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Abstract‘

Large internal wave amplitudes were obaerved in the JOWIP and
ISABSBX experiments. These led to significant surface wave modula-
tions, as observed directly and from radar observations. Modulation
mechanisms are réviewed, including a two-step'process by whioh longer

wavelength waves. modulate short waves. Some calculations are pre-

sented.
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1.0 INTRODUCTION

Several experiments have been conducted to.uaaure the modula-
“tion of surface nvu by internal waves, The: DREP (Defense Research
Establishment Pacific). experiment in Bute Inlet and Georgia Straits
was reported by llughu _pgg:,mmt.f'] A urioa of expdrinnts were
conducted jointly by DARPA and.OZ during July-August,, 1963, in
Georgla Straits. The internal wave observations are described in the | -
sWIP Interim Report.[2] A thir sories of observations, sponsored

by the ONR, were made in the New York Bight off the coast of Long
Island in August-September, 1984, These are described in the SARSEX

Interia Ro’port.[3] 3

In both the JOWIP and SARSEX experiments in oiﬁu measurements
were made of the 1ntqrn§1 wave and surface vave activity. In addi-
tion, L-band and X-band observations of the sea surface were con-
ducted. In these experiments lirzo amplitude internal waves, strong
stratiﬂcition. and thin mixed 1§yors were encountered. . This o
resulted in substantial surface wave modulation. Calculations of the
expscted modulation were made for JOWIP by the JHU/APL and TRM
tem[z] and for SARSEX by the JHU/APL teanm.

For the JOWIP experiment the observed L-band nodulationo were

larger than those calculated by factors of 2 to 10. _'rho SARSEX
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2.0 SURFACE WAVE RELAXATION MODEL

The surface current associated

is here assumed to have the form

Here U, is the peak surface current)

factor, and we have taken thc'!-uxi#

tion. In (2.1) we have written
Yesx- cIt.

‘where Cy is the I}i phuo »ﬁlboity.

with the

n(g!) is

internal wave (IW) field

(2.1)

the IN current form

4& the direction for IV propaga~

(2.2)

The radiative transport oqu’tlrn} for thﬂ surface wave action

density F(k,x,t) is written as

» .[%*i‘vx’g’vk]r.
Here .
x=VH, k=-VH,
and

H.U(k)"‘!‘g

2-}

S(,!L !:t)

(2.3)
(2..)

(2.5)




is the ray path "Hamiltonian". For gravity waves the frequency is

4
(k) = (gk)’2

(2.6)

(Capillary waves will be discussed 1n<SQction 4.0) The qﬁintlty S in

(2.3) includes effects of viscous damping, wind driven exoitation.

and nonlinear wave-wave interactions.

In a coordinite system in which the IV vave (2 1).4s atat!onary.

we may re-write (2.3) in the simpler form

(¥ %y ko 3k 3] Fle D) = S(k.!).

Now, equations (2.4) become
'y kx3
Y = C(k)(GE) - € u(n),

l.(y"OQ

. 8y
kg = Ky 37

where C(k) = dw/dk 1is the surface wave group velocity.

2~2

2.7

(2.8)
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Hugnes[?] has proposed an empiriocal model for S(k) that has
erQUent;y been used by other authors. As geheralized by
~ Pnil11ps,L19] this nas the form

Stk, x) = 8,(k) F[1 < (e )" @

The quantity Fo(k) 1s considered as|the "equilibrium spectrum® to
unich s 1mp;1ea a tendency for F to|relax. Hughes chose m = 1,
whereas Phillips suggests that m -2 or 3. In any case, if we assume

that |F - F | <« Fo» we obtain from|(2.9) the linearized form
S(k.xt) = -BUO[Flkux t) |- Fotid ]| (@0

In this expression B appears as a reluxatiok rate. ‘Hughest9J and
Phi1i1psl 107 adopt a model wind gengration rate for 8. Phillips,
~ specifically, uses the semi-empiricgl expresaion given by

Plant.[11l

The.relaxat;on of a pattern of |surface gravity waves was studied

by watson,[‘a) who obtained, in add%bioh to the effects of wind and

viscosity, a contributiohito B fr ‘wave-wave interactions. This
included both 3-wave and 4-wave cou 1ings. The 3-wave interactions

lead to é.modest "smearing" of the wave spectrum. This 3-wave effect

2-8
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will not contribute signirioantly to (2.10) unlé§§ F is deterﬁ1n0¢ to
' great precisioh in the uavérnumbér K. }For thcAproaont_appliéations

it seems appropriate to omit this contribufion to B. The 4-wave

interactions do give a contribution, however, which at the higher

wind speeds somewhat exceads that from wind interaction.

We have ohoseh to model 8 by simply sunning the oontributions
from viacosity. wind[11] and u-wave interaotlona.['zJ The result, _
expressed in terms of 8 (in soconds) {s shown as a runction of k

and wind speed V in ugure 2-1.

_ ‘The very strong variation or g with wind speed V and wvave
number k, as indicated in Figure 2~1, suggests that there will be
(k, V) regimes for which we oan neglect S in (277) and others in
which this term w;lllbe'dpmin;nt.n We illustrate this by quoting the

familiar limits for a weak current U. .Then we can treat
‘F'=F-F, - (2.11)

as a small quantity, If we set S = 0 in (2.7), these results

ar...'

u_ }er @)

F'(k,n - { T
[C(k) (-—) -C J

C2+4
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On the otherhand, in the limit of large @ wWe find that

o F |
Fr(k,Y) = g %% K, 5 - (2.13)
. ,

For the case of wave "G2" reported from the SARSEX observations, we

'take

. (6 ¢/3, V= 35Q = éhglo with respect to x-axi$)
C; = -0.5-m/s (propagation in nogativev.x-direotioﬂ)
ﬂo - 0.25 h/g : A ' ‘ |
Np = 30-éph:;'ppakfyapiala_froquency
mixe& layer thiégne;i «10m. '
8y - %g27 - iepgtn_aéale

8 1.5 30071;3X-band E

i R

0.1 sec™!, L-band = | (2.14)

- To apply this to (2.13)ﬁ_wevwf1te

TR

F! ;‘Sv__
H' = E'_o. - 8) Ax’ | (2-15)
 where )
6 ® k. = 1nF . Co (2.16)

X
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In this report we shall take

obtained from a Phillips spectrum with waves Rropagating in the

X-direction. Application of the'énv#ronmehta]

(2.15) gives

|4'| =~ 0.02, X-band' (A = 0L03m)

« 0.2, L-band (x'= 0.
If we take
KKy _ o
et (£7) - ¢ = ¢
(2.12) glves

M| .2,

"~ This is, of course, too large for the assumpti

in deriving (2.12).

2-7
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conditions (2.14) to

S (24T)

'(2.18)

on that |M'| << 1, used
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We may estimate the wavelength regime in which it is valid to

take B8 =0 trqm the condition

B s g,‘,-:-’f | (2.19)

Por a wind speed V = 6 /s and AY = 50 m, this gives

ks2s5a'orr2.2s5n, (2.20)
Thus, for both L-band and X-band Bragg waves the limit (2.13) seeas

appropriate.

Comparison of (2.17) and (2.18) suggests the possible ilportahco
of the CW" mechanism. The lohébr gravity waves for uhichv 8 may be
taken as negligible are anticipated from (2.18) to hhvc'larke podula-
tion. If this is passed onto the Bragg waves, then (2.17) may repre-

. sent a:aigniticant underestimate.
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3.0 MODULATION IN THE REGIME FOR \'+ICH¢ B IS SMALL

In this section we shall aaéumL thif it

(2.7). This equation then reads

®

3 .+ 9
'a'f”‘xakx]""'

is valid to set S = 0 in

(3.1)

For a convenient mocel of the IW field, we tare a semi-infinite wave

train of the form [ses (2.1)]

cos(KY)

[1 + expz-O.S K!Sj

h(Y) =
The ray equations (2.8) are to

when ¥ = Yoo Ky = xor and k, = k

. y " Yo
chosen that |
K¥° 5"3!? .

which implies that
h(Yo) = 0.

Then, we cén assume that

)

(3.2)

be ‘integrated from a time t = 0

Tpe initial ppsition Y, is so

(3.3)

(3.4)




¥ (kyo ¥o) = rov_ (k) . - (3.5)-

~° .

the "equilibrium" spectrum. Integration is carried to a time t4 such

that
2% < KY < 4%, ' . (3.6)

where Y = ¥(t,) and ky = k (t;). The uction density at time t, is
then obtained from (3.1) as

F (k,Y) = F, (k). B € X )

As a practical matter, (3.7) vas cvdmtéd by integrating the

" ray equations (2.8) baoknida in time, starting at a prescribed Y and
k at time t,. Int.ogration‘ vas carried back to a time such that
(3.3) waa' valid and the resulting "initial" k, was used to evaluate

(3.7). . The resulting gravity wave modulation is defined as

F(k,Y)

Mk Y) * 5 (3.8)
. ok o o .

The corresponding modulation obtained from weak current pertur-

bation theory is
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L o,
M (k,Y) = . f-,-;—(g-)-

. pert
where F' is calculated using (2.12)
permits us to specify the regime in
valid. |

To justify neglecting the rela;
the condition that

B(k) At < 1,

where At 1is the average time for {

tance -:1 in the integration of (2.

require that the phase pqint actual)

- the point Y. In presenting our resy

M (K.I) =0,

)

-+ 1,

which per

he phase |
8)0. H‘a

y penetral

i

unless both of these con#itiona are Patisnod

domain of our calculations these twd

ient o]

‘oonditio

(3.9)

| Comparfson of (3.8) and (3.9)

turbation theory is

fation te+ S in (3.1) we impose

point to travel a dis-
lao; quite ovidcntly, -
te into the IN field to

1ts, we have set

(3.11)

{Over most of the

8 were roughly equiva-




£ [ -

For application to the present oaieulationa we have chosen the

-'cquilibrlun" gravity wave spectrum to be of the form:
here the surface displacement spectrus is

!o(l_c) = 0, kek,

(lmo ) oe.l(g)

L(s) : P k> ke

k =k
w L

| k"- 5/4
s(k) = 15(;-) .

L(s) = [.'oos'(-%) de.

'(3.12)

. ) " '.‘
-.m%n S

(3.13)

(See Tyler ot a1,[13] and mtnuyuu ot al.[”]) The quantity ¢ here

is the anglo bctmn k and the wind velocity vector V.
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C; =+ 0.05 w/s.

We vcau this SARSEX' and display th* resulti
Figure 3-2, The modulation, as calculated,

with respect to that of Figure 3-1. We'again

bruldng may limit the actual lodulqtion.

(3.16)

modulation in
:I

considerably enhanced

anticipate that wave

The variation of wodulation witfn'tho phase of the IW is shown in

Figure 3-3. The ehvironlenta_lﬁ__oondi Liotis are

6=0°.

The next set of environmental oLmdi;tlonq

as ENVEX1: |

Y = (6and 3 ws, ¥ - 0%)
C; = 0.33 ws |
U, = 0.016 /s

Np =~ 10 cph

mixed layer thickness = 10 B

IN wavelength = 160 m

The IV eigensodes where calculated in 't[

exponential N-profile and the lowest [mo

those of SARSEX!, with

considered are labelled

[pproxiuuon !or» an

sed. The resulting
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Figure 3-2. Surface wave modulation as. predicted for conditions of the SARSEXT
experiment. The environmental conditions are the same as those of Figure(3-1),
except that the direction of propagation. of the internal wave has-been reversed.
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modulation is shown in Figure 3-4 for Y = %1 (maximum modula-
tion). The solid curves correspond to V -‘6 m/s nd the dashed curves

toV = 3 m/s,

The modulation is shown in Figure 3-5 for the same environmental
conditions and Y = 3— but with IW propagation up-wind
(C; = -0.33 w/s). The substantial reduction of modulation for the

up-wind case is again notad. '

The final set'of environmental oonditioniﬁoonhiderod is labelled

T

as ENVEX2:

¥ = (6 and 3 n/s, ¥ = 0°)

C;=03mws

y.io = 0.03 /s

Np = 15 cph

mixed layer thickness = 10 m

IW wavelength = 80 m. | ' - (3.18)

The louést IW eigenmode for an exponential N-profile was again

used.

We show the resulting modulationat Y = %; in Figure 3~6. The
direction of IW propagation is down-wind. The solid curves corres-

pond to V = 6 m/s; the dashed curves correapond toV=3nm/s,

3-10
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Figure 34, Surface wave modulation as predictefl for the Eﬂ]ﬁx

(3.17). The internal wave is propagation in the

d direction.

1 “experiment,’ eq

uation
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T T T ] T T 1 |
} | — Y, =8 m/s
i ) mae YV =3m8
14 b=
M
12
=0 - /L_— '
— . q |
10 p= 8 =45 i !
' 11
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01 0.2 " 04 08 08 10 20 40 60 80 100 20.0
k)

Figure 3-5. Surface wave modulation as predicted for the ENVEXI “experiment,” equation
' (3.17), except that G = —0.33 m/s corresponding to internal wave propagation
- against the wind.
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Figure 3-8, "S3urgace wave modulation as predicted for the ENVEX2 “experiment,” equation
18), | | ,

3-13




The variation of_modulatioh_uitn mixed layer thickness D [we

have set N=0 in the mixed layer] is written as

‘ . M_(for thickness D) P :
_§(D) M (for D = 10m (3.19)

The quantity is illustrated in Table 3-1 for the three sets of envi-
ronmental conditions described above. The strong dependence of M on

mixed layer thickness is as expected.

We ars nbw in & poaitidn to compara the modulation ?port as
caloulated from perturbation theory (3.9) with the modulation M
_cbtained from exact evaiuations of (3.8). We found the agreement to .
be surpriaingly_gobd. For examblo, when |M-1] < 0.1, our caiculated
values of H_and-up;rt agreed to within o;xs. Even for substantial
sooulations, M and Moo, Londed %o be qualitakively simslar. This is

{1lustrated on Table 3-2.
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TABLE 3-1

~ The variation of modulation with| mixed layer thickness [see
(3.19)] is shown for its three sets o ‘emrironaental conditions
described by equations (2.14), (3.17)(and (3.14). '

— R(W0)| [ R{(100)
SARSEX 0.7 | 0.2
ENVEX 1 ~0.3] | 0.3 -
ENVEX2 — 0.08] | 0.00




TABLE 3-2

The modulation M(3.8) is compared with M, .. (3.9), cajculated
from perturbation theory. The wave angle © "is taken.as 0 here.

SARSEX |
K[’ | M| Mot
0.2 1 3%, 1.30._ [ 1.30 |

— 0,60 %1 ) 1.10 1433_. — |
0.6 3r 1 2.3 175
0.27 2r_| 0.76 0.6

ENVEX 1

k1) | x M Moert
0,27 3w | 1.0 1.0
0, 3z ] 1.0 1,08

_2.0 3 ] 1.10 1.09

5.0 3w | 1. 1.16

-3-16




4.0 BRAGG WAVE MODULATION BY LONG WAYES

The caloulations presented in the last section provide us with a

deaoription'of the internal wave modulation of the longer w2velength

portion of the gravity uavé'apeetrun.

These "cprrier" waves interact

‘with shorter surface waves in the Bragg regime, passing on thellnter-

nal wave modulation. It is this, the

vestigate with a somewhat idealized mgdel.

Our calculation is admittedly in

oWl ﬁroce;s,_uhioh we now in-

plete in that we have not

included modulation of the "shorter of the long waves", that are

strongly eftected by relaxation (large 8). ' We| do not believe that -

this leads to serious error, however,

modulation.

since a large B implies small

Phil1ipst?5] has published a desdription of the modulation of a

short wavelength wave propagating on ¢
wave. This analysis provides the bas]

model.

he surface of a dominant long

s for developing the CW®

Phillip's equations may be develqped in therformvor aseries of

terms of increasing order in the ratic

(%/k) and carrier slope,




where 2 and k are wavenumbers of carrier and Brasg waves, rispcc-
tively. To lowest order in these two quantitics, considered here as

small, the action density for Bragg waves may be obtained from (2.3)

and (2.10):

[5- x. v +g v]s(k,;,t)-—ar'

Frep- r,

EOANGER0)

k=-V (k.0 SR (4.1)

Here U, is thq‘orbital«ournﬁnt of. the carrier waves, written as a

Fourlier series:
gc - :(], -ZJ-—] [;l exp [1(! * X = ®(y) t)] + C.c.] (4.2)

Ne consider first the case that § = 0 . Integration of the ray

squations gives

4-2




Using (3.7), we obtain to lowest orde}- in Ak

F' (koxmt) = -8k » ¥ F_ (

The Bragg modulation is then

. 'p) : 5 0

M'(k, x, t) = —-TOTQ— .

If we consider the 52. to be Gaussian var|

averaged mean square modulation is -

aagz)'.

Ha explif
L

I

¥(L)

M - [dP
[e,(0) -t - ¢

x [t 7, tnF (0]

Here ¥ (L) 1is the surface dsiplaéement bpecﬁr

waves, We writ’g this as

4=3

03)

L g - wt)]

(4.3)

(8.%)

1ab.fle‘6. the ensemble-

(- ¥)?
(4.5)

um of the carrier

lrw @ e o.M .o



2(L) = ML) ¥ (L), B (4.6)

where M(%) is the modulation due to IN's, as calculated in the last '

section, and !o -is the spectrua in the sbsence of IW's. We have

chosen the expressions (3.13) as ou_r‘ model for ¥.. Also,
w/t
C,(2) = == o | o (...7)

is the phaae velocity of the carrier wave.

. Since the long wave spectrus }u peaked in the direction vV of
the wind, it is permissible to set

ORIl (R A XT%) R )

where o was introduced in (2.16)., For muricil ouluition ve
" shall aga‘lln set o= g- (a more detailed ahalysta would probably
require a more careful detoniﬁtion of a). The incremental modula-
tion of Bragg waves due to IN's is then |

. | 2 .

| A - . we(s) [me) - 1] ¥, ()
(2 = (k - v)2 o® 6% 2
i I (XORE RN 1))

(4.8)
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When the B—tefn 1s dominant in
K, 5, ©) 5 90 - o)
Repeating the calculation which led t
est)? = (k - V)2 o® [o% [l

_Equations (4.8) and (4.10) may be

‘single eq&at_ion

blended

(k.1) we [obtain

. 'V!S tn 20 (4.9)
b (4.8) now gives
12w - 1] g (0. (4.10)

empirically into the

(4.11)

e e 2,1 [M(e) - 1] ¥.()
“mz - (k- v)z a2 fdzl ) (l.i_,F g 5
: | [c 2 -2 ¢l + B
The rms lodulat.lon 8M was evalyated usi

I

The result is shown in Fi

ditions of the SARSEX experiment (2.1

-strength V.

waves) and X-band (0.03 m waves) Braggs

direct ‘nodulition-of L-band .uives. whi

a comparable contribution, has been nexleéted i
J;: given
EX Repor

Calculated as direct, not Cﬁz,. D:Tdulgtion.

The L-band modulation for V = 6
similar to that calculat.ed' in the SA

—

4-5

b
ch ht low

. It sh

(4.11) for the con-

), but for variable wind

gure 4-1 for L-band (0.2 m

uld be noted that

wind 'spc'odsjcan give

n Figure b-1.

In Figure 4-1 is

03] and also is in




1.0
-
§ 01 f—
001 i | A 1 4 !
0 2 4 8 8 10 12 14
Vy (m/s)

flﬂure 4-{. Modulation at L-' and x- bandas éaiculatéd from the CW2 mechanism for
-+ internal wave G2 of the SARSEX: expcrimcnt The internal waves are
propagating upwind

4=6




reasonable (tadtor of 2) agreement with the observed "wave G2" modu-

lation. Similar agreement is also obfained with the observed X-band

modulation for "G2",

For the ENVEX 1 conditions (3.17)

6" = 0.13.

we obtain from (4.11)

(4.13)

It may be noted that if "bound wgvelets", phase coupled to the

carrier, are present, another modulgthon mechanism may be impor-

tant. For example, the third harmonic

&n = 1/3 14,3 cos[uz(x'-cot)]

cbrresponding to the carrier
n=-acos [L(x - Cot)].
For a carrier modulation
M, = (),

we have a fourth harmonic modulation

4=7

amplitude of a Stokes wave is




Hf -3 1'4:0?- ' L | - (u..ﬂl)

with increasing modulation for higher harmonics.
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