmentAccess-14RNG9550IZMJ-
Player-1JXYH5PPO434S
DevelopmentAccess.PlayerAccess Custom::PlayerAccess
 CREATE_COMPLETE 03/04/16 18:44:49 CloudCanvas:PlayerAccess:foo-hw-
DevelopmentAccess-14RNG9550IZMJ
DevelopmentAccess.PlayerAccessIdentityPool Custom::CognitoIdentityPool
 CREATE_COMPLETE 03/04/16 18:44:41 us-east-1:108f6d6a-f928-4212-9947-a03269b9582e
DevelopmentAccess.PlayerLoginIdentityPool Custom::CognitoIdentityPool
 CREATE_COMPLETE 03/04/16 18:44:43 us-east-1:3020e175-0ded-4860-8dad-1db57162cbb2
DevelopmentAccess.PlayerLoginRole AWS::IAM::Role
 CREATE_COMPLETE 03/04/16 18:44:33 foo-hw-DevelopmentAccess-14RNG95-
PlayerLoginRole-70M854BKMJBL
DevelopmentConfiguration Custom::DeploymentConfiguration
 CREATE_COMPLETE 03/04/16 18:40:17 CloudCanvas:DeploymentConfiguration:foo-hw:Development
ProjectPlayerAccessTokenExchangeHandler AWS::Lambda::Function
 CREATE_COMPLETE 03/04/16 18:40:39 foo-hw-
ProjectPlayerAccessTokenExchangeHandler-1BG6JJ84IZAUV
ProjectPlayerAccessTokenExchangeHandlerRole AWS::IAM::Role
 CREATE_COMPLETE 03/04/16 18:40:33 foo-hw-ProjectPlayerAccessTokenExchangeHandlerRo-
T0E7MYI0B67N
ProjectResourceHandler AWS::Lambda::Function
 CREATE_COMPLETE 03/04/16 18:40:08 foo-hw-ProjectResourceHandler-XAP5CBAMQCYP
ProjectResourceHandlerExecution AWS::IAM::Role
 CREATE_COMPLETE 03/04/16 18:40:02 foo-hw-ProjectResourceHandlerExecution-K24FL427PVZM

protect-deployment
Marks a deployment as protected and issues a warning when a user (for example, a developer or tester)
attempts to connected a development game client to live resources. For more information, see Using
Protected Deployments (p. 290).

In addition to the Common Arguments (p. 299), the protect-deployment subcommand accepts the
following arguments:

• --set {deployment-name}

Optional. Specifies that the deployment is protected.

• --clear {deployment-name}

Optional. Specifies that the deployment is not protected.

• --show

Version 1.8
309

Lumberyard Developer Guide
Commands

Optional. Displays a list of the deployments that are currently protected.

Note
To display the protected status of deployments, you can also use either the list-
deployments (p. 306) or list-mappings (p. 307) command.

remove-login-provider
Remove a player login provider from the Amazon Cognito identity pool configuration.

In addition to the Common Arguments (p. 299), the remove-login-provider subcommand accepts the
following argument:

• --provider {provider-name}

Required. The name of the provider.

The remove-login-provider command saves the configuration in a /player-
access/auth-settings.json object in the project's configuration bucket so that the
ProjectPlayerAccessTokenExchangeHandler Lambda function can access it.

Note
You must run lmbr_aws update-project-stack after running this command so that the
PlayerAccessIdentityPool Resource (p. 240) configuration is updated to reflect the change.

remove-profile
Remove an AWS profile from the AWS command line tool configuration.

In addition to the Common Arguments (p. 299), the remove-profile subcommand accepts the following
argument:

• --profile {profile-name}

Required. The name of the AWS profile to remove.

remove-resource-group
Remove a resource group's ResourceGroupConfiguration and AWS CloudFormation stack resources
from your deployment-template.json file. You must update your deployment stacks before the resources
defined by your resource group can be removed from AWS.

The command does not delete the {game}\resource-group\{resource-group-name} directory.

In addition to the Common Arguments (p. 299), the remove-resource-group subcommand accepts the
following argument:

• --resource-group {resource-group-name}

Required. The name of the resource group to be removed.

AWS CloudFormation cannot delete stacks that define Amazon S3 buckets that contain data. To allow
project stacks to be deleted, the project-template.json file specifies a DeletionPolicy of Retain for
the configuration bucket. This causes AWS CloudFormation to not delete the bucket when the project
stack is deleted. After the project stack has been deleted, the command removes all the objects from the
configuration bucket and then deletes the bucket.

Version 1.8
310

Lumberyard Developer Guide
Commands

rename-profile
Rename an AWS profile in the AWS command line tool configuration.

In addition to the Common Arguments (p. 299), the rename-profile subcommand accepts the following
arguments:

• --old {old-profile-name}

Required. The name of the AWS profile to change.

• --new {new-profile-name}

Required. The new name of the AWS profile.

set-parameter
Sets parameter configuration for your project. The project must be initialized (a project stack must have
been created) before you can set parameters.

In addition to the Common Arguments (p. 299), the set-parameter subcommand accepts the following
arguments:

• --deployment {deployment-name}

Required. Sets the parameter value for the specified deployment. {deployment-name} can be *, in which
case the parameter value is used for all deployments that do not override the value.

• --resource-group {resource-group-name}

Required. Sets the parameter value for the specified resource group. {resource-group-name} can be *,
in which case the parameter value is used for all resource groups that do not override the value.

• --parameter {parameter-name}

Required. Specifies the parameter whose value will be set.

• --value {parameter-value}

Required. Specifies the value to set.

update-login-provider
Update a player login provider in the Amazon Cognito identity pool configuration. Login providers allow your
game's players to log in using their social network identity, such as Facebook, or using their Amazon user
identity. For more information, see Access Control and Player Identity in Depth (p. 294).

In addition to the Common Arguments (p. 299), the update-login-provider subcommand accepts the
following arguments:

• --provider {provider-name}

Required. The name of the updated provider. The name must be amazon, google or facebook, or, if you
are using a generic OpenID provider, the name that you chose when the provider was added.

• --app-id {application-id}

Optional. The application ID from your login provider (this is usually different from your client ID).

• --client-id {client-id}

Optional. The unique application client ID for the login provider.

Version 1.8
311

Lumberyard Developer Guide
Commands

• --client-secret {client-secret}

Optional. The secret key to use with your login provider.

• --redirect-uri {redirect-uri}

Optional. The redirect URI to use with your login provider.

• --provider-uri {provider-uri}

Optional. The URI for a generic open id connect provider. This argument is used only for generic OpenID
providers.

• --provider-port {provider-port}

Optional. The port the provider listens on for the provider's API. This argument is used only for generic
OpenID providers.

• --provider-path {provider-path}

Optional. The path portion of the provider's URI. This argument is used only for generic OpenID
providers.

The update-login-provider command saves its configuration in a /player-
access/auth-settings.json object in the project's configuration bucket so that the
ProjectPlayerAccessTokenExchangeHandler Lambda function can access it.

Note
You must run lmbr_aws update-project-stack after running this command so that the
PlayerAccessIdentityPool Resource (p. 240) configuration is updated to reflect the change.

update-mappings

Update the friendly name to physical resource ID mappings to reflect the current default deployment or the
release deployment.

In addition to the Common Arguments (p. 299), the update-mappings subcommand accepts the following
arguments:

• --release

Optional. Causes the release mappings to be updated. By default, only the mappings used when
launching the game from inside the editor are updated.

The command looks in the resource-template.json (p. 240) file for
Metadata.CloudCanvas.PlayerAccess properties on resource definitions. It then queries AWS
CloudFormation for the physical names of those resources in the current default deployment. If the --
release option is specified, the release deployment is queried.

• --deployment {deployment-name}

Optional. Exports a mapping file for the specified deployment to the {project_directory}\Config
directory in the format {deployment-name}.awsLogicalMappings.json.

When you run a game launcher such as the one at dev\Bin64\SamplesProjectLauncher.exe, you can
choose the mapping to use by using the -cc_override_resource_map option. For more information, see
Selecting a Deployment with a PC Launcher (p. 290).

update-profile

Update an AWS profile.

Version 1.8
312

Lumberyard Developer Guide
Commands

In addition to the Common Arguments (p. 299), the update-profile subcommand accepts the following
arguments:

• --aws-access-key{accesskey}

Optional. The AWS access key associated with the updated profile. The default is to not change the AWS
access key associated with the profile.

• --aws-secret-key{secretkey}

Optional. The AWS secret key associated with the updated profile. The default is to not change the AWS
secret key associated with the profile.

• --profile {profilename}

Required. The name of the AWS profile to update.

Note
To make an existing profile the default profile, use the default-profile (p. 304) command.

update-project-stack

Update the project's AWS CloudFormation stack.

In addition to the Common Arguments (p. 299), the update-project-stack subcommand accepts the
following arguments:

• --confirm-aws-usage

Optional. Confirms that you know this command will create AWS resources for which you may be
charged and that it may perform actions that can affect permission in your AWS account. Also disables
the prompt for confirmation done during the command's execution.

• --confirm-resource-deletion

Optional. If the operation will delete resources permanently, confirms your acknowledgement and
approval. If this option is not specified, you are prompted to confirm completion of the operation.
Specifying this option disables the default confirmation prompt.

• --enable-capability {capability} [{capability} ...]

Optional. A list of capabilities that you must specify before AWS CloudFormation can create or update
certain stacks. Some stack templates might include resources that can affect permissions in your
AWS account. For those stacks, you must explicitly acknowledge their capabilities by specifying this
parameter. Possible values include CAPABILITY_IAM.

How update-project-stack works

1. The project-template.json (p. 228) file and the zipped up contents of the project-code
subdirectory (p. 240) are uploaded to the Configuration Bucket (p. 248).

2. An AWS CloudFormation stack update operation is performed by using the uploaded project-
template.json file. The project-code.zip file is used when creating the Lambda function resources
defined by the templates.

Note
The update-project-stack command fails if the {root}\{game}\AWS\project-settings.json
file does not exist or does not have a valid ProjectStackId property.

Version 1.8
313

Lumberyard Developer Guide
Commands

upload-resources

Update a resource group's AWS CloudFormation stack in a specified deployment.

In addition to the Common Arguments (p. 299), the upload-resources subcommand accepts the
following arguments:

• --confirm-aws-usage

Optional. Confirms that you know this command will create AWS resources for which you may be
charged and that it may perform actions that can affect permissions in your AWS account. It also disables
the default confirmation prompt that occurs during the command's execution.

• --confirm-resource-deletion

Optional. If the operation will delete resources permanently, confirms your acknowledgement and
approval. If this option is not specified, you are prompted to confirm completion of the operation.
Specifying this option disables the default confirmation prompt.

• --deployment

Required. The name of the deployment to update.

• --enable-capability {capability} [{capability} ...]

Optional. A list of capabilities that you must specify before AWS CloudFormation can create or update
certain stacks. Some stack templates might include resources that can affect permissions in your
AWS account. For those stacks, you must explicitly acknowledge their capabilities by specifying this
parameter. Possible values include CAPABILITY_IAM.

The resource-template.json (p. 240) file and the zipped up contents of the lambda-function-code
subdirectory (p. 244) are uploaded to the Configuration Bucket (p. 248). An AWS CloudFormation
stack update operation is then performed by using the uploaded template file. The lambda-function-
code .zip file is used when updating the Lambda function resources defined by the resource template.

• --resource-group

Required. The name of the resource group to update.

Version 1.8
314

Lumberyard Developer Guide
Programmer's Guide to Entities and Components

Component Entity System

The component entity system is currently in preview and is undergoing active development. It will replace
the legacy Entity System (p. 395).

Amazon Lumberyard's component entity system provides a modular and intuitive way to construct games.
The component entity system works at both the system level and the entity level. It employs reflection,
serialization, event bus (EBus) messaging, and fully cascading prefabs (slices).

This section of the Amazon Lumberyard Developer Guide offers a Programmer's Guide to Entities and
Components (p. 315) that covers these topics in depth. For information on using the component entity
system in Lumberyard Editor, see Component Entity System in the Amazon Lumberyard User Guide.

Topics

• Programmer's Guide to Entities and Components (p. 315)

• Behavior Context (p. 338)

• Slices and Dynamic Slices (p. 343)

Programmer's Guide to Entities and Components
The component entity system is currently in preview and is undergoing active development. It will replace
the legacy Entity System (p. 395).

This guide provides engine and game programmers with examples and best practices for creating and
reflecting custom Lumberyard components in C++. For information on using the Component Entity System
in Lumberyard Editor, see Component Entity System in the Amazon Lumberyard User Guide.

Topics

• Creating a Component (p. 316)

• Registering Your Component (p. 318)

• Reflecting a Component for Serialization and Editing (p. 318)

• Defining and Using Component Services (p. 323)

• Editor Components (p. 324)

• Creating System Components (p. 327)

• Components and EBuses (p. 328)

Version 1.8
315

http://docs.aws.amazon.com/lumberyard/latest/userguide/component-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/
http://docs.aws.amazon.com/lumberyard/latest/userguide/component-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/

Lumberyard Developer Guide
Creating a Component

• Tick Bus and Components (p. 332)

• Exposing Custom Components to Track View for Animation (p. 333)

• Components and EBuses: Best Practices (p. 336)

Creating a Component
A component in Lumberyard is a simple class that inherits from Lumberyard's AZ::Component. A
component's behavior is determined by its reflected data and the actions it takes when it is activated. This
section shows you how to create Lumberyard components programatically. For information about adding
and customizing the components available in Lumberyard Editor, see Component Entity System in the
Amazon Lumberyard User Guide.

Component Example
An example component class skeleton follows:

class MyComponent
 : public AZ::Component
{
public:
 AZ_COMPONENT(MyComponent, "{0C09F774-DECA-40C4-8B54-3A93033EC381}");

 // AZ::Component interface implementation
 void Init() override {}
 void Activate() override {}
 void Deactivate() override {}

 // Required Reflect function.
 static void Reflect(AZ::ReflectContext* context);

 // Optional functions for defining provided and dependent services.
 static void GetProvidedServices(AZ::ComponentDescriptor::DependencyArrayType&
 provided)
 static void GetDependentServices(AZ::ComponentDescriptor::DependencyArrayType&
 dependent);
 static void GetRequiredServices(AZ::ComponentDescriptor::DependencyArrayType&
 required);
 static void GetIncompatibleServices(AZ::ComponentDescriptor::DependencyArrayType&
 incompatible);
};

Component Members
The required and optional members that comprise a component are as follows:

AZ::Component

Every component must include AZ::Component somewhere in its inheritance ancestry. Noneditor
components generally inherit directly from AZ::Component, as in the following example:

class MyComponent
 : public AZ::Component

You can also create your own component class hierarchies.

AZ_COMPONENT Macro

Every component must specify the AZ_COMPONENT macro in its class definition. The macro takes two
arguments:

Version 1.8
316

http://docs.aws.amazon.com/lumberyard/latest/userguide/component-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/

Lumberyard Developer Guide
Creating a Component

1. The component type name.

2. A unique UUID. You may use any UUID generator to produce the value. Visual Studio provides this
functionality through Tools, Create GUID. Use the Registry Format setting, and then copy and
paste the value that is generated.

A sample AZ_COMPONENT macro follows:

AZ_COMPONENT(MyComponent, "{0C09F774-DECA-40C4-8B54-3A93033EC381}");

AZ::Component Functions

To define a component's behavior, you generally override three AZ::Component functions: Init,
Activate, and Deactivate:

void Init() override {}
void Activate() override {}
void Deactivate() override {}

These functions are as described as follows:

Init()

Optional. Called only once for a given entity. It requires minimal construction or setup work, since
the component may not be activated anytime soon. An important best practice is to minimize your
component's CPU and memory overhead while the component is inactive.

Activate()

Required. Called when the owning entity is being activated. The system calls your component's
Activate() function only if all dependent or required services are present. Your Activate function
is always called after any components that it depends on. In addition the component makeup of an
entity never changes while the entity is active, so it is safe to cache pointers or references to other
components on the entity in performance-critical situations.

Deactivate()

Required. Called when the owning entity is being deactivated. The order of deactivation is the
reverse of activation, so your component is deactivated before the components it depends on. As
a best practice, make sure your component returns to a minimal footprint when it is deactivated. In
general, deactivation should be symmetric to activation.

Note
Deactivation does not necessarily precede destruction. An entity can be deactivated and
then activated again without being destroyed, so ensure that your components support
this efficiently. However, when you do destroy your entity, Lumberyard ensures that your
Deactivate() function is called first. Components must be authored with this in mind.

Reflect()

Required. All components are AZ reflected classes. Because all components must be serializable and
editable, they must contain a Reflect() function, as in the following example:

// Required Reflect function.
static void Reflect(AZ::ReflectContext* context);

For more information, see Reflecting a Component for Serialization and Editing (p. 318).

Logical Services

Optional. Components can define any combination of logical services that they provide, depend on,
require, or are incompatible with. To define these logical services, use the following functions:

Version 1.8
317

Lumberyard Developer Guide
Registering Your Component

// Optional functions for defining provided and dependent services.
static void GetProvidedServices(AZ::ComponentDescriptor::DependencyArrayType& provided)
static void GetDependentServices(AZ::ComponentDescriptor::DependencyArrayType&
 dependent);
static void GetRequiredServices(AZ::ComponentDescriptor::DependencyArrayType&
 required);
static void GetIncompatibleServices(AZ::ComponentDescriptor::DependencyArrayType&
 incompatible);

Registering Your Component
You must register a component during application startup. You must implement the registration in the
AZ::Module class of the module in which the component is written.

The following example module creates descriptors for the components that are declared within the module.

//MyModule.cpp

MyModule::MyModule()
{
 // Create descriptors for components declared within this module.
 m_descriptors.insert(m_descriptors.end(), {
 MyComponent::CreateDescriptor(),
 });
}

For more information, see the Module Class section of the AZ Modules (p. 148) documentation.

Reflecting a Component for Serialization and Editing
Components use AZ reflection to describe the data they serialize and how content creators interact with
them.

The following example reflects a component for serialization and editing:

class MyComponent
 : public AZ::Component
{
 ...

 enum class SomeEnum
 {
 EnumValue1,
 EnumValue2,
 }
 float m_someFloatField;
 AZStd::string m_someStringField;
 SomeEnum m_someEnumField;
 AZStd::vector<SomeClassThatSomeoneHasReflected> m_things;

 int m_runtimeStateNoSerialize;
}

/*static*/ void MyComponent::Reflect(AZ::ReflectContext* context)
{
 AZ::SerializeContext* serialize = azrtti_cast<AZ::SerializeContext*>(context);
 if (serialize)
 {

Version 1.8
318

http://docs.aws.amazon.com/lumberyard/latest/developerguide/az-module-parts.html#az-module-parts-module-class

Lumberyard Developer Guide
Reflecting a Component for Serialization and Editing

 // Reflect the class fields that you want to serialize.
 // In this example, m_runtimeStateNoSerialize is not reflected for serialization.
 serialize->Class<MyComponent>()
 ->Version(1)
 ->Field("SomeFloat", &MyComponent::m_someFloatField)
 ->Field("SomeString", &MyComponent::m_someStringField)
 ->Field("Things", &MyComponent::m_things)
 ->Field("SomeEnum", &MyComponent::m_someEnumField)
 ;

 AZ::EditContext* edit = serialize->GetEditContext();
 if (edit)
 {
 edit->Class<MyComponent>("My Component", "The World's Most Clever Component")
 ->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_someFloatField,
 "Some Float", "This is a float that means X.")
 ->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_someStringField,
 "Some String", "This is a string that means Y.")
 ->DataElement("ComboBox", &MyComponent::m_someEnumField, "Choose an Enum",
 "Pick an option among a set of enum values.")
 ->EnumAttribute(MyComponent::SomeEnum::EnumValue1, "Value 1")
 ->EnumAttribute(MyComponent::SomeEnum::EnumValue2, "Value 2")
 ->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_things, "Bunch of
 Things", "A list of things for doing Z.")
 ;
 }
 }
}

The preceding example adds five data members to MyComponent. The first four data members will be
serialized. The last data member will not be serialized because it contains only the runtime state. This is
typical; components commonly contain members that are serialized and others that are not.

It is common for fields to be reflected for serialization, but not for editing, when using advanced reflection
features such as change callbacks (p. 322). In these cases, components may conduct complex internal
calculations based on user property changes. The result of these calculations must be serialized but not
exposed for editing. In such a case, you reflect the field to SerializeContext, but not add an entry in
EditContext. An example follows:

serialize->Class<MyComponent>()
 ->Version(1)
 ...
 ->Field("SomeFloat", &MyComponent::m_someFloatField)
 ->Field("MoreData", &MyComponent::m_moreData)
 ...
 ;

...

AZ::EditContext* edit = serialize->GetEditContext();
if (edit)
{
 edit->Class<MyComponent>("My Component", "The World's Most Clever Component")
 ->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_someFloatField, "Some
 Float", "This is a float that means X.")
 ->EnumAttribute("ChangeNotify", &MyComponent::CalculateMoreData)
 // m_moreData is not reflected for editing directly.
 ;
}

Lumberyard has reflection contexts for different purposes, including:

• SerializeContext – Contains reflection data for serialization and construction of objects.

Version 1.8
319

Lumberyard Developer Guide
Reflecting a Component for Serialization and Editing

• EditContext – Contains reflection data for visual editing of objects.

• BehaviorContext – Contains reflection for runtime manipulation of objects from Lua, flow graph, or other
external sources.

• NetworkContext – Contains reflection for networking purposes, including marshaling, quantization, and
extrapolation.

Note
This guide covers only SerializeContext and EditContext.

All of Lumberyard's reflection APIs are designed to be simple, human readable, and human writable, with
no forced dependency on code generation.

A component's Reflect() function is invoked automatically for all relevant contexts.

The following code dynamically casts the anonymous context provided to a serialize context, which is how
components discern the type of context that Reflect() is being called for.

AZ::SerializeContext* serialize = azrtti_cast<AZ::SerializeContext*>(context);

Serialization

Reflecting a class for serialization involves a builder pattern style markup in C++, as follows:

serialize->Class<TestAsset>()
 ->Version(1)
 ->Field("SomeFloat", &MyComponent::m_someFloatField)
 ->Field("SomeString", &MyComponent::m_someStringField)
 ->Field("Things", &MyComponent::m_things)
 ->Field("SomeEnum", &MyComponent::m_someEnumField)
 ;

The example specifies that m_someFloatField, m_someStringField, m_things, and m_someEnumField
should all be serialized with the component. Field names must be unique and are not user facing.

Tip
We recommend that you keep your field names simple for future proofing. If your component
undergoes significant changes and you want to write a data converter to maintain backward data
compatibility, you must reference the field names directly.

The preceding example reflects two primitive types—a float, and a string—as well as a container (vector) of
some structure. AZ reflection, serialization, and editing natively support a wide variety of types:

• Primitive types, including ints (signed and unsigned, all sizes), floats, and strings

• Enums

• AZStd containers (flat and associative), including AZStd::vector, AZStd::list, AZStd::map,
AZStd::unordered_map, AZStd::set, AZStd::unordered_set, AZStd:pair, AZStd::bitset,
AZStd::array, fixed C-style arrays, and others.

• Pointers, including AZStd::smart_ptr, AZStd::intrusive_ptr, and raw native pointers.

• Any class or structure that has also been reflected.

Note
The example omits the reflection code for SomeClassThatSomeoneHasReflected. However, you
need only reflect the class. After that, you can freely reflect members or containers of that class in
other classes.

Version 1.8
320

https://en.wikipedia.org/wiki/Builder_pattern

Lumberyard Developer Guide
Reflecting a Component for Serialization and Editing

Editing
When you run Lumberyard tools such as Lumberyard Editor, an EditContext and a SerializeContext are
provided. You can use the robust facilities in these contexts to expose your fields to content creators.

The following code demonstrates basic edit context reflection:

AZ::EditContext* edit = serialize->GetEditContext();
if (edit)
{
 edit->Class<TestAsset>("My Component", "The World's Most Clever Component")
 ->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_someFloatField, "Some
 Float", "This is a float that means X.")
 ->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_someStringField, "Some
 String", "This is a string that means Y.")
 ->DataElement("ComboBox", &MyComponent::m_someEnumField, "Choose an Enum", "Pick an
 option among a set of enum values.")
 ->EnumAttribute(MyComponent::SomeEnum::EnumValue1, "Value 1")
 ->EnumAttribute(MyComponent::SomeEnum::EnumValue2, "Value 2")
 ->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_things, "Bunch of Things",
 "A list of things for doing Z.")
 ;
}

Although this example demonstrates the simplest usage, many features and options are available when
you reflect structures (including components) to the edit context. For the fields to be exposed directly to
content creators, the example provides a friendly name and a description (tooltip) as the third and fourth
parameters of DataElement. For three fields, the first parameter of DataElement is the default UI handler
AZ::Edit::DefaultHandler. The property system's architecture supports the ability to add any number
of UI handlers, each valid for one or more field types. A given type can have multiple available handlers,
with one handler designated as the default. For example, floats by default use the SpinBox handler, but a
Slider handler is also available.

An example of binding a float to a slider follows:

->DataElement("Slider", &MyComponent::m_someFloatField, "Some Float", "This is a float that
 means X.")
 ->Attribute("Min", 0.f)
 ->Attribute("Max", 10.f)
 ->Attribute("Step", 0.1f)

The Slider UI handler expects Min and Max attributes. Optionally, a value for Step may also be provided.
The example provides incremental increases of 0.1. If no Step value is provided, a default stepping of 1.0
is used.

Note
The property system supports external UI handlers, so you can implement your own UI handlers in
your own modules. You can customize the behavior of the field, the Qt control that it uses, and the
attributes that it observes.

Attributes
The example also demonstrates the use of attributes. Attributes are a generic construct on the edit context
that allows the binding of literals, or functions that return values, to a named attribute. UI handlers can
retrieve this data and use it to drive their functionality.

Attribute values can be bound to the following:

• Literal values

• Attribute("Min", 0.f)

Version 1.8
321

Lumberyard Developer Guide
Reflecting a Component for Serialization and Editing

• Static or global variables

• Attribute("Min", &g_globalMin)

• Member variables

• Attribute("Min", &MyComponent::m_min)

• Static or global functions

• Attribute(AZ::Edit::Attributes::ChangeNotify, &SomeGlobalFunction)

• Member functions

• Attribute(AZ::Edit::Attributes::ChangeNotify, &MyComponent::SomeMemberFunction)

Change Notification Callbacks

Another commonly used feature of the edit context is its ability to bind a change notification callback:

->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_someStringField, "Some String",
 "This is a string that means Y.")
 ->Attribute("ChangeNotify", &MyComponent::OnStringFieldChanged)

The example binds a member function to be invoked when this property is changed, which allows the
component to conduct other logic. The ChangeNotify attribute also looks for an optional returned value
that tells the property system if it needs to refresh aspects of its state. For example, if your change callback
modifies other internal data that affects the property system, you can request a value refresh. If your
callback modifies data that requires attributes be reevaluated (and any bound functions be reinvoked), you
can request a refresh of attributes and values. Finally, if your callback conducts work that requires a full
refresh (this is not typical), you can refresh the entire state.

The following example causes the property grid to refresh values when m_someStringField is modified
through the property grid. RefreshValues signals the property grid to update the GUI with changes to the
underlying data.

->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_someStringField, "Some String",
 "This is a string that means Y.")
 ->Attribute("ChangeNotify", &MyComponent::OnStringFieldChanged)
...
AZ::u32 MyComponent::OnStringFieldChanged()
{
 m_someFloatField = 10.0f;

 // We've internally changed displayed data, so tell the property grid to refresh values
 (cheap).
 return AZ_CRC("RefreshValues");
}

RefreshValues is one of three refresh modes that you can use:

• RefreshValues – Refreshes only values. The property grid updates the GUI to reflect changes to
underlying data that may have occurred in the change callback.

• RefreshAttributesAndValues – Refreshes values but also reevaluates attributes. Since attributes
can be bound to data members, member functions, global functions, or static variables, it's sometimes
necessary to ask the property grid to re-evaluate them, which may include reinvoking bound functions.

• RefreshAll – Completely reevaluates the property grid. This is seldom needed, as
RefreshAttributesAndValues should cover all requirements for rich dynamic editor reflection.

The following more complex example binds a list of strings as options for a combo box. The list of strings
is attached to a string field Property A. If you want to modify the options available in the combo box for

Version 1.8
322

Lumberyard Developer Guide
Defining and Using Component Services

Property A with the values from another Property B, you can bind the combo box StringList attribute to
a member function that computes and returns the list of options. In the ChangeNotify attribute for Property
B, you tell the system to reevaluate attributes, which in turn reinvokes the function that computes the list of
options, as in this example:

...

bool m_enableAdvancedOptions;
AZStd::string m_useOption;

...

->DataElement(AZ::Edit::DefaultHandler, &MyComponent::m_enableAdvancedOptions, "Enable
 Advanced Options", "If set, advanced options will be shown.")
 ->Attribute("ChangeNotify", AZ_CRC("RefreshAttributesAndValues"))
->DataElement("ComboBox", &MyComponent::m_useOption, "Options", "Available options.")
 ->Attribute("StringList", &MyComponent::GetEnabledOptions)
...

AZStd::vector<const char*> MyComponent::GetEnabledOptions()
{
 AZStd::vector<const char*> options;
 options.reserve(16);

 options.push_back("Basic option");
 options.push_back("Another basic option");

 if (m_enableAdvancedOptions)
 {
 options.push_back("Advanced option");
 options.push_back("Another advanced option");
 }

 return options;
}

Defining and Using Component Services
Components can optionally specify a list of services that they provide, are incompatible with, depend on, or
require in order to operate. When you create a component, you can use this service specification to define
relationships between various components. The component entity system uses this list for the conditional
addition and removal of components at both edit time and at run time. The service specification also defines
the order in which components are activated when an entity is activated. Specifically, components that
provide services that another component depends on are activated first.

The following example shows a service specification.

static void GetProvidedServices(AZ::ComponentDescriptor::DependencyArrayType& provided)
{
 provided.push_back(AZ_CRC("ProvidedService"));
 provided.push_back(AZ_CRC("AnotherProvidedService"));
}

static void GetRequiredServices(AZ::ComponentDescriptor::DependencyArrayType& required)
{
 required.push_back(AZ_CRC("RequiredService"));
 required.push_back(AZ_CRC("AnotherRequiredService"));
}

static void GetIncompatibleServices(AZ::ComponentDescriptor::DependencyArrayType&
 incompatible)

Version 1.8
323

Lumberyard Developer Guide
Editor Components

{
 incompatible.push_back(AZ_CRC("IncompatibleService"));
}

static void GetDependentServices(AZ::ComponentDescriptor::DependencyArrayType& dependent)
{
 dependent.push_back(AZ_CRC("DependentOnService"));
}

ProvidedService – Specifies the service that the component provides. For example, a
TransformComponent could provide a TransformService that in turn provides locational information.

RequiredService – Specifies a service that the component requires. The components that provide the
required services are guaranteed to be present and active before this component is activated. For example,
an audio component might need to know where it is located and therefore require a TransformService.
Because of this requirement, the audio component can be added only to entities that have the component
that provides the TransformService.

DependentService – Specifies a service on which the component depends but does not require. The
component entity system guarantees that the components that provide dependent services are activated
before the component itself is activated. For example, an audio component could depend on the physics
component. If the entity has physics, the audio component can query the physics component for physical
material information. However, the audio component does not require that physics be present.

IncompatibleService – Specifies a service that cannot work with the component. Consider these
examples:

• An entity can have only one type of collider. Therefore, the PrimitiveColliderService specifies that the
MeshColliderService is incompatible with it and vice versa.

• The same effect can be achieved if two collider components already provide the ColliderService
themselves and therefore specify the ColliderService as incompatible. Marking a component as
incompatible with ColliderService ensures that no other component that has the same service is added
to the entity.

• The IncompatibleService specification is frequently used to specify that multiples of the same
component cannot exist on an entity.

Editor Components
Some components in Lumberyard have separate editor and runtime versions. The editor version is active
in the editor. The run-time version is used for running the level in game or in the editor by pressing Ctrl
+G or clicking AI/Physics below the viewport. Lumberyard uses editor components to maintain a clean
separation between tools-specific code and data on one hand, and leaner run-time component data on the
other. In general, run-time game components do not require editor counterparts. Components rarely need
to be fully active at edit time. The light and mesh components are exceptions because they must behave
the same at edit time as at run time.

EditContext reflection is fully supported in run-time components. Edit time is the only time when editor
components are active. At run time, when Lumberyard processes a level or dynamic slice, it uses the
run-time equivalents of editor components. Using the EditContext from a run-time component is usually
sufficient to provide a rich editing experience.

Important
Editor components are not required. An editor component is necessary only if one of the following
is true:

• Your component must be fully active at edit time. Edit time refers to standard editing mode; run-
time components are used for the AI/Physics mode and gameplay (Ctrl-G).

Version 1.8
324

Lumberyard Developer Guide
Editor Components

• You must add special tools functionality to your component that requires that you compile only
into your editor binaries.

• Your component provides functionality only in the editor and does not export a run-time
component (for example, if your component manages selection logic).

Sample Editor Component
The following code shows a sample editor component.

class MyEditorComponent
 : public AzToolsFramework::Components::EditorComponentBase
 , private AzFramework::EntityDebugDisplayEventBus::Handler
{
public:
 AZ_EDITOR_COMPONENT(MyEditorComponent, "{5034A7F3-63DB-4298-83AA-915AB23EFEA0}");

 // AZ::Component interface implementation
 void Init() override {}
 void Activate() override {}
 void Deactivate() override {}

 // AzFramework::EntityDebugDisplayEventBus::Handler
 void DisplayEntity(bool& handled) override;

 // Required Reflect function.
 static void Reflect(AZ::ReflectContext* context);

 // Optional functions for defining provided and dependent services.
 static void GetProvidedServices(AZ::ComponentDescriptor::DependencyArrayType&
 provided)
 static void GetDependentServices(AZ::ComponentDescriptor::DependencyArrayType&
 dependent);
 static void GetRequiredServices(AZ::ComponentDescriptor::DependencyArrayType&
 required);
 static void GetIncompatibleServices(AZ::ComponentDescriptor::DependencyArrayType&
 incompatible);

 void BuildGameEntity(AZ::Entity* gameEntity) override;

};

Editor Component and Run-time Component Differences
The code for editor components is similar to the code for run-time components. The following sections
list the key differences. It is safe to assume that editor component code is the same as it is for
run-time component code other than the differences listed. For more information, see Creating a
Component (p. 316).

Base Classes

All editor components include the AzToolsFramework::Components::EditorComponentBase class
somewhere in their inheritance ancestry. If a component must display edit-time visualization, it must be a
handler on the AzFramework::EntityDebugDisplayEventBus::Handler bus, as in the following example.

class MyComponent
 : public AzToolsFramework::Components::EditorComponentBase
 , private AzFramework::EntityDebugDisplayEventBus::Handler

Version 1.8
325

Lumberyard Developer Guide
Editor Components

Macro

Every editor component must specify the AZ_EDITOR_COMPONENT macro within its class definition. The macro
takes two arguments:

1. The component type name.

2. A unique UUID. You may use any UUID generator to produce the value. Visual Studio provides this
functionality through Tools, Create GUID. Use the Registry Format setting, and then copy and paste
the value that is generated.

A sample AZ_EDITOR_COMPONENT macro follows.

AZ_EDITOR_COMPONENT(MyEditorComponent, "{5034A7F3-63DB-4298-83AA-915AB23EFEA0}");

Note
Some older editor components specify AzToolsFramework::Components::EditorComponentBase
as the base class, but use the AZ_COMPONENT instead of the AZ_EDITOR_COMPONENT macro, as in the
following example.

AZ_COMPONENT(EditorMannequinComponent, "{C5E08FE6-E1FC-4080-A053-2C65A667FE82}",
 AzToolsFramework::Components::EditorComponentBase);

The DisplayEntity Method

To render special visualizations in the editor, implement the DisplayEntity method of the
AzFramework::EntityDebugDisplayEventBus interface. Use this location for custom primitive edit-time
visualization code.

// AzFramework::EntityDebugDisplayEventBus::Handler
void DisplayEntity(bool& handled) override;

The BuildGameEntity Method

The BuildGameEntity method facilitates the translation of an editor component into a run-time component.
Its syntax is as follows.

void BuildGameEntity(AZ::Entity* gameEntity) override;

A typical implementation of the BuildGameEntity method performs the following actions:

1. Create a run-time component based on the editor component of the specified gameEntity.

2. Copy the configuration data from the editor component into the run-time component.

3. Add the run-time component to the gameEntity that was specified.

At this point, the run-time component serializes the gameEntity and reloads it to create a new, clean
version of the run-time entities.

The Transform Component Example

The TransformComponent is a good example of how editor and run-time components can differ. In the run-
time component, values are stored in a fully composed AZ::Transform. In the editor component, values
are stored in decomposed format. Position, rotation, and scale values are stored separately, and rotation
is represented as Euler angles. This difference in format enables the editor component to provide user-
friendly display and storage while providing optimal storage in the run-time component.

Version 1.8
326

Lumberyard Developer Guide
Creating System Components

Creating System Components
System components are similar to other components in Lumberyard's component entity framework.
However, instead of creating game entity behavior, they control the behavior of the engine itself. Currently
Lumberyard enables the creation of custom system components through AZ modules and gems. (Gems
are a specialization of AZ modules; for more information, see Gems and AZ Modules).

Most games organize their game code in one or more gems that are specific to the game. These gems
can contain both components that you can use on game entities and system components that you want
to integrate with the engine. The system components that a given gem or module specifies are first-class
elements of the game engine and are included at a deep level early in the initialization process. For more
information, see System Components (p. 155) in the AZ Modules (p. 148) section.

Like any Lumberyard component, a system component can provide services and can be dependent on or
require other system component services. This is an elegant way to control engine initialization order and
system dependencies.

When you author system components, follow the best practices for component authoring. For example,
your system components should use EBuses (p. 418) to expose their interfaces, reflection (p. 318) to
serialize and edit settings in the Advanced Settings dialog of the Project Configurator (p. 161), and the
same AZ::Component Functions (p. 317) for activation and deactivation.

Important
Just like game components, system components often provide request and notification buses.
However, because system components are global systems, they should not specify IDs for their
buses like game components do. Your users should be able to call your system's EBuses without
having to deal with or know about the system entity that contains all system components.

The following code example shows a system component EBus.

class AnimationGraphAssetRequests : public AZ::EBusTraits
{
 public:
 virtual ~AnimationGraphAssetRequests() = default;
 virtual AZStd::vector<AZ::Uuid> GetGraphNodeTypes(AZ::SerializeContext&
 serializeContext) = 0;
 virtual GraphAssetPtr CreateGraphAsset() = 0;
 virtual NodeId CreateGraphNode(const GraphAssetPtr& asset, const AZ::Uuid&
 nodeTypeId, AZ::SerializeContext& serializeContext) = 0;
 virtual bool DeleteGraphNode(const GraphAssetPtr& asset, NodeId nodeId) = 0;
 virtual NodePtr FindGraphNode(const GraphAssetPtr& asset, NodeId nodeId) = 0;
};
using AnimationGraphAssetRequestBus = AZ::EBus<AnimationGraphAssetRequests>;

The following code shows part of the system component itself.

class AnimationGraphSystemComponent
 : public AZ::Component
 , private AnimationGraphSystemRequestBus::Handler
{
public:
 AZ_COMPONENT(AnimationGraphSystemComponent, "{2D497170-E4C7-40B0-
A9D1-2D987CC8932A}");
 AnimationGraphSystemComponent();
 ~AnimationGraphSystemComponent() override;

 // AnimationGraphSystemRequestBus::Handler
 AZStd::intrusive_ptr<PoseBufferStorage> AllocatePoseBufferStorage(AZ::u32 jointCount)
 override;

Version 1.8
327

http://docs.aws.amazon.com/lumberyard/latest/developerguide/az-module-gems.html

Lumberyard Developer Guide
Components and EBuses

 void FreePoseBufferStorage(PoseBufferStorage* storage) override;
 AZ::u32 GetActivePoseBufferCount() override;
 void ExecuteGraph(const AZ::Data::AssetId& assetId, const PlaybackContext& context,
 PoseBuffer& targetBuffer) override;
 void UpdateGraph(const AZ::Data::AssetId& assetId, const PlaybackContext& context,
 float& expectedDuration, float& normalizedTime) override;

 // AZ::Component
 static void Reflect(AZ::ReflectContext* reflect);
 static void GetProvidedServices(AZ::ComponentDescriptor::DependencyArrayType&
 provided);
 static void GetRequiredServices(AZ::ComponentDescriptor::DependencyArrayType&
 required);

private:
 // AZ::Component
 void Activate() override;
 void Deactivate() override;

Defining a System Component

To designate a component as a system component, you must set the AppearsInAddComponentMenu field to
System when you reflect to the EditContext, as in the following example.

if (AZ::EditContext* editContext = serializeContext->GetEditContext())
{
 editContext->Class<AnimationGraphSystemComponent>(
 "Animation Graph", "Manages animation graph system component and features.")
 ->ClassElement(AZ::Edit::ClassElements::EditorData, "")
 ->Attribute(AZ::Edit::Attributes::Category, "Engine")
 ->Attribute(AZ::Edit::Attributes::AppearsInAddComponentMenu,
 AZ_CRC("System"))
 ;
}

This code exposes the component to the editor and other parts of the user interface that are visible
to users. The optional Category field determines which submenu contains the component in the Add
Component menu in Lumberyard Editor Entity Inspector. In the following example, the Area Light
component appears in the submenu Add Component, Rendering, Lights.

...
 editContext->Class<EditorAreaLightComponent>(
 "Area Light", "Attach area lighting to an entity.")
 ->ClassElement(AZ::Edit::ClassElements::EditorData, "")
 ->Attribute(AZ::Edit::Attributes::Category, "Rendering/Lights")
...

Components and EBuses
EBuses are not required for components, nor are they directly bound to components in any way. But
because they form the backbone of communication among all Lumberyard components, EBuses offer many
benefits. We highly recommend that you learn how to use them in your game, systems, and components.
For more information, see Event Bus (EBus) (p. 418).

Most components provide two EBuses to facilitate communication: a request bus and a notification
bus. Both these EBuses use the EBusAddressPolicy::ById address policy and the ID of the entity for
identification.

Version 1.8
328

Lumberyard Developer Guide
Components and EBuses

Request Bus
A component's request bus allows other components or external systems to make requests of the
component. Usually the run-time version of the component implements the request bus. However, the
editor component can service the bus in special cases.

The following sections examine the individual parts of an example request bus.

Transform Request Event Group

The following example defines a group of events that the TransformComponent handles.

class TransformComponentRequests
 : public AZ::ComponentBus // EBus traits for component buses: identification is based
 on an entity ID.
{
 public:

 // EBusTraits overrides - Only a single handler is allowed for a given entity ID.
 // Only one component on a entity can implement the events.
 static const EBusHandlerPolicy HandlerPolicy = EBusHandlerPolicy::Single;

 // Returns the local transform (parent transform excluded).
 virtual const Transform& GetLocalTM() = 0;

 // Sets the local transform and notifies all interested parties.
 virtual void SetLocalTM(const Transform& /*tm*/) {}

 // Returns the world transform (including parent transform).
 virtual const Transform& GetWorldTM() = 0;

 // Sets the world transform and notifies all interested parties.
 virtual void SetWorldTM(const Transform& /*tm*/) {}

 // Returns both local and world transforms.
 virtual void GetLocalAndWorld(Transform& /*localTM*/, Transform& /*worldTM*/) {}

...
 };

Base Class and Trait Specification

The base class for most AZ::Component request buses is AZ::ComponentBus. This class is a convenience
to help set up EBus traits typical of component EBuses. You could also set up EBus traits by inheriting
the default AZ::EbusTraits. Then you could optionally override any or all of the following traits. For more
information, see EBus Configuration Options.

• Address policy

• Bus ID type

• Connection policy

• Handler policy

• Lock type

• Priority sorting

These two approaches are shown in the following examples.

// Example using AZ::ComponentBus
class TransformComponentRequests
 : public AZ::ComponentBus

Version 1.8
329

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html#asset-pipeline-ebus-usage-config-options

Lumberyard Developer Guide
Components and EBuses

{...}

// Example using AZ::EBusTraits
class TransformComponentRequests
 : public AZ::EBusTraits
{
...
 // EBusTraits overrides
 static const EBusAddressPolicy AddressPolicy = EBusAddressPolicy::ById; // OR YOUR
 CHOSEN POLICY
 static const AZ::EBusHandlerPolicy HandlerPolicy =
 AZ::EBusHandlerPolicy::Multiple; // OR YOUR CHOSEN POLICY
 using BusIdType = EntityId;
...
}

EBus Request Bus Events

EBus event definitions are the main part of the bus specification. This interface defines what your
component does. In the following example, the TransformComponent allows the retrieval and modification of
the local and world transforms. It also creates interfaces for setting parent-child relationships.

...

// Returns the local transform (parent transform excluded).
virtual const Transform& GetLocalTM() = 0;

// Sets the local transform and notifies all interested parties.
virtual void SetLocalTM(const Transform& /*tm*/) {}

// Returns the world transform (including parent transform).
virtual const Transform& GetWorldTM() = 0;

// Sets the world transform and notifies all interested parties.
virtual void SetWorldTM(const Transform& /*tm*/) {}

// Returns both local and world transforms.
virtual void GetLocalAndWorld(Transform& /*localTM*/, Transform& /*worldTM*/) {}

...

EBus Request Bus Definition

After the event group has been declared, the EBus must be defined. Although you can use
AZ::EBus<TransformComponentRequests> to define an EBus, we recommend that you use a typedef
instead, as in the following example. This improves readability at bus call sites.

typedef AZ::EBus<TransformComponentRequests> TransformComponentRequestBus;

Another best practice is to use descriptive names in EBuses and avoid overloaded functions. Explicit and
descriptive function names prevent future API name collisions as classes inherit (potentially many of)
your EBus interfaces. Avoiding overloaded functions improves the experience of using your EBuses from
scripting environments. In Lua and in visual scripting, the extra expressiveness improves readability and
clarity.

Notification Bus
A component uses its notification bus to inform other components and the rest of the engine about
relevant changes. To do this, it sends notifications in the form of EBus events to any class that monitors

Version 1.8
330

Lumberyard Developer Guide
Components and EBuses

the bus. To monitor the bus, classes implement the notification bus handler interface (in the case of
TransformComponent, this is AZ::TransformNotificationBus::Handler.)

Note
A request bus sends messages to a component; a notification bus sends messages from a
component.

Transform Notification Event Group

The following example defines a group of notification events that the TransformComponent sends.

class TransformNotifications
 : public AZ::ComponentBus
{
 public:
 ...
 // Called when the local transform of the entity has changed. Local transform update
 always implies world transform change too.
 virtual void OnTransformChanged(const Transform& /*local*/, const Transform& /
world/) {}
 ...
};

typedef AZ::EBus<TransformNotifications> TransformNotificationBus;

The notification bus can also change its EBusTrait specification if required.

Components as EBus Handlers
After you have created the EBus event groups and defined the EBuses, your component can implement the
EBus interface by deriving from the EBus handler. The following example is from the TransformComponent.

class TransformComponent
 : public AZ::Component
 , private AZ::TransformComponentRequestBus::Handler
{
 ...

 // TransformBus

 /// Returns true if the tm was set to the local transform.
 const AZ::Transform& GetLocalTM() override { return m_localTM; }

 /// Sets the local transform and notifies all interested parties
 void SetLocalTM(const AZ::Transform& tm) override;

 /// Returns true if the transform was set to the world transform.
 const AZ::Transform& GetWorldTM() override { return m_worldTM; }

 /// Sets the world transform and notifies all interested parties.
 void SetWorldTM(const AZ::Transform& tm) override;

 /// Returns both local and world transforms.
 void GetLocalAndWorld(AZ::Transform& localTM, AZ::Transform& worldTM) override
 { localTM = m_localTM; worldTM = m_worldTM; }

 ...
}

At this point you can implement the defined methods in the TransformComponent. After the
TransformComponent connects to the EBus for its entity ID, its event handlers are invoked whenever an
event is sent on that bus or ID.

Version 1.8
331

Lumberyard Developer Guide
Tick Bus and Components

Tick Bus and Components
The tick bus is the primary mechanism by which components subscribe to events that occur per CPU tick. If
your component requires tick-based functionality, it implements the tick bus interface's OnTick method and
connects to the tick bus for the required period of time. To avoid poor scalability of polling-based update
structures, components should limit the time that they are connected to the tick bus.

Your components should connect to the tick bus only in the Activate method and disconnect only in the
Deactivate method. If possible, components should connect only when necessary and disconnect as
soon as feasible. For example, a component might use the OnTick method to check state continuously, but
actively do processing for only a fraction of the connected time. Instead, the component should connect
to the tick bus only when the state changes and disconnect after processing is complete. This approach is
closer to that of event-based programming, in which polling is conducted only for short periods of time or
not at all.

As an example, imagine a component that monitors the state of an entity after the entity enters a trigger.
The component should avoid subscribing to the tick bus until the entity has entered the trigger. It should
then disconnect from the tick bus as soon as the entity has left the trigger.

In the following example, the NavigationComponent implements the OnTick method.

class NavigationComponent
 : public AZ::Component
 , public NavigationComponentRequestBus::Handler
 , public AZ::TickBus::Handler
{
 ...

 // TickBus
 virtual void OnTick(float deltaTime, AZ::ScriptTimePoint time);

 ...
}

To connect and disconnect from the tick bus, the component uses code like the following.

AZ::TickBus::Handler::BusConnect();

AZ::TickBus::Handler::BusDisconnect();

Event-Based Programming and Event-Based Polling: Best
Practices

It is important to know when to use the tick bus and when to use event-driven programming patterns
instead.

Event-Based Polling

It is often convenient to tick a component every frame and monitor the state of other entities. For example,
a LookAt camera component is commonly implemented to tick each frame, retrieve the transform of the
target entity, and update its own transform accordingly.

Event-Based Programming

In Lumberyard, a more event-driven approach is to use the TransformBus to monitor the target entity for
transform changes in a purely event-driven fashion. If the target entity doesn't move, no work is done

Version 1.8
332

Lumberyard Developer Guide
Exposing Custom Components to Track View for Animation

and no polling is required. When the target entity moves, the LookAt component adjusts its own entity's
transform accordingly.

Use Notifications to Make Your Components Easy to Use

When authoring a component, try to anticipate the requirements of components that might depend on
yours. Use a notification bus to expose the appropriate notifications for your component. This approach
enables others to write code that consumes the services of your components in a faster and more scalable
way.

For more best practices, see Components and EBuses: Best Practices (p. 336).

Exposing Custom Components to Track View for
Animation
To include custom components in cinematic cut scenes and movies rendered to disk, you need to expose
animatable component properties to Lumberyard’s Track View editor and Entity Inspector. To expose a
custom component and its properties, you must perform three steps:

1. Create getter and setter methods for the animated property on one of the component’s request event
buses.

2. Implement the getter and setter request handlers in your component.

3. Reflect your component to the edit context and the behavior context. Edit context reflection exposes your
component in Entity Inspector, and behavior context reflection exposes it in the Track View editor.

Exposing a Custom Component: Example

The following example assumes that a custom component called ImaginaryTargetComponent has
been created. The component has a Vector3 property called ImaginaryPosition that you want to
animate in Track View. A request bus called ImaginaryTargetComponentBus has also been created
for the component. This example assumes you are familiar with programming event buses and
component handlers for them. For more information, see Event Bus (EBus) (p. 418) and Creating a
Component (p. 316).

To expose a custom component to Track View

1. Create getter and setter methods

Each property must provide a method to set its value and get its current value. To implement this,
create setter and getter methods on one of the component’s request buses. Then reflect those
methods to the behavior context as part of the class reflection for the component.

The following example creates setter and getter requests on the
ImaginaryTargetComponentRequestBus.

/*!
* ImaginaryTargetComponentRequests EBus Interface
* Messages serviced by ImaginaryTargetComponents.
*/
class ImaginaryTargetComponentRequests
 : public AZ::ComponentBus
{
public:

 // EBusTraits overrides - Application is a singleton.
 // Only one component on an entity can implement the events.

Version 1.8
333

Lumberyard Developer Guide
Exposing Custom Components to Track View for Animation

 static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Single;

 // Getter/Setter methods for ImaginaryTargetPosition.
 virtual AZ::Vector3 GetImaginaryTargetPosition() = 0;
 virtual void SetImaginaryTargetPosition(const AZ::Vector3& newPosition) = 0;
};
using ImaginaryTargetComponentRequestBus = AZ::EBus<ImaginaryTargetComponentRequests>;

2. Implement handlers in your component

Implement handlers in your component for the setter and getter requests that you declared in the first
step, as in the following example.

class ImaginaryTargetComponent
 : public AzToolsFramework::Components::EditorComponentBase
 , public LmbrCentral::ImaginaryTargetComponentRequestBus::Handler
{

public:
 AZ_EDITOR_COMPONENT(ImaginaryTargetComponent, "{4491D282-C120-4B2E-BC63-
AC86296956A2}");

 ImaginaryTargetComponent() : m_imaginaryPosition(.0f) {};

 // ImaginaryTargetComponentRequestBus::Handler implementation.

 // Implementations for Getter/Setter methods for ImaginaryTargetPosition.
 // Presumably these would be used for something useful; this example just
 // stores and returns the value.
 AZ::Vector3 GetImaginaryTargetPosition() override { return m_imaginaryPosition; }
 void SetImaginaryTargetPosition(const AZ::Vector3& newPosition) override
 { m_imaginaryPosition = newPosition; }

protected:
 // Required Reflect function.
 static void Reflect(AZ::ReflectContext* context);

private:
 AZ::Vector3 m_imaginaryPosition;
};

3. Reflect your component

Using the edit context and behavior contexts, reflect the component’s class, request event bus, and
setter and getter methods. Track View uses the setter and getter methods that you reflect in this step
to set and get values for your animated property. You must also reflect a VirtualProperty declaration
that tells Track View that your component is capable of being animated.

/*static*/ void ImaginaryTargetComponent::Reflect(AZ::ReflectContext* context)
{
 AZ::SerializeContext* serializeContext =
 azrtti_cast<AZ::SerializeContext*>(context);

 if (serializeContext)
 {
 serializeContext->Class<ImaginaryTargetComponent,
 AzToolsFramework::Components::EditorComponentBase>()
 ->Version(0)
 ->Field("ImaginaryPosition",
 &ImaginaryTargetComponent::m_imaginaryPosition);

 AZ::EditContext* editContext = serializeContext->GetEditContext();
 if (editContext)

Version 1.8
334

Lumberyard Developer Guide
Exposing Custom Components to Track View for Animation

 {
 editContext->Class<ImaginaryTargetComponent>("ImaginaryTarget", "A Code
 Sample enabling Track View Animation")
 ->ClassElement(AZ::Edit::ClassElements::EditorData, "")
 ->Attribute(AZ::Edit::Attributes::Category, "Game")
 ->Attribute(AZ::Edit::Attributes::AppearsInAddComponentMenu,
 AZ_CRC("Game", 0x232b318c))
 ->DataElement(0, &ImaginaryTargetComponent::m_imaginaryPosition,
 "Imaginary Target Pos", "Imaginary Target Position")
 ;
 }
 }

 AZ::BehaviorContext* behaviorContext = azrtti_cast<AZ::BehaviorContext*>(context);
 if (behaviorContext)
 {
 // Reflect the setter and getter methods and create a virtual property that
 refers to them.
 behaviorContext-
>EBus<ImaginaryTargetComponentRequestBus>("ImaginaryTargetRequestBus")
 ->Event("GetImaginaryTargetPosition",
 &ImaginaryTargetComponentRequestBus::Events::GetImaginaryTargetPosition)
 ->Event("SetImaginaryTargetPosition",
 &ImaginaryTargetComponentRequestBus::Events::SetImaginaryTargetPosition)
 ->VirtualProperty("ImaginaryPosition", "GetImaginaryTargetPosition",
 "SetImaginaryTargetPosition");

 // Attach the "ImaginaryTargetRequestBus" EBus that you reflected to the
 behavior context of the ImaginaryTargetComponent class.
 behaviorContext->Class<ImaginaryTargetComponent>()-
>RequestBus("ImaginaryTargetRequestBus");
 }
}

4. (Optional) Place Unit Attributes on Getters

Track View’s user interface depends on the data type that the getter and setter use. The foregoing
example uses a type of AZ::Vector3, so Track View creates a compound x,y,z track from the
property. By contrast, if the getter and setters use a bool, Track View creates a Boolean track. For the
majority of animatable properties, the type is sufficient. However, in some cases you might have to set
units for a reflected property. For example, if your property’s AZ::Vector3 represents a color, you must
add an attribute to the reflection of the getter event. The attribute instructs Track View to use a color
picker for that property. For example, if you have a property called ImaginaryTargetColor that calls a
the getter event GetImaginaryTargetColor, use reflection code like the following:

->Event("GetImaginaryTargetColor",
 &ImaginaryTargetComponentRequestBus::Events::GetImaginaryTargetColor)
 ->Attribute("Units", AZ::Edit::Attributes:: PropertyUnits8BitColor)

Track View then uses a color track for the property, as the following image shows.

Other units can be found in the file dev\Code\Framework\AZCore\AZCore\Serialization
\EditContextConstants.inl. As of Lumberyard release 1.8, these units are the following.

const static AZ::Crc32 PropertyUnitsRadian = AZ_CRC("Radians");
const static AZ::Crc32 PropertyUnits8BitColor = AZ_CRC("8BitColor");

If you have an angular parameter in radians that you want to Track View to convert to degrees in its
user interface, use AZ::Crc32 PropertyUnitsRadian.

Version 1.8
335

Lumberyard Developer Guide
Components and EBuses: Best Practices

Viewing the Result

Now you can view how the example component and property appear in Entity Inspector and Track View
editor.

In the following Entity Inspector image, EditContext reflection has exposed the ImaginaryTarget
component and its Imaginary Target Pos property.

In the following Track View image, BehaviorContext reflection has exposed the ImaginaryTarget
component and the ImaginaryPosition track from the corresponding virtual property.

Components and EBuses: Best Practices
Follow these best practices for authoring components.

EBus Names

The following EBus naming conventions remove ambiguity and provide consistency.

• Use the name format MyComponentRequestBus for the bus that others use to invoke functions on
MyComponent, as in the following example.

class CheeseburgerComponentRequests : public AZ::ComponentBus
{
 bool ICanHasCheeseburger() const = 0;
};
using CheeseburgerComponentRequestBus = AZ::EBus<CheeseburgerComponentRequests>;

• Use the name format MyComponentNotificationBus for events that are broadcast from MyComponent, as
in the following example.

class CheeseburgerComponentNotifications : public AZ::ComponentBus
{
 void OnCheeseburgerEaten(AZ::u8 yelpRating) {};
};
using CheeseburgerComponentNotificationBus =
 AZ::EBus<CheeseburgerComponentNotifications>;

Provide Default Implementations of Methods

Notification buses typically provide default implementations of the methods within the interface. Many other
components can monitor your component's events, but not all of them are interested in every event that
your component sends. If you provide default implementations for all your methods, other components that
subscribe to your events can implement only those events that are relevant to them.

EBus Event Naming

Good EBus event names are verbose. Classes can monitor multiple buses, so descriptive event names
makes it clear which bus the function corresponds to. This practice also prevents potential name collisions
among event interfaces from different buses.

The following example is a clearly named PhysicsComponentNotificationBus event.

virtual void OnPhysicsEnabled() = 0;

Version 1.8
336

Lumberyard Developer Guide
Components and EBuses: Best Practices

The following example is an ambiguously named PhysicsComponentNotificationBus event.

virtual void OnEnabled() = 0;

Avoid Using Type Definitions for Serialized Data

An instructive example from Lumberyard shows the importance of using classes instead of type definitions
for serialized data. Formerly, EntityId used the type definition uint32_t. When the decision was made
to change this to 64-bit, upgrade functions had to be written for every class that contained an EntityId. If
EntityId had been a class, a single upgrade function could have been written for the class, and no further
work would have been required. Obviously, this principle does not apply to primitive types like bool, float,
int, and string. However, if you have a specific type that is serialized and might change in the future,
implement it as a reflected class. This provides a single context where you can easily make the conversion
for the class or type.

EBus Results

Always initialize a variable before calling an EBus event that overwrites the variable. Even if you are sure
that a particular class or component is listening on the bus, it's worth handling the exceptional case. This is
especially true in distributed environments in which entities can come and go as part of area-of-interest or
other dynamic patterns.

The following example initializes a result variable before calling an EBus event that produces a result.

AZ::Transform targetEntityTransform = AZ::Transform::Identity(); // initialize result
 variable...
EBUS_EVENT_ID_RESULT(targetEntityTransform, targetEntityId, AZ::TransformBus,
 GetWorldTM); // ...in case of no response

EBus Timing

The following are some best practices for the timing of EBus actions.

• In the Activate() (p. 317) function, make sure that connecting to buses is the last step.

• In the Deactivate() (p. 317) function, make sure that disconnecting from buses is the first step.

• In a multithreaded environment, it's possible to receive bus events from the moment that you connect to
the bus until the moment you disconnect. For this reason, make sure of the following:

• Your component is fully activated before it starts reacting to events.

• Your component stops receiving events before it starts deactivation.

This practice prevents your component from being in a half-activated state when it starts reacting to events,
or in a half-deactivated while still receiving events.

• When you send events on a notification-style bus, the last step in a function should ensure that the data
is fully populated.

The following is an example to avoid.

EBUS_EVENT_ID(GetEntityId(), OnTransformChanged, newTransform);
m_transform = newTransform;

If a component is monitoring the OnTransformChanged event and sets your transform in response to the
event, the component's action will be undone by the m_transform = newTransform; assignment.

Version 1.8
337

Lumberyard Developer Guide
Behavior Context

Making Functions Public or Protected

Consider the following when deciding to make functions public or private.

• Make your bus functions public if they constitute the public interface for your class. While it's
discouraged, Lumberyard does not prevent users from getting direct pointers to components and
calling functions directly. To avoid this, make sure that your useful functions are public. For example,
MyComponent should probably implement functions from MyComponentRequestBus publicly.

• Make your bus functions protected if they contain the private workings of your class. For example, your
component's reaction to the TransformNotificationBus::OnTransformChanged event would likely be a
private implementation detail.

Avoid Using the const Type Qualifier in EBus Event Group
Functions

In general, all EBus methods are meant to be implemented by external code. As the author of an EBus
interface, you do not want to force the use of const declarations upon any particular implementation of a
method. Because end developers will write these for their own data, it is best to avoid const in EBus event
group functions.

Note
This is true for request buses, but is particularly important with regard to notification buses.

Behavior Context
In Lumberyard 1.8, the behavior context replaces script context. The behavior context works with serialize
context, edit context, and network context to provide rich C++ reflection. The behavior context focuses
on the runtime aspects of C++ code and allows you to manipulate C++ code and objects while they are
being created. All script bindings, including Lua, use this reflection. Reflection is also used for modification
of objects while in running state (such as animating object properties) and reading of current properties
for component state transitions. You can have multiple behavior contexts that are specialized for different
purposes, and you can unreflect the behavior contexts in order to implement reloading. At a high level, the
behavior context uses only a few primitives on which to build: properties, methods, classes, EBuses and
attributes.

With the introduction of the behavior context, you can no longer reflect directly into the script context. For
more information, see the migration notes for Lumberyard 1.8.

Reflection API
This section describes how methods, properties, classes, and other primitives are used in the Lumberyard
reflection API.

Method

Methods reflect a C++ function. You can have global or class methods. Each method must have a unique
name for its scope (global or class). You can also provide default values; this allows you to call reflected
methods with fewer arguments. Default values are used right to left. You can also provide a debug
description for your method. It's highly recommended that you do so. The debug description information is
provided to users for context when they use the reflection, as is done with ClassView in the Lua editor. The
system automatically generates a description that includes result and argument types. However, adding
intent and additional details to your descriptions greatly improves the usability of your reflection. This is
especially important when a method has many attributes.

Version 1.8
338

http://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-migrating-1-8.html

Lumberyard Developer Guide
Reflection API

Property

Properties access data and can be global properties or class properties. Each property must have a unique
name for its scope. As is customary, a property has getter and setter methods. If you don't provide a setter
method for a property, the property is read only. If you don't provide a getter method, the property is write
only.

Lumberyard does support global functions, member functions, and lambda functions as property getters
and setters.

Lumberyard provides macros that you can use to wrap a class value. You can use
BehaviorValueProperty(&value) to implement getter and setter methods, or you can implement them
individually by using BehaviorValueGetter and BehaviorValueSetter. These macros implement lambda
functions for those values. When the state of your object is modified, you might have to perform operations
other than simply setting the value. For this reason, it is a best practice to always implement your getters
and setters. You can always change your implementation later.

Constant

Constants are implemented as read-only properties and can be global or restricted to a class. A behavior
context macro called BehaviorConstant implements the lambda getter for you.

Enum

Because class enums often require casting, Lumberyard currently treats all enums values as int. Enums
are implemented as read-only int properties.

Class

Reflects a C++ class or struct. You can provide an optional name. If you do not provide a name, the class
name from AzTypeInfo is used. That name must be unique for the scope. Because the system uses AzRTTI
to build the class hierarchy, you can use RTTI if you want to reflect base class functionality.

• Allocator - You can provide a custom allocator/ deallocator for your class. This allows you to override
any existing allocation schema. If you do not provide a custom allocator, aznew/delete is used
(AZ_CLASS_ALLOCATOR).

• Constructor - Allows you to enumerate the class constructors that you want to reflect. You must pass all
constructor arguments as template augments.

• Wrapping/WrappingMember - Allows code to inform the system that it is a wrapper of another class.
This is useful when you reflect smart pointers and string wrappers.

• Userdata - Allows you to provide a pointer to user data. The pointer is accessible from all callbacks (like
a custom allocator) that you implement for the class.

• Method - Reflects a C++ class function. The first argument is the class pointer. This is the same usage
as global methods.

• Property - Reflects class data. The first argument is the class pointer. This is the same usage as global
properties.

• Enum - Enums are int read-only properties.

• Constant - Constants are read-only properties.

Nested Classes

To bind a nested class to the behavior context, you must do it from within a function on the nested class. C
++ rules about nested class member access from outside scopes make this requirement necessary.

Version 1.8
339

Lumberyard Developer Guide
Reflection API

The following counterexample shows a poorly formed nested class. The code does not work.

//Bad nested class
class Outer
{
public:
 AZ_TYPE_INFO(Outer, "...");
 static void Reflect(AZ::ReflectContext* context);
 class Inner
 {
 public:
 AZ_TYPE_INFO(Inner, "...");

 int m_member = 0;
 };
};

void Outer::Reflect(AZ::ReflectContext* context)
{
 if (AZ::BehaviorContext* behavior = azrtti_cast<AZ::BehaviorContext*>(context))
 {
 behavior->Class<Inner>("OuterInner")
 ->Property("member", BehaviorValueProperty(&Inner::m_member))
 ;
 }
}

The following code shows a well formed nested class.

//Good nested class
class Outer
{
public:
 AZ_TYPE_INFO(Outer, "...");
 static void Reflect(AZ::ReflectContext* context);

 class Inner
 {
 public:
 AZ_TYPE_INFO(Inner, "...");
 static void Reflect(AZ::ReflectContext* context);

 int m_member = 0;
 };
};

void Outer::Reflect(AZ::ReflectContext* context)
{
 Inner::Reflect(context);
}

void Outer::Inner::Reflect(AZ::ReflectContext* context)
{
 if (AZ::BehaviorContext* behavior = azrtti_cast<AZ::BehaviorContext*>(context))
 {
 behavior->Class<Inner>("OuterInner")
 ->Property("member", BehaviorValueProperty(&Inner::m_member))
 ;
 }
}

Version 1.8
340

Lumberyard Developer Guide
Example

EBus

EBus Reflects Lumberyard event bus messages. Depending on your EBus configuration, Broadcast, Event
(with ID) and Queuing are reflected. Queuing is a generic function to be executed when the bus messages
are consumed.

• Event - Reflects an EBus event. Depending on your EBus configuration, Lumberyard automatically
reflects Broadcast, Event, QueueBroadCast, and QueueEvent.

• Handler - Reflects a class that you must implement to forward messages from the EBus to behavior
context methods. You must create a class that can monitor the specified EBus and forward messages to
the behavior context. This is a requirement because the behavior context can not guarantee that there
is a handler for each message. If a message expects a result, you must provide a default result in case
the message is not handled by the behavior context user. Keep in mind that the system creates as many
of these handlers as the behavior context requires. Handlers can also execute in different threads. As
a result, you should avoid static storage for values that change. The best way to understand this is to
examine the example that follows.

Example
The following code example shows the use of the Lumberyard reflection API.

// Global Property
behaviorContext.Property("globalProperty",&GlobalPropertyGetter, &GlobalPropertySetter); //
 Property with getter and setter function
behaviorContext.Property("globalProperty",[]() { return g_globalValue; }, [](int value)
 { g_globalValue = value;}); // Property with lambdas functions.
behaviorContext.Property("globalProperty", BehaviorValueProperty(&g_globalValue)); //
 Property from a value with helper macro. The macro implements the code above.
behaviorContext.Property("globalReadOnlyProperty", &GlobalPropertyGetter, nullptr); // Read
 only property with a getter function.
behaviorContext.Property("globalReadOnlyProperty", []() { return g_globalValue; },
 nullptr); // Read only property with lambda function.
behaviorContext.Property("globalReadOnlyProperty", BehaviorValueGetter(&g_globalValue),
 nullptr); // Read only property with a value and a helper macro.
// Write only is the same as ReadOnly, but with the setter enabled and the getter set to
 nullptr. These properties are rare.

// Global Methods
behaviorContext.Method("GlobalMethod",&GlobalMethod);

// Global Constants and Enums (implemented using properties). The functions are provided
 for clarity.
behaviorContext.Constant("PI", []() { return 3.14f; });
behaviorContext.Constant("PI", BehaviorConstant(3.14f));
behaviorContext.Enum<EnumIntValue>("EnumIntValue");

// Class - When you declare a class, if you want to reflect base class functionality, just
 use RTTI.
behaviorContext.Class<MyClass>() // The name of the class comes from AzTypeInfo. In this
 case the name is "MyClass".
 // AzType information is a requirement for all classes
 used with reflection in
 // Lumberyard (including serialization and networking)
 ->Constructor<int>() // Optional additional constructors. You can have as many as
 needed.
 ->Constant("epsilon",BehaviorConstant(0.001f)) // Class constant. All features from the
 global versions apply.
 ->Enum<MyClass::ENUM_VALUE>("ENUM_VALUE") // Class enum. All features from the global
 versions apply.

Version 1.8
341

Lumberyard Developer Guide
Example

 ->Method("Method",&MyClass::Method) // Class method. All features from the global
 versions apply.
 ->Property("data", &MyClass::GetData(), &MyClass::SetData) // Class features. All
 features from the global versions apply.
 ;

// EBus
class MyEBusBehaviorHandler : public MyEBus::Handler, public AZ::BehaviorEBusHandler
{
public:
 AZ_EBUS_BEHAVIOR_BINDER(MyEBusBehaviorHandler ,"{19F5C8C8-4260-46B1-
B624-997CD3F10CBD}", AZ::SystemAlloctor, // Name, TypeId and default allocator.
 OnEvent); // List of event names to handle and support for
 BehaviorContext.

 void OnEvent(int a) override // This is an event listener like other EBus listeners.
 {c
 Call(FN_OnEvent,a); // Forward the event to a behavior listener if there is one.
 FN_***EventName*** events are declared by the AZ_EBUS_BEHAVIOR_BINDER macro.
 }
};

behaviorClass.EBus<MyEBus>("MyEBus") // EBuses are not required to have TypeInfo, so you
 must always provide a name.
 ->Handler<MyEBusBehaviorHandler >() // Allow systems that use behavior context to
 create handlers for this EBus every time
 // they must listen for events. If you reflect a
 bus without a handler, behavior context users can only send events.
 ->Event("OnEvent",&MyEBus::Events::OnEvent) // Allow behavior context system to
 send an "OnEvent" event. The code automatically generates
 // Broadcast, Event, QueueBroadcast,
 QueueEvent, and QueueFunctions if the EBus configuration
 // supports them. You don't have to
 provide events; you can provide only a handler if
 // you don't have behavior context
 systems to send events.
 ;

// Properties, methods, classes and ebuses can have attributes. An attribute is a
 combination of a Crc32 ID and a value. The value
// can be a constant, a variable address, a global function, a class member function, or a
 class member variable address.
behaviorClass.Method("GlobalMethod",&GlobalMethod)
 ->Attribute("ValueAttr",10) // Value attribute.
 ->Attribute("MethodAttr", &SomeOtherGlobalMethod)
 ;
// You add the same attributes to a property...
behaviorClass.Property("GlobalProperty", BehaviorValueProperty(&g_globalValue)
 ->Attribute("MyAttr",20)
 ;

// or to a class or class method or property.
behaviorClass.Class<MyClass>()
 ->Attribute("ClassAttr",100)
 ->Attribute("CalssAttr1",&MyClass::SomeMethod)
 ->Method("Method",&MyClass::Method)
 ->Attribute("MethodAttr",100)
 ->Property("data", BehaviorValueProperty(&MyClass::m_data))
 ->Attribute("PropertyAttr",500)
 ;

Version 1.8
342

Lumberyard Developer Guide
Slices and Dynamic Slices

Slices and Dynamic Slices
The Component Entity System is currently in preview and is undergoing active development. It will
replace the legacy Entity System (p. 395).

A slice is a collection of configured entities (p. 315) that is stored as a single unit in a reusable asset. You
can use slices to conveniently group entities and other slices for reuse. Slices are similar to prefabs but are
part of the new Component Entity system. Slices can contain component entities, whereas prefabs cannot.
Unlike prefabs, slices can be nested into a fully cascasding hierarchy. For example, a level, a house, a car,
and an entire world are all slices that depend on (cascade) from a number of other slices.

You can generate a slice asset that contains any number of entities that you have placed and configured.
These entities can have arbitrary relationships. For example, they can exist in a parent/child transform
hierarchy, although this is not required.

After you have created the slice asset, you can use the editor to instantiate the slice asset in your worlds,
either by right-clicking in the viewport and choosing Instantiate Slice, or by dragging a slice asset into the
viewport directly from the File Browser. Just as with standard prefab systems, you can then modify the
entities in your slice instance. You can optionally push the changes back to the slice asset, which will affect
all instances of that slice asset, as well as any other slices cascading from it.

A slice can contain instances of other slices. Modifications of a slice instance within another slice causes
the changes to be stored in the instance as overrides (in the form of a data differential or delta). The
modifications stored can be changes such as entity additions, entity removals, or component property
changes.

Anatomy of a Slice
The following diagram illustrates an example slice A, which contains references to two other slices B and C.
Slice A has two instances each of B and C:

Each instance contains a data patch, which may be empty if no changes or overrides are present. If the
instantiation of slice B in slice A has been modified in comparison with the source asset B, the data patch
contains the differences. When slice A is instantiated again, it contains instances of slice B, but with the
modifications applied. Any nonoverridden fields propagate through the hierarchy. If you change a property
value in the slice B asset on disk, the instance of B contained in slice A will reflect that change — if the
property for that instance has not already been overridden, as reflected in the instance's data patch.

In addition to references to other slices, slices can contain zero or more entities. These entities are original
to this slice and are not acquired through referenced slice instances. A slice does not have to contain
references to other slices. A slice that contains only original entities (as represented by the bottom box in
the diagram) and no references to other slices is called a leaf slice.

Working with Dynamic Slices
Slices are a powerful tool for organizing entity data in your worlds. In the editor, you can choose to cascade
slices and organize entity data in any desired granularity and still receive the benefits of data sharing and
inheritance throughout the hierarchy. A level-based game, for example, implements each level as its own
slice asset that contains instances of many other slices. These slices can potentially cascade many levels
deep. You can even choose to create slices from other slices and inherit only the elements that you want.

Standard slice assets (.slice files) rely on the editor and cannot be instantiated at run time. However,
Lumberyard provides a mechanism for designating any .slice asset that you've built as a dynamic slice.
When you designate a slice as a dynamic slice, the Asset Processor processes and optimizes the slice
for you, producing a .dynamicslice file asset. A dynamic slice is simply the run-time version of its source

Version 1.8
343

http://docs.aws.amazon.com/lumberyard/latest/userguide/entities-prefabs-intro.html

Lumberyard Developer Guide
Instantiating Dynamic Slices

slice, containing only run-time components; the editor-dependent components have been converted to their
run-time counterparts. Furthermore, dynamic slices are flattened and no longer maintain a data hierarchy,
as doing so would increase memory footprint and reduce instantiation performance.

In the level-based game example previously mentioned, you could designate your giant level slice as a
dynamic slice. When your game loads the level, it does so by instantiating the resulting .dynamicslice file.

You can choose to generate dynamic slices at whatever granularity is appropriate for your game. Because
slices are loaded entirely asynchronously, they are a good choice for streaming strategies. For example,
a driving game might represent each city block as a separate slice and choose to load them predictively
based on player driving behavior.

To generate a dynamic slice

Right-click any .slice asset in the File Browser, and click Set Dynamic Flag.

The Asset Processor processes the source .slice file and generates a .dynamicslice file. The new
.dynamicslice file appears in the File Browser as its own asset:

To remove the dynamic slice

Right-click the source .slice file and choose Unset Dynamic Flag.

The Asset Processor deletes the .dynamicslice file from the asset cache for you.

Instantiating Dynamic Slices
You can instantiate dynamic slices from your own components. To do so, reflect (p. 318) a DynamicSlice
asset reference. You can populate the reference in the editor in the usual way, such as dragging a
.dynamicslice asset from the File Browser onto your component’s reflected asset property. You can then
use the following EBus call to instantiate the referenced dynamic slice at a desired location in the world.

// Asset reference member, which must be reflected.
AZ::Data::Asset<AZ::DynamicPrefabAsset> m_sliceAsset;

// Create an instance of the dynamic slice.
AZ::Transform location = ...;
EBUS_EVENT(AzFramework::GameEntityContextRequestBus, InstantiateDynamicSlice, m_sliceAsset,
 location);

Lumberyard includes a spawner component that is a good example of this behavior. You can use the
spawner component directly or as an example from which to build your own.

You can see the source code for the spawner component at the file location dev\Code\Engine
\LmbrCentral\source\Scripting\SpawnerComponent.cpp in the folder in which you installed Lumberyard.

For information on creating an AZ::Module, see Creating an AZ Module. For more information about
working with slices, see Working with Slices.

Version 1.8
344

http://docs.aws.amazon.com/lumberyard/latest/developerguide/az-modules-create.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/component-creating.html

Lumberyard Developer Guide
Action Maps

Controller Devices and Game Input

This section provides insight into Lumberyard's support for input devices, including information on setting
up controls and action maps.

Topics

• Action Maps (p. 345)

• CryInput (p. 346)

• Setting Up Controls and Action Maps (p. 347)

Action Maps
The Action Map Manager provides a high-level interface to handle input controls inside a game. The Action
Map system is implemented in Lumberyard, and can be used directly by any code inside Lumberyard or the
GameDLL.

Initializing the Action Map Manager
The Action Map Manager is initialized when Lumberyard is initialized. Your game must specify the path for
the file defaultProfile.xml (by default, the path is Game/Libs/Config/defaultProfile.xml). You can do
this by passing the path to the manager. For example:

IActionMapManager* pActionMapManager = m_pFramework->GetIActionMapManager();
if (pActionMapManager)
{
 pActionMapManager->InitActionMaps(filename);
}

Upon initialization, the Action Map Manager clears all existing initialized maps, filters, and controller layouts.

Receiving Actions During Runtime
You can enable the feature that allows action maps to receive actions during runtime. Use the following
code to enable or disable an action map during runtime:

pActionMapMan->EnableActionMap("default", true);

To receive actions, implement the IActionListener interface in a class.

Version 1.8
345

Lumberyard Developer Guide
CryInput

CryInput
The main purpose of CryInput is to provide an abstraction that obtains input and status from various input
devices such as a keyboard, mouse, joystick, and so on.

It also supports sending feedback events back to input devices—for example, in the form of force feedback
events.

The common interfaces for the input system can be found in IInput.h, in the CryCommon project.

IInput
IInput is the main interface of the input system. An instance implementing this interface is created
automatically during system initialization in the InitInput function (InitSystem.cpp in CrySystem, see
also CryInput.cpp in CryInput).

Only one instance of this interface is created. CrySystem also manages the update and shutdown of the
input system.

This IInput instance is stored in the SSystemGlobalEnvironment structure gEnv. You can access it
through gEnv->pInput or, alternatively, through the system interface by GetISystem()->GetIInput().
Access through the gEnv variable is the most commonly used method.

IInputEventListener
A common use case within the input system is to create listener classes in other modules (for example,
CryGame) by inheriting from IInputEventListener and registering/unregistering the listener class with the
input system for notifications of input events.

For example, the Action Map System registers itself as an input listener and forwards game events only for
the keys defined in the profile configuration files to further abstract the player input from device to the game.

SInputEvent
SInputEvent encapsulates information that is created by any input device and received by all input event
listeners.

IInputDevice
Input devices normally relate directly to physical input devices such as a joypad, mouse, keyboard, and
so on. To create a new input device, you must implement all functions in the IInputDevice interface and
register an instance of it with the Input System using the AddInputDevice function.

The Init function is called when registering the IInputDevice with the Input System; it is not necessary to
manually call it when creating the input devices.

The Update function is called at every update of the Input System—this is generally where the state of the
device should be checked/updated and the Input Events generated and forwarded to the Input System.

It is common for input devices to create and store a list in SInputSymbol of each symbol the input device
is able to generate in the Init function. Then, in the update function, the symbols for the buttons/axes that
changed are looked up and used (via their AssignTo function) to fill in most of the information needed for
the events, which are then forwarded to the input system.

Example:

// function from CInputDevice (accessible only within CryInput)

Version 1.8
346

Lumberyard Developer Guide
Setting Up Controls and Action Maps

MapSymbol(...)
{
 SInputSymbol* pSymbol = new SInputSymbol(deviceSpecificId, keyId, name, type);
 pSymbol->user = user;
 pSymbol->deviceId = m_deviceId;
 m_idToInfo\[keyId \] = pSymbol;
 m_devSpecIdToSymbol\[deviceSpecificId \] = pSymbol;
 m_nameToId\[name \] = deviceSpecificId;
 m_nameToInfo\[name \] = pSymbol;

 return pSymbol;
}
bool CMyKeyboardInputDevice::Init()
{
 ...
 //CreateDeviceEtc();
 ...
 m_symbols\[DIK_1 \] = MapSymbol(DIK_1, eKI_1, "1");
 m_symbols\[DIK_2 \] = MapSymbol(DIK_2, eKI_2, "2");
 ...
}
void CMyKeyboardInputDevice::Update(...)
{
 // Acquire device if necessary
 ...
 // Will probably want to check for all keys, so the following section might be part of
 a loop
 SInputSymbol* pSymbol = m_symbols\[deviceKeyId \];
 ...
 // check if state changed
 ...
 // This is an example for, when pressed, see ChangeEvent function for axis type
 symbols
 pSymbol->PressEvent(true);

 SInputEvent event;
 pSymbol->AssignTo(event, modifiers);

 gEnv->pInput->PostInputEvent(event);
}

To forward events to the input system so that event listeners can receive them, use the PostInputEvent
function from IInput.

If adding your input device to CryInput, it may be useful to inherit directly from CInputDevice, as it already
provides a generic implementation for most functions in IInputDevice.

Note
This file is included with the full source of CryEngine and is not available in the FreeSDK or
GameCodeOnly solutions. For these licenses please derive from IInputDevice directly.

Setting Up Controls and Action Maps
This section describes how to create and modify action maps to customize the controls to the needs of your
game.

Action map profiles for all supported platforms are located in Game\Libs\Config\Profile
\DefaultProfile.xml. This default XML file organizes controls into the following sections, each of which is
controlled by its own action map:

• multiplayer

Version 1.8
347

Lumberyard Developer Guide
Action Maps

• singleplayer

• debug

• flycam

• default

• player

• vehicle

• land vehicle

• sea vehicle

• helicopter

Each action map can be enabled or disabled during runtime from Flow Graph, in Lua scripts, or in C++
code.

See the topic Default Controller Mapping (p. 350) for an overview of the controls in the SDK package.

Action Maps
An action map is a set of key/button mappings for a particular game mode. For example, there is an
<actionmap> section for helicopter controls called "Helicopter", which means that everything inside that
section consists of key and button bindings that apply only when flying a helicopter. To change your
common in-game bindings, go to the section starting with <actionmap name="default">. There are also
sections for multiplayer-specific bindings and, of course, any other vehicles or modes you need.

The following is an overview of a standard action map, in this case the standard debug one:

<actionmap name="debug" version="22">
 <!-- debug keys – move to debug when we can switch devmode-->
 <action name="flymode" onPress="1" noModifiers="1" keyboard="f3" />
 <action name="godmode" onPress="1" noModifiers="1" keyboard="f4" />
 <action name="toggleaidebugdraw" onPress="1" noModifiers="1" keyboard="f11" />
 <action name="togglepdrawhelpers" onPress="1" noModifiers="1" keyboard="f10" />
 <action name="ulammo" onPress="1" noModifiers="1" keyboard="np_2" />
 <action name="debug" onPress="1" keyboard="7" />
 <action name="thirdperson" onPress="1" noModifiers="1" keyboard="f1" />
 <!-- debug keys – end -->
 </actionmap>

Versioning

<actionmap name="debug" version="22">

When the version value is incremented, Lumberyard ensures that the user profile receives the newly
updated action map. This is quite useful when deploying new actions in a patch of a game that is already
released. If the version stays the same, changes or additions to the action maps are not propagated to the
user profile.

Activation Modes
The following activation modes are available:

• onPress – The action key is pressed

• onRelease – The action key is released

• onHold – The action key is held

• always – Permanently activated

Version 1.8
348

Lumberyard Developer Guide
Action Filters

The activation mode is passed to action listeners and identified by the corresponding Lua constant:

• eAAM_OnPress

• eAAM_OnRelease

• eAAM_OnHold

• eAAM_Always

Modifiers available:

• retriggerable

• holdTriggerDelay

• holdRepeatDelay

• noModifiers – Action takes place only if no Ctrl, Shift, Alt, or Win keys are pressed

• consoleCmd – Action corresponds to a console command

• pressDelayPriority

• pressTriggerDelay

• pressTriggerDelayRepeatOverride

• inputsToBlock – Specify the input actions to block here

• inputBlockTime – Time to block the specified input action

Action Filters
You can also define action filters directly in your defaultProfile.xml file. The following attributes are
available:

• name – How the filter will be identified.

• type – Specify actionFail to cause an action to fail. Specify actionPass to allow the action to succeed.

A sample action filter follows:

<actionfilter name="no_move" type="actionFail">
 <!-- actions that should be filtered -->
 <action name="crouch"/>
 <action name="jump"/>
 <action name="moveleft"/>
 <action name="moveright"/>
 <action name="moveforward"/>
 <action name="moveback"/>
 <action name="sprint"/>
 <action name="xi_movey"/>
 <action name="xi_movex"/>
 <!-- actions end -->
</actionfilter>

Controller Layouts
Links to the different controller layouts can also be stored in this file:

<controllerlayouts>
 <layout name="Layout 1" file="buttonlayout_alt.xml"/>
 <layout name="Layout 2" file="buttonlayout_alt2.xml"/>
 <layout name="Layout 3" file="buttonlayout_lefty.xml"/>

Version 1.8
349

Lumberyard Developer Guide
Working with Action Maps During Runtime

 <layout name="Layout 4" file="buttonlayout_lefty2.xml"/>
</controllerlayouts>

Note
The "file" attribute links to a file stored in "libs/config/controller/" by default.

Working with Action Maps During Runtime
In Lumberyard, you can use the console command i_reloadActionMaps to re-initialize the defined values.
The ActionMapManager sends an event to all its listeners to synchronize the values throughout the engine.
If you're using a separate GameActions file like GameSDK, make sure this class will receive the update
to re-initialize the actions/filters in place. Keep in mind that it's not possible to define action maps, filters,
or controller layouts with the same name in multiple places (for example, action filter no_move defined in
defaultProfile.xml and the GameActions file).

To handle actions during runtime, you can use flow graphs or Lua scripts.

• Flow Graph – Input nodes can be used to handle actions. Only digital inputs can be handled from a flow
graph. For more information, see Flow Graph System in the Amazon Lumberyard User Guide.

• Lua script – While actions are usually not intended to be received directly by scripts, it is possible to
interact with the Action Map Manager from Lua.

Default Controller Mapping
The default mapping for input on the PC is shown in the following table. To reconfigure the controls for your
game, follow the instructions in Setting Up Controls and Action Maps (p. 347) and Action Maps (p. 345).

Player Action PC

Player Movement W, A, S, D

Player Aim Mouse XY

Jump Spacebar

Sprint Shift

Crouch C

Slide (when sprinting) C

Fire Mouse 1

Zoom Mouse 2

Melee V

Fire Mode 2

Reload R

Use F

Toggle Weapon 1

Toggle Explosive 3

Toggle Binoculars B

Version 1.8
350

http://docs.aws.amazon.com/lumberyard/latest/userguide/fg-editor-intro.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/

Lumberyard Developer Guide
Key Naming Conventions

Player Action PC

Toggle Light
(attachment)

L

Third Person Camera F1

Vehicle Action PC

Accelerate W

Boost Shift

Brake/Reverse S

Handbrake Spacebar

Steer A/D

Look Mouse XY

Horn H

Fire Mouse 1

Change Seat C

Headlights L

Helicopter Action PC

Ascend W

Descend S

Roll Left A

Roll Right D

Yaw Left Mouse X (left)

Yaw Right Mouse X (right)

Pitch Up Mouse Y (up)

Pitch Down Mouse Y (down)

Multiplayer Action PC

Show Scoreboard TAB

Key Naming Conventions
This page lists some of the name conventions used for action maps.

Version 1.8
351

Lumberyard Developer Guide
Key Naming Conventions

Key Gestures

Letters "a" - "z"

Numbers "1" - "0"

Arrows "up", "down", "left", "right"

Function keys "f1" - "f15"

Numpad "np_1" - "np_0", "numlock", "np_divide", "np_multiply", "np_subtract",
"np_add", "np_enter", "np_period"

Esc "escape"

~ "tilde"

Tab "tab"

CapsLock "capslock"

Shift "lshift", "rshift"

Ctrl "lctrl", "rctrl"

Alt "lalt", "ralt"

spacebar "space"

- "minus"

= "equals"

Backspace "backspace"

[] "lbracket", "rbracket"

"\" "backslash"

; "semicolon"

' "apostrophe"

Enter "enter"

, "comma"

. "period"

/ "slash"

Home "home"

End "end"

Delete "delete"

PageUp "pgup"

PageDown "pgdn"

Insert "insert"

ScrollLock "scrolllock"

Version 1.8
352

Lumberyard Developer Guide
Key Naming Conventions

PrintScreen "print"

Pause/Break "pause"

Mouse Gestures

Left/primary mouse
button

"mouse1"

Right/secondary mouse
button

"mouse2"

Mouse wheel up "mwheel_up"

Mouse wheel down "mwheel_down"

New position along x-
axis

"maxis_x"

New position along y-
axis

"maxis_y"

Version 1.8
353

Lumberyard Developer Guide
CryExtension

CryCommon

The Code\CryCommon directory is the central directory for all the engine interfaces (as well as some
commonly used code stored there to encourage reuse).

This section includes the following topics:

• CryExtension (p. 354)

• CryString (p. 377)

• ICrySizer (p. 378)

• Serialization Library (p. 378)

CryExtension
The complexity of Lumberyard can be challenging to both newcomers and experienced users who want
to understand, configure, run, and extend it. Refactoring Lumberyard into extensions makes it easier to
manage. Existing features can be unplugged (at least to some degree), replaced, or customized, and new
features added. Extensions can consolidate code for a single feature in one location. This avoids having to
implement a feature piecemeal across a number of the engine's base modules. Refactoring into extensions
can also make the system more understandable at a high level.

Lumberyard's extension framework is loosely based on some fundamental concepts found in Microsoft's
Component Object Model (COM). The framework defines two base interfaces that each extension
needs to implement, namely ICryUnknown and ICryFactory. These are similar to COM's IUnknown and
IClassFactory. The interfaces serve as a base to instantiate extensions, allow interface type casting, and
enable query and exposure functionality.

The framework utilizes the concept of shared pointers and is implemented in a way to enforce their
consistent usage to help reduce the chance of resource leaks. A set of C++ templates wrapped in a few
macros is provided as Glue Code Macros (p. 360) that encourage engine refactoring into extensions. The
glue code efficiently implements all base services and registers extensions within the engine. Additionally,
a few helper functions implement type-safe casting of interface pointers, querying the IDs of extension
interfaces, and convenient instantiation of extension classes. Hence, repetitive writing of tedious boilerplate
code is unnecessary, and the potential for introducing bugs is reduced. An example is provided in the
section Using Glue Code (p. 368). If the provided glue code is not applicable, then you must implement
the interfaces and base services manually, as described in the section Without Using Glue Code (p. 371).

Version 1.8
354

Lumberyard Developer Guide
Composites

Clients access extensions through a system wide factory registry. The registry allows specific extension
classes to be searched by either name or ID, and extensions to be iterated by using an interface ID.

Composites
The framework allows extensions to expose certain internal objects that they aggregate or are composed
of. These so called composites are extensions themselves because they inherit from ICryUnknown.
Composites allow you to reuse desired properties like type information at runtime for safe casting and loose
coupling.

Shared and raw interface pointers
Although the framework was designed and implemented to utilize shared pointers and enforce their usage
in order to reduce the possibility of resource leaks, raw interface pointers can still be acquired. Therefore,
care needs to be taken to prevent re-wrapping those raw interface pointers in shared pointer objects. If the
original shared pointer object is not passed during construction so that its internal reference counter can be
referred to, the consistency of reference counting will be broken and crashes can occur. A best practice is
to use raw interface pointers only to operate on interfaces temporarily, and not store them for later use.

GUIDs
You must use globally unique identifiers (GUIDs) to uniquely identify extensions and their interfaces.
GUIDs are essentially 128-bit numbers generated by an algorithm to ensure they only exist once within a
system such as Lumberyard. The use of GUIDs is key to implementing the type-safe casting of extension
interfaces, which is particularly important in large scale development projects. To create GUIDs, you can
use readily available tools like the Create GUID feature in Visual Studio or the macro below.

GUIDs are defined as follows.

struct CryGUID
{
 uint64 hipart;
 uint64 lopart;

 ...
};

typedef CryGUID CryInterfaceID;
typedef CryGUID CryClassID;

Declared in the following framework header files:

• CryCommon/CryExtension/CryGUID.h

• CryCommon/CryExtension/CryTypeID.h

The following Visual Studio macro can be used to generate GUIDs conveniently within the IDE. The macro
writes GUIDs to the current cursor location in the source code editor window. Once added to Macro
Explorer, the macro can be bound to a keyboard shortcut or (custom) toolbar.

Public Module CryGUIDGenModule

 Sub GenerateCryGUID()
 Dim newGuid As System.Guid
 newGuid = System.Guid.NewGuid()

 Dim guidStr As String

Version 1.8
355

Lumberyard Developer Guide
ICryUnknown

 guidStr = newGuid.ToString("N")
 guidStr = guidStr.Insert(16, ", 0x")
 guidStr = guidStr.Insert(0, "0x")

 REM guidStr = guidStr + vbNewLine
 REM guidStr = guidStr + newGuid.ToString("D")

 DTE.ActiveDocument.Selection.Text = guidStr
 End Sub

End Module

ICryUnknown
ICryUnknown provides the base interface for all extensions. If making it the top of the class hierarchy is
not possible or desired (for example, in third party code), you can apply an additional level of indirection to
expose the code by using the extension framework. For an example, see If ICryUnknown Cannot Be the
Base of the Extension Class (p. 375).

ICryUnknown is declared as follows.

struct ICryUnknown
{
 CRYINTERFACE_DECLARE(ICryUnknown, 0x1000000010001000, 0x1000100000000000)

 virtual ICryFactory* GetFactory() const = 0;

protected:
 virtual void* QueryInterface(const CryInterfaceID& iid) const = 0;
 virtual void* QueryComposite(const char* name) const = 0;
};

typedef boost::shared_ptr<ICryUnknown> ICryUnknownPtr;

• GetFactory() returns the factory with which the specified extension object was instantiated. Using the
provided glue code this function has constant runtime.

• QueryInterface() returns a void pointer to the requested interface if the extension implements
it, or NULL otherwise. This function was deliberately declared as protected to enforce usage of
type-safe interface casting semantics. For information on casting semantics, see Interface casting
semantics (p. 358). When the provided glue code is used, this function has a (worst case) run time that
is linear in the number of supported interfaces. Due to glue code implementation details, no additional
internal function calls are needed. A generic code generator produces a series of instructions that
compares interface IDs and returns a properly cast pointer.

• QueryComposite() returns a void pointer to the queried composite if the extension exposes it; otherwise,
NULL. As with QueryInterface(), this function was deliberately declared as protected to enforce type
querying. For information on type querying, see Querying composites (p. 359). The function has a
(worst case) run time linear in the number of exposed composites.

• Unlike in COM, ICryUnknown does not have AddRef() and Release(). Reference counting is
implemented in an non-intrusive way by using shared pointers that are returned by the framework when
extension classes are instantiated.

Declared in the following framework header file:

Version 1.8
356

Lumberyard Developer Guide
ICryFactory

• CryCommon/CryExtension/ICryUnknown.h

ICryFactory
ICryFactory provides the base interface to instantiate extensions. It is declared as follows.

struct ICryFactory
{
 virtual const char* GetClassName() const = 0;
 virtual const CryClassID& GetClassID() const = 0;
 virtual bool ClassSupports(const CryInterfaceID& iid) const = 0;
 virtual void ClassSupports(const CryInterfaceID*& pIIDs, size_t& numIIDs) const = 0;
 virtual ICryUnknownPtr CreateClassInstance() const = 0;

protected:
 virtual ~ICryFactory() {}
};

• GetClassName() returns the name of the extension class. This function has constant run time when the
provided glue code is used.

• GetClassID() returns the ID of the extension class. This function has constant run time when the
provided glue code is used.

• ClassSupports(iid) returns true if the interface with the specified ID is supported by the extension
class; otherwise, false. This function has a (worst case) run time linear in the number of supported
interfaces when the provided glue code is used.

• ClassSupports(pIIDs, numIIDs) returns the pointer to an internal array of IDs enumerating all of the
interfaces that this extension class supports as well as the length of the array. This function has constant
run time when the provided glue code is used.

• CreateClassInstance() dynamically creates an instance of the extension class and returns a shared
pointer to it. If the extension class is implemented as a singleton, it will return a (static) shared pointer
that wraps the single instance of that extension class. This function has constant run time when the
provided glue code is used, except for the cost of the constructor call for non-singleton extensions.

• The destructor is declared protected to prevent explicit destruction from the client side by using delete,
boost::shared_ptr<T>, etc. ICryFactory instances exist (as singletons) throughout the entire lifetime of
any Lumberyard process and must not be destroyed.

Declared in the following framework header file:

• CryCommon/CryExtension/ICryFactory.h

ICryFactoryRegistry
ICryFactoryRegistry is a system-implemented interface that enables clients to query extensions. It is
declared as follows.

struct ICryFactoryRegistry

Version 1.8
357

Lumberyard Developer Guide
Additional Extensions

{
 virtual ICryFactory* GetFactory(const char* cname) const = 0;
 virtual ICryFactory* GetFactory(const CryClassID& cid) const = 0;
 virtual void IterateFactories(const CryInterfaceID& iid, ICryFactory** pFactories, size_t&
 numFactories) const = 0;

protected:
 virtual ~ICryFactoryRegistry() {}
};

• GetFactory(cname) returns the factory of the extension class with the specified name; otherwise, NULL.

• GetFactory(cid) returns the factory of the extension class with the specified ID; otherwise, NULL.

• IterateFactory() if pFactories is not NULL, IterateFactory copies up to numFactories entries of
pointers to extension factories that support iid. numFactories returns the number of pointers copied. If
pFactories is NULL, numFactories returns the total amount of extension factories that support iid.

• The destructor was declared protected to prevent explicit destruction from the client side by using
delete, boost::shared_ptr<T>, etc. ICryFactoryRegistry is a system interface and that exists
throughout the entire lifetime of any CryEngine process and must not be destroyed.

Declared in the following framework header file:

• CryCommon/CryExtension/ICryFactoryRegistry.h

Additional Extensions
Use the methods defined in ICryUnknown for additional functionality.

Interface casting semantics

Interface casting semantics have been implemented to provide syntactically convenient and type-safe
casting of interfaces. The syntax was designed to conform with traditional C++ type casts and respects
const rules.

ICryFactory* pFactory = ...;
assert(pFactory);

ICryUnknownPtr pUnk = pFactory->CreateClassInstance();

IMyExtensionPtr pMyExtension = cryinterface_cast<IMyExtension>(pUnk);

if (pMyExtension)
{
 // it's safe to work with pMyExtension
}

Interface casting also works on raw interface pointers. However, please consider the guidelines described
in the section Shared and raw interface pointers (p. 355).

Declared in the following framework header file:

• CryCommon/CryExtension/ICryUnknown.h

Version 1.8
358

Lumberyard Developer Guide
Additional Extensions

Querying interface identifiers

Occasionally, it is necessary to know the ID of an interface, e.g. to pass it to
ICryFactoryRegistry::IterateFactories(). This can be done as follows.

CryInterfaceID iid = cryiidof<IMyExtension>();

Declared in the following framework header file:

• CryCommon/CryExtension/ICryUnknown.h

Checking pointers

Use this extension to check whether pointers to different interfaces belong to the same class instance.

IMyExtensionAPtr pA = ...;
IMyExtensionBPtr pB = ...;

if (CryIsSameClassInstance(pA, pB))
{
 ...
}

This works on both shared and raw interface pointers.

Declared in the following framework header file:

• CryCommon/CryExtension/ICryUnknown.h

Querying composites

Extensions can be queried for composites as follows.

IMyExtensionPtr pMyExtension = ...;

ICryUnknownPtr pCompUnk = crycomposite_query(pMyExtension, "foo");

IFooPtr pComposite = cryinterface_cast<IFoo>(pCompUnk);
if (pComposite)
{
 // it's safe to work with pComposite, a composite of pMyExtention exposed as "foo"
 implementing IFoo
}

A call to crycomposite_query() might return NULL if the specified composite has not yet been created. To
gather more information, the query can be rewritten as follows.

IMyExtensionPtr pMyExtension = ...;

bool exposed = false;
ICryUnknownPtr pCompUnk = crycomposite_query(pMyExtension, "foo", &exposed);

if (exposed)
{
 if (pCompUnk)

Version 1.8
359

Lumberyard Developer Guide
Glue Code Macros

 {
 // "foo" exposed and created

 IFooPtr pComposite = cryinterface_cast<IFoo>(pCompUnk);
 if (pComposite)
 {
 // it's safe to work with pComposite, a composite of pMyExtention exposed as "foo"
 implementing IFoo
 }
 }
 else
 {
 // "foo" exposed but not yet created
 }
}
else
{
 // "foo" not exposed by pMyExtension
}

As with interface casting composite, queries work on raw interface pointers. However, please consider the
guidelines described in the section Shared and raw interface pointers (p. 355).

Declared in the following framework header file:

• CryCommon/CryExtension/ICryUnknown.h

Glue Code Macros
The following macros provide glue code to implement the base interfaces and services to support the
framework in a thread-safe manner. You are strongly encouraged to use them when you implement an
extension.

For examples of how these macros work together, see Using Glue Code (p. 368).

Declared in the following framework header files:

• CryCommon/CryExtension/Impl/ClassWeaver.h

• CryCommon/CryExtension/CryGUID.h

CRYINTERFACE_DECLARE(iname, iidHigh, iidLow)

Declares an interface and associated ID. Protects the interfaces from accidentally being deleted on client
side. That is, it allows destruction only by using boost::shared_ptr<T>. This macro is required once per
interface declaration.

Parameters

iname

The (C++) name of the interface as declared.

iidHigh

The higher 64-bit part of the interface ID (GUID).

iidLow

The lower 64-bit part of the interface ID (GUID).

Version 1.8
360

Lumberyard Developer Guide
Glue Code Macros

CRYINTERFACE_BEGIN()

Start marker of the interface list inside the extension class implementation. Required once per extension
class declaration.

CRYINTERFACE_ADD(iname)

Marker to add interfaces inside the extension class declaration. It has to be declared in between
CRYINTERFACE_BEGIN() and any of the CRYINTERFACE_END*() markers. Only declare the interfaces that
the class directly inherits. If deriving from an existing extension class or classes, the inherited interfaces
get added automatically. If an interface is declared multiple times, duplicates will be removed. It is not
necessary to add ICryUnknown.

Caution
Other interfaces that are not declared will not be castable by using cryinterface_cast<T>().

Parameters

iname

The (C++) name of the interface to be added.

CRYINTERFACE_END()

End marker of the interface list inside the extension class declaration. Use this if not inheriting from any
already existing extension class. Required once per extension class declaration. Mutually exclusive with
any of the other CRYINTERFACE_END*() markers.

CRYINTERFACE_ENDWITHBASE(base)

End marker of the interface list inside the extension class declaration. Use this if inheriting from an already
existing extension class. Required once per extension class declaration. Mutually exclusive with any of the
other CRYINTERFACE_END*() markers.

Parameters

base

The (C++) name of the extension class from which derived.

CRYINTERFACE_ENDWITHBASE2(base0, base1)

End marker of the interface list inside the extension class declaration. Use this if inheriting from two already
existing extension classes. Required once per extension class declaration. Mutually exclusive with any of
the other CRYINTERFACE_END*() markers.

Parameters

base0

The (C++) name of the first extension class from which derived.

base1

The (C++) name of the second extension class from which derived.

Version 1.8
361

Lumberyard Developer Guide
Glue Code Macros

CRYINTERFACE_ENDWITHBASE3(base0, base1, base2)
End marker of the interface list inside the extension class declaration. Use this if inheriting from three
already existing extension classes. Required once per extension class declaration. Mutually exclusive with
any of the other CRYINTERFACE_END*() markers.

Parameters

base0

The (C++) name of the first extension class from which derived.

base1

The (C++) name of the second extension class from which derived.

base2

The (C++) name of the 3rd extension class from which derived.

CRYINTERFACE_SIMPLE(iname)
Convenience macro for the following code sequence (probably the most common extension case):

CRYINTERFACE_BEGIN()
 CRYINTERFACE_ADD(iname)
CRYINTERFACE_END()

Parameters

iname

The (C++) name of the interface to be added.

CRYCOMPOSITE_BEGIN()
Start marker of the list of exposed composites.

CRYCOMPOSITE_ADD(member, membername)
Marker to add a member of the extension class to the list of exposed composites.

Parameters

member

The (C++) name of the extension class member variable to be exposed. It has to be of type
boost::shared_ptr<T>, where T inherits from ICryUnknown. This condition is enforced at compile time.

membername

The name (as C-style string) of the composite by which the composite can later be queried at runtime.

CRYCOMPOSITE_END(implclassname)
End marker of the list of exposed composites. Use this if not inheriting from any extension class that also
exposes composites. Mutually exclusive with any of the other CRYCOMPOSITE_END*() markers.

Version 1.8
362

Lumberyard Developer Guide
Glue Code Macros

Parameters

implclassname

The (C++) name of the extension class to be implemented.

CRYCOMPOSITE_ENDWITHBASE(implclassname, base)
End marker of the list of exposed composites. Use this if inheriting from one extension class that also
exposes composites. Queries will first search in the current class and then look into the base class to find
a composite that matches the requested name specified in crycomposite_query(). Mutually exclusive with
any of the other CRYCOMPOSITE_END*() markers.

Parameters

implclassname

The (C++) name of the extension class to be implemented.

base

The (C++) name of the extension class derived from.

CRYCOMPOSITE_ENDWITHBASE2(implclassname, base0,
base1)
End marker of the list of exposed composites. Use this if inheriting from two extension classes that also
expose composites. Queries will first search in the current class and then look into the base classes to find
a composite matching the requested name specified in crycomposite_query(). Mutually exclusive with any
of the other CRYCOMPOSITE_END*() markers.

Parameters

implclassname

The (C++) name of the extension class to be implemented.

base0

The (C++) name of the first extension class from which derived.

base1

The (C++) name of the second extension class which derived.

CRYCOMPOSITE_ENDWITHBASE3(implclassname, base0,
base1, base2)
End marker of the list of exposed composites. Use this if inheriting from three extension classes that also
expose composites. Queries will first search in the current class and then look into the base classes to find
a composite matching the requested name specified in crycomposite_query(). Mutually exclusive with any
of the other CRYCOMPOSITE_END*() markers.

Parameters

implclassname

The (C++) name of the extension class to be implemented.

Version 1.8
363

Lumberyard Developer Guide
Glue Code Macros

base0

The (C++) name of the first extension class from which derived.

base1

The (C++) name of the second extension class from which derived.

base2

The (C++) name of the third extension class from which derived.

CRYGENERATE_CLASS(implclassname, cname, cidHigh,
cidLow)

Generates code to support base interfaces and services for an extension class that can be instantiated
an arbitrary number of times. Required once per extension class declaration. Mutually exclusive to
CRYGENERATE_SINGLETONCLASS().

Parameters

implclassname

The C++ class name of the extension.

cname

The extension class name with which it is registered in the registry.

cidHigh

The higher 64-bit part of the extension's class ID (GUID) with which it is registered in the registry.

cidLow

The lower 64-bit part of the extension's class ID (GUID) with which it is registered in the registry.

CRYGENERATE_SINGLETONCLASS(implclassname, cname,
cidHigh, cidLow)

Generates code to support base interfaces and services for an extension class that can be instantiated
only once (singleton). Required once per extension class declaration. Mutually exclusive with
CRYGENERATE_CLASS().

Parameters

implclassname

The C++ class name of the extension.

cname

The extension class name with which it is registered in the registry.

cidHigh

The higher 64-bit part of the extension's class ID (GUID) with which it is registered in the registry.

cidLow

The lower 64-bit part of the extension's class ID (GUID) with which it is registered in the registry.

Version 1.8
364

Lumberyard Developer Guide
CryExtension Samples

CRYREGISTER_CLASS(implclassname)

Registers the extension class in the system. Required once per extension class at file scope.

Parameters

implclassname

The C++ class name of the extension.

MAKE_CRYGUID(high, low)

Parameters

Constructs a CryGUID. Useful when searching the registry for extensions by class ID.

high

The higher 64-bit part of the GUID.

low

The lower 64-bit part of the GUID.

CryExtension Samples

Sample 1 - Implementing a Source Control Plugin by Using
Extensions

//
// source control interface

struct ISourceControl : public ICryUnknown
{
 CRYINTERFACE_DECLARE(ISourceControl, 0x399d8fc1d94044cc, 0xa70d2b4e58921453)

 virtual void GetLatest(const char* filename) = 0;
 virtual void Submit() = 0;
};

typedef cryshared_ptr<ISourceControl> ISourceControlPtr;

//
// concrete implementations of source control interface

class CSourceControl_Perforce : public ISourceControl
{
 CRYINTERFACE_BEGIN()
 CRYINTERFACE_ADD(ISourceControl)
 CRYINTERFACE_END()

 CRYGENERATE_SINGLETONCLASS(CSourceControl_Perforce, "CSourceControl_Perforce",
 0x7305bff20ee543e3, 0x820792c56e74ecda)

 virtual void GetLatest(const char* filename) { ... };
 virtual void Submit() { ... };
};

Version 1.8
365

Lumberyard Developer Guide
Using Extensions

CRYREGISTER_CLASS(CSourceControl_Perforce)

class CSourceControl_SourceSafe : public ISourceControl
{
 CRYINTERFACE_BEGIN()
 CRYINTERFACE_ADD(ISourceControl)
 CRYINTERFACE_END()

 CRYGENERATE_SINGLETONCLASS(CSourceControl_SourceSafe, "CSourceControl_SourceSafe",
 0x1df62628db9d4bb2, 0x8164e418dd5b6691)

 virtual void GetLatest(const char* filename) { ... };
 virtual void Submit() { ... };
};

CRYREGISTER_CLASS(CSourceControl_SourceSafe)

//
// using the interface (submitting changes)

void Submit()
{
 ICryFactoryRegistry* pReg = gEnv->pSystem->GetFactoryRegistry();

 ICryFactory* pFactory = 0;
 size_t numFactories = 1;
 pReg->IterateFactories(cryiidof<ISourceControl>(), &pFactory, numFactories);

 if (pFactory)
 {
 ISourceControlPtr pSrcCtrl = cryinterface_cast<ISourceControl>(pFactory-
>CreateClassInstance());
 if (pSrcCtrl)
 {
 pSrcCtrl->Submit();
 }
 }
}

Using Extensions

Working with Specific Extension Classes

To work with a specific extension class, a client needs to know the extension's class name or class id and
the interface(s) that the class supports. With this information, the class factory can be queried from the
registry, an instance created and worked with as in the following example.

// IMyExtension.h
#include <CryExtension/ICryUnknown.h>

struct IMyExtension : public ICryUnknown
{
 ...
};

typedef boost::shared_ptr<IMyExtension> IMyExtensionPtr;

// in client code
#include <IMyExtension.h>
#include <CryExtension/CryCreateClassInstance.h>

Version 1.8
366

Lumberyard Developer Guide
Using Extensions

IMyExtensionPtr pMyExtension;

#if 0
// create extension by class name
if (CryCreateClassInstance("MyExtension", pMyExtension))
#else
// create extension by class id, guaranteed to create instance of same kind
if (CryCreateClassInstance(MAKE_CRYGUID(0x68c7f0e0c36446fe, 0x82a3bc01b54dc7bf),
 pMyExtension))
#endif
{
 // it's safe to work with pMyExtension
}

// verbose version of client code above
#include <IMyExtension.h>
#include <CryExtension/ICryFactory.h>
#include <CryExtension/ICryFactoryRegistry.h>

ICryFactoryRegistry* pReg = ...;

#if 0
// search extension by class name
ICryFactory* pFactory = pReg->GetFactory("MyExtension");
#else
// search extension by class id, guaranteed to yield same factory as in search by class
 name
ICryFactory* pFactory = pReg->GetFactory(MAKE_CRYGUID(0x68c7f0e0c36446fe,
 0x82a3bc01b54dc7bf));
#endif

if (pFactory) // see comment below
{
 ICryUnknownPtr pUnk = pFactory->CreateClassInstance();
 IMyExtensionPtr pMyExtension = cryinterface_cast<IMyExtension>(pUnk);
 if (pMyExtension)
 {
 // it's safe to work with pMyExtension
 }
}

As an optimization, you can enhance the if check as follows.

if (pFactory && pFactory->ClassSupports(cryiidof<IMyExtension>()))
{
 ...

This version of the if statement will check interface support before the extension class is instantiated. This
check prevents the unnecessary (and potentially expensive) construction and destruction of extensions that
are incompatible with a given interface.

Finding Extension Classes that Support a Specific Interface

To determine how many extension classes in the registry support a given interface, and to list them, clients
can submit queries similar to the following.

// IMyExtension.h
#include <CryExtension/ICryUnknown.h>

struct IMyExtension : public ICryUnknown

Version 1.8
367

Lumberyard Developer Guide
Implementing Extensions Using the Framework

{
 ...
};

// in client code
#include <IMyExtension.h>
#include <CryExtension/ICryFactory.h>
#include <CryExtension/ICryFactoryRegistry.h>

ICryFactoryRegistry* pReg = ...;

size_t numFactories = 0;
pReg->IterateFactories(cryiidof<IMyExtension>(), 0, numFactories);

ICryFactory** pFactories = new ICryFactory*[numFactories];

pReg->IterateFactories(cryiidof<IMyExtension>(), pFactories, numFactories);

...

delete [] pFactories;

Implementing Extensions Using the Framework
The following section explains in detail how to implement extensions in Lumberyard. It provides examples
that use glue code and do not use glue code. The section also shows you how to utilize the framework in
cases where ICryUnknown cannot be the base of the extension interface.

Recommended Layout for Including Framework Header Files

The public interface header that will be included by the client should look like the following.

// IMyExtension.h
#include <CryExtension/ICryUnknown.h>

struct IMyExtension : public ICryUnknown
{
 ...
};

If you are using glue code, declare the implementation class of the extension in the header file as follows.

// MyExtension.h
#include <IMyExtension.h>
#include <CryExtension/Impl/ClassWeaver.h>

class CMyExtension : public IMyExtension
{
 ...
};

Using Glue Code

The first example shows a possible implementation of the IMyExtension class in the previous examples.

///
// public section

// IMyExtension.h

Version 1.8
368

Lumberyard Developer Guide
Implementing Extensions Using the Framework

#include <CryExtension/ICryUnknown.h>

struct IMyExtension : public ICryUnknown
{
 CRYINTERFACE_DECLARE(IMyExtension, 0x4fb87a5f83f74323, 0xa7e42ca947c549d8)

 virtual void CallMe() = 0;
};

typedef boost::shared_ptr<IMyExtension> IMyExtensionPtr;

///
// private section not visible to client

// MyExtension.h
#include <IMyExtension.h>
#include <CryExtension/Impl/ClassWeaver.h>

class CMyExtension : public IMyExtension
{
 CRYINTERFACE_BEGIN()
 CRYINTERFACE_ADD(IMyExtension)
 CRYINTERFACE_END()

 CRYGENERATE_CLASS(CMyExtension, "MyExtension", 0x68c7f0e0c36446fe, 0x82a3bc01b54dc7bf)

public:
 virtual void CallMe();
};

// MyExtension.cpp
#include "MyExtension.h"

CRYREGISTER_CLASS(CMyExtension)

CMyExtension::CMyExtension()
{
}

CMyExtension::~CMyExtension()
{
}

void CMyExtension::CallMe()
{
 printf("Inside CMyExtension::CallMe()...");
}

The following example shows how the extension class MyExtension can be customized and expanded to
implement two more interfaces, IFoo and IBar.

///
// public section

// IFoo.h
#include <CryExtension/ICryUnknown.h>

struct IFoo : public ICryUnknown
{
 CRYINTERFACE_DECLARE(IFoo, 0x7f073239d1e6433f, 0xb59c1b6ff5f68d79)

 virtual void Foo() = 0;
};

Version 1.8
369

Lumberyard Developer Guide
Implementing Extensions Using the Framework

// IBar.h
#include <CryExtension/ICryUnknown.h>

struct IBar : public ICryUnknown
{
 CRYINTERFACE_DECLARE(IBar, 0xa9361937f60d4054, 0xb716cb711970b5d1)

 virtual void Bar() = 0;
};

///
// private section not visible to client

// MyExtensionCustomized.h
#include "MyExtension.h"
#include <IFoo.h>
#include <IBar.h>
#include <CryExtension/Impl/ClassWeaver.h>

class CMyExtensionCustomized : public CMyExtension, public IFoo, public IBar
{
 CRYINTERFACE_BEGIN()
 CRYINTERFACE_ADD(IFoo)
 CRYINTERFACE_ADD(IBar)
 CRYINTERFACE_ENDWITHBASE(CMyExtension)

 CRYGENERATE_CLASS(CMyExtensionCustomized, "MyExtensionCustomized", 0x07bfa7c543a64f0c,
 0x861e9fa3f7d7d264)

public:
 virtual void CallMe(); // chose to override MyExtension's impl
 virtual void Foo();
 virtual void Bar();
};

// MyExtensionCustomized.cpp
#include "MyExtensionCustomized.h"

CRYREGISTER_CLASS(CMyExtensionCustomized)

CMyExtensionCustomized::CMyExtensionCustomized()
{
}

CMyExtensionCustomized::~CMyExtensionCustomized()
{
}

void CMyExtensionCustomized::CallMe()
{
 printf("Inside CMyExtensionCustomized::CallMe()...");
}

void CMyExtensionCustomized::Foo()
{
 printf("Inside CMyExtensionCustomized::Foo()...");
}

void CMyExtensionCustomized::Bar()
{
 printf("Inside CMyExtensionCustomized::Bar()...");
}

Version 1.8
370

Lumberyard Developer Guide
Implementing Extensions Using the Framework

Without Using Glue Code

If for any reason using the glue code is neither desired nor applicable, extensions can be implemented
as follows. It is recommended to implement ICryUnknown and ICryFactory such that their runtime cost
is equal to the one provided by the glue code. For more information, see ICryUnknown (p. 356) and
ICryFactory (p. 357).

///
// public section

// INoMacros.h
#include <CryExtension/ICryUnknown.h>

struct INoMacros : public ICryUnknown
{
 // befriend cryiidof and boost::checked_delete
 template <class T> friend const CryInterfaceID& InterfaceCastSemantics::cryiidof();
 template <class T> friend void boost::checked_delete(T* x);
protected:
 virtual ~INoMacros() {}

private:
 // It's very important that this static function is implemented for each interface!
 // Otherwise the consistency of cryinterface_cast<T>() is compromised because
 // cryiidof<T>() = cryiidof<baseof<T>>() {baseof<T> = ICryUnknown in most cases}
 static const CryInterfaceID& IID()
 {
 static const CryInterfaceID iid = {0xd0fda1427dee4cceull, 0x88ff91b6b7be2a1full};
 return iid;
 }

public:
 virtual void TellMeWhyIDontLikeMacros() = 0;
};

typedef boost::shared_ptr<INoMacros> INoMacrosPtr;

///
// private section not visible to client

// NoMacros.cpp
//
// This is just an exemplary implementation!
// For brevity the whole implementation is packed into this cpp file.

#include <INoMacros.h>
#include <CryExtension/ICryFactory.h>
#include <CryExtension/Impl/RegFactoryNode.h>

// implement factory first
class CNoMacrosFactory : public ICryFactory
{
 // ICryFactory
public:
 virtual const char* GetClassName() const
 {
 return "NoMacros";
 }
 virtual const CryClassID& GetClassID() const
 {
 static const CryClassID cid = {0xa4550317690145c1ull, 0xa7eb5d85403dfad4ull};
 return cid;
 }
 virtual bool ClassSupports(const CryInterfaceID& iid) const

Version 1.8
371

Lumberyard Developer Guide
Implementing Extensions Using the Framework

 {
 return iid == cryiidof<ICryUnknown>() || iid == cryiidof<INoMacros>();
 }
 virtual void ClassSupports(const CryInterfaceID*& pIIDs, size_t& numIIDs) const
 {
 static const CryInterfaceID iids[2] = {cryiidof<ICryUnknown>(), cryiidof<INoMacros>()};
 pIIDs = iids;
 numIIDs = 2;
 }
 virtual ICryUnknownPtr CreateClassInstance() const;

public:
 static CNoMacrosFactory& Access()
 {
 return s_factory;
 }

private:
 CNoMacrosFactory() {}
 ~CNoMacrosFactory() {}

private:
 static CNoMacrosFactory s_factory;
};

CNoMacrosFactory CNoMacrosFactory::s_factory;

// implement extension class
class CNoMacros : public INoMacros
{
 // ICryUnknown
public:
 virtual ICryFactory* GetFactory() const
 {
 return &CNoMacrosFactory::Access();
 };

 // befriend boost::checked_delete
 // only needed to be able to create initial shared_ptr<CNoMacros>
 // so we don't lose type info for debugging (i.e. inspecting shared_ptr)
 template <class T> friend void boost::checked_delete(T* x);

protected:
 virtual void* QueryInterface(const CryInterfaceID& iid) const
 {
 if (iid == cryiidof<ICryUnknown>())
 return (void*) (ICryUnknown*) this;
 else if (iid == cryiidof<INoMacros>())
 return (void*) (INoMacros*) this;
 else
 return 0;
 }

 virtual void* QueryComposite(const char* name) const
 {
 return 0;
 }

 // INoMacros
public:
 virtual void TellMeWhyIDontLikeMacros()
 {
 printf("Woohoo, no macros...\n");
 }

 CNoMacros() {}

Version 1.8
372

Lumberyard Developer Guide
Implementing Extensions Using the Framework

protected:
 virtual ~CNoMacros() {}
};

// implement factory's CreateClassInstance method now that extension class is fully visible
 to compiler
ICryUnknownPtr CNoMacrosFactory::CreateClassInstance() const
{
 boost::shared_ptr<CNoMacros> p(new CDontLikeMacros);
 return
 ICryUnknownPtr(*static_cast<boost::shared_ptr<ICryUnknown>*>(static_cast<void*>(&p)));
}

// register extension
static SRegFactoryNode g_noMacrosFactory(&CNoMacrosFactory::Access());

Exposing Composites
The following example shows how to expose (inherited) composites. For brevity, the sample is not
separated into files.

 //
 struct ITestExt1 : public ICryUnknown
 {
 CRYINTERFACE_DECLARE(ITestExt1, 0x9d9e0dcfa5764cb0, 0xa73701595f75bd32)

 virtual void Call1() = 0;
 };

 typedef boost::shared_ptr<ITestExt1> ITestExt1Ptr;

 class CTestExt1 : public ITestExt1
 {
 CRYINTERFACE_BEGIN()
 CRYINTERFACE_ADD(ITestExt1)
 CRYINTERFACE_END()

 CRYGENERATE_CLASS(CTestExt1, "TestExt1", 0x43b04e7cc1be45ca, 0x9df6ccb1c0dc1ad8)

 public:
 virtual void Call1();
 };

 CRYREGISTER_CLASS(CTestExt1)

 CTestExt1::CTestExt1()
 {
 }

 CTestExt1::~CTestExt1()
 {
 }

 void CTestExt1::Call1()
 {
 }

 //
 class CComposed : public ICryUnknown
 {
 CRYINTERFACE_BEGIN()
 CRYINTERFACE_END()

Version 1.8
373

Lumberyard Developer Guide
Implementing Extensions Using the Framework

 CRYCOMPOSITE_BEGIN()
 CRYCOMPOSITE_ADD(m_pTestExt1, "Ext1")
 CRYCOMPOSITE_END(CComposed)

 CRYGENERATE_CLASS(CComposed, "Composed", 0x0439d74b8dcd4b7f, 0x9287dcdf7e26a3a5)

 private:
 ITestExt1Ptr m_pTestExt1;
 };

 CRYREGISTER_CLASS(CComposed)

 CComposed::CComposed()
 : m_pTestExt1()
 {
 CryCreateClassInstance("TestExt1", m_pTestExt1);
 }

 CComposed::~CComposed()
 {
 }

 //
 struct ITestExt2 : public ICryUnknown
 {
 CRYINTERFACE_DECLARE(ITestExt2, 0x8eb7a4b399874b9c, 0xb96bd6da7a8c72f9)

 virtual void Call2() = 0;
 };

 DECLARE_BOOST_POINTERS(ITestExt2);

 class CTestExt2 : public ITestExt2
 {
 CRYINTERFACE_BEGIN()
 CRYINTERFACE_ADD(ITestExt2)
 CRYINTERFACE_END()

 CRYGENERATE_CLASS(CTestExt2, "TestExt2", 0x25b3ebf8f1754b9a, 0xb5494e3da7cdd80f)

 public:
 virtual void Call2();
 };

 CRYREGISTER_CLASS(CTestExt2)

 CTestExt2::CTestExt2()
 {
 }

 CTestExt2::~CTestExt2()
 {
 }

 void CTestExt2::Call2()
 {
 }

 //
 class CMultiComposed : public CComposed
 {
 CRYCOMPOSITE_BEGIN()
 CRYCOMPOSITE_ADD(m_pTestExt2, "Ext2")
 CRYCOMPOSITE_ENDWITHBASE(CMultiComposed, CComposed)

Version 1.8
374

Lumberyard Developer Guide
Implementing Extensions Using the Framework

 CRYGENERATE_CLASS(CMultiComposed, "MultiComposed", 0x0419d74b8dcd4b7e,
 0x9287dcdf7e26a3a6)

 private:
 ITestExt2Ptr m_pTestExt2;
 };

 CRYREGISTER_CLASS(CMultiComposed)

 CMultiComposed::CMultiComposed()
 : m_pTestExt2()
 {
 CryCreateClassInstance("TestExt2", m_pTestExt2);
 }

 CMultiComposed::~CMultiComposed()
 {
 }

 ...

 //
 // let's use it

 ICryUnknownPtr p;
 if (CryCreateClassInstance("MultiComposed", p))
 {
 ITestExt1Ptr p1 = cryinterface_cast<ITestExt1>(crycomposite_query(p, "Ext1"));
 if (p1)
 p1->Call1(); // calls CTestExt1::Call1()
 ITestExt2Ptr p2 = cryinterface_cast<ITestExt2>(crycomposite_query(p, "Ext2"));
 if (p2)
 p2->Call2(); // calls CTestExt2::Call2()
 }

If ICryUnknown Cannot Be the Base of the Extension Class

There are cases where making ICryUnknown the base of your extension class is not possible. Some
examples are legacy code bases that cannot be modified, third party code for which you do not have full
source code access, or code whose modification is not practical. However, these code bases can provide
useful functionality (for example, for video playback or flash playback) if you expose them as engine
extensions. The following sample illustrates how an additional level of indirection can expose a third party
API.

///
// public section

// IExposeThirdPartyAPI.h
#include <CryExtension/ICryUnknown.h>
#include <IThirdPartyAPI.h>

struct IExposeThirdPartyAPI : public ICryUnknown
{
 CRYINTERFACE_DECLARE(IExposeThirdPartyAPI, 0x804250bbaacf4a5f, 0x90ef0327bb7a0a7f)

 virtual IThirdPartyAPI* Create() = 0;
};

typedef boost::shared_ptr<IExposeThirdPartyAPI> IExposeThirdPartyAPIPtr;

///
// private section not visible to client

Version 1.8
375

Lumberyard Developer Guide
Implementing Extensions Using the Framework

// Expose3rdPartyAPI.h
#include <IExposeThirdPartyAPI.h>
#include <CryExtension/Impl/ClassWeaver.h>

class CExposeThirdPartyAPI : public IExposeThirdPartyAPI
{
 CRYINTERFACE_BEGIN()
 CRYINTERFACE_ADD(IExposeThirdPartyAPI)
 CRYINTERFACE_END()

 CRYGENERATE_CLASS(CExposeThirdPartyAPI, "ExposeThirdPartyAPI", 0xa93b970b2c434a21,
 0x86acfe94d8dae547)

public:
 virtual IThirdPartyAPI* Create();
};

// ExposeThirdPartyAPI.cpp
#include "ExposeThirdPartyAPI.h"
#include "ThirdPartyAPI.h"

CRYREGISTER_CLASS(CExposeThirdPartyAPI)

CExposeThirdPartyAPI::CExposeThirdPartyAPI()
{
}

CExposeThirdPartyAPI::~CExposeThirdPartyAPI()
{
}

IThirdPartyAPI* CExposeThirdPartyAPI::Create()
{
 return new CThirdPartyAPI; // CThirdPartyAPI implements IThirdPartyAPI
}

Custom Inclusion and Exclusion of Extensions

To enable easy inclusion and exclusion of extensions, Lumberyard provides a global "extension definition"
header much like CryCommon/ProjectDefines.h that is automatically included in all modules by means
of the platform.h file. To wrap your extension implementation code, you include a #define statement in
the extension definition header. To exclude unused extension code from your build, you can also comment
out extensions that you are not interested in. Interface headers are not affected by the #if defined
statements, so the client code compiles as is with or without them.

///
// public section

// IMyExtension.h
#include <CryExtension/ICryUnknown.h>

struct IMyExtension : public ICryUnknown
{
 ...
};

typedef boost::shared_ptr<IMyExtension> IMyExtensionPtr;

// ExtensionDefines.h
...
#define INCLUDE_MYEXTENSION
...

Version 1.8
376

Lumberyard Developer Guide
CryString

///
// private section not visible to client

// MyExtension.h
#if defined(INCLUDE_MYEXTENSION)

#include <IMyExtension.h>
#include <CryExtension/Impl/ClassWeaver.h>

class CMyExtension : public IMyExtension
{
 ...
};

#endif // #if defined(INCLUDE_MYEXTENSION)

// MyExtension.cpp
#if defined(INCLUDE_MYEXTENSION)

#include "MyExtension.h"

CRYREGISTER_CLASS(CMyExtension)

...

#endif // #if defined(INCLUDE_MYEXTENSION)

Because extensions can be removed from a build, clients must write their code in a way that does not
assume the availability of an extension. For more information, see Using Extensions (p. 366).

CryString
Lumberyard has a custom reference-counted string class CryString (declared in CryString.h) which
is a replacement for STL std::string. CryString should always be preferred over std::string. For
convenience, string is used as a typedef for CryString.

How to Use Strings as Key Values for STL Containers
The following code shows good (efficient) and bad usage:

const char *szKey= "Test";

map< string, int >::const_iterator iter = m_values.find(CONST_TEMP_STRING(szKey)); //
 Good

map< string, int >::const_iterator iter = m_values.find(szKey); // Bad

By using the suggested method, you avoid the allocation, deallocation, and copying of a temporary string
object, which is a common problem for most string classes. By using the macro CONST_TEMP_STRING, the
string class uses the pointer directly without having to free data afterwards.

Further Usage Tips
• Do not use std::string or std::wstring. Instead, use only string and wstring, and never include the

standard string header <string>.

• Use the c_str() method to access the contents of the string.

Version 1.8
377

Lumberyard Developer Guide
ICrySizer

• Because strings are reference-counted, never modify memory returned by the c_str() method. Doing so
could affect the wrong string instance.

• Do not pass strings via abstract interfaces; all interfaces should use const char* in interface methods.

• CryString has a combined interface of std::string and the MFC CString, so you can use both
interface types for string operations.

• Avoid doing many string operations at runtime as they often cause memory reallocations.

• For fixed size strings (e.g. 256 chars), use CryFixedStringT, which should be preferred over static char
arrays.

ICrySizer
The ICrySizer interface can be implemented to record detailed information about the memory usage of a
class.

Note
This information is also available in the Editor under Engine Memory info.

How to use the ICrySizer interface
The following example shows how to use the ICrySizer interface.

 void GetMemoryUsage(ICrySizer *pSizer)
 {
 {
 SIZER_COMPONENT_NAME(pSizer, "Renderer (Aux Geometries)");
 pSizer->Add(*this);
 }
 pSizer->AddObject(<element_prow>,<element_count>);
 pSizer->AddObject(<container>);
 m_SubObject.GetMemoryUsage(pSizer);
 }

Serialization Library
The CryCommon serialization library has the following features:

• Separation of user serialization code from the actual storage format. This makes it possible to switch
between XML, JSON, and binary formats without changing user code.

• Re-usage of the same serialization code for editing in the PropertyTree. You can write the serialization
code once and use it to expose your structure in the editor as a parameters tree.

• Enables you to write serialization code in non-intrusive way (as global overloaded functions) without
modifying serialized types.

• Makes it easy to change formats. For example, you can add, remove, or rename fields and still be able to
load existing data.

Tutorial
The example starts with a data layout that uses standard types, enumerations, and containers. The
example adds the Serialize method to structures with fixed signatures.

Version 1.8
378

Lumberyard Developer Guide
Tutorial

Defining data

#include "Serialization/IArchive.h"
#include "Serialization/STL.h"

enum AttachmentType
{
 ATTACHMENT_SKIN,
 ATTACHMENT_BONE
};
struct Attachment
{
 string name;
 AttachmentType type;
 string model;
 void Serialize(Serialization::IArchive& ar)
 {
 ar(name, "name", "Name");
 ar(type, "type", "Type");
 ar(model, "model", "Model");
 }
};
struct Actor
{
 string character;
 float speed;
 bool alive;
 std::vector<Attachment> attachments;
 Actor()
 : speed(1.0f)
 , alive(true)
 {
 }
 void Serialize(Serialization::IArchive& ar)
 {
 ar(character, "character", "Character");
 ar(speed, "speed", "Speed");
 ar(alive, "alive", "Alive");
 ar(attachments, "attachments", "Attachment");
 }
};

// Implementation file:
#include "Serialization/Enum.h"

SERIALIZATION_ENUM_BEGIN(AttachmentType, "Attachment Type")
SERIALIZATION_ENUM(ATTACHMENT_BONE, "bone", "Bone")
SERIALIZATION_ENUM(ATTACHMENT_SKIN, "skin", "Skin")
SERIALIZATION_ENUM_END()

Why are two names needed?

The ar() call takes two string arguments: one is called name, and the second label. The name argument is
used to store parameters persistently; for example, for JSON and XML. The label parameter is used for
the PropertyTree. The label parameter is typically longer, more descriptive, contains white space, and may
be easily changed without breaking compatibility with existing data. In contrast, name is a C-style identifier. It
is also convenient to have name match the variable name so that developers can easily find the variable by
looking at the data file.

Omitting the label parameter (the equivalent of passing nullptr) will hide the parameter in the
PropertyTree, but it will be still serialized and can be copied together with its parent by using copy-paste.

Version 1.8
379

Lumberyard Developer Guide
Tutorial

Note
The SERIALIZATION_ENUM macros should reside in the .cpp implementation file because they
contain symbol definitions.

Serializing into or from a file

Now that the data has been defined, it is ready for serialization. To implement the serialization, you can use
Serialization::SaveJsonFile, as in the following example.

#include <Serialization/IArchiveHost.h>

Actor actor;
Serialization::SaveJsonFile("filename.json", actor);

This will output content in the following format:

{
 "character": "nanosuit.cdf",
 "speed": 2.5,
 "alive": true,
 "attachments": [
 { "name": "attachment 1", "type": "bone", "model": "model1.cgf" },
 { "name": "attachment 2", "type": "skin", "model": "model2.cgf" }
]
}

The code for reading data is similar to that for serialization, except that it uses
Serialization::LoadJsonFile.

#include <Serialization/IArchiveHost.h>

Actor actor;
Serialization::LoadJsonFile(actor, "filename.json");

The save and load functions used are wrappers around the IArchiveHost interface, an instance of which
is located in gEnv->pSystem->GetArchiveHost(). However, if you have direct access to the archive code
(for example, in CrySystem or EditorCommon), you can use the archive classes directly, as in the following
example.

#include <Serialization/JSONOArchive.h>
#include <Serialization/JSONIArchive.h>

Serialization::JSONOArchive oa;

Actor actor;
oa(actor);
oa.save("filename.json");

// to get access to the data without saving:
const char* jsonString = oa.c_str();

// and to load
Serialization::JSONIArchive ia;
if (ia.load("filename.json"))
{
 Actor loadedActor;
 ia(loadedActor);
}

Version 1.8
380

Lumberyard Developer Guide
Use Cases

Editing in the PropertyTree

If you have the Serialize method implemented for your types, it is easy to get it exposed to the
QPropertyTree, as the following example shows.

#include <QPropertyTree/QPropertyTree.h>

QPropertyTree* tree = new QPropertyTree(parent);

static Actor actor;
tree->attach(Serialization::SStruct(actor));

You can select enumeration values from the list and add or remove vector elements by using the [2]
button or the context menu.

In the moment of attachment, the Serialize method will be called to extract properties from your object. As
soon as the user changes a property in the UI, the Serialize method is called to write properties back to
the object.

Note
It is important to remember that QPropertyTree holds a reference to an attached object. If the
object's lifetime is shorter than the tree, an explicit call to QPropertyTree::detach() should be
performed.

Use Cases

Non-intrusive serialization

Normally when struct or a class instance is passed to the archive, the Serialize method of the instance
is called. However, it is possible to override this behavior by declaring the following global function:

bool Serialize(Serialization::IArchive&, Type& value, const char* name, const char* label);

The return value here has the same behavior as IArchive::operator(). For input archives, the function
returns false when a field is missing or wasn't read. For output archives, it always returns true.

Note
The return value does not propagate up. If one of the nested fields is missing, the top level block
will still return true.

The global function approach is useful when you want to:

• Add serialization in non-intrusive way

• Transform data during serialization

• Add support for unsupported types like plain pointers

The following example adds support for std::pair<> type to the Serialize function:

template<class T1, class T2>
struct pair_serializable : std::pair<T1, T2>
{
 void Serialize(Serialization::IArchive& ar)
 {
 ar(first, "first", "First");
 ar(second, "second", "Second");
 }
}

Version 1.8
381

Lumberyard Developer Guide
Use Cases

template<class T1, class T2>
bool Serialize(Serialization::IArchive& ar, std::pair<T1, T2>& value, const char* name,
 const char* label)
{
 return ar(static_cast<pair_serializable<T1, T2>&>(value), name, label);
}

The benefit of using inheritance is that you can get access to protected fields. In cases when access policy
is not important and inheritance is undesirable, you can replace the previous code with following pattern.

template<class T1, class T2>
struct pair_serializable
{
 std::pair<T1, T2>& instance;

 pair_serializable(std::pair<T1, T2>& instance) : instance(instance) {}
 void Serialize(Serialization::IArchive& ar)
 {
 ar(instance.first, "first", "First");
 ar(instance.second, "second", "Second");
 }
}

template<class T1, class T2>
bool Serialize(Serialization::IArchive& ar, std::pair<T1, T2>& value, const char* name,
 const char* label)
{
 pair_serializable<T1, T2> serializer(value);
 return ar(serializer, name, label);
}

Registering Enum inside a Class

Normally, SERIALIZATION_ENUM_BEGIN() will not compile if you specify enumeration within a class (a
"nested enum"). To overcome this shortcoming, use SERIALIZATION_ENUM_BEGIN_NESTED, as in the following
example.

SERIALIZATION_ENUM_BEGIN_NESTED(Class, Enum, "Label")
SERIALIZATION_ENUM(Class::ENUM_VALUE1, "value1", "Value 1")
SERIALIZATION_ENUM(Class::ENUM_VALUE2, "value2", "Value 2")
SERIALIZATION_ENUM_END()

Polymorphic Types

The Serialization library supports the loading and saving of polymorphic types. This is implemented through
serialization of a smart pointer to the base type.

For example, if you have following hierarchy:

IBase

• ImplementationA

• ImplementationB

You would need to register derived types with a macro, as in the following example.

SERIALIZATION_CLASS_NAME(IBase, ImplementationA, "impl_a", "Implementation A");

Version 1.8
382

Lumberyard Developer Guide
Use Cases

SERIALIZATION_CLASS_NAME(IBase, ImplementationA, "impl_b", "Implementation B");

Now you can serialize a pointer to the base type:

#include <Serialization/SmartPtr.h>

_smart_ptr<IInterfface> pointer;

ar(pointer, "pointer", "Pointer");

The first string is used to name the type for persistent storage, and the second string is a human-readable
name for display in the PropertyTree.

Customizing presentation in the PropertyTree

There are two aspects that can be customized within the PropertyTree:

1. The layout of the property fields. These are controlled by control sequences in the label (the third
argument in IArchive::operator()).

2. Decorators. These are defined in the same way that specific properties are edited or represented.

Control characters

Control sequences are added as a prefix to the third argument for IArchive::operator(). These
characters control the layout of the property field in the PropertyTree.

Layout Control Characters

Prefix Role Description

! Read-only field Prevents the user from changing the value of the property.
The effect is non-recursive.

^ Inline Places the property on the same line as the name of the
structure root. Can be used to put fields in one line in a
horizontal layout, rather than in the default vertical list.

^^ Inline in front of a
name

Places the property name before the name of the parent
structure. Useful to add check boxes before a name.

< Expand value field Expand the value part of the property to occupy all available
space.

> Contract value field Reduces the width of the value field to the minimum. Useful to
restrict the width of inline fields.

>N> Limit field width to
N pixels

Useful for finer control over the UI. Not recommended for use
outside of the editor.

+ Expand row by
default.

Can be used to control which structures or containers are
expanded by default. Use this only when you need per-item
control. Otherwise, QPropertyTree::setExpandLevels is a
better option.

[S] Apply S control
characters to
children.

Applies control characters to child properties. Especially
useful with containers.

Version 1.8
383

Lumberyard Developer Guide
Use Cases

Combining control characters

Multiple control characters can be put together to combine their effects, as in the following example.

ar(name, "name", "^!<Name"); // inline, read-only, expanded value field

Decorators

There are two kinds of decorators:

1. Wrappers that implement a custom serialization function that performs a transformation on the original
value. For example, Serialization/Math.h contains Serialization::RadiansAsDeg(float&) that
allows to store and edit angles in radians.

2. Wrappers that do no transformation but whose type is used to select a custom property implementation
in the PropertyTree. Resource Selectors are examples of this kind of wrapper.

Decorator Purpose Defined for types Context needed

AnimationPath Selection UI for full
animation path.

Any string-like type, like:

std::string,

string (CryStringT),

SCRCRef

CCryName

CharacterPath UI: browse for character
path (cdf)

CharacterPhysicsPath UI: browse for
character .phys-file.

CharacterRigPath UI: browse for .rig files.

SkeletonPath UI: browse for .chr
or .skel files.

JointName UI: list of character joints ICharacterInstance*

AttachmentName UI: list of character
attachments

ICharacterInstance*

SoundName UI: list of sounds

ParticleName UI: particle effect
selection

Serialization/

Decorators/Math.h

RadiansAsDeg Edit or store radians as
degrees

float, Vec3

Serialization/

Decorators/Range.h

Version 1.8
384

Lumberyard Developer Guide
Use Cases

Decorator Purpose Defined for types Context needed

Range Sets soft or hard limits
for numeric values and
provides a slider UI.

Numeric types

Serialization/

Callback.h

Callback Provides per-property
callback function. See
Adding callbacks to the
PropertyTree (p. 386).

All types apart from
compound ones (structs
and containers)

Decorator example

The following example uses the Range and CharacterPath decorators.

float scalar;
ar(Serialization::Range(scalar), 0.0f, 1.0f); // provides slider-UI
string filename;
ar(Serialization::CharacterPath(filename), "character", "Character"); // provides UI for
 file selection with character filter

Serialization context

The signature of the Serialize method is fixed. This can prevent the passing of additional arguments into
nested Serialize methods. To resolve this issue, you can use a serialization context to pass a pointer of a
specific type to nested Serialize calls, as in the following example.

void Scene::Serialize(Serialization::IArchive& ar)
{
 Serialization::SContext sceneContext(ar, this);
 ar(rootNode, "rootNode")
}

void Node::Serialize(Serialization::IArchive& ar)
{
 if (Scene* scene = ar.FindContext<Scene>())
 {
 // use scene
 }
}

Contexts are organized into linked lists. Nodes are stored on the stack within the SContext instance.

You can have multiple contexts. If you provide multiple instances of the same type, the innermost context
will be retrieved.

You may also use contexts with the PropertyTree without modifying existing serialization code. The easiest
way to do this is to use CContextList (QPropertyTree/ContextList.h), as in the following example.

// CContextList m_contextList;
tree = new QPropertyTree();
m_contextList.Update<Scene>(m_scenePointer);
tree->setArchiveContext(m_contextList.Tail());
tree->attach(Serialization::SStruct(node));

Version 1.8
385

Lumberyard Developer Guide
Use Cases

Serializing opaque data blocks

It is possible to treat a block of data in the archive in an opaque way. This capability enables the Editor to
work with data formats it has no knowledge of.

These data blocks can be stored within Serialization::SBlackBox. SBlackBox can be serialized or
deserialized as any other value. However, when you deserialize SBlackBox from a particular kind of
archive, you must serialize by using a corresponding archive. For example, if you obtained your SBlackBox
from JSONIArchive, you must save it by using JSONOArchive.

Adding callbacks to the PropertyTree

When you change a single property within the property tree, the whole attached object gets de-serialized.
This means that all properties are updated even if only one was changed. This approach may seem
wasteful, but has the following advantages:

• It removes the need to track the lifetime of nested properties, and the requirement that nested types be
referenced from outside in safe manner.

• The content of the property tree is not static data, but rather the result of the function invocation. This
allows the content to be completely dynamic. Because you do not have to track property lifetimes, you
can serialize and de-serialize variables constructed on the stack.

• The removal of the tracking requirement results in a smaller amount of code.

Nevertheless, there are situations when it is desirable to know exactly which property changes. You can
achieve this in two ways: 1) by using the Serialize method, or 2) by using Serialization::Callback.

1. Using the Serialize method, compare the new value with the previous value, as in the following
example.

void Type::Serialize(IArchive& ar)
{
 float oldValue = value;
 ar(value, "value", "Value");
 if (ar.IsInput() && oldValue != value)
 {
 // handle change
 }
}

2. The second option is to use the Serialization::Callback decorator to add a callback function for one
or more properties, as the following example illustrates.

#include <Serialization/Callback.h>
using Serialization::Callback;

ar(Callback(value,
 [](float newValue) { /* handle change */ }),
 "value", "Value");

Note
Callback works only with the PropertyTree, and should be used only in Editor code.

Callback can also be used together with other decorators, but in rather clumsy way, as the following
example shows.

ar(Callback(value,
 [](float newValue) { /* handle change*/ },

Version 1.8
386

Lumberyard Developer Guide
Use Cases

 [](float& v) { return Range(v, 0.0f, 1.0f); }),
 "value", "Value");

Of the two approaches, the callback approach is more flexible, but it requires you to carefully track the
lifetime of the objects that are used by the callback lambda or function.

PropertyTree in MFC window
If your code base still uses MFC, you can use the PropertyTree with it by using a wrapper that makes this
possible, as the following example shows.

#include <IPropertyTree.h> // located in Editor/Include

int CMyWindow::OnCreate(LPCREATESTRUCT pCreateStruct)
{
 ...
 CRect clientRect;
 GetClientRect(clientRect);
 IPropertyTree* pPropertyTree = CreatePropertyTree(this, clientRect);
 ...
}

The IPropertyTree interface exposes the methods of QPropertyTree like Attach, Detach and
SetExpandLevels.

Documentation and validation
QPropertyTree provides a way to add short documentation in the form of tool tips and basic validation.

The Doc method allows you to add tool tips to QPropertyTree, as in the following examples.

void IArchive::Doc(const char*)

void SProjectileParameter::Serialize(IArchive& ar)
{
 ar.Doc("Defines projectile physics.");

 ar(m_velocity, "velocity", "Velocity");
 ar.Doc("Defines initial velocity of the projectile.");
}

The Doc method adds a tool tip to last serialized element. When used at the beginning of the function, it
adds the tool tip to the whole block.

The Warning and Error calls allow you to display warnings and error messages associated with specific
property within the property tree, as in the following examples.

template<class T> void IArchive::Warning(T& instance, const char* format, ...)
template<class T> void IArchive::Error(T& instance, const char* format, ...)

void BlendSpace::Serialize(IArchive& ar)
{
 ar(m_dimensions, "dimensions, "Dimensions");
 if (m_dimensions.empty())
 ar.Error(m_dimensions, "At least one dimension is required for BlendSpace");
}

Version 1.8
387

Lumberyard Developer Guide
Use Cases

The error message appears as follows.

Warning messages look like this:

Drop-down menu with a dynamic list

If you want to specify an enumeration value, you can use the enum registration macro as described in the
Defining data (p. 379) section.

There are two ways to define a drop-down menu: 1) transform your data into
Serialization::StringListValue, or 2) implement a custom PropertyRow in the UI.

A short example of the first approach follows. The example uses a custom reference.

// a little decorator that would annotate string as a special reference
struct MyReference
{
 string& str;
 MyReference(string& str) : str(str) {}
};

inline bool Serialize(Serialization::IArchive& ar, MyReference& wrapper, const char* name,
 const char* label)
{
 if (ar.IsEdit())
 {
 Serialization::StringList items;
 items.push_back("");
 items.push_back("Item 1");
 items.push_back("Item 2");
 items.push_back("Item 3");
 Serialization::StringListValue dropDown(items, wrapper.str.c_str());
 if (!ar(dropDown, name, label))
 return false;
 if (ar.IsInput())
 wrapper.str = dropDown.c_str();
 return true;
 }
 else
 {
 // when loading from disk we are interested only in the string
 return ar(wrapper.str, name, label);
 }
}

Now you can construct MyReference on the stack within the Serialize method to serialize a string as a
dropdown item, as in the following example.

struct SType
{
 string m_reference;
 void SType::Serialize(Serialization::IArchive& ar)
 {
 ar(MyReference(m_reference), "reference", "Reference");
 }
};

The second way to define a drop-down menu requires that you implement a custom PropertyRow in the UI.
This takes more effort, but makes it possible to create the list of possible items entirely within editor code.

Version 1.8
388

Lumberyard Developer Guide
Capturing Video and Audio

Demo and Video Capture

This section contains information on recording videos for benchmarking. Capturing audio and video is
also discussed, using either the Perspective view of the Lumberyard Editor or in pure-game mode via the
Launcher.

Topics

• Capturing Video and Audio (p. 389)

• Recording Time Demos (p. 393)

Capturing Video and Audio
This tutorial explains how to set up Lumberyard editor (or game) to capture video. Lumberyard outputs
video as single frames. If required, it can also output stereo or 5.1 surround sound audio in .wav file format.
You can edit the output with commonly available video editing software.

Preparation
Before you can start video and audio streams in preparation for capture, you must configure some settings
that determine how the video will be captured. You configure these settings by using console commands.
To save time, you can create configuration files that execute the necessary commands for you instead of
typing the commands directly into the console. Example configuration files are presented later in this topic.

The next sections describe the settings and the console commands that configure them.

Video Settings

Frame Size and Resolution
The height and width of the captured frames in the editor is normally set to the exact view size of your
rendered perspective window. To resize the view size, re-scale the perspective window, or right click in the
top right of the perspective viewport where the frame size is displayed.

You can also capture higher than rendered images from Lumberyard Editor and Launcher.

The console variables that are now used in conjunction with Capture Frames are:

• r_CustomResHeight=N - Specifies the desired frame height in N pixels.

• r_CustomResWidth=M - Specifies the desired frame width in M pixels.

Version 1.8
389

Lumberyard Developer Guide
Video Settings

• r_CustomResMaxSize=P - Specifies the maximum resolution at which the engine will render the frames in
P pixels.

• r_CustomResPreview=R - Specifies whether or how the preview is displayed in the viewport. Possible
values for R are:

r_CustomResPreview Preview status

0 No preview

1 Scaled to match the size of the viewport

2 Cropped to the size of the viewport

Frames Per Second
When deciding the number of frames per second to specify, keep in mind the following:

• NTSC standard video is approximately 30 frames per second, which is a good compromise between
quality and file size.

• High quality video can have up to 60 frames per second, but the difference in quality of the increased
number of frames is barely noticeable and can take up a lot of file space.

• Video at less than 24 FPS (a cinema standard) will not look smooth.

To specify a fixed frame rate, use the command:

t_fixedstep N

N specifies the time step. Time step is calculated by using the formula

step = 1 second/<number of frames>

A table of common time step values follows.

FPS Time Step

25 (PAL) 0.04

30 0.033333333

60 0.0166666667

Video Capture File Format
You can capture pictures in several different file formats. A good choice for average quality is the .jpeg
file format. The .tga or .bmp file formats are better for higher quality, and .hdr for pictures that use high-
dynamic-range imaging.

To specify the capture file format, use the console command

capture_file_format N

N is jpg, bmp, tga or hdr.

Version 1.8
390

https://en.wikipedia.org/wiki/Truevision_TGA
https://en.wikipedia.org/wiki/High-dynamic-range_imaging
https://en.wikipedia.org/wiki/High-dynamic-range_imaging

Lumberyard Developer Guide
Starting and Ending the Video Recording

Video Capture File Location

By default, recorded frames are stored in the directory <root>\CaptureOutput. To specify a custom
directory, use the command:

capture_folder N

N is the name of the custom directory.

Caution
When you start a recording, the captured frames are placed in the currently specified directory and
will overwrite existing files with the same name. To avoid losing work, create a directory for each
recording, or move the existing files to another directory before you start.

Starting and Ending the Video Recording
After you have specified the values mentioned in the previous sections, you can start the recording by using
the command:

capture_frames N

Setting N to 1 starts the recording, and setting N to 0 stops it.

Audio Settings
Before you begin, decide if you require audio in stereo or in 5.1 surround format, and then change your
audio settings accordingly in the Windows control panel.

Deactivating the Sound System

After loading the level of your game that you want to capture, you must deactivate the sound system so that
you can redirect the sound output to a file. To deactivate the sound system, use the command:

#Sound.DeactivateAudioDevice()

This redirects the sound output to a .wav file in the root directory of the game. The sound will not run in
realtime, but be linked precisely to the time step that you set previously.

To write the sound capture, use the command:

s_OutputConfig N

Setting N to 3 activates the non-realtime writing of sound to the .wav file. Setting N to 0 specifies auto-
detection (the default).

Reactivating the Sound System

To reset the sound system use the command:

#Sound.ActivateAudioDevice()

This creates a .wav file in the root directory of the game. The file will continue to be written to until you run
the following combination of commands to deactivate the audio device:

Version 1.8
391

Lumberyard Developer Guide
Configuration Files

#Sound.DeactivateAudioDevice()

s_OutputConfig 0

#Sound.ActivateAudioDevice()

Tip
Although these commands reset the sound system, some sounds won't start until they are
correctly triggered again. This applies particularly to looped sounds. To get looped sounds to
play, start the recording of video and sound first, and then enter any area that triggers the looped
sounds that you want to record.

Configuration Files

Creating Configuration Files

• To ensure that multiple recordings use exactly the same settings, create a configuration file that you can
use for each of them. This will ensure that all of your captured files have the same format.

An example configuration file:

sys_spec = 4
Fixed_time_step 0.0333333333
Capture_file_format jpg
Capture_folder myrecording
r_width 1280
r_height 800

The command sys_spec = 4 sets the game graphic settings to "very high" to generate the best
appearance.

• To speed up the process of starting and stopping the recording, you can create two configuration files:
one to start the video, and one to stop it.

• To start recording, use a config file like the following:

#Sound.DeactivateAudioDevice()
s_OutputConfig 3
#Sound.ActivateAudioDevice()
Capture_frames 1

• To stop recording, use a config file like the following:

Capture_frames 0
#Sound.DeactivateAudioDevice()
s_OutputConfig 0
#Sound.ActivateAudioDevice()

Executing the Config Files

To run the config file, open the console and type the following command:

Exec N

N is the name of the config file.

Version 1.8
392

Lumberyard Developer Guide
Recording Time Demos

Recording Time Demos

Overview
Lumberyard Editor can record and play back player input and camera movement.

Note
Recording of some player actions such as vehicle movement are not supported.

To use the feature, you must start game mode in Lumberyard Editor and then record in it. To start game
mode, press Ctrl+G after a level has fully loaded, or load the level in pure-game mode.

Output like the following appears both in the console and in the timedemo.log file in the directory
corresponding to the level used:

TimeDemo Run 131 Finished.
Play Time: 3.96s, Average FPS: 50.48
Min FPS: 0.63 at frame 117, Max FPS: 69.84 at frame 189
Average Tri/Sec: 14037316, Tri/Frame: 278071
Recorded/Played Tris ratio: 0.99

Recording Controls
Optional Title

Command Keystroke Console Commands

Start Recording Ctrl + PrintScreen record

End Recording Ctrl + Break stoprecording

Start Playback Shift + PrintScreen demo

Stop Playback Ctrl + Break stopdemo

Related Console Variables
• stopdemo – Stops playing a time demo.

• demo demoname – Plays the time demo from the specified file.

• demo_fixed_timestep – Specifies the number of updates per second.

• demo_panoramic – Uses a panoramic view when playing back the demo.

• demo_restart_level N – Restarts the level after each loop. Possible values for N: 0 = Off; 1 = use
quicksave on first playback; 2 = load level start.

• demo_ai – Enables or disables AI during the demo.

• demo_savestats – Saves level stats at the end of the loop.

• demo_max_frames – Specifies the maximum number of frames to save.

• demo_screenshot_frame N – Makes a screenshot of the specified frame during demo playback. If a
negative value for N is supplied, takes a screenshot every N frame.

• demo_quit – Quits the game after the demo run is finished.

• demo_noinfo – Disables the information display during the demo playback.

• demo_scroll_pause – Enables the use of the ScrollLock key to pause demo play and record.

Version 1.8
393

Lumberyard Developer Guide
Related Console Variables

• demo_num_runs – Specifies the number of times to loop the demo.

• demo_profile – Enables demo profiling.

• demo_file – Specifies the time demo file name.

Version 1.8
394

Lumberyard Developer Guide
Entity Property Prefixes

Entity System

The Entity system is currently on a path to deprecation in favor of the Lumberyard Component Entity
System (p. 315).

This section covers topics related to the Entity system. Entities are objects, placed inside a level, that
players can interact with.

This section includes the following topics:

• Entity Property Prefixes (p. 395)

• Creating a New Entity Class (p. 396)

• Entity Pool System (p. 398)

• Entity ID Explained (p. 407)

• Adding Usable Support on an Entity (p. 407)

• Entity Scripting (p. 408)

Entity Property Prefixes
The Lumberyard Editor supports typed properties where the type is derived from special prefixes in the
property name. For a complete list of supported prefixes, refer to the s_paramTypes array, defined in
Objects/EntityScript.cpp. This array maps prefixes to variable types.

The following prefixes are supported by Lumberyard:

 { "n", IVariable::INT, IVariable::DT_SIMPLE, SCRIPTPARAM_POSITIVE },
 { "i", IVariable::INT, IVariable::DT_SIMPLE,0 },
 { "b", IVariable::BOOL, IVariable::DT_SIMPLE,0 },
 { "f", IVariable::FLOAT, IVariable::DT_SIMPLE,0 },
 { "s", IVariable::STRING, IVariable::DT_SIMPLE,0 },

 { "ei", IVariable::INT, IVariable::DT_UIENUM,0 },
 { "es", IVariable::STRING, IVariable::DT_UIENUM,0 },

 { "shader", IVariable::STRING, IVariable::DT_SHADER,0 },
 { "clr", IVariable::VECTOR, IVariable::DT_COLOR,0 },
 { "color", IVariable::VECTOR, IVariable::DT_COLOR,0 },

 { "vector", IVariable::VECTOR, IVariable::DT_SIMPLE,0 },

 { "snd", IVariable::STRING, IVariable::DT_SOUND,0 },

Version 1.8
395

Lumberyard Developer Guide
Creating a New Entity Class

 { "sound", IVariable::STRING, IVariable::DT_SOUND,0 },
 { "dialog", IVariable::STRING, IVariable::DT_DIALOG,0 },

 { "tex", IVariable::STRING, IVariable::DT_TEXTURE,0 },
 { "texture", IVariable::STRING, IVariable::DT_TEXTURE,0 },

 { "obj", IVariable::STRING, IVariable::DT_OBJECT,0 },
 { "object", IVariable::STRING, IVariable::DT_OBJECT,0 },

 { "file", IVariable::STRING, IVariable::DT_FILE,0 },
 { "aibehavior", IVariable::STRING, IVariable::DT_AI_BEHAVIOR,0 },
 { "aicharacter", IVariable::STRING, IVariable::DT_AI_CHARACTER,0 },
 { "aipfpropertieslist", IVariable::STRING, IVariable::DT_AI_PFPROPERTIESLIST,0 },
 { "aiterritory", IVariable::STRING, IVariable::DT_AITERRITORY,0 },
 { "aiwave", IVariable::STRING, IVariable::DT_AIWAVE,0 },

 { "text", IVariable::STRING, IVariable::DT_LOCAL_STRING,0 },
 { "equip", IVariable::STRING, IVariable::DT_EQUIP,0 },
 { "reverbpreset", IVariable::STRING, IVariable::DT_REVERBPRESET,0 },
 { "eaxpreset", IVariable::STRING, IVariable::DT_REVERBPRESET,0 },

 { "aianchor", IVariable::STRING, IVariable::DT_AI_ANCHOR,0 },

 { "soclass", IVariable::STRING, IVariable::DT_SOCLASS,0 },
 { "soclasses", IVariable::STRING, IVariable::DT_SOCLASSES,0 },
 { "sostate", IVariable::STRING, IVariable::DT_SOSTATE,0 },
 { "sostates", IVariable::STRING, IVariable::DT_SOSTATES,0 },
 { "sopattern", IVariable::STRING, IVariable::DT_SOSTATEPATTERN,0 },
 { "soaction", IVariable::STRING, IVariable::DT_SOACTION,0 },
 { "sohelper", IVariable::STRING, IVariable::DT_SOHELPER,0 },
 { "sonavhelper", IVariable::STRING, IVariable::DT_SONAVHELPER,0 },
 { "soanimhelper", IVariable::STRING, IVariable::DT_SOANIMHELPER,0 },
 { "soevent", IVariable::STRING, IVariable::DT_SOEVENT,0 },
 { "sotemplate", IVariable::STRING, IVariable::DT_SOTEMPLATE,0 },
 { "gametoken", IVariable::STRING, IVariable::DT_GAMETOKEN, 0 },
 { "seq_", IVariable::STRING, IVariable::DT_SEQUENCE, 0 },
 { "mission_", IVariable::STRING, IVariable::DT_MISSIONOBJ, 0 },

Creating a New Entity Class
The following example creates an entity class called Fan.

• Create a new entity definition file with the extension ".ent", for example "GameSDK\Entities\Fan.ent".
This file will expose the entity to the engine.

<Entity
 Name="Fan"
 Script="Scripts/Entities/Fan.lua"
/>

• Create a new Lua script file, for example GameSDK\Entities\Scripts\Fan.lua. The Lua file will define
the entity logic.

Fan = {
 type = "Fan", -- can be useful for scripting

 -- instance member variables
 minrotspeed = 0,
 maxrotspeed = 1300,

Version 1.8
396

Lumberyard Developer Guide
Creating a New Entity Class

 acceleration = 300,
 currrotspeed = 0,
 changespeed = 0,
 currangle = 0,

 -- following entries become automatically exposed to the editor and serialized (load/
save)
 -- type is defined by the prefix (for more prefix types, search for s_paramTypes in /
Editor/Objects/EntityScript.cpp)
 Properties = {
 bName = 0, -- boolean example, 0/1
 fName = 1.2, -- float example
 soundName = "", -- sound example
 fileModelName = "Objects/box.cgf", -- file model
 },

 -- optional editor information
 Editor = {
 Model = "Editor/Objects/Particles.cgf", -- optional 3d object that represents this
 object in editor
 Icon = "Clouds.bmp", -- optional 2d icon that represents this
 object in editor
 },
}

-- optional. Called only once on loading a level.
-- Consider calling self:OnReset(not System.IsEditor()); here
function Fan:OnInit()
 self:SetName("Fan");
 self:LoadObject("Objects/Indoor/Fan.cgf", 0, 0);
 self:DrawObject(0, 1);
end

-- OnReset() is usually called only from the Editor, so we also need OnInit()
-- Note the parameter
function Fan:OnReset(bGameStarts)
end

-- optional. To start having this callback called, activate the entity:
-- self:Activate(1); -- Turn on OnUpdate() callback
function Fan:OnUpdate(dt)
 if (self.changespeed == 0) then
 self.currrotspeed = self.currrotspeed - System.GetFrameTime() * self.acceleration;
 if (self.currrotspeed < self.minrotspeed) then
 self.currrotspeed = self.minrotspeed;
 end
 else
 self.currrotspeed = self.currrotspeed + System.GetFrameTime() * self.acceleration;
 if (self.currrotspeed > self.maxrotspeed) then
 self.currrotspeed = self.maxrotspeed;
 end
 end
 self.currangle = self.currangle + System.GetFrameTime() * self.currrotspeed;
 local a = { x=0, y=0, z=-self.currangle };
 self:SetAngles(a);
end

-- optional serialization
function Fan:OnSave(tbl)
 tbl.currangle = self.currangle;
end

-- optional serialization
function Fan:OnLoad(tbl)
 self.currangle = tbl.currangle;
end

Version 1.8
397

Lumberyard Developer Guide
Entity Pool System

-- optional
function Fan:OnSpawn()
end

-- optional
function Fan:OnDestroy()
end

-- optional
function Fan:OnShutDown()
end

-- optional
function Fan:OnActivate()
 self.changespeed = 1 - self.changespeed;
end

Entity Pool System
The topics in this section describe the entity pool system, including how it is implemented, how to register
a new entity class to be pooled, and how to debug it. For more information on using entity pools in the
Lumberyard Editor, see the Lumberyard User Guide.

This section includes the following topics:

• Entity Pool Definitions (p. 399)

• Entity Pool Creation (p. 401)

• Creating and Destroying Static Entities with Pools (p. 401)

• Creating and Destroying Dynamic Entities with Pools (p. 404)

• Serialization (p. 404)

• Listener/Event Registration (p. 405)

• Debugging Utilities (p. 406)

The following processes must take place when creating an entity pool and preparing it for use. Each of
these processes is described in more detail.

1. An entity pool is created by using the information in an entity pool definition.

2. An entity pool is populated with entity containers.

3. An entity pool is validated by testing the entity pool signature of one of the entity containers against the
entity pool signature of each Entity class mapped to the pool.

4. All entities marked to be created through the pool have an entity pool bookmark created for them.

5. An entity pool bookmark is prepared from or returned to the entity pool, which is mapped to its Entity
class on demand.

Editor Usage
When running in the Lumberyard Editor, the entity pool system is not fully enabled. All entities are created
outside the pools when playing in-game in the Editor. However, all flow node actions with entity pools will
still work in the Lumberyard Editor, mimicking the final results that you will see in-game.

Note
The entity pool listeners OnEntityPreparedFromPool and OnEntityReturnedToPool are still called
in the Editor, even though the entity itself is not removed/reused.

Version 1.8
398

Lumberyard Developer Guide
Static versus Dynamic Entities

Static versus Dynamic Entities
Entities can be either static or dynamic. A static entity is placed in the Editor and exported with the level.
This entity always exists. A property associated with the exported information determines whether it should
be pooled (and not created during level load) or instead have an entity pool bookmark made for it. A
dynamic entity is created at run-time, usually from game code. The information is constructed at run-time,
usually just before it is created, and passed on to the Entity system for handling. This information also
indicates whether or not it should go through an entity pool.

Entity Pool Definitions
Entity pools must be defined in the file \Game\Scripts\Entities\EntityPoolDefinitons.xml. An entity
pool definition is responsible for defining the following:

• the empty class that will be used by entity containers when they're not in use

• the entity classes mapped to the pool

• other properties that describe the pool and how it is used.

In general, a pool is initially filled with a defined number of entity containers; that is, empty CEntity classes
with all the required entity proxies and game object extensions that are normally created when an entity
belonging to an entity class mapped to the definition is fully instantiated. For example, a normal AI entity will
have the following entity proxies: sound extension, script extension, render extension, and the game object
as its user extension; as its game object extension, it will have the CPlayer class. All of these classes are
instantiated for each empty CEntity instance, and is reused by the entities as they are created from the
pool.

The following illustrates an entity pool definition:

EntityPoolDefinitions.xml

<Definition name="AI" emptyClass="NullAI" maxSize="16" hasAI="1" defaultBookmarked="0"
 forcedBookmarked="0">
 <Contains>
 <Class>Grunt</Class>
 <Class>Flyer</Class>
 </Contains>
</Definition>

Empty Class

The empty class is defined using the emptyClass attribute, which takes the name of a valid entity class. The
purpose of the empty class is to:

• satisfy the engine's requirement to have an entity class associated with an entity at all times; an empty
container is initialized/reused to this entity class

• prepare all needed entity proxies and game object extensions needed for the entities

For example, building on the definition shown in the previous section, you would create an empty class
called "NullAI" and register it the same way as the other AI classes above. Then:

1. Declare the entity class and map it to its Lua script via the game factory.

GameFactory.cpp

Version 1.8
399

Lumberyard Developer Guide
Entity Pool Definitions

REGISTER_FACTORY(pFramework, "NullAI", CPlayer, true);

2. Create the Lua script for it. View sample code at \Game\Scripts\Entities\AI\NullAI.lua.

These steps will allow Lumberyard to see "NullAI" as a valid entity class. In addition, by mapping CPlayer to
it, you ensure that the correct game object extension is instantiated for the entity containers. The Lua script
needs to create all the entity proxies for the entity containers. In the sample code, a render proxy is created,
even though we aren't loading an asset model for this entity. For more details, see the discussion of entity
pool signatures in Entity Pool Creation (p. 401).

Entity Class Mapping

In an entity pool definition file, the <Contains> section should include maps to all the entity classes that an
entity must belong to when it is created through this pool. You can map as many as you want by adding
a new <Class> node within this section. It is important that each entity have the same dynamic class
hierarchy as the empty class when fully instantiated. See Debugging Utilities (p. 406)for useful debugging
tools to verify that this is the case.

Other Properties

An entity pool definition can define the following additional properties.

name

Unique identity given to an entity pool, useful for debugging purposes. The name should be unique
across all definitions.

maxSize

Largest pool size this pool can reach. By default, this is also the number of entity containers
created to fill the pool when loading a level. This value can be overwritten for a level by including
an EntityPools.xml file inside the level's root directory. This file can only be used to decrease the
number of entity containers created per pool; it cannot exceed the maxSize value defined here. This
is useful when you need to reduce the memory footprint of the entity pools per level. The following
example file adjusts the size of an AI entity pool to "2".

LevelEntityPools.xml

<EntityPools>
 <AI count="2" />
</EntityPools>

hasAI

Boolean value that indicates whether or not the entity pool will contain entities that have AI associated
with them. It is important to set this property to TRUE if you are pooling entities with AI.

defaultBookmarked

Boolean value that indicates whether or not an entity belonging to one of the entity classes mapped
to this pool is flagged as "created through pool" (see Creating and Destroying Static Entities with
Pools (p. 401)). This flag determines whether or not, during a level load, an entity pool bookmark is
created for the entity instead of being instantiated.

forcedBookmarked

Boolean value that indicates whether or not an entity belonging to one of the entity classes mapped to
this pool must be created through the pool. This property overrides an entity's "created through pool"
flag (see Creating and Destroying Static Entities with Pools (p. 401)).

Version 1.8
400

Lumberyard Developer Guide
Entity Pool Creation

Entity Pool Creation
When loading a level, an entity pool is created for each entity pool definition. On creation, the pool is filled
with empty containers (instances of CEntity using the emptyClass attribute value as the entity class. These
empty containers come with some expectations that must be satisfied:

• Containers should be minimal in size. This means you should not load any assets or large amounts of
data into them. For example, in the sample Lua script (\Game\Scripts\Entities\AI\NullAI.lua), the
NullAI entity does not define a character model, animation graph, body damage definition, etc.

• Containers should have the same entity proxies and game object extensions created for them as
compared to a CEntity fully instantiated using each of the mapped entity classes.

Once the pool is created, an entity pool signature is generated using one of the empty containers. An entity
pool's signature is a simple container that maps the dynamic class hierarchy of an entity.

One of the functions of the entity pool system is to avoid as much as possible dynamic allocation
for delegate classes used by entities. Key examples of these are the entity proxies and game object
extensions used by entities. When an entity pool's empty containers are first created, the delegate classes
that will be used by the real entities contained in them are also supposed to be created. To ensure that this
is the case, the entity pool signature is used. It works as follows:

1. A TSerialize writer is created. It is passed to each entity proxy and game object extension that exists in
the entity.

2. Each proxy and extension is expected to write some info to the TSerialize writer. This information
should be unique.

3. Two signatures can then be compared to see if they contain the same written information, verifying they
contain the same dynamic class hierarchy.

All of the entity proxies have already been set up to write their information to the TSerialize writer.
However, if you create a new game object extension (or a new entity proxy), then you will need to set the
class up to respond to the Signature helper when needed. To do this, implement the virtual method (Entity
Proxy: GetSignature; Game Object Extension: GetEntityPoolSignature) and write information about
the class to the TSerialize writer. Generally, all that is needed is to just begin/end a group with the class
name. The function should then return TRUE to mark that the signature is valid thus far.

CActor::GetEntityPoolSignature Example

bool CActor::GetEntityPoolSignature(TSerialize signature)
{
 signature.BeginGroup("Actor");
 signature.EndGroup();
 return true;
}

The section Debugging Utilities (p. 406) discusses how to view the results of entity pool signature tests in
order to verify that everything is working as expected.

Creating and Destroying Static Entities with Pools
This topic covers issues related to handling static entities.

Entity Pool Bookmarks
When an entity is marked to be created through the pool, it is not instantiated during the level load process.
Instead, an entity pool bookmark is generated for it. The bookmark contains several items:

Version 1.8
401

Lumberyard Developer Guide
Creating and Destroying Static Entities with Pools

• Entity ID reserved for the entity, assigned when the level was exported. You will use this entity ID later to
tell the system to create the entity.

• Static instanced data that makes the entity unique. This includes the <EntityInfo> section from
the mission.xml file, which contains area information, flow graph information, child/parent links,
PropertiesInstance table, etc.

• Serialized state of the entity if it has been returned to the pool in the past. See more details in
Serialization (p. 404).

In each entity's <EntityInfo> section in the mission.xml file (generated when the level is exported
from the Editor), there's a CreatedThroughPool property. This property can be referenced from the
SEntitySpawnParams struct. If set to TRUE, the EntityLoadManager module will not create a CEntity
instance for the entity. Instead, it will delegate the static instanced data and reserved entity ID to the
EntityPoolManager to create a bookmark.

CEntityLoadManager::ParseEntities

SEntityLoadParams loadParams;
if (ExtractEntityLoadParams(entityNode, loadParams))
{
 if (bEnablePoolUse && loadParams.spawnParams.bCreatedThroughPool)
 {
 CEntityPoolManager *pPoolManager = m_pEntitySystem->GetEntityPoolManager();
 bSuccess = (pPoolManager && pPoolManager->AddPoolBookmark(loadParams));
 }

 // Default to creating the entity
 if (!bSuccess)
 {
 EntityId usingId = 0;
 bSuccess = CreateEntity(loadParams, usingId);
 }
}

Preparing a Static Entity

To prepare a static entity, call IEntityPoolManager::PrepareFromPool, passing in the entity ID associated
with the static entity you want to create. In response, the following execution flow takes place:

1. System determines if the request can be processed in this frame. It will attempt to queue up multiple
requests per frame and spread them out. If the parameter bPrepareNow is set to TRUE or if no prepare
requests have been handled this frame, the request will be handled immediately. Otherwise, it will be
added to the queue. Inside CEntityPoolManager::LoadBookmarkedFromPool, the EntityLoadManager is
requested to create the entity.

Note
Note: If this activity is happening in the Editor, the entity will simply have its Enable event called.
This will mimic enabling the entity via Flow Graph (unhide it). In this situation, the execution flow
skips to the final step.

2. System searches for an entity container (either empty, or still in use) to hold the requested entity.
The function CEntityPoolManager::GetPoolEntity looks through the active entity pools to find one
that contains the entity class of the given static entity. Once the correct pool is found, the container is
retrieved from it. The actual order is as follows:

a. If a forcedPoolId (entity ID of one of the empty containers created to populate the pool) is requested,
find that entity container and return it.

b. If no forcedPoolId is requested, get an entity container from the inactive set (entity containers not
currently in use).

Version 1.8
402

Lumberyard Developer Guide
Creating and Destroying Static Entities with Pools

c. If no inactive containers are available, get one from the active set (entity containers
currently in use). This action uses a "weight" value to determine which container to return.
A special Lua function in the script is used to request weights for each empty container
(CEntityPoolManager::GetReturnToPoolWeight). A negative weight means it should not be used at
all if possible. The system might pass in an urgent flag, which means the pool is at its maximum size.

d. If an empty container can still not be found, an urgent flag will be ignored and the system will try to
grow the pool. This is only possible if the pool was not created at its maximum size (this happens
when the maximum pool size is overridden for a level with a smaller maximum size). In this case, a
new entity container is generated, added to the pool, and immediately used.

3. The retrieved entity container, along with the static instanced data and reserved entity ID gathered from
its bookmark, is passed on through the functionCEntityLoadManager::CreateEntity, which begins the
Reload process. CreateEntity uses the provided entity container instead of creating a new CEntity
instance. It will handle calling the Reload pipeline on the entity container, and then install all the static
instanced data for the prepared static entity. The Reload pipeline is as follows:

a. The function CEntity::ReloadEntity is called on the entity container. The CEntity instance will
clean itself up internally and begin using the static instanced data of the entity being prepared. The
Lua script also performs cleanup using the function OnBeingReused.

b. The Entity system's salt buffer and other internal containers are updated to reflect that this entity
container now holds the reserved entity ID and can be retrieved using it.

c. Entity proxies are prompted to reload using the static instanced data provided. This is done by calling
IEntityProxy::Reload; each proxy is expected to correctly reset itself with the new data provided.
The Script proxy is always the first to be reloaded so that the Lua script can be correctly associated
before the other proxies attempt to use it.

If the game object is being used as the User proxy, all the game object extensions for the container
are also prompted to reload. This is done by calling IGameObjectExtension::ReloadExtension
on all extensions. If this function returns FALSE, the extension will be deleted. Once this is done,
IGameObjectExtension::PostReloadExtension is called on all extensions. This behavior mimics the
Init and PostInit logic. Each extension is expected to correctly reset itself with the new data provided.

4. If any serialized data exists within the bookmark, the entity container is loaded with that data. This
ensures that the static entity resumes the state it was in last time it was returned to the pool. This
process is skipped if this is the first time the static entity is being prepared.

At this point, calling CEntity::GetEntity or CEntity::FindEntityByName will return the entity container
that is now housing the static entity and its information.

Returning a Static Entity to the Pool

To return a static entity, call the function IEntityPoolManager::ReturnToPool. You must pass in the entity
ID associated with the static entity. In response, the following execution flow takes place:

1. The function CEntityPoolManager::ReturnToPool finds the bookmark and the entity pool containing the
current entity container housing the static entity.

2. Depending on the bSaveState argument, the CEntity instance is (saved) and its serialized information
is added to the bookmark. This ensures that if the static entity is prepared again later, it will resume its
current state.

3. The entity container goes through the Reload process again. This time, however, the entity container is
reloaded using its empty class, effectively removing all references to loaded assets/content and put it
back into a minimal state.

At this point, calling CEntity::GetEntity or CEntity::FindEntityByName to find the static entity will return
NULL.

Version 1.8
403

Lumberyard Developer Guide
Creating and Destroying Dynamic Entities with Pools

Creating and Destroying Dynamic Entities with Pools
The processes for creating and destroying dynamic entities are similar to those for static entities, which
one key exception: dynamic entities have no entity pool bookmarks (at least initially). Because they are not
exported in the level, they have no static instanced data associated with them and so no bookmark is made
for them.

Creating a Dynamic Entity
As with static entities, creating a dynamic entity with the pool starts with calling
IEntitySystem::SpawnEntity. Construct an SEntitySpawnParams instance to describe its static instanced
data. When filling in this struct, set the bCreatedThroughPool property to TRUE if you wish to have the
entity be created through the pool. In the following example, a vehicle part from the Vehicle system is being
spawned through the pool:

SEntitySpawnParams spawnParams;
spawnParams.sName = pPartName
spawnParams.pClass = gEnv->pEntitySystem->GetClassRegistry()-
>FindClass("VehiclePartDetached");
spawnParams.nFlags = ENTITY_FLAG_CLIENT_ONLY;

spawnParams.bCreatedThroughPool = true;

IEntity* pSpawnedDebris = gEnv->pEntitySystem->SpawnEntity(spawnParams);

Once SpawnEntity, the following execution flow takes place:

1. CEntitySystem::SpawnEntity will check for an entity pool associated with the provided entity class. If
so, it will delegate the workload to the entity pool manager.

2. From within CEntityPoolManager::PrepareDynamicFromPool, an entity pool bookmark is created for the
new entity. This is done primarily for serialization purposes.

3. The execution flow follows the same sequence as preparing a static entity (see Creating and Destroying
Static Entities with Pools (p. 401).

4. If the process is successful, the entity container now housing the information is returned. Otherwise,
SpawnEntity creates a new CEntity instance to satisfy the request.

At this point, calling CEntity::GetEntity or CEntity::FindEntityByName will return the entity container
now housing the dynamic entity and its information.

Destroying a Dynamic Entity with the Pool
As with static entities, use IEntitySystem::RemoveEntity or any other method that can destroy an
entity. The entity pool manager will return the entity container to the pool, freeing it for use elsewhere
and removing the dynamic entity in the process. The resulting execution flow differ from destroying static
entities in two ways:

• Dynamic entities are not serialized when they are returned.

• The entity pool bookmark associated with the dynamic entity is removed. It is no longer needed.

At this point, calling CEntity::GetEntity or CEntity::FindEntityByName will return NULL.

Serialization
All entities created or prepared through the entity pool system are serialized by the system for game save/
load. For this reason, do not serialize those entities marked as coming from the pool (IEntity:IsFromPool)

Version 1.8
404

Lumberyard Developer Guide
Listener/Event Registration

in your normal serialization. This is handled in Lumberyard's default implementation for saving and loading
the game state.

The entity pool system is serialized from the Entity system's implementation of the Serialize function.

Saving Entity Pools

The following process occurs when the game state is being saved:

1. All active entity containers in all entity pools are updated. This results in
CEntityPoolManager::UpdatePoolBookmark being called for each active entity container. As long as the
entity does not have the ENTITY_FLAG_NO_SAVE flag set on it, the bookmark is serialized as follows:

a. Serialize Helper writes to the bookmark's pLastState (an ISerializedObject), which contains the
serialized state of the entity.

b. The callback CEntityPoolManager::OnBookmarkEntitySerialize runs through the serialization
process on the entity. This ensures that the general information, properties and all entity proxies are
serialized using their overloaded Serialize() implementation.

c. Any listeners subscribed to the OnBookmarkEntitySerialize callback are able to write data into the
bookmark at this time. This is used to also bookmark AI objects along with the entity.

2. All entity pool bookmarks are saved, including the static entity and dynamic entity usage counts.

3. If any prepare requests are currently queued, the prepare request queue is saved.

Loading Entity Pools

The following process occurs when the game state is being loaded:

1. The saved entity pool bookmarks are read in. If the bookmark is marked as containing a dynamic entity,
it is read to ensure it exists. Each bookmark's pLastState is read in and updated.

2. If the entity pool bookmark contains an entity that was active at the time the game was saved, the entity
is created/prepared from the pool once more.

a. While the entity is being created/prepared, it will load its internal state using the pLastState at its final
step, because the object contains information at this point.

b. This will also call the OnBookmarkEntitySerialize listener callback, allowing other systems to read
data from the bookmark.

Listener/Event Registration
There are several listener and various event callbacks dealing with entity pool usage. These callbacks
are important for sub-systems that rely on entity registration. They can notify you when an entity has been
prepared or returned to the pool so that you can register and unregister it with your subsystems as needed.

IEntityPoolListener

This listener can be subscribed to via IEntityPoolManager::AddListener. It contains the following
callbacks:

OnPoolBookmarkCreated

Called when an entity pool bookmark has been created. The reserved entity ID for the pooled entity is
passed in, along with the static instanced data belonging to it.

Version 1.8
405

Lumberyard Developer Guide
Debugging Utilities

OnEntityPreparedFromPool

Called when an entity (static or dynamic) has been prepared from the pool. You are given both the
entity ID and the entity container that is now housing the entity. This is called at the end of the prepare
entity process.

OnEntityReturnedToPool

Called when an entity (static or dynamic) has been returned to the pool. You are given both the entity
ID and the entity container that is currently housing the entity. This is called at the start of the return
entity process.

OnPoolDefinitionsLoaded

Called at initialization, with information allowing listeners to set up their own resources for working with
the pool. Currently passes the total number of pooled entities that have AI attached.

OnBookmarkEntitySerialize

Called during reads and writes from entity bookmarks, allowing listeners to store additional data in the
bookmark.

IEntitySystemSink
This listener has a special callback, OnReused, that notifies you when an entity has been reloaded. This
is the process an entity container goes through when a static entity is being prepared into it, or a dynamic
entity is being created inside it. You are given the entity container that houses the entity as well as the static
instanced data belonging to it.

Debugging Utilities
There are several debugging utilities you can use to manage the entity pools and see how they are being
used during gameplay.

Debugging Entity Pool Bookmarks
To see the status of all entity pool bookmarks that currently exist during the game, use the following
console command.

es_dump_bookmarks [filterName] [dumpToDisk]

This command causes text to be written to the console and game log file for every bookmark requested.

Arguments

filterName

(Optional) Allows you to filter your request to get bookmarks only for entities whose names contain the
specified value as a substring. To display all bookmarks, set this argument to "all" or leave it empty.

dumpToDisk

(Optional) Allows you to output to disk all static instanced data associated with the displayed
bookmarks. If supplied and its a non-zero numerical file, data will be stored at \User\Bookmarks
\LevelName\EntityName.xml.

Data displayed

The following information is displayed for each bookmark:

Version 1.8
406

Lumberyard Developer Guide
Entity ID Explained

• Name of the bookmarked entity.

• Layer the bookmarked entity belongs to.

• Entity class name the bookmarked entity uses.

• Reserved entity ID associated with the bookmarked entity.

• If the bookmarked entity has the No Save Entity Flag associated with it.

• If the bookmarked entity is static or dynamic.

• If the bookmarked entity contains any serialized data (and the memory footprint of the information if
available).

• If the bookmarked entity contains any static instanced data (and the memory footprint of the information if
available).

Entity ID Explained
When referring to a dynamic C++ object, pointers and reference counting can be used, but a better method
is to use a weak reference that allows you to remove an object and have all references become invalid.
This option limits the need to iterate over all objects to invalidate objects being removed, which results in
performance costs.

With each reference, Lumberyard stores a number called the "salt" (also called a "magic number"). This
number, together with the index, gives the object a unique entity ID over the game lifetime. Whenever an
object is destroyed and the index is reused, the salt is increased and all references with the same index
become invalid. To get an entity position/pointer, the entity manager needs to resolve the entity ID; as the
salt is different, the method fails.

The class CSaltBufferArray handles adding and removing objects and does the required adjustments
to the salt. The object array is kept compact for more cache-friendly memory access. Storing EntityId
references to disc is possible and used for saved games and by the Editor game export. However, when
loading a saved game of a level that has been patched and now has more entities, this can result in a
severe conflict. To solve this problem, dynamic entities are created starting with a high index counting
down, while static entities are created starting with a low index counting up.

Entity IDs have the following limitations:

• A 16-bit index allows up to approximately 65,000 living objects. This should be enough for any non-
massive multiplayer game. In a massive multiplayer game, the method described here should not be
used by the server. However, it can be used between specific clients and the server.

• A 16-bit salt value allows a game to reuse an index up to approximately 65,000 times. If that happens,
the index can no longer be used. This should be enough for any non-massive multiplayer game,
when used with some care—don't create and destroy objects (such as bullets) too rapidly. A massive
multiplayer game, or any game that supports multi-day game sessions, can run into this limit.

Adding Usable Support on an Entity

Overview
Players may be able to interact with an entity using a key press ('F' by default). Entities that can be
interacted with will be enabled with a special on-screen icon inside the game to inform the player that
interaction is possible.

To use this feature, you need to create a script that implements two functions: IsUsable() and OnUsed().

Version 1.8
407

Lumberyard Developer Guide
Preparing the Script

Preparing the Script
The script should look like this:

MakeUsable(NewEntity)

function NewEntity:IsUsable(userId)
 -- code implementation
 return index;
end

function NewEntity:OnUsed(userId, index)
 -- code implementation
end

Implementing IsUsable
The IsUsable() function is called when a player is aiming the cross-hairs towards the entity. The function
will determine if the entity can be interacted with by the player doing the aiming. The function only accepts a
single parameter: the player's entity ID.

If the player cannot interact with the entity, the function should return 0. This value causes the UI to not
render the "USE" icon over the entity.

If the player can interact with the entity, the function should return a positive value. This value will be stored
and later used when calling the OnUsed() function.

Implementing OnUsed
The OnUsed() function is called when a player presses interacts with the entity (such as by pressing the
Use key when the USE icon is active. This function accepts two parameters: (1) the player's entity ID, and
(2) the value returned by IsUsable().

Entity Scripting
This section contains topics on using Lua scripting to work with the Entity system.

This section includes the following topics:

• Structure of a Script Entity (p. 408)

• Using Entity State (p. 412)

• Using Entity Slots (p. 413)

• Linking Entities (p. 414)

• Exposing an Entity to the Network (p. 415)

Structure of a Script Entity
To implement a new entity using Lua, two files need to be created and stored in the game directory:

• The Ent file tells the Entity system the location of the Lua script file.

• The Lua script file implements the desired properties and functions.

Version 1.8
408

Lumberyard Developer Guide
Structure of a Script Entity

With the SDK, both the .ent and .lua files are stored inside the <Game_Folder>\Scripts.pak file.

Ent File

The Ent files are all stored inside the <Game_Folder>\Entities directory and need to have the .ent file
extension. The content is XML as follows:

<Entity
 Name="LivingEntity"
 Script="Scripts/Entities/Physics/LivingEntity.lua"
/>

Entity properties set in the Ent file include:

Name

Name of the entity class.

Script

Path to the Lua script that implements the entity class.

Invisible

Flag indicating whether or not the entity class is visible in Lumberyard Editor.

Lua Script

The Lua script, in addition to implementing the entity class, provides a set of information used by
Lumberyard Editor when working with entities on a level. The property values set inside the Lua script
are default values assigned to new entity instances. Editor variables specify how entities are drawn in
Lumberyard Editor.

The following code excerpt is from the sample project files in your Lumberyard directory (...\dev\Cache
\SamplesProject\pc\samplesproject\scripts\entities\physics\livingentity.lua).

LivingEntity = {
 Properties = {
 soclasses_SmartObjectClass = "",
 bMissionCritical = 0,
 bCanTriggerAreas = 1,
 DmgFactorWhenCollidingAI = 1,

 object_Model = "objects/default/primitive_capsule.cgf",
 Physics = {
 bPhysicalize = 1, -- True if object should be physicalized at all.
 bPushableByPlayers = 1,
 },
 Living = {
 height = 0, -- vertical offset of collision geometry center
 vector_size = {0.4, 0.4,0.9}, -- collision cylinder dimensions
 height_eye = 1.8, -- vertical offset of camera
 height_pivot = 0.1, -- offset from central ground position that is considered entity
 center
 head_radius = 0.3, -- radius of the 'head' geometry (used for camera offset)
 height_head = 1.7, -- center.z of the head geometry
 groundContactEps = 0.004, --the amount that the living needs to move upwards before
 ground contact is lost. defaults to which ever is greater 0.004, or 0.01*geometryHeight
 bUseCapsule = 1,--switches between capsule and cylinder collider geometry

Version 1.8
409

Lumberyard Developer Guide
Structure of a Script Entity

 inertia = 1, -- inertia koefficient, the more it is, the less inertia is, 0 means no
 inertia
 inertiaAccel = 1, -- inertia on acceleration
 air_control = 1, -- air control koefficient 0..1, 1 - special value (total control of
 movement)
 air_resistance = 0.1, -- standard air resistance
 gravity = 9.8, -- gravity vector
 mass = 100, -- mass (in kg)
 min_slide_angle = 60, -- if surface slope is more than this angle, player starts sliding
 (angle is in radians)
 max_climb_angle = 60, -- player cannot climb surface which slope is steeper than this
 angle
 max_jump_angle = 45, -- player is not allowed to jump towards ground if this angle is
 exceeded
 min_fall_angle = 65, -- player starts falling when slope is steeper than this
 max_vel_ground = 10, -- player cannot stand of surfaces that are moving faster than this
 timeImpulseRecover = 0.3, -- forcefully turns on inertia for that duration after
 receiving an impulse
 nod_speed = 1, -- vertical camera shake speed after landings
 bActive = 1,-- 0 disables all simulation for the character, apart from moving along the
 requested velocity
 collision_types = 271, -- (271 = ent_static | ent_terrain | ent_living | ent_rigid |
 ent_sleeping_rigid) entity types to check collisions against

 },
 MultiplayerOptions = {
 bNetworked= 0,
 },

 bExcludeCover=0,
 },

 Client = {},
 Server = {},

 -- Temp.
 _Flags = {},

 Editor={
 Icon = "physicsobject.bmp",
 IconOnTop=1,
 },

}

This information is followed by functions that implement the entity class.

Properties

Entity properties are placed inside the entity class. These properties are assigned to all new instances of
the entity class created, visible and editable in Lumberyard Editor as the instance's Entity Properties table.
The property values set for individual entity instances placed on a level are saved in the level file. When a
property of an entity instance is changed in Lumberyard Editor, the OnPropertyChange() function called (if
it is has been implemented for the script entity).

Lumberyard Editor provides the Archetype tool for assigning a common set of properties reused for multiple
instance (even across multiple levels). For more information on Archetypes, see Archetype Entity in the
Amazon Lumberyard User Guide.

When specifying entity class property names, use the following prefixes to signal the data type expected for
a property value. This enables Lumberyard Editor to validate a property value when set.

Version 1.8
410

http://docs.aws.amazon.com/lumberyard/latest/userguide/entities-entity-archetype.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/

Lumberyard Developer Guide
Structure of a Script Entity

Entity class property prefixes

Prefix Data Type

b boolean

f float

i integer

n positive integer

s string

clr color

object_ object compatible with Lumberyard (CFG, CGA, CHR or CDF file)

You can add special comments to property values that can be utilized by the engine. For example:

--[25,100,0.1,"Damage threshold"]

This comment tells the engine the following:

• Value is limited to between 25 and 100.

• The float value uses a step of 0.01 (this limits the fidelity of values).

• The string "Damage threshold" will be displayed in the Lumberyard Editor as a tool tip.

Editor Table

The Editor table provides additional configuration information to Lumberyard Editor on how to handle
instances of the entity.

Entity class editor variables

Variable Description

Model CGF model to be rendered over an entity instance.

ShowBounds Flag indicating whether or not a bounding box is drawn around an entity
instance when selected.

AbsoluteRadius

Icon BMP icon to be drawn over an entity instance.

IconOnTop Flag indicating whether or not the icon is drawn over or under an entity
instance.

DisplayArrow

Links

Functions

A script entity can include several callback functions called by the engine or game system. See Entity
System Script Callbacks (p. 530) for more information.

Version 1.8
411

Lumberyard Developer Guide
Using Entity State

Using Entity State
The Entity system provides a simple state-switching mechanism for script entities.

Each state consists of the following:

• Name (string)

• Lua table within the entity table, identified with the state name

• OnEndState() function (optional)

• OnBeginState() function (optional)

• Additional callback functions (optional) (See Entity System Script Callbacks (p. 530))

To declare states for an entity:

All entity states must be declared in the entity's main table to make the Entity system aware of them. The
following examples show how to declare "Opened", "Closed", and "Destroyed" states.

AdvancedDoor =
{
 Client = {},
 Server = {},
 PropertiesInstance = ...
 Properties = ...
 States = {"Opened","Closed","Destroyed"},
}

To define an entity state:

Entity states can be either on the server or client (or both). The definition for a server-side "Opened" state
might look as follows:

AdvancedDoor.Server.Opened =
{
 OnBeginState = function(self)
 if(self.Properties.bUsePortal==1)then
 System.ActivatePortal(self:GetWorldPos(),1,self.id);
 end;
 self.bUpdate=1;
 self.lasttime=0;
 AI.ModifySmartObjectStates(self.id, "Open-Closed");
 self:Play(1);
 end,

 OnUpdate = function(self, dt)
 self:OnUpdate();
 end,
}

To set an entity's initial state:

Initially, an entity has no state. To set an entity's state, use one of the entity's callback functions (not to be
confused with an entity state's callback function) to call its GotoState() method, shown in the following
example. Once the entity state is set, the entity resides in that state and events will also be directed to that
state.

function AdvancedDoor:OnReset()
 self:GotoState("Opened");

Version 1.8
412

Lumberyard Developer Guide
Using Entity Slots

end

To change an entity's state:

Transitioning from the current state to any other state can also be done using the GotoState() method, as
follows.

function AdvancedDoor.Server:OnHit(hit)
 ...
 if(self:IsDead())then
 self:GotoState("Destroyed");
 end
end

To query an entity's state:

Querying the state the entity is currently in can be done using the GetState() method, as follows.

if (self:GetState()=="Opened") then ...

if (self:GetState()~="Opened") then ...

Using Entity Slots
Each entity can have slots that are used to hold different resources available in Lumberyard. This topic
describes how to work with entity slots.

Allocating a Slot

The following table lists the resources that can be allocated in a slot, along with the ScriptBind function
used to allocate it.

Lumberyard resource Function

static geometry LoadObject() or LoadSubObject()

animated character LoadCharacter()

particle emitter LoadParticleEffect()

light LoadLight()

cloud LoadCloud()

fog LoadFogVolume()

volume LoadVolumeObject()

Modifying Slot Parameters

Each of these resource may be moved, rotated, or scaled relative to the entity itself.

• SetSlotPos()

• GetSlotPos()

Version 1.8
413

Lumberyard Developer Guide
Linking Entities

• SetSlotAngles()

• GetSlotAngles()

• SetSlotScale()

• GetSlotScale()

You can add a parenting link between the slots, making it possible to have related positions.

• SetParentSlot()

• GetParentSlot()

Slot Management

To determine whether or not a specified slot is allocated, call the function !IsSlotValid().

To free one slot, call !FreeSlot()

To free all allocated slots within the entity, call !FreeAllSlots().

Loading a Slot

The following example illustrates loading a slot in a script function.

local pos={x=0,y=0,z=0};
self:LoadObject(0,props.fileModel);
self:SetSlotPos(0,pos);
self:SetCurrentSlot(0);

Linking Entities
In Lumberyard Editor, you can link an entity to other entities. These links are organized inside the Entity
system. Each entity can link to multiple entities. Each link has a name associated to it. See the Amazon
Lumberyard User Guide for more information about grouping and linking objects.

The following example Lua script searches the Entity system for any links to other entities that are named
"Generator".

function RadarBase:IsPowered()
 local i=0;
 local link = self:GetLinkTarget("Generator", i);

 while (link) do
 Log("Generator %s", link:GetName());

 if (link:GetState() == "PowerOn") then
 if (link.PowerConnect) then
 link:PowerConnect(self.id);
 return true;
 end
 end

 i=i+1;
 link=self:GetLinkTarget("Generator", i);
 end

 return false;
end

Version 1.8
414

http://docs.aws.amazon.com/lumberyard/latest/userguide/
http://docs.aws.amazon.com/lumberyard/latest/userguide/

Lumberyard Developer Guide
Exposing an Entity to the Network

The following functions are used to read or create entity links:

• CountLinks

• CreateLink

• GetLink

• GetLinkName

• GetLinkTarget

• RemoveAllLinks

• RemoveLink

• SetLinkTarget

Exposing an Entity to the Network
A script entity can be a serialized value on the network. This approach is done by setting the values on the
server and having them automatically synchronized on all the clients. It also makes it possible to invoke
client/server RMI functions.

Keep in mind the following limitations:

• There is no notification when a serialized value has changed.

• Values are controlled on the server only, there is no way to set values on the client.

Exposing a Script Entity to CryNetwork

To define the network features of an entity, call the ScriptBind function Net.Expose(), as illustrated in the
following code. This code is written inside a Lua script within the global space, rather than in a function.

Net.Expose {
 Class = DeathMatch,
 ClientMethods = {
 ClVictory = { RELIABLE_ORDERED, POST_ATTACH, ENTITYID, },
 ClNoWinner = { RELIABLE_ORDERED, POST_ATTACH, },

 ClClientConnect = { RELIABLE_UNORDERED, POST_ATTACH, STRING, BOOL },
 ClClientDisconnect = { RELIABLE_UNORDERED, POST_ATTACH, STRING, },
 ClClientEnteredGame = { RELIABLE_UNORDERED, POST_ATTACH, STRING, },
 },
 ServerMethods = {
 RequestRevive = { RELIABLE_UNORDERED, POST_ATTACH, ENTITYID, },
 RequestSpectatorTarget = { RELIABLE_UNORDERED, POST_ATTACH, ENTITYID, INT8 },
 },
 ServerProperties = {
 busy = BOOL,
 },
};

RMI functions

The RMI function is defined in either the ClientMethods and ServerMethods tables passed to the
Net.Expose() function.

Order flags:

• UNRELIABLE_ORDERED

• RELIABLE_ORDERED

Version 1.8
415

Lumberyard Developer Guide
Exposing an Entity to the Network

• RELIABLE_UNORDERED

The following descriptors control how the RMI is scheduled within the data serialization.

RMI attach flag Description

NO_ATTACH No special control (preferred)

PRE_ATTACH Call occurs before data serialized

POST_ATTACH Call occurs after the data serialized

The following example shows a function declaration:

function DeathMatch.Client:ClClientConnect(name, reconnect)

The following examples illustrate a function call:

self.allClients:ClVictory(winningPlayerId);

self.otherClients:ClClientConnect(channelId, player:GetName(), reconnect);

self.onClient:ClClientConnect(channelId, player:GetName(), reconnect);

See RMI Functions (p. 803) for more details.

Note
Note: Script networking doesn't have an equivalent to the dependent object RMIs.

ServerProperties table

The entity table also contains a ServerProperties table that indicates which properties need to be
synchronized. This is also the place to define the variable type of the value.

Exposing a Script Entity to CryAction

In addition, you must create a game object in CryAction and bind the new game object to the network game
session. The following example shows the code placed in the OnSpawn() function:

CryAction.CreateGameObjectForEntity(self.id);
CryAction.BindGameObjectToNetwork(self.id);

You can also instruct the game object to receive a per-frame update callback, as in the following function
call to CryAction:

CryAction.ForceGameObjectUpdate(self.id, true);

The script entity receive the OnUpdate() function callback of its Server table.

function Door.Server:OnUpdate(frameTime)
-- some code
end

Version 1.8
416

Lumberyard Developer Guide
Exposing an Entity to the Network

Note
Adding update callback code to your script entity can decrease the performance of a game.

Version 1.8
417

Lumberyard Developer Guide
Bus Configurations

Event Bus (EBus)

Event buses (or EBus for short) are a general purpose system for dispatching messages. Ebuses have
many advantages:

• Abstraction – Minimize hard dependencies between systems.

• Event-driven programming – Eliminate polling patterns for more scalable and high performing software.

• Cleaner application code – Safely dispatch messages without concern for what is handling them or
whether they are being handled at all.

• Concurrency – Queue events from various threads for safe execution on another thread or for
distributed system applications.

• Predictability – Provide support for ordering of handlers on a given bus.

• Debugging – Intercept messages for reporting, profiling, and introspection purposes.

The EBus source code can found in the Lumberyard directory location <root>\dev\Code\Framework
\AZCore\AZCore\EBus\EBus.h.

Bus Configurations
You can configure EBuses for various usage patterns. This section presents common configurations and
their applications.

Topics

• Single Handler (p. 418)

• Many Handlers (p. 419)

• EBus with Addresses and a Single Handler (p. 420)

• EBus with Addresses and Many Handlers (p. 422)

Single Handler
The simplest configuration is a many-to-one (or zero) communication bus, much like a singleton pattern.

Version 1.8
418

Lumberyard Developer Guide
Many Handlers

There is at most one handler, to which any sender can dispatch events. Senders need not manually check
and de-reference pointers. If no handler is connected to the bus, the event is simply ignored.

// One handler is supported.
static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Single;

// The EBus uses a single address.
static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::Single;

Many Handlers
Another common configuration is one in which many handlers can be present. You can use this
configuration to implement observer patterns, subscriptions to system events, or general-purpose
broadcasting.

Events to the handlers can be received in defined or undefined order. You specify which one in the
HandlerPolicy trait.

Example Without Handler Ordering

To handle events in no particular order, simply use the Multiple keyword in the HandlerPolicy trait, as in
the following example:

// Multiple handlers. Events received in undefined order.
static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Multiple;

// The EBus uses a single address.

Version 1.8
419

Lumberyard Developer Guide
EBus with Addresses and a Single Handler

static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::Single;

Example with Handler Ordering

To handle events in a particular order, use the MultipleAndOrdered keyword in the HandlerPolicy trait,
and then implement a custom handler-ordering function, as in the following example:

// Multiple handlers. Events received in defined order.
static const AZ::EBusHandlerPolicy HandlerPolicy =
 AZ::EBusHandlerPolicy::MultipleAndOrdered;

// The EBus uses a single address.
static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::Single;

// Implement a custom handler-ordering function
struct BusHandlerOrderCompare : public AZStd::binary_function<MyBusInterface*,
 MyBusInterface*, bool>
{
 AZ_FORCE_INLINE bool operator()(const MyBusInterface* left, const MyBusInterface*
 right) const { return left->GetOrder() < right->GetOrder(); }
};

EBus with Addresses and a Single Handler
EBuses also support addressing based on a custom ID. Events addressed to an ID are received by
handlers connected to that ID. If an event is broadcast without an ID, it is received by handlers at all
addresses.

A common use for this approach is for communication among the components of a single entity, or between
components of a separate but related entity. In this case the entity ID is the address.

Version 1.8
420

Lumberyard Developer Guide
EBus with Addresses and a Single Handler

Example Without Address Ordering

In the following example, messages broadcast with an ID arrive at each address in no particular order.

// One handler per address is supported.
static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Single;

// The EBus has multiple addresses. Addresses are not ordered.
static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::ById;

// Messages are addressed by EntityId.
using BusIdType = AZ::EntityId;

Example With Address Ordering

In the following example, messages broadcast with an ID arrive at each address in a specified order.

// One handler per address is supported.
static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Single;

// The EBus has multiple addresses. Addresses are ordered.
static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::ByIdAndOrdered;

// Messages are addressed by EntityId.

Version 1.8
421

Lumberyard Developer Guide
EBus with Addresses and Many Handlers

using BusIdType = AZ::EntityId;

// Addresses are ordered by EntityId.
using BusIdOrderCompare = AZStd::greater<BusIdType>;

EBus with Addresses and Many Handlers
In the previous configuration, only one handler is allowed per address. This is often desirable to enforce
ownership of an EBus for a specific ID, as in the singleton case above. However, if you want more than one
handler per address, you can configure the EBus accordingly:

Example: Without Address Ordering
In the following example, messages broadcast with an ID arrive at each address in no particular order. At
each address, the order in which handlers receive the message is defined by EBusHandlerPolicy, which in
this example is simply ById:

// Allow any number of handlers per address.
static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Multiple;

// The EBus has multiple addresses. Addresses are not ordered.
static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::ById;

// Messages are addressed by EntityId.

Version 1.8
422

Lumberyard Developer Guide
Synchronous vs. Asynchronous

using BusIdType = AZ::EntityId;

Example: With Address Ordering
In the following example, messages broadcast with an ID arrive at each address in a specified order. At
each address, the order in which handlers receive the message is defined by the EBusHandlerPolicy,
which in this example is ByIdAndOrdered.

// Allow any number of handlers per address.
static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Multiple;

// The EBus has multiple addresses. Addresses are ordered.
static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::ByIdAndOrdered;

// We address the bus EntityId.
using BusIdType = AZ::EntityId;

// Addresses are ordered by EntityId.
using BusIdOrderCompare = AZStd::greater<BusIdType>;

Synchronous vs. Asynchronous
EBus supports both synchronous and asynchronous (queued) messaging.

Synchronous Messaging

Synchronous messages are sent to any and all handlers when an EBus event is invoked. Synchronous
messages limit opportunities for asynchronous programming, but they offer the following benefits:

• They don't require storing a closure. Arguments are forwarded directly to callers.

• They let you retrieve an immediate result from a handler (event return value).

• They have no latency.

Asynchronous Messaging

Asynchronous messages have the following advantages:

• They create many more opportunities for parallelism and are much more future proof.

• They support queuing messages from any thread, dispatching them on a safe thread (like the main
thread, or any thread that you choose).

• The code used to write them is inherently tolerant to latency and is easily migrated to actor models and
other distributed platforms.

• The performance of the code that initiates events doesn't rely on the efficiency of the code that handles
the events.

• In performance-critical code, asynchronous messages can improve i-cache and d-cache performance
because they require fewer virtual function calls.

For information on declaring an EBus for queing and sending messages asynchronously, see
Asynchronous/Queued Buses (p. 428) later in this topic.

Additional Features
EBuses contain other features that address various patterns and use cases:

Version 1.8
423

Lumberyard Developer Guide
Usage and Examples

• Cache a pointer to which messages can be dispatched – This is handy for EBuses that have IDs.
Instead of looking up the EBus address by ID for each event, you can use the cached pointer for faster
dispatching.

• Queue any callable function on an EBus – When you use queued messaging, you can queue a
lambda or bound function against an EBus for execution on another thread. This is useful for general
purpose thread-safe queuing.

Usage and Examples
This section provides examples of how to declare and configure an EBus, implement a handler, send
messages, and receive return values.

Topics

• Declaring an EBus (p. 424)

• EBus Configuration Options (p. 425)

• Implementing a Handler (p. 426)

• Sending Messages to an EBus (p. 426)

• Retrieving Return Values (p. 427)

• Return Values from Multiple Handlers (p. 427)

• Asynchronous/Queued Buses (p. 428)

Declaring an EBus
Declaring an EBus is much like declaring any virtual interface class in C++. However, you can specify
various configuration options that control how the EBus is generated at compile time and how it behaves.

Here is a simple example of a basic interface and associated EBus.

class ExampleInterface : public AZ::EBusTraits
{
public:
 // ------------------ EBus Configuration -------------------
 // These override the defaults in EBusTraits.

 // One handler per address is supported.
 static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Single;

 // The EBus contains a single address.
 static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::Single;
 // ------------------------ Other -------------------------

 ~ExampleInterface() override { };

 // ------------------ Handler Interface -------------------
 // Handlers inherit from ExampleInterfaceBus::Handler

 // Handlers are required to implement this because it's pure virtual.
 virtual void DoSomething() = 0;

 // Handlers can override this, but are not required to.
 virtual void SomeMessage() { }

 // Returns a value and has a parameter.
 virtual bool ReturnsValue(int x) = 0;
};

Version 1.8
424

Lumberyard Developer Guide
EBus Configuration Options

using ExampleInterfaceBus = AZ::EBus<ExampleInterface>;

Tip

Use descriptive names in EBuses, and avoid overloaded functions. Explicit and descriptive function
names prevent future API name collisions when classes inherit your EBus interfaces. Avoiding overloaded
functions improves the experience of using your EBuses. This is especially true from scripting environments
such as Lua, in which descriptive names improve readability and clarity.

EBus Configuration Options
EBus configuration options are key to controlling how the EBus behaves. The configuration options used in
the previous example are explained in the following sections.

HandlerPolicy

The HandlerPolicy trait determines how many handlers connect to an address on the EBus and the
order in which handlers at each address receive events. The following example specifies a single
handler (p. 418):

// One handler per address is supported.
static const AZ::EBusHandlerPolicy HandlerPolicy = AZ::EBusHandlerPolicy::Single;

The HandlerPolicy has two common uses:

• A singleton pattern in which various systems post messages or requests to a single system elsewhere in
the codebase.

• A pattern where a specific component or an entity handles messages to the EBus. For example, you
might have a mesh component that owns an entity. The mesh component handles all mesh-related
queries addressed to the entity's ID.

Address Policy

The AddressPolicy trait defines how many addresses exist on the EBus. The following example specifes
only a single address. An ID is not required.

// The EBus contains a single address.
static const AZ::EBusAddressPolicy AddressPolicy = AZ::EBusAddressPolicy::Single;

Practical use cases for a single address policy include any global EBus that is not tied to a specific entity,
application-specific ID, or object.

EBusAddressPolicy Options

The EBusAddressPolicy has the following options:

• Single – The EBus uses a single address. No ID is used. The EBus can have a single handler (p. 418)
or many handlers (p. 419).

• ById – The EBus has multiple addresses. The order in which addresses are notified when broadcasting
events without an ID is not specified.

• ByIdAndOrdered – The EBus has multiple addresses. However, when broadcasting events without an ID,
we want to control the order in which individual addresses are notified. The BusIdOrderCompare definition
allows for arbitrary customization of ordering.

Version 1.8
425

Lumberyard Developer Guide
Implementing a Handler

EBusHandlerPolicy Options
The EBusHandlerPolicy has the following options:

• Single – One handler per address is supported. Uses include an EBus with a single handler (p. 418) or
an EBus with addresses and a single handler (p. 420).

• Multiple – Any number of handlers are supported. Ordering is ignored. Uses include many
handlers (p. 419) or an EBus with addresses and many handlers (p. 422).

• MultipleAndOrdered – Any number of handlers are supported, and handlers are notified in a particular
order. The BusHandlerOrderCompare definition allows for arbitrary customization of ordering.

Implementing a Handler
A handler of an EBus derives from AZ::EBus<x>::Handler. For convenience this was defined as
ExampleInterfaceBus in the previous example (p. 424). This means that the handler can be derived from
ExampleInterfaceBus::Handler.

#include "ExampleInterface.h"

// note: derives from bus handler, rather than directly from ExampleInterface
class MyHandler : protected ExampleInterfaceBus::Handler
{
public:
 void Activate();

protected:
 // Implement the handler interface:
 void DoSomething() override; // note: Override specified.
 void SomeMessage() override;
 bool ReturnsValue(int x) override;
};

Note that handlers are not automatically connected to an EBus, but are disconnected automatically
because the destructor of Handler calls BusDisconnect.

In order to actually connect to the EBus and start receiving events, your handler must call BusConnect():

void MyHandler::Activate()
{
 // For a single EBus, this would be just BusConnect().
 // For multiple EBuses, you must specify the EBus to connect to:
 ExampleInterfaceBus::Handler::BusConnect();
}

You can call BusConnect() at any time and from any thread.

If your EBus is addressed, connect to the EBus by passing the EBus ID to BusConnect(). To listen on all
addresses, call BusConnect() without passing in an ID.

// connect to the EBus at address 5.
ExampleAddressBus::Handler::BusConnect(5);

Sending Messages to an EBus
Anyone who can include the header can send messages to the EBus at any time. Using the previous
example, a completely unrelated class can issue a DoSomething call on the EBus:

Version 1.8
426

Lumberyard Developer Guide
Retrieving Return Values

ExampleInterfaceBus::Broadcast(&ExampleInterfaceBus::Events::DoSomething);

ExampleInterfaceBus::Broadcast(&ExampleInterfaceBus::Events::ReturnsValue, 5);

// Or with result:
bool result = false;
ExampleInterfaceBus::BroadcastResult(result, &ExampleInterfaceBus::Events::ReturnsValue,
 5);

EBuses also support a macro-based syntax. This syntax is being phased out, but uses of it can still be
found in Lumberyard source code. The macro syntax for the previous example is as follows.

#include "ExampleInterface.h"
// Note: You don't need to include MyHandler.h
...
EBUS_EVENT(ExampleInterfaceBus, DoSomething);

// Calls the EBus without reading the result, packs 5 as the first parameter.
EBUS_EVENT(ExampleInterfaceBus, ReturnsValue, 5);

If your EBus is addressed, you can send events to a specific address ID. Events broadcast globally are
received at all addresses.

// Broadcasts to ALL HANDLERS on this EBus regardless of address (even if the EBus has
 addresses)
ExampleAddressBus::Broadcast(&ExampleAddressBus::Events, Test);

// Broadcasts only to handlers connected to address 5.
ExampleAddressBus::Event(5, &ExampleAddressBus::Events::Test);

Retrieving Return Values
If you make a synchronous call, you can also supply a variable in which to place the result:

// ALWAYS INITIALIZE YOUR RESULT!!!
// Since there may be nobody connected to the EBus, your result may not be populated.
bool result = false;
ExampleInterfaceBus::BroadcastResult(result, &ExampleInterfaceBus::Events::ReturnsValue,
 2);

In this example, if there are no handlers connected to the EBus, the result variable is not modified. If
one or more handlers are connected to the EBus, operator=() is called on the result variable for each
handler.

Return Values from Multiple Handlers
In certain cases you might have to aggregate the return value of a function when there are multiple
handlers. For example, suppose you want to send a message to all handlers that asks whether any one
handler objects to shutting down an application. If any one handler returns true, you should abort the
shutdown. The following would not suffice:

// Counterexample: returnValue contains only the result of the final handler.
bool returnValue = false;
SomeInterfaceBus::BroadcastResult(returnValue,
 &SomeInterfaceBus::Events::DoesAnyoneObject);

Version 1.8
427

Lumberyard Developer Guide
Asynchronous/Queued Buses

Because the EBus issues operator= for each handler, returnValue would contain only the result of the
final handler.

Instead, you can create a class to collect your results that overrides operator=. There are several built-in
types for this, and you can make your own:

#include <AZCore/EBus/Results.h>

...
AZ::EBusAggregateResults<bool> results;
SomeInterfaceBus::BroadcastResult(results, &SomeInterfaceBus::Events::DoesAnyoneObject);

// results now contains a vector of all results from all handlers.

// alternative:
AZ::EBusLogicalResult<bool, AZStd::logical_or<bool>> response(false);
SomeInterfaceBus::BroadcastResult(response, &SomeInterfaceBus::Events::DoesAnyoneObject);

// response now contains each result, using a logical OR operation. So all responses are
 OR'd with each other.

Note
Additional building blocks (for example, arithmetic results) are available inside the results.h file.

Asynchronous/Queued Buses
To declare an EBus on which events can be queued and sent asynchronously, add the following to the
EBus declaration:

static const bool EnableEventQueue = true;

You can use QueueBroadcast and QueueEvent to enqueue events on an EBus so that you can flush them
later from a controlled location or thread.

To flush the queue at the appropriate location or thread, invoke the following:

ExampleInterfaceBus::ExecuteQueuedEvents();

Version 1.8
428

Lumberyard Developer Guide
CryPak File Archives

File Access

This section covers tools available for tracking and accessing game files.

This section includes the following topics:

• CryPak File Archives (p. 429)

• Tracking File Access (p. 437)

CryPak File Archives
The CryPak module enables you to store game content files in a compressed or uncompressed archive.

Features
• Compatible with the standard zip format.

• Supports storing files in an archive or in the standard file system.

• Data can be read in a synchronous and asynchronous way through IStreamCallback (max 4GB offset,
4GB files).

• Files can be stored in compressed or uncompressed form.

• Uncompressed files can be read partially if required.

• File name comparison is not case sensitive.

• Supports loading of .zip or .pak files up to 4GB in size.

Unicode and Absolute Path Handling
Internally, all path-handling code is ASCII-based; as such, no Unicode (16-bit characters for different
languages) functions can be used—this is to save memory and for simplicity. Because games can and
should be developed with ASCII path names, no real need for Unicode exists. Game productions that
don't follow these requirements have issues integrating other languages. For example, because a user
might install a game to a directory with Unicode characters, absolute path names are explicitly avoided
throughout the whole engine.

Layering
Usually the game content data is organized in several .pak files, which are located in the game directory.
When a file is requested for an opening operation, the CryPak system loops through all registered .pak

Version 1.8
429

Lumberyard Developer Guide
Slashes

files. .pak files are searched in order of creation. This allows patch .pak files, which have been added to
the build later, to be in a preferred position. It is also possible to mix .pak files with loose files, which are
stored directly in the file system (not in a .pak file). If a file exists as a loose file as well as in a .pak archive,
the loose file is preferred when the game is in devmode. However, to discourage cheating in the shipped
game, the file stored in the .pak is preferred over the loose file when the game is not run in devmode.

Slashes
Usually forward slashes (/) are used for internal processing, but users may enter paths that contain
backslashes.

Special Folder Handling
You can use the path alias %USER% to specify a path relative to the user folder. This might be needed to
store user-specific data. Windows can have restrictions on where the user can store files. For example, the
program folder might not be writable at all. For that reason, screenshots, game data, and other files should
be stored in the user folder. The following are examples of valid file names and paths:

%USER%/ProfilesSingle/Lisa.dat
game/Fred.dat

Internals
• A known implementation flaw exists where using more than approximately 1000 files per directory causes

problems.

• Format properties:

• The .zip file format stores each file with a small header that includes its path and filename in
uncompressed text form. For faster file access, a directory is listed at the end of the file. The directory
also stores the path and filename in uncompressed text form (redundant).

Creating a pak file using 7-Zip
To create a .pak file with 7-Zip's 7za.exe command line tool, use the following syntax:

7za a -tzip -r -mx0 PakFileName [file1 file2 file3 ...] [dir1 dir2 ...]

Dealing with Large Pak Files
The zip RFC specifies two types of .zip files, indicated by .zip format version 45. Old .zip files can
have a 4GB offset, but if legacy I/O functions are used, it is only possible to seek +- 2GB, which becomes
the practical limit. The 4GB offsets have nothing to do with native machine types and do not change size
across platforms and compilers, or configurations. The offsets for older versions of .zip files are in a
machine independent uint32; the offsets for the new version .zip files are in uint64, appended to the old
version structs. The version a .zip file uses is located in the header of the .zip file. Applications are free
to not support the newer version. For more information, see the .ZIP File Format Specification.

Manual splits are not necessary, as RC supports auto-splitting:

• zip_sizesplit – Split .zip files automatically when the maximum configured or supported compressed
size has been reached. The default limit is 2GB.

• zip_maxsize – Maximum compressed size of the .zip file in kilobytes (this gives an explicit limit).

Version 1.8
430

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

Lumberyard Developer Guide
Accessing Files with CryPak

Splitting works in all cases and supports multi-threading and incremental updates. It expands and shrinks
the chain of necessary zip-parts automatically. Sorting is honored as much as possible, even in face of
incremental modifications, but individual files can be appended to the end of the parts to fill in the leftover
space even if this violates the sort order.

For more information about zip files, see Zip File Format Reference by Phil Katz.

Accessing Files with CryPak
In this tutorial you will learn how file reading and writing works through CryPak. The tutorial teaches you
how to add new files to your project, read files from the file system and from pak archives, and write files to
the file system.

Topics

• Preparation (p. 431)

• Reading Files with CryPak (p. 432)

• Writing to File System Files With CryPak (p. 434)

• Modifying Paks With CryArchive (p. 435)

• CryPak Details (p. 436)

Preparation

This tutorial demonstrates two different methods of loading a file: from inside a .pak archive, and directly
from the file system. Before you can start, you need a file in a .pak archive, and a file with the same name
(but with different content) in the file system. To verify which file is loaded, the example makes use of the
content inside each text file.

To prepare sample files

1. Create a text file named ExampleText.txt.

2. Using a text editor, open ExampleText.txt and type in the following text:

3.
This sample was read from the .pak archive

4. Save the file.

5. Inside the GameSDK directory, create a subfolder called Examples.

6. Add the ExampleText.txt file to the Examples folder so that the path looks like this:

<root>\GameSDK\Examples\ExampleText.txt

7. Run the following command from the directory root\GameSDK:

..\Tools\7za.exe a -tzip -r -mx0 Examples.pak Examples

This command uses the executable file 7za.exe (located in the Tools folder) to create an archive
of the Examples folder called Examples.pak. Because you ran the command from the GameSDK
folder, the archive was saved to the GameSDK folder. The .pak file contains only the file Examples
\ExampleText.txt.

8. Using a text editor, change the text inside the <root>\GameSDK\Examples\ExampleText.txt file to
something different, for example:

This sample was read from the file system

Version 1.8
431

http://www.sxlist.com/techref/language/delphi/swag/ARCHIVES0022.html

Lumberyard Developer Guide
Accessing Files with CryPak

Now you have two different text files with the same destination path, except that one is stored directly in the
file system, and the other is inside the .pak file.

Reading Files with CryPak

Now you can write some code to read the information from the ExampleText.txt file that you created.

1. Type the following, which contains the if-else statement that frames the code. The
ReadFromExampleFile() function will read the contents of the file and return true if it succeeds, and
false if not.

 char* fileContent = NULL;
 if (!ReadFromExampleFile(&fileContent))
 {
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "ReadFromExampleFile()
 failed");
 }
 else
 {
 CryLogAlways("ExampleText contains %s", fileContent);
 [...] // this line will be added later on
 }

If ReadFromExampleFile() is successful in reading ExampleText.txt, fileContent will be the space in
memory that contains the text that it read.

2. Type the following, which stubs out the ReadFromExampleFile() function.

bool ReadFromExampleFile(char** fileContent)
{
 CCryFile file;
 size_t fileSize = 0;
 const char* filename = "examples/exampletext.txt";

 [...]
}

• file of type CCryFile can make use of CryPak to access files directly from the file system or from
inside a .pak archive.

• fileSize - Defines the end of the message. In this case, reading does not end by detecting the null
character '\0'.

• filename - Specifies the path of the file to be loaded and is case-insensitive.

3. Type the following, which uses CryPak to search the file.

 char str[1024];
 if (!file.Open(filename, "r"))
 {
 sprintf(str, "Can't open file, (%s)", filename);
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "%s", str);
 return false;
 }

• Open() invokes CryPak to search the file specified by filename.

• File access mode "r" specifies that a plain text file is going to be read. To read a binary file, use
"rb" instead.

4. Type the following, which gets the length of the file. If the file is not empty, it the allocates the memory
required as indicated by the file length. It then reads the file content. It aborts if the size of the content
is not equal to the file length.

Version 1.8
432

Lumberyard Developer Guide
Accessing Files with CryPak

 fileSize = file.GetLength();
 if (fileSize <= 0)
 {
 sprintf(str, "File is empty, (%s)", filename);
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "%s", str);
 return false;
 }

 char* content = new char[fileSize + 1];
 content[fileSize] = '\0';

 if (file.ReadRaw(content, fileSize) != fileSize)
 {
 delete[] content;
 sprintf(str, "Can't read file, (%s)", filename);
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "%s", str);
 return false;
 }

• content is the local pointer to a char array in memory which gets initialized by the length returned by
GetLength() and an extra null character.

• ReadRaw fills content with the information read from the text file. In case of a failure, the allocated
memory of content is freed.

5. Type the following, which closes the file handle and sets the the fileContent pointer so that the
locally created data can be used outside the function. Finally, it returns true since the reading was
successful.

 file.Close();

 *fileContent = content;
 return true;

Note
In the example, the caller of ReadFromExampleFile() is responsible for freeing the heap
memory which has been allocated to store the data from the text file. Thus, after the data has
been used, be sure to add the call delete[] fileContent;.

6. To check if the reading was successful, run the game and check the Game.log file.

Complete example code (file reading)

Calling ReadFromExampleFile()

 char* fileContent = NULL;
 if (!ReadFromExampleFile(&fileContent))
 {
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "ReadFromExampleFile()
 failed");
 }
 else
 {
 CryLogAlways("ExampleText contains %s", fileContent);
 delete[] fileContent;
 }

ReadFromExampleFile() implementation

bool ReadFromExampleFile(char** fileContent)

Version 1.8
433

Lumberyard Developer Guide
Accessing Files with CryPak

{
 CCryFile file;
 size_t fileSize = 0;
 const char* filename = "examples/exampletext.txt";

 char str[1024];
 if (!file.Open(filename, "r"))
 {
 sprintf(str, "Can't open file, (%s)", filename);
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "%s", str);
 return false;
 }

 fileSize = file.GetLength();
 if (fileSize <= 0)
 {
 sprintf(str, "File is empty, (%s)", filename);
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "%s", str);
 return false;
 }

 char* content = new char[fileSize + 1];
 content[fileSize] = '\0';

 if (file.ReadRaw(content, fileSize) != fileSize)
 {
 delete[] content;
 sprintf(str, "Can't read file, (%s)", filename);
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "%s", str);
 return false;
 }

 file.Close();

 *fileContent = content;
 return true;
 }

Writing to File System Files With CryPak

Writing a file is similar to the process for reading one. To write to files, you use CCryFile::Write, which
always writes to the file system and never to .pak archives. For information on writing files to archive files,
see Modifying Paks With CryArchive (p. 435).

1. Type the following, which contains the if-else statement that frames the code for writing to a file. The
WriteToExampleFile() function write will write the contents of the file and return true if it succeeds,
and false if not.

 char* newContent = "File has been modified";
 bool appendToFile = false;
 if (!WriteToExampleFile(newContent, strlen(newContent), appendToFile))
 {
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "WriteToExampleFile()
 failed");
 }
 else
 {
 CryLogAlways("Text has been written to file, %s", newContent);
 }

• WriteToExampleFile() takes the following three parameters:

• newContent - The text which will be written to ExampleText.txt on the file system.

Version 1.8
434

Lumberyard Developer Guide
Accessing Files with CryPak

• strlen(newContent) - Returns size of newContent, which is the number of bytes to be written.

• appendToFile - true if newContent will be added to the already existing content; false if the file
will be overwritten.

2. Type the following for the WriteToExampleFile) function.

bool WriteToExampleFile(char* text, int bytes, bool appendToFile)
{
 CCryFile file;
 const char* filename = "examples/exampletext.txt";

 assert(bytes > 0);
 char* mode = NULL;
 if (appendToFile)
 mode = "a";
 else
 mode = "w";

 char str[1024];
 if (!file.Open(filename, mode))
 {
 sprintf(str, "Can't open file, (%s)", filename);
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "%s", str);
 return false;
 }

 [...]

 file.Close();
 return true;
}

• mode specifies if the text is to be appended to the existing file or if it will overwrite existing file
contents. "w" means 'write' to a clean file, and "a" means 'append' to the existing file.

3. The final step writes the text to the file and returns the number of bytes written, or an error message if
none were written.

 int bytesWritten = file.Write(text, bytes);
 assert(bytesWritten == bytes);

 if (bytesWritten == 0)
 {
 sprintf(str, "Can't write to file, (%s)", filename);
 CryWarning(VALIDATOR_MODULE_SYSTEM, VALIDATOR_WARNING, "%s", str);
 return false;
 }

• bytesWritten tells how many bytes were written by calling the Write() function.

Modifying Paks With CryArchive

This section contains a short example that shows how files are added, updated and removed from an
archive. The example intentionally uses the USER folder instead of the GameSDK folder because the .pak files
inside the GameSDK folder are loaded by default at startup and therefore are marked as Read-Only. (Files in
the USER folder are not loaded by default at startup.)

 string pakFilename = PathUtil::AddSlash("%USER%") + "Examples.pak";
 const char* filename = "Examples/ExampleText.txt";
 char* text = "File has been modified by CryArchive";

Version 1.8
435

Lumberyard Developer Guide
Accessing Files with CryPak

 unsigned length = strlen(text);

 _smart_ptr<ICryArchive> pCryArchive = gEnv->pCryPak->OpenArchive(pakFilename.c_str(),
 ICryArchive::FLAGS_RELATIVE_PATHS_ONLY | ICryArchive::FLAGS_CREATE_NEW);
 if (pCryArchive)
 {
 pCryArchive->UpdateFile(filename, text, length, ICryArchive::METHOD_STORE, 0);
 }

• UpdateFile() - Modifies an existing file inside the .pak archive or creates a new one if it does not exist.

• ICryArchive::FLAGS_CREATE_NEW - Forces a new .pak file to be created. If you want to add (append)
files, remove this flag.

• To remove files or folders from an archive, use one of the following commands in place of UpdateFile():
RemoveFile(), RemoveDir() or RemoveAll().

CryPak Details

Initialization

To ensure that .pak files can be accessed from game code at anytime, the CrySystem module initializes
CryPak in CSystem::Init by calling the following functions:

• InitFileSystem(startupParams.pGameStartup);

• InitFileSystem_LoadEngineFolders();

Tip
A good spot to test game initialization is in inside Game.cpp at the beginning of CGame::Init.

Pak file type priorities

Whether CryPak processes files in the file system first, or files in .pak files first, depends on the value of
pakPriority. The default value of pakPriority depends on the configuration settings of your build, but
it can also manually be changed by assigning the cvar sys_PakPriority the values 0, 1, 2 or 3. The
meaning of these values is show in the enum EPakPriority:

PakVars.h

enum EPakPriority
{
 ePakPriorityFileFirst = 0,
 ePakPriorityPakFirst = 1,
 ePakPriorityPakOnly = 2,
 ePakPriorityFileFirstModsOnly = 3,
};

Pak loading and search priorities

The reason for adding the new pak file to the GameSDK folder in this example is because .pak files are
loaded from the GameSDK path first. The loading order and search order of .pak file folders are as follows.
Note that the loading order and the search order are the reverse of each other.

.pak file load order

1. GameSDK: <root>\GameSDK*.pak

2. Engine: <root>\Engine\

a. Engine.pak

Version 1.8
436

Lumberyard Developer Guide
Tracking File Access

b. ShaderCache.pak

c. ShaderCacheStartup.pak

d. Shaders.pak

e. ShadersBin.pak

3. Mods: root\Mods\MyMod\GameSDK*.pak (this assumes that you run the game with the command
argument -mod "MyMod")

.pak file search order

1. Mods If more than one mod folder exists, they will be checked in the reverse order in which they were
added.

2. Engine

3. GameSDK

Tracking File Access
It's possible to track invalid file reads that occur during game run time. The error message Invalid File
Access occurs when an attempt is made to read or open open files from a thread that is not the streaming
thread. These file access operations can cause stalls that can be quite severe.

Note
Only access attempts from the main thread and render thread are logged. This feature is disabled
in RELEASE builds.

CVars
The following cvars enable different options for tracking file access.

sys_PakLogInvalidFileAccess

1 (default):

• Access is logged to game.log.

• Generates a perfHUD warning.

• The warning is displayed in red in the upper left corner of the screen.

• A 3 second-stall in non-release builds is induced.

sys_PakMessageInvalidFileAccess

• When a file is accessed, creates a popup dialog on the PC. At this point, you can choose to break into
the debugger, or continue.

Where invalid access is defined
The points which define when a file access attempt is considered invalid are set by implementing
ICryPak::DisableRuntimeFileAccess to return true or false. The points may need to be tweaked for single
player and multiplayer games.

Exceptions
To add exceptions to file access tracking so that you can ignore files like game.log, create an instance of
CDebugAllowFileAccess in the scope which accesses the file.

Version 1.8
437

Lumberyard Developer Guide
Where invalid access is defined

Resolving file access callstacks

The files that you collect with pak_LogInvalidFileAccess 2 must have their callstacks resolved. To do this
requires the following tools from the XenonStackParse folder of the Tools directory.:

• The .pdb files from the build

• The XenonStackParse tool

• The ProcessFileAccess.py helper script

The directory structure for running ProcessFileAccess.py should resemble the following:

<Root>
--> XenonStackParse
--> FileAccessLogs (this folder should contain the .pdb files)
------> Processed (this folder contains the output from XenonStackParse)

Run ProcessFileAccess.py from the FileAccessLogs directory (XenonStackParse uses the working
directory to search for the .pdb files). The script creates a folder called Processed and a file within it that
contains the resolved callstack for each of the log files.

Version 1.8
438

Lumberyard Developer Guide
Render Nodes

Graphics and Rendering

Lumberyard's rendering technology starts with a modern, physically-based shading core that renders
materials based on real world physical parameters (such as base color, metalicity, smoothness, and
specularity), allowing you to achieve realistic results using the same physically based parameters used in
the highest end film rendering pipelines.

The rendering core is supplemented by a rich set of the most frequently used real time lighting, shading,
special effects, and post effects features, such as physical lights, global illumination, volumetric fog,
procedural weathering, particle systems, dynamic real time shadows, motion blur, bokeh depth of field, post
color correction, and more.

Lumberyard's rendering engine is tightly integrated with Lumberyard Editor, so the graphical fidelity and
performance achieved in your game is what you see in the editor. Changes made in the editor are instantly
reflected in the fully rendered scene, allowing for immediate feedback and rapid iteration.

The Lumberyard rendering technology is designed to take maximum advantage of today's high-end PC and
console platforms, while maintaining compatibility with older hardware by scaling down graphical features
and fidelity without compromising the core visual elements of your scene.

This section includes the following topics:

• Render Nodes (p. 439)

• TrueType Font Rendering (p. 443)

• Generating Stars DAT File (p. 444)

• Anti-Aliasing and Supersampling (p. 445)

Render Nodes
To visualize objects in a world, Lumberyard defines the concepts of the render node and render element.
Render nodes represent general objects in the 3D engine. Among other things, they are used to build a
hierarchy for visibility culling, allow physics interactions (optional), and rendering.

For actual rendering, render nodes add themselves to the renderer, passing an appropriate render element
that implements the actual drawing of the object. This process happens with the help of render objects, as
shown in the sample code below

Version 1.8
439

https://en.wikipedia.org/wiki/Bokeh

Lumberyard Developer Guide
Creating a New Render Node

Creating a New Render Node
The following example creates a render node called PrismObject. It is derived from IRenderNode, defined
in Code/CryEngine/CryCommon/IEntityRenderState.h.

1. Add the interface for IPrismObjectRenderNode to CryEngine/CryCommon/IEntityRenderState.h to
make it publicly available.

struct IPrismRenderNode : public IRenderNode
{
 ...
};

2. Add a new enum to the list of already defined render nodes in CryEngine/CryCommon/
IEntityRenderState.h.

enum EERType
{
 ...
 eERType_PrismObject,
 ...
};

3. Add PrismObjectRenderNode.h to Cry3DEngine.

#ifndef _PRISM_RENDERNODE_
#define _PRISM_RENDERNODE_

#pragma once

class CPrismRenderNode : public IPrismRenderNode, public Cry3DEngineBase
{
public:
 // interface IPrismRenderNode
 ...

 // interface IRenderNode
 virtual void SetMatrix(const Matrix34& mat);
 virtual EERType GetRenderNodeType();
 virtual const char* GetEntityClassName() const { return "PrismObject"; }
 virtual const char* GetName() const;
 virtual Vec3 GetPos(bool bWorldOnly = true) const;
 virtual bool Render(const SRendParams &rParam);
 virtual IPhysicalEntity* GetPhysics() const { return 0; }
 virtual void SetPhysics(IPhysicalEntity*) {}
 virtual void SetMaterial(IMaterial* pMat) { m_pMaterial = pMat; }
 virtual IMaterial* GetMaterial(Vec3* pHitPos = 0) { return m_pMaterial; }
 virtual float GetMaxViewDist();
 virtual void GetMemoryUsage(ICrySizer* pSizer);
 virtual const AABB GetBBox() const { return m_WSBBox; }
 virtual void SetBBox(const AABB& WSBBox) { m_WSBBox = WSBBox; }

private:
 CPrismRenderNode();

private:
 ~CPrismRenderNode();

 AABB m_WSBBox;
 Matrix34 m_mat;
 _smart_ptr< IMaterial > m_pMaterial;
 CREPrismObject* m_pRE;

Version 1.8
440

Lumberyard Developer Guide
Creating a New Render Node

};

#endif // #ifndef _PRISM_RENDERNODE_

4. Add PrismObjectRenderNode.cpp to Cry3DEngine.

#include "StdAfx.h"
#include "PrismRenderNode.h"

CPrismRenderNode::CPrismRenderNode() :m_pMaterial(0)
{
 m_mat.SetIdentity();
 m_WSBBox = AABB(Vec3(-1, -1, -1), Vec3(1, 1, 1));
 m_pRE = (CREPrismObject*) GetRenderer()->EF_CreateRE(eDATA_PrismObject);
 m_dwRndFlags |= ERF_CASTSHADOWMAPS | ERF_HAS_CASTSHADOWMAPS;
}

CPrismRenderNode::~CPrismRenderNode()
{
 if (m_pRE)
 m_pRE->Release(false);

 Get3DEngine()->FreeRenderNodeState(this);
}

void CPrismRenderNode::SetMatrix(const Matrix34& mat)
{
 m_mat = mat;
 m_WSBBox.SetTransformedAABB(mat, AABB(Vec3(-1, -1, -1), Vec3(1, 1, 1)));
 Get3DEngine()->RegisterEntity(this);
}

const char* CPrismRenderNode::GetName() const
{
 return "PrismObject";
}

void CPrismRenderNode::Render(const SRendParams& rParam, const SRenderingPassInfo
 &passInfo)
{
 FUNCTION_PROFILER_3DENGINE;

 if(!m_pMaterial)
 return;

 // create temp render node to submit this prism object to the renderer
 CRenderObject *pRO = GetRenderer()-
>EF_GetObject_Temp(passInfo.ThreadID()); // pointer could be cached

 if(pRO)
 {
 // set basic render object properties
 pRO->m_II.m_Matrix = m_mat;
 pRO->m_ObjFlags |= FOB_TRANS_MASK;
 pRO->m_fSort = 0;
 pRO->m_fDistance = rParam.fDistance;

 // transform camera into object space
 const CCamera& cam(passInfo.GetCamera());
 Vec3 viewerPosWS(cam.GetPosition());

 // set render object properties
 m_pRE->m_center = m_mat.GetTranslation();

Version 1.8
441

Lumberyard Developer Guide
Creating a New Render Node

 SShaderItem& shaderItem(m_pMaterial->GetShaderItem(0));

 GetRenderer()->EF_AddEf(m_pRE, shaderItem, pRO,
 passInfo, EFSLIST_GENERAL, 0, SRendItemSorter(rParam.rendItemSorter));
 }
}

void CPrismRenderNode::GetMemoryUsage(ICrySizer* pSizer) const
{
 SIZER_COMPONENT_NAME(pSizer, "PrismRenderNode");
 pSizer->AddObject(this, sizeof(*this));
}

void CPrismRenderNode::OffsetPosition(const Vec3& delta)
{
 if (m_pRNTmpData) m_pRNTmpData->OffsetPosition(delta);
 m_WSBBox.Move(delta);
 m_mat.SetTranslation(m_mat.GetTranslation() + delta);
 if (m_pRE) m_pRE->m_center += delta;
}

void CPrismRenderNode::FillBBox(AABB & aabb)
{
 aabb = CPrismRenderNode::GetBBox();
}

EERType CPrismRenderNode::GetRenderNodeType()
{
 return eERType_PrismObject;
}

float CPrismRenderNode::GetMaxViewDist()
{
 return 1000.0f;
}

Vec3 CPrismRenderNode::GetPos(bool bWorldOnly) const
{
 return m_mat.GetTranslation();
}

IMaterial* CPrismRenderNode::GetMaterial(Vec3* pHitPos)
{
 return m_pMaterial;
}

5. To allow client code to create an instance of the new render node, extend the following function in /
Code/CryEngine/Cry3DEngine/3DEngine.cpp

...
#include "PrismRenderNode.h"
...
IRenderNode * C3DEngine::CreateRenderNode(EERType type)
{
 switch (type)
 {
 ...
 case eERType_PrismObject:
 {
 IPrismRenderNode* pRenderNode = new CPrismRenderNode();
 return pRenderNode;
 }
 ...

Version 1.8
442

Lumberyard Developer Guide
TrueType Font Rendering

TrueType Font Rendering
CryFont is used to generate font textures that are required to render text on the screen. The various
features of font rendering can be seen by using the r_DebugFontRendering console variable.

The output is not only to test the functionality but also to document how the features can be used.

Supported Features
CryFont supports the following features:

• Font shaders – Used to configure the appearance of fonts. Multiple passes with configurable offset and
color are supported to enable generation of shadows or outlines. A sample font shader is shown in the
following XML example.

<fontshader>

 <effect name="default">
 <pass>
 <color r="0" g="0" b="0" a="1"/>
 <pos x="1" y="1"/>
 </pass>
 </effect>
 <effect name="console">
 <pass>
 <color r="0" g="0" b="0" a="0.5"/>
 <pos x="2" y="2"/>
 </pass>
 </effect>
</fontshader>

The attributes w and h of the XML font element specify the width and height of the font texture. The order
of the passes in XML defines the order in which the passes are rendered. A <pass> element without child
elements means that the pass is rendered with the default settings. The <pos> tag is used to offset the
font, while the <color> tag is used to set font color and define the transparency (with the alpha channel
a).

• Unicode – The default font used does not support all Unicode characters (to save memory), but other
fonts can be used.

• TrueType fonts as source – Cached in a small texture. Common characters are pre-cached, but runtime
updates are possible and supported.

• Colored text rendering

• Adjustable transparency

• Color variations within a string – Use a value of $0..9 to set one of the 10 available colors. Use $$ to
print the $ symbol, and $o to switch off the feature.

• Returns and tabs within a string

• Text alignment

• Computation of a string's width and height – Used internally to handle center and right alignment.

• Font size variations – Bilinear filtering allows some blurring, but no mipmaps are used so this feature has
limitations in minification.

• Proportional and monospace fonts

• Pixel-perfect rendering with exact texel-to-pixel mapping for best quality.

Version 1.8
443

Lumberyard Developer Guide
Useful Console Commands

Useful Console Commands
The following console commands provide information about font rendering.

r_DebugFontRendering

Provides information on various font rendering features, useful for verifying function and documenting
usage.

• 0=off

• 1=display

r_DumpFontNames

Logs a list of fonts currently loaded.

r_DumpFontTexture

Dumps the texture of a specified font to a bitmap file. You can use r_DumpFontTexture to get the
loaded font names.

Generating Stars DAT File
The Stars DAT file contains star data that is used in sky rendering. This topic provides information you'll
need if you want to modify the data in this file. It assumes you have some familiarity with generating binary
files.

Star data is located in Build\Engine\EngineAssets\Sky\stars.dat. This data is loaded in the function
CStars::LoadData, implemented in the file CRESky.cpp.

File Format
The Stars DAT file uses a simple binary format; it can be easily modified using an editing tool. The file
starts with a header, followed by entries for each star. The header specifies the number of entries in the file.

All types stored in little-endian format, float32 in IEEE-754 format.

Star data provided in the SDK is based on real-world information. Typically, you can also use existing star
catalogs to populate this information for you.

The file elements are as follows:

Header (12 bytes)

Name Offset Type Value

Tag 0 uint32 0x52415453 (ASCII: STAR)

Version 4 uint32 0x00010001

NumStars 8 uint32 Number of star entries in the file

Entry (12 bytes)

Name Offset Type Value

RightAscension 0 float32 in radians

Version 1.8
444

Lumberyard Developer Guide
Anti-Aliasing and Supersampling

Name Offset Type Value

Declination 4 float32 in radians

Red 8 uint8 star color, red channel

Green 9 uint8 star color, green channel

Blue 10 uint8 star color, blue channel

Magnitude 11 uint8 brightness, normalized range

Anti-Aliasing and Supersampling
Perceived graphics quality in a game is highly dependent on having clean and stable images. Lumberyard
offers an efficient, post-processing-based, anti-aliasing solution that can be controlled in the Console using
the console variable r_AntialiasingMode. This solution allows game developers to set the amount of anti-
aliasing needed to produce graphics that fit their needs, from very sharp images to softer blurred images.
Lumberyard also supports supersampling for very high-quality rendering.

Controlling Anti-Aliasing
The following table lists the currently available anti-aliasing modes available in Lumberyard using the CVar
r_AntialiasingMode.

Mode CVar Value Description

No anti-aliasing 0 Disables post-processing-based anti-aliasing. Useful for
debugging. Some game developers opt to use a higher
resolution rather than spending system resources on anti-
aliasing.

SMAA_Low (1X) 1 Enables sub-pixel morphological anti-aliasing (SMAA), which
removes jaggies (staircase artifacts) on polygon edges. This
mode does not address sub pixel details.

SMAA_Med (1TX) 2 Enables SMAA with basic temporal re-projection to reduce
pixel crawling.

SMAA_High (2TX) 3 Enables SMAA with enhanced temporal re-projection,
including matrix jittering. This mode usually provides the
best image quality but can suffer from occasionally flickering
edges.

The images below illustrate the range of graphics quality that can be achieved depending on the anti-alias
setting used.

Version 1.8
445

Lumberyard Developer Guide
Controlling Anti-Aliasing

Version 1.8
446

Lumberyard Developer Guide
Controlling Supersampling

Controlling Supersampling
In addition to anti-aliasing, Lumberyard supports supersampling for very-high-quality rendering.
Supersampling renders the scene at a higher resolution and downscales the image to obtain smooth and
stable edges. Due to the high internal rendering resolution, supersampling is very performance-heavy and
only suitable for games intended to be played on high-end PCs.

Version 1.8
447

Lumberyard Developer Guide
Working with Lua Scripting

Lua Scripting

This section provides reference information and help with Lua scripting in Amazon Lumberyard. It also
covers how to use tools including the Lua Editor, Lua Remote Debugger and XML loader.

Topics

• Working with Lua Scripting (p. 448)

• Component Entity Lua Scripting Reference (p. 457)

• Legacy Lua Scripting Reference (p. 529)

Working with Lua Scripting
Lumberyard uses Lua for its scripting language.

The Entity system can attach a script proxy to any entity, which is in the form of a table that can include
data and functions. AI behaviors are often written in scripts. Additionally, several game systems, including
Actor, Item, Vehicle, and GameRules, rely on scripting to extend their functionality.

The advantages of using scripts include:

• Fast iteration – Scripts can be reloaded within the engine.

• Runtime performance – Careful usage of available resources can result into scripts that run nearly as fast
as compiled code.

• Easy troubleshooting – An embedded Lua debugger can be invoked at any time.

Most of the systems in Lumberyard expose ScriptBind functions, which allow Lua scripts to call existing
code written in C++. See the Lua ScriptBind Reference (p. 551)for more details.

Running Scripts
You can run scripts either by calling script files directly from code or by using console commands.

In code

Scripts are stored in the \Game\Scripts directory. To invoke a script file, call the LoadScript function from
your C++ code. For more information, see Integrating Lua and C++ (p. 752). Another option is to create a
script entity, as described in Entity Scripting (p. 408).

In the Console

Version 1.8
448

Lumberyard Developer Guide
Reloading Scripts During Runtime

Script instructions can be executed using the in-game console. This can be done by appending the #
character before the instructions. This functionality is limited to Lumberyard Editor or when running the
launcher in dev mode (using the -DEVMODE command-line argument).

Reloading Scripts During Runtime
In Lumberyard Editor it is always possible to reload entities within the user interface. When reloading a
script entity, choose the Reload Script button, which is found in the Rollup Bar.

You can also use the following ScriptBind functions to reload scripts.

• Script.ReloadScript(filename)

• Script.ReloadScripts()

To invoke these functions from the console, use the following syntax:

#Script.ReloadScript("Scripts\\EntityCommon.lua")

Recommended Reading
The following resources on the Lua language are recommended reading when working with scripts with
Lumberyard.

• Lua 5.1 Reference Manual

• Programming in Lua, Third Edition

• Other books

Topics

• Lua Editor (p. 449)

• Using the Lua Remote Debugger (p. 453)

• Using the Lua XML Loader (p. 454)

Lua Editor
Lua Editor is in preview release and is subject to change.

Lumberyard Lua Editor offers an intuitive integrated development environment (IDE) that makes it easy
to author, debug, and edit Lua scripts when you create or extend your game. Lua Editor is a standalone
application, but can be opened directly from Lumberyard Editor.

Tutorial: Using Lua Editor for Debugging with Lumberyard Editor
This tutorial shows you how to use Lumberyard Editor to create a sample level with a component entity that
contains a Lua script component. You open the script in Lua Editor from Lumberyard Editor and perform
some sample debugging steps on the script.

To use Lua Editor for debugging

1. In Lumberyard Editor, create a new level by performing one of the following steps:

• In the Welcome to Lumberyard Editor window, click New level

Version 1.8
449

http://www.lua.org/manual/5.1/
http://www.lua.org/pil/
http://www.lua.org/docs.html

Lumberyard Developer Guide
Lua Editor

• Click File, New

• Press Ctrl+N

2. In the New Level dialog box, give the level a name, and then click OK.

3. In the Generate Terrain Texture dialog box, click OK to accept the defaults.

4. Right-click the Lumberyard Editor viewport and select Create Component Entity.

5. In Entity Inspector, click Add Component, and then choose Rendering, Light.

6. In Entity Inspector, click Add Component, and then choose Scripting, Lua Script.

7. Scroll down to the bottom of the Entity Inspector window and, in the Lua Script section, click ... to
open the Preview window.

8. In the Preview window, navigate to Scripts, components.

9. Select lightflicker.lua, and then click Open. (Note: additional sample scripts are located in the
Lumberyard directory \dev\SamplesProject\Scripts.)

10. In Entity Inspector, in the Lua Script section, click the empty braces { } to launch Lua Editor.

Because the debugging functionality is enabled through network sockets, you must connect Lua Editor
to the target that is running the script before you can debug. In this tutorial, you connect to Lumberyard
Editor.

Note
Connection is facilitated by GridHub (p. 839), which is Lumberyard's central connection hub
for debugging. GridHub starts automatically when Lua Editor is started and must be running in
the background for Lua Editor to find targets it can connect to. If for some reason you need to
start it manually, you can launch it from \dev\Bin64\LuaIDE.exe.

11. In the Lua Editor toolbar, click Target: None, and then click Editor(ID) to connect to Lumberyard
Editor.

12. In the Lua Editor toolbar, leave Context setting at Default for the debugging context. The default
setting is good for debugging component entity scripts such as the one in this tutorial. The Cry option
is for debugging legacy scripts such as those associated with Cry entities or the Game SDK.

13. Click the attach/detach icon.

14. Press Alt+Tab to change focus to Lumberyard Editor, and then press Alt+Tab again to return to Lua
Editor.

Note
This Alt+Tab step is a temporary solution for an issue that will be fixed in a subsequent
release of Lua Editor.

When the focus changes to Lumberyard Editor, the attach/detach icon turns green to show that Lua
Editor and Lumberyard Editor are connected:

The Class Reference window now shows information about the available Lua libraries.

Note
The class reference feature is active only for the default context and component entity scripts.
This feature is not active in the Cry context, which exists only for backward compatibility.

After you connect, you can pause the execution of a given script by setting breakpoints.

15.
In the Lua Editor toolbar, click the Breakpoints icon to show the Breakpoints window.

16. In Lua Editor, single-click or double-click one or more line numbers in the lightflicker.lua script
to set one or more breakpoints. As you add breakpoints, the line number and script path for each are
added to the Breakpoints window.

17. In Lumberyard Editor, press Ctrl+G to run the game, or click AI/Physics at the bottom of the viewport
to enable game simulation and run scripts. Lua Editor opens with a yellow marker stopped on the first
breakpoint that it encounters.

Version 1.8
450

Lumberyard Developer Guide
Lua Editor

When execution is halted at a breakpoint, more information becomes available in the Lua Locals,
Stack, and Watched Variables panes.

18.
Click the Stack icon to show the Stack window.

19.
Click the Lua Locals icon to show local Lua variables.

20.
Click Watched Variables icon to open the Watched Variables window, where you can specify
variables to watch.

21. Press F11 a few times to step through the code. Note how the contents of the Stack, Lua Locals, and
Watched Variables windows change.

Tip
For greater convenience, you can float or dock these windows.

22. To detach from debugging, click the attach/detach icon.

23. In Lumberyard Editor, Press Esc to stop the game.

Options Available While Debugging

The following table summarizes common options available while debugging.

Icon Action Keyboard Shortcut Description

Run in Editor Alt+F5 Run in Lumberyard Editor.

Run on Target Ctrl+F5 Send script to the connected target and
run it.

Run/Continue F5 Run or continue running the current
script.

Step Into F11 Step into the function called on the
current line.

Step Out Shift+F11 Step out of the called function.

Step Over F10 Step over the function called on the
current line.

Toggle Breakpoint F9 Enable or disable a breakpoint on the
current line.

Maintaining Separate Search Results

In addition to the usual search capabilities, the Find feature can display the results of four different
searches separately.

To maintain separate search results

1.
Click the Find icon or press Ctrl+F to perform searches in the currently open file, or in all open
files.

Version 1.8
451

Lumberyard Developer Guide
Lua Editor

2. Before starting a search, choose Find 1, Find 2, Find 3, or Find 4 to choose the the window in which
you want to see the results. You can maintain the results of four searches separately in the tabbed
windows. The search results in the other windows remain unchanged.

3. To go directly to the line in the code which a search result was found, double-click the line in the
search results.

Note
In Lua Editor Preview, the line number shown in the Find Results window and the line
number in the script pane differ by one.

Tip
For convenience, you can also dock or float the Find Results window.

Editing

Lua Editor can open multiple scripts at the same time. Each script has its own tab in the editor. The editor
provides a standard set of capabilities for text editing but also includes useful features for editing source
code.

The following table summarizes the options available while editing and debugging.

Action Keyboard Shortcut

Comment selected block Ctrl+K

Copy Ctrl+C

Cut Ctrl+X

Find Ctrl+F

Find in open files Ctrl+Shift+F

Find next F3

Fold source functions Alt+0

Go to line Ctrl+G

Paste Ctrl+V

Quick find local Ctrl+F3

Quick find local reverse Ctrl+Shift+F3

Redo Ctrl+Y

Replace Ctrl+R

Replace in open files Ctrl+Shift+R

Select all Ctrl+A

Select to brace¹ Ctrl+Shift+]

Transpose lines down Ctrl+Shift+Down Arrow

Transpose lines up Ctrl+Shift+Up Arrow

Uncomment selected block Ctrl+Shift+K

Version 1.8
452

Lumberyard Developer Guide
Using the Lua Remote Debugger

Action Keyboard Shortcut

Undo Ctrl+Z

Unfold source functions Alt+Shift+0

Perforce Integration
Lua Editor includes Perforce integration features. When you open a file from your Perforce environment,
Lua Editor displays the file's status in the top right of the text editing window.

The Source Control menu offers Check Out/Check In functionality.

Using the Lua Remote Debugger
Lumberyard includes a standalone visual script debugger for Lua. To start the debugger, you first enable it
in the console, and then run the LuaRemoteDebugger.exe executable file.

1. In the Lumberyard Editor console or game console, type lua_debugger 1 or lua_debugger 2. This
enables enable debugging in one of the following two modes:

• Mode 1 – The debugger breaks on both breakpoints and script errors.

• Mode 2 – The debugger breaks only on script errors.

2. Run the Lua remote debugger executable file at the Lumberyard directory location \dev\Tools
\LuaRemoteDebugger\LuaRemoteDebugger.exe.

3. In the Lua remote debugger, on the File menu, choose Connect.

4. If you are running the game in the editor (you pressed Ctrl-G) and want to debug your scripts, choose
PC (Editor). If you want to attach the debugger to the built game executable, choose PC (Game).

For IP address and Port, type the IP address and port of the computer to which you want to connect.
The default options connect to the game on your local computer. The default IP address is 127.0.01
(localhost). For PC (Editor), the default port is 9433. For PC (Game), the default port is 9432.

5. Choose Connect. In Lumberyard Editor, the console window displays Lua remote debug client
connected.

The first time you run Lua remote debugger, it prompts you for the scripts folder:

The default folder is the Scripts folder of the project that you are running. For example, if you are
running the samples project, the folder is samplesproject/Scripts.

6. To accept the default location, click Yes.

Note
To change the scripts folder location, choose File, Set Scripts Folder.

After you choose the location for your scripts folder, the folder's contents are shown in the navigation
tree on the left.

Performing Tasks in the Lua Remote Debugger
To perform specific tasks in the Lua remote debugger, see the following table:

To do this Do this

Open a script file Double click the script file in the navigation pane, or press Ctrl+O to open
the Find File dialog.

Version 1.8
453

Lumberyard Developer Guide
Using the Lua XML Loader

To do this Do this

Set a break point Place the cursor on the line in the script where you want the break
to occur, and then click the red dot in the toolbar or press F9. When
program execution stops on a break point, the Call Stack and Locals tabs
populate.

Remove a break point Place the cursor on the line with the breakpoint that you want to remove,
and then click the red dot in the toolbar or press F9.

Use the Breakpoints tab The Breakpoints tab window displays each of your breakpoints with a
check box next to it. To enable or disable a breakpoint, select or clear its
check box. In the script window, the breakpoint's status is indicated by its
color: red is active; gray is disabled.

To watch (inspect) variable
values

When execution is paused on a breakpoint, click the Watch tab, click the
first column of a blank row, and then type the name of the variable that you
want to watch.

Pause execution Click the pause (break) button on the toolbar or press Ctrl+Alt+Pause.

Resume execution Click the play button on the toolbar or press F5.

Step over a procedure

Click the toolbar icon or press F10.

Step into a procedure

Click the toolbar icon or press F11.

Step out of a procedure

Click the toolbar icon or press Shift+F11.

Close a script file Choose File, Close, or press Ctrl+W

Disconnect from the editor
or game

In the Lua debugger, choose File, Disconnect. The Lumberyard console
displays a network connection terminated message.

Note
Code changes that you make in the debugger window do not change the loaded script and are
discarded after the debugger window is closed.

Using the Lua XML Loader
There is a generic interface for parsing and translating XML files into Lua files. This interface uses an XML
file as a definition format that declares what kind of XML is included in a file and what kind of Lua to create
from the XML. The format includes some simple validation methods to ensure that the data received is what
is expected.

XML Data

The XML loader can distinguish between three kinds of data: properties, arrays, and tables.

Tables

This table represents a Lua-based table:

Version 1.8
454

Lumberyard Developer Guide
Using the Lua XML Loader

letters = { a="a", b="b", c="c" };

In an XML data file, this table would look like this:

<letters a="a" b="b" c="c"/>

The XML definition file would look like this:

<Table name="letters">
 <Property name="a" type="string"/>
 <Property name="b" type="string"/>
 <Property name="c" type="string"/>
</Table>

Each element can be marked as optional in the definition file using the attribute optional="1".

Arrays

There are two possible types of arrays. The first type is a simple group of elements, shown in Lua like this:

numbers = {0,1,2,3,4,5,6,7,8,9}

In the XML data file, the array would look like this:

<numbers>
 <number value="0"/>
 <number value="1"/>
 <number value="2"/>
 <number value="3"/>
 <number value="4"/>
 <number value="5"/>
 <number value="6"/>
 <number value="7"/>
 <number value="8"/>
 <number value="9"/>
</numbers>

The data definition file would look like this:

<Array name="numbers" type="int" elementName="number"/>

The second array type is an array of tables. In Lua:

wheels = {
 {size=3, weight=10},
 {size=2, weight=1},
 {size=4, weight=20},
}

In the XML data file:

<wheels>
 <wheel size="3" weight="10"/>
 <wheel size="2" weight="1"/>
 <wheel size="4" weight="20"/>
</wheels>

Version 1.8
455

Lumberyard Developer Guide
Using the Lua XML Loader

The XML definition file:

<Array name="wheels" elementName="wheel"> <!-- note no type is attached -->
 <Property name="size" type="float"/>
 <Property name="weight" type="int"/>
</Array>

Loading and Saving a Table from Lua
To load and initialize a Lua table:

someTable = CryAction.LoadXML(definitionFileName, dataFileName);

When storing XML files for scripts, the recommended practice is to keep the definition files with the scripts
that use them, but store the data files in a directory outside the Scripts directory.

To save a table from Lua:

CryAction.SaveXML(definitionFileName, dataFileName, table);

Data Types
The following data types are available, and can be set wherever a "type" attribute is present in the definition
file.

• float – Floating point number.

• int – Integer.

• string – String.

• bool – Boolean value.

• Vec3 – Floating point vectors with three components. Values of this type are expressed as follows:

• XML – "1,2,3"

• Lua – {x=1,y=2,z=3}

Enums
For string type properties, an optional <Enum> definition can be used. Property values will be validated
against the enum.

Example:

<Property name="view" type="string">
 <Enum>
 <Value>GhostView</Value>
 <Value>ThirdPerson</Value>
 <Value>BlackScreen</Value>
 </Enum>
</Property>

Enum support for other data types can be added, if necessary.

Example
XML definition file:

<Definition root="Data">

Version 1.8
456

Lumberyard Developer Guide
Component Entity Lua Scripting Reference

 <Property name="version" type="string"/>

 <Table name="test">
 <Property name="a" type="string"/>
 <Property name="b" type="int" optional="1"/>
 <Array name="c" type="string" elementName="Val"/>
 <Array name="d" elementName="Value">
 <Property name="da" type="float"/>
 <Property name="db" type="Vec3"/>
 </Array>
 <Property name="e" type="int"/>
 </Table>

</Definition>

Corresponding XML data file:

<Data version="Blag 1.0">
 <test
 a="blag"
 e="3">
 <c>
 <Val value="blag"/>
 <Val value="foo"/>
 </c>
 <d>
 <Value da="3.0" db="2.1,2.2,2.3"/>
 <Value da="3.1" db="2.1,2.2,2.3"/>
 <Value da="3.2" db="3.1,3.2,2.3"/>
 </d>
 </test>
</Data>

Component Entity Lua Scripting Reference
Starting with Lumberyard 1.8, Lua scripts use the new behavior context that replaces the legacy
script context. Scripts that were written before the integration of the behavior context no longer work in
Lumberyard versions 1.8 and later. For information on updating Lua code from legacy script context to the
new behavior context, see the migration notes for Lumberyard 1.8.

Topics

• Writing Lua Scripts for the Component Entity System (p. 457)

• Loading Canvases in Lua (p. 465)

• Lua API Reference (p. 466)

Writing Lua Scripts for the Component Entity System
Starting with Lumberyard 1.8, Lua scripts use the new behavior context that replaces the legacy
script context. Scripts that were written before the integration of the behavior context no longer work in
Lumberyard versions 1.8 and later. For information on updating Lua code from legacy script context to the
new behavior context, see the migration notes for Lumberyard 1.8.

To add a Lua script to a component entity in Lumberyard Editor

1. With the Entity Inspector view pane visible, select the entity in the view port.

Version 1.8
457

http://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-migrating-1-8.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-migrating-1-8.html

Lumberyard Developer Guide
Writing Lua Scripts for the Component Entity System

2. Click Add Component, and then open Scripting, Lua Script.

3. A Lua Script component appears in the inspector. Use the file selection button (...) to select the Lua
script from the file hierarchy that you want to use.

You can select either a .lua file (a text copy of the original), or a .luac file (a precompiled version of
the script). The functionality should be the same. The precompiled version is preferable because it
loads faster and is usually smaller. However, you can use.lua files if you experience any issues.

4. After the script is loaded, click Edit Script ({}) to launch the Lua IDE and make changes to your script.

Basic Structure of a Component Entity Lua Script

To run properly, a script attached to an entity must have the following:

• A main script table, which is a local to the file, and returned at the end.

• An optional Properties table within the script table. The Properties table provides an interface that you
can use to customize the script behavior from the editor.

• An OnActivate() function that the the engine calls when the entity that has the script is activated.

• An OnDeactivate() function called by the engine when the entity that has the script is deactivated.

The following example shows the use of the OnActivate and OnDeactivate functions.

-- ScriptName.lua

local ScriptName =
{
 Properties =
 {
 }
}

function ScriptName:OnActivate()
 -- Activation Code
end

function ScriptName:OnDeactivate()
 -- Deactivation Code
end

return ScriptName;

Built-in Types and Methods

The Lumberyard Engine provides a number of types and methods that are useful for making games. Many
of the types and methods available are listed in the class view available in Lumberyard's Lua IDE. For more
information on the class view, see Lua Editor.

Properties

The Properties table configures the editor interface for customizing the behavior of a script. The properties
table allows users to modify numeric values, select states, and turn flags on and off. It can even provide a
reference to entities that your script can interact with.

The properties inside the Properties table are exposed to the editor. Properties outside the Properties
table are private and not displayed in the editor.

The following example is a properties table from the Controllable Chicken sample level.

Version 1.8
458

http://docs.aws.amazon.com/lumberyard/latest/developerguide/lua-editor-debugger.html

Lumberyard Developer Guide
Writing Lua Scripts for the Component Entity System

-- Example Properties Table
local ChickenMannequinControllerSM =
{
 Properties =
 {
 MoveSpeed = { default = 3.0, description = "How fast the chicken moves.", suffix =
 " m/s" },
 RotationSpeed = { default = 360.0, description = "How fast (in degrees per second)
 the chicken can turn.", suffix = " deg/sec"},
 CameraFollowDistance = {default = 5.0, description = "Distance (in meters) from
 which camera follows character."},
 CameraFollowHeight = {default = 1.0, description = "Height (in meters) from which
 camera follows character."},
 CameraLerpSpeed = {default = 5.0, description = "Coefficient for how tightly camera
 follows character."},
 Camera = {entity = ""},
 InitialState = "Idle",
 DebugStateMachine = false,
 },
...

The result is the following Properties user interface in Lumberyard Editor:

The type that you provide as the default value determines how the property is appears in the editor user
interface. You can further customize the representation of the property in the editor by specifying additional
attributes in a table format. All property types support a description field that appears when you mouse over
the property name in the editor.

Boolean Values (true, false)

The following examples are Boolean values.

DebugMovement = false,
AllowMovement = { default = true, description = "Allow or restrict movement of the
 object." },

In Lumberyard Editor, Boolean values are represented by a check box.

Numeric Values (Integer or Floating Point Numbers)

The following examples are numeric values.

Count = 5,
Velocity = { default = 1.0, suffix = "m/s", description = "Initial Velocity Of The
 Object" },
Distance = { default = 5.0, min = 2.0, max = 10.0, step = 2.0, suffix = "m", description =
 "The Distance An Object Can Travel In Meters" },

In Lumberyard Editor, numeric values are represented by an edit field with increase/decrease arrows.
Numeric values can:

• Provide a custom suffix to indicate units.

• Set minimum and maximum values.

• Provide a step value (how much the value increases or decreases when the user clicks the arrows on the
right side of the edit field).

Strings

The following examples are strings.

Version 1.8
459

Lumberyard Developer Guide
Writing Lua Scripts for the Component Entity System

DebugPrefix = "d_",
Name = { default = "Default Name", description = "The name of the entity" },
StartingState = { "Idle", description = "Specify the starting state. Valid starting states
 are Idle and Fidget" },

In Lumberyard Editor, string values are represented by an interactive text box.

Entities

The entity field is particularly useful when your script must communicate with components attached to a
different entity.

The following examples are entities.

ParentEntity = { entity="", description="The Entity that this one will follow"},
Target = { entity = "" }

In Lumberyard Editor, entities are represented by a static display field. They have the following
characteristics.

• Change by dragging an entity from the Outliner to the field.

• Are often used to open an event sender to allow communication or control of other entities.

Communicating with Components

Components provide interfaces that allow scripts to send them information and receive notifications when
certain actions take place. Communication is established by creating two different objects in Lua: senders
and handlers. A sender or a handler is an interface to an Event Bus (EBus), a communication system used
extensively in the Lumberyard Engine. When a sender is created, it can call functions which in turn send
information to a component. When a handler is created, the component calls certain functions that the
Lua script defines. These senders and handlers are created with an entity ID. You can use the entity ID to
communicate with components that are attached to entities other than the one the script itself is running on.
The main script table always provides a field called entityId that contains the ID of the entity to which the
script is attached. Other entity IDs can be passed to the script through the Properties interface.

Order of Component Activation

Keep in mind the following points regarding the order of activation of Lua components:

• Lua components activate after all C++ components have activated.

• If an entity has multiple Lua components, there is no guarantee regarding which Lua component
activates first.

Registering with a Component to Receive Notifications

When a Lua script creates a handler object, it notifies a component attached to an entity that it should
call the script handler functions when certain events occur. For example, in the first sample below, the
script creates a Spawner Component notification bus handler when OnActivate() is called. This tells the
spawner component attached to the specified entity (in this case, the same entity the script is attached
to) to call the OnSpawnBegin(), OnSpawnEnd(), and OnEntitySpawned() functions whenever the spawner
is used to instantiate a new dynamic slice (a collection of entities). Subsequently, the handler is explicitly
disconnected and set back to nil in the OnDeactivate function. This ensures that processing time is not
wasted when the entity attached to the script isn't active. As long as the entity is active, these functions are
called by the spawner component at the appropriate time.

Version 1.8
460

http://docs.aws.amazon.com/lumberyard/latest/developerguide/asset-pipeline-ebus.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/component-spawner.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/dynamic-slices.html

Lumberyard Developer Guide
Writing Lua Scripts for the Component Entity System

The following code example shows a spawner component handler.

local SpawnerScriptSample = { };

function SpawnerScriptSample:OnActivate()
 -- Register our handlers to receive notification from the spawner attached to this
 entity.
 if(self.spawnerNotiBusHandler == nil) then
 self.spawnerNotiBusHandler = SpawnerComponentNotificationBus.CreateHandler(self,
 self.entityId)
 end
end

-- This handler is called when we start spawning a slice.
function SpawnerScriptSample:OnSpawnBegin(sliceTicket)
 -- Do something so we know if/when this is being called
 Debug.Log("Slice Spawn Begin")
end

-- This handler is called when we're finished spawning a slice.
function SpawnerScriptSample:OnSpawnEnd(sliceTicket)
 -- Do something so we know if/when this is being called
 Debug.Log("Slice Spawn End")
end

-- This handler is called whenever an entity is spawned.
function SpawnerScriptSample:OnEntitySpawned(sliceTicket, entityId)
 -- Do something so we know if/when this is being called
 Debug.Log("Entity Spawned: " .. tostring(entityId))
end

function SpawnerScriptSample:OnDeactivate()
 -- Disconnect our spawner notificaton
 if self.spawnerNotiBusHandler ~= nil then
 self.spawnerNotiBusHandler:Disconnect()
 self.spawnerNotiBusHandler = nil
 end
end

return SpawnerScriptSample;

Non-Component Notifications

There are event buses that are available to Lua that are not associated with components. For example, a
script can create a handler to receive notifications from the system's tick bus whenever the engine ticks.
It provides both the amount of time that has passed since the last tick and the current time point. To gain
access to this information, the script simply implements the OnTick() function and creates the handler.

The following example shows how to register an EBus.

local TestScript = { };
function TestScript:OnActivate()
 -- Inform the Tick Bus that you would like to receive event notifications
 self.tickBusHandler = TickBus.CreateHandler(self)
end

-- This callback will be called every frame by the Tick Bus after this entity activates
function TestScript:OnTick(deltaTime, timePoint)
 -- Add script to be executed every frame here...
end

function TestScript:OnDeactivate()
 -- Inform the Tick Bus that you no longer want to receive notifications

Version 1.8
461

http://docs.aws.amazon.com/lumberyard/latest/developerguide/component-entity-system-pg-tick-bus.html

Lumberyard Developer Guide
Writing Lua Scripts for the Component Entity System

 self.tickBusHandler:Disconnect()
end

return TestScript;

Sending Events to a Component

In addition to receiving notifications from components, a script must sometimes exercise control over
components. Control is accomplished by sending events to components using the Event table and calling
the functions implemented on it. In the example script that follows, the spawner component is sent an event
that tells the component to spawn a dynamic slice by calling the Spawn() function. The first argument to an
Event function is always the ID of the listener that you send the event to; the remaining arguments follow.

The following example shows how to send EBus events.

local SpawnerScript = { };
function SpawnerScript:OnActivate()
 SpawnerComponentRequestBus.Event.Spawn(self.entityId);
end

return SpawnerScript;

You can request information from some event sending functions that return values. The example script
below uses a TransformBus to get the current local transform of the entity and uses the GetLocalTM()
function, which returns a transform object. This object is stored in a variable in the main script table.
TransformBus is used again to reset the transform of the object to the identity.

The following example shows use of the transform bus.

function samplescript:OnActivate()
 -- Retrieve the object's local transform and store it for later use
 self.myOldTransform = TransformBus.Event.GetLocalTM(self.entityId)
 -- Reset the object's local transform to the identity matrix
 TransformBus.Event.SetLocalTM(self.entityId, Transform.CreateIdentity())
end

Communicating with Components Attached to Other Entities

You can also send events and create handlers to communicate with components attached to other entities.
The following example defines a parent entity in the properties table and requests its transform. This allows
it to set its transform to that of another entity.

The following example code shows the use of a parent entity.

local ParentScriptSample=
{
 Properties =
 {
 ParentEntity = { entity="" },
 }
}

function ParentScriptSample:OnActivate()
 if self.Properties.ParentEntity.IsValid() then
 local parentTransform = TransformBus.Event.GetLocalTM(self.Properties.ParentEntity)
 TransformBus.Event.SetLocalTM(self.entityId, parentTransform)
 end
end

Version 1.8
462

Lumberyard Developer Guide
Writing Lua Scripts for the Component Entity System

return ParentScriptSample;

Using AZStd::any

You can pass any Lua primitive type excluding tables to any bus or function that takes AZStd::any as a
parameter (for example, GameplayNotificationBus::OnEventBegin). You can also pass any type reflected
from C++ (for example, vectors or EntityIds). There is no syntax required to pass a value as an any — just
call the bus or function.

The following example shows the use of AZStd::any.

GameplayNotificationBus.Broadcast.OnEventBegin(self.eventId, "The value I'd like to pass to
 the handler");

Debugging Scripts
Lumberyard provides Lua Scripts with several functions to make debugging easier.

Logging to the Console

To print text to the Lumberyard Editor and game console, use the Debug.Log() function.

The following example shows the use of the Debug.Log() function.

local LoggingTest = { };
function LoggingTest:OnActivate()
 componentName = "MyComponent"
 Debug.Log(ComponentName .. " has been activated.")
end

return LoggingTest;

Using an Assert to Detect Potential Issues

You can use the assert() or Debug.Assert() functions to display an error message in the console when
conditions are detected that might result in an execution fault. The assert functions take two arguments: a
condition that evaluates to true or false, and a message to display if the condition is false.

The following example shows the use of the assert and Debug.Assert() functions.

function SampleScript:DoStuff()
 -- This value should never be negative
 assert(self.positiveValue >= 0, "Expected a positive value! Got: " ..
 self.positiveValue)
end

-- Console output when the value of self.positiveValue is -5:
-- [Error] Lua error (2 - [string "q:/lyengine/branches/systems/dev/samplespro..."]:61:
 Expected a positive value! Got: -5) during call samplescript:DoStuff

-- ALTERNATIVE SYNTAX:

function SampleScript:DoStuff()
 -- This value should never be negative
 Debug.Assert(self.positiveValue >= 0, "Expected a positive value! Got: " ..
 self.positiveValue)
end

-- Console output when the value of self.positiveValue is -5:

Version 1.8
463

Lumberyard Developer Guide
Writing Lua Scripts for the Component Entity System

-- [Error] Assert on argument 0: Expected a positive value! Got: -5

Communicating Errors

You can use the Debug.Error() function to display an error in the console and halt execution of the current
script function. This does not halt all execution of the script. If you have active handlers, they can still be
called when the engine posts notifications. The Debug.Error() function takes arguments similar to the
Debug.Assert function: a condition and a message. The message is displayed in bright red and execution
halts only if the condition is false.

The following example shows the use of the Debug.Error() function.

function SampleScript:CheckAndError()
 -- This value should never be negative
 Debug.Error(self.positiveValue >= 0, "Detected a negative value: " ..
 self.positiveValue)
end

-- Console output when the value of self.positiveValue is -5:
-- [Error] Error on argument 0: Detected a negative value: -5

Displaying a Warning When User Attention Is Required

A script condition can occur that does not adversely affect the execution of the script but might be useful for
the user to know about. The Debug.Warning() function uses arguments similar to those of the Error and
Assert functions, but just displays an orange warning message in the console. It does not halt execution.

The following example shows the use of the Debug.Warning() function.

function SampleScript:CheckValue()
 -- This value should probably never be negative
 Debug.Warning(self.positiveValue >= 0, "Detected a negative value: " ..
 self.positiveValue)
end

-- Console output when the value of self.positiveValue is -5:
-- [Warning] Warning on argument 0: Detected a negative value: -5

The Lua Environment
Lua provides the capability to load and execute script from other Lua files using the built-in Lua require
function. It's important to note that this function requires a special path format. The file path is delimited
by periods instead of slashes, has no .lua filename extension, and is relative to the Lumberyard assets
directory. For example, if you want to use the require function to provide your scripts with some common
functionality from the project's Scripts directory, you can use code similar to the following example.

This example shows the use of the require function.

require "Scripts.MyLibraryFile"

Additional Resources
For more information about using Lua in Lumberyard, visit the following links.

• For API Documentation, see Component Entity Lua API Reference (p. 469).

• For documentation on using Lumberyard's built-in Lua editor, see Lua Editor (p. 449).

Version 1.8
464

https://www.lua.org/pil/8.1.html

Lumberyard Developer Guide
Loading Canvases in Lua

• For documentation on the C++ migration from the script context to the behavior context, see the
migration notes for Lumberyard 1.8.

• For information on the behavior context, see Behavior Context (p. 338).

• For information about network binding in Lua scripts, see Lua Script Component in the Amazon
Lumberyard User Guide.

Example Lua Scripts in Lumberyard

The following levels provided with the Samples Project contain example Lua scripts in the locations
indicated.

1. SamplesProject\Levels\Component_Tests\Controllable_Chicken

• Tick Bus (for Timing)

• Mannequin Ebus (for controling animation)

• Camera Transform Ebus (for controling the camera)

• Gameplay Notification EBus (for receiving inbound input notifications)

• Physics Ebus (for issuing movement events)

• Transform EBus (for requesting and setting transformations)

2. SamplesProject\Levels\Samples\UIEditor_Lua_Sample

• UI Scripting using Lua

Loading Canvases in Lua
The Lumberyard UI Editor uses the concept of a UI canvas as an invisible backdrop for user interface
elements. You can use the Lua scripting language to load and unload UI canvases in Lumberyard.

To load a canvas in Lua

1. Create a new, plain text file in your game project directory with a .lua file extension.

2. Type or paste the following sample script into your new Lua file:

Note
The following script uses a Lua file named loadcanvas.lua and loads a canvas file named
menu.uicanvas saved at the root of the game project directory. Substitute the appropriate file
names for your script.

loadcanvas =
{
 Properties =
 {
 },
}

function loadcanvas:OnActivate()

Version 1.8
465

http://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-migrating-1-8.html
url-ly-ug;http://docs.aws.amazon.com/lumberyard/latest/userguide/component-lua-script.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/
http://docs.aws.amazon.com/lumberyard/latest/userguide/
http://docs.aws.amazon.com/lumberyard/latest/userguide/ui-editor-using.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/ui-editor-creating-canvases.html

Lumberyard Developer Guide
Lua API Reference

 self.uiCanvasLuaProxy = UiCanvasLuaProxy();
 self.uiCanvasLuaProxy:LoadCanvas("menu.uicanvas");
end

3. In Lumberyard Editor, right-click in the Viewport and click Create Component Entity.

4. If the Entity Inspector does not open automatically, click Tools, Entity Inspector.

5. Click Add Component.

6. Select Scripting, Lua Script.

7. Under Lua Script, click ... and open the Lua script file that you created.

8. In Lumberyard Editor, click Game, Switch to Game to enter game mode. Verify that your canvas file
loads.

See Also

For more information, consult the following resources.

• For a full listing of UI Lua API calls, see UI Lua Reference (p. 524).

• For general information about UI canvases, see Working with UI Canvases in the Amazon Lumberyard
User Guide.

Lua API Reference
You can use Lua API calls, including API calls for virtual reality and UI canvases, to automate your
Lumberyard game project.

Topics

• VR Lua Functions (p. 466)

• Component Entity Lua API Reference (p. 469)

• UI Lua Reference (p. 524)

VR Lua Functions
You can use Lua bindings to interact programmatically with head-mounted display (HMD) devices that
provide Virtual Reality (VR) experiences.

For general information on configuring your Lumberyard game project for VR, see Virtual Reality in the
Amazon Lumberyard User Guide.

Global Functions

The following functions provide programming interfaces for HMD devices.

Function Description

HMDDeviceRequestBusSender HMDDeviceRequestBusSender(EntityId)Returns an HMDDeviceRequestBusSender
object that is connected to the specified
entity. For more information, see
HMDDeviceRequestBus (p. 467).

ControllerRequestBusSender ControllerRequestbusSender(EntityId)Returns a ControllerRequestBusSender
object that is connected to the specified
entity. For more information, see
ControllerRequestBus (p. 467).

Version 1.8
466

http://docs.aws.amazon.com/lumberyard/latest/userguide/ui-editor-creating-canvases.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/
http://docs.aws.amazon.com/lumberyard/latest/userguide/
http://docs.aws.amazon.com/lumberyard/latest/userguide/virtual-reality.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/

Lumberyard Developer Guide
Lua API Reference

HMDDeviceRequestBus

Contains functions that return information about an HMD and control its pose and tracking level.

Function Description

Bool IsInitialized() Returns true if an HMD has successfully initialized on the bus. Returns
false if no HMD is connected or failed to initialize.

Void RecenterPose() Causes the direction that the HMD is currently facing to be considered
forward’.

Void OutputHMDInfo() Outputs the information about the currently connected HMD (contained
in the HMDDeviceInfo object) to the console and log file.

Void SetTrackingLevel(int) Sets the tracking level for the HMD. 0 specifies head level tracking (the
player is standing); 1 is floor level tracking (the player is seated or on the
floor).

HMDDeviceInfo GetDeviceInfo()Returns an HMDDeviceInfo object that contains device information
about a connected HMD. For more information, see struct
HMDDeviceInfo (p. 467).

TrackingState GetTrackingState()Returns a TrackingState object that contains the most recent tracking
information about a connected HMD. For more information, see struct
TrackingState (p. 468).

ControllerRequestBus

Returns status information about an HMD controller.

Function Description

Bool IsConnected(int

controllerIndex)

Returns true if the given controller is connected, false if a controller
is not connected. Pass 0 for the left controller, pass 1 for the right
controller.

TrackingState GetTrackingState(int

controllerIndex)

Returns a TrackingState object that contains tracking info about a
connected controller. Pass 0 for the left controller, pass 1 for the right
controller. For more information, see struct TrackingState (p. 468).

struct HMDDeviceInfo

Contains information about a device that displays on the screen when the device is detected.

Field Description

String productName Name of the connected HMD. The default is nullptr.

String manufacturer Name of the company that manufactured the connected HMD. The default is
nullptr.

Int renderWidth The render width for the HMD in pixels. This is normally half the full resolution
of the device (rendering is per eye). The default is 0.

Version 1.8
467

Lumberyard Developer Guide
Lua API Reference

Field Description

Int renderHeight The render height in pixels for a single eye of the HMD. The default is 0.

Float fovH The horizontal field of view for both eyes in radians. The default is 0.0f.

Float fovV The vertical field of view in radians. The default is 0.0f.

struct TrackingState

Stores position and connection state information about the HMD. When an HMD is in use, certain parts
of the device can go offline or online. For example, a controller can be disconnected, or the HMD can
temporarily lose rotational tracking. You can use the TrackingState to determine what part of the pose is
currently valid.

Field Description

PoseState pose The position and orientation in object space of the HMD. For more
information, see struct PoseState (p. 468).

DynamicsState dynamics Contains the current state of the physics dynamics for the current device
such as linear velocity, angular velocity, and acceleration. For more
information, see struct DynamicsState (p. 468).

Int statusFlags Bit field that describes the current tracking state. For bit flags, see the enum
HMDStatus (p. 469).

struct PoseState

A specific pose of the HMD device. Each HMD device has its own way of representing its current pose in
three dimensional space. This structure acts as a common data set between a connected device and the
rest of the system. All data is in a local coordinate space.

Field Description

Quaternion orientationA quaternion representing the current orientation in object space of the HMD.

Vector3 position A three dimensional vector representing the current position of the HMD in
object space as an offset from the centered pose.

struct DynamicsState

Dynamics (accelerations and velocities) of the current HMD. Many HMDs have the ability to track the
current movements of VR devices for prediction. Not all devices support velocities and accelerations. All
data is in a local coordinate space.

Field Description

Vector3 angularVelocity A three dimensional vector representing angular velocity in object space.

Vector3 angularAccelerationA three dimensional vector representing angular acceleration in object
space.

Version 1.8
468

Lumberyard Developer Guide
Lua API Reference

Field Description

Vector3 linearVelocity A three dimensional vector representing linear velocity in object space.

Vector3 linearAcceleration A three dimensional vector representing linear acceleration in object
space.

enum HMDStatus

The following code shows the status flags for HMDStatus.

enum HMDStatus
{
 HMDStatus_OrientationTracked = BIT(1),
 HMDStatus_PositionTracked = BIT(2),
 HMDStatus_CameraPoseTracked = BIT(3),
 HMDStatus_PositionConnected = BIT(4),
 HMDStatus_HmdConnected = BIT(5),
 HMDStatus_IsUsable = HMDStatus_HmdConnected | HMDStatus_OrientationTracked,
 HMDStatus_ControllerValid = HMDStatus_OrientationTracked | HMDStatus_PositionConnected,
};

Component Entity Lua API Reference

This documentation is preliminary and subject to change.

You can use these Lua API calls for scripting the component entity system in Lumberyard. For Lua scripting
functions that load and unload canvases in Lumberyard Editor, see the UI Lua Reference (p. 524).

BehaviorTreeComponentRequestBus

Represents a request submitted by a user of the current component.

StartBehaviorTree

Starts an inactive behavior tree associated with the current entity.

Syntax

void BehaviorTreeComponent::StartBehaviorTree()

StopBehaviorTree

Stops an active behavior tree associated with the current entity.

Syntax

void BehaviorTreeComponent::StopBehaviorTree()

GetVariableNameCrcs

Gets a list of cyclic redundancy check values for variable names.

Syntax

Version 1.8
469

Lumberyard Developer Guide
Lua API Reference

AZStd::vector<AZ::Crc32> GetVariableNameCrcs()

Returns: A list of the 32-bit cyclic redundancy check values for all variable names.

Return Type: AZStd::vector

Default Return: s_defaultEmptyVariableIds

GetVariableValue

Gets the value for the specified variable name CRC-32 checksum.

Syntax

bool GetVariableValue(AZ::Crc32 variableNameCrc)

Parameter Type Description

variableNameCrc AZ::Crc32 The CRC-32 checksum for the variable name.

Returns: true if successful; otherwise, false.

Return Type: bool

Default Return: false

SetVariableValue

Set the value associated with a variable.

Syntax

void SetVariableValue(AZ::Crc32 variableNameCrc, bool
 newValue)

Parameter Type Description

variableNameCrc AZ::Crc32 The CRC-32 checksum for the variable name.

newValue bool The new value for the variable.

NavigationComponentRequestBus

Requests serviced by the navigation component.

FindPathToEntity

Creates a path finding request to navigate towards the specified entity.

Syntax

PathfindRequest::NavigationRequestId FindPathToEntity(AZ::EntityId entityId)

Version 1.8
470

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

entityId AZ::EntityId Request EntityId of the entity we want to navigate
towards.

Returns: A unique identifier to the pathfinding request.

Return Type: PathfindRequest::NavigationRequestId

Default Return: PathfindResponse::kInvalidRequestId

Stop

Stops all pathfinding operations for the specified requestId. The ID is used to make sure that the request
being cancelled is the request that is currently being processed. If the specified requestId is different from
the ID of the current request, the stop command can be safely ignored.

Syntax

void Stop(PathfindRequest::NavigationRequestId requestId)

Parameter Type Description

requestId PathfindRequest::NavigationRequestIdID of the request that is being cancelled.

NavigationComponentNotificationBus

Notifications sent by the Navigation component.

OnSearchingForPath

Indicates that the pathfinding request has been submitted to the navigation system.

Syntax

void OnSearchingForPath(PathfindRequest::NavigationRequestId requestId)

Parameter Type Description

requestId PathfindRequest::NavigationRequestIdID of the request for the path that is being searched.

OnTraversalStarted

Indicates that traversal for the indicated request has started.

Syntax

void OnTraversalStarted(PathfindRequest::NavigationRequestId requestId)

Parameter Type Description

requestId PathfindRequest::NavigationRequestIdID of the request for which traversal has started.

Version 1.8
471

Lumberyard Developer Guide
Lua API Reference

OnTraversalInProgress

Indicates that traversal for the indicated request has started.

Syntax

void OnTraversalInProgress(PathfindRequest::NavigationRequestId requestId, float
 distanceRemaining)

Parameter Type Description

requestId PathfindRequest::NavigationRequestIdID of the request for which traversal is in progress.

distanceRemainingfloat The remaining distance in the current path.

OnTraversalComplete

Indicates that traversal for the indicated request has completed successfully.

Syntax

void OnTraversalComplete(PathfindRequest::NavigationRequestId requestId)

Parameter Type Description

requestId PathfindRequest::NavigationRequestIdID of the request for which traversal has finished.

OnTraversalCancelled

Indicates that traversal for the indicated request was cancelled before it could be successfully completed.

Syntax

void OnTraversalCancelled(PathfindRequest::NavigationRequestId requestId)

Parameter Type Description

requestId PathfindRequest::NavigationRequestIdID of the request for which traversal was cancelled.

NavigationSystemRequestBus

Requests serviced by the navigation system component. This currently contains the single function
RayCast.

RayCast

Creates a path finding request to navigate towards the specified entity.

Syntax

virtual NavRayCastResult RayCast(const AZ::Vector3& begin, const AZ::Vector3& direction,
 float maxDistance) { return NavRayCastResult(); }

Version 1.8
472

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

begin Vector3 The origin of the ray.

direction Vector3 The direction for the ray to travel.

maxDistancefloat The maximum distance the ray travels.

Returns: A NavRayCastResult.

NavRayCastResult has the following structure.

Parameter Type Description

bool

m_collision

Boolean Returns true if there was a collision. The default is false.

m_position Vector3 The position of the hit in world space. The default is
AZ::Vector3::CreateZero().

m_meshId NavigationMeshIdThe mesh ID of the navigation mesh hit. This is callable from Lua script. The
default is 0.

AttachmentComponentRequestBus

Messages serviced by the AttachmentComponent. The AttachmentComponent lets an entity "stick" to a
particular bone on a target entity.

Attach

Change the attachment target. The entity will detach from any previous target.

Syntax

void Attach(AZ::EntityId targetId, const char* targetBoneName, const AZ::Transform& offset)

Parameter Type Description

targetId AZ::EntityId Specifies the ID of the entity to attach to.

targetBoneName char Specifies the bone on the target entity to attach to. If the
target bone is not found, then attach to the target entity's
transform origin.

offset AZ::Transform The attachment's offset from the target.

Detach

Detaches an entity from its target.

Syntax

void Detach()

Version 1.8
473

Lumberyard Developer Guide
Lua API Reference

SetAttachmentOffset

Update an entity's offset from its target.

Syntax

void SetAttachmentOffset(const AZ::Transform& offset)

Parameter Type Description

offset AZ::Transform The offset from the target.

AttachmentComponentNotificationBus

This EBus interface handles events emitted by the AttachmentComponent. The AttachmentComponent lets
an entity "stick" to a particular bone on a target entity.

OnAttached

The entity has attached to the target.

Syntax

void OnAttached(AZ::EntityId targetId)

Parameter Type Description

targetId AZ::EntityId The target being attached to.

OnDetached

The entity is detaching from the target.

Syntax

void OnDetached(AZ::EntityId targetId)

Parameter Type Description

targetId AZ::EntityId The target being detached from.

CharacterAnimationRequestBus

General character animation requests serviced by the CharacterAnimationManager component.

SetBlendParameter

Sets a custom blend parameter.

Syntax

Version 1.8
474

Lumberyard Developer Guide
Lua API Reference

void SetBlendParameter(AZ::u32 blendParameter, float value)

Parameter Type Description

blendParameter AZ::u32 Corresponds to EMotionParamID.

value float The value to set.

SetAnimationDrivenMotion

Enables or disables animation-driven root motion.

Syntax

void SetAnimationDrivenMotion(bool useAnimDrivenMotion)

Parameter Type Description

useAnimDrivenMotionbool Specify true to enable animation-driven root motion;
false to disable.

MannequinRequestsBus

Services provided by the Mannequin component.

QueueFragment

Queues the specified Mannequin fragment.

Syntax

FragmentRequestId QueueFragment(int priority, const char* fragmentName, const char*
 fragTags, bool isPersistent)

Parameter Type Description

priority int Specifies priority. A higher number means higher priority

fragmentName char Name of the fragment to be played.

fragTags char Fragment tags to be applied.

isPersistent bool Specifies persistence.

Returns: A request ID that can be used to identify and make modifications to the request.

Return Type: FragmentRequestId

Default Return: MannequinRequests::s_invalidRequestId

PauseAll

Pauses all actions being managed by the current Mannequin component

Version 1.8
475

Lumberyard Developer Guide
Lua API Reference

Syntax

void PauseAll()

ResumeAll

Resumes all actions being managed by the current Mannequin component.

Syntax

void ResumeAll(IActionController::EResumeFlags resumeFlag)

Parameter Type Description

resumeFlag IActionController::EResumeFlagsFlag that indicates how the animations are to be
resumed. See the EResumeFlags enum for possible
values.

enum EResumeFlags
 {
 ERF_RestartAnimations = BIT(0),
 ERF_RestoreLoopingAnimationTime = BIT(1),
 ERF_RestoreNonLoopingAnimationTime = BIT(2),
 ERF_Default = ERF_RestartAnimations | ERF_RestoreLoopingAnimationTime |
 ERF_RestoreNonLoopingAnimationTime
 };

SetTag

Sets the specified tag for the action controller.

Syntax

void SetTag(const char* tagName)

Parameter Type Description

tagName char The name of the tag to set.

ClearTag

Clears the specified tag for the action controller.

Syntax

void ClearTag(const char* tagName)

Parameter Type Description

tagName char The name of the tag to be cleared.

Version 1.8
476

Lumberyard Developer Guide
Lua API Reference

SetGroupTag

Sets a tag in the specified group.

Syntax

void SetGroupTag(const char* groupName, const char* tagName)

Parameter Type Description

groupName char The name of the group.

tagName char The name of the tag.

ClearGroup

Clears tags for the indicated group

Syntax

void ClearGroup(const char* groupName)

Parameter Type Description

groupName char The name of the group.

SetScopeContext

Sets the scope context for the current animation controller.

Syntax

void SetScopeContext(const char* scopeContextName, const AZ::EntityId entityId, const char*
 animationDatabaseName)

Parameter Type Description

scopeContextName char Name of the scope context that the animation database
(.adb) file is to be attached to.

entityId AZ::EntityId Reference to an entity whose character instance will be
bound to this scope context.

animationDatabaseNamechar The path to the animation database file.

ClearScopeContext

Clears the specified scope context.

Syntax

void ClearScopeContext(const char* scopeContextName)

Version 1.8
477

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

scopeContextName char Name of the scope context that is to be cleared.

StopRequest

Stops the actions associated with the specified request.

Syntax

void StopRequest(FragmentRequestId requestId)

Parameter Type Description

requestId FragmentRequestId Specifies the ID of the request for which actions should
be stopped.

GetRequestStatus

Retrieves the status of the specified request

Syntax

IAction::EStatus GetRequestStatus(FragmentRequestId requestId)

Parameter Type Description

requestId FragmentRequestId The ID of the request to retrieve status for.

Returns: The status of the request.

Return Type: IAction::EStatus

Default Return: IAction::EStatus::None

ForceFinishRequest

Forces the actions associated with the specified request to finish.

Syntax

void ForceFinishRequest(FragmentRequestId requestId)

Parameter Type Description

requestId FragmentRequestId The ID of the request.

SetRequestSpeedBias

Sets the speed bias for the actions associated with the specified request.

Syntax

Version 1.8
478

Lumberyard Developer Guide
Lua API Reference

void SetRequestSpeedBias(FragmentRequestId requestId, float speedBias)

Parameter Type Description

requestId FragmentRequestId The request ID.

speedBias float The speed bias for this animation

GetRequestSpeedBias

Gets the speed bias for the actions associated with the specified request

Syntax

float GetRequestSpeedBias(FragmentRequestId requestId)

Parameter Type Description

requestId FragmentRequestId The ID of the request.

Returns: The speed bias for the indicated request.

Return Type: float

Default Return: -1

SetRequestAnimWeight

Sets the animation weight for the actions associated with the specified request.

Syntax

void SetRequestAnimWeight(FragmentRequestId requestId, float animWeight)

Parameter Type Description

requestId FragmentRequestId The ID of the request.

animWeight float The weight for the animation.

GetRequestAnimWeight

Gets the animation weight for the actions associated with the specified request.

Syntax

float GetRequestAnimWeight(FragmentRequestId requestId)

Parameter Type Description

requestId FragmentRequestId The ID of the request.

Version 1.8
479

Lumberyard Developer Guide
Lua API Reference

Returns: The animation weight for the indicated request.

Return Type: float

Default Return: -1

SimpleAnimationComponentRequestBus

Services provided by the Simple Animation component. The Simple Animation component provides basic
animation functionality for the entity. If the entity has a mesh component with a skinned mesh attached
(a .chr or .cdf file), the Simple Animation component will provide a list of all valid animations specified in the
associated .chrparams file. The Simple Animation component does not provide interaction with Mannequin
and should be used for light-weight environment or background animation.

StartDefaultAnimations

Plays the default animations along with default looping and speed parameters that were set up as a
part of the current component. Components allow for multiple layers to be set up with defaults. The
StartDefaultAnimations method starts the playback of all the default animations of the component.

Syntax

SimpleAnimationComponentRequests::Result StartDefaultAnimations()

Returns: A Result indicating whether the animations were started successfully.

Return Type: SimpleAnimationComponentRequests::Result

Default Return: SimpleAnimationComponentRequests::Result::Failure

StartAnimation

Starts playback of the animation of the specified animatedLayer.

Syntax

SimpleAnimationComponentRequests::Result StartAnimation(const AnimatedLayer& animatedLayer)

Parameter Type Description

animatedLayer AnimatedLayer A layer configured with the animation that is to be
played on it.

Returns: A Result indicating whether the animation was started.

Return Type: SimpleAnimationComponentRequests::Result

Default Return: SimpleAnimationComponentRequests::Result::Failure

StartAnimationByName

Plays the animation with the specified name.

Syntax

Result StartAnimationByName(const char* name, AnimatedLayer::LayerId layerId)

Version 1.8
480

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

name char The name of the animation to play.

layerId AnimatedLayer::LayerId The layer in which to play the animation

Returns: A Result indicating whether the animation was started.

Return Type: SimpleAnimationComponentRequests::Result

Default Return: SimpleAnimationComponentRequests::Result::Failure

StopAllAnimations

Stops all animations that are being played on all layers.

Syntax

Result StopAllAnimations()

Returns: A Result indicating whether all animations were stopped.

Return Type: SimpleAnimationComponentRequests::Result

Default Return: SimpleAnimationComponentRequests::Result::Failure

StopAnimationsOnLayer

Stops the animation currently playing on the specified layer.

Syntax

Result StopAnimationsOnLayer(AnimatedLayer::LayerId layerId, float blendOutTime)

Parameter Type Description

layerId AnimatedLayer::LayerId Identifier for the layer that is to stop its animation (0 -
AnimatedLayer::s_maxActiveAnimatedLayers)

blendOutTime float Time that the animations take to blend out.

Returns: A Result indicating whether the animation on the indicated layer was stopped.

Return Type: SimpleAnimationComponentRequests::Result

Default Return: SimpleAnimationComponentRequests::Result::Failure

SetPlaybackSpeed

Changes the playback speed for a particular layer.

Syntax

Result SetPlaybackSpeed(AnimatedLayer::LayerId layerId, float playbackSpeed)

Version 1.8
481

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

layerId AnimatedLayer::LayerId Identifier for the layer whose speed should be changed.

playbackSpeed float The playback speed.

Returns: A Result indicating whether the animation on the indicated layer was updated or not. A failure
likely indicated that no animation is playing on the specified layer.

Return Type: SimpleAnimationComponentRequests::Result

Default Return: SimpleAnimationComponentRequests::Result::Failure

SimpleAnimationComponentNotificationBus

This EBus interfaces handles events sent by the simple animation component.

OnAnimationStarted

Informs all listeners about an animation being started on a layer.

Syntax

void OnAnimationStarted(const AnimatedLayer& animatedLayer)

Parameter Type Description

animatedLayer AnimatedLayer Specifies the name and parameters of the animation
that was started.

OnAnimationStopped

Informs all listeners about an animation being stopped on the indicated layer

Syntax

void OnAnimationStopped(const AnimatedLayer::LayerId animatedLayer)

Parameter Type Description

animatedLayer AnimatedLayer::LayerId Specifies the name and parameters of the animation
that was stopped.

AudioEnvironmentComponentRequestBus

This EBus interface handles messages serviced by AudioEnvironmentComponent instances.
The environment refers to the effects (primarily the auxiliary effects) that the bus sends. See
AudioEnvironmentComponent.cpp for details.

SetAmount

Sets an environment amount on the default assigned environment.

Version 1.8
482

Lumberyard Developer Guide
Lua API Reference

Syntax

void SetAmount(float amount)

Parameter Type Description

amount float The amount for the environment.

SetEnvironmentAmount

Set an environment amount, specify an environment name at run time (that is, a script).

Syntax

void SetEnvironmentAmount(const char* environmentName,float amount)

Parameter Type Description

environmentName char The name of the environment.

amount float The amount for the environment.

AudioListenerComponentRequestBus

This EBus interface handles messages serviced by AudioListenerComponent instances.

SetRotationEntity

Sets the entity for which the audio listener tracks rotation.

Syntax

void SetRotationEntity(const AZ::EntityId entityId)

Parameter Type Description

entityId AZ::EntityId The ID of the entity.

SetPositionEntity

Sets the entity for which the audio listener tracks position.

Syntax

void SetPositionEntity(const AZ::EntityId entityId)

Parameter Type Description

entityId AZ::EntityId The ID of the entity.

Version 1.8
483

Lumberyard Developer Guide
Lua API Reference

SetFullTransformEntity

Essentially the same as calling SetRotationEntity and SetPositionEntity on the same entity.

Syntax

void SetFullTransformEntity(const AZ::EntityId entityId)

Parameter Type Description

entityId AZ::EntityId The ID of the entity.

AudioRtpcComponentRequestBus

This EBus interface handles messages serviced by AudioRtpcComponent instances. RTPC stands for Real-
Time Parameter Control. The AudioRtpcComponent is used by the game to configure parameters in the
audio engine. See AudioRtpcComponent.cpp for details.

SetValue

Sets an RTPC value for the RTPC name that has been serialized with the component.

Syntax

void SetValue(float value)

Parameter Type Description

value float The RTPC value to set.

SetRtpcValue

Use to manually specify an RTPC name and value at run time for use in scripting.

Syntax

void SetRtpcValue(const char* rtpcName, float value)

Parameter Type Description

rtpcName char Specifies an RTPC name to use.

value float Specifies a value for the RTPC name supplied.

AudioSwitchComponentRequestBus

This EBus interface handles messages serviced by AudioSwitchComponent instances. A Switch is an
object that can be in one State at a time, but whose State value can be changed at run time. For example,
a Switch called SurfaceMaterial might have states such as 'Grass', 'Snow', 'Metal', or 'Wood'. See
AudioSwitchComponent.h for details.

Version 1.8
484

Lumberyard Developer Guide
Lua API Reference

SetState

Sets the name of the state on the default assigned switch.

Syntax

void SetState(const char* stateName)

Parameter Type Description

stateName char Specifies the name of the state to set.

SetSwitchState

Sets the specified switch to the specified state.

Syntax

void SetSwitchState(const char* switchName, const char* stateName)

Parameter Type Description

switchName char The name of the switch to set.

stateName char The name of the state to set on the specified switch.

AudioTriggerComponentRequestBus

This EBus interface handles messages serviced by AudioTriggerComponent instances. You can use
the AudioTriggerComponent to execute, stop, and control ATL triggers. You can serialize the name of
the trigger with the component or manually specify the name at run time for use in scripting. Only one
AudioTriggerComponent is allowed on an entity, but the interface supports firing multiple ATL triggers.

Play

Executes the play trigger if the play trigger is set.

Syntax

void Play()

Stop

Executes the stop trigger if one is set; otherwise, stops the play trigger.

Syntax

void Stop()

ExecuteTrigger

Executes the specified ATL trigger.

Version 1.8
485

Lumberyard Developer Guide
Lua API Reference

Syntax

void ExecuteTrigger(const char* triggerName)

Parameter Type Description

triggerName char Specifies the name of the trigger to execute.

KillTrigger

Kills the specified ATL Trigger.

Syntax

void KillTrigger(const char* triggerName)

Parameter Type Description

triggerName char Specifies the name of the trigger to kill.

KillAllTriggers

Forces a kill of triggers that are active on the underlying proxy.

Syntax

void KillAllTriggers()

SetMovesWithEntity

Specifies whether the trigger should be repositioned as the entity moves.

Syntax

void SetMovesWithEntity(bool shouldTrackEntity)

Parameter Type Description

shouldTrackEntitybool Specify true to have the trigger track the entity. Specify
false to have the trigger not track the entity.

AudioTriggerComponentNotificationBus

This EBus interface handles messages sent by AudioTriggerComponent instances.

OnTriggerFinished

Notifies when a trigger instance has finished.

Syntax

Version 1.8
486

Lumberyard Developer Guide
Lua API Reference

void OnTriggerFinished(const Audio::TAudioControlID triggerID)

Parameter Type Description

triggerID Audio::TAudioControlID The ID of the trigger.

FloatGameplayNotificationBus (AZ::GameplayNotificationBus<float>)

This version of the GameplayNotificationBus EBus interface handles float-based game play notifications.

OnGameplayEventAction

Event sent when the specified GameplayEventAction has occurred.

OnGameplayEventFailed

Event sent when the given GameplayEventAction has failed.

Vector3GameplayNotificationBus (AZ::GameplayNotificationBus<AZ::Vector3>)

This version of the GameplayNotificationBus EBus interface handles Vector3-based game play
notifications.

OnGameplayEventAction

Event sent when the given GameplayEventAction has occurred.

OnGameplayEventFailed

Event sent when the given GameplayEventAction has failed.

StringGameplayNotificationBus (AZ::GameplayNotificationBus<const
AZStd::string>)

This version of the GameplayNotificationBus EBus interface handles string-based game play notifications.

OnGameplayEventAction

Event sent when the given GameplayEventAction has occurred.

OnGameplayEventFailed

Event sent when the given GameplayEventAction has failed.

EntityIdGameplayNotificationBus (AZ::GameplayNotificationBus<AZ::EntityId>)

This EBus interface handles EntityId-based game play notifications. It is a specialization of the
GameplayNotificationBus.

OnGameplayEventAction

Event sent when the given GameplayEventAction has occurred.

OnGameplayEventFailed

Event sent when the given GameplayEventAction has failed.

Version 1.8
487

Lumberyard Developer Guide
Lua API Reference

CryCharacterPhysicsRequestBus

This EBus interface handles messages serviced by Cry character physics.

Move

Requests movement from Living Entity.

Syntax

void Move(const AZ::Vector3& velocity, int jump)

Parameter Type Description

velocity AZ::Vector3 Requested velocity (direction and magnitude).

jump int Controls how the value for the velocity parameter is
applied within a Living Entity. To change the velocity to
the new value, specify 1. To add the value to the current
velocity, specify 2.

ConstraintComponentRequestBus

This EBus interface handles messages serviced by instances of the Constraint component. A Constraint
component facilitates the creation of a physics constraint between two entities or an entity and a point in the
world. Both entities must have a component that provides the physics service.

SetConstraintEntities

Sets the entity that owns the constraint and the target of the constraint.

Syntax

void SetConstraintEntities(const AZ::EntityId& owningEntity, const AZ::EntityId&
 targetEntity)

Parameter Type Description

owningEntity AZ::EntityId Specifies the ID of the entity that owns the constraint.

targetEntity AZ::EntityId Specifies the ID of the entity that is the target of the
constraint. The target is invalid if constrained to world
space.

SetConstraintEntitiesWithPartIds

Sets the entity that owns the constraint, the target entity, and the animation part IDs (bone IDs) for the
constraint to be attached to.

Syntax

void SetConstraintEntitiesWithPartIds(const AZ::EntityId& owningEntity, int ownerPartId,
 const AZ::EntityId& targetEntity, int targetPartId)

Version 1.8
488

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

owningEntity AZ::EntityId Specifies the ID of the entity that owns the constraint.

ownerPartId int Specifies the ID of the owner part (the bone ID) for the
constraint.

targetEntity AZ::EntityId Specifies the ID of the entity that is the target of the
constraint.

targetPartId int Specifies the ID of the target part (the bone ID) for the
constraint.

EnableConstraint

Enable all constraints on the current entity.

Syntax

void EnableConstraint()

DisableConstraint

Disable all constraints on the current entity.

Syntax

void DisableConstraint()

ConstraintComponentNotificationBus

This EBus interface handles messages dispatched by the Constraint component.

OnConstraintEntitiesChanged

This event fires when either the constraint owner or target changes. The target is invalid if constrained to
world space.

Note
This event also fires when partId values change.

Syntax

void OnConstraintEntitiesChanged(const AZ::EntityId& oldOwner, const AZ::EntityId&
 oldTarget, const AZ::EntityId& newOwner, const AZ::EntityId& newTarget)

Parameter Type Description

oldOwner AZ::EntityId Specifies the ID of the entity that owned the constraint.

oldTarget AZ::EntityId Specifies the ID of the entity that was the target of the
constraint.

newOwner AZ::EntityId Specifies the ID of the entity that is the new owner of the
constraint.

Version 1.8
489

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

newTarget AZ::EntityId Specifies the ID of the entity that is the new target of the
constraint.

OnConstraintEnabled

Fires when constraints have been enabled on the current entity.

Syntax

void OnConstraintEnabled()

OnConstraintDisabled

Fires when a constraint has been disabled.

Syntax

void OnConstraintDisabled()

PhysicsComponentRequestBus

This EBus interface handles messages serviced by the in-game Physics component.

EnablePhysics

Makes the entity a participant in the physics simulation.

Syntax

void EnablePhysics()

DisablePhysics

Stops the entity from participating in the physics simulation

Syntax

void DisablePhysics()

IsPhysicsEnabled

Checks if physics are enabled on the current entity.

Syntax

bool IsPhysicsEnabled()

Returns: true if physics are enabled; false otherwise.

Return Type: bool

Default Return: false

Version 1.8
490

Lumberyard Developer Guide
Lua API Reference

AddImpulse

Applies the specified impulse to the entity.

Syntax

void AddImpulse(const AZ::Vector3& impulse)

Parameter Type Description

impulse AZ::Vector3 Vector of the impulse.

AddAngularImpulse

Applies an angular impulse to the entity.

Syntax

void AddAngularImpulse(const AZ::Vector3& /*impulse*/, const AZ::Vector3& worldSpacePivot)

Parameter Type Description

impulse AZ::Vector3 Vector of the impulse.

worldSpacePivot AZ::Vector3 Vector of the world space pivot to apply to the entity.

GetVelocity

Retrieves the velocity of the entity.

Syntax

AZ::Vector3 GetVelocity()

Returns: The velocity of the entity.

Return Type: AZ::Vector3

Default Return: AZ::Vector3::CreateZero()

SetVelocity

Sets the velocity of the entity.

Syntax

void SetVelocity(const AZ::Vector3& velocity)

Parameter Type Description

velocity AZ::Vector3 Specifies the velocity to set.

Version 1.8
491

Lumberyard Developer Guide
Lua API Reference

GetAcceleration

Gets the linear acceleration of the entity.

Syntax

AZ::Vector3 GetAcceleration()

Returns: A vector containing the linear acceleration of the entity.

Return Type: AZ::Vector3

Default Return: AZ::Vector3::CreateZero()

GetAngularVelocity

Gets the angular velocity of the entity.

Syntax

AZ::Vector3 GetAngularVelocity()

Returns: A vector containing the angular velocity of the entity.

Return Type: AZ::Vector3

Default Return: AZ::Vector3::CreateZero()

SetAngularVelocity

Sets the angular velocity of the entity to the specified amount.

Syntax

void SetAngularVelocity(const AZ::Vector3& angularVelocity)

Parameter Type Description

angularVelocity AZ::Vector3 The angular velocity to set.

GetAngularAcceleration

Gets the angular acceleration of the entity

Syntax

AZ::Vector3 GetAngularAcceleration()

Returns: A vector containing the angular acceleration of the entity.

Return Type: AZ::Vector3

Default Return: AZ::Vector3::CreateZero()

GetMass

Retrieves the mass of the entity.

Version 1.8
492

Lumberyard Developer Guide
Lua API Reference

Syntax

float GetMass()

Returns: The mass of the entity.

Return Type: float

Default Return: 0.0f

PhysicsComponentNotificationBus

This bus handles events emitted by a Physics component and by the Physics system.

OnPhysicsEnabled

Fires when an entity begins participating in the physics simulation. If the entity is active when a handler
connects to the bus, then OnPhysicsEnabled() is immediately dispatched.

Note
If physics is enabled, OnPhysicsEnabled fires immediately upon connecting to the bus.

Syntax

void OnPhysicsEnabled()

OnPhysicsDisabled

Fires when an entity ends its participation in the physics simulation.

Syntax

void OnPhysicsDisabled()

OnCollision

Fires when an entity collides with another entity.

Syntax

void OnCollision(const Collision& collision)

Parameter Type Description

collision Collision Contains information about the collision that occurred.
See the following Collision struct.

struct Collision
 {
 AZ_TYPE_INFO(Collision, "{33756BD4-24D4-4DAE-A849-537114D52F7D}");
 AZ_CLASS_ALLOCATOR(Collision, AZ::SystemAllocator, 0);

 AZ::EntityId m_entity; // ID of other entity involved in event
 AZ::Vector3 m_position; // Contact point in world coordinates
 AZ::Vector3 m_normal; // Normal to the collision
 float m_impulse; // Impulse applied by the collision resolver

Version 1.8
493

Lumberyard Developer Guide
Lua API Reference

 AZ::Vector3 m_velocityA; // Velocities of the first entity involved in the
 collision
 AZ::Vector3 m_velocityB; // Velocities of the second entity involved in
 the collision
 float m_massA; // Masses of the first entity involved in the
 collision
 float m_massB; // Masses of the second entity involved in the
 collision
 }

PhysicsSystemRequestBus

Requests for the physics system

RayCast

Casts a ray and retrieves a list of results.

Syntax

RayCastHit RayCast(const AZ::Vector3& begin, const AZ::Vector3& direction, float
 maxDistance, AZ::u32 maxHits, AZ::u32 query)

Parameter Type Description

begin const AZ::Vector3& The origin of the ray

direction const AZ::Vector3& The direction for the ray to travel

maxDistance float The maximum distance the ray will travel

maxHits AZ::u32 The maximum number of hits found before the search is
aborted

query AZ::u32 The entity types to hit. See the PhysicalEntityTypes
enum that follows.

Returns: A RayCastHit struct. For details, see the code listing that follows.

Return Type: PhysicsSystemRequests::RayCastHit

Default Return: RayCastHit()

struct RayCastHit
{
 AZ_TYPE_INFO(RayCastHit, "{3D8FA68C-A145-44B4-BA18-F3405D83A9DF}");
 AZ_CLASS_ALLOCATOR(RayCastHit, AZ::SystemAllocator, 0);

 float m_distance = 0.0f; // The distance from RayCast begin to the hit.
 AZ::Vector3 m_position; // The position of the hit in world space.
 AZ::Vector3 m_normal; // The normal of the surface hit.
 AZ::EntityId m_entityId; // The ID of the AZ::Entity hit, or
 // AZ::InvalidEntityId if hit object is not an AZ::Entity.
};

RagdollPhysicsRequestBus

Messages serviced by the Cry character physics ragdoll behavior.

Version 1.8
494

Lumberyard Developer Guide
Lua API Reference

EnterRagdoll

Causes an entity with a skinned mesh component to disable its current physics and enable ragdoll physics.

Syntax

void EnterRagdoll()

ExitRagdoll

Causes the ragdoll component to deactivate itself and reenable the entity's physics component.

Syntax

void ExitRagdoll()

DecalComponentRequestBus

This EBus interface handles messages serviced by the Decal component.

SetVisibility

Specifies the decal's visibility.

Syntax

void SetVisibility(bool visible)

Parameter Type Description

visible bool Specify true to make the decal visible, false to hide it.

Show

Makes the decal visible.

Syntax

void Show()

Hide

Hides the decal.

Syntax

void Hide()

LensFlareComponentRequestBus

This EBus interface handles messages serviced by the Lens Flare component.

SetLensFlareState

Controls the lens flare state.

Version 1.8
495

Lumberyard Developer Guide
Lua API Reference

Syntax

void SetLensFlareState(State state)

Parameter Type Description

state State Specify On to turn on the lens flare; specify Off to turn it
off.

TurnOnLensFlare

Turns the lens flare on.

Syntax

void TurnOnLensFlare()

TurnOffLensFlare

Turns the lens flare off.

Syntax

void TurnOffLensFlare()

ToggleLensFlare

Toggles the lens flare state.

Syntax

void ToggleLensFlare()

LensFlareComponentNotificationBus

This EBus interface handles events dispatched by the Lens Flare component.

LensFlareTurnedOn

Notifies that the lens flare has been turned on.

Syntax

void LensFlareTurnedOn()

LensFlareTurnedOff

Notifies that the lens flare has been turned off.

Syntax

void LensFlareTurnedOff()

Version 1.8
496

Lumberyard Developer Guide
Lua API Reference

LightComponentRequestBus

This EBus interfaces handles messages serviced by the light component.

SetLightState

Controls the light state.

Syntax

void SetLightState(State state)

Parameter Type Description

state State Specify On to turn on the light; specify Off to turn it off.

TurnOnLight

Turns the light on.

Syntax

void TurnOnLight()

TurnOffLight

Turns the light off.

Syntax

void TurnOffLight()

ToggleLight

Toggles the light state.

Syntax

void ToggleLight()

LightComponentNotificationBus

Light component notifications.

LightTurnedOn

Event sent when a light component is turned on.

Syntax

void LightTurnedOn()

LightTurnedOff

Event sent when a light component is turned off.

Version 1.8
497

Lumberyard Developer Guide
Lua API Reference

Syntax

void LightTurnedOff()

ParticleComponentRequestBus

Provides access to the particle component.

SetVisibility

Specifies the visibility of the particle component.

Syntax

void SetVisibility(bool visible)

Parameter Type Description

visible bool Specify true to make the particle component visible;
false to hide it.

Show

Makes the particle component visible.

Syntax

void Show()

Hide

Hides the particle component.

Syntax

void Hide()

SetupEmitter

Sets up an effect emitter with the specified name and settings.

Syntax

void SetupEmitter(const AZStd::string& emitterName, const ParticleEmitterSettings&
 settings)

Parameter Type Description

emitterName const AZStd::string& The name of the emitter to set up.

settings const

ParticleEmitterSettings&

Contains particle emitter settings. For more information,
see ParticleComponent.cpp.

Version 1.8
498

Lumberyard Developer Guide
Lua API Reference

SimpleStateComponentRequestBus

This EBus interface handles messages serviced by the Simple State component. The Simple State
component provides a simple state machine. Each state is represented by a name and zero or more
entities that are activated when the state is entered and deactivated when the state is left.

SetState

Sets the active state

Syntax

void SetState(const char* stateName)

Parameter Type Description

stateName char The name of the state.

SetStateByIndex

Sets the active state using a 0-based index.

Syntax

void SetStateByIndex(AZ::u32 stateIndex)

Parameter Type Description

stateIndex AZ::u32 The 0-based index of the state.

SetToNextState

Advances to the next state. If the next state is null, the first state is set.

Syntax

void SetToNextState()

SetToPreviousState

Sets the previous state. If the previous state is null, the end state is set.

Syntax

void SetToPreviousState()

SetToFirstState

Sets the first state.

Syntax

Version 1.8
499

Lumberyard Developer Guide
Lua API Reference

void SetToFirstState()

SetToLastState

Sets the last state.

Syntax

void SetToLastState()

GetNumStates

Get the number of states.

Syntax

AZ::u32 GetNumStates()

Returns: The number of states.

Return Type: AZ::u32

Default Return: 0

GetCurrentState

Gets the current state.

Syntax

const char* GetCurrentState()

Returns: The current state.

Return Type: const char*

Default Return: nullptr

SimpleStateComponentNotificationBus

This EBus interface handles events dispatched by the Simple State component.

OnStateChanged

Notify that the state has changed from oldState to newState.

Syntax

void OnStateChanged(const char* oldState, const char* newState)

Parameter Type Description

oldState char The name of the old state.

newState char The name of the new state.

Version 1.8
500

Lumberyard Developer Guide
Lua API Reference

SpawnerComponentRequestBus

This EBus interface handles messages serviced by the SpawnerComponent.

Spawn

Spawns the selected slice at the entity's location.

Syntax

AzFramework::SliceInstantiationTicket Spawn()

Returns: A slice instantiation ticket.

Return Type: AzFramework::SliceInstantiationTicket

Default Return: AzFramework::SliceInstantiationTicket()

SpawnRelative

Spawns the selected slice at the entity's location with the specified relative offset.

Syntax

AzFramework::SliceInstantiationTicket SpawnRelative(const AZ::Transform& relative)

Parameter Type Description

relative AZ::Transform Relative offset from the entity's location.

Returns: A slice instantiation ticket.

Return Type: AzFramework::SliceInstantiationTicket

Default Return: AzFramework::SliceInstantiationTicket()

SpawnAbsolute

Spawns the selected slice at the specified world transform.

Syntax

AzFramework::SliceInstantiationTicket SpawnAbsolute(const AZ::Transform& world)

Parameter Type Description

world const AZ::Transform& Specifies the world transform at which to spawn the
selected slice.

Returns: A slice instantiation ticket.

Return Type: AzFramework::SliceInstantiationTicket

Default Return: AzFramework::SliceInstantiationTicket()

Version 1.8
501

Lumberyard Developer Guide
Lua API Reference

SpawnerComponentNotificationBus

This EBus interface handles events dispatched by the SpawnerComponent.

OnSpawnBegin

Notifies that a slice has been spawned, but that its entities have not yet been activated. OnEntitySpawned
events are about to be dispatched.

Syntax

void OnSpawnBegin(const AzFramework::SliceInstantiationTicket& ticket)

Parameter Type Description

ticket AzFramework::SliceInstantiationTicketThe slice instantiation ticket.

OnSpawnEnd

Notifies that a spawn has been completed. All OnEntitySpawned events have been dispatched.

Syntax

void OnSpawnEnd(const AzFramework::SliceInstantiationTicket& ticket)

Parameter Type Description

ticket AzFramework::SliceInstantiationTicketThe slice instantiation ticket.

OnEntitySpawned

Notifies that an entity has spawned. This event is called once for each entity spawned in a slice.

Syntax

void OnEntitySpawned(const AzFramework::SliceInstantiationTicket& ticket, const
 AZ::EntityId& spawnedEntities)

Parameter Type Description

ticket AzFramework::SliceInstantiationTicket The slice instantiation ticket.

spawnedEntities AZ::EntityId The ID of the spawned entity.

TagComponentRequestBus

Provides services for managing tags on entities.

HasTag

Checks for a specified tag on an entity.

Version 1.8
502

Lumberyard Developer Guide
Lua API Reference

Syntax

bool HasTag(const Tag&)

Parameter Type Description

tag Tag The tag to query for.

Returns: true if the entity has the specified tag; false otherwise.

Return Type: bool

Default Return: false

AddTag

Adds the specified tag to the entity if it doesn't already have it.

Syntax

void AddTag(const Tag&)

Parameter Type Description

Tag Tag The tag to add.

AddTags

Adds a specified list of tags to the entity if the list does not exist on the entity.

Syntax

void AddTags(const Tags& tags)

Parameter Type Description

tags Tags The list of tags to add.

RemoveTag

Removes a specified tag from the entity if the tag is present.

Syntax

void RemoveTag(const Tag&)

Parameter Type Description

tag Tag The tag to remove.

Version 1.8
503

Lumberyard Developer Guide
Lua API Reference

RemoveTags

Removes the specified list of tags from the entity if the list exists on the entity.

Syntax

void RemoveTags(const Tags& tags)

Parameter Type Description

tags Tags The list of tags to remove.

GetTags

Retrieves the list of tags on the entity.

Syntax

const Tags& GetTags()

Returns: A list of the tags on the entity.

Return Type: static Tags

Default Return: s_emptyTags

TagGlobalRequestBus

Provides services for querying Tags on entities.

RequestTaggedEntities

Queries for tagged entities. Handlers respond if they have the tag (that is, they are listening on the tag's
channel). Use AZ::EbusAggregateResults to handle more than the first responder.

Syntax

const AZ::EntityId RequestTaggedEntities()

Returns: The ID of an entity that has a tag.

Return Type: const AZ::EntityId

Default Return: s_invalidEntityId

TagGlobalNotificationBus

Handler for global Tag component notifications.

OnEntityTagAdded

Notifies that a tag has been added to an entity. When connecting to the tag global notification bus, your
OnEntityTagAdded handler fires once for each entity that already has a tag. After the initial connection, you
are alerted whenever a new entity gains or loses a tag.

Syntax

Version 1.8
504

Lumberyard Developer Guide
Lua API Reference

void OnEntityTagAdded(const AZ::EntityId&)

OnEntityTagRemoved

Notifies that a Tag has been removed from an entity.

Syntax

void OnEntityTagRemoved(const AZ::EntityId&)

TagComponentNotificationsBus

Provides notifications regarding tags on entities.

OnTagAdded

Notifies listeners when a tag has been added.

Syntax

void OnTagAdded(const Tag&)

OnTagRemoved

Notifies listeners when a tag is removed.

Syntax

void OnTagRemoved(const Tag&)

TriggerAreaRequestsBus

This EBus interface services requests made to the Trigger Area component.

AddRequiredTag

Adds a required tag to the activation filtering criteria of the current component.

Syntax

void AddRequiredTag(const Tag& requiredTag)

Parameter Type Description

requiredTag Tag The tag to add to the activation filtering criteria.

RemoveRequiredTag

Removes a required tag from the activation filtering criteria of the current component.

Syntax

void RemoveRequiredTag(const Tag& requiredTag)

Version 1.8
505

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

requiredTag Tag The tag to remove from the activation filtering criteria.

AddExcludedTag

Adds an excluded tag to the activation filtering criteria of the current component.

Syntax

void AddExcludedTag(const Tag& excludedTag)

Parameter Type Description

excludedTag Tag The excluded tag to add to the activation filtering
criteria.

RemoveExcludedTag

Removes an excluded tag from the activation filtering criteria of the current component.

Syntax

void RemoveExcludedTag(const Tag& excludedTag)

Parameter Type Description

excludedTag Tag The excluded tag to remove from the activation filtering
criteria.

TriggerAreaNotificationBus

This EBus handles events for a given trigger area when an entity enters or leaves.

OnTriggerAreaEntered

Notifies when an entity enters the trigger area.

Syntax

void OnTriggerAreaEntered(AZ::EntityId enteringEntityId)

Parameter Type Description

enteringEntityId AZ::EntityId The ID of the entity that entered the trigger area.

OnTriggerAreaExited

Notifies when an entity exits the trigger area.

Version 1.8
506

Lumberyard Developer Guide
Lua API Reference

Syntax

void OnTriggerAreaExited(AZ::EntityId exitingEntityId)

Parameter Type Description

exitingEntityId AZ::EntityId The ID of the entity that exited the trigger area.

TriggerAreaEntityNotificationBus

Events fired for a specified trigger when the trigger area has been entered or exited.

OnEntityEnteredTriggerArea

Notifies when an enteringEntityId instance has entered the specified trigger area.

Syntax

void OnEntityEnteredTriggerArea(AZ::EntityId triggerId)

Parameter Type Description

triggerId AZ::EntityId The ID of the trigger that has been entered.

OnEntityExitedTriggerArea

Notifies when an enteringEntityId instance has exited the specified trigger area.

Syntax

void OnEntityExitedTriggerArea(AZ::EntityId triggerId)

Parameter Type Description

triggerId AZ::EntityId The ID of the trigger that has been exited.

BoxShapeComponentRequestsBus

Services provided by the Box Shape component.

GetBoxConfiguration

Retrieves the box configuration.

Syntax

BoxShapeConfiguration GetBoxConfiguration()

Return Type: BoxShapeConfiguration

Version 1.8
507

Lumberyard Developer Guide
Lua API Reference

Default Return: BoxShapeConfiguration()

SetBoxDimensions

Sets new dimensions for the Box Shape.

Syntax

void SetBoxDimensions(AZ::Vector3 newDimensions)

Parameter Type Description

newDimensions AZ::Vector3 Specifies dimensions along the X, Y, and Z axes.

CapsuleShapeComponentRequestsBus

Services provided by the Capsule Shape Component.

GetCapsuleConfiguration

Retrieves the capsule configuration.

Syntax

CapsuleShapeConfiguration GetCapsuleConfiguration()

Returns: The capsule configuration.

Return Type: CapsuleShapeConfiguration

Default Return: CapsuleShapeConfiguration()

SetHeight

Sets the end to end height of capsule, including the cylinder and both caps.

Syntax

void SetHeight(float newHeight)

Parameter Type Description

newHeight float Specifies the new height of the capsule.

SetRadius

Sets the radius of the capsule.

Syntax

void SetRadius(float newRadius)

Version 1.8
508

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

newRadius float Specifies the new radius of the capsule.

CylinderShapeComponentRequestsBus

This EBus interface handles messages for the Cylinder Shape component.

GetCylinderConfiguration

Retrieves the cylinder configuration.

Syntax

CylinderShapeConfiguration GetCylinderConfiguration()

Returns: The cylinder configuration.

Return Type: CylinderShapeConfiguration

Default Return: CylinderShapeConfiguration()

SetHeight

Sets the height of the cylinder.

Syntax

void SetHeight(float newHeight)

Parameter Type Description

newHeight float Specifies the height of the cylinder.

SetRadius

Sets the radius of the cylinder.

Syntax

void SetRadius(float newRadius)

Parameter Type Description

newRadius float Specifies the radius of the cylinder.

ShapeComponentRequestsBus

Handles requests for services provided by the Shape component.

GetShapeType

Retrieves the type of shape of a component.

Version 1.8
509

Lumberyard Developer Guide
Lua API Reference

Syntax

AZ::Crc32 GetShapeType()

Returns: A Crc32 value that indicates the type of shape of the current component.

Return Type: AZ::Crc32

Default Return: AZ::Crc32()

IsPointInside

Checks if a given point is inside or outside a shape.

Syntax

bool IsPointInside(const AZ::Vector3& point)

Parameter Type Description

point AZ::Vector3 Specifies the coordinates of the point to be tested.

Returns: A bool value that indicates whether the point is inside or out.

Return Type: bool

Default Return: false

DistanceFromPoint

Retrieves the minimum distance the specified point is from the shape.

Syntax

float DistanceFromPoint(const AZ::Vector3& point)

Parameter Type Description

point AZ::Vector3 Specifies the coordinates of the point from which to
calculate distance.

Returns: A float that indicates the distance the point is from the shape.

Return Type: float

Default Return: 0.f

DistanceSquaredFromPoint

Retrieves the minimum squared distance the specified point is from the shape.

Syntax

float DistanceSquaredFromPoint(const AZ::Vector3& point)

Version 1.8
510

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

point AZ::Vector3 Specifies the coordinates of the point from which to
calculate the squared distance.

Returns: A float that contains the minimum squared distance the specified point is from the shape.

Return Type: float

Default Return: 0.f

ShapeComponentNotificationsBus

Notifications sent by the shape component.

OnShapeChanged

Notifies that the shape component has been modified.

Syntax

void OnShapeChanged(ShapeChangeReasons changeReason)

Parameter Type Description

changeReason ShapeChangeReasons Informs listeners of the reason for this shape change
(transform change, the shape dimensions being
altered.)

SphereShapeComponentRequestsBus

Services provided by the Sphere Shape Component

GetSphereConfiguration

Retrieves the sphere configuration.

Syntax

SphereShapeConfiguration GetSphereConfiguration()

Returns: The sphere configuration.

Return Type: SphereShapeConfiguration

Default Return: SphereShapeConfiguration()

SetRadius

Sets the specified radius for the sphere shape component.

Syntax

void SetRadius(float newRadius)

Version 1.8
511

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

newRadius float Specifies the radius of the sphere shape.

EntityBus

Dispatches events specific to a given entity.

OnEntityActivated

Notifies when entity activation has completed. If the entity is active when a handler connects to the bus,
then the OnEntityActivated event is sent immediately.

Syntax

void OnEntityActivated(const AZ::EntityId&)

OnEntityDeactivated

Notifies when the entity is about to be deactivated.

Syntax

void OnEntityDeactivated(const AZ::EntityId&)

TickBus

Tick events are executed on the main game or component thread.

Note
Warning: Adding mutex to the tick bus degrades performance in most cases.

OnTick

Notifies the delta time if the delta from the previous tick (in seconds) and time point is its absolute value.

Syntax

void OnTick(float deltaTime, ScriptTimePoint time)

Parameter Type Description

deltaTime float The latest time between ticks.

time ScriptTimePoint The time at the current tick.

TickRequestBus

Make requests from this bus to get the frame time or return the current time as seconds.

GetTickDeltaTime

Gets the latest time between ticks.

Syntax

Version 1.8
512

Lumberyard Developer Guide
Lua API Reference

float GetTickDeltaTime()

Returns: The latest time between ticks.

Return Type: float

Default Return: 0.f

GetTimeAtCurrentTick

Gets the time in seconds at the current tick.

Syntax

ScriptTimePoint GetTimeAtCurrentTick()

Returns: The time in seconds at the current tick.

Return Type: ScriptTimePoint

Default Return: ScriptTimePoint()

TransformNotificationBus

This EBus is a listener for transform changes.

OnTransformChanged

Notifies when the local transform of the entity has changed. A local transform update always implies a world
transform change.

Syntax

void OnTransformChanged(const Transform& local, const Transform& world)

Parameter Type Description

local Transform The local transform of the entity.

world Transform The world transform.

OnParentChanged

Notifies when the parent of an entity has changed. When the old or new parent is invalid, the invalid
EntityId is equal to InvalidEntityId.

Syntax

void OnParentChanged(EntityId oldParent, EntityId newParent)

Parameter Type Description

oldParent EntityId The entity ID of the old parent.

newParent EntityId The entity ID of the new parent.

Version 1.8
513

Lumberyard Developer Guide
Lua API Reference

GameEntityContextRequestBus

This EBus interfaces makes requests to the game entity context component.

DestroyGameEntity

Destroys an entity. The entity is deactivated immediately and is destroyed in the next tick.

Syntax

void DestroyGameEntity(const AZ::EntityId& id)

Parameter Type Description

id AZ::EntityId The ID of the entity to be destroyed.

DestroyGameEntityAndDescendants

Destroys an entity and all its descendants, the entity and its descendants are deactivated immediately and
will be destroyed the next tick.

Syntax

void DestroyGameEntityAndDescendants(AZ::EntityId& id)

Parameter Type Description

id AZ::EntityId The ID of the entity to be destroyed. The entity's
descendants will also be destroyed.

ActivateGameEntity

Activates an entity by the specified ID.

Syntax

void ActivateGameEntity(AZ::EntityId& id)

Parameter Type Description

id AZ::EntityId The ID of the entity to activate.

DeactivateGameEntity

Deactivates an entity by the specified ID.

Syntax

void DeactivateGameEntity(AZ::EntityId& id)

Version 1.8
514

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

id AZ::EntityId The ID of the entity to deactivate.

DestroySliceByEntity

Destroys the slice instance that contains the entity with the specified ID.

Syntax

bool DestroySliceByEntity(AZ::EntityId& id)

Parameter Type Description

id AZ::EntityId

Returns: true if the slice instance was successfully destroyed.

Return Type: bool

Default Return: false

RandomManagerBus

Provides functions for random numbers.

RandomFloat

Generates a random float value.

Syntax

float RandomFloat()

Parameter Type Description

tag AZStd::string The tag.

Returns: A random value between [0.0f, 1.0f).

Return Type: float

Default Return: 0.0f

RandomBool

Generates a random Boolean value.

Syntax

bool RandomBool(const AZStd::string& tag)

Version 1.8
515

Lumberyard Developer Guide
Lua API Reference

Parameter Type Description

tag AZStd::string The tag.

Returns: A random Boolean value.

Return Type: bool

Default Return: false

RandomInt

Generates a random unsigned integer value.

Syntax

unsigned int RandomInt(const AZStd::string& tag)

Parameter Type Description

tag AZStd::string The tag.

Returns: A random unsigned integer value.

Return Type: unsigned int

Default Return: 0

RandomInRange

Generates a random unsigned integer value within a specified range.

Syntax

unsigned int RandomInRange(const AZStd::string& tag, unsigned int min, unsigned int max)

Parameter Type Description

tag AZStd::string The tag.

min unsigned int The minimum value that can be returned.

max unsigned int The maximum value that can be returned.

Returns: A random unsigned integer value within the specified range.

Return Type: unsigned int

Default Return: 0

CameraRequestBus

Provides access to camera properties and services.

Version 1.8
516

Lumberyard Developer Guide
Lua API Reference

GetFov

Gets the camera's field of view in degrees

Syntax

float GetFOV()

Returns: The camera's field of view as a float.

Return Type: float

Default Return: s_defaultFoV

GetNearClipDistance

Gets the camera's distance from the near clip plane in meters.

Syntax

float GetNearClipDistance()

Returns: The camera's distance from the near clip plane as a float in meters.

Return Type: float

Default Return: s_defaultNearPlaneDistance

GetFarClipDistance

Gets the camera's distance from the far clip plane in meters.

Syntax

float GetFarClipDistance()

Returns: The camera's distance from the far clip plane as a float in meters.

Return Type: float

Default Return: s_defaultFarClipPlaneDistance

GetFrustumWidth

Gets the camera frustum's width.

Syntax

float GetFrustumWidth()

Returns: The camera frustum's width as a float.

Return Type: float

Default Return: s_defaultFrustumDimension

GetFrustumHeight

Gets the camera frustum's height.

Version 1.8
517

Lumberyard Developer Guide
Lua API Reference

Syntax

float GetFrustumHeight()

Returns: The camera frustum's height as a float.

Return Type: float

Default Return: s_defaultFrustumDimension

SetFov

Sets the camera's field of view in degrees.

Syntax

void SetFov(float fov)

Parameter Type Description

fov float The field of view in degrees. Possible values are 0 < fov
< 180.

SetNearClipDistance

Sets the near clip plane to the specified distance from the camera in meters.

Syntax

void SetNearClipDistance(float nearClipDistance)

Parameter Type Description

nearClipDistance float The distance from the camera in meters. The value
should be small, but greater than 0.

SetFarClipDistance

Sets the far clip plane to the specified distance from the camera in meters.

Syntax

void SetFarClipDistance(float farClipDistance)

Parameter Type Description

farClipDistance float The distance from the camera in meters.

SetFrustumWidth

Sets the camera frustum's width.

Version 1.8
518

Lumberyard Developer Guide
Lua API Reference

Syntax

void SetFrustumWidth(float width)

Parameter Type Description

width float The camera frustum's width.

SetFrustumHeight

Sets the camera frustum's height.

Syntax

void SetFrustumHeight(float height)

Parameter Type Description

height float The camera frustum's height.

MakeActiveView

Makes the camera the active view.

Syntax

void MakeActiveView()

HttpClientComponentNotificationBus

Event handler for Http requests.

OnHttpRequestSuccess

Notifies when an HTTP request is successful.

Syntax

void OnHttpRequestSuccess(int responseCode, AZStd::string responseBody)

Parameter Type Description

responseCode int The response code.

responseBody AZStd::string The body of the response.

OnHttpRequestFailure

Sent when an HTTP request failed.

Syntax

Version 1.8
519

Lumberyard Developer Guide
Lua API Reference

void OnHttpRequestFailure(int responseCode)

Parameter Type Description

responseCode int The response code.

HttpClientComponentRequestBus

Provides services to make HTTP requests.

MakeHttpRequest

Makes an HTTP request.

Syntax

void MakeHttpRequest(AZStd::string url, AZStd::string method, AZStd::string jsonBody)

Parameter Type Description

url AZStd::string The request URL.

method AZStd::string The HTTP request method.

jsonBody AZStd::string The JSON body of the request.

HMDDeviceRequestBus

HMD device bus used to communicate with the rest of the engine. Every device supported by the engine
lives in its own Gem and supports this bus. A device wraps the underlying SDK into a single object for easy
use by the rest of the system. Every device created should register with the EBus in order to be picked up
as a usable device during initialization by the EBus function BusConnect().

GetTrackingState

Gets the most recent HMD tracking state.

Syntax

TrackingState* GetTrackingState()

Returns: The tracking state.

Return Type: TrackingState*

Default Return: nullptr

RecenterPose

Center the current pose for the HMD based on the current direction in which the viewer is looking.

Syntax

Version 1.8
520

Lumberyard Developer Guide
Lua API Reference

void RecenterPose()

SetTrackingLevel

Set the current tracking level of the HMD. Supported tracking levels are defined in struct TrackingLevel.

Syntax

void SetTrackingLevel(const AZ::VR::HMDTrackingLevel level)

Parameter Type Description

level AZ::VR::HMDTrackingLevel The tracking level to use with the current HMD. Possible
values:

kHead - The sensor reads as if the player is standing.

kFloor - The sensor reads as if the player is seated or
on the floor.

OutputHMDInfo

Outputs the information about the currently connected HMD (contained in the HMDDeviceInfo object) to the
console and log file.

Syntax

void OutputHMDInfo()

GetDeviceInfo

Get the device info object for this particular HMD.

Syntax

HMDDeviceInfo* GetDeviceInfo()

Returns: A pointer to the current HMD's HMDDeviceInfo struct.

Return Type: HMDDeviceInfo*

Default Return: nullptr

IsInitialized

Gets whether or not the HMD has been initialized. The HMD has been initialized when it has fully
established an interface with its required SDK and is ready to be used.

Syntax

bool IsInitialized()

Returns: true if the device has been initialized and is usable; otherwise, returns false.

Return Type: bool

Version 1.8
521

http://docs.aws.amazon.com/lumberyard/latest/developerguide/lua-scripting-ref-vr.html#lua-scripting-ref-vr-struct-hmddeviceinfo
http://docs.aws.amazon.com/lumberyard/latest/developerguide/lua-scripting-ref-vr.html#lua-scripting-ref-vr-struct-hmddeviceinfo

Lumberyard Developer Guide
Lua API Reference

Default Return: false

ControllerRequestBus

Provides information about HMD device controllers.

GetTrackingState

Returns a TrackingState object that contains tracking info about a connected controller. For more
information, see struct TrackingState.

Syntax

TrackingState* GetTrackingState(ControllerIndex controllerIndex)

Parameter Type Description

controllerIndex int Specify 0 for the left controller; 1 for the right controller.

Returns: A pointer to the TrackingState object for the connected controller.

Return Type: TrackingState*

Default Return: nullptr

IsConnected

Returns whether the specified controller is connected.

Syntax

bool IsConnected(ControllerIndex controllerIndex)

Parameter Type Description

controllerIndex int Specify 0 for the left controller; 1 for the right controller.

Returns: A Boolean that indicates whether the specified controller is connected.

Return Type: bool

Default Return: false

VideoPlaybackRequestBus

Provides access to video playback services.

Play

Start or resume playing a movie that is attached to the current entity.

Syntax

void Play()

Version 1.8
522

http://docs.aws.amazon.com/lumberyard/latest/developerguide/lua-scripting-ref-vr.html#lua-scripting-ref-vr-struct-trackingstate

Lumberyard Developer Guide
Lua API Reference

Pause

Pause a movie that is attached to the current entity.

Syntax

void Pause()

Stop

Stop playing a movie that is attached to the current entity.

Syntax

void Stop()

EnableLooping

Set whether or not the movie attached to the current entity loops.

Syntax

void EnableLooping(bool enable)

Parameter Type Description

enable bool Specify true to loop; false to not loop.

IsPlaying

Returns whether or not the video is currently playing

Syntax

bool IsPlaying()

Returns: true if the video is currently playing; false if the video is paused or stopped.

Return Type: bool

Default Return: false

SetPlaybackSpeed

Sets the playback speed based on a factor of the current playback speed.

Syntax

void SetPlaybackSpeed(float speedFactor)

Parameter Type Description

speedFactor float The speed modification factor to apply to playback
speed. For example, specify 0.5f to play at half speed or
2.0f to play at double speed.

Version 1.8
523

Lumberyard Developer Guide
Lua API Reference

VideoPlaybackNotificationBus

This bus contains event handlers for video playback services.

OnPlaybackStarted

Event that fires when the movie starts playback.

Syntax

void OnPlaybackStarted()

OnPlaybackPaused

Event that fires when the movie pauses playback.

Syntax

void OnPlaybackPaused()

OnPlaybackStopped

Event that fires when the movie stops playback.

Syntax

void OnPlaybackStopped()

OnPlaybackFinished

Event that fires when the movie completes playback.

Syntax

void OnPlaybackFinished()

UI Lua Reference

You can use the following Lua scripting functions when loading and unloading canvases with Lua in
Lumberyard Editor. For component entity Lua scripting functions, see the Component Entity Lua API
Reference.

LyShineLua.ShowMouseCursor

Toggles the visibility of the mouse cursor.

Parameters

visible

Displays 1 if the mouse cursor is displayed or 0 if it is hidden.

Returns

None.

Version 1.8
524

http://docs.aws.amazon.com/lumberyard/latest/developerguide/lua-api.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/lua-api.html

Lumberyard Developer Guide
Lua API Reference

UiCanvasLuaProxy:LoadCanvas

Loads the canvas file that you specify and immediately starts rendering it.

Parameters

canvasFilename

The path to the *.uicanvas file to load.

Type: String

Note
This path name should be relative to your project folder. For example, if you were
loading the canvas in the FeatureTests project (\dev\FeatureTests\UI\Canvases
\UiCompMain.uicanvas), then the path name that you would pass to the LoadCanvas method
is:
UI/Canvases/UiCompMain.uicanvas

Returns

AZ::EntityId for the loaded canvas entity.

UiCanvasLuaProxy:UnloadCanvas

Unloads a canvas for the specified entity ID.

Parameters

canvasEntityId

The AZ::EntityId of the canvas to unload.

Type: AZ::EntityIdfind

Returns

AZ::EntityId for the loaded canvas entity.

UiCanvasLuaProxy:BusConnect

Connects the specified canvas entity to the UiCanvasLuaBus.

Parameters

entityId

AZ::EntityId. A canvas entity identifier.

Returns

None.

Version 1.8
525

Lumberyard Developer Guide
Lua API Reference

UiCanvasLuaBus:FindElementById

Returns the AZ::EntityId for the specified canvas element identifier.

Parameters

id

Represents the identifier of an element stored within the canvas.

Type: Unsigned integer

Returns

AZ::EntityId of the specified element.

UiCanvasLuaBus:FindElementByName

Returns the AZ::EntityId for the specified canvas element name.

Parameters

name

Represents the name of an element stored within the canvas.

Type: String

Returns

AZ::EntityId of the specified element.

UiCanvasLuaBus:GetEnabled

Returns the enabled state of the canvas.

Parameters

None.

Returns

Returns true if the canvas is enabled; otherwise, false.

UiCanvasLuaBus:SetEnabled

Sets the enabled state of the canvas.

Parameters

enabled

Specifies whether the canvas is enabled.

Version 1.8
526

Lumberyard Developer Guide
Lua API Reference

Type: Boolean

Returns

None.

UiCanvasNotificationLuaProxy:BusConnect

Connects to the specified canvas entity’s UiCanvasNotificationBus.

Parameters

id

AZ::EntityId. A canvas entity identifier.

Returns

None.

UiCanvasNotificationLuaBus:OnAction

User defined in script. Called when the canvas broadcasts an action name.

Actions are broadcast by the canvas when they have been configured with an action name. For example, a
button can be configured to broadcast an action name when clicked.

Parameters

entityId

AZ::EntityId. The entity identifier that triggered the action.

actionName

The action name that was broadcast.

Type: String

Returns

None.

UiElementLuaProxy:BusConnect

Connects the specified element identity to the UiElementLuaBus.

Parameters

entityId

AZ::EntityId. An element entity identifier.

Version 1.8
527

Lumberyard Developer Guide
Lua API Reference

Returns

None.

UiElementLuaBus:GetEnabled

Returns the enabled state of the canvas.

Parameters

None.

Returns

Returns true if the element is enabled; otherwise, false.

UiElementLuaBus:SetEnabled

Sets the enabled state of the element.

Parameters

enabled

Specifies whether the element is enabled.

Type: Boolean

Returns

None.

UiFaderComponent:HasFaderHandler

Returns whether the specified entity identifier has a fader component.

Parameters

entityId

AZ::EntityId. The entity identifier to check the fader component for.

Returns

Returns true if the specified entity identifier has a fader component; otherwise, false.

UiFaderBus:SetFadeValue

Sets the starting alpha value from which to begin the fade.

Version 1.8
528

Lumberyard Developer Guide
Legacy Lua Scripting Reference

Parameters

fade

Alpha value from which to begin the fade.

Type: Float

Returns

None.

UiFaderBus:Fade

Executes the fade effect.

Parameters

targetValue

The value at which the fade ends.

Type: Float

Possible values: 0.0 through 1.0

speed

Speed for the effect to complete. The higher the value, the faster the fade effect takes place., except
for 0, which is a special exception that causes instant execution of the fade effect.

For example, 1 would take one second to fade from off to on, 2 takes half that time (twice as fast).

0.5, for example, is half the speed of 1.

Type: Float

Returns

None.

Legacy Lua Scripting Reference
The topics in this section document Lua functionality for the legacy script context. Starting with
Lumberyard 1.8, Lua scripts use the new behavior context (p. 338) that replaces the legacy script context.
Scripts that were written before the integration of the behavior context no longer work in Lumberyard
versions 1.8 and later. For information on updating Lua code from legacy script context to the new behavior
context, see the migration notes for Lumberyard 1.8.

Topics

• Entity System Script Callbacks (p. 530)

• Game Rules Script Callbacks (p. 531)

• Common Lua Globals and Functions (p. 533)

Version 1.8
529

http://docs.aws.amazon.com/lumberyard/latest/userguide/lumberyard-migrating-1-8.html

Lumberyard Developer Guide
Entity System Script Callbacks

• EntityUtils Lua Functions (p. 537)

• Lua Vector and Math Functions (p. 540)

• Physics Lua Functions (p. 550)

• Lua ScriptBind Reference (p. 551)

• Integrating Lua and C++ (p. 752)

Entity System Script Callbacks
This topic describes all callbacks for the Entity system. Use of these callbacks functions is not obligatory,
but some cases require that entities behave properly within the Lumberyard Editor. For example, the
OnReset callback should be used to clean the state when a user enters or leaves the game mode within the
Lumberyard Editor.

Default State Functions

Callback Function Description

OnSpawn Called after an entity is created by the Entity system.

OnDestroy Called when an entity is destroyed (like OnShutDown() gets called).

OnInit Called when an entity gets initialized via ENTITY_EVENT_INIT, and when its
ScriptProxy gets initialized.

OnShutDown Called when an entity is destroyed (like OnDestroy() gets called).

OnReset Usually called when an editor wants to reset the state.

OnPropertyChange Called by Lumberyard Editor when the user changes one of the properties.

Script State Functions

Callback Function Description

OnBeginState Called during Entity.GotoState() after the state has been changed (that is,
after OnEndState() is called on the old state).

OnBind Called when a child entity is attached to an entity. Parameters include:

• script table for the child entity

OnCollision Called when a collision between an entity and something else occurs.
Parameters include:

• script table with information about the collision

OnEndState Called during Entity.GotoState() while the old state is still active and before
OnBeginState() is called on the new state.

OnEnterArea Called when an entity has fully entered an area or trigger. Parameters include:

• areaId (int)

• fade fraction (float) This value is 1.0f if the entity has fully entered the area,
or 0.0f in the case of trigger boxes.

Version 1.8
530

Lumberyard Developer Guide
Game Rules Script Callbacks

Callback Function Description

OnEnterNearArea Called when an entity enters the range of an area. Works with Box-, Sphere-
and Shape-Areas if a sound volume entity is connected. Takes OuterRadius of
sound entity into account to determine when an entity is near the area.

OnLeaveArea Called when an entity has fully left an area or trigger. Parameters include:

• areaId (int)

• fade fraction (float) This value is always 0.0f.

OnLeaveNearArea Called when an entity leaves the range of an area. Works with Box-, Sphere-
and Shape-Areas if a sound volume entity is connected. Takes OuterRadius of
sound entity into account to determine when an entity is near the area.

OnMove Called whenever an entity moves through the world.

OnMoveNearArea Called when an entity moves. Works with Box-, Sphere- and Shape-Areas if
a sound volume entity is connected. Takes OuterRadius of sound entity into
account to determine when an entity is near the area.

OnProceedFadeArea Called when an entity has recently entered an area and fading is still in
progress. Parameters include:

• areaId (int)

• fade fraction (float)

OnSoundDone Called when a sound stops. Parameters include:

• soundId (int) The ID of the sound played, which was provided with the
request to play the sound.

OnStartGame Called when a game is started.

OnStartLevel Called when a new level is started.

OnTimer Called when a timer expires. Parameters include:

• timerId (int) The ID of the time, provided by Entity.SetTimer() .

• period (int) Length of time, in milliseconds, that the timer runs

OnUnBind Called when a child entity is about to be detached from an entity. Parameters
include:

• script table for the child entity

OnUpdate Called periodically by the engine on the entity's current state. This assumes
the console variable es_UpdateScript is set to 1.

Game Rules Script Callbacks
This topic provides reference information on callbacks used with the GameRules scripts.

Callback Function Description

OnAddTaggedEntity Called when a player is added as a tagged player on the minimap. Called on
the server only.

Version 1.8
531

Lumberyard Developer Guide
Game Rules Script Callbacks

Callback Function Description

• shooterId – Entity that tagged the target player.

• targetId – Tagged player.

OnClientConnect Called when a player connects. Called on the server only.

• channelId

OnClientDisconnect Called when a player disconnects. Called on the server only.

• channelId

OnClientEnteredGame Called when a player enters the game and is part of the game world. Called
on the server only.

• channelId – Channel identifier of the player.

• playerScriptTable – The player's script table.

• bReset – Boolean indicating whether or not the channel is from the reset
list.

• bLoadingSaveGame – Boolean indicating whether or not the call was
made during a saved game loading.

OnDisconnect Called when the player disconnects on the client. Called on the client only.

• cause – Integer identifying the disconnection cause. See
EDisconnectionCause.

• description – Human readable description of the disconnection cause.

OnChangeSpectatorModeCalled when a player changes the spectator mode. Called on the server only.

• entityId – Player who made the change.

• mode – New spectator mode (1=fixed, 2=free, 3= follow).

• targetId – Possible target entity to spectate.

• resetAll – Boolean indicating whether or not to reset player-related things
like the inventory.

OnChangeTeam Called when a player switches teams. Called on the server only.

• entityId – Player who switched teams.

• teamId – New team identifier.

Version 1.8
532

Lumberyard Developer Guide
Common Lua Globals and Functions

Callback Function Description

OnExplosion Called when an explosion is simulated. Called on the server and client.

• pos – Position of the explosion in the game world.

• dir – Direction of the explosion.

• shooterId

• weaponId

• shooter

• weapon

• materialId

• damage

• min_radius

• radius

• pressure

• hole_size

• effect

• effectScale

• effectClass

• typeId

• type

• angle

• impact

• impact_velocity

• impact_normal

• impact_targetId

• shakeMinR

• shakeMaxR

• shakeScale

• shakeRnd

• impact

• impact_velocity

• impact_normal

• impact_targetId

• AffectedEntities – Affected entities table.

• AffectedEntitiesObstruction – Affected entities obstruction table.

Common Lua Globals and Functions
• File location: Game/Scripts/common.lua

• Loaded from: Game/Scripts/main.lua

Globals

Use the following globals to avoid temporary Lua memory allocations:

Version 1.8
533

Lumberyard Developer Guide
Common Lua Globals and Functions

Name Description

g_SignalData_point Basic 3D vector value used by g_SignalData.

g_SignalData_point2 Basic 3D vector value used by g_SignalData.

g_SignalData Used to pass signal data in AI behavior scripts (see: Signals (p. 86)).

g_StringTemp1 Commonly used for temporary strings inside Lua functions.

g_HitTable Commonly used by the Physics.RayWorldIntersection function.

A g_HitTable used with Physics.RayWorldIntersection can contain the following parameters:

Parameter Description

pos 3D vector world coordinates of the ray hit.

normal 3D normal vector of the ray hit.

dist Distance of the ray hit.

surface Type of surface hit.

entity Script table of entity hit (if one was hit).

renderNode Script handle to a foliage or static render node.

A g_SignalData table can contain the following parameter types:

Type Description

Vec3 3D vector.

ScriptHandle Normally used to pass along an entity ID.

Floating Point Floating point value.

Integer Integer or number value.

String String value.

AIReload()

Reloads the aiconfig.lua Lua script (Game/Scripts/AI/).

AIDebugToggle()

Toggles the ai_DebugDraw console variable on and off.

ShowTime()

Logs the current system time to the console. Format is Day/Month/Year, Hours:Minutes.

Version 1.8
534

Lumberyard Developer Guide
Common Lua Globals and Functions

count()
Returns the number of key-value pairs in a given table.

Parameter Description

_tbl Table to retrieve the number of key-value pairs from.

new()
Creates a new table by copying an specified existing table. This function is commonly used to create a local
table based on an entity parameter table.

Parameter Description

_obj Existing table you want to create a new one from.

norecurse Flag indicating whether or not to recursively recreate all sub-tables. If set to
TRUE, sub-tables will not be recreated.

merge()
Merges two tables without merging functions from the source table.

Parameter Description

dst Destination table to merge source table information into.

src Source table to merge table information from.

recurse Flag indicating whether or not to recursively merge all sub-tables.

mergef()
Merges two tables including merging functions from the source table.

Parameter Description

dst Destination table to merge source table information into.

src Source table to merge table information from.

recursive Flag indicating whether or not to recursively merge all sub-tables.

Vec2Str()
Converts a 3D vector table into a string and returns it in the following format: (x: X.XXX y: Y.YYY z: Z.ZZZ).

Parameter Description

vec 3D vector table to convert. Example: {x=1,y=1,z=1}.

Version 1.8
535

Lumberyard Developer Guide
Common Lua Globals and Functions

LogError()

Logs an error message to the console and the log file. Message appears in red text in the console.

Parameter Description

fmt Formatted message string.

... Optional argument list. For example: LogError("MyError: %f", math.pi);

LogWarning()

Logs a warning message to the console and the log file. Message appears in yellow text in the console.

Parameter Description

fmt Formatted message string.

... Optional argument list. For example: LogWarning("MyError: %f", math.pi);

Log()

Logs a message to the console and the log file. Commonly used for debugging purposes.

Parameter Description

fmt Formatted message string.

... Optional argument list. For example: Log("MyLog: %f", math.pi);

dump()

Dumps information from a specified table to the console.

Parameter Description

_class Table to dump to console. For example: g_localActor

no_func Flag indicating whether or not to dump the table functions.

depth Depth of the tables tree dump information from.

EmptyString()

Checks whether or not a given string is set and its length is greater than zero. Returns TRUE or FALSE.

Parameter Description

str String to check for.

Version 1.8
536

Lumberyard Developer Guide
EntityUtils Lua Functions

NumberToBool()
Checks whether or not a number value is true (non-zero) or false (zero).

Parameter Description

n Number to check for.

EntityName()
Retrieves the name of a specified entity ID or entity table. If the entity doesn't exist, this function returns an
empty string.

Parameter Description

entity Entity table or entity ID to return a name for.

EntityNamed()
Checks whether or not an entity with the specified name exists in the entity system. Returns TRUE or FALSE.
Commonly used for debugging.

Parameter Description

name Name of entity to check for.

SafeTableGet()
Checks whether or not a sub-table with a specified name exists in a table. If the sub-table exists, this
function returns it; otherwise the function returns nil.

Parameter Description

table Table to check for the existence of a sub-table.

name Sub-table name to check for.

EntityUtils Lua Functions
This topic describes the commonly used Lua entity utility functions.

• File location: Game/Scripts/Utils/EntityUtils.lua

• Loaded from: Game/Scripts/common.lua

DumpEntities()
Dumps to console all entity IDs, names, classes, positions, and angles that are currently used in a map. For
example:

Version 1.8
537

Lumberyard Developer Guide
EntityUtils Lua Functions

[userdata: 00000002]..name=Grunt1 clsid=Grunt pos=1016.755,1042.764,100.000
 ang=0.000,0.000,1.500
[userdata: 00000003]..name=Grunt2 clsid=Grunt pos=1020.755,1072.784,100.000
 ang=0.000,0.000,0.500
...

CompareEntitiesByName()
Compares two entities identified by name. This function is commonly used when sorting tables.

Parameter Description

ent1 Name of first entity table.

ent2 Name of second entity table.

Example

local entities = System.GetEntitiesByClass("SomeEntityClass");
table.sort(entities, CompareEntitiesByName);

CompareEntitiesByDistanceFromPoint()
Compares the distance of two entities from a specified point. If the distance is greater for Entity 1 than for
Entity 2 (that is, Entity 1 is further away), this function returns TRUE, otherwise it returns FALSE.

Parameter Description

ent1 Entity 1 table

ent2 Entity 2 table

point 3D position vector identifying the point to measure distance to.

Example

local ent1 = System.GetEntityByName("NameEntityOne");
local ent2 = System.GetEntityByName("NameEntityTwo");

if(CompareEntitiesByDistanceFromPoint(ent1, ent2, g_localActor:GetPos()))then
 Log("Entity One is further away from the Player than Entity two...");
end

BroadcastEvent()
Processes an entity event broadcast.

Parameter Description

sender Entity that sent the event.

event String based entity event to process.

Version 1.8
538

Lumberyard Developer Guide
EntityUtils Lua Functions

Example

BroadcastEvent(self, "Used");

MakeDerivedEntity()

Creates a new table that is a derived version of a parent entity table. This function is commonly used to
simplify the creation of a new entity script based on another entity.

Parameter Description

_DerivedClass Derived class table.

_Parent Parent or base class table.

MakeDerivedEntityOverride()

Creates a new table that is a derived class of a parent entity. The derived table's properties will override
those from the parent.

Parameter Description

_DerivedClass Derived class table.

_Parent Parent or base class table.

MakeUsable()

Adds usable functionality, such as an OnUsed event, to a specified entity.

Parameter Description

entity Entity table to make usable.

Example

MyEntity = { ... whatever you usually put here ... }

MakeUsable(MyEntity)

function MyEntity:OnSpawn() ...

function MyEntity:OnReset()
 self:ResetOnUsed()
 ...
end

MakePickable()

Adds basic "pickable" functionality to a specified entity. The bPickable property is added to the entity's
properties table.

Version 1.8
539

Lumberyard Developer Guide
Lua Vector and Math Functions

Parameter Description

entity Entity table to make pickable.

MakeSpawnable()

Adds spawn functionality to a specified entity. Commonly used for AI actors during creation.

Parameter Description

entity Entity table to make spawnable.

EntityCommon.PhysicalizeRigid()

Physicalizes an entity based on the specified entity slot and its physics properties.

Parameter Description

entity Entity table to physicalize.

nSlot Entity slot to physicalize.

Properties Physics properties table

bActive Not used.

Lua Vector and Math Functions
This topic describes the commonly used math global vectors, constants, and functions.

• File location: Game/Scripts/Utils/Math.lua

• Loaded from: Game/Scripts/common.lua

Global Vectors

The following globals should be used to avoid temporary Lua memory allocations:

Global Name Description

g_Vectors.v000 Basic zero vector.

g_Vectors.v001 Positive z-axis direction vector.

g_Vectors.v010 Positive y-axis direction vector.

g_Vectors.v100 Positive x-axis direction vector.

g_Vectors.v101 The x and z-axis direction vector.

g_Vectors.v110 The x and y-axis direction vector.

Version 1.8
540

Lumberyard Developer Guide
Lua Vector and Math Functions

Global Name Description

g_Vectors.v111 The x, y and z-axis vector.

g_Vectors.up Positive z-axis direction vector.

g_Vectors.down Negative z-axis direction vector.

g_Vectors.temp Temporary zero vector.

g_Vectors.tempColor Temporary zero vector. Commonly used for passing rgb color values.

g_Vectors.temp_v1 Temporary zero vector.

g_Vectors.temp_v2 Temporary zero vector.

g_Vectors.temp_v3 Temporary zero vector.

g_Vectors.temp_v4 Temporary zero vector.

g_Vectors.vecMathTemp1 Temporary zero vector.

g_Vectors.vecMathTemp2 Temporary zero vector.

Constants

Constant Name Description

g_Rad2Deg Basic radian-to-degree conversion value.

g_Deg2Rad Basic degree-to-radian conversion value.

g_Pi Basic Pi constant based on math.pi.

g_2Pi Basic double-Pi constant based on math.pi.

g_Pi2 Basic half-Pi constant based on math.pi.

IsNullVector()

Checks whether or not all components of a specified vector are null.

Parameter Description

a Vector to check.

IsNotNullVector()

Checks whether or not any components of a specified vector is not null.

Parameter Description

a Vector to check.

Version 1.8
541

Lumberyard Developer Guide
Lua Vector and Math Functions

LengthSqVector()
Retrieves the squared length of a specified vector.

Parameter Description

a Vector to retrieve length for.

LengthVector()
Retrieves the length of a specified vector.

Parameter Description

a Vector to retrieve length for.

DistanceSqVectors()
Retrieves the squared distance between two vectors.

Parameter Description

a First vector.

b Second vector.

DistanceSqVectors2d()
Retrieves the squared distance between two vectors in 2D space (without z-component).

Parameter Description

a First vector.

b Second vector.

DistanceVectors()
Retrieves the distance between two vectors.

Parameter Description

a First vector.

b Second vector.

dotproduct3d()
Retrieves the dot product between two vectors.

Version 1.8
542

Lumberyard Developer Guide
Lua Vector and Math Functions

Parameter Description

a First vector.

b Second vector.

dotproduct2d()
Retrieves the dot product between two vectors in 2D space (without z-component).

Parameter Description

a First vector.

b Second vector.

LogVec()
Logs a specified vector to console.

Parameter Description

name Descriptive name of the vector.

v Vector to log.

Example

LogVec("Local Actor Position", g_localActor:GetPos())

Console output:

<Lua> Local Actor Position = (1104.018066 1983.247925 112.769440)

ZeroVector()
Sets all components of a specified vector to zero.

Parameter Description

dest Vector to zero out.

CopyVector()
Copies the components of one vector to another.

Parameter Description

dest Destination vector.

Version 1.8
543

Lumberyard Developer Guide
Lua Vector and Math Functions

Parameter Description

src Source vector.

SumVectors()

Adds up the components of two vectors.

Parameter Description

a First vector.

b Second vector.

NegVector()

Negates all components of a specified vector.

Parameter Description

a Vector to negate.

SubVectors()

Copies the componentwise subtraction of two vectors to a destination vector.

Parameter Description

dest Destination vector.

a First vector.

b Second vector.

FastSumVectors()

Copies the componentwise addition of two vectors to a destination vector.

Parameter Description

dest Destination vector.

a First vector.

b Second vector.

DifferenceVectors()

Retrieves the difference between two vectors.

Version 1.8
544

Lumberyard Developer Guide
Lua Vector and Math Functions

Parameter Description

a First vector.

b Second vector.

FastDifferenceVectors()

Copies the componentwise difference between two vectors to a destination vector.

Parameter Description

dest Destination vector.

a First vector.

b Second vector.

ProductVectors()

Retrieves the product of two vectors.

Parameter Description

a First vector.

b Second vector.

FastProductVectors()

Copies the product of two vectors to a destination vector.

Parameter Description

dest Destination vector.

a First vector.

b Second vector.

ScaleVector()

Scales a specified vector a by a factor of b.

Parameter Description

a Vector.

b Scalar.

Version 1.8
545

Lumberyard Developer Guide
Lua Vector and Math Functions

ScaleVectorInPlace(a,b)
Retrieves a new vector based on a copy of vector a scaled by a factor b.

Parameter Description

a First vector.

b Scalar.

ScaleVectorInPlace(dest,a,b)
Copies vector a scaled by the factor of b to a destination vector.

Parameter Description

dest Destination vector.

a First vector.

b Scalar.

NormalizeVector()
Normalizes a specified vector.

Parameter Description

a Vector to normalize.

VecRotate90_Z()
Rotates a specified vector by 90 degree around the z-axis.

Parameter Description

v Vector to rotate.

VecRotateMinus90_Z()
Rotates a specified vector by -90 degree around the z-axis.

Parameter Description

v Vector to rotate.

crossproduct3d()
Copies the result of the cross product between two vectors to a destination vector.

Version 1.8
546

Lumberyard Developer Guide
Lua Vector and Math Functions

Parameter Description

dest Destination vector.

p First vector.

q Second vector.

RotateVectorAroundR()

Copies to a destination vector the result of the vector rotation of vector p around vector r by a specified
angle.

Parameter Description

dest Destination vector.

p First vector.

r Second vector.

angle Rotation angle.

ProjectVector()

Copies to a destination vector the result of the vector projection of vector P to the surface with a specified
normal N.

Parameter Description

dest Destination vector.

P Vector to project.

N Surface normal.

DistanceLineAndPoint()

Retrieves the distance between point a and the line between p and q.

Parameter Description

a Point to measure from.

p Vector p.

q Vector q.

LerpColors()

Performs linear interpolation between two color/vectors with a factor of k.

Version 1.8
547

Lumberyard Developer Guide
Lua Vector and Math Functions

Parameter Description

a Color/vector a.

b Color/vector b.

k Factor k.

Lerp()

Performs linear interpolation between two scalars with a factor of k.

Parameter Description

a Scalar a.

b Scalar b.

k Factor k.

__max()

Retrieves the maximum of two scalars.

Parameter Description

a Scalar a.

b Scalar b.

__min()

Retrieves the minimum of two scalars.

Parameter Description

a Scalar a.

b Scalar b.

clamp()

Clamps a specified number between minimum and maximum.

Parameter Description

_n Number to clamp.

_min Lower limit.

Version 1.8
548

Lumberyard Developer Guide
Lua Vector and Math Functions

Parameter Description

_max Upper limit.

Interpolate()
Interpolates a number to a specified goal by a specified speed.

Parameter Description

actual Number to interpolate.

goal Goal.

speed Interpolation speed.

sgn()
Retrieves the sign of a specified number (0 returns 0).

Parameter Description

a Number to get sign for.

sgnnz()
Retrieves the sign of a specified number (0 returns 1).

Parameter Description

a Number to get sign for.

sqr()
Retrieves the square of a specified number.

Parameter Description

a Number to square.

randomF()
Retrieves a random float value between two specified numbers.

Parameter Description

a First number.

b Second number.

Version 1.8
549

Lumberyard Developer Guide
Physics Lua Functions

iff()

Checks the condition of a test value and returns one of two other values depending on whether the test
value is nil or not.

Parameter Description

c Test value.

a Return value if test value is not nil.

b Return value if test value is nil.

Physics Lua Functions
These functions are commonly used to register new explosion and crack shapes in the physics engine.

File location: Game/Scripts/physics.lua

• Loaded from: Game/Scripts/main.lua

Physics.RegisterExplosionShape()

Registers a boolean carving shape for breakable objects in the physics engine.

Parameter Description

sGeometryFile Name of a boolean shape cgf file.

fSize Shape's characteristic size.

BreakId Breakability index (0-based) used to identify the breakable material.

fProbability Shape's relative probability; when several shapes with the same size appear
as candidates for carving, these relative probabilities are used to select one.

sSplintersfile Name of a splinters cgf file, used for trees to add splinters at the breakage
location.

fSplintersOffset Size offset for the splinters.

sSplintersCloudEffect Name of splinters particle fx; this effect is played when a splinters-based
constraint breaks and splinters disappear.

Physics.RegisterExplosionCrack()

Registers a new explosion crack for breakable objects in the physics engine.

Parameter Description

sGeometryFile Name of a crack shape cgf file. This type of file must have three helpers to
mark the corners, named "1","2" and "3".

Version 1.8
550

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

BreakId Breakability index (0-based) used to identify the breakable material.

Lua ScriptBind Reference
You can use ScriptBind functions in Lua scripts to call legacy code written in C++.

Topics

• ScriptBind Engine Functions (p. 551)

• ScriptBind Action Functions (p. 704)

• ScriptBind_Boids (p. 749)

ScriptBind Engine Functions

Lists C++ engine functions that you can call from Lua script.

Topics

• ScriptBind_AI (p. 551)

• ScriptBind_Entity (p. 617)

• ScriptBind_Movie (p. 668)

• ScriptBind_Particle (p. 669)

• ScriptBind_Physics (p. 672)

• ScriptBind_Script (p. 675)

• ScriptBind_Sound (p. 677)

• ScriptBind_System (p. 679)

ScriptBind_AI

Lists C++ AI functions that can be called from Lua scripts.

AbortAction

Aborts execution of a specified action.

Syntax

AI.AbortAction(userId [, actionId])

Parameter Description

userId The ID of the entity.

actionId (optional) Unique ID of the action to be aborted. If 0 (or nil), all actions on the specified
entity are aborted.

AddAggressiveTarget

Adds a target to a specified entity's list as an aggressive potential target.

Version 1.8
551

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.AddAggressiveTarget(entityId, targetId)

Returns True if successfully added.

Parameter Description

entityId The ID of the entity.

targetId Target's entity ID to add.

AddCombatClass

Creates new combat class.

Syntax

AI.AddCombatClass(int combatClass, SmartScriptTable pTable, const char* szCustomSignal)

Parameter Description

combatClass Combat class to add.

pTable Parameters table.

szCustomSignal Specifies optional custom OnSeen signal.

AddFormationPoint

Adds a follow-type node to a formation descriptor.

Syntax

AI.AddFormationPoint(name, sightangle, distance, offset, [unit_class [,distanceAlt,
 offsetAlt]])

Parameter Description

name Name of the formation descriptor.

sightangle Angle of sight of the node (-180,180; 0 = the entity looks forward).

distance Distance from the formation's owner.

offset Offset along the following line (negative = left, positive = right).

unit_class Class of soldier (see eSoldierClass definition in IAgent.h).

DistanceAlt (optional): alternative distance from the formation owner

offsetAlt (optional): alternative offset.

Version 1.8
552

Lumberyard Developer Guide
Lua ScriptBind Reference

AddFormationPointFixed

Adds a node with a fixed offset to a formation descriptor.

Syntax

AI.AddFormationPointFixed(name, sightangle, x, y, z [,unit_class])

Parameter Description

name Name of the formation descriptor.

sightangle Angle of sight of the node (-180,180; 0 = the entity looks forward).

x, y, z Offset from formation owner.

unit_class Class of soldier (see eSoldierClass definition in IAgent.h).

AddPatternBranch

Creates a branch pattern at the specified node. When the entity has approached the specified node
(nodeName) and it is time to choose a new point, the rules defined by this function are used to select the
new point. This function can associate multiple target points and an evaluation rule.

Syntax

AI.AddPatternBranch(nodeName, method, branchNode1, branchNode2, ..., branchNodeN)

Parameter Description

nodeName Name of the node to add branches to.

method Method used to choose the next node. Valid values include:

• AITRACKPAT_CHOOSE_ALWAYS – Choose the next point from the list in linear
sequence.

• AITRACKPAT_CHOOSE_LESS_DEFORMED – Choose the least deformed point
in the list. Each node is associated with a deformation value (percentage),
which describes how much it must move in order to stay within the physical
world. These deformation values are summed down to the parent nodes
so that deformation at the end of the hierarchy will be caught down the
hierarchy.

• AITRACKPAT_CHOOSE_RANDOM – Choose a point in the list randomly.

AddPatternNode

Adds a point to the track pattern.

When validating the points, the test is performed from the start position to the end position. Start position
is either the pattern origin or, if the parent is provided, the parent position. The end position is either the
relative offset from the start position or from the pattern origin; this position is chosen based on the node
flag. The offset is clamped to the physical world based on the test method. The points will be evaluated
in the same order they are added to the descriptor, and the system does not try to correct the evaluation

Version 1.8
553

Lumberyard Developer Guide
Lua ScriptBind Reference

order. If hierarchies are used (parent name is defined), it is up to the pattern creator to make sure the
nodes are created in such an order that the parent is added before it is referenced.

Syntax

AI.AddPatternNode(nodeName, offsetx, offsety, offsetz, flags, [parent], [signalValue])

Parameter Description

nodeName Name of the new point. , Point names are local to the current pattern.

offsetx, offsety,

offsetz

Offset from the start position or from the pattern center. See
AITRACKPAT_NODE_ABSOLUTE.

flags Track pattern functionality flags.

Node evaluation flags:

• AITRACKPAT_NODE_START – Node can be used as the first node in the
pattern. There can be multiple start nodes. In that case the closest one is
chosen.

• AITRACKPAT_NODE_ABSOLUTE – Interpret offset as an offset from the pattern
center (otherwise the offset is from the start position).

• AITRACKPAT_NODE_SIGNAL – A signal "OnReachedTrackPatternNode" will be
sent when the node is reached.

• AITRACKPAT_NODE_STOP – Advancing will be stopped. It can be continued by
calling entity:ChangeAIParameter(AIPARAM_TRACKPATTERN_ADVANCE, 1).

• AITRACKPAT_NODE_DIRBRANCH – For the direction at each pattern node, use
the average direction to the branch nodes (otherwise use the direction from
the node position to the center of the pattern).

parent (optional) Parent node position, which will be used as the start position instead of the
pattern center.

signalValue

(optional)

If the signal flag is set, this value is passed as a signal parameter, accessible
from the signal handler in data.iValue.

AddPersonallyHostile

Syntax

AI.AddPersonallyHostile(ScriptHandle entityID, ScriptHandle hostileID)

AgentLookAtPos

Causes the specified entity to look at a certain position.

Syntax

AI.AgentLookAtPos(entityId, Vec3 pos)

Parameter Description

entityId The ID of the entity.

Version 1.8
554

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

pos Vec3 to look at.

AllowLowerBodyToTurn

Syntax

AI.AllowLowerBodyToTurn(entityID, bAllowLowerBodyToTurn)

Parameter Description

entityId Entity ID of the agent you want to set the look style to.

bAllowLowerBodyToTurn. True if you want to allow the turning movement of the body, false otherwise.

BeginTrackPattern

Begins the definition of a new track pattern descriptor. The pattern is created by calling
AI.AddPatternPoint() and AI.AddPatternBranch(), and finalized by calling AI.EndTrackPattern().

Syntax

AI.BeginTrackPattern(patternName, flags, validationRadius, [stateTresholdMin],

Parameter Description

patternName Name of the new track pattern descriptor.

flags Track pattern functionality flags.

Validation flags describe how the pattern is validated to fit the physical world:

• AITRACKPAT_VALIDATE_NONE – No validation.
AITRACKPAT_VALIDATE_SWEPTSPHERE – Validate using swept sphere tests,
where the spehre radius equals the validation radius plus the entity pass
radius.

• AITRACKPAT_VALIDATE_RAYCAST – Validate using raycasting, where the hit
position is pulled back by the amount of validation radius plus the entity
pass radius.

Alignment flags describe how, when the pattern is selected to be used, the
alignment of the pattern can be changed. Flags are evaluated in the following
order:

• AITRACKPAT_ALIGN_TO_TARGET – Align the pattern so that the y-axis points
towards the target each time it is set. If the agent does not have a valid
attention target at the time, the pattern is aligned to the world.

• AITRACKPAT_ALIGN_RANDOM – Align the pattern randonly each time it is set.
The rotation ranges are set using SetRandomRotation().

Version 1.8
555

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

validationRadius Validation radius is added to the entity pass radius when validating the pattern
along the offsets.

stateTresholdMin

(optional)

If the state of the pattern is 'enclosed' (high deformation) and the global
deformation < stateTresholdMin, the state becomes exposed. Default 0.35.

stateTresholdMax

(optional)

If the state of the pattern is 'exposed' (low deformation) and the global
deformation > stateTresholdMax, the state becomes enclosed. Default 0.4.

globalDeformTreshold

(optional)

Deformation of the whole pattern is tracked in range [0..1]. This treshold
value can be used to clamp the bottom range, so that values in range [trhd..1]
becomes [0..1], default 0.0.

localDeformTreshold

(optional)

Deformation of the each node is tracked in range [0..1]. This treshold value
can be used to clamp the bottom range, so that values in range [trhd..1]
becomes [0..1], default 0.0.

exposureMod

(optional)

Importance of the node exposure (how much it is seen by the tracked target)
to consider when branching. Valid range is [-1..1], where -1 means to favor
unseen nodes and 1 means to favor seen, exposed nodes. Default is 0 (no
effect).

randomRotAng

(optional)

Flag indicating whether or not to randomly rotate the pattern each time it is
set. Rotation is performed in XYZ order. This parameter defines angles (in
degrees) around each axis.

CanFireInStance

Syntax

AI.CanFireInStance(entityId, stance)

Returns true if AI can fire at his target in the specified stance at his current position

Parameter Description

entityId The ID of the entity.

stance. Stance Id (STANCE_*).

CanMelee

Determines whether or not the AI is able to do melee attack.

Syntax

AI.CanMelee(entityId)

Returns True or false (1 or 0).

Parameter Description

entityId The ID of the entity.

Version 1.8
556

Lumberyard Developer Guide
Lua ScriptBind Reference

CanMoveStraightToPoint

Determines whether or not a specified entity can move in a straight line from its current position to a
specified point.

Syntax

AI.CanMoveStraightToPoint(entityId, position)

Parameter Description

entityId The ID of the entity.

position Position to check path to.

ChangeFormation

Changes the formation descriptor for the current formation of a specified entity's group (if one exists).

Syntax

AI.ChangeFormation(entityId, name [,scale])

Returns True if the formation change was successful.

Parameter Description

entityId Unique entity ID used to identify the group.

name Name of the formation descriptor.

scale (optional) Scale factor for the formation (1 = default).

ChangeMovementAbility

Changes the value of an AI movement ability parameter for the entity specified.

Syntax

AI.ChangeMovementAbility(entityId, paramEnum, paramValue)

Parameter Description

entityId The ID of the entity.

paramEnum Index of the parameter to change. Valid values include:

• AIMOVEABILITY_OPTIMALFLIGHTHEIGHT – Optimal flight height in meters
while finding path.

• AIMOVEABILITY_MINFLIGHTHEIGHT – Minimum flight height in meters while
finding path.

• AIMOVEABILITY_MAXFLIGHTHEIGHT – Maximum flight height in meters while
finding path.

Version 1.8
557

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

paramValue New value for the specified parameter.

ChangeParameter

Updates a parameter value for a specified entity.

Syntax

AI.ChangeParameter(entityId, paramEnum, paramValue)

Parameter Description

entityId The ID of the entity.

paramEnum The enum of the parameter.

paramValue The new value for the specified parameter.

CheckForFriendlyAgentsAroundPoint

Syntax

AI.CheckForFriendlyAgentsAroundPoint(ScriptHandle entityID, Vec3 point, float radius)

CheckMeleeDamage

Determines whether or not the AI performing melee is actually hitting target.

Syntax

AI.CheckMeleeDamage(entityId, targetId, radius, minheight, maxheight, angle)

Returns (distance,angle) pair between entity and target (degrees) if melee is possible, nil otherwise

Parameter Description

entityId The ID of the entity.

targetId Target's entity ID.

radius. max distance in 2d to target.

minheight. min distance in height.

maxheight. max distance in height.

angle. FOV to include target.

ClearAnimationTag

Version 1.8
558

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.ClearAnimationTag(ScriptHandle entityID, const char* tagName)

Parameter Description

entityId AI's entity.

tagName. .

ClearMovementContext

Resets the specified entity's movement context.

Syntax

AI.ClearMovementContext(entityId)

Parameter Description

entityId The ID of the entity.

context. context value.

ClearPotentialTargets

Clears all the potential targets from a specified entity's perception handler.

Syntax

AI.ClearPotentialTargets(entityId)

Parameter Description

entityId The ID of the entity.

ClearTempTarget

Removes the specified entity's temporary potential target so that it is no longer considered for target
selection.

Syntax

AI.ClearTempTarget(entityId)

Returns True if successfully updated.

Parameter Description

entityId The ID of the entity.

Version 1.8
559

Lumberyard Developer Guide
Lua ScriptBind Reference

ConstrainPointInsideGenericShape

Syntax

AI.ConstrainPointInsideGenericShape(position, shapeName[, checkHeight])

Returns Nearest point inside the specified shape.

Parameter Description

position Position to check.

shapeName Name of the shape to test (returned by
AI.GetEnclosingGenericShapeOfType).

checkHeight

(optional)

Flag indicating whether or not to test for shape height. (default=false). If
set to true, the test will check the space between shape.aabb.min.z and
shape.aabb.min.z+shape.height.

CreateFormation

Creates a formation descriptor and adds a fixed node at 0,0,0 (owner's node).

Syntax

AI.CreateFormation(name)

Parameter Description

name Name of the new formation descriptor.

CreateGroupFormation

Creates a group formation with leader (or updates leader).

Syntax

AI.CreateGroupFormation(entityId, leaderId)

Parameter Description

entityId AI's entity.

leaderId. New leader.

CreateStimulusEvent

Creates a target track stimulus event for the specified entity.

Syntax

Version 1.8
560

Lumberyard Developer Guide
Lua ScriptBind Reference

AI.CreateStimulusEvent(ScriptHandle ownerId, ScriptHandle targetId, const char*
 stimulusName, SmartScriptTable pData)

Parameter Description

ownerId Unique ID of the entity that owns and receives the event.

targetId Unique ID of the entity that sends the event and becomes the target.

stimulusName Name of the stimulus event.

pData Event data (see TargetTrackHelpers::SStimulusEvent).

CreateTempGenericShapeBox

Creates a temporary box-shaped generic shape. This temporary shape will be destroyed upon an AI
system reset.

Syntax

AI.CreateTempGenericShapeBox(Vec3 center, float radius, float height, int type)

Returns Shape name.

Parameter Description

center. Center point of the box.

radius. Size of the box in x and y directions.

height Height of the box.

type Box shape type (AIAnchor).

DebugReportHitDamage

Creates a debug report for the hit damage.

Syntax

AI.DebugReportHitDamage(pVictimEntity, pShooterEntity)

Parameter Description

pVictimEntity. Victim ID.

pShooterEntity. Shooter ID.

DestroyAllTPSQueries

Destroys all the tactical point system queries.

Syntax

Version 1.8
561

Lumberyard Developer Guide
Lua ScriptBind Reference

AI2.DestroyAllTPSQueries()

DistanceToGenericShape

Syntax

AI.DistanceToGenericShape(Vec3 position, const char* shapeName[, int checkHeight])

Returns True if the point is inside the specified shape.

Parameter Description

position Position to check.

shapeName Name of the shape to test (returned by
AI.GetEnclosingGenericShapeOfType).

checkHeight

(optional)

Flag indicating whether or not to test for shape height. (default=false). If
set to true, the test will check the space between shape.aabb.min.z and
shape.aabb.min.z+shape.height.

DropTarget

Clears the target from a specified entity's perception handler.

Syntax

AI.DropTarget(entityId, targetId)

Parameter Description

entityId The ID of the entity.

targetId Target's entity ID.

EnableCoverFire

Enables or disables fire when the FIREMODE_COVER is selected.

Syntax

AI.EnableCoverFire(entityId, enable)

Parameter Description

entityId The ID of the entity.

enable Boolean.

EnableFire

Enables or disables fire.

Version 1.8
562

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.EnableFire(entityId, enable)

Parameter Description

entityId The ID of the entity.

enable Boolean.

EnableUpdateLookTarget

Syntax

AI.EnableUpdateLookTarget(ScriptHandle entityID, bool bEnable)

EnableWeaponAccessory

Enables or disables certain weapon accessory usage.

Syntax

AI.EnableWeaponAccessory(entityId, int accessory, bool state)

Parameter Description

entityId The ID of the entity.

accessory Enum of the accessory to enable. Possible values (see enum EAIWeaponAccessories in
the IAgent.h file):

AIWEPA_NONE = 0,
AIWEPA_LASER = 0x0001
AIWEPA_COMBAT_LIGHT = 0x0002
AIWEPA_PATROL_LIGHT = 0x0004

state Set to true or false to enable or disable.

EndTrackPattern

Finalizes the track pattern definition. This function should always called to finalize the pattern. Failing to do
so will cause erratic behavior.

Syntax

AI.EndTrackPattern()

Error

The fallback error message used when the system experiences an unhandled exception. The code
following should continue if it is running in the editor so that the original cause of the problem can be fixed,
but halt execution when it is running in the game.

Version 1.8
563

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.Error(szMessage)

Parameter Description

szMessage The message to write to the log.

EvalPeek

Determines whether or not specified entity can peek from its current position.

Syntax

AI.EvalPeek(entityId [, bGetOptimalSide])

Returns One of the following values:

• -1 – don't need to peek

• 0 – cannot peek

• 1 – can peek from left

• 2 – can peek from right

• 3 – can peek from left & right

Parameter Description

entityId The ID of the entity.

bGetOptimalSide

(optional)

Flag indicating whether or not to return the side that best fits the attention
target's current location, if the AI object can peek from both sides. The default
is false.

ExecuteAction

Executes an action on a set of participants.

Syntax

AI.ExecuteAction(action, participant1 [, participant2 [, ... , participantN]])

Parameter Description

action The smart object action name or ID.

participant1 The entity ID of the first participant in the action.

participant2..N

(optional)

The entity ID of additional participants.

Version 1.8
564

Lumberyard Developer Guide
Lua ScriptBind Reference

FindObjectOfType

Searches for the closest AIObject of a specified type in an area around a specified entity or position. Once
an AIObject is found, it is devalued and can't be found again for a certain number of seconds (unless turned
off in flags).

Syntax

AI.FindObjectOfType(entityId, radius, AIObjectType, flags [,returnPosition
 [,returnDirection]]) AI.FindObjectOfType(position, radius, AIObjectType, [,returnPosition
 [,returnDirection]])

Returns The found AIObject's name.

Parameter Description

entityId Unique entity ID used to determine the center position of the search.

position Vector specifying the center position of the search.

radius Radius of the search area.

AIObjectType AIObject type to search for (see ScriptBindAI.cpp and Scripts/
AIAnchor.lua for a complete list of AIObject types).

flags. A combination of one or more of the following search filter flags:

• AIFAF_VISIBLE_FROM_REQUESTER – Requires whoever is requesting the
object to also have a line of sight to it.

• AIFAF_VISIBLE_TARGET– Requires a line of sight between target and
anchor.

• AIFAF_INCLUDE_DEVALUED – Include devalued objects.

• AIFAF_INCLUDE_DISABLED – Include disabled objects.

returnPosition

(optional)

Position of the found object.

returnDirection

(optional)

Direction of the found object.

FindStandbySpotInShape

Syntax

AI.FindStandbySpotInShape(centerPos, targetPos, anchorType)

FindStandbySpotInSphere

Syntax

AI.FindStandbySpotInSphere(centerPos, targetPos, anchorType)

FreeSignal

Sends a signal to anyone in a specified radius around a position.

Syntax

Version 1.8
565

Lumberyard Developer Guide
Lua ScriptBind Reference

AI.FreeSignal(signalType, signalText, position, radius [, entityID [,signalExtraData]])

Parameter Description

signalType See AI.Signal.

signalText See AI.Signal.

position The center point ({x,y,z} coordinates) from which the signal is sent.

radius The inside radius of the area to which the signal is sent.

entityID Optional. The ID of an entity that is a member of a group that should not
receive the signal. Entities whose group ID is the value specified will not be
sent the signal.

signalExtraData Optional. See AI.Signal.

GetAIObjectPosition

Retrieves a specified AIObject's position.

Syntax

AI.GetAIObjectPosition(entityId | AIObjectName)

Returns AI Object position vector {x,y,z}.

Parameter Description

entityId |

AIObjectName

Unique entity ID or AIObject name.

GetAnchor

Searches for the closest anchor of a specified type in an area around a specified entity. Once an anchor is
found, it is devalued and can't be found again for a certain number of seconds (unless turned off in flags).

Syntax

AI.GetAnchor(entityId, radius, AIAnchorType, searchType [,returnPosition
 [,returnDirection]])

Returns The found anchor's name.

Parameter Description

entityId Unique entity ID used to determine the center position of the search.

radius Radius of the search area. Alternatively a search range can be specified
(min=minRad,max=maxRad).

AIAnchorType Anchor type to search for. See Scripts/AIAnchor.lua for a complete list of
anchor types available.

Version 1.8
566

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

searchType A combination of one or more of the following search filter flags:

• AIANCHOR_NEAREST – Nearest anchor of the specified type (default).

• AIANCHOR_NEAREST_IN_FRONT – Nearest anchor of the specified type inside
the front cone of the entity.

• AIANCHOR_NEAREST_FACING_AT – Nearest anchor of the specified type that is
oriented towards entity's attention target

• AIANCHOR_RANDOM_IN_RANGE – Random anchor of the specified type.

• AIANCHOR_NEAREST_TO_REFPOINT – Anchor of the specified type that is
nearest to the entity's reference point.

(optional)

returnPosition

Position of the found object.

(optional)

returnDirection

Direction of the found object.

GetAttentionTargetAIType

Retrieves the AI type (AIOBJECT_*) of a specified entity's attention target .

Syntax

AI.GetAttentionTargetAIType(entityId)

Returns Attention target's AI type, or AIOBJECT_NONE if no target.

Parameter Description

entityId The ID of the entity.

GetAttentionTargetDirection

Retrieves the direction of a specified entity's attention target.

Syntax

AI.GetAttentionTargetDirection(entityId, returnDir)

Returns Attention target's direction vector {x,y,z}, passed as a return value.

Parameter Description

entityId The ID of the entity.

GetAttentionTargetDistance

Retrieves the distance from a specified entity to its attention target.

Syntax

Version 1.8
567

Lumberyard Developer Guide
Lua ScriptBind Reference

AI.GetAttentionTargetDistance(entityId)

Returns distance to the attention target.

Parameter Description

entityId The ID of the entity.

GetAttentionTargetEntity

Retrieves a specified entity's attention target entity (if it is a specified entity), or the owner entity of a dummy
object's attention target (if there is an owner entity).

Syntax

AI.GetAttentionTargetEntity(ScriptHandle entityID)

Returns Attention target's entity.

Parameter Description

entityId The ID of the entity.

GetAttentionTargetOf

Retrieves a specified entity's attention target.

Syntax

AI.GetAttentionTargetOf(entityId)

Returns Name of attention target. Null if there is no target.

Parameter Description

entityId The ID of the entity.

GetAttentionTargetPosition

Retrieves the position of a specified entity's attention target.

Syntax

AI.GetAttentionTargetPosition(entityId, returnPos)

Returns Attention target 's position vector {x,y,z}, passed as a return value ().

Parameter Description

entityId The ID of the entity.

Version 1.8
568

Lumberyard Developer Guide
Lua ScriptBind Reference

GetAttentionTargetThreat

Syntax

AI.GetAttentionTargetThreat(ScriptHandle entityID)

GetAttentionTargetType

Retrieves the type (AITARGET_*) of a specified entity's attention target.

Syntax

AI.GetAttentionTargetType(entityId)

Returns Attention target's type, or AITARGET_NONE if no target.

Parameter Description

entityId The ID of the entity.

GetAttentionTargetViewDirection

Retrieves the view direction of a specified entity's attention target.

Syntax

AI.GetAttentionTargetViewDirection(entityId, returnDir)

Returns Attention target's view direction vector {x,y,z}, passed as a return value.

Parameter Description

entityId The ID of the entity.

GetBeaconPosition

Gets the beacon position for a specified entity/object's group.

Syntax

AI.GetBeaconPosition(entityId | AIObjectName, returnPos)

Returns True if the beacon is found and the position set.

Parameter Description

entityId |

AIObjectName

Unique entity ID or AI object name.

returnPos Beacon position vector {x,y,z}.

Version 1.8
569

Lumberyard Developer Guide
Lua ScriptBind Reference

GetBehaviorBlackBoard

Retrieves a specified AIActor current behaviour's black board (a Lua table).

Syntax

AI.GetBehaviorBlackBoard(entity)

Returns black board – if there was one nil – Otherwise

Parameter Description

entityId or

entityName.

An AIActor identifier.

GetBehaviorVariable

Returns a behavior variable for the specified actor.

Syntax

AI.GetBehaviorVariable(ScriptHandle entityId, const char* variableName)

GetBiasedDirection

Retrieves biased direction of certain point.

Syntax

AI.GetBiasedDirection(entityId)

Parameter Description

entityId The ID of the entity.

GetCurrentHideAnchor

Retrieves the name of the anchor that the entity currently is using for cover.

Syntax

AI.GetCurrentHideAnchor(entityId)

Parameter Description

entityId The ID of the entity.

GetDirectAnchorPos

Retrieves the position of a cover point that a specified entity can use to directly attack its attention target.

Version 1.8
570

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.GetDirectAttackPos(entityId, searchRange, minAttackRange)

Returns Point value, or none if no attack point is available.

Parameter Description

entityId The ID of the entity.

AIAnchorType Anchor type (see Scripts/AIAnchor.lua for a complete list of anchor types).

maxDist Maximum size of search range.

GetDirLabelToPoint

Retrieves a direction label (front=0, back=1, left=2, right_3, above=4, -1=invalid) to the specified point.

Syntax

AI.GetDirLabelToPoint(entityId, point)

Parameter Description

entityId The ID of the entity.

point The point to evaluate.

GetEnclosingSpace

Returns the estimated surrounding navigable space in meters.

Syntax

AI.GetEnclosingSpace(entityId, Vec3 pos, float rad)

Parameter Description

entityId The ID of the entity.

pos Check position.

rad Check radius.

GetDistanceAlongPath

Retrieves the distance between a first and second entity, measured along the first entity's path.

Syntax

AI.GetDistanceAlongPath(entityId1, entityid2)

Version 1.8
571

Lumberyard Developer Guide
Lua ScriptBind Reference

Returns Distance along a path. Value can be negative if the second entity is ahead along the path.

Parameter Description

entityId1 ID for the first entity.

entityId2 ID for the second entity.

GetDistanceToClosestGroupMember

Syntax

AI.GetDistanceToClosestGroupMember(ScriptHandle entityId)

GetEnclosingGenericShapeOfType

Retrieves the first shape of a certain type that encloses a specified point.

Syntax

AI.GetEnclosingGenericShapeOfType(position, type[, checkHeight])

Returns Shape name.

Parameter Description

position Point to search for an enclosing shape.

type Shape type to search for (uses anchor types).

checkHeight

(optional)

Flag indicating whether or not to test for shape height. (default=false).
If set to true, the test checks the space between shape.aabb.min.z and
shape.aabb.min.z+shape.height.

GetExtraPriority

Retrieves the extra priority value for a specified enemy entity.

Syntax

AI.GetExtraPriority(enemyEntityId)

Parameter Description

enemyEntityId. The ID of the entity.

GetFactionOf

Retrieves the faction of the specified entity.

Syntax

Version 1.8
572

Lumberyard Developer Guide
Lua ScriptBind Reference

AI.GetFactionOf(ScriptHandle entityID)

Returns the faction of the specified entity.

Parameter Description

entityId The ID of the entity whose faction to return.

GetFormationLookingPoint

Retrieves the looking point position inside the formation.

Syntax

AI.GetFormationLookingPoint(entityId)

Returns v3 – table with format {x,y,z} storing the looking point position

Parameter Description

entityId AI's entity.

GetFormationPointClass

Adds a follow-type node to a formation descriptor.

Syntax

AI.GetFormationPointClass(name, position)

Returns class of formation point (-1 if none found).

Parameter Description

name Name of the formation descriptor.

position Point index in the formation (1..N).

GetFormationPointPosition

Retrieves an entity's formation point position.

Syntax

AI.GetFormationPointPosition(entityId, pos)

Returns true if the formation point has been found.

Parameter Description

entityId The ID of the entity.

Version 1.8
573

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

pos Return value for the position of the entity's formation point.

GetFormationPosition

Retrieves the relative position inside the formation.

Syntax

AI.GetFormationPosition(entityId)

Returns v3 – table with format {x,y,z} storing the relative position

Parameter Description

entityId AI's entity.

GetGroupAveragePosition

Retrieves the average position of a group's members.

Syntax

AI.GetGroupAveragePosition(entityId, properties, returnPos)

Returns the average position.

Parameter Description

entityId Unique entity ID used to determine the group.

unitProperties Binary mask of unit properties type for which the attack is requested, in the
following form:

UPR_* + UPR* (UPR_COMBAT_GROUND + UPR_COMBAT_FLIGHT)

See IAgent.h for a definition of unit properties UPR_*.

GetGroupCount

Retrieves the member count of a specified entity's group.

Syntax

AI.GetGroupCount(entityId, flags, type)

Returns the count of members for the specified group.

Parameter Description

entityId The entity or group ID.

Version 1.8
574

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

flags A combination of one or more of the following flags:

• GROUP_ALL – Counts all agents in the group (default).

• GROUP_ENABLED – Counts enabled agents only (exclusive with all).

• GROUP_MAX – Include the maximum number of agents during the game (can
be combined with all or enabled).

type The AI object type for which to filter. Counts only the AI objects of the type
specified. This parameter cannot be used with the GROUP_MAX flag.

GetGroupMember

Returns entity that is at a specified index position in the specified group.

Syntax

AI.GetGroupMember(entityId|groupId, idx, flags, type)

Returns the script handler of the requested entity, or null if the requested index value is out of range.

Parameter Description

entityId|groupId The entity ID or group ID.

idx Position in the index from 1 to n.

flags A combination of one or more of the following flags:

• GROUP_ALL – Counts all agents in the group (default).

• GROUP_ENABLED – Counts enabled agents only (exclusive with all).

type The AI object type for which to filter. Returns only the AI objects of the type
specified. This parameter cannot be used with the GROUP_MAX flag..

GetGroupOf

Retrieves the group ID of a specified entity ID.

Syntax

AI.GetGroupOf(entityId)

Returns the group ID of the specified entity.

Parameter Description

entityId The ID of the entity whose group ID to return.

GetGroupScopeUserCount

Version 1.8
575

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.GetGroupScopeUserCount(ScriptHandle entityIdHandle, const char* groupScopeName)

Returns the number of actors inside the group scope if greater than or equal to zero, or nil if an error
occurs.

Parameter Description

entityId The entity ID of the agent for whom you want to access the group scope.

groupScopeName. The group scope name.

GetGroupScriptTable

Syntax

AI.GetGroupScriptTable(int groupID)

GetGroupTarget

Retrieves the most threatening attention target among the AI agents in a specified entity's group. See
IAgent.h for a definition of alert status.

Syntax

AI.GetGroupTarget(entityId [,bHostileOnly [,bLiveOnly]])

Parameter Description

entityId Unique entity ID used to determine the group.

bHostileOnly

(optional)

Flag indicating whether or not to include only hostile targets in group.

bLiveOnly (optional) Flag indicating whether or not to include only live targets in group.

GetGroupTargetCount

Retrieves the number of attention targets among the AI agents in a specified entity's group.

Syntax

AI.GetGroupTargetCount(entityId [,bHostileOnly [,bLiveOnly]])

Parameter Description

entityId Unique entity ID used to determine the group.

bHostileOnly

(optional)

Flag indicating whether or not to include only hostile targets in group.

Version 1.8
576

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

bLiveOnly (optional) Flag indicating whether or not to include only live targets in group.

GetGroupTargetEntity

Syntax

AI.GetGroupTargetEntity(int groupID)

GetGroupTargetThreat

Syntax

AI.GetGroupTargetThreat(int groupID)

GetGroupTargetType

Syntax

AI.GetGroupTargetType(int groupID)

GetLastUsedSmartObject

Retrieves the smart object last used by the user specified.

Syntax

AI.GetLastUsedSmartObject(userEntityId)

Returns nil if there is no last used smart object or if an error has occurred; otherwise, returns the script table
of the entity that was the smart object last used by the user specified.

Parameter Description

userEntityId The entity ID of the user to query for the last used smart object.

GetLeader

Gets the name of a specified group leader.

Syntax

AI.GetLeader(groupID | entityID)

Returns the leader name.

Parameter Description

groupID Unique group ID.

Version 1.8
577

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityID The ID of the entity.

GetMemoryFireType

Syntax

AI.GetMemoryFireType(entityId)

Returns the method that the puppet uses for firing at its memory target.

Parameter Description

entityId The ID of the entity.

GetNavigationType

Retrieves the navigation type at a specified entity's position.

Syntax

AI.GetNavigationType(entityId)

Returns Navigation type, such as NAV_TRIANGULAR, NAV_WAYPOINT_HUMAN, NAV_ROAD, NAV_VOLUME,
NAV_WAYPOINT_3DSURFACE, NAV_FLIGHT, NAV_SMARTOBJECT. See the IAISystem::ENavigationType
definition for a complete list.

Parameter Description

entityId The ID of the entity.

GetNearestEntitiesOfType

Syntax

AI.GetNearestEntitiesOfType(entityId|objectname|position, AIObjectType, maxObjects,
 returnList [,objectFilter [,radius]])

Returns the number of found entities.

Parameter Description

entityId | objectname

|position.

Unique entity ID, AI object name, or position used to pinpoint the center
position of the search.

radius Radius of the search area.

AIObjectType AIObject type to search for (see ScriptBindAI.cpp and Scripts/
AIAnchor.lua for a complete list of AIObject types).

Version 1.8
578

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

maxObjects Maximum number of objects to find.

return list Lua table to hold the list of found entities (Lua handlers).

(optional)

objectFilter

A combination of one or more of the following search filter flags:

• AIOBJECTFILTER_SAMEFACTION – Include only AI objects of the same
species as the querying object.

• AIOBJECTFILTER_SAMEGROUP – Include only AI objects of the same group as
the querying object (or with no group).

• AIOBJECTFILTER_NOGROUP – Include only AI objects with a Group ID of
AI_NOGROUP.

• AIOBJECTFILTER_INCLUDEINACTIVE – Include objects that are inactive.

GetNearestHidespot

Retrieves a specified entity's nearest hidepoint within a specified range.

Syntax

AI.GetNearestHidespot(entityId, rangeMin, rangeMax [, center])

Returns Point position, if found.

Parameter Description

entityId The ID of the entity.

rangeMin Minimum range of search area.

rangeMax Maximum range of search area

centre (optional) Center point of the search area. If not specified, the entity's current position is
used.

GetNearestPathOfTypeInRange

Retrieves the type of path nearest to a specified point of interest for a specified entity. Paths use the same
types as anchors and are specified in the path properties. The function only returns paths that match the
entity's navigation caps. Navigation type is also specified in the path properties.

Syntax

AI.GetNearestPathOfTypeInRange(entityId, pos, range, type [, devalue, useStartNode])

Parameter Description

entityId The ID of the entity.

pos Vector specifying to the point of interest.

range Search range.

Version 1.8
579

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

type Type of path to search for.

devalue (optional) Time the returned path is marked as occupied.

useStartNode (optional) Flag indicating whether or not to look a path with any point inside the range
(useStartNode=0) or one with a start node inside the range (useStartNode=0).

GetNearestPointOnPath

Locates the point on a path nearest to a specified position.

Syntax

AI.GetNearestPointOnPath(entityId, pathname, vPos)

Parameter Description

entityId The ID of the entity.

pathname Name of path.

vPos Position to measure from.

GetObjectBlackBoard

Retrieves a specified object's black board (a Lua table).

Syntax

AI.GetObjectBlackBoard(entity)

Returns black board – if there is one; otherwise, nil.

Parameter Description

entityId or

entityName.

An AI entity identifier.

GetObjectRadius

Retrieves the radius of a specified AI object.

Syntax

AI.GetObjectRadius(entityId)

Returns the radius size.

Parameter Description

entityId The ID of the entity.

Version 1.8
580

Lumberyard Developer Guide
Lua ScriptBind Reference

GetParameter

Retrieves the value of an enumerated AI parameter for a specified entity.

Syntax

AI.GetParameter(entityId, paramEnum)

Returns the value of the parameter.

Parameter Description

entityId The ID of the entity.

paramEnum The index of the parameter to get. See AI.ChangeParameter() for a complete
list.

GetPathLoop

Syntax

AI.GetPathLoop(entityId, pathname)

Returns true if path is successfully looped.

Parameter Description

entityId The ID of the entity.

pathname Name of the path.

GetPathSegNoOnPath

Syntax

AI.GetPathSegNoOnPath(entityId, pathname, vPos)

Returns Segment ratio (0.0 start point, 100.0 end point).

Parameter Description

entityId The ID of the entity.

pathname Name of path.

vPos Position.

GetPeakThreatLevel

Syntax

Version 1.8
581

Lumberyard Developer Guide
Lua ScriptBind Reference

AI.GetPeakThreatLevel(ScriptHandle entityID)

GetPeakThreatType

Syntax

AI.GetPeakThreatType(ScriptHandle entityID)

GetPointOnPathBySegNo

Syntax

AI.GetPointOnPathBySegNo(entityId, pathname, segNo)

Returns Point by segment ratio (0.0 start point, 100.0 end point).

Parameter Description

entityId The ID of the entity.

pathname Name of path.

segNo Segment ratio.

GetPosturePriority

Sets the specified entity's posture priority.

Syntax

AI.GetPosturePriority(ScriptHandle entityId, const char* postureName)

GetPotentialTargetCount

Retrieves the total number of a specified entity's potential targets.

Syntax

AI.GetPotentialTargetCount(ScriptHandle entityID)

Parameter Description

entityId The ID of the entity.

GetPotentialTargetCountFromFaction

Retrieves the number of an entity's potential targets that belong to a specified faction.

Syntax

Version 1.8
582

Lumberyard Developer Guide
Lua ScriptBind Reference

AI.GetPotentialTargetCountFromFaction(ScriptHandle entityID, const char* factionName)

Parameter Description

entityId The ID of the entity.

name Faction name.

GetPredictedPosAlongPath

Retrieves the predicted position of an AI agent along its path at a specified time.

Syntax

AI.GetPredictedPosAlongPath(entityId, time, retPos)

Returns True if successful.

Parameter Description

entityId The ID of the entity.

time Time (in seconds) to predict position.

retPos Return point value of the predicted position .

GetPreviousBehaviorName

Syntax

AI.GetPreviousBehaviorName(ScriptHandle entityID)

GetPreviousPeakThreatLevel

Syntax

AI.GetPreviousPeakThreatLevel(ScriptHandle entityID)

GetPreviousPeakThreatType

Syntax

AI.GetPreviousPeakThreatType(ScriptHandle entityID)

GetProbableTargetPosition

Retrieves the probable target position of a specified entity.

Syntax

AI.GetProbableTargetPosition(entityId)

Version 1.8
583

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The ID of the entity.

GetRefPointDirection

Retrieves a specified entity's reference point direction.

Syntax

AI.GetRefPointDirection(entityId)

Returns a script vector (x,y,z) reference point direction.

Parameter Description

entityId The ID of the entity.

GetRefPointPosition

Retrieves a specified entity's reference point "world" position.

Syntax

AI.GetRefPointPosition(entityId)

Returns a script vector (x,y,z) reference point position.

Parameter Description

entityId The ID of the entity.

GetRefShapeName

Retrieves the name of a specified entity's reference shape.

Syntax

AI.GetRefShapeName(entityId)

Returns a reference shape name.

Parameter Description

entityId The ID of the entity.

GetSoundPerceptionDescriptor

Retrieves information about how the specified entity perceives sound types.

Version 1.8
584

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.GetSoundPerceptionDescriptor(entityId, soundType, descriptorTable)

Returns true if the information is successfully returned.

Parameter Description

entityId Entity to get perception data on.

soundType Type of sound stimulus to get data for.

descriptorTable Location to store retrieved data.

GetStance

Retrieves the specified entity's stance.

Syntax

AI.GetStance(entityId)

Returns entity stance (STANCE_*)

Parameter Description

entityId The ID of the entity.

GetSubTypeOf

Retrieves a specified entity's sub type.

Syntax

AI.GetSubTypeOf(entityId)

Returns the entity sub type (as defined in IAgent.h).

Parameter Description

entityId The ID of the entity.

GetTacticalPoints

Retrieves a point matching a description, related to a specified entity. Format of a point is: { x,y,z }.

Syntax

AI.GetTacticalPoints(entityId, tacPointSpec, point)

Version 1.8
585

Lumberyard Developer Guide
Lua ScriptBind Reference

Returns true if a valid point is found; otherwise, false.

Parameter Description

entityId AI's entity.

tacPointSpec. A table specifying the points required.

point Coordinates of the point found.

GetTargetSubType

Retrieves the subtype of a specified entity's current attention target.

Syntax

AI.GetTargetSubType(entityId)

Returns an attention target subtype. See IAgent.h for a list of target type definitions.

Parameter Description

entityId The ID of the entity.

GetTargetType

Retrieves the type of a specified entity's current attention target.

Syntax

AI.GetTargetType(entityId)

Returns an attention target type, such as AITARGET_NONE, AITARGET_MEMORY, AITARGET_BEACON,
AITARGET_ENEMY. See IAgent.h for a list of target type definitions.

Parameter Description

entityId The ID of the entity.

GetTotalLengthOfPath

Retrieves total length of the specified path.

Syntax

AI.GetTotalLengthOfPath(entityId, pathname)

Parameter Description

entityId The ID of the entity.

Version 1.8
586

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

pathname Name of path.

GetTypeOf

Retrieves a specified entity's type.

Syntax

AI.GetTypeOf(entityId)

Returns the entity type (as defined in IAgent.h).

Parameter Description

entityId The ID of the entity.

GetUnitCount

Retrieves the number of units the leader knows about. The leader is identified based on the group ID of the
entity.

Syntax

AI.GetUnitCount(entityId, unitProperties)

Parameter Description

entityId The ID of the entity.

unitProperties Binary mask of unit properties type for which the attack is requested, in the
following form:

UPR_* + UPR* (UPR_COMBAT_GROUND + UPR_COMBAT_FLIGHT)

See IAgent.h for a definition of unit properties UPR_*.

GetUnitInRank

Retrieves the entity that holds the specified rank position in the specified group.

Syntax

AI.GetUnitInRank(groupID [,rank])

Returns entity script table of the ranked unit.

Parameter Description

groupID The ID of the group that contains the entity to retrieve.

Version 1.8
587

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

rank The rank position of the entity to retrieve. If null or a value less than or equal
to zero is specified, retrieves the entity with the highest rank in the entity. The
value of the highest rank is 1.

GoTo

Allows the specified entity to move to a certain destination.

Syntax

AI.GoTo(entityId, vDestination)

Parameter Description

entityId AI's entity.

vDestination. .

Hostile

Determines whether or not two entities are hostile.

Syntax

AI.Hostile(entityId, entity2Id|AIObjectName)

Returns true if the entities are hostile.

Parameter Description

entityId ID of the first AI entity.

entity2Id |

AIObjectName

ID of the second AI entity, or AIobject name.

IgnoreCurrentHideObject

Marks the current hide object as unreachable; it will be omitted from future hidespot selections.

Syntax

AI.IgnoreCurrentHideObject(entityId)

Parameter Description

entityId The ID of the entity.

IntersectsForbidden

Determines whether or not the specified line is in a forbidden region.

Version 1.8
588

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.IntersectsForbidden(Vec3 start, Vec3 end)

Returns intersected position or end (if there is no intersection).

Parameter Description

start Vector in format {x,y,z}.

end Vector in format {x,y,z}.

IsAgentInAgentFOV

Determines whether or not one entity is in the field of view of another entity.

Syntax

AI.IsAgentInAgentFOV(entityId, entityId2)

Returns the first value true if the agent is within the entity FOV; the second value true if the agent is within
the entity's primary FOV, or false if the agent is within the entity's secondary FOV.

Parameter Description

entityId The AI entity whose FOV to check.

entityId2. The entity ID of the agent.

IsAgentInTargetFOV

Determines whether or not the entity is in the FOV of the attention target.

Syntax

AI.IsAgentInTargetFOV(entityId, fov)

Returns true if in the FOV of the attention target; otherwise, false.

Parameter Description

entityId The ID of the entity.

fov FOV of the enemy in degrees.

IsAimReady

Syntax

AI.IsAimReady(ScriptHandle entityIdHandle)

IsCoverCompromised

Version 1.8
589

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.IsCoverCompromised(entityId)

Returns true if the cover has been compromised; otherwise, nil.

Parameter Description

entityId AI's entity.

IsEnabled

Checks that the entity is AI-enabled.

Syntax

AI.IsEnabled(entityId)

Parameter Description

entityId The ID of the entity.

IsFireEnabled

Determines whether or not the AI is allowed to fire or not.

Syntax

AI.IsFireEnabled(entityId)

Returns true if AI is enabled to fire

Parameter Description

entityId The ID of the entity.

IsInCover

Determines whether or not the agent is using cover.

Syntax

AI.IsInCover(entityId)

IsLowHealthPauseActive

Syntax

AI.IsLowHealthPauseActive(ScriptHandle entityID)

Version 1.8
590

Lumberyard Developer Guide
Lua ScriptBind Reference

IsLowOnAmmo

Syntax

AI.IsLowOnAmmo(entityId)

Parameter Description

entityId AI's entity.

threshold The ammo percentage threshold.

IsMoving

Determines whether or not the agent wants to move.

Syntax

AI.IsMoving(entityId)

Parameter Description

entityId The ID of the entity.

IsMovingInCover

Syntax

AI.IsMovingInCover(entityId)

Returns true – Agent is moving in cover nil – if not

Parameter Description

entityId AI's entity.

IsMovingToCover

Determines whether or not the agent is running to cover.

Syntax

AI.IsMovingToCover(entityId)

Parameter Description

entityId AI's entity.

Version 1.8
591

Lumberyard Developer Guide
Lua ScriptBind Reference

IsOutOfAmmo

Syntax

AI.IsOutOfAmmo(entityId)

Returns true if the specified entity is out of ammunition; otherwise, nil.

Parameter Description

entityId The ID of the AI entity.

IsPersonallyHostile

Syntax

AI.IsPersonallyHostile(ScriptHandle entityID, ScriptHandle hostileID)

IsPointInFlightRegion

Determines whether or not a specified point is in the flight region.

Syntax

AI.IsPointInFlightRegion(point)

Returns true if the point is in the flight region.

Parameter Description

point Vector in format {x,y,z}.

IsPointInsideGenericShape

Determines whether or not a point is inside a specified shape.

Syntax

AI.IsPointInsideGenericShape(position, shapeName[, checkHeight])

Parameter Description

position Position to check.

shapeName Name of the shape to test (returned by
AI.GetEnclosingGenericShapeOfType).

checkHeight

(optional)

Flag indicating whether or not to test for shape height. (default=false). If
set to true, the test will check the space between shape.aabb.min.z and
shape.aabb.min.z+shape.height.

Version 1.8
592

Lumberyard Developer Guide
Lua ScriptBind Reference

IsPointInWaterRegion

Determines whether or not the point is in the water region.

Syntax

AI.IsPointInWaterRegion(point)

Returns a value that indicates water or ground level. Values greater than 0 mean there is water.

IsPunchableObjectValid

Determines whether or not a punchable object is valid.

Syntax

AI.IsPunchableObjectValid(userId, objectId, origPos)

Parameter Description

userId. User ID.

objectId. Object ID.

origPos. Object position in the world.

IsTakingCover

Syntax

AI.IsTakingCover(entityId, [distanceThreshold])

Returns true if the specfied agent is either in cover or running to cover; otherwise, nil.

Parameter Description

entityId AI's entity.

distanceThreshold. (Optional) Distance over which an agent that is running to cover is considered
to not yet have taken cover.

LoadBehaviors

Syntax

AI.LoadBehaviors(const char* folderName, const char* extension)

LogComment

Writes additional information to the log for debugging purposes.

Syntax

Version 1.8
593

Lumberyard Developer Guide
Lua ScriptBind Reference

AI.LogComment(szMessage)

Parameter Description

szMessage The message to write to the log.

LogEvent

Writes event-driven information to the log that for debugging purposes. Events may occur on a per-frame or
a per AI update basis.

Syntax

AI.LogEvent(szMessage)

Parameter Description

szMessage The message to write to the log.

LogProgress

Writes progress messages to the log.

Syntax

AI.LogProgress(szMessage)

Parameter Description

szMessage The message to write to the log.

MeleePunchableObject

Syntax

AI.MeleePunchableObject(entityId, objectId, origPos)

Parameter Description

entityId The ID of the AI entity.

objectId Object ID.

origPos Position of the melee punchable object.

ModifySmartObjectStates

Adds or removes smart object states for a specified entity.

Version 1.8
594

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.ModifySmartObjectStates(entityId, listStates)

Parameter Description

entityId The ID of the entity.

listStates The list of state names to be added or removed (such as "Closed, Locked",
"Open, Unlocked, Busy").

ParseTables

Syntax

AI.ParseTables(int firstTable, bool parseMovementAbility, IFunctionHandler* pH,
 AIObjectParams& aiParams, bool& updateAlways)

Parameter Description

firstTable Properties table.

parseMovementAbility True to parse movement ability, false otherwise.

aiParams AI parameters.

updateAlways True to always update; false otherwise.

PlayCommunication

Plays communication on the AI agent.

Syntax

AI.PlayCommunication(ScriptHandle entityId, const char* commName, const char* channelName,
 float contextExpiry)

Parameter Description

entityId The ID of the entity.

commName The name of the communication to play.

channelName The name of the channel where the communication will play.

PlayReadabilitySound

Plays readability sound on the AI agent. This call does not do any filtering like playing readability using
signals.

Syntax

Version 1.8
595

Lumberyard Developer Guide
Lua ScriptBind Reference

AI.PlayReadabilitySound(entityId, soundName)

Parameter Description

entityId The ID of the entity.

soundName The name of the readability sound signal to play.

stopPreviousSounds

(Optional)

True if any currently playing readability should be stopped in favor of this one.

responseDelayMin

(Optional)

Minimum (or exact, if no maximum) delay for the response readability to play.

repsonseDelayMax

(Optional)

Maximum delay for the response readability to play.

ProcessBalancedDamage

Processes balanced damage.

Syntax

AI.ProcessBalancedDamage(pShooterEntity, pTargetEntity, damage, damageType)

Parameter Description

pShooterEntity Shooter ID.

pTargetEntity Target ID.

damage Hit damage.

damageType Hit damage type.

QueueBubbleMessage

Syntax

AI.QueueBubbleMessage(ScriptHandle entityID, const char* message)

RecComment

Records a comment with AI Debug Recorder. For information about the AI Debug Recorder, see Using the
AI Debug Recorder.

Syntax

AI.RecComment(szMessage)

Parameter Description

szMessage Message line to be displayed in Recorder view.

Version 1.8
596

http://docs.aws.amazon.com/lumberyard/latest/userguide/ai-debug-recorder.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/ai-debug-recorder.html

Lumberyard Developer Guide
Lua ScriptBind Reference

RegisterDamageRegion

Registers a spherical region that causes damage (so should be avoided in pathfinding). The owner entity
position is used as the region center. The function can be called multiple times to update the region
position.

Syntax

AI.RegisterDamageRegion(entityId, radius)

Parameter Description

entityId The ID of the entity.

radius The radius of the spherical region. If less than or equal to zero, the region is
disabled.

RegisterInterestedActor

Registers the interested actor with the interest system. Any errors go to the error log.

Syntax

AI.RegisterInterestedActor(ScriptHandle entityId, float fInterestFilter, float
 fAngleInDegrees)

Returns true if a valid update was performed; otherwise, nil. Nil can be returned if the interest system is
disabled or the parameters are not valid.

Parameter Description

entityId The ID of the AI entity.

RegisterInterestingEntity

Registers the specified entity with the interest system. Any errors go to the error log.

Syntax

AI.RegisterInterestingEntity(ScriptHandle entityId, float radius, float baseInterest, const
 char* actionName, Vec3 offset, float pause, int shared)

Returns true if a valid update was performed; otherwise, nil. Nil can be returned if the interest system is
disabled or the parameters are not valid.

Parameter Description

entityId The ID of the entity.

RegisterTacticalPointQuery

Retrieves a query ID for the specified tactical point query.

Version 1.8
597

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.RegisterTacticalPointQuery(querySpecTable)

Returns > 0 – If the query was parsed successfully 0 – Otherwise

Parameter Description

querySpecTable Table specifying the query. For more information, see AI Tactical Point
System (p. 20).

RegisterTargetTrack

Registers an AI entity to use a specified target track configuration for target selection. The parameter
ai_TargetTracking must be set to '2'.

Syntax

AI.RegisterTargetTrack(entityId, configuration, targetLimit, classThreat)

Returns true if successfully registered.

Parameter Description

entityId The ID of the entity.

configuration Target track configuration.

targetLimit The number of agents who can target the AI at any specified time (0 for
infinite).

classThreat

(optional)

Initial class threat value.

RemovePersonallyHostile

Syntax

AI.RemovePersonallyHostile(ScriptHandle entityID, ScriptHandle hostileID)

RequestAttack

In a group with a leader, allows the leader to issue a request for a group attack behavior against the enemy.
After this request, the Cleader may create an attack leader action (CLeaderAction_Attack_*).

Syntax

AI.RequestAttack(entityId, unitProperties, attackTypeList [,duration])

Parameter Description

entityId Unique entity ID used to determine the group leader.

Version 1.8
598

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

unitProperties Binary mask of unit properties type for which the attack is requested, in the
following form:

UPR_* + UPR* (UPR_COMBAT_GROUND + UPR_COMBAT_FLIGHT)

See IAgent.h for a definition of unit properties UPR_*.

attackTypeList Lua table containing a prioritized list of preferred attack strategies (leader
action subtypes). The list must be in the following format:

{LAS_*, LAS_*,..} (LAS_ATTACK_ROW,LAS_ATTACK_FLANK)

which means that the first attempt will be an Attack_row action , and if that
fails an attack_flank.

See IAgent.h for a definition of LeaderActionSubtype (LAS_*) action types.

duration (optional) Maximum duration in seconds (default = 0).

RequestToStopMovement

Syntax

AI.RequestToStopMovement(ScriptHandle entityId)

ResetAgentLookAtPos

Resets the specified entity's previous call to AgentLookAtPos().

Syntax

AI.ResetAgentLookAtPos(entityId)

Parameter Description

entityId The ID of the entity.

ResetAgentState

Resets a particular aspect of the agent's state, such as "lean".

Syntax

AI.ResetAgentState(ScriptHandle entityId, const char * stateLabel)

Returns nil

Parameter Description

entityId The ID of the AI entity.

stateLabel String describing the state that must be reset to default.

Version 1.8
599

Lumberyard Developer Guide
Lua ScriptBind Reference

ResetParameters

Resets all parameters for a specified entity.

Syntax

AI.ResetParameters(entityId, bProcessMovement, PropertiesTable, PropertiesInstanceTable)

Parameter Description

entityId The ID of the entity whose parameters you want to reset.

bProcessMovement True to reset movement data; otherwise, false.

PropertiesTable The Lua table that contains the entity's properties.

PropertiesInstanceTable The Lua table that contains instance-specific entity properties.

ResetPersonallyHostiles

Syntax

AI.ResetPersonallyHostiles(ScriptHandle entityID, ScriptHandle hostileID)

ScaleFormation

Changes the scale factor of a specified entity's formation (if one exists).

Syntax

AI.ScaleFormation(entityId, scale)

Returns true if formation scaling was successful.

Parameter Description

entityId The ID of the entity.

scale Scale factor.

SequenceBehaviorReady

Syntax

AI.SequenceBehaviorReady(ScriptHandle entityId)

SequenceInterruptibleBehaviorLeft

Syntax

AI.SequenceInterruptibleBehaviorLeft(ScriptHandle entityId)

Version 1.8
600

Lumberyard Developer Guide
Lua ScriptBind Reference

SequenceNonInterruptibleBehaviorLeft

Syntax

AI.SequenceNonInterruptibleBehaviorLeft(ScriptHandle entityId)

SetAlarmed

Sets the entity to be "perception alarmed".

Syntax

AI.SetAlarmed(entityId)

SetAnimationTag

Sets a mannequin animation tag.

Syntax

AI.SetAnimationTag(ScriptHandle entityID, const char* tagName)

Returns a default result code (in Lua: void).

Parameter Description

entityId The ID of the AI entity on which to set the animation tag.

tagName The name of the animation tag that should be set (case insensitive).

SetAssesmentMultiplier

Sets the assesment multiplier factor for the specified AIObject type.

Syntax

AI.SetAssesmentMultiplier(AIObjectType, multiplier)

Parameter Description

AIObjectType Type of AIObject. See ScriptBindAI.cpp for a complete list of AIObject types.

multiplier Assesment multiplier factor.

SetAttentiontarget

Sets a new attention target.

Syntax

AI.SetAttentiontarget(entityId, targetId)

Version 1.8
601

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The ID of the entity.

targetId Target's entity ID.

SetBeaconPosition

Sets the beacon's position for the specified entity/object's group.

Syntax

AI.SetBeaconPosition(entityId | AIObjectName, pos)

Parameter Description

entityId |

AIObjectName

Unique entity ID or AI object name.

pos Vector {x,y,z} where the beacon position will be set.

SetBehaviorTreeEvaluationEnabled

Syntax

AI.SetBehaviorTreeEvaluationEnabled(ScriptHandle entityID, bool enable)

SetBehaviorVariable

Sets a behaviour variable for the specified actor.

Syntax

AI.SetBehaviorVariable(ScriptHandle entityId, const char* variableName, bool value)

SetCollisionAvoidanceRadiusIncrement

Syntax

AI.SetCollisionAvoidanceRadiusIncrement(ScriptHandle entityId, float radius)

SetContinuousMotion

Syntax

AI.SetContinuousMotion(ScriptHandle entityID, bool continuousMotion)

SetCoverCompromised

Syntax

AI.SetCoverCompromised(entityId)

Version 1.8
602

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The ID of the AI entity.

SetEntitySpeedRange

Syntax

AI.SetEntitySpeedRange(userEntityId, urgency, defaultSpeed, minSpeed, maxSpeed, stance =
 all)

Returns true if the operation was successful and false otherwise

Parameter Description

usedEntityId The entity ID of the user for which its last used smart object is needed.

urgency The integer value specifying the movement urgency (see
AgentMovementSpeeds::EAgentMovementUrgency).

defaultSpeed Floating point value that specfies the default speed.

minSpeed Floating point value that specifies the minimum speed.

SetExtraPriority

Sets a extra priority value to the specified enemy entity.

Syntax

AI.SetExtraPriority(enemyEntityId, increment)

Parameter Description

enemyEntityId The ID of the entity.

float increment Value to add to the target's priority.

SetFactionOf

Sets the faction to which the specified entity belongs.

Syntax

AI.SetFactionOf(ScriptHandle entityID, const char* factionName)

Parameter Description

entityId The ID of the entity whose faction to return.

factionName The name of the faction to assign to the specified entity.

Version 1.8
603

Lumberyard Developer Guide
Lua ScriptBind Reference

SetFactionThreatMultiplier

Sets the threat multiplier factor for the specified species. A return value of 0 indicates that the species is not
hostile to any other species.

Syntax

AI.SetFactionThreatMultiplier(nSpecies, multiplier)

SetFireMode

Sets fire mode immediately.

Syntax

AI.SetFireMode(entityId, mode)

Parameter Description

entityId The ID of the entity.

firemode New fire mode.

SetFormationAngleThreshold

Sets the relative position inside the formation.

Syntax

AI.SetFormationAngleThreshold(entityId, fAngleThreshold)

Parameter Description

entityId The ID of the AI entity.

fAngleThreshold New leader orientation angle threshold in degrees.

SetFormationLookingPoint

Sets the relative looking point position inside the formation.

Syntax

AI.SetFormationLookingPoint(entityId, v3RelativePosition)

Parameter Description

entityId The ID of the AI entity.

v3RelativePosition Table with format {x,y,z} storing the new relative looking point.

Version 1.8
604

Lumberyard Developer Guide
Lua ScriptBind Reference

SetFormationPosition

Sets the relative position inside the formation.

Syntax

AI.SetFormationPosition(entityId, v2RelativePosition)

Parameter Description

entityId The ID of the AI entity.

v2RelativePosition Table with format {x,y} storing the new relative position.

SetFormationUpdate

Sets the update flag for a specified entity's formation (if one exists). If this flag is false, the formation is no
longer updated.

Syntax

AI.SetFormationUpdate(entityId, update)

Returns true if the request was successful.

Parameter Description

entityId The ID of the entity.

update True to update the flag; otherwise, false.

SetFormationUpdateSight

Sets a random angle rotation for a specified entity's formation sight directions.

Syntax

AI.SetFormationUpdateSight(entityId, range, minTime, maxTime)

Parameter Description

entityId The ID of the entity.

range Angle of rotation (0,360) around the default sight direction.

minTime (optional) Minimum timespan for changing the direction (default = 2).

maxTime (optional) Minimum timespan for changing the direction (default = minTime).

SetIgnorant

Sets the specified AI entity to ignore system signals, visual stimuli and sound stimuli.

Version 1.8
605

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.SetIgnorant(entityId, ignorant)

Parameter Description

entityId The ID of the AI entity.

ignorant A flag indicating whether or not the entity ignores system signals. 0 specifies
do not ignore; 1 specifies ignore.

SetInCover

Syntax

AI.SetInCover(entityId, bool inCover)

Parameter Description

entityId The ID of the AI entity.

inCover Specifies whether the entity should be set to be in cover or not.

SetLeader

Sets a specified entity as the group leader. This action associates a CLeader object with the entity, creating
it if one doesn't exist. Only one leader can be set per group.

Syntax

AI.SetLeader(entityID)

Returns true if successful.

Parameter Description

entityID Unique entity ID to set as leader.

SetMemoryFireType

Sets how the AI agent handles firing at its memory target.

Syntax

AI.SetMemoryFireType(entityId, type)

Parameter Description

entityId The ID of the entity.

Version 1.8
606

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

type Memory fire type. Possible values from enum EMemoryFireType in IAgent.h:

eMFT_Disabled = 0, // Never allowed to fire at memory
eMFT_UseCoverFireTime, // Can fire at memory using the
 weapon's cover fire time
eMFT_Always, // Always allowed to fire at memory

SetMovementContext

Sets the specified entity's movement context.

Syntax

AI.SetMovementContext(ScriptHandle entityId, int context)

Parameter Description

entityId The ID of the entity.

context context value .

SetPathAttributeToFollow

Sets the attribute of a specified entity's path.

Syntax

AI.SetPathAttributeToFollow(entityId, flag)

Parameter Description

entityId The ID of the entity.

flag Attribute to set.

SetPathToFollow

Sets the path for a specified entity to follow.

Syntax

AI.SetPathToFollow(entityId, pathName)

Parameter Description

entityId The ID of the entity.

pathName Name of the path to be followed.

Version 1.8
607

Lumberyard Developer Guide
Lua ScriptBind Reference

SetPFBlockerRadius

Syntax

AI.SetPFBlockerRadius(entityId, blocker, radius)

Parameter Description

entityId The ID of the entity.

SetPointListToFollow

Sets a point list for a specified entity's path.

Syntax

AI.SetPointListToFollow(entityId, pointlist, howmanypoints, bspline [, navtype])

Parameter Description

entityId The ID of the entity.

pointList List of points for the entity to follow, expressed as a set of local vectors:
{{x=0.0, y=0.0, z=0.0}, .

howmanypoints Number of points in the list.

bspline Flag indicating whether or not the path line is recalculated using spline
interpolation.

navtype (Optional) Navigation type (default = IAISystem::NAV_FLIGHT).

SetPosturePriority

Sets the specified entity's posture priority.

Syntax

AI.SetPosturePriority(ScriptHandle entityId, const char* postureName, float priority)

SetPostures

Sets the specified entity's postures.

Syntax

AI.SetPostures(ScriptHandle entityId, SmartScriptTable postures)

Parameter Description

entityId The ID of the entity.

Version 1.8
608

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

postures The table of postures.

SetRefPointAtDefensePos

Sets a specified entity's reference point position to an intermediate distance between the entity's attention
target and a specified point.

Syntax

AI.SetRefPointAtDefensePos(entityId, point2defend, distance)

Parameter Description

entityId The ID of the entity.

point2defend Point to defend.

distance Maximum distance between reference point and point to defend.

SetRefPointDirection

Sets a specified entity's reference point direction.

Syntax

AI.SetRefPointDirection(vRefPointDir)

Parameter Description

vRefPointDir Direction as a (script)vector (x,y,z) value.

SetRefPointPosition

Sets a specified entity's reference point "world" position.

Syntax

AI.SetRefPointPosition(entityId, vRefPointPos)

Parameter Description

entityId The ID of the entity.

vRefPointPos World position as a (script)vector (x,y,z) value.

SetRefPointRadius

Sets a specified entity's reference point radius.

Version 1.8
609

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.SetRefPointRadius(entityId, radius)

Parameter Description

entityId The ID of the entity.

radius The reference point radius.

SetRefpointToAnchor

Sets a reference point to an anchor.

Syntax

AI.SetRefpointToAnchor(entityId, rangeMin, rangeMax, findType, findMethod)

Parameter Description

entityId The ID of the AI entity.

rangeMin Minimum range.

rangeMax Maximum range.

findType Finding type.

findMethod Finding method.

SetRefpointToPunchableObject

Sets the reference point to the punchable object.

Syntax

AI.SetRefpointToPunchableObject(entityId, range)

Parameter Description

entityId The ID of the AI entity.

range Range for the punchable object.

SetRefShapeName

Sets the name of a specified entity's reference shape.

Syntax

AI.SetRefShapeName(entityId, name)

Version 1.8
610

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The ID of the entity.

name Name of the reference shape.

SetSmartObjectState

Sets a single smart object state, replacing all other states.

Syntax

AI.SetSmartObjectState(entityId, stateName)

Parameter Description

entityId The ID of the entity.

stateName The name of the new state to set for the smart object (such as "Idle").

SetSoundPerceptionDescriptor

Sets information about how the specified entity perceives sound types.

Syntax

AI.SetSoundPerceptionDescriptor(entityId, soundType, descriptorTable)

Returns True if information successfully saved.

Parameter Description

entityId Entity to set perception data for.

soundType Type of sound stimulus to set data for.

descriptorTable Perception data to saved.

SetSpeed

Sets the entity's current speed (urgency).

Syntax

AI.SetSpeed(entityId, urgency)

Parameter Description

entityId AI's entity.

urgency A float value that specifies the movement urgency (see
AgentMovementSpeeds::EAgentMovementUrgency).

Version 1.8
611

Lumberyard Developer Guide
Lua ScriptBind Reference

SetStance

Sets the specified entity's stance.

Syntax

AI.SetStance(entityId, stance)

Parameter Description

entityId The ID of the entity.

stance The stance value (STANCE_*).

SetTargetTrackClassThreat

Sets the class threat for a specified entity's target track.

Syntax

AI.SetTargetTrackClassThreat(entityId, classThreat)

Parameter Description

entityId The ID of the entity.

classThreat New class threat value.

SetTempTargetPriority

Sets a specified entity's selection priority for a temporary target over other potential targets.

Syntax

AI.SetTempTargetPriority(entityId, priority)

Returns True if successfully updated.

Parameter Description

entityId The ID of the entity.

priority New priority value.

SetTerritoryShapeName

Sets the territory shape of the specified AI entity.

Syntax

AI.SetTerritoryShapeName(entityId, shapeName)

Version 1.8
612

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The ID of the entity.

shapeName Name of the shape to set.

SetUnitProperties

Sets the leader's knowledge about the unit's combat capabilities. The leader is identified based on the
group ID of the entity.

Syntax

AI.SetUnitProperties(entityId, unitProperties)

Parameter Description

entityId The ID of the entity.

unitProperties Binary mask of unit properties in the following form:

UPR_* + UPR* (UPR_COMBAT_GROUND + UPR_COMBAT_FLIGHT)

See IAgent.h for a definition of the UPR_* unit properties.

SetUseSecondaryVehicleWeapon

Enables or disables the AI object's ability to use the secondary weapon when firing from a vehicle gunner
seat if possible.

Syntax

AI.SetUseSecondaryVehicleWeapon(entityId, bUseSecondary)

Parameter Description

entityId The ID of the entity.

bUseSecondary Specify true to use the secondary weapon; otherwise, false.

Signal

Adds a signal to the sender's signal queue even if another signal with same text is present.

Syntax

AI.Signal(signalFilter, signalType, signalText, senderId [, signalExtraData])

Parameter Description

signalFilter The signal filter.

signalType The signal type.

Version 1.8
613

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

signalText Signal text that is processed by the receivers, either in a Lua callback with the
same name as the text or directly by the CAIObject.

senderId The ID of the sender.

signalExtraData Optional. A Lua table containing additional data. It can contain the following
data types:

• point – A vector in the format {x,y,z}.

• point2 – A vector in the format {x,y,z}.

• ObjectName – A string.

• id – An entity ID.

• fValue – A float value.

• iValue – An integer value.

• iValue2 – A second integer value.

SmartObjectEvent

Executes a smart action.

Syntax

AI.SmartObjectEvent(actionName, userEntityId, objectEntityId [, vRefPoint])

Returns 0 if a smart object rule was not found or if a non-zero ID was inserted to execute the action.

Parameter Description

actionName The name of the smart action.

usedEntityId The entity ID of the user who wants to execute the smart action, or none if the
user is unknown.

objectEntityId The entity ID of the object on which the smart action is to be executed, or
none if the object is unknown.

vRefPoint Optional. The reference point to be used instead of the user's attention target
position.

SoundEvent

Generates a sound event with the specified parameters in the AI system.

Syntax

AI.SoundEvent(position, radius, threat, interest, entityId)

Parameter Description

position Origin of the sound event.

radius Area the sound event is heard in.

Version 1.8
614

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

threat Sound event property.

interest Sound event property.

entityId Unique entity ID that generates the sound event.

StopCommunication

Stops specified communication.

Syntax

AI.StopCommunication(ScriptHandle playID)

Parameter Description

playID The ID of the communication to stop.

ThrowGrenade

Throws a specified grenade at a target type without interrupting the fire mode.

Syntax

AI.ThrowGrenade(entityId, grenadeType, regTargetType)

Parameter Description

entityId The ID of the entity.

grenadeType Requested grenade type (see ERequestedGrenadeType).

regTargetType The grenade target type (see AI_REG_*).

UnregisterInterestedActor

Unregisters the entity with the interest system. Any errors are recorded in the error log.

Syntax

AI.UnregisterInterestedActor(ScriptHandle entityId)

Parameter Description

entityId The ID of the entity.

UnregisterInterestingEntity

Unregisters the specified entity with the interest system. Any errors are recorded in the error log.

Version 1.8
615

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

AI.UnregisterInterestingEntity(ScriptHandle entityId)

Parameter Description

entityId The ID of the entity.

UnregisterTargetTrack

Unregisters an AI object from the target track manager. The parameter ai_TargetTracking must be set to
'2'.

Syntax

AI.UnregisterTargetTrack(entityId)

Returns true if successfully unregistered.

Parameter Description

entityId The ID of the entity.

UpdateGlobalPerceptionScale

Syntax

AI.UpdateGlobalPerceptionScale(float visualScale, float audioScale)

UpdateTempTarget

Updates the position of the specified entity's temporary potential target.

Syntax

AI.UpdateTempTarget(entityId, vPos)

Returns true if successfully updated.

Parameter Description

entityId The ID of the entity.

vPos New position of the temporary target.

UpTargetPriority

Changes a specified entity's target priority value for a specified target, if the target is on the entity's target
list.

Syntax

Version 1.8
616

Lumberyard Developer Guide
Lua ScriptBind Reference

AI.UpTargetPriority(entityId, targetId, increment)

Parameter Description

entityId The ID of the entity.

targetId The entity ID of the target.

increment New value for the target priorty.

VisualEvent

Generates a visual event with the specified parameters in the AI system.

Syntax

AI.VisualEvent(entityId, targetId)

Parameter Description

entityId The ID of the entity that receives the visual event.

targetId The ID of the visual target (that the entity is seeing).

Warning

Writes a warning message to the log about data or script errors.

Syntax

AI.Warning(szMessage)

Parameter Description

szMessage The message to write to the log.

ScriptBind_Entity

Lists the entity related Lua script bind functions.

Activate

Activates or deactivates the entity. Activate ignores the update policy and forces an entity to activate or
deactivate. All active entities are updated every frame.

Warning
Having too many active entities can affect performance.

Syntax

Entity.Activate(int bActive)

Version 1.8
617

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

bActive Specify true to make the entity active; false to make
it inactive.

ActivateOutput

Syntax

Entity.ActivateOutput()

ActivatePlayerPhysics

Syntax

Entity.ActivatePlayerPhysics(bool bEnable)

AddConstraint

Syntax

Entity.AddConstraint()

AddImpulse

Apply an impulse to the entity. At least four parameters need to be provided for a linear impulse. For an
additional angular impulse, at least seven parameters need to be provided.

Syntax

Entity.AddImpulse(ipart, position, direction, linearImpulse, linearImpulseScale,
 angularAxis, angularImpulse, massScale)

Parameters

Parameter Description

ipart The index of the part that receives the impulse.

position The point (in world coordinates) where the impulse is applied. Set this to (0, 0, 0) to
ignore it.

direction The direction in which the impulse is applied.

linearImpulse The force of the linear impulse.

linearImpulseScaleScaling of the linear impulse. (Default: 1.0)

angularAxis The axis on which the angular impulse is applied.

angularImpulse The force of the the angular impulse.

massScale Mass scaling of the angular impulse. (Default: 1.0)

Version 1.8
618

Lumberyard Developer Guide
Lua ScriptBind Reference

AttachChild

Syntax

Entity.AttachChild(ScriptHandle childEntityId, int flags)

AttachSurfaceEffect

Syntax

Entity.AttachSurfaceEffect(int nSlot, const char *effect, bool countPerUnit, const char
 *form, const char *typ, float countScale, float sizeScale)

AuxAudioProxiesMoveWithEntity

Set whether AuxAudioProxies should move with the entity or not.

Syntax

Entity.AuxAudioProxiesMoveWithEntity(bool const bCanMoveWithEntity)

Returns: nil

Parameters

Parameter Description

bCanMoveWithEntity Boolean parameter to enable or disable

AwakeCharacterPhysics

Syntax

Entity.AwakeCharacterPhysics(int nSlot,const char *sRootBoneName,int nAwake)

AwakeEnvironment

Syntax

Entity.AwakeEnvironment()

AwakePhysics

Syntax

Entity.AwakePhysics(int nAwake)

BreakToPieces

Breaks static geometry in slot 0 into sub objects and spawn them as particles or entities.

Syntax

Entity.BreakToPieces(int nSlot, int nPiecesSlot, float fExplodeImp, Vec3 vHitPt, Vec3
 vHitImp, float fLifeTime, bool bSurfaceEffects)

Version 1.8
619

Lumberyard Developer Guide
Lua ScriptBind Reference

CalcWorldAnglesFromRelativeDir

Syntax

Entity.CalcWorldAnglesFromRelativeDir(Vec3 dir)

CancelSubpipe

Syntax

Entity.CancelSubpipe()

ChangeAttachmentMaterial

Syntax

Entity.ChangeAttachmentMaterial(const char *attachmentName, const char *materialName)

CharacterUpdateAlways

Syntax

Entity.CharacterUpdateAlways(int characterSlot, bool updateAlways)

CharacterUpdateOnRender

Syntax

Entity.CharacterUpdateOnRender(int characterSlot, bool bUpdateOnRender)

CheckCollisions

Syntax

Entity.CheckCollisions()

CheckShaderParamCallbacks

Check all the currently set shader param callbacks on the renderproxy with the current state of the entity.

Syntax

Entity.UpdateShaderParamCallback()

CloneMaterial

Replace material on the slot with a cloned version of the material. Cloned material can be freely changed
uniquely for this entity.

Syntax

Entity.CloneMaterial(int slot)

Version 1.8
620

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

slot ID of the slot on which to clone material.

sSubMaterialName If this is a non empty string this specific sub-
material is cloned.

CopySlotTM

Copies the TM (Transformation Matrix) of the slot.

Syntax

Entity.CopySlotTM(int destSlot, int srcSlot, bool includeTranslation)

Parameters

Parameter Description

destSlot Destination slot identifier.

srcSlot Source slot identifier.

includeTranslation True to include the translation, false otherwise.

CountLinks

Counts all outgoing links of the entity.

Syntax

Entity.CountLinks()

Returns: Number of outgoing links.

CreateAuxAudioProxy

Creates an additional AudioProxy managed by the EntityAudioProxy. The created AuxAudioProxy will move
and rotate with the parent EntityAudioProxy.

Syntax

Entity.CreateAuxAudioProxy()

Returns: Returns the ID of the additionally created AudioProxy.

CreateBoneAttachment

Syntax

Entity.CreateBoneAttachment(int characterSlot, const char *boneName, const char
 *attachmentName)

Version 1.8
621

Lumberyard Developer Guide
Lua ScriptBind Reference

CreateCameraComponent

Create a camera component for the entity. Allows the entity to serve as camera source for material
assigned to the entity.

Syntax

Entity.CreateCameraComponent()

CreateDRSProxy

Creates a Dynamic Response System Proxy

Syntax

Entity.CreateDRSProxy()

Returns: Returns the ID of the created proxy.

CreateLink

Creates a new outgoing link for this entity.

Syntax

Entity.CreateLink(const char *name)

Returns: nothing

Parameters

Parameter Description

name Name of the link. Does not have to be unique
among all the links of this entity. Multiple links with
the same name can coexist.

(optional) targetId If specified, the ID of the entity the link shall target.
If not specified or 0 then the link will not target
anything. Default value: 0

CreateRenderComponent

Create a render component object for the entity. Allows an entity to be rendered immediately without
loading any assets.

Syntax

Entity.CreateRenderComponent()

CreateSkinAttachment

Syntax

Entity.CreateSkinAttachment(int characterSlot, const char *attachmentName)

Version 1.8
622

Lumberyard Developer Guide
Lua ScriptBind Reference

Damage

Syntax

Entity.Damage()

DeleteParticleEmitter

Deletes particles emitter from 3dengine.

Syntax

Entity.DeleteParticleEmitter(int slot)

Parameters

Parameter Description

slot slot number

DeleteThis

Deletes the current entity.

Syntax

Entity.DeleteThis()

DestroyAttachment

Syntax

Entity.DestroyAttachment(int characterSlot, const char *attachmentName)

DestroyPhysics

Syntax

Entity.DestroyPhysics()

DetachAll

Syntax

Entity.DetachAll()

DetachThis

Syntax

Entity.DetachThis()

DisableAnimationEvent

Syntax

Version 1.8
623

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.DisableAnimationEvent(int nSlot,const char *sAnimation)

DrawSlot

Enables/Disables drawing of object or character at specified slot of the entity.

Syntax

Entity.DrawSlot(int nSlot,int nEnable)

Parameters

Parameter Description

nSlot Slot identifier.

nEnable 1-Enable drawing, 0-Disable drawing.

EnableBoneAnimation

Syntax

Entity.EnableBoneAnimation(int characterSlot, int layer, const char *boneName, bool status)

EnableBoneAnimationAll

Syntax

Entity.EnableBoneAnimationAll(int characterSlot, int layer, bool status)

EnableDecals

Enables decals.

Syntax

Entity.EnableDecals(int slot, bool enable)

EnableInheritXForm

Enables/Disable entity from inheriting transformation from the parent.

Syntax

Entity.EnableInheritXForm(bool bEnable)

EnableMaterialLayer

Syntax

Entity.EnableMaterialLayer(bool enable, int layer)

EnablePhysics

Syntax

Version 1.8
624

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.EnablePhysics(bool bEnable)

EnableProceduralFacialAnimation

Syntax

Entity.EnableProceduralFacialAnimation(bool enable)

ExecuteAudioTrigger

Execute the specified audio trigger and attach it to the entity. The created audio object will move and rotate
with the entity.

Syntax

Entity.ExecuteAudioTrigger(ScriptHandle const hTriggerID, ScriptHandle const
 hAudioProxyLocalID)

Returns: nil

Parameters

Parameter Description

hTriggerID the audio trigger ID handle

hAudioProxyLocalID The ID of the AuxAudioProxy that is local
to the EntityAudioProxy. To address the
default AuxAudioProxy, pass 1. To address all
AuxAudioProxy instances, pass 0.

FadeGlobalDensity

Sets the fade global density.

Syntax

Entity.FadeGlobalDensity(int nSlot, float fadeTime, float newGlobalDensity)

Parameters

Parameter Description

nSlot nSlot identifier.

fadeTime .

newGlobalDensity .

ForceCharacterUpdate

Syntax

Entity.ForceCharacterUpdate(int characterSlot, bool updateAlways)

Version 1.8
625

Lumberyard Developer Guide
Lua ScriptBind Reference

ForwardTriggerEventsTo

Syntax

Entity.ForwardTriggerEventsTo(ScriptHandle entityId)

FreeAllSlots

Delete all objects on every slot part of the entity.

Syntax

Entity.FreeAllSlots()

FreeSlot

Delete all objects from specified slot.

Syntax

Entity.FreeSlot(int nSlot)

Parameters

Parameter Description

nSlot Slot identifier.

GetAIName

Syntax

Entity.GetAIName()

GetAllAuxAudioProxiesID

Returns the ID used to address all AuxAudioProxy of the parent EntityAudioProxy.

Syntax

Entity.GetAllAuxAudioProxiesID()

Returns: Returns the ID used to address all AuxAudioProxy of the parent EntityAudioProxy.

GetAngles

Gets the angle of the entity.

Syntax

Entity.GetAngles()

GetAnimationLength

Syntax

Version 1.8
626

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.GetAnimationLength(int characterSlot, const char *animation)

GetAnimationTime

Syntax

Entity.GetAnimationTime(int nSlot,int nLayer)

GetArchetype

Retrieve the archetype of the entity.

Syntax

Entity.GetArchetype()

Returns: name of entity archetype, nil if no archetype.

GetAttachmentBone

Syntax

Entity.GetAttachmentBone(int characterSlot, const char *attachmentName)

GetAttachmentCGF

Syntax

Entity.GetAttachmentCGF(int characterSlot, const char *attachmentName)

GetBoneAngularVelocity

Syntax

Entity.GetBoneAngularVelocity(int characterSlot, const char *boneName)

GetBoneDir

Syntax

Entity.GetBoneDir()

GetBoneLocal

Syntax

Entity.GetBoneLocal(const char *boneName, Vec3 trgDir)

GetBoneNameFromTable

Syntax

Entity.GetBoneNameFromTable()

Version 1.8
627

Lumberyard Developer Guide
Lua ScriptBind Reference

GetBonePos

Syntax

Entity.GetBonePos()

GetBoneVelocity

Syntax

Entity.GetBoneVelocity(int characterSlot, const char *boneName)

GetCenterOfMassPos

Gets the position of the entity center of mass.

Syntax

Entity.GetCenterOfMassPos()

GetCharacter

Gets the character for the specified slot if there is any.

Syntax

Entity.GetCharacter(int nSlot)

GetChild

Syntax

Entity.GetChild(int nIndex)

GetChildCount

Syntax

Entity.GetChildCount()

GetCurAnimation

Syntax

Entity.GetCurAnimation()

GetDefaultAuxAudioProxyID

Returns the ID of the default AudioProxy of the parent EntityAudioProxy.

Syntax

Entity.GetDefaultAuxAudioProxyID()

Returns: Returns the ID of the default AudioProxy of the parent EntityAudioProxy.

Version 1.8
628

Lumberyard Developer Guide
Lua ScriptBind Reference

GetDirectionVector

Syntax

Entity.GetDirectionVector()

GetDistance

Syntax

float Entity.GetDistance(entityId)

Returns: The distance from entity specified with entityId/

GetEntitiesInContact

Syntax

Entity.GetEntitiesInContact()

GetEntityMaterial

Syntax

Entity.GetEntityMaterial()

GetExplosionImpulse

Syntax

Entity.GetExplosionImpulse()

GetExplosionObstruction

Syntax

Entity.GetExplosionObstruction()

GetFlags

Syntax

Entity.GetFlags()

GetFlagsExtended

Syntax

Entity.GetFlagsExtended()

GetGeomCachePrecachedTime

Gets time delta from current playback position to last ready to play frame.

Version 1.8
629

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Entity.GetGeomCachePrecachedTime()

GetGravity

Syntax

Entity.GetGravity()

GetHelperAngles

Syntax

Entity.GetHelperAngles()

GetHelperDir

Syntax

Entity.GetHelperDir()

GetHelperPos

Syntax

Entity.GetHelperPos()

GetLink

Returns the link at given index.

Syntax

Entity.GetLink()

Returns: The script table of the entity that the i'th link is targeting or nil if the specified index is out of
bounds.

Parameters

Parameter Description

ith The index of the link that shall be returned.

GetLinkName

Returns the name of the link that is targeting the entity with given ID.

Syntax

Entity.GetLinkName(ScriptHandle targetId)

Returns: The name of the i'th link targeting given entity or nil if no such link exists.

Version 1.8
630

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

targetId ID of the entity for which the link name shall be
looked up.

(optional) ith If specified, the i'th link that targets given entity.
Default value: 0 (first entity)

GetLinkTarget

Returns the ID of the entity that given link is targeting.

Syntax

Entity.GetLinkTarget(const char *name)

Returns: The ID of the entity that the link is targeting or nil if no such link exists.

Parameters

Parameter Description

name Name of the link.

(optional) ith If specified, the i'th link with given name for which
to look up the targeted entity. Default value: 0 (first
link with given name)

GetLocalAngles

Syntax

Vec3 Entity.GetLocalAngles(vAngles)

GetLocalBBox

Syntax

Entity.GetLocalBBox()

GetLocalPos

Syntax

Vec3 Entity.GetLocalPos()

GetLocalScale

Syntax

float Entity.GetLocalScale()

Version 1.8
631

Lumberyard Developer Guide
Lua ScriptBind Reference

GetLodRatio

Syntax

Entity.GetLodRatio()

GetMass

Syntax

Entity.GetMass()

GetMaterial

Syntax

Entity.GetMaterial()

GetMaterialFloat

Change material parameter.

Syntax

Entity.GetMaterialFloat(int slot,int nSubMtlId,const char *sParamName)

Returns: Material parameter value.

Parameters

Parameter Description

slot ID of the slot on which slot to change material.

nSubMtlId Specify submaterial by Id.

sParamName Name of the material parameter.

GetMaterialVec3

Syntax

Entity.GetMaterialVec3(int slot,int nSubMtlId,const char *sParamName)

GetName

Syntax

Entity.GetName()

GetParent

Syntax

Version 1.8
632

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.GetParent()

GetParentSlot

Syntax

Entity.GetParentSlot(int child)

GetPhysicalStats

Some more physics related.

Syntax

Entity.GetPhysicalStats()

GetPos

Gets the position of the entity.

Syntax

Entity.GetPos()

GetProjectedWorldBBox

Syntax

Entity.GetProjectedWorldBBox()

GetRawId

Returns entityId in raw numeric format.

Syntax

Entity.GetRawId()

GetScale

Gets the scaling value for the entity.

Syntax

Entity.GetScale()

GetSlotAngles

Gets the slot angles.

Syntax

Entity.GetSlotAngles(int nSlot)

Version 1.8
633

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

nSlot nSlot identifier.

GetSlotCount

Gets the count of the slots.

Syntax

Entity.GetSlotCount()

GetSlotHelperPos

Syntax

Entity.GetSlotHelperPos(int slot, const char *helperName, bool objectSpace)

GetSlotPos

Gets the slot position.

Syntax

Entity.GetSlotPos(int nSlot)

Parameters

Parameter Description

nSlot nSlot identifier.

GetSlotScale

Gets the slot scale amount.

Syntax

Entity.GetSlotScale(int nSlot)

Parameters

Parameter Description

nSlot nSlot identifier.

GetSlotWorldDir

Gets the World direction of the slot.

Syntax

Version 1.8
634

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.GetSlotWorldDir(int nSlot)

Parameters

Parameter Description

nSlot Slot identifier.

GetSlotWorldPos

Gets the World position of the slot.

Syntax

Entity.GetSlotWorldPos(int nSlot)

Parameters

Parameter Description

nSlot Slot identifier.

GetSpeed

Syntax

Entity.GetSpeed()

GetState

Syntax

Entity.GetState()

GetSubmergedVolume

Syntax

Entity.GetSubmergedVolume(int slot, Vec3 planeNormal, Vec3 planeOrigin)

GetTimeOfDayHour

Syntax

Entity.GetTimeOfDayHour()

Returns: current time of day as a float value.

GetTimeSinceLastSeen

Syntax

Version 1.8
635

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.GetTimeSinceLastSeen()

GetTouchedPoint

Retrieves point of collision for rigid body.

Syntax

Entity.GetTouchedPoint()

GetTouchedSurfaceID

Syntax

Entity.GetTouchedSurfaceID()

GetTriggerBBox

Syntax

Entity.GetTriggerBBox()

GetUpdateRadius

Syntax

Entity.GetUpdateRadius()

GetVelocity

Syntax

Entity.GetVelocity()

GetVelocityEx

Syntax

Entity.GetVelocityEx()

GetViewDistanceMultiplier

Get the view distance multiplier.

Syntax

Entity.GetViewDistanceMultiplier()

GetVolume

Syntax

Version 1.8
636

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.GetVolume(int slot)

GetWorldAngles

Syntax

Vec3 Entity.GetWorldAngles(vAngles)

GetWorldBBox

Syntax

Entity.GetWorldBBox()

GetWorldBoundsCenter

Gets the world bbox center for the entity (defaults to entity position if no bbox present).

Syntax

Entity.GetWorldBoundsCenter()

GetWorldDir

Syntax

Vec3 Entity.GetWorldDir()

GetWorldPos

Syntax

Vec3 Entity.GetWorldPos()

GetWorldScale

Syntax

float Entity.GetWorldScale()

GotoState

Syntax

Entity.GotoState(const char *sState)

HasFlags

Syntax

Entity.HasFlags(int flags)

Version 1.8
637

Lumberyard Developer Guide
Lua ScriptBind Reference

HasFlagsExtended

Syntax

Entity.HasFlagsExtended(int flags)

Hide

Syntax

Entity.Hide()

HideAllAttachments

Syntax

Entity.HideAllAttachments(int characterSlot, bool hide, bool hideShadow)

HideAttachment

Syntax

Entity.HideAttachment(int characterSlot, const char *attachmentName, bool hide, bool
 hideShadow)

HideAttachmentMaster

Syntax

Entity.HideAttachmentMaster(int characterSlot, bool hide)

IgnorePhysicsUpdatesOnSlot

Ignore physics when updating the position of a slot.

Syntax

Entity.IgnorePhysicsUpdatesOnSlot(int nSlot)

Parameters

Parameter Description

nSlot Slot identifier.

InsertSubpipe

Syntax

Entity.InsertSubpipe()

IntersectRay

Syntax

Version 1.8
638

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.IntersectRay(int slot, Vec3 rayOrigin, Vec3 rayDir, float maxDistance)

InvalidateTrigger

Syntax

Entity.InvalidateTrigger()

IsActive

Retrieve active status of entity.

Syntax

Entity.IsActive(bActivate)

Returns: true - Entity is active. false - Entity is not active.

IsAnimationRunning

Syntax

Entity.IsAnimationRunning(int characterSlot, int layer)

Returns: nil or not nil

Parameters

Parameter Description

characterSlot Index of the character slot.

layer Index of the animation layer.

IsColliding

Syntax

Entity.IsColliding()

IsEntityInside

Syntax

float Entity.IsEntityInside(entityId)

IsEntityInsideArea

Syntax

Entity.IsEntityInsideArea(int areaId, ScriptHandle entityId)

Version 1.8
639

Lumberyard Developer Guide
Lua ScriptBind Reference

IsFromPool

Returns if the entity came from an entity pool.

Syntax

Entity.IsFromPool()

Returns: true - Entity is from a pool. (Bookmarked) false - Entity is not from a pool. (Not bookmarked)

IsGeomCacheStreaming

Syntax

Entity.IsGeomCacheStreaming()

Returns: true if geom cache is streaming.

IsHidden

Syntax

Entity.IsHidden()

IsInState

Syntax

Entity.IsInState(const char *sState)

IsPointInsideArea

Syntax

Entity.IsPointInsideArea(int areaId, Vec3 point)

IsSlotCharacter

Checks if the slot is a character.

Syntax

Entity.IsSlotCharacter(int slot)

Parameters

Parameter Description

slot Slot identifier.

IsSlotGeometry

Checks if the slot is a geometry.

Version 1.8
640

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Entity.IsSlotGeometry(int slot)

Parameters

Parameter Description

slot Slot identifier.

IsSlotLight

Checks if the slot is a light.

Syntax

Entity.IsSlotLight(int slot)

Parameters

Parameter Description

slot Slot identifier.

IsSlotParticleEmitter

Checks if the slot is a particle emitter.

Syntax

Entity.IsSlotParticleEmitter(int slot)

Parameters

Parameter Description

slot Slot identifier.

IsSlotValid

Checks if the slot is valid.

Syntax

Entity.IsSlotValid(int nSlot)

Parameters

Parameter Description

nSlot Slot identifier.

Version 1.8
641

Lumberyard Developer Guide
Lua ScriptBind Reference

IsUsingPipe

Syntax

Entity.IsUsingPipe()

Returns: True if the entity is running a goalpipe or has it inserted; otherwise, false.

KillTimer

Syntax

Entity.KillTimer()

LoadCharacter

Load CGF geometry into the entity slot.

Syntax

Entity.LoadCharacter(int nSlot,const char *sFilename)

Parameters

Parameter Description

nSlot Slot identifier.

sFilename CGF geometry file name.

LoadCloud

Loads the cloud XML file into the entity slot.

Syntax

Entity.LoadCloud(int nSlot, const char *sFilename)

Parameters

Parameter Description

nSlot Slot identifier.

sFilename Filename.

LoadFogVolume

Loads the fog volume XML file into the entity slot.

Syntax

Entity.LoadFogVolume(int nSlot, SmartScriptTable table)

Version 1.8
642

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

nSlot Slot identifier.

table Table with fog volume properties.

LoadGeomCache

Load geom cache into the entity slot.

Syntax

Entity.LoadGeomCache(int nSlot,const char *sFilename)

Parameters

Parameter Description

nSlot Slot identifier.

sFilename CAX file name.

LoadLight

Load CGF geometry into the entity slot.

Syntax

Entity.LoadLight(int nSlot,SmartScriptTable table)

Parameters

Parameter Description

nSlot Slot identifier.

table Table with all the light information.

LoadObject

Load CGF geometry into the entity slot.

Syntax

Entity.LoadObject(int nSlot,const char *sFilename)

Parameters

Parameter Description

nSlot Slot identifier.

sFilename CGF geometry file name.

Version 1.8
643

Lumberyard Developer Guide
Lua ScriptBind Reference

LoadObjectLattice

Load lattice into the entity slot.

Syntax

Entity.LoadObjectLattice(int nSlot)

LoadObjectWithFlags

Load CGF geometry into the entity slot.

Syntax

Entity.LoadObjectWithFlags(int nSlot,const char *sFilename, const int nFlags)

Parameters

Parameter Description

nSlot Slot identifier.

sFilename CGF geometry file name.

nFlags entity load flags

LoadParticleEffect

Loads CGF geometry into the entity slot.

Syntax

Entity.LoadParticleEffect(int nSlot, const char *sEffectName, SmartScriptTable table)

Parameters

Parameter Description

nSlot Slot identifier.

sEffectName Name of the particle effect (Ex: "explosions/
rocket").

(optional) bPrime Whether effect starts fully primed to equilibrium
state.

(optional) fPulsePeriod Time period between particle effect restarts.

(optional) fScale Size scale to apply to particles

(optional) fCountScale Count multiplier to apply to particles

(optional) bScalePerUnit Scale size by attachment extent

(optional) bCountPerUnit Scale count by attachment extent

(optional) sAttachType string for EGeomType

(optional) sAttachForm string for EGeomForm

Version 1.8
644

Lumberyard Developer Guide
Lua ScriptBind Reference

LoadSubObject

Load geometry of one CGF node into the entity slot.

Syntax

Entity.LoadSubObject(int nSlot,const char *sFilename,const char *sGeomName)

Parameters

Parameter Description

nSlot Slot identifier.

sFilename CGF geometry file name.

sGeomName Name of the node inside CGF geometry.

LoadVolumeObject

Loads volume object.

Syntax

Entity.LoadVolumeObject(int nSlot, const char* sFilename)

Parameters

Parameter Description

nSlot Slot identifier.

sFilename File name of the volume object.

LookAt

Orient the entity to look at a world space position.

Syntax

Entity.LookAt(Vec3 target, Vec3 axis, float angle)

Parameters

Parameter Description

target The position to look at.

axis The correction axis. The quat type is not supported.

angle The correction angle inradians. The quat type is not supported.

MultiplyWithSlotTM

Multiplies with the TM (Transformation Matrix) of the slot.

Version 1.8
645

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Entity.MultiplyWithSlotTM(int slot, Vec3 pos)

Parameters

Parameter Description

slot Slot identifier.

pos Position vector.

NetPresent

Syntax

Entity.NetPresent()

NoBulletForce

Syntax

Entity.NoBulletForce(bool state)

NoExplosionCollision

Syntax

Entity.NoExplosionCollision()

PassParamsToPipe

Syntax

Entity.PassParamsToPipe()

Physicalize

Create physical entity from the specified entity slot.

Syntax

Entity.Physicalize(int nSlot,int nPhysicsType,SmartScriptTable physicsParams)

Parameters

Parameter Description

nSlot Slot identifier of the entity to physicalize. Specify -1 to use geometries
from all slots.

nPhysicsType Type of physical entity to create. For possible values, see the
nPhysicsType Keys table later in this section.

Version 1.8
646

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

physicsParams Table with physicalization parameters. For more information, see the
physicsParams Table Keys table later in this section.

nPhysicsType Keys

Physics Type Meaning

PE_AREA Physical Area (Sphere,Box,Geometry or Shape).

PE_ARTICULATED Ragdolls or other articulated physical entities that consist of rigid bodies connected
by joints.

PE_LIVING Live physical entity that can move through the physical world and interact with it.

PE_NONE No physics.

PE_PARTICLE A physical particle entity that it has only mass and radius.

PE_RIGID Rigid body physical entity. Can have infinite mass (specified by setting mass to 0).

PE_ROPE A physical representation of a rope. The rope can hang freely or connect two
physical entities.

PE_SOFT A system of non-rigidly connected vertices that can interact with the environment.
Used for soft body physics like cloth simulation.

PE_STATIC A static, immovable physical entity.

PE_WHEELEDVEHICLE Physical vehicle with wheels.

Note
For more information about physical entity types, see Physical Entities (p. 811).

physicsParams Table Keys

Physics
Parameter

Description

area This table must be set when Physics Type is PE_AREA. For more information, see the Area
Table Keys table later in this section.

density Object density, only used if mass is not specified or -1.

flags Physical entity flags.

living This table must be set when Physics Type is PE_LIVING. For more information, see the
Living Table Keys table later in this section.

mass Object mass, only used if density is not specified or -1.

particle This table must be set when Physics Type is PE_PARTICLE. For more information, see the
Particle Table Keys table later in this section.

partid Index of the articulated body part to which the new physical entity will be attached.

stiffness_scaleScale of character joint stiffness (multiplied with stiffness values specified from the exported
model)

Version 1.8
647

Lumberyard Developer Guide
Lua ScriptBind Reference

Particle Table Keys

Particle Parameter Description

accel_lift Acceleration that lifts particle with the current speed

accel_thrust Acceleration along direction of movement

air_resistance The air resistance coefficient, F = kv

constant_orientation(0,1) Keep constant orientation

gravity Gravity force vector to the air

mass Particle mass

min_bounce_vel Minimal velocity at which particle bounces off the surface

no_path_alignment (0,1) Do not align particle orientation to the movement path

no_roll (0,1) Do not roll particle on terrain

no_spin (0,1) Do not spin particle in air

radius Particle pseudo radius

single_contact (0,1) Calculate only one first contact

thickness Thickness when lying on a surface (if 0, the radius is used)

velocity Velocity direction and magnitude vector

water_gravity Gravity force vector when in the water.

water_resistance Water resistance coefficient, F = kv

Living Table Keys

Living
Parameter

Description

air_resistance Air control coefficient 0..1, 1 - special value (total control of movement)

gravity Vertical gravity magnitude

head_radius Radius of the head

height Vertical offset of collision geometry center

height_eye Vertical offset of the camera

height_head Vertical offset of the head

height_pivot Offset from central ground position that is considered the entity center

inertia Inertia coefficient, the greater the value, the less the inertia; 0 means no inertia.

mass Mass of the player (in kg)

max_climb_angle Player cannot climb surface which slope is steeper than this angle (in radians)

max_jump_angle Player is not allowed to jump towards ground if this angle is exceeded (in radians)

Version 1.8
648

Lumberyard Developer Guide
Lua ScriptBind Reference

Living
Parameter

Description

max_vel_ground Player cannot stand on surfaces that are moving faster than this (in radians)

min_fall_angle Player starts falling when slope is steeper than this (in radians)

min_slide_angle If surface slope is more than this angle, player starts sliding (in radians)

size Collision cylinder dimensions vector (x,y,z).

Area Table Keys

Area
Parameter

Description

box_max Max vector of bounding box, must be specified if type is AREA_BOX

box_min Min vector of bounding box, must be specified if type is AREA_BOX

falloff Ellipsoidal falloff dimensions; 0,0,0 specifies no falloff

gravity Gravity vector inside the physical area

height Height of the 2D area (AREA_SHAPE), relative to the minimal Z in the points table

points A table that contains an indexed collection of vectors in local entity space that define the
2D shape of the area (AREA_SHAPE)

radius Radius of the area sphere; must be specified if type is AREA_SPHERE.

type Type of the area, valid values are: AREA_SPHERE, AREA_BOX, AREA_GEOMETRY, or
AREA_SHAPE

uniform Same direction in every point, or always point to the center.

PhysicalizeAttachment

Syntax

Entity.PhysicalizeAttachment(int characterSlot, const char* attachmentName, bool
 physicalize)

PhysicalizeSlot

Syntax

Entity.PhysicalizeSlot(int slot, SmartScriptTable physicsParams)

PlayFacialAnimation

Syntax

Entity.PlayFacialAnimation(char* name, bool looping)

PreLoadParticleEffect

Pre-loads a particle effect.

Version 1.8
649

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Entity.PreLoadParticleEffect(const char *sEffectName)

Parameters

Parameter Description

sEffectName Name of the particle effect (Ex: "explosions/
rocket").

ProcessBroadcastEvent

Syntax

Entity.ProcessBroadcastEvent()

RagDollize

Syntax

Entity.RagDollize(int slot)

ReattachSoftEntityVtx

Syntax

Entity.ReattachSoftEntityVtx(ScriptHandle entityId, int partId)

RedirectAnimationToLayer0

Syntax

Entity.RedirectAnimationToLayer0(int characterSlot, bool redirect)

RegisterForAreaEvents

Registers the script proxy so that it receives area events for this entity.

Syntax

Entity.RegisterForAreaEvents(int enable)

Parameters

Parameter Description

enable Specify 0 to disable, or any other value to enable.

RemoveAllLinks

Removes all links of an entity.

Syntax

Version 1.8
650

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.RemoveAllLinks()

Returns: nothing

RemoveAuxAudioProxy

Removes the AuxAudioProxy corresponding to the passed ID from the parent EntityAudioProxy.

Syntax

Entity.RemoveAuxAudioProxy(ScriptHandle const hAudioProxyLocalID)

Returns: nil

Parameters

Parameter Description

hAudioProxyLocalID The ID of the AuxAudioProxy to be removed from
the parent EntityAudioProxy.

RemoveDecals

Syntax

Entity.RemoveDecals()

RemoveLink

Removes an outgoing link from the entity.

Syntax

Entity.RemoveLink(const char *name)

Returns: nothing

Parameters

Parameter Description

name Name of the link to remove.

(optional) ith If specified, the <i>th link with the name specified
that will be removed. Default value: 0 (first link with
given name)

RenderAlways

Enables 'always render' on the render node, skipping any kind of culling.

Syntax

Entity.RenderAlways(int enable)

Version 1.8
651

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

enable Specify 0 to disable, or any other value to enable.

RenderShadow

Syntax

Entity.RenderShadow()

ReplaceMaterial

Syntax

Entity.ReplaceMaterial(int slot, const char *name, const char *replacement)

ResetAnimation

Syntax

Entity.ResetAnimation(int characterSlot, int layer)

ResetAttachment

Syntax

Entity.ResetAttachment(int characterSlot, const char *attachmentName)

ResetMaterial

Syntax

Entity.ResetMaterial(int slot)

ResetPhysics

Syntax

Entity.ResetPhysics()

SelectPipe

Syntax

Entity.SelectPipe()

SetAIName

Syntax

Entity.SetAIName()

Version 1.8
652

Lumberyard Developer Guide
Lua ScriptBind Reference

SetAngles

Sets the angle of the entity.

Syntax

Entity.SetAngles(Ang3 vAngles)

Parameters

Parameter Description

vAngles Angle vector.

SetAnimateOffScreenShadow

Syntax

Entity.SetAnimateOffScreenShadow(bool bAnimateOffScreenShadow)

SetAnimationBlendOut

Syntax

Entity.SetAnimationBlendOut(int characterSlot, int layer, float blendOut)

SetAnimationEvent

Syntax

Entity.SetAnimationEvent(int nSlot,const char *sAnimation)

SetAnimationFlip

Syntax

Entity.SetAnimationFlip(int characterSlot, Vec3 flip)

SetAnimationKeyEvent

Syntax

Entity.SetAnimationKeyEvent(nSlot, sAnimation, nFrameID, sEvent)

SetAnimationSpeed

Syntax

Entity.SetAnimationSpeed(int characterSlot, int layer, float speed)

SetAnimationTime

Syntax

Version 1.8
653

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.SetAnimationTime(int nSlot,int nLayer,float fTime)

SetAttachmentAngles

Syntax

Entity.SetAttachmentAngles(int characterSlot, const char *attachmentName, Vec3 angles)

SetAttachmentCGF

Syntax

Entity.SetAttachmentCGF(int characterSlot, const char *attachmentName, const char*
 filePath)

SetAttachmentDir

Syntax

Entity.SetAttachmentDir(int characterSlot, const char *attachmentName, Vec3 dir, bool
 worldSpace)

SetAttachmentEffect

Syntax

Entity.SetAttachmentEffect(int characterSlot, const char *attachmentName, const char
 *effectName, Vec3 offset, Vec3 dir, float scale, int flags)

SetAttachmentLight

Syntax

Entity.SetAttachmentLight(int characterSlot, const char *attachmentName, SmartScriptTable
 lightTable, int flags)

SetAttachmentObject

Syntax

Entity.SetAttachmentObject(int characterSlot, const char *attachmentName, ScriptHandle
 entityId, int slot, int flags)

SetAttachmentPos

Syntax

Entity.SetAttachmentPos(int characterSlot, const char *attachmentName, Vec3 pos)

SetAudioEnvironmentID

Sets the ID of the audio environment that an entity will specify for the entities that it contains.

Syntax

Version 1.8
654

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.SetAudioEnvironmentID(ScriptHandle const hAudioEnvironmentID)

Returns: nil

Parameters

Parameter Description

hAudioEnvironmentID audio environment ID

SetAudioObstructionCalcType

Set the Audio Obstruction/Occlusion calculation type on the underlying GameAudioObject.

Syntax

Entity.SetAudioObstructionCalcType(int const nObstructionCalcType, ScriptHandle const
 hAudioProxyLocalID)

Returns: nil

Parameters

Parameter Description

nObstructionCalcType Obstruction/Occlusion calculation type; Possible
values: 0 - ignore Obstruction/Occlusion 1 - use
single physics ray 2 - use multiple physics rays
(currently 5 per object)

hAudioProxyLocalID The ID of the AuxAudioProxy that is local
to the EntityAudioProxy. To address the
default AuxAudioProxy, pass 1. To address all
AuxAudioProxy instances, pass 0.

SetAudioProxyOffset

Set offset on the audio proxy attached to the entity.

Syntax

Entity.SetAudioProxyOffset(Vec3 const vOffset, ScriptHandle const hAudioProxyLocalID)

Returns: nil

Parameters

Parameter Description

vOffset The offset vector

hAudioProxyLocalID The ID of the AuxAudioProxy that is local
to the EntityAudioProxy. To address the
default AuxAudioProxy, pass 1. To address all
AuxAudioProxy instances, pass 0.

Version 1.8
655

Lumberyard Developer Guide
Lua ScriptBind Reference

SetAudioRtpcValue

Set the specified audio RTPC to the specified value on the current entity.

Syntax

Entity.SetAudioRtpcValue(ScriptHandle const hRtpcID, float const fValue, ScriptHandle const
 hAudioProxyLocalID)

Returns: nil

Parameters

Parameter Description

hRtpcID The audio RTPC ID handle

fValue The RTPC value

hAudioProxyLocalID The ID of the AuxAudioProxy that is local
to the EntityAudioProxy. To address the
default AuxAudioProxy, pass 1. To address all
AuxAudioProxy instances, pass 0.

SetAudioSwitchState

Set the specified audio switch to the specified state on the current Entity.

Syntax

Entity.SetAudioSwitchState(ScriptHandle const hSwitchID, ScriptHandle const hSwitchStateID,
 ScriptHandle const hAudioProxyLocalID)

Returns: nil

Parameters

Parameter Description

hSwitchID The audio switch ID handle

hSwitchStateID The switch state ID handle

hAudioProxyLocalID The ID of the AuxAudioProxy that is local
to the EntityAudioProxy. To address the
default AuxAudioProxy, pass 1. To address all
AuxAudioProxy instances, pass 0.

SetCharacterPhysicParams

Syntax

Entity.SetCharacterPhysicParams()

SetCloudMovementProperties

Sets the cloud movement properties.

Version 1.8
656

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Entity.SetCloudMovementProperties(int nSlot, SmartScriptTable table)

Parameters

Parameter Description

nSlot Slot identifier.

table Table property for the cloud movement.

SetColliderMode

Syntax

Entity.SetColliderMode(int mode)

SetCurrentAudioEnvironments

Sets the correct audio environment amounts based on the entity's position in the world.

Syntax

Entity.SetCurrentAudioEnvironments()

Returns: nil

SetDefaultIdleAnimations

Syntax

Entity.SetDefaultIdleAnimations()

SetDirectionVector

Syntax

Entity.SetDirectionVector(Vec3 dir)

SetEnvironmentFadeDistance

Sets the distance over which this entity fades the audio environment for all approaching entities.

Syntax

Entity.SetEnvironmentFadeDistance(float const fEnvironmentFadeDistance)

Returns: nil

Parameters

Parameter Description

fEnvironmentFadeDistance The fade distance in meters.

Version 1.8
657

Lumberyard Developer Guide
Lua ScriptBind Reference

SetFadeDistance

Sets the distance at which this entity executes fade calculations.

Syntax

Entity.SetFadeDistance(float const fFadeDistance)

Returns: nil

Parameters

Parameter Description

fFadeDistance The fade distance in meters.

SetFlags

Mode: 0: or 1: and 2: xor

Syntax

Entity.SetFlags(int flags, int mode)

SetFlagsExtended

Mode: 0: or 1: and 2: xor

Syntax

Entity.SetFlagsExtended(int flags, int mode)

SetGeomCacheDrawing

Activates or deactivates geom cache drawing.

Syntax

Entity.SetGeomCacheDrawing(bool active)

SetGeomCacheParams

Sets geometry cache parameters.

Syntax

Entity.SetGeomCacheParams(bool looping, const char *standIn, const char *standInMaterial,
 const char *firstFrameStandIn, const char* firstFrameStandInMaterial, const char*
 lastFrameStandIn, const char* lastFrameStandInMaterial, float standInDistance, float
 streamInDistance)

SetGeomCachePlaybackTime

Sets the playback time.

Syntax

Version 1.8
658

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.SetGeomCachePlaybackTime(float time)

SetGeomCacheStreaming

Activates/deactivates geom cache streaming.

Syntax

Entity.SetGeomCacheStreaming(bool active, float time)

SetLightColorParams

changes the color related params of an existing light.

Syntax

Entity.SetLightColorParams(int nSlot, Vec3 color, float specular_multiplier)

SetLinkTarget

Specifies the entity that an existing link shall target. Use this function to change the target of an existing
link.

Syntax

Entity.SetLinkTarget(const char *name, ScriptHandle targetId)

Returns: nothing

Parameters

Parameter Description

name Name of the link that shall target given entity.

targetId The ID of the entity the link shall target. Pass in
NULL_ENTITY to make the link no longer target an
entity.

(optional) ith If specified, the <i>th link with given name that
targets the specified entity. Default value: 0 (first
link with given name)

SetLocalAngles

Syntax

Entity.SetLocalAngles(Ang3 vAngles)

SetLocalBBox

Syntax

Entity.SetLocalBBox(Vec3 vMin,Vec3 vMax)

Version 1.8
659

Lumberyard Developer Guide
Lua ScriptBind Reference

SetLocalPos

Syntax

Entity.SetLocalPos(Vec3 vPos)

SetLocalScale

Syntax

Entity.SetLocalScale(float fScale)

SetLodRatio

Syntax

Entity.SetLodRatio()

SetMaterial

Syntax

Entity.SetMaterial()

SetMaterialFloat

Change material parameter.

Syntax

Entity.SetMaterialFloat(int slot,int nSubMtlId,const char *sParamName,float fValue)

Parameters

Parameter Description

slot ID of the slot on which to change material.

nSubMtlId Specify sub-material by ID.

sParamName Name of the material parameter.

fValue New material parameter value.

SetMaterialVec3

Syntax

Entity.SetMaterialVec3(int slot,int nSubMtlId,const char *sParamName,Vec3 fValue)

SetName

Syntax

Version 1.8
660

Lumberyard Developer Guide
Lua ScriptBind Reference

Entity.SetName()

SetParentSlot

Syntax

Entity.SetParentSlot(int child, int parent)

SetPhysicParams

Syntax

Entity.SetPhysicParams()

SetPos

Sets the position of the entity.

Syntax

Entity.SetPos(Vec3 vPos)

Parameters

Parameter Description

vPos Position vector.

SetPublicParam

Sets a shader parameter.

Syntax

Entity.SetPublicParam()

Parameters

Parameter Description

paramName The name of the shader parameter.

value The new value of the parameter.

SetRegisterInSectors

Syntax

Entity.SetRegisterInSectors()

SetScale

Sets the scaling value for the entity.

Version 1.8
661

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Entity.SetScale(float fScale)

Parameters

Parameter Description

fScale The scale amount.

SetScriptUpdateRate

Syntax

Entity.SetScriptUpdateRate(int nMillis)

SetSelfAsLightCasterException

Makes the entity render node a caster exception for the light loaded in nLightSlot.

Syntax

Entity.SetSelfAsLightCasterException(int nLightSlot)

Parameters

Parameter Description

nLightSlot Slot where the light is loaded.

SetSlotAngles

Sets the slot angles.

Syntax

Entity.SetSlotAngles(int nSlot, Ang3 v)

Parameters

Parameter Description

nSlot nSlot identifier.

v Angle to be set.

SetSlotHud3D

Setup flags for use as 3D HUD entity.

Syntax

Entity.SetSlotHud3D(int nSlot)

Version 1.8
662

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

nSlot Slot identifier.

SetSlotPos

Sets the slot position.

Syntax

Entity.SetSlotPos(int slot,Vec3 v)

Parameters

Parameter Description

slot slot identifier.

v Position to be set.

SetSlotPosAndDir

Sets the slot position and direction.

Syntax

Entity.SetSlotPosAndDir(int nSlot, Vec3 pos, Vec3 dir)

Parameters

Parameter Description

nSlot nSlot identifier.

pos Position to be set.

dir Direction to be set.

SetSlotScale

Sets the slot scale amount.

Syntax

Entity.SetSlotScale(int nSlot,float fScale)

Parameters

Parameter Description

nSlot Slot identifier.

fScale Scale amount for the slot.

Version 1.8
663

Lumberyard Developer Guide
Lua ScriptBind Reference

SetSlotWorldTM

Sets the World TM (transformation matrix) of the slot.

Syntax

Entity.SetSlotWorldTM(int nSlot, Vec3 pos, Vec3 dir)

Parameters

Parameter Description

nSlot Slot identifier.

pos Position vector.

dir Direction vector.

SetStateClientside

Syntax

Entity.SetStateClientside()

SetTimer

Syntax

Entity.SetTimer()

SetTriggerBBox

Syntax

Entity.SetTriggerBBox(Vec3 vMin,Vec3 vMax)

SetUpdatePolicy

Changes the update policy for the entity. Update policy controls when an entity becomes active or inactive
(for example, when visible or when in close proximity).

Note
Because all active entities are updated every frame, having too many active entities can affect
performance.

Syntax

Entity.SetUpdatePolicy(int nUpdatePolicy)

Parameters

Parameter Description

nUpdatePolicy Update policy constant. See the following table for
possible values.

Version 1.8
664

Lumberyard Developer Guide
Lua ScriptBind Reference

nUpdatePolicy Possible Values

Update Policy Meaning

ENTITY_UPDATE_NEVER Never update this entity.

ENTITY_UPDATE_IN_RANGE Activate entity when in specified radius.

ENTITY_UPDATE_POT_VISIBLE Activate entity when potentially visible.

ENTITY_UPDATE_VISIBLE Activate entity when visible in frustum.

ENTITY_UPDATE_PHYSICS Activate entity when physics awakes, deactivate when physics go to sleep.

ENTITY_UPDATE_PHYSICS_VISIBLESame as ENTITY_UPDATE_PHYSICS, but also activates when visible.

ENTITY_UPDATE_ALWAYS Entity is always active and updated every frame.

Note
For update policies that require a radius, use SetUpdateRadius (p. 665).

SetUpdateRadius

Syntax

Entity.SetUpdateRadius()

SetVelocity

Syntax

Entity.SetVelocity(Vec3 velocity)

SetVelocityEx

Syntax

Entity.SetVelocityEx(Vec3 velocity, Vec3 angularVelocity)

SetViewDistanceMultiplier

Set the view distance multiplier.

Syntax

Entity.SetViewDistanceMultiplier()

SetViewDistUnlimited

Syntax

Entity.SetViewDistUnlimited()

SetVolumeObjectMovementProperties

Sets the properties of the volume object movement.

Version 1.8
665

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Entity.SetVolumeObjectMovementProperties(int nSlot, SmartScriptTable table)

Parameters

Parameter Description

nSlot Slot identifier.

table Table with volume object properties.

SetWorldAngles

Syntax

Entity.SetWorldAngles(Ang3 vAngles)

SetWorldPos

Syntax

Entity.SetWorldPos(Vec3 vPos)

SetWorldScale

Syntax

Entity.SetWorldScale(float fScale)

StartAnimation

Syntax

Entity.StartAnimation()

StopAnimation

Syntax

Entity.StopAnimation(int characterSlot, int layer)

StopAudioTrigger

Stop the audio event generated by the trigger with the specified ID on this entity.

Syntax

Entity.StopAudioTrigger(ScriptHandle const hTriggerID, ScriptHandle const
 hAudioProxyLocalID)

Returns: nil

Version 1.8
666

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

hTriggerID The audio trigger ID handle

hAudioProxyLocalID The ID of the AuxAudioProxy that is local
to the EntityAudioProxy. To address the
default AuxAudioProxy, pass 1. To address all
AuxAudioProxy instances, pass 0.

ToGlobal

Syntax

Entity.ToGlobal(int slotId, Vec3 point)

ToLocal

Syntax

Entity.ToLocal(int slotId, Vec3 point)

TriggerEvent

Syntax

Entity.TriggerEvent()

UnSeenFrames

Syntax

Entity.UnSeenFrames()

UpdateAreas

Syntax

Entity.UpdateAreas()

UpdateLightClipBounds

Update the clip bounds of the light from the linked entities.

Syntax

Entity.UpdateLightClipBounds(int nSlot)

Parameters

Parameter Description

nSlot Slot identifier.

Version 1.8
667

Lumberyard Developer Guide
Lua ScriptBind Reference

UpdateSlotPhysics

Syntax

Entity.UpdateSlotPhysics(int slot)

VectorToGlobal

Syntax

Entity.VectorToGlobal(int slotId, Vec3 dir)

VectorToLocal

Syntax

Entity.VectorToLocal(int slotId, Vec3 dir)

ScriptBind_Movie

Lists C++ movie functions that can be called from Lua scripts.

AbortSequence

Aborts the specified sequence.

Syntax

Movie.AbortSequence(const char *sSequenceName)

Parameter Description

sSequenceName Sequence name.

PauseSequences

Pauses all the sequences.

Syntax

Movie.PauseSequences()

PlaySequence

Plays the specified sequence.

Syntax

Movie.PlaySequence(const char *sSequenceName)

Parameter Description

sSequenceName Sequence name.

Version 1.8
668

Lumberyard Developer Guide
Lua ScriptBind Reference

ResumeSequences

Resume all the sequences.

Syntax

Movie.ResumeSequences()

StopAllCutScenes

Stops all the cut scenes.

Syntax

Movie.StopAllCutScenes()

StopAllSequences

Stops all the video sequences.

Syntax

Movie.StopAllSequences()

StopSequence

Stops the specified sequence.

Syntax

Movie.StopSequence(const char *sSequenceName)

Parameter Description

sSequenceName Sequence name.

ScriptBind_Particle

Lists C++ particle functions that you can call from Lua script.

Attach

Attaches an effect.

Syntax

Particle.Attach()

CreateDecal

Creates a decal with the specified parameters.

Syntax

Version 1.8
669

Lumberyard Developer Guide
Lua ScriptBind Reference

Particle.CreateDecal(Vec3 pos, Vec3 normal, float size, float lifeTime, const char
 *textureName)

Parameter Description

pos The decal position vector.

normal The decal normal vector.

size The decal size, expressed as a float.

lifeTime The decal lifetime, expressed as a float.

textureName The name of the texture.

CreateEffect

Creates a particle effect.

Syntax

Particle.CreateEffect(const char *name, SmartScriptTable params)

Parameter Description

name The name of the particle effect.

params A SmartScriptTable of effect parameters.

CreateMatDecal

Creates a material decal.

Syntax

Particle.CreateMatDecal(Vec3 pos, Vec3 normal, float size, float lifeTime, const char
 *materialName)

Parameter Description

pos The decal position vector.

normal The decal normal vector.

size The decal size, expressed as a float.

lifeTime The decal lifetime, expressed as a float.

materialName The name of the material.

DeleteEffect

Deletes the specified particle effect.

Version 1.8
670

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Particle.DeleteEffect(const char *name)

Parameter Description

name The name of the particle effect to delete.

Detach

Detaches an effect.

Syntax

Particle.Detach()

IsEffectAvailable

Checks if the specified particle effect is available.

Syntax

Particle.IsEffectAvailable(const char *name)

Parameter Description

name The name of the particle effect to check for
availability.

SpawnEffect

Spawns an effect.

Syntax

Particle.SpawnEffect(const char *effectName, Vec3 pos, Vec3 dir)

Parameter Description

effectName The name of the effect to spawn.

pos The position vector of the effect.

dir The direction vector of the effect.

SpawnEffectLine

Spawns an effect line.

Syntax

Version 1.8
671

Lumberyard Developer Guide
Lua ScriptBind Reference

Particle.SpawnEffectLine(const char *effectName, Vec3 startPos, Vec3 endPos, Vec3 dir,
 float scale, int slices)

Parameter Description

effectName The name of the effect.

startPos The start position of the effect.

endPos The end position of the effect.

dir The direction of the effect.

scale The scale value of the effect, expressed as a float.

slices The number of slices.

SpawnParticles

Spawns a particle effect.

Syntax

Particle.SpawnParticles(SmartScriptTable params, Vec3 pos, Vec3 dir)

Parameter Description

params A SmartScriptTable of particle effect parameters.

pos The position vector of the particle effect.

dir The direction vector of the particle effect.

ScriptBind_Physics

Lists C++ physics functions that you can call from Lua script.

RayTraceCheck

Checks if a ray segment intersects anything from its source to its destination.

Syntax

Physics.RayTraceCheck(Vec3 src,Vec3 dst,ScriptHandle skipEntityId1,ScriptHandle
 skipEntityId2)

Parameter Description

src The origin point of the ray segment.

dst The end point of the ray segment.

skipEntityId1 Entity ID to skip when checking for intersection.

Version 1.8
672

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

skipEntityId2 Entity ID to skip when checking for intersection.

RayWorldIntersection

Checks if a ray segment intersects anything from its source to its destination.

Syntax

Physics.RayWorldIntersection(Vec3 vPos, Vec3 vDir, int nMaxHits, int iEntTypes [,
 skipEntityId1 [, skipEntityId2]])

Parameter Description

vPos The origin point of the ray.

vDir The direction of the ray.

nMaxHits The maximum number of hits to return, sorted in
nearest to farthest order.

iEntTypes A bitmask of physical entity types. The ray
intersects only with entities that the mask specifies
(ent_all,...).

skipEntityId1 Optional. An entity ID to skip when checking for
intersection.

skipEntityId2 Optional. An entity ID to skip when checking for
intersection.

RegisterExplosionCrack

Registers a new crack for a breakable object.

Syntax

Physics.RegisterExplosionCrack(const char *sGeometryFile,int nIdMaterial)

Parameter Description

sGeometryFile The name of the static geometry file for the crack
(CGF).

nMaterialId The ID of the breakable material to which the crack
is applied.

RegisterExplosionShape

Registers a new explosion shape from static geometry.

Note
RegisterExplosionShape applies only physical forces; it does not apply any game related
explosion damages.

Version 1.8
673

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Physics.RegisterExplosionShape(RegisterExplosionShape(IFunctionHandler *pH,const char
 *sGeometryFile,float fSize,int nIdMaterial,float fProbability,const char *sSplintersFile,
 float fSplintersOffset, const char *sSplintersCloudEffect)

Parameter Description

sGeometryFile The name of the static geometry file (CGF).

fSize The scale for the static geometry.

nIdMaterial The ID of the breakable material on which the
shape is applied.

fProbability The preference ratio for using this shape instead of
other registered shapes.

sSplintersFile The name of a CGF file that contains additional
non-physicalized splinters to place on cut surfaces.

fSplintersOffset The lower splinters position in relation to the upper
one.

sSplintersCloudEffect The particle effect when the splinters constraint
breaks.

SamplePhysEnvironment

Find the physical entities touched by a sphere.

Syntax

Physics.SamplePhysEnvironment(pt, r [, objtypes])

Parameter Description

pt The center of the sphere.

r The radius of the sphere.

objtypes Optional. The types of physical entities that the
sphere touches.

SimulateExplosion

Simulates a physical explosion.

Note
SimulateExplosion applies only physical forces; it does not apply any game related explosion
damages.

Syntax

Physics.SimulateExplosion(SmartScriptTable explosionParams)

Version 1.8
674

Lumberyard Developer Guide
Lua ScriptBind Reference

explosionParams is a SmartScriptTable whose elements are as follows:

explosionParams Elements

Parameter Description

pos The epicenter of the explosion.

radius The radius of the explosion.

direction The direction of the explosion impulse.

impulse_pos The position of the explosion impulse. This value can be different from the epicenter
of the explosion.

impulse_presure The pressure of the explosion impulse at the specified radius from the epicenter.

rmin The minimal radius of the explosion. At this radius, full pressure is applied.

rmax The maximum radius of the explosion. At this radius, the impulse pressure is close to
zero.

hole_size The size of the hole that the explosion creates in breakable objects.

ScriptBind_Script

Lists C++ script-related functions that you can call from Lua script.

DumpLoadedScripts

Dumps all loaded scripts.

Syntax

Script.DumpLoadedScripts()

KillTimer

Stops a timer set by the Script.SetTimer function.

Syntax

Script.KillTimer(ScriptHandle nTimerId)

Parameter Description

nTimerId The ID of the timer returned by the
Script.SetTimer function.

LoadScript

Loads the specified script.

Syntax

Script.LoadScript(scriptName)

Version 1.8
675

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

scriptName The name of the script to load.

ReloadEntityScript

Reloads the specified entity script.

Syntax

Script.ReloadEntityScript(const char *className)

Parameter Description

className Name of the entity script.

ReloadScript

Reload the script.

Syntax

Script.ReloadScript(scriptName)

Parameter Description

scriptName The name of the script to reload.

ReloadScripts

Reloads all the scripts.

Syntax

Script.ReloadScripts()

SetTimer

Sets a script timer. When the timer expires, SetTimer calls the Lua function specified.

Syntax

Script.SetTimer(int nMilliseconds, HSCRIPTFUNCTION hFunc)

Returns the ID assigned to the timer or nil if no ID was specified.

Parameter Description

nMilliseconds Delay of the trigger in milliseconds.

Version 1.8
676

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

luaFunction The Lua function to call. If userData is specified, luaFunction must be in the
format:

LuaCallback = function(userData,nTimerId)
-- function body
end;

.

If userData is not specified, luaFunction must be in the format:

LuaCallback = function(nTimerId)
-- function body
end;

userData Optional. Specifies a user defined table. If userData is specified, the table is passed
as the first argument of the callback function.

bUpdateDuringPauseOptional. The timer is updated and triggered even if the game is in pause mode.

SetTimerForFunction

Sets a timer for the specified function.

Syntax

Script.SetTimerForFunction(int nMilliseconds, const char *sFunctionName)

Returns the ID assigned to the timer, or nil if no ID was specified.

This function has the same parameters as the SetTimer function.

UnloadScript

Unloads the specified script.

Syntax

Script.UnloadScript(scriptName)

Parameter Description

scriptName The name of the script to unload.

ScriptBind_Sound

Lists C++ sound functions that can be called from Lua scripts.

GetAudioEnvironmentID

Get the audio environment TAudioEnvironmentID (wrapped into a ScriptHandle).

Syntax

Version 1.8
677

Lumberyard Developer Guide
Lua ScriptBind Reference

Sound.GetAudioEnvironmentID(const char* const sEnvironmentName)

Returns: ScriptHandle with the TAudioEnvironmentID value, or nil if the sEnvironmentName is not found.

Parameter Description

sEnvironmentName The unique name of an audio environment.

GetAudioRtpcID

Get the RTPC TAudioControlID (wrapped into a ScriptHandle).

Syntax

Sound.GetAudioRtpcID(const char* const sRtpcName)

Returns: ScriptHandle with the TAudioControlID value, or nil if the sRtpcName is not found.

Parameter Description

sRtpcName The unique name of an audio RTPC.

GetAudioSwitchID

Get the switch TAudioControlID (wrapped into a ScriptHandle).

Syntax

Sound.GetAudioSwitchID(const char* const sSwitchName)

Returns: ScriptHandle with the TAudioControlID value, or nil if the sSwitchName is not found.

Parameter Description

sSwitchName The unique name of an audio switch.

GetAudioSwitchStateID

Get the SwitchState TAudioSwitchStatelID (wrapped into a ScriptHandle).

Syntax

Sound.GetAudioSwitchStateID(const ScriptHandle hSwitchID, const char* const
 sSwitchStateName)

Returns: ScriptHandle with the TAudioSwitchStateID value, or nil if the sSwitchStateName is not found.

Parameter Description

sSwitchStateName The unique name of an audio switch state.

Version 1.8
678

Lumberyard Developer Guide
Lua ScriptBind Reference

GetAudioTriggerID

Get the trigger TAudioControlID (wrapped into a ScriptHandle).

Syntax

Sound.GetAudioTriggerID(const char* const sTriggerName)

Returns: ScriptHandle with the TAudioControlID value, or nil if the sTriggerName is not found.

Parameter Description

sTriggerName The unique name of an audio trigger.

SetAudioRtpcValue

Globally sets the specified audio RTPC to the specified value.

Syntax

Sound.SetAudioRtpcValue(hRtpcID, fValue)

Returns: nil

Parameter Description

hRtpcID The audio RTPC ID handle.

fValue The RTPC value.

ScriptBind_System

This class implements Lua script functions that expose system functionalities.

ActivatePortal

Activates or deactivates a portal.

Syntax

System.ActivatePortal(Vec3 vPos, bool bActivate, ScriptHandle nID)

Parameters

Parameter Description

vPos Position vector.

bActivate True to activate the portal, false to deactivate.

nID Entity identifier.

AddCCommand

Adds a C command to the system.

Version 1.8
679

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

System.AddCCommand(const char* sCCommandName, const char* sCommand, const char* sHelp)

Parameters

Parameter Description

sCCommandName C command name.

sCommand Command string.

sHelp Help for the command usage.

ApplicationTest

Test the application with the specified parameters.

Syntax

System.ApplicationTest(const char* pszParam)

Parameters

Parameter Description

pszParam Parameters.

Break

Breaks the application with a fatal error message.

Syntax

System.Break()

BrowseURL

Browses a URL address.

Syntax

System.BrowseURL(const char* szURL)

Parameters

Parameter Description

szURL URL string.

CheckHeapValid

Checks the heap validity.

Version 1.8
680

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

System.CheckHeapValid(const char* name)

Parameters

Parameter Description

name Name string. The default is <noname>.

ClearConsole

Clears the console.

Syntax

System.ClearConsole()

ClearKeyState

Clear the key state.

Syntax

System.ClearKeyState()

CreateDownload

Syntax

System.CreateDownload()

DebugStats

Syntax

System.DebugStats(bool cp)

DeformTerrain

Deforms the terrain.

Syntax

System.DeformTerrain()

DeformTerrainUsingMat

Deforms the terrain using material.

Syntax

System.DeformTerrainUsingMat()

Version 1.8
681

Lumberyard Developer Guide
Lua ScriptBind Reference

Draw2DLine

Draws a 2D line.

Syntax

System.Draw2DLine(p1x, p1y, p2x, p2y, float r, float g, float b, float alpha)

Parameters

Parameter Description

p1x X value of the start point of the line.

p1y Y value of the start point of the line.

p2x X value of the end point of the line.

p2y Y value of the end point of the line.

r Red component for the label color. Default is 1.

g Green component for the label color. Default is 1.

b Blue component for the label color. Default is 1.

alpha Alpha component for the label color. Default is 1.

DrawLabel

Draws a label with the specified parameter.

Syntax

System.DrawLabel(Vec3 vPos, float fSize, const char* text [, float r [, float g [, float b
 [, float alpha]]]])

Parameters

Parameter Description

vPos Position vector.

fSize Size for the label.

text Text of the label.

r Red component for the label colour. Default is 1.

g Green component for the label colour. Default is 1.

b Blue component for the label colour. Default is 1.

alpha Alpha component for the label colour. Default is 1.

DrawLine

Draws a line.

Version 1.8
682

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

System.DrawLine(Vec3 p1, Vec3 p2, float r, float g, float b, float alpha)

Parameters

Parameter Description

p1 Start position of the line.

p2 End position of the line.

r Red component for the label color. Default is 1.

g Green component for the label color. Default is 1.

b Blue component for the label color. Default is 1.

alpha Alpha component for the label color. Default is 1.

DrawText

Draws text.

Syntax

System.DrawText(float x, float y, const char* text, const char* fontName, float size, float
 r, float g, float b, float alpha)

Parameters

Parameter Description

x X position for the text. The default is 0.

y Y position for the text. The default is 0.

text Text to be displayed. The default is an empty string.

fontName Font name. The default is default.

size Text size. The default is 16.

r Red component for the label color. The default is 1.

g Green component for the label color. The default is 1.

b Blue component for the label color. The default is 1.

alpha Alpha component for the label color. The default is 1.

DumpMemoryCoverage

Dumps memory coverage.

Syntax

System.DumpMemoryCoverage()

Version 1.8
683

Lumberyard Developer Guide
Lua ScriptBind Reference

This function is useful for investigating memory fragmentation. When #System.DumpMemoryCoverage()
is called from the console, DumpMemoryCoverage adds a line to the MemoryCoverage.bmp file, which is
generated the first time there is a maximum line count.

DumpMemStats

Dumps memory statistics.

Syntax

System.DumpMemStats(bUseKB)

Parameters

Parameter Description

bUseKB True to use KB, false otherwise. The default is
false.

DumpMMStats

Dumps the MM statistics.

Syntax

System.DumpMMStats()

DumpWinHeaps

Dumps windows heaps.

Syntax

System.DumpWinHeaps()

EnableOceanRendering

Enables/disables ocean rendering.

Syntax

System.EnableOceanRendering()

Parameters

Parameter Description

bOcean True to activate the ocean rendering, false to deactivate it.

EnumAAFormats

Enumerates multisample anti-aliasing formats.

Syntax

Version 1.8
684

Lumberyard Developer Guide
Lua ScriptBind Reference

System.EnumAAFormats()

EnumDisplayFormats

Enumerates display formats.

Syntax

System.EnumDisplayFormats()

Error

Shows a message text with the error severity.

Syntax

System.Error(const char* sParam)

Parameters

Parameter Description

sParam Text to be logged. The default is an empty string.

ExecuteCommand

Executes a command.

Syntax

System.ExecuteCommand(const char* szCmd)

Parameters

Parameter Description

szCmd Command string.

GetConfigSpec

Gets the config specification.

Syntax

System.GetConfigSpec()

GetCurrAsyncTime

Gets the current asynchronous time.

Syntax

System.GetCurrAsyncTime()

Version 1.8
685

Lumberyard Developer Guide
Lua ScriptBind Reference

GetCurrTime

Gets the current time.

Syntax

System.GetCurrTime()

GetCVar

Gets the value of a console variable.

Syntax

System.GetCVar(const char* sCVarName)

Parameters

Parameter Description

sCVarName Name of the variable.

GetEntities

Returns a table with all the entities currently present in a level.

Syntax

System.GetEntities(Vec3 center, float radius)

Parameters

Parameter Description

center Center position vector for the area where to get entities. The default is (0, 0, 0).

radius Radius of the area. The default is 0.

GetEntitiesByClass

Gets all the entities of the specified class.

Syntax

System.GetEntitiesByClass(const char* EntityClass)

Parameters

Parameter Description

EntityClass Entity class name.

GetEntitiesInSphere

Gets all the entities contained into the specified sphere.

Version 1.8
686

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

System.GetEntitiesInSphere(Vec3 center, float radius)

Parameters

Parameter Description

center center position vector for the sphere where to look
at entities.

radius Radius of the sphere.

GetEntitiesInSphereByClass

Gets all the entities contained into the specified sphere for the specific class name.

Syntax

System.GetEntitiesInSphereByClass(Vec3 center, float radius, const char* EntityClass)

Parameters

Parameter Description

center center position vector for the sphere where to look
at entities.

radius Radius of the sphere.

EntityClass Entity class name.

GetEntity

Gets an entity from its ID.

Syntax

System.GetEntity(entityId)

Parameters

Parameter Description

entityId Entity identifier (svtNumber or ScriptHandle).

GetEntityByName

Retrieve entity table for the first entity with specified name. If multiple entities with same name exist, first
one found is returned.

Syntax

System.GetEntityByName(const char *sEntityName)

Version 1.8
687

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

sEntityName Name of the entity to search.

GetEntityClass

Gets an entity class from its ID.

Syntax

System.GetEntityClass(entityId)

Parameters

Parameter Description

entityId Entity identifier (svtNumber or ScriptHandle).

GetEntityIdByName

Retrieve entity Id for the first entity with specified name. If multiple entities with same name exist, first one
found is returned.

Syntax

System.GetEntityIdByName(const char *sEntityName)

Parameters

Parameter Description

sEntityName Name of the entity to search.

GetFrameID

Gets the frame identifier.

Syntax

System.GetFrameID()

GetFrameTime

Gets the frame time.

Syntax

System.GetFrameTime()

GetHDRDynamicMultiplier

Gets the HDR dynamic multiplier.

Version 1.8
688

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

System.GetHDRDynamicMultiplier()

GetLocalOSTime

Gets the local operating system time.

Syntax

System.GetLocalOSTime()

GetNearestEntityByClass

Gets the nearest entity with the specified class.

Syntax

System.GetNearestEntityByClass(Vec3 center, float radius, const char *className)

Parameters

Parameter Description

center Center position vector for the area where to look at
entities.

radius Radius of the sphere.

className Entity class name.

GetOutdoorAmbientColor

Gets the outdoor ambient color.

Syntax

System.GetOutdoorAmbientColor()

GetPhysicalEntitiesInBox

Gets all the entities contained into the specified area.

Syntax

System.GetPhysicalEntitiesInBox(Vec3 center, float radius)

Parameters

Parameter Description

center Center position vector for the area where to look at
entities.

Version 1.8
689

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

radius Radius of the sphere.

GetPhysicalEntitiesInBoxByClass

Gets all the entities contained into the specified area for the specific class name.

Syntax

System.GetPhysicalEntitiesInBoxByClass(Vec3 center, float radius, const char *className)

Parameters

Parameter Description

center Center position vector for the area where to look at
entities.

radius Radius of the sphere.

className Entity class name.

GetPostProcessFxParam

Gets a post processing effect parameter value.

Syntax

System.GetPostProcessFxParam(const char* pszEffectParam, value)

Parameters

Parameter Description

pszEffectParam Parameter for the post processing effect.

value Value for the parameter (float or string).

GetScreenFx

Gets a post processing effect parameter value.

Note
This is a convenience wrapper function for GetPostProcessFxParam.

Syntax

System.GetScreenFx(const char* pszEffectParam, value)

Parameters

Parameter Description

pszEffectParam Parameter for the post processing effect.

Version 1.8
690

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

value Value for the parameter (float or string).

GetSkyColor

Retrieve color of the sky (outdoor ambient color).

Syntax

Vec3 System.GetSkyColor()

Returns: Sky color as an {x,y,z} vector (x=r,y=g,z=b).

GetSkyHighlight

Retrieves sky highlighing parameters. See SetSkyHighlight (p. 701) for a description of the parameters.

Syntax

System.GetSkyHighlight(SmartScriptTable params)

GetSunColor

Retrieve color of the sun outdoors.

Syntax

Vec3 System.GetSunColor()

Returns: Sun Color as an {x,y,z} vector (x=r,y=g,z=b).

GetSurfaceTypeIdByName

Gets the surface type identifier by its name.

Syntax

System.GetSurfaceTypeIdByName(const char* surfaceName)

Parameters

Parameter Description

surfaceName Surface name.

GetSurfaceTypeNameById

Gets the surface type name by its identifier.

Syntax

System.GetSurfaceTypeNameById(int surfaceId)

Version 1.8
691

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

surfaceId Surface identifier.

GetSystemMem

Gets the amount of the memory for the system.

Syntax

System.GetSystemMem()

GetTerrainElevation

Gets the terrain elevation of the specified position.

Syntax

System.GetTerrainElevation(Vec3 v3Pos)

Parameters

Parameter Description

v3Pos Position of the terraint to be checked.

GetUserName

Gets the username on this machine.

Syntax

System.GetUserName()

GetViewCameraAngles

Gets the view camera angles.

Syntax

System.GetViewCameraAngles()

GetViewCameraDir

Gets the view camera direction.

Syntax

System.GetViewCameraDir()

GetViewCameraFov

Gets the view camera fov.

Version 1.8
692

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

System.GetViewCameraFov()

GetViewCameraPos

Gets the view camera position.

Syntax

System.GetViewCameraPos()

GetViewCameraUpDir

Gets the view camera up-direction.

Syntax

System.GetViewCameraUpDir()

GetWind

Gets the wind direction.

Syntax

System.SetWind()

IsDevModeEnable

Checks if game is running in dev mode (cheat mode), which enables certain script function facilities (god
mode, fly mode etc.).

Syntax

System.IsDevModeEnable()

IsEditing

Checks if the system is in pure editor mode - that is, not editor game mode.

Syntax

System.IsEditing()

IsEditor

Checks if the system is the editor.

Syntax

System.IsEditor()

IsHDRSupported

Checks if the HDR is supported.

Version 1.8
693

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

System.IsHDRSupported()

IsMultiplayer

Checks if the game is multiplayer.

Syntax

System.IsMultiplayer()

IsPointIndoors

Checks if a point is indoors.

Syntax

System.IsPointIndoors(Vec3 vPos)

Parameters

Parameter Description

vPos Position vector. The default is (0, 0, 0).

IsPointVisible

Checks if the specified point is visible.

Syntax

System.IsPointVisible(Vec3 point)

Parameters

Parameter Description

point Point vector.

IsPS20Supported

Checks if the PS20 is supported.

Syntax

System.IsPS20Supported()

IsValidMapPos

Checks if the position is a valid map position.

Syntax

System.IsValidMapPos(Vec3 v)

Version 1.8
694

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameters

Parameter Description

v Position vector. The default is (0, 0, 0).

LoadFont

Loads a font.

Syntax

System.LoadFont(const char* pszName)

Parameters

Parameter Description

pszName Font name.

LoadLocalizationXml

Loads Excel exported XML file with text and dialog localization data.

Syntax

System.LoadLocalizationXml(const char *filename)

Log

Logs a message to the log file and console.

Syntax

System.Log(const char* sText)

Parameters

Parameter Description

sText Text to be logged.

LogAlways

Logs data even if the verbosity setting is 0.

Syntax

System.LogAlways(const char* sText)

Parameters

Parameter Description

sText Text to be logged.

Version 1.8
695

Lumberyard Developer Guide
Lua ScriptBind Reference

LogToConsole

Logs a message to the console.

Syntax

System.LogToConsole(const char* sText)

Parameters

Parameter Description

sText Text to be logged.

PrepareEntityFromPool

Prepares the given bookmarked entity from the pool, bringing it into existence.

Syntax

System.PrepareEntityFromPool(entityId)

Parameters

Parameter Description

entityId Entity identifier (number or ScriptHandle).

bPrepareNow (optional) When another entity preparation is
already in progress, specifies whether the pooled
entity should be prepared immediately instead of
putting it in a queue.

ProjectToScreen

Projects to the screen (not guaranteed to work if used outside Renderer).

Syntax

System.ProjectToScreen(Vec3 vec)

Parameters

Parameter Description

vec Position vector.

Quit

Quits the program.

Syntax

System.Quit()

Version 1.8
696

Lumberyard Developer Guide
Lua ScriptBind Reference

QuitInNSeconds

Quits the application in the specified number of seconds.

Syntax

System.QuitInNSeconds(float fInNSeconds)

Parameters

Parameter Description

fInNSeconds Number of seconds before quitting.

RayTraceCheck

Checks world and static objects.

Syntax

System.RayTraceCheck(Vec3 src, Vec3 dst, int skipId1, int skipId2)

RayWorldIntersection

Shoots rays into the world.

Syntax

System.RayWorldIntersection(Vec3 vPos, Vec3 vDir, int nMaxHits, int iEntTypes)

Parameters

Parameter Description

vPos Position vector. The default is (0, 0, 0).

vDir Direction vector. The default is (0, 0, 0).

nMaxHits Maximum number of hits.

iEntTypes

RemoveEntity

Removes the specified entity.

Syntax

System.RemoveEntity(ScriptHandle entityId)

Parameters

Parameter Description

entityId Entity identifier.

Version 1.8
697

Lumberyard Developer Guide
Lua ScriptBind Reference

ResetPoolEntity

Resets the entity's bookmarked, which frees memory.

Syntax

System.ResetPoolEntity(entityId)

Parameters

Parameter Description

entityId Entity identifier (svtnumber or ScriptHandle).

ReturnEntityToPool

Syntax

System.ReturnEntityToPool(entityId)

Returns: the bookmarked entity to the pool, destroying it.

Parameters

Parameter Description

entityId Entity identifier (svtnumber or ScriptHandle).

SaveConfiguration

Saves the configuration.

Syntax

System.SaveConfiguration()

ScanDirectory

Scans a directory.

Syntax

System.ScanDirectory(const char* pszFolderName, int nScanMode)

Parameters

Parameter Description

pszFolderName Folder name.

nScanMode Scan mode for the folder. Can be: SCANDIR_ALL (0),
SCANDIR_FILES (1), or SCANDIR_SUBDIRS (2).

Version 1.8
698

Lumberyard Developer Guide
Lua ScriptBind Reference

ScreenToTexture

Syntax

System.ScreenToTexture()

SetBudget

Sets system budget.

Syntax

System.SetBudget(int sysMemLimitInMB, int videoMemLimitInMB, float frameTimeLimitInMS,
 int soundChannelsPlayingLimit, int soundMemLimitInMB, int soundCPULimitInPercent, int
 numDrawCallsLimit)

Parameters

Parameter Description

sysMemLimitInMB Limit of the amount of system memory in MB. The default is 512.

videoMemLimitInMB Limit of the amount of video memory in MB. The default is 256.

frameTimeLimitInMS Limit of the frame time in MS. The default is 50.0f.

soundChannelsPlayingLimit Limit of the number of sound channels playing. The default is 64.

soundMemLimitInMB Limit of the sound memory in MB. The default is 64.

soundCPULimitInPercent Limit of the sound CPU usage in percent. The default is 5.

numDrawCallsLimit Limit of the number of draw calls. The default is 2000.

SetConsoleImage

Sets the console image.

Syntax

System.SetConsoleImage(const char* pszName, bool bRemoveCurrent)

Parameters

Parameter Description

pszName The name of the texture image.

bRemoveCurrent True to remove the current image; otherwise false.

SetCVar

Sets the value of a console variable.

Syntax

Version 1.8
699

Lumberyard Developer Guide
Lua ScriptBind Reference

System.SetCVar(const char* sCVarName, value)

Parameters

Parameter Description

sCVarName Name of the variable.

value Value of the variable (float or string).

SetGammaDelta

Sets the gamma/delta value.

Syntax

System.SetGammaDelta(float fDelta)

Parameters

Parameter Description

fDelta Delta value. The default is 0.

SetOutdoorAmbientColor

Sets the outdoor ambient color.

Syntax

System.GetOutdoorAmbientColor(v3Color)

Parameters

Parameter Description

v3Color Outdoor ambient color value.

SetPostProcessFxParam

Sets a post processing effect parameter value.

Syntax

System.SetPostProcessFxParam(const char* pszEffectParam, value)

Parameters

Parameter Description

pszEffectParam Parameter for the post processing effect.

value Value for the parameter (svtNumber, svtObject, or
svtString).

Version 1.8
700

Lumberyard Developer Guide
Lua ScriptBind Reference

SetScissor

Sets the scissoring screen area.

Syntax

System.SetScissor(float x, float y, float w, float h)

SetScreenFx

Sets a post processing effect parameter value.

Note
This is a convenience wrapper function for SetPostProcessFxParam.

Syntax

System.SetScreenFx(pszEffectParam, value)

Parameters

Parameter Description

pszEffectParam Parameter for the post processing effect.

value Value for the parameter (svtNumber, svtObject, or
svtString).

SetSkyColor

Set color of the sky (outdoors ambient color).

Syntax

System.SetSkyColor(Vec3 vColor)

Parameters

Parameter Description

vColor Sky Color as an {x,y,z} vector (x=r,y=g,z=b).

SetSkyHighlight

Set sky highlighing parameters.

Syntax

System.SetSkyHighlight(SmartScriptTable params)

Parameters

Parameter Description

params Table with sky highlighting parameters.

Version 1.8
701

Lumberyard Developer Guide
Lua ScriptBind Reference

Params Table Parameters

Highlight Parameter Description

color Sky highlight color

direction Direction of the sky highlight in world space.

pos Position of the sky highlight in world space.

size Sky highlight scale.

SetSunColor

Set the color of the sun, only relevant outdoors.

Syntax

System.SetSunColor(Vec3 vColor)

Parameters

Parameter Description

vColor Sun color as an {x,y,z} vector (x=r,y=g,z=b).

SetViewCameraFov

Sets the view camera fov.

Syntax

System.SetViewCameraFov(float fov)

SetVolumetricFogModifiers

Sets the volumetric fog modifiers.

Syntax

System.SetVolumetricFogModifiers(float gobalDensityModifier, float
 atmosphereHeightModifier)

Parameters

Parameter Description

gobalDensityModifier Modifier for the global density.

atmosphereHeightModifier Modifier for the atmosphere height.

SetWaterVolumeOffset

SetWaterLevel is not supported by the 3D engine for now.

Version 1.8
702

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

System.SetWaterVolumeOffset()

SetWind

Sets the wind direction.

Syntax

System.SetWind(Vec3 vWind)

Parameters

Parameter Description

vWind Wind direction. The default value is (0, 0, 0).

ShowConsole

Shows or hides the console.

Syntax

System.ShowConsole(int nParam)

Parameters

Parameter Description

nParam 1 to show the console, 0 to hide. The default is 0.

ShowDebugger

Shows the debugger.

Syntax

System.ShowDebugger()

SpawnEntity

Spawns an entity.

Syntax

System.SpawnEntity(SmartScriptTable params)

Parameters

Parameter Description

params Entity parameters.

Version 1.8
703

Lumberyard Developer Guide
Lua ScriptBind Reference

ViewDistanceGet

Gets the view distance.

Syntax

System.ViewDistanceSet()

ViewDistanceSet

Sets the view distance.

Syntax

System.ViewDistanceSet(float fViewDist)

Parameters

Parameter Description

fViewDist View distance.

Warning

Shows a message text with the warning severity.

Syntax

System.Warning(const char* sParam)

Parameters

Parameter Description

sParam The text to be logged. The default value is an
empty string.

ScriptBind Action Functions

Lists C++ action functions that can be called from Lua scripts.

Topics

• ScriptBind_Action (p. 705)

• ScriptBind_ActionMapManager (p. 718)

• ScriptBind_ActorSystem (p. 720)

• ScriptBind_GameStatistics (p. 721)

• ScriptBind_GameToken (p. 723)

• ScriptBind_Inventory (p. 723)

• ScriptBind_ItemSystem (p. 726)

• ScriptBind_Network (p. 728)

• ScriptBind_UIAction (p. 728)

• ScriptBind_Vehicle (p. 740)

Version 1.8
704

Lumberyard Developer Guide
Lua ScriptBind Reference

• ScriptBind_VehicleSeat (p. 746)

• ScriptBind_VehicleSystem (p. 748)

ScriptBind_Action

Lists the action related Lua script bind functions. When parameters are present, the data types indicated in
the signatures reflect those of the underlying C++ function.

ActivateEffect

Activates the effect specified.

Syntax

Action.ActivateEffect(const char * name)

Parameter Description

name Specifies the effect to activate.

ActivateExtensionForGameObject

Activates a specified extension for a game object.

Syntax

Action.ActivateExtensionForGameObject(ScriptHandle entityId, const char *extension, bool
 activate)

Parameter Description

entityId The identifier of the entity.

extension The name of the extension.

activate Specify true to activate the extension or false to
deactivate it.

AddAngleSignal

Adds an angle for the signal.

Syntax

Action.AddAngleSignal(ScriptHandle entityId, float fAngle, float fFlexibleBoundary, const
 char *sSignal)

Parameter Description

entityId The identifier of the entity.

fAngle The angle value.

Version 1.8
705

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

fFlexibleBoundary The size of the flexible boundary.

sSignal The string for the signal.

AddRangeSignal

Adds a range for the signal.

Syntax

Action.AddRangeSignal(ScriptHandle entityId, float fRadius, float fFlexibleBoundary, const
 char *sSignal)

Parameter Description

entityId The identifier of the entity.

fRadius The adius of the range area.

fFlexibleBoundary Flexible boundary size.

sSignal String for signal.

AddTargetRangeSignal

Adds a target range signal that has the parameters specified.

Syntax

Action.AddTargetRangeSignal(ScriptHandle entityId, ScriptHandle targetId, float fRadius,
 float fFlexibleBoundary, const char *sSignal)

Parameter Description

entityId The identifier of the entity.

targetId The identifier of the target.

fRadius The radius of the range area.

fFlexibleBoundary The size of the flexible boundary.

sSignal The string for the signal.

BanPlayer

Bans a specified player.

Syntax

Action.BanPlayer(ScriptHandle entityId, const char* message)

Version 1.8
706

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The identifier of the entity.

message The message for the ban.

BindGameObjectToNetwork

Binds a specifed game object to the network.

Syntax

Action.BindGameObjectToNetwork(ScriptHandle entityId)

Parameter Description

entityId The identifier of the entity to bind to the network.

CacheItemGeometry

Caches an item geometry.

Syntax

Action.CacheItemGeometry(const char *itemName)

Parameter Description

itemName The string name of the item.

CacheItemSound

Caches an item sound.

Syntax

Action.CacheItemSound(const char *itemName)

Parameter Description

itemName The string name of the item.

ClearEntityTags

Clears the tag for the specified entity.

Syntax

Action.ClearEntityTags(ScriptHandle entityId)

Version 1.8
707

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The identifier of the entity.

ClearStaticTag

Clears the specified static tag for the specified entity.

Syntax

Action.ClearStaticTag(ScriptHandle entityId, const char *staticId)

Parameter Description

entityId The identifier of the entity.

staticId The identifier of the static tag.

ConnectToServer

Connects to the server specified.

Syntax

Action.ConnectToServer(char* server)

Parameter Description

server String that specifies the server to connect to.

CreateGameObjectForEntity

Creates a game object for the entity ID specified.

Syntax

Action.CreateGameObjectForEntity(ScriptHandle entityId)

Parameter Description

entityId The identifier of the entity.

DestroyRangeSignaling

Removes range signaling.

Syntax

Action.DestroyRangeSignaling(ScriptHandle entityId)

Version 1.8
708

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The identifier of the entity.

DisableSignalTimer

Disables the signal timer.

Syntax

Action.DisableSignalTimer(ScriptHandle entityId, const char *sText)

Parameter Description

entityId The identifier of the entity.

sText The text for the signal.

DontSyncPhysics

Instructs the engine to not synchronize physics for the specified entity.

Syntax

Action.DontSyncPhysics(ScriptHandle entityId)

Parameter Description

entityId The identifier of the entity.

EnableRangeSignaling

Enables or disables range signaling for the specified entity.

Syntax

Action.EnableRangeSignaling(ScriptHandle entityId, bool bEnable)

Parameter Description

entityId The identifier of the entity.

bEnable Enable or disable range signaling.

EnableSignalTimer

Enables the signal timer.

Syntax

Version 1.8
709

Lumberyard Developer Guide
Lua ScriptBind Reference

Action.EnableSignalTimer(ScriptHandle entityId, const char *sText)

Parameter Description

entityId The identifier of the entity.

sText The text for the signal.

ForceGameObjectUpdate

Forces the game object to be updated.

Syntax

Action.ForceGameObjectUpdate(ScriptHandle entityId, bool force)

Parameter Description

entityId The identifier of the entity.

force Specify true to force the update; specify false
otherwise.

GetClassName

Returns the class name, if available, for specified classId.

Syntax

Action.GetClassName(int classId)

GetPlayerList

Retrieves the current players list.

Syntax

Action.GetPlayerList()

GetServer

Gets the server that corresponds to the number specified.

Syntax

Action.GetServer(int number)

Parameter Description

number The number of the server.

Version 1.8
710

Lumberyard Developer Guide
Lua ScriptBind Reference

GetServerTime

Gets the current time on the server.

Syntax

Action.GetServerTime()

GetWaterInfo

Gets information about the water at the position specified.

Syntax

Action.GetWaterInfo(Vec3 pos)

Parameter Description

pos The position for which information will be returned.

HasAI

Returns true if the entity has an AI object associated with it and has been registered with the AI System

Syntax

Action.HasAI(ScriptHandle entityId)

IsChannelOnHold

Checks if the channel specified is on hold.

Syntax

Action.IsChannelOnHold(int channelId)

Parameter Description

channelId The identifier of the channel.

IsChannelSpecial

Returns true if the channel is special.

Syntax

Action.IsChannelSpecial()

IsClient

Returns true if the current script runs on a client.

Version 1.8
711

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Action.IsClient()

IsGameObjectProbablyVisible

Returns true if the specifed object is likely visible.

Syntax

Action.IsGameObjectProbablyVisible(ScriptHandle gameObject)

Parameter Description

gameObject The game object to check for likely visibilty.

IsGameStarted

Returns true if the game has started.

Syntax

Action.IsGameStarted()

IsImmersivenessEnabled

Returns true if immersive multiplayer is enabled.

Syntax

Action.IsImmersivenessEnabled()

IsRMIServer

Returns true if the current script is running on an RMI (Remote Method Invocation) server.

Syntax

Action.IsRMIServer()

IsServer

Returns true if the current script runs on a server.

Syntax

Action.IsServer()

LoadXML

Loads XML data from the file specified. For more information, see Using the Lua XML Loader (p. 454).

Syntax

Version 1.8
712

Lumberyard Developer Guide
Lua ScriptBind Reference

Action.LoadXML(const char * definitionFile, const char * dataFile)

Parameter Description

definitionFile Name of an XML file that declares the kind of data that is
included in dataFile.

dataFile The name of the XML file that contains the Lua data described in
definitionFile.

PauseGame

Puts the game into pause mode.

Syntax

Action.PauseGame(bool pause)

Parameter Description

pause Specify true to set the game in pause mode.
Specify false to resume the game.

Persistent2DText

Adds persistent 2D text.

Syntax

Action.Persistent2DText(const char* text, float size, Vec3 color, const char* name, float
 timeout)

Parameter Description

text The text to be displayed.

size The size of the 2D text.

color The the color of the 2D text.

name The the name assigned to the 2D text.

timeout The timeout for the 2D text.

PersistentArrow

Adds a persistent arrow to the world.

Syntax

Action.PersistentArrow(Vec3 pos, float radius, Vec3 dir, Vec3 color, const char* name,
 float timeout)

Version 1.8
713

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

pos The position of the arrow.

radius The radius of the arrow.

dir The direction of the arrow.

color The color of the arrow.

name The name assigned to the arrow.

timeout The timeout for the arrow.

PersistentEntityTag

Adds a persistent entity tag.

Syntax

Action.PersistentEntityTag(ScriptHandle entityId, const char *text)

Parameter Description

entityId The identifier of the entity.

text The text for the entity tag.

PersistentLine

Adds a persistent line to the world.

Syntax

Action.PersistentLine(Vec3 start, Vec3 end, Vec3 color, const char* name, float timeout)

Parameter Description

start The starting position of the line.

end The ending position of the line.

color The color of the line.

name The name assigned to the line.

timeout The timeout for the line.

PersistentSphere

Adds a persistent sphere to the world.

Syntax

Version 1.8
714

Lumberyard Developer Guide
Lua ScriptBind Reference

Action.PersistentSphere(Vec3 pos, float radius, Vec3 color, const char* name, float
 timeout)

Parameter Description

pos The position of the sphere.

radius The radius of the sphere.

color The color of the sphere.

name The name assigned to the sphere.

timeout The timeout for the sphere.

PreLoadADB

Use this function to pre-cache ADB files.

Syntax

Action.PreLoadADB(const char* adbFileName)

Parameter Description

adbFileName The path and filename of the animation ADB file
which is to be pre-loaded.

RefreshPings

Refreshes pings for all servers.

Syntax

Action.RefreshPings()

RegisterWithAI

Registers the entity to the AI system and creates an AI object associated with it.

Syntax

Action.RegisterWithAI()

ResetRangeSignaling

Resets range signaling.

Syntax

Action.ResetRangeSignaling(ScriptHandle entityId)

Version 1.8
715

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The identifier of the entity.

ResetSignalTimer

Resets the rate for the signal timer.

Syntax

Action.ResetSignalTimer(ScriptHandle entityId, const char *sText)

Parameter Description

entityId The identifier of the entity.

sText Th text for the signal.

ResetToNormalCamera

Resets the camera to the last valid view stored.

Syntax

Action.ResetToNormalCamera()

SaveXML

Saves the specified XML data to the file system.

Syntax

Action.SaveXML(const char * definitionFile, const char * dataFile, SmartScriptTable
 dataTable)

Parameter Description

definitionFile Name of an XML file that declares the kind of data
that is included in dataFile. For more information,
see Using the Lua XML Loader (p. 454).

dataFile The name of the XML file that contains the Lua
data described in definitionFile.

dataTable The name of the data table.

SendGameplayEvent

Sends an event for the gameplay.

Syntax

Action.SendGameplayEvent(ScriptHandle entityId, int event)

Version 1.8
716

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

entityId The identifier of the entity.

event The integer of the event.

SetAimQueryMode

Sets the aim query mode for the AI proxy. By default, the AI proxy queries the movement controller if the
character is aiming. You can override this behavior by using a different keyword for the mode parameter.

Syntax

Action.SetAimQueryMode(ScriptHandle entityId, int mode)

Parameter Description

entityId The identifier of the entity.

mode Specifies one of the following values: QueryAimFromMovementController (the
default), OverriddenAndAiming, or OverriddenAndNotAiming

SetNetworkParent

Sets the network parent.

Syntax

Action.SetNetworkParent(ScriptHandle entityId, ScriptHandle parentId)

Parameter Description

entityId The identifier of the entity.

parentID The identifier of the parent network.

SetSignalTimerRate

Sets the rate for the signal timer.

Syntax

Action.SetSignalTimerRate(ScriptHandle entityId, const char *sText, float fRateMin, float
 fRateMax)

Parameter Description

entityId The identifier of the entity.

sText The text for the signal.

fRateMin The minimum rate for the signal timer.

Version 1.8
717

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

fRateMax The maximum rate for the signal timer.

SetViewCamera

Saves the previous valid view and overrides it with the current camera settings.

Syntax

Action.SetViewCamera()

ScriptBind_ActionMapManager

The action map manager provides a high-level interface to handle input controls inside a game. An action
map is a set of key or button mappings for a particular game mode (such as controlling a helicopter). For
more information, see Controller Devices and Game Input (p. 345).

EnableActionFilter

Enables or disables a specified action filter. An action filter allows actions like moveleft or moveright to
succeed or fail. For more information, see Action Filters (p. 349).

Syntax

ActionMapManager.EnableActionFilter(name, enable)

Parameter Description

name The name of the filter.

enable Specify true to enable the filter, or false to disable
it.

EnableActionMap

Enables or disables an action map.

Syntax

ActionMapManager.EnableActionMap(const char *name, bool enable)

Parameter Description

name The name of the action map to enable or disable.

enable Specify true to enable the action map, or false to
disable it.

EnableActionMapManager

Enables or disables the action map manager.

Version 1.8
718

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

ActionMapManager.EnableActionMapManager(enable, resetStateOnDisable)

Parameter Description

enable Enables or disables the action map manager.
Specify true to enable the action map manager, or
false to disable it.

resetStateOnDisable Resets the action states when the action map
manager is disabled.

GetDefaultActionEntity

Retrieves the currently set default action entity.

Syntax

ActionMapManager.GetDefaultActionEntity()

InitActionMaps

Initializes the action maps and filters found in the file specified.

Syntax

ActionMapManager.InitActionMaps(path)

Parameter Description

path The XML file path.

IsFilterEnabled

Queries whether the filter specfied is currently enabled.

Syntax

ActionMapManager.IsFilterEnabled(filterName)

Parameter Description

filterName The name of the filter whose status to check.

LoadControllerLayoutFile

Loads the given controller layout into the action map manager.

Syntax

Version 1.8
719

Lumberyard Developer Guide
Lua ScriptBind Reference

ActionMapManager.LoadControllerLayoutFile(layoutName)

Parameter Description

layoutName The name of the layout.

LoadFromXML

Loads information from an XML file.

Syntax

ActionMapManager.LoadFromXML(const char *name)

Parameter Description

name The name of the XML file to load.

SetDefaultActionEntity

Sets a new default action entity. The action map manager assigns new action maps to the action entity that
you set as the default.

Syntax

ActionMapManager.SetDefaultActionEntity(id, updateAll)

Parameter Description

id Specifies the EntityId of the action entity that is to
become the default.

updateAll Updates all existing action map assignments.

ScriptBind_ActorSystem

Lists C++ actor system functions that can be called from Lua scripts.

CreateActor

Creates an actor.

Syntax

ActorSystem.CreateActor(ScriptHandle channelId, SmartScriptTable actorParams)

Parameter Description

channelId Identifier for the network channel.

actorParams Parameters for the actor.

Version 1.8
720

Lumberyard Developer Guide
Lua ScriptBind Reference

ScriptBind_GameStatistics

Lists C++ game statistics functions that can be called from Lua script.

AddGameElement

Adds a game element to specified scope.

Syntax

GameStatistics.AddGameElement(scopeID, elementID, locatorID, locatorValue [, table])

Parameter Description

scopeID The identifier of the scope.

elementID The identifier of the element to be added.

locatorID The identifier of the locator.

locatorValue The value of the locator.

table Optional. The table of the element.

BindTracker

Syntax

GameStatistics.BindTracker(name, tracker)

Parameter Description

name The name of the tracker to bind.

tracker The IStatsTracker* to be bound.

CurrentScope

Returns the ID of current scope, or -1 if the stack is empty.

Syntax

GameStatistics.CurrentScope()

Event

Syntax

GameStatistics.Event()

PopGameScope

Removes the scope from the top of the stack.

Version 1.8
721

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

GameStatistics.PopGameScope([checkScopeId])

Parameter Description

checkScopeId Optional. The identifier of the scope to be removed
from the top of the stack.

PushGameScope

Pushes a scope on top of the stack.

Syntax

GameStatistics.PushGameScope(scopeID)

Parameter Description

scopeID The identifier of the scope to be placed on top of
the stack.

RemoveGameElement

Removes the element that has the supplied parameter values from the specified scope.

Syntax

GameStatistics.RemoveGameElement(scopeID, elementID, locatorID, locatorValue)

Parameter Description

scopeID The identifier of the scope.

elementID The identifier of the element to be removed.

locatorID The identifier of the locator.

locatorValue The value of the locator.

StateValue

Syntax

GameStatistics.StateValue()

UnbindTracker

Syntax

GameStatistics.UnbindTracker(name, tracker)

Version 1.8
722

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

name The name of the tracker to unbind.

tracker The IStatsTracker* to unbind.

ScriptBind_GameToken

Lists C++ game token functions that can be called from Lua script.

DumpAllTokens

Dump all game tokens with their values to the log.

Syntax

GameToken.DumpAllTokens()

GetToken

Gets the value of a game token.

Syntax

GameToken.GetToken(const char *sTokenName)

Parameter Description

sTokenName The name of the token whose value to get.

SetToken

Sets the value of a game token.

Syntax

GameToken.SetToken(const char* tokenName, any tokenValue)

Parameter Description

tokenName The name of the token.

tokenValue The value to set.

ScriptBind_Inventory

Lists C++ inventory managment functions that you can call from Lua script.

Clear

Clears the inventory.

Syntax

Version 1.8
723

Lumberyard Developer Guide
Lua ScriptBind Reference

Inventory.Clear()

Destroy

Destroys the inventory.

Syntax

Inventory.Destroy()

Dump

Dumps the inventory.

Syntax

Inventory.Dump()

GetAmmoCapacity

Gets the capacity for the specified ammunition.

Syntax

Inventory.GetAmmoCapacity(const char *ammoName)

Parameter Description

ammoName The name of the ammunition.

GetAmmoCount

Gets the amount of the specified ammunition name.

Syntax

Inventory.GetAmmoCount(const char *ammoName)

Parameter Description

ammoName The name of the ammunition.

GetCurrentItem

Gets the current item.

Syntax

Inventory.GetCurrentItem()

GetCurrentItemId

Gets the identifier of the current item.

Version 1.8
724

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Inventory.GetCurrentItemId()

GetGrenadeWeaponByClass

Gets grenade weapon by class name.

Syntax

Inventory.GetGrenadeWeaponByClass(const char *className)

Parameter Description

className The name of the class.

GetItemByClass

Gets item by class name.

Syntax

Inventory.GetItemByClass(const char *className)

Parameter Description

className The name of the class.

HasAccessory

Checks if the inventory contains the specified accessory.

Syntax

Inventory.HasAccessory(const char *accessoryName)

Parameter Description

accessoryName The name of the accessory.

SetAmmoCount

Sets the amount of the specified ammunition.

Syntax

Inventory.SetAmmoCount(const char *ammoName, int count)

Parameter Description

ammoName The name of the ammunition.

Version 1.8
725

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

count The count of the ammunition.

ScriptBind_ItemSystem

Lists C++ functions for actor items and items in packs that you can call from Lua script.

GetPackItemByIndex

Gets a pack item from its index.

Syntax

ItemSystem.GetPackItemByIndex(const char *packName, int index)

Parameter Description

packName The name of the pack.

index The index of the item to retrieve.

GetPackNumItems

Get the number of items in the specified pack.

Syntax

ItemSystem.GetPackNumItems(const char* packName)

Parameter Description

packName The name of the pack whose item count to retrieve.

GetPackPrimaryItem

Gets the primary item of the specified pack.

Syntax

ItemSystem.GetPackPrimaryItem(const char *packName)

Parameter Description

packName The name of the pack whose primary item to
retrieve.

GiveItem

Gives the specified item.

Version 1.8
726

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

ItemSystem.GiveItem(const char *itemName)

Parameter Description

itemName The name of the item.

GiveItemPack

Gives the item pack specified to the actor specified .

Syntax

ItemSystem.GiveItemPack(ScriptHandle actorId, const char *packName)

Parameter Description

actorId The actor identifier.

packName The name of the pack.

Reset

Resets the item system.

Syntax

ItemSystem.Reset()

SerializePlayerLTLInfo

Serializes player level to level (LTL) information.

Syntax

ItemSystem.SerializePlayerLTLInfo(bool reading)

Parameter Description

reading Boolean value.

SetActorItem

Sets an actor item.

Syntax

ItemSystem.SetActorItem(ScriptHandle actorId, ScriptHandle itemId, bool keepHistory)

Version 1.8
727

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

actorId The actor identifier.

itemId The item identifier.

keepHistory True to keep the history; otherwise, false.

SetActorItemByName

Sets an actor item by name.

Syntax

ItemSystem.SetActorItemByName(ScriptHandle actorId, const char *name, bool keepHistory)

Parameter Description

actorId The actor identifier.

name The name of the actor item.

keepHistory True to keep the history; otherwise, false.

ScriptBind_Network

Lists C++ network functions that you can call from Lua script.

Expose

Syntax

Network.Expose()

ScriptBind_UIAction

CallFunction

Calls a function of the UI flash asset or the UIEventSystem.

Syntax

UIAction.CallFunction(elementName, instanceID, functionName, [arg1], [arg2], [...])

Parameter Description

elementName The UI element name as defined in the XML or
UIEventSystem name as defined in a .cpp file.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances. If used on UIEventSystem,
no instance ID is ignored.

Version 1.8
728

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

functionName Function or event name.

args List of arguments (optional).

DisableAction

Disables the UI Action.

Syntax

UIAction.DisableAction(actionName)

Parameter Description

actionName UI Action name.

EnableAction

Enables the UI Action.

Syntax

UIAction.EnableAction(actionName)

Parameter Description

actionName UI Action name.

EndAction

Ends a UI Action. This can be only used within a UIAction Lua script!

Syntax

UIAction.EndAction(table, disable, arguments)

Parameter Description

table Must be self.

disable If true, this action is disabled when it terminates.

arguments The arguments to return from this action.

GetAlpha

Get move clip alpha value.

Syntax

Version 1.8
729

Lumberyard Developer Guide
Lua ScriptBind Reference

UIAction.GetAlpha(elementName, instanceID, mcName)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

GetArray

Returns a table with values of the array.

Syntax

UIAction.GetArray(elementName, instanceID, arrayName)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

arrayName Array name as defined in the XML.

GetPos

Get movie clip position.

Syntax

UIAction.GetPos(elementName, instanceID, mcName)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

GetRotation

Get movie clip rotation.

Version 1.8
730

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

UIAction.GetRotation(elementName, instanceID, mcName)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). '-1'
for all instances

mcName The movie clip name as defined in the XML.

GetScale

Get movie clip scale.

Syntax

UIAction.GetScale(elementName, instanceID, mcName)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

GetVariable

Gets a variable of the UI flash asset.

Syntax

UIAction.GetVariable(elementName, instanceID, varName)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

varName Variable name as defined in the XML.

GotoAndPlay

Call GotoAndPlay on a movie clip.

Version 1.8
731

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

UIAction.GotoAndPlay(elementName, instanceID, mcName, frameNum)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

frameNum The frame number.

GotoAndPlayFrameName

Call GotoAndPlay on a movie clip by frame name.

Syntax

UIAction.GotoAndPlayFrameName(elementName, instanceID, mcName, frameName)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

frameName The name of the frame.

GotoAndStop

Call GotoAndStop on a movie clip.

Syntax

UIAction.GotoAndStop(elementName, instanceID, mcName, frameNum)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

Version 1.8
732

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

frameNum The frame number.

GotoAndStopFrameName

Call GotoAndStop on a movie clip by frame name.

Syntax

UIAction.GotoAndStopFrameName(elementName, instanceID, mcName, frameName)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

frameName The name of the frame.

HideElement

Hide the UI flash asset.

Syntax

UIAction.HideElement(elementName, instanceID)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

IsVisible

Get movie clip visible state.

Syntax

UIAction.IsVisible(elementName, instanceID, mcName)

Parameter Description

elementName The UI element name as defined in the XML.

Version 1.8
733

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

RegisterActionListener

Register a callback function for a UIAction event. The callback function must have form:
CallbackName(actionName, eventName, argTable)

Syntax

UIAction.RegisterActionListener(table, actionName, eventName, callbackFunctionName)

Parameter Description

table The script that receives the callback (can be self
to refer the current script).

actionName The UI action name.

eventName The name of the event that is fired from the UI
action (can be OnStart or OnEnd)

Warning
If an empty string is specified, all events
will be received.

callbackFunctionName The name of the script function that will receive the
callback.

RegisterElementListener

Register a callback function for a UIElement event. The callback function must have form:
CallbackName(elementName, instanceId, eventName, argTable)

Syntax

UIAction.RegisterElementListener(table, elementName, instanceID, eventName,
 callbackFunctionName)

Parameter Description

table The script that receives the callback (can be self
to refer the current script).

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

Version 1.8
734

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

eventName The name of the event that is fired from the UI
element. If an empty string is specified, all events
will be received.

callbackFunctionName name of the script function that will receive the
callback.

RegisterEventSystemListener

Register a callback function for a UIEventSystem event. The callback function must have form:
CallbackName(actionName, eventName, argTable)

Syntax

UIAction.RegisterEventSystemListener(table, eventSystem, eventName, callbackFunctionName)

Parameter Description

table The script that receives the callback (can be self
to refer the current script).

eventSystem The UI event system name.

eventName The name of the event that is fired from
UIEventSystem. If an empty string is specified, all
events will be received.

callbackFunctionName name of the script function that will receive the
callback.

ReloadElement

Reloads the UI flash asset.

Syntax

UIAction.ReloadElement(elementName, instanceID)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

RequestHide

Send the fade out signal to the UI flash asset.

Syntax

Version 1.8
735

Lumberyard Developer Guide
Lua ScriptBind Reference

UIAction.RequestHide(elementName, instanceID)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

SetAlpha

Set movie clip alpha value.

Syntax

UIAction.SetAlpha(elementName, instanceID, mcName, fAlpha)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

fAlpha Alpha value (0-1).

SetArray

Sets an array of the UI flash asset.

Syntax

UIAction.SetArray(elementName, instanceID, arrayName, values)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

arrayName The array name as defined in the XML.

values Table of values for the array.

SetPos

Set movie clip position.

Version 1.8
736

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

UIAction.SetPos(elementName, instanceID, mcName, vPos)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

vPos position.

SetRotation

Set movie clip rotation.

Syntax

UIAction.SetRotation(elementName, instanceID, mcName, vRotation)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

vRotation The rotation.

SetScale

Set movie clip scale.

Syntax

UIAction.SetScale(elementName, instanceID, mcName, vScale)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

Version 1.8
737

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

vScale scale.

SetVariable

Sets a variable of the UI flash asset.

Syntax

UIAction.SetVariable(elementName, instanceID, varName, value)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

varName Variable name as defined in the XML.

value Value to set.

SetVisible

Set movie clip visible state.

Syntax

UIAction.SetVisible(elementName, instanceID, mcName, bVisible)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

mcName The movie clip name as defined in the XML.

bVisible visible.

ShowElement

Displays the UI flash asset.

Syntax

UIAction.ShowElement(elementName, instanceID)

Version 1.8
738

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

StartAction

Starts a UI Action.

Syntax

UIAction.StartAction(actionName, arguments)

Parameter Description

actionName UI Action name.

arguments The arguments to pass to this action.

UnloadElement

Unloads the UI flash asset.

Syntax

UIAction.UnloadElement(elementName, instanceID)

Parameter Description

elementName The UI element name as defined in the XML.

instanceID The ID of the instance (if an instance with the
specified ID does not exist, it will be created). -1
specifies all instances.

UnregisterActionListener

Unregister callback functions for a UIAction event.

Syntax

UIAction.UnregisterActionListener(table, callbackFunctionName)

Parameter Description

table The script that receives the callback (can be self
to refer the current script).

Version 1.8
739

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

callbackFunctionName The name of the script function that receives the
callback. If "" is specified, all callbacks for this script
will be removed.

UnregisterElementListener

Unregister callback functions for a UIElement event.

Syntax

UIAction.UnregisterElementListener(table, callbackFunctionName)

Parameter Description

table The script that receives the callback (can be self
to refer the current script).

callbackFunctionName The name of the script function that receives the
callback. If "" is specified, all callbacks for this script
will be removed.

UnregisterEventSystemListener

Unregister callback functions for a UIEventSystem event.

Syntax

UIAction.UnregisterEventSystemListener(table, callbackFunctionName)

Parameter Description

table The script that receives the callback (can be self
to refer the current script).

callbackFunctionName The name of the script function that receives the
callback. If "" is specfied, all callbacks for this script
will be removed.

ScriptBind_Vehicle

Lists C++ vehicle system functions that you can call from Lua script.

AddSeat

Adds a seat to the vehicle.

Syntax

Vehicle.AddSeat(SmartScriptTable paramsTable)

Version 1.8
740

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

paramsTable The seat parameters in SmartScriptTable format.

ChangeSeat

Makes the actor change the seat inside the vehicle.

Syntax

Vehicle.ChangeSeat(ScriptHandle actorHandle, int seatId, bool isAnimationEnabled)

Parameter Description

actorHandle The actor identifier.

seatId The seat identifier.

isAnimationEnabled True if animation is enabled; otherwise, false.

Destroy

Destroys the vehicle.

Syntax

Vehicle.Destroy()

DisableEngine

Disables or enables the engine of the vehicle.

Syntax

Vehicle.DisableEngine(bool disable)

Parameter Description

disable True to disable the engine; false to enable.

EnableMovement

Enables or disables the movement of the vehicle.

Syntax

Vehicle.EnableMovement(bool enable)

Parameter Description

enable True to enable movement; false to disable.

Version 1.8
741

Lumberyard Developer Guide
Lua ScriptBind Reference

EnterVehicle

Makes the specified actor enter the vehicle.

Syntax

Vehicle.EnterVehicle(ScriptHandle actorHandle, int seatId, bool isAnimationEnabled)

Parameter Description

actorHandle The actor identifier.

seatId The seat identifier.

isAnimationEnabled True if animation is enabled; otherwise, false.

ExitVehicle

Makes the actor leave the vehicle.

Syntax

Vehicle.ExitVehicle(ScriptHandle actorHandle)

Parameter Description

actorHandle The actor identifier.

GetComponentDamageRatio

Gets the damage ratio of the specified component.

Syntax

Vehicle.GetComponentDamageRatio(const char* pComponentName)

Parameter Description

pComponentName The name of the component.

GetHelperDir

Gets the helper direction.

Syntax

Vehicle.GetHelperDir(const char* name, bool isInVehicleSpace)

Parameter Description

name The name of the helper.

Version 1.8
742

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

isInVehicleSpace True if the helper is in the vehicle space; otherwise,
false.

GetHelperPos

Gets the helper position.

Syntax

Vehicle.GetHelperPos(const char* name, bool isInVehicleSpace)

Parameter Description

name The name of the helper.

isInVehicleSpace True if the helper is in the vehicle space; otherwise,
false.

GetHelperWorldPos

Gets the helper position in the world coordinates.

Syntax

Vehicle.GetHelperWorldPos(const char* name)

Parameter Description

name The name of the helper.

GetSeatForPassenger

Returns a vehicle seat ID for the specified passenger.

Syntax

Vehicle.GetSeatForPassenger(ScriptHandle passengerId)

Parameter Description

passengerId The passenger ID.

GetVehicle

Gets the vehicle identifier.

Syntax

Version 1.8
743

Lumberyard Developer Guide
Lua ScriptBind Reference

Vehicle.GetVehicle()

HasHelper

Checks if the vehicle has the specified helper.

Syntax

Vehicle.HasHelper(const char* name)

Parameter Description

name The name of the helper.

IsDestroyed

Checks if the vehicle is destroyed.

Syntax

Vehicle.IsDestroyed()

IsInsideRadius

Checks if the vehicle is inside the specified radius.

Syntax

Vehicle.IsInsideRadius(Vec3 pos, float radius)

Parameter Description

pos The {x,y,z} position vector.

radius The radius, expressed as a float.

IsUsable

Checks if the vehicle is usable by the user.

Syntax

Vehicle.IsUsable(ScriptHandle userHandle)

Parameter Description

userHandle The user identifier.

MultiplyWithWorldTM

Multiplies with the world transformation matrix.

Version 1.8
744

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Vehicle.MultiplyWithWorldTM(Vec3 pos)

Parameter Description

pos The {x,y,z} position vector.

OnHit

Triggers an event that occurs after the vehicle is hit.

Syntax

Vehicle.OnHit(ScriptHandle targetId, ScriptHandle shooterId, float damage, Vec3 position,
 float radius, int hitTypeId, bool explosion)

Parameter Description

targetId The target identifier.

shooterId The shooter identifier.

damage The amount of damage, expressed as a float.

position The {x,y,z} position vector.

radius Radius of the hit, expressed as a float.

hitTypeId The type of damage, expressed as an integer.

explosion True if the hit causes an explosion, otherwise false.

OnSpawnComplete

Calls back into the game code for when vehicle spawn has been completed.

Syntax

Vehicle.OnSpawnComplete()

OnUsed

Triggers an event when the user uses the specified vehicle.

Syntax

Vehicle.OnUsed(ScriptHandle userHandle, int index)

Parameter Description

userHandle The user identifier.

Version 1.8
745

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

index The seat identifier.

ProcessPassengerDamage

Processes passenger damages.

Syntax

Vehicle.ProcessPassengerDamage(ScriptHandle passengerId, float actorHealth, float damage,
 int hitTypeId, bool explosion)

Parameter Description

passengerId The passenger identifier.

actorHealth The health of the actor.

damage The amount of damage.

hitTypeId The type of damage.

explosion True if there is an explosion; otherwise, false.

Reset

Resets the vehicle.

Syntax

Vehicle.Reset()

ResetSlotGeometry

Syntax

Vehicle.ResetSlotGeometry(int slot, const char* filename, const char* geometry)

Parameter Description

slot The number of the slot.

filename The filename.

geometry The slot geometry.

ScriptBind_VehicleSeat

Lists C++ vehicle seat functions that you can call from Lua script.

GetPassengerId

Gets the passenger identifier.

Version 1.8
746

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

VehicleSeat.GetPassengerId()

GetVehicleSeat

Gets the vehicle seat identifier.

Syntax

VehicleSeat.GetVehicleSeat()

GetWeaponCount

Gets the number of weapons available on this seat.

Syntax

VehicleSeat.GetWeaponCount()

GetWeaponId

Gets the weapon identifier.

Syntax

VehicleSeat.GetWeaponId(int weaponIndex)

Parameter Description

weaponIndex Weapon identifier.

IsDriver

Checks if the seat is the driver seat.

Syntax

VehicleSeat.IsDriver()

IsFree

Checks if the seat is free.

Syntax

VehicleSeat.IsFree(ScriptHandle actorHandle)

Parameter Description

actorHandle Passenger identifier.

Version 1.8
747

Lumberyard Developer Guide
Lua ScriptBind Reference

IsGunner

Checks if the seat is the gunner seat.

Syntax

VehicleSeat.IsGunner()

Reset

Resets the vehicle seat.

Syntax

VehicleSeat.Reset()

SetAIWeapon

Sets the weapon artificial intelligence.

Syntax

VehicleSeat.SetAIWeapon(ScriptHandle weaponHandle)

Parameter Description

weaponHandle Weapon identifier.

ScriptBind_VehicleSystem

Lists C++ vehicle system functions that you can call from Lua script.

GetOptionalScript

Get an (optional) script for the named vehicle.

Syntax

VehicleSystem.GetOptionalScript(char* vehicleName)

GetVehicleImplementations

Get a table of all implemented vehicles.

Syntax

VehicleSystem.GetVehicleImplementations()

ReloadSystem

Reloads the vehicle system with default values.

Syntax

VehicleSystem.ReloadSystem()

Version 1.8
748

Lumberyard Developer Guide
Lua ScriptBind Reference

SetTpvDistance

Distance of camera in third person view.

Syntax

VehicleSystem.SetTpvDistance(float distance)

SetTpvHeight

Height of camera in third person view.

Syntax

VehicleSystem.SetTpvHeight(float height)

ScriptBind_Boids
These functions create simulated flocks of bird-like objects (boids) or other animals and control their
behavior.

CanPickup

Syntax

Checks if the boid can be picked up.

Boids.CanPickup(flockEntity, boidEntity)

Parameter Description

flockEntity Valid entity table containing flock.

boidEntity Valid entity table containing boid.

CreateBugsFlock

Creates a bugs flock and binds it to the given entity.

Syntax

Boids.CreateBugsFlock(entity,paramsTable)

Parameter Description

entity Valid entity table.

paramTable Table with parameters for flock (see sample
scripts).

CreateFishFlock

Creates a fish flock and binds it to the given entity.

Version 1.8
749

https://en.wikipedia.org/wiki/Boids

Lumberyard Developer Guide
Lua ScriptBind Reference

Syntax

Boids.CreateFishFlock(entity,paramsTable)

Parameter Description

entity Valid entity table.

paramTable Table with parameters for flock (see sample
scripts).

CreateFlock

Creates a flock of boids and binds it to the given entity.

Syntax

Boids.CreateFlock(entity,paramsTable)

Parameter Description

entity Valid entity table.

nType The type of flock. Possible values are Boids.FLOCK_BIRDS,
Boids.FLOCK_FISH, or Boids.FLOCK_BUGS.

paramTable Table with parameters for flock (see sample scripts).

EnableFlock

Enables or disables a flock in the entity.

Syntax

Boids.EnableFlock(entity,paramsTable)

Parameter Description

entity Valid entity table containing flock.

bEnable Specify true to enable the flock; false to disable.

GetUsableMessage

Gets the appropriate localized UI message for the specified flock.

Syntax

Boids.GetUsableMessage(flockEntity)

Version 1.8
750

Lumberyard Developer Guide
Lua ScriptBind Reference

Parameter Description

flockEntity Valid entity table containing flock.

OnBoidHit

Event that occurs on boid hit.

Syntax

Boids.OnBoidHit(flockEntity,boidEntity,hit)

Parameter Description

flockEntity Valid entity table containing flock.

boidEntity Valid entity table containing boid.

hit Valid entity table containing hit information.

OnPickup

Forwards the appropriate pickup action to the boid object.

Syntax

Boids.OnPickup(flockEntity, boidEntity, bPickup, fThrowSpeed)

Parameter Description

flockEntity Valid entity table containing flock.

boidEntity Valid entity table containing boid.

bPickup Pickup, or drop or throw.

fThrowSpeed Specifies the throw speed. By default, a value
greater than 5.f kills the boid. This has no effect on
the pickup action.

SetAttractionPoint

Sets the one time attraction point for the boids.

Syntax

Boids.SetAttractionPoint(entity,paramsTable)

Parameter Description

entity Valid entity table containing flock.

Version 1.8
751

Lumberyard Developer Guide
Integrating Lua and C++

Parameter Description

point The one time attraction point.

SetFlockParams

Sets the parameters of the flock for the specified entity.

Syntax

Boids.SetFlockParams(entity, paramsTable)

Parameter Description

entity Valid entity table containing flock.

paramTable Table with parameters for flock (see sample
scripts).

SetFlockPercentEnabled

Specifies the percentage of boid objects that are rendered in flocks. You can use this to enable flocks
gradually.

Syntax

Boids.SetFlockPercentEnabled(entity, paramsTable)

Parameter Description

entity Valid entity table containing flock.

nPercent Possible values are from 0 through 100. If 0, no boids are rendered; if 100, all boids
are rendered.

Integrating Lua and C++
The CryScript system abstracts a Lua virtual machine for use by the other systems and the game code. It
includes the following functionality:

• calling script functions

• exposing C++-based variables and functions to scripts

• creating script tables stored in virtual machine memory

The CryScript system is based on Lua 5. More information on the Lua language can be found at http://
www.lua.org.

Accessing Script Tables
A global script table can be retrieved by calling IScriptSystem::GetGlobalValue(). The IScriptTable is
used to represent all script tables/variables.

Version 1.8
752

http://www.lua.org
http://www.lua.org

Lumberyard Developer Guide
Integrating Lua and C++

Exposing C++ Functions and Values

To expose C++ functions and variables to scripts, you'll need to implement a new class. The easiest way is
to derive the CScriptableBase class, which provides most of the functionality.

Exposing Constants

To expose constant values to scripts, use the IScriptSystem::SetGlobalValue(). For example, to expose
a constant named MTL_LAYER_FROZEN to our scripts, use the following code:

gEnv->pScriptSystem->SetGlobalValue("MTL_LAYER_FROZEN", MTL_LAYER_FROZEN);

Exposing Functions

To expose C++ functions to scripts, implement a new class derives from CScriptableBase, as shown in the
following example.

classCScriptBind_Game :
 publicCScriptableBase
{
public:
 CScriptBind_Game(ISystem* pSystem);
 virtual ~CScriptBind_Game() {}

 intGameLog(IFunctionHandler* pH, char* pText);
};

Add the following code inside the class constructor:

Init(pSystem->GetIScriptSystem(), pSystem);
SetGlobalName("Game");

#undef SCRIPT_REG_CLASSNAME
#define SCRIPT_REG_CLASSNAME &CScriptBind_Game::

SCRIPT_REG_TEMPLFUNC(GameLog, "text");

In a Lua script, you can access your new ScriptBind function as follows:

Game.GameLog("a message");

Version 1.8
753

Lumberyard Developer Guide
Tutorial: Getting Started with Multiplayer

Networking System

GridMate is Lumberyard's networking subsystem. GridMate is designed for efficient bandwidth usage
and low-latency communications. You can synchronize objects over the network with GridMate's replica
framework. GridMate's session management integrates with major online console services and lets you
handle peer-to-peer and client-server topologies with host migration. GridMate also supports in-game
achievements, leaderboards, and cloud-based saved games through third-party social services such as
Xbox Live, PlayStation Network, and Steam. For an example of how to set up a multiplayer project, see
Multiplayer Sample Project in the Amazon Lumberyard User Guide.

This section discusses the various components of, and setup requirements for, your Amazon
Lumberyard game networking environment. For information about a diagnostic tool for networking, see
Profiler (p. 827).

Topics

• Tutorial: Getting Started with Multiplayer (p. 754)

• Overview (p. 758)

• Using Lumberyard Networking (p. 789)

• CryNetwork Backward Compatibility (p. 803)

Tutorial: Getting Started with Multiplayer
This tutorial walks you through the steps to create a simple multiplayer game test level. These steps include
binding an entity to the network and connecting a client to the host. At the end of the tutorial, you should
have a level with a simple network bound entity that is ready for a multiplayer game.

This tutorial guides you through the following tasks:

• Create a level and add in new entities.

• Bind an entity’s transform component to the network.

• Connect a client to the server and verify network replication.

Prerequisites
This tutorial assumes the following:

• You have installed Amazon Lumberyard.

Version 1.8
754

http://docs.aws.amazon.com/lumberyard/latest/userguide/sample-project-multiplayer.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/

Lumberyard Developer Guide
Step 1: Creating a Level and Adding a Sphere and a Box

• You have created a game project.

• Your game project has the Multiplayer gem and the User Login: Default gem enabled. You can enable
these gems in Lumberyard's Project Configurator.

Note
This tutorial uses Visual Studio 2013, but you can also use Visual Studio 2015.

Step 1: Creating a Level and Adding a Sphere and a
Box
Your first step is to create a level and prepare a simple sphere and box shape so that you can test
Lumberyard's networking features.

To create a level, sphere, and box

1. In the Lumberyard Project Configurator, choose a project that has the Multiplayer Gem enabled, and
then click Set as default.

2. Open Lumberyard Editor, create a level, and give it a name.

3. In the Lumberyard Editor viewport, right-click and select Create new component entity.

4. With the entity selected, use the Entity Inspector to name the entity CameraEntity.

5. Click Add Component.

6. Select Game, Camera to assign a camera component to the entity.

7. In the Lumberyard Editor viewport, right-click and select Create new component entity.

8. With the entity selected, use the Entity Inspector to name the entity SphereEntity.

9. Click Add Component, Shape, Sphere Shape.

10. In Entity Inspector, click Add Component, Rendering, Static Mesh to assign a static mesh
component to SphereEntity.

11. In Entity Inspector, under Static Mesh, click the … next to Static asset.

12. In the Preview window, click Objects, default, and choose primitive_sphere.cgf.

13. Click Open.

14. In the Lumberyard Editor viewport, right-click and select Create new component entity.

15. With the entity selected, use the Entity Inspector to name the entity BoxEntity.

16. Click Add Component, Shape, Box Shape.

17. In Entity Inspector, click Add Component, Rendering, Static Mesh to assign a static mesh
component to BoxEntity.

18. In Entity Inspector, under Static Mesh, click the … next to Static asset.

19. In the Preview window, click Objects, default, and choose primitive_cube.cgf.

20. Click Open.

21. Select the SphereEntity. In Entity Inspector, click Add Component, Physics, Physics.

22. In Entity Inspector, under Physics, click the + next to Behavior.

23. In the Class to create dialog box, choose Rigid Body to attach rigid body physics to the component.

24. Select the BoxEntity, and follow the same steps to attach rigid body physics to it.

25. In the viewport, move the sphere and box entities above the plane so that they have room to fall.

26. In Entity Inspector, set Physics, At Rest Initially to false to allow the sphere and box to begin
simulating after the level is loaded.

You now have two simple component entities with physics in the level that you created.

Version 1.8
755

http://docs.aws.amazon.com/lumberyard/latest/userguide/configurator-intro.html

Lumberyard Developer Guide
Step 2: Binding Sphere Transform

Components to the Network

Step 2: Binding Sphere Transform Components to the
Network
After you create the initial level with the sphere and the box, you bind the sphere’s transform component to
the network. This allows clients to replicate the sphere and see changes over the network.

To bind the sphere’s transform to the network

• Select the sphere entity. In Entity Inspector, click Add Component, Network, Network Binding to
add a NetBinding component to it. This allows the host to replicate the transform component of the
sphere to all clients.

You have now created a server authoritative sphere entity.

Step 3: Connecting a Client to the Server
This step shows you how to connect a client to the server instance and then observe your networked
sphere in action.

To connect a client game to the host game

1. Choose File, Export to Engine, or press Ctrl+E to export your level.

2. Run the game launcher from the Bin directory that you are using. If you are using Visual Studio 2013,
the directory is \dev\Bin64vc120\. If you are using Visual Studio 2015, the path is \dev\Bin64vc140\.
The name of your launcher is <your-game-project-name>WindowsLauncher.exe.

3. Press the ` key (above the TAB key) to open the console.

4. Run the command map <MultiplayerTutorial> where <MultiplayerTutorial> is the name of the
level to load.

5. Press the ` key to open the console. Run the command mphost to make your client host a network
session.

6. Use the launcher to open another game and press the ` key to open the console.

7. Run the command sv_port 0 to set the client port to 0 and the ephemeral port.

Note
On a single computer, only one process is allowed to bind to a particular port. Therefore, to
run more than one game process on the same computer (as in this multiplayer sample), you
must use ephemeral ports. The sv_port CVar defines the UDP port on the local machine
for the multiplayer sample, and the setting of 0 specifies the ephemeral port. This allows two
clients on the same computer to talk to each other.

8. Run the command mpjoin to join to the host game. You should see the sphere synchronized by
location on the client. However, the box will be desynchronized and have different locations on the
client and host.

Congratulations! You have successfully created a simple networked level. You can now use the Network
Binding component to synchronize transforms of entities and connect clients to servers.

Related Tasks and Tutorials
You have created a simple networking sample to see the effects of networking in Lumberyard. Now visit the
following links to see what else you can add to your game:

• Configuring the Multiplayer Sample for Amazon GameLift (p. 757)

Version 1.8
756

Lumberyard Developer Guide
Configuring the Multiplayer Sample for Amazon GameLift

• Tutorial: Overview of GameLift

• Tutorial: Overview of Cloud Canvas

Configuring the Multiplayer Sample for Amazon
GameLift
To prepare the multiplayer sample for use with GameLift, follow the required procedures for server side and
client side configuration.

Server Side Configuration

On the server side, overwrite the GridMate::OnSessionStarted() handler. In the handler,
synchronize the session state and load the corresponding map if the CVar sv_map is set in the
Multiplayer::Utils::SynchronizeSessionState() function.

The following example shows code for server-side configuration.

void GameManager::OnSessionCreated(GridMate::GridSession* session)
{
 m_gameSession = session;
 if (m_gameSession)
 {
 if (m_gameSession->IsHost())
 {
 if (gEnv->IsDedicated())
 {
 Multiplayer::Utils::SynchronizeSessionState(m_gameSession);
 }
 }
 }
}

Client Side Configuration

On the client side, you must configure the following Cvars:

sv_port

sv_map

gamelift_aws_access_key

gamelift_aws_secret_key

gamelift_fleet_id or gamelift_alias_id

gamelift_end_point

gamelift_playerid

You can set these Cvars with a console command or with the multiplayer sample user interface.

To use Cvars to set the client side configuration, type the following console command.

+sv_port 33435 +gamelift_fleet_id <fleet> +gamelift_aws_access_key <aws access key>
 +gamelift_aws_secret_key <aws secret key>

Version 1.8
757

https://s3.amazonaws.com/gamedev-tutorials/Tutorials/GameLift-Overview_of_GameLift-(01)_Introduction_to_Amazon_GameLift.pdf
https://s3.amazonaws.com/gamedev-tutorials/Tutorials/Cloud_Canvas-Overview_of_Cloud_Canvas-(01)_What_is_Cloud_Canvas.pdf

Lumberyard Developer Guide
Overview

To use the multiplayer sample user interface to configure GameLift

1. By default, the multiplayer sample loads the Game Lobby map. To add or modify the Cvars, click
Amazon GameLift.

2. Click Connect.

3. Specify the Server Name and the Map (sv_map) to load.

4. To join automatically, click Create Server. To search active sessions and select a session to join, click
Refresh, and then click Join.

Create GameLift Package
To create a GameLift package, complete the following steps.

To create a GameLift package

1. Before you create a GameLift package, do the following:

• Compile game assets

• Build the Lumberyard executable

2. Run the following commands to create the GameLift package:

mkdir GameLiftPackageWindows

cp -r MultiplayerSample_pc_Paks_Dedicated/* GameLiftPackageWindows/

cp -r Bin64vc120.Dedicated/* GameLiftPackageWindows/

3. Upload your build and create a fleet by using the GameLift console. For more information, see
Uploading Your Game to Amazon GameLift.

Secured Connection (Not GameLift Specific)
GameLift uses the OpenSSL-based secure socket driver to create a secured connection. However, instead
of verifying the server, the secure socket driver can verify the client.

To enable a secured connection, make the following change to the game.cfg file:

gm_netsec_enable = 1

If client verification is needed, make the following change to the game.cfg file:

gm_netsec_verify_client = 1

Note
By default, the certificate and private key are loaded from the multiplayersample.cert.pem file
(shared by the certificate and CA root) and from the multiplayersample.key.pem file. To specific
different files, use the gm_netsec_certificate and gm_netsec_private_key CVars.

Overview
Lumberyard enables multiplayer functionality through the following software layers:

Version 1.8
758

http://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-build-intro.html

Lumberyard Developer Guide
NetBinding

• AZFramework

• Netbinding

• GridMate

• Replica

• Session

• Carrier

• Driver

These layers are illustrated in the following diagram.

NetBinding
The network binding API of the AzFramework library provides a way for components to synchronize
their state over the network. The API is implemented on top of GridMate replicas. A special
NetBindingComponent is responsible for the actual binding process, so entities that need to be
synchronized need to have a NetBindingComponent added to them. When a game enters a multiplayer
session, the NetBindingComponent collects replica chunks from the NetBindables on the entity, and adds
them to a replica master.

GridMate
GridMate is a multiplatform library that enables you to easily add online features to your games. The
GridMate API library has two general categories: network synchronization and online platforms. Each API is
designed to be modular and extensible. Services can be enabled independently of each other, and different
implementations can be provided for each API. Optional features are implemented as plugins for ease
of customization. GridMate is built on top of Lumberyard’s AzCore library. Service APIs are implemented
using EBuses (AzCore’s implementation of signal/slots) to improve modularity and extensibility. All
GridMate allocations are piped through two specific allocators: GridMateAllocatorMP is used for allocations
from the network synchronization APIs. GridMateAllocator is used for all other allocations, such as those
from the online platform APIs and core system allocations. GridMate also supports debugging through
AzCore’s Driller framework. All network and replication events are reported and can be captured for logging
and debugging purposes.

Replica

GridMate uses a single-master replication model. For each replica, one node in the session owns the
master copy, and everyone else has a proxy copy. Replicas can be individually migrated from node to node
at any time.

At the core of GridMate's replication model is the replica. Replicas, along with the chunks, datasets and
RPCs that make up the replica, provide a mechanism for capturing and propagating the game state.
Replicas also serve as the point of interaction for external game systems. Replicas can be owned by any
node in the network and can be migrated to whichever node that can process them most efficiently.

Each node in the replication network runs a local instance of replica manager. As a node establishes
connections to other nodes, it adds them to the replica manager as peers. This builds out its replication
network.

One important design element of GridMate replicas is the broadcast nature of the system. Many replication
systems allow users to specify replication targets directly, either per replica or per update. This attempt
to enable bandwidth optimizations is error prone and puts the implementation burden on gameplay
programmers who are often less familiar with network desynchronization issues. Instead, GridMate's
approach follows the rule “when something happens, it happens for everyone”.

Version 1.8
759

Lumberyard Developer Guide
Other GridMate Features

Session
The session service is responsible for managing and maintaining the connectivity required to other
members in a game session. GridMate’s session service consists of a simple matchmaking API to
facilitate integration with existing matchmaking services, and a session implementation that supports three
topologies: P2P full mesh, client/server and a hybrid mode that consists of a full mesh network connected
to a client/server network. Host migration is available when using full mesh topology. Host migration is a
multi-step process that begins as nodes lose connectivity to the session host. The first step is host election:
as nodes disconnect from the host, they broadcast a request for a new host election, and go through a
serious of voting rounds, until a majority is reached or the election process times out. The new host(s) then
starts the migration process, dropping problematic connections and migrating replicas until the session
is stable again before resuming normal operations. During this time the connection graph can be very
unstable, and a variety of steps are taken to improve success rate.

Carrier
GridMate’s carrier implementation provides reliable and unreliable messaging. Messages are sent over a
channel. Each channel represents an independent stream of messages. Reliable and unreliable messages
can be sent over the same channel. Within a channel, message delivery is always ordered, and out-of-
order unreliable messages are always discarded. GridMate supports multiple channels to compartmentalize
the effect of packet losses and reordering. GridMate provides separate dedicated channels for replication
and voice chat traffic. To minimize impact to and from the game thread, the current carrier implementation
performs network sends and receives from a separate IO thread. Decoupling sends and receives into
separate threads and incorporating epoll/IOCP is planned. The carrier API provides hooks for congestion
control, connection handshakes and network simulators. Users can use the default implementations in
GridMate or provide their own custom implementations.

Driver
The driver is the interface for the lowest level of the transport layer. Lumberyard ships with several driver
implementations: SocketDriver is a generic socket driver that supports BSD/WinSock/Posix sockets on the
corresponding platforms. The SecureSocketDriver supports encrypted communication through the DTLS
protocol by using OpenSSL.

Other GridMate Features
Other GridMate features include:

• Online Service - Provides essential user information used by the other APIs.

• Achievements - An API for in-game achievements support.

• Leaderboards - An API for leaderboard support.

• Online Storage - An API for online storage support.

CryNetwork Backward Compatibility (Deprecated)
Lumberyard has a backwards compatibility layer for the deprecated legacy networking system called
"CryNetwork". This layer is mostly encapsulated inside the CryNetwork library and exposed through the
INetwork interface. The layer is intended only for projects that were built using CryNetwork so that you
can transition them to Lumberyard's network technology (NetBinding components and GridMate). Because
the CryNetwork backward compatibility API layer uses CPU and bandwidth inefficiently, we strongly
recommend that you do not build or release multiplayer games using it.

Topics

• Networking Architecture (p. 761)

Version 1.8
760

Lumberyard Developer Guide
Networking Architecture

• Carrier (p. 761)

• Marshalling (p. 765)

• Sessions (p. 769)

• Replicas (p. 777)

• Replica Manager (p. 787)

Networking Architecture

Fundamental Concepts

Lumberyard provides a network layer that supports a wide variety of game types on multiple platforms
and does not restrict game developers to using any particular network topology. You are able to create
games using three network topologies: P2P full mesh, client/server, and a hybrid mode that consists of a
full mesh network connected to a client/server network. You can create gameplay objects that are server
authoritative, and gameplay objects that are client authoritative.

In this discussion, peer and host have the following meanings:

Peer - A network node that is participating in a game session.

Host - A special kind of a peer that manages the game session. The host can run on one of the game
clients or be a dedicated server.

Synchronization of the states of various networked game objects is achieved through the GridMate
replication model. One important design element is the concept of a horizon. GridMate does not maintain
a full graph of the replication network at each node. Instead, each node is only aware of the peers that it
has a direct connection to; everything else is considered the "horizon". Nodes keep track of which replica
updates are arriving from which peer (upstream) only for purposes of routing, so they know where to
forward upstream requests and, in the case of hub nodes, where to send them downstream. Basically, if a
node receives a request for a replica it doesn’t own, it forwards it upstream.

GridMate Architecture

The following diagram shows the major components of the GridMate architecture and their relationships.

For more information, see the following pages.

• Carrier (p. 761)

• Marshalling (p. 765)

• Sessions (p. 769)

• Replicas (p. 777)

• Replica Manager (p. 787)

Carrier
Carrier is GridMate's messaging API. GridMate's reliable UDP implementation supports both reliable and
unreliable messages. There is no out-of-order delivery. Out-of-order messages are queued if sent reliably,
or discarded if sent unreliably.

The carrier sends messages through channels. The purpose of channels is to separate unrelated traffic,
such as game state and voice chat. Message ordering is not enforced across channels.

The carrier API also provides hooks for congestion control and traffic simulation.

Version 1.8
761

Lumberyard Developer Guide
Carrier

Channels and Message Priorities

Messages can be sent on different channels and have different priorities. Message ordering is always
maintained between messages with the same priority sent on the same channel.

Channels provide a way to separate unrelated messages so that their ordering does not affect one other.
When messages arrive out of order, they are either discarded or queued (and therefore delayed) depending
on their reliability. Using different channels prevents unrelated messages from being unnecessarily dropped
or delayed. For example, object replication traffic and voice chat traffic can be sent on different channels,
so a missing reliable message for object replication would not cause voice chat data to be dropped, and
vice versa.

Customizable Classes

You can customize the following classes to implement your own networking features:

• Driver - Carrier defers actual network operations to the driver, so different implementations can be
provided for different platforms. This abstraction makes it possible to use platform-specific protocols from
service providers such as Steam or XboxLive. The default implementation uses UDP and supports IPv4
and IPv6.

• Simulator - If a network simulator is present, the carrier passes all inbound and outbound traffic through
it so different network conditions can be simulated. One simulator instance can be supplied per carrier
instance. The default implementation can simulate different patterns for inbound and/or outbound latency,
bandwidth caps, packet loss and packet reordering.

• Traffic Control - The traffic control module has two primary functions: provide network statistics and
congestion control. Whenever messages are sent or received, they are passed along to the traffic control
module so it can update its statistics, and also so it can provide feedback to limit the amount of data
being sent. It also decides if messages should be considered lost and resent by the carrier.

CarrierDesc

CarrierDesc is the carrier descriptor. When you create a carrier, you use the CarrierDesc structure to
specify the parameters for the current session.

CarrierDesc Parameters

The following parameters can be supplied during carrier initialization:

Parameter Data Type Description

m_address const char
*

Specifies the local communication address to which the driver
will bind. A value of 0 specifies any address. The default is
nullptr.

m_connectionEvaluationThresholdfloat When a disconnection is detected, specifies the threshold
at which all other connections are checked using
m_connectionTimeoutMS * m_connectionEvaluationThreshold
to see if they are also failing because of a network failure. The
default is 0.5f.

m_connectionTimeoutMS unsigned
int

Determines the time to allow for a connection attempt. The
default is 5000 milliseconds.

m_disconnectDetectionPacketLossThresholdfloat Packet loss percentage threshold. Possible values are from
0.0 to 1.0, where 1.0 is 100 percent. The connection will be

Version 1.8
762

Lumberyard Developer Guide
Carrier

Parameter Data Type Description

dropped after packet loss exceeds the value specified. The
default is 0.3f.

m_disconnectDetectionRttThresholdfloat Specifies the RTT (round-trip time) threshold in milliseconds.
The connection is dropped when the measured RTT is greater
than the value specified. The default is 500.0f.

m_driver class Driver
*

Specifies a custom driver implementation. The default is
nullptr.

m_driverIsCrossPlatform bool Specifies whether the driver maintains cross-platform
compatibility. When true, the default driver drops to the most
restrictive MTU (maximum transmission unit) across all
supported platforms. The default is false.

m_driverIsFullPackets bool Specifies whether the driver ignores MTU limits. This
parameter applies only to socket drivers and local area
networks. An internet packet is usually around 1500 bytes. A
value of true enables a maximum packet size of 64 KB. These
big packets fail on the Internet but typically do not on local
networks. The default is false.

m_driverReceiveBufferSizeunsigned
int

Specifies the size of the internal receive buffer that the driver
uses. A value of 0 specifies the default buffer size. This
parameter can be used only if m_driver == null. The default
is 0.

m_driverSendBufferSize unsigned
int

Specifies the size of the internal send buffer that the driver
uses. A value of 0 specifies the default buffer size. This
parameter can be used only if m_driver == null. The default
is 0.

m_enableDisconnectionDetectionbool Specifies whether the carrier drops connections when traffic
conditions are bad. The default is true.

Note
This parameter should be set to false only when
debugging.

m_familyType int Specifies the protocol family that the driver uses. A value of 0
specifies the default family.

m_port unsigned
int

Specifies the local communication port to which the driver
binds. A value of 0 specifies the port assigned by the system.

m_securityData const char
*

Specifies a pointer to a string with security data. For example,
on XBox One, this value is the security template name. The
default is nullptr.

m_simulator class
Simulator *

Optionally specifies a simulator through which all network
messages are filtered. When specified, the carrier passes all
inbound and outbound traffic through the specified simulator
so that different network conditions can be simulated. You can
specify one simulator instance per carrier instance.

m_threadCpuID int Restricts the carrier thread to a specific CPU core. The values
that can be specified are platform dependent. A value of -1
specifies no restriction. The default is -1.

Version 1.8
763

https://en.wikipedia.org/wiki/Round-trip_delay_time
https://en.wikipedia.org/wiki/Maximum_transmission_unit

Lumberyard Developer Guide
Carrier

Parameter Data Type Description

m_threadInstantResponse bool Specifies whether IO events wake up the carrier thread
immediately. The default is false.

Note
Setting this value to true typically uses more
bandwidth because messages (especially small
messages) are grouped less efficiently.

m_threadPriority int Specifies the thread priority for the carrier thread. The values
that can be specified are platform dependent. A value of
-100000 inherits the priority from calling thread. The default is
-100000.

m_threadUpdateTimeMS int Specifies, in milliseconds, how often the carrier
thread is updated. This parameter is ignored if
m_threadInstantResponse is true. Possible values are
from 0 through 100. In general, the time interval should be
higher than 10 milliseconds. Otherwise, it is more efficient
to set m_threadInstantResponse to true. The default is 30
milliseconds.

m_trafficControl class
TrafficControl
*

Specifies a custom traffic control implementation that controls
traffic flow to all connections and that handles issues like
network congestion.

m_version VersionType Specifies the version of Carrier API that is being used. Carriers
with mismatching version numbers are not allowed to connect
to each other. The default is 1.

Topics

• Carrier Message Structure (p. 764)

Carrier Message Structure
This topic describes the message structure used by the CarrierImpl networking class found in the
Carrier.cpp file in the GridMate source code.

In the following sections, values in parentheses indicate the field's length in bits. For fields with variable
length, the value indicates the minimum length.

Datagram Format

The overall datagram has the following structure.

DgramID (16) | Msg1 (64+) | Msg2 (24+) | ...

Message Format

The following diagram shows the possible message fields. Only the first two fields are present in every
message header. All the other fields are sent only as necessary. In general, ChannelId and NumChunks are
rarely sent. SeqNum and RelSeqNum are usually sent once per datagram.

Flags (8) | Length (16) | ChannelId (8) | NumChunks (16) | SeqNum (16) | RelSeqNum (16) |
 Payload (0+)

Version 1.8
764

Lumberyard Developer Guide
Marshalling

System Messages

Carrier system messages include ACK and ClockSync.

ACK

The ACK system message is used to ACK any received messages and to keep the connection alive.
When there is no activity, an ACK containing only the first two fields is sent, otherwise, the actual fields
sent vary depending on the pattern being ack'ed. At the very least, LastToAck is sent. If the sequence
acke'd contains gaps, a variable-length bit set is used; otherwise, the first sequence number being ack'ed is
included. These possible message formats are shown in the following diagram.

MsgId (8) | Flags (8)
MsgId (8) | Flags (8) | LastToAck (16) | AckHistoryBits (1+)
MsgId (8) | Flags (8) | LastToAck (16) | (FirstToAck (16)

ClockSync

A ClockSync message is sent about once per second to keep all the clocks in the session in sync. The
message format is as follows.

MsgId (8) | Time (32)

Marshalling
Data is written to the network using WriteBuffer, and data received is read using ReadBuffer. Each buffer
specifies the endianness used.

All data marshalling, whether for a DataSet or RPC, is written using a specialization of the Marshaler type.
There are a number of pre-defined marshalers for fundamental types (int32, uint16, bool, float, etc), as
well as other common types like containers and bitfields.

Marshalers and read/write buffers have a close relationship. A marshaler reads or writes its data types from
or to the buffer. If the type is a complex type like a class or container, then that marshaler marshals each of
its fields with nested marshalers. The nested invocation of marshaler types continues until a fundamental
type is written to the buffer with the endianness of the network. Additional custom marshalers can be
implemented to support custom types or to perform domain-based compression. Default marshalers are
implemented through template specialization.

The base Marshaler class in GridMate follows.

namespace GridMate
{
 template<typename T>
 class Marshaler
 {
 public:
 void Marshal(WriteBuffer& wb, const T& value);
 void Unmarshal(T& value, ReadBuffer& rb);
 };
}

If a Marshaler instance is not specified with the data set or RPC declaration, the template specialization is
used.

Version 1.8
765

https://en.wikipedia.org/wiki/Endianness
http://en.cppreference.com/w/cpp/language/template_specialization

Lumberyard Developer Guide
Marshalling

Implementation of the default marshaler for AZCore's Vector3 math type can be found in Code/Framework/
GridMate/GridMate/Serialize/MathMarshal.h:

namespace GridMate
{
 template<>
 class Marshaler<AZ::Vector3>
 {
 public:
 typedef AZ::Vector3 DataType;
 static const AZStd::size_t MarshalSize = sizeof(float) * 3;
 void Marshal(WriteBuffer& wb, const AZ::Vector3& vec) const
 {
 Marshaler<float> marshaler;
 marshaler.Marshal(wb, vec.GetX());
 marshaler.Marshal(wb, vec.GetY());
 marshaler.Marshal(wb, vec.GetZ());
 }
 void Unmarshal(AZ::Vector3& vec, ReadBuffer& rb) const
 {
 float x, y, z;
 Marshaler<float> marshaler;
 marshaler.Unmarshal(x, rb);
 marshaler.Unmarshal(y, rb);
 marshaler.Unmarshal(z, rb);
 vec.Set(x, y, z);
 }
 };
}

Markers

Notice the declaration of MarshalSize above. WriteBuffer supports the concept of markers. A marker is
a placeholder that can be inserted into the buffer, so its value can be filled after additional data is written
to the buffer. This is useful for prepending a length field in front of the actual data. Markers require that the
data that is inserted be of fixed length, and MarshalSize is used to query this length. Therefore, marshalers
that write data to the marker need to declare a valid MarshalSize.

Buffers

Write Buffers

Write buffers are backed by the following three types of allocation schemes:

Dynamic – Dynamically allocated and automatically grown

Static – Fixed size, allocated on the stack

Static In Place – Uses another buffer as its backing store

By default, the write function uses the default marshaler for the data type, but you can override the
marshaler to create a custom marshaler.

There are two ways to write a type to a network buffer:

1) The following example uses the default marshaler for the type passed into Write(). In this example, the
float marshaler is used.

WriteBuffer wb;

Version 1.8
766

Lumberyard Developer Guide
Marshalling

wb.Write(1.0f);

2) The following example uses the HalfMarshaler, which compresses the float by half.

WriteBuffer wb;
wb.Write(1.0f, HalfMarshaler());

Read Buffers

Read buffers have built-in overflow detection and do not read any data fields after the end of the buffer has
been reached. You can check this by looking at the return value of the Read method. Note that if data isn’t
read for a given value, then the value is left uninitialized.

Predefined Marshalers

GridMate includes the following predefined marshalers:

Fundamental C++ Types

Floating
point

Misc Unsigned Signed

float

double

char

bool

enum (specify marshaled size by inheriting enum
from a type)

AZ::u8

AZ::u16

AZ::u32

AZ::u64

AZ::s8

AZ::s16

AZ::s32

AZ::s64

Container Types

Sequence Associative Explicit Marshalers

vector

list

string

map

set

unordered_map

unordered_set

multimap

multiset

ContainerMarshaler

MapContainerMarshaler

(Use these marshalers when the subtypes of the container require a non-
default marshaler)

Utility Types

Name Description

ConversionMarshaler<SerializedType,
OriginalType>

Performs static casts between SerializedType (type on the
wire) and OriginalType (type declared in user code).

Version 1.8
767

Lumberyard Developer Guide
Marshalling

Name Description

AZ::Crc32 A CRC32 value.

AZStd::bitset A class for arbitrary flags.

AZStd::pair A std pair class. Implicitly used by the map, unordered_map,
and multimap marshalers.

AZ::Aabb An axis aligned bounding box.

AZStd::chrono::duration A time duration in 32 bit milliseconds.

GridMate::UnionDataSet A type safe tagged union designed for network transmission.

Compression Types

Name Description

Float16Marshaler Compresses a float32 to float16.

HalfMarshaler Compresses a float to half precision.

IntegerQuantizationMarshaler<Min,

Max, Bytes>

Quantizes an integer in the range [Min, Max] to the number of
bytes specified in Bytes.

Custom Marshalers

Creating a custom data marshaler is as simple as specializing the GridMate::Marshaler type, and
implementing the expected Marshal and Unmarshal methods. If the data written is constant size, adding the
member MarshalSize allows you to use the marshaler in scenarios where fixed sizes are required (such as
markers).

Fixed Size Custom Marshaler

The following is an example of a fixed size custom marshaler.

namespace GridMate
{
 template<>
 class Marshaler<MyClass>
 {
 public:
 static const AZStd::size_t MarshalSize = sizeof(m_field1) + sizeof(m_field2);
 void Marshal(GridMate::WriteBuffer& wb, const MyClass& value) const
 {
 wb.Write(value.m_field1);
 wb.Write(value.m_field2);
 }
 void Unmarshal(MyClass& value, ReadBuffer& rb) const
 {
 rb.Read(value.m_field1);
 rb.Read(value.m_field2);
 }
 };
}

Version 1.8
768

Lumberyard Developer Guide
Sessions

Sessions
GridMate session service provides session connectivity and management. Both hub-and-spoke (client/
server) and P2P full-mesh topologies are supported.

You can also create multiple sessions for each GridMate instance. Each session creates its own carrier and
replica manager instances, so there is no interaction between sessions. GridMate sessions support host
migration when running in P2P mode.

Topics

• Starting and Stopping the Session Service (p. 769)

• Hosting a Session (p. 771)

• Searching for a Session (p. 772)

• Joining a Session (p. 774)

• Reacting to Session Events (p. 775)

Starting and Stopping the Session Service

The session service is responsible for hosting or joining sessions and is represented by the
GridMate::SessionService abstract class.

When a session service is created, a descriptor class derived from GridMate::SessionServiceDesc is
passed in as a constructor argument.

The implementations of GridMate::SessionService that are included with the base Lumberyard engine
are as follows.

Implementation Descriptor Description

GridMate::LANSessionServiceGridMate::SessionServiceDescSessions hosted over a local area network.

Starting a Session Service

Only one session service can be present per GridMate::IGridMate instance.

Note
Attempting to register multiple session services causes an assert and overrides any previously
registered session services.

You have two ways to start a session service:

• Create a session service object and register it with GridMate.

• Register an existing session service object with GridMate.

Starting Method Details

GridMate::StartGridMateService()Creates a session service object and registers it with
GridMate::IGridMate.

GridMate::RegisterService() Registers an existing session service object with
GridMate::IGridMate.

Version 1.8
769

Lumberyard Developer Guide
Sessions

Stopping a Session Service

The method for stopping the session service depends on how the session service was started.

Starting Method Stopping Method Details

GridMate::StartGridMateService()See details. The session service is stopped when
GridMate::IGridMate is destroyed by using
the GridMate::GridMateDestroy() method.

GridMate::RegisterService()GridMate::UnregisterService()The session is service is stopped and memory
freed when GridMate::UnregisterService()
is called.

Examples

The following examples assume that GridMate has been initialized.

Starting and Stopping with GridMate::StartGridMateService

The following example uses GridMate::StartGridMateService.

void MyClass::StartSessionService()
{
 IGridMate* gridMate = gEnv->pNetwork->GetGridMate();

 if(gridMate)
 {
 // The session service is started and will be stopped when IGridMate is destroyed.
 GridMate::SessionServiceDesc desc;
 GridMate::StartGridMateService<GridMate::LANSessionService>(gridMate, desc);
 }
}

Starting and Stopping with GridMate::RegisterService() and GridMate::UnregisterService()

The following example uses GridMate::RegisterService() and GridMate::UnregisterService().

void MyClass::StartSessionService()
{
 IGridMate* gridMate = gEnv->pNetwork->GetGridMate()
 GridMate::SessionService* sessionService = nullptr;

 if(gridMate)
 {
 GridMate::SessionServiceDesc desc;
 sessionService = aznew GridMate::LANSessionService(desc);
 gridMate->RegisterService(sessionService);
 }

 return sessionService;
}

void MyClass::StopSessionService(GridMate::SessionService* sessionService)
{
 IGridMate* gridMate = gEnv->pNetwork->GetGridMate()

 if(gridMate)
 {

Version 1.8
770

Lumberyard Developer Guide
Sessions

 // Unregister the session service and free the session service pointer.
 gridMate->UnregisterService(sessionService);
 }
}

Hosting a Session

A session can be hosted by calling IGridMate::HostSession() after the session service has been started.
The session settings and configuration are set in the GridMate::SessionParams argument, which acts as a
base class for certain implementations of GridMate::SessionService.

Implementation of
GridMate::SessionService

Implementation of GridMate::SessionParams

GridMate::LANSessionService GridMate::LANSessionParams

GridMate::SessionParams

The following table shows the supported parameters in GridMate::SessionParams.

Parameter Required Default Description

m_localMember Yes This is not required for a LAN session, only for
consoles.

m_topology No ST_PEER_TO_PEER ST_CLIENT_SERVER: A client is only connected to the
server. ST_PEER_TO_PEER: A client is connected to all
other clients.

m_peerToPeerTimeoutNo 10000 The time without a response, in seconds, after which
a peer is disconnected.

m_numPublicSlots Yes The maximum number of players that can join the
session.

GridMate::LANSessionParams

GridMate::LANSessionParams has the following additional parameter.

Parameter Required Default Description

m_port No 0 The port to monitor for search requests from other clients. If 0,
this session is hidden to searches. Otherwise, the port number
falls in the range from 1 through 65536.

Events

The following table describes GridMate session service events.

Event Description

OnSessionCreated A new session has just been created.

Version 1.8
771

Lumberyard Developer Guide
Sessions

Event Description

OnMemberJoined A player has joined the session.

OnMemberLeaving A player has left the session.

Examples

The following example hosts a session. The example assumes that GridMate has been initialized and a
session service registered.

bool MyClass::HostSession()
{
 GridMate::IGridMate* gridMate = gEnv->pNetwork->GetGridMate();

 if(gridMate)
 {
 GridMate::LANSessionParams params;
 params.m_topology = Gridmate:ST_CLIENT_SERVER;
 params.m_numPublicSlots = 10;
 params.m_port = 10000;
 params.m_flags = 0;
 params.m_localMember = gridMate->GetOnlineService()->GetUser();

 GridMate::Session session = gridMate->HostSession(¶ms,
 GridMate::CarrierDesc());
 if(session != nullptr)
 {
 // Failed to create the session..
 return true;
 }
 }
 return false;
}

Searching for a Session

You search for a session by calling GridMate::StartGridSearch() after the session service has been
started. The session settings and configuration are set in the GridMate::SearchParams, which acts as a
base class for certain implementations of GridMate::SessionService.

Implementation of
GridMate::SessionService

Implementation of GridMate::SearchParams

GridMate::LANSessionService GridMate::LANSearchParams

GridMate::SearchParams

The following table shows the supported parameters in GridMate::SearchParams.

Parameter Required Default

m_localMember Yes

m_maxSessions No 8

Version 1.8
772

Lumberyard Developer Guide
Sessions

Parameter Required Default

m_timeOutMs No 2000

m_version No 1

GridMate::LANSearchParams

GridMate::LANSessionParams has the following additional parameters.

Parameter Required Default Description

m_serverAddress No Empty The address of a server to search for. If empty, a
broadcast address is used.

m_serverPort Yes The port that game servers monitor for searches.

m_broadcastFrequencyMsNo 1000 The interval, in milliseconds, between search
broadcast requests.

Search Results

When a search is complete, the OnGridSearchComplete() event is called. The results are found in the
GridMate::GridSearch argument.

GridMate::GridSearch contains an array of search results.

To query the size of the array, use GridMate::GridSearch::NumResults().

To query individual results, use GridMate::GridSearch::GetResult().

The GridMate::SearchInfo object contains more details about the session (for example, the number of
used and free player slots) and can be used when Joining a Session (p. 774).

Events

The following table describes GridMate session search events.

Event Description

OnGridSearchStart A grid search has started.

OnGridSearchCompleteA grid search has finished and contains the results.

Examples

The following example searches for all available sessions. The example assumes that GridMate has been
initialized, a session service has been registered, and the class MyClass is listening for session events.

void MyClass::StartSearch()
{
 GridMate::IGridMate* gridMate = gEnv->pNetwork->GetGridMate();

 if(gridMate)
 {

Version 1.8
773

Lumberyard Developer Guide
Sessions

 GridMate::LANSearchParams params;
 params.m_serverPort = 20000;
 params.m_localMember = gridMate->GetOnlineService()->GetUser();
 gridMate->StartGridSearch(¶ms);
 }
}

void MyClass::OnGridSearchComplete(GridMate::GridSearch* search)
{
 if(search->GetNumResults() > 0)
 {
 // Found sessions that match the specified criteria
 }
}

Joining a Session

You have two ways to join a session:

• By Searching for a Session (p. 772) and using a GridMate::SearchInfo object from the results.

• Directly to an existing game session by using a GridMate::SessionIdIffo object.

Regardless of the method, a session is joined using one of the overloaded IGridMate::JoinSession()
functions after the session service has been started.

Note
The argument GridMate::JoinParams currently has no supported parameters.

Events

The following table describes GridMate session join events.

Event Description

OnSessionJoined The client has been successfully added to the session.

OnMemberJoined A player has joined the session.

OnMemberLeaving A player has left the session.

Example

The following example joins a session that has been found as the result of a session search.

void MyClass::OnGridSearchComplete(const GridMate::GridSearch* search)
{
 GridMate::IGridMate* gridMate = gEnv->pNetwork->GetGridMate();

 if(gridMate)
 {
 if(search->GetNumResults() > 0)
 {
 GridMate::Session* session = gridMate->JoinSession(search->GetResult(0),
 GridMate::JoinParams(), GridMate::CarrierDesc());
 }
 }
}

Version 1.8
774

Lumberyard Developer Guide
Sessions

void MyClass:OnSessionJoined(GridMate::GridSession* session)
{
 // Joined the session successfully
}

Reacting to Session Events

Much of the session functionality is asynchronous because functions can be called, but the response is
often not immediately available. For example, messages may be slowed by network transfer time, server
processing, or the required response time.

The Event Bus (EBus) (p. 418) in Lumberyard is an event bus system that can send out events when
asynchronous session functions are complete. This topic shows you how to set up your application to use
the event bus and to connect and disconnect from it.

Setup

Your application must derive a class from GridMate::SessionEventBus::Handler. This class must contain
certain overridden session events. However, not all events need to be implemented. An example follows.

class MyClass : public GridMate::SessionEventBus::Handler
{
 public:
 void OnSessionJoined(GridMate::GridSession* session) override;
 void OnMemberJoined(GridMate::GridSession* session, GridMate::GridMember* member)
 override;
 void OnMemberLeaving(GridMate::GridSession* session, GridMate::GridMember* member)
 override;
};

Connect

The following example shows how to connect to the session event bus and start receiving session events.

void MyClass::Init()
{
 GridMate::IGridMate* gridMate = gEnv->pNetwork->GetGridMate();

 if(gridMate)
 {
 GridMate::SessionEventBus::Handler::BusConnect(gridMate);
 }
}

Disconnect

The following example shows how to disconnect from the session event bus and stop receiving session
events.

void MyClass::Term()
{
 GridMate::IGridMate* gridMate = gEnv->pNetwork->GetGridMate();

 if(gridMate)
 {
 GridMate::SessionEventBus::Handler::BusDisconnect(gridMate);
 }
}

Version 1.8
775

Lumberyard Developer Guide
Sessions

Network Session Service Event Descriptions

A description of each session event follows.

virtual void OnSessionServiceReady()

Callback that occurs when the session service is ready to process sessions.

virtual void OnGridSearchStart(GridSearch* gridSearch)

Callback when a grid search begins.

virtual void OnGridSearchComplete(GridSearch* gridSearch)

Callback that notifies the title when a game search query is complete.

virtual void OnGridSearchRelease(GridSearch* gridSearch)

Callback when a grid search is released (deleted). It is not safe to hold the grid pointer after this event.

virtual void OnMemberJoined(GridSession* session, GridMember* member)

Callback that notifies the title when a new member joins the game session.

virtual void OnMemberLeaving(GridSession* session, GridMember* member)

Callback that notifies the title that a member is leaving the game session.

Caution
The member pointer is not valid after the callback returns.

virtual void OnMemberKicked(GridSession* session, GridMember* member)

Callback that occurs when a host decides to kick a member. An OnMemberLeaving event is triggered
when the actual member leaves the session.

virtual void OnSessionCreated(GridSession* session)

Callback that occurs when a session is created. After this callback it is safe to access session features.
The host session is fully operational if client waits for the OnSessionJoined event.

virtual void OnSessionJoined(GridSession* session)

Called on client machines to indicate that the session has been joined successfully.

virtual void OnSessionDelete(GridSession* session)

Callback that notifies the title when a session is about to be terminated.

Caution
The session pointer is not valid after the callback returns.

virtual void OnSessionError(GridSession* session, const string& errorMsg)

Called when a session error occurs.

virtual void OnSessionStart(GridSession* session)

Called when the game (match) starts.

virtual void OnSessionEnd(GridSession* session)

Called when the game (match) ends.

virtual void OnMigrationStart(GridSession* session)

Called when a host migration begins.

virtual void OnMigrationElectHost(GridSession* session,GridMember*& newHost)

Called to enable the user to select a member to be the new Host.

Version 1.8
776

Lumberyard Developer Guide
Replicas

Note
The value is ignored if it is null, if the value is the current host, or if the member has an invalid
connection ID.

virtual void OnMigrationEnd(GridSession* session,GridMember* newHost)

Called when the host migration is complete.

virtual void OnWriteStatistics(GridSession* session, GridMember* member, StatisticsData&

data)

Called at the last opportunity to write statistics data for a member in the session.

Replicas
Game sessions use replicas to synchronize the state of the session. To use a replica, you simply declare
the states that must be synchronized and the remote procedure calls (RPCs) that are supported. After you
bind the replica object to the network, the engine does the work. There is no need to worry about how to
properly route messages or discover remote objects. When you add a local (master) replica to the network,
the replica is automatically discovered by remote nodes. In addition, corresponding remote proxy replica
objects are created on the remote nodes. Only the owner of the replica is allowed to change states, and
new states are automatically propagated to all other nodes. RPCs can be called from any node but are
routed to the master (owner) node for verification and processing.

Topics

• Replica (p. 777)

• Replica Chunks (p. 780)

• Datasets (p. 782)

• Remote Procedure Calls (RPCs) (p. 784)

Replica

Replicas are core components of GridMate's replication system that are created by network-connected
GridMate peers. When a peer creates a replica, GridMate propagates the replica over the network
to synchronize the replica's state across the session. A locally created and owned replica is called a
master replica. The copy of the master replica that connected peers receive is called a proxy replica. The
synchronization and instantiation of replicas is handled by Replica Manager (p. 787).

Replica Chunks

Every replica holds a collection of user-defined ReplicaChunk (p. 780) objects that are synchronized
with all the peers in the current session. A replica chunk is a container for user-defined DataSet (p. 782)
objects and Remote Procedure Calls (RPCs) (p. 784). Any change to a DataSet object or a call to an
RPC causes the replica to synchronize its state across the session.

Limitations

Replica chunks have the following limitations:

• Each replica can contain only 32 chunks.

• Chunks can be attached or detached only when a replica is not bound to a replica manager.

Creating a Replica and Attaching Chunks

To create a replica, invoke the following method:

Version 1.8
777

Lumberyard Developer Guide
Replicas

GridMate::ReplicaPtr replica = GridMate::Replica::CreateReplica();

Most use cases require only one chunk per replica. To create a chunk and attach it to a replica by using a
single call, use the CreateAndAttachReplicaChunk helper function, as in the following example:

GridMate::CreateAndAttachReplicaChunk<MyReplicaChunk>(replica, ...);

If you just want to attach a chunk to a replica, do the following:

replica->AttachReplicaChunk(myChunk);

For more information about the creation and propagation of replica chunks, see Replica Chunks (p. 780).

Binding a Replica to the Session Replica Manager

In order for a replica to be synchronized, it must be bound to the session replica manager. After you create
a replica and attach chunks to it, get the replica manager from the GridMate session (p. 769). Then, bind
the replica to it as follows:

GridMate::ReplicaManager* replicaManager = session->GetReplicaMgr();
replicaManager->AddMaster(replica);

Proxy replicas are automatically instantiated by remote peers' replica managers and, therefore,
automatically bound.

Replica Ownership

When a peer creates a replica and binds it to the session replica manager, that peer becomes the owner of
the replica. Each replica can be owned by only one peer. The replica owner is the only peer on the network
that has the authority to change the state of the replica. For example, it can change the chunks' datasets or
directly execute its RPCs. Any state changes performed on a proxy replica are considered invalid and do
not propagate throughout the session. RPCs can be called on a proxy replica, but the calls are forwarded
to the owner for confirmation before they can be executed. Once this confirmation is given, the RPC is sent
to all proxies and also executed locally by the peer. If the master replica denies the execution, no peers
receive the RPC call.

Changing Ownership

Replica ownership can be transferred from one peer to another, but the current owner of the replica must
agree to the transfer. For information on how a replica owner can prevent transfer of ownership, see
Replica Chunks (p. 780).

Ownership transfer happens automatically when a session performs host migration on a peer-to-peer
network. You can also request it explicitly by invoking the following method:

replica->RequestChangeOwnership(); // Request ownership of a given replica for the local
 peer

Ownership transfer is an asynchronous process. When an ownership transfer is completed, each replica
chunk is notified of the change by the OnReplicaChangeOwnership callback function.

Replica ID

Each replica has a unique ID associated with it. The replica ID is guaranteed to be unique within a
particular GridMate session. You can use the replica ID to retrieve a replica from the session replica
manager, as in the following example:

Version 1.8
778

Lumberyard Developer Guide
Replicas

GridMate::ReplicaManager* replicaManager = session->GetReplicaMgr();
GridMate::ReplicaPtr replica = replicaManager->FindReplica(myReplicaId);

if (replica == nullptr)
{
 // Replica with given ID does not exist
 return;
}

if (replica->IsProxy())
{
 // This is a proxy replica
}

if (replica->IsMaster())
{
 // This is a master replica
}

Lifetime

The lifetime of a replica is controlled by a GridMate::ReplicaPtr, which is a reference-counted smart
pointer. The replica manager retains a reference to every replica that is bound to it. It is therefore safe
to omit a reference to the replica from user code; the replica is not destroyed as long as the reference is
held in replica manager. However, you can force the replica manager to release its reference and free the
replica by invoking the following method:

replica->Destroy();

Sample Code

This example creates a user-defined chunk, creates a replica, attaches the chuck to the replica, and binds
the replica to the session replica manager.

// User-defined ReplicaChunk class to be carried with the replica
class MyChunk : public GridMate::ReplicaChunk
{
public:
 GM_CLASS_ALLOCATOR(MyChunk);
 typedef AZStd::intrusive_ptr<MyChunk> Ptr; // smartptr to hold the chunk
 static const char* GetChunkName() { return "MyChunk"; } // Unique chunk name
 bool IsReplicaMigratable() override { return false; } // Replica ownership
 // cannot be changed

 MyChunk () : m_data("Data", 0) { } // chunk constructor
 void OnReplicaActivate(const ReplicaContext& rc) override // Called when replica is
 bound
 // to the replica manager
 (both
 // on local and remote peers)
 {
 // printing out whether it is a proxy or a master replica
 if (IsMaster())
 printf("I am master!\n");
 if (IsProxy())
 printf("I am proxy!\n");
 }

 GridMate::DataSet<int> m_data; // data this chunk holds
 };

Version 1.8
779

Lumberyard Developer Guide
Replicas

GridMate::ReplicaPtr replica = GridMate::Replica::CreateReplica(); // Creating a replica
GridMate::CreateAndAttachReplicaChunk<MyChunk>(replica); // Creating chunk of our custom
 type
 // and attaching it to the replica

GridMate::ReplicaManager* replicaManager = session->GetReplicaMgr(); // Getting replica
 manager instance
 // from current
 session
replicaManager->AddMaster(replica); // Binding replica to the replica manager,
 // making local peer the owner of this replica

...
// Starting from this point and up until replica destruction, the replica and MyChunk
 object
// that the replica is carrying are synchronized with other peers.
// Other peers receive the new replica and bind it to their replica managers. When this is
 done,
// OnReplicaActivate is triggered, and the "I am proxy" message is printed out on the
 remote peers.
// Every change of m_data DataSet results in the synchronization of the new value in
// the master replica with all of the proxy replicas.

Replica Chunks

A replica chunk is a user extendable network object. One or more ReplicaChunk objects can be owned
by a replica (p. 777), which is both a container and manager for replica chunks. A replica is owned
by a master peer and is propagated to other network nodes as a proxy replica. The data that a replica
chunk contains should generally be related to the other data stored within it. Since multiple chunks can be
attached to a replica, unrelated data can be stored in other chunks within the same replica.

A replica chunk can contain Datasets (p. 782) and/or Remote Procedure Calls (RPCs) (p. 784). Data
sets store arbitrary data, which only the master replica is able to modify. Any changes are propagated
to the chunks in proxy replicas on the other nodes. RPCs are methods that can be executed on remote
nodes. They are first invoked on the master, which decides whether the invocation will be propagated to the
proxies.

Replica Chunk Requirements and Limitations

A replica chunk has several important attributes:

• It can have up to 32 DataSet definitions.

• It can have up to 256 RPC definitions.

• It is reference counted and therefore must be held by a smart pointer.

• It is not synchronized across the session until the replica manager is ready.

Implementing a New Replica Chunk Type

You have two ways to implement a new replica chunk type: handle data set changes and RPC calls ("game
logic") inside the chunk, or outside the chunk. In both cases, the following apply:

• The name of the chunk type must be unique throughout the system. To achieve this, every replica chunk
type must implement the static member function const char* GetChunkName(). The string returned by
the GetChunkName function must uniquely identify the chunk type.

• To indicate whether the ownership of this type of chunk is transferrable, every chunk type needs to
override the bool IsReplicaMigratable() virtual function. If any chunk in a replica is not migratable, the
replica's ownership cannot be transferred from one peer to another.

• Every chunk type must define a smart pointer that holds the chunk type instances.

Version 1.8
780

https://en.wikipedia.org/wiki/Smart_pointer

Lumberyard Developer Guide
Replicas

Declaring a Replica Chunk Type with Internal Game Logic Handling

To have your replica chunk class handle game logic directly, it should inherit from ReplicaChunk:

class MyChunk : public GridMate::ReplicaChunk
{
public:
 GM_CLASS_ALLOCATOR(MyChunk); // Using GridMate's allocator

 MyChunk()
 : m_data("Data", 0) // Initializing integer DataSet to zero, and
 assigning a name for it
 , MyRpcMethodRpc("MyRpcMethodRpc") // Initializing RPC by passing in its name; the
 RPC name is for debugging purposes
 {
 }

 typedef AZStd::intrusive_ptr<DataSetChunk> Ptr; // Defining smart pointer type
 for this chunk
 static const char* GetChunkName() { return "MyChunk"; } // Unique chunk type name
 bool IsReplicaMigratable() override { return false; } // Specify whether the chunk
 can participate in replica's ownership changes

 bool MyRpcMethod(int value, const GridMate::RpcContext& context)
 {
 // Handle event here
 return true; // Propagate this call to all proxies
 }

 GridMate::Rpc<GridMate::RpcArg<int>>::BindInterface<MyChunk, &CustomChunk::MyRpcMethod>
 MyRpcMethodRpc;
 GridMate::DataSet<int> m_data;
 };

Declaring a Replica Chunk Type with External Game Logic Handling

To have your replica chunk class act as a simple data carrier and forward data changes and events to a
designated handler (an external class), inherit your handler class from ReplicaChunkInterface, and your
replica chunk class from ReplicaChunkBase:

class CustomHandler : public GridMate::ReplicaChunkInterface
{
public:
 GM_CLASS_ALLOCATOR(CustomHandler); // using GridMate's allocator

 void DataSetHandler(const int& value, const GridMate::TimeContext& context)
 {
 // Handle changes
 }

 bool RpcHandler(AZ::u32 value, const GridMate::RpcContext &context)
 {
 // Handle event here
 return true; // Propagate this call to all proxies
 }
};

class MyChunk : public GridMate::ReplicaChunkBase
{
public:
 GM_CLASS_ALLOCATOR(MyChunk); // Using GridMate's allocator

Version 1.8
781

Lumberyard Developer Guide
Replicas

 MyChunk()
 : m_data("Data", 0) // Initializing integer DataSet to zero and
 assigning a name for it
 , MyRpcMethodRpc("MyRpcMethodRpc") // Initializing RPC by passing its name; the
 RPC's name is used for debugging purposes
 {
 }

 typedef AZStd::intrusive_ptr<DataSetChunk> Ptr; // Defining smart pointer type
 for this chunk
 static const char* GetChunkName() { return "MyChunk"; } // Unique chunk type name
 bool IsReplicaMigratable() override { return false; } // Whether chunk can
 participate in replica's ownership changes

 GridMate::DataSet<int>::BindInterface<CustomHandler, &CustomHandler::DataSetHandler>
 m_data;
 GridMate::Rpc<GridMate::RpcArg<AZ::u32>>::BindInterface<CustomHandler,
 &CustomHandler::RpcHandler> MyRpcMethodRpcPC;
 };

Registering Chunk Type

Every user-defined replica chunk type should be registered with ReplicaChunkDescriptorTable to create
the factory required by the Replica Manager (p. 787).

To register replica chunks, use this call:

GridMate::ReplicaChunkDescriptorTable::Get().RegisterChunkType<MyChunk>();

Attaching a Replica Chunk to the Replica

You must add a replica chunk to a replica before you bind the replica to replica manager. After you bind the
replica to replica manager, you cannot add or remove replica chunks to or from the replica.

To create a replica chunk, use this call:

MyChunk::Ptr myChunk = GridMate::CreateReplicaChunk<MyReplicaChunk>(<...>);

Where <...> is forwarded to the MyReplicaChunk constructor.

To attach the chunk to a replica, use this call:

replica->AttachReplicaChunk(myChunk);

Alternatively, you can create the chunk and attach it in one step:

GridMate::CreateAndAttachReplicaChunk<MyReplicaChunk>(replica, <...>);

After you add the chunk to the replica, the replica retains a smart pointer to the chunk. The chunk is
released only when its replica is destroyed.

Datasets

You can use DataSet objects to synchronize the state of a session across the network. When a value in
the dataset changes, the updates are propagated automatically. Datasets can be of any type, but they

Version 1.8
782

Lumberyard Developer Guide
Replicas

must support the assignment and comparison operators. Your DataSet declaration can specify a custom
marshaler. If you do not specify a marshaler, the DataSet object uses GridMate::Marshaler<T>.

A DataSet must be declared inside a ReplicaChunk object. A ReplicaChunk object can contain up to 32
DataSet objects. You must supply a debug name to the dataset constructor.

The following example declares a ReplicaChunk object that has two DataSet objects of type float. One
dataset uses the default marshaler. The other dataset uses a custom marshaler called MyCustomMarshaler.

class MyChunkType : public GridMate::ReplicaChunk
{
 public:
 MyChunkType()
 : m_synchedFloat("SynchedFloat")
 , m_synchedHalf("SynchedHalf")
 {
 }

 GridMate::DataSet<float> m_synchedFloat;
 GridMate::DataSet<float, MyCustomMarshaler> m_synchedHalf;
};

Datasets can be optionally bound to a callback on the chunk interface so that the callback is called when
new data arrives.

class MyChunkType : public GridMate::ReplicaChunk
{
public:
 MyChunkType()
 : m_synchedFloat("SynchedFloat")
 {
 }

 // Callback to call when new data arrives.
 void OnSynchedFloatData(const float& newValue, const GridMate::TimeContext&
 timeContext);

 GridMate::DataSet<float>::BindInterface<MyChunkType,
 amp;MyChunkType::OnSynchedFloatData> m_synchedFloat;
};

Eventual consistency is guaranteed for datasets. Normally, datasets propagate unreliably. To compensate
for potential packet losses, and to minimize latency, GridMate handles events in the following order:

1. A user changes a value in the dataset.

2. The new value is broadcast to the remote peers.

3. The dataset stops changing.

4. A user-configurable grace period elapses.

5. A last update is sent reliably.

6. To conserve bandwidth, propagation is suspended until the next change.

You can change the length of the grace period in step 4 by calling SetMaxIdleTime:

...
GridMate::DataSet<Vector3> m_pos;
...

Version 1.8
783

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html#eventualconsistency

Lumberyard Developer Guide
Replicas

...
m_pos.SetMaxIdleTime(5.f); // Suspend sending if m_pos has not changed for 5 ticks
...

Examples

The examples in this section show three different ways to create datasets.

Example 1

The following example creates a DataSet object that stores a u32 value, using the default marshaler for
u32.

GridMate::DataSet<AZ::u32> m_data;

Example 2

The following example creates a DataSet object that stores a float. The data written to the network is half
float size because of the specified marshaler.

GridMate::DataSet<float, HalfMarshaler> m_data;

Example 3

The following example creates a DataSet object that stores an s32 value using the default marshaler for
s32. Whenever the DataSet value changes, the DataSetHandler function is called on the MyReplicaChunk
instance. This is true for both master and proxy nodes; the event is triggered on local data changes for the
master, and upon received data changes for the proxies.

class MyReplicaChunk : public GridMate::ReplicaChunk
{
 bool DataSetHandler(const AZ::s32& value, const GridMate::TimeContext& context) { /*
 Data Changed Logic */ }
 GridMate::DataSet<AZ::s32>::BindInterface<MyHandlerClass,
 &MyReplicaChunk::DataSetHandler> Data;
};

Throttlers

Datasets can be throttled based on an optional throttler parameter to the template. The throttler can choose
to send data or withhold downstream updates unless a certain condition has been met. The throttler must
implement the WithinThreshold method using the following syntax.

bool WithinThreshold(T previousValue, T currentValue);

The return value of the method determines whether to send the data to the proxy peers.

Remote Procedure Calls (RPCs)

RPCs allow games to send events or requests to remote nodes through replicas. They can be used to send
messages to a specific node, or to route function calls to the authoritative node. For example, you can use
RPCs to implement functions that change the position of an object. This ensures that changes happen only
at the node that owns the object. For server-authoritative games, reliable RPCs can be used for sending
frequent client input commands.

Version 1.8
784

Lumberyard Developer Guide
Replicas

RPCs have the following characteristics:

• RPC arguments can be of any type, as long as a valid marshaler is provided.

• All RPC requests are routed to the master replica.

• The RPC handler function in the master replica chooses whether to propagate the RPC to proxy replicas.

• RPCs are not kept in the history, and late-joining clients might not receive RPCs requested before the
client joined.

Like datasets, RPCs are declared as replica chunk members. An RPC handler function is bound to
the RPC as part of the declaration. RPC requests are forwarded to the handler function along with the
arguments and an RpcContext associated with the request.

The RPC handler function can perform additional checks before executing the request.

The handler for an RPC returns a Boolean value to GridMate. This value is used on the replica's master
node to determine whether the RPC is propagated to all proxies.

Remote procedure calls are always invoked first on the master node for the replica. This is true whether
the initial caller is a master or proxy. The master node's RPC handler decides whether the RPC should be
propagated to the proxy nodes based on the return value of the RPC handler. The user returns true to
mean "propagate to all replica proxies," and false to mean "only invoke this RPC on the master."

RPCs have a constructor that requires a string. This is used for debugging and statistical purposes. Any
debugging or network monitoring exposes the given RPC name. Using modern C++, the name can also be
specified inline, as in the following example.

Rpc<RpcArg<AZ::u32>>::BindInterface<MyClass,
&MyClass::Func> Rpc = {"My RPC"};

Examples

The following examples show how RPCs can be used in GridMate.

Example 1

In the following example, Rpc1 is an RPC that takes a single parameter of type u32. It uses the default u32
marshaler.

class MyReplicaChunk : public GridMate::ReplicaChunk
{
 bool Rpc1Handler(AZ::u32 val, const GridMate::RpcContext& context) { /* RPC Logic */ }
 GridMate::Rpc<GridMate::RpcArg<AZ::u32>>::BindInterface<MyReplicaChunk,
 &MyReplicaChunk::Rpc1Handler> Rpc1;
};

Example 2

In the following example, Rpc2 is an RPC that takes a single parameter of type s32. It uses
IntegerQuantizationMarshaler, with a range from -100 to 100 and writes one byte to the wire.

class MyReplicaChunk : public GridMate::ReplicaChunk
{
 bool Rpc2Handler(AZ::s32 val, const GridMate::RpcContext& context) { /* RPC Logic */ }
 GridMate::Rpc<GridMate::RpcArg<AZ::s32, GridMate::IntegerQuantizationMarshaler<-100,
 100, 1>>>::BindInterface<MyReplicaChunk, &MyReplicaChunk::Rpc2Handler> Rpc2;
};

Version 1.8
785

Lumberyard Developer Guide
Replicas

Example 3

In the following example, Rpc3 is an RPC that takes two parameters; a u8 and a string. It uses the default
marshalers for each argument.

class MyReplicaChunk : public GridMate::ReplicaChunk
{
 bool Rpc3Handler(AZ::u8 val, const AZStd::string& str, const GridMate::RpcContext&
 context) { /* RPC Logic */ }
 GridMate::Rpc<GridMate::RpcArg<AZ::u8>, GridMate::RpcArg<const
 AZStd::string&>>::BindInterface<MyReplicaChunk, &MyReplicaChunk::Rpc3Handler> Rpc3;
};

Example 4

If you want to send a custom class as an RPC parameter, you must first write a marshaler for it, as in the
following example.

struct MyClass
{
 AZ::Crc32 m_name;
 AZ::u32 m_value;
};

namespace GridMate
{
 template<>
 class Marshaler<MyClass>
 {
 public:
 static const AZStd::size_t MarshalSize = Marshaler<AZ::Crc32>::MarshalSize +
 sizeof(AZ::u32);

 void Marshal(WriteBuffer& wb, const MyClass& value) const
 {
 wb.Write(value.m_name);
 wb.Write(value.m_value);
 }
 void Unmarshal(MyClass & value, ReadBuffer& rb) const
 {
 rb.Read(value.m_name);
 rb.Read(value.m_value);
 }
 };
}

An RPC that passes a parameter of the foregoing class might be declared like this:

class MyReplicaChunk : public GridMate::ReplicaChunk
{
 bool Rpc4Handler(const MyClass& value, const GridMate::RpcContext& context) { /* RPC
 Logic */ }
 GridMate::Rpc<GridMate::RpcArg<const MyClass&>>::BindInterface<MyReplicaChunk,
 &MyReplicaChunk::Rpc4Handler> Rpc4;
};

For Rpc4, the first and only argument is a const reference to the MyClass object. The const MyClass&
is specified to indicate that the Rpc4Handler function takes a const reference. This allows you to avoid
making a copy of the object when it is passed to the handler function. Behind the scenes, GridMate stores a
temporary value of MyClass, which is what the reference binds to. The temporary referent is removed after

Version 1.8
786

Lumberyard Developer Guide
Replica Manager

the RPC has been called. You can also use this technique to marshal objects that are wrapped in smart
pointers.

Example 5

In order to invoke an RPC on a given chunk instance, you can simply call the RPC, as in the following
example.

class MyReplicaChunk : public GridMate::ReplicaChunk
{
 bool Rpc5Handler(AZ::u32 val, const GridMate::RpcContext& context) { /* RPC Logic */ }
 GridMate::Rpc<GridMate::RpcArg<AZ::u32>>::BindInterface<MyReplicaChunk,
 &MyReplicaChunk::Rpc1Handler> Rpc5;
};

void Foo(MyChunkType* myChunkInstance)
{
 myChunkInstance->Rpc5(1);
}

Rpc5 is an RPC that takes a single parameter of type u32. It uses the default u32 marshaler. Calling Foo
invokes the RPC on the replica chunk instance and passes in a value of 1.

RPC Type Traits

RPCs have an optional typetraits parameter. The following traits are expected in the traits class.

Trait Default
Value

Description

s_isReliable true Uses reliable transmission to send the RPC.

s_isPostAttached true Forces any dirty datasets to also be sent reliably in advance. This is
useful if the RPC relies on the data in the datasets to be up to date on
the destination peer.

Replica Manager
The replica manager is a subsystem that is responsible for managing the synchronization of replicas. The
replica manager is responsible for the following:

• Marshaling and unmarshaling the replicas in each peer

• Forwarding replicas from one peer to another

• Handling ownership changes of replicas

• Managing replica lifetimes

Managing Replica Lifecycle

The replica manager must do the following:

• Keep track of all replicas by holding a reference-counted pointer to every master and proxy replica object.

• Guarantee consistency across the session by capturing and propagating the last state of every replica
before a replica is destroyed.

• Guarantee that all proxies reach eventual consistency before a replica is deactivated.

• Release all GridMate references to a replica object when the object has been destroyed.

Version 1.8
787

Lumberyard Developer Guide
Replica Manager

Topics

• Binding a New Master Replica to Replica Manager (p. 788)

• Retrieving Replicas from Replica Manager (p. 788)

• How Replica Manager Updates Replicas (p. 788)

• Task Manager (p. 789)

Binding a New Master Replica to Replica Manager

After a new master replica is created, it must be bound to the replica manager as follows:

GridMate::ReplicaManager* replicaManager = session->GetReplicaMgr(); // Get replica manager
 from the current session
replicaManager->AddMaster(myReplica1); // Bind replica to replica manager
replicaManager->AddMaster(myReplica2); // Bind replica to replica manager

Proxy replicas are bound to their session's replica managers automatically. Each ReplicaManager instance
holds a reference to every replica that is bound to it. That changes only when the user calls Destroy() on
the replica or when the ReplicaManager itself is destroyed.

Retrieving Replicas from Replica Manager

Every replica has a numeric identifier that is unique in the session. To find a replica by its ID, invoke
FindReplica(<ReplicaId>), as in the following example:

GridMate::ReplicaPtr replica = replicaManager->FindReplica(<myReplicaId>);
AZ_Assert(replica != nullptr, "Replica with id=%d not found.", <myReplicaId>);

How Replica Manager Updates Replicas

The GridMate session triggers the replica manager to perform replica updates on a continuous
basis. These updates include the following actions:

• Unmarshaling

• Update from replica

• Update replicas

• Marshaling

Marshaling: Sending Data to Other Peers

Changes in a replica must be replicated to every remote peer in the GridMate session. To communicate a
change in one of its replicas, a peer's replica manager serializes the replica object into a send buffer. It then
sends the object to the network. Replica marshaling occurs in two main phases:

• Data Preparation – A premarshaling phase that, based on changes in the replica, determines which
RPCs and DataSet objects to send. This phase also validates the data integrity of the objects to be sent.

• Actual Marshaling – The transformation of a replica object into a byte stream. The actual data that
must be marshaled depends on how much new information the master replica has relative to its
corresponding remote proxy replica. For example, new proxy replicas require all information about
the master replica. This includes its datasets (p. 782), RPCs (p. 784), and construction metadata.
Previously synchronized proxy replicas require only the information from the master replica that is
different, including any pending RPC calls.

Version 1.8
788

Lumberyard Developer Guide
Using Lumberyard Networking

Unmarshaling: Receiving Data from Other Peers

In unmarshaling, the replica manager communicates with the remote peers, receives and parses new data
from them, and updates its own replicas accordingly. These updates can include accepting new peers,
instantiating new proxy replicas, handling ownership changes, or destroying proxy replicas.

Note
For more information about marshaling, see Marshalling (p. 765).

Update from Replica: Updating Proxy Replicas

A change in a custom ReplicaChunk (p. 780) results in an UpdateFromChunk callback that causes all
proxy replicas to update their state. RPCs from proxy and master replicas are processed and invoked
during this step.

Update Replicas: Updating Master Replicas Locally

A change in a custom replica chunk results in an UpdateChunk callback that causes all master replicas on a
local peer to update their states.

Task Manager

The replica manager holds two task manager instances: one for updating and one for marshaling replicas.
Updating tasks are executed within the replica manager's UpdateFromReplica step, while marshaling tasks
are executed in the Marshal step. Tasks can execute other tasks while running. TaskManager::Add queues
the tasks in an ordered list. TaskManager::Wait executes a task and waits until it finishes. When an event
fires in the replica system, replica manager adds the corresponding task into TaskSystem.

Here are few examples of this behavior:

• A user changes a dataset's value within a replica. The change needs to be marshaled to other peers.
The OnReplicaChanged event is called on ReplicaManager, and ReplicaMarshalTask is queued for
execution. Because replicas must be sent in the order of their creation, the task's priority is based on the
replica's creation time. The queued task is executed at the appropriate time within the Marshal step.

• A new proxy replica is unmarshaled. When this happens, OnReplicaUnmarshaled() is called and
ReplicaUpdateTask is queued. This task's priority is always zero because the order of execution is not
important. UpdateFromReplica is called to notify the user of the new replica's data.

Using Lumberyard Networking
Lumberyard's GridMate networking system offers many ways to improve your game:

• Synchronize game state by using components or scripts.

• Use encryption for enhanced security.

• Control bandwidth.

• Take advantage of powerful features that enable you to create a professional-grade game.

Topics

• Synchronizing Game State Using Components (p. 790)

• Synchronizing Game State Using Scripts (p. 795)

• Using Encyrption (p. 795)

• Controlling Bandwidth Usage (p. 799)

• Setting up a Lobby (p. 801)

Version 1.8
789

Lumberyard Developer Guide
Synchronizing Game State Using Components

• Using Amazon GameLift (p. 801)

• Useful Console Commands (p. 802)

Synchronizing Game State Using Components
The network binding API in the AZ framework provides a way for components to synchronize their states
over the network.

To enable network synchronization for a component, you must do the following:

1. Derive the component from NetBindable and implement the network binding interfaces.

2. Implement a new replica chunk type and add the datasets and RPCs necessary to provide
synchronization.

Topics

• Synchronizing an Entity with a NetBindingComponent (p. 790)

• Binding Process on Remote Nodes (p. 790)

• Unbinding Process (p. 790)

• NetBindable Component Flexibility (p. 790)

• Entity IDs (p. 791)

• Creating a NetBindable Component (p. 791)

Synchronizing an Entity with a NetBindingComponent

Because a special NetBindingComponent is responsible for the actual binding process, entities that need
to be synchronized must have a NetBindingComponent added to them. When a game enters a multiplayer
session, the NetBindingComponent collects replica chunks from the NetBindable instances on the entity
and adds them to a Replica master. A special NetBindingChunk captures and stores spawning and other
binding information for the entity. NetBindingComponent instances activated during a multiplayer session
automatically start the binding process.

Binding Process on Remote Nodes

As replicas arrive at remote nodes, NetBindingChunk starts the entity spawning and binding process on the
remote node. The binding process is completely asynchronous. The replicas become active first. Then an
entity spawn request is queued. After the entity becomes available, its NetBindable components are bound
to their corresponding chunks. Finally, the entity is activated.

Unbinding Process

When replicas are removed, affected NetBindingComponent instances start the unbinding process. By
default, entities that are unbound from proxy replicas are deleted, but this doesn’t have to be always the
case. A game can choose to keep all entities in place and seamlessly switch to single-player mode.

NetBindable Component Flexibility

A NetBindingComponent must exist for an entity to be bound to the network. This allows NetBindable
components to be used in single-player modes without any additional runtime cost. NetBindable instances
can also be disabled for each instance. This gives you the additional flexibility: The transform component
can provide entity transform synchronization by default, but for special entities, a physics or animation
component can provide more advanced synchronization.

Version 1.8
790

http://docs.aws.amazon.com/lumberyard/latest/developerguide/network-replicas-replica.html

Lumberyard Developer Guide
Synchronizing Game State Using Components

Entity IDs

In Lumberyard, every entity has a unique ID so that it can be referenced in the game. Entity IDs are 64-
bit strings generated using an algorithm that ensures uniqueness across computing devices. To reduce
binding complexity, the net binding system spawns entities to be bound to proxy replicas using the same ID
as the master.

The following diagram shows how the net binding system binds an entity to the network and spawns an
entity. It does this with the same ID that it binds to a proxy replica.

Creating a NetBindable Component

For a Lumberyard component to share data on the network, it must include the NetBindingComponent.
The NetBindingComponent creates a replica (p. 777) for the component and can bind any replica
chunk (p. 780) that a component creates to the replica.

To enable networking on a component

1. Inherit the component from AzFramework::NetBindable:

#include <AzFramework/Network/NetBindable.h>
class ShipComponent
: public Component
, public AzFramework::NetBindable

2. Modify the AZ_COMPONENT definition to include AzFramework::NetBindable:

AZ_COMPONENT(ShipComponent,"{D466FD68-96C9-45AF-8A89-59402B0350F7}",
 AzFramework::NetBindable);

3. Modify SerializeContext to include AzFramework::NetBindable:

if (serialize)
{
serializeContext->Class<ShipComponent, AzFramework::NetBindable, AZ::Component>()
 ...
}

4. Implement the AzFramework::NetBindable interfaces:

// Called during network binding on the master. Implementations should create and
 return a new binding.
virtual GridMate::ReplicaChunkPtr GetNetworkBinding() = 0;

// Called during network binding on proxies.
virtual void SetNetworkBinding(GridMate::ReplicaChunkPtr chunk) = 0;

// Called when network is unbound. Implementations should release their references to
 the binding.
virtual void UnbindFromNetwork() = 0;

Notes

• If the AZ_COMPONENT definition change is missing, the NetBindingComponent does not recognize the
component when it checks for components to add to the replica.

• If the SerializeContext definition is missing, the master replica still functions correctly. However, the
proxy cannot match the IDs because it is not serialized as an AzFramework::NetBindable interface.

Version 1.8
791

Lumberyard Developer Guide
Synchronizing Game State Using Components

• Changes to these definitions require a re-export of levels for the static IDs to match correctly.

Network Binding Function Details

The following functions are available for working with component entities on the network.

GetNetworkBinding

The component uses this function to create its ReplicaChunk and initialize any state it wants to synchronize
across the session. This function is called only on the master ComponentEntity. The ReplicaChunk that is
returned is automatically attached to the appropriate Replica.

SetNetworkBinding

This function passes a ReplicaChunk to the component and initializes the internal data of the component to
match that of the ReplicaChunk. This function is called only on the proxy ComponentEntity instances that
are already bound to an appropriate Replica.

UnbindFromNetwork

The UnbindFromNetwork function is called to stop the component from reacting to data updates from the
network. This can happen, for example, when the master no longer exists, has been deactivated, or has
relinquished control to the local source.

Creating a Chunk

After you have enabled the NetBindable interface on the component, you must create a ReplicaChunk
object that will store any state that the component wants to share.

class ShipComponentReplicaChunk : public GridMate::ReplicaChunkBase
{
public:
 AZ_CLASS_ALLOCATOR(ShipComponentReplicaChunk, AZ::SystemAllocator, 0);

 static const char* GetChunkName() { return "ShipComponentReplicaChunk"; }

 ShipComponentReplicaChunk()
 : SetFiring("SetFireLaser")
 , m_playerEntityId("PlayerEntityId")
 {
 }

 bool IsReplicaMigratable()
 {
 return true;
 }

 GridMate::Rpc< GridMate::RpcArg<bool> >::BindInterface<ShipComponent,
 &ShipComponent::SetFiringRPC, NetworkUtils::ShipControllerRPCTraits> SetFiring;
 GridMate::DataSet<AZ::EntityId>::BindInterface<ShipComponent,
 &ShipComponent::OnNewNetPlayerEntityId> m_playerEntityId;
};

Note
You must reflect this new replica chunk's datasets and RPCs in the component's Reflect function.

AzFramework::NetworkContext* netContext =
 azrtti_cast<AzFramework::NetworkContext*>(context);

Version 1.8
792

Lumberyard Developer Guide
Synchronizing Game State Using Components

if (netContext)
{
 netContext->Class<ShipComponent>()
 ->Chunk<ShipComponentReplicaChunk>()
 ->RPC<ShipComponentReplicaChunk, ShipComponent>("SetFireLaser",
 &ShipComponentReplicaChunk::SetFiring)
 ->Field("PlayerEntityId", &ShipComponentReplicaChunk::m_playerEntityId)
 ;
}

In order for the component to react to a change in the DataSet object, one of the following must occur:

• The replica chunk must signal to the component when the change occurs (in the example, this is done
using the BindInterface extension to DataSet).

• The component must poll the replica chunk and check the DataSet object for changes.

Example: Filling Out the AzFramework::NetBindable Interface

The examples below illustrate the use of GetNetworkBinding, SetNetworkBinding and
UnbindFromNetwork.

GetNetworkBinding

In the following example, the component creates the new replica chunk and initializes the data to be
networked. This function is called by the master replica to retrieve the binding from the component.

GridMate::ReplicaChunkPtr ShipComponent::GetNetworkBinding()
{
 ShipComponentReplicaChunk* replicaChunk =
 GridMate::CreateReplicaChunk<ShipComponentReplicaChunk>();
 replicaChunk->SetHandler(this);
 m_replicaChunk = replicaChunk;

 return m_replicaChunk;
}

SetNetworkBinding

In the following example, the component is bound to the supplied replica chunk. It also relinquishes its local
state to the state specified by the replica chunk. This function is called on proxies to hand their binding over
to the component.

void ShipComponent::SetNetworkBinding(GridMate::ReplicaChunkPtr chunk)
{
 chunk->SetHandler(this);
 m_replicaChunk = chunk;

 ShipComponentReplicaChunk* shipControllerChunk =
 static_cast<ShipComponentReplicaChunk*>(m_replicaChunk.get());
 SetPlayerEntityIdImpl(shipControllerChunk->m_playerEntityId.Get());
}

UnbindFromNetwork

void ShipComponent::UnbindFromNetwork()
{
 m_replicaChunk->SetHandler(nullptr);
 m_replicaChunk = nullptr;

Version 1.8
793

Lumberyard Developer Guide
Synchronizing Game State Using Components

}

Maintaining State

The last step is to create checks to make sure that any local modifications to the preferred networkable
state do not overwrite the networked state. In addition, you must update the replica chunk whenever the
local state changes and the component is in control of the state.

void ShipComponent::OnNewNetPlayerEntityId(const AZ::EntityId& playerEntityId, const
 GridMate::TimeContext& tc)
{
 (void)tc;
 SetPlayerEntityIdImpl(playerEntityId);
}

bool ShipComponent::SetFiringRPC(bool firing, const GridMate::RpcContext& rpcContext)
{
 if (AllowRPCContext(rpcContext))
 {
 SetFiring(firing);
 }

 return false;
}

// Component implementation of to set firing
void ShipComponent::SetFiring(bool firing)
{
 m_isFiring = firing;

 if (!AzFramework::NetQuery::IsEntityAuthoritative(GetEntityId()))
 {
 // If the ship component is not authoritative, send an RPC update to the replica
 chunk
 ShipComponentReplicaChunk* shipChunk =
 static_cast<ShipComponentReplicaChunk*>(m_replicaChunk.get());
 shipChunk->SetFiring(firing);
 }
 else
 {
 if (m_isFiring)
 {
 EBUS_EVENT_ID(GetGun(), ShipGunBus, StartFire);
 }
 else
 {
 EBUS_EVENT_ID(GetGun(), ShipGunBus, StopFire);
 }
 }
}

void ShipComponent::SetPlayerEntityIdImpl(AZ::EntityId playerEntityId)
{
 AZ_Error("ShipControllerComponent",!m_playerEntityId.IsValid() || !
playerEntityId.IsValid(),"Trying to rebind an already bound ship");
 if (m_playerEntityId != playerEntityId)
 {
 m_playerEntityId = playerEntityId;
 HandleShipSetup();

 if (m_replicaChunk && AzFramework::NetQuery::IsEntityAuthoritative(GetEntityId()))
 {
 // If you are authoritative over the entity and the component is replicated,
 update the value of the DataSet and propagate to clients

Version 1.8
794

Lumberyard Developer Guide
Synchronizing Game State Using Scripts

 ShipComponentReplicaChunk* shipChunk =
 static_cast<ShipComponentReplicaChunk*>(m_replicaChunk.get());
 shipChunk->m_playerEntityId.Set(m_playerEntityId);
 }
 }
}

Synchronizing Game State Using Scripts
You can synchronize game state by using the Script Component. The initial steps of synchronizing game
state using the ScriptComponent are similar to any other component. There are two main steps:

1. You must add a NetBindingComponent to the definition of the entity that contains the script and the
ScriptComponent and whose state you want to synchronize.

2. Inside the script, any properties that need to be synchronized must be tagged accordingly. For more
information, see Network Binding in the Lua Script Component topic.

When these steps are completed, game state data should synchronize correctly.

Using Encyrption
GridMate uses the OpenSSL implementation of Datagram Transport Layer Security (DTLS) to support
encryption of all UDP traffic sent between clients and servers.

Limitations

GridMate's implementation of encryption has the following limitations:

• Only 64-bit Windows is supported.

• Only client-server topologies are supported.

Implementation Support

GridMate supports encryption for the following implementations:

• Server and client authentication

• Self-signed certificates

• A single strong OpenSSL cipher

Cipher

GridMate uses the following single OpenSSL cipher for all encrypted connections: ECDHE-RSA-AES256-GCM-
SHA384.

This cipher uses the technologies listed in the following table:

Cipher Technologies in GridMate

Technology Role Description

ECDHE Master key exchange Ephemeral Elliptic Curve Diffie-Hellman anonymous key
agreement protocol

Version 1.8
795

http://docs.aws.amazon.com/lumberyard/latest/userguide/component-lua-script.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/component-lua-script.html#lua-script-networking-binding
https://www.openssl.org/
https://tools.ietf.org/html/rfc6347
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman

Lumberyard Developer Guide
Using Encyrption

Technology Role Description

RSA Peer authentication RSA algorithm used to authenticate client and server

AES256 Symmetric encryption cipher Advanced Encryption Standard that uses a 256-bit
master key

GCM Block cipher mode of
operation

Galois/Counter Mode authenticated encryption algorithm

SHA384 Hashing algorithm SHA-2 with a 384-bit digest size

Topics

• Building with Encryption (p. 796)

• Enabling Encryption (p. 797)

Building with Encryption

When you include the GridMate library in your project, encryption support is automatically provided.
However, because the GridMate library is statically linked, you must first make some modifications to the
WAF build script (wscript) that uses GridMate.

Building Your Project with Encryption

To use encryption with GridMate, you must modify your .wscript file to add a dependency on GridMate,
link the OpenSSL library, and specify OpenSSL library paths.

To modify your .wscript file to use OpenSSL with GridMate

1. Add the following line to create a dependency on GridMate:

use = ['GridMate']

2. Add the following line to link the OpenSSL library:

win_lib = ['ssleay32', 'libeay32']

3. Add the OpenSSL library paths, as in the following example. Within the Lumberyard install directory,
these paths are in the folder dev\Code\SDKs\OpenSSL\lib\:

win_x64_debug_libpath = [bld.Path('Code/SDKs/OpenSSL/lib/vc120_x64_debug')],
win_x64_profile_libpath = [bld.Path('Code/SDKs/OpenSSL/lib/vc120_x64_release')],
win_x64_release_libpath = [bld.Path('Code/SDKs/OpenSSL/lib/vc120_x64_release')],
win_x64_debug_dedicated_libpath = [bld.Path('Code/SDKs/OpenSSL/lib/
vc120_x64_debug')],
win_x64_profile_dedicated_libpath = [bld.Path('Code/SDKs/OpenSSL/lib/
vc120_x64_release')],
win_x64_release_dedicated_libpath = [bld.Path('Code/SDKs/OpenSSL/lib/
vc120_x64_release')]

Building Without Encryption

If your project uses GridMate, but does not require support for encryption, ensure that the
GridMateForTools line is in your .wscript file:

Version 1.8
796

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/SHA-2
http://docs.aws.amazon.com/lumberyard/latest/userguide/waf-using-module.html

Lumberyard Developer Guide
Using Encyrption

use = ['GridMateForTools']

Enabling Encryption

To enable encryption with OpenSSL in a GridMate session, perform the following steps.

To enable encryption in a GridMate session

1. To set the encryption parameters, create an instance of SecureSocketDesc. The parameters are
described in SecureSocketDesc (p. 797).

2. Create an instance of SecureSocketDriver that passes in the instance of SecureSocketDesc. The
instance of SecureSocketDesc must be available for the duration of the GridMate session.

3. Before hosting or joining a GridMate session, define CarrierDesc by setting the
CarrierDesc::m_driver property to the instance of SecureSocketDriver. If no instance of
SecureSocketDriver is provided, an unencrypted driver is used that provides plaintext communication.

4. You can delete the SecureSocketDriver instance at the end of the GridMate session, ideally in the
OnSessionDelete event on the SessionEventBus.

The GridMate Session Encryption Example (p. 798) at the end of this topic has sample code for these
steps.

SecureSocketDesc

The constructor for SecureSocketDriver requires a SecureSocketDesc object that provides all encryption
configuration required for the secure connection. The configuration parameters are described in the
following table.

SecureSocketDesc Configuration Parameters

Parameter Description

m_privateKeyPEM Base-64 encoded string PEM private key.

m_certificatePEM Base-64 encoded string PEM public certificate.

m_certificateAuthorityPEM Base-64 encoded string PEM certificate authority.

m_authenticateClient If set to 1, the client is expected to provide a signed certificate for
authentication. To implement this, m_certificatePEM must be set on the
client, and the server needs to set up m_certificateAuthorityPEM. The
default setting is 0.

Server Authentication Only

You can use the server authentication only configuration when the client needs to verify the authenticity
of the server to which it connects. The server has a secret private key and a public certificate signed by a
certificate authority. This is the most common configuration.

Server Authentication Only Configuration

Role Parameters

Client m_certificateAuthorityPEM

Version 1.8
797

Lumberyard Developer Guide
Using Encyrption

Role Parameters

Server m_privateKeyPEM, m_certificatePEM,
m_certificateAuthorityPEM

Client and Server Authentication

Use this configuration when the client must verify authenticity of the server and the server must verify
authenticity of the client. The client has its own unique private key and corresponding signed public
certificate. The server has its own unique private key and corresponding signed public certificate.

It's possible to share or use the same certificate authority for both, but keys and certificates must be unique
to each peer.

Client and Server Authentication Configuration

Role Parameters

Client m_privateKeyPEM, m_certificatePEM, m_certificateAuthorityPEM

Server m_privateKeyPEM, m_certificatePEM, m_certificateAuthorityPEM

Self-signed Certificates

You can use self-signed certificates for development purposes.

Warning
Do not use self-signed certificates for production environments.

When you use self-signed certificates, there is no certificate authority to sign the public certificates. To
permit the absence of a certificate authority, set m_certificateAuthorityPEM to the same value as
m_certificatePEM.

GridMate Session Encryption Example

The following code snippet enables encryption in a GridMate session.

class MyClass : public GridMate::SessionEventBus::Handler
{
public:
 void OnSessionDelete(GridMate::GridSession* session) override;

private:
 GridMate::SecureSocketDriver* m_secureDriver;
};

void MyClass::JoinSession() {
 // ...

 // Create an instance of SecureSocketDesc and set its encryption parameters.
 GridMate::SecureSocketDesc secureDesc;
 secureDesc.m_privateKeyPEM = "..."
 secureDesc.m_certificatePEM = "..."
 secureDesc.m_certificateAuthorityPEM = "..."

 // Create an instance of SecureSocketDriver that passes in the instance of
 // SecureSocketDesc.
 m_secureDriver = new GridMate::SecureSocketDriver(secureDesc);

Version 1.8
798

Lumberyard Developer Guide
Controlling Bandwidth Usage

 // Before hosting or joining a GridMate session, set the CarrierDesc::m_driver
 // property to the instance of SecureSocketDriver.
 carrierDesc.m_driver = m_secureDriver;

 // ...
}

 // At the end of the GridMate session, delete the SecureSocketDriver instance in
 // the OnSessionDelete event.
void MyClass::OnSessionDelete(GridMate::GridSession* session) {
 // ...

 delete m_secureDriver;
 m_secureDriver = nullptr;

 // ...
}

How To Generate a Private Key and Public Certificate

You can use the openssl req command to generate a self-signed certificate from OpenSSL, as in the
following example.

dev/Code/SDKs/OpenSSL/bin/openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem
 -days 365 -nodes

The arguments are as follows.

• -x509 – The certificate format.

• -newkey – The type of key. This example generates an RSA key with 2048 bits.

• -keyout – The name of the key PEM file that will be generated

• -out – The name of the cert PEM file that will be generated.

Upon execution, the command prompts for additional user input required to generate the certificate.

Controlling Bandwidth Usage
GridMate (p. 754) provides several ways to control the bandwidth that your game uses, including
bandwidth throttling and the prioritization of replica (p. 777) updates.

Controlling the Send Rate
You can use GridMate to control the server send rate, which is a common technique for reducing bandwidth
usage in multiplayer games. In this scenario, a multiplayer game is hosted by a dedicated server to which
clients send their replica changes at their default rate (for example, 60 frames per second). To reduce
bandwidth usage, you lower the server send rate (for example, to 20 transmissions per second). To avoid
jitter when this technique is used, the client must be able to interpolate the game state that it receives from
the server.

To control the server send rate in GridMate, set the time interval for replica data transmissions:

ReplicaMgr* replicaManager = session->GetReplicaMgr(); // Get the replica manager instance.
 This assumes the session has been established.
replicaManager->SetSendTimeInterval(100); // Set the send interval to 100 milliseconds. 10
 updates per second will be sent.

Setting the SetSendTimeInterval to 0 sends the data at the engine's frame rate. The default is 0.

Version 1.8
799

Lumberyard Developer Guide
Controlling Bandwidth Usage

Bandwidth Limiter

Another technique is to limit outgoing bandwidth in exchange for increased latency in the replication of
objects. In GridMate, you can do this by setting a bandwidth limit on replica manager. To do so, specify a
byte limit for SetSendLimit, as in the following example:

ReplicaMgr* replicaManager = session->GetReplicaMgr(); // Get the replica manager instance.
 This assumes the session has been established.
replicaManager->SetSendLimit(10000); // Set the transmission limit to 10 kilobytes per
 second.

Setting SetSendLimit to 0 disables the bandwidth limiter. The default is 0.

Controlling Burst Length

You can use the GridMate limiter to accommodate short bursts in bandwidth if your bandwidth usage is not
already at its maximum. This can be useful in many game applications. For example, when a user is in a
multiplayer lobby, the corresponding bandwidth usage is quite low. However, when the user joins the game,
the bandwidth usage spikes as the initial game state replicates from the server to the client. To control the
length of the burst permitted, specify the desired number of seconds for SetSendLimitBurstRange, as in
the following example:

ReplicaMgr* replicaManager = session->GetReplicaMgr(); // Get the replica manager instance.
 This assumes the session has been established.
replicaManager->SetSendLimitBurstRange(5.f); // Set the maximum permitted length of the
 burst to 5 seconds.

Bursts in bandwidth usage are allowed for the number of seconds specified, after which the bandwidth is
capped to the value set by SetSendLimit. The default value for SetSendLimitBurstRange is 10 seconds.
If bandwidth usage has already reached its limit when the burst occurs, bandwidth usage continues to be
capped, and the SetSendLimitBurstRange setting has no effect.

Prioritization of Replica Updates

Every replica chunk (p. 780) has a priority that you can assign. The priority is represented by an integer
from 0 through 65534. Larger integers represent higher priorities. Replicas with higher priorities are sent
first. The default is 32768.

This prioritization is especially important when you use the bandwidth limiter because you can use it to
define which objects are more important and which are less important. If your game has a bandwidth cap
and you have prioritized your replicas appropriately, the objects with higher priority are sent more often.
The objects with lower priority are sent only when there is enough bandwidth to accommodate them.

For convenience, GridMate provides five predefined priorities that you can use for custom replica chunks:

static const ReplicaPriority k_replicaPriorityHighest = 0xFFFE; // Decimal 65534, highest
 priority.

static const ReplicaPriority k_replicaPriorityHigh = 0xC000; // Decimal 49152, high
 priority.

static const ReplicaPriority k_replicaPriorityNormal = 0x8000; // Decimal 32768, normal
 priority. This is the Default.

static const ReplicaPriority k_replicaPriorityLow = 0x4000; // Decimal 16384, low
 priority.

Version 1.8
800

Lumberyard Developer Guide
Setting up a Lobby

static const ReplicaPriority k_replicaPriorityLowest = 0x0000; // Decimal 0, lowest
 possible priority.

By default, all chunks have normal priority (k_replicaPriorityNormal). You can use these predefined
priorities as is, or use them to create your own, as in the following example:

// A replica chunk with this priority will be sent before all the chunks with Normal
 priority, but after all the chunks with High priority:
const ReplicaPriority k_myCustomPriority = (k_replicaPriorityNormal
 + k_replicaPriorityHigh) / 2; // (=Decimal 40960)

The priority for the whole replica is the maximum priority found in its chunks. Priority for a chunk can be set
after the chunk is created, or at any point during its lifetime, as in the following example:

MyChunk::Ptr myChunk = GridMate::CreateReplicaChunk<MyChunk>(...);
myChunk->SetPriority(k_replicaPriorityLow); // Sets low priority for myChunk.

Chunks with the same priority are sent and received in the order of their creation. Replicas created earlier
are sent and received first.

Tuning Bandwidth at Runtime

You can tune bandwidth usage while the game is running by using the following configuration variables
(CVars):

CVar Description

gm_replicasSendTimeThe time, in milliseconds, between replica transmissions. A value of 0 binds the
interval to the GridMate tick rate.

gm_replicasSendLimitThe limit, in bytes, of the amount of replica data that can be sent per second. A value
of 0 disables the limit.

gm_burstTimeLimitThe time, in seconds, that bursts in bandwidth are allowed. Bursts are allowed only if
the bandwidth is not capped when the burst occurs.

Setting up a Lobby
By default, the Lumberyard engine does not provide any specific lobby implementation, but instead
provides the code interface required to construct one. The Multiplayer Gem does, however, provide some
useful constructs that aid in lobby creation using flow graph nodes, and a basic lobby implementation using
Components, that can be used as is, or as a reference.

For more information, see the Multiplayer Gem Documentation.

Using Amazon GameLift
Lumberyard supports hosting dedicated servers on the cloud by using Amazon GameLift. Amazon
GameLift is a managed AWS service for deploying, operating, and scaling session-based multiplayer
games. Amazon GameLift is built on AWS’s highly available cloud infrastructure and allows you to quickly
scale high-performance game servers up and down to meet player demand – without any additional
engineering effort or upfront costs. It reduces the time required to build a multiplayer backend from
thousands of hours to just minutes.

Version 1.8
801

http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gem-multiplayer.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/fg-nodes-managing.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/component-components.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gem-multiplayer.html

Lumberyard Developer Guide
Useful Console Commands

To use GameLift in your project, there are two options:

• Enable the GameLift Gem in your project. Lumberyard has integrated Amazon GameLift, which makes it
easier for you to use GameLift.

• Enable the Lumberyard Multiplayer Gem in your project (which requires the GameLift Gem).

For information about configuring GameLift for the multiplayer sample, see Configuring the Multiplayer
Sample for Amazon GameLift (p. 757). For information about gems, see Gems in the Amazon
Lumberyard User Guide. For more information about GameLift, see Amazon GameLift.

Additional Links

• Tutorial: Creating and connecting to a game session (pdf)

• Amazon GameLift - Creating game sessions and connecting (video)

• Amazon GameLift Developer Guide

• Amazon GameLift API Reference

Useful Console Commands
Use the following commands in Lumberyard when working with a network server.

gm_debugdraw debug_draw_level

Sets the debug draw level. Accepts as a parameter a number whos bits represent the flags for the
debug data to draw. For example, when set to 1, displays an overlay with GridMate network statistics
and information.

The available bit flags come from the enum DebugDrawBits and are as follows:

enum DebugDrawBits
 {
 Basic = BIT(0),
 Trace = BIT(1),
 Stats = BIT(2),
 Replicas = BIT(3),
 Actors = BIT(4),
 EntityDetail = BIT(5),

 Full = Basic | Trace | Stats | Replicas | Actors,
 All = 0xffffffff,
 };

gm_disconnectDetection

When set to 0, disables disconnect detection. This is useful when you are debugging a server or client
and don’t want to be disconnected when stepping through code. The default value is 1.

gm_dumpstats

Write GridMate network profiling stats to file.

gm_dumpstats_file

The file to which GridMate profiling stats are written. The default is net_profile.log.

gm_net_simulator

Activate GridMate network simulator to simulate latency, packet loss, bandwidth restrictions, and other
conditions. For available options, type gm_net_simulator help .

Version 1.8
802

http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gem-gamelift.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gem-multiplayer.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gems.html
http://docs.aws.amazon.com/lumberyard/latest/userguide/
http://docs.aws.amazon.com/lumberyard/latest/userguide/
https://aws.amazon.com/gamelift/
https://s3.amazonaws.com/gamedev-tutorials/Tutorials/GameLift-Getting_started-(04)_Creating_and_connecting_to_a_game_session.pdf
https://www.youtube.com/watch?v=zqc9TvLoBE4&feature=youtu.be
http://docs.aws.amazon.com/gamelift/latest/developerguide/
http://docs.aws.amazon.com/gamelift/latest/apireference/

Lumberyard Developer Guide
CryNetwork Backward Compatibility

gm_setdebugdraw

Display an overlay with detailed GridMate networking statistics and information. A user-friendly helper
command for gm_debugdraw debug_draw_level. Possible parameters are Basic, Trace, Stats,
Replicas, and Actors.

gm_stats_interval_msec

Set the interval, in milliseconds, for gathering network profiling statistics. The default is 1000.

gm_tracelevel trace_level

Set the GridMate debugging trace verbosity level. The default is 0. The higher the value, the greater
the verbosity. Typical values range from 1 to 3.

mpstart [<local_port>]

Starts a LAN session by initializing the network system and optionally setting the local UDP port that
initializes the socket. The default port is 64090. To use the ephemeral port, set the port to 0. This is
useful if you want to connect to a server on the same computer as the client.

mphost

Create a session as host. The server listens for incoming connections on the port specified in mpstart.

mpjoin [<server_addr>] [<server_port>]

Connect to a server at the optionally specified <server_addr> and <server_port>. The defaults are
localhost and 64090, respectively.

map <map_name>

Loads the level with the specified map name. Replace <map_name> with the name of the map you want
to use. To view a list of available levels, type map, and then press the tab key.

mpdisconnect

Terminate the current game instance session.

mpstop

Terminate the multiplayer service.

CryNetwork Backward Compatibility
CryNetwork has been deprecated and removed, and is no longer be supported in Lumberyard. There
were several systems added to provide backwards compatibility for GridMate to the networked systems in
CryEngine, namely remote method invocations, network serialization, and aspects. For more information,
see the following sub topics.

Topics

• RMI Functions (p. 803)

• Network Serialization and Aspects (p. 806)

RMI Functions
To send remote method invocations (RMIs), use the InvokeRMI function, which has the following syntax:

void InvokeRMI(IRMIRep& <rep>, ParamsType&& <params>, uint32 <where>, ChannelId <channel>
 = kInvalidChannelId);

Version 1.8
803

Lumberyard Developer Guide
RMI Functions

Parameters

<rep>

Represents the remote function to be called (the RMI ID).

<params>

Specifies the parameters to pass into the remote function.

<where>

Specifies a flag that determines the category of clients to which the RMI will be sent. For information,
see the RMI Function Flags (p. 804) section later in this document.

<channel>

Specifies specific clients to which the RMI will be sent, or specific clients to exclude. For information,
see the RMI Function Flags (p. 804) section later in this document.

Ordering RMI Functions

The IGameObject.h file includes macros for declaring RMI classes (for example, those beginning with
DECLARE_SERVER_RMI_<...>). The different declaration types are as follows:

• PREATTACH – The RMI is attached at the top of the data update for the object. You can use this
declaration type to prepare the remote entity for new incoming data.

• POSTATTACH – The RMI is attached at the bottom of the data update, so it is called after the data is
serialized. You can use this declaration type to complete an action with the new data.

• NOATTACH – The RMI is not attached to a data update, so the RMI cannot rely on the data. You can use
this declaration type for calls that don’t rely on data.

Ordering Rules

The order for RMIs is only applicable within an object and attachment type set.

For example, in the following ordered list, PLAYER RMI 1, 2, and 3 will arrive in that order; however, ITEM
RMI 1 might arrive before or after the following PLAYER RMIs:

• PLAYER RMI 1

• PLAYER RMI 2

• ITEM RMI 1

• PLAYER RMI 3

Using declaration types adds a layer of complication to the order of incoming data:

• PREATTACH – Messages are ordered within themselves.

• POSTATTACH – Messages are ordered within themselves.

• NOATTACH – Messages are ordered within themselves; however, NOATTACH can only fall on either side of
the following diagram and never in between:

RMI Function Flags

To specify the clients that will receive an RMI, replace the <where> parameter in the InvokeRMI function
with one of the following flags.

Version 1.8
804

Lumberyard Developer Guide
RMI Functions

Server RMIs

eRMI_ToClientChannel

Sends an RMI from the server to a specific client. Specify the destination channel in the <channel>
parameter.

eRMI_ToOwningClient

Sends an RMI from the server to the client that owns the actor.

eRMI_ToOtherClients

Sends an RMI from the server to all clients except the client specified. Specify the client to ignore in the
<channel> parameter.

eRMI_ToRemoteClients

Sends an RMI from the server to all remote clients. Ignores the local client.

eRMI_ToOtherRemoteClients

Sends an RMI from the server to all remote clients except the remote client specified. Ignores the local
client. The remote client to ignore is specified in the <channel> parameter.

eRMI_ToAllClients

Sends an RMI from the server to all clients.

Client RMIs

eRMI_ToServer

Sends an RMI from the client to the server.

Examples

To define a function to be implemented as RMI, use the IMPLEMENT_RMI #define from IGameObject.h.

#define IMPLEMENT_RMI(cls, name)

The following example implements a new function called Cl_SetAmmoCount in the CInventory class to be
used as a client-side RMI, taking one argument of type TRMIInventory_Ammo:

Class CInventory : public CGameObjectExtensionHelper<CIventory, IInventory>
{
 // …
 DECLARE_CLIENT_RMI_NOATTACH(Cl_SetAmmoCount, TRMIInventory_Ammo, eNRT_ReliableOrdered);
 // …
};

IMPLEMENT_RMI(CInventory, Cl_SetAmmoCount)
{
 // Game code:
 TRMIInventory_Ammo Info(params);
 IEntityClass* pClass = gEnv->pEntitySystem->GetClassRegistry()-
>FindClass(Info.m_AmmoClass.c_str());
 If (pClass)
 SetAmmoCount(pClass, Info.m_iAmount);

 return true; // Always return true - false will drop connection
}

Version 1.8
805

Lumberyard Developer Guide
Network Serialization and Aspects

The following line will invoke the function:
pInventory->GetGameObject()->InvokeRMI(CInventory::Cl_SetAmmoCount(),
 TRMIInventory_Ammo(“Pistol”, 10), eRMI_ToAllClients);

The following line will invoke the function:

pInventory->GetGameObject()->InvokeRMI(CInventory::C1_SetAmmoCount(),
 TRMIInventory_Ammo("Pistol", 10), eRMI_ToAllClients);

Network Serialization and Aspects
All objects that are intended to be synchronized over the network should have a function called
NetSerialize(). In the GameObject, this appears as: IGameObject::NetSerialize().

The NetSerialize() function uses a TSerialize object of type ISerialize to transform relevant data to a
stream. The serialization uses different aspects and profiles to distinguish the various types of streams.

Note
Serialized data for a given aspect and profile must remain fixed. For example, if you serialized four
floats, you must always serialize four floats.

Aspects

You use aspects to logically group data together.

Aspects are defined as follows:

• eEA_GameClient – Information sent from the client to the server, if the client has authority over the object.

• eEA_GameServer – The normal server to client data stream.

• Dynamic/Static – Data that is constantly changing should be added to the Dynamic aspect. Objects that
rarely change should be added to the Static aspect. Updates are not sent if only one value changes.

• eEA_Script – Used where script network data is transported, including any script RMI calls.

• eEA_Physics – Used where physics data is transported. It is not divided into client/server because it
always uses the same path: (controlling-client) to serve other clients.

Profiles

Profiles allow an aspect’s fixed format data to be different. There are potentially eight profiles per aspect,
and they are only used for physics aspects (for example, switching between ragdoll and living entity).

Version 1.8
806

Lumberyard Developer Guide
Physics Scripting Guide

Physics

This section describes the Physics system and how to interact with the physics engine.

To create a physical world object, you use the CreatePhysicalWorld() function. The
CreatePhysicalWorld() function returns a pointer to the IPhysicalWorld interface. You then fill the world
with geometries and physical entities. You control the entities with the functions described in this section.
Some functions apply to almost all entities, while others apply to specific entity structures. Other functions
control how entities interact and how the world affects them.

The following sections describe these topics in detail:

Topics

• Physics Scripting Guide (p. 807)

• Geometries (p. 809)

• Physical Entities (p. 811)

• Functions for Entity Structures (p. 813)

• Collision Classes (p. 821)

• Functions for World Entities (p. 823)

Physics Scripting Guide
When scripting physics, deciding on an appropriate threading strategy can be important. This topic offers
physics scripting advice on threading and troubleshooting and provides some sample code.

Threading
When writing scripts that interact with physics, it is important to understand how the physics system
processes requests. You can configure the physics system to run in several different ways, each with its
own benefits and drawbacks. This guide covers the two most common configurations.

Version 1.8
807

Lumberyard Developer Guide
Physics Scripting Tips and Tricks

Physics on a Separate Thread

Running the physics simulation on its own thread takes advantage of a machine's multiple cores and
should lead to faster frame rates on physics-intensive games. However, this approach can make gameplay
scripting more complex.

Note
This is the default configuration starting in Lumberyard 1.8.

The following diagram shows the relationships between the physics thread and main thread.

If a change request arrives when the simulation is busy, the request is queued and is processed the next
time the simulation runs. If the simulation is idle, the change request is processed immediately.

Similarly, if a query is made when the simulation is busy, the response contains the state from the end of
the last simulation. If the simulation is idle when the query is made, the response represents the true latest
state.

In the diagram, note how OnPrePhysicsUpdate and OnPostPhysicsUpdate run between simulations. This
means that requests are processed immediately and queries represent the true latest state. You should
avoid performing time-consuming tasks in the OnPrePhysicsUpdate and OnPostPhysicsUpdate functions.
Such tasks delay the start of simulation on the physics thread.

During the OnTick event, the state of the simulation can vary. Requests are either queued or processed
immediately depending on whether the simulation has been completed for the frame.

The following table provides some tips on using the OnTick, OnPrePhysicsUpdate, and
OnPostPhysicsUpdate functions.

Function Good For Bad For EBus

OnTick Making fire-and-forget
requests

Knowing when a request is done
processing

TickBus

OnPrePhysicsUpdate

OnPostPhysicsUpdate

Making a request and
reliably querying its
impact

Time-consuming tasks PhysicsSystemEventBus

Physics on the Main Thread

Running the physics simulation in the main thread makes gameplay scripting simpler and more reliable.
All requests are processed immediately and all queries represent the latest state. However, a physics-
intensive game is more likely to impact the frame rate.

The following diagram illustrates a physics simulation on the main thread.

To enable physics in the main thread, type the following in the game.cfg file:

sys_physics_CPU=0

Physics Scripting Tips and Tricks
Following are a few troubleshooting tips for physics scripting.

To turn on debug rendering of physics proxies

Version 1.8
808

Lumberyard Developer Guide
Scripting with Physics Example

Do one of the following:

• In the console, type the following:

p_draw_helpers=1

• In Lumberyard Editor,in the Rollup Bar, click the Display Settings tab. Under Render Settings in the
Profile Options section, select Show Proxy.

Correcting Objects that Float Away
If an entity floats away like a balloon, check the following common causes and solutions:

• The entity has gone beyond the borders of the terrain. The solution is to stay on the terrain.

• The entity has a low mass, and CryPhysics has determined that it is less dense than air. The solution is
to adjust the mass or density.

Scripting with Physics Example
The following code example uses BehaviorContext syntax to script the physics for a rocket.

local rocket =
{
 Properties =
 {
 InitialVelocity = {default=Vector3(), description="The initial speed and direction
 of the entity"},
 Impulse = {default=Vector3(), description="The impulse to add every frame"},
 },
}

function rocket:OnActivate()
 PhysicsComponentRequestBus.Event.SetVelocity(self.entityId,
 self.Properties.InitialVelocity)
 self.TickHandler = TickBus.CreateHandler(self)
end

function rocket:OnTick(dt, scriptTime)
 PhysicsComponentRequestBus.Event.AddImpulse(self.Properties.Impulse)
end

function rocket:OnDeactivate()
 self.TickHandler:Disconnect()
end

return rocket

Geometries
Geometries are first created as independent objects so that they can be used alone via the IGeometry
interface which they expose and then they can be physicalized and added to physical entities. Geometry
physicalization means computing physical properties (volume, inertia tensor) and storing them in a special
internal structure. Pointers to these structures can then be passed to physical entities.

Each physicalized geometry has a reference counter which is set to 1 during creation, incremented every
time the geometry is added to an entity and decremented every time the geometry is removed or the entity

Version 1.8
809

Lumberyard Developer Guide
Geometry Management Functions

is deleted. When the counter reaches 0, the physical geometry structure is deleted and the corresponding
IGeometry object is released. The IGeometry object is also reference counted.

Geometry Management Functions
Geometry management functions are accessible through the geometry manager, which is a part of physical
world. To obtain a pointer to the geometry manger, call the GetGeomManager() function.

CreateMesh

The CreateMesh geometry management function creates a triangular mesh object from a set of vertices and
indices (3 indices per triangle) and returns the corresponding IGeometry pointer.

• The engine uses triangle connectivity information in many places, so it is strongly recommended to
have meshes closed and manifold. The function is able to recognize different vertices that represent the
same point in space for connectivity calculations (there is no tolerance though, it checks only for exact
duplicates). Open edges are ok only for geometries that will not be used as parts of dynamic physical
entities and only if there will be little or no interaction with them.

• For collision detection the function can create either an OBB or a memory-optimized AABB or a single
box tree. Selection is made by specifying the corresponding flag. If both AABB and OBB flags are
specified, the function selects the tree that fits the geometry most tightly. Since an OBB tree is tighter in
most cases, priority of AABBs can be boosted to save memory (also, AABB checks are slightly faster if
the trees are equally tight). The engine can either copy the vertex/index data or use it directly from the
pointers provided.

• The mesh_multycontact flags give some hints on whether multiple contacts are possible. Specifying
that multiple contacts are unlikely (mesh_multycontact0) can improve performance a bit at the expense
of missing multiple contacts if they do occur (note that it does not necessarily mean they will be missed,
it is a hint for the algorithm to use some optimizations more aggressively). mesh_multycontact2 disables
this optimization and ..1 is a recommended default setting. Convex geometries are detected and some
additional optimizations are used for them, although internally there is no separate class for convex
objects (this may change in the future).

• Meshes can have per-face materials. Materials are used to look up friction, bounciness, and pierceability
coefficients and can be queried by the game as a part of collision detection output.

• The CreateMesh function is able to detect meshes that represent primitives (with the specified tolerance)
and returns primitive objects instead. In order to activate this detection, the corresponding flags should
be specified. Note that primitives can't store materials. They can only have one in the physical geometry
structure, so this detection is not used when the material array has more than one material index in it.

CreatePrimitive

CreatePrimitive: Creates a primitive geometry explicitly. The corresponding primitive (cylinder, sphere,
box, heightfield, or ray) structure should be filled and passed as a parameter, along with its ::type.

RegisterGeometry

RegisterGeometry physicalizes an IGeometry object by computing its physical properties and storing
them in an auxiliary structure. Material index (surfaceidx) can be stored in it; it will be used if the
geometry itself does not have any materials specified (such as if it is a primitive). AddRefGeometry and
UnregisterGeometry comprise a reference "sandwich" for it. Note that the latter does not delete the object
until its reference count becomes 0.

Geometries and physicalized geometries can be serialized. This saves time when computing OBB trees.
That computation is not particularly slow, but serialization is faster.

Version 1.8
810

Lumberyard Developer Guide
Physical Entities

Physical Entities
Physical entities can be created via calls to the CreatePhysicalEntity method of the physical world.
CreatePhysicalEntity can create the types of entities noted in the following table:

Physical Entity Types

Type Description

PE_ARTICULATED An articulated structure, consisting of several rigid bodies connected with joints (a
ragdoll, for instance). It is also possible to manually connect several PE_RIGID entities
with joints, but in this case they will not know that they comprise a single object, and
thus some useful optimizations cannot be used.

PE_LIVING A special entity type to represent player characters that can move through the physical
world and interact with it.

PE_PARTICLE A simple entity that represents a small lightweight rigid body. It is simulated as a point
with some thickness and supports flying, sliding and rolling modes. Recommended
usage: rockets, grenades and small debris.

PE_RIGID A single rigid body. Can have infinite mass (specified by setting mass to 0), in which
case it will not be simulated but will interact properly with other simulated objects;

PE_ROPE A rope object. It can either hang freely or connect two purely physical entities.

PE_SOFT A system of non-rigidly connected vertices that can interact with the environment. A
typical usage is cloth objects.

PE_STATIC An immovable entity. An immovable entity can still be moved manually by setting
positions from outside, but in order to ensure proper interactions with simulated objects,
it is better to use PE_RIGID entity with infinite mass.

PE_WHEELEDVEHICLEA wheeled vehicle. Internally it is built on top of a rigid body, with added vehicle
functionality (wheels, suspensions, engine, brakes).

Note
PE_RIGID, PE_ARTICULATED and PE_WHEELEDVEHICLE are purely physical entities that comprise the
core of the simulation engine. The other entities are processed independently.

Creating and managing entities
When creating and managing entities, keep in mind the following:

• Entities use a two-dimensional, regular grid to speed up broad phase collision detection. The grid should
call the SetupEntityGrid function before physical entities are created.

• Entities can be created in permanent or on-demand mode and are specified by the parameter lifeTime
(use 0 for permanent entities). For on-demand mode, the entity placeholders should be created first using
CreatePhysicalPlaceholder. Physics will then call the outer system to create the full entity whenever an
interaction is required in the bounding box for this placeholder.

• If an entity is not involved in any interactions for the specified lifetime, it will be destroyed, with the
placeholder remaining. Placeholders require less memory than full entities (around 70 bytes versus 260
bytes). It is possible for an outer system to support hierarchical placeholders, such as meta-placeholders
that create other placeholders upon request.

• A sector-based, on-demand physicalization is activated after RegisterBBoxInPODGrid is called. Entities
are created and destroyed on a sector basis. The sector size is specified in SetupEntityGrid.

Version 1.8
811

Lumberyard Developer Guide
Creating and managing entities

• You can use SetHeightfieldData to set up one special static terrain object in the physical world. You
can also create unlimited terrain geometry manually and add it to an entity.

Destroying, suspending, and restoring entities

To destroy, suspend, or restore a physical entity, use DestroyPhysicalEntity and set the mode parameter
to 0, 1, or 2, respectively. Suspending an entity clears all of its connections to other entities, including
constraints, without actually deleting the entity. Restoring an entity after suspension will not restore all lost
connections automatically. Deleted entities are not destroyed immediately; instead, they are put into a
recycle bin. You might need to remove references to any one-way connections. The recycle bin is emptied
at the end of each TimeStep. You can also call PurgeDeletedEntities.

Physical entity IDs

All physical entities have unique IDs that the physics engine generates automatically. You do not need to
specify an ID during creation. You can also set a new ID later. Entities use these IDs during serialization to
save dependency information. When reading the saved state, be sure that entities have the same IDs. IDs
are mapped to entity pointers by use of an array, so using large ID numbers will result in allocation of an
equally large array.

Associations with outside objects

To maintain associations with outside engine objects, physical entities store an additional void pointer and
two 16-bit integers (pForeignData, iForeignData, and iForeignFlags) . These parameters are set from
outside, not by the entities. Use pForeignData to store a pointer to the outside engine reference entity and
iForeignData to store the entity type, if applicable.

For each material index, the physical world stores the friction coefficient, a bounciness (restitution)
coefficient, and flags. When two surfaces contact, the contact's friction and bounciness are computed as an
average of the values of both surfaces. The flags only affect raytracing.

Simulation type
Physical entities are grouped by their simulation type, in order of increasing "awareness". Certain interface
functions, such as ray tracing and querying entities in an area, allow filtering of these entities by type.

• 0 (bitmask ent_static) – Static entities. Although terrain is considered static, it does not have a special
simulation type. It can be filtered independently with the ent_terrain bitmask.

• 1 (bitmask ent_sleeping_rigid) – Deactivated, physical objects (rigid bodies and articulated bodies).

• 2 (bitmask ent_rigid) – Active, physical objects.

• 3 (bitmask ent_living) – Living entities.

• 4 (bitmask ent_independent) – Physical entities that are simulated independently from other entities
(particles, ropes, and soft objects).

• 6 (bitmask ent_triggers) – Entities (or placeholders) that are not simulated and only issue callbacks
when other entities enter their bounding box.

• 7 (bitmask ent_deleted) – Objects in the recycle bin. Do not use this directly.

Entities that have a lower simulation type are not aware of entities with higher simulation types (types 1
and 2 are considered as one for this purpose), so players (type 3) and particles (type 4) check collisions
against physical entities (types 1 and 2) but physical entities do not know anything about them. Similarly,
ropes (type 4) can check collisions against players but not the other way. However, entities of higher types
can still affect entities with lower types by using impulses and constraints. Most entities expect a particular
simulation type (and will automatically set to the proper value).

There are exceptions to the 'awareness hierarchy': for example, articulated entities can be simulated in
types 1 and 2 as fully physicalized dead bodies, or in type 4 as skeletons that play impact animations
without affecting the environment and being affected by it.

Version 1.8
812

Lumberyard Developer Guide
Functions for Entity Structures

Functions for Physical Entities
Most interactions with physical entities will use the functions AddGeometry, SetParams, GetParams,
GetStatus, and Action.

• AddGeometry – Adds multiple geometries (physicalized geometries) to entities. For more details, see the
AddGeometry section that follows.

• RemoveGeometry – Removes geometries from entities.

• SetParams – Sets parameters.

• GetParams – Gets the simulation input parameters.

• GetStatus – Gets the simulation output parameters. GetStatus requests the values that an entity
changes during simulation.

• Action – Makes an entity execute an action, such as adding an impulse.

These functions take structure pointers as parameters. When you want to issue a command, you can
create a corresponding structure (for example, as a local variable) and specify only the fields you need. The
constructor of each structure provides a special value for all fields that tells the physics engine that the field
is unused. You can also do this explicitly by using the MARK_UNUSED macro and is_unused to verify that the
field is unused.

AddGeometry

AddGeometry adds a physicalized geometry to an entity. Each geometry has the following properties:

• id – A unique part identifier within the bounds of the entity to which the geometry belongs. You can
specify the ID or use AddGeometry to generate a value automatically. The ID doesn't change if the parts
array changes (for example, if some parts from the middle are removed), but the internal parts index
might change.

• position, orientation, and uniform scaling – Relative to the entity.

• mass – Used for non-static objects; static objects assume infinite mass in all interactions. You can specify
the mass or density where the complementary value will be computed automatically (using formula mass
= density*volume; volume is stored in the physicalized geometry structure and scaled if the geometry is
scaled).

• surface_idx – Used if neither IGeometry nor physicalized geometry have surface (material) identifiers.

• flags and flagsCollider – When an entity checks collisions against other objects, it checks only
parts that have a flag mask that intersects its current part's flagsCollider. You can use 16-type bits
(geom_colltype) to represent certain entity groups. Although not enforced, it is good practice to keep
these relationships symmetrical. If collision checks are known to be one-sided (for example, entity A can
check collisions against entity B but never in reverse), you can choose to not maintain this rule. Certain
flags are reserved for special collision groups, such as geom_colltype1 = geom_colltype_players
and geom_colltype2 = geom_colltype_explosion (when explosion pressure is calculated, only parts
with this flag are considered). There are also special flags for raytracing and buoyancy calculations:
geom_colltype_ray and geom_floats.

• minContactDist – The minimum distance between contacts the current part of the entity might have
with another part of an entity. Contacts belonging to different parts are not checked for this. You can
leave this unused so it will initialize with a default value based on geometry size. Each part can have both
geometry and proxy geometry. Geometry is used exclusively for raytracing and proxy geometry. If no
proxy geometry is specified, both geometries are set to be equal to allow the raytracing to test against
high-poly meshes without needing to introduce changes to the part array layout.

Functions for Entity Structures
This section describes functions that control general and specific kinds of entity structures.

Version 1.8
813

Lumberyard Developer Guide
Common Functions

Topics

• Common Functions (p. 814)

• Living Entity-Specific Functions (p. 816)

• Particle Entity-Specific Functions (p. 817)

• Articulated Entity-Specific Functions (p. 818)

• Rope Entity-Specific Functions (p. 819)

• Soft Entity-Specific Functions (p. 820)

Common Functions

pe_params_pos
Sets the position and orientation of the entity. You can use offset/quaternion/scaling values directly or allow
the physics to extract them from a 3x3 (orientation+scaling) or a 4x4 (orientation_scaling+offset) matrix.
Physics use a right-to-left transformation order convention, with vectors being columns (vector_in_world
= Matrix_Entity * Matrix_Entity_Parts * vector_in_geometry). All interface structures that support
matrices can use either row-major or column-major matrix layout in memory (the latter is considered
transposed; thus, the corresponding member has T at the end of its name).

There is no per-entity scaling; scaling is only present for parts. When a new scaling is set with
pe_params_pos, it is copied into each part and overrides any previous individual scalings. This structure
also allows you to set the simulation type manually. After changes are made, entity bounds are typically
recalculated and the entity is re-registered in the collision hash grid; however, this can be postponed if
bRecalcBounds is set to 0.

pe_params_bbox
Sets an entity's bounding box to a particular value, or queries it when used with GetParams). The bounding
box is recalculated automatically based on the entity's geometries, but you can set the bounding box
manually for entities without geometries (for example, triggers) or placeholders. If the entity has geometries,
it might recalculate its bounding box later, overriding these values. Bounding boxes are axis-aligned and in
the world coordinate system.

pe_params_outer_entity
Specifies an outer entity for an entity. When a box of interest (its center) is inside the entity with an outer
entity, the outer entity is excluded from the set of potential colliders. This allows you to have a building
exterior quickly culled away when the region of interest is inside the building's interior. Outer entities can be
nested and an optional geometry to test for containment is supported.

pe_params_part
Sets or queries the entity part's properties. The part can be specified using an internal part index or its ID.

pe_simulation_params
Sets simulation parameters for entities that can accept these parameters (e.g. physical entities, ropes,
and soft entities). minEnergy is equal to sleep speed squared. Damping and gravity can be specified
independently for colliding and falling state, for example when there are no contacts.

pe_params_buoyancy
Sets the buoyancy properties of the object and the water plane. The physics engine does not have a list
of water volumes, so the outer system must update water plane parameters when they change. The water

Version 1.8
814

Lumberyard Developer Guide
Common Functions

surface is assumed to be a perfect plane, so you can simulate bobbing of the waves by disturbing the
normal of this surface. waterFlow specifies the water movement velocity and affects the object based on its
waterResistance property). A separate sleeping condition is used in the water (waterEmin).

pe_params_sensors
Attaches sensors to entities. Sensors are rays that the entity can shoot to sample the environment around
it. It is more efficient to do it from inside the entity step than by calling the world's raytracing function for
every ray from outside the entity step. Living entities support vertical-down sensors.

pe_action_impulse
Adds a one-time impulse to an entity. impulse is the impulse property (in N*sec; impulse P will change
the object's velocity by P/[object mass]). point is a point in world space where the impulse is applied and
used to calculate the rotational effects of the impulse. The of point momentum can be used to specify the
rotational impulse explicitly. If neither the point nor momentum are specified, the impulse is applied to the
center of the mass of the object. iApplyTime specifies the time when the impulse is applied. By default the
value is 2 ("after the next step") to allow the solver an opportunity to reflect the impulse.

pe_action_add_constraint
Adds a constraint between two objects. Points specify the constraint positions in world space. If the second
point is used and different from the first point, the solver will attempt to join them.

Relative positions are always fully constrained to be 0 (i.e. the points on the bodies will always be in one
spot) and relative rotations can be constrained in twist and bend directions. These directions correspond
to rotation around the x-axis and the remaining rotation around a line on the yz-plane (tilt of the x axis) of a
relative transformation between the two constraint coordinate frames attached to the affected bodies.

The original position of the constraint frames are specified with qframe parameters in world or entity
coordinate space (as indicated by the corresponding flag in flags). If one or both qframes are unused, they
are considered to be an identity transformation in either the world or entity frame.

Rotation limits are specified with the xlimits and yzlimits parameters, with valid element values of 0
(minimum) and 1 (maximum). If the minimum is more than or equal to the maximum, the corresponding
relative rotation is prohibited. pConstraintEntity specifies an entity that represents the constraint. When
passed a pe_action_add_constraint pointer, Action returns a constraint identifier that can be used to
remove the constraint. 0 indicates a failure.

pe_action_set_velocity
Sets the velocity of an object, which is useful for rigid bodies with infinite mass (represented as mass).
pe_action_set_velocity informs the physics system about the body's velocity, which can help the
solver ensure zero relative velocity with the objects contacted. If velocity is not set and only the position is
changed, the engine relies solely on penetrations to enforce the contacts. Velocity will not be computed
automatically if the position is set manually each frame. The body will continue moving with the specified
velocity once it has been set.

pe_status_pos
Requests the current transformation (position, orientation, and scale) of an entity or its part. You can
also use pe_params_pos with GetParams. If matrix pointers are set, the engine will provide data in the
corresponding format. The BBox member in this structure is relative to the entity's position.

pe_status_dymamics
Retrieves an entity's movement parameters. Acceleration and angular acceleration are computed based
on gravity and interactions with other objects. External impulses that might have been added to the

Version 1.8
815

Lumberyard Developer Guide
Living Entity-Specific Functions

entity are considered instantaneous. submergedFraction is a fraction of the entity's volume under water
during the last frame (only parts with the geom_float flag are considered). waterResistance contains the
maximum water resistance that the entity encountered in one frame since the status was last requested
(the accumulated value is cleared when the status is returned). This value can be useful for generating
splash effects.

Living Entity-Specific Functions
Living entities use cylinders or capsules as their bounding geometry. Normally the cylinders are hovering
above the ground and the entity shoots a single ray down to detect if it is standing on something. This
cylinder geometry always occupies the first part slot (it is created automatically). It is possible to add more
geometries manually, but they will not be tested against the environment when the entity moves. However,
other entities will process them when testing collisions against the entity.

Living entities never change their orientation themselves; this is always set from outside. Normally, living
entities are expected to rotate only around the z-axis, but other orientations are supported. However,
collisions against living entities always assume vertically oriented cylinders.

pe_player_dimensions (GetParams | SetParams)
Sets the dimensions of the living entity's bounding geometry.

heightPivot specifies the z-coordinate of a point in the entity frame that is considered to be at the feet
level (usually 0).

heightEye is the z-coordinate of the camera attached to the entity. This camera does not affect entity
movement, its sole purpose is to smooth out height changes that the entity undergoes (during walking on a
highly bumpy surface, such as stairs, after dimensions change and during landing after a period of flying).
The camera position can be requested via the pe_status_living structure.

sizeCollider specifies the size of the cylinder (x is radius, z is half-height, y is unused).

heightColliders is the cylinder's center z-coordinate.

The head is an auxiliary sphere that is checked for collisions with objects above the cylinder. Head
collisions don't affect movement but they make the camera position go down. headRadius is the radius of
this sphere and headHeight is the z-coordinate of its center in the topmost state (that is, when it doesn't
touch anything).

pe_player_dynamics (GetParams | SetParams)
Sets a living entity's movement parameters. Living entities have their 'desired' (also called 'requested')
movement velocity (set with pe_action_move) and they attempt to reach it. How fast that happens depends
on the kInertia setting. The greater this value is, the faster the velocity specified by pe_action_move is
reached. The default is 8. 0 means that the desired velocity will be reached instantly.

kAirControl (0..1) specifies how strongly the requested velocity affects movement when the entity is flying
(1 means that whenever a new requested velocity is set, it is copied to the actual movement velocity).

kAirResistance describes how fast velocity is damped during flying.

nodSpeed (default 60) sets the strength of camera reaction to landings.

bSwimming is a flag that tells that the entity is allowed to attempt to move in all directions (gravity might still
pull it down though). If not set, the requested velocity will always be projected on the ground if the entity is
not flying.

minSlideAngle, maxClimbAngle, maxJumpAngle and minFallAngle are threshold angles for living entities
that specify maximum or minimum ground slopes for certain activities. Note that if an entity's bounding
cylinder collides with a sloped ground, the behavior is not governed by these slopes only.

Version 1.8
816

Lumberyard Developer Guide
Particle Entity-Specific Functions

Setting bNetwork makes the entity allocate a much longer movement history array which might be
required for synchronization (if not set, this array will be allocated the first time network-related actions are
requested, such as performing a step back).

Setting bActive to 0 puts the living entity to a special 'inactive' state where it does not check collisions with
the environment and only moves with the requested velocity (other entities can still collide with it, though;
note that this applies only to the entities of the same or higher simulation classes).

pe_action_move

Requests a movement from a living entity. dir is the requested velocity the entity will try to reach. If iJump
is not 0, this velocity will not be projected on the ground, and snapping to the ground will be turned off for a
short period of time. If iJump is 1, the movement velocity is set to be equal to dir instantly. If iJump is 2, dir
is added to it. dt is reserved for internal use.

pe_status_living

Returns the status of a living entity.

vel is the velocity that is averaged from the entity's position change over several frames.

velUnconstrained is the current movement velocity. It can be different from vel because in many cases
when the entity bumps into an obstacle, it will restrict the actual movement but keep the movement velocity
the same, so that if on the next frame the obstacle ends, no speed will be lost.

groundHeight and groundSlope contain the point's z coordinate and normal if the entity is standing on
something; otherwise, bFlying is 1. Note that pGroundCollider is set only if the entity is standing on a non-
static object.

camOffset contains the current camera offset as a 3d vector in the entity frame (although only z
coordinates actually changes in it).

bOnStairs is a heuristic flag that indicates that the entity assumes that it is currently walking on stairs
because of often and abrupt height changes.

Particle Entity-Specific Functions

pe_params_particle

Sets particle entity parameters.

During movement, particles trace rays along their paths with the length size*0.5 (since size stands
for 'diameter' rather than 'radius') to check if they hit something. When they lie or slide, they position
themselves at a distance of thickness*0.5 from the surface (thus thin objects like shards of glass can be
simulated).

Particles can be set to have additional acceleration due to thrust of a lifting force (assuming that they have
wings) with the parameters accThrust and accLift but these should never be used without specifying
kAirResistance; otherwise, particles gain infinite velocity.

Particles can optionally spin when in the air (toggled with flag particle_no_spin). Spinning is independent
from linear motion of particles and is changed only after impacts or falling from surfaces.

Particles can align themselves with the direction of the movement (toggled with
particle_no_path_alignment flag) which is very useful for objects like rockets. That way, the y-axis of
the entity is aligned with the heading and the z-axis is set to be orthogonal to y and to point upward ('up'
direction is considered to be opposite to particle's gravity).

Version 1.8
817

Lumberyard Developer Guide
Articulated Entity-Specific Functions

When moving along a surface, particles can either slide or roll. Rolling can be disabled with the flag
particle_no_roll (it is automatically disabled on steep slopes). Note that rolling uses the particle
material's friction as damping while rolling treats friction in a conventional way. When touching ground,
particles align themselves so that their normal (defined in entity frame) is parallel to the surface normal.

Particles can always keep the initial orientation as well (particle_constant_orientation) and stop
completely after the first contact (particle_single_contact). minBounceVel specifies the lower velocity
threshold after which the particle will not bounce, even if the bounciness of the contact is more than 0.

Articulated Entity-Specific Functions
Articulated entities consist of linked, rigid bodies called structural units. Each structural unit has a joint that
connects it to its parent. For the connection structure, you should use a tree with a single root. Linked loops
are not allowed.

Articulated entities can simulate body effects without interactions with the environment by using
featherstone mode, which you can tweak so that the entity tolerates strong impacts and so that complex
body structures have stiff springs. Articulated entities use a common solver for interactive mode.

pe_params_joint

You can use pe_params_joint to:

• Create a joint between two bodies in an articulated entity

• Change the parameters of an existing articulated entity

• Query the parameters of an existing articulated entity, when used with GetParams

A joint is created between the two bodies specified in the op parameter at the pivot point (in the entity
frame). When a geometry is added to an articulated entity, it uses pe_articgeomparams to specify which
body the geometry belongs to (in idbody). idbody can be any unique number and each body can have
several geometries. There are no restrictions on the order in which joints are created, but all bodies in an
entity must be connected before the simulation starts.

Joints use Euler angles to define rotational limits. Flags that start with angle0_ can be specified individually
for each angle by shifting left by the 0-based angle index. For example, to lock the z-axis you can use
OR the flags with angle0_locked<<2). The child body inherits the coordinate frame from the first entity
(geometry) that was assigned to it.

Joint angular limits are defined in a relative frame between the bodies that the joint connects. Optionally the
frame of the child body can be offset by specifying a child's orientation that corresponds to rotation angles
(0,0,0), using q0, pMtx0, or pMtx0T. This can help to get limits that can be robustly represented using Euler
angles.

A general rule for limits is to set upper and lower bounds at least 15 to 20 degrees apart (depending on
simulation settings and the height of the joint's velocity) and to keep the y-axis limit in the -90..90 degrees
range (preferably within safe margins from its ends).

Note
All angles are defined in radians in the parameter structure.

pe_params_joint uses 3D vectors to represent groups of three values that define properties for each
angle. In addition to limits, each angle can have a spring that will pull the angle to 0 and a dashpot
that will dampen the movement as the angle approaches its limit. Springs are specified in acceleration
terms: stiffness and damping can stay the same for joints that connect bodies with different masses, and
damping can be computed automatically to yield a critically damped spring by specifying auto_kd for the
corresponding angle.

Version 1.8
818

Lumberyard Developer Guide
Rope Entity-Specific Functions

joint_no_gravity makes the joint unaffected by gravity, which is useful if you assume forces that hold the
joint in its default position are enough to counter gravity). This flag is supported in featherstone mode.

joint_isolated_accelerations makes the joint use a special mode that treats springs like guidelines
for acceleration, which is recommended for simulating effects on a skeleton. This flag is supported in
featherstone mode.

Effective joint angles are always the sum of q and qext. If springs are activated, they attempt to drive q to
0. The allows you to set a pose from animation and then apply physical effects relative to it. In articulated
entities, collisions are only checked for pairs that are explicitly specified in pSelfCollidingParts (this
setting is per body or per joint, rather than per part).

pe_params_articulated_body
pe_params_articulated_body allows you to set and query articulated entity simulation mode parameters.
Articulated entities can be attached to something or be free, and are set by the bGrounded flag. When
grounded, the entity can:

• Fetch dynamic parameters from the entity it is attached to (if bInreritVel is set; the entity is specified in
pHost)

• Be set using the a, wa, w and v parameters

bCollisionResp switches between featherstone mode (0) and constraint mode (1).

bCheckCollisions turns collision detection on and off. It is supported in constraint mode.

iSimType specifies a simulation type, which defines the way in which bodies that comprise the entity
evolve. Valid values:

• 0 – joint pivots are enforced by projecting the movement of child bodies to a set of constrained directions
|

• 1 – bodies evolve independently and rely on the solver to enforce the joints. The second mode is not
supported in featherstone mode. In constraint mode, it is turned on automatically if bodies are moving
fast enough.

We recommend setting this value to 1 to make slow motion smoother.

Lying mode

Articulated entities support a lying mode that is enabled when the number of contacts is greater than a
specified threshold (nCollLyingMode). Lying mode has a separate set of simulation parameters, such as
gravity and damping. This feature was designed for ragdolls to help simulate the high damping of a human
body in a simple way, for example by setting gravity to a lower value and damping to a higher than usual
value.

Standard simulation versus freefall parameters

Standard simulation parameters can be different from freefall parameters. When using the constraint
mode, articulated entities can attempt to represent hinge joints (rotational joints with only axis enabled)
as two point-to-point constraints by setting the bExpandHinges parameter (this value propagates to
joint_expand_hinge flags for all joints, so you do not need to manually set the value for joints).

Rope Entity-Specific Functions
Ropes are simulated as chains of connected equal-length sticks ("segments") with point masses. Each
segment can individually collide with the environment. Ropes can tie two entities together. In this case
ropes add a constraint to the entities when the ropes are fully strained and won't affect their movement.

Version 1.8
819

Lumberyard Developer Guide
Soft Entity-Specific Functions

In order to collide with other objects (pushing them if necessary) in a strained state, the rope must use
dynamic subdivision mode (set by rope_subdivide_segs flag).

pe_params_rope

Specifies all the parameters a rope needs to be functional.

Rope entities do not require any geometry. If you do not specify initial point positions, the rope is assumed
to be hanging down from its entity position. If you do specify initial point positions, segments should have
equal length but within some error margin. Ropes use an explicit friction value (not materials) to specify
friction.

If pe_params_rope is passed to GetParams, pPoints will be a pointer to the first vertex in an internal rope
vertex structure, and iStride will contain the size of it.

Soft Entity-Specific Functions
There are two types of soft entities: mesh-based and tetrahedral lattice-based. Mesh based entities use
a soft, constraint-like solver and are typically cloth objects. Tetrahedral lattice-based entities use a spring
solver and are typically jelly-like objects.

The longest edges of all triangles can optionally be discarded with the sef_skip_longest_edges flag.

Collisions are handled at the vertex level only (although vertices have a customizable thickness) and work
best against primitive geometries rather than meshes.

pe_params_softbody

This is the main structure to set up a working soft entity (another one is pe_simulation_params).

Thickness

The thickness of the soft entity is the collision size of vertices (they are therefore treated as spheres). If an
edge differs from the original length by more than maxSafeStep, positional length enforcement occurs.

Damping

Spring damping is defined with kdRatio as a ratio to a critically damped value (overall damping from
pe_simulation_params is also supported).

Wind

Soft entities react to wind if airResistance is not 0 (if wind is 0, having non-zero airResistance would
mean that the entity will look like it is additionally damped - air resistance will attempt to even surface
velocity with air velocity).

Water

Soft entities react to water in the same way that they react to wind, but the parameters specified in
pe_params_buoyancy are used instead. Note that the Archimedean force that acts on vertices submerged
in the water will depend on the entity's density which should be defined explicitly in pe_simulation_params
(dependence will be same as for rigid bodies - the force will be 0 if waterDensity is equal to density).
collTypes enables collisions with entities of a particular simulation type using ent_ masks.

pe_action_attach_points

Can be used to attach some of a soft entity's vertices to another physical entity.

piVtx specifies vertex indices.

Version 1.8
820

Lumberyard Developer Guide
Collision Classes

points specify attachment positions in world space. If points values are not specified, current vertex
positions are the attachment points.

Collision Classes
Use collision classes to filter collisions between two physical entities. A collision class comprises two 32-bit
uints, a type, and an ignore.

You can use collision classes to implement scenarios such as "player only collisions," which are objects
passable by AI actors but not passable by players. This feature allows you to configure filtering of the
collision between physical entities independently of their collision types.

Setup
Physical entities can have one or more collision classes and can ignore one or more collision classes. To
have a physical entity ignore a collision, use the ignore_collision attribute of the <Physics> element in
the <SurfaceType> definition, as shown in the following example:

SurfaceTypes.xml

<SurfaceType name="mat_nodraw_ai_passable">
 <Physics friction="0" elasticity="0" pierceability="15"
 ignore_collision="collision_class_ai"/>
</SurfaceType>

All physical entity types such as LivingEntity and ParticleEntity are supplied with default collision
classes like collision_class_living and collision_class_particle. Living entity uses one additional
game specific collision class: either collision_class_ai for AI actors, or collision_class_player for
players.

Player.lua

Player = {
...
 physicsParams =
 {
 collisionClass=collision_class_player,
 },
...
}

BasicAI.lua

BasicAI = {
...
 physicsParams =
 {
 collisionClass=collision_class_ai,
 },
...
}

Code

struct SCollisionClass

Version 1.8
821

Lumberyard Developer Guide
Types

{
 uint32 type; // collision_class flags to identify the entity
 uint32 ignore; // another entity will be ignored if *any* of these bits are set in
 its type
};

The type identifies which entity the collision classes belong to.

Some collision classes like the following are defined in CryPhysics:

• collision_class_terrain

• collision_class_wheeled

• collision_class_living

• collision_class_articulated

• collision_class_soft

• collision_class_roped

• collision_class_particle

Other collision classes are defined in GamePhysicsSettings.h, starting from the collision_class_game
bit:

#define GAME_COLLISION_CLASSES(f) \
 f(gcc_player_capsule, collision_class_game << 0) \
 f(gcc_player_body, collision_class_game << 1) \
 f(gcc_pinger_capsule, collision_class_game << 2) \
 f(gcc_pinger_body, collision_class_game << 3) \
 f(gcc_vehicle, collision_class_game << 4) \
 f(gcc_large_kickable, collision_class_game << 5) \
 f(gcc_ragdoll, collision_class_game << 6) \
 f(gcc_rigid, collision_class_game << 7) \
 f(gcc_alien_drop_pod, collision_class_game << 8) \
 f(gcc_vtol, collision_class_game << 9) \

All these classes are automatically exposed to Lua. Brushes and most objects have the collision classes
available in the properties through the editor.

Types
For types, you can set many or zero bits.

In the following example, of the classes LIVING, PLAYER, TEAM1, TEAM2, AI, AI_1, and AI_2, player1
belongs to the LIVING entity class, the PLAYER class, and the TEAM1 class:

SCollisionClass player1(0,0), player2(0,0), ai1(0,0), ai7(0,0), object1(0,0);

player1.type = LIVING|PLAYER|TEAM1;
player2.type = LIVING|PLAYER|TEAM2;
ai1.type = LIVING|AI|AI_1;
ai7.type = LIVING|AI|AI_2;
object1.type = 0;

Filtering the collision
Filtering occurs by checking the type of one entity against the ignore of another entity.

This is done both ways, and if bits overlap, then the collision is ignored. For example:

Version 1.8
822

Lumberyard Developer Guide
Interface

bool ignoreCollision = (A->type & B->ignore) || (A->ignore & B->type);

If you want ai7 to ignore collisions with anything that has AI_1 set, then add AI_1 to the ignore flags like
this:

ai7.ignore = AI_1

If you want object1 to ignore all living physical entities, set its ignore flag like this:

object1.ignore=LIVING

Interface
• For code, see physinterface.h and GamePhysicsSettings.h.

• To access and set the collision classes on the physical entity, use *pe_collision_class struct
SCollisionClass pe_params_collision_class.

• For helpers that set additional ignore maps, see GamePhysicsSettings.h.

• In Lua, see SetupCollisionFiltering and ApplyCollisionFiltering. Lua script-binding is done
through SetPhysicParams(PHYSICPARAM_COLLISION_CLASS).

Functions for World Entities
Use the functions in this section to modify entities or a physical world environment.

Advancing the Physical World Time State
The TimeStep functions make the entities advance their state by the specified time interval.

If timeGranularity in the physical variables is set, the time interval will be snapped to an integer value with
the specified granularity (for example, if timeGranularity is 0.001, the time interval will be snapped to a
millisecond).

Entities that perform the step can be filtered with ent_ flags in the flags parameter.

The flags parameter can contain ent_ masks for Simulation type (p. 812).

The flags parameter can also contain the ent_flagged_only flag. This flag causes entities to be updated
only if the entities have the pef_update flag set.

Specifying the ent_deleted flag will allow the world to delete entities that have timed out if physics on
demand is used.

Most entities have the maximum time step capped. To have larger timesteps, entities have to perform
several substeps. The number of substeps can be limited with the physics variable nMaxSubsteps.

Returning Entities with Overlapping Bounding Boxes
The function GetEntitiesInBox uses the internal entity hash grid to return the number of entities
whose bounding boxes overlap a specified box volume. The function supports filtering by Simulation
type (p. 812) and optional sorting of the output list by entity mass in ascending order.

Syntax

Version 1.8
823

Lumberyard Developer Guide
Returning Entities with Overlapping Bounding Boxes

virtual int GetEntitiesInBox(Vec3 ptmin,Vec3 ptmax, IPhysicalEntity **&pList, int objtypes,
 int szListPrealloc=0) = 0;

Example call

IPhysicalEntity** entityList = 0;
int entityCount = gEnv->pPhysicalWorld->GetEntitiesInBox(m_volume.min, m_volume.max,
 entityList,
 ent_static | ent_terrain | ent_sleeping_rigid | ent_rigid);

Parameters

Parameter Description

ptmin Minimum point in the space that defines the desired box volume.

ptmax Maximum point in the space that defines the desired box volume.

pList Pointer to a list of objects that the function poplulates.

objtypes Types of objects that need to be considered in the query.

szListPreallocIf specified, the maximum number of objects contained in the pList array.

The possible object types are described in the physinterface.h header file in the entity_query_flags
enumerators. A few are listed in the following table:

Entity type
flag

Description

ent_static Static entities

ent_terrain Terrain

ent_sleeping_rigidSleeping rigid bodies

ent_rigid Rigid bodies

After the function completes, you can easily iterate through the entity list to perform desired operations, as
in the following code outline:

for (int i = 0; i < entityCount; \++i)
{

 IPhysicalEntity* entity = entityList[i];

 [...]

 if (entity->GetType() == PE_RIGID)
 {
 [...]
 }

 [...]

}

Version 1.8
824

Lumberyard Developer Guide
Casting Rays in an Environment

If ent_alloctate_list is specified, the function allocates memory for the list (the memory can later be
freed by a call to pWorld->GetPhysUtils()->DeletePointer). Otherwise, an internal pointer will be
returned.

Note
Because the physics system uses this pointer in almost all operations that require forming an entity
list, no such calls should be made when the list is in use. If such calls are required and memory
allocation is undesired, copy the list to a local pre-allocated array before iterating over it.

Casting Rays in an Environment
The RayWorldIntersection physical world function casts rays into the environment.

Depending on the material that the ray hits and the ray properties, a hit can be pierceable or solid.

A pierceable hit is a hit that has a material pierceability higher than the ray's pierceability. Material
pierceability and ray pierceability occupy the lowest 4 bits of material flags and RayWorldIntersection
flags.

Pierceable hits don't stop the ray and are accumulated as a list sorted by hit distance. The caller provides
the function with an array for the hits. A solid hit (if any) always takes the slot with index 0 and pierceable
hits slots from 1 to the end.

Optionally, the function can separate between 'important' and 'unimportant' pierceable hits (importance is
indicated by sf_important in material flags) and can make important hits have a higher priority (regardless
of hit distance) than unimportant ones when competing for space in the array.

By default, RayWorldIntersection checks only entity parts with the geom_colltype_ray flag. You can
specify another flag or combination of flags by setting flags |= geom_colltype_mask<<rwi_colltype_bit.
In this case, all flags should be set in part so that the specified flag can be tested.

RayTraceEntity is a more low-level function and checks ray hits for one entity only. RayTraceEntity
returns only the closest hit.

Alternatively, CollideEntityWithBeam can perform a sweep-check within a sphere of the specified
radius. In order to detect collisions reliably, the sphere specified should be outside of the object. The org
parameter corresponds to the sphere center.

Creating Explosions
The function SimulateExplosion is used to simulate explosions in a physical world.

The only effect of explosions inside the physics system are impulses that are added to the nearby objects.
A single impulse is calculated by integrating impulsive pressure at an area fragment multiplied by this area
and scaled by its orientation towards the epicenter.

Impulsive pressure has a falloff proportional to 1/distance2. If distance is smaller than rmin, it is clamped
to rmin.

impulsive_pressure_at_r is the impulsive pressure at distance r.

SimulateExplosion can optionally build an occlusion cubemap to find entities occluded from the explosion
(nOccRe_s should be set to a non-zero cubemap resolution in one dimension in this case). First, static
entities are drawn into the cubemap, and then dynamic entities of the types specified in iTypes are tested
against the map. Thus, dynamic entities never occlude each other.

Passing -1 to nOccRes tells the function to reuse the cubemap from the last call and process only the
dynamic entities that were not processed during the last call. This is useful when the code that creates

Version 1.8
825

Lumberyard Developer Guide
Creating Explosions

the explosion decides to spawn new entities afterwards, such as debris or dead bodies, and wants to add
explosion impulses to them without recomputing the occlusion map.

Due to the projective nature of the cubemap, small objects very close to the epicenter can occlude more
than they normally would. To counter this, rmin_occ can specify linear dimensions of a small cube that is
subtracted from the environment when building the occlusion map. This crops the smaller objects but can
make explosions go through thin walls, so a compromise set of dimensions should be used.

nGrow specifies the number of occlusion cubemap cells (in one dimension) that dynamic entities are inflated
with. This can help explosions to reach around corners in a controllable way. After a call has been made to
SimulateExplosion, the physics system can return how much a particular entity was affected by by calling
IsAffectedByExplosion.

IsAffectedByExplosion returns fraction from zero to one. The IsAffectedByExplosion function performs
a lookup into a stored entity list; it does not recompute the cubemap. The explosion epicenter used for
generating impulses can be made different from the one used to build a cubemap. For example, you
can create explosions slightly below the ground to make things go up instead of sideways. Note that this
function processes only parts with geom_colltype_explosion.

Version 1.8
826

Lumberyard Developer Guide
Profiler Tutorial

Profiler

Profiler is in preview release and is subject to change.

Profiler is a Lumberyard tool that can capture, save, and analyze network, CPU, and VRAM usage
statistics. You can used the saved data to analyze network usage frame by frame, fix problems in the use
of network bandwidth, and optimize the performance of your game.

To capture data, Profiler works with GridHub. When you launch Profiler, GridHub launches automatically as
a supporting background process. For more information about GridHub, see Using GridHub (p. 839).

Topics

• Profiler Tutorial (p. 827)

• Creating and Using Annotations (p. 830)

• Using Profiler for Networking (p. 832)

• Using the Profiler for CPU Usage (p. 835)

• Using Profiler for VRAM (p. 837)

• Using GridHub (p. 839)

Profiler Tutorial
Profiler is in preview release and is subject to change.

You can register an application in GridHub and use Profiler to capture, inspect, play back, and export the
data that you collect.

Topics

• Registering Your Application (p. 828)

Version 1.8
827

Lumberyard Developer Guide
Registering Your Application

• Launching Profiler (p. 828)

• Capturing Data (p. 828)

• Inspecting Data (p. 829)

• Playing Back Data (p. 829)

• Exporting Data (p. 830)

Registering Your Application
To enable Profiler to capture information from your application, you must first register the application in
GridHub. To do so, add AzFramework::TargetManagementComponent to the application’s SystemComponent.

Note: Lumberyard's built-in applications already have this component added by default.

Launching Profiler
Unlike many Lumberyard utilities, you launch Profiler from its own executable file.

To launch profiler

• From the Lumberyard dev\Bin64\ directory, run Profiler.exe.

Capturing Data
Profiler has two main modes of use: capture mode and inspection mode.

To use capture mode, perform the following steps.

To capture data

1. Click Target.

Profiler shows you the applications that are available for profiling:

2. Select a target application.

After you have selected a target, the target selector shows the state of the connection to the target.
The next time you launch Profiler, it automatically selects your target for you, if it's available.

The window is divided horizontally into channels that have associated Profiler instances. A channel is a
collection of Profiler instances that relate to a specific system.

3. Each Profiler instance in a channel has a unique color. A Profiler instance is active when its color is
solid:

Click the color next to a Profiler instance. The color is no longer solid, showing that the Profiler
instance is inactive:

Click the color again to turn on the display and activate the instance again.

4. After you have selected a target and chosen the Profiler instances that you want to see, click Capture.

After the capture begins, data begins to populate the channels.

5. To stop the data capture, click Stop Capture.

6. When prompted, save the captured data to disk. Profiler saves the data in a binary format file with a
.drl extension, reloads the data from disk, and switches to inspection mode.

Version 1.8
828

Lumberyard Developer Guide
Inspecting Data

Note
If you do not save the data, it will be discarded.

Inspecting Data
You can use profiler to examine the data that you have captured.

To inspect captured data

1. In Profiler, click File, Open Data, or press Ctrl+O:

2. Navigate to the .drl file that contains your saved data and open it.

The main screen of the Profiler provides an overview of the channels of system information. This
example uses a file that has 1162 frames of data:

You can use this main view to discover anomalies across channels, or to examine particular areas of
interest at a high level.

When you open the main window, the scroll box at the bottom is on the right because the playback
stopped at the end of the captured data.

Notice the red vertical line on the right.

3. Click in the channels area of the window.

The red vertical line moves to where you clicked. The frame indicator shows the new position of the red
line. You can place the red line, which is called the scrubber, on any frame that you want to examine
in detail. For finer control over the position of the scrubber, you can enter a number in the Frame
indicator.

The scrubber moves accordingly.

4. To view detailed information about a frame on which the scrubber rests, the click the Detailed
Profiling Information icon next to the profiler instance whose data you would like to see:

Profiler instance information appears in a detail window.

Individual profilers present details in different ways, so their detail windows can look different. For
information on system-specific detail windows in Profiler, see Using Profiler for Networking (p. 832),
Using the Profiler for CPU Usage (p. 835), and Using Profiler for VRAM (p. 837).

5. To return to capture mode from inspection mode, click the LIVE tab.

Playing Back Data
You can mark and play back a subset of your captured data.

Notice that after you moved the scrubber the first time, a yellow vertical line appeared on the right at the
end of the data:

This yellow marker is movable and marks the end of your desired playback range. By default, it is at the
end of the captured data but may be obscured by the red scrubber.

1. Scroll the window all the way to the left, to the beginning of the capture range.

Now a yellow marker also appears at the beginning of the data. You can use these two yellow markers,
which by default are at the beginning and end of the capture range, to restrict the range of playback to
an area of data that you are interested in. You will use these shortly.

Version 1.8
829

Lumberyard Developer Guide
Exporting Data

If you have many frames of data (as in this example), the initial view does not show you all frames by
default.

2. To see all frames at once, click the Frame Count Selector, which determines the number of frames
visible, and choose All frames:

Now you can see the entire range of captured data, with the yellow markers at the beginning and at the
end:

3. Drag the two yellow markers to an area of data that you want to play back. You can ignore the position
of the scrubber for now.

4. Click Play to start the playback:

As the data plays back, the scrubber moves from the first yellow marker to the second, and then loops
back to the first.

Here are some tips to keep in mind:

• If the playback speed is too fast (the default is 60), use the Playback Speed option to adjust it from
1 through 60.

• If you click a location in the playback window during playback, the playback stops and moves the
scrubber to the location that you clicked.

• You can place the scrubber on a frame that you are interested in and click the detail button for a
profiler instance to see the detail window for the frame.

• For greater convenience and visibility, leave the profiler instance detail window open to see the data
change in the detail window as the scrubber loops between markers.

5. Click Stop to stop the playback.

Exporting Data
Some Profiler instances have an export option that you can use to save data to a .csv file.

To export data from a Profiler instance to a .csv file

1. Click the Save to CSV icon for the Profiler instance whose data you want to save:

Note
Not all profilers have the data export option.

2. To choose the fields that you want to export, click Customize in the export dialog box.

Creating and Using Annotations
Profiler is in preview release and is subject to change.

In Profiler, annotations are a convenient way of highlighting per-frame log information from the data
captured from your application. After you learn how annotations are used in Profiler, you can modify your
application so that they appear in Profiler.

Topics

• Using Annotations (p. 831)

• Creating Annotations (p. 831)

Version 1.8
830

Lumberyard Developer Guide
Using Annotations

• Viewing Annotations in Trace Messages Profiler (p. 832)

Using Annotations
Annotations in the Lumberyard Profiler tool flag frames in your captured data that have associated log
information. By default, annotations are turned off.

To use annotations

1. To turn on annotations in the Lumberyard Profiler tool, click Configure Annotations:

The Configure Annotations dialog box contains a list of available annotations and their display colors.
For information on creating annotations for your application, see Creating Annotations (p. 831).

2. When you select an annotation in the dialog box, a marker and line of the same color appears in the
channel display. Note that you might have to scroll horizontally to find the marker.

3. To display details for the annotations that occurred on a frame, pause your pointer on an annotation
marker. In the example image, IP addresses have been redacted out.

Creating Annotations
To create an annotation, you add one or more lines of C++ logging code to your application. The added
code instructs Lumberyard's logging system to include the logging information that you specify as a part
of your capture. Lumberyard transforms the logged messages into annotations for you. Then, in Profiler,
when you click Configure Annotations, you actually choose which system's annotations are displayed (for
example, GridMate or MultiplayerProject).

To create an annotation, place a line of C++ code like the following in your application:

AZ_TracePrintf("GridMate","Connection %s => %s (%s) (Connections=%d!\n")

The first parameter is the window (that is, system) of the trace (in this case, GridMate), and the second is
the content of the trace that will be shown as the annotation.

The example results in the following annotation text:

GridMate - Connection <IP_Address>|64090 => <IP_Address>|57455 (Client) (Connections=1)!

The text displays in Profiler like this:

Alternatives to AZ_TracePrintf
In your code, instead of using AZ_TracePrintf, you can use AZ_Error or AZ_Warning, depending on the
degree of severity that you want. AZ_TracePrintf always logs a message, but is of the lowest concern from
an inspection viewpoint.

The following example uses AZ_Error:

if (networkTableContext.ReadValue(elementIndex,forcedDataSetIndex))
{
 AZ_Error("ScriptComponent",forcedDataSetIndex >= 1 && forcedDataSetIndex <=
 ScriptComponentReplicaChunk::k_maxScriptableDataSets,"Trying to force Property (%s) to an
 invalid DataSetIndex(%i).",scriptProperty->m_name.c_str(),forcedDataSetIndex);
 if (forcedDataSetIndex >= 1 && forcedDataSetIndex <=
 ScriptComponentReplicaChunk::k_maxScriptableDataSets)
 {
 networkedTableValue.SetForcedDataSetIndex(forcedDataSetIndex);

Version 1.8
831

Lumberyard Developer Guide
Viewing Annotations in Trace Messages Profiler

 }
}
else
{
 AZ_Error("ScriptComponent",false,"Trying to force Property (%s) to unknown
 DataSetIndex. Ignoring field.", scriptProperty->m_name.c_str());
}

In the example, if either of the error conditions occur, an annotation is created.

Viewing Annotations in Trace Messages Profiler
Another way to confirm that your annotations are in place is by using the Trace Messages profiler.

In the Profiler Logging channel, click the Trace messages profiler details icon to see the logging systems
currently in place:

The Trace messages profiler instance shows all the trace messages that were generated from the start of
the capture to the currently analyzed frame. Messages are shown with the oldest message at the top and
the newest message at the bottom:

You can use the Window Filter to show the system and/or Message Filter to show the message text that
you are interested in.

The following example, filtered by "GridMate", shows the message specified by the line of code that was
added to the application:

Using Profiler for Networking
Profiler is in preview release and is subject to change.

You can use the Lumberyard Profiler tool to examine how your game uses network bandwidth, including its
GridMate carrier connections and replica activity. You can use network-specific profilers to drill down further
into the activity of specific replica chunks, RPCs, and data sets.

Prerequisites
This topic assumes familiarity with Lumberyard networking and the Lumberyard Profiler tool. For
information on Lumberyard networking, see Networking System (p. 754). For an introduction to the Profiler
tool, see Profiler (p. 827).

Topics

• Carrier Profiler (p. 832)

• Replica Activity Profiler (p. 833)

Carrier Profiler
The Profiler tool has a GridMate channel with Carrier and Replica activity profiler instances. You can use
the Carrier profiler detail view to examine the bandwidth usage of a selected GridMate carrier connection.

To open the detail view for the Carrier profiler

• Click the Detailed Profiling Information icon for Carrier in the GridMate channel:

Version 1.8
832

Lumberyard Developer Guide
Replica Activity Profiler

The Carrier profiler detail view resembles the following image:

This view uses all of the data supplied in the capture session to show an overview of the bandwidth
usage through the GridMate carrier for the selected connection. It includes the following information:

• Total Sent/Total Received – The total number of bytes sent and the total number of bytes received
on the selected connection.

• User Data Sent/User Data Received – The user data sent and the user data received on the
selected connection. This data does not include the overhead associated with carrier or connection
maintenance.

• Packets Sent/Packets Received – The number of packets sent and the number of packets
received.

• Return Trip Time (Latency) – How many seconds the packets took to make a return trip.

Replica Activity Profiler
You can use the Replica Activity profiler to see how much replica bandwidth your application is using.

To open the Replica Activity profiler

• Click the Detailed Profiling Information icon for Replica activity.

The Replica Activity profiler detail view has a pair of Bytes Sent and Bytes Received graphs at the
top, a toolbar to control the display in the middle, and a table of replicas at the bottom:

This view is useful for discovering how much bandwidth a single entity is using, and for finding what
information is synchronized in response to particular events for particular entities.

Two main detail views are available for replica activity: Replica and Chunk Type. The view defaults to
Replica, but Profiler remembers your most recent choice and uses it the next time you view replica activity
details.

Using Replica View

In replica view, the table shows how much data each replica used in a given frame.

To change the view to Replica

• In the toolbar, choose Replica.

Each replica is represented by its associated color in the graphs above the toolbar. Replica view
includes the following information:

• Bytes Sent – Shows bandwidth usage in bytes sent by the object for a particular frame.

• Bytes Received – Shows bandwidth usage in bytes received by the object for a particular frame.

Version 1.8
833

Lumberyard Developer Guide
Replica Activity Profiler

To display or hide an individual line in the graph

• Double-click the associated row in the tree.

The toolbar also offers the following options:

• Hide All – Hides the line graphs of all replicas in the table.

• Show All – Shows the line graphs for all replicas in the table.

• Hide Selected and Show Selected – Use Ctrl+click to select individual replicas in the table, and
then click Hide Selected or Show Selected to hide or show the graphs for the replicas that you
selected.

• Display Range – Determines the number of frames that are shown in the graph, with the currently
selected frame in the center. You can use this option to zoom in or out on the data.

To display replica chunk details for a particular replica

• Click its details icon.

The graph shows the bytes sent and received for a replica chunk, data set, and RCP:

You can use this details view to see what replica chunk types a given replica is using, how much data
each replica chunk type is using, and how much bandwidth individual data sets and RPCs are using.

Tip
Click Expand All to list all replica chunks in all replicas, and every data set and remote procedure
call (RPC) in each replica chunk:

To use the Replica Activity profiler tree view

• Do either of the following:

• Select a row to highlight its corresponding line in the graph.

• Double-click a row to display or hide the graph for the row.

The following information is available:

• Display Name – The debug name associated with the corresponding row of the table.

• Sent Bytes – The number of bytes sent for an item, including all information sent by children of the
item.

• Received Bytes – The number of bytes received by an item, including all information received by
children of the item.

 Version 1.8
834

Lumberyard Developer Guide
Using the Profiler for CPU Usage

Chunk Type View

Chunk type view shows you how much data each chunk type used in a given frame. The view is useful for
seeing how much information a particular system might be using across all entities.

To change the view to Chunk Type

• In the toolbar on the main detail page for Replica activity, choose Chunk Type.

The chunk type view shows how much data a particular replica chunk type is using in a given frame:

To inspect chunk type details

• Click the details icon for the chunk type:

The details window shows which replicas are using a chunk type's bandwidth, how much data they are
using, and how much data the individual data sets and RPCs are using:

As before, you can expand the items in the tree to see detailed information about each:

Using the Profiler for CPU Usage
Profiler is in preview release and is subject to change.

The CPU profiler gathers usage statistics about how long a function or method executed, how many times it
was executed, who called it, and how much of a frame was spent on it. You can combine this information to
get a systemwide view of usage, or isolate particular systems by filtering for specific threads.

To use the CPU profiler

1. To open the detail view for the CPU profiler, click the Detailed Profiling Information icon for the CPU
profiler instance.

The CPU details view has a graph of CPU usage, a toolbar, and a tree view of calls made in a frame.
Each call in the tree view has the same color as its corresponding line in the graph:

2. Pause your mouse on a line in the graph to see the call that the line represents and to display the
specific value for the graph at the area near the cursor.

3. To show or hide the line graph of a row in the tree, double-click the row.

Understanding the Tree View
The CPU profiler tree view represents a call hierarchy of profiler log points (called hooks). A profiler hook
that is active while another call is active shows as a child of the first hook. The hooks act as a stack: The
last hook that was pushed onto the stack is the parent of the hook that was pushed onto the stack before it.
The tree view has the following information:

Function

The function declaration where the profiler data point was generated.

Comment

A user-defined message that distinguishes specific events in the same function.

Version 1.8
835

Lumberyard Developer Guide
Controlling the Display

Excl. Time (Micro)

(Exclusive time) The time, in microseconds, spent executing this function and no other functions called
by this function.

Incl. Time (Micro)

(Inclusive time) The time, in microseconds, spent executing this function and other functions called by
this function.

Excl. Pct

(Exclusive percent) Exclusive time represented as a percent of total run time.

Incl. Pct

(Inclusive percent) Inclusive time represented as a percent of total run time.

Calls

The number of calls to this function.

Child Time (Micro)

The time, in microseconds, that functions that were called by this function took to execute.

Total Time (Micro)

A running total of the time, in microseconds, that was spent inside of this function.

Child Calls

How many functions this function called.

Total Calls

The running total of how many times this function was called.

Thread ID

The thread on which this function was executed

Controlling the Display
You can use the toolbar to control how the captured CPU data is displayed:

Hide Selected

Hide the graph of the rows selected in tree view.

Show Selected

Show the graph of the rows selected in tree view.

Hide All

Hides the graph of all rows in the tree view.

Show All

Shows the graphs of all rows in the tree view.

Invert

Shows graphs for all rows in the tree view that are hidden; hides the graphs of all rows in the tree view
that are showing.

Expand Tree

Expands all rows in the tree view hierarchy.

Version 1.8
836

Lumberyard Developer Guide
Using Profiler for VRAM

The right side of the toolbar offers more options:

All Threads

Use the thread selector to control which threads are shown in the tree view and in the graph:

Incl. Time

Use this selector to choose the meaning of the time displayed.

• Incl. Time – (Inclusive time) The time spent in this function inclusively.

• Excl. Time – (Exclusive time) The time spent in this function exclusively.

• Calls – The number of times this function was called in the frame.

• Acc. Time – (Accumulated time) The total amount of time spent in this function up to the frame being
analyzed.

• Acc. Calls – (Accumulated calls) – The total number of times this function was called up to the frame
being analyzed.

<number> Frames

Use this selector to choose how frames of history are displayed in the graph:

Delta

Unused option.

Autozoom

When selected, maintains the approximate zoom level (number of frames displayed) whenever the
graph changes.

Flat View

Flattens the tree of function calls (removes the hierarchical indentation), as in the following image:

Using Profiler for VRAM
Profiler is in preview release and is subject to change.

You can use the video memory profiler (VRAM profiler) to determine which resources are contributing most
to run-time VRAM usage in your game.

The VRAM profiler records the amount of video memory used by a game, including how many memory
deallocations and allocations occurred during the capture. This latter information is useful in tracking down
rendering performance bottlenecks.

You can also use the memory usage information from VRAM profiler to determine your game's minimum
PC GPU (graphics processing unit) memory requirements, or to determine whether your game will run out
of memory on a console or mobile device.

Topics

• Notes (p. 838)

• Understanding the Captured Data (p. 838)

Version 1.8
837

Lumberyard Developer Guide
Notes

• Inspecting the Data (p. 838)

Notes
The VRAM profiler has the following attributes:

• The VRAM profiler has no graph view or tree view.

• The only supported export format is .csv. For steps on saving Profiler data to a .csv file, see Exporting
Data.

• Lumberyard uses a variety of memory pooling schemes, so the actual allocated amount of VRAM is
slightly more than what is reported.

Understanding the Captured Data
The following image shows how your saved .csv file appears in a spreadsheet application:

The captured data contains essentially two tables of information: an overview of memory allocation and
usage (divided between texture and buffer assets), and a list of resources with the amount of VRAM that
was allocated for each during the capture.

Detailed information about each heading follows.

Category

Indicates the type of allocation:

• Texture – Includes texture assets, dynamically generated textures, and frame buffers.

• Buffer – Includes vertex and index buffers, constant buffers, and other run-time buffers.

Number of Allocations

The number of allocation events recorded. When the capture starts, all active allocations are sent to
the profiler as a starting number. Any new allocations or deallocations will increase or decrease this
number.

Memory Usage

The total size, in bytes, of VRAM used.

Resource Name

The name and full path of the allocated resource. A resource name without a path usually denotes a
run-time engine resource.

VRAM Allocation Size

The size, in bytes, of the allocation.

Inspecting the Data
When you first open the spreadsheet, the data is unordered. To sort the data, you can use a spreadsheet
application:

To quickly and easily identify the largest offending assets or run-time resources, sort by VRAM Allocation
Size in descending order, or by Resource Name from A to Z:

Version 1.8
838

http://docs.aws.amazon.com/lumberyard/latest/developerguide/profiler-exporting-data.html
http://docs.aws.amazon.com/lumberyard/latest/developerguide/profiler-exporting-data.html

Lumberyard Developer Guide
Using GridHub

Negative VRAM Allocation Sizes

Some fields may have a negative number for VRAM Allocation Size, as in the following image:

These important occurrences show that a VRAM deallocation event occurred during the capture. If you
observe a large number of deallocation entries over a short time period, your game might be experiencing
a significance decrease in performance. To improve your game's performance across all platforms, you
should aim to have as few idle per-frame VRAM allocations and deallocations as possible.

Why Some Textures Are Not Reported in the .csv File

If you see a lot of allocations named StreamingTexturePool or entries like
$TexturePool_9_0000000002C59248, this means the texture streaming system is active. The texture
streaming system allocates all textures by default into a variety of cached texture pools. The VRAM profiler
reports the size of the active streaming pools and not the names of the actual texture assets. To obtain
the names and sizes of the allocated and loaded textures, set r_TexturesStreaming=0 in your system
configuration file, and then do another capture. This setting disables the texture streaming system and
causes the true sizes of the texture allocations to be reported.

Note
In this situation, it is advisable to do two captures: one with r_TexturesStreaming enabled, and
one with it disabled. When texture streaming is enabled, your VRAM usage is less because of
texture eviction and the loading of lower resolution mipmap levels. The memory reporting is more
accurate when texture streaming is enabled, but you get a much clearer view of your worst-case
memory usage when texture streaming is disabled.

Using GridHub
GridHub is in preview release and is subject to change.

GridHub is Lumberyard's connection hub for debugging. GridHub acts as a central hub through which
specified local clients connect with each other and exchange information. When you run the Lumberyard
diagnostic and debugging tools Profiler.exe or LuaIDE.exe (located in the \dev\Bin64 directory),
GridHub launches as a background process in Windows and enables their functionality. For more
information about Profiler, see Profiler (p. 827).

Note
Because GridHub listens for connections on the loopback address (127.0.0.1), you must run
GridHub on the same computer as the target application.

Topics

• Registering an Application in GridHub (p. 839)

• Viewing and Configuring GridHub (p. 840)

• Troubleshooting GridHub (p. 840)

Registering an Application in GridHub
To register an application in GridHub so that Profiler can capture information from the application, add
AzFramework::TargetManagementComponent to the application’s SystemComponent.

Note
Lumberyard's built-in applications already have this component added by default.

Version 1.8
839

Lumberyard Developer Guide
Viewing and Configuring GridHub

Viewing and Configuring GridHub
When you launch Profiler.exe or LuaIDE.exe, GridHub starts automatically and is represented by a globe
icon in the Windows taskbar.

To view and configure GridHub

1. In the Windows taskbar, right-click the globe icon and choose Show:

The GridHub window has a configuration bar, a connections pane, and pane for viewing log messages:

2. You can use the configuration toolbar to view or change GridHub configuration:

The toolbar options are as follows:

Session port – Specifies the port on which GridHub listens for discovery requests.

Connection slots – Specifies the maximum number of applications that can be connected
concurrently to GridHub.

Hub name – The name of your hub. By default, this is the name of the local computer.

Note
The name of the hub must be the neighborhood name to which the
TargetManagementComponent connects.

Enable Disconnection Detection – Specifies whether the connection to GridHub is terminated when
the source fails to respond.

Add to Windows startup folder – Specifies whether GridHub starts automatically when Windows
starts.

Log activity – Starts or stops logging.

Start/Stop – Starts or stops GridHub. When GridHub is off, no connections are discovered or
maintained.

3. When GridHub and your target application are active, your target application appears in the GridHub
Connections list:

The columns in the Connections list provide the following information:

ID – The identifier of the connected application.

Name – The name of the connected application.

Connection ID – The identifier of the connection between GridHub and the application.

IsHost – Whether or not the connection is the connection host

IsLocal – Whether or not the connection is local.

IsReady – Whether or not the application is ready to handle further connections.

4. Use the Output window to see the log messages that GridHub generates as it manages connections:

When GridHub is terminated, the connections it established are also terminated.

Troubleshooting GridHub
If you experience difficulty using GridHub, check the following:

Version 1.8
840

Lumberyard Developer Guide
Troubleshooting GridHub

• Make sure that the neighborhood name in TargetManagerComponent is the same as the one in GridHub.

• Make sure that the port that GridHub is listening on is the same port as the one specified for
TargetManagementComponent.

• Make sure that all applications are running on the same computer. The GridHub socket is bound to the
loopback address 127.0.0.1.

Version 1.8
841

Lumberyard Developer Guide
Memory Handling

System

This section contains topics on general system issues, including memory handling, streaming, and
localization. It also provides information on logging and console tools.

Topics

• Memory Handling (p. 842)

• Streaming System (p. 845)

• Text Localization and Unicode Support (p. 853)

• CryLog (p. 858)

• CryConsole (p. 859)

Memory Handling
This article discusses some memory and storage considerations related to game development.

Hardware Memory Limitations
Developing for game consoles can be challenging due to memory limitations. From a production point of
view, it is tempting to use less powerful hardware for consoles, but the expectations for console quality are
usually higher in an increasingly competitive market.

Choosing a Platform to Target
It is often better to choose only one development platform, even if multiple platforms are targeted for
production. Choosing a platform with lower memory requirements eases production in the long run, but
it can degrade the quality on other platforms. Some global code adjustments (for example, TIF setting
"globalreduce", TIF preset setting "don't use highest LOD") can help in reducing memory usage, but often
more asset-specific adjustments are needed, like using the TIF "reduce" setting. If those adjustments are
insufficient, completely different assets are required (for example, all LODs of some object are different for
console and PC). This can be done through a CryPak feature. It is possible to bind multiple pak files to a
path and have them behave as layered. This way it is possible to customize some platforms to use different

Version 1.8
842

Lumberyard Developer Guide
Budgets

assets. Platforms that use multiple layers have more overhead (memory, performance, I/O), so it is better to
use multiple layers on more powerful hardware.

Budgets
Budgets are mostly game specific because all kinds of memory (for example, video/system/disk) are shared
across multiple assets, and each game utilizes memory differently. It's a wise decision to dedicate a certain
amount of memory to similar types of assets. For example, if all weapons roughly cost the same amount
of memory, the cost of a defined number of weapons is predictable, and with some careful planning in
production, late and problematic cuts can be avoided.

Allocation Strategy with Multiple Modules and Threads
The Lumberyard memory manager tries to minimize fragmentation by grouping small allocations of similar
size. This is done in order to save memory, allow fast allocations and deallocations and to minimize
conflicts between multiple threads (synchronization primitives for each bucket). Bigger allocations run
through the OS as that is quite efficient. It is possible to allocate memory in other than the main thread,
but this can negatively impact the readability of the code. Memory allocated in one module should be
deallocated in the same module. Violating this rule might work in some cases, but this breaks per module
allocation statistics. The simple Release() method ensures objects are freed in the same module. The
string class (CryString) has this behavior built in, which means the programmer doesn't need to decide
where the memory should be released.

Caching Computational Data
In general, it is better to perform skinning (vertex transformation based on joints) of characters on the
GPU. The GPU is generally faster in doing the required computations than the CPU. Caching the skinned
result is still possible, but memory is often limited on graphics hardware, which tends to be stronger on
computations. Under these conditions, it makes sense to recompute the data for every pass, eliminating
the need to manage cache memory. This approach is advantageous because character counts can vary
significantly in dynamic game scenes.

Compression
There are many lossy and lossless compression techniques that work efficiently for a certain kind of data.
They differ in complexity, compression and decompression time and can be asymmetric. Compression can
introduce more latency, and only few techniques can deal with broken data such as packet loss and bit-
flips.

Disk Size
Installing modern games on a PC can be quite time consuming. Avoiding installation by running the
game directly from a DVD is a tempting choice, but DVD performance is much worse than hard drive
performance, especially for random access patterns. Consoles have restrictions on game startup times and
often require a game to cope with a limited amount of disk memory, or no disk memory at all. If a game is
too big to fit into memory, streaming is required.

Total Size
To keep the total size of a build small, the asset count and the asset quality should be reasonable. For
production it can make sense to create all textures in double resolution and downsample the content with
the Resource Compiler. This can be useful for cross-platform development and allows later release of the
content with higher quality. It also eases the workflow for artists as they often create the assets in higher
resolutions anyway. Having the content available at higher resolutions also enables the engine to render
cut-scenes with the highest quality if needed (for example, when creating videos).

Version 1.8
843

Lumberyard Developer Guide
Address Space

Many media have a format that maximizes space, but using the larger format can cost more than using
a smaller one (for example, using another layer on a DVD). Redundancy might be a good solution to
minimize seek times (for example, storing all assets of the same level in one block).

Address Space
Some operating systems (OSes) are still 32-bit, which means that an address in main memory has 32-
bits, which results in 4 GB of addressable memory. Unfortunately, to allow relative addressing, the top bit
is lost, which leaves only 2 GB for the application. Some OSes can be instructed to drop this limitation by
compiling applications with large address awareness, which frees up more memory. However, the full 4
GB cannot be used because the OS also maps things like GPU memory into the memory space. When
managing that memory, another challenge appears. Even if a total of 1 GB of memory is free, a contiguous
block of 200 MB may not be available in the virtual address space. In order to avoid this problem, memory
should be managed carefully. Good practices are:

• Prefer memory from the stack with constant size (SPU stack size is small).

• Allocating from the stack with dynamic size by using alloca() is possible (even on SPU), but it can
introduce bugs that can be hard to find.

• Allocate small objects in bigger chunks (flyweight design pattern).

• Avoid reallocations (for example, reserve and stick to maximum budgets).

• Avoid allocations during the frame (sometimes simple parameter passing can cause allocations).

• Ensure that after processing one level the memory is not fragmented more than necessary (test case:
loading multiple levels one after another).

A 64-bit address space is a good solution for the problem. This requires a 64-bit OS and running the 64-bit
version of the application. Running a 32-bit application on a 64-bit OS helps very little. Note that compiling
for 64-bit can result in a bigger executable file size, which can in some cases be counterproductive.

Bandwidth
To reduce memory bandwidth usage, make use of caches, use a local memory access pattern, keep the
right data nearby, or use smaller data structures. Another option is to avoid memory accesses all together
by recomputing on demand instead of storing data and reading it later.

Latency
Different types of memory have different access performance characteristics. Careful planning of data
storage location can help to improve performance. For example, blending animation for run animation
needs to be accessible within a fraction of a frame, and must be accessible in memory. In contrast, cut-
scene animations can be stored on disk. To overcome higher latencies, extra coding may be required. In
some cases the benefit may not be worth the effort.

Alignment
Some CPUs require proper alignment for data access (for example, reading a float requires an address
dividable by 4). Other CPUs perform slower when data is not aligned properly (misaligned data access).
As caches operate on increasing sizes, there are benefits to aligning data to the new sizes. When new
features are created, these structure sizes must be taken into consideration. Otherwise, the feature might
not perform well or not even work.

Virtual Memory
Most operating systems try to handle memory quite conservatively because they never know what memory
requests will come next. Code or data that has not been used for a certain time can be paged out to the

Version 1.8
844

Lumberyard Developer Guide
Streaming

hard drive. In games, this paging can result in stalls that can occur randomly, so most consoles avoid
swapping.

Streaming
Streaming enables a game to simulate a world that is larger than limited available memory would normally
allow. A secondary (usually slower) storage medium is required, and the limited resource is used as a
cache. This is possible because the set of assets tends to change slowly and only part of the content is
required at any given time. The set of assets kept in memory must adhere to the limits of the hardware
available. While memory usage can partly be determined by code, designer decisions regarding the
placement, use, and reuse of assets, and the use of occlusion and streaming hints are also important in
determining the amout of memory required. Latency of streaming can be an issue when large changes to
the set of required assets are necessary. Seek times are faster on hard drives than on most other storage
media like DVDs, Blue-Rays or CDs. Sorting assets and keeping redundant copies of assets can help to
improve performance.

Split screen or general multi-camera support add further challenges for the streaming system. Tracking the
required asset set becomes more difficult under these circumstances. Seek performance can get get worse
as multiple sets now need to be supported by the same hardware. It is wise to limit gameplay so that the
streaming system can perform well. A streaming system works best if it knows about the assets that will
be needed beforehand. Game code that loads assets on demand without registering them first will not be
capable of doing this. It is better to wrap all asset access with a handle and allow registration and creation
of handles only during some startup phase. This makes it easier to create stripped down builds (minimal
builds consisting only of required assets).

Streaming System
The Lumberyard streaming engine takes care of the streaming of meshes, textures, music, sounds, and
animations.

Low-level Streaming System

CryCommon interfaces and structs

The file IStreamEngine.h in CryCommon contains all the important interfaces and structs used by the rest
of the engine.

First of all there is the IStreamEngine itself. There is only one IStreamingEngine in the application
and it controls all the possible I/O streams. Most of the following information comes directly from the
documentation inside the code, so it's always good to read the actual code in IStreamEngine.h file for any
missing information.

The most important function in IStreamEngine is the StartRead function which is used to start any
streaming request.

IStreamEngine.h

UNIQUE_IFACE struct IStreamEngine
{
public:

 // Description:
 // Starts asynchronous read from the specified file (the file may be on a

Version 1.8
845

Lumberyard Developer Guide
Low-level Streaming System

 // virtual file system, in pak or zip file or wherever).
 // Reads the file contents into the given buffer, up to the given size.
 // Upon success, calls success callback. If the file is truncated or for other
 // reason can not be read, calls error callback. The callback can be NULL
 // (in this case, the client should poll the returned IReadStream object;
 // the returned object must be locked for that)
 // NOTE: the error/success/progress callbacks can also be called from INSIDE
 // this function
 // Return Value:
 // IReadStream is reference-counted and will be automatically deleted if
 // you don't refer to it; if you don't store it immediately in an auto-pointer,
 // it may be deleted as soon as on the next line of code,
 // because the read operation may complete immediately inside StartRead()
 // and the object is self-disposed as soon as the callback is called.
 virtual IReadStreamPtr StartRead (const EStreamTaskType tSource, const char* szFile,
 IStreamCallback* pCallback = NULL, StreamReadParams* pParams = NULL) = 0;

};

The following are the currently supported streaming task types. This enum should be extended if you want
to stream a new object type.

IStreamEngine.h

enum EStreamTaskType
{
 eStreamTaskTypeCount = 13,
 eStreamTaskTypePak = 12, // Pak file itself
 eStreamTaskTypeFlash = 11, // Flash file object
 eStreamTaskTypeVideo = 10, // Video data (when streamed)
 eStreamTaskTypeReadAhead = 9, // Read ahead data used for file reading prediction
 eStreamTaskTypeShader = 8, // Shader combination data
 eStreamTaskTypeSound = 7,
 eStreamTaskTypeMusic = 6,
 eStreamTaskTypeFSBCache = 5, // Complete FSB file
 eStreamTaskTypeAnimation = 4, // All the possible animations types (dba, caf, ..)
 eStreamTaskTypeTerrain = 3, // Partial terrain data
 eStreamTaskTypeGeometry = 2, // Mesh or mesh lods
 eStreamTaskTypeTexture = 1, // Texture mip maps (currently mip0 is not streamed)
};

A callback object can be provided to the StartStream function to be informed when the streaming
request has finished. The callback object should implement the following StreamAsyncOnComplete and
StreamOnComplete functions.

IStreamEngine.h

class IStreamCallback
{
public:
 // Description:
 // Signals that reading the requested data has completed (with or without error).
 // This callback is always called, whether an error occurs or not, and is called
 // from the async callback thread of the streaming engine, which happens
 // directly after the reading operation
 virtual void StreamAsyncOnComplete (IReadStream* pStream, unsigned nError) {}

 // Description:
 // Same as the StreamAsyncOnComplete, but this function is called from the main
 // thread and is always called after the StreamAsyncOnComplete function.
 virtual void StreamOnComplete (IReadStream* pStream, unsigned nError) = 0;
};

Version 1.8
846

Lumberyard Developer Guide
Low-level Streaming System

When starting a read request, you can also provide the optional parameters shown in the following code.

IStreamEngine.h

struct StreamReadParams
{
public:

 // The user data that'll be used to call the callback.
 DWORD_PTR dwUserData;

 // The priority of this read
 EStreamTaskPriority ePriority;

 // Description:
 // The buffer into which to read the file or the file piece
 // if this is NULL, the streaming engine will supply the buffer.
 // Notes:
 // DO NOT USE THIS BUFFER during read operation! DO NOT READ from it, it can lead to
 memory corruption!
 void* pBuffer;

 // Description:
 // Offset in the file to read; if this is not 0, then the file read
 // occurs beginning with the specified offset in bytes.
 // The callback interface receives the size of already read data as nSize
 // and generally behaves as if the piece of file would be a file of its own.
 unsigned nOffset;

 // Description:
 // Number of bytes to read; if this is 0, then the whole file is read,
 // if nSize == 0 && nOffset != 0, then the file from the offset to the end is read.
 // If nSize != 0, then the file piece from nOffset is read, at most nSize bytes
 // (if less, an error is reported). So, from nOffset byte to nOffset + nSize - 1 byte
 in the file.
 unsigned nSize;

 // Description:
 // The combination of one or several flags from the stream engine general purpose
 flags.
 // See also:
 // IStreamEngine::EFlags
 unsigned nFlags;
};

The return value of the StartRead function is an IReadStream object which can be optionally stored on the
client. The IReadStream object is refcounted internally. When the callback object can be destroyed before
the reading operation is finished, the readstream should be stored separately, and the abort should be
called on it. Doing this will clean up the entire read request internally and will also call the async and sync
callback functions.

The Wait function can be used to perform a blocking reading requests on the streaming engine. This
function can be used from an async reading thread that uses the Lumberyard streaming system to perform
the actual reading.

IStreamEngine.h

class IReadStream : public CMultiThreadRefCount
{
public:
 virtual void Abort() = 0;
 virtual void Wait(int nMaxWaitMillis=-1) = 0;

Version 1.8
847

Lumberyard Developer Guide
Low-level Streaming System

};

Internal flow of a read request
The Lumberyard stream engine uses extra worker and IO threads internally. For every possible IO input, a
different StreamingIOThread is created which can run independently from the others.

Currently the stream engine has the following IO threads:

• Optical – Streaming from the optical data drive.

• Hard disk drive (HDD) – Streaming from installed data on the hard disk drive (this could be a fully
installed game, or shadow copied data).

• Memory – Streaming from packed in-memory files, which requires very little IO.

When a reading request is made on the streaming engine, it first checks which IO thread to use, and
computes the sortkey. The request is then inserted into one of the StreamingIOThread objects.

After the reading operation is finished, the request is forwarded to one of the decompression threads if
the data was compressed, and then into one of the async callback threads. The amount of async callback
threads is dependent on the platform, and some async callback threads are reserved for specific streaming
request types such as geometry and textures. After the async callback has been processed, the finished
streaming request is added to the streaming engine to be processed on the main thread. The next update
on the streaming engine from the main thread will then call the sync callback (StreamOnComplete) and
clean up the temporary allocated memory if needed.

For information regarding the IO/WorkerThreads please check the StreamingIOThread and
StreamingWorkerThread class.

Read request sorting
Requests to the streaming engine are not processed in a the same order as which they have been
requested. The system tries to internally 'optimize' the order in which to read the data, to maximize the read
bandwidth.

When reading data from an optical disc , it is very important to reduce the amount of seeks. (This is
also true when reading from a hard disk drive, but to a lesser extent). A single seek can take over 100
milliseconds, while the actual read time might take only a few milliseconds. Some official statistics from the
360 XDK follow.

• Outer diameter throughput : 12x (approximately 15 MB per second).

• Inner diameter throughput : 5x (6.8 MB per second).

• Average seek (1/3rd stroke) time : 110 ms typical, 140 ms maximum.

• Full stroke seek time : 180 ms typical, 240 ms maximum.

• Layer switch time : 75 ms.

The internal sorting algorithm takes the following rules into account in the following order.

• Priority of the request – High priority requests always take precedence, but too many of them can
introduce too many extra seeks.

• Time grouping – Requests made within a certain time are grouped together to create a continuous
reading operation on the disc for every time group. The default value is 2 seconds, but can be changed
using the following cvar: sys_streaming_requests_grouping_time_period. Time grouping has a huge
impact on the average completion time of the requests. It increases the time of a few otherwise quick
reading requests, but drastically reduces the overall completion time because most of the streaming
requests are coming from random places on the disc.

Version 1.8
848

Lumberyard Developer Guide
Low-level Streaming System

• Actual offset on disc – The actual disc offset is computed and used during the sorting. Files which
have a higher offset get a higher priority, so it is important to organize the layout of the disc to reflect the
desired streaming order.

For information regarding sorting, please refer to the source code in
StreamAsyncFileRequest::ComputeSortKey(). The essential sorting code follows.

CAsyncIOFileRequest::ComputeSortKey

void CAsyncIOFileRequest::ComputeSortKey(uint64 nCurrentKeyInProgress)
{
 .. compute the disc offset (can be requested using CryPak)

 // group items by priority, then by snapped request time, then sort by disk offset
 m_nDiskOffset += m_nRequestedOffset;
 m_nTimeGroup = (uint64)(gEnv->pTimer->GetCurrTime() / max(1,
 g_cvars.sys_streaming_requests_grouping_time_period));
 uint64 nPrioriry = m_ePriority;

 int64 nDiskOffsetKB = m_nDiskOffset >> 10; // KB
 m_nSortKey = (nDiskOffsetKB) | (((uint64)m_nTimeGroup) << 30) | (nPrioriry << 60);
}

Streaming statistics
The streaming engine can be polled for streaming statistics using the GetStreamingStatistics() function.

Most of the statistics are divided into two groups, one collected during the last second, and another from
the last reset (which usually happens during level loading). Statistics can also be forcibly reset during the
game.

The SMediaTypeInfo struct gives information per IO input system (hard disk drive, optical, memory).

IStreamEngine.h

struct SMediaTypeInfo
{
 // stats collected during the last second
 float fActiveDuringLastSecond;
 float fAverageActiveTime;
 uint32 nBytesRead;
 uint32 nRequestCount;
 uint64 nSeekOffsetLastSecond;
 uint32 nCurrentReadBandwidth;
 uint32 nActualReadBandwidth; // only taking actual reading time into account

 // stats collected since last reset
 uint64 nTotalBytesRead;
 uint32 nTotalRequestCount;
 uint64 nAverageSeekOffset;
 uint32 nSessionReadBandwidth;
 uint32 nAverageActualReadBandwidth; // only taking actual read time into account
};

The SRequestTypeInfo struct gives information about each streaming request type, such as geometry,
textures, and animations.

IStreamEngine.h

struct SRequestTypeInfo
{

Version 1.8
849

Lumberyard Developer Guide
Streaming and Levelcache Pak Files

 int nOpenRequestCount;
 int nPendingReadBytes;

 // stats collected during the last second
 uint32 nCurrentReadBandwidth;

 // stats collected since last reset
 uint32 nTotalStreamingRequestCount;
 uint64 nTotalReadBytes; // compressed data
 uint64 nTotalRequestDataSize; // uncompressed data
 uint32 nTotalRequestCount;
 uint32 nSessionReadBandwidth;

 float fAverageCompletionTime; // Average time it takes to fully complete a request
 float fAverageRequestCount; // Average amount of requests made per second
};

The following example shows global statistics that contain all the gathered data.

IStreamEngine.h

struct SStatistics
{
 SMediaTypeInfo hddInfo;
 SMediaTypeInfo memoryInfo;
 SMediaTypeInfo opticalInfo;

 SRequestTypeInfo typeInfo[eStreamTaskTypeCount];

 uint32 nTotalSessionReadBandwidth; // Average read bandwidth in total from reset -
 taking full time into account from reset
 uint32 nTotalCurrentReadBandwidth; // Total bytes/sec over all types and systems.

 int nPendingReadBytes; // How many bytes still need to be read
 float fAverageCompletionTime; // Time in seconds on average takes to complete read
 request.
 float fAverageRequestCount; // Average requests per second being done to streaming
 engine
 int nOpenRequestCount; // Amount of open requests

 uint64 nTotalBytesRead; // Read bytes total from reset.
 uint32 nTotalRequestCount; // Number of request from reset to the streaming engine.

 uint32 nDecompressBandwidth; // Bytes/second for last second

 int nMaxTempMemory; // Maximum temporary memory used by the streaming system
};

Streaming debug information
Different types of debug information can be requested using the following CVar: sys_streaming_debug x.

Streaming and Levelcache Pak Files
As mentioned earlier, it is very important to minimize the seeks and seek distances when reading from an
optical media drive. For this reason, the build system is designed to optimize the internal data layout for
streaming.

The easiest and fastest approach is to not do any IO at all, but read the data from compressed data in
memory. For this, small paks for startup and each level are created. These are loaded into memory during
level loading. Some paks remain in memory until the end of the level. Others are only used to speed up the
level loading. All small files and small read requests should ideally be diverted to these paks.

Version 1.8
850

Lumberyard Developer Guide
Streaming and Levelcache Pak Files

A special RC_Job build file is used to generate these paks: Bin32/rc/RCJob_PerLevelCache.xml. These
paks are generated during a normal build pipeline. The internal managment in the engine is done by the
CResourceManager class, which uses the global SystemEvents to preload or unload the paks.

Currently, the following paks are loaded into memory during level loading (sys_PakLoadCache).

• level.pak – Contains all actual level data, and should not be touched after level loading anymore.

• xml.pak

• dds0.pak – Contains all lowest mips of all the textures in the level.

• cgf.pak and cga.pak – Only load when CGF streaming is enabled.

The following paks are cached into memory during the level load process (sys_PakStreamCache).

• dds_cache.pak - Contains all dds files smaller than 6 KB (except for dds.0 files).

• cgf_cache.pak - Contains all cgf files smaller than 32 KB (only when CGF streaming is enabled).

Important
Be sure that these paks are available. Without them, level loading can take up to a few minutes,
and streaming performance is greatly reduced.

The information regarding all the resources of a level are stored in the resourcelist.txt and
auto_resourcelist.txt. These files are generated by an automatic testing system which loads each level
and executes a prerecorded playthrough on it. These resourcelist files are used during the build phase to
generate the level paks.

All data not in these in memory paks is handled through IO on the optical drive or hard disk drive, and it is
also best to reduce the amount of seeks here. This optimization phase is also performed during the build
process using the resource compiler.

All the data which can be streamed is extracted from all the resource lists from all levels, and is removed
from the default pak files (for example, objects.pak, textures.pak, animations.pak) and put into new
optimized paks for streaming inside a streaming folder.

The creating of the streaming paks uses the following rules:

• Split by extension: Different extension files are put into different paks (for example, dds, caf, dba, cgf)
so that files of the same type can be put close to each other. This enables them to be read in bursts. The
paks are also used to increase the priority of certain file types during request sorting by using the disc
offset.

• Split by DDS type: Different dds types are sorted differently to increase the priority of different types
(for example, diffuse maps get higher priority than normal maps). The actual distance in the pak is used
during the sorting of the request.

• Split by DDS mip: The highest mips are put into a separate pak file. They usually take more than 60%
of the size of all the smaller mips and can then be streamed with a lower priority. This greatly reduces
the average seek time required to read the smaller textures. The texture streaming system internally
optimizes the reads to reflect these split texture data.

• Sort alphabetically: Default alphabetical sorting is required because some of the data (such as CGF's
during MP level loading), are loaded in alphabetical order. Changing this sort order can have a severe
impact on the loading times.

The actual sorting code is hardcoded in the resource compiler, and can be found at: Code\Tools\RC
\ResourceCompiler\PakHelpers.cpp.

Important
If you make changes to the sorting operator in the resource compiler, be sure to make the same
changes to the texture streaming and streaming engine sorting operators.

Version 1.8
851

Lumberyard Developer Guide
Single Thread IO Access and Invalid File Access

Single Thread IO Access and Invalid File Access
It is very important that only a single thread access a particular IO device at one time. If multiple threads
read from the same IO device concurrently, then the reading speed is more than halved, and it may take
a number of seconds to read just a few kilobytes. This occurs because the IO reading head will partially
read a few kilobytes for one thread, and then read another few kilobytes for another thread while always
performing expensive seeks in between.

The solution is to exclusively read from StreamingIOThreads during gameplay. Lumberyard will by default
show an Invalid File Access warning in the top left corner when reading data from the wrong thread, and
will stall deliberately for threed seconds to emulate the actual stall when reading from an optical drive.

High Level Streaming Engine Usage
It is very easy to extend the current streaming functionality using the streaming engine. In this section, a
small example class is presented that shows how to add a new streaming type.

First, create a class which derives from the IStreamCallback interface, which informs about streaming
completion, and add some basic functionality to read a file. The file can either be read directly or use the
streaming engine. When the data is read directly, it calls the ProcessData function to parse the loaded data.
The function is also called from the async callback. Some processing can be performed here on the data if
needed because it does not run on the main thread.

The default parameters are used when starting a reading request on the streaming engine. It is also
possible to specify the final data storage to help reduce the number of dynamic allocations performed by
the streaming engine.

The class also stores the read stream object in order to get information about the streaming request or
to be able to cancel the request when the callback object is destroyed. The pointer is reset in the sync
callback because after the call it will no longer be referenced by the streaming engine.

CNewStreamingType

#include
class CNewStreamingType : public IStreamCallback
{
public:
 CNewStreamingType() : m_pReadStream(0), m_bIsLoaded(false) {}
 ~CNewStreamingType()
 {
 if (m_pReadStream)
 m_pReadStream->Abort();
 }

 // Start reading some data
 bool ReadFile(const char* acFilename, bool bUseStreamingEngine)
 {
 if (bUseStreamingEngine)
 {
 StreamReadParams params;
 params.dwUserData = eLoadFullData;
 params.ePriority = estpNormal;
 params.nSize = 0; // read the full file
 params.pBuffer = NULL; // don't provide any buffer, but copy data when
 streaming is done

 m_pReadStream = g_pISystem->GetStreamEngine()-
>StartRead(eStreamTaskTypeNewType, acFilename, this, ¶ms);
 }
 else

Version 1.8
852

Lumberyard Developer Guide
Text Localization and Unicode Support

 {
 // old way of reading file in a sync way (blocking call!)
 const char* acData = 0;
 size_t stSize = 0;

 .. read file directly using CryPak or fopen/fread

 ProcessData(acData, stSize);
 m_bIsLoaded = true;
 }

 return m_bIsLoaded;
 }

 // Check if the data is ready and loaded
 bool IsLoaded() const { return m_bIsLoaded; }

protected:

 // implement the IStreamCallback function
 void StreamAsyncOnComplete(IReadStream* pStream, unsigned nError)
 {
 if(nError)
 {
 return;
 }

 const char* acData = (char*)pStream->GetBuffer();
 size_t stSize= pStream->GetBytesRead();

 ProcessData(acData, stSize);
 m_bIsLoaded = true;
 }

 void StreamOnComplete (IReadStream* pStream, unsigned nError)
 {
 m_pReadStream = 0;
 }

 // process the actual loaded data
 void ProcessData(const char* acData, size_t stSize);

 // store the stream callback object to be sure it can be canceled when the object is
 destroyed
 IReadStreamPtr m_pReadStream;
 // Extra flag used to check if the data is ready
 bool m_bIsLoaded;
}

Text Localization and Unicode Support
Because games are typically localized to various languages, your game might have to use text data for
many languages.

This document provides programming-related information regarding localization, including localization
information specific to Lumberyard.

Terminology
The following table provides brief descriptions of some important terms related to localization and text
processing.

Version 1.8
853

Lumberyard Developer Guide
What encoding to use?

Term Description

character A unit of textual data. A character can be a glyph or formatting indicator. Note that a
glyph does not necessarily form a single visible unit. For example, a diacritical mark [´]
and the letter [a] are separate glyphs (and characters), but can be overlaid to form the
character [á].

Unicode A standard maintained by the Unicode Consortium that deals with text and language
standardization.

UCS Universal Character Set, the standardized set of characters in the Unicode standard
(also, ISO-10646)

(UCS) code-
point

An integral identifier for a single character in the UCS defined range, typically displayed
with the U prefix followed by hexadecimal, for example: U+12AB

(text) encoding A method of mapping (a subset of) UCS to a sequence of code-units, or the process of
applying an encoding.

code-unit An encoding-specific unit integral identifier used to encode code-points. Many code-
units may be used to represent a single code-point.

ASCII A standardized encoding that covers the first 128 code-points of the UCS space using
7- or 8-bit code-units.

(ANSI) code-
page

A standardized encoding that extends ASCII by assigning additional meaning to the
higher 128 values when using 8-bit code-units There are many hundreds of code-
pages, some of which use multi-byte sequences to encode code-points.

UTF UCS Transformation Format, a standardized encoding that covers the entire UCS
space.

UTF-8 A specific instance of UTF, using 8-bit code-units. Each code-point can take 1 to 4
(inclusive) code-units.

UTF-16 A specific instance of UTF, using 16-bit code-units. Each code-point can take 1 or 2
code-units.

UTF-32 A specific instance of UTF, using 32-bit code-units. Each code-point is directly mapped
to a single code-unit.

byte-order How a CPU treats a sequence of bytes when interpreting multi-byte values. A byte-
orderTypically either little-endian or big-endian format

encoding error A sequence of code-units that does not form a code-point (or an invalid code-point, as
defined by the Unicode standard)

What encoding to use?
Since there are many methods of encoding text, the question that should be asked when dealing with even
the smallest amount of text is, "In what encoding is this stored?" This is an important question because
decoding a sequence of code-units in the wrong way will lead to encoding errors, or even worse, to valid
decoding that yields the wrong content.

The following table describes some common encodings.

Version 1.8
854

Lumberyard Developer Guide
What encoding to use?

Encoding Code-unit
size

Code-point
size

Maps the
entire UCS
space

Trivial to
encode/
decode

Immune to
byte-order
differences

Major users

ASCII 7 bits 1 byte no yes yes Many
English-only
apps

(ANSI) code-
page

8 bits varies,
usually 1
byte

no varies,
usually yes

yes Older OS
functions

UTF-8 8 bits 1 to 4 bytes yes no yes Most text on
the internet,
XML

UTF-16 16 bits 2 to 4 bytes yes yes no Windows
"wide" API,
Qt

UCS-2 16 bits 2 bytes no yes no None
(replaced
with UTF-16)

UTF-32
UCS-4

32 bits 4 bytes yes yes no Linux "wide"
API

Because there is no single "best" encoding, you should always consider the scenario in which it will be
used when choosing one.

Historically, different operating systems and software packages have chosen different sets of supported
encodings. Even C++ follows different conventions on different platforms. For example, the "wide
character" wchar_t is 16-bits on Windows, but 32-bits on Linux.

Because Lumberyard products can be used on many platforms and in many languages, full UCS coverage
is desirable. The follow table presents some conventions used in Lumberyard:

Text data
type

Encoding Reason

Source code ASCII We write our code in English, which means ASCII is sufficient.

Text assets UTF-8 Assets can be transferred between machines with potentially differing byte-
order, and may contain text in many languages.

Run-time
variables

UTF-8 Since transforming text data from or to UTF-8 is not free, we keep data in
UTF-8 as much as possible. Exceptions must be made when interacting with
libraries or operating systems that require another encoding. In these cases all
transformations should be done at the call-site.

File and path
names

ASCII File names are a special case with regards to case-sensitivity, as defined by
the file system. Unicode defines 3 cases, and conversions between them are
locale-specific. In addition, the normalization formats are typically not (all)
accounted for in file-systems and their APIs. Some specialized file-systems
only accept ASCII. This combination means that using the most basic and
portable sub-set should be preferred, with UTF-8 being used only as required.

Version 1.8
855

Lumberyard Developer Guide
How does this affect me when writing code?

General principles

• Avoid using non-ASCII characters in source code. Consider using escape sequences if a non-ASCII
literal is required.

• Avoid using absolute paths. Only paths that are under developer control should be entered. If possible,
use relative ASCII paths for the game folder, root folder, and user folder. When this is not possible,
carefully consider non-ASCII contents that may be under a user's control, such as those in the installation
folder.

How does this affect me when writing code?
Since single-byte code-units are common (even in languages that also use double-byte code-units), single-
byte string types can be used almost universally. In addition, since Lumberyard does not use ANSI code-
pages, all text must be either ASCII or UTF-8.

The following properties hold for both ASCII and UTF-8.

• The NULL-byte (integral value 0) only occurs when a NULL-byte is intended (UTF-8 never generates
a NULL-byte as part of multi-byte sequences). This means that C-style null-terminated strings act
the same, and CRT functions like strlen will work as expected, except that it counts code-units, not
characters.

• Code-points in the ASCII range have the same encoded value in UTF-8. This means that you can type
English string literals in code and treat them as UTF-8 without conversion. Also, you can compare
characters in the ASCII range directly against UTF-8 content (that is, when looking for an English or
ASCII symbol sub-string).

• UTF-8 sequences (containing zero or more entire code-points) do not carry context. This means they are
safe to append to each other without changing the contents of the text.

The difference between position and length in code-units (as reported through string::length(),
strlen(), and similar functions) and their matching position and length in code-points is largely irrelevant.
This is because the meaning of the sequence is typically abstract, and the meaning of the bytes matters
only when the text is interpreted or displayed. However, keep in mind the following caveats.

• Splitting strings – When splitting a string, it's important to do one of the following.

1. Recombine the parts in the same order after splitting, without interpreting the splitted parts as text (that
is, without chunking for transmission).

2. Perform the split at a boundary between code-points. The positions just before and just after any
ASCII character are always safe.

• API boundaries – When an API accepts or returns strings, it's s important to know what encoding the
API uses. If the API doesn't treat strings as opaque (that is, interprets the text), passing UTF-8 may
be problematic for APIs that accept byte-strings and interpret them as ASCII or ANSI. If no UTF-8 API
is available, prefer any other Unicode API instead (UTF-16 or UTF-32). As a last resort, convert to
ASCII, but understand that the conversion is lossy and cannot be recovered from the converted string.
Always read the documentation of the API to see what text encoding it expects and perform any required
conversion. All UTF encodings can be losslessly converted in both directions, so finding any API that
accepts a UTF format gives you a way to use UTF encoding.

• Identifiers – When using strings as a "key" in a collection or for comparison, avoid using non-ASCII
sequences as keys, as the concept of "equality" of UTF is complex due to normalization forms and
locale-dependent rules. However, comparing UTF-8 strings byte-by-byte is safe if you only care about
equality in terms of code-points (since code-point to code-unit mapping is 1:1).

• Sorting – When using strings for sorting, keep in mind that locale-specific rules for the order of text are
complex. It's fine to let the UI deal with this in many cases. In general, make no assumptions of how a
set of strings will be sorted. However, sorting UTF-8 strings as if they were ASCII will actually sort them

Version 1.8
856

Lumberyard Developer Guide
How does this affect me when dealing with text assets?

by code-point. This is fine if you only require an arbitrary fixed order for std::map look-up, but displaying
contents in the UI in this order may be confusing for end-users that expect another ordering.

In general, avoid interpreting text if at all possible. Otherwise, try to operate on the ASCII subset and treat
all other text parts as opaque indivisible sequences. When dealing with the concept of "length" or "size", try
to consider using in code-units instead of code-points, since those operations are computationally cheaper.
In fact, the concept of the "length" of Unicode sequences is complex, and there is a many-to-many mapping
between code-points and what is actually displayed.

How does this affect me when dealing with text
assets?
In general, always:

• Store text assets with UTF-8 encoding.

• Store with Unicode NFC (Normalization Form C). This is the most common form of storage in text editing
tools, so it's best to use this form unless you have a good reason to do otherwise.

• Store text in the correct case (that is, the one that will be displayed). Case-conversion is a complex topic
in many languages and is best avoided.

Utilities provided in CryCommon
Lumberyard provides some utilities to make it easy to losslessly and safely convert text between Unicode
encodings. In-depth technical details are provided in the header files that expose the UnicodeFunctions.h
and UnicodeIterator.h utilities.

The most common use cases are as follows.

string utf8;
wstring wide;
Unicode::Convert(utf8, wide); // Convert contents of wide string and store into UTF-8
 string
Unicode::Convert(wide, utf8); // Convert contents of UTF-8 string to wide string

string ascii;
Unicode::Convert<Unicode::eEncoding_ASCII, Unicode::eEncoding_UTF8>(ascii, utf8); //
 Convert UTF-8 to ASCII (lossy!)

Important
The above functions assume that the input text is already validly encoded. To guard against
malformed user input or potentially broken input, consider using the Unicode::ConvertSafe
function.

Further reading
For an introduction to Unicode, see The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets (No Excuses!).

For official information about Unicode, see The Unicode Consortium.

Version 1.8
857

http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://unicode.org/

Lumberyard Developer Guide
CryLog

CryLog

CryLog Logging Functionality
You can log in Lumberyard by using the following global functions.

• CryLog (eMessage)

• CryLogAlways (eAlways)

• CryError (eError)

• CryWarning (eWarning)

• CryComment (eComment)

If more control is required, the ILog interface can be used directly by using the following syntax.

gEnv->pLog->LogToFile("value %d",iVal);

Verbosity Level and Coloring
You can control the verbosity of logging with the console variables log_Verbosity and
log_FileVerbosity.

The following table shows the levels of verbosity and color convention. In the console, warnings appear in
yellow, and errors appear in red.

Message verbosity 0 verbosity 1 verbosity 2 verbosity 3 verbosity 4 Color in
console

eAlways X X X X X

eErrorAlways X X X X X red

eWarningAlwaysX X X X X yellow

eInput ? ? ? ? ?

eInputResponse? ? ? ? ?

eError X X X X red

eWarning - - X X X yellow

eMessage - - X X

eComment - - - - X

Key

• X – the message type is logged to the console or file

• ? – some special logic is involved

Version 1.8
858

Lumberyard Developer Guide
Log Files

Tip
Full logging (to console and file) can be enabled by using log_Verbosity 4.

Log Files
The following log file sources write to the log files indicated.

Source Log file

Lumberyard Editor Editor.log

Game game.log (default)

Error messages Error.log

Console Variables
The following console variables relate to logging.

log_IncludeTime

Toggles time stamping of log entries.
Usage: log_IncludeTime [0/1/2/3/4/5]
 0=off (default)
 1=current time
 2=relative time
 3=current+relative time
 4=absolute time in seconds since this mode was started
 5=current time+server time

ai_LogFileVerbosity

None = 0, progress/errors/warnings = 1, event = 2, comment = 3

log_Verbosity DUMPTODISK

defines the verbosity level for log messages written to console
-1=suppress all logs (including eAlways)
0=suppress all logs(except eAlways)
1=additional errors
2=additional warnings
3=additional messages
4=additional comments

CryConsole
The console is a user interface system which handles console commands and console variables. It also
outputs log messages and stores the input and output history.

Color coding
The game console supports color coding by using the color indices 0..9 with a leading $ character. The
code is hidden in the text outputted on the console. Simple log messages through the ILog interface can be
used to send text to the console.

Version 1.8
859

Lumberyard Developer Guide
Dumping all console commands and variables

This is normal $1one$2two$3three and so on

In the preceding example, one renders in red, two in green, and three (and the remaining text) in blue.

Dumping all console commands and variables
All console commands and console variables can be logged to a file by using the command
DumpCommandsVars. The default filename is consolecommandsandvars.txt.

To restrict the variables that should be dumped, a sub-string parameter can be passed. For example, the
command

DumpCommandsVars i_

logs all commands and variables that begin with the sub-string "i_". (for example, i_giveallitems and
i_debug_projectiles).

Console Variables
Console variables provide a convenient way to expose variables which can be modified easily by the user
either by being entered in the console during runtime or by passing it as command-line argument before
launching the application.

More information on how to use command-line arguments can be found in the Command Line Arguments
article.

Console variables are commonly referred to as CVar in the code base.

Registering new console variables

For an integer or float based console variable, it is recommended to use the IConsole::Register()
function to expose a C++ variable as a console variable.

To declare a new string console variable, use the IConsole::RegisterString() function.

Accessing console variables from C++

Console variables are exposed using the ICVar interface. To retrieve this interface, use the
IConsole::GetCVar() function.

The most efficient way to read the console variable value is to access directly the C++ variable bound to the
console variable proxy.

Adding New Console Commands
The console can easily be extended with new console commands. A new console command can be
implemented in C++ as a static function which follows the ConsoleCommandFunc type. Arguments for this
console command are passed using the IConsoleCmdArgs interface.

The following code shows the skeleton implementation of a console command:

static void RequestLoadMod(IConsoleCmdArgs* pCmdArgs);

void RequestLoadMod(IConsoleCmdArgs* pCmdArgs)
{

Version 1.8
860

http://docs.cryengine.com/display/SDKDOC2/Command+Line+Arguments

Lumberyard Developer Guide
Console Variable Groups

 if (pCmdArgs->GetArgCount() == 2)
 {
 const char* pName = pCmdArgs->GetArg(1);
 // ...
 }
 else
 {
 CryLog("Error, correct syntax is: g_loadMod modname");
 }
}

The following code will register the command with the console system:

IConsole* pConsole = gEnv->pSystem->GetIConsole();
pConsole->AddCommand("g_loadMod", RequestLoadMod);

Console Variable Groups
Console variable groups provide a convenient way to apply predefined settings to multiple console
variables at once.

Console variables are commonly referred to as CVarGroup in the code base. Console variable groups can
modify other console variables to build bigger hierarchies.

Warning
Cycles in the assignments are not detected and can cause crashes.

Registering a new variable group
To register a new variable group, add a new .cfg text file to the GameSDK\config\CVarGroups directory.

sys_spec_Particles.cfg

[default]
; default of this CVarGroup
= 4
e_particles_lod=1
e_particles_max_emitter_draw_screen=64

[1]
e_particles_lod=0.75
e_particles_max_emitter_draw_screen=1

[2]
e_particles_max_emitter_draw_screen=4

[3]
e_particles_max_emitter_draw_screen=16

This creates a new console variable group named sys_spec_Particles that behaves like an integer
console variable. By default, this variable has the state 4 (set in the line following the comment in the
example).

On changing the variable, the new state is applied. Console variables not specified in the .cfg file are
not set. All console variables need to be part of the default section. An error message is output in case of
violation of this rule.

If a console variable is not specified in a custom section, the value specified in the default section is
applied.

Version 1.8
861

Lumberyard Developer Guide
Deferred execution of command line console commands

Console variable group documentation

The documentation of the console variable group is generated automatically.

sys_spec_Particles

Console variable group to apply settings to multiple variables

sys_spec_Particles [1/2/3/4/x]:
 ... e_particles_lod = 0.75/1/1/1/1
 ... e_particles_max_screen_fill = 16/32/64/128/128
 ... e_particles_object_collisions = 0/1/1/1/1
 ... e_particles_quality = 1/2/3/4/4
 ... e_water_ocean_soft_particles = 0/1/1/1/1
 ... r_UseSoftParticles = 0/1/1/1/1

Checking if a console variable group value represents the state of
the variables it controls

From the console

In the console you can type in the console variable group name and press tab. If the variable value is not
represented, it will print the value of RealState.

sys_spec_Particles=2 [REQUIRE_NET_SYNC] RealState=3
sys_spec_Sound=1 [REQUIRE_NET_SYNC] RealState=CUSTOM
sys_spec_Texture=1 [REQUIRE_NET_SYNC]

By calling the console command sys_RestoreSpec you can check why the sys_spec_ variables don't
represent the right states.

From C++ code

From the code you can use the member function GetRealIVal() and compare its return value against the
result of GetIVal() in ICVar.

Deferred execution of command line console
commands
The commands that are passed via the command line by using the + prefix are stored in a separate list as
opposed to the rest of the console commands.

This list allows the application to distribute the execution of those commands over several frames rather
than executing everything at once.

Example

Consider the following example.

--- autotest.cfg --
hud_startPaused = "0"
wait_frames 100
screenshot autotestFrames
wait_seconds 5.0
screenshot autotestTime

Version 1.8
862

Lumberyard Developer Guide
CVar Tutorial

-- console --
crysis.exe -devmode +map island +exec autotest +quit

In the example, the following operations were performed:

• Load the island map.

• Wait for 100 frames.

• Take a screenshot called autotestFrames.

• Wait for 5 seconds.

• Take a screenshot called autotestTime.

• Quit the application.

Details
Two categories of commands are defined: blocker and normal.

For each frame, the deferred command list is processed as a fifo. Elements of this list are consumed as
long as normal commands are encountered.

When a blocker is consumed from the list and executed, the process is delayed until the next frame. For
instance, commands like map and screenshot are blockers.

A console command (either command or variable) can be tagged as a blocker during its declaration using
the VF_BLOCKFRAME flag.

The following synchronization commands are supported.

Optional Title

Command Type Description

wait_frames num: <int> Wait for num frames before the
exeution of the list is resumed.

wait_seconds sec: <float> Wait for sec seconds before the
exeution of the list is resumed.

CVar Tutorial
This tutorial shows you how to modify existing and create console variables (CVars). CVars can be used to
control many configurable behaviors in Lumberyard. You can also use them in your game.

Note
This brief tutorial is intended for programmers. Most of the content uses code.

Creating CVars

To create a console variable

1. In your code editor, open the Code\GameSDK\GameDll\GameCVars.h file, which declares all game-
specific CVars.

2. Locate the SCVars struct. Inside the struct, declare a new variable, as in the following example.

struct SCVars

Version 1.8
863

Lumberyard Developer Guide
CVar Tutorial

{
 int g_tutorialVar; //add this line

 //... pre-existing code ...
};

The variable you added will be used to store the current value of the variable. If you need to store
fractional numbers, you can also add a variable of the type float.

Next, you will register the CVar with the game engine so that its value can be changed by using the
console.

3. In the same Code\GameSDK\GameDll\GameCVars.cpp file, locate the InitCVars function.

void SCVars::InitCVars(IConsole *pConsole)
{
 m_releaseConstants.Init(pConsole);

 REGISTER_CVAR(g_tutorialVar, 42, VF_NULL, "This CVar was added using the tutorial on
 CVars"); //add this line

 //... pre-existing code ...
}

4. Specify a default value and help text for the variable. You can initialize the variable with any value that
is valid for the type with which the variable was declared in the header file. The preceeding example
specifies 42 as the default value and some help text that will be shown to users.

5. When your game unloads, be sure to un-register the variable. In the Code\GameSDK\GameDll
\GameCVars.cpp file, locate and use the ReleaseCVars function, as shown in the following example.

void SCVars::ReleaseCVars()
{
 IConsole* pConsole = gEnv->pConsole;

 pConsole->UnregisterVariable("g_tutorialVar", true); //add this line

 //... pre-existing code ...
}

6. After you finish making changes, don't forget to compile your code.

Using the CVar

You can now change the value of the CVar that you created by using code, the console, and .cfg files.

From code

To access the value of the variable in your game code, use the g_pGameCVars pointer, as shown in the
following example.

int myTutorialVar = g_pGameCVars->g_tutorialVar;

From the console

To change the value of the cvar from the console, use the syntax cvar_name=cvar_value. The following
example sets the value of the g_tutorialVar console variable to 1337.

g_tutorialVar = 1337

Version 1.8
864

Lumberyard Developer Guide
CVar Tutorial

From .cfg files

It's also possible to change the default CVar value from one of the .cfg files. Whenever a CVar is assigned
a value, its previous value is discarded. Therefore, the last assignment is the one that is current.

The following list shows the order of initialization for console variables.

1. The value specified in the GameCVars.cpp file when REGISTER_CVAR is used. (A change here requires
compiling.)

2. The value specified in the system.cfg file.

3. The value specified in the user's user.cfg file.

4. Any value assigned at game runtime.

Tip
To change the default value of an existing CVar without having to compile, add a line to
system.cfg file to override the default.

Version 1.8
865

Lumberyard Developer Guide

Lumberyard Blog, Forums, and
Feedback

As we continue to improve Lumberyard, we want to thank everyone in our developer community. Without
your participation in the forums, your messages, and your bug reports, Lumberyard wouldn't be as strong
as it is.

• Keep sending your feedback to <lumberyard-feedback@amazon.com>.

• If you haven't spoken up on the forums yet, we would love to have you.

• You can also keep up with new changes on our blog and leave comments to let us know what you think.

Version 1.8
866

https://gamedev.amazon.com/forums/index.html
https://aws.amazon.com/blogs/gamedev/

	Lumberyard
	Table of Contents
	Lumberyard for Programmers
	AI
	AI System Concepts
	AI System Overview
	Navigation
	Decision Making
	Tactical
	World-Interfacing
	Development Environment
	Execution Context

	Pathfinding Costs
	Problem: Calculating Costs at Run Time
	Link properties
	Agent properties
	Pathfinder request properties

	Solution
	Calculating link properties
	Combining link and agent properties

	Sensory Models
	Overview
	Vision
	Visibility Determination
	Identifying Targets
	Checking Visibility
	Sight-range test
	Field-of-view test
	Physical ray test
	Perception test

	Soft Cover Visibility and Behavior
	Perception Calculation
	Attribute Objects

	Flight
	FollowPath
	EnableCombatMode
	EnableFiring

	AI C++ Class Hierarchy
	AI System Concept Examples
	AI Multi-Layered Navigation
	Individual AI: Dynamic Covers
	Individual AI: Tactical Points
	Group and Global AI: Factions
	Group and Global AI: Flow Graphs

	AI Bubbles System
	Message Display Types
	Specifying Notification Display Types
	Console
	C++
	Lua Script

	AI Tactical Point System
	Tactical Point System Overview
	TPS Query Execution Flow
	TPS Querying with C++
	Internal Interface Syntax
	TPS Syntax Examples

	TPS Querying with Lua
	TPS Query Language Reference
	Query Syntax
	Query Semantics
	Objects
	Glue
	Generation
	Conditions/Weight Properties (use no object)
	Conditions/Weight Test/Measures (require object)
	Limits

	Failing Queries

	Point Generation and Evaluation
	Generating Points
	Input
	Processing
	Output

	Evaluating Points
	Input
	Processing
	Algorithmic Details
	Output

	Integration with the Modular Behavior Tree System
	Future Plans and Possibilities

	Navigation Q & A
	Big Triangles and Small Links Between Them
	Path Following
	Auto-Disabling

	Path Following
	Goalop "Followpath"
	COPTrace::ExecuteTrace and COPTrace::Execute
	COPTrace::Execute2D

	Movement System
	Using the Movement System
	Potential Improvements

	Auto-Disable
	Global auto-disable
	Per-AI auto-disable

	AI Scripting
	Communication System
	Defining Communication Channels
	Channel Elements & Attributes
	Example

	Configuring Communications for an AI
	Communication Elements & Attributes
	Config
	Communication
	Variation

	Example

	Setting Up Voice Libraries
	Example

	Setting Communication for an AI
	Turning Animation and Voice Off
	Example

	Triggering a Communication Event
	Example

	Debugging
	Troubleshooting

	Factions
	Modular Behavior Tree
	Core Concepts
	Common Node Patterns
	Action Nodes
	Composite Nodes
	Decorator Nodes

	Describing Behavior Trees in XML
	C++ Implementation
	Understanding the Memory Model
	Configuration data
	Runtime data
	Smart pointers

	Implementing an MBT Node
	Creating a node
	Exposing a node
	Setting up error reporting

	Variables
	Lua Scripting
	Timestamps
	Events

	Debugging and Tree Visualization
	"Slashing" Agents
	Adding Custom Debug Text
	Logging and Tracing
	Compiling with Debug Information
	Viewing Completed Trees

	Recommended Naming Practices
	Naming Nodes
	Naming Timestamps

	Modular Behavior Tree Node Reference
	Node Index
	Generic Nodes
	AI Nodes
	CryAction Nodes
	Game Nodes
	Flying Nodes

	Generic Nodes
	Loop
	Parameters
	Success/Failure
	Example

	LoopUntilSuccess
	Parameters
	Success/Failure
	Example

	Parallel
	Parameters
	Success/Failure
	Example

	Selector
	Parameters
	Success/Failure
	Example

	Sequence
	Parameters
	Success/Failure
	Example

	StateMachine
	Parameters
	Success/Failure
	Example

	State & Transitions
	Parameters
	Success/Failure
	Example

	SuppressFailure
	Parameters
	Success/Failure
	Example

	Timeout
	Parameters
	Success/Failure
	Example

	Wait
	Parameters
	Success/Failure
	Example

	AI Nodes
	AdjustCoverStance
	Parameters
	Success/Failure
	Example

	Aim
	Parameters
	Success/Failure
	Example

	AimAroundWhileUsingAMachingGun
	Parameters
	Success/Failure
	Example

	Animate
	Parameters
	Success/Failure
	Example

	AnimationTagWrapper
	Parameters
	Success/Failure
	Example

	AssertCondition
	Parameters
	Success/Failure
	Example

	AssertLua
	Parameters
	Success/Failure
	Example

	AssertTime
	Parameters
	Success/Failure
	Example

	Bubble
	Parameters
	Success/Failure
	Example

	CheckIfTargetCanBeReached
	Parameters
	Success/Failure
	Example

	ClearTargets
	Parameters
	Success/Failure
	Example

	Communicate
	Parameters
	Success/Failure
	Example

	ExecuteLua
	Parameters
	Success/Failure
	Example

	GroupScope
	Parameters
	Success/Failure
	Example

	IfCondition
	Parameters
	Success/Failure
	Example

	IfTime
	Parameters
	Success/Failure
	Example

	Log
	Parameters
	Success/Failure
	Example

	Look
	Parameters
	Success/Failure
	Example

	LuaGate
	Parameters
	Success/Failure
	Example

	LuaWrapper
	Parameters
	Success/Failure
	Example

	MonitorCondition
	Parameters
	Success/Failure
	Example

	Move
	Parameters
	Success/Failure
	Example

	Priority & Case
	Parameters
	Success/Failure
	Example

	PullDownThreatLevel
	Parameters
	Success/Failure
	Example

	QueryTPS
	Parameters
	Success/Failure
	Example

	RandomGate
	Parameters
	Success/Failure
	Example

	SendTransitionSignal
	Parameters
	Success/Failure
	Example

	SetAlertness
	Parameters
	Success/Failure
	Example

	Shoot
	Parameters
	Success/Failure
	Example

	ShootFromCover
	Parameters
	Success/Failure
	Example

	Signal
	Parameters
	Success/Failure
	Example

	SmartObjectStatesWrapper
	Parameters
	Success/Failure
	Example

	Stance
	Parameters
	Success/Failure
	Example

	StopMovement
	Parameters
	Success/Failure
	Example

	Teleport
	Parameters
	Success/Failure
	Example

	ThrowGrenade
	Parameters
	Success/Failure
	Example

	WaitUntilTime
	Parameters
	Success/Failure
	Example

	CryAction Nodes
	AnimateFragment
	Parameters
	Success/Failure
	Example

	Game Nodes
	InflateAgentCollisionRadiusUsingPhysicsTrick
	Parameters
	Success/Failure
	Example

	KeepTargetAtADistance
	Parameters
	Success/Failure
	Example

	Melee
	Parameters
	Success/Failure
	Example
	Lua table settings

	ScorcherDeploy
	RunWhileDeploying
	RunWhileDeployed
	Parameters
	Success/Failure
	Example

	SuppressHitReactions
	Parameters
	Success/Failure
	Example

	Flying Nodes
	Hover
	Parameters
	Success/Failure
	Example

	FlyShoot
	Parameters
	Success/Failure
	Example

	WaitAlignedWithAttentionTarget
	Parameters
	Success/Failure
	Example

	Fly
	Parameters
	Success/Failure
	Example
	Lua table settings

	FlyForceAttentionTarget
	Parameters
	Success/Failure
	Example

	FlyAimAtCombatTarget
	Parameters
	Success/Failure
	Example

	HeavyShootMortar
	Parameters
	Success/Failure
	Example

	SquadScope
	Parameters
	Success/Failure
	Example

	SendSquadEvent
	Parameters
	Success/Failure
	Example

	IfSquadCount
	Parameters
	Success/Failure
	Example

	Refpoints
	Signals
	Sending Signals
	Receiving Signals
	Signal Example
	Behavior Inheritance
	Signals Reference
	Perception Signals
	No Target
	Sound
	Memory
	Visual
	Awareness of Player
	Awareness of Attention Target
	Weapon Damage
	Proximity
	Vehicles
	User-defined

	Weapon-Related Signals
	Navigation Signals
	Pathfinding
	Steering
	Smart Objects
	Navigation Shapes

	Tactics Signals
	Tactical Point System
	Cover

	Groups Signals
	Formation
	Group Coordination

	Flow Graph Signals
	Other Signals
	Forced Execute
	Animation
	Game
	Vehicle-related
	Squads

	Animation
	Animation Overview
	Linear Animations
	Interactive Animations
	Avatar control
	AI control

	Scripted Animations

	Animation Events
	Marking Up Animations with Events
	Receiving Animation Events in the Game Code

	Limb IK Technical
	Setting Up
	Using LimbIK from Code

	Animation Streaming
	Animation Data
	Animation Header Data
	Animation Controller Data
	Loading Controller Data
	Unloading Controller Data
	Preloading and Keeping Controllers in Memory
	Preloading Controllers in DBA files
	Preloading Controllers in CAF files

	Animation Debugging
	Layered Transition Queue Debugging
	Show Per Entity
	Examples

	Show Per CharacterInstance
	Examples

	Interpreting the Output
	Text Color
	AnimInAFIFO Line (one per animation)
	Aim/Look-IK Line
	Parameter Line(s) (only for blend spaces)
	PoseModifier Lines (if running)
	LayerBlendWeight Line (not on layer 0)
	ADIK Line(s) (only if animation driven IK is applied)

	CommandBuffer Debugging
	Warning Level

	Fall and Play
	Time in the Animation System
	Segmentation
	Playback Speed
	Segmented Parametric Animation
	Animation with Only One Key
	Direction of Time
	Time within Controllers

	Asset Builder API
	Builder Modules
	Creating a Builder Module
	Main Entry Point
	Lifecycle Component
	Creating a Builder

	Message Loggging

	AZ Code Generator
	Workflow Summary
	Waf
	Clang
	Intermediate JSON Data
	AZ Code Generator and Python
	Template Drivers and Template Rendering
	Generated Files
	AZ Code Generator Integration with Waf
	Basic Integration
	Advanced Integration
	Input Files
	Template Drivers
	Command Line Parameters
	Waf Specific Options

	AZ Code Generator Parameters
	Waf Parameters
	Clang Compilation Parameters
	Intermediate Data
	Front End
	AZ Code Generator Parameter List

	Code Generation Templates
	Simple Example
	Complex Example
	Template Data

	Template Drivers
	Specifying Drivers in Waf
	Creating a Template Driver in Python
	Methods to Override in the TemplateDriver Class
	add_dependency
	apply_transformations
	get_expected_tags

	render_template_to_file
	Parameters

	render_templates
	Parameters

	Minimal Template Driver
	Rendering Templates
	Configuring Automatic Build Injection
	Preprocessing Intermediate Data

	Custom Code Generator Annotations
	Reference Annotations
	Helper Macros
	AZCG_CreateAnnotation
	AZCG_CreateArgumentAnnotation

	Example Annotations
	Simple Annotation
	Class Annotation Example
	Generated Code Injection Example

	Waf Debugging with AZ Code Generator
	Prerequisites
	Identifying and Configuring Debug Output
	Debugging Wscript Configuration
	Debugging az_code_gen Task Creation
	Debugging az_code_gen Task Execution

	Setting Up PyCharm for Debugging Waf

	Template Driver Debugging
	Debugging the AZ Code Generator Utility
	Prerequisites
	Windows Debugging
	macOS Debugging

	Debugging the AZ Code Generator Utility from the Waf build
	Setting Visual Studio Debug Arguments
	Setting Xcode Debug Arguments

	Intermediate JSON Data Format

	AZ Modules (Preview)
	Comparing AZ Modules to Legacy Modules
	A Self-Aware Method of Initialization

	Relationship with the AZ Framework
	Smarter Singletons
	Current Lumberyard AZ Modules
	LmbrCentral
	LmbrCentralEditor

	Parts of an AZ Module, Explained
	The Module Class
	The EBus
	The System Component Class
	Calling the Module from External Code

	System Components
	Smart Initialization Order
	Easily Configurable Components
	Writing System Components
	Required System Components

	Gems and AZ Modules
	Structure of a Gem
	Waf Integration
	Gems Built as AZ Modules
	About Gem Versioning

	Creating an AZ Module That Is Not a Gem
	A. Start with a Gem
	B. Modify the AZ Module Declaration
	C. Remove CryEngine References (Optional)
	D. Modify the Wscript and Waf Spec Files
	E. Configure Your Project to Load the New Module
	F. Add the Module's Public Interfaces to Your Project's Include Paths

	Configuring System Entities
	Application Descriptor Files

	The AZ Bootstrapping Process

	Cloud Canvas
	Features
	Example Uses
	Tools
	Knowledge Prerequisites
	Cloud Canvas Overview
	Prerequisites
	AWS, Cloud Canvas, and Lumberyard
	Cloud-Based Resources
	Resource Groups
	AWS Accounts
	Lumberyard, Cloud Canvas, and Flow Graph

	Amazon Web Services Supported by Cloud Canvas
	File Storage in the Cloud
	Databases
	Executing Cloud-Based Logic
	Identity and Permissions

	Understanding Cloud Canvas Resource Manager
	The Role of AWS CloudFormation
	A Closer Look at AWS CloudFormation Stacks

	Cloud Canvas Resource Management
	Defining the Resources
	Deployments
	Team Workflow Using Deployments
	Communicating with Cloud Resources using Flow Graph
	Managing Permissions Using Cloud Canvas

	Cloud Gems Overview
	Cloud Gems Included with Lumberyard
	Cloud Gem Portal
	Cloud Gem Framework

	Pricing
	Tutorial: Getting Started with Cloud Canvas
	Prerequisites
	Step 1: Sign up for AWS
	Step 2: Create an AWS Identity and Access Management (IAM) User for Administering the Cloud Canvas Project
	Create an IAM User and an Administrator Group

	Step 3: Sign in as Your IAM User
	Step 4: Enabling the Cloud Canvas Gem (extension) Package
	Cloud Canvas in the SamplesProject
	Enable Cloud Canvas in a New Project

	Step 5: Add Administrator Credentials to Lumberyard
	Step 6: Initializing Cloud Canvas from the Command Line
	Step 7: Locating and Adding Resource Groups
	Locating the Resource Group Defined by SamplesProject
	Adding a Resource Group to a New Project

	Step 8: Creating Deployments
	Step 9: Inspecting Your Resources in AWS
	Step 10: Using IAM to Administer a Cloud Canvas Team
	Create IAM users
	Create a group
	Add IAM users to a group

	Step 11: Remove Cloud Canvas Functionality and AWS Resources

	Don't Die Sample Project
	Setup
	Creating the AWS Project Stack
	Test the Game

	Viewing Lambda Code in Visual Studio
	Acquiring the Mappings File
	Lambda Code Overview

	Deleting the AWS Project Stack
	Empty Your S3 Bucket
	Remove Your Deployment and its Resources

	AWS Services Used

	Cloud Canvas Game Play Design and Engineering Guide
	Cloud Canvas Tools in Lumberyard Editor
	Managing Cloud Canvas Profiles
	Using Resource Manager in Game Design
	Cloud Gems
	Cloud Gem Portal
	How a Cloud Gem Portal Works
	Cloud Gem Workflow

	Setting Up and Accessing the Cloud Gem Portal
	Accessing the Cloud Gem Portal

	Message Of The Day Cloud Gem Portal
	Prerequisites
	Accessing and Using the Message Of The Day Cloud Cloud Gem
	Other Cloud Gems

	Leaderboard Cloud Gem Portal
	Prerequisites
	Accessing and Using the Leaderboard Cloud Gem Portal
	Next Steps

	Using Dynamic Content Manager
	Managing Dynamic Content Packages
	Prerequisites
	Dynamic Content Package Stages
	Package Nesting
	Editing Packages
	Deleting Packages
	Displaying Package Metadata

	Using lmbr_aws for Dynamic Content
	Updating Dynamic Content with lmbr_aws
	lmbr_aws Extensions
	add-manifest-file
	compare-bucket-content
	empty-content-bucket
	list-bucket-content
	remove-manifest-file
	update-manifest
	upload-manifest-content

	Dynamic Content Engineering Details
	Manifest File
	EBus Events
	Manifest Received
	Success
	Failure

	Service API

	Cloud Canvas Flow Graph Node Reference
	Cloud Canvas Configuration Nodes
	ApplyConfiguration node
	SetConfigurationVariable node
	ConfigureProxy node
	GetConfigurationVariableValue node
	SetDefaultRegion node

	Cognito (Player Identity) Nodes
	ConfigureAnonymousPlayer node
	ConfigureAuthenticatedPlayer node

	DynamoDB (Database) Nodes
	AtomicAdd node
	DeleteItem node
	GetItem node
	PutItem node
	Query node
	ScanTable node
	UpdateItem node
	GetStringSet node

	Lambda (Cloud Functions) Node
	Invoke node

	S3 (Storage) Nodes
	DownloadFile node
	UploadFile node
	GeneratePublicUrl node

	SNS (Notification Service) Nodes
	ParseMessage node
	Notify node
	CheckArnSubscribed node
	SubscribeToTopic node

	SQS (Message Queuing Service) Nodes
	PollAndNotify node
	Push node

	Static Data (PROTOTYPE) Nodes
	Add Monitored Bucket node
	Get Static Data node
	Load Static Data node
	Remove Monitored Bucket node
	Request Bucket node
	Set Update Frequency node

	Cloud Canvas Software Engineering Guide
	Resource Manager in Depth
	Understanding Resource Status Descriptions
	Editing Resource Manager Files
	Using the Internal Editor
	Using an External Editor
	Notes

	Working with JSON Files
	resource-template.json
	project-settings.json
	project-template.json
	deployment-template.json
	deployment-access-template.json
	user-settings.json

	Viewing the Cloud Canvas Progress Log
	Working with Resource Groups
	Resource Groups
	Individual Resource Group
	Adding Resources in a New Resource Group
	Individual Resource Group Status

	resource-template.json
	lambda-function-code
	project-code

	Resource Definitions
	Resource Definition Location
	project-settings.json
	ProjectStackId Property
	DefaultDeployment Property
	ReleaseDeployment Property
	DeploymentStackId Property
	DeploymentAccessStackId Property
	parameter Property

	user-settings.json
	DefaultDeployment Property
	Mappings Property

	project-template.json
	ConfigurationKey Parameter
	Configuration Resource
	ProjectPlayerAccessTokenExchangeHandlerRole Resource
	ProjectResourceHandlerExecution Resource
	ProjectResourceHandler Resource
	ProjectPlayerAccessTokenExchangeHandler Resource

	deployment-template.json
	Parameters
	ProjectResourceHandler Parameter
	ConfigurationBucket Parameter
	ConfigurationKey Parameter
	DeploymentName Parameter
	ProjectStackId Parameter

	Resources
	HelloWorldConfiguration Resource
	HelloWorld Resource

	Outputs

	deployment-access-template.json
	Parameters
	Resources
	OwnerPolicy Resource
	Owner Resource
	Player Resource
	PlayerAccess Resource
	PlayerLoginRole Resource
	PlayerLoginIdentityPool Resource
	PlayerAccessIdentityPool Resource

	The project-code Subdirectory
	resource-group\{resource-group} subdirectories
	resource-template.json
	Resource Template Parameters
	ProjectResourceHandler Parameter
	ConfigurationBucket Parameter
	ConfigurationKey Parameter
	ReadCapacityUnits and WriteCapacityUnits Parameters

	Resource Template Resources
	Messages Resource
	SayHelloConfiguration Resource
	SayHello Resource
	PlayerAccess Resource

	The lambda-function-code Subdirectory

	Importing Resource Definitions into Cloud Canvas
	Importing Resources using Lumberyard Editor
	Importing Resource Definitions Using the Command Line
	Understanding Resource Definitions
	Automatically Imported Resource Definitions
	Resources Supported for Import
	Dynamo DB Tables
	Amazon S3 Buckets
	Lambda Functions
	Amazon SNS Topics
	SQS Queues

	Resource Deployments
	Configuration Bucket

	Resource Mappings
	Using Mappings in AWS Flow Nodes
	Using Mappings with the AWS C++ SDK
	Using Mappings in Lambda Functions

	Resource Manager Resource Group Parameters
	Parameter Configuration

	Custom Resources
	CognitoIdentityPool
	Input Properties
	Output Properties

	EmptyDeployment
	ResourceGroupConfiguration
	Input Properties
	Output Properties

	LambdaConfiguration
	Input Properties
	Output Properties

	PlayerAccess
	Input Properties
	Output Properties
	PlayerAccess Metadata Format

	Cloud Gems Framework
	Getting Started with the Cloud Gems Framework
	Cloud Gems
	Cloud Gems Framework
	Creating a Cloud Gem

	Making HTTP Requests Using the Cloud Gems Framework
	Getting HTTP Responses Using Script
	Getting HTTP Responses Using C++

	Running AWS API Jobs Using the Cloud Gems Framework
	Cloud Gems Framework Service API
	Cloud Gem Swagger API Descriptions
	Resources
	Custom::ServiceApi Resource

	Operations
	Default Request Mapping
	Default Response Mapping
	Request Execution
	Error Handling

	Security
	Access Control
	Service Api Permissions

	Cloud Gems Framework Extension Object
	Upload Processing

	Game Clients
	Generating a Game Client
	Component Header File Accessibility

	Generated Game Client Code Example
	Examining the Generated Game Client Code

	Calling Your Game APIs
	Calling APIs From C++
	Using the Client Component to Call APIs
	Using the Request Job to Call APIs

	Using Lua to Call APIs

	Publishing Your APIs

	Administering Cloud Canvas
	Setting Up a Project to Use Resource Manager
	Initializing Cloud Canvas Resource Manager
	Working with Project Stacks
	Project Stack Status Table
	Upload Resources
	Stack Resources Table

	Working with Deployments
	Create Deployment
	Deployment Status Table
	Individual Deployment Nodes
	Individual Deployment Status Table
	Upload All Resources
	Delete Deployment
	Stack Resources Table

	Making a Cloud Canvas Deployment Active
	Making a Deployment Active
	Making a Deployment the Default

	Testing Different Mappings
	Selecting a Deployment with a PC Launcher

	Using Protected Deployments
	When Protected Deployments Are Detected
	Marking a Deployment as Protected
	Viewing Protected Status in Cloud Canvas Resource Manager

	Deleting Cloud Canvas Deployments and Their Resources

	Understanding the Resource Manager Security System
	Setting Access Permissions
	Access Scenarios and ProjectResourceHandler
	Access Control
	Custom::AccessControl Resource Definitions

	Access Control and Player Identity in Depth
	Project Access Control
	Authorize AWS Use in Lumberyard Editor

	Player Access Control
	Lambda Function Access Control
	Player Identity
	Anonymous (Unauthenticated) Player Login
	Authenticated Player Login
	Configuring External Identity Providers
	Automatic Token Refresh

	Using the Cloud Canvas Command Line
	Syntax
	Configuration
	Environment Variables
	Configuration Arguments

	Common Arguments
	Command Summary
	Commands
	add-login-provider
	add-profile
	add-resource-group
	clear-parameter
	create-deployment
	create-project-stack
	default-deployment
	default-profile
	delete-deployment
	delete-project-stack
	get-function-log
	import-resource
	list-deployments
	list-importable-resources
	list-mappings
	list-parameters
	list-profiles
	list-resource-groups
	list-resources
	protect-deployment
	remove-login-provider
	remove-profile
	remove-resource-group
	rename-profile
	set-parameter
	update-login-provider
	update-mappings
	update-profile
	update-project-stack
	upload-resources

	Component Entity System
	Programmer's Guide to Entities and Components
	Creating a Component
	Component Example
	Component Members

	Registering Your Component
	Reflecting a Component for Serialization and Editing
	Serialization
	Editing
	Attributes
	Change Notification Callbacks

	Defining and Using Component Services
	Editor Components
	Sample Editor Component
	Editor Component and Run-time Component Differences
	Base Classes
	Macro
	The DisplayEntity Method
	The BuildGameEntity Method
	The Transform Component Example

	Creating System Components
	Defining a System Component

	Components and EBuses
	Request Bus
	Transform Request Event Group
	Base Class and Trait Specification
	EBus Request Bus Events
	EBus Request Bus Definition

	Notification Bus
	Transform Notification Event Group

	Components as EBus Handlers

	Tick Bus and Components
	Event-Based Programming and Event-Based Polling: Best Practices
	Event-Based Polling
	Event-Based Programming
	Use Notifications to Make Your Components Easy to Use

	Exposing Custom Components to Track View for Animation
	Exposing a Custom Component: Example
	Viewing the Result

	Components and EBuses: Best Practices
	EBus Names
	Provide Default Implementations of Methods
	EBus Event Naming
	Avoid Using Type Definitions for Serialized Data
	EBus Results
	EBus Timing
	Making Functions Public or Protected
	Avoid Using the const Type Qualifier in EBus Event Group Functions

	Behavior Context
	Reflection API
	Method
	Property
	Constant
	Enum
	Class
	Nested Classes

	EBus

	Example

	Slices and Dynamic Slices
	Anatomy of a Slice
	Working with Dynamic Slices
	Instantiating Dynamic Slices

	Controller Devices and Game Input
	Action Maps
	Initializing the Action Map Manager
	Receiving Actions During Runtime

	CryInput
	IInput
	IInputEventListener
	SInputEvent
	IInputDevice

	Setting Up Controls and Action Maps
	Action Maps
	Versioning
	Activation Modes

	Action Filters
	Controller Layouts
	Working with Action Maps During Runtime
	Default Controller Mapping
	Key Naming Conventions

	CryCommon
	CryExtension
	Composites
	Shared and raw interface pointers
	GUIDs
	ICryUnknown
	ICryFactory
	ICryFactoryRegistry
	Additional Extensions
	Interface casting semantics
	Querying interface identifiers
	Checking pointers
	Querying composites

	Glue Code Macros
	CRYINTERFACE_DECLARE(iname, iidHigh, iidLow)
	Parameters

	CRYINTERFACE_BEGIN()
	CRYINTERFACE_ADD(iname)
	Parameters

	CRYINTERFACE_END()
	CRYINTERFACE_ENDWITHBASE(base)
	Parameters

	CRYINTERFACE_ENDWITHBASE2(base0, base1)
	Parameters

	CRYINTERFACE_ENDWITHBASE3(base0, base1, base2)
	Parameters

	CRYINTERFACE_SIMPLE(iname)
	Parameters

	CRYCOMPOSITE_BEGIN()
	CRYCOMPOSITE_ADD(member, membername)
	Parameters

	CRYCOMPOSITE_END(implclassname)
	Parameters

	CRYCOMPOSITE_ENDWITHBASE(implclassname, base)
	Parameters

	CRYCOMPOSITE_ENDWITHBASE2(implclassname, base0, base1)
	Parameters

	CRYCOMPOSITE_ENDWITHBASE3(implclassname, base0, base1, base2)
	Parameters

	CRYGENERATE_CLASS(implclassname, cname, cidHigh, cidLow)
	Parameters

	CRYGENERATE_SINGLETONCLASS(implclassname, cname, cidHigh, cidLow)
	Parameters

	CRYREGISTER_CLASS(implclassname)
	Parameters

	MAKE_CRYGUID(high, low)
	Parameters

	CryExtension Samples
	Sample 1 - Implementing a Source Control Plugin by Using Extensions

	Using Extensions
	Working with Specific Extension Classes
	Finding Extension Classes that Support a Specific Interface

	Implementing Extensions Using the Framework
	Recommended Layout for Including Framework Header Files
	Using Glue Code
	Without Using Glue Code
	Exposing Composites
	If ICryUnknown Cannot Be the Base of the Extension Class
	Custom Inclusion and Exclusion of Extensions

	CryString
	How to Use Strings as Key Values for STL Containers
	Further Usage Tips

	ICrySizer
	How to use the ICrySizer interface

	Serialization Library
	Tutorial
	Defining data
	Serializing into or from a file

	Editing in the PropertyTree

	Use Cases
	Non-intrusive serialization
	Registering Enum inside a Class
	Polymorphic Types
	Customizing presentation in the PropertyTree
	Control characters
	Decorators
	Decorator example

	Serialization context
	Serializing opaque data blocks
	Adding callbacks to the PropertyTree
	PropertyTree in MFC window
	Documentation and validation
	Drop-down menu with a dynamic list

	Demo and Video Capture
	Capturing Video and Audio
	Preparation
	Video Settings
	Frame Size and Resolution
	Frames Per Second
	Video Capture File Format
	Video Capture File Location

	Starting and Ending the Video Recording
	Audio Settings
	Deactivating the Sound System
	Reactivating the Sound System

	Configuration Files
	Creating Configuration Files
	Executing the Config Files

	Recording Time Demos
	Overview
	Recording Controls
	Related Console Variables

	Entity System
	Entity Property Prefixes
	Creating a New Entity Class
	Entity Pool System
	Editor Usage
	Static versus Dynamic Entities
	Entity Pool Definitions
	Empty Class
	Entity Class Mapping
	Other Properties

	Entity Pool Creation
	Creating and Destroying Static Entities with Pools
	Entity Pool Bookmarks
	Preparing a Static Entity
	Returning a Static Entity to the Pool

	Creating and Destroying Dynamic Entities with Pools
	Creating a Dynamic Entity
	Destroying a Dynamic Entity with the Pool

	Serialization
	Saving Entity Pools
	Loading Entity Pools

	Listener/Event Registration
	IEntityPoolListener
	IEntitySystemSink

	Debugging Utilities
	Debugging Entity Pool Bookmarks
	Arguments
	Data displayed

	Entity ID Explained
	Adding Usable Support on an Entity
	Overview
	Preparing the Script
	Implementing IsUsable
	Implementing OnUsed

	Entity Scripting
	Structure of a Script Entity
	Ent File
	Lua Script
	Properties
	Editor Table
	Functions

	Using Entity State
	Using Entity Slots
	Allocating a Slot
	Modifying Slot Parameters
	Slot Management
	Loading a Slot

	Linking Entities
	Exposing an Entity to the Network
	Exposing a Script Entity to CryNetwork
	RMI functions
	ServerProperties table

	Exposing a Script Entity to CryAction

	Event Bus (EBus)
	Bus Configurations
	Single Handler
	Many Handlers
	Example Without Handler Ordering
	Example with Handler Ordering

	EBus with Addresses and a Single Handler
	Example Without Address Ordering
	Example With Address Ordering

	EBus with Addresses and Many Handlers
	Example: Without Address Ordering
	Example: With Address Ordering

	Synchronous vs. Asynchronous
	Additional Features
	Usage and Examples
	Declaring an EBus
	EBus Configuration Options
	HandlerPolicy
	Address Policy
	EBusAddressPolicy Options
	EBusHandlerPolicy Options

	Implementing a Handler
	Sending Messages to an EBus
	Retrieving Return Values
	Return Values from Multiple Handlers
	Asynchronous/Queued Buses

	File Access
	CryPak File Archives
	Features
	Unicode and Absolute Path Handling
	Layering
	Slashes
	Special Folder Handling
	Internals
	Creating a pak file using 7-Zip
	Dealing with Large Pak Files
	Accessing Files with CryPak
	Preparation
	Reading Files with CryPak
	Complete example code (file reading)

	Writing to File System Files With CryPak
	Modifying Paks With CryArchive
	CryPak Details
	Initialization
	Pak file type priorities
	Pak loading and search priorities

	Tracking File Access
	CVars
	Where invalid access is defined
	Exceptions
	Resolving file access callstacks

	Graphics and Rendering
	Render Nodes
	Creating a New Render Node

	TrueType Font Rendering
	Supported Features
	Useful Console Commands

	Generating Stars DAT File
	File Format

	Anti-Aliasing and Supersampling
	Controlling Anti-Aliasing
	Controlling Supersampling

	Lua Scripting
	Working with Lua Scripting
	Running Scripts
	Reloading Scripts During Runtime
	Recommended Reading
	Lua Editor
	Tutorial: Using Lua Editor for Debugging with Lumberyard Editor
	Options Available While Debugging

	Maintaining Separate Search Results
	Editing
	Perforce Integration

	Using the Lua Remote Debugger
	Performing Tasks in the Lua Remote Debugger

	Using the Lua XML Loader
	XML Data
	Tables
	Arrays

	Loading and Saving a Table from Lua
	Data Types
	Enums
	Example

	Component Entity Lua Scripting Reference
	Writing Lua Scripts for the Component Entity System
	Basic Structure of a Component Entity Lua Script
	Built-in Types and Methods
	Properties
	Boolean Values (true, false)
	Numeric Values (Integer or Floating Point Numbers)
	Strings
	Entities

	Communicating with Components
	Order of Component Activation
	Registering with a Component to Receive Notifications
	Non-Component Notifications
	Sending Events to a Component
	Communicating with Components Attached to Other Entities
	Using AZStd::any

	Debugging Scripts
	Logging to the Console
	Using an Assert to Detect Potential Issues
	Communicating Errors
	Displaying a Warning When User Attention Is Required

	The Lua Environment
	Additional Resources
	Example Lua Scripts in Lumberyard

	Loading Canvases in Lua
	Lua API Reference
	VR Lua Functions
	Global Functions
	HMDDeviceRequestBus
	ControllerRequestBus
	struct HMDDeviceInfo
	struct TrackingState
	struct PoseState
	struct DynamicsState
	enum HMDStatus

	Component Entity Lua API Reference
	BehaviorTreeComponentRequestBus
	StartBehaviorTree
	StopBehaviorTree
	GetVariableNameCrcs
	GetVariableValue
	SetVariableValue

	NavigationComponentRequestBus
	FindPathToEntity
	Stop

	NavigationComponentNotificationBus
	OnSearchingForPath
	OnTraversalStarted
	OnTraversalInProgress
	OnTraversalComplete
	OnTraversalCancelled

	NavigationSystemRequestBus
	RayCast

	AttachmentComponentRequestBus
	Attach
	Detach
	SetAttachmentOffset

	AttachmentComponentNotificationBus
	OnAttached
	OnDetached

	CharacterAnimationRequestBus
	SetBlendParameter
	SetAnimationDrivenMotion

	MannequinRequestsBus
	QueueFragment
	PauseAll
	ResumeAll
	SetTag
	ClearTag
	SetGroupTag
	ClearGroup
	SetScopeContext
	ClearScopeContext
	StopRequest
	GetRequestStatus
	ForceFinishRequest
	SetRequestSpeedBias
	GetRequestSpeedBias
	SetRequestAnimWeight
	GetRequestAnimWeight

	SimpleAnimationComponentRequestBus
	StartDefaultAnimations
	StartAnimation
	StartAnimationByName
	StopAllAnimations
	StopAnimationsOnLayer
	SetPlaybackSpeed

	SimpleAnimationComponentNotificationBus
	OnAnimationStarted
	OnAnimationStopped

	AudioEnvironmentComponentRequestBus
	SetAmount
	SetEnvironmentAmount

	AudioListenerComponentRequestBus
	SetRotationEntity
	SetPositionEntity
	SetFullTransformEntity

	AudioRtpcComponentRequestBus
	SetValue
	SetRtpcValue

	AudioSwitchComponentRequestBus
	SetState
	SetSwitchState

	AudioTriggerComponentRequestBus
	Play
	Stop
	ExecuteTrigger
	KillTrigger
	KillAllTriggers
	SetMovesWithEntity

	AudioTriggerComponentNotificationBus
	OnTriggerFinished

	FloatGameplayNotificationBus (AZ::GameplayNotificationBus<float>)
	OnGameplayEventAction
	OnGameplayEventFailed

	Vector3GameplayNotificationBus (AZ::GameplayNotificationBus<AZ::Vector3>)
	OnGameplayEventAction
	OnGameplayEventFailed

	StringGameplayNotificationBus (AZ::GameplayNotificationBus<const AZStd::string>)
	OnGameplayEventAction
	OnGameplayEventFailed

	EntityIdGameplayNotificationBus (AZ::GameplayNotificationBus<AZ::EntityId>)
	OnGameplayEventAction
	OnGameplayEventFailed

	CryCharacterPhysicsRequestBus
	Move

	ConstraintComponentRequestBus
	SetConstraintEntities
	SetConstraintEntitiesWithPartIds
	EnableConstraint
	DisableConstraint

	ConstraintComponentNotificationBus
	OnConstraintEntitiesChanged
	OnConstraintEnabled
	OnConstraintDisabled

	PhysicsComponentRequestBus
	EnablePhysics
	DisablePhysics
	IsPhysicsEnabled
	AddImpulse
	AddAngularImpulse
	GetVelocity
	SetVelocity
	GetAcceleration
	GetAngularVelocity
	SetAngularVelocity
	GetAngularAcceleration
	GetMass

	PhysicsComponentNotificationBus
	OnPhysicsEnabled
	OnPhysicsDisabled
	OnCollision

	PhysicsSystemRequestBus
	RayCast

	RagdollPhysicsRequestBus
	EnterRagdoll
	ExitRagdoll

	DecalComponentRequestBus
	SetVisibility
	Show
	Hide

	LensFlareComponentRequestBus
	SetLensFlareState
	TurnOnLensFlare
	TurnOffLensFlare
	ToggleLensFlare

	LensFlareComponentNotificationBus
	LensFlareTurnedOn
	LensFlareTurnedOff

	LightComponentRequestBus
	SetLightState
	TurnOnLight
	TurnOffLight
	ToggleLight

	LightComponentNotificationBus
	LightTurnedOn
	LightTurnedOff

	ParticleComponentRequestBus
	SetVisibility
	Show
	Hide
	SetupEmitter

	SimpleStateComponentRequestBus
	SetState
	SetStateByIndex
	SetToNextState
	SetToPreviousState
	SetToFirstState
	SetToLastState
	GetNumStates
	GetCurrentState

	SimpleStateComponentNotificationBus
	OnStateChanged

	SpawnerComponentRequestBus
	Spawn
	SpawnRelative
	SpawnAbsolute

	SpawnerComponentNotificationBus
	OnSpawnBegin
	OnSpawnEnd
	OnEntitySpawned

	TagComponentRequestBus
	HasTag
	AddTag
	AddTags
	RemoveTag
	RemoveTags
	GetTags

	TagGlobalRequestBus
	RequestTaggedEntities

	TagGlobalNotificationBus
	OnEntityTagAdded
	OnEntityTagRemoved

	TagComponentNotificationsBus
	OnTagAdded
	OnTagRemoved

	TriggerAreaRequestsBus
	AddRequiredTag
	RemoveRequiredTag
	AddExcludedTag
	RemoveExcludedTag

	TriggerAreaNotificationBus
	OnTriggerAreaEntered
	OnTriggerAreaExited

	TriggerAreaEntityNotificationBus
	OnEntityEnteredTriggerArea
	OnEntityExitedTriggerArea

	BoxShapeComponentRequestsBus
	GetBoxConfiguration
	SetBoxDimensions

	CapsuleShapeComponentRequestsBus
	GetCapsuleConfiguration
	SetHeight
	SetRadius

	CylinderShapeComponentRequestsBus
	GetCylinderConfiguration
	SetHeight
	SetRadius

	ShapeComponentRequestsBus
	GetShapeType
	IsPointInside
	DistanceFromPoint
	DistanceSquaredFromPoint

	ShapeComponentNotificationsBus
	OnShapeChanged

	SphereShapeComponentRequestsBus
	GetSphereConfiguration
	SetRadius

	EntityBus
	OnEntityActivated
	OnEntityDeactivated

	TickBus
	OnTick

	TickRequestBus
	GetTickDeltaTime
	GetTimeAtCurrentTick

	TransformNotificationBus
	OnTransformChanged
	OnParentChanged

	GameEntityContextRequestBus
	DestroyGameEntity
	DestroyGameEntityAndDescendants
	ActivateGameEntity
	DeactivateGameEntity
	DestroySliceByEntity

	RandomManagerBus
	RandomFloat
	RandomBool
	RandomInt
	RandomInRange

	CameraRequestBus
	GetFov
	GetNearClipDistance
	GetFarClipDistance
	GetFrustumWidth
	GetFrustumHeight
	SetFov
	SetNearClipDistance
	SetFarClipDistance
	SetFrustumWidth
	SetFrustumHeight
	MakeActiveView

	HttpClientComponentNotificationBus
	OnHttpRequestSuccess
	OnHttpRequestFailure

	HttpClientComponentRequestBus
	MakeHttpRequest

	HMDDeviceRequestBus
	GetTrackingState
	RecenterPose
	SetTrackingLevel
	OutputHMDInfo
	GetDeviceInfo
	IsInitialized

	ControllerRequestBus
	GetTrackingState
	IsConnected

	VideoPlaybackRequestBus
	Play
	Pause
	Stop
	EnableLooping
	IsPlaying
	SetPlaybackSpeed

	VideoPlaybackNotificationBus
	OnPlaybackStarted
	OnPlaybackPaused
	OnPlaybackStopped
	OnPlaybackFinished

	UI Lua Reference
	LyShineLua.ShowMouseCursor
	Parameters
	Returns

	UiCanvasLuaProxy:LoadCanvas
	Parameters
	Returns

	UiCanvasLuaProxy:UnloadCanvas
	Parameters
	Returns

	UiCanvasLuaProxy:BusConnect
	Parameters
	Returns

	UiCanvasLuaBus:FindElementById
	Parameters
	Returns

	UiCanvasLuaBus:FindElementByName
	Parameters
	Returns

	UiCanvasLuaBus:GetEnabled
	Parameters
	Returns

	UiCanvasLuaBus:SetEnabled
	Parameters
	Returns

	UiCanvasNotificationLuaProxy:BusConnect
	Parameters
	Returns

	UiCanvasNotificationLuaBus:OnAction
	Parameters
	Returns

	UiElementLuaProxy:BusConnect
	Parameters
	Returns

	UiElementLuaBus:GetEnabled
	Parameters
	Returns

	UiElementLuaBus:SetEnabled
	Parameters
	Returns

	UiFaderComponent:HasFaderHandler
	Parameters
	Returns

	UiFaderBus:SetFadeValue
	Parameters
	Returns

	UiFaderBus:Fade
	Parameters
	Returns

	Legacy Lua Scripting Reference
	Entity System Script Callbacks
	Default State Functions
	Script State Functions

	Game Rules Script Callbacks
	Common Lua Globals and Functions
	Globals
	AIReload()
	AIDebugToggle()
	ShowTime()
	count()
	new()
	merge()
	mergef()
	Vec2Str()
	LogError()
	LogWarning()
	Log()
	dump()
	EmptyString()
	NumberToBool()
	EntityName()
	EntityNamed()
	SafeTableGet()

	EntityUtils Lua Functions
	DumpEntities()
	CompareEntitiesByName()
	Example

	CompareEntitiesByDistanceFromPoint()
	Example

	BroadcastEvent()
	Example

	MakeDerivedEntity()
	MakeDerivedEntityOverride()
	MakeUsable()
	Example

	MakePickable()
	MakeSpawnable()
	EntityCommon.PhysicalizeRigid()

	Lua Vector and Math Functions
	Global Vectors
	Constants
	IsNullVector()
	IsNotNullVector()
	LengthSqVector()
	LengthVector()
	DistanceSqVectors()
	DistanceSqVectors2d()
	DistanceVectors()
	dotproduct3d()
	dotproduct2d()
	LogVec()
	Example

	ZeroVector()
	CopyVector()
	SumVectors()
	NegVector()
	SubVectors()
	FastSumVectors()
	DifferenceVectors()
	FastDifferenceVectors()
	ProductVectors()
	FastProductVectors()
	ScaleVector()
	ScaleVectorInPlace(a,b)
	ScaleVectorInPlace(dest,a,b)
	NormalizeVector()
	VecRotate90_Z()
	VecRotateMinus90_Z()
	crossproduct3d()
	RotateVectorAroundR()
	ProjectVector()
	DistanceLineAndPoint()
	LerpColors()
	Lerp()
	__max()
	__min()
	clamp()
	Interpolate()
	sgn()
	sgnnz()
	sqr()
	randomF()
	iff()

	Physics Lua Functions
	Physics.RegisterExplosionShape()
	Physics.RegisterExplosionCrack()

	Lua ScriptBind Reference
	ScriptBind Engine Functions
	ScriptBind_AI
	AbortAction
	AddAggressiveTarget
	AddCombatClass
	AddFormationPoint
	AddFormationPointFixed
	AddPatternBranch
	AddPatternNode
	AddPersonallyHostile
	AgentLookAtPos
	AllowLowerBodyToTurn
	BeginTrackPattern
	CanFireInStance
	CanMelee
	CanMoveStraightToPoint
	ChangeFormation
	ChangeMovementAbility
	ChangeParameter
	CheckForFriendlyAgentsAroundPoint
	CheckMeleeDamage
	ClearAnimationTag
	ClearMovementContext
	ClearPotentialTargets
	ClearTempTarget
	ConstrainPointInsideGenericShape
	CreateFormation
	CreateGroupFormation
	CreateStimulusEvent
	CreateTempGenericShapeBox
	DebugReportHitDamage
	DestroyAllTPSQueries
	DistanceToGenericShape
	DropTarget
	EnableCoverFire
	EnableFire
	EnableUpdateLookTarget
	EnableWeaponAccessory
	EndTrackPattern
	Error
	EvalPeek
	ExecuteAction
	FindObjectOfType
	FindStandbySpotInShape
	FindStandbySpotInSphere
	FreeSignal
	GetAIObjectPosition
	GetAnchor
	GetAttentionTargetAIType
	GetAttentionTargetDirection
	GetAttentionTargetDistance
	GetAttentionTargetEntity
	GetAttentionTargetOf
	GetAttentionTargetPosition
	GetAttentionTargetThreat
	GetAttentionTargetType
	GetAttentionTargetViewDirection
	GetBeaconPosition
	GetBehaviorBlackBoard
	GetBehaviorVariable
	GetBiasedDirection
	GetCurrentHideAnchor
	GetDirectAnchorPos
	GetDirLabelToPoint
	GetEnclosingSpace
	GetDistanceAlongPath
	GetDistanceToClosestGroupMember
	GetEnclosingGenericShapeOfType
	GetExtraPriority
	GetFactionOf
	GetFormationLookingPoint
	GetFormationPointClass
	GetFormationPointPosition
	GetFormationPosition
	GetGroupAveragePosition
	GetGroupCount
	GetGroupMember
	GetGroupOf
	GetGroupScopeUserCount
	GetGroupScriptTable
	GetGroupTarget
	GetGroupTargetCount
	GetGroupTargetEntity
	GetGroupTargetThreat
	GetGroupTargetType
	GetLastUsedSmartObject
	GetLeader
	GetMemoryFireType
	GetNavigationType
	GetNearestEntitiesOfType
	GetNearestHidespot
	GetNearestPathOfTypeInRange
	GetNearestPointOnPath
	GetObjectBlackBoard
	GetObjectRadius
	GetParameter
	GetPathLoop
	GetPathSegNoOnPath
	GetPeakThreatLevel
	GetPeakThreatType
	GetPointOnPathBySegNo
	GetPosturePriority
	GetPotentialTargetCount
	GetPotentialTargetCountFromFaction
	GetPredictedPosAlongPath
	GetPreviousBehaviorName
	GetPreviousPeakThreatLevel
	GetPreviousPeakThreatType
	GetProbableTargetPosition
	GetRefPointDirection
	GetRefPointPosition
	GetRefShapeName
	GetSoundPerceptionDescriptor
	GetStance
	GetSubTypeOf
	GetTacticalPoints
	GetTargetSubType
	GetTargetType
	GetTotalLengthOfPath
	GetTypeOf
	GetUnitCount
	GetUnitInRank
	GoTo
	Hostile
	IgnoreCurrentHideObject
	IntersectsForbidden
	IsAgentInAgentFOV
	IsAgentInTargetFOV
	IsAimReady
	IsCoverCompromised
	IsEnabled
	IsFireEnabled
	IsInCover
	IsLowHealthPauseActive
	IsLowOnAmmo
	IsMoving
	IsMovingInCover
	IsMovingToCover
	IsOutOfAmmo
	IsPersonallyHostile
	IsPointInFlightRegion
	IsPointInsideGenericShape
	IsPointInWaterRegion
	IsPunchableObjectValid
	IsTakingCover
	LoadBehaviors
	LogComment
	LogEvent
	LogProgress
	MeleePunchableObject
	ModifySmartObjectStates
	ParseTables
	PlayCommunication
	PlayReadabilitySound
	ProcessBalancedDamage
	QueueBubbleMessage
	RecComment
	RegisterDamageRegion
	RegisterInterestedActor
	RegisterInterestingEntity
	RegisterTacticalPointQuery
	RegisterTargetTrack
	RemovePersonallyHostile
	RequestAttack
	RequestToStopMovement
	ResetAgentLookAtPos
	ResetAgentState
	ResetParameters
	ResetPersonallyHostiles
	ScaleFormation
	SequenceBehaviorReady
	SequenceInterruptibleBehaviorLeft
	SequenceNonInterruptibleBehaviorLeft
	SetAlarmed
	SetAnimationTag
	SetAssesmentMultiplier
	SetAttentiontarget
	SetBeaconPosition
	SetBehaviorTreeEvaluationEnabled
	SetBehaviorVariable
	SetCollisionAvoidanceRadiusIncrement
	SetContinuousMotion
	SetCoverCompromised
	SetEntitySpeedRange
	SetExtraPriority
	SetFactionOf
	SetFactionThreatMultiplier
	SetFireMode
	SetFormationAngleThreshold
	SetFormationLookingPoint
	SetFormationPosition
	SetFormationUpdate
	SetFormationUpdateSight
	SetIgnorant
	SetInCover
	SetLeader
	SetMemoryFireType
	SetMovementContext
	SetPathAttributeToFollow
	SetPathToFollow
	SetPFBlockerRadius
	SetPointListToFollow
	SetPosturePriority
	SetPostures
	SetRefPointAtDefensePos
	SetRefPointDirection
	SetRefPointPosition
	SetRefPointRadius
	SetRefpointToAnchor
	SetRefpointToPunchableObject
	SetRefShapeName
	SetSmartObjectState
	SetSoundPerceptionDescriptor
	SetSpeed
	SetStance
	SetTargetTrackClassThreat
	SetTempTargetPriority
	SetTerritoryShapeName
	SetUnitProperties
	SetUseSecondaryVehicleWeapon
	Signal
	SmartObjectEvent
	SoundEvent
	StopCommunication
	ThrowGrenade
	UnregisterInterestedActor
	UnregisterInterestingEntity
	UnregisterTargetTrack
	UpdateGlobalPerceptionScale
	UpdateTempTarget
	UpTargetPriority
	VisualEvent
	Warning

	ScriptBind_Entity
	Activate
	ActivateOutput
	ActivatePlayerPhysics
	AddConstraint
	AddImpulse
	AttachChild
	AttachSurfaceEffect
	AuxAudioProxiesMoveWithEntity
	AwakeCharacterPhysics
	AwakeEnvironment
	AwakePhysics
	BreakToPieces
	CalcWorldAnglesFromRelativeDir
	CancelSubpipe
	ChangeAttachmentMaterial
	CharacterUpdateAlways
	CharacterUpdateOnRender
	CheckCollisions
	CheckShaderParamCallbacks
	CloneMaterial
	CopySlotTM
	CountLinks
	CreateAuxAudioProxy
	CreateBoneAttachment
	CreateCameraComponent
	CreateDRSProxy
	CreateLink
	CreateRenderComponent
	CreateSkinAttachment
	Damage
	DeleteParticleEmitter
	DeleteThis
	DestroyAttachment
	DestroyPhysics
	DetachAll
	DetachThis
	DisableAnimationEvent
	DrawSlot
	EnableBoneAnimation
	EnableBoneAnimationAll
	EnableDecals
	EnableInheritXForm
	EnableMaterialLayer
	EnablePhysics
	EnableProceduralFacialAnimation
	ExecuteAudioTrigger
	FadeGlobalDensity
	ForceCharacterUpdate
	ForwardTriggerEventsTo
	FreeAllSlots
	FreeSlot
	GetAIName
	GetAllAuxAudioProxiesID
	GetAngles
	GetAnimationLength
	GetAnimationTime
	GetArchetype
	GetAttachmentBone
	GetAttachmentCGF
	GetBoneAngularVelocity
	GetBoneDir
	GetBoneLocal
	GetBoneNameFromTable
	GetBonePos
	GetBoneVelocity
	GetCenterOfMassPos
	GetCharacter
	GetChild
	GetChildCount
	GetCurAnimation
	GetDefaultAuxAudioProxyID
	GetDirectionVector
	GetDistance
	GetEntitiesInContact
	GetEntityMaterial
	GetExplosionImpulse
	GetExplosionObstruction
	GetFlags
	GetFlagsExtended
	GetGeomCachePrecachedTime
	GetGravity
	GetHelperAngles
	GetHelperDir
	GetHelperPos
	GetLink
	GetLinkName
	GetLinkTarget
	GetLocalAngles
	GetLocalBBox
	GetLocalPos
	GetLocalScale
	GetLodRatio
	GetMass
	GetMaterial
	GetMaterialFloat
	GetMaterialVec3
	GetName
	GetParent
	GetParentSlot
	GetPhysicalStats
	GetPos
	GetProjectedWorldBBox
	GetRawId
	GetScale
	GetSlotAngles
	GetSlotCount
	GetSlotHelperPos
	GetSlotPos
	GetSlotScale
	GetSlotWorldDir
	GetSlotWorldPos
	GetSpeed
	GetState
	GetSubmergedVolume
	GetTimeOfDayHour
	GetTimeSinceLastSeen
	GetTouchedPoint
	GetTouchedSurfaceID
	GetTriggerBBox
	GetUpdateRadius
	GetVelocity
	GetVelocityEx
	GetViewDistanceMultiplier
	GetVolume
	GetWorldAngles
	GetWorldBBox
	GetWorldBoundsCenter
	GetWorldDir
	GetWorldPos
	GetWorldScale
	GotoState
	HasFlags
	HasFlagsExtended
	Hide
	HideAllAttachments
	HideAttachment
	HideAttachmentMaster
	IgnorePhysicsUpdatesOnSlot
	InsertSubpipe
	IntersectRay
	InvalidateTrigger
	IsActive
	IsAnimationRunning
	IsColliding
	IsEntityInside
	IsEntityInsideArea
	IsFromPool
	IsGeomCacheStreaming
	IsHidden
	IsInState
	IsPointInsideArea
	IsSlotCharacter
	IsSlotGeometry
	IsSlotLight
	IsSlotParticleEmitter
	IsSlotValid
	IsUsingPipe
	KillTimer
	LoadCharacter
	LoadCloud
	LoadFogVolume
	LoadGeomCache
	LoadLight
	LoadObject
	LoadObjectLattice
	LoadObjectWithFlags
	LoadParticleEffect
	LoadSubObject
	LoadVolumeObject
	LookAt
	MultiplyWithSlotTM
	NetPresent
	NoBulletForce
	NoExplosionCollision
	PassParamsToPipe
	Physicalize
	PhysicalizeAttachment
	PhysicalizeSlot
	PlayFacialAnimation
	PreLoadParticleEffect
	ProcessBroadcastEvent
	RagDollize
	ReattachSoftEntityVtx
	RedirectAnimationToLayer0
	RegisterForAreaEvents
	RemoveAllLinks
	RemoveAuxAudioProxy
	RemoveDecals
	RemoveLink
	RenderAlways
	RenderShadow
	ReplaceMaterial
	ResetAnimation
	ResetAttachment
	ResetMaterial
	ResetPhysics
	SelectPipe
	SetAIName
	SetAngles
	SetAnimateOffScreenShadow
	SetAnimationBlendOut
	SetAnimationEvent
	SetAnimationFlip
	SetAnimationKeyEvent
	SetAnimationSpeed
	SetAnimationTime
	SetAttachmentAngles
	SetAttachmentCGF
	SetAttachmentDir
	SetAttachmentEffect
	SetAttachmentLight
	SetAttachmentObject
	SetAttachmentPos
	SetAudioEnvironmentID
	SetAudioObstructionCalcType
	SetAudioProxyOffset
	SetAudioRtpcValue
	SetAudioSwitchState
	SetCharacterPhysicParams
	SetCloudMovementProperties
	SetColliderMode
	SetCurrentAudioEnvironments
	SetDefaultIdleAnimations
	SetDirectionVector
	SetEnvironmentFadeDistance
	SetFadeDistance
	SetFlags
	SetFlagsExtended
	SetGeomCacheDrawing
	SetGeomCacheParams
	SetGeomCachePlaybackTime
	SetGeomCacheStreaming
	SetLightColorParams
	SetLinkTarget
	SetLocalAngles
	SetLocalBBox
	SetLocalPos
	SetLocalScale
	SetLodRatio
	SetMaterial
	SetMaterialFloat
	SetMaterialVec3
	SetName
	SetParentSlot
	SetPhysicParams
	SetPos
	SetPublicParam
	SetRegisterInSectors
	SetScale
	SetScriptUpdateRate
	SetSelfAsLightCasterException
	SetSlotAngles
	SetSlotHud3D
	SetSlotPos
	SetSlotPosAndDir
	SetSlotScale
	SetSlotWorldTM
	SetStateClientside
	SetTimer
	SetTriggerBBox
	SetUpdatePolicy
	SetUpdateRadius
	SetVelocity
	SetVelocityEx
	SetViewDistanceMultiplier
	SetViewDistUnlimited
	SetVolumeObjectMovementProperties
	SetWorldAngles
	SetWorldPos
	SetWorldScale
	StartAnimation
	StopAnimation
	StopAudioTrigger
	ToGlobal
	ToLocal
	TriggerEvent
	UnSeenFrames
	UpdateAreas
	UpdateLightClipBounds
	UpdateSlotPhysics
	VectorToGlobal
	VectorToLocal

	ScriptBind_Movie
	AbortSequence
	PauseSequences
	PlaySequence
	ResumeSequences
	StopAllCutScenes
	StopAllSequences
	StopSequence

	ScriptBind_Particle
	Attach
	CreateDecal
	CreateEffect
	CreateMatDecal
	DeleteEffect
	Detach
	IsEffectAvailable
	SpawnEffect
	SpawnEffectLine
	SpawnParticles

	ScriptBind_Physics
	RayTraceCheck
	RayWorldIntersection
	RegisterExplosionCrack
	RegisterExplosionShape
	SamplePhysEnvironment
	SimulateExplosion

	ScriptBind_Script
	DumpLoadedScripts
	KillTimer
	LoadScript
	ReloadEntityScript
	ReloadScript
	ReloadScripts
	SetTimer
	SetTimerForFunction
	UnloadScript

	ScriptBind_Sound
	GetAudioEnvironmentID
	GetAudioRtpcID
	GetAudioSwitchID
	GetAudioSwitchStateID
	GetAudioTriggerID
	SetAudioRtpcValue

	ScriptBind_System
	ActivatePortal
	AddCCommand
	ApplicationTest
	Break
	BrowseURL
	CheckHeapValid
	ClearConsole
	ClearKeyState
	CreateDownload
	DebugStats
	DeformTerrain
	DeformTerrainUsingMat
	Draw2DLine
	DrawLabel
	DrawLine
	DrawText
	DumpMemoryCoverage
	DumpMemStats
	DumpMMStats
	DumpWinHeaps
	EnableOceanRendering
	EnumAAFormats
	EnumDisplayFormats
	Error
	ExecuteCommand
	GetConfigSpec
	GetCurrAsyncTime
	GetCurrTime
	GetCVar
	GetEntities
	GetEntitiesByClass
	GetEntitiesInSphere
	GetEntitiesInSphereByClass
	GetEntity
	GetEntityByName
	GetEntityClass
	GetEntityIdByName
	GetFrameID
	GetFrameTime
	GetHDRDynamicMultiplier
	GetLocalOSTime
	GetNearestEntityByClass
	GetOutdoorAmbientColor
	GetPhysicalEntitiesInBox
	GetPhysicalEntitiesInBoxByClass
	GetPostProcessFxParam
	GetScreenFx
	GetSkyColor
	GetSkyHighlight
	GetSunColor
	GetSurfaceTypeIdByName
	GetSurfaceTypeNameById
	GetSystemMem
	GetTerrainElevation
	GetUserName
	GetViewCameraAngles
	GetViewCameraDir
	GetViewCameraFov
	GetViewCameraPos
	GetViewCameraUpDir
	GetWind
	IsDevModeEnable
	IsEditing
	IsEditor
	IsHDRSupported
	IsMultiplayer
	IsPointIndoors
	IsPointVisible
	IsPS20Supported
	IsValidMapPos
	LoadFont
	LoadLocalizationXml
	Log
	LogAlways
	LogToConsole
	PrepareEntityFromPool
	ProjectToScreen
	Quit
	QuitInNSeconds
	RayTraceCheck
	RayWorldIntersection
	RemoveEntity
	ResetPoolEntity
	ReturnEntityToPool
	SaveConfiguration
	ScanDirectory
	ScreenToTexture
	SetBudget
	SetConsoleImage
	SetCVar
	SetGammaDelta
	SetOutdoorAmbientColor
	SetPostProcessFxParam
	SetScissor
	SetScreenFx
	SetSkyColor
	SetSkyHighlight
	SetSunColor
	SetViewCameraFov
	SetVolumetricFogModifiers
	SetWaterVolumeOffset
	SetWind
	ShowConsole
	ShowDebugger
	SpawnEntity
	ViewDistanceGet
	ViewDistanceSet
	Warning

	ScriptBind Action Functions
	ScriptBind_Action
	ActivateEffect
	ActivateExtensionForGameObject
	AddAngleSignal
	AddRangeSignal
	AddTargetRangeSignal
	BanPlayer
	BindGameObjectToNetwork
	CacheItemGeometry
	CacheItemSound
	ClearEntityTags
	ClearStaticTag
	ConnectToServer
	CreateGameObjectForEntity
	DestroyRangeSignaling
	DisableSignalTimer
	DontSyncPhysics
	EnableRangeSignaling
	EnableSignalTimer
	ForceGameObjectUpdate
	GetClassName
	GetPlayerList
	GetServer
	GetServerTime
	GetWaterInfo
	HasAI
	IsChannelOnHold
	IsChannelSpecial
	IsClient
	IsGameObjectProbablyVisible
	IsGameStarted
	IsImmersivenessEnabled
	IsRMIServer
	IsServer
	LoadXML
	PauseGame
	Persistent2DText
	PersistentArrow
	PersistentEntityTag
	PersistentLine
	PersistentSphere
	PreLoadADB
	RefreshPings
	RegisterWithAI
	ResetRangeSignaling
	ResetSignalTimer
	ResetToNormalCamera
	SaveXML
	SendGameplayEvent
	SetAimQueryMode
	SetNetworkParent
	SetSignalTimerRate
	SetViewCamera

	ScriptBind_ActionMapManager
	EnableActionFilter
	EnableActionMap
	EnableActionMapManager
	GetDefaultActionEntity
	InitActionMaps
	IsFilterEnabled
	LoadControllerLayoutFile
	LoadFromXML
	SetDefaultActionEntity

	ScriptBind_ActorSystem
	CreateActor

	ScriptBind_GameStatistics
	AddGameElement
	BindTracker
	CurrentScope
	Event
	PopGameScope
	PushGameScope
	RemoveGameElement
	StateValue
	UnbindTracker

	ScriptBind_GameToken
	DumpAllTokens
	GetToken
	SetToken

	ScriptBind_Inventory
	Clear
	Destroy
	Dump
	GetAmmoCapacity
	GetAmmoCount
	GetCurrentItem
	GetCurrentItemId
	GetGrenadeWeaponByClass
	GetItemByClass
	HasAccessory
	SetAmmoCount

	ScriptBind_ItemSystem
	GetPackItemByIndex
	GetPackNumItems
	GetPackPrimaryItem
	GiveItem
	GiveItemPack
	Reset
	SerializePlayerLTLInfo
	SetActorItem
	SetActorItemByName

	ScriptBind_Network
	Expose

	ScriptBind_UIAction
	CallFunction
	DisableAction
	EnableAction
	EndAction
	GetAlpha
	GetArray
	GetPos
	GetRotation
	GetScale
	GetVariable
	GotoAndPlay
	GotoAndPlayFrameName
	GotoAndStop
	GotoAndStopFrameName
	HideElement
	IsVisible
	RegisterActionListener
	RegisterElementListener
	RegisterEventSystemListener
	ReloadElement
	RequestHide
	SetAlpha
	SetArray
	SetPos
	SetRotation
	SetScale
	SetVariable
	SetVisible
	ShowElement
	StartAction
	UnloadElement
	UnregisterActionListener
	UnregisterElementListener
	UnregisterEventSystemListener

	ScriptBind_Vehicle
	AddSeat
	ChangeSeat
	Destroy
	DisableEngine
	EnableMovement
	EnterVehicle
	ExitVehicle
	GetComponentDamageRatio
	GetHelperDir
	GetHelperPos
	GetHelperWorldPos
	GetSeatForPassenger
	GetVehicle
	HasHelper
	IsDestroyed
	IsInsideRadius
	IsUsable
	MultiplyWithWorldTM
	OnHit
	OnSpawnComplete
	OnUsed
	ProcessPassengerDamage
	Reset
	ResetSlotGeometry

	ScriptBind_VehicleSeat
	GetPassengerId
	GetVehicleSeat
	GetWeaponCount
	GetWeaponId
	IsDriver
	IsFree
	IsGunner
	Reset
	SetAIWeapon

	ScriptBind_VehicleSystem
	GetOptionalScript
	GetVehicleImplementations
	ReloadSystem
	SetTpvDistance
	SetTpvHeight

	ScriptBind_Boids
	CanPickup
	CreateBugsFlock
	CreateFishFlock
	CreateFlock
	EnableFlock
	GetUsableMessage
	OnBoidHit
	OnPickup
	SetAttractionPoint
	SetFlockParams
	SetFlockPercentEnabled

	Integrating Lua and C++
	Accessing Script Tables
	Exposing C++ Functions and Values
	Exposing Constants
	Exposing Functions

	Networking System
	Tutorial: Getting Started with Multiplayer
	Prerequisites
	Step 1: Creating a Level and Adding a Sphere and a Box
	Step 2: Binding Sphere Transform Components to the Network
	Step 3: Connecting a Client to the Server
	Related Tasks and Tutorials
	Configuring the Multiplayer Sample for Amazon GameLift
	Server Side Configuration
	Client Side Configuration
	Create GameLift Package
	Secured Connection (Not GameLift Specific)

	Overview
	NetBinding
	GridMate
	Replica
	Session
	Carrier
	Driver

	Other GridMate Features
	CryNetwork Backward Compatibility (Deprecated)
	Networking Architecture
	Fundamental Concepts
	GridMate Architecture

	Carrier
	Channels and Message Priorities
	Customizable Classes
	CarrierDesc
	CarrierDesc Parameters

	Carrier Message Structure
	Datagram Format
	Message Format
	System Messages
	ACK
	ClockSync

	Marshalling
	Markers
	Buffers
	Write Buffers
	Read Buffers

	Predefined Marshalers
	Fundamental C++ Types
	Container Types
	Utility Types
	Compression Types

	Custom Marshalers
	Fixed Size Custom Marshaler

	Sessions
	Starting and Stopping the Session Service
	Starting a Session Service
	Stopping a Session Service
	Examples
	Starting and Stopping with GridMate::StartGridMateService
	Starting and Stopping with GridMate::RegisterService() and GridMate::UnregisterService()

	Hosting a Session
	GridMate::SessionParams
	GridMate::LANSessionParams
	Events
	Examples

	Searching for a Session
	GridMate::SearchParams
	GridMate::LANSearchParams
	Search Results
	Events
	Examples

	Joining a Session
	Events
	Example

	Reacting to Session Events
	Setup
	Connect
	Disconnect
	Network Session Service Event Descriptions

	Replicas
	Replica
	Replica Chunks
	Limitations
	Creating a Replica and Attaching Chunks
	Binding a Replica to the Session Replica Manager

	Replica Ownership
	Changing Ownership
	Replica ID
	Lifetime

	Sample Code

	Replica Chunks
	Replica Chunk Requirements and Limitations
	Implementing a New Replica Chunk Type
	Declaring a Replica Chunk Type with Internal Game Logic Handling
	Declaring a Replica Chunk Type with External Game Logic Handling
	Registering Chunk Type

	Attaching a Replica Chunk to the Replica

	Datasets
	Examples
	Example 1
	Example 2
	Example 3

	Throttlers

	Remote Procedure Calls (RPCs)
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	RPC Type Traits

	Replica Manager
	Binding a New Master Replica to Replica Manager
	Retrieving Replicas from Replica Manager
	How Replica Manager Updates Replicas
	Marshaling: Sending Data to Other Peers
	Unmarshaling: Receiving Data from Other Peers
	Update from Replica: Updating Proxy Replicas
	Update Replicas: Updating Master Replicas Locally

	Task Manager

	Using Lumberyard Networking
	Synchronizing Game State Using Components
	Synchronizing an Entity with a NetBindingComponent
	Binding Process on Remote Nodes
	Unbinding Process
	NetBindable Component Flexibility
	Entity IDs
	Creating a NetBindable Component
	Network Binding Function Details
	GetNetworkBinding
	SetNetworkBinding
	UnbindFromNetwork

	Creating a Chunk
	Example: Filling Out the AzFramework::NetBindable Interface
	GetNetworkBinding
	SetNetworkBinding
	UnbindFromNetwork

	Maintaining State

	Synchronizing Game State Using Scripts
	Using Encyrption
	Limitations
	Implementation Support
	Cipher
	Building with Encryption
	Building Your Project with Encryption
	Building Without Encryption

	Enabling Encryption
	SecureSocketDesc
	Server Authentication Only
	Client and Server Authentication
	Self-signed Certificates

	GridMate Session Encryption Example
	How To Generate a Private Key and Public Certificate

	Controlling Bandwidth Usage
	Controlling the Send Rate
	Bandwidth Limiter
	Controlling Burst Length
	Prioritization of Replica Updates
	Tuning Bandwidth at Runtime

	Setting up a Lobby
	Using Amazon GameLift
	Additional Links

	Useful Console Commands

	CryNetwork Backward Compatibility
	RMI Functions
	Ordering RMI Functions
	Ordering Rules
	RMI Function Flags
	Examples

	Network Serialization and Aspects
	Aspects
	Profiles

	Physics
	Physics Scripting Guide
	Threading
	Physics on a Separate Thread
	Physics on the Main Thread

	Physics Scripting Tips and Tricks
	Correcting Objects that Float Away

	Scripting with Physics Example

	Geometries
	Geometry Management Functions
	CreateMesh
	CreatePrimitive
	RegisterGeometry

	Physical Entities
	Creating and managing entities
	Simulation type
	Functions for Physical Entities
	AddGeometry

	Functions for Entity Structures
	Common Functions
	pe_params_pos
	pe_params_bbox
	pe_params_outer_entity
	pe_params_part
	pe_simulation_params
	pe_params_buoyancy
	pe_params_sensors
	pe_action_impulse
	pe_action_add_constraint
	pe_action_set_velocity
	pe_status_pos
	pe_status_dymamics

	Living Entity-Specific Functions
	pe_player_dimensions (GetParams | SetParams)
	pe_player_dynamics (GetParams | SetParams)
	pe_action_move
	pe_status_living

	Particle Entity-Specific Functions
	pe_params_particle

	Articulated Entity-Specific Functions
	pe_params_joint
	pe_params_articulated_body

	Rope Entity-Specific Functions
	pe_params_rope

	Soft Entity-Specific Functions
	pe_params_softbody
	pe_action_attach_points

	Collision Classes
	Setup
	Code
	Types
	Filtering the collision
	Interface

	Functions for World Entities
	Advancing the Physical World Time State
	Returning Entities with Overlapping Bounding Boxes
	Casting Rays in an Environment
	Creating Explosions

	Profiler
	Profiler Tutorial
	Registering Your Application
	Launching Profiler
	Capturing Data
	Inspecting Data
	Playing Back Data
	Exporting Data

	Creating and Using Annotations
	Using Annotations
	Creating Annotations
	Alternatives to AZ_TracePrintf

	Viewing Annotations in Trace Messages Profiler

	Using Profiler for Networking
	Prerequisites
	Carrier Profiler
	Replica Activity Profiler
	Using Replica View
	Chunk Type View

	Using the Profiler for CPU Usage
	Understanding the Tree View
	Controlling the Display

	Using Profiler for VRAM
	Notes
	Understanding the Captured Data
	Inspecting the Data
	Negative VRAM Allocation Sizes
	Why Some Textures Are Not Reported in the .csv File

	Using GridHub
	Registering an Application in GridHub
	Viewing and Configuring GridHub
	Troubleshooting GridHub

	System
	Memory Handling
	Hardware Memory Limitations
	Choosing a Platform to Target
	Budgets
	Allocation Strategy with Multiple Modules and Threads
	Caching Computational Data
	Compression
	Disk Size
	Total Size
	Address Space
	Bandwidth
	Latency
	Alignment
	Virtual Memory
	Streaming

	Streaming System
	Low-level Streaming System
	CryCommon interfaces and structs
	Internal flow of a read request
	Read request sorting
	Streaming statistics
	Streaming debug information

	Streaming and Levelcache Pak Files
	Single Thread IO Access and Invalid File Access
	High Level Streaming Engine Usage

	Text Localization and Unicode Support
	Terminology
	What encoding to use?
	How does this affect me when writing code?
	How does this affect me when dealing with text assets?
	Utilities provided in CryCommon
	Further reading

	CryLog
	CryLog Logging Functionality
	Verbosity Level and Coloring
	Log Files
	Console Variables

	CryConsole
	Color coding
	Dumping all console commands and variables
	Console Variables
	Registering new console variables
	Accessing console variables from C++

	Adding New Console Commands
	Console Variable Groups
	Registering a new variable group
	Console variable group documentation
	Checking if a console variable group value represents the state of the variables it controls
	From the console
	From C++ code

	Deferred execution of command line console commands
	Example
	Details

	CVar Tutorial
	Creating CVars
	Using the CVar

	Lumberyard Blog, Forums, and Feedback

