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ABSTRACT 

,- ,_ 

This document represents notes that I have collected) over the 

I " 
past decade pescribins surface wave spectra. When I decided to put 

these notes into a convenient form for my own use, it seemed that this 

might be useful to others. It is not claimed to be thorough and care-

' fully checked, nor is it polished as a journal paper would be. ,'There 
~·· I 

are some references that-,yoo may find useful., If you know of material 

that should be included, please let me know. If you find errors, I 

should be happy to be told of them. I > 

I 

In the first Section I give some conventional definitions( just- '· 

so we have a common notation. In the second Section I discuss the 
(I .. - I" .... _ • , .. ... ,. 7 •. / ( J 

generation of surface waves/ Finally, in the third Section I pre-

sent some models that are used to describe ,"equilibrium" spectra.· I I ~~. 
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1.0 SURFACE WAVE DISPLACEMENT SPECTRA 

We consider a "large" ocean of rectangular area A. (periodic 

boundary conditions) with a plane surface at z-0 (z>O is up!). The 

vertical displacement from equilibrium is C<z,t). This is expressed 

as a Fourier expansion, 

( 1. 1) 

Here z - (x,y) and 

w ( k ) • [ k ( g + Yk 2 ) 1 lh ( 1. 2 ) 

is the linear wave dispersion relation. We use mks units, so 

g-9.8m/s2 and Y(•t/p) is 7.5 x 1o-5m3/s2 (t•7.5 x 1o-2n/m represents 

a nominal value for the surface tension of uncontaminated water). 

For linear waves the ak(t) are constant in time. 

The point of writing (1.1) as done is that k is in the direc-

tion of wave propagation. 

The power spectrum or displacement, with direction of propoga-

tion accounted for, is 

(1. 3) 
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( 1. 4) 

The symbol"< ... >" represents an average over an ensemble of oceans. 

The spectrum ~ is often expressed in the form 

~(k) • S(k)G(k,9), (1.5) 

where k • (k,9) with 9-0 corresponding to the wind direction. By 

convention, 

1T 
/Gd9 • 1 . 

-1T 
(1. 6) 

The spectrum is also expressed in terms of frequency using (1.2) and 

the relation 

S(k) k dk • Sf(W) dW . 

For linear waves the energy/unit area is 

E(k) - p~» 2 ~(k) , 
k 

and the action density is 

F(k) • E(k)/W . 
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( 1. 8) 

( 1. 9) 



To describe the evolution of the action spectrum F in the pre-

sence of a large scale surface current Us(z,t) the radiative 

transport equation is frequently used: 

Here the ray trajectories are calculated from the equations 

x. v~ 

k • -Vx!f 

H • W(k) + k · Us . (1.11) 

On the right-hand side of (1.10), Sv represents the decay rate 

due to viscosity, Sw the wind growth rate, and Sin the effects of 

nonlinear wave-wave interaction. 

1-3 



2.0 GROWTH AND DECAY OF SURFACE WAVES 

In this section we discuss the right-hand side of (1.10). The 

decay rate due to viscosity is (see, for example, Phillips, i977J 

( 2. 1) 

We shall use here the nominal value of 1.1 x 1o-6m2/s for the kine-

matic viscosity V. Surface contaminents may require modification of 

this value. 

The growth due to the wind stress is described by the term Sw. 

The wind stress on the surface is 

where Pa is the density of air and u* is the friction velocity. We 

s~gll use here the values given by Garratt (1977): 

u* • U(lO)[l + 0.089 U(lO)]~ • 

where U(10) is the wind velocity at 10m above the surface. At a 

height z we shall use the logorithmic scaling relation 

U(z) • u*ln(z/z.) 
K 
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This ia appropriate in the atmospheric surface boundary layer for 

conditions of neutral stability (a condition that tends to be valid 

over oceans; see Panofsky and Dutton, 1984, for a detailed 

discussion and references). An illustration of wind flow over a 

Minnesota wheat field (Kaimal, et al. 1976) is shown in Figure 2-1, 

where the planetary boundary layer height zi - 1250m. 

The quantity K ~ 0.4 in (2.4) is the von Karman constant and 

z. is the "surface roughness" 

(2.5) 

(Garratt, 1977). This value is appropriate for the oceans. Over 

land, terrain topology can lead to very different values (see for 

example, Panofsky and Dutton, 1984). 

Several recent analyses of the wave growth data have used the 

form implied by the Miles Theory, 

Sw • B(k)F.. (2.6) 

Empirical ~odels for B are deduced. To understand the basis for 

doing this, we briefly review the Miles Theory. Write 
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•. eik·z t, (2.7) 

where • is the velocity potential. The linearized Bernoulli 

equation and the kinematic boundary condition read 

~-ti-o. (2.8) 

A linear relation is postulated to relate the pressure variation to 

the displacement, 

On replacing it by (-iQ), we obtain the dispersion relation 

Q ~ w[l + l (a+ i~g)J . 
2 

The rate a in (2.6) is see~ to be 
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(2.10) 

(2.11) 



Experimental techniques to measure wave growth vary, and 

include wave tanks and field measurements. The growth may be 

observed directly, using wave staffs, laser slope meters, electro-

magnetic waves, etc. (Donelan et al. 1985, and, Larson and Wright, 

1975). An alternative method is to measure the pressure variation p 

and displacement C. Fourier transform these, and deduce the parame-

ters (a, Pg) in (2.9). This has been done, for example, by Snyder, 

et al. (1981), Hsiao and Shemdi1• (1983), and Hasselmann et al (1986). 

An extensive review of wave growth data published prior to 1980 

was made by Plant (1981). This data included wind speeds to 15m/s 

and frequencies in the range 

__s_ < w < 4011' . 
U(lO) 

He suggests the model 

Pp - 0.04(u*)2w cos • . 
v 

Here V • W/k and • is the angle between wind and wave direction. 

Evidence for the factor "cos •" is very weak. For higher wind 

(2.12) 

(2.13) 

speeds, Amorocho and de Vries (1980) describe some growth rate data. 
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Hsiao and Shemdin (1983) deduce the model 

~ • 0.85(U(l0)] cos •. 
v 

This is based on measurements in the range 

1 < ~ < 7, 5 < U(10) < 14m/s . 

(2.14) 

(2.14) 

(2.15) 

Donelan and Pierson (1987) proposed a model valid for the capillary 

range, based on the data of Larson and Wright (1975). This tank 

data included wavelengths A in the range 

0.7 <A< 7.0cm, (2.16) 

and 

0.17 < u* < 1.2m/s . (2.16) 

Donelan and Pierson purpose 

8 • 2.3 X 10-4 [U(~/2) - 1]2 . 
D V 

(2.17) 

The use of tank data to deduce growth rates on the generally much 

rougher ocean surface has an unknown validity. 
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A comparison of the above growth rates is illustrated in 

Figures (2), (3), and (4). The principal discrepency is for A in 

the centimeter range for which (2.13) and (2.14) are not expected to 

be valid. For long wavelengths the agreement is fair. For waves in 

the 10's of meter range generation by shorter waves is considered by 

some to be important. 

The te~ Sin in (1.10) describes the effects of non-linear 

wave-wave interactions. The most elaborate model for this has been 

given by Hasselmann, who used an assumption of weak interactions and 

cummulant closure to obtain a Boltzmann-like integral. Some recent 

calculation using the Hasselmann theory have recently been published 

by van Gastel (1987 a,b). 

The complexity and uncertain accuracy of the Hasselmann theory 

has led to some simplified models. A very simple phenomenological 

model was suggested by Hughes (1976), which was generalized by 

Phillips (1985). When F is sufficiently close to an equilibrium 

form, Feqt these models may be approximated as 

(2.18) 

Estimates for PT were made by Watson (1986) using non-linear wave 

theory. These are reproduced in Figure 2-5. 
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3.0 EQUILIBRIUM SPECTRAL MODELS 

Some time ago Phillips suggested that under conditions of ade-

quate fetch and wind duration wave spectra tend toward an 

equilibrium state. He argued that there should be an equilibrium 

range between waves moving at wind speed [U(lO)~V(k)] and the region 

of viscious decay. In this domain he proposed that 

s • constant 
k4 

the constant being dimensionless (no releva.nt parameters I) and the 

power of k determined by dimensional arguments. Kitaigorodskii (in 

Phillips and Hasselmann, 1986) has recently reviewed the philosophy 

of equilibrium spectrum models. 

Pierson and Moskowitz (1964) proposed a more elaborate spectrum 

based on Phillips' ideas: 

(3.1) 

where 

(3.2) 
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The JONSWAP experiment led to the replacement of the 

Pierson-Moskowitz exponential in (3.1) by the "peaked" exponential 

e-r, where 

r • 0.74 (k*)2- O.Sexp[- (~- 0.9~) 2 ] (3.3) 

k 0.4k* 

Increasing evidence for change led Phillips (1986), Donelan et 

al. (1985), and others to give up the k-4 spectral form by a factor of 

tk. They proposed that 

(3.4) 

where a reasonable choice for the dimensional constant • is 

a - 2 x lo-3 . (3.5) 

Donalen et al. suggest some generalization of (3.4) for limited fetch 

conditions. 

Observation by M. Banner (private communication, see also 

Donalen and Pierson, 1987) suggest that for k1 < k < k2, a reaso-

nable model for S is 

(3.6) 
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I 
where a is chosen to give 

(3.7) 

at 

(3. 7) 

A number of observations suggest that for 

k > k2 = 200m-1 (3.8) 

further models are needed for S. Bjerkaas and Riedel (1979) have 

reviewed the data (particularly that of Mitsuyasu, 1977) and have 

developed an elaborate model for the range (3.8). A simplified ver-

sion of this model is 

(3.9) 

(3.9) 

Here 

p • 3 - 0.434ln(u*) (3.10) 
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with u* in m/s and 

(3.11) 

The resulting spectrum using Sn, SB, and SR in the ranges 

described is illustrated in Figures (6), (7), and (8). Donelan and 

Pierson (1987) model the regime k > k2 without using (3.9), but a 

version of (3.6). 

Models for the approach to equilibrium have been suggested by 

Hasselmann et al (1976). An example is given for which 

U(10) • 0, t < 0 

• u., a constant fort > 0 . 

A parameter is defined 

3 
Om- 120 (1.!)--:; 

u. 
~ > 1 • 

• 1, if above is less than unity. 

Then f 1n {3.4) is modified by replacing k* by 

3-4 
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(3.13) 

(3. 14) 
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The constant • is replaced by 

(3. 15) 

The angle dependence in (1.5) was modelled in the first edition 

of Phillips' book as 

• o n < e < 3! 
2 2 

Tyler et al. (1974) and Mitsuyasu et al. (1975) recommend the form 

G • C cos(~)S , (3.16) 
2 

where C is a normalizing constant. Mitsuyasu finds that 

A more recent review has led Donelan et al. (1985) to suggest 

replacing (3.16) by 

G - O sech2(o9) 
2 
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• 1.2, otherwise. (3.19) 

(Equation (3.19) represents my simplification of a more elaborate 

representation.) 

The diversity of spectral models and the recent dates on many 

of the references will convince you that further models can be 

expected. Comparison of the models described above suggests that 

changes have tended to be more evolutionary than revolutionary in 

this field and that the existing models can be useful even if of 

limited precision. 
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