
 

Typograph: Multiscale Spatial Exploration of Text Documents 

Alex Endert, Russ Burtner, Nick Cramer, Ralph Perko, Shawn Hampton, Kristin Cook 

Pacific Northwest National Laboratory 
Richland, WA USA 

           

Abstract— Visualizing large document collections using a spatial 
layout of terms can enable quick overviews of information. These 
visual metaphors (e.g., word clouds, tag clouds, etc.) traditionally 
show a series of terms organized by space-filling algorithms. 
However, often lacking in these views is the ability to 
interactively explore the information to gain more detail, and the 
location and rendering of the terms are often not based on 
mathematical models that maintain relative distances from other 
information based on similarity metrics. In this paper, we 
present Typograph, a multi-scale spatial exploration 
visualization for large document collections. Based on the term-
based visualization methods, Typograh enables multiple levels of 
detail (terms, phrases, snippets, and full documents) within the 
single spatialization. Further, the information is placed based on 
their relative similarity to other information to create the “near 
= similar” geographic metaphor. This paper discusses the design 
principles and functionality of Typograph and presents a use 
case analyzing Wikipedia to demonstrate usage. 

Keywords —Visual analytics, sensemaking, text analytics, 
spatialization 

I. I. INTRODUCTION 
Central to many visual analytic technologies is the ability to 
foster sensemaking – the cognitive process of gaining insight 
from the analysis of information [1]. Sensemaking consists of 
a combination of cognitive stages that include foraging 
information, determining important subsets, internalizing that 
information, then externalizing the insights again [2]. In 
particular, this process highlights the fluidity of these 
cognitive stages, where users connect information at different 
levels of scale to produce a coherent understanding. For 
example, gaining insight into a collection of text documents 
requires understanding the relationships between keywords 
and documents to ultimately create a coherent higher-level 
understanding of themes or topic areas within the dataset.  

Spatializations are effective visual metaphors for 
sensemaking, both through manually generated layouts as 
well as computationally generated views. For example, 
Andrews et al. have shown that through manually creating a 
spatial layout of text documents, users are able to externalize 
their insights into the layout they create, affording them the 
functionality necessary to complete intelligence analysis tasks 
[3]. Similarly, computationally generated spatializations of 
text documents, such as the IN-SPIRE Galaxy View [4], show 
users relationships within a dataset spatially. Fundamental to 
both manual and computation approaches is the geography 
metaphor (i.e., “near is similar”) used to represent the 
similarity within the information [5].  

The sensemaking process for users leveraging such 
spatializations involves transitioning between document-
centric to concept, or term-centric conceptualizations of the 
information [3, 6]. Thus, while a general trend moving from 
foraging details to synthesizing higher-level themes or topics 
exists, sensemaking requires access to multiple levels of detail 
of the information. For example, Kang et al. present a view on 

sensemaking that focuses on this continuous fluctuation 
between overview and detail information scales for analysis 
[7].  

In this paper, we present Typograph (shown in Figure 1, a 
multi-scale spatialization for text analytics. Typograph 
approaches the challenge of transitioning between multiple 
levels of scale during spatial text analysis. It is based on a 
single, computationally-generated spatialization of text 
documents, represented as terms, phrases, snippets, and full 
documents. As such, the design principles of Typograph 
include: 

• Generating a multi-scale spatialization that embeds 
multiple levels of detail (terms, phrases, snippets, and 
documents) in a single spatial layout 

• Preserving similarity through relative distances 
between information (i.e., similarity conveyed through 
relative proximity). 

We discuss our approach towards these design principles 
through a system overview, detailing the computational model 
to handle large data scales. The functionality is highlighted by 
a use case, and a discussion of how such a multi-scale 
approach may be extended in future work. 

II. RELATED WORK 

A. Text visualization 
Research in visual text analytics has produced a wide range of 
methods to extract keywords, entities, and sentiment from 
unstructured text. These computationally-generated 
characteristics of text are the underlying structure upon which 
many visualizations are constructed.    

Advancements in automatic keyword and entity extraction 
techniques provide a valuable foundation for spatialization 
and visualization of concepts. Techniques include analysis of 
n-grams [8], phrases [9], parts-of-speech [10], and hybrid 
models using both unsupervised and supervised machine 
learning approaches on individual documents and corpus wide 
computation. For example, Rose et al. show how entity 
extraction using RAKE (Rapid Automated Keyword 
Extraction) can produce keywords and phrases that are 
relevant and meaningful to users from a collection of 
documents without any prior training or supervision [9]. 
Similarly, other open-source entity extraction techniques are 
available that produce keyword vectors as quantitative 
representations of text useful for visualization and analysis 
purposes (e.g., Lingpipe [11], GATE [12], etc.). 

Visual text exploration can be performed spatially. That is, 
the structure extracted can be used to construct spatializations 
that are similar to the cartographic approach where nearby 
information is similar [5]. Such an approach is based on the 
ability for users to understand similarity and relationships 
between the information based on their relative distance from 
each other. Computationally, visualizations such as IN-SPIRE 
[4] produce views that place documents into a spatialization 
based on performing dimension reduction on the high-
dimensional term vector representations of the documents.  



 

These spatializations rely heavily on the statistically 
generated signals that derive the relationships and similarities 
formed. Previous work has also been performed on allowing 
users to augment these computationally-generated 
spatializations with valuable domain expertise of users. For 
example, work has been done to show how users can steer 
popular dimension reduction methods used for text analysis 
(as well as other domains) [13, 14]. These semantic 
interaction techniques enable users to inject their domain 
expertise into the computational pipeline used to generate 
spatializations of high-dimensional data through capturing 
and inferring common analytic interactions (e.g., highlighting, 
searching, grouping of documents, etc.) [15]. 

Several other document-centric spatializations exist (e.g., 
[16-18], etc.) that emphasize the relationships between 
documents based on the keywords or phrases. Typograph 
differs fundamentally from these approaches, in that the 
spatialization presents users with terms, where the documents 
define the relationships and similarities. The relative distance 
between terms is defined by the similarities calculated using 
the documents. Spatial layouts of documents can also be used 
to provide context around search results. For example, Nocaj 
and Brandes describe an approach for displaying search 
results within a spatialization of the document corpus [35]. As 
a result, users can be given query results in the context of the 
dataset.  

Typograph creates a hybrid between document-centric and 
term-centric spatializations (described in section III).  

B. Term-centric Spatializations 
Also frequently referred to as “tag clouds”, “word clouds”, 

and “Wordles”, these spatializations visualize a set of relevant 
terms in a spatial layout. Fundamentally, their construction 
focuses on the reduction of whitespace within a bounded area, 
leveraging various typesetting and packing techniques [19-
21]. Font sizes and color ramps are popular visual encodings 
for conveying relative importance or occurrence counts of 
terms within the dataset. These views provide a quick, 
quantitative overview of terms within a dataset.  

There has also been work on extending the design of these 
spatializations to include semantically meaningful placement 
of terms. For example, Cui et al. presented a context 
preserving word cloud that maintains the design principles of 
a word cloud while leveraging similarity metrics between 
terms to place similar terms near each other [22]. Their 
approach uses a force-directed algorithm to place terms near 
each other based on calculated similarity between terms 
represented as the edges (or springs) pulling terms together. 

Similarly, ProjCloud uses multidimensional scaling to 
determine the placement of terms [23].  

C. Sensemaking through Spatializations 
Sensemaking is a cognitive process that highlights a user’s 
ability to forage, synthesize, and externalize information [2, 
24, 25]. The process highlights the importance of transposing 
a user’s personal experiences and domain expertise onto a 
dataset or problem, gathering and evaluating evidence for 
multiple hypotheses, and ultimately externalizing the insights 
into a concise analytic product (e.g., a report, presentation, 
etc.). Pirolli and Card present a depiction of this process as 
the “sensemaking loop” [2]. The process starts with foraging 
for evidence and details, and ultimately including synthesis 
steps that involve determining relationships and higher-level 
connections within the dataset. Kang et al. show a similar 
process, but emphasize that through observing such a process 
in practice, the progression towards insight involves 
fluctuating between high and low-level concepts (or overview 
and detail) [7]. It is through such processes that users are able 
to understand complex relationships within data. 

Previous work has shown that a spatialization can be an 
effective visual metaphor to support sensemaking. Andrews et 
al. showed that users can leverage the spatial layout as an 
external memory aid for intelligence analysis tasks [3]. In 
their study, users created visual clusters of information to 
externalize their insights. The analysis of such manually 
created spatial layouts show that the clusters formed are often 
based on multiple levels of detail [6]. That is, while some 
clusters may be created based on single keywords or phrases, 
others may refer to higher-level concepts, or very specific 
events or hypotheses. As such, enabling users to navigate (and 
create) spatializations that incorporate multiple scales is 
important to foster sensemaking. 

 
Figure 2. Typograph employs a series of server-side 

data processing techniques to process high volumes of 
data and enable interactivity and exploration.  

 

 
Figure 1. Typograph is a spatial text exploration visualization that shows multiple levels of detail within a single 

spatialization to enable multiscale visual data exploration.  



III. TYPOGRAPH: SYSTEM DESIGN AND DESCRIPTION 
The design of Typograph is intended to enhance a user’s 

ability to make sense of large collections of unstructured text. 
This section describes the design principles fundamental to 
the system, describes the implementation and primary 
functionality, and presents a use case to illustrate the usage. 

Typograph aims to enable spatial exploration of text 
documents. As such, there are two primary design principles 
that drive the visualization and functionality in the system.  

Maintain Relative Spatial Similarity: The single, spatial 
view of Typograph consists of information that is spatialized. 
That is, all information abides by the “near = similar” 
geographic metaphor [5]. As a result, information that is 
similar relative to other information is placed close together, 
creating clusters of similar information.  

In addition to the proximity of information related to other 
information, the existence of whitespace within the 
spatialization is equally important. As previous work has 
shown, the whitespace users create and observe in a 
spatialization can be as meaningful as the clusters of 
information [3, 6]. In addition to delineating the clusters 
themselves, whitespace can indicate areas where coverage of 
a particular topic is limited, or even missing. For example, 
whitespace between two information clusters may indicate 
that the dataset is lacking the information needed to tie the 
two together. In these situations, the spatial proximity creates 
the validity in the spatial layout. 

Incorporate Multiple Levels of Detail within Single View: 
Text can be computed and represented at multiple levels of 
detail (Table 1). Typograph represents the information using 
keywords, phrases, snippets, and full documents (ordered by 
level of detail, from highest to lowest). These levels of detail 
can be accessed by zooming into a specific area of interest 
from the overview. Through zooming, more detailed 
representations are progressively shown.  

The components that make up Typograph include 
processing the raw text data for keywords, generating the 
spatial layout, and the visual interface. These components are 
discussed in the subsections below. 

A. Server-Side Data Processing 
For our server, we utilize a 7-node cluster, one of which is 

the head node. Each node has (4) 4-core Intel Xenon 
processors with 20Gb memory (except the head node, which 
has 48Gb of memory).  

The test dataset we chose for Typograph consists of all 
English Wikipedia articles, which we downloaded as a single 
XML file [26]. This file is roughly 40gb, and at any given 
time of download includes slightly over 4 million articles (the 
XML dump also includes navigation, disambiguation 
redirects, categorization, templates, stubs, and more 
undesirable pages bringing the total to over 12 million 
potential articles within the XML). Each article page contains 
primarily narrative text organized into sections, but also 
includes formatting and metadata as wiki markup.  

Figure 2 provides an overview of our methods used to 
process data from the raw Wikipedia articles to produce a 2-
dimensional spatial layout of information. This process is 
described below. 

1) Initial Text Processing 
 Our goal is to derive a clean corpus of narrative text for 

only the topic-bearing articles. The XML dump file is 
processed in parallel using the distributed computing 
framework, Hadoop, to extract article names and text fields 
for insertion into a high performance distributed key value 
store called Accumulo. Each raw article is evaluated to 
determine if it is truly a topic-bearing article or one of the 
undesirable page types based on the Wikipedia definition of 
an article leaving us with approximately 4 million articles. 
The text content of good articles is processed using Hadoop 
through a series of regular expression rules to remove wiki 
markup while preserving article content. The final article title 
and text content are inserted into the key-value store as 
ArticleTitle->Text mapping. 

2) Entity Extraction and Weighting 
 The raw text extracted from the previous steps for each 

article is processed into a Lucene [8] index with a custom 
analyzer which applies the Rapid Automatic Keyword 
Extraction (RAKE) [9] algorithm. RAKE extracts keywords 
from individual documents automatically.  RAKE operates by 
using a list of stopwords and phrase delimiting punctuation to 
split a document into an array of candidate keywords. A co-

Table 1. The different information types in Typograph extracted and stored on the server using different techniques 

Level of Detail Description Examples from Wikipedia Dataset Extraction 
Technique 

Storage Method 

Keyword/Term A word extracted 
from a text corpus 

album, government, baseball RAKE Lucene 

Phrase Two or more 
words in sequence  

United States of America RAKE Lucene 

Snippet An extracted 
portion of an 
article that 

contains highly 
relevant 

information based 
on a keyword or 

phrase 

Snippet for “World Population” article 
relative to the keyword “population”: 

Population and Development, the United 
Nations Population Division, and the 

United Nations Population Fund. Birth 
control countries […] 

 

JIL Extracted at 
runtime from the 

articles 

Article Plain text, full 
articles 

A text-only Wikipedia article Regular 
expressions 
parallelized 

through Hadoop 

Accumulo 

 



 

occurrence graph is generated from individual tokens 
contained in candidate keyword. Candidate keywords are 
ranked by computing the ratio of degree to frequency for their 
constitute tokens. The top ranking candidates are kept as 
extracted keywords which represent the most essential 
keywords for characterizing each document. RAKE has 
several properties which make it ideal for our work. RAKE 
does not require training, it is high performing, it can be 
distributed, and it discovers context-rich keywords 
automatically. Another advantage of RAKE is that it provides 
a dataset-independent characterization of the document, which 
is important in applications in which the composition of the 
dataset is continually changing.   

The Lucene index is valuable for search and retrieval and it 
offers an efficient platform for statistical analysis of all 
keywords in the corpus. These extracted keywords offer a 
more context-rich feature set than single whitespace delimited 
keywords. From the many hundreds of thousands of unique 
keywords extracted from the four million Wikipedia articles, 
10,000 keywords are selected.  

To create keyword vectors, the pair-wise association is 
measured among the 10,000 keywords to form a square 
similarity matrix. This provides us with a set of vectors 
representing our keywords consisting of dimensions which 
measure the relationship to other keywords. This 10,000 
dimensional concept vector space is then used to spatialize the 
data. Additionally, each of the keywords are weighted based 
on their relevance to the dataset being analysed. The method 
for the generating the weighting schema is also a part of 
RAKE, the details of which are out of the scope of this paper 
and described in [9]. 

3) Generating the Spatial Layout  
 To spatialize the keyword vectors for visualization in 2 

dimensions, we applied a self-organizing map (SOM) 
[36][27] as our dimension reduction method (although other 
algorithms could be used in place of the SOM). The complete 
set of keyword vectors is run through the SOM algorithm, 

modified to be recursive (and for our purposes, parallelized). 
The SOM is initialized with a 5x5 grid of sites (or neurons). 
The vectors of each site are then recursively run through the 
SOM of size 5x5 again to further distinguish this subset of the 
information. The recursion terminates when not enough data 
items remain to recurse. The coordinates produced in each 
recursive site are then normalized from their local coordinate 
set to the global coordinate set, relative to their overall place 
in the top level SOM. We made the design decision to allow 
each SOM session to run for 100 iterations, although datasets 
and data sizes may require a different parameter.  

The total processing time from parsing the XML file to the 
end of SOM creation was approximately 15 hours on our 
server infrastructure and hardware. However, this 
performance could be optimized by parallelization of the 
keyword extraction and clustering processes.  

4) Snippet and Document Retrieval 
Apache Accumulo [28] is used for article storage and 

retrieval. When the client requests information from the 
server, it is retrieved from Accumulo via its title (used for the 
index). In the case of an article request, the text returned from 
Accumulo is handed to the client as-is. In the case of a snippet 
request, the full article text is run through a custom Lucene 
document highlighter which extracts a snippet of desired word 
length that is most dense with the supplied keyword from the 
full article text.  
 

B. User Interface and Functionality 
1) Implementation 
Typograph is written in Java and utilizes the Eclipse Rich 

Client Platform (RCP) to provide the core menu and window 
management system. The visualization itself was created 
using the Scientific Visualization Framework (SVF), which is 
a visualization library created at PNNL to support 
development for Java Bindings for OpenGL (JOGL).  

 
Figure 3. Screenshot of Typograph visualizing all of the English Wikipedia. Groups are clustered based on their 

similarity (near = similar) and sized based on their importance within the dataset.  



2) Spatialization 
The Typograph user interface consists of one primary 

view, a spatialization of terms similar to that of a tag cloud 
(shown in Figure 3). The location of the information is 
generated via the SOM described previously. Terms and 
phrases are placed and rendered from the top down, starting 
with the highest weighted terms in each SOM site. That way, 
the higher weighted terms are given rendering precedence at 
the higher levels, and the lower, more detailed terms within 
the site are accessible through zooming into that location. At 
the highest level, terms presented are descriptors or concepts 
of terms at the next level in the hierarchy. The visualization 
traverses the hierarchy through levels of zoom until you reach 
the lowest level (i.e., the document level). As a result, details 
of higher-level terms are revealed through terms, phrases, 
snippets, and finally documents that describe the concept in 
increasing amounts of detail. The terms and phrases are 
rendered so that the center of the space taken up by the term 
or phrase is at the 2-dimensional coordinate produced by the 
SOM.  

Terms and phrases are sized based on their weight. To 
reduce the visual artifacts created by longer words occupying 
more space because they include more characters, we visually 
encode the weight of a term (or phrase) by the amount of ink 
used to render it. This approach is based previous work called 
“FatFonts” [31]. Their work showed that numerical values 
can be encoded into the number representing the value by the 
amount of ink needed to render the number, providing users 
with the ability perceive relative value differences between 
displayed numbers based on a user’s visual acuity. Typograph 
takes a similar approach, in that the weight depicts how much 
ink (i.e., pixels) is used to render the term or phrase. As a 
result, words that are short occupy more space by being 
bolder.  

Snippets and documents are shown as more detail is 
requested by the user through progressively zooming into a 
region, as shown in Figure 6. Users can click (or touch) a term 
or phrase to retrieve snippets that are associated with it 
(described in more detail in the previous section). The top 4 
snippets are placed within the spatialization according to their 
relative proximity to related terms and phrases. Within the 
snippets, the term or phrase that was clicked is highlighted (in 
blue) to give context to the user. Full details of the text are 
available to the user by displaying a document reader on 
demand. When reading a snippet, users can click the snippet 
to show the full document.  

3) User Interaction 
At the left of the prototype is an application bar, which 

contains a search button and a zoom indicator. The zoom 
indicator indicates the level of zoom currently shown and 

gives users the ability to slide or jump down more than one 
level at time, similar to the way zoom indicators work in 
online map applications. Aside from this sidebar, the content 
will also be the primary method for interaction (and gaining 
context) in an effort to minimize the interaction junk [32], and 
optimize the fluidity [30] of the exploration.  

Users can navigate the information through multi-touch 
gestures traditional mouse interactions. Similar to map 
interfaces, zooming in and out is performed by the mouse 
wheel, touch pinch and zoom, or by pressing the +/- keys. 
Panning is performed by grabbing and sliding the canvas with 
the cursor, touching and dragging it, or by pressing the arrow 
keys in the specific direction. Typograph animates the 
transitions to the next level to afford the user additional 
context into new content as it appears. Terms at the previous 
level of zoom begin to fade out as the more detailed terms 
take their place (Figure 6). These more general terms continue 
to remain visible to provide context, and ultimately fade out 
completely as users continue to zoom in further.  

Typograph supports standard text search through a search 
field found in the upper left corner of the prototype. Clicking 
the search icon will expand the search field and allow users to 
enter their query. Terms that do not match the search fade 
back revealing the search results. Search results are either 
exact matches or sematic matches. The exact matches are 
terms in the spatializations that match directly (or contain) the 
string in the search query. The semantic matches are terms 
that were extracted from documents that contain the search 
query. As a result, searching can provide users with an 

 
Figure 5. Search results for the query on “sun”, 

showing different contexts that the term appears in. 
Search results that are off-screen are indicated by the 
green bubbles on the edges, showing the direction of 

other search results. 

 

        
Figure 4. The snippets contextualized around each phrase or term show different uses of the search query “sun”. 

(Left) shows how the word is used in album and song titles, while (Right) shows information about Sun 
Microsystems. These snippets are located within the context of the spatialization, maintaining relative similarity to 

the remaining information.  

 



 

overview of the different concepts in which the search query 

occur. Search results that occur outside of the current zoomed 
in section of the spatialization are shown on the edges as 
green indicators (Figure 5). The user can click those 
indicators, which will automatically pan to the search result, 
or they can pan and zoom manually. Larger green indicators 
show terms that are a concept level higher in the zoom level 
while smaller indicators show terms at lower levels. 

C. Use Case 
We demonstrate the functionality and analytic capabilities 

provided by Typograph through the following use case. 
Consider a user interested in the different contexts in which 
the work “sun” is used in the English Wikipedia. Based on her 
understanding and domain expertise, she hypothesizes that 
“sun” might show up in areas including the solar system, 
tropical vacations, technology, etc.  

She starts her exploration from the highest-level overview 
of terms in the dataset. From this overview, she observes the 
general, high-level concepts within the dataset, including: 
music, sports, governments, etc. In exploring these areas 
spatiality, she gains an understanding of how the specific 
regions of the spatialization correspond to different concepts. 
She proceeds to perform a search on the term “Sun” to reveal 
how the term relates across these contexts. The search results 
highlight phrases within different contexts (as shown in 
Figure 5), while making the non-results transparent to 
maintain contextual awareness of the regions. As she zooms 
and pans to terms of interest, the other matches are shown on 
the sides of the visualization as green indicators (Figure 5). 

She finds a phrase from her “sun” query titled “single 
released” (Figure 4). This phrase interests her, and she 
chooses to investigate it further. Tapping and holding on the 
term reveals song lyrics that also contain the word “sun”. She 
takes note of this use of the term “sun”, and continues her 
search by panning to the right, towards the green search result 
indicators to find other contexts. She finds another search 
result around “Intel”. Upon reading the snippets, and the 
terms surrounding the snippets, she gathers that these set of 
results focus on “Sun Microsystems”. She could continue to 
explore other search results at this point to find additional 
contexts, but is satisfied with these, concluding her 
exploration. 

IV. DISCUSSION 

A. Overview and Exploration of Large Datasets 
Typograph serves as a platform for investigation of 

exploratory analysis and discovery in very large data 
collections. In extremely large data collections, it is common 
practice to visualize only a subset of the data content, which 
may be obtained by searching and filtering the dataset. In 
Typograph, we instead implement the information 
visualization mantra of “overview, zoom & filter, details on 
demand” [33] by providing an overview of the entire 
collection. This overview consists of the terms algorithmically 
measured to be most representative within the data collection. 

When visualizing a collection of a few million pages, such 
as the Wikipedia example described above, this overview 
contains a set of terms that characterize the whole of the 
collection. This visualization illustrates the disproportionate 
volume of information concentrated in areas like popular 
culture and sports, as contrasted with history and science. 
While this provides an interesting initial perspective on the 
data and informs further exploration of the dataset, it is a very 
high-level characterization of the data collection and does not 
particularly serve to stimulate new questions or discoveries. 
The overview provides a frame in which further exploratory 
analysis can occur, but its general nature may limit its 
effectiveness in building a meaningful context in which the 

 
Figure 6. Progressively zooming into an area of the 

spatialization reveals more detailed information 
about that concept. 



data can be explored. It is an open research question as to 
whether the information visualization mantra should be 
modified when applied to very large data collections. 

In addition, because the representative terms are derived 
without human intervention and without regard to the user’s 
context, they are fully representative of the data but may not 
match well with the user’s mental model of the data content. 
That is, a statistical summary of the information may not 
provide new information for a domain expert of that dataset. 
Instead, details within these datasets may provide the insights 
sought after. Thus, a mixture of domain knowledge and 
statistical inferences from the data may be necessary as 
datasets continue to increase. For example, such mixed 
models can be achieved by model steering or semantic 
interaction methods [15].  

B. Data Coverage 
A goal of visualization is to provide visual representations 

of structure within datasets [34]. As such, these views 
(especially at the overview level) are expected to provide an 
adequate amount of coverage. For example, for a dataset that 
contains 100 data objects that can be described using 200 
dimensions, leveraging dimension reduction techniques that 
take into account each of these dimensions is a traditional 
approach to visualizing this information. However, as data 
scales continue to increase in both size and complexity, 
achieving coverage can be done through other means. 

When combining multiple methods for scaling down sizes 
and complexities of datasets, the traditional concept of 
coverage may differ. For example, instead of using all unique 
words within a text dataset, entity extraction techniques may 
reduce the complexity prior to leveraging a dimension 
reduction technique. Further, extracting phrases and other 
patterns of unique text terms may increase the dimensionality 
and complexity of these datasets. What impact do such 
approaches have on coverage, and more importantly validity 
and trust of the resulting views?  

The Wikipedia dataset used for describing Typograph is a 
good example of how the concept of coverage may change 
with scale. The 10,000 keywords extracted by RAKE takes 
the entire 4 million articles into account. However, the 
dimension reduction steps are then based on only a subset of 
the total number of unique keywords (or dimensions) in the 
original data. That is, 14% of the original articles cannot be 
characterized by any one of these extracted keywords. While 
the entity extraction methods could be modified to ensure 
better (and even complete) coverage of the dataset, the 
downside would be that additional, less relevant keywords 
would be chosen. These trade-offs should be carefully 
considered when designing visualizations that deal with large, 
complex data. Exploring such topics will continue to increase 
our ability to design visualizations that foster sensemaking of 
large and complex datasets. 

V. CONCLUSION 
In this paper, we introduce Typograph, a spatial text 
exploration visualization. Typograph is designed to enable 
users to analyze and visualize large, text datasets. The 
approach is based on exploring textual datasets through a 
term-centric spatialization, with multiple levels of detail 
integrated into the single view. Typograph organizes terms, 
phrases, snippets, and full documents based on their relative 
similarity to each other. As a result, clusters of information 
reveal themes of topics within the dataset. Typograph reveals 
additional information at multiple levels of detail within the 
spatial metaphor, and in context of the other information. The 
overview consists of mainly clusters of terms, and more detail 
is revealed as users zoom into regions of the space. As a 

result, the additional levels of detail are revealed in context of 
the terms, when demanded by the user. The multi-scale 
approach of Typograph is supported through a thin-client 
architecture, where significant data processing is performed 
on the server through a collection of entity extraction, 
information retrieval, and dimension reduction techniques. 
The resulting technology is one that is capable of creating 
insightful visualizations from large text datasets. 
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