
Benchmarking Apache Accumulo BigData Distributed Table Store Using Its
Continuous Test Suite

Ranjan Sen
Booz Allen Hamilton

720 Olive Way, Suite 1200
Seattle, WA 98074

Sen_Ranjan@bah.com

Andrew Farris
Booz Allen Hamilton

304 Sentinel Drive
Annapolis Junction, MD 20701

Farris_Andrew@bah.com

Peter Guerra
Booz Allen Hamilton

304 Sentinel Drive
Annapolis Junction, MD 20701

Guerra_Peter@bah.com

Abstract—In this paper, we present results of benchmarking
Apache Accumulo distributed table store using the continuous
tests suite included in its open source distribution. The
continuous test suite contains tests that build and traverse a
very large linked list, implemented via a simple table-row
indexing mechanism. This underlying design provides insight
for developing applications dealing with complex relationship
among data sets as typically found in graph analytics
applications. The benchmark study investigated sustained
continuous mode stress testing and identified optimum
configurations for very high-throughput data ingest, sequential
and random query operations. Apache Accumulo also has the
unique feature of cell level data access security, and the
benchmark evaluates the processing overhead for this feature.
We also tested high-speed table data verification and
validation. These benchmark tests were run on a large cluster
optimized for large-scale analytics and we present the
performance figures for Apache Accumulo found in the study.

Keywords- BigData; Benchmark, Scalable Table Store;
BigTable Implementation; NoSQL; Apache Accumulo

I. INTRODUCTION
Large volumes of streaming and history data, in semi-

structured and unstructured forms, have proliferated and
impacted every aspect of the information industry.
Government departments such as the defense, healthcare,
energy and science and technology are facing the so-called,
Big Data challenge [1]. Data mining and analytic data
management that refers to querying a data store for use in
business planning, problem solving and decision support [2]
is often the common solution thread in various data
processing challenges faced by these agencies and
departments.

Distributed key/value table stores, also known as scalable
table stores, provide a lightweight, cost-effective, scalable
and available alternative to traditional relational databases [3,
4]. Today, scalable table stores, such as BigTable [4],
Amazon Dynamo [5], Apache HBase [6], Apache Cassandra
[7], Voldemort [8], and Apache Accumulo [9], are becoming

an essential part of the Internet services. These are used for
high volume data-intensive applications, such as business
analytics and scientific data analysis [10, 11]. In some cases
they are available as a cloud service, such as Amazon’s
SimpleDB [12] and Microsoft’s Azure SQL Services [13], as
well as application platforms, as in Google’s AppEngine [14]
and Yahoo’s YQL [15].

The ingest and query support in distributed table stores
defines a data serving system that provides online insert,
update, read access to data, as opposed to a batch system
such as Hadoop [16] or relational OLAP systems that are
generally backend support to serving workloads [17].

A benchmark needs to be relevant to an application
domain [18]. A benchmark for data mining and analytics for
the Hadoop batch-processing environment was given in [19].
There is growing interest in benchmarking data serving
systems in general including in the context of processing
complex relationships in data implemented as indexed
structures, such as graphs [20]. In this paper we present
benchmark results for the Apache Accumulo data serving
system that address this goal. Our study used the continuous
tests available with the open source distribution of Apache
Accumulo. We ran the benchmark on a cluster of up to 1000
machines and studied the results of performance and
scalability of Apache Accumulo. We have not compared
other table store products.

In section II, we discuss the problem of benchmarking
Apache Accumulo in the context of its architecture and
features. In section III we describe the benchmark tests and
the rationale for using it. In section IV we present the results
of running the benchmarks on the EMC/Greenplum Analytic
Workbench (AWB) cluster [21].

II. BENCHMARKING APACHE ACCUMULO
In benchmarking a distributed table store as a data serving
system we are primarily interested in evaluating the
performance and scalability of ingest and query throughputs.
The benchmark tests need to generate workloads composed
of suitable distribution of the ingest and query data serving

!000111333 IIIEEEEEEEEE IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnngggrrreeessssss ooonnn BBBiiiggg DDDaaatttaaa

!777888---000---777666!555---555000000666---000///111333 $$$222666...000000 ©©© 222000111333 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///BBBiiigggDDDaaatttaaa...CCCooonnngggrrreeessssss...222000111333...555111

333333444

operations. The standard benchmark, known as the Yahoo!
Cloud Serving Benchmark (YCSB) [17] and its extension,
YCSB++ [22], apply a uniform set of tests to multiple
scalable table stores. The results of using YCSB in a small
cluster for Cassandra, HBase, Yahoo!’s PNUTS [23] and a
simple shared MySQL implementation [24] were given.
YCSB++ examined the advanced features of Apache HBase
and Apache Accumulo, such as server side programming,
available in both, and cell level security, available only in
Apache Accumulo. However, their tests were run on
relatively small clusters. Six server-class machines and
multiple multi-core client machines were used to run up to
500 threads of the YCSB client program. The database used
consisted of 120 million 1 KB records for a total size of 120
GB of data. Read operations retrieved an entire record and
update operation modified one of the fields. The five
advanced features examined were weak consistency, bulk
insertions, table pre-splitting, server-side filtering and fine-
grained access control. Experiments were conducted for bulk
insertion using Hadoop MapReduce. The experiments
measured how high speed ingestions are affected by the
policies of managing splits and compaction. Six million rows
of an Apache Accumulo table were split into various
numbers of partitions and completion times were found.
Worst-case performance estimation was obtained for the
security feature of Apache Accumulo by using unique
Access Control List (ACL) for each key and a larger size for
the data cell.

Benchmarks specific to BigTable, Cassandra and
Hypertable [23, 24] are known. In the performance and
scalability evaluation of BigTable, as reported in [4], the
operations of interest were sequential and random reads and
writes on tables of known sizes. The Hypertable benchmark
was based on this work. Netflix developed the write oriented
benchmark stress tool for Cassandra in Amazon’s EC2
instances [27]. With 60 client instances this test generated
1.1 million writes per second and was complete in two hours
creating a 7.2G table of records.
A. Apache Accumulo

Apache Accumulo is based on Google’s BigTable design
with addition of two unique features. One feature is the
iterator framework that embeds user-programmed
functionality (server-side programming) into different Log-
Structured Merge Tree (LSM-tree) stages [28]. The second is
the cell-level security that enables fine-grain data access
control.

A distributed table, containing sorted rows of key-value
pairs, shown in Figure 1(a), is partitioned into tablets and
distributed to the tablet servers across the cluster. The key
consists of a row id, column key and timestamp. Column
keys consist of separate column family, qualifier and
visibility elements. The visibility field is used for the cell-
level security feature. Each tablet contains a range of rows
and is assigned to a single tablet server. A single row of the
table as defined by a row ID is never split across multiple
tablets. Table features such as locality groups, constraints,
bloom filters, and iterators are available [9]. Iterators provide
a modular mechanism for adding functionality to be

executed by tablet servers when scanning or compacting
data. This allows users to efficiently summarize, filter, and
aggregate data.

Figure 1. Apache Accumulo Key-Value pairs.

A tablet server typically manages many tablets. It receives
writes to these tablets from clients, persists writes to a write-
ahead log and sorts new key-value pairs in memory
(memtable), periodically flushing sorted key-value pairs to
new files, called RFiles, in HDFS. The tablet server also
responds to read and scan requests from clients, forming a
merge-sorted view of all keys and values from all the files it
has created and of the sorted in-memory store. When a read
operation arrives the tablet server search the memtable as
well as in the in-memory indexes associated with the table
in HDFS to find the relevant values. If clients are
performing a scan, many key-value pairs are returned to the
client in order from the memtable and RFiles via a merge-
sort process. The reads are optimized to quickly retrieve the
value associated with a given key, and to efficiently return
ranges of consecutive keys and their associated values.

When the memtable reaches a certain size the tablet
server writes out the sorted key-value pairs to a file in
HDFS. In order to manage the number of RFiles per tablet,
the tablet server periodically performs minor compactions
and major compactions of the files in a tablet server.
B. Index Structure

The table rows as key-value pairs provide a fast way to
look up by a key item as attribute given by the value of a
column qualifier of a row. In order to support lookups by
more than one attribute of an entity, additional indexes can
be built.

Consider a main table whose rows are key value pairs
that represent these entities. To build an index to the rows
based on attribute values construct an index table with the
value as the row ID and the columns as the attribute name
and row IDs of the main table, as shown in Figure 1(b).
Storing the Row-ids in the column qualifier rather than in the
value allows having more than one row id to be associated to
a value.

It is possible to create linked data structure by
considering a row as a list element and its value field as the
reference to the row that corresponds to the previous or next
list element in the list. A column qualifier is an attribute that
relates a pair of list elements. This has been shown for a two
element linked list in Figure (c). The value field of the row

!"#$%& '()*+$,%& -"*.&,"+#%&
)/0&12&

1.3%4&5"+#%&

6"7&

6+7&

!"#$%&

8%9&

:/0&12& 5*;%<,";=&
>/#$;.&

?";*#9& @$"#*A%)& !*<*+*#*,9&

:/0&12&BC&& ?";*#9& '()*+$,%&& .$##&

:/0&12&BD& ?";*#9& '()*+$,%&& :/0&12&B&C&

:/0&12&BC& ?";*#9 '()*+$,%&& .$##&

6E7&&

333333555

(Row ID-2) is the row ID (Row ID-1) for the other element.
It is straightforward to build complex indexed structures such
as graphs using this basic scheme.

C. High Speed Ingest and Query
In a distributed key-value table store, when a table is first

created it consists of just one tablet. This is the extreme
situation with no scope for parallelism of table operations.
As more data is ingested into the table the table size
increases. When the table size crosses a limit, a configurable
parameter called the table split threshold, new tablets are
created from the original tablet and distributed to separate
tablet servers. This takes place recursively for all tablets as
more and more data is ingested and the table increases in
size. The process helps in increasing operation parallelism
and is the key feature of all scalable table store architectures.
However, there is an overhead cost involved in table split
process.

A pre-split table is a table that has already been split into
tablets each of which stores a distinct subset of the rows and
distributed in the cluster. Pre-splitting a table in this way
helps in avoiding the split overhead that is incurred for a non
pre-spit table at runtime during ingest. If we store ! rows in
the table, we can create !!! tablets, via a p-way partition,
where the !-th tablet, !! ! ! ! !! ! !, will have row range of !" ! !! !" ! !!! !! ! ! !!, where for simplicity, assume
the rows of the table are !!! !!!!. If there are N nodes in
the cluster then, in an even distribution of these tablets, each
node will host !!! tablets.

III. THE APACHE ACCUMULO CONTINUOUS TEST SUITE
The key feature of the Apache Accumulo Continuous test

suite available with the open source distribution is the
support of an uninterrupted or continuous mode operation on
a very large indexed linked list. This list is created by the
ingest test as the test table. The two other tests, walker and
the batch walker tests, can scan and perform sequential and
random reads of the linked list created by the ingest test. The
tests can also be configured to estimate the overhead for cell-
level security. There is also a Hadoop Map-Reduce based
high-speed test to verify the table consistency. Other tests in
the suite can perform tests on failure recovery, which,
however, has not used in this study.

A. The Ingest Test
The ingest test uses a three step iterative method to build the
linked list.

1. Generate a set of list elements.
2. Generate a second set of list of elements that link

to each element of step 1 as the head
3. Create one linked list by combining the lists

generated in step 2
In step 1, a linked list with !! ! !"#$!!%&"'(#$ of

elements are created, as rows with random row ID in the test
table. Each element created has a null value for its previous
element (the table row corresponding to an element has null
value field). Let these rows be denoted by {!!, !!, … !!!}.

In step 2, for each of these rows (!!,) where, !! ! ! ! !!! , a
fixed number !! ! "#$!"#$! of new rows with randomly
generated row IDs, {!!!, !!!, … !!!!} are created, where for
each created row !!!"!, !! ! ! ! !! , (!!!! links to !!!!, !!!!! links to !!!!! …. and !!!!!! links to !!!!!!!!. In step
3, additional !!-1 links from each of !!!! to !!!!!!!!!!, for
are added. The table is flushed as !! rows are inserted. This
happens at the end of step1, and !! times in step 2. The table
is also flushed at the end of step 3 after !! updates of
existing rows as the linked list is connected.

The schematic view of the process is shown in Figure 2
where each box represents an element in the list and an
arrow corresponds to a link to the previous element. At the
end !!! is the head of the entire list and distinguished by
having a null value for the forward link.

Figure 2: Continuous Ingest Test Schematic Diagram

An element stored as a row of the test table has a random
row ID (between 0 and the maximum of Java long type), a
random column family and qualifier (between 0 and
maximum for a Java int type) and a value that contains the
row ID of a previously generated row as an element.

Figure 3: Two rows corresponding to adjacent list elements.

An example of two rows generated by the continuous
ingest test is shown in Figure 3. The first sixteen digits
correspond to the row-id. The column family and column
qualifier follow, separated by a colon. Next, an empty
visibility field is contained within the pair of brackets. The
timestamp field is not shown. After the brackets is the value
field, which is split into four parts separated by colons. The
third part is the index given by the row-id that references
another row in the table. In the example, the row with row-id
of 0020efc13153756f is pointing to the row
11af847f1e67c681. The row with row id 11af847f1e67c681
has an empty value for its link to previous row.

For each test client the ingest test logs provide
information on the elapsed time between consecutive flush
operations on the table as well as number of rows entered in
the table.

!!"#$%&#!'(&)($!&!*"+,("+$&-.&&&&+&&)/)'*0+("'0%(&'0"112&
!($%/#+*3/4+,4444444444!!*%*+,,&)3$"*')&
566&
44+4'#)!2!12&1(#&!*"+,("+$&-.&&&&+&&)/)'*0+("'0%(&'0"112&
!($%/#+*3/4+,4444444444!!*%*+,!!"#$%&#!'*$)($!,&)3$"*')&

!"& !#& !$"&

%""& %#"&

%"$#&

%"$#& %$"$#&

&'()*$+,-./0&1&$"&

2,
3+
)&
1&$

#&

!4&
5+,3&"&

666677&

!"

%" %#"&

%#$#&

%#$#&

!#

%# %#"&%$""&

%$"$#&

$"&

%$""

"

""

"$#

"$#

"&

""&

%#

#

#"

#$#

#$#

#&

#"&

#$# %4$#& %$"$#

8$"9"&

5+,3&#&

5+,3&4&

677&

666677&

333333666

B. The Walker Test
In the walker test, sequential and random scan and read

operations are executed. The linked list, or more generally
the graph, represented in the table created by the continuous
ingest test is randomly traversed. This happens in two steps:
a) scan and b) walk. In the scan step the test selects a random
starting row, and scans (sequentially read) a range or set of
consecutive table rows starting from it. Rows are scanned
using Apache Accumulo Scanner API [9]. The consecutive
set of rows is defined using an Apache Accumulo Range
instance. The random selection of the starting row
corresponds to a random read operation from the table. The
value fields of the rows scanned are extracted and added into
an intermediate buffer. In the walk step a value item is
selected from the buffer, and if it is not null, the row the
value item contains (previous row) is used to start a new
cycle of scan and walk. If there is no candidate non-null
value item in the buffer for selection in the walk step, a new
row is selected randomly and the iteration starts off with a
new scan followed by walk. A schematic diagram of the
walker test is shown in Figure 4.

Figure 4: Schematic diagram of the Walker test.

The walker test can be customized by several parameters.

These include time delay between scan/walk cycles (default
is 10 milliseconds), which may be thought of as representing
computation load in an application. The other parameters are
the range for the generation of the random row IDs, the size
of memory buffer to use and the number of threads. The time
spent in scan of table rows to generate candidate rows from
the randomly selected row is logged. The time for generating
a random starting row is also logged.

C. The Batch Walker Test
The batch walker test is a parallel version of the walker

test. It has the same two steps as in the walker test: scan and
walk, but the walk step is actually performed in parallel.
It uses the Apache Accumulo BatchScanner API [9] to
perform the parallel walks in different sets of consecutive
rows, each defined as Apache Accumulo Range instances
used by the parallel walk threads. These Range instances are
provided as an array to the BatchScanner. This array of
Range instances is created in the scan step as follows.

First a set, called batch, of rows is acquired using a
Scanner that uses a Range instance that starts from a
randomly selected row of the table. This is identical to the

scan of the walker test. Then, the array of Range instances is
created where each element is given by a Range instance that
starts from a distinct row from the batch.

Multiple threads perform walks in parallel. In the walk
step a thread uses a distinct Range from the array of Range
instances. It randomly selects a row from the range as in the
walker test and extracts the previous row from the value field
of the row. It then repeats the cycle from the previous row
found.

Similar to the continuous walker test the time delays
between cycles of scan and walk operations can be
configured. The batchsize parameter controls the size of the
batch of rows to select a random row from in the scan step.
The number of query threads can also be configured. The
default batch size and query threads are 10,000 bytes and 16
respectively.

For each walker and batch walker test client the walk and
batch walker logs provide the count of vertices traversed and
the times for selecting a start vertex, scanning from it and
extracting the adjacent vertices (previous elements) and
completing a traversal as it reaches a vertex with no outgoing
edge leading to adjacent vertex.
D. Test for Cell-level Security

Cell level security in Apache Accumulo incorporates
access control using ACL to the value field in a row. A test
for estimating expected overhead for checking cell-level
authorization can be configured in the ingest and walker
tests1. The test is based on the random selection of different
authorization properties provided in two HDFS files. The
visibilities, authorizations and authorization symbols are
defined in these files. The visibility values are randomly
chosen from the file and added to a row during an ingest
operation and it is verified in a walk operation.
E. Table Verification

The table verification test runs a Hadoop MapReduce
job to check the integrity of the table created by the ingest
test. In the mapper method the verification test outputs key-
value pairs from each test table row for the reduce method.
In this key-value pair, the key is the row ID of the previous
row obtained from the value field of the current row, and the
value is the current row itself. So, for each row this gives
the information about which row it is a previous row of. The
reduce method gets the list of all rows that has the same
previous row. In graph terms, this is the list of all vertices
that has the same end vertex.

The Apache Accumulo has the AccumuloInputFormat
class that provides the input interface to a table [29]. A set
of Range instances, based on the number of mappers used,
is obtained and assigned to the AccumuloInputFormat. The
mapper input key and value are the Apache Accumulo Key
and Value types. The mapper output classes for the key and
value are the LongWritable and the VLongWritable classes
of Hadoop [16]. The reducer reads the key values from the
mapper output as a key value pair - (vref, (collection of

1 Apache Accumulo 1.4.2

333333777

vrows)). The vref is a reference to the previous row, and the
vrows corresponds to all the rows that have the previous row
given by vref. The reduce method reads the values in the
collection, checks if the value is legitimate and counts them.
The output of the reduce method identifies the rows that are
undefined, unreferenced or are inconsistent.

IV. TESTS AND RESULTS
We ran the ingest test to create a test table and obtained

maximum and average ingest throughputs. The walker tests
were run on the table thus created to obtain maximum and
average query throughputs. We ran both ingest and walker
tests independently as well as together in a mixed
environment, where both ingest and query were being
performed simultaneously. To measure scalability, the
average ingests and query throughputs were obtained for
clusters of different sizes and proportionate load.
A. Collecting Performance and Usage Data

The Apache Accumulo continuous test suite provides a
tool to collect summary results, which includes throughputs,
table size, number of tablets etc. from the tests. We used the
Apache Accumulo monitor service that runs on the master
server to observe high-level behavior and collected
performance statistics using the continuous-stats program.
B. Workload

An empty test table was manually created before the
onset of the ingest test. An individual ingest test
continuously generated rows with random row IDs and
inserted them into the test table. The column family and
column qualifiers were also randomly generated. The row
ID is 16 bytes; and the column family and column qualifier
is 8 bytes in sizes. The value field is 54 bytes with no
checksum and non-null previous link.

The default values used for flushInterval and maxDepth
in the ingest tests were 1,000,000 and 25 respectively. The
walker test randomly selected a row to scan and walk. It
repeats this operation continuously after a time delay
(default 10 milliseconds). The batch walker performs the
walks continuously in parallel on multiple threads and
repeats after a time delay (default 180 seconds). The default
batch size and number of threads are 10,000 bytes and 16
respectively.

In general, for an Apache Accumulo cluster with N-
tablet servers, we had N- test clients running
simultaneously, each test client co-hosted on the tablet
server. The tablet servers were hosted on the same machine
running the Hadoop datanode server. A test client generated "!! operations. In a test where one test client is run on each
of the N tablet server, we have a table of size "!!! entries.
As each entry is about 54 bytes, for N=1000, we get a 54
Terabyte table. In longer tests that create larger tables, we
configured a test client to continue ingesting longer. In some
tests we used more than one test clients per server in order
to increase ingest load on the system.

C. Test Environment and System Configuration
We ran the benchmarks on the EMC/Greenplum

Analytics workbench (AWB) [19]. The Analytics
workbench is a large server cluster organized as 50 data
racks, 3 core racks and 1 infrastructure rack. Each of the
data racks contains 20 data nodes, and each node
encompasses 12 disk drives. There are 50 data racks (20
data nodes per rack). A data node in the data rack has 12
disk drives, 48GB memory, dual Intel Westmere (Hex-core)
CPU’s. The master nodes in the core racks are 98GB
memory, 6x 136GB, dual Intel Westmere (Hex-core) CPUs.
The network switches were based on layer-2 and layer-3
Mellanox, SMC and Netgear switches. The cluster is
running Greenplum Hadoop, GPHD 1.2 based on the open
source Apache 1.0.3 Hadoop stack. These servers ran
CentOS 6.16.

We ran these tests on Apache Accumulo configurations
on the AWB clusters with a total 300, 500 and 1000 nodes.
The actual number of tablet servers in these cases were 287,
488 and 984, or fewer because of failed servers, as 8 servers
were used as Accumulo master, Hadoop namenode and job
tracker servers, and the five zookeeper servers. As expected
in large scale computing environments, other servers were
simply inoperative due to hardware failures and we had used
fewer tablet servers. The test clients were also hosted on the
same machine that hosted the tablet servers.
D. Results

As stated earlier, we used the Apache Accumulo stats
collector tool to compile results. We use M (million), B
(billion), and T(trillion) to represent "!!, "!!and "!!! table
entries. Throughputs are given as operations per second. A
table entry is 50 to 54 bytes in size depending on whether it
corresponds to a head of a list or not.

We obtained results from running the tests on pre-split
tables as the best-case scenario. We also obtained results for
non pre-split tables as the worst-case. In practice, we expect
performance to lie within these two extreme environments.

1) Ingest Tests on Pre-split Table: To examine the
highest possible ingest performance we ran the ingest test on
a pre-split test table. To elevate ingest rate we used three
sets of ingest clients from the same host. Each test client
used 1GB of buffer and 16 threads. A test client ingested "!! entries. So, overall we had !! test clients performing
the test. After the table split we reconfigured the split
threshold of the table to 128G. The table split resulted in 30,
40, and 32 tablets per tablet server in the 300, 500 and 1000
node clusters respectively. The final table size for the 300,
500 and 1000 node clusters were 287B, 488B and 1T
respectively and corresponds to a loads proportionate to the
size of the cluster in terms of the number of tablet servers
used in each case. Table I presents the result. The first three
rows shows that it takes comparable times in hours for
filling the table with 287B, 488B and 1T entries
respectively. The fourth row presents the result for a

333333888

sustained ingest on 1000 node cluster for a 26 hours. We
started the sustained ingest test with 942 tablet servers.
During the course of the test 11 tablet servers went down,
but the ingest was continued without interruption. The final
size of the test table was 7.56 T entries or 408 Terabytes.

TABLE I. PRE-SPLIT TABLE INGEST THROUGHPUTS

Cluster size Hours Max Ingest/Sec
(M)

Average
Ingest/Sec (M)

300 2.3 42 37

500 3.1 62 46

1000 2.6 165 108

1000 26.0 173 94

2) Table Ingest on non Pre-split Table: As stated before,

this is the worst case scenario. By default a Apache
Accumlo table has a table split threshold value of 1G. For a
table that is not pre-split, as more and more ingests occur
during the ingest test and the table size increase, more and
more tablets are created by recursive tablet splits. The ingest
test generates random row IDs. This makes ingest to each
tablet in the cluster equally likely. In turn, this results in the
tablets in a tablet server to be split almost at the same time
making the entire cluster to engage in table split related
operations almost at the same time. Additionally, as the test
clients share common computing resource with the tablet
servers, as they are co-hosted there, the originations of
ingest operations also suffer.

The results for a table with split threshold of 1G, is shown
in Table II below.

TABLE II. NON PRE-SPLIT TABLE INGEST THROUGHPUTS

Cluster size Hours Max Ingest/Sec
(M)

Average
Ingest/Sec (M)

300 5.5 23.82 5.14

500 5.5 12.35 2.14

1000 5.5 22.90 5.50

After the table was somewhat filled we modified the split
threshold of the table in each case to 128G to avoid further
splits of tablets and ran the ingest test. We observed higher
average ingest throughputs, as more parallel operations were
possible.

3) Walker Tests on Pre-split Table: The walker and
batch walker tests were run on the pre-split table to examine
query throughputs. Table III and IV gives the walker and
batch walker query throughput. For the walker query
throughputs, the average query latencies observed for the
300, 500 and 1000 node clusters were 0.39, 0.28 and 0.17
milliseconds respectively. This is similar to what we saw
from a separate YCSB++ benchmark run on the same
Apache Accumulo configurations. To examine

sustainability we ran a walker test for 8.3 hour on a 1000
node cluster with 946 tablet servers on a pre-split table with
7.56T entries (378TBytes). The walk query latency was
0.26 milliseconds.

TABLE III. PRE-SPLIT TABLE WALKER QUERY THROUGHPUTS

Cluster size Hours Max Query/Sec Average
Query/Sec

300 1.00 2,880 2,559

500 1.40 3,744 3,577

1000 1.50 6,197 5,821

We ran the walker and batch walker tests on pre-split table
(33-34 tablets per server). One walker and batch walkers
were used per tablet server with 1GB buffer and 16 threads.
The table split threshold was 128G. The table size was 750B
in each case. Table 4 and 5 presents the results. Since there
is no ingest no splitting occurs. The average latencies for
batch walker observed for the 300, 500 and 1000 node
clusters were 0.027, 0.045 and 0.045 milliseconds
respectively.
TABLE IV. PRE-SPLIT TABLE BATCH WALKER QUERY THROUGHPUTS

Cluster size Hours Max Query/Sec Average
Query/Sec

300 1.00 231,913 36,709

500 1.00 541,902 22,025

1000 1.00 318,624 21,977

4) Walker Tests on non Pre-split Table: We ran the

walker and batch walker tests with 1GB table split
threshold. Table V and VI below present results on 300, 500
and 1000 node clusters with tables of size 280B, 635B and
314B respectively. We saw query throughputs quite similar
to what we had observed for pre-split table. For the 1000
node case, however, we see a low average query throughput.
This is possibly due to insufficient operation parallelism as
the table size was only 314B and there was fewer tablets per
tablet server.

TABLE V. NON PRE-SPLIT TABLE WALKER QUERY THROUGHPUTS

Cluster size Hours Max Query/Sec Average
Query/Sec

300 2.77 3,620 1,979

500 2.16 3,619 3,553

1000 2.11 2,522 713

In the walker tests, the average latencies observed for the
300, 500 and 1000 node clusters were 0.50, 0.28 and 1.4
milliseconds respectively. In the batch walker tests these
values as observed were 0.032, 0.095 and 0.05 milliseconds
respectively. The walker test performance and scalability

333333!

was similar for both pre-split and non pre-split tables. The
query throughput for the batch walker test was roughly ten
times better in both cases.

TABLE VI. NON PRE-SPLIT TABLE BATCH WALKER QUERY
THROUGHPUTS

Cluster size Hours Max Query/Sec Average Query/Sec

300 1.00 84,041 31,103

500 1.00 157,101 10,454

1000 1.00 567,392 19,467

5) Mixed Test of Ingest and Walker: To better
understand the relative impact of ingest load on query
throughput we have performed a “full” and a “partial” test.
Table VII gives the result for the full test on a pre-split
table, when 287, 488, and 980 test clients were run. Each
test client used 1G buffer and 16 threads. The table split
threshold was reconfigured to 128G after splitting the table
completed. The maximum and average ingest and query
throughputs are given in the same column separated by ‘/’.
The initial table size were 705B for the 300-node cluster and
1T for both 500 and 1000 node clusters.

TABLE VII. PRE-SPLIT TABLE FULL INGEST/WALKER THROUGHPUTS

Cluster
size Hours Max/Avg

Ingest/Sec
Max/Avg

Query/Sec

300 3.50 37.6M/23M 1,404/249

500 1.44 49.4M/19.35M 15,315/988

1000 1.00 102M/55M 5,242/3,734

Table VIII gives the result for the partial test with 150 and
300 ingest clients and 488 and 980 walker test clients were
simultaneously running on 500 and 1000 node clusters. The
initial table size were 1.25T for both 500 and 1000 node
clusters.

TABLE VIII. PRE-SPLIT TABLE PARTIAL INGEST/WALKER
THROUGHPUTS

Cluster
size Hours Max/Avg

Ingest/Sec
Max/Avg
Query/Sec

500 2.60 21.8M/14.5M 3,054/1,478

1000 1.1 43M/29M 8,887/6,840

Table IX and X presents the full and partial tests for non
pre-split table. The same number of test clients as used for
the pre-split table were used here as well. However, the
buffer size was 100MB and 4 threads were used per test
client. The table split thresholds were 1G for all tests. The
initial table sizes were 488B, 1.5T and 416B for the 300,
500 and 1000 node cluster tests respectively. Table X gives
the result for the partial test with 90, 150 and 300 ingest
clients and 287, 488 and 980 walker test clients were

simultaneously running. The initial table sizes were 605B,
1.7T and 424B for the 300, 500 and 1000 node cluster tests.

TABLE IX. PRE-SPLIT TABLE INGEST THROUGHPUTS

Cluster
size Hours Max/Avg Ingest/Sec Max/Avg

Query/Sec

300 1.18 20.4M/8.8M 408/9.2

500 1.90 35.8M/25.2M 141/8.1

1000 1.00 7.5M/1.5M 1,658/65

TABLE X. PRE-SPLIT TABLE INGEST THROUGHPUTS

Cluster
size Hours Max/Avg Ingest/Sec Max/Avg

Query/Sec

300 1.04 6.8M/5.8M 231/9.4

500 1.0 13.8M/12.7M 124/16.1

1000 0.80 7.7M/1.5M 1,230/70

We saw a rapid fall in query throughput for the mixed tests
for non pre-split table compared to those for the pre-split
table. This is due to the tablet splitting overhead as ingest
takes place for the non pre-split table. The overheads of
garbage collection, major and minor compactions are
present in test with both types of tables.

6) Scalability: Scalability is the ability to perform
operations as the cluster size and load are increased
proportionately. The load was given by the final table size
as the number of tablet servers, which were 287B, 488B and
980B respectively.

Figure 5: Scalability Pre-split Table

The table was initially empty for the ingest test. The tablets
per server were determined by trial and error. We increased
the ingest requests by using three test clients from each
server. We also increased the buffer size and the number of
threads used by the test clients. The results are from that
given in Table I and III earlier. Figure 5 shows average
ingest and query throughputs for pre-split table as cluster
sizes and loads are increased. We see almost linear
scalability for ingest and query throughputs. For a non pre-
split table, we ran the ingest test for 5.5 to 6 hours on
clusters with 300, 500 and 1000 nodes. The table was empty
initially in each case.
We used the final table size to determine the proportional
loads as in the case of pre-split table. We observed only
54B, 49B and 84B entries in the table at the end of the
ingest test for the 300, 500 and1000 node clusters
respectively. This is 0.18, 0.10 and 0.08 of the respective

!&

"!&

#!&

$!&

%!&

&!!&

&"!&

!& "!!& #!!& $!!& %!!& &!!!& &"!!&

!
"##
"$
%&
'

(%)*&+',-+*&'./0*1&/#"+2''

!&

&!!!&

"!!!&

!"""&

#"""&

$"""&

%"""&

&"""&

"& '""& #""& %""& (""&)"""&)'""&

!"#$%'$&'#()'*&+,#$'-.$#)(.+/'0'

333444000

loads. In these tests each test client performed 100M
operations, used 100MB buffer and 4 threads.

7) Cell Level Security (ACL): The overhead for
supporting cell level security through Access Control List
(ACL) is tested by running the ingest test with and without
the feature on. The first figures separated by ‘/’ give the
values with no ACL and the second give the value with
ACL. The variation is within 15%.

TABLE XI. PRE-SPLIT TABLE INGEST THROUGHPUTS

Cluster
size Hours Max

Ingest/Sec (M)
Average
Ingest/Sec (M)

500 4.56/3.75 8.2/9.0 2.2/2.5

1000 6.03/6.00 17.5/22.6 4.1/3.5

8) Table Verification: The table verificaiton results are

shown in Table XII. The verification rate was 0.35 B/min
and 0.98 B/min for 200, 10000 mappers and 200, 5000
reducers respectively for the 1000 node cluster.

TABLE XII. PRE-SPLIT TABLE INGEST THROUGHPUTS

Cluster
size

Table size
(entries) Mappers/Reducers Time

300 1.5B 200/200 41 min 16 sec

1000 12.3B 200/200 34 min 46 sec

1000 1T 10000/5000 17 hours

V. CONCLUSION
The benchmark results for Apache Accumulo presented

here highlights its best and the worst-case performance and
scalability. The benchmark shows that Apache Accumulo
can support very high levels of sustained ingest throughputs
of 100 million transactions per second. This is relevant in
near real time very high volume data capture scenarios. The
query throughputs seen are also high and similar to what
was seen in YCSB++ tests. The tests also allow observation
of long-term sustainable performance of the table store.

The tests used complex indexed data structure as test
table. It was run on a moderate to large cluster of up to 1000
machines.

ACKNOWLEDGMENT
We thank the Apache Accumulo development and the
EMC/Greenplum AWB team for valuable support in
conducting the benchmark.

REFERENCES
[1] Big Data is a Big Deal. 2012. Office of Science and Technology

Policy, Whitehouse Blog.
http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal

[2] D.J. Abadi. 2009. Data Management in the Cloud: Limitations and
Opportunities. Special Issue on Data Management on Cloud
Computing Platforms, Data Engineering. Mar 2009, Vol.32 No.1.

[3] R. Cattell. Scalable SQL and NoSQL Data Stores.
http://cattell.net/datastores/Datastores.pdf

[4] R. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. Gruber. 2006. BigTable: A
Distributed Storage System for Structured Data. In Proc. Of the 7th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ‘2006), Seattle, WA, November 2006.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. 2007.
Dynamo: Amazon’s Highly Available Key-Value Store. In Proc. Of
the 21st ACM Symposium on Operating Systems Principles (SOSP
‘2007), Stevenson, WA, October 2007.

[6] HBase. Apache HBase. http://hbase.apache.org/
[7] Apache Cassandra. http://cassandra.apache.org/
[8] Project Voldemort. http://project-voldemort.com
[9] Apache Accumulo. http://accumulo.apache.org
[10] M. Cafarella, E. Chang, A. Fikes, A. Halevy, W. Hsieh, A. Lerner, J.

Madhavan, and S. Muthukrishnan. 2008. Data Management Projects
at Google. SIGMOD Record, 37(1), 2008.

[11] SciDB. Use Cases for SciDB. http://www.scidb.org/use/
[12] Amazon SimpleDB. http://aws.amazon.com/simpledb
[13] SQL Data Services/Azure Services Platform.

http://www.microsoft.com/azure/data.mspx
[14] Google App Engine. http://appengine.google.com
[15] Yahoo! Query Language. http://developer.yahoo.com/yql/
[16] Apache Hadoop: http://hadoop.apache.org
[17] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears.

2010. Benchmarking Cloud Serving Systems with YCSB, In Proc. Of
the 1st ACM Symp on Cloud Computing (SoCC’10), June 10-11, 2010

[18] J. Gray editor. 1993. The Benchmark Handbook for Database and
Transaction Processing Systems. Morgan Kaufmann, 1993.

[19] C. Bennett, R.L.Grossman, D.Locke, J.Seidman, S.Vejcik. 2010.
MalStone: Towards A Benchmark for Analytics on Large Data
Clouds. KDD’10 July 25-28, 2010. Washington D.C., USA.

[20] Diane J. Cook, Lawrence B. Holder, editors. 2007. Mining Graph
Data. Wiley Interscience, 2007.

[21] EMC/Greenplum AWB Whitepaper,
http://www.greenplum.com/sites/default/files/Greenplum-Analytics-
Workbench-Whitepaper.pdf

[22] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez, G.
Gibson, A. Fuchs, B. Rinaldi. 2011. YCSB++: Benchmarking and
Performance Debugging Advanced Features in Scalable Table Stores.
SOCC’11, October 27-28, 2011, Cascais, Portugal

[23] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H. Jacobsen, N. Puz, D. Weaver, R. Yerneni: 2008.
PNUTS: Yahoo!’s hosted data serving platform, Proc. VLDB
Endowment, Volume 1, Issue 2, August 2008

[24] MySQL Cluster: sql.com/tech-resources/articles/mysql-cluster-7.2-
ga.html

[25] Benchmarking Cassandra scalability in AWS Over a million writes
per second http://techblog.netflix.com/2011/11/benchmarking-
cassandra-scalability-on.html

[26] Hypertable vs. HBase Performance Evaluation II
http://hypertable.com/why_hypertable/hypertable_vs_hbase_2/

[27] Amazon EC2, http://aws.amazon.com/ec2/
[28] P. O’Neil, E. Cheng, D. Gawlick, E. O’Neil. 1996.The Log-

Structured Merge-Tree (LSM-Tree)”, Acta Informatica. Volume 33,
Issue 4, 1996, pp. 351-385

[29] Accumulo User Manual Version 1.4
http://accumulo.apache.org/1.4/user_manual/

[30] Apache Zookeeper: http://zookeeper.apache.org

333444111

