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Abstract—In this paper, we present results of benchmarking 
Apache Accumulo distributed table store using the continuous 
tests suite included in its open source distribution. The 
continuous test suite contains tests that build and traverse a 
very large linked list, implemented via a simple table-row 
indexing mechanism. This underlying design provides insight 
for developing applications dealing with complex relationship 
among data sets as typically found in graph analytics 
applications. The benchmark study investigated sustained 
continuous mode stress testing and identified optimum 
configurations for very high-throughput data ingest, sequential 
and random query operations. Apache Accumulo also has the 
unique feature of cell level data access security, and the 
benchmark evaluates the processing overhead for this feature. 
We also tested high-speed table data verification and 
validation. These benchmark tests were run on a large cluster 
optimized for large-scale analytics and we present the 
performance figures for Apache Accumulo found in the study.  

Keywords- BigData; Benchmark, Scalable Table Store; 
BigTable Implementation; NoSQL; Apache Accumulo  

I.  INTRODUCTION 
Large volumes of streaming and history data, in semi-

structured and unstructured forms, have proliferated and 
impacted every aspect of the information industry. 
Government departments such as the defense, healthcare, 
energy and science and technology are facing the so-called, 
Big Data challenge [1]. Data mining and analytic data 
management that refers to querying a data store for use in 
business planning, problem solving and decision support [2] 
is often the common solution thread in various data 
processing challenges faced by these agencies and 
departments. 

Distributed key/value table stores, also known as scalable 
table stores, provide a lightweight, cost-effective, scalable 
and available alternative to traditional relational databases [3, 
4]. Today, scalable table stores, such as BigTable [4], 
Amazon Dynamo [5], Apache HBase [6], Apache Cassandra 
[7], Voldemort [8], and Apache Accumulo [9], are becoming 

an essential part of the Internet services. These are used for 
high volume data-intensive applications, such as business 
analytics and scientific data analysis [10, 11]. In some cases 
they are available as a cloud service, such as Amazon’s 
SimpleDB [12] and Microsoft’s Azure SQL Services [13], as 
well as application platforms, as in Google’s AppEngine [14] 
and Yahoo’s YQL [15]. 

The ingest and query support in distributed table stores 
defines a data serving system that provides online insert, 
update, read access to data, as opposed to a batch system 
such as Hadoop [16] or relational OLAP systems that are 
generally backend support to serving workloads [17]. 

A benchmark needs to be relevant to an application 
domain [18]. A benchmark for data mining and analytics for 
the Hadoop batch-processing environment was given in [19]. 
There is growing interest in benchmarking data serving 
systems in general including in the context of processing 
complex relationships in data implemented as indexed 
structures, such as graphs [20]. In this paper we present 
benchmark results for the Apache Accumulo data serving 
system that address this goal. Our study used the continuous 
tests available with the open source distribution of Apache 
Accumulo. We ran the benchmark on a cluster of up to 1000 
machines and studied the results of performance and 
scalability of Apache Accumulo. We have not compared 
other table store products. 

In section II, we discuss the problem of benchmarking 
Apache Accumulo in the context of its architecture and 
features. In section III we describe the benchmark tests and 
the rationale for using it. In section IV we present the results 
of running the benchmarks on the EMC/Greenplum Analytic 
Workbench (AWB) cluster [21]. 

II. BENCHMARKING APACHE ACCUMULO 
In benchmarking a distributed table store as a data serving 
system we are primarily interested in evaluating the 
performance and scalability of ingest and query throughputs. 
The benchmark tests need to generate workloads composed 
of suitable distribution of the ingest and query data serving 
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operations. The standard benchmark, known as the Yahoo! 
Cloud Serving Benchmark (YCSB) [17] and its extension, 
YCSB++ [22], apply a uniform set of tests to multiple 
scalable table stores. The results of using YCSB in a small 
cluster for Cassandra, HBase, Yahoo!’s PNUTS [23] and a 
simple shared MySQL implementation [24] were given.
YCSB++ examined the advanced features of Apache HBase 
and Apache Accumulo, such as server side programming, 
available in both, and cell level security, available only in
Apache Accumulo. However, their tests were run on 
relatively small clusters. Six server-class machines and 
multiple multi-core client machines were used to run up to 
500 threads of the YCSB client program. The database used 
consisted of 120 million 1 KB records for a total size of 120 
GB of data. Read operations retrieved an entire record and 
update operation modified one of the fields. The five 
advanced features examined were weak consistency, bulk 
insertions, table pre-splitting, server-side filtering and fine-
grained access control. Experiments were conducted for bulk 
insertion using Hadoop MapReduce.  The experiments 
measured how high speed ingestions are affected by the 
policies of managing splits and compaction. Six million rows 
of an Apache Accumulo table were split into various 
numbers of partitions and completion times were found. 
Worst-case performance estimation was obtained for the 
security feature of Apache Accumulo by using unique 
Access Control List (ACL) for each key and a larger size for 
the data cell. 

Benchmarks specific to BigTable, Cassandra and 
Hypertable [23, 24] are known. In the performance and 
scalability evaluation of BigTable, as reported in [4], the
operations of interest were sequential and random reads and
writes on tables of known sizes. The Hypertable benchmark 
was based on this work. Netflix developed the write oriented 
benchmark stress tool for Cassandra in Amazon’s EC2 
instances [27]. With 60 client instances this test generated 
1.1 million writes per second and was complete in two hours
creating a 7.2G table of records. 
A. Apache Accumulo

Apache Accumulo is based on Google’s BigTable design 
with addition of two unique features. One feature is the 
iterator framework that embeds user-programmed 
functionality (server-side programming) into different Log-
Structured Merge Tree (LSM-tree) stages [28]. The second is 
the cell-level security that enables fine-grain data access 
control. 

A distributed table, containing sorted rows of key-value 
pairs, shown in Figure 1(a), is partitioned into tablets and
distributed to the tablet servers across the cluster. The key 
consists of a row id, column key and timestamp. Column 
keys consist of separate column family, qualifier and 
visibility elements. The visibility field is used for the cell-
level security feature. Each tablet contains a range of rows 
and is assigned to a single tablet server. A single row of the 
table as defined by a row ID is never split across multiple 
tablets. Table features such as locality groups, constraints, 
bloom filters, and iterators are available [9]. Iterators provide 
a modular mechanism for adding functionality to be 

executed by tablet servers when scanning or compacting 
data. This allows users to efficiently summarize, filter, and 
aggregate data.  

 
Figure 1. Apache Accumulo Key-Value pairs. 

A tablet server typically manages many tablets. It receives 
writes to these tablets from clients, persists writes to a write-
ahead log and sorts new key-value pairs in memory 
(memtable), periodically flushing sorted key-value pairs to 
new files, called RFiles, in HDFS. The tablet server also 
responds to read and scan requests from clients, forming a 
merge-sorted view of all keys and values from all the files it 
has created and of the sorted in-memory store. When a read 
operation arrives the tablet server search the memtable as 
well as in the in-memory indexes associated with the table 
in HDFS to find the relevant values. If clients are 
performing a scan, many key-value pairs are returned to the 
client in order from the memtable and RFiles via a merge-
sort process. The reads are optimized to quickly retrieve the 
value associated with a given key, and to efficiently return 
ranges of consecutive keys and their associated values. 

When the memtable reaches a certain size the tablet 
server writes out the sorted key-value pairs to a file in 
HDFS. In order to manage the number of RFiles per tablet, 
the tablet server periodically performs minor compactions 
and major compactions of the files in a tablet server.  
B. Index Structure 

The table rows as key-value pairs provide a fast way to 
look up by a key item as attribute given by the value of a 
column qualifier of a row. In order to support lookups by 
more than one attribute of an entity, additional indexes can 
be built.  

Consider a main table whose rows are key value pairs 
that represent these entities. To build an index to the rows 
based on attribute values construct an index table with the 
value as the row ID and the columns as the attribute name 
and row IDs of the main table, as shown in Figure 1(b). 
Storing the Row-ids in the column qualifier rather than in the 
value allows having more than one row id to be associated to 
a value. 

It is possible to create linked data structure by 
considering a row as a list element and its value field as the 
reference to the row that corresponds to the previous or next 
list element in the list. A column qualifier is an attribute that 
relates a pair of list elements. This has been shown for a two 
element linked list in Figure (c). The value field of the row 
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(Row ID-2) is the row ID (Row ID-1) for the other element. 
It is straightforward to build complex indexed structures such 
as graphs using this basic scheme. 

C. High Speed Ingest and Query
In a distributed key-value table store, when a table is first 

created it consists of just one tablet. This is the extreme 
situation with no scope for parallelism of table operations.  
As more data is ingested into the table the table size 
increases. When the table size crosses a limit, a configurable 
parameter called the table split threshold, new tablets are 
created from the original tablet and distributed to separate 
tablet servers. This takes place recursively for all tablets as 
more and more data is ingested and the table increases in
size. The process helps in increasing operation parallelism 
and is the key feature of all scalable table store architectures. 
However, there is an overhead cost involved in table split
process.    

A pre-split table is a table that has already been split into 
tablets each of which stores a distinct subset of the rows and 
distributed in the cluster. Pre-splitting a table in this way 
helps in avoiding the split overhead that is incurred for a non 
pre-spit table at runtime during ingest. If we store ! rows in
the table, we can create !!! tablets, via a p-way partition, 
where the !-th tablet, !! ! ! ! !! ! !, will have row range of !" ! !! !" ! !!! !! ! ! !!, where for simplicity, assume 
the rows of the table are !!! !!!!.  If there are N nodes in 
the cluster then, in an even distribution of these tablets, each 
node will host !!! tablets. 

III. THE APACHE ACCUMULO CONTINUOUS TEST SUITE  
The key feature of the Apache Accumulo Continuous test 

suite available with the open source distribution is the 
support of an uninterrupted or continuous mode operation on 
a very large indexed linked list. This list is created by the 
ingest test as the test table. The two other tests, walker and 
the batch walker tests, can scan and perform sequential and 
random reads of the linked list created by the ingest test. The 
tests can also be configured to estimate the overhead for cell-
level security. There is also a Hadoop Map-Reduce based 
high-speed test to verify the table consistency. Other tests in
the suite can perform tests on failure recovery, which, 
however, has not used in this study. 

A. The Ingest Test 
The ingest test uses a three step iterative method to build the 
linked list.  

1. Generate a set of list elements. 
2. Generate a second set of list of elements that link 

to each element of step 1 as the head 
3. Create one linked list by combining the lists 

generated in step 2 
In step 1, a linked list with !! ! !"#$!!%&"'(#$  of 

elements are created, as rows with random row ID in the test 
table. Each element created has a null value for its previous 
element (the table row corresponding to an element has null 
value field). Let these rows be denoted by {!!, !!, … !!!}.

In step 2, for each of these rows (!!,) where, !! ! ! ! !!! ,  a 
fixed number !! ! "#$!"#$! of new rows with randomly 
generated row IDs,  {!!!, !!!, … !!!!} are created, where for 
each created row !!!"!, !! ! ! ! !! ,  (!!!! links to !!!!, !!!!! links to !!!!! …. and  !!!!!! links to !!!!!!!!. In step 
3, additional !!-1 links from each of !!!! to !!!!!!!!!!, for  
are added. The table is flushed as !! rows are inserted. This 
happens at the end of step1, and !! times in step 2. The table 
is also flushed at the end of step 3 after !!  updates of 
existing rows as the linked list is connected.

The schematic view of the process is shown in Figure 2 
where each box represents an element in the list and an 
arrow corresponds to a link to the previous element. At the 
end !!! is the head of the entire list and distinguished by 
having a null value for the forward link. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Continuous Ingest Test Schematic Diagram 

An element stored as a row of the test table has a random 
row ID (between 0 and the maximum of Java long type), a 
random column family and qualifier (between 0 and 
maximum for a Java int type) and a value that contains the 
row ID of a previously generated row as an element.  

 

 
Figure 3: Two rows corresponding to adjacent list elements. 

An example of two rows generated by the continuous 
ingest test is shown in Figure 3. The first sixteen digits 
correspond to the row-id. The column family and column 
qualifier follow, separated by a colon. Next, an empty 
visibility field is contained within the pair of brackets. The 
timestamp field is not shown. After the brackets is the value 
field, which is split into four parts separated by colons. The 
third part is the index given by the row-id that references 
another row in the table. In the example, the row with row-id 
of 0020efc13153756f is pointing to the row 
11af847f1e67c681. The row with row id 11af847f1e67c681 
has an empty value for its link to previous row. 

For each test client the ingest test logs provide 
information on the elapsed time between consecutive flush 
operations on the table as well as number of rows entered in 
the table.  
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B.  The Walker Test 
In the walker test, sequential and random scan and read 

operations are executed. The linked list, or more generally 
the graph, represented in the table created by the continuous 
ingest test is randomly traversed. This happens in two steps: 
a) scan and b) walk. In the scan step the test selects a random 
starting row, and scans (sequentially read) a range or set of 
consecutive table rows starting from it. Rows are scanned 
using Apache Accumulo Scanner API [9]. The consecutive 
set of rows is defined using an Apache Accumulo Range
instance. The random selection of the starting row 
corresponds to a random read operation from the table.  The 
value fields of the rows scanned are extracted and added into 
an intermediate buffer. In the walk step a value item is 
selected from the buffer, and if it is not null, the row the 
value item contains (previous row) is used to start a new 
cycle of scan and walk. If there is no candidate non-null 
value item in the buffer for selection in the walk step, a new 
row is selected randomly and the iteration starts off with a 
new scan followed by walk. A schematic diagram of the 
walker test is shown in Figure 4. 

 

 
Figure 4: Schematic diagram of the Walker test. 

 
The walker test can be customized by several parameters. 

These include time delay between scan/walk cycles (default 
is 10 milliseconds), which may be thought of as representing 
computation load in an application. The other parameters are 
the range for the generation of the random row IDs, the size 
of memory buffer to use and the number of threads. The time 
spent in scan of table rows to generate candidate rows from 
the randomly selected row is logged. The time for generating 
a random starting row is also logged. 

C. The Batch Walker Test 
The batch walker test is a parallel version of the walker 

test.  It has the same two steps as in the walker test: scan and 
walk, but the walk step is actually performed in parallel. 
It uses the Apache Accumulo BatchScanner API [9] to 
perform the parallel walks in different sets of consecutive 
rows, each defined as Apache Accumulo Range instances 
used by the parallel walk threads. These Range instances are 
provided as an array to the BatchScanner. This array of 
Range instances is created in the scan step as follows. 

First a set, called batch, of rows is acquired using a 
Scanner that uses a Range instance that starts from a 
randomly selected row of the table. This is identical to the 

scan of the walker test. Then, the array of Range instances is 
created where each element is given by a Range instance that 
starts from a distinct row from the batch. 

Multiple threads perform walks in parallel. In the walk 
step a thread uses a distinct Range from the array of Range 
instances. It randomly selects a row from the range as in the 
walker test and extracts the previous row from the value field 
of the row. It then repeats the cycle from the previous row 
found.  

Similar to the continuous walker test the time delays 
between cycles of scan and walk operations can be 
configured. The batchsize parameter controls the size of the 
batch of rows to select a random row from in the scan step. 
The number of query threads can also be configured. The 
default batch size and query threads are 10,000 bytes and 16 
respectively.  

For each walker and batch walker test client the walk and 
batch walker logs provide the count of vertices traversed and 
the times for selecting a start vertex, scanning from it and 
extracting the adjacent vertices (previous elements) and 
completing a traversal as it reaches a vertex with no outgoing 
edge leading to adjacent vertex. 
D. Test for Cell-level Security 

Cell level security in Apache Accumulo incorporates 
access control using ACL to the value field in a row. A test 
for estimating expected overhead for checking cell-level 
authorization can be configured in the ingest and walker 
tests1. The test is based on the random selection of different 
authorization properties provided in two HDFS files. The 
visibilities, authorizations and authorization symbols are 
defined in these files.  The visibility values are randomly 
chosen from the file and added to a row during an ingest 
operation and it is verified in a walk operation. 
E. Table Verification 

The table verification test runs a Hadoop MapReduce 
job to check the integrity of the table created by the ingest 
test. In the mapper method the verification test outputs key-
value pairs from each test table row for the reduce method. 
In this key-value pair, the key is the row ID of the previous 
row obtained from the value field of the current row, and the 
value is the current row itself. So, for each row this gives 
the information about which row it is a previous row of. The 
reduce method gets the list of all rows that has the same 
previous row. In graph terms, this is the list of all vertices 
that has the same end vertex. 

The Apache Accumulo has the AccumuloInputFormat 
class that provides the input interface to a table [29]. A set 
of Range instances, based on the number of mappers used, 
is obtained and assigned to the AccumuloInputFormat. The 
mapper input key and value are the Apache Accumulo Key 
and Value types. The mapper output classes for the key and 
value are the LongWritable and the VLongWritable classes 
of Hadoop [16]. The reducer reads the key values from the 
mapper output as a key value pair - (vref, (collection of 
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vrows)). The vref is a reference to the previous row, and the 
vrows corresponds to all the rows that have the previous row 
given by vref. The reduce method reads the values in the 
collection, checks if the value is legitimate and counts them. 
The output of the reduce method identifies the rows that are 
undefined, unreferenced or are inconsistent. 

IV. TESTS AND RESULTS 
We ran the ingest test to create a test table and obtained 

maximum and average ingest throughputs. The walker tests 
were run on the table thus created to obtain maximum and 
average query throughputs. We ran both ingest and walker 
tests independently as well as together in a mixed 
environment, where both ingest and query were being 
performed simultaneously. To measure scalability, the 
average ingests and query throughputs were obtained for 
clusters of different sizes and proportionate load. 
A. Collecting Performance and Usage Data 

The Apache Accumulo continuous test suite provides a 
tool to collect summary results, which includes throughputs, 
table size, number of tablets etc. from the tests. We used the 
Apache Accumulo monitor service that runs on the master 
server to observe high-level behavior and collected 
performance statistics using the continuous-stats program. 
B. Workload 

An empty test table was manually created before the 
onset of the ingest test. An individual ingest test 
continuously generated rows with random row IDs and 
inserted them into the test table. The column family and 
column qualifiers were also randomly generated. The row 
ID is 16 bytes; and the column family and column qualifier 
is 8 bytes in sizes. The value field is 54 bytes with no 
checksum and non-null previous link.  

The default values used for flushInterval and maxDepth 
in the ingest tests were 1,000,000 and 25 respectively. The 
walker test randomly selected a row to scan and walk. It 
repeats this operation continuously after a time delay 
(default 10 milliseconds). The batch walker performs the 
walks continuously in parallel on multiple threads and 
repeats after a time delay (default 180 seconds). The default 
batch size and number of threads are 10,000 bytes and 16 
respectively. 

In general, for an Apache Accumulo cluster with N- 
tablet servers, we had N- test clients running 
simultaneously, each test client co-hosted on the tablet 
server. The tablet servers were hosted on the same machine 
running the Hadoop datanode server. A test client generated "!! operations. In a test where one test client is run on each 
of the N tablet server, we have a table of size "!!! entries. 
As each entry is about 54 bytes, for N=1000, we get a 54 
Terabyte table. In longer tests that create larger tables, we 
configured a test client to continue ingesting longer. In some 
tests we used more than one test clients per server in order 
to increase ingest load on the system. 

C. Test Environment and System Configuration 
We ran the benchmarks on the EMC/Greenplum 

Analytics workbench (AWB) [19]. The Analytics 
workbench is a large server cluster organized as 50 data 
racks, 3 core racks and 1 infrastructure rack. Each of the 
data racks contains 20 data nodes, and each node 
encompasses 12 disk drives. There are 50 data racks (20 
data nodes per rack). A data node in the data rack has 12 
disk drives, 48GB memory, dual Intel Westmere (Hex-core) 
CPU’s.  The master nodes in the core racks are 98GB 
memory, 6x 136GB, dual Intel Westmere (Hex-core) CPUs. 
The network switches were based on layer-2 and layer-3 
Mellanox, SMC and Netgear switches. The cluster is 
running Greenplum Hadoop, GPHD 1.2 based on the open 
source Apache 1.0.3 Hadoop stack. These servers ran 
CentOS 6.16. 

We ran these tests on Apache Accumulo configurations 
on the AWB clusters with a total 300, 500 and 1000 nodes. 
The actual number of tablet servers in these cases were 287, 
488 and 984, or fewer because of failed servers, as 8 servers 
were used as Accumulo master, Hadoop namenode and job 
tracker servers, and the five zookeeper servers. As expected 
in large scale computing environments, other servers were 
simply inoperative due to hardware failures and we had used 
fewer tablet servers. The test clients were also hosted on the 
same machine that hosted the tablet servers. 
D. Results 

As stated earlier, we used the Apache Accumulo stats 
collector tool to compile results. We use M (million), B 
(billion), and T(trillion) to represent "!!, "!!and "!!! table 
entries. Throughputs are given as operations per second. A 
table entry is 50 to 54 bytes in size depending on whether it 
corresponds to a head of a list or not.  

We obtained results from running the tests on pre-split 
tables as the best-case scenario. We also obtained results for 
non pre-split tables as the worst-case. In practice, we expect 
performance to lie within these two extreme environments. 

1) Ingest Tests on Pre-split Table: To examine the 
highest possible ingest performance we ran the ingest test on 
a pre-split test table. To elevate ingest rate we used three 
sets of ingest clients from the same host. Each test client 
used 1GB of buffer and 16 threads. A test client ingested "!! entries. So, overall we had !! test clients performing 
the test. After the table split we reconfigured the split 
threshold of the table to 128G. The table split resulted in 30, 
40, and 32 tablets per tablet server in the 300, 500 and 1000 
node clusters respectively. The final table size for the 300, 
500 and 1000 node clusters were 287B, 488B and 1T 
respectively and corresponds to a loads proportionate to the 
size of the cluster in terms of the number of tablet servers 
used in each case. Table I presents the result. The first three 
rows shows that it takes comparable times in hours for 
filling the table with 287B, 488B and 1T entries 
respectively. The fourth row presents the result for a 
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sustained ingest on 1000 node cluster for a 26 hours. We 
started the sustained ingest test with 942 tablet servers. 
During the course of the test 11 tablet servers went down, 
but the ingest was continued without interruption. The final 
size of the test table was 7.56 T entries or 408 Terabytes.  

TABLE I.  PRE-SPLIT TABLE INGEST THROUGHPUTS  

Cluster size Hours Max Ingest/Sec 
(M) 

Average 
Ingest/Sec (M) 

300 2.3 42 37 

500 3.1 62 46 

1000 2.6 165 108 

1000 26.0 173 94 

 
2) Table Ingest on non Pre-split Table: As stated before, 

this is the worst case scenario. By default a Apache 
Accumlo table has a table split threshold value of 1G. For a 
table that is not pre-split, as more and more ingests occur 
during the ingest test and the table size increase, more and 
more tablets are created by recursive tablet splits. The ingest 
test generates random row IDs. This makes ingest to each 
tablet in the cluster equally likely. In turn, this results in the 
tablets in a tablet server to be split almost at the same time 
making the entire cluster to engage in table split related 
operations almost at the same time. Additionally, as the test 
clients share common computing resource with the tablet 
servers, as they are co-hosted there, the originations of 
ingest operations also suffer.  

The results for a table with split threshold of 1G, is shown 
in Table II below. 

TABLE II.  NON PRE-SPLIT TABLE INGEST THROUGHPUTS 

Cluster size Hours Max Ingest/Sec 
(M) 

Average 
Ingest/Sec (M) 

300 5.5 23.82 5.14 

500 5.5 12.35 2.14 

1000 5.5 22.90 5.50 

After the table was somewhat filled we modified the split 
threshold of the table in each case to 128G to avoid further 
splits of tablets and ran the ingest test. We observed higher 
average ingest throughputs, as more parallel operations were 
possible.  

3) Walker Tests on Pre-split Table: The walker and 
batch walker tests were run on the pre-split table to examine 
query throughputs. Table III and IV gives the walker and 
batch walker query throughput. For the walker query 
throughputs, the average query latencies observed for the 
300, 500 and 1000 node clusters were 0.39, 0.28 and 0.17 
milliseconds respectively. This is similar to what we saw 
from a separate YCSB++ benchmark run on the same 
Apache Accumulo configurations. To examine 

sustainability we ran a walker test for 8.3 hour on a 1000 
node cluster with 946 tablet servers on a pre-split table with 
7.56T entries (378TBytes). The walk query latency was 
0.26 milliseconds. 

TABLE III.  PRE-SPLIT TABLE WALKER QUERY THROUGHPUTS  

Cluster size Hours Max Query/Sec  Average 
Query/Sec  

300 1.00 2,880 2,559 

500 1.40 3,744 3,577 

1000 1.50 6,197 5,821 

We ran the walker and batch walker tests on pre-split table 
(33-34 tablets per server). One walker and batch walkers 
were used per tablet server with 1GB buffer and 16 threads. 
The table split threshold was 128G. The table size was 750B 
in each case. Table 4 and 5 presents the results. Since there 
is no ingest no splitting occurs. The average latencies for 
batch walker observed for the 300, 500 and 1000 node 
clusters were 0.027, 0.045 and 0.045 milliseconds 
respectively. 
TABLE IV.  PRE-SPLIT TABLE BATCH WALKER QUERY THROUGHPUTS  

Cluster size Hours Max Query/Sec  Average 
Query/Sec  

300 1.00 231,913 36,709 

500 1.00 541,902 22,025 

1000 1.00 318,624 21,977 

 
4) Walker Tests on non Pre-split Table: We ran the 

walker and batch walker tests with 1GB table split 
threshold. Table V and VI below present results on 300, 500 
and 1000 node clusters with tables of size 280B, 635B and 
314B respectively. We saw query throughputs quite similar 
to what we had observed for pre-split table. For the 1000 
node case, however, we see a low average query throughput.  
This is possibly due to insufficient operation parallelism as 
the table size was only 314B and there was fewer tablets per 
tablet server. 

TABLE V.  NON PRE-SPLIT TABLE WALKER QUERY THROUGHPUTS  

Cluster size Hours Max Query/Sec  Average 
Query/Sec  

300 2.77 3,620 1,979 

500 2.16 3,619 3,553 

1000 2.11 2,522 713 

 
In the walker tests, the average latencies observed for the 
300, 500 and 1000 node clusters were 0.50, 0.28 and 1.4 
milliseconds respectively. In the batch walker tests these 
values as observed were 0.032, 0.095 and 0.05 milliseconds 
respectively. The walker test performance and scalability 
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was similar for both pre-split and non pre-split tables. The 
query throughput for the batch walker test was roughly ten 
times better in both cases.  

TABLE VI.  NON PRE-SPLIT TABLE BATCH WALKER QUERY 
THROUGHPUTS 

Cluster size Hours Max Query/Sec  Average Query/Sec  

300 1.00 84,041 31,103 

500 1.00 157,101 10,454 

1000 1.00 567,392 19,467 

5) Mixed Test of Ingest and Walker: To better 
understand the relative impact of ingest load on query 
throughput we have performed a “full” and a “partial” test.  
Table VII gives the result for the full test on a pre-split 
table, when 287, 488, and 980 test clients were run. Each 
test client used 1G buffer and 16 threads. The table split 
threshold was reconfigured to 128G after splitting the table 
completed. The maximum and average ingest and query 
throughputs are given in the same column separated by ‘/’. 
The initial table size were 705B for the 300-node cluster and 
1T for both 500 and 1000 node clusters. 

TABLE VII.  PRE-SPLIT TABLE FULL INGEST/WALKER THROUGHPUTS  

Cluster 
size Hours Max/Avg 

Ingest/Sec 
Max/Avg 

Query/Sec 

300 3.50 37.6M/23M 1,404/249 

500 1.44 49.4M/19.35M 15,315/988 

1000 1.00 102M/55M 5,242/3,734 

Table VIII gives the result for the partial test with 150 and 
300 ingest clients and 488 and 980 walker test clients were 
simultaneously running on 500 and 1000 node clusters. The 
initial table size were 1.25T for both 500 and 1000 node 
clusters.

TABLE VIII.  PRE-SPLIT TABLE PARTIAL INGEST/WALKER 
THROUGHPUTS  

Cluster 
size Hours Max/Avg 

Ingest/Sec  
Max/Avg 
Query/Sec  

500 2.60 21.8M/14.5M 3,054/1,478 

1000 1.1 43M/29M 8,887/6,840 

Table IX and X presents the full and partial tests for non 
pre-split table. The same number of test clients as used for 
the pre-split table were used here as well. However, the 
buffer size was 100MB and 4 threads were used per test 
client. The table split thresholds were 1G for all tests.  The 
initial table sizes were 488B, 1.5T and 416B for the 300, 
500 and 1000 node cluster tests respectively. Table X gives 
the result for the partial test with 90, 150 and 300 ingest 
clients and 287, 488 and 980 walker test clients were

simultaneously running. The initial table sizes were 605B, 
1.7T and 424B for the 300, 500 and 1000 node cluster tests. 

TABLE IX.  PRE-SPLIT TABLE INGEST THROUGHPUTS  

Cluster 
size Hours Max/Avg Ingest/Sec  Max/Avg 

Query/Sec  

300 1.18 20.4M/8.8M 408/9.2 

500 1.90 35.8M/25.2M 141/8.1 

1000 1.00 7.5M/1.5M 1,658/65 

TABLE X.  PRE-SPLIT TABLE INGEST THROUGHPUTS  

Cluster 
size Hours Max/Avg Ingest/Sec  Max/Avg 

Query/Sec  

300 1.04 6.8M/5.8M 231/9.4 

500 1.0 13.8M/12.7M 124/16.1 

1000 0.80 7.7M/1.5M 1,230/70 

We saw a rapid fall in query throughput for the mixed tests 
for non pre-split table compared to those for the pre-split 
table. This is due to the tablet splitting overhead as ingest 
takes place for the non pre-split table. The overheads of 
garbage collection, major and minor compactions are 
present in test with both types of tables. 

6) Scalability: Scalability is the ability to perform 
operations as the cluster size and load are increased 
proportionately. The load was given by the final table size 
as the number of tablet servers, which were 287B, 488B and 
980B respectively. 

 
Figure 5: Scalability Pre-split Table  

The table was initially empty for the ingest test. The tablets 
per server were determined by trial and error. We increased 
the ingest requests by using three test clients from each 
server. We also increased the buffer size and the number of 
threads used by the test clients. The results are from that 
given in Table I and III earlier. Figure 5 shows average 
ingest and query throughputs for pre-split table as cluster 
sizes and loads are increased.  We see almost linear 
scalability for ingest and query throughputs. For a non pre-
split table, we ran the ingest test for 5.5 to 6 hours on 
clusters with 300, 500 and 1000 nodes. The table was empty 
initially in each case. 
We used the final table size to determine the proportional 
loads as in the case of pre-split table. We observed only 
54B, 49B and 84B entries in the table at the end of the 
ingest test for the 300, 500 and1000 node clusters 
respectively. This is 0.18, 0.10 and 0.08 of the respective 
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loads. In these tests each test client performed 100M 
operations, used 100MB buffer and 4 threads.  

7) Cell Level Security (ACL): The overhead for 
supporting cell level security through Access Control List  
(ACL) is tested by running the ingest test with and without 
the feature on.   The first figures separated by ‘/’ give the 
values with no ACL and the second give the value with 
ACL. The variation is within 15%. 

TABLE XI.  PRE-SPLIT TABLE INGEST THROUGHPUTS  

Cluster 
size Hours Max 

Ingest/Sec (M) 
Average 
Ingest/Sec (M) 

500 4.56/3.75 8.2/9.0 2.2/2.5 

1000 6.03/6.00 17.5/22.6 4.1/3.5 

 
8) Table Verification: The table verificaiton results are 

shown in Table XII. The verification rate was 0.35 B/min 
and 0.98 B/min for 200, 10000 mappers and 200, 5000 
reducers respectively for the 1000 node cluster.  

TABLE XII.  PRE-SPLIT TABLE INGEST THROUGHPUTS  

Cluster 
size 

Table size 
(entries) Mappers/Reducers Time 

300 1.5B 200/200 41 min 16 sec 

1000 12.3B 200/200 34 min 46 sec 

1000 1T 10000/5000 17 hours 

 

V. CONCLUSION 
The benchmark results for Apache Accumulo presented 

here highlights its best and the worst-case performance and 
scalability. The benchmark shows that Apache Accumulo 
can support very high levels of sustained ingest throughputs 
of 100 million transactions per second. This is relevant in 
near real time very high volume data capture scenarios.  The 
query throughputs seen are also high and similar to what 
was seen in YCSB++ tests. The tests also allow observation 
of long-term sustainable performance of the table store.   

The tests used complex indexed data structure as test 
table. It was run on a moderate to large cluster of up to 1000 
machines. 
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