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Abstract: Applied researchers often find themselves making statistical inferences in settings that
would seem to require multiple comparisons adjustments. We challenge the Type I error paradigm
that underlies these corrections. Moreover we posit that the problem of multiple comparisons can
disappear entirely when viewed from a hierarchical Bayesian perspective. We propose building
multilevel models in the settings where multiple comparisons arise. Multilevel models perform
partial pooling (shifting estimates toward each other), whereas classical procedures typically keep
the centers of intervals stationary, adjusting for multiple comparisons by making the intervals wider
(or, equivalently, adjusting the p values corresponding to intervals of fixed width). Thus, multilevel
models address the multiple comparisons problem and also yield more efficient estimates, especially in
settings with low group-level variation, which is where multiple comparisons are a particular concern.
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INTRODUCTION

Researchers from nearly every social and physical science discipline have found themselves
in the position of simultaneously evaluating many questions, testing many hypothesis, or
comparing many point estimates. In program evaluation this arises, for instance, when com-
paring the impact of several different policy interventions; comparing the status of social
indicators (test scores, poverty rates, teen pregnancy rates) across multiple schools, states,
or countries; examining whether treatment effects vary meaningfully across different sub-
groups of the population; or examining the impact of a program on many different outcomes.

The main multiple comparisons problem is that the probability a researcher wrongly
concludes that there is at least one statistically significant effect across a set of tests, even
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190 A. Gelman et al.

when in fact there is nothing going on, increases with each additional test. This can be a
serious concern in classical inference, and many strategies have been proposed to address
the issue (see Hsu, 1996, and Westfall & Young, 1993, for reviews). A related multiple
comparisons concern is that, in a setting where nonzero true effects do exist for some of the
phenomena tested, a researcher applying multiple tests may identify additional statistically
significant effects that are not in fact real.

Our approach, as described in this article, has two key differences from the classical
perspective. First, we are typically not terribly concerned with Type 1 error because we
rarely believe that it is possible for the null hypothesis to be strictly true. Second, we
believe that the problem is not multiple testing but rather insufficient modeling of the
relationship between the corresponding parameters of the model. Once we work within
a Bayesian multilevel modeling framework and model these phenomena appropriately,
we are actually able to get more reliable point estimates. A multilevel model shifts point
estimates and their corresponding intervals toward each other (by a process often referred to
as “shrinkage” or “partial pooling”), whereas classical procedures typically keep the point
estimates stationary, adjusting for multiple comparisons by making the intervals wider (or,
equivalently, adjusting the p values corresponding to intervals of fixed width). In this way,
multilevel estimates make comparisons appropriately more conservative, in the sense that
intervals for comparisons are more likely to include zero. As a result we can say with
confidence that those comparisons made with multilevel estimates are more likely to be
valid. At the same time this “adjustment” does not sap our power to detect true differences
as many traditional methods do.

Rather than correcting for the problems that can arise when examining many compar-
isons (performing many significance tests), when we work within the Bayesian paradigm
all of the relevant research questions can be represented as parameters in one coherent mul-
tilevel model. Simply put, rather than correcting for a perceived problem, we just build the
multiplicity into the model from the start. This puts more of a burden on the model, and a key
goal of this article is to demonstrate the effectiveness of our procedure in realistic examples.

Sections 2 and 3 present the multiple comparisons problem from the classical and
Bayesian perspectives, respectively. Both are described within the context of a common
illustrative example and then potential solutions are outlined. In Section 4, we bolster our
argument against traditional multiple comparisons corrections through a series of small
examples that illustrate several of the scenarios just described. Section 5 concludes.

MULTIPLE COMPARISONS PROBLEM FROM A CLASSICAL PERSPECTIVE

Illustrative Example

In this section we walk through a relatively simple example using data from a real study
to illustrate the issues involved in performing multiple comparisons from classical and
multilevel perspectives. We use data from the Infant Health and Development Program, an
intervention that targeted premature and low-birthweight infants and provided them with
services such as home visits and intensive high-quality child care. The program was eval-
uated using an experiment in which randomization took place within site and birth weight
group. The experimental design was actually slightly more complicated (as described in
Infant Health and Development Program, 1990); we simplify here for expository purposes.
In fact, for this first illustration we assume that it was a simple randomized block experiment
with eight sites as blocks.
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Don’t Worry About Multiple Comparisons 191

In this context, we’re not just interested in the overall treatment effect. Given that
the composition of participating children was quite different across sites and that program
implementation varied across sites as well, we would like to know for each site individually
whether or not a statistically significant effect was present. However, we may be concerned
that, in the process of conducting eight different significance tests, we are misperceiving
our overall risk of making a false claim. This overall risk of error (formally, the proba-
bility that we have any rejections when the null hypothesis in fact holds) is sometimes
referred to as the familywise error rate (Tukey, 1953). A similar problem arises if we are
interested in comparing whether there are significant differences in treatment effects across
sites.

Classical Perspective

A classical model fit to these data might look like:

yi =
8∑

j=1

(
γj S

j
i + δj S

j
i Pi

)
+ εi ,

εi ∼ N (0, σ 2),

where yi denotes student i’s test score, S
j
i in an indicator for living in site j , and Pi is an

indicator for program status. Although this may not be the most common way to specify
this model, it is useful here because δj represents the treatment effect in the j th site and γj

represents the average test score for the untreated in each site.1 This allows us to directly
test the significance of each site effect.

For any given test of a null hypothesis, say H
j
0 : δj = 0, versus an alternative, say,

H
j
A : δj "= 0, there is a 5% chance of incorrectly rejecting H

j
0 when in fact it is true. Of

course if we test two independent hypotheses at the same significance level (α = .05)
then the probability that at least one of these tests yields an erroneous rejection raises to
1-Pr(neither test yields an erroneous rejection of the null) = 1 – 0.95 × 0.95 = 0.098 ≈
0.10. Following the same logic, if we performed (independent) tests for all eight sites at a
.05 significance level there would be a 34% chance that at least one of these would reject
in error.

Bonferroni Correction

One of the most basic and historically most popular fixes to this problem is the Bonferroni
correction. The Bonferroni correction adjusts the p value at which a test is evaluated
for significance based on the total number of tests being performed. Specifically, the
working p value is calculated as the original p value divided by the number of tests being
performed. Implicitly, it assumes that these test statistics are independent. So in our current
example an overall desired significance level of .05 would translate into individual tests
each using a p value threshold of .05/8 = .0062. These thresholds could also be used to
create wider confidence intervals for each point estimate as displayed in Figure 1, which

1The actual analysis also included birthweight group as a predictor in this model, but we ignore
this in this description for simplicity of exposition.
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192 A. Gelman et al.

Figure 1. Treatment effect point estimates and 95% intervals across the eight Infant Health and
Development Program sites. Note. The left panel display classical estimates from a linear regression.
The middle panel displays the same point estimates as in the left panel but with confidence intervals
adjusted to account for a Bonferroni correction. The right panel displays posterior means and 95%
intervals for each of the eight site-specific treatment effects from a fitted multilevel model.

plots the point estimates from the model above along with both uncorrected and Bonferroni-
corrected uncertainty intervals corresponding to a nominal 05 significance level. Although
the standard intervals reject the null hypothesis of no effect of the intervention for seven
of the eight sites, the multiple-comparisons-adjusted intervals reject the null hypothesis for
only five sites.

The Bonferroni correction directly targets the Type 1 error problem, but it does so at the
expense of Type 2 error. By changing the p value needed to reject the null (or equivalently
widening the uncertainty intervals) the number of claims of rejected null hypotheses will
indeed decrease on average. Although this reduces the number of false rejections, it also
increases the number of instances that the null is not rejected when in fact it should have
been. Thus, the Bonferroni correction can severely reduce our power to detect an important
effect.

Other Classical Corrections

Motivated by the shortcomings of the Bonferroni correction, researchers have proposed
more sophisticated procedures. The goal of these methods typically is to reduce the family-
wise error rate (again, the probability of having at least one false positive) without unduly
sacrificing power. A natural way to achieve this is by taking account of the dependence
across tests. A variety of such corrections exist that rely upon bootstrapping methods or
permutation tests (see, e.g., Westfall & Young, 1993).

A more recent class of approaches to this problem focuses not on reducing the fam-
ilywise error rate but instead on controlling the expected proportion of false positives,
the “false discovery rate” (FDR; Benjamini & Hochberg, 1995; Genovese & Wassserman,
2002). The rationale is that the researcher should be more worried about a situation in
which many tests show up as statistically significant and an unknown proportion of these
are erroneous than a situation in which all but a few tests show up as insignificant. Con-
trolling for the false discovery rate rather than the familywise error rate leads to a less
conservative testing procedure with respect to Type 1 error but is more powerful in terms of
detecting effects that are real. These tests sit squarely within the Type 1 paradigm. As with
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Don’t Worry About Multiple Comparisons 193

procedures to control for the familywise error rate, the initial versions assumed indepen-
dence across tests; however, procedures to control the FDR have also been extended to
account for certain types of dependency across tests (Benjamini & Yekutieli, 2001).

Methods that control for the FDR may make particular sense in fields like genetics
where one would expect to see a number of real effects amidst a vast quantity of zero effects
such as when examining the effect of a treatment on differential gene expression (Grant,
Liu, & Stoeckert, 2005). They may be less useful in social science applications when we
are less likely to be testing thousands of hypotheses at a time and when there are less likely
to be effects that are truly zero (or at least the distinction between zero and not-zero may be
more blurry). For our Infant Health and Development Program example, using a standard
procedure (the Simes procedure; see Benjamini & Hochberg, 1995) to control the FDR at
a .05 level, the tests with the six smallest p values would reject.

Informal Calibration

Still others might argue that in many situations there is no need to formally control for these
error rates. Many of us are already used to informally performing appropriate calibrations.
For instance, consider a researcher who presents a table of mean differences in pretreat-
ment variables across an experimental and control group in which there is one statistically
significant difference. The classical perspective would have us worry if we performed
20 tests at a .05 significance level that there is a 64% chance that at least one of these
will yield a statistically significant result inappropriately. Thus, for instance, a Bonferroni
correction could be performed to change the critical value to reflect a p value of .05/20 =
.0025.However, it is probably more common (and at least equally helpful) for the researcher
to simply note that given 20 such tests we would expect to see at least one such deviation
given a .05 significance level. Alternatively, research organizations sometimes recommend-
ing prespecifying the tests that will be performed in an officially sanctioned analysis. In
either case, the goal is to manage expectations in a way similar to a multiple comparisons
correction but perhaps less strictly tied to familywise error rates.

A DIFFERENT PERSPECTIVE ON MULTIPLE COMPARISONS

Classical methods typically start with the assumption that the null hypothesis is true—an
unhelpful starting point, as we discuss next. Moreover, we argue that classical procedures
fail by insufficiently modeling the ensemble of parameters corresponding to the tests of
interest (see Louis, 1984). We cannot hope to have the goal of proposing an optimal
statistical method for all circumstances. Rather we present an entirely different perspective
on the issue and its implications and argue that, when viewed from a Bayesian perspective,
many of these problems simply disappear.

Abandoning the Type 1 Error Paradigm

The classical perspective worries primarily about Type 1 errors, and we argue that these
should not be the focus of our concern. Suppose we’ve established the following two
hypotheses regarding our site-specific treatment effects τj for j = 1, . . . , J : H

j
0 : τj = 0,

D
ow

nl
oa

de
d 

by
 [C

ol
um

bi
a 

U
ni

ve
rs

ity
], 

[A
nd

re
w

 G
el

m
an

] a
t 1

8:
27

 2
0 

Fe
br

ua
ry

 2
01

3 



194 A. Gelman et al.

and H
j
A : τj "= 0. A primary concern from the classical multiple comparisons perspective

is that we might erroneously accept H
j
A when, in fact, H

j
0 is true (Type 1 error). But do we

ever believe that τj exactly equals zero? What is the practical importance of such a test?
Similarly, a Type 1 error occurs when we mistakenly accept the H

j
0 that τj = τk when in

fact the H
j
A that τj "= τk is true. Again, under what circumstances do we truly believe there

are absolutely no differences between groups? There may be no practical differences, but
this is a distinct point which we discuss shortly. Moreover, if true effects are zero, we do
not want anything close to a 5% chance of finding statistically significant results.

A more serious concern might be that we claim τj > 0 when in fact τj < 0, finding a
positive effect when in fact the effect is detrimental. A similar phenomenon occurs if we
claim that τj > τk when in fact τj < τk , for instance, claiming that a treatment effect is
larger in Miami than in New York when in fact the reverse is true. These are both examples
of what is referred to as “Type S” (sign) errors (Gelman & Tuerlinckx, 2000).

However in policy analysis, there is also a fair bit of concern about examples where
the differences might actually be very close to zero: for example, comparing different
educational interventions, none of which might be very effective. Here we would want
to be thinking about “Type M” (magnitude) errors: saying that a treatment effect is near
zero when it is actually large, or saying that it’s large when it’s near zero (Gelman &
Tuerlinckx, 2000). In that setting, underpowered studies present a real problem because
type M errors are more likely when uncertainty is high. For instance it is not uncommon in
an underpowered study for a researcher to state that although his estimate is not statistically
significantly different from 0, that could simply be a function of the overly large standard
error. Ironically, however, large estimates are actually a byproduct of large standard errors.

This property is illustrated in Figure 2. This plot displays two sampling distribution in
a situation in which the true effect is zero (or very close to 0). It’s clear from this plot that
the estimator with the sampling distribution with greater uncertainty (SD = 3) is much more

Figure 2. Two error distributions with differing levels of uncertainty in a situation when there is no
effect. The estimator with the sampling distribution with greater uncertainty (SD = 3) has a greater
probability of yielding a larger estimate than the estimator with the sampling distribution with smaller
uncertainty (SD = 1). The researcher is more likely to commit a Type M (magnitude) error when the
standard deviation is large.
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Don’t Worry About Multiple Comparisons 195

likely to produce effect estimates that are larger in magnitude than effect estimates resulting
from an estimator with relatively less uncertainty (SD = 1). Thus, for instance, when we
switch from examining main effects to subgroup effects, for example, we automatically
increase our probability of seeing large estimates and tricking ourselves into thinking that
something is going on. Bayesian modeling helps here too, as we see next.

Multilevel Modeling in a Bayesian Framework

More strongly, we claim that when viewed within a Bayesian framework, many of these
problems disappear, or in the case of Type S and Type M errors, are at least substantially
ameliorated. We illustrate with a relatively simple multilevel model for a setting in which
individuals in a common site experience the same effect on test scores, as in

yi ∼ N
(
γj [i] + δj [i]Pi, σ

2
y

)
,

Here δj [i] is the parameter for the treatment effect corresponding to person i-’s site (indexed
by j ), and it is assigned its own distribution, for example

δj ∼ N
(
µ, σ 2

δ

)
.

We have also allowed the intercept, γ , to vary across sites in a similar manner. It does not
seem a strong assumption to think of these as realizations from a common distribution and
this addition should strengthen our model. In addition, our Bayesian analysis requires us
to specify prior distributions for the parameters µ, σy , and σ 2

δ . However (particularly for
this kind of simple model) it is not difficult to choose weakly informative priors (Gelman,
2006). Finally, we could (and should, in a real analysis) easily include other predictors
to the model to increase our predictive power—most notably, the group-level intercept γj

can be a predictor for the group-level treatment effect δj —but have refrained from adding
predictors in this example, so we can focus on primary issues.

Partial Pooling. Multilevel modeling can be thought of as a compromise between two
extremes. One extreme, complete pooling, would assume the treatment effects are the same
across all sites, that is, δj = δ, for all j . The other extreme, no pooling, would estimate
treatment effects separately for each site. The compromise found in the multilevel model
is often referred to as partial pooling. Figure 1 graphically illustrates this compromise
with a plot of the multilevel intervals next to the classical estimates and intervals (with
and without Bonferroni corrections). The horizontal dashed line in each plot displays the
complete pooling estimate. We also display a horizontal solid line at zero to quickly show
which estimates would be considered to be statistically significant. This process leads to
point estimates that are closer to each other (and to the “main effect” across all sites) than
the classical analysis. Rather than inflating our uncertainty estimates, which does not really
reflect the information we have regarding the effect of the program, we have shifted the
point estimates toward each other in ways that reflect the information we have. (More
generally, if the model has group-level predictors, the inferences will be partially pooled
toward the fitted group-level regression surface rather than to a common mean.)

The Intuition. Why does partial pooling make sense at an intuitive level? Let’s start from the
basics. The only reason we have to worry about multiple comparisons issues is because we
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196 A. Gelman et al.

have uncertainty about our estimates. If we knew the true (population-average) treatment
effect within each site, we would not be making any probabilistic statements to begin
with—we would just know the true sign and true magnitude of each (and certainly then
whether each was really different from 0 or from each other). Classical inference in essence
uses only the information in each site to get the treatment effect estimate in that site and
the corresponding standard error.

A multilevel model, however, recognizes that this site-specific estimate is actually
ignoring some important information—the information provided by the other sites. While
still allowing for heterogeneity across sites, the multilevel model also recognizes that
because all the sites are measuring the same phenomenon it does not make sense to
completely ignore what has been found in the other sites. Therefore each site-specific
estimate gets “shrunk” or pulled toward the overall estimate (or, in a more general setting,
toward a group-level regression fit). The greater the uncertainty in a site, the more it will
get pulled toward the overall estimate. The less the uncertainty in a site, the more we trust
that individual estimate and the less it gets shrunk.

To illustrate this point we ran our multilevel model on slightly altered versions of
the data set. In the first altered version we decreased the sample size in Site 3 from
138 to a random sample of 30; results are displayed in the center panel of Figure 3. In
the second altered version we increased the sample size in Site 3 to 300 by bootstrapping
the original observations in that site; results are displayed in the right panel of Figure 3. The
leftmost panel displays the original multilevel model results. The key observation is that the
shrinkage of the Site 3 treatment effect estimate changes drastically across these scenarios
because the uncertainty of the estimate relative to that of the grand mean also changes
drastically across these scenarios. Note, however, that the overall uncertainty increases in
the rightmost plot even though the sample size in Site 3 increases. That is because we
increased the sample size while keeping the point estimate the same. This leads to greater
certainty about the level of treatment effect heterogeneity across sites, and thus greater
uncertainty about the overall mean.

The Algebra. Partial pooling tends to reduce the number of statistically significant com-
parisons. To see this algebraically, consider the estimate for the treatment effect in a single
group in a simple normal-normal hierarchical model:

posteriorE(θj ) =
(

1
σ 2

θ

µ + 1
σ 2

ȳ

ȳ

)/( 1
σ 2

θ

+ 1
σ 2

ȳ

)

.

The corresponding uncertainty for this estimate is

posterior sd(θj ) = 1
/√ 1

σ 2
θ

+ 1
σ 2

ȳ

The smaller the prior variance σ 2
θ , the more the posterior estimates for different groups

are pooled toward a common mean value. At the same time, their posterior variances are
shrunk toward zero, but much more slowly.

As a result, the z score for any comparison—the difference in posterior means, di-
vided by the posterior standard deviation for that difference—decreases, and statistically
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Don’t Worry About Multiple Comparisons 197

Figure 3. Comparison of results from multilevel model (MLM) using different versions of the data.
Note. The left panel displays results from the original data. The center panel displays results from
a model fit to data where Site 3 has been reduced to a random sample of 30 from the original 138
observations in that site. The right panel displays results from a model fit to data in which Site 3
observations were bootstrapped to create a sample size of 300.

significant Bayesian comparisons become less likely. Algebraically:

posterior E (θj − θk) = σ 2
θ

σ 2
ȳ + σ 2

θ

(ȳj − ȳk)

posterior sd (θj − θk) =
√

2σȳσθ/
√

σ 2
ȳ + σ 2

θ

posteriorz − score of θj − θk :
(ȳj − ȳk)

√
2σȳ

· 1
√

1 + σ 2
ȳ /σ 2

θ

.

The first factor in this last expression is the z score for the classical unpooled estimates;
the second factor is the correction from partial pooling, a correction that is always less than
1 (i.e., it reduces the z score) and approaches zero as the group-level variance σ 2

θ approaches
zero; see Figure 4. The actual adjustment to z scores and significance levels is slightly more
complicated because the variance parameters and the group-level mean are estimated from
data, but the basic pattern holds, which is that posterior means are pulled together faster
than posterior standard deviations decrease.

Greenland and Robins (1991) make a similar argument about the advantages of partial
pooling, going so far as to frame the multiple comparisons problem as an

opportunity to improve our estimates through judicious use of any prior informa-
tion (in the form of model assumptions) about the ensemble of parameters being
estimated. Unlike conventional multiple comparisons, EB [empirical Bayes] and
Bayes approaches will alter and can improve point estimates and can provide more
powerful tests and more precise (narrower) interval estimators. (p. 249)

Poole (1991) supported these claims from a practical perspective.

Model Fitting. One barrier to more widespread use of multilevel models is that researchers
are not always sure how to fit such models. We often recommend fitting multilevel models
in a fully Bayesian way using a software package such as Bugs (as described in detail in
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198 A. Gelman et al.

Figure 4. Shrinkage of the z score for a comparison, θj − θk , as estimated using multilevel modeling
as compared to classical inference. When the variance ratio is small—that is, when the groups are
similar to each other—plots of two sampling distributions with differing levels of uncertainty. When
the group-level variance is small, there is a lot of shrinkage.

Gelman & Hill, 2007). However many simple models can be fit quite well using packages
that have been built in (or can be easily installed into) existing software packages. For
instance the model above can be fit easily in R, as

ihdp.fit < −lmer (y ∼ treatment + (1 + treatment | group)).

Further functions exist in the arm package in R to help the user sample from the posterior
distribution for each site-specific treatment effect (or any other parameter from the model
or functions thereof; see Gelman & Hill, 2007). Similar options for fitting the model are
available in Stata and SAS as well (see Appendix C of Gelman & Hill, 2007).

If we want to make comparisons across two sites, say Site 1 and Site 3, we do not need
to refit the model using different contrasts or perform any algebraic manipulations. All can
be done using posterior simulations.

EXAMPLES

We explore our ideas on multilevel models and multiple comparisons through a series of
examples that illustrate different scenarios in which multiple comparisons might arise as
an issue.

Comparing Average Test Scores Across All U.S. States

This next example illustrates how these issues play out in a situation in which all
pairwise comparisons across groups are potentially of interest. Figure 5 shows a graph that
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Don’t Worry About Multiple Comparisons 199

Figure 5. Graph that mimics one produced for the National Center for Education Statistics (1997)
report comparing average math test scores of students in different states. Note. Shaded comparisons
represent differences that are statistically significant after a false discovery rate multiple comparisons
correction. We argue that these multiple-comparisons adjustments make no sense, as they are based
on the irrelevant model in which true population differences are exactly zero (Color figure available
online).

mimics one produced for a National Center for Education Statistics (1997) report that or-
dered all states based on average scores on the National Assessment of Educational Progress
fourth-grade mathematics test. Our version makes use of 2007 fourth-grade mathematics
scores and performs the FDR correction currently used by National Center for Education
Statistics for this sort of problem (many comparisons). In the graph, statistically significant
comparisons have been shaded. In theory, this plot allows us to answer questions such as,
Does North Carolina have higher average test scores than neighboring South Carolina? This
information could be displayed better (Almond, Lewis, Tukey, & Yan, 2000; Wainer, 1996,
Wainer, Hambleton, & Meara, 1999), and maybe should not be displayed at all (Wainer,
1986), but here our concern is with the formulation as a multiple comparisons problem.
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200 A. Gelman et al.

Figure 6. Summary of inferences for average math scores by state (see Figure 5) based on a fitted
multilevel model. Note. States have been ordered by increasing average test score in the raw data.
This graph could be improved in many ways; actually, though, it portrays the comparisons fairly
clearly while being nothing more than a piece of the default graphical output obtained by fitting the
model in R and Bugs (Spiegelhalter, Thomas, Best, Gilks, & Lunn, 2002).

Concerns With the Classical Multiple Comparisons Display. Here is a situation in which
most classical multiple comparisons adjustments, such as the FDR adjustment that was
used, will not be appropriate, because we know ahead of time that the null hypothesis
(zero average differences between states) is false, so there is no particular reason to worry
about the Type 1 error rate. Therefore, any motivation for multiple comparisons then rests
either on (a) wanting more than 95% of the 95% intervals to contain the true values, or
(b) wanting a lower Type S error rate, in other words, minimizing the chance of, for instance,
stating that New Jersey has higher average test scores than Pennsylvania when, in fact, the
opposite is the case.

With regard to 95% intervals, we can do better using multilevel modeling, either on
the raw state averages from any given year or, even better, expanding the model to include
state-level predictors and test scores from other years. If Type S error rates are a concern,
then, again, a multilevel model will more directly summarize the information available.

The objection may be raised that although we know that the true differences cannot be
exactly zero, what about the null hypothesis that they are nearly zero? Our reply is that this
weaker version of classical hypothesis testing does not work here either. One way to see
this is that the data used to create Figure 5 clearly reject either of these null hypotheses.
But classical multiple comparisons procedures just plug along ignoring this information,
widening the confidence intervals as new comparisons are added.

Multilevel Model and Corresponding Display of Comparisons. As an alternative, we fit a
multilevel model: yj ∼ N (αj , σ

2
j ), where j = 1, . . . , J are the different states, and yj is the

average fourth-grade mathematics score for the students who took the test in state j.2 The
parameters αj represent the true mean in each state—that is, the population average that
would be obtained if all the students in the state were to take the test. We model these
population averages with a normal distribution: αj ∼ N (µα, σ 2

α ). Finally, we assign non-
informative uniform prior distributions to the hyperparameters µα, σα, σj . We display the
resulting estimated state-level parameters in Figure 6.

2We recognize that this model could be improved, most naturally by embedding data from multiple
years in a time series structure. The ability to include additional information in a reliable way is
indeed a key advantage of multilevel models; however, here we chose a simple model because it uses
no more information than was used in the published tables.
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Don’t Worry About Multiple Comparisons 201

One advantage of the Bayesian paradigm in which models are fit using simulation is
that the output is easy to manipulate in order to examine whatever functions of the param-
eters are of interest. In this case, based on the fitted multilevel model, we simulate 1,000
draws of state effect parameters to construct a posterior interval for the difference in true
means for each pair of states. For the purpose of comparing to the classical approach, we set
a .05 cutoff: for each pair of states j, k, we check whether 95% or more of the simulations
show αj > αk . If so—that is, if αj > αk for at least 950 of the 1,000 simulations—we can
claim with 95% confidence that state j outperforms state k.We plot the results in Figure 7.
States that have effects that are significantly lower are shaded lightly, the ones which are
higher are shaded more darkly, and ones that are not significantly different are left as white.

Compared to the classical multiple comparisons summaries in Figure 5, the multilevel
estimates in Figure 7 are more informative, with more claims with confidence and fewer

Figure 7. Posterior inference of National Assessment of Educational Progress fourth-grade mathe-
matics test scores from 2007 by state, fit using a multilevel model. Note. Compared to the classical
multiple comparisons summaries in Figure 5, we have fewer cases of ambiguity, that is, more claims
with confidence. This makes sense because the hierarchical model adapts to the setting, which in
this case is a high variance ratio and thus little need to worry about noise in the comparisons. (Color
figure available online).
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202 A. Gelman et al.

cells in the central region where comparisons are not statistically significant. The classical
procedure overcorrects for multiple comparisons in this setting where the true differences
between states are large. (At the other extreme, classical procedures undercorrect for
multiple comparisons when true differences are small, as we discuss in the next section,
SAT Coaching in Eight Schools.)

When there is evidence for a multiple comparisons problem, our procedure makes
corrections. When there is no evidence for a multiple comparisons problem, our procedure
is similar to the direct inference without a multiple comparisons correction.

SAT Coaching in Eight Schools

Rubin (1981) discusses an example (reprised in Chapter 5 of Gelman, Carlin, Stern, &
Rubin, 2003) of a meta-analysis of randomized experiments of coaching for the Scholastic
Aptitude Test in eight high schools in New Jersey. This example is notable as one of the
first fully Bayesian analysis of a hierarchical model and because there was no evidence in
the data of differences between the treatment effects in the different schools. (And, in fact,
the total estimated effects are small.) The first two columns of numbers in Table 1 give the
data. Just to get a sense of the variation, the standard deviation of the eight school estimates
is 10, which is of the same order as the standard errors.

Classical and Bayesian Analysis. This is the sort of situation where one might worry about
multiple comparisons. (In the actual data in Table 1, none of the raw comparisons happen
to be statistically significant, but as we discuss next, they could be in a replication of the
study.)

Table 1. First two columns of numbers: Data from the eight-schools experiment of Rubin (1981)

Raw Estimate Standard Error Bayes Bayes
of Treatment of Raw Effect Posterior Posterior

School Effect, yj Estimate, σyj M SD

A 28 15 11 8
B 8 10 7 6
C −3 16 6 8
D 7 11 7 7
E −1 9 5 6
F 1 11 6 7
G 18 10 10 7
H 12 18 8 8

Note. A separate randomized experiment was conducted in each school, and regression analysis
gave separate treatment effect estimates (labeled as yj) and standard errors (labeled as σyj ). Effects are
on the scale of points in the SAT-Verbal test (which was scored from 200 to 800). An effect of eight
points corresponds to approximately one additional test item correct. Last two columns: Posterior
mean and standard deviation of treatment effects, as estimated from a Bayesian multilevel model.
The evidence is that the effects vary little between schools, hence the estimates are pooled strongly
toward the common mean. None of the comparisons from the Bayesian inference are even close to
statistically significant.
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Don’t Worry About Multiple Comparisons 203

The hierarchical Bayesian analysis of Rubin (1981) has no multiple comparisons prob-
lems, however. The group-level variance is estimated to be low—the marginal maximum
likelihood or posterior mode estimate is zero, and the Bayesian analysis averages over the
posterior distribution, which is largely below 10—and as a result the Bayes estimates are
pooled strongly toward the common mean.

Simulation Study With Small Effects. To get further insight into this example, we perform
repeated simulations of a world in which the true treatment effects in different schools
come from a normal distribution with standard deviation of 5 (a plausible estimate given
the data in Table 1). For each replication, we simulate eight true values θ1, . . . , θ8 from
this distribution, then simulate data y1, . . . , y8 from the eight separate normal distributions
corresponding to each θj . The standard deviations σj for each of these distributions is given
by Figure 1. Relative to the within-group standard deviations, the between-group standard
deviation of 5 is small. We then performed both classical and hierarchical Bayesian analyses.
For each analysis, we computed all (8 · 7)/2 = 28 comparisons and count the number that
are statistically significant (i.e., where the difference between the estimates for two schools
is more than 1.96 times the standard error for the difference), and of these, we count the
number that have the correct sign.

We performed 1,000 simulations. Out of these simulations, 7% of the classical intervals
were statistically significant, and of these, only 63% got the sign of the comparison correct.
Multiple comparisons corrections are clearly necessary here if we want to avoid making
unreliable statements. By comparison, only 0.5% of the Bayesian intervals are statistically
significant (with 89% getting the sign of the comparison correct). The shrinkage of the
Bayesian analysis has already essentially done a multiple comparisons correction.

To look at it another way: The classical estimates found at least one statistically
significant comparison in 47% of our 1,000 simulations. In the Bayesian estimates, this
occurred only 5% of the time. The Bayesian analysis here uses a uniform prior distribution
on the hyperparameters—the mean and standard deviation of the school effects—and
so it uses no more information than the classical analysis. As with a classical multiple
comparisons procedure, the Bayesian inference recognizes the uncertainty in inferences
and correspondingly reduces the number of statistically significant comparisons.

Simulation Study With Large Effects. To get a sense of what happens when effects are more
clearly distinguishable, we repeat the above simulation but assume the true treatment effects
come from a distribution with standard deviation of 10. This time, 12% of the classical
comparisons are statistically significant, with 86% of these having the correct sign. From
the Bayesian analysis, 3% of the comparisons are statistically significant, with 96% of
these having the correct sign. Whether using classical multiple comparisons or Bayesian
hierarchical modeling, the price to pay for more reliable comparisons is to claim confidence
in fewer of them.

Teacher and School Effects in New York City Schools

Rockoff (2004) and Kane, Rockoff, and Staiger (2007) analyzed a huge panel data set
of teachers and children from the New York City school system to assess the importance
of factors such as educational background, training, and experience in determining the
effectiveness of teachers. One of the findings was that variation in teacher “effects” (we
are not interpreting these finding causally) on student grades was moderately large, about
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204 A. Gelman et al.

0.15 standard deviations on a scale in which standard deviation was calculated using test
scores for all students of a given grade level in the system. The researchers, using an
approach that approximates the fit from a multilevel model, learned from the scale of un-
explained variation in teacher effects over time—the residual group-level variance—that
teacher effects are important and often persistent and are largely not explained by back-
ground variables, except for a small improvement in performance during the first decade
of a teacher’s career.

More broadly, there has been an increasing push by certain school districts and policy
advocates to use data like these to compare the “effectiveness” of individual teachers
(or schools) to award merit pay or provide other incentives or sanctions. (Grudgingly)
leaving the problematic causal issues aside (see Rubin, Stuart, & Zanutto, 2004, for a
relevant discussion), we note that a outstanding methodological problem thus far has
been that analyses used to make such comparisons rarely if ever address the extreme
multiple comparisons problems involved. This study could have been set up as a multiple
comparisons problem, trying to get appropriate p values for comparing thousands of teachers
or for distinguishing individual teacher effects from zero. However, we know that there are
true differences across teachers and that teachers should not have no effect (an individual
teacher’s effect could be negative or positive but will not be precisely zero), and we therefore
should primarily be concerned with Type S and Type M errors. Therefore a multilevel model
would be a far more appropriate choice for such analyses—and, in fact, this is essentially
what the Kane, Rockoff, and Staiger did.

Fishing for Significance: Do Beautiful Parents Have More Daughters?

In an analysis of data from 2000 participants in the U.S. adolescent health study, Kanazawa
(2007) found that more attractive people were more likely to have girls, compared to
the general population: 52% of the babies born to people rated “very attractive” were
girls, compared to 44% girls born to other participants in the survey. The difference was
statistically significant, with a t value of 2.43. However, as discussed by Gelman (2007), this
particular difference—most attractive versus all others—is only one of the many plausible
comparisons that could be made with these data. Physical attractiveness in the survey used
by this article was measured on a 5-point scale. The statistically significant comparison
was between category 5 (very attractive) versus Categories 1–4. Other possibilities include
comparing Categories 4–5 to Categories 1–3 (thus comparing “attractive” people to others),
or comparing 3–5 to 1–2, or comparing 2–5 to 1. Moreover these data are from one of
three potential survey waves. Therefore there are 20 possible comparisons (five natural
comparisons by four possible time summaries (Wave 1, Wave 2, Wave 3, or average). It is
not a surprise that one of this set of comparisons comes up statistically significant.

In this study, classical multiple comparisons adjustments may not be such a bad idea,
because actual sex ratio differences tend to be very small—typically less than 1 percentage
point—and so the null hypothesis is approximately true here. A simple Bonferroni correc-
tion based on our count of 20 possible comparisons would change the critical value from
0.05 to 0.0025 in which case the aforementioned finding (with p value of .015) would not
be statistically significant.

With a properly designed study, however, multiple comparisons adjustments would not
be needed here either. To start with, a simple analysis (e.g., linear regression of proportion
of girl births on the numerical attractiveness measure) should work fine. The predictor here
is itself measured noisily (and is not even clearly defined) so it would probably be asking
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Don’t Worry About Multiple Comparisons 205

too much to look for any more finely grained patterns beyond a (possible) overall trend.
More important, the sample size is simply too low here, given what we know from the
literature on sex-ratio differences. From a classical perspective, an analysis based on 2,000
people is woefully underpowered and has a high risk of both Type S and Type M errors.

Alternatively, a Bayesian analysis with a reasonably uninformative prior distribution
(with heavy tails to give higher probability to the possibility of a larger effect) reveals the
lack of information in the data (Gelman & Weakliem, 2009). In this analysis the probability
that the effect is positive is only 58%, and the estimated effect size is well under 1 percentage
point.

Examining Impacts Across Subgroups

We build on our Infant Health and Development Program example from the Illustrative
Example section to illustrate how a multisite analysis could be expanded to accommodate
subgroup effects as well. The most important moderator in the IHDP study was the birth-
weight group designation. In fact there was reason to believe that children in the lighter
low-birthweight (less than 2 kg) group might respond differently to the intervention than
children in the heavier (more than 2 kg) low-birthweight group.

We expand our model to additionally allow for differences in treatment effects across
birthweight group,

yi ∼ N
(
γj [i] + δL

j [i]Pi(1 − Bi) + δH
j [i]PiBi, σ

2
y

)
,

Here the treatment effect corresponding to person i‘s site (indexed by j) depends on whether
the child belongs to the lighter low-birthweight group, δL

j , or the heavier low-birthweight
group, δH

j . This time each of these sets of parameters gets its own distribution

δL
j ∼ N

(
µL, σ 2

δL

)
, and

δH
j ∼ N

(
µH, σ 2

δH

)
.

In this case we allow the treatment effects for the lighter and heavier low-birthweight
children to have a correlation ρ. Again we have allowed the intercept, γj , to vary across
sites j and have specified prior distributions for the hyperparameters that should have little
to no impact on our inferences.

Figure 8 plots some results from this model. The estimates for the lighter low-
birthweight group are quite volatile in the classical setting, where the information we
have about the relationship between the sites is ignored. The Bonferroni correction serves
only to reinforce our uncertainty about these estimates. On the other hand, the results from
the Bayesian multilevel model for this group have been shrunk toward the main effect across
groups and thus are less subject to the idiosyncrasies that can arise in small samples. (The
sample sizes across these sites for this group range from 67 to 93.) The point estimates for
the heavier low-birthweight children are more stable for all analyses relative to those for the
lighter low-birthweight group, reflecting that there is generally less treatment heterogeneity
for this group of children. The classical and corrected standard errors are larger than for the
lighter low-birthweight children most likely because the sample sizes across sites for this
group are slightly smaller (ranging from 35 to 51).
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206 A. Gelman et al.

Figure 8. Treatment effect point estimates and 95% intervals across the eight Infant Health and
Development Program sites now broken down by birthweight group as well. Note. The left panel
display classical estimates from a linear regression. The middle panel displays the same point estimates
as in the left panel but the confidence intervals have been adjusted to account for a Bonferroni
correction. The right panel displays 95% intervals and means from the posterior distributions for
each of the eight site-specific treatment effects generated by fitting a multilevel model. LBW = low
birthweight.

Overall, the results from the Bayesian multilevel analysis are the most stable, and they
lead to substantively different conclusions than the classical analyses. None of the Bayesian
95% intervals even comes close to covering zero. This contrasts sharply with the results
from the Bonferroni-adjusted classical intervals, all of which are quite wide (typically at
least twice the width of the Bayesian intervals) and four of which actually include zero (the
other four end quite close to zero).

MULTIPLE OUTCOMES AND OTHER CHALLENGES

Similar issues arise when researchers attempt to evaluate the impact of a program on many
different outcomes. If you look at enough outcomes, eventually one of them will appear to
demonstrate a positive and significant impact, just by chance. In theory, multilevel models
can be extended to accommodate multiple outcomes as well. However, this often requires a
bigger methodological and conceptual jump. The reason that multilevel models were such
a natural fit in the examples previously described is because all the estimated groups effects
were estimates of the same phenomenon. Thus it was reasonable to assume that they were
exchangeable. Basically this means that we could think of these estimates as random draws
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Don’t Worry About Multiple Comparisons 207

from the same distribution without any a priori knowledge that one should be bigger than
another. If we had such information then this should be included in the model, and in more
complicated settings it is not trivial to set up such a model.

On the other hand, there are some situations when modeling multiple outcomes simul-
taneously within a simple multilevel model might be fairly natural. For instance, sometimes
researchers acquire several different measures of the same phenomenon (such as educational
achievement, behavioral problems, or attitudes toward related issues). It is also common
to measure the same attribute at several different time points over the course of the study.
This might require a slightly more complicated modeling strategy to account for trends
over time but is otherwise a reasonable choice. If many outcomes have been measured
across several disparate domains, however, more effort may be needed to set up a suitable
multilevel model.

We illustrate a simple example of multiple outcomes by returning to the IHDP data.
This time we allow treatment effects to vary by site and type of test. We include eight
different types of cognitive tests that were administered either at Year 3 (Peabody Pic-
ture Vocabulary Test–Revised [PPVT–R]; Stanford Binet), Year 5 (PPVT–R; Weschler
Preschool and Primary Scale of Intelligence Revised Verbal and Performance subscales),
or Year 7 (PPVT–R; Weschler Intelligence Scale for Children Verbal and Performance
subscales). In this new formulation test-specific individual level outcomes (indexed by i)
are allowed both site-specific γ site

j and test-specific γ test
k contributions and the treatment

effects, δl , are also allowed to vary by site and outcome. Here l indexes site × test (i.e., j × k)
combinations.

yi ∼N
(
µ + γ site

j [i] + γ test
k[i] + δl[i]Pi, σ

2
y

)
,

As with the previous models, the site and test-specific intercepts, γ site
j and γ test

k , respectively,
are assumed to follow normal distributions each with mean zero (because the model already
includes a parameter for overall mean, µ) and each with its own variance.

What is more interesting here is the model for the δl ,

δl ∼ N
(
δ0 + δsite

j [l] + δtest
k[l], σ

2
δ

)
.

Here the site-specific contributions to the treatment effects δsite
j are simply modeled with

a normal distribution with mean zero and separate variance component. However the test-
specific contributions, δtest

k , are allowed to systematically vary based on the age at which
the test was taken and whether the test measures verbal skills

δtest
k ∼ N

(
φ1year5 + φ2year7 + φ3verbal, σ 2

δtest

)
.

This last piece of the model increases the plausibility of the exchangeability assumption
for the test scores. We also simplify the model by first standardizing each of the test scores
(to have M = 0 and SD = 1) within the sample.

The results from this model are displayed in Figure 9. Each row of the figure corre-
sponds to the test score outcome from a different year (row 1 for age 3, row 2 for age 5,
row 3 for age 8). Within each plot, 95% intervals are displayed for each site. The treatment
effects are larger on average for tests taken directly as the intervention ended at age 3. Simi-
lar patterns appear across sites for each outcome—this phenomenon reflects an assumption
that could be relaxed by including site by outcome interactions.
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208 A. Gelman et al.

Figure 9. Example of inference for multiple outcomes. Note. Estimated 95% intervals and medians
from the posterior distributions for each of 64 site-and-test-specific treatment effects in the Infant
Health and Development Program analysis, from by fitting a multilevel model.

A comparison to a classical correction such as a Bonferroni adjustment is even more
extreme in this setting, as illustrated in Figure 10. When taking all eight outcomes into
consideration, the Bonferroni correction applied to the classic linear regression fit results
in even larger uncertainty bounds than in our original example because now there are 64
comparisons rather than simply eight. The multilevel model estimates are now additionally
shrunk toward the grand mean across outcomes, after adjusting for differences in mean test
scores attributable to the year they were administered and the type of test. This shrinkage
causes the estimates to be more conservative than they previously were. However the

D
ow

nl
oa

de
d 

by
 [C

ol
um

bi
a 

U
ni

ve
rs

ity
], 

[A
nd

re
w

 G
el

m
an

] a
t 1

8:
27

 2
0 

Fe
br

ua
ry

 2
01

3 



Don’t Worry About Multiple Comparisons 209

Figure 10. Comparison of treatment effects by site between classical linear regression with Bonfer-
roni correction and multilevel model fit for the multiple-outcomes analysis of the Infant Health and
Development Program (see Figure 9). Both account for eight sites and eight outcomes though only
one outcome, Stanford Binet IQ score at age 36 months, is displayed.

overall precision of the multilevel model results is vastly superior to the Bonferroni-adjusted
intervals.

Further Complications

Harder problems arise when modeling multiple comparisons that have more structure.
For example, suppose we have five outcome measures, three varieties of treatments, and
subgroups classified by two sexes and four racial groups. We would not want to model this
2 × 3 × 4 × 5 structure as 120 exchangeable groups. Even in these more complex situations,
we think multilevel modeling should and will eventually take the place of classical multiple
comparisons procedures. After all, classical multiple comparisons strategies themselves
assume exchangeability in the sense of treating all the different comparisons symmetrically.
And so, in either case, further work is needed for the method to match the problem
structure. For large problems, there can be more data for estimating variance parameters
in multilevel models (this is sometimes called the blessing of dimensionality). Similarly,
classical procedures may have the potential to adaptively vary tuning parameters in large,
complex structures.

CONCLUSION

Multiple comparisons can indeed create problems, and it is useful to address the issue.
However, statistical methods must be mapped to the applied setting. Classical Type 1 and
Type 2 errors and false discovery rates are based on the idea that the true effect could really
be zero (see Efron, 2006, and Johnstone & Silverman, 2004, for connections between these
ideas and hierarchical Bayes methods, and Krantz, 1999, for other criticisms of the null-
hypothesis testing framework). Effects that are truly zero (not just “small”) can make sense
in genetics (Efron & Tibshirani, 2002) but are less likely in social science or education
research. We prefer to frame the issue in terms of Type S or Type M errors.
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210 A. Gelman et al.

Therefore, when doing social science or program evaluation, we do not recommend
classical methods that alter p values or (equivalently) make confidence intervals wider.
Instead, we prefer multilevel modeling, which shifts point estimates and their corresponding
intervals closer to each other (that is, performs partial pooling) where necessary—especially
when much of the variation in the data can be explained by noise. Therefore fitting the
multilevel model should result in the positive externality of yielding more reliable estimates
for individual groups.

We recognize that multilevel modeling can prove to be more of a challenge for com-
plicated structures. More research needs to be done in this area. However, we believe it is
more worthwhile to invest research time and effort toward expanding the multilevel model
framework than to invest in classical multiple comparisons adjustments that start from a
perspective on the problem to which we do not adhere.

Applied researchers may balk at having to learn to fit a different kind of model.
However, functions for fitting multilevel models are now available in many statistical soft-
ware packages; therefore, implementing our suggestions should not be overly burdensome.
Moreover, multiple comparisons problems arise frequently in research studies in which
participants have been clustered because of interest in examining differences across these
program sites, schools, cities, and so on; arguably, data from these types of studies should
be fit using a multilevel model anyway to correctly reflect the within-group correlation
structure of the errors. Thus the multilevel model will not only yield better results than
the simplest multiple comparisons corrections, it should not pose a greater burden than
performing one of the fancier types of classical types of multiple comparisons corrections.
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