
AWS Toolkit for Eclipse User Guide

March 29, 2017

Contents
AWS Toolkit for Eclipse User Guide 1

What is the AWS Toolkit for Eclipse? 2

Additional documentation and resources 2

Getting Started 4

Set up the Toolkit 4

Prerequisites 4

Install the AWS Toolkit for Eclipse 4

Upgrade the AWS Toolkit for Eclipse 5

Set up AWS Credentials 5

Get your AWS access keys 5

Add your AWS access keys to the AWS Toolkit for Eclipse 6

Using multiple AWS accounts with the AWS Toolkit for Eclipse 7

Changing the AWS credentials file location 8

Associate Private Keys with Your Amazon EC2 Key Pairs 9

AWS Toolkit for Eclipse Basics 11

Building an AWS Java Application 11

Build and Run the Amazon Simple Queue Service Sample 11

Serverless Projects 13

Creating a Serverless Project 14

Serverless Project Blueprints 15

Serverless Project Structure 16

Deploying a Serverless Project 16

See Also 18

Differentiating AWS Resources with Naming 18

Working with AWS Services 21

How to Access AWS Explorer 21

Using Lambda with the AWS Toolkit for Eclipse 22

Tutorial: How to Create, Upload and Invoke an AWS Lambda Function 22

Create a Lambda handler class 22

Implement the handler method 24

Allow Lambda to assume an IAM role 25

Create an Amazon S3 bucket for your Lambda code 25

Upload the code 26

Invoke the Lambda function 28

Where to go from here 29

AWS Lambda Interface Reference 29

New AWS Lambda Java Project Dialog 29

Launching the dialog 29

Create Project Dialog user interface 30

Upload AWS Lambda Function Dialog 31

Launching the dialog 31

Select Target Lambda Function user interface 32

Configure Function user interface 33

Basic Settings 33

Function Execution 34

S3 Bucket for Function Code 34

Advanced Settings 34

Run AWS Lambda Function Dialog 34

Launching the dialog 34

Options 35

The CloudFormation Template Editor 35

Adding and Accessing CloudFormation Templates in Eclipse 36

Deploying a CloudFormation Template in Eclipse 37

Updating a CloudFormation Template in Eclipse 40

Validating a CloudFormation Template in Eclipse 43

Using DynamoDB with AWS Explorer 43

Creating an DynamoDB Table 44

Viewing an DynamoDB Table as a Grid 45

Editing Attributes and Values 46

Scanning an DynamoDB Table 47

Launch an Amazon EC2 Instance from an Amazon Machine Image 48

Managing Security Groups from AWS Explorer 52

Creating a New Security Group 52

Adding Permissions to Security Groups 53

Viewing and Adding Amazon SNS Notifications 55

View an Amazon SNS Notification 55

Add an Amazon SNS Notification 55

Connecting to Amazon Relational Database Service (Amazon RDS) 56

Identity and Access Management 58

About AWS Identity and Access Management 58

Create an IAM User 59

Create an IAM Group 60

Add an IAM User to an IAM Group 61

Manage Credentials for an IAM User 62

Create an IAM Role 66

Attach an IAM Policy to a User, Group, or Role 69

Set Password Policy 71

Document History 72

AWS Toolkit for Eclipse User Guide

AWS Toolkit for Eclipse User Guide

1

What is the AWS Toolkit for Eclipse?
The AWS Toolkit for Eclipse is an open source plug-in for the Eclipse integrated development environment
(IDE) that makes it easier for developers to develop, debug, and deploy Java applications that use Amazon
Web Services. It enhances the Eclipse IDE with additional features:

• The AWS SDK for Java is included and installed as part of the AWS Toolkit for Eclipse

• AWS Explorer, an interface to Amazon Web Services that allows you to manage your AWS resources
from within the Eclipse environment.

• AWS Elastic Beanstalk deployment and debugging

• An AWS CloudFormation template editor

• Support for multiple AWS accounts

Important

There is no charge for using the AWS Toolkit for Eclipse, however you may incur AWS charges for
creating or using AWS chargeable resources, such as running Amazon EC2 instances or using
Amazon S3 storage. You can use the AWS Simple Monthly Calculator to estimate charges for the use
of various AWS resources.

Additional documentation and resources
In addition to this guide, there are a number of other resources available for AWS Toolkit for Eclipse users:

• AWS Java Developer Guide

• AWS SDK for Java Reference

• Java developer blog

• Java developer forums

• GitHub:

• documentation source

• documentation issues

• toolkit source

• toolkit issues

• @awsforjava (Twitter)

• Toolkit license

• Toolkit FAQ

• Getting Started with the AWS SDK for Java

• Installing the AWS Toolkit for Eclipse (video)

• Using AWS Elastic Beanstalk with the AWS Toolkit for Eclipse (video)

What is the AWS Toolkit for Eclipse?

2

https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#chargeable-resources
http://calculator.s3.amazonaws.com/index.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://aws.amazon.com/blogs/developer/category/java
https://forums.aws.amazon.com/forum.jspa?forumID=70
https://github.com/awsdocs/aws-toolkit-eclipse-user-guide
https://github.com/awsdocs/aws-toolkit-eclipse-user-guide/issues
https://github.com/aws/aws-toolkit-eclipse
https://github.com/aws/aws-toolkit-eclipse/issues
https://twitter.com/awsforjava
https://aws.amazon.com/apache-2-0/
https://aws.amazon.com/eclipse/faqs/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/getting-started.html
https://media.amazonwebservices.com/videos/eclipse-java-sdk-video.html
https://d1un85p0f2qstc.cloudfront.net/eclipse/elasticbeanstalk/index.html

• Amazon SimpleDB Management in AWS Toolkit for Eclipse (video)

• AWS Toolkit for Eclipse: Amazon EC2 Management (video)

What is the AWS Toolkit for Eclipse?

3

https://media.amazonwebservices.com/videos/eclipse-sdb-management-video.html
http://d1un85p0f2qstc.cloudfront.net/eclipse/ec2/index.html

Getting Started
This section provides information for those getting started with the AWS Toolkit for Eclipse, including
information about how to install and configure the AWS Toolkit for Eclipse.

Set up the Toolkit
This section desribes how to install or upgrade the AWS Toolkit for Eclipse.

Prerequisites
The AWS Toolkit for Eclipse has the following prerequisites:

• An Amazon Web Services account – To obtain an AWS account, go to the AWS home page and click
Sign Up Now. Signing up will enable you to use all of the services offered by AWS.

• A supported operating system – The AWS Toolkit for Eclipse is supported on Windows, Linux, macOS,
or Unix.

• Java 1.6 or later

• Eclipse IDE for Java Developers 3.6 or later – We attempt to keep the AWS Toolkit for Eclipse current
with the default version available on the Eclipse download page.

Tip

Eclipse provides a number of different downloads. We recommend installing the Eclipse IDE for
Java EE Developers, which includes the Eclipse Web Tools Platform required by Elastic
Beanstalk, and the Eclipse Data Tools Platform required for Amazon SimpleDB features. If you
install another version of Eclipse, make sure that you have (or that you install, using the provided
links) support for these features.

• (Optional) Google Android Development Tools (ADT) – if you want AWS Toolkit for Eclipse support for
the AWS Mobile SDK for Android, you must install the ADT first.

Install the AWS Toolkit for Eclipse

To install the AWS Toolkit for Eclipse

1. Within Eclipse, click Help and then click Install New Software.

2. In the Work with box, type https://aws.amazon.com/eclipse and then press Enter.

3. Choose the components of the AWS Toolkit for Eclipse that you want to install. Click Select All to install
all components at once.

Note

Getting Started

4

https://aws.amazon.com/
https://eclipse.org/downloads/
https://projects.eclipse.org/projects/webtools
http://www.eclipse.org/datatools/
https://aws.amazon.com/mobile/sdk/
https://developer.android.com/studio/tools/sdk/eclipse-adt.html

• AWS Toolkit for Eclipse Core (in the AWS Core Management Tools section) is required; all
other components are optional.

• Support for the AWS Mobile SDK for Android requires that you have the Google Android
Developer Tools (ADT) for Eclipse installed first. If you have not yet installed the ADT, make
sure that AWS SDK for Android is unchecked, or installation will fail.

• Support for the Amazon RDS or Amazon SimpleDB managers requires that the Eclipse Data
Tools Platform (DTP) is installed. The DTP is installed by default with the "Java EE
Developers" version of Eclipse, or can be installed separately.

4. Once you have made your selections, click Next (or Finish) to complete installation.

Once you have set up the AWS Toolkit for Eclipse you should configure your AWS Credentials.

Note

Depending on the options selected, and on factors such as network speed, server latency and system
capabilities, it may take up to 30 minutes for the installation to complete.

Upgrade the AWS Toolkit for Eclipse
To upgrade or reinstall the AWS Toolkit for Eclipse, use the same instructions for installing the toolkit.

Some versions of Eclipse, (notably Mars and Neon), may fail to fetch the latest artifacts due to a bug in old
versions of the Oomph plugin. To work around this issue:

1. Make sure that you're using https://aws.amazon.com/eclipse/site.xml as the AWS Toolkit for
Eclipse update site.

2. Delete the ~/.eclipse/org.eclipse.oomph.p2/cache/ directory to remove cached content.

3. Install the latest version of Oomph (Eclipse Installer).

Set up AWS Credentials
To access Amazon Web Services with the AWS Toolkit for Eclipse, you must configure the AWS Toolkit for
Eclipse with AWS account credentials.

Get your AWS access keys
Access keys consist of an access key ID and secret access key, which are used to sign programmatic
requests that you make to AWS. If you don't have access keys, you can create them by using the AWS
Management Console. We recommend that you use IAM access keys instead of AWS root account access
keys. IAM lets you securely control access to AWS services and resources in your AWS account.

Getting Started

5

https://aws.amazon.com/mobile/sdk/
https://eclipse.org/datatools/downloads.php
https://projects.eclipse.org/projects/tools.oomph
https://wiki.eclipse.org/Eclipse_Installer
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

Note

To create access keys, you must have permissions to perform the required IAM actions. For more
information, see Granting IAM User Permission to Manage Password Policy and Credentials in the IAM
User Guide.

To get your access key ID and secret access key

1. Open the IAM console.

2. From the navigation menu, click Users.

3. Select your IAM user name.

4. Click User Actions, and then click Manage Access Keys.

5. Click Create Access Key.

Your keys will look something like this:

• Access key ID example: AKIAIOSFODNN7EXAMPLE

• Secret access key example: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
6. Click Download Credentials, and store the keys in a secure location.

Important

Your secret key will no longer be available through the AWS Management Console; you will have the
only copy. Keep it confidential in order to protect your account, and never email it. Do not share it
outside your organization, even if an inquiry appears to come from AWS or Amazon.com.

No one who legitimately represents Amazon will ever ask you for your secret key.

Related topics

• What Is IAM? in IAM User Guide.

• AWS Security Credentials in Amazon Web Services General Reference.

Add your AWS access keys to the AWS Toolkit for Eclipse
The AWS Toolkit for Eclipse uses the same system for locating and using AWS access keys as that used by
the AWS CLI and AWS Java SDK. Access keys entered in the Eclipse IDE are saved to a shared AWS
credentials file (called credentials) in the .aws sub-directory within your home directory.

Getting Started

6

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_delegate-permissions.html
https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

Note

The location of the credential file can be modified. For information about setting the location of this file,
see Changing the AWS credentials file location.

If you have already set your AWS credentials using the AWS CLI, then the AWS Toolkit for Eclipse will
automatically detect and use those credentials. For more information about using the AWS CLI, see the AWS
CLI User Guide.

To add your access keys to the AWS Toolkit for Eclipse

1. Open Eclipse's Preferences dialog box and click AWS Toolkit in the sidebar.

2. Type or paste your AWS access key ID in the Access Key ID box.

3. Type or paste your AWS secret access key in the Secret Access Key box.

4. Click Apply or OK to store your access key information.

Here's an example of a configured set of default credentials:

Using multiple AWS accounts with the AWS Toolkit for Eclipse
The Preferences dialog box allows you to add information for more than one AWS account. Multiple accounts
can be useful, for example, to provide developers and administrators with separate resources for development
and for release/publication.

Separate sets of AWS credentials are stored as profiles within the shared AWS credentials file described in
Add your AWS access keys to the AWS Toolkit for Eclipse. All of the configured profiles can be seen in the

Getting Started

7

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

drop-down box at the top of the AWS Toolkit Preferences Global Configuration screen, labeled Default
Profile.

To add a new set of access keys

1. On the AWS Toolkit Preferences screen in Eclipse's Preferences dialog box, click Add profile.

2. Add your new account information to the Profile Details section.

Choose a descriptive name for the Profile Name, and enter your access key information in the Access
Key ID and Secret Access Key boxes.

3. Click Apply or OK to store your access key information.

You can repeat this procedure for as many sets of AWS account information that you need.

When you have entered all of your AWS account information, select the default account by choosing one of
the accounts from the Default Profile drop-down. AWS Explorer displays resources associated with the
default account, and when you create a new application through the AWS Toolkit for Eclipse, the application
uses the credentials for the configured default account.

Note

For an alternative approach to separate your AWS resources, see Differentiating AWS Resources with
Naming.

Changing the AWS credentials file location
Using the AWS Toolkit for Eclipse Preferences screen, you can change the location used by the Toolkit to
store and load credentials.

To set the AWS credentials file location

• In the AWS Toolkit Preferences dialog, locate the Credentials file location section, and enter the
pathname of the file where you would like your AWS credentials stored.

Getting Started

8

Important

It is strongly recommended that you don't store your AWS credential information within any
network-shared directory or within any source-control-managed projects. Always retain strict control of
your AWS access keys!

Associate Private Keys with Your Amazon EC2 Key Pairs
The AWS Toolkit for Eclipse can obtain your Amazon EC2 key pairs from AWS. However, you will need to
associate private keys to use them with the AWS Toolkit for Eclipse.

To view your Amazon EC2 key pairs in the AWS Toolkit for Eclipse and associate private keys with
them

1. Open Eclipse's Preferences dialog box and click the triangle next to AWS Toolkit in the sidebar to
show additional categories of AWS Toolkit for Eclipse settings.

2. Select Key Pairs.

Eclipse displays a scrollable list of your key pairs. If a key pair has a red X next to it, you will need to
associate a private key with the key pair to use it.

Getting Started

9

3. Right-click the key pair and, from the context menu, select Select Private Key File...

4. Navigate to the private key file and select it to associate it with your key pair.

Getting Started

10

AWS Toolkit for Eclipse Basics
This section provides information about how to accomplish common development tasks with the AWS Toolkit
for Eclipse.

Building an AWS Java Application
In this section, we'll use the AWS Toolkit for Eclipse to build and run a local Java application that accesses
AWS resources.

The AWS Toolkit for Eclipse includes the AWS SDK for Java and a number of Java sample programs. The
AWS Toolkit for Eclipse makes it easy to build and run any of these samples. To demonstrate how the AWS
Toolkit for Eclipse can help you build and run AWS applications in Java, we'll use the
AmazonSimpleQueueService sample as an example. The AWS Explorer that is provided with the AWS Toolkit
for Eclipse can be used to view the running Amazon SQS queue.

Note

The AWS SDK for Java samples are provided in the samples directory in the SDK download, and can
also be viewed on GitHub. For more information about the AWS SDK for Java itself, view the AWS Java
Developer Guide.

Build and Run the Amazon Simple Queue Service Sample
To build and run the Amazon Simple Queue Service sample

1. Click the AWS icon on the Eclipse toolbar, and then click New AWS Java Project.

2. In the dialog box that appears, type a name for the project in the Project name box and select Amazon
Simple Queue Service Sample.

AWS Toolkit for Eclipse Basics

11

https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/

3. Click Finish.

4. The sample application appears in Project Explorer. Expand the tree view for this project.

AWS Toolkit for Eclipse Basics

12

5. Beneath the src node, double-click the SimpleQueueService.java source file to open it in the editor pane.
Locate the following line:

System.out.println("Receiving messages from MyQueue.\n");

6. Right-click in the left margin of the editor pane, and select Toggle Breakpoint.

7. Right-click the project node in Project Explorer—in our example, this would be the node named
myJavaSqsApp—then click Debug As > Java Application.

8. In the Select Java Application dialog box, select the SQS application and then click OK.

9. When the application stops at the breakpoint, Eclipse will ask if it should switch to the Debug perspective.
Click No (the Debug perspective does not include AWS Explorer).

10. Go to AWS Explorer and expand the Amazon SQS node.

11. Double-click MyQueue and view the contents of the queue that was created by the Java client
application.

12. Press F8. The Java client application will continue running and terminate normally.

13. Refresh the view in AWS Explorer. You will see that the MyQueue queue is no longer present; the
application deletes the queue before the application exits.

Note

If you run this sample application repeatedly, you should wait at least 60 seconds between subsequent
runs. Amazon SQS requires that at least 60 seconds elapse after deleting a queue before creating a
queue with the same name.

Serverless Projects
The AWS Toolkit for Eclipse includes a project creation wizard that you can use to quickly configure and
create serverless projects that deploy on CloudFormation and run Lambda functions in response to RESTful
web requests.

AWS Toolkit for Eclipse Basics

13

Creating a Serverless Project

To create a serverless project

1. Select the AWS icon in the toolbar, and choose New AWS serverless project... from the menu that
appears.

2. Enter a Project name.

3. Enter a Package namespace for your project. This will be used as the prefix for the source namespaces
created for your project.

4. Choose either to Select a blueprint or to Select a serverless template file:

Select a Blueprint
Choose a pre-defined project blueprint to use for your serverless project.

Select a Serverless Template File
Choose a JSON-formatted Serverless Application Model (SAM) .template file on your filesystem to
fully customize your serverless project.

Note

For information about the structure and contents of a .template file, view the current version of the
specification on GitHub.

5. Press the Finish button to create your new serverless project.

AWS Toolkit for Eclipse Basics

14

https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md
https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md

The serverless project wizard

Serverless Project Blueprints
The following serverless project blueprints are available to use:

article
This blueprint creates a S3 Bucket for storing article content, and a DynamoDB Table for article metadata.
It contains Lambda functions for retrieving (GetArticle) and storing (PutArticle) articles, which are
triggered by API Gateway events.

hello-world

AWS Toolkit for Eclipse Basics

15

A simple blueprint that creates a Lambda function which takes a single string. Its output is
Hello, value, where value is the string that was passed in, or World if no string is passed to the
function.

Serverless Project Structure
The serverless project wizard will create a new Eclipse project for you, consisting of the following parts:

• The src directory contains two sub-directories, each prefaced with your chosen Package namespace:

mynamespace.function
Contains class files for the Lambda functions that are defined by your serverless template.

mynamespace.model
Contains generic ServerlessInput and ServerlessOutput classes that define the input and
output model for your Lambda functions.

Tip

For more information about the input and output formats used in the model classes, see the
Configure Proxy Integration for a Proxy Resource page in the API Gateway Developer Guide.

• The serverless.template file defines the AWS resources and Lambda functions (a resource of type
"AWS::Serverless:Function") used by your project.

Deploying a Serverless Project

To deploy your serverless project

1. In Eclipse's Project Explorer window, select your project and open the context menu (right-click or long
press).

2. Choose Amazon Web Services ‣ Deploy Serverless Project... on the context menu. This will bring up
the Deploy Serverless to AWS CloudFormation dialog.

3. Select the AWS Regions to use. This determines where the CloudFormation stack that you deploy is
located.

4. Choose an S3 Bucket to use to store your Lambda function code, or select the Create button to create a
new S3 bucket to store your code.

5. Choose a name for your CloudFormation stack.

6. Press the Finish button to upload your Lambda functions to Amazon S3 and deploy your project
template to CloudFormation.

AWS Toolkit for Eclipse Basics

16

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html

The serverless project deployment dialog

When your project is deployed, a CloudFormation stack detail window will appear that provides information
about your deployment and its current status. It will initially show its status as CREATE_IN_PROGRESS. When
the status is CREATE_COMPLETE, your deployment is active.

To return to this window at any time, open the AWS Explorer, select the AWS CloudFormation node, and
then select the name of the CloudFormation stack you specified.

Note

If there was an error during deployment, your stack may be rolled back. See Troubleshooting in the
CloudFormation User Guide for information about how to diagnose stack deployment errors.

AWS Toolkit for Eclipse Basics

17

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html

See Also

• AWS Serverless Application Model (GitHub)

• The CloudFormation Template Editor

• Using Lambda with the AWS Toolkit for Eclipse

Differentiating AWS Resources with Naming
During development of new products or features, it is useful to keep AWS resources that are used for
development separate from resources that are used for production. One approach to maintaining this
separation was discussed in the Set up AWS Credentials, that is, to use different accounts for development and
production resources. That approach works especially well when using AWS Explorer, because AWS Explorer
displays resources based on account credentials. This section will discuss an alternative approach in which a
naming convention is used to differentiate between development and production resources—and in which
support for the naming convention is implemented in code.

The basic idea is to distinguish your AWS resources, such as Amazon Simple Storage Service (Amazon S3)
buckets or Amazon SimpleDB domains, by adding a designated string value to the resource name. For
example, instead of naming your Amazon SimpleDB domain "customers", you would name it "customers-dev"
for development use or "customer-prod" for production use. However, an issue arises if you need to move
development code into production. At that point, you would need to change all these strings, perhaps with a
number of global search and replace operations; that could be tedious or error prone. A more efficient method
would be to add support for the naming convention in the code.

The StageUtils class exposes the following method.

public static String getResourceSuffixForCurrentStage()

The getResourceSuffixForCurrentStage method returns a string that corresponds to the "stage" in the
software life cycle for which the resource is used, such as "dev" or "beta" or "prod". This string can then be
appended to resource identifiers used in code. You can use getResourceSuffixForCurrentStage to
construct resource names. For example, the following method, getTopicName, returns a unique name for an

AWS Toolkit for Eclipse Basics

18

https://github.com/awslabs/serverless-application-model

Amazon SNS topic. Notice how it embeds the return value from getResourceSuffixForCurrentStage in
this name.

private String getTopicName (Entry entry) {
 return "entry" + StageUtils.getResourceSuffixForCurrentStage() + "-" + entry.getId();
}

The value returned by getResourceSuffixForCurrentStage is retrieved from the Java system property,
"application.stage". You can specify this value by setting the system property in the container configuration for
AWS Elastic Beanstalk.

Note

In the AWS Toolkit for Eclipse, your AWS Elastic Beanstalk application needs to be up and running in
order for you to access the container configuration. Changing and saving the configuration causes the
application to automatically restart with the new configuration.

To access the Container/JVM Options panel for your AWS Elastic Beanstalk application

1. In AWS Explorer, expand the AWS Elastic Beanstalk node and your application node.

2. Beneath the application node, double-click your AWS Elastic Beanstalk environment.

3. At the bottom of the Overview pane, click the Configuration tab.

4. In the Container area, configure the container options.

5. In the Additional Tomcat JVM command line options box, specify the value for the application.stage
system property by adding a -D command line option. For example, you could use the following syntax to
specify that the string value should be "-beta".

-Dapplication.stage=beta

Note that getResourceSuffixForCurrentStage automatically prepends a hyphen character to
whatever string value you specify.

AWS Toolkit for Eclipse Basics

19

6. After you have added the system property value, click the File menu, and then click Save. Eclipse will
save the new configuration. The application should restart automatically. You can check the Events
tab—at the bottom of the Eclipse editor—for the event that indicates that the new configuration was
successfully deployed to the environment.

7. After the application restarts, expand the Amazon SimpleDB node in AWS Explorer. You should now
see a new set of domains that use the string value that you specified.

Note

For more information about configuring the container, see Creating and Deploying Java Applications
on AWS Elastic Beanstalk in the Elastic Beanstalk Developer Guide.

AWS Toolkit for Eclipse Basics

20

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Java.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Java.html

Working with AWS Services
AWS Explorer gives you a view of, and allows you to manipulate, multiple Amazon Web Services
simultaneously. This section provides information about how to access and use the AWS Explorer view in
Eclipse.

It assumes that you've already installed the AWS Toolkit for Eclipse on your system.

How to Access AWS Explorer
To display AWS Explorer, click the AWS icon on the toolbar, and select Show AWS Explorer View.

AWS Icon Menu

Note

If the AWS icon is not visible on the toolbar, click the Window menu, and then click Open
Perspective | Other. Click AWS Management from the list of Eclipse perspectives.

You can expand each node in AWS Explorer to view resources on AWS that are associated with your account.
For example, if you click the white triangle to the left of the Amazon EC2 node, it will expand and display
Amazon EC2 resources associated with your AWS account. The AWS Toolkit for Eclipse uses the AWS
account that you configured in the Set up AWS Credentials to determine which resources to display.

Working with AWS Services

21

If you select any of the subnodes to Amazon EC2, Eclipse will open a view with detailed information about
those resources. For example, double-clicking Instances opens a view that lists information about each of
your Amazon EC2 instances such as its public DNS name, availability zone, and launch time.

Using Lambda with the AWS Toolkit for Eclipse
The AWS Toolkit for Eclipse provides support for authoring code for AWS Lambda. Lambda is a fully managed
compute service that runs your code in response to events generated by custom code or from various AWS
services such as Amazon S3, DynamoDB, Amazon Kinesis, Amazon SNS, and Amazon Cognito. For more
information about Lambda, see the Lambda Developer Guide.

This section of the AWS Toolkit for Eclipse User Guide focuses on how you can use features of the AWS Toolkit
for Eclipse to create, deploy and execute Lambda functions.

Tutorial: How to Create, Upload and Invoke an AWS Lambda Function
This tutorial will guide you through the process of a typical AWS Lambda workflow and provide you with
first-hand experience in using Lambda with the AWS Toolkit for Eclipse.

Important

The tutorial assumes that you have an AWS account, have already installed the AWS Toolkit for Eclipse
and that you understand the basic concepts and features of Lambda. If you are unfamiliar with
Lambda, you can find out more at the Lambda home page and in the Lambda Developer Guide.

Create a Lambda handler class
First, you will implement the code as a method in a handler class. The AWS Toolkit for Eclipse provides a new
project wizard to help you create a new handler class.

To create an Lambda handler class

Working with AWS Services

22

https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/

1. On the Eclipse toolbar, open the drop-down Amazon Web Services menu (identified by the AWS icon)
and select New AWS Lambda Java project...

2. Add your Java project name, package name, and class name in the associated input boxes. You can
choose any valid names that you want. This tutorial will use the following sample values:

• Project name: HelloLambda

• Package name: example

• Class name: Hello

While you type, the code in the Source preview will change to reflect the changes you make in the
dialog.

3. For Input Type, choose Custom. For information about each of the available input types, see New AWS
Lambda Java Project Dialog.

4. The second Input Type field is name of the actual Java type that will be returned, which must be a Java
class (not a primitive type such as float, int or boolean). It defaults to Object. Change this value to
String.

5. Change the value of Output Type to String, as well.

6. Verify that your entries look like the following screenshot (modify them if they are not), and then click
Finish.

Working with AWS Services

23

7. Once you click Finish, your project's directory and source files will be generated in your eclipse
workspace, and a new web browser window will appear, displaying README.html (which was created
for you in your project's root directory). README.html provides instructions to help guide you through the
next steps of implementing, testing, uploading and invoking your new Lambda function. Read through it
to gain some familiarity with the next steps that will be covered here.

Next, we'll implement the function in the HelloLambda Java project that was just created for you in Eclipse.

Implement the handler method
The Create New Project dialog creates a skeleton project for you, but it's up to you to fill in the code that will
be run when your Lambda function is invoked (in this case, by a custom event that sends a String to your
function, as you specified when setting your method's input parameter.

To implement your Lambda handler method

1. Using Eclipse's Project Explorer, open Hello.java in the HelloLambda project. It will contain code
similar to the following:

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class Hello implements RequestHandler<String, String> {

 @Override
 public String handleRequest(String input, Context context) {
 context.getLogger().log("Input: " + input);

 // TODO: implement your handler
 return null;
 }

}

2. Replace the contents of the handleRequest function with the following code:

@Override
public String handleRequest(String input, Context context) {
 String output = "Hello, " + input + "!";
 return output;
}

Your Hello.java file should now contain:

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

Working with AWS Services

24

public class Hello implements RequestHandler<String, String> {
 @Override
 public String handleRequest(String input, Context context) {
 String output = "Hello, " + input + "!";
 return output;
 }
}

Allow Lambda to assume an IAM role
In order for Lambda to access your Lambda function, you will need to create an IAM role that gives it access
to your AWS resources. The easiest way to do this is with the AWS Management Console.

To create an IAM role for Lambda

1. Sign in to the AWS Management Console.

2. Open the IAM console.

3. Select Roles on the sidebar, then Create New Role.

4. Add a name for your role, such as hello-lambda-role, and click Next Step.

5. On the Select Role Type page, select AWS Lambda within the AWS Service Roles list.

6. For Attach Policy, check AmazonS3FullAccess, which allows Lambda to access your Amazon S3
resources, and then click Next Step to continue.

Note

Amazon S3 is required because Lambda will upload your code to an Amazon S3 bucket when
you deploy and run your Lambda function. You can use a bucket that you create (this is covered
in the next section) or use an existing bucket.

7. Review your role parameters, then click Create Role to finish creating the IAM role.

Create an Amazon S3 bucket for your Lambda code
AWS Lambda requires an Amazon S3 bucket to store your Java project when you upload it. You can either
use a bucket that already exists in the AWS region in which you'll run your code, or you can create a new one
specifically for use by Lambda (recommended).

To create an Amazon S3 bucket for use with Lambda

1. Log in to AWS and go to the S3 console.

2. Click Create Bucket.

Working with AWS Services

25

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/s3/home

3. Enter a bucket name and select an AWS region for your bucket. This region should be the same one in
which you intend to run your Lambda function. For a list of regions supported by Lambda see the
Regions and Endpoints topic in the Amazon Web Services General Reference.

4. Click Create to finish creating your bucket.

Upload the code
Next, we'll upload your code to AWS Lambda in preparation for invoking it using the AWS Management
Console.

To upload your function to Lambda

1. Right-click in your code window and select AWS Lambda, then Upload function to AWS Lambda....

2. In the Select Target Lambda Function dialog that appears, select the AWS region to use. This should
be the same region that you chose for your Amazon S3 bucket.

3. Select Create a new Lambda function and enter the name of your function (such as
HelloFunction).

4. Click Next to proceed to Function Configuration.

5. Enter a description for your target Lambda function. You can leave the rest of the options as they are;
the AWS Toolkit for Eclipse chooses default values for you.

Working with AWS Services

26

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#region
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

For more information about the available options, see Upload AWS Lambda Function Dialog.

6. Click Finish to upload your Lambda function to AWS.

If the upload succeeds, you will see the Lambda function name that you chose appear next to your Eclipse
project name in the Project Explorer view:

Working with AWS Services

27

If you don't see this happen, you should open Eclipse's Error Log view. Lambda will write information about
failures to upload or run your function to the error log for further debugging.

Invoke the Lambda function
You can now invoke the function on AWS Lambda.

To invoke your Lambda function

1. Right-click in your code window and select AWS Lambda, then Run on AWS Lambda.

2. In the input box, type a valid JSON string, such as "AWS Lambda".

Tip

You can add new JSON input files in your project, and they will show up in this dialog as long as
the file name ends with ".json". You can use this feature to provide standard input files for your
Lambda functions.

3. Click Invoke and it will send your input data to your Lambda function. If you have set up everything
correctly, you should see the return value of your function printed out in the Eclipse Console view (which
will automatically appear if it isn't already shown).

Working with AWS Services

28

Congratulations, you've just run your first Lambda function directly from the Eclipse IDE!

Where to go from here
Now that you've uploaded and deployed your function, try changing the code and re-running the function.
Lambda will automatically re-upload and invoke the function for you, and print output to the console.

For more information about each of the screens that were covered in this tutorial, as well as a full description
of each option, see the AWS Lambda Interface Reference.

For more information about Lambda itself, and about writing Java code for Lambda, see Authoring Lambda
Functions in Java in the Lambda Developer Guide.

AWS Lambda Interface Reference
This section provides detailed information about each of the user interface elements added to Eclipse by the
AWS Toolkit for Eclipse for AWS Lambda.

New AWS Lambda Java Project Dialog
The New Lambda Java Project dialog helps you to create and configure a new Java project that you can
use to author a Lambda function.

Launching the dialog

The New Lambda Java Project dialog can be launched in the following ways:

• by opening the AWS menu in the Eclipse toolbar and selecting New AWS Lambda Java project....

• by selecting File ‣ New ‣ Other... in the Eclipse menu, and then choosing AWS ‣ AWS Lambda Java
Project in the resulting dialog.

Working with AWS Services

29

https://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html

Create Project Dialog user interface

Project name
Required. You must provide a name for your project.

Package name
An optional name for your Java package. It must be a valid Java package name, such as
"com.mycompany.myproject". When you enter the package name in the text entry field, it will be added to
the contents of the Source Preview window.

Default: None, this parameter is optional.

Class name

Working with AWS Services

30

Required. The name that identifies the Java class that contains your Lambda code. It must be a valid
Java class name. The default value is generic; you can specify your own name here or change the
Package name to avoid conflicts with similarly-named classes.

Default: LambdaFunctionHandler

Input type
Required. The type of input that will be used to call your Lambda function. You can select a category from
the drop-down list:

• S3 Event – receives an event from Amazon S3 event.

• SNS Event – receives an event from Amazon SNS.

• Kinesis Event – receives an event from an Amazon Kinesis stream.

• Cognito Event – receives an event from Amazon Cognito.

• Custom – receives an event from custom code. If you set the input type to Custom, then you can
also set the name of the custom input type in the box next to the type selection. By default, the
generic Object type is used.

Important

The custom input type must be a valid Java class name, and not a primitive type such as
int, float, and so on. You can use Java's standard boxed types (Integer, Float, ...) for
these cases.

Use the Custom input type for setting up event sources such as the following:

• user applications

• mobile applications

• The AWS Management Console.

• The AWS CLI invoke command.
Default: S3 Event

Output type
The output type. This must be a valid Java object.

Default: Object

Upload AWS Lambda Function Dialog
The Upload Lambda Function dialog will create a Lambda function and upload your code to be run when
the Lambda function is invoked.

Launching the dialog

The Upload Lambda Function dialog can be launched in the following ways:

• by opening the context menu for your AWS Lambda Java Project in Eclipse's Project Explorer view,
and selecting Amazon Web Services > Upload function to AWS Lambda....

Working with AWS Services

31

https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html
https://docs.aws.amazon.com/sns/latest/dg/sns-lambda.html
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-events.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-custom-android.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

• by opening the context menu in the code window for your Java class and selecting AWS Lambda >
Upload function to AWS Lambda....

The Upload Function dialog contains two screens:

• Select Target Lambda Function

• Function Configuration

Select Target Lambda Function user interface

Select AWS Region
Required. Select the region where your Lambda function will be created.

Default: the default AWS Management Console region for your AWS account.

Select or create a Lambda function
Required. You must choose whether to use an existing Lambda function from the drop-down list, or to
create a new one by entering its name.

Default: Create a new Java function

When you click Finish, control proceeds to the Configure Function screen.

Working with AWS Services

32

Configure Function user interface

The screen is divided into four sections, each with its own settings.

Basic Settings

This section shows the function name and allows you to add a text description.

Name
Immutable. The name is determined by the name chosen during the Select Target Lambda Function
screen. It can not be modified here, though you can click Back to re-enter it on the previous screen.

Description

Working with AWS Services

33

Optional. A text description of the function.

Default: the description is empty.

Function Execution

This section allows you to modify the execution environment for the function.

Handler
Required. The Java class that contains your Lambda function code.

Default: the package and class name from your project are automatically selected for you.

IAM Role
Required. The role that Lambda will use to access your AWS resources during the execution of your
function. You must make sure that this role provides access for AWS Lambda to at least Amazon S3, but
if your function uses any other AWS resources, you must also provide access to each of the services
used.

Default: the first IAM role from your AWS account.

S3 Bucket for Function Code

This section allows you to set an S3 bucket used by your Lambda function.

S3 Bucket
Required. An Amazon S3 bucket that can be used by your function's code. Only buckets that are in the
same region that you will run the function in will be displayed here.

Advanced Settings

This section contains settings that are less often used, they provide further control over your function's
execution environment than the settings in the Function Execution section.

Memory (MB)
Required. The number of megabytes of memory available to your lambda function.

Default: 512 MB

Timeout (s)
Required. The timeout, in seconds, after which the function will be considered to have failed if it has
finished execution.

Default: 15 s.

Run AWS Lambda Function Dialog
The Run Lambda Function dialog provides a way for you to invoke a Lambda function directly from the
Eclipse user interface.

Launching the dialog

The Run Lambda Function dialog can be launched in the following ways:

• by opening the context menu for your AWS Lambda Java Project in Eclipse's Project Explorer view,
and selecting Amazon Web Services > Run function on AWS Lambda....

Working with AWS Services

34

• by opening the context menu in the code window for your Java class and selecting AWS Lambda > Run
function on AWS Lambda....

The Invoke Function dialog appears like this:

Options

There are two ways to provide data to your function. Either one or the other is required.

• Select one of the JSON files as input – If you have any .json files attached to your project, you can
select one of them from the list provided. Otherwise, this option will be greyed out.

• Or enter the JSON input for your function – You can directly enter valid JSON input for your
function here. The type of data that you enter must match the input parameter of the Java method in your
handler class.

Once you've made a selection and have provided your input data, you can click Finish to invoke your Lambda
function, or click Cancel to exit the dialog without running anything.

The CloudFormation Template Editor
The AWS Toolkit for Eclipse includes a built-in CloudFormation template editor. Among the features
supported:

• The ability to create and update stacks directly from the Eclipse IDE from the currently-edited template.

• A JSON validator to help ensure that your template complies with JSON formatting and content rules.

Working with AWS Services

35

Adding and Accessing CloudFormation Templates in Eclipse
To add a CloudFormation template to your Eclipse project

1. Locate the template you'd like to add to your project in your system's file manager, and drag the file into
your project's Package Explorer window.

2. Choose how you would like to add the file to your project, and click OK.

To access a CloudFormation template in your Eclipse project

• Double-click the template name in Package Explorer to begin editing the file.

Working with AWS Services

36

Note

Files that end with .template or .json will automatically use the CloudFormation template editor. If
your file is not automatically recognized as an CloudFormation template, you can select the editor by
right-clicking the file name in Package Explorer or by right-clicking in the editor window with the file
loaded, selecting Open With, then CloudFormation Template Editor

Deploying a CloudFormation Template in Eclipse

Working with AWS Services

37

Note

Only files that end in .template can be launched from the Eclipse IDE. If your file ends with another
extension, such as .json, you will need to rename it first with a .template extension to use this
feature.

To deploy an CloudFormation template from Eclipse

1. With your CloudFormation .template file open in the CloudFormation template editor (see Adding and
Accessing CloudFormation Templates in Eclipse for more information), right-click on the open template
and select Run on AWS, then Create Stack on the context menu.

2. In the Create New CloudFormation Stack dialog, enter your stack name in the Stack Name field.
Your template file should be automatically chosen in the Template File field.

3. Choose any (or none) of the following options:

SNS Topic – choose an existing SNS topic from the list to receive notifications about the stack's
progress, or create a new one by typing an email address in the box and clicking Create New Topic.

Working with AWS Services

38

Creation Timeout – choose how long CloudFormation should allow for the stack to be created before it
is declared failed (and rolled back, unless the Rollback on failure option is unchecked.

Rollback on failure – if you want the stack to rollback (delete itself) on failure, check this option. Leave
it unchecked if you would like the stack to remain active, for debugging purposes, even if it has failed to
complete launching.

4. Click Next to continue with entering parameter values.

5. If your stack has parameters, you will enter values for them next. For parameters with a predefined list of
possible responses, you can choose a value from the list provided.

6. Click Finish to begin launching your stack.

While your stack is being launched, you can view its status by double-clicking the stack name beneath the
CloudFormation node in the AWS Explorer view, or by right-clicking the stack name and selecting Open in
Stack Editor on the context menu.

Working with AWS Services

39

Note

If you cannot see the stack you launched in AWS Explorer, you may need to manually refresh the view
by clicking the Refresh AWS Explorer icon at the top of the AWS Explorer view.

Updating a CloudFormation Template in Eclipse
To update an CloudFormation template from Eclipse

1. With your CloudFormation .template file open in the CloudFormation template editor (see Adding and
Accessing CloudFormation Templates in Eclipse for more information), right-click on the open template
and select Run on AWS, then Update Stack on the context menu.

Working with AWS Services

40

2. In the Update CloudFormation Stack dialog, select your stack name in the Stack Name field if it has
not been automatically selected for you. Your template file should also be automatically chosen in the
Template File field.

3. Choose any (or none) of the following options:

SNS Topic – choose an existing SNS topic from the list to receive notifications about the stack's
progress, or create a new one by typing an email address in the box and clicking Create New Topic.

Creation Timeout – choose how long CloudFormation should allow for the stack to be created before it
is declared failed (and rolled back, unless the Rollback on failure option is unchecked.

Rollback on failure – if you want the stack to rollback (delete itself) on failure, check this option. Leave
it unchecked if you would like the stack to remain active, for debugging purposes, even if it has failed to
complete launching.

4. Click Next to continue with entering parameter values.

5. If your stack has parameters, you will enter values for them next. For parameters with a predefined list of
possible responses, you can choose a value from the list provided.

Working with AWS Services

41

6. Click Finish to begin updating your stack.

While your stack is being updated, you can view its status by double-clicking the stack name beneath the
CloudFormation node in the AWS Explorer view, or by right-clicking the stack name and selecting Open in
Stack Editor on the context menu.

Working with AWS Services

42

Validating a CloudFormation Template in Eclipse
To validate an CloudFormation template in Eclipse

• Perform either one of the following actions:

• Right-click the template name in the Package Explorer view and click Validate on the context
menu.

• Right-click the template that you are editing in the editor pane and click Validate on the
context menu.

Important

Your template will be validated for JSON correctness only; it will not be validated for CloudFormation
correctness. A stack template validated in this way can still fail to launch or update.

Using DynamoDB with AWS Explorer
Amazon DynamoDB is a fast, highly scalable, highly available, cost-effective, non-relational database service.
DynamoDB removes traditional scalability limitations on data storage while maintaining low latency and
predictable performance. The AWS Toolkit for Eclipse provides functionality for working with DynamoDB in a
development context. For more information, see DynamoDB on the AWS website.

In the AWS Toolkit for Eclipse, AWS Explorer displays all the DynamoDB tables associated with the active
AWS account.

Working with AWS Services

43

https://aws.amazon.com/dynamodb/

Display Amazon DynamoDB tables in AWS Explorer.

Creating an DynamoDB Table
Using the AWS Toolkit for Eclipse, you can create a new DynamoDB table.

To create a new table in AWS Explorer

1. In AWS Explorer, right-click Amazon DynamoDB, and then click Create Table. The Create New
DynamoDB Table wizard appears.

2. Enter a table name in the Table name box.

3. Enter a primary hash key attribute in the Hash key attribute box, and select the hash key type from the
Hash key type drop-down list. DynamoDB builds an unordered hash index using the primary key
attribute and an optional sorted range index using the range primary key attribute. For more information
about the primary hash key attribute, see Partitions and Data Distribution in the DynamoDB Developer
Guide.

4. Optionally, specify a range primary key by selecting Use a range key. Enter a range key attribute in the
Range key attribute box, and select a range key type from the Range key type drop-down list.

5. Specify the number of read capacity units in the Read capacity units box, and specify the number of
write capacity units in the Write capacity units box. You must specify a minimum of 3 read capacity
units and 5 write capacity units. For more information about read and write capacity units, see
Provisioned Throughput in the DynamoDB Developer Guide.

6. Click Finish to create the table. Click the refresh button in AWS Explorer to view your new table in the
table list.

Working with AWS Services

44

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html

Creating a table

Viewing an DynamoDB Table as a Grid
To open a grid view of one of your DynamoDB tables, double-click the subnode in AWS Explorer that
corresponds to the table. From the grid view, you can view the items, attributes, and values stored in the table.
Each row corresponds to an item in the table. The table columns correspond to attributes. Each cell of the
table holds the values associated with that attribute for that item.

An attribute can have a value that is a string or a number. Some attributes have a value that consists of a set
of strings or numbers. Set values are displayed as a comma-separated list enclosed by square brackets.

Working with AWS Services

45

Amazon DynamoDB Grid View

Editing Attributes and Values
The table grid view is editable; by double-clicking a cell, you can edit the values for the item's corresponding
attribute. For set-value attributes, you can also add or delete individual values from the set.

Cell editing in Amazon DynamoDB Grid View

The editing UI enables you not only to change the value of an attribute, but also to change the format of the
value for the attribute—with some limitations. For example, any number value can be converted into a string
value. If you have a string value, the content of which is a number, such as "125", the editing UI enables you to
convert the format of the value from string to number. Also, the editing UI enables you to convert a
single-value to a set-value. However, you cannot generally convert from a set-value to a single-value; an
exception is when the set-value has, in fact, only one element in the set.

Working with AWS Services

46

Editing set values in Amazon DynamoDB Grid View

The Edit Values dialog box opens when you are editing a set of values. After editing the attribute value, click
Save set to confirm your changes. If you want to discard your changes, click Cancel.

After confirming your changes, the attribute value is displayed in red. This indicates that the attribute has been
updated, but that the new value has not been written back to the Amazon DynamoDB database. To write your
changes back to DynamoDB, click File, and then click Save, or press from the keyboard. To discard your
changes, click Scan Table, and when the Toolkit asks if you would like to commit your changes before the
Scan, click No.

Scanning an DynamoDB Table

Scan button

From the Toolkit, you can perform Scans on your DynamoDB tables. In a Scan, you define a set of criteria and
the Scan returns all items from the table that match your criteria. Scans are expensive operations and should
be used with care to avoid disrupting higher-priority production traffic on the table. For more recommendations
on safely using the Scan operation, go to the Amazon DynamoDB Developer Guide.

To perform a Scan on an Amazon DynamoDB table from AWS Explorer

1. In the grid view, click Add scan condition. A UI appears that enables you to edit a new Scan clause.

2. In the Scan clause editor, specify the attribute to match against, how it should be matched (Begins With,
Contains, etc.), what literal value it should match, and if the value is a string or a number.

3. Add more Scan clauses as needed for your search. The Scan will return only those items that match the
criteria from all of your Scan clauses. Note that the Scan will perform a case-sensitive comparison when
matching against string values.

4. On the button bar at the top of the grid view, click the green play button to run the scan.

Working with AWS Services

47

To remove a Scan clause, click the red X to the left of each clause.

Scan button

To return to the view of the table that includes all items, double-click Amazon DynamoDB in AWS Explorer.

Paginating Scan Results

At the top of the view are three buttons.

Paginate and export buttons

The second button provides pagination for Scan results. Clicking the rightmost button exports the results from
the current scan into a CSV file.

Launch an Amazon EC2 Instance from an Amazon Machine Image
Before launching an EC2 instance, you should create a security group that will permit network traffic that is
appropriate to your application to connect to the instance. At a minimum, the security group should enable
access on port 22, so that you can SSH into the EC2 instance. You may also want to create a keypair,
although you can also create the keypair while going through the launch wizard. Finally, you should think
about which instance type is appropriate to your application; the price for an EC2 instance is typically higher
for the more powerful types of instances. You can find a list of instance types and pricing information on the
EC2 Pricing page.

To launch an Amazon EC2 instance

Working with AWS Services

48

https://aws.amazon.com/ec2/pricing/

1. In AWS Explorer, expand the Amazon EC2 node. Right-click the Amazon Machine Images (AMIs)
subnode and select Open EC2 AMIs View.

AMI configuration dialog box

2. Configure the AMIs view to show the AMI that we'll use in this example. In the filter box, type start ebs.
This filters the list of AMIs to show only those AMIs with names that contains both "start" and "ebs".

Right-click the amazon/getting-started-with-ebs AMI and select Launch from the context menu.

Select the Getting Started with EBS AMI

Working with AWS Services

49

3. In the Launch EC2 Instance dialog box, configure the AMI for your application.

Number of Hosts
Set this value to the number of EC2 instances to launch.

Instance Type
Select the type of the EC2 instance to launch. You can find a list of instance types and pricing
information on the EC2 Pricing page.

Availability Zone
Select an availability zone (AZ) in which to launch the instance. Note that not all AZs are available in
all regions. If the AZ that you select is not available, the Toolkit will generate a message saying that
you need to select a different AZ. For more information about AZs, go to the Region and Availability
Zone FAQ in the Amazon EC2 User Guide for Linux Instances.

Key Pair
A key pair is a set of public/private encryption keys that are used to authenticate you when you
connect to the EC2 instance using SSH. Select a keypair for which you have access to the private
key.

Security Group
The security group controls what type of network traffic the EC2 instance will accept. You should
select a security group that will allow incoming traffic on port 22, i.e. the port that is used by SSH, so
that you can connect to the EC2 instance. For information about how to create security groups using
the Toolkit, see Managing Security Groups from AWS Explorer

Instance Profile
The instance profile is a logical container for an IAM role. When you select an instance profile, you
associate the corresponding IAM role with the EC2 instance. IAM roles are configured with policies
that specify access to particular AWS services and account resources. When an EC2 instance is
associated with an IAM role, application software that runs on the instance runs with the permissions
specified by the IAM role. This enables the application software to run without having to specify any
AWS credentials of its own, which makes the software more secure. For in-depth information about
IAM roles, go to Working with Roles in the IAM User Guide.

User Data
The user data is data that you provide to the application software that runs on your EC2 instance.
The application software can access this data through the Instance Meta Data Service (IMDS).

Working with AWS Services

50

https://aws.amazon.com/ec2/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Launching an AMI from AWS Explorer

Working with AWS Services

51

4. Click Finish.

5. In AWS Explorer, under the Amazon EC2 node, right-click the Instances subnode and select Open EC2
Instances View.

Your EC2 instance should appear in the EC2 Instances view. It may take a few minutes for the instance
to transition into the running state. Once the instance is running, you can right-click the instance to bring
up a context menu of operations that you can perform on the instance. For example, you can terminate
the instance from this menu. You can also copy the instance's public DNS address. You would use this
address to connect to the instance using SSH.

List of Amazon EC2 instances

Managing Security Groups from AWS Explorer
The AWS Toolkit for Eclipse enables you to create and configure security groups to use with Amazon Elastic
Compute Cloud (Amazon EC2) instances. When you launch an Amazon EC2 instance, you need to specify
an associated security group.

A security group acts like a firewall on incoming network traffic. The security group specifies what types of
network traffic an Amazon EC2 instance will allow to be received. It can also specify that incoming traffic will
be accepted only from certain IP addresses or only from other specified security groups.

Creating a New Security Group
In this section, we'll create a new security group. Initially after creation, the security group will not have any
permissions configured. Configuring permissions is handled through an additional operation.

To create a new security group

1. In AWS Explorer, beneath the Amazon EC2 node, right-click Security Groups, and then click Open
EC2 Security Groups View.

Working with AWS Services

52

2. Right-click in the left pane of the EC2 Security Groups tab, and then click New Group.

3. In the dialog box, enter a name and description for the new security group. Click OK.

Adding Permissions to Security Groups
In this section, we'll add permissions to the new security group to allow other computers to connect to our
Amazon EC2 instance using Secure Shell (SSH) protocol.

To add permissions to a security group

1. Right-click in the right pane of the EC2 Security Groups tab, and then click Add Permissions.

Working with AWS Services

53

Invoke Add Permissions UI

2. In the dialog box, select Protocol, port and network. Click TCP from the Protocol drop-down menu.
Enter 22 for Port or Port Range. Port 22 is the standard port for SSH. The Network Mask box
specifies the allowed source IP addresses in CIDR format; it defaults to 0.0.0.0/0, which specifies that the
security group will allow a TCP connection to port 22 (SSH) from any external IP address.

You could also, for example, specify that connections should be allowed only from computers in your
local computer's subnet. In this case, you would specify your local computer's IP address followed by a
"/10". For example, "xxx.xxx.xxx.xxx/10" where the "xxx" correspond to the distinct octet values that
make up your local computer's IP address.

Click OK.

Working with AWS Services

54

You could also set permissions to the security group by specifying a UserID and security group name. In this
case, Amazon EC2 instances in this security group would accept all incoming network traffic from Amazon
EC2 instances in the specified security group. It is necessary to also specify the UserID as a way to
disambiguate the security group name; security group names are not required to be unique across all of AWS.
For more information about security groups, see Network and Security in the Amazon EC2 User Guide for Linux
Instances.

Viewing and Adding Amazon SNS Notifications
You can use the AWS Toolkit for Eclipse to view Amazon Simple Notification Service (Amazon SNS) topics
associated with your application. Amazon SNS is a service that enables your application to send notifications,
using a protocol such as email, when specified events occur. To learn more about Amazon SNS, see the
Amazon SNS Developer Guide.

View an Amazon SNS Notification
The following process illustrates how to view an Amazon SNS notification.

To view a notification

1. In AWS Explorer, click the triangle to the left of the Amazon SNS node to expand it and see the Amazon
SNS topics it contains.

2. Double-click this SNS topic to open a detail view in the Eclipse editor pane. In this example, the
Subscription ARN column says that the topic is pending confirmation. Amazon SNS requires a
confirmation from the individual specified by the email address before SNS will send email notifications to
that individual.

Add an Amazon SNS Notification
You can add new Amazon SNS notifications through AWS Explorer.

To add a new notification

Working with AWS Services

55

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_Network_and_Security.html
https://docs.aws.amazon.com/sns/latest/dg/

1. In AWS Explorer, right-click Amazon SNS, and then click Create New Topic. Enter a name for the new
topic and click OK.

2. Double-click the new topic to display the detail view for the topic. Right-click in the Subscriptions area,
and then click Create Subscription. Leave the Subscription Protocol box as Email (plain text) and
enter an email address for the endpoint. Click OK . The detail view for the notification will now include this
subscription.

Select the notification protocol and endpoint.

3. To delete the subscription, right-click the entry in the Protocol column for the subscription and click
Delete Subscription.

Note

The creation of the subscription will cause a verification email to be sent to the individual specified by
the subscription "endpoint" email address. This email address will be used by AWS only to send
notifications. It will not be used for any other purpose by AWS or Amazon.com.

Connecting to Amazon Relational Database Service (Amazon RDS)
In this section, we'll use the AWS Toolkit for Eclipse to connect to a database instance on the Amazon
Relational Database Service (Amazon RDS). Before stepping through the process described below, you will
need to have an RDS database instance associated with your AWS account. You can create a database
instance on RDS using the AWS Management Console. When you create a database instance, set the TCP
port that the database uses to receive connections to a value that is accessible from your location. For
example, if you are behind a firewall, choose a TCP port to which your firewall allows connections. For more
information, see the Amazon RDS User Guide.

1. In AWS Explorer, expand the Amazon RDS node. You should see a list of the database instances that
are associated with your AWS account. Right-click one of these instances, and then click Connect .

Working with AWS Services

56

https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/

Connect in context menu in AWS Explorer

2. The AWS Toolkit for Eclipse displays an authentication dialog box. Enter the master password that you
specified when you created the database instance. Click Finish.

Authenticate against the database instance

3. The AWS Toolkit for Eclipse brings up the connection to the database instance in the Eclipse Data
Source Explorer. From here, you can inspect the structure and data in the database.

Working with AWS Services

57

Data Source Explorer

Identity and Access Management
AWS Identity and Access Management (IAM) lets you control who can access your AWS resources and what
they can do with them. The AWS Explorer lets you create and manage IAM users, groups, and roles. You can
also set a password policy for users, which lets you specify password requirements like minimum length, and
lets you specify whether users are allowed to change their own passwords.

Note

It is a best practice for all users, even the account owner, to access AWS resources as IAM users. This
ensures that if the credentials for one of the IAM users are compromised, the affected credentials can
be revoked without needing to change the root credentials for the account.

About AWS Identity and Access Management
Instead of sharing the password and security credentials for your account (the access key ID and secret
access key), you can create IAM users that can each have their own password and security credentials. You
can then attach policies to users; in the policies you specify permissions that determine what actions a user
can take and what resources the user is allowed access to.

Working with AWS Services

58

For convenience, instead of adding policies to individual users, you can create IAM groups (for example,
Admins and Developers) attach policies to them, and then add users to those groups. You can also create
roles that have policies with permissions. Roles can be assumed by users who are in other accounts, by
services, and by users who do not have an IAM identity. For more information about IAM, see the IAM User
Guide.

Create an IAM User
You create IAM users so that others in your organization can have their own AWS identity. You can assign
permissions to an IAM user either by attaching an IAM policy to the user or by assigning the user to a group.
IAM users that are assigned to a group derive their permissions from the policies that are attached to the
group. For more information, see Create an IAM Group and Add an IAM User to an IAM Group.

Using the Toolkit, you can also generate AWS credentials (access key ID and secret access key) for the IAM
user. For more information, see Manage Credentials for an IAM User.

To create an IAM User

1. In AWS Explorer, expand the AWS Identity and Access Management node, right-click the Users
node, and then select Create New Users.

2. In the Create New Users dialog box, enter up to five names for new IAM users, and then click Finish.
For information about constraints on names for IAM users, see Limitations on IAM Entities in the IAM
User Guide.

Working with AWS Services

59

https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html

For information about adding a user to a group, see Add an IAM User to an IAM Group. For information about
how to create a policy and attach it to the user, see Attach an IAM Policy to a User, Group, or Role.

Create an IAM Group
You can add IAM users to groups in order to make it easier to manage permissions. Any permissions that are
attached to the group apply to any users in that group. For more information about IAM groups, see Working
with Users and Groups in the IAM User Guide.

When you create a group, you can create a policy that includes the permissions that members of the group
will have.

To create an IAM group

1. In AWS Explorer, expand the AWS Identity and Access Management node, right-click the Groups
node, and then select Create New Group.

2. Enter a name for the new IAM group and then click Next.

3. Enter a name for the policy that establishes what members of the group are allowed to do. Enter the
policy as a JSON document, and then click OK.

Working with AWS Services

60

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

The policy name must be unique within your account. The JSON that you enter for the policy must
validate, or you will not be able to save the policy. For information about how to create a policy, see
Overview of Policies in the IAM User Guide.

4. Click Finish.

For information about attaching additional policies to the IAM group, see Attach an IAM Policy to a User,
Group, or Role.

Add an IAM User to an IAM Group
If an IAM user is added to a group, any policies that are attached to the group are also in effect for the user.
For more information about IAM users, see Users and Groups in the IAM User Guide.

To add an IAM user to a IAM group

1. In AWS Explorer, expand the AWS Identity and Access Management node, right-click the Groups
node, and then select Open Groups Editor. Note that you add IAM users to IAM groups from the
Groups node in AWS Explorer rather than from the Users node.

2. In the Groups editor, select the group you want to add users to, and then click the Users tab.

Working with AWS Services

61

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

3. On the right-hand side of the bottom pane, click the Add Users button.

4. In the Add Users to Group dialog box, select the users you want to add, and then click OK.

Manage Credentials for an IAM User
For each user, you can add a password. IAM users use a password to work with AWS resources in the AWS
Management Console.

Working with AWS Services

62

To create a password for an IAM user

1. In AWS Explorer, expand the AWS Identity and Access Management node, right-click the Users
node, and then select Open Users Editor.

2. In the users listing, select the user you want to create a password for, and then click the Summary tab.

3. On the right-hand side of the bottom pane, click the Update Password button.

4. In the Update User Password dialog box, enter a password and then click OK.

Note

The new password will overwrite any existing password.

For each user you can also generate a set of access keys (an access key ID and a secret access key). These
keys can be used to represent the user for programmatic access to AWS—for example, to use the AWS

Working with AWS Services

63

command-line interface (CLI), to sign programmatic requests using the SDK, or to access AWS services
through the Toolkit. (For information about how to specify credentials for use with the Toolkit, see Set up AWS
Credentials.)

To generate access keys for an IAM user

1. In AWS Explorer, expand the AWS Identity and Access Management node, right-click the Users
node, and then select Open Users Editor.

2. In the users listing, select the user you want to generate keys for, and then click the Summary tab.

3. Click the Manage Access Keys button.

A window is displayed where you can manage access keys for the user.

4. Click the Create Access Key button.

The Manage Access Key dialog box is displayed.

Working with AWS Services

64

5. Click the Download button to download a comma-separated value (CSV) file that contains the
credentials that were generated.

Note

This will be your only opportunity to view and download these access keys. If you lose these
keys, you must delete them and create a new set of access keys.

You can generate only two sets of credentials per IAM user. If you already have two sets of credentials and
you need to create an additional set, you must delete one of the existing sets first.

You can also deactivate credentials. In that case, the credentials still exist, but any requests to AWS that are
made using those credentials will fail. This is useful if you want to temporarily disable access to AWS for that
set of credentials. You can reactivate credentials that were previously deactivated.

To delete, deactivate, or reactivate access keys for an IAM user

1. In AWS Explorer, expand the AWS Identity and Access Management node, right-click the Users
node, and then select Open Users Editor.

2. In the users listing, select the user you want to manage access keys for, click the Summary tab, and
then click the Manage Access Keys button.

3. In the window that lists the access keys for that user, right-click the credentials you want to manage and
then choose one of the following:

• Delete Access Key

• Make Inactive

• Make Active

Working with AWS Services

65

Create an IAM Role
Using the AWS Toolkit, you can create IAM roles. The role can then be assumed by entities that you want to
allow access to your AWS resources. Policies that you attach to the role determine who can assume the role
(the trusted entity or principal) and what those entities are allowed to do.

In the Toolkit, you can specify the following trusted entities:

• An AWS service. For example, you can specify that an Amazon EC2 can call other AWS services or that
AWS Data Pipeline is allowed to manage Amazon EC2 instances. This is known as a service role.

• A different account that you own. If you have multiple AWS accounts, you might need to let users in one
account use a role to get permissions to access resources that are in another account of yours.

• A third-party account. You might let a third-party vendor manage your AWS resources. In that case, you
can create a role in which the trusted entity is the third party's AWS account.

After you specify who the trusted entity is, you can specify a policy that determines what the role is allowed to
do.

For example, you could create a role and attach a policy to that role that limits access to only one of your
Amazon S3 buckets. You can then associate the role with an Amazon EC2 instance. When an application
runs on the Amazon EC2 instance, the application can access only the Amazon S3 bucket that you allowed
access to in the role's policy.

For more information about IAM roles, see IAM Roles in the IAM User Guide.

To create an IAM role

1. In AWS Explorer, expand the AWS Identity and Access Management node, right-click the Roles
node, and then select Create New Role.

2. Enter a name for the IAM role and then click Next.

Working with AWS Services

66

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

3. Select the trusted entity for the role. To create a service role, select AWS Service Roles and then select
a service role from the drop-down list.

To provide access for a user that's defined in a different AWS account that you own, select Account ID
and enter the AWS account number of the other account.

To provide access for a third-party account, select Account ID and enter the third party's AWS account
number. If the third party has provided you with an external ID, enter that as well.

Working with AWS Services

67

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

4. Click Next.

5. Enter a name for the policy that establishes what the role is allowed to do. Then enter the policy as a
JSON document, and click OK.

The policy name must be unique within your account. The JSON that you enter for the policy must
validate, or you will not be able to save the policy. For information about how to create a policy, see
Overview of Policies in the Using IAM guide.

Working with AWS Services

68

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

6. Click Finish.

The new IAM role appears in the Roles editor.

For examples that show how to access AWS using the IAM role associated with an Amazon EC2 instance,
see Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 in the AWS Java Developer Guide.

Attach an IAM Policy to a User, Group, or Role
Policies are documents that define permissions. For example, a policy that's attached to a user can specify
what AWS actions the user is allowed to call and what resources the user is allowed to perform the actions
on. If the policy is attached to a group, the permissions apply to users in the group. If the policy is attached to
a role, the permissions apply to whoever assumes the role.

The process for attaching a policy to a user or group is similar. For roles, you can attach a policy that specifies
what the role is allowed to do. You use a separate process to attach or edit the policy that determines who is
allowed to assume the role (that is, to manage the trust relationship.)

Note

If you attached a policy to a user, group, or role previously, you can use this procedure to attach an
additional policy. To edit an existing policy on a user, group, or role, use the IAM console,
command-line tools, or API calls.

To create an IAM policy for a user, group, or role

1. In AWS Explorer, expand the AWS Identity and Access Management node and then double-click the
Groups node, the Users node, or the Roles node.

2. Select the group, user, or role you want to attach the policy to, and then click the Permissions tab.

3. On the right-hand side of the bottom pane, click the Attach Policy button.

Working with AWS Services

69

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-roles.html

4. In the Manage Group Policy, Manage User Policy, or Manage Role Permissions dialog box, enter a
name for the policy. Then enter the policy as a JSON document, and click OK.

The policy name must be unique within your account. The JSON that you enter for the policy must
validate, or you will not be able to save the policy. For information about how to create a policy, see
Overview of IAM Policies in the IAM User Guide.

To create or manage a trust relationship for a role

1. In AWS Explorer, expand the AWS Identity and Access Management node and then double-click the
Roles node.

2. In the Roles editor, select the role you want to manage, and then click the Trust Relationships tab.

3. On the right-hand side of the bottom pane, click the Edit Trust Relationship button.

Working with AWS Services

70

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

4. In the Edit Trust Relationship dialog box, edit the JSON policy document and then click OK.

Set Password Policy
In the AWS Toolkit for Eclipse you can set a password policy for your account. This lets you make sure that
passwords that are created for IAM users follow certain guidelines for length and complexity. It also lets you
specify whether users are allowed to change their own passwords. For more information, see Managing an
IAM Password Policy in the IAM User Guide.

To create an IAM policy for a user or group

1. In AWS Explorer, under Identity and Access Management, double-click the Password Policy node.

2. In the Password Policy pane, specify the policy options that you want for your AWS account, and then
click Apply Password Policy.

Working with AWS Services

71

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_account-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_account-policy.html

Document History
The following table describes the important changes since the last release of the AWS Toolkit for Eclipse User
Guide.

API version: 2010-12-01

Last documentation update: Mar 29, 2017

Dec 01, 2016
Added a new section that provides detail about the new serverless project wizard.

Dec 22, 2015
Removed the Additional Resources topic—the information from that page is now available on the first
page of the guide, under the heading Additional documentation and resources.

Oct 22, 2015

• The guide has been renamed from "Getting Started Guide" to "User Guide", to better represent its
function.

• Installation instructions have been updated to compensate for changes in the way you select
components of the toolkit to install.

June 16, 2014
The AWS Toolkit for Eclipse now provides support for authoring AWS Lambda functions with Java. For
more information, see Using Lambda with the AWS Toolkit for Eclipse.

September 27, 2013

• The AWS Toolkit for Eclipse now uses the same system for storing and accessing AWS credentials
as the AWS CLI and AWS SDKs, which includes the ability to use multiple profiles to store more
than one set of credentials. For information, see the newly-updated topic: Set up AWS Credentials.

• The AWS Toolkit for Eclipse Getting Started Guide has been restructured in alignment with other
AWS SDK Documentation (most notably, the AWS Java SDK upon which the AWS Toolkit for
Eclipse depends). Much of the restructuring should be logical and self-evident, but a description of
each of the guide's major sections is provided in What is the AWS Toolkit for Eclipse?.

• Getting Started has been updated for Eclipse 4.3 ("Kepler").
September 9, 2013

This topic tracks recent changes to the AWS Toolkit for Eclipse User Guide. It is intended as a companion
to the release notes history.

Document History

72

https://aws.amazon.com/releasenotes/Eclipse/

	AWS Toolkit for Eclipse User Guide
	What is the AWS Toolkit for Eclipse?
	Additional documentation and resources

	Getting Started
	Set up the Toolkit
	Prerequisites
	Install the AWS Toolkit for Eclipse
	Upgrade the AWS Toolkit for Eclipse

	Set up AWS Credentials
	Get your AWS access keys
	Add your AWS access keys to the AWS Toolkit for Eclipse
	Using multiple AWS accounts with the AWS Toolkit for Eclipse
	Changing the AWS credentials file location

	Associate Private Keys with Your Amazon EC2 Key Pairs

	AWS Toolkit for Eclipse Basics
	Building an AWS Java Application
	Build and Run the Amazon Simple Queue Service Sample

	Serverless Projects
	Creating a Serverless Project
	Serverless Project Blueprints
	Serverless Project Structure
	Deploying a Serverless Project
	See Also

	Differentiating AWS Resources with Naming

	Working with AWS Services
	How to Access AWS Explorer
	Using Lambda with the AWS Toolkit for Eclipse
	Tutorial: How to Create, Upload and Invoke an AWS Lambda Function
	Create a Lambda handler class
	Implement the handler method
	Allow Lambda to assume an IAM role
	Create an Amazon S3 bucket for your Lambda code
	Upload the code
	Invoke the Lambda function
	Where to go from here

	AWS Lambda Interface Reference
	New AWS Lambda Java Project Dialog
	Launching the dialog
	Create Project Dialog user interface

	Upload AWS Lambda Function Dialog
	Launching the dialog
	Select Target Lambda Function user interface
	Configure Function user interface
	Basic Settings
	Function Execution
	S3 Bucket for Function Code
	Advanced Settings

	Run AWS Lambda Function Dialog
	Launching the dialog
	Options

	The CloudFormation Template Editor
	Adding and Accessing CloudFormation Templates in Eclipse
	Deploying a CloudFormation Template in Eclipse
	Updating a CloudFormation Template in Eclipse
	Validating a CloudFormation Template in Eclipse

	Using DynamoDB with AWS Explorer
	Creating an DynamoDB Table
	Viewing an DynamoDB Table as a Grid
	Editing Attributes and Values
	Scanning an DynamoDB Table

	Launch an Amazon EC2 Instance from an Amazon Machine Image
	Managing Security Groups from AWS Explorer
	Creating a New Security Group
	Adding Permissions to Security Groups

	Viewing and Adding Amazon SNS Notifications
	View an Amazon SNS Notification
	Add an Amazon SNS Notification

	Connecting to Amazon Relational Database Service (Amazon RDS)
	Identity and Access Management
	About AWS Identity and Access Management
	Create an IAM User
	Create an IAM Group
	Add an IAM User to an IAM Group
	Manage Credentials for an IAM User
	Create an IAM Role
	Attach an IAM Policy to a User, Group, or Role
	Set Password Policy

	Document History

