
Author: Marek Kowalski
Contacts: kowalski0123 (at) gmail.com

Introduction to FEAT

Feat is a set of utility classes build on top of well known twisted python library
which simplifies the development of cloud applications. Feat based application
consists of some number of agents of different types which form a ’society’ to
solve some a given problem.

What kind of problem would that be ? Well, anything that requires the
usage of multiple hosts and communicating between them would qualify. It has
been created to help us develop the backend of www.livetranscoding.com.

The goal set upon was to handle the huge number of encoding units, keep
track of their cpu, memory and bandwidth usage and run some network services
on them, which, in the end of the day, produce the correct stream.

To make the system predictable it had to be highly testable. To meet this
requirement we have introduced the concept of dependency labours and execu-
tion mode. The real resource consuming work is performed by production mode
labour implementation. For testing and simulation purpose we have different
implementations which merely expose the same interface, without burdening
cpu too much.

The code of the agents themselves is replayable. It means that while the
service is running we record and store on disk1 enough information to be able
to restore state of any agent in any time in history. This led us to introduce
the concept of the hamsterball. Inside we put the code which meats the highest
standards of predictability and allow only synchronous computation. Whatever
crosses the edge of the hamsterball is being recorded. This subject will be
discussed further below.

To ensure the reliability of the system, every agent is monitored. If he dies
his partners will get notified, someone will take care to restart him or take other
meaningful action. Important part here is that an agent can obtain and store a
reference to the other agent running on a different machine. Framework ensures
that if the agent dies or changes address this entry will be updated.

Structure of the feat service

Feat runs multiple processes. They communicate thought an unix socket. The
process which manages to listen on the unix socket becomes the master, all the
following one take the slave role.

Master agency is running all the agents, and managing logging and journaling
tasks. Slave agencies access these services through perspective broker interface.
In future version we also plan to reuse the same mechanism for sharing connec-
tions to messaging and database servers in order to reduce the footprint of the
agency. However right now every agency manages its own connections.

We always have at least two agencies. We will have more than two if the we
run a standalone agent2. If one agency is killed the rest of them will get notified
through the socket. If we are down to only one agency, it will spawn another

1it’s getting stored in a journal, which for the current version is a sqlite3 database.

1

http://xkcd.com/152/

one. This mechanism is thought as a form of the local monitoring, our first line
of defense in the struggle for the reliable service.

Single feat process structure

Roughly speaking we can divide objects in feat process memory into three cat-
egories: twisted layer, agency and agent code. Twisted layer consists of reactor,
protocols, factories run by both agency and the agent labours. This article is
not going into depths of this part.

Agency. Agency is responsible for providing the environment necessary for
the agents to run. It creates a layer between the agents code and twisted
framework, allowing developers to create highly testable, reliable code. Feat
comes with various implementations of the agency. The main one, called network
agency, is used in the real process. Apart from that we have slightly different
implementations for running tests and different for simulations.

To explain further, for example simulation agency does not require Rab-
bitMQ or CouchDB servers running. It simulates their behavior vastly simpli-
fying the setup of the environment needed for running tests.

The following subsections introduces most important components of the
agency. This is not a complete list though.

Messaging This component is responsible for dispatching messages be-
tween the agents. It’s built on top of the amqp protocol and shares its termi-
nology.

For production, network implementation we use txAMQP library. On top of
it there is a layer which ensures it works regardless if we are currently connected.
If we’re not the library calls are queued and wait for the reconnection.

The strategy of using amqp can be summarized in following points:

∙ Every agent owns a queue. The queue name is the agent_id.

∙ For every agent we create a direct binding between the shard exchange
(for explanation what shard is look in the cluster section) and his queue.
The routing key is agent_id.

∙ In case of agent expressing interest in one-to-many type of communica-
tion (called later the public interest) another direct binding is created be-
tween his queue and the shard exchange. The routing key it protocol_id
(uniquely identifying type of protocol).

∙ There is one special exchange called lobby which we use for discovering
globally defined public interest. If agent wants to be accessible in this way
it results in creating the direct binding between exchange named lobby
and his queue.

∙ The queue and it’s binding are deleted when the agents terminates in the
clean way. It continues to exist and cumulate messages in case of the
violent agents death.

2It’s possible to start an agent in a way that he is always separated in his own process.
This is useful for running integrating with other twisted projects which would, for instance
use different reactor or run code which is likely to leak memory, segfault of whatever.

2

https://launchpad.net/txamqp

Tunneling. This component provides the alternative way of sending mes-
sages between agents. In this case the connection between the agencies is direct,
no external server is used. The connection is done over HTTPS protocol.

This feature is used for communicating between agents leaving in different
clusters. Also it might be used in future for reducing the load of RabbitMQ
server. Any high rate messages might be sent through this channel instead
which obviously has better scaling properties.

For the agent to send a message using this channel instead the standard one
it’s enough to enable the tunnel channel3 and pass a correct IRecipient.

Database. It’s responsible for storing persistent state of the agents. We
use a document oriented database backend. In production environment the
CouchDB server is used.

Every agent owns a document (called descriptor further on) in which he
stores all the information which should survive him being restarted. In general
all agents store there the allocated resources and the references to their partners.

Only the owner of the descriptor can update it. In case it has been updated
by someone else the agent dies violently. This is the means of solving the
network split scenario, where cluster gets divided into two parts, the agents get
duplicated and then the connections is reestablished.

Manhole. Agency runs a SSH server. A developer may connect to it using
normal ssh client to perform maintenance and/or debugging tasks. The part
of feat configuration is the path to authorized_keys file. After logging in one
can see the command line service understanding a python-like syntax. It lets
traverse through the instances and call the methods decorated with the proper
decorator4.

Also same pseudo language is understood by the simulation driver.

Gateway. Gateway opens a HTTPS server that can be used to quickly
navigate through the cluster and inspect it’s state. It requires client’s SSL
certificate to connect. To configure it you need to specify the p12 certificate file.

For some tasks gateway is way more comfortable to use than ssh. The reason
for introducing this component is to build a GUI interface for the whole cluster
fetching information from it. But this is far future.

The direction this component is going is the MVP (model-view-presenter)
pattern. However it’s still very much work in progress, currently only HTML
format is supported and it has to be generated somewhat by hand.

Broker. Is managing communication with other feat processes running on
the same machine through the UNIX socket. It’s responsible for the process
of the agency role negotiation (master/slave) and manages the list of other
processes. It also exposes the interfaces necessary for other components to
obtain the reference to objects living in a different process. This is useful for
sharing services through the unix socket instead of concurring, for example, on

3Call enable_channel(’tunnel’) on medium class.
4feat.common.manhole.expose

3

database writes. Example of service shared this way is Journaler (explained
below). In future we intend to do the same with Messaging and Database.

Journaler. Journaler is responsible for storing the journal and log entries.
On one side it is integrated with the layer of the medium class recording exe-
cution chain coming in and out of the hamsterball. On the other end it passes
information to the writer which inserts it to sqlite database or sends it to the
unix socket.

Medium class. The medium class (AgencyAgent) is the one the agent is
given the reference to. Agency creates one instance of it for every agent it runs.
This is the most complex part of the agency side. It creates a proxy between
the agent code and the outside world. Essentially it creates the border of the
hamsterball and keeps track of its contents.

There are two significantly different implementations of the medium class.
One is used for runnnig code and the other one for replaying it. The implemen-
tation used in replay stubs out all the actual effect of the agent’s side calls, only
validating its correctness.

(Un)serializer. This is more an utility than an agency component, al-
though it’s definitely worth mentioning. Feat comes with a very powerful se-
rialization module. It is capable of serializing and unserializing any complex
structure of objects implementing ISerializable interface. It most of the typical
serialization gotchas like cyclic references, different strings encoding, etc.

It allows creating very specific unserialization schemas. Example of one of
them would be a process of loading a snapshot into a replay hamsterball. The
unserializer registry used there is built in a way to substitute some agency-side
instances with the ones specific for the replay.

It’s also worth mentioning that the logic of the serializer is separated from
the formater. This allowed is to support multiple formats the serialization can
(un)serialize to/from:

∙ json,

∙ pytree,

∙ sexp,

∙ banana.

Agent code. The code of an agent is special in many ways. It’s important to
understand the concepts behind, because using feat framework 90% of the time
means writing and testing the agent-side code. The following chapter is fully
dedicated the rules that inhabitants of the hamsterball need to obey. Here we
concentrate on listing the various types of objects encountered inside, without
getting into the details on how they are done.

4

Agent class. It inherits from Base Agent class5. There is a number of
methods called by the agency during the lifespan of the agent. Take a look at
state machine diagram for reference6. Important note: this methods are called
with MRO calls, meaning that whatever class you mix it to agent it’s methods
will get invoke. You shouldn’t care about calling the super class implementation.

Protocol classes. Agents use them to communicate with other agents.
We have 3 types of protocols: notifications, requestes, contracts. Roughly speak-
ing they differ in the level of complexity. There is always an initiating part of
protocol and one or more interested parts. The characteristics of the protocols
we have goes as follows:

∙ Notifications are just the single messages. The initiating side is called
poster7 and interested in called collector8. These objects are not protected
by any timeouts. Depending on type of interest9 the notification it can be
used for 1 to 1 or 1 to many communication.

∙ Requests consist of two messages: the request and reply. So the initiating
side knows whether the request has been handled or not. It can only be
used for 1 to 1 communication, meaning you have to known the exact
IRecipient10 of the agent you’re sending the request to. The initiating
side of the dialog is called requester11 and the interested side is called
replier12.

∙ Contracts are the means of performing transactions between agents. The
initiating side is called manager13 and interested is called contractor14.
Contracts can be used as well for 1 to 1 as for 1 to many communication.
To make things even more complicated, the contractor may decide to nest
the contract, becoming a manager for some other group of contractors.
This mechanism is used for example for discovering the free resources;
agents always try to find it first in his own neighborhood, but if it’s not
possible the search is continued further15

5feat.agents.base.agent.BaseAgent
6it can be found under path docf/uml/agency_agent.xmi
7subclass of feat.agents.base.poster.BasePoster
8subclass of feat.agents.base.collector.BaseCollector
9Interests can be private or public. Roughly speaking registering a public interest results

in agent creating another AMQP binding with the key specific for the given protocol. This
way multiple agents can get the same message and sending side knowing the list of recipients.

10Address of the agent can be extracted from various objects. It’s done by adapting it to
feat.interface.recipient.IRecipient interface.

11subclass of feat.agents.base.requester.BaseRequester
12subclass of feat.agents.base.replier.BaseReplier
13subclass of feat.agents.base.manager.BaseManager
14subclass of feat.agents.base.contractor.BaseContractor
15For better understanding of the contract protocol take a look - at

./doc/uml/messaging_protocols.xmi diagram and review the following interfaces mod-
ules: feat.interface.contractor, feat.interface.manager.

5

Tasks. They are in fact a special case of protocols. The difference is that
tasks are not necessarily used for communication with other agents. Clearly they
can do this, but using as the building blocks one or more of the protocols listed
above. Tasks represent any piece of work to be done by the agent. This work
usually includes many steps and asynchronous calls. Tasks also have the state
on their own in which they can store the partial results and later take decisions
upon them. This way the outcome code is much easier to read comparing to
the situation when the partial results are just passed along through the chain
of asynchronous calls.

The point of existence of the tasks is separation of logic. By default tasks
are protected by the timeout, but it’s possible to disable this behavior creating
the so called long running tasks16.

Custom replayables. One can always inherit from the base replayable
class17 and create whatever piece of logic he needs. The example of such class is
Partners module18 which is responsible for tracking the references to the other
agents and reacting on events. The next chapter is dedicated creating classes
like this.

Concept of the hamster ball

Hamsterball has been created to make code running inside feel safe and com-
fortable. All the calls happening inside are tracked and recorded in the journal.
Using feattool application one can load a journal and replay it step by step
looking at the state of instances inside in any moment.

This is extremely powerful, but there is no free lunches, everything comes
with the price. The constrains set up to make replayability work can be summa-
rized in the following points (they are explained further below in this section):

∙ Each object has a state, which he guards against the changes done outside
of his context.

∙ All the decisions done by the replayable instance are done from inside the
methods, which calls are recorded in the journal.

∙ The replayable objects can be created only in replayable context.

∙ Changes done in the state outside of these methods are considered a
bug.

∙ Running the asynchronous task (running something which return a De-
ferred and binding a callback) inside the replayable code is considered a
bug.

∙ Object leaving inside the hamster ball cannot be changed from outside.

∙ All the objects which are being put into the state needs to be serializable19.

16Example of such tasks is the HeartbeatTask run by every monitored agent. It is defined
in feat.agents.monitor.pacemaker module.

17feat.agents.base.replay.Replayable
18feat.agents.base.partners.Partners

6

https://github.com/f3at/feattool

∙ Also they need to implement custom __eq__ (and __ne__) methods
to compare with other instances. Here we should compare True if the
instance are logically equal.

MutableState object

Replayable instance keep their state in MutableState object. You can access
it only from inside of the class. You should not use the instance attribute
for storing your state. If you do the journal will be missing some information
necessary to recreate the life of the agent.

The simplest replayable one can think of would look somewhat like this:

from feat.agents.base import replay

class ReplayableObject(replay.Replayable):

def __init__(self, recorder, *args, **kwargs):

replay.Replayable.__init__(self, recorder, *args, **kwargs)

def init_state(self, state, recorder, *args, **kwargs):

state.variable = ’whatever’

A lot of moving points here, lets explain a little:

∙ The __init__() argument recorder needs to implement the journal.IRecorderNode
and journal.IJournalKeeper interfaces. Any other instance of Replayable
will do. You can pass the agent, a task or even a medium class here.

∙ The init_state() method is initializing the state of the object after it has
been created. It is not in replayable context. It will run in the replay
mode only if the object is created from the replayable function body. If
the object is loaded from the snapshot the method will not run. This
method also doesn’t perform any asynchronous job, it should not return
anything.

Modifying the state

So how do we access the state once it has been created? This is as simple as
providing the correct decorator to the function. Lets take a look at the code:

class MutatingReplayable(replay.Replayable):

def init_state(self, state, recorder, first_value):

state.value = first_value

@replay.mutable

def add_one(self, state):

state.value += 1

19They need to implement feat.interface.serializaton.ISerializable or more simply subclass
feat.common.serialization.Serializable.

7

@replay.immutable

def get_value(self, state):

return state.value

@replay.journaled

def create_some_object(self, state):

SomeOtherReplayableObject()

In the example above the following points are worth to mention:

∙ The init_state() function takes extra parameter which it puts into the
state.

∙ The add_one() method is marked as a replay.mutable, which has the
following effects:

– The method will receive the state of the object as a parameter. It
still should be called as instance.add_one() with no arguments. The
state argument is injected by the decorator logic.

– Running it will create a journal entry. This journal entry will include
the serialized parameters, the side effects run and the created fiber
(to be explained further).

∙ The get_value() method is marked as replay.immutable. This means that:

– The journal entry will not be created for the calls of this one. It
will be run in the replay mode only if triggered from inside of the
methods decorated with mutable or journaled.

– The whole gain from using this decorator is that we get the access to
the state. It is especially useful for running methods on the objects,
references to which we keep in our state.

– Note: even though we have a reference to the state in this method,
modifying it would be a bug. For this you should use mutable
decorator.

∙ The method create_some_object() doesn’t change the internal state of
the object, however it still needs to run in the replay context. The reason
for this is that it creates an object which would live inside the hamster
ball. We want this method to be replayed when recovering the journal.
The difference between journaled and | mutable decorator is that functions
marked asmutable can modify the state. We use journaled decorator when
we just want to mark the code as running inside the hamsterball.

What not to do

Below the few examples of code which should never be written.:

class VeryBadClass(replay.Replayable):

def get_to_the_state_in_illegal_way(self):

state = self._get_state()

state.variable = 5

8

@replay.mutable

def use_instance_variable_to_take_decisions(self, state):

’’’

The instance variable will not be set correctly during

the replay. This means that the state modified basing

on they values will probably be wrong.

’’’

if self.weather == ’sunny’:

state.variable = 5

else:

state.variable = 10

@replay.mutable

def use_async_to_modify_the_state(self, state):

’’’

We don’t want this to happen during the replay mode.

The communication needs to be mocked out. The correct

way of doing this is creating a Fiber and making the

store_result mutable instance method.

’’’

from twisted.web import client

def store_result(result):

state.result = result

d = client.getPage(url)

d.addCallback(store_result)

@replay.immutable

def modify_the_state_from_immutable(self, state):

’’’

For Gods sake! Use the freaking mutable for this!

’’’

state.variable = 5

@replay.mutable

def pseudorandom_or_nondeterministic_call(self, state):

’’’

The way to get around this limitation is to use the

function inside the side effect function. This way it

will not be run again during the replay, its result

will be stored and reused.

’’’

import uuid

state.name = str(uuid.uuid1())

9

Getting around the constrains.

So far the limitations presented make the usefulness of the framework question-
able. Using twisted without the Deferred would be quite devastating. Also it is
quite obvious that in the end we need to call methods which result is nondeter-
ministic (they use IO operations for example). The solution to the problem is
quite complex, but can be summarized with the following rule: if something is
not neat enough to live inside the hamster ball, we need to delegate it outside.
Framework supplies us with two powerful tool for performing this task: the
fibers and the side effects.

Fibers Fibers are the serializable representation of the asynchronous chain of
events. They have a lot in common with the Deferreds. The key difference is
that the Fiber can be created, triggered, but it will not start performing before
the execution frame gets out of the hamsterball. When it happens the Fiber is
run and transformed into the Deferred. From the outside-of-hamsterball point
of view the code leaving inside always returns the Deferred.

Here is the correct implementation of function getting the web page and
storing it to the state from the previous section:

from twisted.web import client

from feat.common import fiber

from feat.agents.base import replay

class BetterClass(VeryBadClass):

@replay.mutable

def use_async_to_modify_the_state(self, state, url):

state.url = url

f = fiber.Fiber()

f.add_callback(client.getPage)

f.add_callback(self.store_result)

f.add_errback(self.handle_error)

return f.succeed(url)

@replay.mutable

def store_result(self, state, result):

state.result = result

So what happens here is quite complex. The entry point is the use_async_to_modify_the_state()
method being run. It stores the url inside the state and constructs the fiber.
The client.getPage is not run from this method though. Although the fiber is
trigger with the succeed(url) call, it is not started yet. It will get started when
the execution frame leaves the hamster ball, by the mutable() decorator. When
this happens the client.getPage will be run, and the .store_result method will
be added as its callback.

When it gets executed the result is stored in the state and the journal entry
is created. So the actual html body of the document will be stored inside a
journal in the argument of the call of the BetterClass.store_result method.

10

In the replay mode on the other hand, the fiber would not be started. So the
client.getPage method would never get called. What would happen instead is
that the fiber constructed would be compared to the one taken from the journal
entry. If some parameters/methods are different we would get the ReplayError
exception.

Two points from this discussion are worth being summarized:

∙ When we need to use asynchronous call and modify the state based on its
result we need to split this into two methods: the one before yielding and
the one after.

∙ The Fiber is never run in the replay mode. All the methods bound
there are mocked out. Nice, hugh?

Side effects Side effects are also not being executed in the replay mode.
What happens instead is that their parameters and return values are stored
in the journal, and the driver makes assertions that the same call is generated
during the replay.

Below is the rewrite of problematic function from the previous section.

class BetterClass(replay.Replayable):

@replay.mutable

def pseudorandom_or_nondeterministic_call(self, state):

’’’

state.name = self._generate_name()

@replay.side_effect

def _generate_name(self):

return str(uuid.uuid1())

What happens now is the method _generate_name() runs only in produc-
tion mode. When it does the result of this is stored in the journal entry of the
method which called it. During the replay of this entry the value is recovered.

Question arises: can I also keep on using the side_effect function outside
of the mutable context? Of course you can. If you do, it will just behave as a
normal method.

Other point worth mentioning here is that the code of the side effect is
considered as leaving outside of the hamster ball. This means that it cannot
change the state of the objects passed to it as a reference. The following example
explains the difference.:

from feat.common import serialization

@serialization.register

class Rectangle(serialization.Serializable):

def __init__(self, a, b):

self.a = a

self.b = b

11

class BadReplayableAgain(replay.Replayable):

@replay.mutable

def do_some_stuff_with_rectangle(self, state, rectangle):

state.rect = rectangle

self._grow_rectangle_and_send_it(rectangle)

@replay.side_effect

def _grow_rectangle_and_send_it(self, rectangle):

Following line fixes the problem:

rectangle = copy.deepcopy(rectangle)

rectangle.a *= 2

rectangle.b *= 2

send(rectangle)

The problem with the code above is that the side effect function gains the
access to the state of the replayable object by the reference to the object which
is stored inside. If this code would be left like this the state of the object
produced by the replay would have a smaller rectangle inside that the one from
the production code. The point is: complex objects need to be copied
before they are mutated.

There is one more important point worth making: side_effect methods needs
to be synchronous. They cannot return Deferred as it is impossible to compare
them. If you need to call something asynchronous use should construct a Fiber
and add it as a callback.

Creating objects capable of being part of the state

As mentioned before, there are two constrains set upon the objects which are go-
ing to be put into the objects state. First of all they need to be serializable. The
easiest way of creating a serializable class is subclassing f.c.serialization.Serializable
and registering it to the unserializer with the class decorator. Take a look at
the Rectangle class implementation from the previous section.

The default behavior of the Serializable is to put into snapshot all the public
attributes. The attributes with names starting with the underscore will be
ignored. If you need different behavior you need to overload the snapshot()
and recover() methods. Take a look at feat.common.formatable.Formatable
implementation for a good example how to do that.

The second constraint put here is the necessity of implementing custom
__eq__() method. The reason for this is the default implementation would
return True only for the same instance of the complex object. During the
validation of replayability of the code we need to use two instances and than
compare them.

Feat cluster in macro scale

What has been discussed so far is the features of feat service running on a single
host. But clearly using it this way is not the point of the framework. So how
does it look in a big scale ?

12

Lets assume we have a system of 100 nodes. We configure and run feat
service on them one buy one. The cluster is growing steadily. With the default
configuration in the end of the process our cluster will look somewhat like this:
there will be 10 shards with 10 hosts in each shard. Every shard agent will also
spawn the structural agents Reasource Allocation Agent (Raage) and Monitor
Agent. In the end our cluster will consists of 100 HA, 10SA, 10RA and 10MA.

Is a cluster like this useful? Well, it doesn’t perform any real tasks yet. The
agents running there are meant to expose services to the agents defined in the
feat-based application. What you can do now is ssh to some host and spawn an
agent of choice. This would be a pain to use it like this, so what we do in produc-
tion we configure what agents should be run in /etc/feat/<project_name>.ini
file. See configuration section for details on this subject.

The agent roles

Lets take a look in every agent in detail to explain what kind of service he offers.

Host Agent. Is started automagically by the network agency. Exactly one
instance is run on every node on a cluster. The agent id is the hostname of the
node. For this reason, the network agency requires the hostname of machines
to be defined and unique.

Host agent is always the first one to be started by the agency and he is
responsible for starting other agents. To say things straight: even if it seems
doable, running an agent without asking HA to do it is a bug.

After starting Host Agent tries to find a shard to join. If he doesn’t find
one, he creates one (starts Shard Agent).

Also it manages the resources available for the agency. Every agent requires
some piece of resource to run, and it will be run only if this resource is avail-
able. After the agent dies or moves to a different host the allocation is released
automatically.

From the point of view internal to feat, HA is also responsible for responding
for resource allocation contract. This subject is discussed more in the section
for resource allocation.

Moreover host agent is responsible for restarting the Shard Agent in case of
his death. This is done by the means of collective problem solver protocol, which
deserves an article on it’s own. Lets just say, that before actually restarting the
agent, first all the HAs from the shard negotiate who is going to do that.

Last but not least, HA takes a special part in a process of code upgrade.
Upgrades are not explained by this article, roughly speaking HA initiates the
service restart which leads to updating code and joining some other cluster.

Shard Agent Is responsible for creating and maintaining the graph of shards
structure. Shard Agent is started by HA in case he has failed to find a shard
offering him to join. Then SA has some number of slots to accept hosts, 10 by
default. Agents being part of the shard use the exchange named by the shard to
communicate. This name is a part of IRecipient needed to send a message to the
agent. Once HA has joined the shard, all further agent he runs will also be the
part of the same shard. Agents do not change shard during their incarnation,
although after they are restarted they can end up in a different shard. In such
case the IRecipient of the restarted agent changes.

13

Shard Agent is responsible for running all the structural agents. These are
the agents which exactly one instance is run for each shard. At the moment
these agents are: Raage and Monitor. In future we will also have: Database
Agent, Messaging Agent, Statistics Agent.

Once the SA is running it tries to find himself the neighbors. Every SA is
trying to establish partnership with 3 other Shard Agents. The shards create
the topology of undirected graph. Each node is connected with up to 3 other
nodes.

What is the consequence of two shards being neighbors? SA posts notifica-
tion about the topology changes which can and are used by the other agents.
Monitor Agent uses this information to ask the Monitor Agents running in the
neighbour shards to monitor each other.

The same mechanism in future, will be used by Messaging Server and Database
Server. These agents has not been developed yet, but their purpose will be to
run RabbitMQ/CouchDB server and establish the broker/replicator to commu-
nicate with the each of neighboring shards. When this is don’t being part of
the shard will also mean using the same messaging and database server. Right
now the whole cluster uses single messaging and database server. This is the
currently the main obstacle against making a really big cluster, but fixing it is
quite high on the projects backlog.

Shard Agent can also be queried for structural agents running in the neighbor
shards. This mechanism is used by Resource Allocation Agent (to be explained
in his own section). In future this mechanism will be generalized to give infor-
mation about the structural agents existing within the distance. This query will
give the DFS tree decomposition of the graph with the tree height limit of the
distance. At the moment it’s not implemented.

Resource Allocation Agent We call this agent Raage. It belongs to the
shard structure. The usual use case of him, is to first query shard for IRecipient
of Raage and than ask him to find us the allocation with desired parameters.

What raage agent does than is to run a contract for creating the allocation
for all the host agents running in his shard. If a contract is successful it finishes.
Otherwise the contract gets nested to the raage agents running in the neighbour
shards, which performs the same steps. If the contract gets nested again to
the agent which has already evaluated it, it’s refused automatically. This way
we effectively search the graph in DFS fashion. Comparing this procedure to
standard DFS algorithm the main difference is that there is no global data
(list of visited nodes). It’s the nodes themselves who remember which search
procedures have visited them. Apart from this all the desired properties of DFS
features are conserved. Most importantly the allocation is being searched in
order of growing distance from the origin of the request.

Monitoring Agent He is the last piece of the shard structure. He receives
heartbeat notifications from all the agents in the shard and takes action in case
they disappear. It’s smart enough to make difference between various scenarios
of network isolation, including being disconnected himself.

MA is being monitored himself by the monitors leaving in the neighbor
shards. For this reason in the production environment you should minimally
have 2 shards.

14

The procedure of handling agent death is quite complicated. It starts with
the collective problem solver protocol deciding which of the monitoring agents
should do the job. Then different steps are taken depending on agents restart
strategy20. There are 3 restart strategies available:

∙ buryme, monitor agents just cleans up after the agent,

∙ local, it’s used mainly by structural agents; it indicates that agent can be
only restarted in the same shard; first the partners of the agent are notified,
giving them the chance to volunteer for restarting the dead agent; if this
step fail MA tries to restart agent himself,

∙ globally, it’s very much alike local strategy with distinction than the agent
can be restarted anywhere in the cluster, meaning his IRecipient may
change; the task used for restarting the agent is feat.agents.common.start_agent.GloballyStartAgent.

If the restart procedure fails for any reason MA sends the buried notifications
to all the partners of the deceased. This essentially removes him from their
descriptors, but also gives them the chance to react in a meaningful way21.

Also in case the agent is restarted in the different shard MA is responsible for
notifying all the partners that they need to update entries in their descriptors.

DNS Agent DNS agent allows agents to assign themselves URLs. In case
of agents death it might (and usually is) restarted on some other host. For
this reason agents which communicate with world outside of the cluster should
always get their addresses resolved by dns query.

The agents may contact with dns agents using notification or contract pro-
tocol. Notifications are much cheaper in terms of number of messages sent. The
reason to choose contracts instead would be desire to take some action in case
there is no dns agent running in the system.

DNS agent is not started automatically with the cluster. It requires to be
configured with the external dns server to delegate queries to him.

In future DNS agent will also be used by Messaging and Database agent,
to maintain the list of running nodes. When it happens it will most likely be
required to have at least one DNS agent in the cluster. At the moment it’s
optional.

Alert Agent Can be run optionally. His job is to collect alarm notifications
sent by the agents. In case some agent detects a failure state which should be
handled by human it might raise an alert22. The job of AA is to convert these
notifications into emails and/or nagios notifications. It it smart enough not to
flood the destination with the thousands of notifications of the same type.

20Restart strategy is set as a class attribute for agent class. It takes values from the enum
feat.agents.common.monitor.RestartStrategy

21To do this implement the on_buried() method in class representing the partnership.
22To use this functionality you need to mix in the feat.common.base.alert.AgentMixin mixin

to the agents class.

15

Sample application Featchat

The point of featchat application is to demonstrate how to write and tests
the application based on the feat framework. It’s the simplest possible backend
application. There is a HTTP api exposed to the outside world and some agents
doing internal work. In this case this work is just listening to telnet connections,
essentially creating a chat broadcast servers.

It’s not a 100% valid example of the use case the feat framework. To make
it really make sense the connection agents should use a lot of resource of some
kind (cpu/memory/bandwidth) to justify running them on the cloud. But let’s
not be too critic, it’s just an example.

You can run featchat on a single node or play with more nodes. With the
simplest possible setup it would run on one node, on which we also would run
RabbitMQ and CouchDB servers.

Code layout

Featchat application can be found under ./examples/featchat path in the main
repository. Under this path you will find the same directory structure as we use
for any feat-based project. Important points here:

∙ src directory containing the featchat package,

∙ env script modifying environment so that the develpoment version of the
package is used instead the one installed in /usr/local/lib,

∙ featchat.spec spec file to build the rpm package,

∙ conf directory containg default config installed with the package,

∙ setup.py standard setuptools file,

∙ src/Makefile contains tasks for running tests, validating pep8, etc,

∙ tools utility scripts directory used from Makefile, etc.

The easiest way to start with the new project is to copy and modify these
files.

Running it during development

Point of this section is to have the featchat application running. The easiest way
is to use the ./tools/start_feath.sh script. It’s just a wrapper around bin/feat
executable, which adds a lot of convenient options.

Set lets say you have a feat project checkout. Our goal is to have a local
service running the development code. But first we need to go through initial
configuration.

SSH key Copy paste your ssh public key to ./conf/authorized_keys. This
will allow you to use manhole once the service is running.

16

Start RabbitMQ server You can either use the server run from the service
scripts on system bootstrap or use our utility script. Personally I prefer to use
the utility script because it always starts on clean mnesia database.

However to use it you need to stop the RabbitMQ server first as it would
conflict on trying to listen on the same port. To use it open yourself a new
console and run:

$ sudo /etc/init.d/rabbitmq-server stop

$ tools/start_rabbit.sh

The log of the node can be found in /tmp/rabbit.log

Setting up the CouchDB Same rules apply here, you can use system database
or start it from user space. If you prefer to use the system database you still
need to reconfigure it to handle views defined in python.

So better, use the utility tool, you do this like this:

$ sudo /etc/init.d/couchdb stop

$ tools/start_couch.sh

Now the node is running, it’s configuration and logs can be found under
/tmp/couchdb path23. Now you need to create the database and push the
initial data. To do this we will use feat-dbload utility. Important note: the
initial data documents are defined inside the modules of the application. They
are registered with proper method calls. To make them visible for feat-dbload
we need to tell it which modules to load. But even before that we need to make
them included in PYTHONPATH. We do this using the env utilities:

include feat

$./env bash

include featchat

$ examples/featchat/env bash

Now we are ready to push the data:

feat-dbload -i featchat.everything

After running this command on couchdb console you should see a bunch of
requests. You can now navigate to Phuton and see the created documents. You
can also tweak them. For example go to feat|connection_agent_conf. This is
agent responsible for providing the chat server protocol.

It has two parameters: authorization_timeout and connections_limit. The
second one determines how many connection should a single agent accept.
Change it for example to 1.

At this step you can also take a look at the other agents configuration.

23By default the node listens on loopback interface, meaning it’s unavailable for foreign
hosts. If you are running a cluster with more than one host you need to add -H ‘hostname -i‘
option to feat-dbload and start_feat.sh and run the node like this:

$ HOST=‘hostname -i‘ tools/start_couch.sh

17

http://localhost:5984/_utils

Running the service itself Ok, we are all set. We can now just run the
service now. Do this with a command:

tools/start_feat.sh -c -- -i featchat.everything \

-z chat:10000:10010 -a api_agent

At this point you should see 2 processes named feat. Also in the root project
directory you should see some files:

∙ feat.<uuid>.log contains log for each process,

∙ feat.master.log contains combined log of all the processes,

∙ journal.sqlite3 a journal of the service, you can investigate it using feattool.

The meaning of the startup options is explained below:

∙ -c options tell script to cleanup all log and journal files,

∙ -i tells it to import module by canonical name, featchat.everything imports
all the necessary modules,

∙ -z defines the range resource of the Host Agent; it name will be chat
and allowed range from 10000 to 10010. One value from the resource is
required by ConnectionAgent to start. With this setup the host can host
11 CAs,

∙ -a this options tells Host Agent to spawn the Api Agent once the ser-
vice is ready. The string representation is the same as the one used for
@agent.register decorator attribute.

Playing with it

Manhole First, lets test that manhole works. Execute the command::

$ ssh localhost -p 6000

You should see the greetings “»> Welcome to the manhole! Type help() for
info.”. Now we run some commands, example:

> agency.list_agents()

Agent ID Agent class State

^^

mkowalski.flumotion.fluendo.lan host_agent ready

b7fce734c53e048a411ec857a6016de0 shard_agent ready

b7fce734c53e048a411ec857a6016f6d api_agent ready

b7fce734c53e048a411ec857a6017002 raage_agent ready

b7fce734c53e048a411ec857a6017016 monitor_agent ready

Here we can see that the agency is running 5 agents. All of them except the
’api_agent’ has been spawned automatically by feat. At this point spend some
time for reading help() and agency.help(). It should give you a slight idea of
what commands are exposed, and what they can be used for.

Just be careful, manhole is a powerful tool. With great power comes great
responsibility. For example the sequence:

18

https://github.com/f3at/feattool

> m = get_medium(’raage_agent’)

> m.terminate_hard()

Would kill Raage in a violent way. If you list your agents now it will not
be in the list. If have done it wait about 30 seconds before going further to let
Monitor Agent will figure out Raage is gone and restart it.

Gateway Now lets play with the gateway. This is http interface for inspect-
ing the cluster. First configure your browser to import SSL client certificate from
./conf/gateway.p12 file. Now you can navigate to the url: https://127.0.0.1:5500.
Feat gateway should show up. Under the /agents path you should see the list
of agents running.

Using chat This chat service is really basic. The api agent exposes only a
couple of URLs:

∙ GET on /rooms, returns the list of URLs

∙ GET on /rooms/<name>, returns the list of connections to the room

∙ POST on /rooms/<name>, generates the join url for the new connection,
it contains the url to connect to and the session_id to use for authenti-
cation

So lets do the following:

$ curl -X POST http://127.0.0.1:8880/rooms/test

{"url": "mkowalski.flumotion.fluendo.lan:10000",

"session_id": "5b9f8048-df84-11e0-a6e5-00221929b70f"}

At this point the system has spawned the new Room Agent and Connection
Agent.

Now we can connect to the URL given with the telnet. Just keep in mind
that preallocation of connection reservation expires in 10 seconds.

telnet mkowalski.flumotion.fluendo.lan 10000

Trying 172.17.5.52...

Connected to mkowalski.flumotion.fluendo.lan.

Escape character is ~

session_id 5b9f8048-df84-11e0-a6e5-00221929b70f

And we are connected.
Now if you do the same steps again you will have two agents connected.

You can send message between them writing for example msg Hey, whatsup?.
Moreover if you have editing the Connection Agent configuration to only allow
1 connection you will notice that the port for connection is different, and that
the new connection agent has been spawned.

Shutting it down After you are done playing you can stop it in one of two
ways. You can use stop_feat.sh script:

$ tools/stop_feat.sh

Or you execute the shutdown() command in the manhole. After shuting
down you should see all the feat terminated and the database cleaned up.

19

https://127.0.0.1:5500

Agents in details

In this section we will go through the agents defined in featchat and explain how
they are done. This discussion is only a pretext to demonstrate the features and
utilities of the framework.

Api agent Api agent is defined in featchat.agents.api.api_agent module. His
job is to provide the API for the hypothetical front end application using the
cluster. It’s important to note that this agent is done in a way, that he doesn’t
store any information in his state, essential for handling the requests. Thanks
to this we can have any number of instance of this agent in the system, it’s not
important which one handles individual requests.

Lets go through the processes he handles and explain them in details.

Initialization When an agent is started the agency calls two methods:
initiate and startup. The first entry point represent the ’statical’ initialization.
It doesn’t mean it has to be synchronous, it only shouldn’t take to much time
too finish it. Typically agents do in initiate things like registering interest,
defining labours they use, etc. Startup method on contrary can take as long
as it takes. It is called after initiate finishes, and at this point the agent is
considered running.

Using dependencies In case of Api Agent in initiate() we create and
initiate the web component. It is created by the following line:

state.server = self.dependency(IServerFactory, self, state.port)

It looks strange enough to pay a little attention to this line. What we are
doing here is we are asking the dependency utility to look up and call for us
the dependency providing the IServerFactory interface for the current execution
mode. We also pass 2 parameters to this function call (self and state.port). A
few lines above we define the dependency handlers for each of the 3 execution
modes we have. It’s done with dependency.register() method calls.

There are 3 execution modes defined:

∙ production, this one is used with the real network service,

∙ test, used by the simulation tests, the implementation for this mode usually
merely implement the correct interface,

∙ simulation, is meant to be used for complex simulations which are not
performed in automated tests; this execution mode is used by gui simula-
tion tool embed in feattool; the implementation should try to mimic the
behavior of production labor, generating failures, random events, delays,
etc.

Starting up monitoring In startup() method of the Api agent we can
see the line:

self.startup_monitoring()

It is mandatory to run in from one of the entry points. It initiates the discov-
ery of the monitoring service running in the shard. In future this functionality
will be triggered automatically, but it’s not implemented yet.

20

https://github.com/f3at/feattool

Creating dns entry From the startup() method we also call the regis-
ter_dns_mapping() function. Its job is to register the IP of the agent to dns,
so that front end application can use it. This allows it not to care about our
agents changing location after being restarted. Also multiple agents can register
themselves for the same path. In this case dns will performed round robing for
the entries, balancing the load.

After registering the entry this methods also stores the current ip it has
registered too. This is done so that in case of us being restarted we know
what entry to unregister in order to clean up after the previous incarnation of
ourselves.

Last thing worth mentioning is that in case we fail to register the entry,
we post an alert. If there is an alert agent configured in the system he would
transform this alert to the email/nagios notification. The alert is raised by the
following line:

self.raise_alert("Failed to register dns entry!",

alert.Severity.medium)

Web server Api agent handles HTTP connections. The server is defined
in feat.agents.api.web module and it uses the webserver coming with the feat
framework (feat.web.webserver).

Using this server is recommend over the standard twisted one. It handles ssl,
has better support for pipelining multiple requests on persistent connection, and
most importantly allows using asynchronous actions for locating the resources.
The api differs a little, instead of render_* methods one uses action_*. More-
over instead of single request object passed to the function, on which one should
call methods, we have two objects separated: immutable request, and response
object for rendering response.

At the moment web server under the hoods uses the twisted.web.Server.
However we do have plans to drop this dependency in future, and handle HTTP
protocol directly.

The tests for webserver of the Api Agent demonstrate the typical way of test-
ing the dependency classes24. Important thing to note here, is that the depen-
dency class is given the reference to the agent during initialization. It typecasts
this reference to IWebAgent interface, which is defined in featchat.web.api.interface
module.

For testing the production labor it’s enough to provide a dummy implemen-
tation of this interface (DummyAgent). This way we can test separate only this
one module and tests it individually. The test case initializes the web server
and performs http requests against it.

Getting list of rooms (using views) Every chat room in our system is
represented by a Room Agent managing it. So the list of rooms is actually the
list of Room Agents. This fact is used by get_room_list() method of the Api
Agent. It queries the view defined in the same module. Let’s take a look in
details at the view definition:

@view.register # registers the view to be included

24You’ll find then in featchat.test.test_agents_api_web module.

21

in the design document

class Rooms(view.FormatableView):

name = ’rooms’ # name attribute is required

and needs to be unique

field definitions

the names of the fields should match

the keys of the dictionary yielded as the value

(second part of the tuple)

view.field(’name’, None)

view.field(’key’, None)

view.field(’shard’, None)

... # here one can define any methods he finds useful

def map(doc):

map function will be run in external process started

by CouchDB server. **do not** use any module not

imported inside the body of this method

if doc[’.type’] == ’room_agent’:

yield (unicode(doc[’name’]),

dict(name=doc[’name’], key=doc[’_id’],

shard=doc[’shard’]))

The consequence of running this code is defining the view named rooms. You
can see it’s definition viewing the design document in Phuton interface. The id
of the design document is _design/feat.

Spend a moment for reading the comments in code above. Important point to
remember is that feat defines it’s views in python instead of javascript (couchdb
default). This makes it way easier to integrate.

The view above will create an entry for every descriptor of Room Agent
it founds. The .type field is a special field used by json serializer to store the
type_name of serialized object. In case of agents descriptor we always use the
agents type name here.

We use the name of the room as the keys of the view. This way we can
cheaply query the view to find out if the room with given name exists. The
value of the view row contains the information necessary to build the IRecipient
of the agent (his id and shard).

Joining the room (spawning new agents) In this section we are con-
sidering the get_url_for_room() method. It first uses the technique describe
above to check if the room of given name already exists. If not, it saves the
descriptor of the new agent into the database and uses the GloballyStartAgent
to launch it somewhere in the cluster. After this is done, the agent is asked with
rcp call to provide the join url.

Cleaning up When the agents is shutting down he needs to release the
port he is listening and shutdown the connections. Agents define two types
of shutdown: the gentle and the violent one. Agency calls the appriopriate

22

methods on the agent in both cases. For doing something on gentle shutdown
implement the shutdown() method. For the violent one we use on_killed().

Simulation tests for Api Agent25. The test case performs some re-
quests against the api agent to validate it. It’s important to note here, that
this test case runs a complete cluster inside the simulation driver. It starts
with spawning the Host Agent exactly as network agency would. The reason
for testing Api Agent like this is that it uses a GloballyStartAgent task which
requires the resource allocation working (shard and raage agents running).

As API Agent spawns the Room Agents and we want to test only API
Agent here, we override the entry for RA in the tests setUp(). It is done with
the following line:

self.override_agent(’room_agent’, DummyRoomAgent)

It tells the simulation driver to use for this test the DummyRoomAgent as
a factory for room_agent instead of the original handler.

Note: always remember to call setUp() and tearDown() of the super class.
Overwise the tests would start producing cross-failures.

Room Agent Room Agent is defined in the featchat.agents.room.room_agent
module. It is spawned by the Api Agent when somebody wants do join a room
which doesn’t exist yet. On one end RA is responsible for providing information
to the Api. On the other end it manages the Connection Agents which provide
the actual protocol servers.

Defining custom partners You can find a following snippet in the code
of RA.

@serialization.register

class ConnectionPartner(agent.BasePartner):

pass

class Partners(agent.Partners):

partners.has_many(’connections’, ’connection_agent’,

ConnectionPartner)

@agent.register(’room_agent’)

class RoomAgent(agent.BaseAgent):

partners_class = Partners

The following code is a declaration of type of relationship the RA will be
having. We define that he will have many connection_agent and should use
ConnectionPartner class to represent it. This class can define various callbacks
which will be run when specific events occurs. In our case we don’t use any of
the events, however it’s place good as any to list them. Also note that these

25Test case can be found in feat.test.integration.test_simulation.web module.

23

callbacks are called with MRO calls. This means that you should never care
about the super class implementations, the framework will do this for you.

∙ initiate(self). Is called in two situations. First we call it when the part-
nership is just being established. Note that at this particular moment
we don’t have an entry for this partner yet, if we return the failure the
partnership will not be established. Secondly this method will be run at
the end of the agents initiate() method for all the partners we have. In
both cases this method is a place to trigger initialization of the service we
are providing for the partner.

∙ on_shutdown(agent). Is called when we are shutting down gently. De-
faults implementation sends the goodbye messages to the partner here.

∙ on_goodbye(agent, brothers). Is called when we receive the goodbye mes-
sage from the partner. This means he is shutting down. Brothers param-
eter is the list of other partners of the same type as we. This information
might be useful when we need to start the collective problem solver to
trigger some action.

∙ on_breakup(agent). Called when our partner actively breaks up with us.
It’s done by calling BaseAgent.breakup() method.

∙ on_died(agent, brothers, monitor). This callback is triggered by receiv-
ing the notification from the monitor agent saying that our partner has
stopped sending the heartbeat notifications. At this point we might re-
turn the special object{id53}{id54}{26}telling monitor that we are going
to restart the partner ourselves.

∙ on_restarted(agent, old_recipient). It’s called after the partner is restarted
by the monitoring agent.

∙ on_buried(agent, brothers). This callback gets called when the agent has
died and its not going to be restarted. His restart strategy might be
buryme or restarting him failed permanently.

To establish the relation one have to call establish_partnership() method,
passing the IRecipient of the other agent as a parameter. The agents will negoti-
ate the handlers and store the information about the relation in their descriptors.

Later we can access the list of partners of the given type like this:

connections = state.partners.connections

Running contract and taking part in it. The RA registers the inter-
est in CreateConnectionContractor protocol defined in the same module. The
protocol_id field of this class matches the JoinManager one. To explain what
happens here, lets take a look at generate_join_url() method.

@rpc.publish

@replay.journaled

def generate_join_url(self, state):

26The instance of feat.agents.base.partners.ResponsabilityAccepted.

24

recipients = state.partners.connections + \

[self.get_own_address()]

prot = self.initiate_protocol(JoinManager, recipients)

return prot.notify_finish()

This method starts a JoinManager passing as the recipients all the connec-
tion agents we have, plus our own address. All the contractors will receive the
announcement and post their bids/rejections. The CreateConnnectionContrac-
tor always posts his bid putting a highest cost on it. This way it will be chosen
only if this is the only bid available. In this case RA grants the contract for
himself and in granted() method he spawns the new Connection Agent.

Terminating unnecessary CAs Now lets take a look at the Inspect-
Manager. It’s started from get_list() method. It queries the CAs for the list of
connections they have and returns it as a result.

Moreover it counts how many empty lists it has received. In case there is
more than one empty response it grants the bids, which results in CA shutting
down.

Simulation tests for RA26 The testcase runs a room agent and simulates
him receiving a couple of requests. It makes assertions that CAs has been
created/shut down and they are in the correct state.

In the setUp() method of this tests you can find a way to override the
configuration document of the agent for the purpose of this test. Here we change
the limit of connections just to demonstrate the technique:

config = everything.connection_agent.ConnectionAgentConfiguration(

doc_id = ’test-connection-config’,

connections_limit = 2)

dbtools.initial_data(config)

self.override_config(’connection_agent’, config)

Also in prolog() of the test we construct the host definition document. We
are doing this because to start CA we need a custom resource (port for chat
service). Host definition document contains the host configuration (resources,
categories, etc).

hostdef = host.HostDef(ports_ranges=dict(chat=(5000, 5010)))

assign it to local variable in the

context of scripting language

self.set_local(’hostdef’, hostdef)

setup = text_helper.format_block("""

agency = spawn_agency()

agency.disable_protocol(’setup-monitoring’, ’Task’)

agency.start_agent(descriptor_factory(’host_agent’), textbackslash{}

hostdef=hostdef)

27Code can be found in featchat.test.intergration.test_simulation_room module.

25

...

""")

Connection Agent27 Connection Agents are listening for the incoming con-
nections and speak the chat protocol.

It uses the Resources submodule to define a custom resource representing
slots for connections. When CA gets granted to generate the join url for the next
connection it preallocates this resource. It will be preallocated for 10 seconds
and than expire. The information about incoming connection is stored in agents
state in ExpDict object. This object behaves mostly like a normal dictionary,
except for the fact that inserting values to it, one may specify that they should
disappear at specified moment. This is done in a quite efficient way, without
using DelayedCalls burdening the reactor.

When the connection comes in it is expected to send the session_id stored
in state. If it does the allocation gets confirmed and persisted in the descriptor.

Connection Agent response to two contracts initiated by the RA. The point
worth mentioning is, that in announced() method of JoinContractor we calculate
the cost of the bid putting the number of free spots. This way we define our
strategy: we are favoring filling up Connection Agents instead of, for example,
having them equally loaded.

Creating communication channel with notifications. When the chat
server (featchat.agents.connnection.server.ChatServer) receives the message from
the client in broadcasts it to all the other connections he has, and passes it to the
agents itself. The agent is sending this message with the notification protocol
to all the other Connection Agents belonging to the same room. This effectively
creates the communication channel exclusive for a group of CAs. This technique
is useful enough to take a closer look at it.

The classes creating this channel are:

∙ sending side: RoomPosterFactory and RoomPoster,

∙ receiving side: RoomCollectorFactory and RoomCollector.

Usually when using protocols there is no need for defining custom factories.
The class type serves as a factory. Consequently the attributes of the factories
are just class attributes of the classes.

This technique would not work if we want to have the same protocol class reg-
istered by the factories with the different parameters. In our case the parameter
which is changing is protocol_id. Reminding our amqp strategy, the protocol_id
is used as a routing key for the direct binding created by agent for each of his
public interests. In our case every room will use different protocol_id. Moreover
the RoomCollector interest is being bound to the ’lobby ’ exchange which makes
it globally available. Afterward can send a message which will reach all the CAs
in the room by publishing a message to the exchange named ’lobby’ with the
routing key ’room_<name>’.

28Connection Agent is defined in in featchat.agents.connection.connection_agent module.

26

Simulation tests for CA28. It’s worth taking a look, because it is done
in a little nonstandard way in order to demonstrate some techniques. Instead
of constructing the full cluster and asking Host Agents to run some agents, we
run them directly from the agency. This makes the tests run much faster as we
don’t build the shards nor discover monitoring.

To make it possible the descriptors of connection agents are created with
some extra fields set up. Normaly it is a job of Host Agent to set them up.

∙ shard determines to which exchange the agent will bind to,

∙ instance_id is a counter of incarnations of the agent,

∙ resource represents allocation done by Host Agent to run us, Connection
Agent extracts the port to listen on from it.

Secondly this testcase demonstrates how to obtain the reference to the de-
pendency instance (the chat service component) to perform assertions upon
them. To do this the proper driver.find_dependecy() calls are performed.

Configuring feat application for production

Ok, so far we know how to run an application during develpoment. It requires
running a command with correct parameters on every host. Obviously this is not
a scalable way of running a resonably sized cluster, it would be the sysadmins
nightmare.

So what we do instead is using the packaging system combined with the tool
managing configuration files29. Feat ships with .spec file for creating the binary
RPM. Currently we support only Red Hat 6, but well, it’s open source, feel
welcome to contribute whatever build system target you need.

Before starting the service you need the RabbitMQ and CouchDB servers
running. They are configured exactly the same way as for develpoment (see
above). Remember that currently we are not using these servers in a safe way.
For securing your system now you should configure the iptables of the ma-
chine running them to accept only connection from inside the cluster to 5984
(database) and 5672 (messaging) ports.

The next requirement is important enough to put it in bold: all machines
in the cluster need to have their clock synchronized with the NTP
server. If you forget about this step you will see a lot of warnings about
receiving expired messages in the log files. And different hosts would not see
each other, like if they’d be living in separated clusters.

Base configuration

Installing the feat packages, creates the following files:

∙ /etc/init.d/feat service script,

∙ /etc/feat configuration directory

29These tests can be found in featchat.test.integration.test_simulation_connection module.
30We use puppet http://puppetlabs.com/, but there are dozens of tools which can do the

same.

27

http://puppetlabs.com/

– feat.ini main configuration file, here you configure paths for certifi-
cates, IPs of the messaging and database servers, and include other
projects ini files,

– public.key, private.key, authorized_keys configuration of the SSH man-
hole

– here you should also put the p12 files of SSL certifactes to be used
with tunneling and gateway if you indend to use them.

∙ /var/log/feat this directory will contain *.log files and the journal (jour-
nal.sqlite3). These files will keep on growing, you should configure the log
rotation for them. It works in a standard way (rename file, send SIGHUP);

∙ /var/run/feat here you can find the socket file and pid file.

After installing the package just edit the feat.ini file and you are ready to
start the service:

sudo service feat start

Now you should see 2 feat processes.

Project configuration

Once we have the feat package configured we can add the project which will
run on top of it. The featchat application can suit as an example here. We
create a RPM package for it, analogically to feat. This packages installs the
featchat python module under /usr/local path. Apart from this it only installs
its configuration file: /etc/feat/featchat.ini. This file will be changing between
nodes, it decides what agents are run during the cluster initialization. To include
it add the following line to feat.ini :

config-file: /etc/feat/featchat.ini

The featchat.ini will look somewhat like this:

[Feat]

load the featchat package

import: featchat.everything

start some agents, this line will differ

on cluster nodes

agent: dns_agent alert_agent api_agent

define custom resource necessary to

run Connection Agent

host-ports-ranges: chat:10000:10010

Debugging problems, using feattool

At this point we have a cluster running, but than we discover something doesn’t
work. Well, it happens, no need to panic. Feat ships with a really nice support
for debugging problems. All decisions taken by the agents are stored in the
journal. You will find the log entries there as well.

You can load a journal, pick an agent and see all the calls which where
recorded by the edge of the hamsterball. The screenshot shows how the journal
viewer tool is organized. Points worth mentioning:

28

∙ Top left list lets you choose the agent to load. Currently we only support
one agent loaded to the hamster ball at time.

∙ Below you will see the list of recorded calls. We show only the serialization
tag of the call and it’s timestamp.

∙ When you choose the entry you will see a bunch of details. On the middle
bottom you will see the current graphical representation of the hamster
ball inside. The blue nodes represent the inhabitants. You can mark
them to see inspect their state. It will be displayed on the bottom-right.
Arrows of the graph represent the references between the objects. The
white nodes are the agency-side objects, leaving outside the hamsterball,
their state cannot be inspected.

∙ On the top-bottom you can see bunch of detailed information about the
call itself. You will see the input (arguments of the call) and the output
(fiber and the side effects).

∙ Finally on the top-right you can see the code of the function which created
the entry.

∙ If entry is greyed out, it means that to display its details you need to
include more preceding entries in the query. The reason for this is that we
can replay code starting only from the snapshot of the agent. The snapshot
is created once every 1000 journal entries, after the journal rotation or
when it is forced.

Installing the feattool

Clone the feattool repository. You can also install in from the package (python-
feat-dev). It has the following dependencies:

29

https://github.com/f3at/feattool

∙ python-pydot-1.0.25-1 (version required)

∙ graphviz-2.26.0-4

∙ graphviz-python-2.26.0

∙ libICE-1.0.6-1

∙ libSM-1.1.0-7.1

∙ libXaw-1.0.6-4.1

∙ libXmu-1.0.5-1

∙ libXpm-3.5.8-2

∙ libXt-1.0.7-1

∙ pygtksourceview-2.8.0-1

∙ urw-fonts-2.4-10

Using it

You can use feattool to analize the journal of the cluster node or the simula-
tion test. Using it for development remember to run it from the environemnt
having all the necessary packages in the PYTHONPATH (feat and your project
package). You can load your packages using File|Import manager.

When debugging a problem on production remember that the journal is just
a sqlite3 database. So if you start downloading it to your drive while the service
is running the result will be unreadable. There is two ways of solving this:
you can either rotate the file first (rename it, send SIGHUP to master agency
process) or load it directly using the feattool running on the same machine. This
second solution is the one I prefer personally because it’s much faster and allows
looking at the journal entries appearing live. To do this you need to configure
your ssh client to forward the X session.

You can use feattool also for analizing the result of the simulation test. To
do this you need to decorate your testcase with the following line:

from feat.test.integration import common

@common.attr(jourfile=’test_journal.sqlite3’)

After running a test decorated like show above you will find the test_journal.sqlite3
in the _trial_temp directory.

Concept behind

Often people express the disbelive when we tell them that we can reproduce the
state of the cluster at any time. It deserves explaining a little bit.

The concent behind replayability comes from expresing the single call of the
code in the hamsterball as:

call(state, *args, **kwargs) -> side_effects, result

30

This call is handled synchronously, whithout yielding the execution chain.
Twisted application runs in a single thread, so the execution will not be in-
terrupted by any other event. Consequently the context of the call is well
established before and after entering the function code. All we need to do now
to create the replayable system out of this is to store enough information about
the calls. It turns out, that it’s sufficient to store the arguments, keywords and
the side effects. For debugging and self-validation purpose we also store the
function result, but this is not necessary for the replayability itself.

The input of the journaled function is its the arguments, keywords and the
objects state. The function code has to be deterministic. This means that for
the same state and arguments it is required to produce the same output.

But what happens if we want to base our decision on, lets say, the time of
the day? Consider the code like this:

@replay.journaled

def should_i_work(self, state):

return state.medium.get_time() % 2 == 1

It may seem that the method above will return True/False with 50% prob-
ability. How does it work than ?

The answer is quite complex. To make it work get_time() method needs
to be marked as a side effect. When this code runs in recording mode the
get_time() call is performed, and it’s result is appended to the side_effects
list of the calls output. Now when we run the same code in replay mode the
call would not be performed, instead the stored result would be returned. Side
effects are a powerfull tool, although they have one major limitation: they need
to be synchronous.

To get around that limitation we use fibers. They represent the asynchronous
event chain which will be started in future. It’s important not to start perform-
ing it while execution chain is still inside the hamster ball. It could change
the state before the current call has finished processing, consequently producing
overlapping journal entries.

Future develpoment

Feat is still in quite early development stage. We are still working on it rapidly
with the aim to make it fully scalable and easier to manage.

In many places in previous sections it was mentioned that some features will
be introduced in future. The point of this section is to put them in one place,
unfortunately we are not yet ready to make the product backlog public. Feel
welcome to contribute if you’d like to work on some of the features mentioned
below. Or anything else.

∙ Reducing footprint on RabbitMQ. The master agency will establish a con-
nection to the RabbitMQ server and share it with slaves through the unix
socket. The messages should be dispatched locally exactly as it is done in
emulation messaging module. They should be sent to RabbitMQ server
only if we cannot find the local recipient for them or if their IRecipient.type
== broadcast.

∙ Starting RabbitMQ automaticly. We should resolve messaging server by
DNS query and start the Messaging Agent in case it fails. This agent

31

should be a part of the shard structure. All agents in the shard use the
same node, nodes are connected to the cluster using the graph topology.

∙ Starting CouchDB automaticly. Basicaly this task is very much alike the
previous one, despite the fact that we need to figure out how we could
start the service without database running in the first place. Also with
this task we should create a conflict handler for conflict occuring during
the replication. It will happen if the document is updated on two instances
of CouchDB and than they try to replicate. In this case the conflict should
be resolved and change notification should be produced.

∙ Use RabbitMQ and CouchDB in a safe way. Currently the framework uses
these servers authentication mechanism in quite a dummy way. We should
connect to both of them using SSL and configure access rights. This task
includes upgrading CouchDB support to 1.1.0 version.

∙ Reorganise feattool to merge simulation module better. Implement having
more than one journal open at time. Implement displaying content of the
journal used by simulation driver.

∙ Amazon Agent instanting/shutting down the machines on amazon. He
should receive notification from Raage Agent in case we start running out
of space on the cluster. This part still requires design, point is that this
agent should react to keep the load of the cluster inside defined boundaries.

∙ GUI application showing the state of the cluster. It would be nice to
display the shard, hosts and agents running inside on a big screen. For
querying the system the gateway should be used. However it requires some
work beforehand to support different content types.

Apart from this there are some ideas on the side projects using feat, on
which I’d work if I didn’t have a day job:

∙ Feat-django. I don’t know a lot about django, but scalable web server
seems like an ideal usecase of feat. This includes creating an agent which
runs a feat webserver. The django application should be running in a
thread waiting for the request. When request comes in runs the apprio-
priate method on WSGI container with callInThread. Ideally this project
would configure the django database backend to use the same CouchDB
cluster as the feat does. It would be nice to have a blocking call performed
from the thread, which runs a twisted method returning a Deferred. The
thread is waken up by the callback of the Deferred.

Subjects not discussed in this article

There is a group of subjects which have been not mentioned here for different
reasons. Some of them are internal for feat and could be of the little interest to
the community, other deserve the article on their own.

∙ Migrating agents between the cluster. There are 2 agents not mentioned
before, the Export and Migration Agent, which working together can send
agents between disconnected clusters. To make the agent migratible it is
sufficient to implement some interface.

32

∙ The collective problem solver algorithm. You can use it as a blackbox just
providing IProblemFactory interface. It will get the list of IRecipients and
make sure that the defined problem is solved by one and exactly one of
the peers. It handles data corruption, peers disapearing, etc.

∙ The algorithm of the graph of shards growth. The calculations for the
average and expected node distance. The algorithm for deciding the entry
points bound to lobby in this process.

∙ The contract nesting in detail. This subject has been mentioned in section
with Raage Agents description. Although there is much more to make it
work as a DFS search, including the way the data is memorized and how
the timing works in function of the level we have nested to.

∙ Serialization system. It supports many interesting things, as for exam-
ple introducing stateful serialization (see IExternalizer interface) which
allows creating serialized objects which require special context to be un-
serialized. Moreover it should be explained how to create a new formatter
(for example xml).

33

	Introduction to FEAT
	Structure of the feat service
	Single feat process structure

	Concept of the hamster ball
	MutableState object
	Modifying the state
	What not to do
	Getting around the constrains.
	Creating objects capable of being part of the state

	Feat cluster in macro scale
	The agent roles

	Sample application Featchat
	Code layout
	Running it during development
	Playing with it
	Agents in details

	Configuring feat application for production
	Base configuration
	Project configuration

	Debugging problems, using feattool
	Installing the feattool
	Using it
	Concept behind

	Future develpoment
	Subjects not discussed in this article

