
comprehensive art ic les

48 acm Inroads 2011 March • Vol. 2 • No. 1

Bringing
Computational

Thinking to K-12:
What is Involved

and What is the Role
of the Computer

Science Education
Community?

The process of increasing student exposure to computational thinking in K-12 is complex,
requiring systemic change, teacher engagement, and development of signifi cant

resources. Collaboration with the computer science education community is vital to this effort.

By Valerie Barr and Chris Stephenson

comprehensive art ic les

2011 March • Vol. 2 • No. 1 acm Inroads 49

1.0 INTRODUCTION
When Jeanette Wing [12] launched a discussion regarding the
role of “computational thinking” across all disciplines, she ignited
a profound engagement with the core questions of what computer
science is and what it might contribute to solving problems across
the spectrum of human inquiry. Wing argued that advances in
computing allow researchers across all disciplines to envision new
problem-solving strategies and to test new solutions in both the
virtual and real world. Computing has made possible profound
leaps of innovation and imagination as it facilitates our efforts to
solve pressing problems (for example, the prevention or cure of dis-
eases, the elimination of world hunger), and expands our under-
standing of ourselves as biological systems and of our relationship
to the world around us. These advances, in turn, drive the need
for educated individuals who can bring the power of computing-
supported problem solving to an expanded fi eld of endeavors.

It is no longer suffi cient to wait until students are in college
to introduce these concepts. All of today’s students will go on to
live a life heavily infl uenced by computing, and many will work in
fi elds that involve or are infl uenced by computing. They must be-
gin to work with algorithmic problem solving and computational
methods and tools in K-12. The successful embedding of com-
putational thinking concepts into the K-12 curriculum requires
efforts in two directions. Educational policy must be changed,
overcoming signifi cant infrastructure hurdles, and K-12 teachers
need resources, starting with a cogent defi nition and relevant age-
appropriate examples. In this paper we report on the fi rst part of a
multiphase project aimed at developing an operational defi nition
of computational thinking for K-12 along with suitable resources
for policy and curricular change. In addition to explaining the is-
sues involved in the K-12 arena, this paper, following Gal-Ezer
and Stephenson [4], is intended to help bridge the gap between
the K-12 and CS education communities. We note that this effort
is distinct from CS education efforts, such as that of Zendler and
Spannagel [13], in that our goal is to articulate a set of key con-
cepts within computation that can be applied across disciplines,
rather than proposing a set of central concepts of computer sci-
ence solely for CS curricula.

The computer science education community can play an impor-
tant role in highlighting algorithmic problem solving practices and
applications of computing across disciplines, and help integrate the
application of computational methods and tools across diverse areas
of learning. At the same time, CS educators must understand the
complexities of the K-12 educational setting, incorporating that
knowledge into outreach activities and support for K-12 changes.

Developing a defi nition of, or approach to, computational think-
ing that is suitable for K-12 is especially challenging in light of the
fact that there is, yet, no widely agreed upon defi nition of compu-
tational thinking. Certainly, K-12 students already learn how to
think and to problem solve, but computer scientists can help teach-
ers understand these processes as algorithmic, and identify where
actual computation and manipulation of data with a computer may
fi t in. Many disciplines require, promote, and teach problem solv-

ing skills, logical thinking, or algorithmic thinking. Computer sci-
entists can promote understanding of how to bring computational
processes to bear on problems in other fi elds and on problems that
lie at the intersection of disciplines. For example, bioinformatics
and computational biology are different, but both benefi t from the
combination of biology and computer science. The former involves
collecting and analyzing biological information. The latter involves
simulating biological systems and processes. Presenting both bio-
informatics and computational biology in algorithmic form helps
scientists exchange information [5].

2.0 MULTIPLE DEFINITIONS OF COMPUTER
SCIENCE AND COMPUTATIONAL THINKING

Questions of the nature and educational value of computer science
are as old as the discipline itself. In 1985, Abelson and Sussman
argued that computer science is “a discipline of constructing ap-
propriate descriptive languages” [1]. Denning [2], however, posited
that computer science consists of mechanics (computation, com-
munication, coordination, automation, and recollection), design
principles (simplicity, performance, reliability, evolvability, and se-
curity) and practices (programming, engineering systems, model-
ing and validation, innovating, and applying). The ACM Model
Curriculum for K-12 Computer Science [11] provides a defi ni-
tion of computer science specifi cally for K-12 educators. Computer
science, it argues, is neither programming nor computer literacy.
Rather, it is “the study of computers and algorithmic processes in-
cluding their principles, their hardware and software design, their
applications, and their impact on society” (pg.1). Computer science
therefore includes:

■ programming,
■ hardware design,
■ networks,
■ graphics,
■ databases and information retrieval,
■ computer security,
■ software design,
■ programming languages and paradigms,
■ logic,
■ translation between levels of abstraction,
■ artifi cial intelligence,
■ the limits of computations (what computers cannot do),
■ applications in information technology and information

systems, and
■ social issues (Internet security, privacy, intellectual property, etc.).

More recently, Felleisen and Krishnamurthy [3] have argued
that “imaginative programming” is the most crucial element of
computing because it closely aligns mathematics with computing
and in this way brings mathematics to life.

In framing the conceptual and educational importance of com-
putational thinking, as distinct from computer science, Wing [12]
suggested that computational thinking includes seeking algorithmic

Aman Yadav

Aman Yadav

comprehensive art ic les

Bringing Computational Thinking to K-12
continued

50 acm Inroads 2011 March • Vol. 2 • No. 1

approaches to problem domains; a readiness to move between dif-
fering levels of abstraction and representation; familiarity with de-
composition; separation of concerns; and modularity. More recently,
Isbell et al. [7] have argued for “computationalist thinking”, a focus
on providing services, interfaces, and behaviors that involves a more
central role for modeling as a means of formulating relationships
and identifying relevant agencies that are sources of change.

As the International Working Group on Computational
Thinking [8] pointed out, however, computational thinking “shares
elements with various other types of thinking such as algorith-
mic thinking, engineering thinking, and mathematical thinking”.
Perkovic et al. [10] similarly focus on the intellectual skills neces-
sary to “apply computational techniques or computer applications
to … problems and projects” in any discipline. Hemmendinger [6]
notes that we must be aware of the risks of arrogance and over-
reaching when discussing the role of computational thinking, es-
pecially across disciplines. He argues that the elements of compu-
tational thinking that computer scientists tend to claim for their
own (constructing models, fi nding and correcting errors, creating
representations, and analyzing) are shared across many disciplines
and that the appearance of grand territorial claims risks provoking

adverse reactions. Hemmendinger concludes that the ultimate goal
should not be to teach everyone to think like a computer scientist,
but rather to teach them to apply these common elements to solve
problems and discover new questions that can be explored within
and across all disciplines.

3.0 CREATING A DEFINITION FOR
COMPUTATIONAL THINKING IN K-12

K-12 education today is a highly complex, highly politicized en-
vironment where multiple competing priorities, ideologies, peda-
gogies, and ontologies all vie for dominance. It is simultaneously
subject to wildly diverse expectations, intense scrutiny, and di-
minishing resources. Any effort to achieve systemic change in this
environment requires a deep understanding of the realities of the
system. Passionate debate about the nature of computer science or
computational thinking may provide intellectual stimulation for
those in the computing fi elds. However, embedding computational
thinking in K-12 requires a practical approach, grounded in an op-
erational defi nition. It requires that we begin with a set of ques-
tions focused specifi cally on K-12 implementation:

■ What would computational thinking look like in the
classroom?

■ What are the skills that students would demonstrate?
■ What would a teacher need in order to put computational

thinking into practice?
■ What are teachers already doing that could be modifi ed and

extended?

To be useful, a defi nition must ultimately be coupled with ex-
amples that demonstrate how computational thinking can be in-
corporated in the classroom. Research regarding the implementa-
tion of computational thinking skills in informal education also
provides valuable insights. The International Working Group on
Computational Thinking [8], for example, points to several suc-
cessful projects that use simulation and modeling, robotics, and
computer game design to teach abstraction, automation, and analy-
sis. As they note, these kinds of activities also involve an iterative
design, refi nement, and refl ection process that Resnick [9] argues is
central to creative as well as computational thinking.

In the summer of 2009, the Computer Science Teachers As-
sociation (CSTA) and the International Society for Technology in

Education (ISTE) began a multi-
phase project aimed at develop-
ing an operational defi nition of
computational thinking for K-12.
These two organizations (see
Appendix A for more informa-
tion about CSTA and ISTE) are
particularly suited for this under-
taking because of their extensive
involvement in K-12 and their ex-
pertise in developing educational

standards, curriculum materials, and professional development for
educators. This project would bring together computational think-
ing and K-12 curriculum thought leaders committed to focusing
on defi nitions and implementation of computational thinking in
the context of real K-12 curriculum outcomes, standards, and arti-
facts. The project began with the selection of a small steering com-
mittee that met to:

■ identify criteria for and names of potential invitees for a
Thought Leaders meeting; and

■ develop an agenda for a two-day Thought Leaders meeting
designed to create a framework/lexicon to better facilitate
discussions of key elements of computational thinking across
diverse disciplines.

The steering committee identifi ed a group of educators and ad-
ministrators who

■ had interest in computational thinking for K-12 or expertise
in curriculum development and implementation

■ would provide representation from a broad spectrum of
backgrounds and perspectives (higher education faculty and
researchers, K-12 professional associations, school-based
leaders, teachers, the corporate community),

■ had experience with or demonstrated interest in K-12 issues, and

To be useful, a defi nition must ultimately
be coupled with examples that
demonstrate how computational thinking
can be incorporated in the classroom.

comprehensive art ic les

2011 March • Vol. 2 • No. 1 acm Inroads 51

■ demonstrated leadership,
particularly in STEM discipline
areas.

The steering committee eventu-
ally selected 26 Thought Leaders and
charged them with developing a shared
vision and set of strategies for embed-
ding computational thinking across the
K-12 curriculum, most especially in the
STEM subject areas. The purpose of
the meeting, held over two days in April
2010, was not to craft a formal or defi n-
itive defi nition of computational think-
ing to be debated by academics. Rather,
the goal of the meeting was to reach a
consensus of what computational think-
ing means in K-12, as well as explain
the particularities of K-12 education to
the CS education representatives. Spe-
cifi cally, for any K-16 collaboration to
be successful, college faculty must un-
derstand the complexities of teaching in
and making changes in the K-12 setting. The computer scientists
participating, in particular, noted that educational change was
considerably more complex than they suspected and that working
with educators from multiple diverse disciplines meant learning
to “disconnect computational thinking from computer science”.

4.0 WAYS OF ENVISIONING
COMPUTATIONAL THINKING

IN K-12 CLASSROOM
The participants identifi ed many ideas about what computational
thinking is and what it could be in K-12 classrooms. When chal-
lenged with the task of describing what makes computational
thinking distinct from other kinds of thinking, participants tended
to focus on the centrality of the computer and a set of concepts
encompassed by computational thinking and doing:

CT is an approach to solving problems in a way that can be
implemented with a computer. Students become not merely tool
users but tool builders. They use a set of concepts, such as ab-
straction, recursion, and iteration, to process and analyze data,
and to create real and virtual artifacts. CT is a problem solving
methodology that can be automated and transferred and applied
across subjects.

They also considered the generation of computational thinking
from, and its potential use in, a wide variety of disciplines:

The power of computational thinking is that it applies to every
other type of reasoning. It enables all kinds of things to get done:
quantum physics, advanced biology, human-computer systems, de-
velopment of useful computational tools.

The participants envisioned computational thinking manifesting

in the classroom through active problem
solving. They saw students: “engaged in
using tools to solve problems”, “comfort-
able with trial and error”, and working in
“an atmosphere of fi guring things out to-
gether”. They also saw students using key
concepts, so that “you will hear them talk
about sequences, inputs, outputs, saved
value, how complex the solution is”. The
meeting participants also predicted that
students whose learning abounded with
opportunities for “computational do-
ing” would evidence a more fl uid kind of
problem solving. These students would
understand that “problems can be solved
in multiple ways”, have “a tolerance for
ambiguity and fl exibility” and have “rea-
sonable expectations about the prospect
of producing a working solution”.

One structured model that emerged
focused on identifying core computa-
tional thinking concepts and capabili-
ties and providing examples of how they

might be embedded in activities across multiple disciplines. Table
1 shows the results of these efforts.

Participants also discussed the core concepts in the context of
capabilities, dispositions and pre-dispositions, and classroom cul-
ture. In many ways the capabilities category is a reiteration of the
core concepts, focused on what students would actually do. These
capabilities include:

■ Design solutions to problems (using abstraction, automation,
creating algorithms, data collection and analysis);

■ Implement designs (programming as appropriate);
■ Test and debug;
■ Model, run simulations, do systems analysis;
■ Refl ect on practice and communicating;
■ Use the vocabulary;
■ Recognize abstractions and move between levels of

abstractions;
■ Innovation, exploration, and creativity across disciplines;
■ Group problem solving; and
■ Employ diverse learning strategies.

The dispositions and pre-dispositions category arose from
an attempt to capture the “areas of values, motivations, feelings,
stereotypes and attitudes” applicable to computational thinking.
These included:

■ Confi dence in dealing with complexity,
■ Persistence in working with diffi cult problems,
■ The ability to handle ambiguity,
■ The ability to deal with open-ended problems,
■ Setting aside differences to work with others to achieve a

common goal or solution, and
■ Knowing one's strengths and weaknesses when working with

others.

The meeting
participants also
predicted that
students whose
learning abounded
with opportunities
for “computational
doing” would
evidence a more
fl uid kind of
problem solving.

comprehensive art ic les

Bringing Computational Thinking to K-12
continued

52 acm Inroads 2011 March • Vol. 2 • No. 1

■ Team work by students, with explicit use of:
• decomposition - breaking problems down into smaller parts

that may be more easily solved,
• abstraction - simplifying from the concrete to the general as

solutions are developed,
• negotiation - groups within the team working together to

merge parts of the solution into the whole, and
• consensus building - working to build group solidarity

behind one idea or solution.

In attempting to defi ne a classroom culture that would be most
conducive to computational thinking, the participants identifi ed
strategies or characteristics that could be considered broadly
benefi cial to any learning experience. These included:

■ Increased use by both teachers and students of computational
vocabulary where appropriate to describe problems and solutions;

■ Acceptance by both teachers and students of failed solution
attempts, recognizing that early failure can often put you on
the path to a successful outcome;

CT Concept,
Capability

CS Math Science Social Studies Language Arts

Data collection

Find a data source for
a problem area

Find a data source for
a problem area, for
example, fl ipping coins
or throwing dice

Collect data from an
experiment

Study battle statistics
or population data

Do linguistic analysis
of sentences

Data analysis

Write a program to
do basic statistical
calculations on a set
of data

Count occurrences of
fl ips, dice throws and
analyzing results

Analyze data from an
experiment

Identify trends in data
from statistics

Identify patterns for
different sentence
types

Data representation

Use data structures
such as array, linked
list, stack, queue,
graph, hash table, etc.

Use histogram, pie
chart, bar chart to
represent data; use
sets, lists, graphs, etc.
To contain data

Summarize data from
an experiment

Summarize and
represent trends

Represent patterns
of different sentence
types

Problem
Decomposition

Defi ne objects and
methods; defi ne main
and functions

Apply order of
operations in an
expression

Do a species
classifi cation

Write an outline

Abstraction

Use procedures to
encapsulate a set
of often repeated
commands that
perform a function;
use conditionals,
loops, recursion, etc.

Use variables in
algebra; identify
essential facts in a
word problem; study
functions in algebra
compared to functions
in programming;

Use iteration to solve
word problems

Build a model of a
physical entity

Summarize facts;
deduce conclusions
from facts

Use of simile and
metaphor; write a
story with branches

Algorithms &
procedures

Study classic
algorithms; implement
an algorithm for a
problem area

Do long division,
factoring; do carries in
addition or subtraction

Do an experimental
procedure

Write instructions

Automation

Use tools such as:
geometer sketch pad;
star logo; python code
snippets

Use probeware Use excel Use a spell checker

Parallelization

Threading, pipelining,
dividing up data or
task in such a way
to be processed in
parallel

Solve linear
systems; do matrix
multiplication

Simultaneously run
experiments with
different parameters

Simulation

Algorithm animation,
parameter sweeping

Graph a function in a
Cartesian plane and
modify values of the
variables

Simulate movement of
the solar system

Play age of empires;
Oregon trail

Do a re-enactment
from a story

TABLE 1: CORE COMPUTATIONAL THINKING CONCEPTS AND CAPABILITIES

comprehensive art ic les

2011 March • Vol. 2 • No. 1 acm Inroads 53

■ Improve the relationships and communication between K-12
educators (faculty and administrators), college CS faculty,
computer science professionals, and others in industry.

■ Develop a clear statement of computational thinking as a
core competency in K-12.

■ Demystify terminology about computational thinking, give
clear examples of ways it applies to and can be integrated
into a range of curricular areas.

5.2 Inspiration and Leadership
An activity for school and district level leadership inspiring change
is to provide materials that will help school administrators under-
stand computational thinking and see why associated knowledge
and skills are important for today's students. The larger CS com-
munity can help by providing suitable materials and taking advan-
tage of opportunities to work with K-12 administrators.

Inspiring and preparing teachers to change include the follow-
ing activities.

■ Foster professional development since it is critical to successful
educational change. CS faculty can help by providing summer
institutes, demonstrating the role of computational thinking in
non-CS disciplines and providing relevant curricular materials.

■ Encourage school administrators to provide incentives for
K-12 teachers to change courses and curricula. The NSF
RET grants awarded to CPATH grantees are one model that
provides incentives for K-12 teachers to adopt curricular or
pedagogic changes that have been piloted at the college level.

■ Provide teachers with resources to support change, including
curricular materials, models and simulations, model activities,
and web sites for independent student activities.

■ Provide teachers with professional development and support
in the form of learning communities, summer institutes, peer
learning offered by teachers with computational thinking
experience, exposure to industry applications where CT
skills are utilized, and help identifying where computational
thinking is already included in teaching.

■ Make available to school districts open-source tools (blogs,
wikis, forums) and web-based social networks and content
delivery systems for use by teachers and students (vetted so
that districts are not likely to block them).

■ Encourage current professional education associations to
show how computational thinking fi ts into their current
standards/work.

While further detail and synthesis work is clearly required (and
planned for in the next phase of the project) these models provide
a way to begin embedding computational thinking within K-12
formal education. This counters the potential claim that computa-
tional thinking can only be addressed in informal education expe-
riences where discipline based-learning and classroom constraints
are not major encumbrances. However, there are still considerable
barriers that must be considered in any attempt at systemic and
sustained change.

5.0 STRATEGIES FOR ACHIEVING
SYSTEMATIC CHANGE

The kind of systemic and sustained educational change proposed
necessitates two sets of resources. Resources are needed to help
inform educational policy makers about the nature
and importance of computational thinking, its con-
nections to learning goals that may have already
been set for students (for example national and state
standards), and ways it can best be integrated within
the larger framework for student learning and suc-
cess. Teachers also need resources that demonstrate
how to most appropriately and effectively integrate
these new concepts, fi rst into their own sphere of
content and pedagogical knowledge, and then into
their classroom content and practice.

In order to articulate and expand on these two set of resources,
the Thought Leaders identifi ed several strategic areas that would
have to be addressed in order to successfully embed computational
thinking within K-12. For each strategic area, they developed a set
of requirements and suggestions that would support that element
of systemic and sustained change.

5.1 Policies, Vision, and Language
Educational policies that include computational thinking as a part
of every student's education include the following activities.

■ Present a single message at federal, state, and local levels
about the importance of computational thinking in K-12
education.

■ Encourage computer science professional organizations to
advocate at the federal and state levels and work with groups
that are active on state K-12 standards.

■ Incorporate computational thinking throughout the
entire K-12 experience with outcomes that demonstrate
incremental steps.

■ Attach computational thinking, where possible, to existing
policies. For example, it could be included as an explicit
outcome of state level technology tests.

■ Include in all teacher pre-service preparation programs a
class on computational thinking across disciplines.

A shared vision and common language include the following
activities.

The larger CS community can help
by providing suitable materials and
taking advantage of opportunities
to work with K-12 administrators.

comprehensive art ic les

Bringing Computational Thinking to K-12
continued

54 acm Inroads 2011 March • Vol. 2 • No. 1

References

 [1] Abelson, H. and Sussman G. Structure and Interpretation of Computer Programs. MIT Press,
Cambridge, MA, 1985.

 [2] Denning, P. Great Principles of Computing. Communications of the ACM, 46(11). 15-20.
 [3] Felleisen, M and Krishnamurthi S. Viewpoint - Why computer science doesn't matter. Com-

munications of the ACM, 52(7). 37.
 [4] Gal-Ezer, J. and Stephenson, C. Computer Science Teacher Preparation is Critical. ACM

Inroads, 1(1). 61-66.
 [5] Hey, T., Tansley, S. and K. Tolle, “Jim Gray on eScience: a transformed scientifi c method” in

The Fourth Paradigm: Data-Intensive Scientifi c Discovery. Microsoft Research, Redmond,WA,
2009.

 [6] Hemmendinger, D. A Plea for Modesty. ACM Inroads 1(2). 4-7.
 [7] Isbell C., Stein A., Cutler R., Forber J., Fraser L., Impagliazzo J., Proulx V., Russ S., Thomas

R., Xu Y. (Re)Defi ning computing curricula by (re)defi ning computing. ACM SIGCSE Bulletin,
41(4). 195-207.

 [8] IWG, 2010, May, Computational Thinking for Youth, Education Development Center, Inc.,
Newton, MA

 [9] Resnick, M. All I really need to know (about creative thinking) I learned (by studying how chil-
dren learn (in kindergarten), ACM 2007 Creativity and Cognition Conference, Washington, DC.

 [10] Perkovic L., Settle A., Hwang S. and Jones, J. A Framework for Computational Thinking across
the Curriculum, Proceedings of the 2010 Conference on Innovation and Technology in
Computer Science Education, 2010, 123-127.

 [11] Tucker, A., McCowan D., Deek F., Stephenson C., Jones J. and Verno A. A model curriculum
for K-12 computer science: Report of the ACM K-12 Task Force Computer Science Curriculum
Committee. Association for Computing Machinery, New York, NY, 2003.

 [12] Wing, J.M. Computational Thinking. Communications of the ACM, 49(3). 33-35.
 [13] Zendler, A. and Spannagel, C. Empirical Foundation of Central Concepts for Computer Sci-

ence Education. ACM Journal on Educational Resources in Computing, 8(2).

VALERIE BARR
Computer Science Department, Union College
807 Union Street, Schenectady, NY 12308

barrv@union.edu

CHRIS STEPHENSON
Computer Science Teachers Association
2 Penn Plaza, Suite 701, New York, NY 10121-00701

cstephenson@csta.acm.org

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and
Information Science Education - Computer science education, Curriculum.
General terms: Human Factors
Keywords: Computational thinking, K-12 curriculum, K-12 CS Education, cross-disciplinary
computing

DOI: 10.1145/1929887.1929905 © 2011 ACM 2153-2184/11/0300 $10.00

■ Ask professional education associations to include a focus on
computational thinking in their conferences, workshops, and
professional development events.

These represent strategic areas that would support the long-
term goal of embedding computational thinking in K-12. They
clearly demonstrate the myriad issues and obstacles involved when
trying to achieve educational change in K-12. They also illustrate
the critical importance of engaging knowledgeable K-12 educators
in projects that purport to improve student learning, and the extent
to which a successful effort will require the expertise, resources, and
dedication of educators and policy makers at all educational levels.

6.0 NEXT STEP
The next phase of this project will involve a Practitioners Workshop
that will begin to develop the resources and strategies identifi ed in
the Thought Leaders meeting. The challenge will be to determine
the best possible artifacts to promote the implementation of compu-
tational thinking concepts in K-12. We expect that the Practitioners
Workshop will therefore include development of various resource
sets. For example, a framework might be developed to guide high-
level policy work (e.g school, district, state). A second resource might
consist of exemplars or activities for classroom teachers. While the
precise set of resources and their content have not yet been deter-
mined, it is clear that the Practitioners Workshop will be focused on
formulating new materials both for implementing CT concepts into
the curriculum and for advocating for computational thinking as a
key educational component for all students. Given efforts already
under way at the college level, including the development of new
curricula and resources, we expect the computer science education
community will have much to contribute to this effort. Ir

APPENDIX A

CSTA is a membership organization of more than 7000 computing educators at the K-12 and post-secondary level. Its mission is to
support and promote the teaching of computer science and other computing disciplines at the K-12 level by providing opportuni-
ties for teachers and students to understand better the computing disciplines and to prepare themselves more successfully to teach

and to learn. Since its inception fi ve years ago, CSTA has become the primary voice for K-12 computer science education, advocating for
the importance of computer science as part of the educational canon and its centrality to all of the STEM (science, technology, engineer-
ing, mathematics) disciplines. Through its development and publication of the ACM Model Curriculum for K-12 Computer Science
and supporting curriculum implementation documents, CSTA has provided the de facto national standards for computer science in K-12.
CSTA also conducts groundbreaking research and has published several germinal white papers on key computer science education issues.
It provides multiple levels of professional development (through workshops and annual conferences) that have helped educators improve
their technical knowledge and pedagogical skills.

ISTE is recognized for its leadership to improve learning and teaching through effective integration of technology across the curriculum
and throughout the education enterprise. ISTE's commitment to educational transformation is best represented by its work to develop
the National Educational Technology Standards (NETS) for Students, Teachers, and Administrators. By convening K-12 educators,

teacher educators, curriculum and education associations, government, business, and private foundations, ISTE built consensus for the
framework and momentum for using the standards. ISTE is a also a leader in convening educators and school leaders, best illustrated by its
annual conference which showcases emerging technology and innovative and effective use of technology in the K-12 classroom.

