This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: This is a very poorly written article, devoid of context for much of the content. Most abbreviations are undefined. The lists of data have no explanations for their meaning on relevance to the potential pharmacology. One table does not even mention what the numbers in it represent. The "Synthesis" section does not even try to explain the synthesis. Much of the text is speculative at best (WP:OR and WP:SYNTH). It looks like someone just copied some data from various sources and dumped it together while adding some misguided speculationsPlease help improve this article if you can.(November 2014)(Learn how and when to remove this template message)
PRC200-SS is an arylalkanolamine TRI being developed by the Mayo Clinic.[1][2]Sympathomimetic PRC200-SS is the PRC050eutomer,[3] whereas PRC201 is the distomer. These compounds are preceded by venlafaxine, which Wyeth claims is the first SNRI.[4] Venlafaxine was originally developed as an "opioid" although original screening returned negative results.[4] The authors were not satisfied just to drop venlafaxine from development and continued with their study of the compounds biological activity data. Herein, they discovered that venlafaxine exerts its biological actions via interaction with the monoamine receptors. In particular, the actions of the drug on increasing the amount of 5-HT and NE were documented,[4] although with "potentiated" analogs such as the pm-dichlorophenyl ring substituted derivative, it might be expected to behave as a SNDRI also (but no data was available to support this inference). Venlafaxine itself has been said to behave as a SNDRI at very high doses. This would be more likely to be the case in drug naїve subjects than in users that have already built up significant tolerance.
Silicon containing analog of venlafaxine was prepared and demonstrated to be an active SNRI.
Trials of PRC200-SS in cynomolgus monkeys showed dose proportional kidney toxicity, with signs that the compound was damaging to the distal tubule and collecting duct.[5] This adverse result makes it unlikely that PRC200-SS will be developed for clinical use in humans, though development of related compounds may well continue.
^ abcdLiang, Y.; Shaw, A.; Boules, M.; Briody, S.; Robinson, J.; Oliveros, A.; Blazar, E.; Williams, K.; Zhang, Y.; Carlier, P. R.; Richelson, E. (2008). "Antidepressant-like pharmacological profile of a novel triple reuptake inhibitor, (1S,2S)-3-(methylamino)-2-(naphthalen-2-yl)-1-phenylpropan-1-ol (PRC200-SS)". The Journal of Pharmacology and Experimental Therapeutics. 327 (2): 573–583. doi:10.1124/jpet.108.143610. PMID18689611.
^ abShaw, A.; Boules, M.; Zhang, Y.; Williams, K.; Robinson, J.; Carlier, P.; Richelson, E. (2007). "Antidepressant-like effects of novel triple reuptake inhibitors, PRC025 and PRC050". European Journal of Pharmacology. 555 (1): 30–36. doi:10.1016/j.ejphar.2006.10.004. PMID17109850.
^ abcCarlier, P. R.; Lo, M. M.; Lo, P. C.; Richelson, E.; Tatsumi, M.; Reynolds, I. J.; Sharma, T. A. (1998). "Synthesis of a potent wide-spectrum serotonin-, norepinephrine-, dopamine-reuptake inhibitor (SNDRI) and a species-selective dopamine-reuptake inhibitor based on the gamma-amino alcohol functional group". Bioorganic & Medicinal Chemistry Letters. 8 (5): 487–492. doi:10.1016/S0960-894X(98)00062-6. PMID9871604.
^Guha M, Heier A, Price S, Bielenstein M, Caccese RG, Heathcote DI, Simpson TR, Stong DB, Bodes E (January 2011). "Assessment of Biomarkers of Drug-induced Kidney Injury in Cynomolgus Monkeys Treated with a Triple Re-uptake Inhibitor". Toxicological Sciences. 120 (2): 269–83. doi:10.1093/toxsci/kfr013. PMID21258088.
^Carlier, P. R.; Lo, K. M.; Lo, M. M. C.; Williams, I. D. (1995). "Anti-Selective Aldol Reaction of Benzylic Nitriles and Synthesis of .gamma.-Amino Alcohols". The Journal of Organic Chemistry. 60 (23): 7511. doi:10.1021/jo00128a025.
^Carlier, P. R.; Lo, K. M. (1994). "2,3-Anti Selective Aldol Reaction of Phenylacetonitrile". The Journal of Organic Chemistry. 59 (15): 4053. doi:10.1021/jo00094a011.
^Carlier, P. R.; Lo, K. M.; Lo, M. M. -C.; Lo, P. C. -K.; Lo, C. W. -S. (1997). "Synthetic Optimization and Structural Limitations of the Nitrile Aldol Reaction". The Journal of Organic Chemistry. 62 (18): 6316. doi:10.1021/jo9702148.
^Vu, A.; Cohn, S.; Terefenko, E.; Moore, W.; Zhang, P.; Mahaney, P.; Trybulski, E.; Goljer, I.; Dooley, R.; Bray, J.; Johnston, G. H.; Leiter, J.; Deecher, D. C. (2009). "3-(Arylamino)-3-phenylpropan-2-olamines as a new series of dual norepinephrine and serotonin reuptake inhibitors". Bioorganic & Medicinal Chemistry Letters. 19 (9): 2464–2467. doi:10.1016/j.bmcl.2009.03.054. PMID19329313. Mahaney, P.; Gavrin, L.; Trybulski, E.; Stack, G.; Vu, T.; Cohn, S.; Ye, F.; Belardi, J.; Santilli, A.; Sabatucci, J.; Leiter, J.; Johnston, G. H.; Bray, J. A.; Burroughs, K. D.; Cosmi, S. A.; Leventhal, L.; Koury, E. J.; Zhang, Y.; Mugford, C. A.; Ho, D. M.; Rosenzweig-Lipson, S. J.; Platt, B.; Smith, V. A.; Deecher, D. C. (2008). "Structure-activity relationships of the cycloalkanol ethylamine scaffold: discovery of selective norepinephrine reuptake inhibitors". Journal of Medicinal Chemistry. 51 (13): 4038–4049. doi:10.1021/jm8002262. PMID18557608.
^Valenta, P.; Carroll, P. J.; Walsh, P. J. (2010). "Stereoselective Synthesis of β-Hydroxy Enamines, Aminocyclopropanes, and 1,3-Amino Alcohols via Asymmetric Catalysis". Journal of the American Chemical Society. 132 (40): 14179. doi:10.1021/ja105435y.