
S-Paxos: Offloading the Leader for High
Throughput State Machine Replication

Martin Biely, Zarko Milosevic, Nuno Santos, André Schiper
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Email: firstname.lastname@epfl.ch

Abstract—Implementations of state machine replication are
prevalently using variants of Paxos or other leader-based pro-
tocols. Typically these protocols are also leader-centric, in the
sense that the leader performs more work than the non-leader
replicas. Such protocols scale poorly, because as the number of
replicas or the load on the system increases, the leader replica
quickly reaches the limits of one of its resources. In this paper we
show that much of the work performed by the leader in a leader-
centric protocol can in fact be evenly distributed among all the
replicas, thereby leaving the leader only with minimal additional
workload. This is done (i) by distributing the work of handling
client communication among all replicas, (ii) by disseminating
client requests among replicas in a distributed fashion, and (iii)
by executing the ordering protocol on ids. We derive a variant
of Paxos incorporating these ideas. Compared to leader-centric
protocols, our protocol not only achieves significantly higher
throughput for any given number of replicas, but also increases
its throughput with the number of replicas.

Keywords: Paxos, High Throughput, Scalability, State
Machine Replication, Performance

I. INTRODUCTION

As online services increase in importance, their availability
becomes a critical feature. One general approach for pro-
viding a highly available service is state machine replication
(SMR) [1], [2]. By replicating a service on multiple servers,
clients are guaranteed that even if some replica fails, the ser-
vice is still available. The state machine replication approach
has been widely considered by both the theoretical [3], [4],
[5] and systems research community [6], [7], and is also used
in several real-world systems [8], [9], [10].

If executing requests is more costly than ordering them,
then the system performance is limited by the performance
of the service being replicated. However, online services are
frequently lightweight, like the Chubby lock service [8] or the
Zookeeper coordination service [9] and can sustain very high
throughput provided that the ordering protocol can keep up.
The authors of Zookeeper report in [11] that write throughput
of Zookeeper is limited by the throughput of the underlying
ordering protocol.

We observe that implementations of state machine replica-
tion are prevalently using variants of Paxos [3] or other leader-
based protocols. Typically these protocols are also leader-
centric, in the sense that most of the work is done by the
leader. Therefore the bottleneck is found at the leader and
the maximum throughput is limited by the leader’s resources

(such as CPU and network bandwidth), although there are still
available resources at other replicas.

We illustrate our observation with JPaxos [12], an efficient
multi-threaded implementation of Paxos in Java. Figure 1a
shows the throughput of JPaxos (cf. Section III for details of
the experimental setup) for different number of clients. The
maximum throughput is achieved for 1000 clients. At this
point, the leader’s CPU becomes the bottleneck (cf. Figure 1b)
and further increasing the number of clients results in a
decrease of the throughput. The other replicas, however, are
only lightly loaded. Since the bottleneck is at the leader,
introducing additional replicas will not improve performance;
in fact it will lead to a slight decrease in throughput since the
leader will need to process additional messages.

In order to overcome this shortcoming of leader-centric
protocols, we propose S-Paxos (S stands for scalable), a novel
SMR protocol for clustered networks derived from Paxos. S-
Paxos achieves high throughput by balancing the load among
replicas to use otherwise idle resources, thereby avoiding the
bottleneck at the leader. Furthermore, its throughput keeps
increasing with the number of replicas (up to a reasonable
number). This way, S-Paxos overcomes the traditional trade-
off between fault tolerance and throughput present in most
state machine replication protocols: in S-Paxos higher fault
tolerance actually leads to higher throughput.

In order to derive S-Paxos, we start by observing that a
replicated state machine performs the following tasks:
∙ Request dissemination: receiving requests from clients

and distributing them to all replicas
∙ Establishing order: reaching agreement on the order of

requests
∙ Request execution: executing requests in the determined

order and sending replies to clients.
In leader-centric protocols such as Paxos, most responsi-

bility for these three tasks rests with the leader, while the
followers are left only with acknowledging the order proposed
by the leader and executing requests. The S-Paxos key design
guideline is to distribute the three tasks evenly across replicas.
In order to do so, we turn the first two tasks into separate
layers: dissemination and ordering. The dissemination layer is
then balanced among all replicas, with all of them accepting
and disseminating client requests. Since request dissemination
is handled by the dissemination layer, the role of the ordering
layer is only to determine the order in which requests will
be executed. We use normal Paxos for this layer with a

2012 31st International Symposium on Reliable Distributed Systems

1060-9857/12 $26.00 © 2012 IEEE

DOI 10.1109/SRDS.2012.66

111

10 100 1000 10000
0

10

20

30

40

50

60

70

#clients

R
eq

ue
st

s/
se

c
(x

10
00

)

(a) Throughput

10 100 1000 10000
0

100

200

300

400

#clients

%
 s

in
gl

e
co

re
 ti

m
e

Follower1
Follower2
Leader

(b) CPU usage

Fig. 1. Performance of a typical leader-centric Paxos. Request size 20 bytes,
four core machines. See Section V for experimental settings.

difference that it orders request ids instead of full requests.
Therefore, the additional overhead of being the leader in
S-Paxos consists only in ordering ids. After executing the
request, the replica that received the request from the client
sends the corresponding reply.

We have implemented a prototype of S-Paxos1 and per-
formed a detailed experimental evaluation, which shows how
our protocol circumvents the different bottlenecks at the leader
that appear in leader-centric protocols like Paxos. As we
will demonstrate, our protocol is able to reach unprecedented
performance for an application-agnostic ordering service. For
example, for typical replicated state machine deployment sizes
(3-7 replicas according to [13]), S-Paxos achieves a throughput
of 300’000 requests per second for 3 replicas, and keeps
increasing up to 500’000 requests per second for 7 replicas.

Note that such high throughput comes at a price: While
under high load higher throughput also means lower response
time this is not the case under low load. Indeed, we observe
a slight increase in latency for low to medium load when
comparing S-Paxos to a basic Paxos implementation. However,
we believe that given the increase in maximum throughput, the
increase in latency is a price worth paying.

The remainder of the paper is organized as follows. Sec-
tion II provides background on state machine replication and
the Paxos algorithm. In Section III we identify bottlenecks in
Paxos and how they limit its performance. We then introduce
S-Paxos in Section IV. In Section V we evaluate the perfor-
mance gains of S-Paxos over Paxos, and explain how S-Paxos
circumvents the limitations of Paxos. Section VI summarizes
related work and Section VII concludes the paper.

II. BACKGROUND

Most services can be modeled as state-machines with state
transitions being triggered by client requests. Such services
can be made fault-tolerant through state machine replication
(SMR) [1], [2]. In particular, the server is replaced by an
ensemble of replicas starting in the same state, and executing
client requests in the same order. For this to work it is
necessary that processing of requests is deterministic such that
the result of executing a request is the same at all replicas.

1The source code of S-Paxos is available at https://github.com/nfsantos/
S-Paxos.

𝑝1

𝑝2

𝑝3

1a 1b

Phase 1

Req.1 Req.2

2a

2b

Ans.1

Phase 2

2a

2b

Ans.2

Phase 2

Fig. 2. Paxos message pattern

Paxos [3] is probably the most widely used state machine
replication protocol [7], [10], [14]. Specifically, Paxos is a
consensus protocol and MultiPaxos its extension to multiple
consensus instances. As commonly done in the literature, we
will refer to both protocols, as well as the resulting state
machine replication protocol, as Paxos.

Paxos is designed for the partially synchronous system
model and requires 𝑛 ≥ 2𝑓 + 1 replicas to tolerate 𝑓 crash
failures. Although Paxos is usually described in terms of the
roles of proposer, acceptor and learner, this distinction is not
relevant for the work in this paper; we assume that every
process is at the same time proposer, acceptor and learner.
Paxos can be seen as a sequencer-based protocol [15], where
the sequencer orders requests received from the clients. In the
context of Paxos, the sequencer is called leader. Moreover, we
will refer to a replica which is not the leader as follower.

We now briefly describe the Paxos SMR protocol, focusing
on the aspects relevant for the purpose of the paper. In our
exposition we will focus on how a request is processed at
different replicas in a typical Paxos based solution. Often, all
communication with the clients is done by the leader, i.e., the
leader receives all requests and sends all replies2. The leader
proposes a client request for a certain sequence number using
the Paxos consensus protocol. The decision is a client request
together with a sequence number, and requests are executed
in the order of their sequence number.

The Paxos consensus protocol is structured in two phases,
as shown in Figure 2. Phase 1 is executed by a newly elected
leader as a preparation to order requests. Afterwards, the leader
orders a series of client requests by executing several instances
of Phase 2, with the leader proposing a request using a Phase
2a message and order being established once a majority of
Phase 2b messages is received. We use the term instance as
an abbreviation for one instance of Phase 2. The followers
learn the decided sequence either (a) from the leader through
a “decision” message (along with the next Phase 2 message),
or (b) when receiving a majority of Phase 2b messages. In
case (a) the followers send their Phase 2b message only to the
leader, while in case (b) they must broadcast this message.

III. LIMITATIONS OF PAXOS

In order to design a balanced variant of Paxos, we start by
looking in more detail at the traditional leader-centric variants

2Some implementations allow the clients to contact any replica which will
then forward the request to the (current) leader [13], [16].

112

of Paxos, with the goal of identifying the limits this imposes.
From the previous section is obvious that the Paxos protocol is
heavily leader-centric, with the leader doing a disproportionate
amount of work as compared to the followers. Therefore, the
leader will be the first replica running out resources3.

In the rest of the section we explain what system resources
are critical and when they become a bottleneck. There are
three types of resources that can cause a bottleneck. The
first resource that we consider is network bandwidth, which
is required to send and receive messages. The CPU is also
a critical resource, as it is used to serialize and deserialize
messages, to execute the replication protocol, and to run the
service itself. A less obvious resource that can also become the
bottleneck is the network subsystem (network interface card,
network driver and operating system networking stack), which
can only handle a certain number of packets per second.

Bandwidth: When the average request size is large
enough, the outgoing channel of the leader saturates before
the CPU or network subsystem limits are reached. The reason
for this is that proposing an order for a request requires the
leader to inform the other replicas of the request. Recall that
this is done through the Phase 2a message. Therefore, the
maximum throughput of Paxos is limited by 𝐵

𝑛−1 , where 𝐵 is
the available bandwidth on the leader’s outgoing link (ignoring
communication with clients). In this case, we say that the
system is bandwidth bound.

Note that when a multicast primitive is available (for in-
stance, IP Multicast), then the maximum throughput is roughly
the leader’s total outgoing bandwidth (e.g., [17]). However,
support for multicast is not always available, and if available
it may be prohibited from use. This is the case in many data-
centers, as Vigfusson et al. point out [18]. As we are focusing
on clusters in data-centers we do not consider multicast in the
remainder of this paper.

CPU: When the average request size is small (contrasting
the above case), the leader’s CPU can become the bottleneck
long before its outgoing link gets saturated [13], [17]. In this
case, throughput is determined by the processing power of the
leader and we say the system is CPU bound.

Network subsystem: Since the leader is responsible for
communication with the clients (receiving requests and send-
ing replies), the network subsystem can become the bottleneck
before the leader saturates its bandwidth and CPU. More
precisely, the network subsystem at the leader can reach its
maximum capacity in terms of packets per second [19], [20].
In this case, we say the system is network subsystem bound.

IV. S-PAXOS

In the previous section we have seen that in Paxos the
bottleneck at the leader is mainly caused by the leader having
to receive client requests and then disseminate them to all other
replicas. The latter is done through the Phase 2a messages,
which also serve another semantically very different purpose:

3We assume homogeneous settings, where there are no significant differ-
ences between hardware properties of replicas.

they are used to propose an order in which requests should be
executed. Proposing an order in a leader-centric fashion is a
central idea of Paxos and S-Paxos retains this idea. Conversely,
request dissemination (together with receiving requests from
clients) is a task that can be performed by all replicas. For this
reason S-Paxos separates these two roles into two different
layers: the dissemination layer and the ordering layer.

By moving request dissemination into a separate layer,
we are able to turn request dissemination into a distributed
protocol that is more balanced: all replicas accept requests
from clients and disseminate them directly to all other replicas.
Moreover, to complete the separation of the two layers, the
ordering layer only determines (using Paxos) the order of ids
instead of requests.

Since S-Paxos is a variant of Paxos, we make the same as-
sumptions about the system as Paxos (see Section II). We defer
explaining how S-Paxos deals with failures to Section IV-B,
and first focus our attention on the normal case.

A. Normal Operation

We now describe in detail how our dissemination layer
works and how it interacts with the ordering layer (Paxos). In
the pseudo-code of Algorithm 1 we use 𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑣) (line 17)
to pass a value to the ordering layer which (later) signals
decision in the 𝑖th instance of Paxos by the 𝑑𝑒𝑐𝑖𝑑𝑒⟨𝑖, 𝑣⟩ event
(line 19). Moreover, since in our ordering layer only the leader
can propose an order on ids, the dissemination layer also needs
to be aware of the identity of the leader once it successfully
finishes Phase 1.

As for Paxos we focus our exposition of S-Paxos on how
a request is processed. Clients simply sends their requests
to some replica.4 When a replica receives a request from a
client, it forwards the request and its unique id, to all other
replicas (lines 9-10). When a replica receives a forwarded
request (either from itself or from another replica), it records
the id and the request in the requests set. It then sends an ac-
knowledgment containing only the id to all (lines 11-13). Since
messages can be lost during periods of asynchrony (partial
synchronous system), all acknowledgments are periodically
retransmitted (lines 23-25).

After receiving 𝑓 + 1 acknowledgments for a particular
request id a replica records this fact by adding the id to its
stableIds set (we will discuss the importance of this set in the
next subsection). Moreover, the leader replica also passes the
request id to the ordering layer, which will then use the Paxos
protocol to order it (lines 14-18).

As in Paxos the order in which requests are executed is de-
fined by the sequence of decisions of the consensus instances.
The only difference is that our ordering layer only orders ids.
As it is possible (especially in periods of asynchrony) that
an id is ordered before the corresponding request is received,
S-Paxos cannot immediately execute requests as they are
decided. Instead the decision is recorded (line 20) and executed

4We do not address the issue of load balancing in this paper. However, when
all clients generate similar loads, a simple strategy is to let clients randomly
pick a replica.

113

Algorithm 1 Dissemination layer (code of process 𝑝).
1: Parameters:
2: 𝜂 /* delay for retransmission of ACK */
3: Δ /* delay before polling for request */
4: Initialization:
5: requests𝑝 ← ∅ /* requests/ids known to dissemination layer */
6: proposed𝑝 ← ∅ /* Tracks requests proposed */
7: decided𝑝 ← ∅ /* Maps instances to request ids */
8: stableIds𝑝 ← ∅ /* ids acknowledged by at least 𝑓 + 1 replicas */

9: upon receive request ⟨uid , 𝑟⟩ from a client do
10: send ⟨FORWARD, uid , 𝑟⟩ to all

11: upon receive ⟨FORWARD, uid , 𝑟⟩ from 𝑞 do
12: requests𝑝 ← requests𝑝 ∪ {⟨uid , 𝑟⟩}
13: send ⟨ACK, {uid}⟩ to all

14: upon receive 𝑓 + 1 distinct acks for uid do
15: stableIds𝑝 ← stableIds𝑝 ∪ {uid}
16: if 𝑝 is leader and uid /∈ proposed𝑝 then
17: propose(uid)
18: proposed𝑝 ← proposed𝑝 ∪ {uid}

19: upon decide ⟨𝑖, uid⟩ do
20: decided𝑝 ← decided𝑝 ∪ {⟨𝑖, uid⟩}

21: upon exists uid , 𝑟, 𝑖 such that ⟨𝑖, uid⟩ ∈ decided𝑝

and ⟨uid , 𝑟⟩ ∈ requests𝑝 and 𝑟 not executed do
22: execute 𝑟 in order 𝑖

23: every 𝜂 time do
24: 𝑆 ← {

uid : ⟨uid , 𝑟⟩ ∈ requests𝑝
}

25: send ⟨ACK, 𝑆⟩ to all

26: upon receive ⟨ACK, 𝑆⟩ from 𝑞 do
27: for all uid ∈ 𝑆 : ⟨uid , 𝑟⟩ /∈ requests𝑝 do
28: if within Δ time request ⟨uid , 𝑟⟩ was not yet received then
29: send ⟨RESENDFORWARD, uid⟩ to 𝑞

30: upon receive ⟨RESENDFORWARD, uid⟩ from 𝑞 do
31: send ⟨FORWARD, uid , 𝑟⟩ to 𝑞

32: upon view change finished ⟨reproposed⟩ do
33: /* executed by new leader only */
34: proposed𝑝 ← proposed𝑝 ∪ reproposed

∪ {uid : ⟨uid , 𝑟⟩ ∈ decided𝑝}
35: for all uid ∈ stableIds𝑝 ∖ proposed𝑝 do propose(uid)
36: proposed𝑝 ← proposed𝑝 ∪ stableIds𝑝

only once the request is available at the replica (lines 21–22).
After executing the request the replica that received the request
from the client sends the corresponding reply.

B. Handling Failures

As S-Paxos uses Paxos as its ordering layer, and no internals
of Paxos were changed, failure detection, leader election, view
change, and retransmission of messages in the ordering layer
are done as in Paxos. However, due to the separation of
dissemination from ordering, failures can affect S-Paxos in
ways not handled by the ordering layer alone. Therefore we
now discuss the fault tolerance of the dissemination layer.

a) Ensuring stability of client requests: One aspect that
makes performing ordering on ids instead of requests non
trivial is the need to ensure that once an id is decided,
the corresponding request is available in the system [21].
Requests that will remain available in the system even in the
presence of crashes are called stable. In Paxos, stability is

ensured by waiting for at least 𝑓 + 1 Phase 2b messages
before deciding, which indicates that at least one correct
process received the request as part of the Phase 2a message.
As S-Paxos disseminates requests in a separate layer (i.e.,
outside Paxos), it cannot rely on the ordering layer to ensure
stability of ordered requests. Rather, S-Paxos ensures that a
request is stable before proposing the corresponding id. More
specifically, the leader proposes an id only once it has received
𝑓+1 acknowledgments for the corresponding request (line 14).

This ensures that decided ids always correspond to client
requests that reached at least one correct replica, say 𝑝. As 𝑝
will include the corresponding request id in the ACK message
sent periodically to all, other replicas can (upon receiving such
ACK message) retrieve the request from 𝑝 (lines 14–18, 23–
25, 26–29). The same mechanism ensures (as 𝑛 ≥ 2𝑓 + 1)
that any request received by at least one correct replica will
eventually be ordered.

Conversely, if the request does not reach any correct replica,
then it will never be proposed by the leader (as there will never
be 𝑓 + 1 acks). In this case, the clients that sent the requests
will have to time out and retransmit it to another replica. Here
unique request ids do not only prevent duplicate execution, but
also allow replicas to send the correct response to previously
executed requests.

b) View change: As long as there are no leader changes
the mechanisms discussed above are sufficient to ensure that a
request that becomes stable will be proposed. However, in the
presence of leader changes this is no longer the case, because
a request can become stable at a replica before that replica
is promoted to leader. In order to ensure these requests are
proposed we have introduced a call-back (lines 32–36) from
the ordering layer which informs the dissemination layer that
the new leader has finished Phase 1 of Paxos (Figure 2). At
this point the dissemination layer (of the leader) will propose
all stable ids (line 35), unless it is known that these ids have
been decided (the ids are in the decided set) or they are already
(re)proposed from within Paxos (the reproposed set).5 Recall
that the latter occurs as part of Paxos’ view-change protocol
and is based on information collected in Phase 1b. After this
call-back is executed the new leader can again use the set
proposed to ensure that no id is proposed more than once.

C. Optimizations

Since the ordering layer uses the standard Paxos protocol, it
can use the traditional optimizations of batching and pipelin-
ing, as well as any other optimization that applies to Paxos.

Batching can also be used as an optimization at the dis-
semination layer: Instead of forwarding requests directly, a
replica 𝑝 can first group them into batches, assign them a
unique batch id, e.g., of the form ⟨𝑝 : sn⟩, where sn is a local
sequence number, and then broadcast them. The remainder of

5If this information is not available an alternative approach is to filter out
duplicate requests in the ordering layer or during execution. While the former
requires changing the ordering layer which we try to avoid, the latter solution
incurs some wasted resources. Therefore using the reproposed set can also
be seen as an optimization.

114

the protocol will then operate on batch ids and batches of
requests rather than request ids and individual requests.

As presented in the algorithm above, the size of the pe-
riodic ACK messages will grow forever. This can be eas-
ily avoided, by using the id schema for requests proposed
above for the batching optimization. This allows a replica
to group all consecutive batch ids generated by one replica
into intervals, and only transmit the bounds of these intervals.
When one uses TCP for communication between the replicas
the dissemination and reception of batches will occur in a
FIFO manner (as long as connections are not interrupted).
Therefore—in practice—the number of transmitted intervals
is very low, and so this approach is sufficient to keep the size
of acknowledgment messages within reasonable bounds.

Another possible optimization is to piggy-back the acknowl-
edgments on the messages used to forward batches, with
explicit acknowledgments sent only as a fall-back mechanism
if no other messages are being exchanged. This optimization
is especially effective when the system is under high load.

D. Discussion

The protocol above distributes request reception, request
dissemination and sending replies across all replicas. More-
over, the only remaining leader-centric task, ordering, is now
very light-weight since it is done only on ids. Thus, S-Paxos
uses the resources of all replicas more evenly, which allows
it to perform better than traditional leader-centric protocols.
Indeed, the results in Section V confirm that S-Paxos balances
the load across all replicas such that there is no perceptible
difference between the leader and the followers (i.e., the other
replicas).

The two parts of the protocol that were identified as main
sources of bottlenecks in Section III, i.e., client request re-
ception and dissemination, are now performed by all replicas.
Therefore adding more replicas for fault tolerance can have
the positive side-effect of improving the performance of the
system (for reasonable numbers of replicas), since S-Paxos
can use the additional resources of these replicas (cf. Figures
3b and 5). This contrasts with conventional leader-centric
protocols, where higher fault tolerance typically results in
lower performance.

The fact that only ids are proposed, also allows the dis-
semination of requests to continue throughout leader change.
It is only the ordering layer that does not make progress
while a new leader is determined. Moreover ordering only
ids also leads to another advantage during view change: the
state that has to be transferred from the replicas to the new
leader during Phase 1b can be significantly smaller for S-Paxos
when compared with Paxos. All this makes view changes very
lightweight in S-Paxos (cf. Section V-C).

S-Paxos is designed for high throughput, which does not
come for free. Compared to Paxos, it requires a higher number
of communication steps to order a client request. Additionally,
the two levels of batching (at the dissemination and at the
ordering layer) can also harm response time. As our evaluation
in Section V-B shows, we can indeed observe a moderate

Cluster CPUs Network Used in Section
Helios 2×2cores@2.2GHz 1Gbps V-A1, V-B
Parapluie 2×12cores@1.7GHz 1Gbps V-A2
Paradent 2×4cores@2.5GHz 1Gbps V-A3, V-C

TABLE I
GRID5000 CLUSTERS FOR EXPERIMENTS

S-Paxos Paxos
Cluster Req Size cbsz bsz bsz
Helios 20 1450 50 1450
Parapluie 20 1450 50 1450
Paradent 1024 8700 50 8700

TABLE II
EXPERIMENTAL SETTINGS. SIZES IN BYTES. CBSZ - CLIENT BATCH SIZE

(DISSEMINATION LAYER), BSZ - ORDERING LAYER BATCH SIZE.

increase (less than 10ms) in average response time with low
and medium client load. However, for high load the situation is
reversed: the performance of Paxos eventually reaches its peak,
leading to dramatically higher client response time, while for
S-Paxos the throughput continues to increase and the response
time remains low.

V. PERFORMANCE EVALUATION

We have implemented S-Paxos by modifying JPaxos [12],
an efficient multi-threaded implementation of Paxos in Java.
The ordering layer of S-Paxos uses batching and pipelining,
just like a typical Paxos implementation. Additionally, the
dissemination layer implements the optimizations described
in Section IV-C, i.e., batching of client requests, compact
representation of acknowledgments, and piggybacking of ac-
knowledgments.

The experiments were run in several clusters of the
Grid5000 testbed (see Table I). The network was always
a Gigabit Ethernet with an effective inter-node bandwidth
of 930Mbps (measured using iperf). Nodes were running
Linux, kernel version 2.6.32-5, and the Java Virtual Machine
used was Oracle’s JRE version 1.6.0 25.

The workload was generated by nodes located in the same
cluster as the replicas, each running several client threads in a
single Java process. The clients use persistent TCP connections
to communicate with replicas. In Paxos they communicate
with the leader only, while in S-Paxos clients connect to a
random replica. Clients send requests in a closed loop, waiting
for the answer to the previous request before sending the next
one6. Each experiment was run for 3 minutes, with the first
10% ignored in the calculation of the results. To focus our
evaluation on the ordering protocol, we used a null service
that discards the payload of the request, sends back a fixed 8
bytes response, and does not use stable storage. The overhead
of using a more complex service or stable storage would easily
dominate the ordering part.

6Since clients can have only one outstanding request, in order to saturate
the system we had to use a high number of clients. In case clients can issue
several parallel requests, a smaller number of clients would be sufficient.

115

In all experiments the bound on the number of parallel
Paxos instances (pipelining) was set to 30. Table II summarizes
other experimental settings (for S-Paxos, cbsz refers to the
batching of request ids of Section IV-C, and bsz to the
batching of ids in the Paxos ordering layer; for Paxos, bsz
refers to the batching of requests in Paxos). The values were
chosen to match the natural limits of the underlying Ethernet
network (1500 bytes maximum payload of a frame, and
optimal performance usually with messages of around 8KB).

We use as metrics the throughput in requests per second
and in data ordered per second (Mbps), the client response
time, and the CPU utilization. The client response time is the
time from when the client sends a request until it receives the
corresponding reply, which includes dissemination, ordering,
and execution. The CPU utilization of a replica is measured
using the GNU time command and is shown as a percentage
of one core, i.e., 100% is equivalent to one core being fully
utilized.

In Section V-A we describe the throughput of Paxos and
S-Paxos in different scenarios when Paxos’ bottleneck is
the CPU (Section V-A1), the networking subsystem (Sec-
tion V-A2), and the bandwidth (Section V-A3). For each of
these scenarios, we choose the workload (number of clients
and request/response size), the algorithm parameters (e.g.,
batch size), and clusters (Table I) such that Paxos hits the
intended bottleneck. In each case, S-Paxos is able to avoid the
bottleneck that limits Paxos, achieving higher performance. In
Section V-B we measure the client response time of Paxos and
S-Paxos under different client loads, and in Section V-C we
study the effect of view changes and crashes on performance.

In the tests that show the throughput with increasing number
of replicas (𝑛), we were interested in the maximum throughput
of each protocol. However, Paxos and S-Paxos achieve their
maximum throughput with very different number of clients
(see Figure 3a): S-Paxos reaches its maximum with a number
of clients that is significantly higher than what Paxos can
support without its performance starting to degrade. Therefore,
we repeated each experiment using different number of clients,
and report the highest throughput for each value of 𝑛.

A. Throughput

1) When the CPU is the Bottleneck: For testing with the
CPU as the bottleneck, we have chosen a request size of 20
bytes. As discussed in Section III, small request sizes put
a much greater stress on the CPU than on the bandwidth.
Moreover, we used a cluster with a small number of cores, e.g.,
2×2cores@2.2GHz. As our results show, in these conditions
the CPU is indeed the bottleneck both for Paxos and S-Paxos
(although at very different throughput levels).

When 𝑛 = 3, the throughput of Paxos increases with the
number of clients until it reaches a maximum at around 75K
requests per second with just over 1’000 clients, (Figure 3a).
At this point, we can see in Figure 4a that one replica, the
leader, is using over 300% of CPU, which is close to the
maximum of 400% for this setup (recall that the nodes in
the Helios cluster are four-core machines). The other replicas,

10 100 1000 10000
0

100

200

300

400

#clients

R
eq

ue
st

s/
se

c
(x

10
00

)

Paxos
S−Paxos

(a) n=3, different client load

3 5 7 9 11
0

100

200

300

400

Number of replicas

R
eq

ue
st

s/
se

c
(x

10
00

)

Paxos
S−Paxos

(b) Max throughput for different n

Fig. 3. Throughput of Paxos and S-Paxos when CPU is the bottleneck in
Paxos. Helios cluster.

10 100 1000 10000
0

100

200

300

400

#clients

%
 s

in
gl

e
co

re
 ti

m
e

Replica 1
Replica 2
Replica 3

(a) CPU usage of Paxos

10 100 1000 10000
0

100

200

300

400

#clients

%
 s

in
gl

e
co

re
 ti

m
e

Replica 1
Replica 2
Replica 3

(b) CPU usage of S-Paxos

Fig. 4. CPU usage at different replicas with a) Paxos and b) S-Paxos with
increasing number of clients. Helios cluster.

however, are only lightly loaded. In contrast, with S-Paxos
(Figure 4b) the CPU usage is equally distributed among all
replicas and grows slower than on the leader when using
Paxos. Like with Paxos, the throughput also levels off when
the CPU usage exceeds 300%. However, S-Paxos reaches a
throughput of almost three times the one of Paxos, with 200K
requests per second while serving 8’000 clients.

When the number of replicas is increased (Figure 3b), S-
Paxos throughput increases, reaching a maximum of 300K
requests per second with 11 replicas. This contrasts sharply
with Paxos, whose throughput decreases with the number of
replicas, going down from around 75K with 𝑛 = 3 to 50K
with 𝑛 = 11. With 𝑛 = 11, S-Paxos achieves six times
the throughput of Paxos. The reason is that S-Paxos is able
to spread the workload of handling client connections and
dissemination among all replicas, while in Paxos the leader
must perform all these tasks, thus quickly maxing out its CPU
bottleneck.

2) When the Network Subsystem is the Bottleneck: For
these tests, we use the Parapluie cluster. In contrast to the
Helios cluster used in the previous experiments, the nodes in
the Parapluie cluster have a high number of cores (24 versus
4). And since both Paxos and S-Paxos are designed to make
efficient use of multiple cores, this means that in the Parapluie
cluster neither of them is CPU bound anymore. Instead, the
bottleneck shifts to the network subsystem which can only use
a single core, due to limitations on the network stack of the
version of Linux used for the tests.

In Figures 5a and 5b we show the throughput of Paxos and
S-Paxos in requests per second, and data ordered per second

116

3 5 7 9 11
0

200

400

600

800

Number of replicas

R
eq

ue
st

s/
se

c
(x

10
00

)

Paxos
S−Paxos

(a) Throughput(req/sec)

3 5 7 9 11
0

50

100

150

Number of replicas

T
hr

ou
gh

pu
t (

M
bp

s)

Paxos
S−Paxos

(b) Throughput(Mbps)

Fig. 5. Throughput of Paxos and S-Paxos when network subsystem is the
bottleneck in Paxos. Parapluie cluster.

(Mbps). The results confirm that the bottleneck in this case is
indeed the network subsystem: The CPU usage during the tests
is always below 600% out of a maximum of 2400% (results
not shown here), and the peak data rate of 100Mbps is far from
the maximum bandwidth of a Gigabit network (Figure 5b).
Through separate experiments, we have confirmed that both
Paxos and S-Paxos have reached the maximum number of
packets per second that the network subsystem is able to
handle, which is around 150K.

Like in the case where the bottleneck is the CPU, as
the number of replicas increases the throughput of Paxos
gets worse while the one of S-Paxos improves (Figure 5a).
Additionally, the throughput of S-Paxos is always substantially
higher than the one of Paxos: For 𝑛 = 3 S-Paxos has double
the throughput (300K versus 150K), while for 𝑛 = 11 the
advantage increases to six times (600K versus 100K).

The reason is once again that in Paxos the leader is the sole
replica interacting with the clients, while in S-Paxos this work
is shared among all replicas. Therefore, for the same number
𝑛 of replicas, S-Paxos is capable of handling approximately 𝑛
times more client connections. So, as 𝑛 increases, S-Paxos can
handle more client connections, where Paxos is still limited to
what the leader can handle.

3) When the Network Bandwidth is the Bottleneck: For the
tests focusing on the bandwidth, we use a request size of
1KB. With this request size, in all the clusters we used for
the experiments, both Paxos and S-Paxos are easily able to
saturate the bandwidth available before hitting the limits of the
CPU or of the network subsystem of the replicas. Even so, we
chose the cluster with the fastest CPUs (Paradent, see Table I);
this further ensures that neither the network subsystem nor
the CPU are the bottleneck. Recall that the effective inter-
node bandwidth in the clusters used for all the experiments,
including Paradent, is approximately 𝐵 = 930Mbps.

Figure 6 shows the throughput in Mbps of Paxos and S-
Paxos with an increasing number of replicas. On the one hand,
the maximum throughput of Paxos is 𝐵/(𝑛 − 1), since the
leader has to send requests to 𝑛 − 1 followers. This explains
the throughput being approximately 400Mbps for 𝑛 = 3, and
dropping as additional replicas are added to the system. On the
other hand S-Paxos orders around 800Mbps of application data
(without TCP/IP headers and protocol headers) irrespective of

3 5 7 9 11
0

200

400

600

800

1000

Number of replicas

T
hr

ou
gh

pu
t (

M
bp

s)

Paxos
S−Paxos

Fig. 6. Throughput of Paxos and
S-Paxos when bandwidth is the bot-
tleneck in Paxos. Paradent cluster.

10 100 1000 10000
0

50

100

150

#clients

La
te

nc
y

(m
s)

Paxos
S−Paxos

Fig. 7. Response time with Paxos
and S-Paxos with different number of
clients (log scale). Helios cluster.

the number of replicas. As expected, for S-Paxos the limiting
factor is the amount of data any replica can receive. This
difference between Paxos and S-Paxos comes from the fact
that in both protocols every request has to be received by
every replica, but only in Paxos the leader has to send every
request.

B. Response Time

In this section we study the response time of Paxos and
S-Paxos under different client loads. We run the experiments
on the Helios cluster, using a request size of 20 bytes.

Figure 7 shows the results. Under small and medium load
(up to 1’000 clients), S-Paxos has a slightly higher response
time than Paxos (approximately 20ms versus 13ms). However,
as the client load increases, the situation is reversed, with the
response time of Paxos deteriorating faster than the one of S-
Paxos (note the log-scale). These results are a good example
of the trade-off that typically exists between latency and
throughput. To optimize for throughput, S-Paxos uses a longer
request processing pipeline, with more levels of batching and
more communication steps than Paxos. Therefore, under low
load it does not perform as well as Paxos. But as the client
load increases, Paxos is not able to keep up with the demand,
forcing the client requests to queue for a long time before
being ordered and executed. S-Paxos, however, can cope with
higher client loads, therefore avoiding the queuing delays and
providing a much better response time.

C. Failures

For the evaluation of the failure case we return to the
Paradent cluster, and a request size of 1KB (See Table II).

1) Cost of View Change: We start by studying the cost of
view change in two scenarios: view changes due to false suspi-
cions and leader induced view changes. For the first scenario,
we perform several runs where we lower the suspicion timeout
of the failure detector, therefore increasing the frequency of
false suspicions. For the second scenario, we rotate the role of
leader periodically between replicas, by having the replica with
id immediately greater than the one of the leader (modulo n)
promote itself some time after the current leader was elected.
The results are shown in Figure 8.

With timeouts as low as 100ms, false suspicions are rare
so neither Paxos nor S-Paxos show any drop in performance
(Figure 8a). For smaller timeouts, false suspicions become

117

0

0.2

0.4

0.6

0.8

1

Suspicion timeout (ms)

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

10 10
0

10
00

Paxos
SPaxos

(a) Suspicions

0

0.2

0.4

0.6

0.8

1

Promotion timeout (ms)

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

10 10
0

10
00

10
00

0

Paxos
SPaxos

(b) Promotions

Fig. 8. Performance with varying failure suspicion timeout and leader
promotion timeout. 𝑛 = 3

0 20 40 60 80
0

20

40

60

80

100

Time (sec)

T
hr

ou
gh

pu
t r

eq
ue

st
s

(x
10

00
)

Paxos
SPaxos

(a) Throughput

0 20 40 60 80
0

50

100

150

200

250

300

350

Time (sec)

La
te

nc
y

(m
s)

Paxos
SPaxos

(b) Latency

Fig. 9. Performance over time with leader promotion every 10s. 𝑛 = 3

common enough to affect performance. While S-Paxos has
a graceful behavior, achieving still a respectable 60% of its
peak performance even with suspicions timeouts of 3ms, the
performance of Paxos quickly collapses with timeouts smaller
than 10ms. Since the failure detector used is the same in both
cases, the number of false suspicions is roughly equivalent,
which leaves the cost of view change itself as the cause of the
difference. The results of the test with leader induced view
changes (Figure 8b) confirm that this is indeed the case. With
Paxos, the throughput degrades quickly with view changes
every 1 second, and collapses with view change intervals of
200ms. S-Paxos, however, tolerates view changes much better,
achieving still 70% of its peak throughput with view change
intervals of 50ms.

To better understand the effect of view change, we show in
Figure 9 the time series of the response over a single run. For
each 𝑥 coordinate, the plot shows the average response time
of the requests sent at time 𝑥. Note that this time includes re-
transmissions in case of connection or replica failures. Figure 9
shows clearly that view changes do not affect the performance
of S-Paxos in any noticeable way. However, in Paxos, each
view change causes a temporary drop in performance.

S-Paxos performs better in these cases because of two main
reasons. First, the amount of data exchanged by S-Paxos
during view change is, on average, much smaller than in
Paxos; this is because Phase 1b messages of S-Paxos contain
only ids, while in Paxos they contain full batches. Second,
in S-Paxos clients do not need to reconnect to a different
replica, while in Paxos all clients must disconnect from the
previous leader and reconnect to the new one. This second
problem can be minimized by allowing every replica to receive

0 10 20 30 40
0

20

40

60

80

100

Time (sec)

T
hr

ou
gh

pu
t r

eq
ue

st
s

(x
10

00
)

Paxos
SPaxos

(a) Throughput

0 10 20 30 40
0

50

100

150

200

250

Time (sec)

La
te

nc
y

(m
s)

Paxos
SPaxos

(b) Response time

Fig. 10. Crash of a follower. 𝑛 = 5

0 10 20 30 40
0

20

40

60

80

100

Time (sec)

T
hr

ou
gh

pu
t r

eq
ue

st
s

(x
10

00
)

Paxos
SPaxos

(a) Throughput

0 10 20 30 40
0

200

400

600

800

1000

1200

1400

Time (sec)

La
te

nc
y

(m
s)

Paxos
SPaxos

(b) Response time

Fig. 11. Crash of the leader. 𝑛 = 5

client connections and having replicas forward requests to the
leader, like Zab [13] does. But even with this improvement,
view changes will still be more expensive than in S-Paxos,
because after a view change replicas may have to forward
to the new leader some requests that were already forwarded
to the previous leader, thus wasting resources. This is not
necessary in S-Paxos.

2) Performance with Crashes: We now look at the effect
of a crash on the performance of the system. Each experiment
lasts for 40 seconds, with a crash being triggered 15 seconds
after startup. As we can see from Figures 10 and 11, requests
start to be ordered about 5 seconds after startup.

The crash of a follower has little impact on the performance
of the system (Figure 10). The throughput of S-Paxos is not
at all affected, while the one of Paxos increases because now
the leader is sending messages to one less follower, since the
TCP connection to the crashed follower is closed.7 For the
same reason, the response time of Paxos improves slightly
after the crash. On the other hand, the response time of S-
Paxos has a spike during the crash, then quickly returning
to the same levels as before the crash. This spike is caused
by the clients that were connected to the replica that crashed
(approximately, 1/5 of all clients), which have to reconnect to
another replica after a small random backoff delay (between
0.1 and 0.5 seconds). This is not the case for Paxos because
clients do not connect to followers.

When the leader crashes (Figure 11) both Paxos and S-
Paxos stop ordering requests until a new leader is elected.8

The gap in the plots is dominated by the suspicion timeout

7Recall from Section V-A3 that with these experimental settings the
bandwidth is the bottleneck.

8The response time for periods where no request is ordered is shown as 0.

118

of the failure detector (2 seconds). S-Paxos recovers faster
than Paxos because clients remain connected to the other 4
replicas and, therefore, as soon as a leader is elected these
clients and the replicas resume normal operation, with only
a small portion of the clients having to reconnect to some
other replica. In Paxos all clients have to reconnect to the new
leader. Depending on the timeouts and reconnection strategy,
this may happen only some time after a new leader is elected.
The response time of both Paxos and S-Paxos shows a spike
just before the crash, corresponding to the requests that were
sent before the crash of the leader, but ordered only after the
recovery of the system. The second spike of Paxos is, once
again, a consequence of the clients having to connect directly
to the leader, which introduces additional delays.

VI. RELATED WORK

According to the classification of [15], Paxos belongs to
the group of fixed sequencer protocols because a distinguished
process (the leader) is responsible for establishing the order
of messages. Another example of a high-throughput fixed
sequencer protocol is Ring-Paxos [17]. Ring-Paxos relies on
efficient use of IP Multicast to disseminate messages to
servers. This, together with the fact that it executes consensus
on ids (like S-Paxos), makes it a very efficient protocol in
the case where the outgoing channel of the leader is the
bottleneck (large requests). Another fixed sequencer protocol
of interest is Zab [13], a variant of the Paxos protocol used
in primary-backup systems such as Zookeeper. While Zab
distributes client communication to all replicas, it follows the
conventional leader-centric design by having replicas forward
requests to the leader.

All the above fixed sequencer protocols share the same
short-coming: They burden the sequencer to the point it
becomes the system’s bottleneck. In this paper, we have shown
that by offloading the work from the leader, we can derive a
fixed sequencer protocol that has good performance and that
uniformly utilizes system resources at all replicas.

Mencius [22] and the position paper [23] take an alternative
approach to prevent the leader from becoming the bottleneck.
These protocols are based on the observation that rotating the
role of the sequencer avoids contention on a single replica.9

In Mencius the sequence of consensus protocol instances
is partitioned among all replicas with each taking the job of
being (initial) leader of an instance in a round-robin fashion.
In order to exclude failed replicas from this schedule some
reconfiguration is necessary in case of failures. Contrary to S-
Paxos, which is designed for clustered environment, Mencius
is designed with the goal of being an efficient SMR proto-
col for WAN environments. Since Mencius and S-Paxos are
based on different high level concepts (moving sequencer vs.
fixed sequencer), a detailed analysis would be necessary to
understand trade-offs between the two approaches. However,
we expect the performance in the failure-free case to be com-
parable (both approaches balance the work among replicas).

9According to the classification [15], the protocols that rotate the sequencer
role among replicas are called moving sequencer protocols.

In the failure case we expect S-Paxos to be more efficient:
the crash of any replica in Mencius stops progress, while in
S-Paxos this is the case only if the leader replica fails (the
crash of a follower does not affect system progress).

Kapritsos and Junqueira [23] assign each consensus instance
to different “virtual clusters”, instead of to a different leader
as in Mencius. Each virtual cluster consists of 2𝑓 + 1 virtual
replicas which are mapped to overlapping sets of physical
replicas. To reach maximal throughput each virtual cluster’s
leader should be on a different physical replica. This clearly
necessitates some inter-cluster coordination in case of leader
changes. Otherwise, one physical replica could become the
bottleneck as it has the job of being leader in multiple virtual
clusters. Although this approach can potentially achieve the
same goal as S-Paxos, we cannot at the time of writing
compare them in more detail because [23] is the only publicly
available description of the protocol and it does not provide
many important details (in particular, how the system main-
tains a balance distribution of work in the presence of failures).

In both solutions just discussed, multiple streams of deci-
sions have to be merged into a single total order. This is done
by taking one request from each process/virtual cluster in a
round robin fashion. If one process/cluster does not have any
request to order, it has to propose a special skip request, to
allow other replicas to continue ordering requests. There is no
need for such mechanism in S-Paxos.

While all aforementioned work is based on the ideas behind
Paxos and thus are leader-based, this is not the case for all
protocols. One protocol that belongs to this group is LCR [24],
which arranges replicas along a logical ring and uses vector
clocks for message ordering. LCR is a high-throughput pro-
tocol where work is equally divided among servers, thereby
utilizing all available system resources. The drawback of the
approach taken by LCR is that latency increases linearly with
the number of processes in the ring; moreover, maintaining the
ring structure adds overhead to the protocol. Although LCR
has a slightly better bandwidth efficiency than S-Paxos for
large requests (according to [17] it achieves 95% efficiency in
a cluster setting), it requires perfect failure detection. Perfect
failure detection implies stronger synchrony assumption than
required by S-Paxos. While not limited by a leader being the
bottleneck, it is unclear whether adding replicas increases the
throughput of LCR.

State partitioning [25] is another technique commonly used
to achieve scalability. Recently, it has been considered in
the context of state machine replication [26], [27]. In [26],
Marandi et al. show that state partitioning leads to improve-
ments in both throughput and response time for a replicated
B-tree service. However, as they argue, perfect state partition
is often not possible. One can gain performance even with
imperfect state partitioning, as it lifts the requirement that
every request needs to be received by every replica. In [26] the
authors use Ring-Paxos as an ordering protocol. However, as
they point out in [27], when the number of partitions increases
(which is required for good throughput), Ring-Paxos becomes
the bottleneck due to its leader-centric nature. In order to

119

avoid Ring-Paxos being the bottleneck, [27] introduces groups,
and let a single instance of Ring-Paxos be responsible for
ordering messages within a single group. Then each learner
subscribes only to the groups it wants to receive messages
from. This approach, which is similar to [22], [23], requires a
mechanism for merging requests from different groups and a
skipping mechanism for inter-group coordination. Note that
S-Paxos can be easily used in this context by configuring
the dissemination layer to send requests only to interested
learners, while ordering layer would deliver the order to all
learners. The benefits would be using a single cluster instead
of several, and the fact that there is no need for additional
mechanisms (merging requests, skipping consensus instances,
reconfiguration).

The benefit of running consensus on ids in the context of
Atomic Broadcast is explored in [21]. Their approach requires
modifying the consensus algorithm, so that it only decides an
id when the corresponding message is stable. Our work differs
in two main aspects. First, we consider a different problem,
that is, balancing the load in State Machine Replication using
Paxos. Second, we ensure stability of the request before
initiating ordering of the id, and thereby avoid the need to
modify the ordering protocol.

VII. CONCLUSION

In this paper we have shown that leader-based protocols
do not have to be leader-centric. We presented S-Paxos, a
variant of the Paxos protocol that offloads work from the leader
by delegating it to the other replicas. Distributing the work
done by the leader in leader-centric protocols over all replicas
allows S-Paxos to benefit fully from the resources of all
replicas and to also increase its performance with the number
of replicas. We implemented a prototype of S-Paxos and
evaluated its performance in different cluster settings. S-Paxos
achieves between 2 and 3 times the request throughput of a
leader-centric Paxos implementation for 𝑛 = 3. Furthermore,
the throughput of S-Paxos improves when additional replicas
are added to the system, while the performance of most
SMR implementations drops. Therefore, with S-Paxos there
is no need to make a trade-off between fault tolerance and
performance, contrary to what must be done in most SMR
implementations. By increasing the number of replicas, the
system not only becomes more fault tolerant but also achieves
higher throughput than leader-centric Paxos implementations
(up to 7 times, for 𝑛 = 11).

As future work, we plan to add stable storage (using
solid state drives) to S-Paxos in order to tolerate catastrophic
failures, to apply our technique to Byzantine faults, and to
perform experiments with S-Paxos in WAN settings.

ACKNOWLEDGMENTS

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other

funding bodies (see https://www.grid5000.fr). We would like
to thank Darko Petrovic, Thomas Ropars and Omid Shah-
mirzadi for their comments on an earlier version of the paper.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, pp. 558–565, 1978.

[2] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, pp.
299–319, 1990.

[3] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, pp. 133–169, 1998.

[4] ——, “Fast Paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–103,
2006.

[5] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state machine,”
SIGACT News, vol. 41, pp. 63–73, 2010.

[6] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li,
“Paxos replicated state machines as the basis of a high-performance data
store,” in NSDI’11, 2011, pp. 11–11.

[7] J. Rao, E. J. Shekita, and S. Tata, “Using Paxos to build a scalable,
consistent, and highly available datastore,” Proc. VLDB Endow., vol. 4,
pp. 243–254, 2011.

[8] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in OSDI ’06, 2006, pp. 335–350.

[9] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-free
coordination for internet-scale systems,” in USENIXATC, 2010, p. 11.

[10] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou,
“Boxwood: abstractions as the foundation for storage infrastructure,” in
OSDI’04, 2004, pp. 8–8.

[11] B. Reed and F. P. Junqueira, “A simple totally ordered broadcast
protocol,” in LADIS ’08, 2008, pp. 2:1–2:6.

[12] N. Santos, J. Kończak, T. Żurkowski, P. Wojciechowski, and A. Schiper,
“JPaxos - State machine replication in Java,” EPFL, Tech. Rep. 167765,
Jul. 2011.

[13] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in DSN’11, 2011, pp. 245–256.

[14] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective,” in PODC ’07, 2007.

[15] X. Defago, A. Schiper, and P. Urban, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Computing Surveys,
vol. 36, p. 2004, 2004.

[16] J. Kirsch and Y. Amir, “Paxos for system builders,” Dept. of CS, Johns
Hopkins University, Tech. Rep., 2008.

[17] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos: A
high-throughput atomic broadcast protocol,” in DSN’10, 2010, pp. 527–
536.

[18] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman, R. Burgess,
G. Chockler, H. Li, and Y. Tock, “Dr. multicast: Rx for data center
communication scalability,” in EuroSys ’10, 2010.

[19] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich, “An analysis of linux scalability to many
cores,” in OSDI’10. Berkeley, USA: USENIX, 2010, pp. 1–8.

[20] N. Santos and A. Schiper, “Tuning Paxos for high-throughput with
batching and pipelining,” in 13th International Conference on Dis-
tributed Computing and Networking (ICDCN 2012), Jan. 2012.

[21] R. Ekwall and A. Schiper, “Solving atomic broadcast with indirect
consensus,” in DSN’06, 2006, pp. 156–165.

[22] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: building efficient
replicated state machines for wans,” in OSDI’08, 2008, pp. 369–384.

[23] M. Kapritsos and F. P. Junqueira, “Scalable agreement: toward ordering
as a service,” in HotDep’10, 2010, pp. 1–8.

[24] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma, “Throughput
optimal total order broadcast for cluster environments,” ACM Trans.
Comput. Syst., vol. 28, pp. 5:1–5:32, 2010.

[25] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication
and a solution,” in SIGMOD ’96, 1996.

[26] P. Marandi, M. Primi, and F. Pedone, “High performance state-machine
replication,” in Dependable Systems Networks (DSN), 2011 IEEE/IFIP
41st International Conference on, june 2011, pp. 454 –465.

[27] ——, “Multi-ring Paxos,” in Dependable Systems Networks (DSN), 2012
IEEE/IFIP 42st International Conference on, june 2012.

120

