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What is Accumulo?

A re-implementation of Big Table
● Distributed Database
● Does not support SQL
● Data is arranged by

● Row
● Column
● Time

● No need to declare columns, types



  

Massively Distributed
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Tablet Organization



  

System Processes



  

Tablet Data Flow



  

Rfile Multi-level index



  

1.3 Rfile Index

● Index is an array of keys
● One key per data block
● Complete index loaded into memory when file 

opened
● Complete index kept in memory when writing 

file
● Slow load times
● Memory exhaustion 



  

Index                                       

1.3 RFile
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Non multi-level 9G file

Locality group         : <DEFAULT>
   Start block          : 0
   Num   blocks         : 182,691
   Index level 0 size   : 8,038,404 bytes
   First key            : 00000008611ae5d6 0e94:74e1 [] 1310491465052 false
   Last key             : 7ffffff7daec0b4e 43ee:1c1e [] 1310491475396 false
   Num entries          : 172,014,468
   Column families      : <UNKNOWN>

Meta block     : BCFile.index
   Raw size             : 2,148,491 bytes
   Compressed size      : 1,485,697 bytes
   Compression type     : lzo

Meta block     : RFile.index
   Raw size             : 8,038,470 bytes
   Compressed size      : 5,664,704 bytes
   Compression type     : lzo



  

Index Level 1                                       

Index Level 0                                       

1.4 RFile
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File layout

Data Data
Index

L0 Data Data
Index

L0 Data Data
Index

L0
Index

L1

● Index blocks written as data is written
● complete index not kept in memory during write
● Index block for each level kept in memory 



  

Multi-level 9G file

Locality group         : <DEFAULT>
   Start block          : 0
   Num   blocks         : 187,070
   Index level 1        : 4,573 bytes  1 blocks
   Index level 0        : 10,431,126 bytes  82 blocks
   First key            : 00000008611ae5d6 0e94:74e1 [] 1310491465052 false
   Last key             : 7ffffff7daec0b4e 43ee:1c1e [] 1310491475396 false
   Num entries          : 172,014,468
   Column families      : <UNKNOWN>

Meta block     : BCFile.index
   Raw size             : 5 bytes
   Compressed size      : 17 bytes
   Compression type     : lzo

Meta block     : RFile.index
   Raw size             : 4,652 bytes
   Compressed size      : 3,745 bytes
   Compression type     : lzo



  

Test Setup

● Files in FS cache for test (cat test.rf > /dev/null)
● Too much variability when some of file was in 

FS cache and some was not
● Easier to force all of file into cache than out



  

Open, seek 9G file

Multilevel Index Cache Avg Time
N N 139.48 ms
N Y 37.55 ms
Y N 8.48 ms
Y Y 3.90 ms



  

Randomly seeking 9G file

Multilevel Index Cache Avg Time
N N 2.08 ms
N Y 2.32 ms
Y N 4.33 ms
Y Y 2.14 ms



  

Configuration

● Index block size configurable per table
● Make index block size large and it will behave 

like old rfile
● Enabled index cache by default in 1.4



  

Cache hit rate on monitor page



  

Fault tolerant concurrent table operations



  

Problematic situations

● Master dies during create table
● Create and delete table run concurrently
● Client dies during bulk ingest
● Table deleted while writing or scanning



  

Create table fault

● Master dies during
● Could leave accumulo metadata in bad state

● Master creates table, but then dies before 
notifying client
● If client retries, it gets table exist exception



  

FATE
Fault Tolerant Executor

● If process dies, previously submitted operations 
continue to execute on restart.

● Serializes operation in zookeeper before 
execution

● Master uses FATE to execute table operations



  

Bulk import test

● Create table with summation aggregator
● Bulk import files of +1 or -1, graph ensures final 

sum is 0
● Concurrently merge, split, compact, and 

consistency check table
● Exit point verifies 0



  

Adampotent

● Idempotent f(f(x)) = f(x)
● Adampotent f(f'(x)) = f(x)

● f'(x) denotes partial execution of f(x)



  

REPO
Repeatable Persisted Operation

public interface Repo<T> extends Serializable {

     long isReady(long tid, T environment) throws Exception;

     Repo<T> call(long tid, T environment) throws Exception;

     void undo(long tid, T environment) throws Exception;

}

● call() returns next op, null if done
● call() and undo() must be adampotent
● undo() should clean up partial execution of 

isReady() or call()



  

FATE interface

     long startTransaction();

     void seedTransaction(long tid, Repo op);

     TStatus waitForCompletion(long tid);

     Exception getException(long tid);

     void delete(long tid);



  

Client calling FATE on master

Start Tx

Seed Tx

Wait Tx

Delete Tx



  

FATE transaction states

NEW

FAILED

IN
PROGRESS

FAILED
IN

PROGRESS

SUCCESSFUL



  

FATE Persistent store

public interface TStore {

     long reserve();

     Repo top(long tid);

     void push(long tid, Repo repo);

     void pop(long tid);

     Tstatus getStatus(long tid);

     void setStatus(long tid, Tstatus status);

         .

         .

         .

}



  

Seeding

void seedTransaction(long tid, Repo repo){

     if(store.getStatus(tid) == NEW){

          if(store.top(tid) == null)

               store.push(tid, repo);

          store.setStatus(tid, IN_PROGRESS);

     }    

}



  

FATE transaction execution
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Concurrent table ops

● Per-table read/write lock in zookeeper
● Zookeeper recipe with slight modification : 

● store fate tid as lock data
● Use persistent sequential instead of ephemeral 

sequential



  

Concurrent delete table

● Table deleted during read or write 1.3
● Most likely, scan hangs forever
● Rarely, permission exception thrown (seen in test)

● In 1.4 check if table exists when :
● Nothing in !METADATA
● See a permission exception



  

Rogue threads
● Bulk import fate op pushes work to tservers
● Threads on tserver execute after fate op done
● Master deletes WID in ZK, waits until counts 0

Tablet server worker thread

SynchronizedSynchronized

Start WID
Exist?

cnt[WID]++
Do

work
cnt[WID]--

exit



  

Create Table Ops

1. CreateTable
● Allocates table id

2. SetupPermissions

3. PopulateZookeeper
● Reentrantly lock table in isReady()
● Relate table name to table id

4. CreateDir

5. PopulateMetadata

6. FinishCreateTable



  

Random walk concurrent test

● Perform all table operation on 5 well known 
tables

● Run multiple test clients concurrently
● Ensure accumulo or test client does not crash 

or hang
● Too chaotic to verify data correctness
● Found many bugs



  

Future Work

● Allow multiple processes to run fate operations
● Stop polling
● Hulk Smash Tolerant



  

Other 1.4 Features



  

Tablet Merging

● Splits exists forever; data is often aged off
● Admin requested, not automatic
● Merge by range or size



  

Merging Minor Compaction

● 1.3: minor compactions always add new files:

● 1.4: limits the total of new files:



  

Merging Minor Compactions

● Slows down minor compactions
● Memory fills up
● Creates back-pressure on ingest
● Prevents “unable to open enough files to scan”



  

Table Cloning

● Create a new table using the same read-only 
files

● Fast
● Testing

● At scale, with representative data
● Compaction with a broken iterator: no more data

● Offline and Copy
● create an consistent snapshot in minutes



  

Range Operations

● Compact Range
● Compact all tablets that fall within a row range down 

to a single file
● Useful for tail-insert indexes
● Data purge

● Delete Range
● Delete all the content within a row range
● Uses split and will delete whole tablets for efficiency
● Useful for data purge



  

Logical Time for Bulk Import

● Bulk files created on different machines will get 
different actual times (hours)

● Bulk files always contain the timestamp created 
by the client

● A single bulk import request can set a 
consistent time across all files

● Implemented using iterators



  

Roadmap



  

1.4.1 Improvements

● Snappy, LZ4
● HDFS Kerberos compatability
● Bloom filter improvements
● Map Reduce directly over Accumulo files
● Server side row select iterator
● Bulk ingest support for map only jobs
● BigTop support
● Wikisearch example improvements



  

Possible 1.5 features



  

Performance

● Multiple namenode support
● WAL performance improvements
● In-memory map locality groups
● Timestamp visibility filter optimization
● Prefix encoding
● Distributed FATE ops



  

API

● Stats API
● Automatic deployment of iterators
● Tuplestream support
● Coprocessor integration
● Support other client languages
● Client session migration



  

Admin/Security

● Kerberos support/pluggable authentication
● Administration monitor page
● Data center replication
● Rollback/snapshot backup/recovery



  

Reliability

● Decentralize master operations
● Tablet server state model



  

Testing

● Mini-cluster test harness
● Continuous random walk testing
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