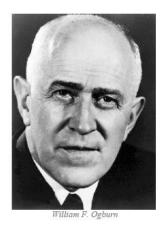
Comments on Jeremy Greenwood and Nezih Guner's "Marriage and Divorce Since World War II: Analyzing the Role of Technological Progress on the Formation of Households"


Justin Wolfers

Wharton School, University of Pennsylvania CEPR, CESifo, IZA and NBER

NBER Macroeconomics Annual, Cambridge, April 4 2008.

Economie d'avant garde

Journal of Economic Perspectives—Volume 21, Number 2—Spring 2007—Pages 27–52

Research Report No. 8

January 2008--revised

MARRIAGE AND DIVORCE SINCE WORLD WAR II:


ANALYZING THE ROLE OF TECHNOLOGICAL PROGRESS ON THE
FORMATION OF HOUSEHOLDS

by

Jeremy Greenwood and Nezih Guner

Marriage and Divorce: Changes and their Driving Forces

Betsey Stevenson and Justin Wolfers

Greenwood agenda

- Document the "second industrial revolution"
 - Vast changes in the technology of household production
- Argue that these changes explain patterns of
 - Female labor force participation (Greenwood, Seshadri and Yorugoklu, 2005)
 - Fertility (Greenwood, Seshadri and Vandenbroucke, 2005)
 - Leisure (Greenwood and Vandenbroucke, 2005)
 - Marriage and divorce (this paper)

Marriage and divorce beyond Greenwood

- Many competing explanations of marriage and divorce patterns:
 - Changes in wage structures (discrimination, inequality)
 - Changes in legal structure of marriage
 - Diffusion of birth control and the pill => Female education
 - Social norms, sexual mores => Non-marital sex; cohabitation
 - Household bargaining
 - Matching technology (sexually-integrated workplaces; online dating)

Simple model of marriage and divorce

- We can consider the marriage and divorce model separately from the time allocatoin model
 - "recall that $L^m(.)$ and $L^s(.)$ are not functions of the matching parameters"
- What determines marriage and divorce?
 - $U^{\text{marriage}} = U(C^{\text{single}} + \text{ec. value of marriage}) + "marital bliss" [b_i]$
 - $U^{\text{single}} = U(C^{\text{single}})$

Complementarities in HH production and consumption

- Marriage and divorce like any search problem:
 - Marry if $b_{i,t} > b^{M^*}$ and $b^{M^*} = f(ec. \ value \ of \ marriage)$
 - Divorce if $b_{i,t} < b^{D^*}$ and $b^{D^*} = f(ec. \ value \ of \ marriage)$
- □ Computational experiment: Shock *ec. value of marriage*

Could they fail to fit the facts?

- □ Free parameters determining marriage and divorce
 - If single: Search for a partner: $b_i \sim S(\mu_s, \sigma_s)$
 - If married, *b* evolves: $b_{i,t}$ =(1-ρ) μ_m + ρ b_{t-1} + σ_m $\sqrt{(1-\rho^2)}$ ξ ξ~N(0,1)
 - Simpler case: $[\rho=0]: b^{married} \sim M(\mu_m, \sigma_m)$
- Marriage and divorce decisions:
 - Marry if $b_{i,t} > b^{M^*}$ and $b^{M^*} = f(value \ of \ marriage)$
 - \Rightarrow Marriage rate = 1- $S(b^{M*})$
 - \Rightarrow d Marriage rate / d value of marriage= $s(b^{M*})$
 - Divorce if $b_{i,t} < b^{D^*}$ and $b^{D^*} = f(value \ of \ marriage)$
 - \Rightarrow Divorce rate = $M(b^{M*})$
 - \Rightarrow d Divorce rate / d value of marriage = $-m(b^{M^*})$
- □ Following a shock to the economic value of marriage
 - Four parameters (μ_s , σ_s , μ_m , σ_m) will always hit four facts
 - Marriage and divorce rates in 1950 steady state
 - Marriage and divorce rates following a shock to the ec. value of marriage (yr 2000)
 - Trends in the economic value of marriage will create trends in marriage and divorce rates
 - This holds for <u>any</u> shock to the economic value of marriage
 - Gender wage differentials, contraception, education, sexual mores etc.

Hitting the marriage and divorce facts

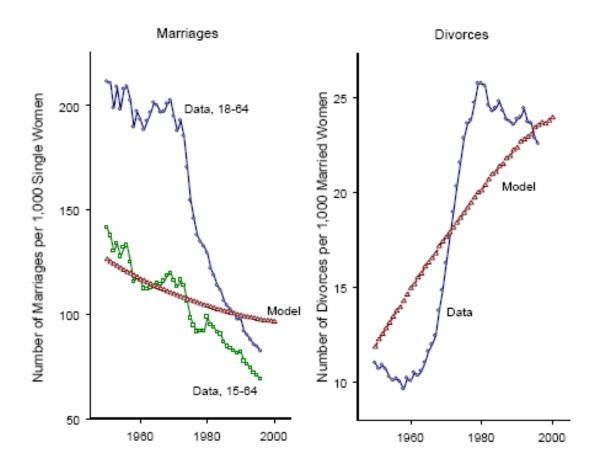


Figure 7: Rates of Marriage and Divorce, 1950-1996 – U.S. Data and Model

Which other facts do they hit?

TABLE 3: THE INITIAL AND FINAL STEADY STATES

	19.	50	2	000	
	Model	Data	Model	Data	
Fraction married	0.816			0.625	
Probability of divorce	0.011	0.011	0.024	0.023	} used in estimation
Probability of marriage	0.129	0.211	0.096	0.082	J used in estimation
Duration of marriages	31.36	29.63	22.47	20 to 2	4

Fraction married

- If 1950 and 2000 are steady states
 - ⇒ "Fraction married" simply reflects steady-state marriage, divorce and death rates
- If not steady states, also a function of history (of marriage, divorce and death rates)
 - Failing to match %married is a failure of the auxiliary assumption that 1950 and 2000 are steady states

Duration of marriage

- Recall, $b^{Married}$ evolves: $b_{i,t}$ =(1- ρ) μ_m + ρb_{t-1} + $\sigma_m \sqrt{(1-\rho^2)\xi}$
- ho determines the duration of marriage
- What is the duration of marriage in 2000?
 - Model: (div rate^{SS}+death rate^{SS})⁻¹
 - "Fact": Life tables

Life tables v. facts: Estimating "marriage duration"

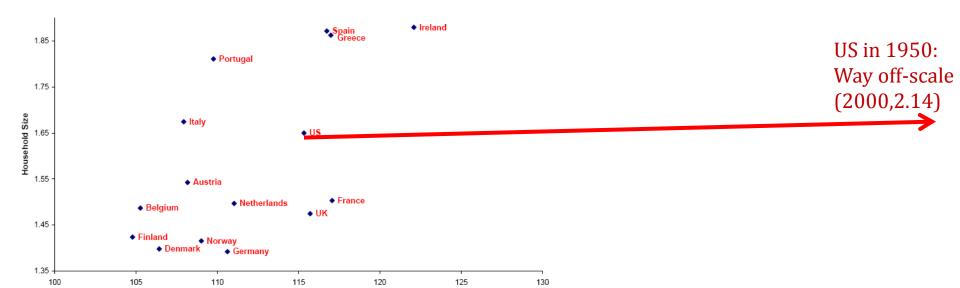
☐ Time series

Divorces per thousand married
women

	women							
Age	1970	1975	1980	1985	1990	1995	2000	2005
15-19	26.9	34.7	42.4	48.4	48.6			
20-24	33.3	40.3	47.2	46.8	46			
25-29	25.7	31.8	37.8	35.6	36.6			
30-34	18.9	24.1	29.2	28.6	27.9			
35-39	14.8	19.1	23.3	23.4	23.1			
40-44	11.9	14.3	16.7	19.6	19.3			
45-49	8.5	9.7	10.8	12.6	13.8			
50-54	5.6	6.1	6.6	7.4	8.2			
55-69	3.5	3.7	3.8	4.2	4.8			
60-64	2.3	2.5	2.7	2.7	2.9			
65+	1.3	1.4	1.4	1.6	1.4			
Total	14	16.8	19.5	19.2	18.7	17.0	15.8	14.1

□ Life table

Read across to infer marriage durations

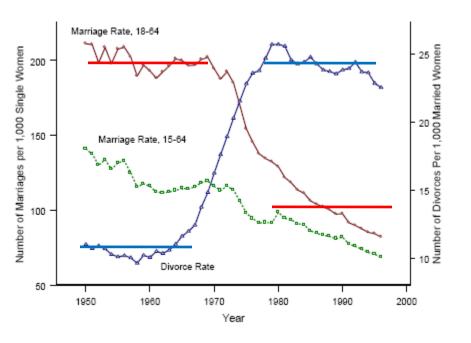

Birth	Neau	Neau across to filler marriage durations									
cohort	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59 (60-64 (55+
1975-79	48.6	6 46	36.6	27.9	23.1	19.3	13.8	8.2	4.8	2.9	1.4
1970-74	48.4	46	36.6	27.9	23.1	19.3	13.8	8.2	4.8	2.9	1.4
1965-69	42.4	46.8	36.6	27.9	23.1	19.3	13.8	8.2	4.8	2.9	1.4
1960-64	37.9	9 47.2	35.6	27.9	23.1	19.3	13.8	8.2	4.8	2.9	1.4
1955-59	33.3	36.5	37.8	28.6	23.1	19.3	13.8	8.2	4.8	2.9	1.4
1950-54		25.7	28.4	29.2	23.4	19.3	13.8	8.2	4.8	2.9	1.4
1945-49			18.9	22.0	23.3	19.6	13.8	8.2	4.8	2.9	1.4
1940-44				14.8	17.6	16.7	12.6	8.2	4.8	2.9	1.4
1935-39					11.9	12.6	10.8	7.4	4.8	2.9	1.4
1930-34						8.5	8.2	6.6	4.2	2.9	1.4
earlier							5.6	6.6	3.8	2.7	1.4

^{* 1975} data reflect interpolation from 1970 and 1980

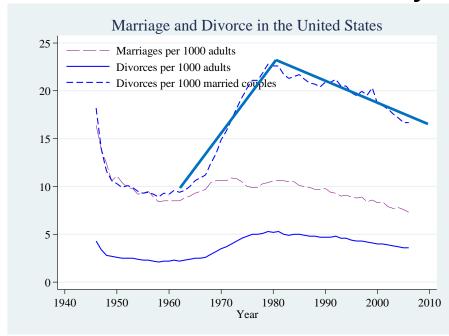
Further facts: Time series versus cross-section

- Cross country
 - Range of relative price of household appliances = 20%
 - Yielding range of predicted household size of around 0.4

Figure 1: Relative Price of Household Appliances and Household Size, 2001

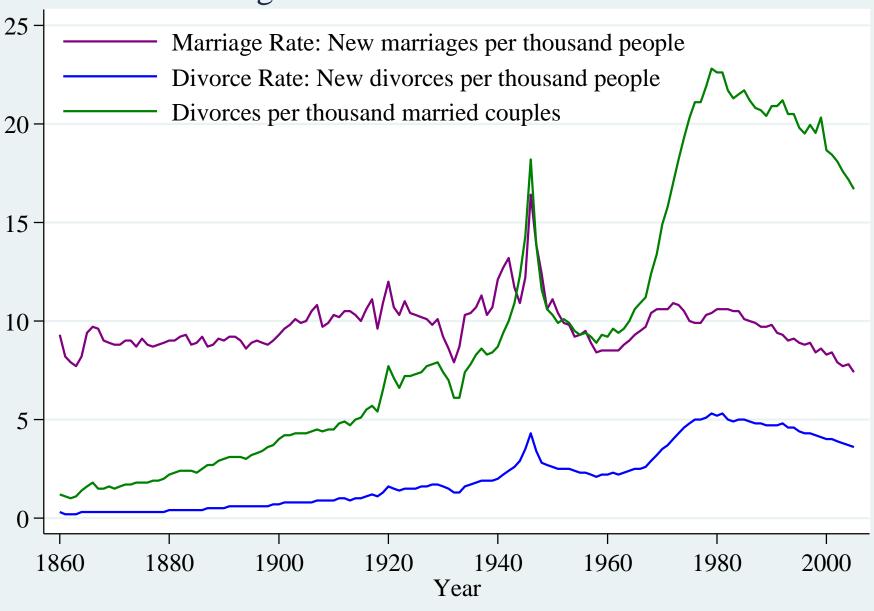

□ U.S findings: Changes from 1950-2000

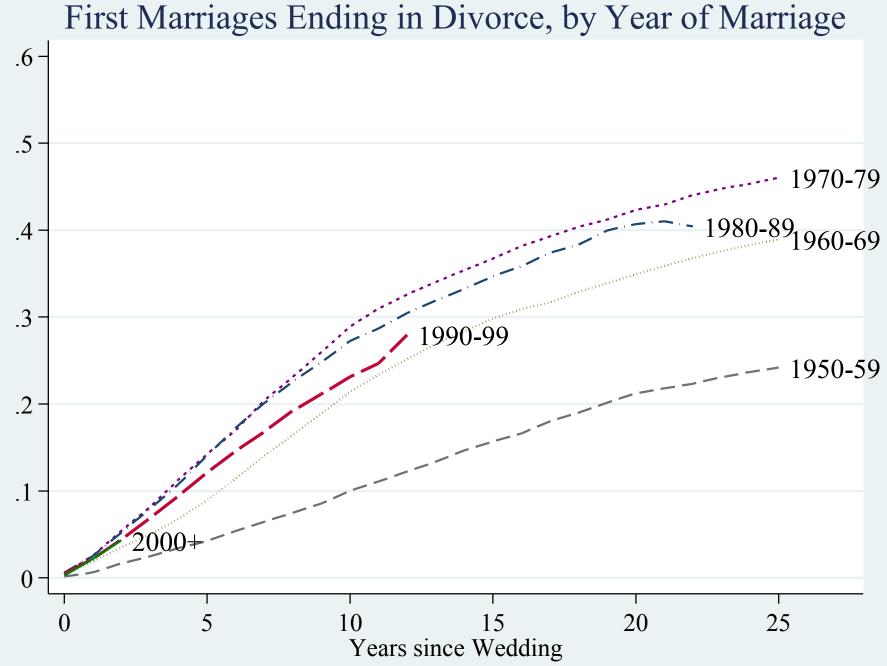
Relative Price of Household Appliances


- Household durables prices were 20 times higher in 1950
- Real wages were one-third as large in 1950
- "Causing" household size to decline from 2.14 to 1.65

Patterns in Marriage and Divorce: Two Views

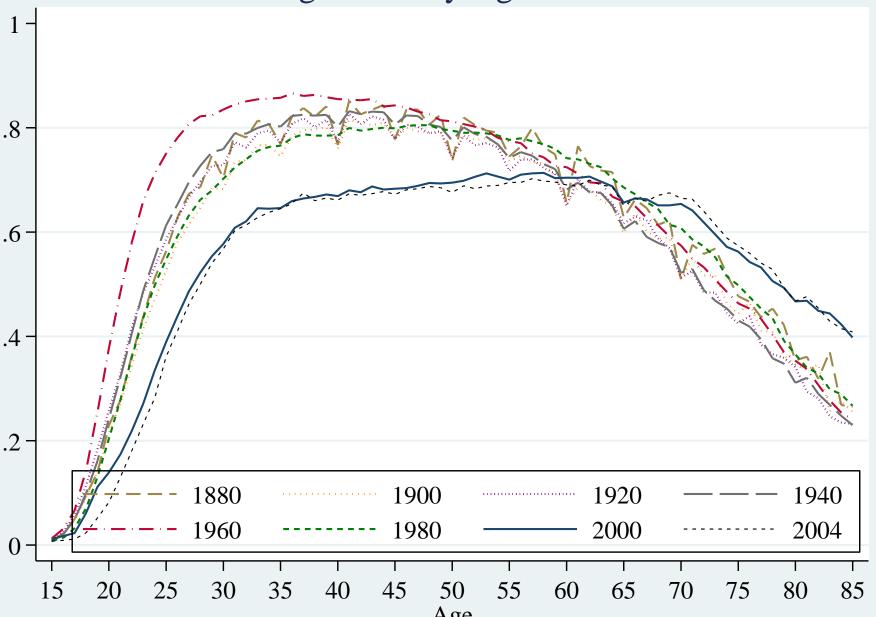
☐ Greenwood-Guner history


■ Stevenson-Wolfers history

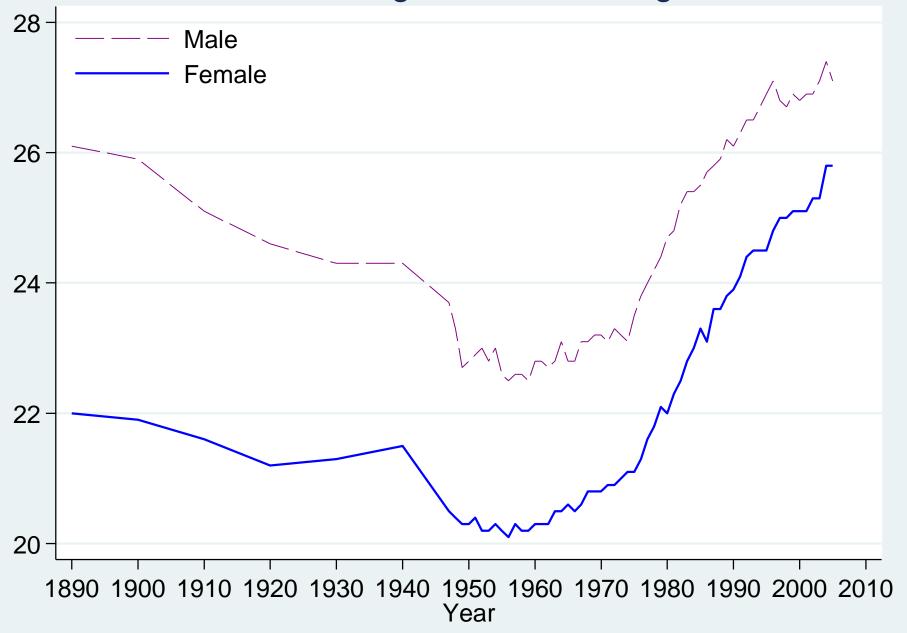

- ☐ Analyze shift between two steady-states
- ■1950s high marriage, low divorce
- ■1990s low divorce, high marriage

- □1950s is a period of turmoil, not steady-state
- ☐Three interesting trends:
 - Post-war decline in divorce
 - •Mid-'60's-late 70's rise in divorce
 - Subsequent decline in divorce

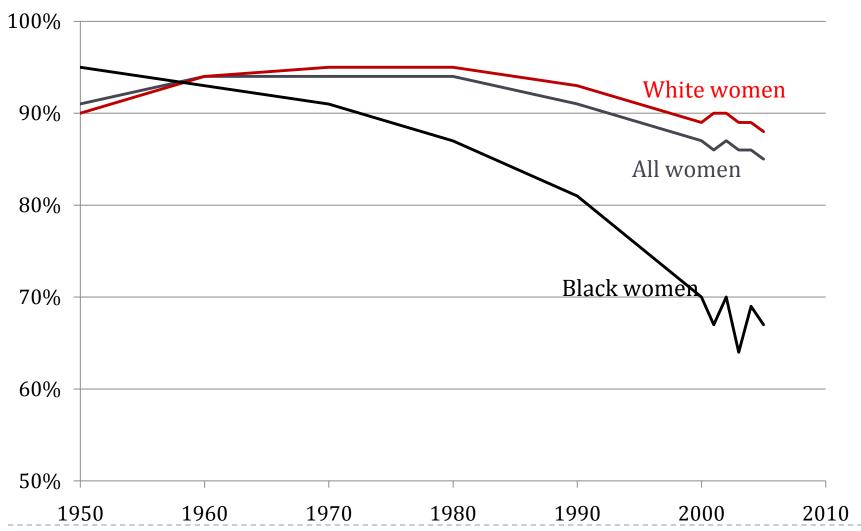
Marriage and Divorce in the United States



Source: Stevenson and Wolfers (2007)


Source: Stevenson and Wolfers (2008), "Trends in Marital Stability"

Marriage Rates by Age: 1880-2004


Source: Betsey Stevenson and Justin Wolfers, "Marriage and Divorce: Changes and their Driving Forces", *Journal of Economic Perspectives*, Spring 2007.

Median Age of First Marriage

Marriage rates

Proportion of 40-year old Women Who Are "Ever-married"

A slightly different story...

- Pre-war: "Productive marriage"
 - Driven by Beckerian returns to specialization in household production
 - Wife specializes in home production; Husband specializes in market production
 - Optimal matching: Negative assortative mating (on market skills)
- □ Post-war shocks reduce production complementarities
 - Norms: "Rosie the riveter"
 - Declining labor market discrimination against women
 - Contraceptive pill and abortion (Increasing investment in female education)
 - Household capital stock
 - Gets cheaper
 - Unskill-biased technical change
 - ...all reducing the production complementarities between husband and wife
- Adjustment period: 1960s and 1970s run-up in divorce due to mismatch
 - Choose partner under "productive marriage" regime
 - Discover mismatch for "hedonic marriage" => Transitory rise in divorce between ss
- □ Today's marriage ("Hedonic marriage")
 - Rising leisure => More important who we spend leisure with
 - Increasing role for consumption complementarities
 - Positive assortative matching (by education, skills, etc)