
Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Accumulo – Extensions to Google’s Bigtable
Design

Adam Fuchs

National Security Agency
Computer and Information Sciences Research Group

March 29, 2012

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Contents

1 Design Drivers

2 Apache Accumulo
Intro to Bigtable
Iterators
FATE
Major Compaction

3 Design Patterns

4 F̀ın

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Progress

1 Design Drivers

2 Apache Accumulo
Intro to Bigtable
Iterators
FATE
Major Compaction

3 Design Patterns

4 F̀ın

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Design Drivers

Analysis of big data is central to our customers’ requirements, in which the
strongest drivers are:

Scalability: The ability to do twice the work at only (about) twice the cost.

Adaptability: The ability to rapidly evolve the analytical tools available in
an operational environment, building upon and enhancing existing
capabilities.

From these directives we can derive the following requirements:

Simplicity in the overall architecture to encourage collaboration and
ameliorate learning curve.

Generic design patterns to store and organize data whose format we don’t
control.

Generic discovery analytics to retrieve and visualize generic data.

Solutions for common sub-problems, such as multi-level security and
enforcement of legal restrictions, built into the infrastructure.

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Optimization

... is a secondary concern, given:

hundreds of evolving applications,

hundreds of changing data sources,

non-trivial data volumes,

many complicated interactions.

Instead, we need a generic platform that is cheap, simple, scalable, secure, and
adaptable, with pretty good performance.

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Progress

1 Design Drivers

2 Apache Accumulo
Intro to Bigtable
Iterators
FATE
Major Compaction

3 Design Patterns

4 F̀ın

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Apache Accumulo

First code written in Spring of 2008

Open-sourced as an Apache Software Foundation incubator podling in
September, 2011

Graduated to Top-Level Project in March, 2012

Mostly a clone of Bigtable, but includes several notable features:

Iterators: a framework for processing sorted streams of key/value
entries
Cell-level Security: mandatory, attribute-based access control with
key/value granularity
Fault-Tolerant Execution Framework (FATE)
A compaction scheduler with nice properties

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Progress

1 Design Drivers

2 Apache Accumulo
Intro to Bigtable
Iterators
FATE
Major Compaction

3 Design Patterns

4 F̀ın

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Basic Data Type

An Accumulo Key is a 5-tuple, including:

Row: controls Atomicity

Column Family: controls Locality

Column Qualifier: controls Uniqueness

Visibility: controls Access (unique to Accumulo)

Timestamp: controls Versioning

Sample Entries

Row : Col. Fam. : Col. Qual. : Visibility : Timestamp ⇒ Value
Adam : Favorites : Food : (Public) : 20090801 ⇒ Sushi
Adam : Favorites : Programming Language : (Private) : 20090830 ⇒ Java
Adam : Favorites : Programming Language : (Private) : 20070725 ⇒ C++
Adam : Friends : Bob : (Public) : 20110601 ⇒
Adam : Friends : Joe : (Private) : 20110601 ⇒

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Tablets

Collections of
key/value pairs
form Tables

Tables are
partitioned into
Tablets

Metadata tablets
hold info about
other tablets,
forming a
three-level
hierarchy

A Tablet is a unit
of work for a
Tablet Server

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Distributed Processes

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Progress

1 Design Drivers

2 Apache Accumulo
Intro to Bigtable
Iterators
FATE
Major Compaction

3 Design Patterns

4 F̀ın

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Tablet Server Composition

Quick and loose definitions:

Table: A map of keys to values with one global sort order among keys.
Tablet: A row range within a Table.
Tablet Server: The mechanism that hosts Tablets, providing the primary
functionality of Bigtable or Accumulo.

Tablet servers have several primary functions:

1 Hosting RPCs (read, write, etc.)

2 Managing resources (RAM, CPU, File I/O, etc.)

3 Scheduling background tasks (compactions, caching, etc.)

4 Handling key/value pairs

Category 4 is almost entirely accomplished through the Iterator framework.

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Tablet Server Data Flow

Iterator Uses

File Reads

Block Caching

Merging

Deletion

Isolation

Locality Groups

Range Selection

Column Selection

Cell-level Security

Versioning

Filtering

Aggregation

Partitioned Joins

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Iterators

An Iterator is an object that
provides an ordered stream of
entries (key/value pairs), and
supports basic selection and
filtering methods.

Core Iterators provide a basic view
of a tablet’s entries, implementing:

File Reads
Block Caching
Merging
Deletion
Isolation
Locality Groups
Range Selection
Column Selection
Cell-level Security

Application-level Iterators modify
table semantics to provide custom
views, persisted or otherwise:

Versioning
Filtering
Aggregation
Partitioned Joins

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Modified Key/Value Pair Definition

An Accumulo Key is a 5-tuple, including:

Row: controls Atomicity

Column Family: controls Locality

Column Qualifier: controls Uniqueness

Visibility: controls Access (unique to Accumulo)

Timestamp: controls Versioning

Sample Entries

Row : Col. Fam. : Col. Qual. : Visibility : Timestamp ⇒ Value
Adam : Favorites : Food : (Public) : 20090801 ⇒ Sushi
Adam : Favorites : Programming Language : (Private) : 20090830 ⇒ Java
Adam : Favorites : Programming Language : (Private) : 20070725 ⇒ C++
Adam : Friends : Bob : (Public) : 20110601 ⇒
Adam : Friends : Joe : (Private) : 20110601 ⇒

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Visibility Label Syntax and Semantics

Document Labels
Doc1 : (Federation)
Doc2 : (Klingon|Vulcan)
Doc3 : (Federation&Human&Vulcan)

Doc4 : (Federation&(Human|Vulcan))

User Authorization Sets
CptKirk : {Federation,Human}

MrSpock : {Federation,Human,Vulcan}

Syntax

WORD ⇒ [a-zA-Z0-9]+
CLAUSE ⇒ AND

⇒ OR
AND ⇒ AND & AND

⇒ (CLAUSE)
⇒ WORD

OR ⇒ OR | OR
⇒ (CLAUSE)
⇒ WORD

Semantics
(T ⇒ τ) ∧ (τ ∈ A)

(T,A) |= true
term

(T ⇒ T1 & T2) ∧ ((T1,A) |= true) ∧ ((T2,A) |= true)

(T,A) |= true
and

(T ⇒ T1 | T2) ∧ (((T1,A) |= true) ∨ ((T2,A) |= true))

(T,A) |= true
or

(T ⇒ (T1)) ∧ (T1 |= true)

(T,A) |= true
paren

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Cell-Level Security Iterator

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Aggregation

Goals: Count the number of times a word appears in a
dynamic corpus, and count the number of documents
that contain a given word.

Sample Corpus

Doc1 : "foo and bar are common variable names"

Doc2 : "one cannot live on bar food alone"

Doc3 : "Mr.T pities the fool at the bar"

Doc4 : "someone should invent the kung foo bar"

Input Key/Value Pairs:

Row Column Value

alone Doc2 1
and Doc1 1
are Doc1 1
at Doc3 1
bar Doc1 1
bar Doc2 1
bar Doc3 1
bar Doc4 1
cannot Doc2 1
common Doc1 1
foo Doc1 1
foo Doc4 1
food Doc2 1
fool Doc3 1
invent Doc4 1
kung Doc4 1
live Doc2 1
Mr.T Doc3 1
names Doc1 1
on Doc2 1
one Doc2 1
should Doc4 1
someone Doc4 1
pities Doc3 1
the Doc3 1
the Doc3 1
the Doc4 1
variable Doc1 1

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

A Simple Aggregator

Aggregators replace the
“versioning” functionality of a table

Any associative, commutative
operations on the values for a
given key can be encoded in an
aggregator

Aggregators can persist an
aggregation of the entries written
to the table

Aggregators are significantly more
efficient than a read-modify-write
loop due to “lazy” aggregation

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Composing Multiple Iterators

We can compose multiple Iterators
by streaming the results of one
Iterator through another Iterator

Partial aggregation for the
persisted view keeps the table small

Additional iterators and
aggregators implement different
discovery analytics at query time

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Accumulo vs. HBase Atomic Increment

HBase performs a server-side upsert (read-modify-write),
taking advantage of previous value being resident in
write-cache

Accumulo buffers inserts and aggregates lazily but
consistently, taking advantage of merge-tree data streams

Both methods implement the same atomic increment
semantics

Performance varies wildly...

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Increment Performance Comparison

Write Performance Read Performance

Aggregator wins for write performance with many different keys

Upsert wins for read performance with a small number of keys

Can we use both approaches?

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Multi-Term Query with Document Partitioning

Goal: Find all of the documents that contain
the words “foo” and “bar”.

Partitioned Corpus

Doc1 : "foo and bar are common variable names"

Doc2 : "one cannot live on bar food alone"

Doc3 : "Mr.T pities the fool at the bar"

 Partition1

Doc4 : "someone should invent the kung foo bar"
}

Partition2

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Document Partitioning

Divide and Conquer:

Row ColFam ColQual
Part1 alone Doc2
Part1 and Doc1
Part1 are Doc1
Part1 at Doc3
Part1 bar Doc1
Part1 bar Doc2
Part1 bar Doc3
Part1 cannot Doc2
Part1 common Doc1
Part1 foo Doc1
Part1 food Doc2
Part1 fool Doc3
Part1 live Doc2
Part1 Mr.T Doc3
Part1 names Doc1
Part1 on Doc2
Part1 one Doc2
Part1 pities Doc3
Part1 the Doc3
Part1 variable Doc1

Row ColFam ColQual
Part2 bar Doc4
Part2 foo Doc4
Part2 invent Doc4
Part2 kung Doc4
Part2 should Doc4
Part2 someone Doc4
Part2 the Doc4

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Partitioned Join Iterator

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Wikipedia Search Engine Experiment

Goals:

Create a generic text indexing platform

Support a complex query language (i.e. mappable from Lucene)

Scale to multiple nodes

Support low-latency updates

Support automatic balancing and fail-over

Data

Three languages of Wikipedia:
EN, ES, DE

5.9 million articles

2.37 billion (word,document)
tuples

11.8 GB (compressed)

Cluster

10 Nodes

30 TB disk (60x500GB drives)

120 cores

320 GB RAM

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Wikipedia Search Results

Tested on conjunctions of high-degree terms

Retrieved entire contents of articles matching queries

Paging possible for ultra-low latency response time

Query Performance

Query Samples (seconds) Matches Result Size
“old” and “man” and “sea” 4.07 3.79 3.65 3.85 3.67 22,956 3,830,102
“paris” and “in” and “the” and “spring” 3.06 3.06 2.78 3.02 2.92 10,755 1,757,293
“rubber” and “ducky” and “ernie” 0.08 0.08 0.10 0.11 0.10 6 808
“fast” and (“furious” or “furriest”) 1.34 1.33 1.30 1.31 1.31 2,973 493,800
“slashdot” and “grok” 0.06 0.06 0.06 0.06 0.06 14 2,371
“three” and “little” and “pigs” 0.92 0.91 0.90 1.08 0.88 2,742 481,531

Documents per Term

Term Cardinality
ducky 795
ernie 13,433
fast 166,813
furious 10,535
furriest 45
grok 1,168

Term Cardinality
in 1,884,638
little 320,748
man 548,238
old 720,795
paris 232,464
pigs 8,356

Term Cardinality
rubber 17,235
sea 247,231
slashdot 2,343
spring 125,605
the 3,509,498
three 718,810

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Iterator Summary

Iterators provide a modular implementation of Tablet Server
functionality, resulting in:

Reduced complexity of Tablet Server code

Increased unit testability

Simple extensibility for specialized applications

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Progress

1 Design Drivers

2 Apache Accumulo
Intro to Bigtable
Iterators
FATE
Major Compaction

3 Design Patterns

4 F̀ın

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

The Perils of Distributed Computing

Dealing with failures is hard!

Operations like table creation are logically atomic, but consist of multiple
operations on distributed systems.

Resource locking (via mutex, semaphores, etc.) provides some sanity.

Distributed systems have many complicated failure modes: clients, master,
tablet servers, and dependent systems can all go offline periodically.

Who is responsible for unlocking locks when any component can fail?

How do we know it’s safe to unlock a lock?

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Accumulo Testing Procedures

Testing Frameworks

Unit: Verify correct functioning of
each module separately

System: Perform correctness and
performance tests on a small
running instance

Load/Scale: Generate high loads
at scale and measure performance
and correctness

Random Walk: Randomly,
repeatedly, and concurrently
execute a variety of test modules
representative of user activity on
an instance at scale

Simulation: Evaluate the model to
gauge expected performance

Other Considerations
Scoping tests to include
server-side code, client-side code,
dependent processes, etc.

Code coverage vs. path coverage

Static vs. dynamic analysis

Simulating failures of distributed
components

Strange failure modes (often
hardware/physics-related)

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Fault-Tolerant Executor

If a process dies, previously submitted operations continue
to execute on restart.

FATE serializes every task in Zookeeper before execution.

The Master process uses FATE to execute table operations
and administrative actions.

FATE eliminates the single point of failure.

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Adampotence

Idempotent: f (f (x)) = f (x)

Adampotent: f (f ′(x)) = f (x),
where f ′(x) denotes partial execution of f (x)

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

REPO: Repeatable Persisted Operation

public interface Repo<T> extends Serializable {

long isReady(long tid, T environment) throws Exception;

Repo<T> call(long tid, T environment) throws Exception;

void undo(long tid, T environment) throws Exception;

}

call() returns next op, null if done

call(), undo(), and isReady() must be adampotent

undo() should clean up any possible partial execution of isReady() or
call()

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

FATE API

Client API

long startTransaction();

void seedTransaction(long tid, Repo op);

TStatus waitForCompletion(long tid);

Exception getException(long tid);

void delete(long tid);

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

FATE Execution State Model

Operation States Executor States

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

CreateTable FATE Op

Steps for CreateTable Operation:

1 Reserve a Table ID

2 Set Table Permissions

3 Populate Configuration in Zookeeper

Reentrantly lock table
Relate table name to table ID

4 Create HDFS Directory

5 Populate Metadata Table Entries

6 Finish Create Table

Notify Master of new tablet(s)
Unlock table

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

FATE Admin Tool

$./bin/accumulo org.apache.accumulo.server.fate.Admin print

txid: 59c0403614dc0c39 status: IN_PROGRESS op: RenameTable locked: [] locking: [W:cz] top: RenameTable

txid: 37539f8d61548764 status: IN_PROGRESS op: ChangeTableState locked: [] locking: [W:cz] top: ChangeTableState

txid: 02f8323a3136e60d status: IN_PROGRESS op: TableRangeOp locked: [] locking: [W:cz] top: TableRangeOp

txid: 044015732e97eec1 status: IN_PROGRESS op: CompactRange locked: [] locking: [R:cz] top: CompactRange

txid: 6ce9dd63f9d51448 status: IN_PROGRESS op: CompactRange locked: [] locking: [R:cz] top: CompactRange

txid: 417cb9b60e44ecd9 status: IN_PROGRESS op: TableRangeOp locked: [] locking: [W:cz] top: TableRangeOp

txid: 5e7c5284a4677d6c status: IN_PROGRESS op: DeleteTable locked: [] locking: [W:cz] top: DeleteTable

txid: 6633d3d841d66995 status: IN_PROGRESS op: TableRangeOp locked: [W:cz] locking: [] top: TableRangeOpWait

Monitoring tool for FATE operations

Supports debugging, such as with deadlocks

Helps recovery from failed clients

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

FATE Summary

FATE provides generic fault tolerance for
administrative actions

With FATE, we removed custom
synchronization code for a dozen
procedures

Table-level locking is now low risk

Improves testability

Reduces complexity

Increases modularity

FATE Operations

BulkImport

ChangeTableState

CloneTable

CompactRange

CreateTable

DeleteTable

RenameTable

TableRangeOp

DisconnectLogger

FlushTablets

ShutdownTServer

StopLogger

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Progress

1 Design Drivers

2 Apache Accumulo
Intro to Bigtable
Iterators
FATE
Major Compaction

3 Design Patterns

4 F̀ın

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Major Compaction Efficiency

Major Compaction: Noun. The tablet operation that merges multiple
files into one file.

Overly aggressive major compaction results in N2 write
complexity

Overly lazy major compaction results in disk thrashing during
queries (or unavailable tablets)

Tuning major compaction operations is a trade-off between
ingest and query performance

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Accumulo Major Compaction Algorithm

1 let r ≥ 1.0 be some ratio

2 F ⇐ all files referenced by a tablet

3 if F is empty then exit

4 f0 ⇐ biggest file in F

5 a⇐ aggregate size of files in F

6 if a > r |f0| then compact all files in F and exit

7 otherwise, remove f0 from F and go to step 3

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Major Compaction Performance

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Progress

1 Design Drivers

2 Apache Accumulo
Intro to Bigtable
Iterators
FATE
Major Compaction

3 Design Patterns

4 F̀ın

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Design Patterns

Our use of Accumulo fundamentally differs from how we use RDBMS
technology. In particular, Accumulo supports:

Wide, sparse rows

Indexes that span multiple columns

To adapt Accumulo for use in our applications, we have formalized
several design patterns for Accumulo (or any Bigtable clone)
including:

Information Retrieval Patterns and Discovery Analytics

Graph Analysis Patterns

Machine Learning Patterns

...

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Event Table with Inverted Index

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Inverted Index Flow

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Document Partitioned Index

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Document Partitioned Flow

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Multidimensional Index

See also: http://en.wikipedia.org/wiki/Geohash

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Graph Table

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Progress

1 Design Drivers

2 Apache Accumulo
Intro to Bigtable
Iterators
FATE
Major Compaction

3 Design Patterns

4 F̀ın

Accumulo

Adam Fuchs

Design Drivers

Apache
Accumulo

Intro to Bigtable

Iterators

FATE

Major
Compaction

Design
Patterns

F̀ın

Other Accumulo Features

Check out Apache Accumulo (http://accumulo.apache.org/) for interesting
implementations of:

Merging Tablets

Table Cloning: Hard link-style table copying

Relative Key Encoded RFile file format

Adaptive locality groups

Isolation over scans of wide rows

Bulk loading

Logical time

Client-side threading models for batch writes and scans

Merging minor compactions

Distributed write-ahead log

	Design Drivers
	Apache Accumulo
	Intro to Bigtable
	Iterators
	FATE
	Major Compaction

	Design Patterns
	Fìn

