
AWS Database
Migration Service

Step-by-Step Migration Guide

API Version 2016-01-01

AWS Database Migration Service
Step-by-Step Migration Guide

AWS Database Migration Service
Step-by-Step Migration Guide

AWS Database Migration Service: Step-by-Step Migration Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS Database Migration Service
Step-by-Step Migration Guide

Table of Contents
AWS Database Migration Service Step-by-Step Walkthroughs ... 1
Migrating Databases to Amazon Web Services (AWS) .. 2

AWS Migration Tools ... 2
Walkthroughs in this Guide .. 3

Migrating an On-Premises Oracle Database to Amazon Aurora Using AWS Database Migration Service 4
Costs .. 5
Migration High-Level Outline ... 5

Step 1: Prepare Your Oracle Source Database .. 5
Step 2: Launch and Prepare Your Aurora Target Database ... 6
Step 3: Launch a Replication Instance .. 6
Step 4: Create a Source Endpoint ... 7
Step 5: Create a Target Endpoint .. 7
Step 6: Create and Run a Migration Task ... 7

Migration Step-by-Step Guide ... 8
Step 1: Configure Your Oracle Source Database ... 9
Step 2: Configure Your Aurora Target Database .. 11
Step 3: Creating a Replication Instance .. 12
Step 4: Create Your Oracle Source Endpoint ... 14
Step 5: Create Your Aurora Target Endpoint .. 16
Step 6: Create a Migration Task .. 18
Step 7: Monitor Your Migration Task .. 23
Troubleshooting .. 23

Working with the Sample Database for Migration ... 23
Migrating an Amazon RDS Oracle Database to Amazon Aurora Using AWS Database Migration
Service .. 25

Costs ... 26
Prerequisites .. 27
Migration Architecture .. 28
Step-by-Step Migration ... 29

Step 1: Launch the RDS Instances in a VPC by Using the CloudFormation Template 29
Step 2: Install the SQL Tools and AWS Schema Conversion Tool on Your Local Computer 34
Step 3: Test Connectivity to the Oracle DB Instance and Create the Sample Schema 36
Step 4: Test the Connectivity to the Aurora DB Instance .. 40
Step 5: Use the AWS Schema Conversion Tool (AWS SCT) to Convert the Oracle Schema
to Aurora ... 42
Step 6: Validate the Schema Conversion .. 51
Step 7: Create a AWS DMS Replication Instance .. 55
Step 8: Create AWS DMS Source and Target Endpoints ... 55
Step 9: Create and Run Your AWS DMS Migration Task ... 58
Step 10: Verify That Your Data Migration Completed Successfully 61
Step 11: Delete Walkthrough Resources ... 63

Next Steps ... 64
AWS CloudFormation Template, SQL Scripts, and Other Resources ... 64
References ... 65

Migrating MySQL-Compatible Databases to AWS ... 66
Migrating a MySQL-Compatible Database to Amazon Aurora ... 67

Migrating Data from an External MySQL Database to an Amazon Aurora Using Amazon S3 67
Prerequisites .. 68
Step 1: Backing Up Files to be Restored as a DB Cluster .. 70
Step 2: Copying Files to an Amazon S3 Bucket ... 71
Step 3: Restoring an Aurora DB Cluster from an S3 Bucket ... 71

Migrating MySQL to Amazon Aurora by Using mysqldump ... 78
Migrating Data from an Amazon RDS MySQL DB Instance to an Amazon Aurora DB Cluster 78

Migrating an RDS MySQL Snapshot to Aurora ... 79
Document History .. 86

API Version 2016-01-01
iv

AWS Database Migration Service
Step-by-Step Migration Guide

AWS Database Migration Service
Step-by-Step Walkthroughs

You can use AWS Database Migration Service (AWS DMS) to migrate your data to and from most
widely used commercial and open-source databases such as Oracle, PostgreSQL, Microsoft SQL
Server, Amazon Redshift, Amazon Aurora, MariaDB, and MySQL. The service supports homogeneous
migrations such as Oracle to Oracle, and also heterogeneous migrations between different database
platforms, such as Oracle to MySQL or MySQL to Amazon Aurora. The source or target database must
be on an AWS service.

In this guide, you can find step-by-step walkthroughs that go through the process of migrating sample
data to AWS.

Migrating Databases to Amazon Web Services (AWS) (p. 2)

Migrating an On-Premises Oracle Database to Amazon Aurora Using AWS Database Migration
Service (p. 4)

Migrating an Amazon RDS Oracle Database to Amazon Aurora Using AWS Database Migration
Service (p. 25)

Migrating MySQL-Compatible Databases to AWS (p. 66)

Migrating a MySQL-Compatible Database to Amazon Aurora (p. 67)

API Version 2016-01-01
1

AWS Database Migration Service
Step-by-Step Migration Guide

AWS Migration Tools

Migrating Databases to Amazon
Web Services (AWS)

AWS Migration Tools
You can use several AWS tools and services to migrate data from an external database to AWS.
Depending on the type of database migration you are doing, you may find that the native migration
tools for your database engine are also effective.

AWS Database Migration Service (AWS DMS) helps you migrate databases to AWS efficiently and
securely. The source database can remain fully operational during the migration, minimizing downtime
to applications that rely on the database. AWS DMS can migrate your Oracle data to the most widely
used commercial and open-source databases on AWS.

AWS DMS migrates data, tables, and primary keys to the target database. All other database elements
are not migrated. If you are migrating an Oracle database to Amazon Aurora, for example, you would
want to use the AWS Schema Conversion Tool in conjunction with AWS DMS.

The AWS Schema Conversion Tool (SCT) makes heterogeneous database migrations easy by
automatically converting the source database schema and a majority of the custom code, including
views, stored procedures, and functions, to a format compatible with the target database. Any code
that cannot be automatically converted is clearly marked so that it can be manually converted. You can
use this tool to convert your source Oracle databases to an Amazon Aurora, MySQL, or PostgreSQL
target database on either Amazon RDS or EC2.

It is important to understand that DMS and SCT are two different tools and serve different needs and
they don’t interact with each other in the migration process. As per the DMS best practice, migration
methodology for this tutorial is outlined as below:

• AWS DMS takes a minimalist approach and creates only those objects required to efficiently migrate
the data for example tables with primary key – therefore, we will use DMS to load the tables with
data without any foreign keys or constraints. (We can also use the SCT to generate the table scripts
and create it on the target before performing the load via DMS).

• We will leverage SCT:

• To identify the issues, limitations and actions for the schema conversion

• To generate the target schema scripts including foreign key and constraints

• To convert code such as procedures and views from source to target and apply it on target

API Version 2016-01-01
2

AWS Database Migration Service
Step-by-Step Migration Guide

Walkthroughs in this Guide

The size and type of Oracle database migration you want to do greatly determines the tools you should
use. For example, a heterogeneous migration, where you are migrating from an Oracle database
to a different database engine on AWS, is best accomplished using AWS DMS. A homogeneous
migration, where you are migrating from an Oracle database to an Oracle database on AWS, is best
accomplished using native Oracle tools.

Walkthroughs in this Guide
Migrating an On-Premises Oracle Database to Amazon Aurora Using AWS Database Migration
Service (p. 4)

Migrating an Amazon RDS Oracle Database to Amazon Aurora Using AWS Database Migration
Service (p. 25)

Migrating MySQL-Compatible Databases to AWS (p. 66)

Migrating a MySQL-Compatible Database to Amazon Aurora (p. 67)

API Version 2016-01-01
3

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating an On-Premises Oracle
Database to Amazon Aurora Using
AWS Database Migration Service

Following, you can find a high-level outline and also a complete step-by-step walkthrough that both
show the process for migrating an on-premises Oracle database (the source endpoint) to an Amazon
Aurora (the target endpoint) using AWS Database Migration Service (AWS DMS) and the AWS
Schema Conversion Tool (AWS SCT).

AWS DMS migrates your data from your Oracle source into your Aurora target. AWS DMS also
captures data manipulation language (DML) and data definition language (DDL) changes that happen
on your source database and apply these changes to your target database. This way, AWS DMS helps
keep your source and target databases in synch with each other. To facilitate the data migration, DMS
creates tables and primary key indexes on the target database if necessary.

However, AWS DMS doesn't migrate your secondary indexes, sequences, default values, stored
procedures, triggers, synonyms, views and other schema objects not specifically related to data
migration. To migrate these objects to your Aurora target, use the AWS Schema Conversion Tool.

We highly recommend that you follow along using the Amazon sample database. To find a tutorial that
uses the sample database and instructions on how to get a copy of the sample database, see Working
with the Sample Database for Migration (p. 23).

If you’ve used AWS DMS before or you prefer clicking a mouse to reading, you probably want to work
with the high-level outline. If you need the details and want a more measured approach (or run into
questions), you probably want the step-by-step guide.

Topic: Migration from On-Premises Oracle to Aurora or MySQL on Amazon RDS

Time:

Cost:

Source Database: Oracle

Target Database: Amazon Aurora/MySQL

API Version 2016-01-01
4

AWS Database Migration Service
Step-by-Step Migration Guide

Costs

Topic: Migration from On-Premises Oracle to Aurora or MySQL on Amazon RDS

Restrictions:

Oracle Edition: Enterprise, Standard, Express and Personal

Oracle Version: 10g (10.2 and later), 11g, 12c, (On Amazon Relational Database Service (Amazon
RDS), 11g or higher is required.)

MySQL or Related Database Version: 5.5, 5.6, 5.7, MariaDB, Amazon Aurora

Character Set: utf8mb4 is not currently supported

Costs
Because AWS DMS isn't incorporated into the calculator yet, see the following table for a pricing
estimate.

In addition to the setup on your own PC, you must create several AWS components to complete the
migration process. The AWS components include:

AWS Service Type Description

Amazon RDS Aurora DB instance db.r3.large Single AZ, 10 GB
storage, 1 million
I/O

AWS DMS replication instance T2.large 50 GB of storage
for keeping
replication logs
included

AWS DMS data transfer Free, based on
the amount of
data transferred
for the sample
database.

Data transfer out First 1 GB per
month free

Assuming, you run this tutorial for 2 hours, following is an estimate of pricing:

Migration High-Level Outline
To migrate your data from Oracle to Aurora using AWS DMS, you take the following steps. If you’ve
used AWS DMS before or prefer clicking a mouse to reading, the following summary should help you
kick-start your migration. To get the details about migration or if you run into questions, see the step-
by-step guide.

Step 1: Prepare Your Oracle Source Database
To use AWS DMS to migrate data from an Oracle source database requires some preparation and we
also recommend a few additional steps as best practices.

API Version 2016-01-01
5

AWS Database Migration Service
Step-by-Step Migration Guide

Step 2: Launch and Prepare Your Aurora Target Database

• AWS DMS account – It’s a good practice to create a separate account for the specific purpose of
migrating your data. This account should have the minimal set of privileges required to migrate your
data. Specific details regarding those privileges are outlined below. If you are simply interested in
testing AWS DMS on a non-production database, any DBA account will be sufficient.

• Supplemental logging – To capture changes, you must enable supplemental logging in order to use
DMS. To enable supplemental logging at the database level issue the following command.

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA

Additionally, AWS DMS requires for each table being migrated, you set at least key-level
supplemental logging. AWS DMS automatically adds this supplemental logging for you if you include
the following extra connection parameter for your source connection.

addSupplementalLogging=Y

• Source database – To migrate your data, the AWS DMS replication server needs access to your
source database. Make sure that your firewall rules give the AWS DMS replication server ingress.

Step 2: Launch and Prepare Your Aurora Target
Database
Following are some things to consider when launching your Aurora instance:

• For best results, we recommend that you locate your Aurora instance and your replication instance in
the same VPC and, if possible, the same Availability Zone.

• We recommend that you create a separate account with minimal privileges for migrating your data.
The AWS DMS account needs the following privileges on all databases to which data is being
migrated.

ALTER, CREATE, DROP, INDEX, INSERT, UPDATE, DELETE, SELECT

Additionally, AWS DMS needs complete access to the awsdms_control databse. This database
holds information required by AWS DMS specific to the migration. To provide access, run the
following command.

ALL PRIVILEGES ON awsdms_control.* TO 'dms_user'

Step 3: Launch a Replication Instance
The AWS DMS service connects to your source and target databases from a replication instance. Here
are some things to consider when launching your replication instance:

• For best results, we recommend that you locate your replication instance in the same VPC and
Availability Zone as your target database, in this case Aurora.

• If either your source or target database is outside of the VPC where you launch your replication
server, the replication server must be publicly accessible.

• AWS DMS can consume a fair bit of memory and CPU. However, it’s easy enough to scale up if
necessary. If you anticipate running several tasks on a single replication server or

• The default storage is usually enough for most migrations.

API Version 2016-01-01
6

AWS Database Migration Service
Step-by-Step Migration Guide

Step 4: Create a Source Endpoint

Step 4: Create a Source Endpoint
For AWS DMS to access your Oracle source database you’ll need to create a source endpoint. The
source endpoint defines all the information required for AWS DMS to connect to your source database
from the replication server. Following are some requirements for the source endpoint.

• Your source endpoint needs to be accessible from the replication server. To allow this, you will likely
need to modify your firewall rules to whitelist the replication server. You can find the IP address of
your replication server in the AWS DMS Management Console.

• For AWS DMS to capture changes, Oracle requires supplemental logging be enabled. If you want
AWS DMS to enable supplemental logging for you, add the following to the extra connection
attributes for your Oracle source endpoint.

addSupplementalLogging=Y

Step 5: Create a Target Endpoint
For AWS DMS to access your Aurora target database you’ll need to create a target endpoint. The
target endpoint defines all the information required for DMS to connect to your Aurora database.

• Your target endpoint needs to be accessible from the replication server. You might need to modify
your security groups to make the target endpoint accessible.

• If you’ve pre-created the database on your target, it’s a good idea to disable foreign key checks
during the full load. To do so, add the following to your extra connection attributes.

initstmt=SET FOREIGN_KEY_CHECKS=0

Step 6: Create and Run a Migration Task
A migration task tells AWS DMS where and how you want your data migrated. When creating your
migration task, you should consider setting migration parameters as follows.

Endpoints and replication server — Choose the endpoints and replication server created above.

Migration type — In most cases you’ll want to choose migrate existing data and replication
ongoing changes. With this option, AWS DMS loads your source data while capturing changes to that
data. When the data is fully loaded, AWS DMS applies any outstanding changes and keeps the source
and target databases in sync until the task is stopped.

Target table preparation mode — If you’re having AWS DMS create your tables, choose drop
tables on target. If you’re using some other method to create your target tables such as the AWS
Schema Conversion Tool, choose truncate.

LOB parameters — If you’re just trying AWS DMS, choose include LOB columns in replication,
Limited LOB mode, and set your max LOB size to 16 (which is 16k.) For more information regarding
LOBs, read the details in the step-by-step guide.

Enable logging — To help with debugging migration issues, always enable logging.

Table mappings — When migrating from Oracle to Aurora, we recommend that you convert your
schema, table, and column names to lowercase. To do so, create a custom table mapping. The
following example migrates the schema DMS_SAMPLE and converts schema, table and column
names to lower case.

API Version 2016-01-01
7

AWS Database Migration Service
Step-by-Step Migration Guide
Migration Step-by-Step Guide

{
 "rules": [
 {
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "DMS_SAMPLE",
 "table-name": "%"
 },
 "rule-action": "include"
 },
 {
 "rule-type": "transformation",
 "rule-id": "6",
 "rule-name": "6",
 "rule-action": "convert-lowercase",
 "rule-target": "schema",
 "object-locator": {
 "schema-name": "%"
 }
 },
 {
 "rule-type": "transformation",
 "rule-id": "7",
 "rule-name": "7",
 "rule-action": "convert-lowercase",
 "rule-target": "table",
 "object-locator": {
 "schema-name": "%",
 "table-name": "%"
 }
 },
 {
 "rule-type": "transformation",
 "rule-id": "8",
 "rule-name": "8",
 "rule-action": "convert-lowercase",
 "rule-target": "column",
 "object-locator": {
 "schema-name": "%",
 "table-name": "%",
 "column-name": "%"
 }
 }
]
}

Migration Step-by-Step Guide
Following, you can find step-by-step instructions for migrating an Oracle database from an on-premises
environment to Amazon Aurora. These instructions assume that you have already done the setting up
steps for using AWS DMS located at Setting Up to Use AWS Database Migration Service.

Topics

• Step 1: Configure Your Oracle Source Database (p. 9)

API Version 2016-01-01
8

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_SettingUp.html

AWS Database Migration Service
Step-by-Step Migration Guide

Step 1: Configure Your Oracle Source Database

• Step 2: Configure Your Aurora Target Database (p. 11)

• Step 3: Creating a Replication Instance (p. 12)

• Step 4: Create Your Oracle Source Endpoint (p. 14)

• Step 5: Create Your Aurora Target Endpoint (p. 16)

• Step 6: Create a Migration Task (p. 18)

• Step 7: Monitor Your Migration Task (p. 23)

• Troubleshooting (p. 23)

Step 1: Configure Your Oracle Source Database
To use Oracle as a source for AWS Database Migration Service (AWS DMS), you must first ensure
that ARCHIVELOG MODE is on to provide information to LogMiner. AWS DMS uses LogMiner to read
information from the archive logs so that AWS DMS can capture changes.

For AWS DMS to read this information, make sure the archive logs are retained on the database
server as long as AWS DMS requires them. If you configure your task to begin capturing changes
immediately, you should only need to retain archive logs for a little longer than the duration of the
longest running transaction. Retaining archive logs for 24 hours is usually sufficient. If you configure
your task to begin from a point in time in the past, archive logs need to be available from that time
forward. For more specific instructions for enabling ARCHIVELOG MODE and ensuring log retention
for your on-premises Oracle database see the Oracle documentation.

To capture change data, AWS DMS requires supplemental logging to be enabled on your source
database for AWS DMS. Minimal supplemental logging must be enabled at the database level. AWS
DMS also requires that identification key logging be enabled. This option causes the database to
place all columns of a row's primary key in the redo log file whenever a row containing a primary key is
updated (even if no value in the primary key has changed). You can set this option at the database or
table level.

If your Oracle source is in Amazon RDS, your database will be placed in ARCHIVELOG MODE if, and
only if, you enable backups. The following command will ensure archive logs are retained on your RDS
source for 24 hours:

exec rdsadmin.rdsadmin_util.set_configuration('archivelog retention
 hours',24);

To configure your Oracle source database

1. Run the following command to enable supplemental logging at the database level, which AWS
DMS requires:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

For RDS:
exec rdsadmin.rdsadmin_util.alter_supplemental_logging('ADD');

2. Use the following command to enable identification key supplemental logging at the database
level. AWS DMS requires supplemental key logging at the database level unless you allow AWS
DMS to automatically add supplemental logging as needed or enable key-level supplemental
logging at the table level:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

For RDS:

API Version 2016-01-01
9

https://community.oracle.com/thread/3717174

AWS Database Migration Service
Step-by-Step Migration Guide

Step 1: Configure Your Oracle Source Database

exec rdsadmin.rdsadmin_util.alter_supplemental_logging('ADD','PRIMARY
 KEY');

3. Your source database incurs a small bit of overhead when key level supplemental logging is
enabled. Therefore, if you are migrating only a subset of your tables, you might want to enable key
level supplemental logging at the table level. To enable key level supplemental logging at the table
level, use the following command.

alter table table_name add supplemental log data (PRIMARY KEY) columns;

If a table does not have a primary key you have two options.

• You can add supplemental logging to all columns involved in the first unique index on the table
(sorted by index name.)

• You can add supplemental logging on all columns of the table.

To add supplemental logging on a subset of columns in a table, that is those involved in a unique
index, run the following command.

ALTER TABLE table_name ADD SUPPLEMENTAL LOG GROUP example_log_group
 (ID,NAME)
ALWAYS;

To add supplemental logging for all columns of a table, run the following command.

alter table table_name add supplemental log data (ALL) columns;

4. Create or configure a database account to be used by AWS DMS. We recommend that you use an
account with the minimal privileges required by AWS DMS for your AWS DMS connection. AWS
DMS requires the following privileges.

CREATE SESSION
SELECT ANY TRANSACTION
SELECT on V_$ARCHIVED_LOG
SELECT on V_$LOG
SELECT on V_$LOGFILE
SELECT on V_$DATABASE
SELECT on V_$THREAD
SELECT on V_$PARAMETER
SELECT on V_$NLS_PARAMETERS
SELECT on V_$TIMEZONE_NAMES
SELECT on V_$TRANSACTION
SELECT on ALL_INDEXES
SELECT on ALL_OBJECTS
SELECT on ALL_TABLES
SELECT on ALL_USERS
SELECT on ALL_CATALOG
SELECT on ALL_CONSTRAINTS
SELECT on ALL_CONS_COLUMNS

API Version 2016-01-01
10

AWS Database Migration Service
Step-by-Step Migration Guide

Step 2: Configure Your Aurora Target Database

SELECT on ALL_TAB_COLS
SELECT on ALL_IND_COLUMNS
SELECT on ALL_LOG_GROUPS
SELECT on SYS.DBA_REGISTRY
SELECT on SYS.OBJ$
SELECT on DBA_TABLESPACES
SELECT on ALL_TAB_PARTITIONS
SELECT on ALL_ENCRYPTED_COLUMNS
* SELECT on all tables migrated

If you want to capture and apply changes (CDC) you also need the following privileges.

EXECUTE on DBMS_LOGMNR
SELECT on V_$LOGMNR_LOGS
SELECT on V_$LOGMNR_CONTENTS
LOGMINING /* For Oracle 12c and higher. */
* ALTER for any table being replicated (if you want DMS to add
 supplemental logging)

For Oracle versions before 11.2.0.3, you need the following privileges. If views are exposed, you
need the following privileges.

SELECT on DBA_OBJECTS /* versions before 11.2.0.3 */
SELECT on ALL_VIEWS (required if views are exposed)

Step 2: Configure Your Aurora Target Database
As with your source database, it’s a good idea to restrict access of the user you’re connecting with.
You can also create a temporary user that you can remove after the migration.

CREATE USER 'dms_user'@'%' IDENTIFIED BY 'dms_user';
GRANT ALTER, CREATE, DROP, INDEX, INSERT, UPDATE, DELETE,
SELECT ON <target database(s)>.* TO 'dms_user'@'%';

AWS DMS uses some control tables on the target in the database awsdms_control. The following
command ensures that your dms_user has the necessary access to the awsdms_control database:

GRANT ALL PRIVILEGES ON awsdms_control.* TO 'dms_user'@'%';
flush privileges;

API Version 2016-01-01
11

AWS Database Migration Service
Step-by-Step Migration Guide

Step 3: Creating a Replication Instance

Step 3: Creating a Replication Instance
An AWS DMS replication instance performs the actual data migration between source and target.
The replication instance also caches the changes during the migration. How much CPU and memory
capacity a replication instance has influences the overall time required for the migration. Use the
following procedure to set the parameters for a replication instance.

To create an AWS DMS replication instance

1. Sign in to the AWS Management Console, and open the AWS DMS console at https://
console.aws.amazon.com/dms/ and choose Replication instances. If you are signed in as an
AWS Identity and Access Management (IAM) user, you must have the appropriate permissions
to access AWS DMS. For more information on the permissions required, see IAM Permissions
Needed to Use AWS DMS.

2. Choose Create replication instance.

3. On the Create replication instance page, specify your replication instance information as shown
following.

For This Parameter Do This

Name If you plan to launch multiple replication instances or
share an account, choose a name that helps you quickly
differentiate between the different replication instances.

Description A good description gives others an idea of what the
replication instance is being used for and can prevent
accidents.

Instance class AWS DMS can use a fair bit of memory and CPU. If
you have a large database (many tables) or use a
number of LOB data types, setting up a larger instance
is probably better. As described following, you might be
able to boost your throughput by running multiple tasks.
Multple tasks consume more resources and require
a larger instance. Keep an eye on CPU and memory
consumption as you run your tests. If you find you are
using the full capacity of the CPU or swap space, you
can easily scale up.

VPC Here you can choose the VPC where your replication
instance will be launched. We recommend that, if
possible, you select the same VPC where either your
source or target database is (or both). AWS DMS needs
to access your source and target database from within
this VPC. If either or both of your database endpoints are
outside of this VPC, modify your firewall rules to allow
AWS DMS access.

Multi-AZ If you choose Multi-AZ, AWS DMS launches a primary
and secondary replication instance in separate
Availability Zones. In the case of a catastrophic disk
failure, the primary replication instance automatically
fails over to the secondary, preventing an interruption
in service. In most situations, if you are performing a
migration, you won't need Multi-AZ. If your initial data
load takes a long time and you need to keep the source
and target databases in sync for a significant portion of

API Version 2016-01-01
12

https://console.aws.amazon.com/dms/
https://console.aws.amazon.com/dms/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Security.IAMPermissions.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Security.IAMPermissions.html

AWS Database Migration Service
Step-by-Step Migration Guide

Step 3: Creating a Replication Instance

For This Parameter Do This

time, you might consider running your migration server in
a Muti-AZ configuration.

Publicly accessible If either your source or your target database are outside
of the VPC where your replication instance is, you need
to make your replication instance publicly accessible.

4. In the Advanced section, set the following parameters, and then choose Next.

For This Option Do This

Allocated storage (GB) Storage is primarily consumed by log files and cached
transactions. For caches transactions, storage is
used only when the cached transactions need to be
written to disk. Therefore, AWS DMS doesn’t use a
significant amount of storage.Some exceptions include
the following:

• Very large tables that incur a significant transaction
load. Loading a large table can take some time, so
cached transactions are more likely to be written to
disk during a large table load.

• Tasks that are configured to pause prior to loading
cached transactions. In this case, all transactions are
cached until the full load completes for all tables. With
this configuration, a fair amount of storage might be
consumed by cached transactions.

• Tasks configured with tables being loaded into
Amazon Redshift. However, this configuration isn't an
issue when Aurora is the target.

In most cases, the default allocation of storage is
sufficient. However, it’s always a good idea to pay
attention to storage related metrics and scale up your
storage if you find you are consuming more than the
default allocation.

Replication Subnet Group If you run in a Multi-AZ configuration, you need at least
two subnet groups.

Availability Zone If possible, locate your primary replication server in the
same Availability Zone as your target database.

VPC Security group(s) With security groups you can control ingress and egress
to your VPC. With AWS DMS you can associate one
or more security groups with the VPC where your
replication server launches.

KMS master key With AWS DMS, all data is encrypted at rest using a
KMS encryption key. By default, AWS DMS creates a
new encryption key for your replication server. However,
you can use an existing key if desired.

API Version 2016-01-01
13

AWS Database Migration Service
Step-by-Step Migration Guide

Step 4: Create Your Oracle Source Endpoint

Step 4: Create Your Oracle Source Endpoint
While your replication instance is being created, you can specify the Oracle source endpoint using the
AWS Management Console. However, you can only test connectivity after the replication instance has
been created, because the replication instance is used to test the connection.

To specify source or target database endpoints using the AWS console

1. In the AWS DMS console, choose Endpoints on the navigation pane.

2. Choose Create endpoint. The Create database endpoint page appears, as shown following.

3. Specify your connection information for the source Oracle database. The following table describes
the source settings.

For This Parameter Do This

Endpoint type Choose Source.

Endpoint Identifier Type an identifier for your Oracle endpoint. The identifier
for your endpoint must be unique within an AWS Region.

Source Engine Choose oracle.

Server name If your database is on-premises, type an IP address
that AWS DMS can use to connect to your database
from the replication server. If your database is running

API Version 2016-01-01
14

AWS Database Migration Service
Step-by-Step Migration Guide

Step 4: Create Your Oracle Source Endpoint

For This Parameter Do This

on Amazon Elastic Compute Cloud (Amazon EC2) or
Amazon RDS, type the public Domain Name Service
(DNS) address.

Port Type the port which your database is listening for
connections (the Oracle default is 1521).

SSL mode Choose a Secure Sockets Layer (SSL) mode if you
want to enable connection encryption for this endpoint.
Depending on the mode you select, you might need to
provide certificate and server certificate information.

Username Type the AWS account user name. We recommend that
you create an AWS account specific to your migration.

Password Provide the password for the user name preceding.

4. Choose the Advanced tab to set values for extra connection strings and the encryption key.

For This Option Do This

Extra connection attributes Here you can add values for extra attributes that
control the behavior of your endpoint. A few of the most
relevant attributes are listed here. For the full list, see
the documentation. Separate multiple entries from each
other by using a semi-colon (;).

• addSupplementalLogging: AWS DMS will
automatically add supplemental logging if you enable
this option (addSupplementalLogging=Y).

• useLogminerReader: By default AWS DMS uses
Oracle LogMiner to capture change data from the
logs. AWS DMS can also parse the logs using its
proprietary technology. If you use Oracle 12c and
need to capture changes to tables that include LOBS,
set this to No (useLogminerReader=N).

• numberDataTypeScale: Oracle supports a NUMBER
data type that has no precision or scale. By default,
NUMBER is converted to a number with a precision of
38 and scale of 10, number(38,10). Valid values are 0
—38 or -1 for FLOAT.

• archivedLogDestId: This option specifies the
destination of the archived redo logs. The value
should be the same as the DEST_ID number in the
$archived_log table. When working with multiple log
destinations (DEST_ID), we recommend that you
specify a location identifier for archived redo logs.
Doing so improves performance by ensuring that the
correct logs are accessed from the outset. The default
value for this option is 0.

KMS master key Choose the encryption key to use to encrypt replication
storage and connection information. If you choose
(Default) aws/dms, the default AWS KMS key
associated with your account and region is used.

API Version 2016-01-01
15

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Create Your Aurora Target Endpoint

Before you save your endpoint, you can test it. To do so, select a VPC and replication instance from
which to perform the test. As part of the test AWS DMS refreshes the list of schemas associated with
the endpoint. (The schemas are presented as source options when creating a task using this source
endpoint.)

Step 5: Create Your Aurora Target Endpoint
Next, you can provide information for the target Amazon Aurora database by specifying the target
endpoint settings. The following table describes the target settings.

To specify a target database endpoints using the AWS Management Console

1. In the AWS DMS console, choose Endpoints on the navigation pane.

2. Choose Create endpoint. The Create database endpoint page appears, as shown following.

3. Specify your connection information for the target Aurora database. The following table describes
the target settings.

For This Parameter Do This

Endpoint type Choose Target.

Endpoint Identifier Type an identifier for your Aurora endpoint. The identifier
for your endpoint must be unique within an AWS Region.

Target Engine Choose aurora.

API Version 2016-01-01
16

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Create Your Aurora Target Endpoint

For This Parameter Do This

Servername Type the writer endpoint for your Aurora instance. The
writer endpoint is the primary instance.

Port Type the port assigned to the instance.

SSL mode Choose an SSL mode if you want to enable connection
encryption for this endpoint. Depending on the mode you
select, you might need to provide certificate and server
certificate information.

Username Type the user name for the account you are using for the
migration. We recommend that you create an account
specific to your migration.

Password Provide the password for the user name preceding.

4. Choose the Advanced tab to set values for extra connection strings and the encryption key if you
need them.

For This Option Do This

Extra connection attributes Here you can enter values for additional
attributes that control the behavior of your
endpoint. A few of the most relevant attributes
are listed here.For the full list, see the
documentation. Separate multiple entries from
each other by using a semi-colon (;).

• targetDbType: By default, AWS DMS
creates a different MySQL database for
each schema being migrated. Sometimes
you might want to combine objects from
several schemas into a single database. To
do so, set this option to specific_database
(targetDbType=SPECIFIC_DATABASE).

• initstmt: You use this option to invoke the
MySQL initstmt connection parameter and
accept anything mysql initstmt accepts.
When working with an Aurora target, it’s
often useful to disable foreign key checks.
To do so, use the initstmt parameter as
follows:

initstmt=SET FOREIGN_KEY_CHECKS=0

KMS master key Choose the encryption key to use to encrypt
replication storage and connection information.
If you choose (Default) aws/dms, the default
AWS KMS key associated with your account
and region is used.

API Version 2016-01-01
17

AWS Database Migration Service
Step-by-Step Migration Guide

Step 6: Create a Migration Task

Prior to saving your endpoint, you have an opportunity to test it. To do so you’ll need to select a VPC
and replication instance from which to perform the test.

Step 6: Create a Migration Task
When you create a migration task you tell AWS DMS exactly how you want your data migrated. Within
a task you define which tables you’d like migrated, where you’d like them migrated, and how you’d
like them migrated. If you’re planning to use the change capture and apply capability of AWS DMS it’s
important to know transactions are maintained within a single task. In other words, you should migrate
all tables that participate in a single transaction together in the same task.

Using an AWS DMS task, you can specify what schema to migrate and the type of migration. You can
migrate existing data, migrate existing data and replicate ongoing changes, or replicate data changes
only. This walkthrough migrates existing data only.

To create a migration task

1. On the navigation pane, choose Tasks.

2. Choose Create Task.

3. On the Create Task page, specify the task options. The following table describes the settings.

For This Option Do This

Task name It’s always a good idea to give your task a descriptive
name that helps organization.

Task description Type a description for the task.

Source endpoint Select your source endpoint.

Target endpoint Select your target endpoint.

Replication instance Select a replication instance on which to run the task.
Remember, your source and target endpoints must be
accessible from this instance.

Migration type You can use three different migration types with AWS
DMS.

• Migrate existing data:

If you select this option, AWS DMS migrates only
your existing data. Changes to your source data
aren't captured and applied to your target. If you
can afford taking an outage for the duration of the
full load, migrating with this option is simple and
straight forward. This method is also good to use when
creating test copies of your database.

• Migrate existing data and replicate ongoing
changes:

With this option, AWS DMS captures changes while
migrating your existing data. AWS DMS continues
to capture and apply changes even after the bulk
data has been loaded. Eventually the source and
target databases will be in sync, allowing for a minimal
downtime migration. To do this, take the following
steps:

• Shut the application down

API Version 2016-01-01
18

AWS Database Migration Service
Step-by-Step Migration Guide

Step 6: Create a Migration Task

For This Option Do This

• Let the final change flow through to the target

• Perform any administrative tasks such as enabling
foreign keys and triggers

• Start the application pointing to the new target
database

Note
AWS DMS loads the bulk data table-by-
table, <n> tables at a time. As the full load
progresses, AWS DMS begins applying
cached changes to the target tables as soon
as possible. During the bulk load, referential
integrity is violated, therefore existing foreign
keys must be disabled for the full load. Once
the full load is complete, your target database
has integrity and changes are applied as
transactions.

• Replicate data changes only:

In some cases you might choose to load bulk data
using a different method. This approach generally only
applies to homogeneous migrations.

Start task on create In most situations having the task start immediately is
fine. Sometimes you might want to delay the start of a
task, for instance, to change logging levels.

4. Next, set the Advanced settings as shown following.

For This Option Do This

Target table preparation mode AWS DMS allows you to specify how you would like your
target tables prepared prior to loading.

Do nothing - When you select this option, AWS DMS
does nothing to prepare your tables. Your table structure
remains as is and any existing data is left in the table.
You can use this method to consolidate data from
multiple systems.

Drop tables on target - Typically you use this option
when you want AWS DMS to create your target table for
you. When you select this option, AWS DMS drops and
recreates the tables to migrate before migration.

Truncate - Select this option if you want to pre-create
some or all of the tables on your target system, maybe
with the AWS Schema Conversion Tool. When you
select this option, AWS DMS truncates a target table
prior to loading it. If the target table doesn’t exist, AWS
DMS creates the table for you.

Include LOB columns in
replication

Large objects, (LOBs) can sometimes be difficult to
migrate between systems. AWS DMS offers a number
of options to help with the tuning of LOB columns. To
see which and when datatypes are considered LOBS by
AWS DMS, see the AWS DMS documentation.

API Version 2016-01-01
19

AWS Database Migration Service
Step-by-Step Migration Guide

Step 6: Create a Migration Task

For This Option Do This

Don't include LOB columns - When you migrate
data from one database to another, you might take
the opportunity to rethink how your LOBs are stored,
especially for heterogeneous migrations. If you want to
do so, there’s no need to migrate the LOB data.

Full LOB mode - In full LOB mode AWS DMS migrates
all LOBs from source to target regardless of size. In
this configuration, AWS DMS has no information about
the maximum size of LOBs to expect. Thus, LOBs are
migrated one at a time, piece by piece. Full LOB mode
can be quite slow.

Limited LOB mode - In limited LOB mode, you set
a maximum size LOB that AWS DMS should accept.
Doing so allows AWS DMS to pre-allocate memory
and load the LOB data in bulk. LOBs that exceed the
maximum LOB size are truncated and a warning is
issued to the log file. In limited LOB mode you get
significant performance gains over full LOB mode. We
recommend that you use limited LOB mode whenever
possible.

Note
With Oracle, LOBs are treated as VARCHAR
data types whenever possible. This approach
means AWS DMS fetches them from the
database in bulk, which is significantly faster
than other methods. The maximum size of a
VARCHAR in Oracle is 64K, therefore a limited
LOB size of less than 64K is optimal when
Oracle is your source database.

Max LOB size (K) When a task is configured to run in limited LOB mode,
this option determines the maximum size LOB that AWS
DMS accepts. Any LOBs that are larger than this value
will be truncated to this value.

LOB chunk size (K) When a task is configured to use full LOB mode, AWS
DMS retrieves LOBs in pieces. This option determines
the size of each piece. When setting this option, pay
particular attention to the maximum packet size allowed
by your network configuration. If the LOB chunk size
exceeds your maximum allowed packet size, you might
see disconnect errors.

Custom CDC start time This parameter pertains to tasks configured to replicate
data changes only. It tells AWS DMS where to start
looking for changes in the change stream.

Enable logging Always enable logging.

5. Set additional parameters.

API Version 2016-01-01
20

AWS Database Migration Service
Step-by-Step Migration Guide

Step 6: Create a Migration Task

For This Option Do This

Create control table(s) in target
schema

AWS DMS requires some control tables in the target
database. By default those tables are created in the
same database as your data. This parameter allows you
to tell AWS DMS to puts those artifacts somewhere else.

Maximum number of tables to load
in parallel

AWS DMS performs a table-by-table load of your data.
This parameter allows you to control how many tables
AWS DMS will load in parallel. The default is 8, which is
optimal in most situations.

6. Specify any table mapping settings.

Table mappings tell AWS DMS which tables a task should migrate from source to target.
Table mappings are expressed in JSON, though some settings can be made using the AWS
Management Console. Table mappings can also include transformations such as changing table
names from upper case to lower case.

AWS DMS generates default table mappings for each (non-system) schema in the source
database. In most cases you’ll want to customize your table mapping. To customize your table
mapping select the custom radio button. For details on creating table mappings see the AWS DMS
documentation. The following table mapping does these things:

• It includes the DMS_SAMPLE schema in the migration.

• It excludes the tables NFL_DATA, MLB_DATA, NAME_DATE, and STADIUM_DATA.

• It converts the schema, table, and column names to lower case.

{
 "rules": [
 {
 "rule-type": "selection",
 "rule-id": "1",
 "rule-name": "1",
 "object-locator": {
 "schema-name": "DMS_SAMPLE",
 "table-name": "%"
 },
 "rule-action": "include"
 },

 {
 "rule-type": "selection",
 "rule-id": "2",
 "rule-name": "2",
 "object-locator": {
 "schema-name": "DMS_SAMPLE",
 "table-name": "MLB_DATA"
 },
 "rule-action": "exclude"
 },
{
 "rule-type": "selection",
 "rule-id": "3",
 "rule-name": "3",
 "object-locator": {

API Version 2016-01-01
21

AWS Database Migration Service
Step-by-Step Migration Guide

Step 6: Create a Migration Task

 "schema-name": "DMS_SAMPLE",
 "table-name": "NAME_DATA"
 },
 "rule-action": "exclude"
 },

 {
 "rule-type": "selection",
 "rule-id": "4",
 "rule-name": "4",
 "object-locator": {
 "schema-name": "DMS_SAMPLE",
 "table-name": "NFL_DATA"
 },
 "rule-action": "exclude"
 },

 {
 "rule-type": "selection",
 "rule-id": "5",
 "rule-name": "5",
 "object-locator": {
 "schema-name": "DMS_SAMPLE",
 "table-name": "NFL_STADIUM_DATA"
 },
 "rule-action": "exclude"
 },{
 "rule-type": "transformation",
 "rule-id": "6",
 "rule-name": "6",
 "rule-action": "convert-lowercase",
 "rule-target": "schema",
 "object-locator": {
 "schema-name": "%"
 }
 },
 {
 "rule-type": "transformation",
 "rule-id": "7",
 "rule-name": "7",
 "rule-action": "convert-lowercase",
 "rule-target": "table",
 "object-locator": {
 "schema-name": "%",
 "table-name": "%"
 }
 },
 {
 "rule-type": "transformation",
 "rule-id": "8",
 "rule-name": "8",
 "rule-action": "convert-lowercase",
 "rule-target": "column",
 "object-locator": {
 "schema-name": "%",
 "table-name": "%",
 "column-name": "%"
 }
 }

API Version 2016-01-01
22

AWS Database Migration Service
Step-by-Step Migration Guide

Step 7: Monitor Your Migration Task

]
}

Step 7: Monitor Your Migration Task
Three sections in the console provide visibility into what your migration task is doing:

• Task monitoring – The Task Monitoring tab provides insight into your full load throughput and also
your change capture and apply latencies.

• Table statistics – The Table Statistics tab provides detailed information on the number of rows
processed, type and number of transactions processed, and also information on DDL operations.

• Logs – From the Logs tab you can view your task’s log file, (assuming you turned logging on.) If for
some reason your task fails, search this file for errors. Additionally, you can look in the file for any
warnings. Any data truncation in your task appears as a warning in the log file. If you need to, you
can increase the logging level by using the AWS Command Line Interface (CLI).

Troubleshooting
The two most common areas people have issues with when working with Oracle as a source and
Aurora as a target are: supplemental logging and case sensitivity.

• Supplemental logging – With Oracle, in order to replication change data supplemental logging must
be enabled. However, if you enable supplemental logging at the database level, it sometimes still
need to enable it when creating new tables. The best remedy for this is to allow DMS to enable
supplemental logging for you using the extra connection attribute:

addSupplementalLogging=Y

• Case sensitivity: Oracle is case-insensitive (unless you use quotes around your object names).
However, text appears in uppercase. Thus, AWS DMS defaults to naming your target objects in
uppercase. In most cases, you'll want to use transformations to change schema, table and column
names to lower case.

For more tips, see the AWS DMS troubleshooting section in the AWS DMS User Guide.

To troubleshoot issues specific to Oracle, see the Oracle troubleshooting section:

http://docs.aws.amazon.com/dms/latest/userguide/
CHAP_Troubleshooting.html#CHAP_Troubleshooting.Oracle

To troubleshoot Aurora and MySQL issues, see the MySQL troubleshooting section:

http://docs.aws.amazon.com/dms/latest/userguide/
CHAP_Troubleshooting.html#CHAP_Troubleshooting.MySQL

Working with the Sample Database for Migration
We recommend working through the preceding outline and guide by using the sample Oracle database
provided by Amazon. This database mimics a simple sporting event ticketing system. The scripts to

API Version 2016-01-01
23

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Troubleshooting.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Troubleshooting.html#CHAP_Troubleshooting.Oracle
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Troubleshooting.html#CHAP_Troubleshooting.Oracle
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Troubleshooting.html#CHAP_Troubleshooting.MySQL
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Troubleshooting.html#CHAP_Troubleshooting.MySQL

AWS Database Migration Service
Step-by-Step Migration Guide

Working with the Sample Database for Migration

generate the sample database are part of the .tar file located here: https://github.com/awslabs/aws-
database-migration-samples.

To build the sample database, extract the .tar file and follow the instructions in the README and install
files.

The sample includes approximately 8-10 GB of data. The sample database also includes the
ticketManagment package, which you can use to generate some transactions. To generate
transactions, log into SQL*Plus or SQL Developer and run the following as dms_sample:

SQL>exec ticketManagement.generateTicketActivity(0.01,1000);

The first parameter is the transaction delay in seconds, the second is the number of transactions to
generate. The procedure preceding simply “sells tickets” to people. You’ll see updates to the tables:
sporting_event_ticket, and ticket_purchase_history.

Once you’ve “sold” some tickets, you can transfer them using the command following:

SQL>exec ticketManagement.generateTransferActivity(1,100);

The first parameter is the transaction delay in seconds, the second is the number of transactions to
generate. This procedure also updates sporting_event_ticket and ticket_purchase_history.

API Version 2016-01-01
24

https://github.com/awslabs/aws-database-migration-samples
https://github.com/awslabs/aws-database-migration-samples

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating an Amazon RDS Oracle
Database to Amazon Aurora Using
AWS Database Migration Service

This walkthrough gets you started with heterogeneous database migration from Amazon RDS Oracle
to Amazon Aurora using AWS Database Migration Service and the AWS Schema Conversion Tool.
This is an introductory exercise so does not cover all scenarios but will provide you with a good
understanding of the steps involved in executing such a migration.

It is important to understand that AWS DMS and AWS SCT are two different tools and serve different
needs. They don’t interact with each other in the migration process. At a high level, the steps involved
in this migration are:

1. Using the AWS SCT to:

• Run the conversion report for Oracle to Aurora to identify the issues, limitations, and actions
required for the schema conversion.

• Generate the schema scripts and apply them on the target before performing the data load via
AWS DMS. AWS SCT will perform the necessary code conversion for objects like procedures and
views.

2. Identify and implement solutions to the issues reported by AWS SCT. For example, an object
type like Oracle Sequence that is not supported in the Amazon Aurora can be handled using the
auto_increment option to populate surrogate keys or develop logic for sequences at the application
layer.

3. Disable foreign keys or any other constraints which may impact the AWS DMS data load.

4. AWS DMS loads the data from source to target using the Full Load approach. Although AWS DMS
is capable of creating objects in the target as part of the load, it follows a minimalistic approach to
efficiently migrate the data so it doesn’t copy the entire schema structure from source to target.

5. Perform post-migration activities such as creating additional indexes, enabling foreign keys, and
making the necessary changes in the application to point to the new database.

This walkthrough uses a custom AWS CloudFormation template to create an Amazon RDS DB
instances for Oracle and Amazon Aurora. It then uses a SQL command script to install a sample
schema and data onto the Amazon RDS Oracle DB instance that you then migrate to Amazon Aurora.

This walkthrough takes approximately two hours to complete. The estimated cost to complete it, using
AWS resources, is about $5.00. Be sure to follow the instructions to delete resources at the end of this
walkthrough to avoid additional charges.

API Version 2016-01-01
25

AWS Database Migration Service
Step-by-Step Migration Guide

Costs

Topics

• Costs (p. 26)

• Prerequisites (p. 27)

• Migration Architecture (p. 28)

• Step-by-Step Migration (p. 29)

• Next Steps (p. 64)

• AWS CloudFormation Template, SQL Scripts, and Other Resources (p. 64)

• References (p. 65)

Costs
For this walkthrough, you provision Amazon Relational Database Service (Amazon RDS) resources
by using AWS CloudFormation and also AWS Database Migration Service (AWS DMS) resources.
Provisioning these resources will incur charges to your AWS account by the hour. The AWS Schema
Conversion Tool incurs no cost; it is provided as a part of AWS DMS.

Although you'll need only a minimum of resources for this walkthrough, some of these resources
are not eligible for AWS Free Tier. At the end of this walkthrough, you'll find a section in which you
delete the resources to avoid additional charges. Delete the resources as soon as you complete the
walkthrough.

To estimate what it will cost to run this walkthrough on AWS, you can use the AWS Simple Monthly
Calculator. However, the AWS DMS service is not incorporated into the calculator yet. The following
table shows both AWS DMS and Amazon RDS Oracle Standard Edition Two pricing.

AWS Service Instance Type Storage and I/O

Amazon RDS Oracle DB instance, License Included
(Standard Edition Two), Single AZ

db.m3.medium Single AZ, 10 GB
storage, GP2

Amazon RDS Aurora DB instance db.r3.large Single AZ, 10 GB
storage, 1 million
I/O

AWS DMS replication instance t2.small 50 GB of storage
for keeping
replication logs
included

AWS DMS data transfer Free—data
transfer between
AWS DMS and
databases in RDS
instances in the
same Availability
Zone is free

Data transfer out First 1 GB per
month free

Assuming you run this walkthrough for two hours, we estimate the following pricing for AWS resources:

• Amazon Aurora + 10 GB storage pricing estimated by using the AWS Simple Monthly Calculator is
$1.78.

API Version 2016-01-01
26

https://calculator.s3.amazonaws.com/index.html#r=PDX&s=RDS&key=calc-73CBE401-DF5A-42CE-8B96-E9AB5D3765EE

AWS Database Migration Service
Step-by-Step Migration Guide

Prerequisites

• Amazon RDS Oracle SE2 (license included) + 10 GB GP2 storage cost, estimated as per the pricing
site at ($0.226) * 2 hours + ($0.115) * 10 GB, is $1.602.

• AWS DMS service cost for the t2.small instance with 50 GB GP2 storage, estimated as per the
pricing site at ($0.036) * 2 hours, is $0.072.

Total estimated cost to run this project = $1.78 + $1.602 + $0.072 = $3.454—approximately $5.00.

This pricing is based on the following assumptions:

• We assume the total data transfer to the Internet is less than a gigabyte. The preceding pricing
estimate assumes that data transfer and backup charges associated with the RDS and DMS
services are within Free Tier limits.

• Storage consumed by the Aurora database is billed in per GB-month increments, and I/Os
consumed are billed in per-million request increments.

• Data transfer between DMS and databases in RDS instances in the same Availability Zone is free.

Prerequisites
The following prerequisites are also required to complete this walkthrough:

• Familiarity with Amazon RDS, the applicable database technologies, and SQL.

• The custom scripts that include creating the tables to be migrated and SQL queries for confirming
the migration. The scripts and queries are available at the following links. Each step in the
walkthrough also contains a link to download the file or includes the exact query in the step.

• SQL statements to build the HR schema— https://dms-sbs.s3.amazonaws.com/Oracle-HR-
Schema-Build.sql.

• SQL queries to validate the schema contents — (text) https://dms-sbs.s3.amazonaws.com/
AWSDMSDemoStats.txt and (spreadsheet) https://dms-sbs.s3.amazonaws.com/
AWSDMSDemoStats.xlsx.

• AWS CloudFormation template — https://dms-sbs.s3.amazonaws.com/
Oracle_Aurora_RDS_For_DMSDemo.template.

• An AWS account with AWS Identity and Access Management (IAM) credentials that allow you to
launch Amazon Relational Database Service (Amazon RDS) and AWS Database Migration Service
(AWS DMS) instances in your AWS Region. For information about IAM credentials, see Creating an
IAM User.

• Basic knowledge of the Amazon Virtual Private Cloud (Amazon VPC) service and of security groups.
For information about using Amazon VPC with Amazon RDS, see Virtual Private Clouds (VPCs)
and Amazon RDS. For information about Amazon RDS security groups, see Amazon RDS Security
Groups.

• An understanding of the supported features and limitations of AWS DMS. For information about
AWS DMS, see What Is AWS Database Migration Service? .

• Knowledge of the supported data type conversion options for Oracle and Amazon Aurora. For
information about data types for Oracle as a source, see Using an Oracle Database as a Source for
AWS Database Migration Service . For information about data types for Amazon Aurora as a target,
see Using a MySQL-Compatible Database as a Target for AWS Database Migration Service .

For more information on AWS DMS, see the AWS DMS documentation.

API Version 2016-01-01
27

https://aws.amazon.com/rds/oracle/pricing/
https://aws.amazon.com/rds/oracle/pricing/
https://aws.amazon.com/dms/pricing/
https://dms-sbs.s3.amazonaws.com/Oracle-HR-Schema-Build.sql
https://dms-sbs.s3.amazonaws.com/Oracle-HR-Schema-Build.sql
https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.txt
https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.txt
https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.xlsx
https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.xlsx
https://dms-sbs.s3.amazonaws.com/Oracle_Aurora_RDS_For_DMSDemo.template
https://dms-sbs.s3.amazonaws.com/Oracle_Aurora_RDS_For_DMSDemo.template
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SettingUp.html#CHAP_SettingUp.IAM
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SettingUp.html#CHAP_SettingUp.IAM
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.Oracle.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.Oracle.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_GettingStarted.html

AWS Database Migration Service
Step-by-Step Migration Guide

Migration Architecture

Migration Architecture
This walkthrough uses AWS CloudFormation to create a simple network topology for database
migration that includes the source database, the replication instance, and the target database in the
same VPC. For more information on AWS CloudFormation, see the CloudFormation documentation.

We will provision the AWS resources that are required for this AWS Database Migration Service (AWS
DMS) walkthrough through AWS CloudFormation. These resources include a VPC and Amazon
Relational Database Service (Amazon RDS) instances for Oracle and Amazon Aurora. We provision
through AWS CloudFormation because it simplifies the process, so we can concentrate on tasks
related to data migration. When you create a stack from the AWS CloudFormation template, it
provisions the following resources:

• A VPC with CIDR (10.0.0.0/24) with two public subnets in your region, DBSubnet1 at the address
10.0.0.0/26 in Availability Zone (AZ) 1 and DBSubnet2 at the address 10.0.0.64/26, in AZ 12.

• A DB subnet group that includes DBSubnet1 and DBSubnet2.

• Oracle RDS Standard Edition Two with these deployment options:

• License Included

• Single-AZ setup

• db.m3.medium or equivalent instance class

• Port 1521

• Default option and parameter groups

• Aurora RDS instance with these deployment options:

• No replicas

• db.r3.large or equivalent instance class

• Port 3306

• Default option and parameter groups

• A security group with ingress access from your computer or 0.0.0.0/0 (access from anywhere) based
on the input parameter

We have designed the CloudFormation template to require few inputs from the user. It provisions
the necessary AWS resources with minimum recommended configurations. However, if you want to
change some of the configurations and parameters, such as the VPC CIDR block and Amazon RDS
instance types, feel free to update the template.

We will use the AWS Management Console to provision the AWS DMS resources, such as the
replication instance, endpoints, and tasks. You will install client tools such as SQL Workbench/J and
the AWS Schema Conversion Tool (AWS SCT) on your local computer to connect to the Amazon RDS
instances.

Following is an illustration of the migration architecture for this walkthrough.

API Version 2016-01-01
28

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

AWS Database Migration Service
Step-by-Step Migration Guide

Step-by-Step Migration

Step-by-Step Migration
In the following sections, you can find step-by-step instructions for migrating an Amazon Relational
Database Service (Amazon RDS) Oracle database to Amazon Aurora. These steps assume that you
have already prepared your source database as described in preceding sections.

Topics

• Step 1: Launch the RDS Instances in a VPC by Using the CloudFormation Template (p. 29)

• Step 2: Install the SQL Tools and AWS Schema Conversion Tool on Your Local
Computer (p. 34)

• Step 3: Test Connectivity to the Oracle DB Instance and Create the Sample Schema (p. 36)

• Step 4: Test the Connectivity to the Aurora DB Instance (p. 40)

• Step 5: Use the AWS Schema Conversion Tool (AWS SCT) to Convert the Oracle Schema to
Aurora (p. 42)

• Step 6: Validate the Schema Conversion (p. 51)

• Step 7: Create a AWS DMS Replication Instance (p. 55)

• Step 8: Create AWS DMS Source and Target Endpoints (p. 55)

• Step 9: Create and Run Your AWS DMS Migration Task (p. 58)

• Step 10: Verify That Your Data Migration Completed Successfully (p. 61)

• Step 11: Delete Walkthrough Resources (p. 63)

Step 1: Launch the RDS Instances in a VPC by
Using the CloudFormation Template
First, you need to provision the necessary AWS resources for this walkthrough.

API Version 2016-01-01
29

AWS Database Migration Service
Step-by-Step Migration Guide

Step 1: Launch the RDS Instances in a VPC
by Using the CloudFormation Template

To use AWS CloudFormation to create Amazon RDS resources for this walkthrough

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
console.aws.amazon.com/cloudformation/.

2. Choose Create stack.

3. On the Select Template page, choose Specify an Amazon S3 template URL and paste the
following URL into the adjacent text box:

https://dms-sbs.s3.amazonaws.com/Oracle_Aurora_RDS_For_DMSDemo.template.

4. Choose Next. On the Specify Details page, provide parameter values as shown following.

For This Parameter Do This

Stack Name Type DMSdemo.

OracleDBName Provide any unique name for your database. The name
should begin with a letter. The default is ORCL.

OracleDBUsername Specify the admin (DBA) user for managing the Oracle
instance. The default is oraadmin.

OracleDBPassword Provide the password for the admin user.

AuroraDBUsername Specify the admin (DBA) user for managing the Aurora
instance. The default is auradmin.

API Version 2016-01-01
30

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

AWS Database Migration Service
Step-by-Step Migration Guide

Step 1: Launch the RDS Instances in a VPC
by Using the CloudFormation Template

For This Parameter Do This

AuroraDBPassword Provide the password for the admin user.

ClientIP Specify the IP address in CIDR (x.x.x.x/32) format for
your local computer. You can get your IP address from
whatsmyip.org. Your RDS instances' security group will
allow ingress to this IP address. The default is access
from anywhere (0.0.0.0/0), which is not recommended;
you should use your IP address for this walkthrough.

5. Choose Next. On the Options page, shown following, choose Next.

API Version 2016-01-01
31

AWS Database Migration Service
Step-by-Step Migration Guide

Step 1: Launch the RDS Instances in a VPC
by Using the CloudFormation Template

6. On the Review page, review the details, and if they are correct choose Create Stack. You can get
the estimated cost of running this CloudFormation template by choosing Cost.

7. AWS can take about 20 minutes or more to create the stack with Amazon RDS Oracle and
Amazon Aurora instances.

API Version 2016-01-01
32

AWS Database Migration Service
Step-by-Step Migration Guide

Step 1: Launch the RDS Instances in a VPC
by Using the CloudFormation Template

8. After the stack is created, choose Stack, select the DMSdemo stack, and then choose
Outputs. Record the JDBC connection strings, OracleJDBCConnectionString and
AuroraJDBCConnectionString, for use later in this walkthrough to connect to the Oracle and
Aurora DB instances.

API Version 2016-01-01
33

AWS Database Migration Service
Step-by-Step Migration Guide

Step 2: Install the SQL Tools and AWS Schema
Conversion Tool on Your Local Computer

Note
Oracle 12c SE Two License version 12.1.0.2.v4 is available in all regions. However, Amazon
Aurora is not available in all regions. Amazon Aurora is currently available in US East (N.
Virginia), US West (Oregon), EU (Ireland), Asia Pacific (Tokyo), Asia Pacific (Mumbai), Asia
Pacific (Sydney), and Asia Pacific (Seoul). If you try to create a stack in a region where Aurora
is not available, creation fails with the error Invalid DB Engine for AuroraCluster.

Step 2: Install the SQL Tools and AWS Schema
Conversion Tool on Your Local Computer
Next, you need to install a SQL client and the AWS Schema Conversion Tool (AWS SCT) on your local
computer.

This walkthrough assumes you will use the SQL Workbench/J client to connect to the RDS instances
for migration validation. A few other software tools you might want to consider are the following:

• JACK DB, an online web interface to work with RDS databases (Oracle and Aurora) over JDBC

• DBVisualizer

• Oracle SQL Developer

To install the SQL client software

1. Download SQL Workbench/J from the SQL Workbench/J website, and then install it on your local
computer. This SQL client is free, open-source, and DBMS-independent.

API Version 2016-01-01
34

https://www.jackdb.com/
https://www.dbvis.com/download/
https://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index-097090.html
https://www.sql-workbench.net/downloads.html

AWS Database Migration Service
Step-by-Step Migration Guide

Step 2: Install the SQL Tools and AWS Schema
Conversion Tool on Your Local Computer

2. Download the Oracle Database 12.1.0.2 JDBC driver (ojdbc7.jar).

3. Download the MySQL driver (mysql-connector-java-5.1.39-bin.jar).

4. Using SQL Workbench/J, configure JDBC drivers for Oracle and Aurora to set up connectivity, as
described following.

1. In SQL Workbench/J, choose File, then choose Manage Drivers.

2. From the list of drivers, choose Oracle.

3. Choose the Open icon, then choose the ojdbc.jar file that you downloaded in the previous
step. Choose OK.

4. From the list of drivers, choose MySQL.

5. Choose the Open icon, then choose the MySQL JDBC driver that you downloaded in the
previous step. Choose OK.

Next, install the AWS Schema Migration Tool and the required JDBC drivers.

API Version 2016-01-01
35

https://dms-sbs.s3.amazonaws.com/ojdbc7.jar
https://dms-sbs.s3.amazonaws.com/mysql-connector-java-5.1.39-bin.jar

AWS Database Migration Service
Step-by-Step Migration Guide

Step 3: Test Connectivity to the Oracle DB
Instance and Create the Sample Schema

To install the AWS Schema Migration Tool and JDBC drivers

1. Download the AWS Schema Conversion Tool from Installing and Updating the AWS Schema
Conversion Tool in the AWS Schema Conversion Tool User Guide. By default, the tool is installed
in the "C:\Program Files\AWS Schema Conversion Tool\AWS directory.

2. Launch the AWS Schema Conversion Tool.

3. In the AWS Schema Conversion Tool, choose Global Settings from Settings.

4. In Global Settings, choose Driver, and then choose Browse for Oracle Driver Path. Locate the
JDBC Oracle driver and choose OK. Next, choose Browse for MySql Driver Path. Locate the
JDBC MySQL driver and choose OK. Choose OK to close the dialog box.

Step 3: Test Connectivity to the Oracle DB Instance
and Create the Sample Schema
After the CloudFormation stack has been created, test the connection to the Oracle DB instance by
using SQL Workbench/J and then create the HR sample schema.

To test the connection to your Oracle DB instance using SQL Workbench/J and create
the sample schema

1. In SQL Workbench/J, choose File, then choose Connect window. Create a new connection
profile using the following information as shown following

For This Parameter Do This

New profile name Type RDSOracleConnection.

Driver Choose Oracle (oracle.jdbc.OracleDriver).

API Version 2016-01-01
36

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html

AWS Database Migration Service
Step-by-Step Migration Guide

Step 3: Test Connectivity to the Oracle DB
Instance and Create the Sample Schema

For This Parameter Do This

URL Use the OracleJDBCConnectionString value you
recorded when you examined the output details of the
DMSdemo stack in a previous step.

Username Type oraadmin.

Password Provide the password for the admin user that you
assigned when creating the Oracle DB instance using
the AWS CloudFormation template.

2. Test the connection by choosing Test. Choose OK to close the dialog box, then choose OK to
create the connection profile.

Note
If your connection is unsuccessful, ensure that the IP address you assigned when
creating the CloudFormation template is the one you are attempting to connect from. This
is the most common issue when trying to connect to an instance.

3. Create the HR schema you will use for migration using a custom script. The SQL script provided
by AWS is located at this site.

1. Open the provided SQL script in a text editor. Copy the entire script.

2. In SQL Workbench/J, paste the SQL script in the Default.wksp window showing Statement 1.

3. Choose SQL, then choose Execute All.

When you run the script, you will get an error message indicating that user HR does not
exists. You can ignore this error and run the script. The script drops the user before creating
it,which generates the error.

API Version 2016-01-01
37

https://dms-sbs.s3.amazonaws.com/Oracle-HR-Schema-Build.sql

AWS Database Migration Service
Step-by-Step Migration Guide

Step 3: Test Connectivity to the Oracle DB
Instance and Create the Sample Schema

4. Verify the object types and count in HR Schema were created successfully by running the
following SQL query. You can also compare the results from the following queries with the results
listed in the spreadsheet provided by AWS at this site.

Select OBJECT_TYPE, COUNT(*) from dba_OBJECTS where owner='HR'
GROUP BY OBJECT_TYPE;

The results of this query should be similar to the following:

OBJECT_TYPE COUNT(*)
 INDEX 7
 PROCEDURE 2
 SEQUENCE 3
 TABLE 7
 VIEW 1

API Version 2016-01-01
38

https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.xlsx

AWS Database Migration Service
Step-by-Step Migration Guide

Step 3: Test Connectivity to the Oracle DB
Instance and Create the Sample Schema

5. Verify the number of constraints in HR schema by running the following SQL query:

Select CONSTRAINT_TYPE,COUNT(*) from dba_constraints where owner='HR'

 AND (CONSTRAINT_TYPE IN ('P','R')OR SEARCH_CONDITION_VC NOT LIKE '%NOT
 NULL%')
 GROUP BY CONSTRAINT_TYPE;

The results of this query should be similar to the following:

CONSTRAINT_TYPE COUNT(*)
 R 10
 P 7
 C 2

6. Verify the total number of tables and number of rows for each table by running the following SQL
query:

Select table_name, num_rows from dba_tables where owner='HR' order by 1;

The results of this query should be similar to the following:

TABLE_NAME NUM_ROWS
 COUNTRIES 25
 DEPARTMENTS 27
 EMPLOYEES 107
 JOBS 19
 JOB_HISTORY 10
 LOCATIONS 23
 REGIONS 4

API Version 2016-01-01
39

AWS Database Migration Service
Step-by-Step Migration Guide

Step 4: Test the Connectivity to the Aurora DB Instance

7. Verify the relationship in tables. Check the departments with employees greater than 10 by
running the following SQL query:

Select b.department_name,count(*) from HR.Employees a,HR.departments b
 where a.department_id=b.department_id
group by b.department_name having count(*) > 10
order by 1;

The results of this query should be similar to the following:

DEPARTMENT_NAME COUNT(*)
Sales 34
Shipping 45

Step 4: Test the Connectivity to the Aurora DB
Instance
Next, test your connection to your Aurora DB instance.

To test the connection to your Aurora DB instance using SQL Workbench/J

1. In SQL Workbench/J, choose File, then choose Connect window. Choose the Create a new
connection profile icon. using the following information: Connect to the Aurora DB instance in SQL
Workbench/J by using the information as shown following

For This Parameter Do This

New profile name Type RDSAuroraConnection.

Driver Choose MySQL (com.mysql.jdbc.Driver).

URL Use the AuroraJDBCConnectionString value you
recorded when you examined the output details of the
DMSdemo stack in a previous step.

Username Type auradmin.

Password Provide the password for the admin user that you
assigned when creating the Aurora DB instance using
the AWS CloudFormation template.

2. Test the connection by choosing Test. Choose OK to close the dialog box, then choose OK to
create the connection profile.

API Version 2016-01-01
40

AWS Database Migration Service
Step-by-Step Migration Guide

Step 4: Test the Connectivity to the Aurora DB Instance

Note
If your connection is unsuccessful, ensure that the IP address you assigned when
creating the CloudFormation template is the one you are attempting to connect from. This
is the most common issue when trying to connect to an instance.

3. Log on to the Aurora instance by using the master admin credentials.

4. Verify your connectivity to the Aurora DB instance by running a sample SQL command, such as
SHOW DATABASES;.

API Version 2016-01-01
41

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to Aurora

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to
Aurora
Before you migrate data to Aurora, you convert the Oracle schema to an Aurora schema as described
following.

To convert an Oracle schema to an Aurora schema using AWS Schema Conversion
Tool (AWS SCT)

1. Launch the AWS Schema Conversion Tool (AWS SCT). In the AWS SCT, choose File, then
choose New Project. Create a new project called DMSDemoProject. Enter the following
information in the New Project window and then choose OK.

For This Parameter Do This

Project Name Type DMSDemoProject.

Location Use the default Projects folder and the default
Transactional Database (OLTP) option.

Source Database Engine Choose Oracle.

Target Database Engine Choose Amazon Aurora.

2. Choose Connect to Oracle. In the Connect to Oracle dialog box, enter the following information,
and then choose Test Connection.

API Version 2016-01-01
42

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to Aurora

For This Parameter Do This

Type Choose SID.

Server name Use the OracleJDBCConnectionString value you
used to connect to the Oracle DB instance, but remove
the JDBC prefix information. For example, a sample
connection string you use with SQL Workbench/J might
be "jdbc:oracle:thin:@do1xa4grferti8y.cqiw4tcs0mg7.us-
west-2.rds.amazonaws.com:1521:ORCL".
For the AWS SCT Server name, you remove
"jdbc:oracle:thin:@" and use just the server
name: "do1xa4grferti8y.cqiw4tcs0mg7.us-
west-2.rds.amazonaws.com"

Server port Type 1521.

Oracle SID Type ORCL.

User name Type oraadmin.

Password Provide the password for the admin user that you
assigned when creating the Oracle DB instance using
the AWS CloudFormation template.

3. Choose OK to close the alert box, then choose OK to close the dialog box and to start the
connection to the Oracle DB instance. The database structure on the Oracle DB instance is
shown. Select only the HR schema.

API Version 2016-01-01
43

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to Aurora

4. Choose Connect to Amazon Aurora. In the Connect to Amazon Aurora dialog box, enter the
following information and then choose Test Connection.

For This Parameter Do This

Type Choose SID.

Server name Use the AuroraJDBCConnectionString value you
used to connect to the Aurora DB instance, but remove
the JDBC prefix information and the port suffix. For
example, a sample connection string you use with
SQL Workbench/J might be "jdbc:mysql://dmsdemo-
auroracluster-1u1ogdfg35v.cluster-cqiw4tcs0mg7.us-
west-2.rds.amazonaws.com:3306". For the AWS
SCT Server name, you remove "jdbc:oracle:thin:@"
and ":3306" to use just the server name: "dmsdemo-
auroracluster-1u1ogdfg35v.cluster-cqiw4tcs0mg7.us-
west-2.rds.amazonaws.com"

Server port Type 3306.

User name Type auradmin.

Password Provide the password for the admin user that you
assigned when creating the Oracle DB instance using
the AWS CloudFormation template.

API Version 2016-01-01
44

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to Aurora

AWS SCT analyses the HR schema and creates a database migration assessment report for the
conversion to Amazon Aurora.

5. Choose OK to close the alert box, then choose OK to close the dialog box to start the connection
to the Amazon Aurora DB instance.

6. Right-click the HR schema and select Create Report.

API Version 2016-01-01
45

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to Aurora

7. Check the report and the action items it suggests. The report discusses the type of objects that
can be converted by using AWS SCT, along with potential migration issues and actions to resolve
these issues. For this walkthrough, you should see something like the following.

8. Save the report as .csv or .pdf format for detailed analysis, and then choose the Action Items tab.
In the action items, you will see two issues: 1. MySQL does not support Check constraints and 2.
MySQL does not support Sequences.

Regarding action item #1, SCT automatically provisions triggers to simulate check constraints
in Aurora database (Emulating triggers). For example, a check constraint for SAL > 0 in the
EMPLOYEES table (in Oracle) is enforced with the help of before and update trigger statements
in Aurora. If you would like to have this logic handled at the application layer, then you can drop or
update the triggers if required.

Regarding action item #2, there are three sequence objects in the source database that are
used to generate primary keys for the EMPLOYEES (EMPLOYEE_ID), DEPARTMENTS
(DEPARTMENT_ID), LOCATIONS (LOCATION_ID) tables. As mentioned earlier in this
walkthrough, one alternative to using sequences for Surrogate keys in Aurora is using the
auto_increment feature. To enable the auto_increment feature, you must change the settings
for SCT. For brevity, the following substeps show enabling auto_increment for EMPLOYEE_ID
column in the EMPLOYEES table only. The same procedure can be repeated for the other
sequence objects.

Before starting, please note enabling the auto_increment option requires some additional steps via
SCT due to the below reasons:

• SCT by default converts all NUMBER (Oracle) data types into DECIMAL in
Aurora (http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/
CHAP_SchemaConversionTool.Reference.ConversionSupport.Oracle.html#d0e50104).

API Version 2016-01-01
46

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Reference.ConversionSupport.Oracle.html#d0e50104
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Reference.ConversionSupport.Oracle.html#d0e50104

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to Aurora

• Aurora doesn’t support auto_increment for the DECIMAL data type. Therefore, the data type
of the primary key column and corresponding foreign key columns needs to be changed to one
of the INTEGER data types such as INT, SMALLINT, MEDIUMINT or BIGINT as part of the
schema conversion.

The good news is that the latest release of SCT provides a Mapping Rules feature that can be
used to achieve the above transformation using the following steps:

1. For the EMPLOYEES table, you must identify the primary key and foreign key relationships by
running the following query on the source Oracle database. Note the columns that need to be
specified in the SCT Mapping rules.

SELECT * FROM
(SELECT
 PK.TABLE_NAME,
 C.COLUMN_NAME,
 PK.CONSTRAINT_TYPE
 FROM DBA_CONSTRAINTS PK,
 DBA_CONS_COLUMNS C
 WHERE PK.CONSTRAINT_NAME = C.CONSTRAINT_NAME
 AND PK.OWNER = 'HR' AND PK.TABLE_NAME = 'EMPLOYEES' AND
 PK.CONSTRAINT_TYPE = 'P'
UNION
 SELECT
 FK.TABLE_NAME,
 COL.COLUMN_NAME,
 FK.CONSTRAINT_TYPE
 FROM DBA_CONSTRAINTS PK,
 DBA_CONSTRAINTS FK,
 DBA_CONS_COLUMNS COL
 WHERE PK.CONSTRAINT_NAME = FK.R_CONSTRAINT_NAME
 AND FK.CONSTRAINT_TYPE = 'R'
 AND FK.CONSTRAINT_NAME = COL.CONSTRAINT_NAME
 AND PK.OWNER = 'HR' AND PK.TABLE_NAME = 'EMPLOYEES' AND
 PK.CONSTRAINT_TYPE = 'P')
 ORDER BY 3 ASC;

The results of the query should be similar to the following:

TABLE_NAME COLUMN_NAME CONSTRAINT_TYPE
EMPLOYEES EMPLOYEE_ID P
JOB_HISTORY EMPLOYEE_ID R
EMPLOYEES MANAGER_ID R
DEPARTMENTS MANAGER_ID R

2. Choose Settings, and then choose Mapping Rules.

3. Specify the Mapping rule for Data type conversions for the list of identified columns in Step1.
You will need to specify 4 rules, one for each column as described below.

For this Parameter Rule1 Rule2 Rule3 Rule4

Name EMP_SEQ1 EMP_SEQ2 JOB_SEQ1 DEPT_SEQ1

For Select
Column

Select
Column

Select
Column

Select
Column

API Version 2016-01-01
47

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to Aurora

For this Parameter Rule1 Rule2 Rule3 Rule4

Where

(Schema Name) And (Table
Name) And (Column Name)

HR

EMPLOYEES

EMPLOYEE_ID

HR

EMPLOYEES

MANAGER_ID

HR

JOB_HISTORY

EMPLOYEE_ID

HR

DEPARTMENTS

MANAGER_ID

Actions Select
Change data
type

Select
Change
data type

Select
Change data
type

Select
Change data
type

To SMALLINT SMALLINT SMALLINT SMALLINT

Note that in a real-world scenario you would choose the data type based on your
requirements.

4. Choose Yes for “Would you like to save Mapping Rule settings?”

9. Right-click the HR schema, and then choose Convert schema.

API Version 2016-01-01
48

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to Aurora

10. Choose Yes for the confirmation message. AWS SCT then converts your schema to the target
database format.

API Version 2016-01-01
49

AWS Database Migration Service
Step-by-Step Migration Guide

Step 5: Use the AWS Schema Conversion Tool
(AWS SCT) to Convert the Oracle Schema to Aurora

11. Choose the HR schema, and then choose Apply to database to apply the schema scripts to the
target Aurora instance, as shown following.

12. Choose the HR schema, and then choose Refresh from Database to refresh from the target
database, as shown following.

API Version 2016-01-01
50

AWS Database Migration Service
Step-by-Step Migration Guide

Step 6: Validate the Schema Conversion

The database schema has now been converted and imported from source to target.

Step 6: Validate the Schema Conversion
To validate the schema conversion, you compare the objects found in the Oracle and Aurora
databases using SQL Workbench/J.

To validate the schema conversion using SQL Workbench/J

1. In SQL Workbench/J, choose File, then choose Connect window. Choose the
RDSAuroraConnection you created in an earlier step. Click OK.

2. Run the following script to verify the number of object types and count in HR schema in the
target Aurora database. These values should match the number of objects in the source Oracle
database:

SELECT a.OBJECT_TYPE, COUNT(*)
FROM
(
SELECT OBJECT_TYPE
,OBJECT_SCHEMA
,OBJECT_NAME
FROM (
SELECT 'TABLE' AS OBJECT_TYPE

API Version 2016-01-01
51

AWS Database Migration Service
Step-by-Step Migration Guide

Step 6: Validate the Schema Conversion

,TABLE_NAME AS OBJECT_NAME
,TABLE_SCHEMA AS OBJECT_SCHEMA
FROM information_schema.TABLES
where TABLE_TYPE='BASE TABLE'
UNION
SELECT 'VIEW' AS OBJECT_TYPE
,TABLE_NAME AS OBJECT_NAME
,TABLE_SCHEMA AS OBJECT_SCHEMA
FROM information_schema.VIEWS
UNION

SELECT 'INDEX' AS OBJECT_TYPE
,CONCAT (
CONSTRAINT_TYPE
,' : '
,CONSTRAINT_NAME
,' : '
,TABLE_NAME
) AS OBJECT_NAME
,TABLE_SCHEMA AS OBJECT_SCHEMA
FROM information_schema.TABLE_CONSTRAINTS
where constraint_type='PRIMARY KEY'
UNION
SELECT ROUTINE_TYPE AS OBJECT_TYPE
,ROUTINE_NAME AS OBJECT_NAME
,ROUTINE_SCHEMA AS OBJECT_SCHEMA
FROM information_schema.ROUTINES
UNION
SELECT 'TRIGGER' AS OBJECT_TYPE
,CONCAT (
TRIGGER_NAME
,' : '
,EVENT_OBJECT_SCHEMA
,' : '
,EVENT_OBJECT_TABLE
) AS OBJECT_NAME
,TRIGGER_SCHEMA AS OBJECT_SCHEMA
FROM information_schema.triggers
) R
WHERE R.OBJECT_SCHEMA ='HR'
order by 1) a
GROUP BY a.OBJECT_TYPE;

The output from this query should be similar to the following:

OBJECT_TYPE COUNT(*)
 INDEX 7
 PROCEDURE 2
 TABLE 7
 TRIGGER 4
 VIEW 1

Next, run the following query to get table constraints information:

API Version 2016-01-01
52

AWS Database Migration Service
Step-by-Step Migration Guide

Step 6: Validate the Schema Conversion

SELECT CONSTRAINT_TYPE,COUNT(*)
FROM information_schema.TABLE_CONSTRAINTS where constraint_schema='HR'
GROUP BY CONSTRAINT_TYPE;

The output from this query should be similar to the following:

CONSTRAINT_TYPE COUNT(*)
 FOREIGN KEY 10
 PRIMARY KEY 7

3. Do the following steps to enable the auto_increment option on the EMPLOYEES table to emulate
the sequence functionality of the source Oracle database.

1. Verify that the mapping rules for data type conversion were executed properly for
EMPLOYEES and its dependent tables by running the following query on the target Aurora
database.

SELECT
kcu.constraint_name,
kcu.column_name,
col.data_type,
kcu.table_schema,
kcu.table_name,
kcu.referenced_column_name
FROM
information_schema.key_column_usage kcu,
information_schema.table_constraints tc,
information_schema.columns col
WHERE kcu.referenced_table_schema = 'HR'
AND kcu.referenced_table_name = 'EMPLOYEES'
AND kcu.referenced_table_name=tc.table_name
AND kcu.referenced_table_schema=tc.table_schema
AND tc.constraint_type='PRIMARY KEY'
AND col.column_name=kcu.column_name
and col.table_name=kcu.table_name
ORDER BY kcu.table_name,kcu.column_name;

The results of the query should be the following:

constraint_name column_name data_type table_schema table_name
 referenced_column_name
DEPT_MGR_FK MANAGER_ID Smallint HR DEPARTMENTS EMPLOYEE_ID
EMP_MANAGER_FK MANAGER_ID Smallint HR EMPLOYEES EMPLOYEE_ID
JHIST_EMP_FK EMPLOYEE_ID Smallint HR JOB_HISTORY EMPLOYEE_ID

2. Disable foreign key checks for the EMPLOYEES table by running the following command.
This step is required before you can alter the primary key column. You can ignore the warning
messages.

API Version 2016-01-01
53

AWS Database Migration Service
Step-by-Step Migration Guide

Step 6: Validate the Schema Conversion

SET FOREIGN_KEY_CHECKS=0;

3. Modify the primary key column to enable the auto_increment option by running the following
command:

Alter table HR.EMPLOYEES modify column employee_id smallint
 auto_increment;

4. Verify the column details by running the following query:

SELECT column_name, column_type,column_key,extra
from information_schema.columns
where table_name = 'EMPLOYEES' AND COLUMN_NAME='EMPLOYEE_ID';

The results of the query should be the following:

column_name column_type column_key extra
employee_id smallint(6) PRI auto_increment

4. The following table shows the expected numbers of objects and whether they were migrated by
AWS SCT.

Parameter # on
Oracle

on
Amazon
Aurora

Migrated
by AWS
SCT

SCT Recommendation

INDEX 7 7 Yes

PROCEDURE 2 2 Yes

SEQUENCE 3 3 Yes, using
mapping
rules

Sequence functionality
is implemented using the
auto_increment feature of
Aurora.

TABLE 7 7 Yes

VIEW 1 1 Yes

Primary key 10 10 Yes

Foreign key 7 7 Yes

Check constraints 2 4 (triggers) Code
conversion

Check constraints are
not supported in Aurora.
AWS SCT creates triggers
before insert or update
statements to mimic
check constraints in the
tables that had these
constraints.

5. Validate the results as mentioned in the spreadsheet provided by AWS on this site or the text
document provided by AWS on this site.

API Version 2016-01-01
54

https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.xlsx
https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.txt

AWS Database Migration Service
Step-by-Step Migration Guide

Step 7: Create a AWS DMS Replication Instance

Step 7: Create a AWS DMS Replication Instance
After we validate the schema structure between source and target databases, as described preceding,
we proceed to the core part of this walkthrough, which is the data migration. The following illustration
shows a high-level view of the migration process.

A DMS replication instance performs the actual data migration between source and target. The
replication instance also caches the transaction logs during the migration. How much CPU and
memory capacity a replication instance has influences the overall time required for the migration.

To create an AWS DMS replication instance

1. Sign in to the AWS Management Console, and open the AWS DMS console at https://
console.aws.amazon.com/dms/ and choose Create Migration. If you are signed in as an AWS
Identity and Access Management (IAM) user, you must have the appropriate permissions to
access AWS DMS. For more information on the permissions required, see IAM Permissions
Needed to Use AWS DMS.

2. Choose Next to start a database migration from the console's Welcome page.

3. On the Create replication instance page, specify your replication instance information as shown
following.

For This Parameter Do This

Name Type DMSdemo-repserver.

Description Type a brief description, such as DMS demo
replication server.

Instance class Choose dms.t2.medium. This instance class is large
enough to migrate a small set of tables.

VPC Choose DMSDemoVPC, which is the VPC that was
created by the CloudFormation stack.

Multi-AZ Choose No.

Publicly accessible Leave this item selected.

4. For the Advanced section, leave the default settings as they are, and choose Next.

Step 8: Create AWS DMS Source and Target
Endpoints
While your replication instance is being created, you can specify the source and target database
endpoints using the AWS Management Console. However, you can only test connectivity after the
replication instance has been created, because the replication instance is used in the connection.

API Version 2016-01-01
55

https://console.aws.amazon.com/dms/
https://console.aws.amazon.com/dms/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Security.IAMPermissions.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Security.IAMPermissions.html

AWS Database Migration Service
Step-by-Step Migration Guide

Step 8: Create AWS DMS Source and Target Endpoints

To specify source or target database endpoints using the AWS console

1. Specify your connection information for the source Oracle database and the target Amazon Aurora
database. The following table describes the source settings.

For This Parameter Do This

Endpoint Identifier Type Orasource (the Amazon RDS Oracle endpoint).

Source Engine Choose oracle.

Server name Provide the Oracle DB instance name. This
is the Server name you used for AWS SCT,
such as "do1xa4grferti8y.cqiw4tcs0mg7.us-
west-2.rds.amazonaws.com".

Port Type 1521.

SSL mode Choose None.

Username Type oraadmin.

Password Provide the password for the Oracle DB instance.

SID Provide the Oracle database name.

The following table describes the target settings.

For This Parameter Do This

Endpoint Identifier Type Aurtarget (the Amazon Aurora endpoint).

Target Engine Choose aurora.

Servername Provide the Aurora DB instance name. This is the
Server name you used for AWS SCT, such as
"dmsdemo-auroracluster-1u1oyqny35jwv.cluster-
cqiw4tcs0mg7.us-west-2.rds.amazonaws.com"
.

Port Type 3306.

SSL mode Choose None.

Username Type auraadmin.

Password Provide the password for the Aurora DB instance.

The completed page should look like the following:

API Version 2016-01-01
56

AWS Database Migration Service
Step-by-Step Migration Guide

Step 8: Create AWS DMS Source and Target Endpoints

2. In order to disable foreign key checks during the initial data load, you must add the
following commands to the target Aurora DB instance. In the Advanced section, shown
following, type the following commands for Extra connection attributes: initstmt=SET
FOREIGN_KEY_CHECKS=0, autocommit=1

The first command disables foreign key checks during a load, and the second command commits
the transactions that DMS executes.

API Version 2016-01-01
57

AWS Database Migration Service
Step-by-Step Migration Guide

Step 9: Create and Run Your AWS DMS Migration Task

3. Choose Next.

Step 9: Create and Run Your AWS DMS Migration
Task
Using a AWS DMS task, you can specify what schema to migrate and the type of migration. You can
migrate existing data, migrate existing data and replicate ongoing changes, or replicate data changes
only. This walkthrough migrates existing data only.

To create a migration task

1. On the Create Task page, specify the task options. The following table describes the settings.

For This Parameter Do This

Task name Type migratehrschema.

Task description Type a description for the task.

Source endpoint Shows orasource (the Amazon RDS Oracle endpoint).

Target endpoint Shows aurtarget (the Amazon Aurora endpoint).

API Version 2016-01-01
58

AWS Database Migration Service
Step-by-Step Migration Guide

Step 9: Create and Run Your AWS DMS Migration Task

For This Parameter Do This

Replication instance Shows DMSdemo-repserver (the AWS DMS replication
instance created in an earlier step).

Migration type Choose the option Migrate existing data.

Start task on create Select this option.

The page should look like the following:

2. Under Task Settings, choose Do nothing for Target table preparation mode, because you have
already created the tables through Schema Migration Tool. Because this migration doesn't contain
any LOBs, you can leave the LOB settings at their defaults.

Optionally, you can select Enable logging. If you enable logging, you will incur additional Amazon
CloudWatch charges for the creation of CloudWatch logs. For this walkthrough, logs are not
necessary.

API Version 2016-01-01
59

AWS Database Migration Service
Step-by-Step Migration Guide

Step 9: Create and Run Your AWS DMS Migration Task

3. Leave the Advanced settings at their default values.

4. Choose Table mappings, choose Default for Mapping method, and then choose HR for Schema
to migrate.

The completed section should look like the following.

5. Choose Create task. The task will begin immediately.

API Version 2016-01-01
60

AWS Database Migration Service
Step-by-Step Migration Guide
Step 10: Verify That Your Data

Migration Completed Successfully
The Tasks section shows you the status of the migration task.

You can monitor your task if you choose Enable logging when you set up your task. You can then
view the CloudWatch metrics by doing the following:

To monitor a data migration task in progress

1. On the navigation pane, choose Tasks.

2. Choose your migration task (migratehrschema).

3. Choose the Task monitoring tab, and monitor the task in progress on that tab.

Step 10: Verify That Your Data Migration Completed
Successfully
When the migration task completes, you can compare your task results with the expected results.

To compare your migration task results with the expected results

1. On the navigation pane, choose Tasks.

2. Choose your migration task (migratehrschema).

3. Choose the Table statistics tab, shown following.

API Version 2016-01-01
61

AWS Database Migration Service
Step-by-Step Migration Guide
Step 10: Verify That Your Data

Migration Completed Successfully

4. Connect to the Amazon Aurora instance by using SQL Workbench/J, and then check if the
database tables were successfully migrated from Oracle to Aurora by running the SQL script
shown following.

Show databases;
Use HR;
SELECT TABLE_NAME,TABLE_ROWS
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'HR' and TABLE_TYPE='BASE TABLE' order by 1;

API Version 2016-01-01
62

AWS Database Migration Service
Step-by-Step Migration Guide

Step 11: Delete Walkthrough Resources

5. To verify whether the output for tables and number of rows from the preceding query matches
what is expected for RDS Oracle, compare your results with those in the spreadsheet provided by
AWS at this site.

6. Run the following query to check the relationship in tables; this query checks the departments with
employees greater than 10.

SELECT B.DEPARTMENT_NAME,COUNT(*)
 FROM HR.EMPLOYEES A,HR.DEPARTMENTS B
 WHERE A.DEPARTMENT_ID=B.DEPARTMENT_ID
 GROUP BY B.DEPARTMENT_NAME HAVING COUNT(*) > 10
 ORDER BY 1;

The output from this query should be similar to the following.

department_name count(*)
Sales 34
Shipping 45

Now you have successfully completed a database migration from an Amazon RDS Oracle DB instance
to Amazon Aurora.

Step 11: Delete Walkthrough Resources
After you have completed this walkthrough, perform the following steps to avoid being charged further
for AWS resources used in the walkthrough. It's necessary that you do the steps in order, because
some resources cannot be deleted if they have a dependency upon another resource.

To delete AWS DMS resources

1. On the navigation pane, choose Tasks, choose your migration task (migratehrschema), and
then choose Delete.

API Version 2016-01-01
63

https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.xlsx

AWS Database Migration Service
Step-by-Step Migration Guide

Next Steps

2. On the navigation pane, choose Endpoints, choose the Oracle source endpoint (orasource),
and then choose Delete.

3. Choose the Amazon Aurora target endpoint (aurtarget), and then choose Delete.

4. On the navigation pane, choose Replication instances, choose the replication instance
(DMSdemo-repserver), and then choose Delete.

Next, you must delete your AWS CloudFormation stack, DMSdemo.

To delete your AWS CloudFormation stack

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
console.aws.amazon.com/cloudformation/.

Note that if you are signed in as an AWS Identity and Access Management (IAM) user, you must
have the appropriate permissions to access AWS CloudFormation.

2. Choose your CloudFormation stack, DMSdemo.

3. For Actions, choose Delete stack.

The status of the stack changes to DELETE_IN_PROGRESS while AWS CloudFormation cleans up
the resources associated with the DMSdemo stack. When AWS CloudFormation is finished cleaning up
resources, it removes the stack from the list.

Next Steps
You can explore several other features of AWS DMS that were not included in this walkthrough,
including the following:

• The AWS DMS change data capture (CDC) feature, for ongoing replication of data.

• Transformation actions that let you specify and apply transformations to the selected schema or
table as part of the migration process.

For more information, see the AWS DMS documentation.

AWS CloudFormation Template, SQL Scripts, and
Other Resources

You can find the AWS CloudFormation template, SQL scripts, and other resources used in this
walkthrough on the AWS site as listed following:

• Oracle schema SQL script

• AWS CloudFormation template

• SQL validation script, in spreadsheet format

• SQL validation script, in text format

• Architecture diagram, in .jpg format or Architecture diagram, in .vsd format

• MySQL JDBC driver, in .jar file format

• Oracle Database 12.1.0.2 JDBC driver, in .jar file format

API Version 2016-01-01
64

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_GettingStarted.html
https://dms-sbs.s3.amazonaws.com/Oracle-HR-Schema-Build.sql
https://dms-sbs.s3.amazonaws.com/Oracle_Aurora_RDS_For_DMSDemo.template
https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.xlsx
https://dms-sbs.s3.amazonaws.com/AWSDMSDemoStats.txt
https://dms-sbs.s3.amazonaws.com/AWS-DMS-Arch.jpg
https://dms-sbs.s3.amazonaws.com/AWS-DMS-Arch.vsd
https://dms-sbs.s3.amazonaws.com/mysql-connector-java-5.1.39-bin.jar
https://dms-sbs.s3.amazonaws.com/ojdbc7.jar

AWS Database Migration Service
Step-by-Step Migration Guide

References

References
The following documentation and sample schemas can be useful as references for this walkthrough:

• AWS DMS documentation

• AWS SCT documentation

• Oracle sample schemas

API Version 2016-01-01
65

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_GettingStarted.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.GettingStarted.html
https://docs.oracle.com/database/121/COMSC/scripts.htm#COMSC00020

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating MySQL-Compatible
Databases to AWS

Amazon Web Services (AWS) has several services that allow you to run a MySQL-compatible
database on AWS. Amazon Relational Database Service (Amazon RDS) supports MySQL-compatible
databases including MySQL, MariaDB, and Amazon Aurora. AWS Elastic Cloud Computing Service
(EC2) provides platforms for running MySQL-compatible databases.

Migrating From Solution

An RDS MySQL DB instance You can migrate data directly from an Amazon RDS MySQL DB
snapshot to an Amazon Aurora DB cluster. For details, see Migrating
Data from an Amazon RDS MySQL DB Instance to an Amazon
Aurora DB Cluster (p. 78).

A MySQL database external
to Amazon RDS

If your database supports the InnoDB or MyISAM tablespaces, you
have these options for migrating your data to an Amazon Aurora DB
cluster:

• You can create a dump of your data using the mysqldump utility,
and then import that data into an existing Amazon Aurora DB
cluster.

• You can copy the source files from your database to an Amazon
S3 (S3) bucket, and then restore an Amazon Aurora DB cluster
from those files. This option can be considerably faster than
migrating data using mysqldump.

For details, see Migrating MySQL to Amazon Aurora by Using
mysqldump (p. 78).

A database that is not
MySQL-compatible

You can also use AWS Database Migration Service (AWS DMS)
to migrate data from a MySQL database. However, for very large
databases, you can significantly reduce the amount of time that
it takes to migrate your data by copying the source files for your
database and restoring those files to an Amazon Aurora DB instance
as described in Migrating Data from an External MySQL Database to
an Amazon Aurora Using Amazon S3 (p. 67).

For more information on AWS DMS, see What Is AWS Database
Migration Service?

API Version 2016-01-01
66

http://docs.aws.amazon.com/dms/latest/userguideWelcome.html
http://docs.aws.amazon.com/dms/latest/userguideWelcome.html

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating Data from an External MySQL Database
to an Amazon Aurora Using Amazon S3

Migrating a MySQL-Compatible
Database to Amazon Aurora

If your database supports the InnoDB or MyISAM tablespaces, you have these options for migrating
your data to an Amazon Aurora DB cluster:

• You can create a dump of your data using the mysqldump utility, and then import that data into an
existing Amazon Aurora DB cluster. For more information, see Migrating MySQL to Amazon Aurora
by Using mysqldump (p. 78).

• You can copy the source files from your database to an S3 bucket, and then restore an Amazon
Aurora DB cluster from those files. This option can be considerably faster than migrating data using
mysqldump. For more information, see Migrating Data from an External MySQL Database to an
Amazon Aurora Using Amazon S3 (p. 67).

Migrating Data from an External MySQL
Database to an Amazon Aurora Using Amazon
S3

You can copy the source files from your source MySQL version 5.5 or 5.6 database to an S3 bucket,
and then restore an Amazon Aurora DB cluster from those files.

This option can be considerably faster than migrating data using mysqldump, because using
mysqldump replays all of the commands to recreate the schema and data from your source database
in your new Amazon Aurora DB cluster. By copying your source MySQL data files, Amazon Aurora can
immediately use those files as the data for DB cluster.

Note
Restoring an Amazon Aurora DB cluster from backup files in an S3 bucket is not supported for
the Asia Pacific (Mumbai) region.

Amazon Aurora does not restore everything from your database. You should save the database
schema and values for the following items from your source MySQL or MariaDB database and add
them to your restored Amazon Aurora DB cluster after it has been created.

API Version 2016-01-01
67

AWS Database Migration Service
Step-by-Step Migration Guide

Prerequisites

• User accounts

• Functions

• Stored procedures

• Time zone information. Time zone information is loaded from the local operating system of your
Amazon Aurora DB cluster.

Prerequisites
Before you can copy your data to an S3 bucket and restore a DB cluster from those files, you must do
the following:

• Install Percona XtraBackup on your local server.

• Permit Amazon Aurora to access your S3 bucket on your behalf.

Installing Percona XtraBackup

Amazon Aurora can restore a DB cluster from files that were created using Percona XtraBackup. You
can install Percona XtraBackup from the Percona website at https://www.percona.com/doc/percona-
xtrabackup/2.4/installation.

Required Permissions

To migrate your MySQL data to an Amazon Aurora DB cluster, several permissions are required:

• The user that is requesting that Amazon RDS create a new cluster from an S3 bucket must have
permission to list the buckets for your AWS account. You grant the user this permission using an
AWS Identity and Access Management (IAM) policy.

• Amazon RDS requires permission to act on your behalf to access the S3 bucket where you store
the files used to create your Amazon Aurora DB cluster. You grant Amazon RDS the required
permissions using an IAM service role.

• The user making the request must also have permission to list the IAM roles for your AWS account.

• If the user making the request will create the IAM service role, or will request that Amazon RDS
create the IAM service role (by using the console), then the user must have permission to create an
IAM role for your AWS account.

For example, the following IAM policy grants a user the minimum required permissions to use the
console to both list IAM roles, create an IAM role, and list the S3 buckets for your account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles",
 "iam:CreateRole",
 "iam:CreatePolicy",
 "iam:AttachRolePolicy",
 "s3:ListBucket",
 "s3:ListObjects"
],
 "Resource": "*"

API Version 2016-01-01
68

https://www.percona.com/doc/percona-xtrabackup/2.4/installation
https://www.percona.com/doc/percona-xtrabackup/2.4/installation

AWS Database Migration Service
Step-by-Step Migration Guide

Prerequisites

 }
]
}

Additionally, for a user to associate an IAM role with an S3 bucket, the IAM user must have the
iam:PassRole permission for that IAM role. This permission allows an administrator to restrict which
IAM roles a user can associate with S3 buckets.

For example, the following IAM policy allows a user to associate the role named S3Access with an S3
bucket.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowS3AccessRole",
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::123456789012:role/S3Access"
 }
]
}

Creating the IAM Service Role

You can have the Amazon RDS Management Console create a role for you by choosing the Create
a New Role option (shown later in this topic). If you select this option and specify a name for the new
role, then Amazon RDS will create the IAM service role required for Amazon RDS to access your S3
bucket with the name that you supply.

As an alternative, you can manually create the role using the following procedure.

To create an IAM role for Amazon RDS to access S3

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the left navigation pane, choose Roles.

3. Choose Create New Role, specify a value for Role Name for the new role, and then choose Next
Step.

4. Under AWS Service Roles, find Amazon RDS and choose Select.

5. Do not select a policy to attach in the Attach Policy step. Instead, choose Next Step.

6. Review your role information, and then choose Create Role.

7. In the list of roles, choose the name of your newly created role. Choose the Permissions tab.

8. Choose Inline Policies. Because your new role has no policy attached, you will be prompted to
create one. Click the link to create a new policy.

9. On the Set Permissions page, choose Custom Policy and then choose Select.

10. Type a Policy Name such as S3-bucket-policy. Add the following code for Policy Document,
replacing <bucket name> with the name of the S3 bucket that you are allowing access to.

As part of the policy document, you can also include a file name prefix. If you specify a prefix,
then Amazon Aurora will create the DB cluster using the files in the S3 bucket that begin with the
specified prefix. If you don't specify a prefix, then Amazon Aurora will create the DB cluster using
all of the files in the S3 bucket.

API Version 2016-01-01
69

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Database Migration Service
Step-by-Step Migration Guide

Step 1: Backing Up Files to be Restored as a DB Cluster

To specify a prefix, replace <prefix> following with the prefix of your file names. Include the
asterisk (*) after the prefix. If you don't want to specify a prefix, specify only an asterisk.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::<bucket name>"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::<bucket name>/<prefix>*"
]
 }
]
}

11. Choose Apply Policy.

Step 1: Backing Up Files to be Restored as a DB
Cluster
To create a backup of your MySQL database files that can be restored from S3 to create an Amazon
Aurora DB cluster, use the Percona Xtrabackup utility (innobackupex) to back up your database.

For example, the following command creates a backup of a MySQL database and stores the files in the
/s3-restore/backup folder.

innobackupex --user=myuser --password=<password> --no-timestamp /s3-restore/
backup

If you want to compress your backup into a single file (which can be split, if needed), you can use the
--stream option to save your backup in one of the following formats:

• Gzip (.gz)

• tar (.tar)

• Percona xbstream (.xbstream)

For example, the following command creates a backup of your MySQL database split into multiple Gzip
files.

innobackupex --user=myuser --password=<password> --stream=tar \

API Version 2016-01-01
70

AWS Database Migration Service
Step-by-Step Migration Guide

Step 2: Copying Files to an Amazon S3 Bucket

 /mydata/s3-restore/backup | split -d --bytes=512000 \
 - /mydata/s3-restore/backup3/backup.tar.gz

For example, the following command creates a backup of your MySQL database split into multiple tar
files.

innobackupex --user=myuser --password=<password> --stream=tar \
 /mydata/s3-restore/backup | split -d --bytes=512000 \
 - /mydata/s3-restore/backup3/backup.tar

For example, the following command creates a backup of your MySQL database split into multiple
xbstream files.

innobackupex --stream=xbstream \
 /mydata/s3-restore/backup | split -d --bytes=512000 \
 - /mydata/s3-restore/backup/backup.xbstream

S3 limits the size of a file uploaded to a bucket to 5 terabytes (TB). If the backup data for your
database exceeds 5 TB, then you must use the split command to split the backup files into multiple
files that are each less than 5 TB.

Amazon Aurora does not support partial backups created using Percona Xtrabackup. You cannot
use the --include, --tables-file, or --databases options to create a partial backup when you
backup the source files for your database.

For more information, see the The innobackupex Script.

Amazon Aurora consumes your backup files based on the file name. Be sure to name your backup files
with the appropriate file extension based on the file format—for example, .xbstream for files stored
using the Percona xbstream format.

Amazon Aurora consumes your backup files in alphabetical order as well as natural number order.
Always use the split option when you issue the innobackupex command to ensure that your
backup files are written and named in the proper order.

Step 2: Copying Files to an Amazon S3 Bucket
Once you have backed up your MySQL database using the Percona Xtrabackup utility, then you can
copy your backup files to an S3 bucket.

For information on creating and uploading a file to an S3 bucket, see Getting Started with Amazon
Simple Storage Service in the Amazon S3 Getting Started Guide.

Step 3: Restoring an Aurora DB Cluster from an S3
Bucket
You can restore your backup files from your Amazon S3 bucket to a create new Amazon Aurora DB
cluster by using the Amazon RDS console.

To restore an Amazon Aurora DB cluster from files on an S3 bucket

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

API Version 2016-01-01
71

https://www.percona.com/doc/percona-xtrabackup/2.1/innobackupex/innobackupex_script.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

AWS Database Migration Service
Step-by-Step Migration Guide
Step 3: Restoring an Aurora

DB Cluster from an S3 Bucket
2. In the RDS Dashboard, choose Restore Aurora DB Cluster from S3.

3. In the Specify Source Backup Details, specify the following:

For This Option Do This

Source Engine Amazon Aurora currently supports only restoring from
backup files for the mysql database engine.

Source Engine Version Specify the version of the MySQL database that the
backup files were created from, for example 5.6.22.
MySQL version 5.5 and 5.6 are supported.

Select S3 Bucket Select the S3 bucket where your backup files are stored.

S3 Bucket Prefix (Optional) Specify a file path prefix for the files stored in your S3
bucket. The S3 Bucket Prefix is optional. If you don't
specify a prefix, then Amazon Aurora will create the DB
cluster using all of the files in the root folder of the S3
bucket. If you specify a prefix, then Amazon Aurora will
create the DB cluster using the files in the S3 bucket
where the full path for the file begins with the specified
prefix.

Amazon Aurora does not traverse subfolders in your S3
bucket looking for backup files. Only the files from the
folder identified by the S3 Bucket Prefix are used. If you
store your backup files in a subfolder in your S3 bucket,
then you must specify a prefix that identifies the full path
to the folder where the files are stored.

For example, if you store your backup files in a subfolder
of your S3 bucket named backups, and you have
multiple sets of backup files, each in its own directory
(gzip_backup1, gzip_backup2, and so on), then you
would specify a prefix of backups/gzip_backup1 to
restore from the files in the gzip_backup1 folder.

IAM Role Select the IAM role that you created to authorize
Amazon Aurora to access S3 on your behalf. If you have
not created an IAM role, you can choose Create a New
Role to create one.

A typical Specify Source Backup Details page looks like the following.

4. Choose Next Step.

5. On the Specify DB Details page, specify your DB cluster information. The following table shows
settings for a DB instance.

For This Option Do This

DB Instance Class Select a DB instance class that defines the processing
and memory requirements for each instance in the
DB cluster. Aurora supports the db.r3.large,
db.r3.xlarge, db.r3.2xlarge, db.r3.4xlarge,
and db.r3.8xlarge DB instance classes. For more
information about DB instance class options, see .

API Version 2016-01-01
72

AWS Database Migration Service
Step-by-Step Migration Guide
Step 3: Restoring an Aurora

DB Cluster from an S3 Bucket

For This Option Do This

Multi-AZ Deployment Determine if you want to create Aurora Replicas in
other Availability Zones for failover support. For more
information about multiple Availability Zones, see.

DB Instance Identifier Type a name for the primary instance in your DB cluster.
This identifier will be used in the endpoint address for the
primary instance of your DB cluster.

The DB instance identifier has the following constraints:

• It must contain from 1 to 63 alphanumeric characters
or hyphens.

• Its first character must be a letter.

• It cannot end with a hyphen or contain two
consecutive hyphens.

• It must be unique for all DB instances per AWS
account, per region.

Master Username Type a name using alphanumeric characters that
you will use as the master user name to log on to
your DB cluster. The default privileges granted to the
master user name account include: create, drop,
references, event, alter, delete, index,
insert, select, update, create temporary
tables, lock tables, trigger, create
view, show view, alter routine, create
routine, execute, create user, process,
show databases, grant option.

Master Password Type a password that contains from 8 to 41 printable
ASCII characters (excluding /,", and @) for your master
user password.

A typical Specify DB Details page looks like the following.

API Version 2016-01-01
73

AWS Database Migration Service
Step-by-Step Migration Guide
Step 3: Restoring an Aurora

DB Cluster from an S3 Bucket

6. Confirm your master password, and then choose Next.

7. On the Configure Advanced Settings page, you can customize additional settings for your
Aurora DB cluster. The following table shows the advanced settings for a DB cluster.

For This Option Do This

VPC Select the VPC that will host the DB cluster. Select
Create a New VPC to have Amazon RDS create a VPC
for you. For more information, see earlier in this topic.

Subnet Group Select the DB subnet group to use for the DB cluster.
Select Create a New DB Subnet Group to have
Amazon RDS create a DB subnet group for you. For
more information, see earlier in this topic.

Publicly Accessible Select Yes to give the DB cluster a public IP address;
otherwise, select No. The instances in your DB cluster
can be a mix of both public and private DB instances.
For more information about hiding instances from public
access, see .

Availability Zone Determine if you want to specify a particular Availability
Zone. For more information about Availability Zones,
see.

VPC Security Group(s) Select one or more VPC security groups to secure
network access to the DB cluster. Select Create a New

API Version 2016-01-01
74

AWS Database Migration Service
Step-by-Step Migration Guide
Step 3: Restoring an Aurora

DB Cluster from an S3 Bucket

For This Option Do This

VPC Security Group to have Amazon RDS create a
VPC security group for you. For more information, see
earlier in this topic.

DB Cluster Identifier Type a name for your DB cluster that is unique for your
account in the region you selected. This identifier will be
used in the cluster endpoint address for your DB cluster.
For information on the cluster endpoint, see .

The DB cluster identifier has the following constraints:

• It must contain from 1 to 63 alphanumeric characters
or hyphens.

• Its first character must be a letter.

• It cannot end with a hyphen or contain two
consecutive hyphens.

• It must be unique for all DB clusters per AWS account,
per region.

Database Name Type a name for your database of up to 8 alphanumeric
characters. If you don't provide a name, Amazon RDS
will not create a database on the DB cluster you are
creating.

Database Port Specify the port that applications and utilities will use
to access the database. Aurora DB clusters default to
the default MySQL port, 3306. The firewalls at some
companies block connections to the default MySQL port.
If your company firewall blocks the default port, choose
another port for the new DB cluster.

Parameter Group Select a parameter group. Aurora has a default
parameter group you can use, or you can create your
own parameter group. For more information about
parameter groups, see .

Option Group Select an option group. Aurora has a default option
group you can use, or you can create your own option
group. For more information about option groups, see .

Enable Encryption Select Yes to enable encryption at rest for this DB
cluster. For more information, see .

Priority Choose a failover priority for the instance. If you
don't select a value, the default is tier-1. This priority
determines the order in which Aurora Replicas are
promoted when recovering from a primary instance
failure. For more information, see .

Backup Retention Period Select the length of time, from 1 to 35 days, that Aurora
will retain backup copies of the database. Backup copies
can be used for point-in-time restores (PITR) of your
database, timed down to the second.

Enable Enhanced Monitoring Choose Yes to enable gathering metrics in real time for
the operating system that your DB cluster runs on. For
more information, see .

API Version 2016-01-01
75

AWS Database Migration Service
Step-by-Step Migration Guide
Step 3: Restoring an Aurora

DB Cluster from an S3 Bucket

For This Option Do This

Granularity This option is only available if Enable Enhanced
Monitoring is set to Yes. Set the interval, in seconds,
between times at which metrics are collected for your DB
cluster.

Auto Minor Version Upgrade Select Yes if you want to enable your Aurora DB cluster
to receive minor MySQL DB engine version upgrades
automatically when they become available.

The Auto Minor Version Upgrade option only applies
to upgrades to MySQL minor engine versions for your
Amazon Aurora DB cluster. It doesn't apply to regular
patches applied to maintain system stability.

Maintenance Window Select the weekly time range during which system
maintenance can occur.

A typical Configure Advanced Settings page looks like the following.

API Version 2016-01-01
76

AWS Database Migration Service
Step-by-Step Migration Guide
Step 3: Restoring an Aurora

DB Cluster from an S3 Bucket

API Version 2016-01-01
77

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating MySQL to Amazon Aurora by Using mysqldump

8. Choose Launch DB Instance to launch your Aurora DB instance, and then choose Close to close
the wizard.

On the Amazon RDS console, the new DB instance appears in the list of DB instances. The
DB instance has a status of creating until the DB instance is created and ready for use. When
the state changes to available, you can connect to the primary instance for your DB cluster.
Depending on the DB instance class and store allocated, it can take several minutes for the new
instance to be available.

To view the newly created cluster, choose the Clusters view in the Amazon RDS console. For
more information, see .

Note the port and the endpoint of the cluster. Use the endpoint and port of the cluster in your
JDBC and ODBC connection strings for any application that performs write or read operations.

Migrating MySQL to Amazon Aurora by Using
mysqldump

You can create a dump of your data using the mysqldump utility, and then import that data into an
existing Amazon Aurora DB cluster. For more information, see reduced downtime.….. .

Because Amazon Aurora is a MySQL-compatible database, you can use the mysqldump utility to
copy data from your MySQL or MariaDB database to an existing Amazon Aurora DB cluster. For a
discussion of how to do so with MySQL databases that are very large, see For MySQL databases that
have smaller amounts of data, see .

Migrating Data from an Amazon RDS MySQL DB
Instance to an Amazon Aurora DB Cluster

You can migrate (copy) data to an Amazon Aurora DB cluster from an Amazon RDS snapshot, as
described following.

Note
Because Amazon Aurora is compatible with MySQL, you can migrate data from your MySQL
database by setting up replication between your MySQL database, and an Amazon Aurora DB

API Version 2016-01-01
78

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating an RDS MySQL Snapshot to Aurora

cluster. We recommend that your MySQL database run MySQL version 5.5 or later. For more
information, see

Migrating an RDS MySQL Snapshot to Aurora
You can migrate a DB snapshot of an Amazon RDS MySQL DB instance to create an Aurora DB
cluster. The new DB cluster is populated with the data from the original Amazon RDS MySQL DB
instance. The DB snapshot must have been made from an Amazon RDS DB instance running MySQL
5.6.

You can migrate either a manual or automated DB snapshot. After the DB cluster is created, you can
then create optional Aurora Replicas.

The general steps you must take are as follows:

1. Determine the amount of space to provision for your Amazon Aurora DB cluster. For more
information, see

2. Use the console to create the snapshot in the region where the Amazon RDS MySQL 5.6 instance is
located. For information about creating a DB snapshot, see.

3. If the DB snapshot is not in the region as your DB cluster, use the Amazon RDS console to copy the
DB snapshot to that region. For information about copying a DB snapshot, see .

4. Use the console to migrate the DB snapshot and create an Amazon Aurora DB cluster with the
same databases as the original DB instance of MySQL 5.6.

Caution
Amazon RDS limits each AWS account to one snapshot copy into each region at a time.

How Much Space Do I Need?

When you migrate a snapshot of a MySQL DB instance into an Aurora DB cluster, Aurora uses an
Amazon Elastic Block Store (Amazon EBS) volume to format the data from the snapshot before
migrating it. In some cases, additional space is needed to format the data for migration. When
migrating data into your DB cluster, observe the following guidelines and limitations:

• Although Amazon Aurora supports storage up to 64 TB in size, the process of migrating a snapshot
into an Aurora DB cluster is limited by the size of the EBS volume of the snapshot. Thus, the
maximum size for a snapshot that you can migrate is 6 TB.

• Tables that are not MyISAM tables and are not compressed can be up to 6 TB in size. If you have
MyISAM tables, then Aurora must use additional space in the volume to convert the tables to be
compatible with Aurora. If you have compressed tables, then Aurora must use additional space in
the volume to expand these tables before storing them on the Aurora cluster volume. Because of this
additional space requirement, you should ensure that none of the MyISAM and compressed tables
being migrated from your MySQL DB instance exceeds 3 TB in size.

Reducing the Amount of Space Required to Migrate Data into
Amazon Aurora

You might want to modify your database schema prior to migrating it into Amazon Aurora. Such
modification can be helpful in the following cases:

• You want to speed up the migration process.

• You are unsure of how much space you need to provision.

• You have attempted to migrate your data and the migration has failed due to a lack of provisioned
space.

API Version 2016-01-01
79

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating an RDS MySQL Snapshot to Aurora

You can make the following changes to improve the process of migrating a database into Amazon
Aurora.

Important
Be sure to perform these updates on a new DB instance restored from a snapshot of a
production database, rather than on a production instance. You can then migrate the data
from the snapshot of your new DB instance into your Amazon Aurora DB cluster to avoid any
service interruptions on your production database.

Table Type Limitation or Guideline

MyISAM tables Amazon Aurora supports InnoDB tables only. If you have MyISAM
tables in your database, then those tables must be converted
before being migrated into Amazon Aurora. The conversion process
requires additional space for the MyISAM to InnoDB conversion
during the migration procedure.

To reduce your chances of running out of space or to speed up the
migration process, convert all of your MyISAM tables to InnoDB
tables before migrating them. The size of the resulting InnoDB table
is equivalent to the size required by Amazon Aurora for that table. To
convert a MyISAM table to InnoDB, run the following command:

alter table <schema>.<table_name> engine=innodb,
algorithm=copy;

Compressed tables Amazon Aurora does not support compressed tables (that is, tables
created with ROW_FORMAT=COMPRESSED).

To reduce your chances of running out of space or to speed up
the migration process, expand your compressed tables by setting
ROW_FORMAT to DEFAULT, COMPACT, DYNAMIC, or REDUNDANT. For
more information, see https://dev.mysql.com/doc/refman/5.6/en/
innodb-row-format.html.

You can use the following SQL script on your existing MySQL DB instance to list the tables in your
database that are MyISAM tables or compressed tables.

-- This script examines a MySQL database for conditions that will block
-- migrating the database into Amazon's Aurora DB.
-- It needs to be run from an account that has read permission for the
-- INFORMATION_SCHEMA database.

-- Verify that this is a supported version of MySQL.

select msg as `==> Checking current version of MySQL.`
from
 (
 select
 'This script should be run on MySQL version 5.6. ' +
 'Earlier versions are not supported.' as msg,
 cast(substring_index(version(), '.', 1) as unsigned) * 100 +
 cast(substring_index(substring_index(version(), '.', 2), '.', -1)
 as unsigned)
 as major_minor
) as T
where major_minor <> 506;

API Version 2016-01-01
80

https://dev.mysql.com/doc/refman/5.6/en/innodb-row-format.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-row-format.html

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating an RDS MySQL Snapshot to Aurora

-- List MyISAM and compressed tables. Include the table size.

select concat(TABLE_SCHEMA, '.', TABLE_NAME) as `==> MyISAM or Compressed
 Tables`,
round(((data_length + index_length) / 1024 / 1024), 2) "Approx size (MB)"
from INFORMATION_SCHEMA.TABLES
where
 ENGINE <> 'InnoDB'
 and
 (
 -- User tables
 TABLE_SCHEMA not in ('mysql', 'performance_schema',
 'information_schema')
 or
 -- Non-standard system tables
 (
 TABLE_SCHEMA = 'mysql' and TABLE_NAME not in
 (
 'columns_priv', 'db', 'event', 'func', 'general_log',
 'help_category', 'help_keyword', 'help_relation',
 'help_topic', 'host', 'ndb_binlog_index', 'plugin',
 'proc', 'procs_priv', 'proxies_priv', 'servers', 'slow_log',
 'tables_priv', 'time_zone', 'time_zone_leap_second',
 'time_zone_name', 'time_zone_transition',
 'time_zone_transition_type', 'user'
)
)
)
 or
 (
 -- Compressed tables
 ROW_FORMAT = 'Compressed'
);

The script produces output similar to the output in the following example. The example shows two
tables that must be converted from MyISAM to InnoDB. The output also includes the approximate size
of each table in megabytes (MB).

+---------------------------------+------------------+
| ==> MyISAM or Compressed Tables | Approx size (MB) |
+---------------------------------+------------------+
| test.name_table | 2102.25 |
| test.my_table | 65.25 |
+---------------------------------+------------------+
2 rows in set (0.01 sec)

Migrating a DB Snapshot by Using the Console
You can migrate a DB snapshot of an Amazon RDS MySQL DB instance to create an Aurora DB
cluster. The new DB cluster will be populated with the data from the original Amazon RDS MySQL DB
instance. The DB snapshot must have been made from an Amazon RDS DB instance running MySQL
5.6 and must not be encrypted. For information about creating a DB snapshot, see .

If the DB snapshot is not in the AWS Region where you want to locate your data, use the Amazon RDS
console to copy the DB snapshot to that region. For information about copying a DB snapshot, see .

When you migrate the DB snapshot by using the console, the console takes the actions necessary to
create both the DB cluster and the primary instance.

API Version 2016-01-01
81

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating an RDS MySQL Snapshot to Aurora

You can also choose for your new Aurora DB cluster to be encrypted "at rest" using an AWS Key
Management Service (AWS KMS) encryption key. This option is available only for unencrypted DB
snapshots.

To migrate a MySQL 5.6 DB snapshot by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Snapshots.

3. On the Snapshots page, choose the snapshot that you want to migrate into an Aurora DB cluster.

4. Choose Migrate Database.

5. Set the following values on the Migrate Database page:

• DB Instance Class: Select a DB instance class that has the required storage and capacity for
your database, for example db.r3.large. Aurora cluster volumes automatically grow as the
amount of data in your database increases, up to a maximum size of 64 terabytes (TB). So you
only need to select a DB instance class that meets your current storage requirements. For more
information, see .

• DB Instance Identifier: Type a name for the DB cluster that is unique for your account in the
region you selected. This identifier is used in the endpoint addresses for the instances in your
DB cluster. You might choose to add some intelligence to the name, such as including the
region and DB engine you selected, for example aurora-cluster1.

The DB instance identifier has the following constraints:

• It must contain from 1 to 63 alphanumeric characters or hyphens.

• Its first character must be a letter.
API Version 2016-01-01

82

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating an RDS MySQL Snapshot to Aurora

• It cannot end with a hyphen or contain two consecutive hyphens.

• It must be unique for all DB instances per AWS account, per AWS Region.

• VPC: If you have an existing VPC, then you can use that VPC with your Amazon Aurora DB
cluster by selecting your VPC identifier, for example vpc-a464d1c1. For information on using
an existing VPC, see .

Otherwise, you can choose to have Amazon RDS create a VPC for you by selecting Create a
new VPC.

• Subnet Group: If you have an existing subnet group, then you can use that subnet group with
your Amazon Aurora DB cluster by selecting your subnet group identifier, for example gs-
subnet-group1.

Otherwise, you can choose to have Amazon RDS create a subnet group for you by selecting
Create a new subnet group.

• Publicly Accessible: Select No to specify that instances in your DB cluster can only be
accessed by resources inside of your VPC. Select Yes to specify that instances in your DB
cluster can be accessed by resources on the public network. The default is Yes.

Note
Your production DB cluster might not need to be in a public subnet, because only your
application servers will require access to your DB cluster. If your DB cluster doesn't
need to be in a public subnet, set Publicly Accessible to No.

• Availability Zone: Select the Availability Zone to host the primary instance for your Aurora DB
cluster. To have Amazon RDS select an Availability Zone for you, select No Preference.

• Database Port: Type the default port to be used when connecting to instances in the DB
cluster. The default is 3306.

Note
You might be behind a corporate firewall that doesn't allow access to default ports such
as the MySQL default port, 3306. In this case, provide a port value that your corporate
firewall allows. Remember that port value later when you connect to the Aurora DB
cluster.

• Enable Encryption: Choose Yes for your new Aurora DB cluster to be encrypted "at rest." If
you choose Yes, you will be required to choose an AWS KMS encryption key as the Master
Key value.

• Auto Minor Version Upgrade: Select Yes if you want to enable your Aurora DB cluster to
receive minor MySQL DB engine version upgrades automatically when they become available.

The Auto Minor Version Upgrade option only applies to upgrades to MySQL minor engine
versions for your Amazon Aurora DB cluster. It doesn't apply to regular patches applied to
maintain system stability.

API Version 2016-01-01
83

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating an RDS MySQL Snapshot to Aurora

API Version 2016-01-01
84

AWS Database Migration Service
Step-by-Step Migration Guide

Migrating an RDS MySQL Snapshot to Aurora

6. Choose Migrate to migrate your DB snapshot.

7. Choose Instances, and then choose the arrow icon to show the DB cluster details and monitor the
progress of the migration. On the details page, you will find the cluster endpoint used to connect to
the primary instance of the DB cluster. For more information on connecting to an Amazon Aurora
DB cluster, see .

API Version 2016-01-01
85

AWS Database Migration Service
Step-by-Step Migration Guide

Document History

The following table describes the important changes to the documentation since the last release of
AWS Database Migration Service Step-by-Step Migration Guide.

• API version: 20160101

• Latest documentation update: November 17, 2016

Change Description Date

On-premises Oracle to Amazon
Aurora migration guide added

Added On-premises Oracle
to Amazon Aurora database
migration guide.

November 17, 2016

API Version 2016-01-01
86

	AWS Database Migration Service
	Table of Contents
	AWS Database Migration Service Step-by-Step Walkthroughs
	Migrating Databases to Amazon Web Services (AWS)
	AWS Migration Tools
	Walkthroughs in this Guide

	Migrating an On-Premises Oracle Database to Amazon Aurora Using AWS Database Migration Service
	Costs
	Migration High-Level Outline
	Step 1: Prepare Your Oracle Source Database
	Step 2: Launch and Prepare Your Aurora Target Database
	Step 3: Launch a Replication Instance
	Step 4: Create a Source Endpoint
	Step 5: Create a Target Endpoint
	Step 6: Create and Run a Migration Task

	Migration Step-by-Step Guide
	Step 1: Configure Your Oracle Source Database
	Step 2: Configure Your Aurora Target Database
	Step 3: Creating a Replication Instance
	Step 4: Create Your Oracle Source Endpoint
	Step 5: Create Your Aurora Target Endpoint
	Step 6: Create a Migration Task
	Step 7: Monitor Your Migration Task
	Troubleshooting

	Working with the Sample Database for Migration

	Migrating an Amazon RDS Oracle Database to Amazon Aurora Using AWS Database Migration Service
	Costs
	Prerequisites
	Migration Architecture
	Step-by-Step Migration
	Step 1: Launch the RDS Instances in a VPC by Using the CloudFormation Template
	Step 2: Install the SQL Tools and AWS Schema Conversion Tool on Your Local Computer
	Step 3: Test Connectivity to the Oracle DB Instance and Create the Sample Schema
	Step 4: Test the Connectivity to the Aurora DB Instance
	Step 5: Use the AWS Schema Conversion Tool (AWS SCT) to Convert the Oracle Schema to Aurora
	Step 6: Validate the Schema Conversion
	Step 7: Create a AWS DMS Replication Instance
	Step 8: Create AWS DMS Source and Target Endpoints
	Step 9: Create and Run Your AWS DMS Migration Task
	Step 10: Verify That Your Data Migration Completed Successfully
	Step 11: Delete Walkthrough Resources

	Next Steps
	AWS CloudFormation Template, SQL Scripts, and Other Resources
	References

	Migrating MySQL-Compatible Databases to AWS
	Migrating a MySQL-Compatible Database to Amazon Aurora
	Migrating Data from an External MySQL Database to an Amazon Aurora Using Amazon S3
	Prerequisites
	Installing Percona XtraBackup
	Required Permissions
	Creating the IAM Service Role

	Step 1: Backing Up Files to be Restored as a DB Cluster
	Step 2: Copying Files to an Amazon S3 Bucket
	Step 3: Restoring an Aurora DB Cluster from an S3 Bucket

	Migrating MySQL to Amazon Aurora by Using mysqldump
	Migrating Data from an Amazon RDS MySQL DB Instance to an Amazon Aurora DB Cluster
	Migrating an RDS MySQL Snapshot to Aurora
	How Much Space Do I Need?
	Reducing the Amount of Space Required to Migrate Data into Amazon Aurora
	Migrating a DB Snapshot by Using the Console

	Document History

