
  

Apache Accumulo 1.4 & 1.5
Features

Inaugural Accumulo DC Meetup 

Keith Turner



  

What is Accumulo?

A re-implementation of Big Table
● Distributed Database
● Does not support SQL
● Data is arranged by

● Row
● Column
● Time

● No need to declare columns, types



  

Massively Distributed



  

Key Structure

Key Value

Row Column 
Family

Column 
Qualifier

Column
Visibility

Time Stamp Value

Primary 
Partitioning 
Component

Secondary 
Partitioning 
Component

Uniqueness 
Control

Access
Control

Versioning 
Control

Value



  

Tablet Organization



  

System Processes



  

Tablet Data Flow



  

Rfile Multi-level index



  

1.3 Rfile Index

● Index is an array of keys
● One key per data block
● Complete index loaded into memory when file 

opened
● Complete index kept in memory when writing 

file
● Slow load times
● Memory exhaustion 



  

Index                                       

1.3 RFile

Data
Block

Data
Block

Data
Block



  

Non multi-level 9G file

Locality group         : <DEFAULT>
   Start block          : 0
   Num   blocks         : 182,691
   Index level 0 size   : 8,038,404 bytes
   First key            : 00000008611ae5d6 0e94:74e1 [] 1310491465052 false
   Last key             : 7ffffff7daec0b4e 43ee:1c1e [] 1310491475396 false
   Num entries          : 172,014,468
   Column families      : <UNKNOWN>

Meta block     : BCFile.index
   Raw size             : 2,148,491 bytes
   Compressed size      : 1,485,697 bytes
   Compression type     : lzo

Meta block     : RFile.index
   Raw size             : 8,038,470 bytes
   Compressed size      : 5,664,704 bytes
   Compression type     : lzo



  

Index Level 1                                       

Index Level 0                                       

1.4 RFile

Data
Block

Data
Block

Data
Block

Data
Block

Data
Block



  

File layout

Data Data
Index

L0 Data Data
Index

L0 Data Data
Index

L0
Index

L1

● Index blocks written as data is written
● complete index not kept in memory during write
● Index block for each level kept in memory 



  

Multi-level 9G file

Locality group         : <DEFAULT>
   Start block          : 0
   Num   blocks         : 187,070
   Index level 1        : 4,573 bytes  1 blocks
   Index level 0        : 10,431,126 bytes  82 blocks
   First key            : 00000008611ae5d6 0e94:74e1 [] 1310491465052 false
   Last key             : 7ffffff7daec0b4e 43ee:1c1e [] 1310491475396 false
   Num entries          : 172,014,468
   Column families      : <UNKNOWN>

Meta block     : BCFile.index
   Raw size             : 5 bytes
   Compressed size      : 17 bytes
   Compression type     : lzo

Meta block     : RFile.index
   Raw size             : 4,652 bytes
   Compressed size      : 3,745 bytes
   Compression type     : lzo



  

Test Setup

● Files in FS cache for test (cat test.rf > /dev/null)
● Too much variability when some of file was in 

FS cache and some was not
● Easier to force all of file into cache than out



  

Open, seek 9G file

Multilevel Index Cache Avg Time
N N 139.48 ms
N Y 37.55 ms
Y N 8.48 ms
Y Y 3.90 ms



  

Randomly seeking 9G file

Multilevel Index Cache Avg Time
N N 2.08 ms
N Y 2.32 ms
Y N 4.33 ms
Y Y 2.14 ms



  

Configuration

● Index block size configurable per table
● Make index block size large and it will behave 

like old rfile
● Enabled index cache by default in 1.4



  

Cache hit rate on monitor page



  

Fault tolerant concurrent table operations



  

Problematic situations

● Master dies during create table
● Create and delete table run concurrently
● Client dies during bulk ingest
● Table deleted while writing or scanning



  

Create table fault

● Master dies during
● Could leave accumulo metadata in bad state

● Master creates table, but then dies before 
notifying client
● If client retries, it gets table exist exception



  

FATE
Fault Tolerant Executor

● If process dies, previously submitted operations 
continue to execute on restart.

● Serializes operation in zookeeper before 
execution

● Master uses FATE to execute table operations



  

Bulk import test

● Create table with summation aggregator
● Bulk import files of +1 or -1, graph ensures final 

sum is 0
● Concurrently merge, split, compact, and 

consistency check table
● Exit point verifies 0



  

Adampotent

● Idempotent f(f(x)) = f(x)
● Adampotent f(f'(x)) = f(x)

● f'(x) denotes partial execution of f(x)



  

REPO
Repeatable Persisted Operation

public interface Repo<T> extends Serializable {

     long isReady(long tid, T environment) throws Exception;

     Repo<T> call(long tid, T environment) throws Exception;

     void undo(long tid, T environment) throws Exception;

}

● call() returns next op, null if done
● call() and undo() must be adampotent
● undo() should clean up partial execution of 

isReady() or call()



  

FATE interface

     long startTransaction();

     void seedTransaction(long tid, Repo op);

     TStatus waitForCompletion(long tid);

     Exception getException(long tid);

     void delete(long tid);



  

Client calling FATE on master

Start Tx

Seed Tx

Wait Tx

Delete Tx



  

FATE transaction states

NEW

FAILED

IN
PROGRESS

FAILED
IN

PROGRESS

SUCCESSFUL



  

FATE Persistent store

public interface TStore {

     long reserve();

     Repo top(long tid);

     void push(long tid, Repo repo);

     void pop(long tid);

     Tstatus getStatus(long tid);

     void setStatus(long tid, Tstatus status);

         .

         .

         .

}



  

Seeding

void seedTransaction(long tid, Repo repo){

     if(store.getStatus(tid) == NEW){

          if(store.top(tid) == null)

               store.push(tid, repo);

          store.setStatus(tid, IN_PROGRESS);

     }    

}



  

FATE transaction execution

Execute
top op

Reserve
tx

Push
op

Undo
top op

Pop
op

Mark
success

Mark
fail

Save
Exception

Mark
failed

in progress



  

Concurrent table ops

● Per-table read/write lock in zookeeper
● Zookeeper recipe with slight modification : 

● store fate tid as lock data
● Use persistent sequential instead of ephemeral 

sequential



  

Concurrent delete table

● Table deleted during read or write 1.3
● Most likely, scan hangs forever
● Rarely, permission exception thrown (seen in test)

● In 1.4 check if table exists when :
● Nothing in !METADATA
● See a permission exception



  

Rogue threads
● Bulk import fate op pushes work to tservers
● Threads on tserver execute after fate op done
● Master deletes WID in ZK, waits until counts 0

Tablet server worker thread

SynchronizedSynchronized

Start WID
Exist?

cnt[WID]++
Do

work
cnt[WID]--

exit



  

Create Table Ops

1. CreateTable
● Allocates table id

2. SetupPermissions

3. PopulateZookeeper
● Reentrantly lock table in isReady()
● Relate table name to table id

4. CreateDir

5. PopulateMetadata

6. FinishCreateTable



  

Random walk concurrent test

● Perform all table operation on 5 well known 
tables

● Run multiple test clients concurrently
● Ensure accumulo or test client does not crash 

or hang
● Too chaotic to verify data correctness
● Found many bugs



  

Future Work

● Allow multiple processes to run fate operations
● Stop polling
● Hulk Smash Tolerant



  

Other 1.4 Features



  

Tablet Merging

● Splits exists forever; data is often aged off
● Admin requested, not automatic
● Merge by range or size



  

Merging Minor Compaction

● 1.3: minor compactions always add new files:

● 1.4: limits the total of new files:



  

Merging Minor Compactions

● Slows down minor compactions
● Memory fills up
● Creates back-pressure on ingest
● Prevents “unable to open enough files to scan”



  

Table Cloning

● Create a new table using the same read-only 
files

● Fast
● Testing

● At scale, with representative data
● Compaction with a broken iterator: no more data

● Offline and Copy
● create an consistent snapshot in minutes



  

Range Operations

● Compact Range
● Compact all tablets that fall within a row range down 

to a single file
● Useful for tail-insert indexes
● Data purge

● Delete Range
● Delete all the content within a row range
● Uses split and will delete whole tablets for efficiency
● Useful for data purge



  

Logical Time for Bulk Import

● Bulk files created on different machines will get 
different actual times (hours)

● Bulk files always contain the timestamp created 
by the client

● A single bulk import request can set a 
consistent time across all files

● Implemented using iterators



  

Roadmap



  

1.4.1 Improvements

● Snappy, LZ4
● HDFS Kerberos compatability
● Bloom filter improvements
● Map Reduce directly over Accumulo files
● Server side row select iterator
● Bulk ingest support for map only jobs
● BigTop support
● Wikisearch example improvements



  

Possible 1.5 features



  

Performance

● Multiple namenode support
● WAL performance improvements
● In-memory map locality groups
● Timestamp visibility filter optimization
● Prefix encoding
● Distributed FATE ops



  

API

● Stats API
● Automatic deployment of iterators
● Tuplestream support
● Coprocessor integration
● Support other client languages
● Client session migration



  

Admin/Security

● Kerberos support/pluggable authentication
● Administration monitor page
● Data center replication
● Rollback/snapshot backup/recovery



  

Reliability

● Decentralize master operations
● Tablet server state model



  

Testing

● Mini-cluster test harness
● Continuous random walk testing


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

