
AWS Step Functions Developer Guide
Release 1.0

Amazon Web Services

Dec 01, 2016

Contents

i

ii

CHAPTER 1

Contents

1.1 What is AWS Step Functions?

AWS Step Functions is a web service that enables you to coordinate the components of distributed
applications and microservices using visual workflows. You build applications from individual components
that each perform a discrete function, or task, allowing you to scale and change applications quickly. Step
Functions provides a reliable way to coordinate components and step through the functions of your
application. Step Functions provides a graphical console to visualize the components of your application as
a series of steps. It automatically triggers and tracks each step, and retries when there are errors, so your
application executes in order and as expected, every time. Step Functions logs the state of each step, so
when things do go wrong, you can diagnose and debug problems quickly.

Step Functions manages the operations and underlying infrastructure for you to ensure your application is
available at any scale.

You can run your tasks on the AWS cloud, on your own servers, or on any system that has access to AWS.
Step Functions can be accessed and used with the Step Functions console, the AWS SDKs or an HTTP API.
This guide shows you how to develop, test and troubleshoot your own state machine using these methods.

1.1.1 Overview of Step Functions

Here are some of the key features of AWS Step Functions:

• Step Functions is based on the concepts of tasks and state machines.

• You define state machines using a JSON-based language.

• The Step Functions console displays a graphical view of your state machine’s structure, which
provides you with a way to visually check your state machine’s logic and monitor executions.

1.2 Getting Started with AWS Step Functions

This is a quick tutorial that introduces the basics of working with AWS Step Functions. In this tutorial, you
will create a simple state machine that can run on its own, using a Pass state. The Pass state is the simplest

1

AWS Step Functions Developer Guide, Release 1.0

state and represents a “no-op”.

Contents

• Prerequisites

• Step 1: Create a State Machine

• Step 2: Start an Execution

1.2.1 Prerequisites

To complete this tutorial you will need:

• An AWS account. If you haven’t yet signed up for AWS, go to http://aws.amazon.com/ and click
Sign In to the Console.

1.2.2 Step 1: Create a State Machine

First, you will create a state machine using the Step Functions console.

To create the state machine

1. Sign in to the Step Functions console.

2. Click Get Started. This will display the Create State Machine screen.

2 Chapter 1. Contents

http://aws.amazon.com/

AWS Step Functions Developer Guide, Release 1.0

1.2. Getting Started with AWS Step Functions 3

AWS Step Functions Developer Guide, Release 1.0

3. In the box below Give a name to your State Machine type a name, such as “HelloStateMachine”.

Note: State machine names must be unique for your account and region.

4. Click the Hello World blueprint. The available blueprints enable you to begin with an example state
machine template.

The Code pane will be populated with the Amazon States Language description of the state machine:

{
"Comment": "A Hello World example of the Amazon States Language using

→˓an AWS Lambda Function",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:REGION:ACCOUNT_ID:function:FUNCTION_

→˓NAME",
"End": true

}
}

}

The blueprint for this state machine consists of a single Task state named HelloWorld. In this tutorial

4 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

you are not going to execute a task, but will simply use a Pass state to inject results.

5. In the code, change the state’s Type field value from Task to Pass, change the Resource field to
a Result field and then change its value so you end up with something like this:

{
"Comment": "A Hello World example of the Amazon States Language using

→˓a Pass State",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Pass",
"Result": "Hello, AWS Step Functions!",
"End": true

}
}

}

6. Verify that the Preview pane displays the following graph of your state machine structure. If you
don’t see this, click the refresh icon in the Preview pane.

The graph in the Preview pane helps you to verify that your Amazon States Language code is
describing your state machine correctly.

7. Click the Create State Machine button. An IAM role for your state machine executions dialog box
appears.

1.2. Getting Started with AWS Step Functions 5

AWS Step Functions Developer Guide, Release 1.0

8. In the Select an IAM role for your tasks list, select the role (StatesExecutionRole-REGION)
that has been automatically created for you by Step Functions and then click OK to finish creating
your state machine.

Note: If you delete the IAM role that has been automatically created for you, there is no way for Step
Functions to re-create it for you at a later time. Similarly, if you modify the role (for example, by removing
Step Functions from the principals in the IAM policy), there is no way for Step Functions to restore its
original settings at a later time. For more information on creating an IAM role by hand see Creating IAM
Roles for Use with AWS Step Functions.

1.2.3 Step 2: Start an Execution

As soon as you finish creating a state machine, you will see an acknowledgment page. From here, you can
start an execution using the New execution button. You can also start a new execution at any time from the
state machine’s detail page, which can be reached from the dashboard.

To start a new execution using the console

1. In the left pane, click Dashboard. There, you will see the state machine you just created.

6 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

2. Click the state machine to see its detail page.

3. From your state machine’s detail page, click New execution. The New execution pane will open.

Tip: To help identify your execution, you can optionally enter an id for it. If you don’t, a unique id
will be generated for you. To set the id, use the box labelled Enter your execution id here.

4. Below the execution input area, click the Start Execution button to start the execution. A new

1.2. Getting Started with AWS Step Functions 7

AWS Step Functions Developer Guide, Release 1.0

execution of your state machine will start, and a new page will appear, showing your open execution.

5. In the Execution Details section, click the Info tab to see the Execution Status and when the
execution started and closed.

6. Click the Output tab to see the results of your execution:

Congratulations, you have implemented and executed your first state machine!

1.3 Tutorial: A Lambda State Machine

In this tutorial, you will create a state machine that uses an AWS Lambda function to implement a Task
state. A Task state is a simple state that performs a single unit of work. Lambda is well-suited for
implementing Task states, because Lambda functions are stateless, easy to write, and don’t require you to
deploy code to a server instance. You can just write code in the AWS Management Console or your favorite
editor, and AWS handles the details of providing a computing environment and running your function.

Contents

• Prerequisites

• Step 1: Create an IAM Role for Lambda

8 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

• Step 2: Create a Lambda Function for Hello World

• Step 3: Create a State Machine

• Step 4: Start an Execution

1.3.1 Prerequisites

To complete this tutorial, you will need:

• An AWS account. If you haven’t yet signed up for AWS, go to http://aws.amazon.com/ and click
Sign In to the Console.

1.3.2 Step 1: Create an IAM Role for Lambda

Both Lambda and AWS Step Functions are capable of executing code and accessing AWS resources (such
as data stored in Amazon S3 buckets.) To maintain security, you must grant Lambda and Step Functions
access to those resources. In the first tutorial, that was done automatically for Step Functions—an IAM role
was created when you created the state machine.

Lambda requires you to assign an IAM role when you create a Lambda function in the same way Step
Functions required you to assign an IAM role when you created a state machine. So you will create one for
Lambda now.

To create a role for use with Lambda

1. Open the IAM console.

2. Choose Roles in the left pane, then click the Create New Role button to begin the role-creation
process.

3. On Set Role Name, type a name for your role, such as lambda-role, and click Next Step.

4. On Select Role Type, choose AWS Lambda from the list.

Note: This will cause you to skip over the Establish Trust step. The role is automatically provided
with a trust relationship that allows Lambda to use the role.

5. On Attach Policy, don’t attach any policy. Click Next Step.

6. On Review, you get a final chance to change the name and policy for your role. Click Create Role.

Your role should now appear in the list of roles in the IAM console.

1.3.3 Step 2: Create a Lambda Function for Hello World

The function that you create will take some input (a name) and will return a greeting that includes the input
value.

To create the Lambda function for Hello World

1.3. Tutorial: A Lambda State Machine 9

http://aws.amazon.com/
https://console.aws.amazon.com/iam/home

AWS Step Functions Developer Guide, Release 1.0

1. Open the Lambda console.

If you have never created a Lambda function before, you will be greeted with a screen with a single
button Get Started Now that allows you to create your first Lambda function.

2. If this is your first Lambda function, then click the Get Started Now button. Otherwise, click the
Create a Lambda function button. The first screen that appears is the Select blueprint screen. You
won’t need a blueprint because you will type the code for your function by hand.

3. In the left pane, click Configure function

4. On the screen that appears, type your function’s Name and Description, and choose the Runtime,
using the following data:

Field Value
Name HelloFunction
Description Say "Hello" to someone.
Runtime Node.js 4.3

5. Next, type the code for the Lambda function:

exports.handler = (event, context, callback) => {
callback(null, "Hello, " + event.who + "!");

};

This code assembles a greeting using the who field of the input data, which is provided by the event
object that’s passed in to your function. (You will provide input data for this function later, when you
perform Step 4: Start an Execution.)

The callback method can be used to return a value from your function. Here, you return the
assembled greeting.

6. In the Lambda function handler and role section, open the Role drop-down list and select Choose an
existing role.

7. Open the Existing role drop-down list and choose the Lambda role that you created earlier
(lambda-role).

Note: If the IAM role that you created doesn’t appear in the list, the role might still need a few
minutes to propagate to Lambda. In the meanwhile, verify that ‘lambda.amazonaws.com’ has access
to the role. Revisit Step 1: Create an IAM Role for Lambda to verify or edit the trust relationship for
your role.

8. In the Advanced settings section, accept the default values. Note that you can set a Timeout value in
seconds. This timeout value can be set to restrict how long your function can take to execute before it
is considered a failure.

The default value of 3 seconds is fine for your function.

9. Click Next to review your function, and then click Create function to finish creating your Lambda
function.

10 Chapter 1. Contents

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide, Release 1.0

Once your Lambda function has been created, its Amazon Resource Name (ARN) will be displayed
in the top-right corner of the detail screen. It will look similar to this:

arn:aws:lambda:us-east-1:123456789012:function:HelloFunction

10. Copy your function’s ARN to use later when creating your state machine.

Tip: For more information about AWS Lambda, see the Lambda Developer Guide.

Optional: Test Your Lambda Function

If you want to, you can test your Lambda function now to see it in operation—a good idea if you’re
developing a Lambda function to use in a real state machine!

To test your Lambda function

1. At the top of your Lambda function’s detail screen, click the Test button.

The Input sample event screen will appear, pre-loaded with sample data:

{
"key3": "value3",
"key2": "value2",
"key1": "value1"

}

2. Replace the sample data with the following (or use your own name in place of "AWS Step
Functions"):

{
"who": "AWS Step Functions"

}

Note: The “who” entry corresponds to the event.who field that’s used in your Lambda function
to complete the greeting. You will use this same input data when running the function as a Step
Functions task.

3. Click Save and test to test your Lambda function with the data. The results of the test appear at the
bottom of the screen, so you may have to scroll the window to see them:

1.3. Tutorial: A Lambda State Machine 11

https://docs.aws.amazon.com/lambda/latest/dg/

AWS Step Functions Developer Guide, Release 1.0

1.3.4 Step 3: Create a State Machine

Next, using the Step Functions console, you will create a state machine that contains a single Task state.
You will put a reference to your Lambda function in the Task state, causing the Lambda function to be
invoked when an execution of the state machine reaches that state.

To create the state machine

1. Open the Step Functions console.

2. Click Get Started. This will display the Create State Machine screen. (If you have already created a
state machine using Step Functions, click Dashboard in the left pane then click Create a State
Machine.

12 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

1.3. Tutorial: A Lambda State Machine 13

AWS Step Functions Developer Guide, Release 1.0

3. In the box below Give a name to your State Machine type a name, such as “LambdaStateMachine”.

Note: State machine names must be unique for your account and region.

4. Click the Hello World blueprint. The available blueprints enable you to begin with an example state
machine template.

The Code pane will be populated with the Amazon States Language description of the state machine:

{
"Comment": "A Hello World example of the Amazon States Language using

→˓an AWS Lambda Function",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:REGION:ACCOUNT_ID:function:FUNCTION_

→˓NAME",
"End": true

}
}

}

The state machine blueprint consists of a single Task state, called HelloWorld. The Resource

14 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

parameter will be used to reference the ARN of the Lambda function, HelloFunction, that you
created earlier.

5. In the code, replace the value of the Resource field
(arn:aws:lambda:REGION:ACCOUNT_ID:function:FUNCTION_NAME) with the ARN
of the Lambda function that you saved previously. When you hover over the current value, you
should see a pop-up window that allows you to select and auto-complete the new value from a list of
Lambda ARN’s. Delete the old value, then click the appropriate ARN to fill in the new. Your edited
code should look similar to this:

{
"Comment": "A Hello World example of the Amazon States Language using

→˓an AWS Lambda Function",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:

→˓HelloFunction",
"End": true

}
}

}

6. Verify that the Preview pane displays the following graph of your state machine. If you don’t see the
graph, click the refresh icon in the Preview pane.

The graph helps you verify that your Amazon States Language code describes your state machine
correctly.

7. Click the Create State Machine button. A pop-up window will appear, titled IAM role for your state
machine executions.

1.3. Tutorial: A Lambda State Machine 15

AWS Step Functions Developer Guide, Release 1.0

8. In the Select an IAM role for your tasks drop-down list, select the role
(StatesExecutionRole-REGION) that has been automatically created for you by Step
Functions and then click OK to finish creating your state machine.

Note: If you delete the IAM role that has been automatically created for you, there is no way for Step
Functions to re-create it for you at a later time. Similarly, if you modify the role (for example, by removing
Step Functions from the principals in the IAM policy), there is no way for Step Functions to restore its
original settings at a later time. For more information on creating an IAM role by hand, see Creating IAM
Roles for Use with AWS Step Functions.

1.3.5 Step 4: Start an Execution

As soon as you finish creating a state machine, you will see an acknowledgment page. From here, you can
start a new execution of your state machine using the New execution button. You can also start a new
execution at any time from the state machine’s detail page, which can be reached from the dashboard.

To start a new execution using the console

1. In the left pane, click Dashboard. You will see the state machine you just created.

16 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

2. Click the state machine (LambdaStateMachine) to see its detail page.

3. From your state machine’s detail page, click New execution. The New execution pane will open and
display an execution input area.

1.3. Tutorial: A Lambda State Machine 17

AWS Step Functions Developer Guide, Release 1.0

Tip: To help identify your execution, you can optionally enter an id for it. If you don’t, a unique id
will be generated for you. To set the id, use the box labelled Enter you execution id here.

4. In the execution input area, change the JSON to:

{
"who" : "AWS Step Functions"

}

You may recall that “who” was the key name that your Lambda function uses to get the name of the
person/thing to greet. In this case, you have set its value to “AWS Step Functions”, but you can use
any name you want to.

5. Below the execution input area, click the Start Execution button to start the execution using the input
you provided. A new execution will start, and a new page will appear, showing your open execution.

6. In the Execution Details section, click the Info tab to see the Execution Status and when the
execution started and closed.

7. Once it completes, click the Output tab to see the results of your execution:

18 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

Congratulations, you have implemented and executed your first state machine that uses a Lambda function!

1.4 Tutorial: An Activity State Machine

Although you can use AWS Lambda to perform tasks, as shown in Tutorial: A Lambda State Machine, you
can also run task code on your own machines. This topic will provide you with a quick introduction to
writing an activity-based state machine with Java and AWS Step Functions.

Contents

• Prerequisites

• Step 1: Create a New Activity

• Step 2: Create a State Machine

• Step 3: Implement a Worker

• Step 4: Start the Execution

• Step 5: Run the Worker

• Step 6: Stop the Worker

1.4.1 Prerequisites

To complete this tutorial, you will need:

• An Amazon Web Services account. If you haven’t yet signed up for AWS, go to
http://aws.amazon.com/ and click Sign In to the Console.

• The AWS SDK for Java. The example activity shown in this tutorial is a Java application that uses
the AWS SDK for Java to communicate with AWS.

1.4. Tutorial: An Activity State Machine 19

http://aws.amazon.com/
https://aws.amazon.com/sdk-for-java/

AWS Step Functions Developer Guide, Release 1.0

• AWS credentials in the environment or in the standard AWS configuration file. For more
information, see Set up your AWS credentials in the AWS Java Developer Guide.

1.4.2 Step 1: Create a New Activity

In this step, you let Step Functions know about the activity whose worker (implementation) you are about
to write. Step Functions responds with an ARN that establishes an identity for the activity. You will utilize
this identity when creating your state machine and implementing your worker in order to coordinate
information passed between them.

1. Sign in to the Step Functions console.

2. Click Tasks in the left pane.

3. Click the Create new activity button to create a new activity. Give your activity a name, such as
get-greeting.

4. Click the Create Activity button to complete creating the new activity.

Your activity is represented by an Amazon Resource Name (ARN) that ends with the name that you
gave to the task, for example:

arn:aws:states:us-east-1:123456789012:activity:get-greeting

5. Make a note of the ARN—you will need to refer to your activity’s ARN in the state machine
definition and in the worker code.

Next, you will create the state machine.

1.4.3 Step 2: Create a State Machine

In this step you create a state machine that will determine when your activity is invoked, and so your
worker should perform its primary work, collect the results and send them back.

1. In the Step Functions console click Dashboard in the left pane.

2. Click the Create a State Machine button.

3. In the box below Give a name to your state machine, type a name such as
HelloActivityStateMachine.

4. In the Code pane, add the following code to the state machine:

{
"Comment": "An example using a Task state.",
"StartAt": "getGreeting",
"Version": "1.0",
"TimeoutSeconds": 300,
"States":
{

"getGreeting": {
"Type": "Task",
"Resource": "arn:aws:states:eu_central-1:123456789012:activity:get-

→˓greeting",

20 Chapter 1. Contents

http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/set-up-creds.html

AWS Step Functions Developer Guide, Release 1.0

"End": true
}

}
}

This is a description of your state machine using the Amazon States Language. It defines a single
activity named get-greeting. Your activity’s ARN is specified in the Resource field.

Note: For more information about the state machine description language, see Amazon States
Language Overview.

5. In the code you just entered, replace the value of the Resource field with the ARN of the activity
that you created in Step 1: Create a New Activity.

6. Click the Create State Machine button. A pop-up window will appear, titled IAM role for your state
machine executions.

7. In the Select an IAM role for your tasks drop-down list, select the role
(StatesExecutionRole-REGION) that was automatically created for you by Step Functions,
and then click OK to finish creating your state machine.

Note: If you delete the IAM role that has been automatically created for you, there is no way for Step
Functions to re-create it for you at a later time. Similarly, if you modify the role (for example, by removing
Step Functions from the principals in the IAM policy), there is no way for Step Functions to restore its
original settings at a later time. For more information on creating an IAM role by hand, see Creating IAM
Roles for Use with AWS Step Functions.

1.4. Tutorial: An Activity State Machine 21

AWS Step Functions Developer Guide, Release 1.0

When state machine creation is complete, you will be presented with your state machine’s detail page. If
you click the Dashboard link, you will see your state machine’s ARN in the list of state machines that you
have created. Clicking on the state machine will return you to its detail page.

1.4.4 Step 3: Implement a Worker

You now have an activity ARN and you have created a new state machine. Next, you will create a program
known as an worker, which is responsible for: polling Step Functions for activities (using the
“GetActivityTask” API call), performing the work of the activity (with code you write, for example, the
getGreeting() method in the code below) and sending the results back (using the “SendTask*” API
calls).

1. Create a new Java source file named GreeterActivities.java.

2. Add the following code to it:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.stepfunctions.AWSStepFunctionsClient;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskRequest;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskResult;
import com.amazonaws.services.stepfunctions.model.SendTaskFailureRequest;
import com.amazonaws.services.stepfunctions.model.SendTaskSuccessRequest;
import com.amazonaws.util.json.Jackson;
import com.fasterxml.jackson.databind.JsonNode;

public class GreeterActivities {

public String getGreeting(String who) throws Exception {
return "{\"Hello\": \"" + who + "\"}";

}

public static void main(final String[] args) throws Exception {
GreeterActivities greeterActivities = new GreeterActivities();
AWSStepFunctionsClient client = new AWSStepFunctionsClient(

new BasicAWSCredentials(ACCESS_KEY, SECRET_KEY),
new ClientConfiguration());

String greetingResult;
while (true) {

GetActivityTaskResult getActivityTaskResult =
client.getActivityTask(

new GetActivityTaskRequest().withActivityArn(
ACTIVITY_ARN));

if (getActivityTaskResult != null) {
try {

JsonNode json = Jackson.
→˓jsonNodeOf(getActivityTaskResult.getInput());

greetingResult =
greeterActivities.getGreeting(json.get("who

→˓").textValue());

22 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

client.sendTaskSuccess(
new SendTaskSuccessRequest().withOutput(

greetingResult).
→˓withTaskToken(getActivityTaskResult.getTaskToken()));

} catch (Exception e) {
client.sendTaskFailure(new SendTaskFailureRequest().

→˓withTaskToken(
getActivityTaskResult.getTaskToken()));

}
} else {

Thread.sleep(1000);
}

}
}

}

3. In the code, replace ACCESS_KEY and SECRET_KEY in the parameter list of
BasicAWSCredentials() with references to your corresponding user security credentials for
the account you are using.

4. In the code, replace the value of the parameter to
GetActivityTaskRequest().withActivityArn() with the ARN of the activity that you
created in Step 1: Create a New Activity.

1.4.5 Step 4: Start the Execution

In this step, you start an execution of the state machine so your worker can poll Step Functions, perform its
work (using input you provide) and, when it is done, send back its results.

1. In the Step Functions console, click Dashboard in the left pane, and then click the state machine that
you created in Step 2: Create a State Machine (ActivityStateMachine.) This will open its detail page.

2. On the state machine’s detail page, click New execution. The New execution pane will open.

Tip: To help identify your execution, you can enter an id for it. If you don’t, a unique id will be
generated for you.

3. Provide the following input to the state machine:

{
"who" : "AWS Step Functions"

}

4. Click the Start Execution button to start the execution using the input that you provided. Your state
machine will start executing, and a new page will appear, showing your open execution.

1.4. Tutorial: An Activity State Machine 23

AWS Step Functions Developer Guide, Release 1.0

1.4.6 Step 5: Run the Worker

You must run your worker in order to have it poll your state machine for activities.

1. Open a terminal (command-line) window and navigate to the directory in which you created
GreeterActivities.java.

2. Compile it:

$ javac GreeterActivities.java

3. Run it:

$ java GreeterActivities

4. Return to the Step Functions console where the Execution Details page should be displayed.

5. Once the execution completes, click the Output tab to see the results of your execution.

1.4.7 Step 6: Stop the Worker

1. Stop your worker that you started in Step 5: Run the Worker.

Note: If you don’t stop your worker, it will continue to run and poll for activities. Because the execution is
now stopped, your worker has no source of tasks and will generate a SocketTimeoutException each time it
polls.

Congratulations, you have successfully created and run an activity-based state machine! You can provide
any activity code you want, and run it as a task in your state machine.

1.5 Tutorial: Handle Errors Using Retry

This tutorial will show you how to handle error conditions with a state machine that uses a Retry field. To
generate the error conditions, you will use an AWS Lambda function that automatically generates an error.

Contents

• Prerequisites

• Step 1: Create an IAM Role for Lambda

• Step 2: Create a Lambda Function That Fails

• Step 3: Create a State Machine with a Retry Field

• Step 4: Start an Execution

24 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

1.5.1 Prerequisites

To complete this tutorial, you will need:

• An AWS account. If you haven’t yet signed up for AWS, go to http://aws.amazon.com/ and click
Sign In to the Console.

1.5.2 Step 1: Create an IAM Role for Lambda

Note: If you followed the steps in Tutorial: A Lambda State Machine you have already performed this
step and may skip to the next.

Both Lambda and AWS Step Functions are capable of executing code and accessing AWS resources (such
as data stored in Amazon S3 buckets), so to maintain security, you must grant Lambda and Step Functions
access to those resources. This is done automatically for Step Functions—an IAM role is created when you
create a state machine (though you can define and use your own, if you wish.)

Lambda requires you to assign an IAM role when you create an AWS Lambda function in the same way
Step Functions required you to assign an IAM role when you create a state machine. So you will create one
for Lambda now.

To create a role for use with Lambda

1. Open the IAM console.

2. Choose Roles in the left pane, then click the Create New Role button to begin the role-creation
process.

3. On Set Role Name, type a name for your role, such as lambda-role, and click Next Step.

4. On Select Role Type, choose AWS Lambda from the list.

Note: This will cause you to skip over the Establish Trust step. The role is automatically provided
with a trust relationship that allows Lambda to use the role.

5. On Attach Policy, don’t attach any policy. Click Next Step.

6. On Review, you get a final chance to change the name and policy for your role. Click Create Role.

Your role should now appear in the list of roles in the IAM console.

1.5.3 Step 2: Create a Lambda Function That Fails

1. Open the Lambda console.

If you have never created a Lambda function before, you will be greeted with a screen with a single
button Get Started Now that allows you to create your first Lambda function.

1.5. Tutorial: Handle Errors Using Retry 25

http://aws.amazon.com/
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide, Release 1.0

2. If this is your first Lambda function, then click the Get Started Now button. Otherwise, click the
Create a Lambda function button. The first screen that appears is the Select blueprint screen. You
won’t need a blueprint because you will type the code for your function by hand.

3. In the left pane, click Configure function.

4. On the screen that appears, type your function’s Name and Description, and choose the Runtime,
using the following data:

Field Value
Name FailFunction
Description Always generate an error.
Runtime Node.js 4.3

5. Next, enter the code for the Lambda function:

exports.handler = function(event, context) {
context.fail("error");

};

The context object can be used to return an error from your function using the fail method. Here,
you return a message consisting of just “error”.

6. In the Lambda function handler and role section, open the Role drop-down list and select Choose an
existing role.

7. Open the Existing role drop-down list and choose the Lambda role that you created earlier
(lambda-role).

Note: If the IAM role that you created doesn’t appear in the list, the role might still need a few
minutes to propagate to Lambda. In the meanwhile, verify that ‘lambda.amazonaws.com’ has access
to the role. Revisit Step 2: Create a Lambda Function That Fails to verify or edit the trust
relationship for your role.

8. In the Advanced settings section, accept the default values. Note that you can set a Timeout value in
seconds. This timeout value can be set to restrict how long your function can take to execute before it
is considered a failure.

The default value of 3 seconds is fine for your function.

9. Click Next to review your function, and then click Create function to finish creating your Lambda
function.

Once your Lambda function has been created, its Amazon Resource Name (ARN) will be displayed
in the top-right corner of the detail screen for your function. It will look similar to this:

arn:aws:lambda:us-east-1:123456789012:function:FailFunction

10. Copy your function’s ARN to use when creating your state machine.

Tip: For more information about AWS Lambda, see the Lambda Developer Guide.

26 Chapter 1. Contents

https://docs.aws.amazon.com/lambda/latest/dg/

AWS Step Functions Developer Guide, Release 1.0

Optional: Test Your Lambda Function

If you want to, you can test your Lambda function now to see it in operation—a good idea if you’re
developing a Lambda function to use in a real state machine!

To test your Lambda function

1. At the top of your Lambda function’s detail screen, click the Test button.

The Input sample event screen will appear, pre-loaded with sample data which, in this case, won’t be
used or changed.

2. Click Save and test to test your Lambda function. The results of the test appear at the bottom of the
screen, so you may need to scroll the window to see them. (You should see an error message, which
is the expected behavior.)

1.5.4 Step 3: Create a State Machine with a Retry Field

Next, using the Step Functions console, you will create a state machine that contains a Task state with a
Retry field. You will put a reference to your Lambda function in the Task state, causing the Lambda
function to be invoked, and fail, during execution. The function will be retried twice with an exponential
backoff between retries.

To create the state machine

1. Open the Step Functions console.

2. Click Get Started. This will display the Create State Machine screen. (If you have already created a
state machine using Step Functions, click Dashboard in the left pane and then click Create a State
Machine.)

1.5. Tutorial: Handle Errors Using Retry 27

AWS Step Functions Developer Guide, Release 1.0

28 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

3. In the box below Give a name to your State Machine, type a name, such as “RetryStateMachine”.

Note: State machine names must be unique for your account and region.

4. Click the Retry Failure blueprint. The available blueprints enable you to begin with an example state
machine template.

The Code pane will be populated with the Amazon States Language description of the state machine.

The state machine blueprint consists of a single Task state, named HelloWorld. The Resource
parameter will be used to reference the ARN of the Lambda function, FailFunction, that you created
earlier.

5. In the code, replace the value of the Resource field
(arn:aws:lambda:REGION:ACCOUNT_ID:function:FUNCTION_NAME) with the ARN
of the Lambda function that you saved previously. When you hover over the current value, you
should see a pop-up window that allows you to select and auto-complete the new value from a list of
Lambda ARN’s. Delete the old value, then click the appropriate ARN to fill in the new.

6. Check that the resulting code looks similar to this:

{
"Comment": "A Retry example of the Amazon States Language using an

→˓AWS Lambda Function",

1.5. Tutorial: Handle Errors Using Retry 29

AWS Step Functions Developer Guide, Release 1.0

"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:

→˓FailFunction",
"Retry": [

{
"ErrorEquals": ["HandledError"],
"IntervalSeconds": 1,
"MaxAttempts": 2,
"BackoffRate": 2.0

},
{

"ErrorEquals": ["States.TaskFailed"],
"IntervalSeconds": 30,
"MaxAttempts": 2,
"BackoffRate": 2.0

},
"ErrorEquals": ["States.ALL"],
"IntervalSeconds": 5,
"MaxAttempts": 5,
"BackoffRate": 2.0

}
],
"End": true

}
}

}

Note: For more information on the syntax of the Retry field, see Retrying After an Error.

7. Click the Create State Machine button. A pop-up window will appear, titled IAM role for your state
machine executions.

30 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

8. In the Select an IAM role for your tasks list, select the role (StatesExecutionRole-REGION)
that was automatically created for you by Step Functions, and then click OK to finish creating your
state machine.

Note: If you delete the IAM role that has been automatically created for you, there is no way for Step
Functions to re-create it for you at a later time. Similarly, if you modify the role (for example, by removing
Step Functions from the principals in the IAM policy), there is no way for Step Functions to restore its
original settings at a later time. For more information on creating an IAM role by hand, see Creating IAM
Roles for Use with AWS Step Functions.

1.5.5 Step 4: Start an Execution

As soon as you finish creating a state machine, you will see an acknowledgment page. From here, you can
start a new execution of your state machine using the New execution button. You can also start a new
execution at any time from the state machine’s detail page, which can be reached from the dashboard.

To start a new execution using the console

1. In the left pane, click Dashboard. You will see the state machine you just created.

1.5. Tutorial: Handle Errors Using Retry 31

AWS Step Functions Developer Guide, Release 1.0

2. Click the state machine (RetryStateMachine) to see its detail page.

3. From your state machine’s detail page, click New execution. The Execution Input pane will open.

32 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

Tip: To help identify your execution, you can optionally enter an id for it. If you don’t, a unique id
will be generated for you. To set the id, use the box labelled Enter your execution id here.

4. Below the Execution input pane, click the Start Execution button to start the execution. A new
execution will start, and a new page will appear, showing your open execution. Wait a few moments
for the execution to end.

5. In the Execution Details section, click the Info tab to see the execution status and when the execution
started and closed.

6. Click the Output tab to see the output returned by the state machine.

1.5. Tutorial: Handle Errors Using Retry 33

AWS Step Functions Developer Guide, Release 1.0

The bottom of the page (Step Details) shows that the Lambda function was tried once, and then retried two
additional times, before the execution as a whole failed.

34 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

Note: If you don’t see the ExecutionFailed event, refresh your web page to get a full list of history events.

You have successfully implemented and run your first state machine that uses a Retry field!

You can also create state machines that Retry on timeouts and that use Catch to transition to a specific state
when an error or timeout occurs. For examples of these error handling techniques, see Examples Using
Retry and Catch.

1.6 AWS Step Functions Concepts

To understand AWS Step Functions, you will need to be familiar with a number of important concepts.
This section will describe, at a high level, how Step Functions operates.

1.6.1 Amazon States Language

Amazon States Language is a JSON-based, structured language used to define your state machine. Here is
an example of a state machine specification using the Amazon States Language:

{
"Comment": "An Amazon States Language example using a Choice state.",
"StartAt": "FirstState",
"States": {

"FirstState": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:FUNCTION_

→˓NAME",
"Next": "ChoiceState"

},
"ChoiceState": {

"Type" : "Choice",
"Choices": [

{
"Variable": "$.foo",
"NumericEquals": 1,
"Next": "FirstMatchState"

},
{
"Variable": "$.foo",
"NumericEquals": 2,
"Next": "SecondMatchState"

}
],
"Default": "DefaultState"

},

"FirstMatchState": {
"Type" : "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:OnFirstMatch

→˓",

1.6. AWS Step Functions Concepts 35

AWS Step Functions Developer Guide, Release 1.0

"Next": "NextState"
},

"SecondMatchState": {
"Type" : "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:

→˓OnSecondMatch",
"Next": "NextState"

},

"DefaultState": {
"Type": "Fail",
"Cause": "No Matches!"

},

"NextState": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:FUNCTION_

→˓NAME",
"End": true

}
}

}

A state machine consists of a collection of states, that can do work (Task states), determine which states to
transition to next (Choice states), stop an execution with an error (Fail states), and so on.

For an overview of Amazon States Language, see the Amazon States Language Overview.

For information on how to use Amazon States Language to create a state machine on the AWS Step
Functions console, see Create State Machine.

1.6.2 States

States are elements in your state machine. A state is referred to by its name, which can be any string, but
which must be unique within the scope of the entire state machine.

States can perform a variety of functions in your state machine:

• Do some work in your state machine (a Task state).

• Make a choice between branches of execution (a Choice state)

• Stop an execution with a failure or success (a Fail or Succeed state)

• Simply pass its input to its output or inject some fixed data (a Pass state)

• Provide a delay for a certain amount of time or until a specified time/date (a Wait state)

• Begin parallel branches of execution (a Parallel state)

For example, here is a sample state named HelloWorld which performs a Lambda function:

36 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloFunction",
"Next": "AfterHelloWorldState",
"Comment": "Run the HelloWorld Lambda function"

}

States share a number of common features:

• Each state must have a Type field indicating what type of state it is.

• Each state can have an optional Comment field to hold a human-readable comment about, or
description of, the state.

• Each state (except a Succeed or Fail state) requires a Next field or, alternatively, can become a
terminal state by specifying an End field. (A Choice state may have more than one Next but only one
within each Choice Rule. A Choice state cannot use End.)

Certain state types require additional fields, or may redefine common field usage.

For more information regarding the various states that you can define using Amazon States Language, see
States.

Once you have created a state machine and executed it, you can access information about each state, its
input and output, when it was active and for how long, by viewing the Execution Details screen on the Step
Functions console.

1.6.3 Tasks

All work in your state machine is done by tasks. A task can be:

• An Activity, which can consist of any code in any language. Activities can be hosted on EC2, ECS,
mobile devices—basically anywhere. Activities must poll AWS Step Functions using the
GetActivityTask and SendTask* API calls. (Ultimately, an activity can even be a human task—a task
that waits for a human to perform some action and then continues.)

• A Lambda function, which is a completely cloud-based task that runs on the Lambda service.
Lambda functions can be written in JavaScript (which you can write using the AWS Management
Console or upload to Lambda), or in Java or Python (uploaded to Lambda).

Tasks are represented in Amazon States Language by setting a state’s type to Task and providing it with
the ARN of the created activity or Lambda function. For details about how to specify different task types,
see Task in the Amazon States Language Overview.

To see a list of your tasks, you can access the Tasks screen in the Step Functions console.

1.6.4 Transitions

When an execution of a state machine is launched, the system begins with the state referenced in the
top-level StartAt field. This field (a string) must exactly match, including case, the name of one of the
states.

1.6. AWS Step Functions Concepts 37

https://aws.amazon.com/lambda/

AWS Step Functions Developer Guide, Release 1.0

After executing a state, AWS Step Functions uses the value of the Next field to determine the next state to
advance to.

Next fields also specify state names as strings, and must exactly match the name of a state specified in the
state machine description (case-sensitive).

For example, the following state includes a transition to NextState:

"SomeState": {
...,
"Next": "NextState"

}

Most states permit only a single transition rule via the Next field. However, certain flow-control states (for
example, a Choice state) allow you to specify multiple transition rules, each with its own Next field. The
Amazon States Language Overview provides details about each of the state types you can specify, including
information about how to specify transitions.

States can have multiple incoming transitions from other states.

The process repeats until it reaches a terminal state (i.e. a state with "Type": Succeed, "Type":
Fail, or "End": true), or a runtime error occurs.

The following rules apply to states within a state machine:

• States can occur in any order within the enclosing block, but the order in which they’re listed doesn’t
affect the order in which they’re run, which is determined by the contents of the states themselves.

• Within a state machine, there can be only one state that’s designated as the start state (which is
designated by the value of the StartAt field in the top-level structure.)

• Depending on your state machine logic—for example, if your state machine has multiple branches of
execution—you may have more than one end state.

• If your state machine consists of only one state, it can be both the start state and the end state.

1.6.5 State Machine Data

State Machine data takes the following forms:

• The initial input to a state machine

• Data passed between states

• The output from a state machine.

This topic describes how state machine data is formatted and used in AWS Step Functions.

Contents

• Data Format

• State Machine Input/Output

38 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

• State Input/Output

Data Format

State machine data is represented by JSON text, so values can be provided using any data type supported
by JSON: objects, arrays, numbers, strings, boolean values, and null.

Note that:

• Numbers in JSON text format conform to JavaScript semantics, typically corresponding to
double-precision IEEE-854 values.

• Stand-alone quote-delimited strings, booleans, and numbers are valid JSON text.

• The output of a state becomes the input to the next state. However, states can be restricted to working
on a subset of the input data by using Filters.

State Machine Input/Output

AWS Step Functions can be given initial input data when you start an execution, by passing it to
StartExecution or by passing initial data using the Step Functions console. Initial data is passed to the state
machine’s StartAt state. If no input is provided, the default is an empty object {}.

The output of the execution is returned by the terminal (i.e. last) state that is reached, and is provided as
JSON text in the execution’s result. Execution results can be retrieved from the execution history by
external callers (for example, in DescribeExecution) and can be viewed in the Step Functions console.

State Input/Output

Each state’s input consists of JSON text received from the preceding state or, in the case of the StartAt
state, the input to the execution.

A state’s output must be given as JSON text. Certain flow-control states simply echo their input to their
output.

For example, here is a state machine that adds two numbers together:

{
"Comment": "An example that adds two numbers.",
"StartAt": "Add",
"Version": "1.0",
"TimeoutSeconds": 10,
"States":
{

"Add": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Add",
"End": true

}

1.6. AWS Step Functions Concepts 39

https://standards.ieee.org/findstds/standard/854-1987.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html

AWS Step Functions Developer Guide, Release 1.0

}
}

which uses this lambda function:

function Add(input) {
var numbers = JSON.parse(input).numbers;
var total = numbers.reduce(

function(previousValue, currentValue, index, array) {
return previousValue + currentValue; });

return JSON.stringify({ result: total });
}

If an execution is started with the JSON text:

{ "numbers": [3, 4] }

The Add state receives the JSON text and passes it to the lambda function, which returns the result of the
calculation to the state. The state then returns this value in its output:

{ "result": 7 }

Since Add is also the final state in the state machine, this value is returned as the state machine’s output. If
the final state returns no output, then the state machine returns an empty object ({}).

Filters

Some states, such as Task, have InputPath, ResultPath and OutputPath fields. The values of these fields are
paths.

The InputPath field selects a portion of the state’s input to be passed to the state’s processing logic (an
Activity, Lambda function, or so on). If the InputPath field is omitted, the entire state input is selected by
default (i.e. $.) If it is null, an empty object {} is passed.

The ResultPath field selects a portion of the state’s input to be overwritten by, or added to, with result data
from the state’s processing logic. The ResultPath field is optional and, if omitted, defaults to $, which
overwrites the entire input. However, before the input is sent as the state’s output, a portion can be selected
with the OutputPath field...

The OutputPath field is also optional and, if omitted, defaults to $, which selects the entire input (as
modified by the ResultPath), sending it as the state’s output.

The ResultPath field’s value can be null, which causes any output from your state’s processing logic to be
discarded instead of added to the state’s input (and, so its output.) In this scenario, the state’s output is
identical to the state’s input, given the default value for the OutputPath field.

If the OutputPath field’s value is null, and empty object {} is sent as the state’s output.

Here is an example. Given the following ResultPath field in a state that outputs the sum of its input values:

40 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

"InputPath": "$.numbers",
"ResultPath": "$.sum"
"OutputPath": "$"

With the following state input data:

{
"numbers": [3, 4]

}

The state output data will have the following structure and values:

{
"numbers": [3, 4],
"sum": 7

}

Let’s change the OutputPath in our example slightly...

"InputPath": "$.numbers",
"ResultPath": "$.sum"
"OutputPath": "$.sum"

As before, with the following state input data:

{
"numbers": [3, 4]

}

But now, the state output data will be:

{
7

}

By using the InputPath and ResultPath fields in this way, you can design separation between the names of
data members in your state machine data, and the functions that process it.

1.6.6 Executions

When a state machine runs and performs its tasks, we refer to this as a state machine “execution”. Each
AWS Step Functions state machine can be have multiple, simultaneous executions which can be initiated
from the Step Functions console or by a program you write using the API, AWS SDKs and so on (see
Development Options.) An execution is given input data in JSON text format and produces output in JSON
text format, which you can also access using an application you write or from the Step Functions console.

For more information on initiating an execution from the Step Functions console, see State Machine
Details.

1.6. AWS Step Functions Concepts 41

AWS Step Functions Developer Guide, Release 1.0

1.6.7 Error Handling

Any state can encounter runtime errors. Errors can arise because of state machine definition issues (e.g. no
matching rule in a Choice state), task failures (e.g. an exception thrown by a Lambda function) or because
of transient issues, such as network partition events. When a state reports an error, the default course of
action for AWS Step Functions is to fail the execution entirely.

Error Representation

Errors are identified in Amazon States Language by case-sensitive strings, called Error Names. Amazon
States Language defines a set of built-in strings naming well-known errors, all of which begin with the
prefix “States.”:

Predefined Error Codes

States.ALL A wild-card that matches any Error Name.

States.Timeout A Task state either ran longer than the “TimeoutSeconds” value, or failed to send a
heartbeat for a time longer than the “HeartbeatSeconds” value.

States.TaskFailed A Task state failed during the execution.

States.Permissions A Task state failed because it had insufficient privileges to execute the specified
code.

States may report errors with other names, which must not begin with the prefix “States.”.

Retrying After an Error

Task and Parallel states may have a field named Retry, whose value must be an array of objects, called
Retriers. An individual Retrier represents a certain number of retries, usually at increasing time intervals.

A Retrier contains the following fields:

ErrorEquals A non-empty array of Strings that match Error Names. When a state reports an error, Step
Functions scans through the Retriers and, when the Error Name appears in this array, it implements
the retry policy described in this Retrier. [Required]

IntervalSeconds An integer that represents the number of seconds before the first retry attempt
(default 1). [Optional]

MaxAttempts A positive integer, representing the maximum number of retry attempts (default 3). If the
error recurs more times than specified, retries cease and normal error handling resumes. A value of 0
is permitted and indicates that the error or errors should never be retried. [Optional]

BackoffRate A number that is the multiplier by which the retry interval increases on each attempt
(default 2.0). [Optional]

Here is an example of a Retry field that will make 2 retry attempts after waits of 3 and 4.5 seconds:

"Retry" : [
{

"ErrorEquals": ["States.Timeout"],

42 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

"IntervalSeconds": 3,
"MaxAttempts": 2,
"BackoffRate": 1.5

}
]

The reserved name States.ALL appearing in a Retrier’s ErrorEquals field is a wildcard that matches
any Error Name. It must appear alone in the ErrorEquals array and must appear in the last Retrier in
the Retry array.

Here is an example of a Retry field that will retry any error except for States.Timeout:

"Retry" : [
{

"ErrorEquals": ["States.Timeout"],
"MaxAttempts": 0

},
{

"ErrorEquals": ["States.ALL"]
}

]

Complex Retry Scenarios

A Retrier’s parameters apply across all visits to that Retrier in the context of a single state execution. This
is best illustrated by an example; consider the following Task state:

"X": {
"Type": "Task",
"Resource": "arn:aws:states:us-states-1:123456789012:task:X",
"Next": "Y",
"Retry": [

{
"ErrorEquals": ["ErrorA", "ErrorB"],
"IntervalSeconds": 1,
"BackoffRate": 2,
"MaxRetries": 2

},
{

"ErrorEquals": ["ErrorC"],
"IntervalSeconds": 5

}
],
"Catch": [

{
"ErrorEquals": ["States.ALL"],
"Next": "Z"

}
]

}

Suppose that this task fails five successive times, throwing Error Names “ErrorA”, “ErrorB”, “ErrorC”,
“ErrorB” and “ErrorB”. The first two errors match the first retrier and cause waits of one and two seconds.

1.6. AWS Step Functions Concepts 43

AWS Step Functions Developer Guide, Release 1.0

The third error matches the second retrier and causes a wait of five seconds. The fourth error matches the
first retrier and causes a wait of four seconds. The fifth error also matches the first retrier, but it has already
reached its limit of two retries (“MaxRetries”) for that particular error (“ErrorB”) so it fails and execution
is redirected to the “Z” state via the “Catch” field.

Note that once the system transitions to another state, no matter how, all Retrier parameters are reset.

Fallback States

Task and Parallel states may have a field named Catch, whose value must be an array of objects, called
Catchers.

A Catcher contains the following fields:

ErrorEquals A non-empty array of Strings that match Error Names, specified exactly as with the
Retrier field of the same name. [Required]

Next A string which must exactly match one of the state machine’s state names. [Required]

ResultPath A path which determines what is sent as input to the state specified by the Next field.
[Optional]

When a state reports an error and either there is no Retry field, or retries have failed to resolve the error,
AWS Step Functions scans through the Catchers in the order listed in the array, and when the Error Name
appears in the value of a Catcher’s ErrorEquals field, the state machine transitions to the state named in the
Next field.

The reserved name States.ALL appearing in a Catcher’s ErrorEquals field is a wildcard that
matches any Error Name. It must appear alone in the ErrorEquals array and must appear in the last
Catcher in the Catch array.

Here is an example of a Catch field that will transition to the state named “RecoveryState” when a Lambda
function throws an unhandled Java Exception, and otherwise to the “EndState” state.

"Catch": [
{

"ErrorEquals": ["java.lang.Exception"],
"ResultPath": "$.error-info",
"Next": "RecoveryState"

},
{

"ErrorEquals": ["States.ALL"],
"Next": "EndState"

}
]

Each Catcher can specify multiple errors to handle.

When AWS Step Functions transitions to the state specified in a Catcher, it sends along as input a JSON
text that is different than what it would normally send to the next state when there was no error. This JSON
text represents an object containing a field "Error" whose value is a string containing the error name.
The object will also, usually, contain a field "Cause" that has a human-readable description of the error.
We refer to this object as the Error Output.

44 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

In this example, the first Catcher contains a ResultPath field. This works in a similar fashion to a
ResultPath field in a state’s top level—it takes the results of executing the state and overwrites a portion of
the state’s input, or all of the state’s input, or it takes the results and adds them to the input. In the case of
an error handled by a Catcher, the result of executing the state is the Error Output.

So in the example, for the first Catcher the Error Output will be added to the input as a field named
error-info (assuming there is not already a field by that name in the input) and the entire input will be
sent to RecoveryState. For the second Catcher, the Error Output will overwrite the input and so just
the Error Output will be sent to EndState. (When not specified, the ResultPath field defaults to $ which
selects, and so overwrites, the entire input.)

When a state has both Retry and Catch fields, Step Functions uses any appropriate Retriers first and only
applies the matching Catcher transition if the retry policy fails to resolve the error.

Examples Using Retry and Catch

The state machines defined next assume the existence of two Lambda functions: one that always fails and
one that waits long enough to allow a timeout defined in the state machine to occur.

Here is the definition of a Lambda function that will always fail, returning the message “error”. In the state
machine examples that follow, it is assumed that it is named “FailFunction”:

exports.handler = function(event, context) {
context.fail("error");

};

Here is the definition of a Lambda function that sleeps for 10 seconds. In the state machine examples that
follow, it is assumed that it is named “sleep10”:

Note: When you create this Lambda function in the Lambda console, remember to change the Timeout
value in the Advanced settings section from 3 seconds (the default) to 10 seconds.

exports.handler = function(event, context) {
setTimeout(function(){

context.succeed(1);
}, 10000);

};

Handle a Failure Using Retry

This state machine uses a Retry field to retry a function that fails and throws the errorName
“HandledError”. The function will be retried twice with an exponential backoff between retries:

{
"Comment": "A Hello World example of the Amazon States Language using an

→˓AWS Lambda Function",
"StartAt": "HelloWorld",
"States": {

1.6. AWS Step Functions Concepts 45

AWS Step Functions Developer Guide, Release 1.0

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction

→˓",
"Retry": [

{
"ErrorEquals": ["HandledError"],
"IntervalSeconds": 1,
"MaxAttempts": 2,
"BackoffRate": 2.0

}
],
"End": true

}
}

}

Here is a variant that uses the predefined ErrorCode “States.TaskFailed”, which will match any error that a
Lambda function throws:

{
"Comment": "A Hello World example of the Amazon States Language using an

→˓AWS Lambda Function",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction

→˓",
"Retry": [

{
"ErrorEquals": ["States.TaskFailed"],
"IntervalSeconds": 1,
"MaxAttempts": 2,
"BackoffRate": 2.0

}
],
"End": true

}
}

}

Handle a Failure Using Catch

This example uses a Catch field. When an error is thrown by the Lambda function, it will be caught and the
state machine will transition to the “fallback” state:

{
"Comment": "A Hello World example of the Amazon States Language using an

→˓AWS Lambda Function",
"StartAt": "HelloWorld",

46 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

"States": {
"HelloWorld": {

"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction

→˓",
"Catch": [

{
"ErrorEquals": ["HandledError"],
"Next": "fallback"

}
],
"End": true

},
"fallback": {

"Type": "Pass",
"Result": "Hello, AWS Step Functions!",
"End": true

}
}

}

Here is a variant that uses the predefined ErrorCode “States.TaskFailed”, which will match any error that a
Lambda function throws:

{
"Comment": "A Hello World example of the Amazon States Language using an

→˓AWS Lambda Function",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction

→˓",
"Catch": [

{
"ErrorEquals": ["States.TaskFailed"],
"Next": "fallback"

}
],
"End": true

},
"fallback": {

"Type": "Pass",
"Result": "Hello, AWS Step Functions!",
"End": true

}
}

}

1.6. AWS Step Functions Concepts 47

AWS Step Functions Developer Guide, Release 1.0

Handle a Timeout With Retry

This state machine uses a Retry field to retry a function that times out. The function will be retried twice
with an exponential backoff between retries:

{
"Comment": "A Hello World example of the Amazon States Language using an

→˓AWS Lambda Function",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:sleep10",
"TimeoutSeconds": 2,
"Retry": [

{
"ErrorEquals": ["States.Timeout"],
"IntervalSeconds": 1,
"MaxAttempts": 2,
"BackoffRate": 2.0

}
],
"End": true

}
}

}

Handle a Timeout With Catch

This example uses a Catch field. When a timeout occurs, the state machine will transition to the “fallback”
state:

{
"Comment": "A Hello World example of the Amazon States Language using an

→˓AWS Lambda Function",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:sleep10",
"TimeoutSeconds": 2,
"Catch": [

{
"ErrorEquals": ["States.Timeout"],
"Next": "fallback"

}
],
"End": true

},
"fallback": {

"Type": "Pass",

48 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

"Result": "Hello, AWS Step Functions!",
"End": true

}
}

}

1.6.8 Creating IAM Roles for Use with AWS Step Functions

AWS Step Functions is capable of executing code and accessing AWS resources (such as data stored in
Amazon S3 buckets), so to maintain security, you must grant Step Functions access to those resources. You
do this for Step Functions with an IAM role.

In the tutorials for Step Functions in this document, you made use of automatically generated IAM roles
that were valid for the region in which you created the state machine. If you wish to create your own IAM
role for use with your state machine, this section outlines the steps needed to do that.

Steps to Create a Role for Use with Step Functions

In this example, you will create an IAM role with permission to invoke a Lambda function.

1. Open the IAM console.

2. Choose Roles in the left pane, then click the Create New Role button to begin the role creation
process.

3. On Set Role Name, type a name for your role, such as states-lambda-role, and click Next
Step.

4. On Select Role Type, choose AWS SWF from the list.

Note: Currently, there is no AWS service role registered with the IAM console for the Step
Functions service. You must select one of the existing role policies and manually modify it after the
role is created.

5. On Attach Policy, click to select the AWSLambdaRole policy, then click Next Step. (If you are
creating a state machine for a different purpose, please choose the appropriate policy here.)

6. On Review, click Create Role. (You always get a final chance to change the name and policy for your
role.)

Next, you will edit the trust relationship for the Step Functions role you created.

7. From the IAM console, click the name of the role that you just created (e.g.
states-lambda-role) from the list. This will open the role’s detail page.

8. Click the Trust Relationships tab and then click Edit Trust Relationship. You will see a trust
relationship such as:

1.6. AWS Step Functions Concepts 49

https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home

AWS Step Functions Developer Guide, Release 1.0

{
"Version": "2012-10-17",
"Statement": [
{

"Sid": "",
"Effect": "Allow",
"Principal": {

"Service": "swf.amazonaws.com"
},
"Action": "sts:AssumeRole"

}
]

}

9. Under the Principal section, replace swf.amazonaws.com with
states.REGION.amazonaws.com (where REGION is AWS region you are working in),
resulting in the following trust relationship (for example):

{
"Version": "2012-10-17",
"Statement": [
{

"Sid": "",
"Effect": "Allow",
"Principal": {

"Service": "states.us-east-1.amazonaws.com"
},
"Action": "sts:AssumeRole"

}
]

}

10. Click Update Trust Policy.

1.7 Development Options

You have a number of options for implementing your state machine solutions with AWS Step Functions.

Contents

• AWS Step Functions console

• AWS SDKs

• HTTPS Service API

• Development Environments

• Endpoints

• AWS CLI

50 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

1.7.1 AWS Step Functions console

You can define a state machine completely within the AWS Step Functions console. By using Lambda to
supply code for your tasks and by using the Step Functions console to write your state machine using
Amazon States Language, even complex state machines can be written completely on the cloud, without
the use of a local development environment.

Tutorial: A Lambda State Machine uses this technique to create a simple state machine, run it, and view its
results.

1.7.2 AWS SDKs

AWS Step Functions is supported by SDKs for Java, .NET, Ruby, PHP, Python (boto 3), JavaScript, Go,
and C++, providing a convenient way to use the Step Functions HTTPS API in the programming language
of your choice.

You can develop state machines, activities, or state machine starters using the API exposed by these
libraries. Additionally, you can access visibility operations through these libraries so you can develop your
own Step Functions monitoring and reporting tools.

If you plan on using Step Functions with other AWS services, it may be helpful to refer to the reference
documentation for the current AWS SDKs. To download or discover more about the AWS SDKs, go to
Tools for Amazon Web Services.

Note: Step Functions only supports an HTTPS endpoint.

1.7.3 HTTPS Service API

AWS Step Functions provides service operations that are accessible through HTTPS requests. You can use
these operations to communicate directly with Step Functions, and you can use them to develop your own
libraries in any language that can communicate with Step Functions through HTTPS.

You can develop state machines, workers, or state machine starters by using the service API. You can also
access visibility operations through the API to develop your own monitoring and reporting tools. For
detailed information about API operations, see the AWS Step Functions API.

1.7.4 Development Environments

You must set up a development environment appropriate to the programming language that you will use.
For example, if you intend to develop for AWS Step Functions with Java, you should install a Java
development environment, such as the AWS SDK for Java, on each of your development workstations. If
you use the Eclipse IDE for Java development, you might consider also installing the AWS Toolkit for
Eclipse. The Toolkit is an Eclipse plug-in that adds features that are helpful for AWS development.

If your programming language requires a run-time environment, you must set up that environment on each
computer on which these processes run.

1.7. Development Options 51

https://aws.amazon.com/tools/
http://docs.aws.amazon.com/step-functions/latest/apireference/Welcome.html

AWS Step Functions Developer Guide, Release 1.0

1.7.5 Endpoints

To reduce latency and to store data in a location that meets your requirements, Step Functions provides
endpoints in different regions.

Each endpoint in Step Functions is completely independent; any state machines and activities you have
created in one region do not share any data or attributes with those in another. In other words, when you
create a state machine or activity, it exists only within the region you created it in. For example, you could
register a state machine named STATES-Flows-1 in two different regions, but they will share no data or
attributes with each other—each acts as a completely independent state machine.

For a list of Step Functions endpoints, see Regions and Endpoints: AWS Step Functions in the Amazon
Web Services General Reference.

1.7.6 AWS CLI

Many of the features of AWS Step Functions can be accessed from the AWS CLI. The AWS CLI provides
an alternative to using the Step Functions console or, in some cases, to programming with the AWS Step
Functions API. For example, you can use the AWS CLI to create a new state machine and you can list your
state machines.

The AWS Step Functions commands in AWS CLI provide the ability to start and manage executions, poll
for activities, record task heartbeats, and more! For a complete list of AWS Step Functions commands,
with descriptions of the available arguments and examples showing their use, see the AWS Command Line
Reference.

The AWS CLI commands follow the Amazon States Language closely, so you can use the AWS CLI to
learn about the underlying AWS Step Functions API. You can also use your existing API knowledge to
prototype code or perform AWS Step Functions actions on the command line.

1.8 Implementing Activities

Activities are an AWS Step Functions concept that refers to a task to be performed by a worker that can be
hosted on EC2, ECS, mobile devices—basically anywhere.

• Creating an Activity

• Writing a Worker

1.8.1 Creating an Activity

Activities are referred to by name. An activity’s name can be any string that adheres to the following rules:

52 Chapter 1. Contents

http://docs.aws.amazon.com/general/latest/gr/rande.html#step-functions_region

AWS Step Functions Developer Guide, Release 1.0

• It must be between 0 – 80 characters in length.

• It must be unique within your AWS account and region.

Activities can be created with Step Functions in any of the following ways:

• Call CreateActivity with the activity name.

• Using the Step Functions console.

Note: Activities are not versioned and are expected to always be backwards compatible. If you must make
a backwards-incompatible change to an activity definition, then a new activity should be created with Step
Functions using a unique name.

1.8.2 Writing a Worker

Workers can be implemented in any language that can make AWS Step Functions API calls. Workers
should repeatedly poll for work by implementing the following pseudo-code algorithm:

[taskToken, jsonInput] = GetActivityTask();
try {

// Do some work...
SendTaskSuccess(taskToken, jsonOutput);

} catch (Exception e) {
SendTaskFailure(taskToken, reason, errorCode);

}

Sending Heartbeat Notifications

States that have long-running activities should provide a heartbeat timeout value to verify that the activity
is still running successfully.

If your activity has a heartbeat timeout value, the worker which implements it must send heartbeat updates
to Step Functions. To send a heartbeat notification from a worker, use the SendTaskHeartbeat action.

1.9 Console Reference

This section describes the AWS Step Functions interface provided by the Step Functions console. The Step
Functions console provides an easy-to-use interface that can be used to generate Step Functions API
requests on your behalf.

1.9.1 Dashboard

The AWS Step Functions dashboard on the Step Functions console is the default screen that you encounter
if you have already created a state machine. If you haven’t created a state machine yet, the first screen you
will encounter is Create State Machine.

1.9. Console Reference 53

http://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html

AWS Step Functions Developer Guide, Release 1.0

It consists of two parts—the Create a State Machine button, and a list of state machines that you have
created.

• Create a State Machine Button

• State Machine List

Create a State Machine Button

Clicking the Create State Machine button starts the Create State Machine process to create a new state
machine.

State Machine List

Shows a list of state machines that you have created along with a number of statistics (the number of
executions that are Running, Finished, or that resulted in Errors) for each state machine. You can click the
state machine’s ARN to show that state machine’s detail page.

Delete a State Machine

In the State Machine list, click the X to the right of a state machine item to delete it.

Note: Once you delete a state machine, its name can’t be used for any new state machine types.

54 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

1.9.2 Create State Machine

The Create State Machine screen allows you to create a new state machine. It is accessed from the
Dashboard by clicking the Create a State Machine button.

1.9. Console Reference 55

AWS Step Functions Developer Guide, Release 1.0

• State Machine Name

• Blueprints

• Preview Pane

• Code Pane

State Machine Name

Use the box below Give a name to your State Machine to specify the state machine name. The name must
be unique for your account and region, and it must meet Amazon Resource Name (ARN) constraints.

Resource names can be from 1 – 80 characters in length, and must:

• Not contain whitespace.

• Not contain bracket characters < > { } []

• Not contain any of : (colon), ; (semi-colon), , (comma), / (slash), \ (backslash), | (vertical bar), ^
(caret), ~ (tilde), $ (dollar sign), # (hash mark), % (percent sign), & (ampersand), ` (left-quote)

56 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

• Not contain any control characters (\u0000 – \u001f or \u007f – \u009f).

• Not contain the literal string “arn”

Blueprints

You can choose one of the state machine blueprints (or templates) to automatically fill the Code pane. Each
of the templates is runnable, and can also be used as a basis for state machine code of your own.

To use a blueprint, click one of the following:

• Wait State – a state machine that demonstrates the different ways to inject a wait into a running state
machine: for a number of seconds or until an absolute time (timestamp), specified either directly in
the Wait state’s definition or from the state’s input data.

• Hello World – a state machine with a single task.

• Retry Failure – a state machine that retries a task after the task fails. This blueprint demonstrates
how to handle multiple retries and various failure types.

• Parallel – a state machine that demonstrates how to execute two branches at the same time.

• Catch Failure – a state machine that performs a different task after its primary task fails. This
blueprint demonstrates how to call many different tasks depending on the type of failure.

• Choice State – a state machine that makes a choice, running one of a set of Task states or a Fail state
after the initial state is complete.

Caution: Choosing any of the options will overwrite the contents of the Code pane. If you have
hand-typed any code in the pane, it will be lost when you choose another blueprint.

Preview Pane

The Preview pane displays a graphical view of your state machine. Use this to verify that the state machine
description in the Code pane accurately represents what you had in mind. If the preview graph does not
appear, click the refresh icon next to Preview.

Code Pane

The Code pane allows you to create or edit a state machine description using JavaScript Object Notation
(JSON). Any changes that you make in the Code pane will be reflected in the Preview pane.

1.9.3 State Machine Details

By clicking a state machine’s ARN on the Dashboard, you bring up its detail page, where you can view its
executions, start new executions and stop running executions.

1.9. Console Reference 57

AWS Step Functions Developer Guide, Release 1.0

• New Execution Button

• Stop Execution Button

• Execution List

New Execution Button

Clicking the New execution button begins the process of starting a new execution of the state machine. A
new pane will open, allowing you to provide the execution with a name (optional) and with input data in
the form of JSON text.

Field Description
Give a name to
this execution

Enter the id of this execution. Providing an id is optional; if you don’t provide one,
a unique id will be automatically generated for you.

JSON input area Enter input data in JSON text format. The input data should include field names
(keys) that are used in your tasks to access the field data.

To accept the values that you entered in the Execution’s input pane and start the execution, click the Start
Execution button that appears below the pane.

Stop Execution Button

If you have a running execution selected in the execution list, click the Stop execution button to stop it
prematurely.

Execution List

Below the Stop execution and New execution buttons is a list of executions. Each execution is listed with its
Name (entered or generated when you click the Start execution button), Status value, indicating if the
execution completed successfully or not, and the Started and End Time of the execution.

58 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

Clicking the execution’s ID in the list brings you to the Execution Details page for that execution.

1.9.4 Execution Details

By clicking an execution ID on the State Machine Details screen, you will be presented with the
execution’s detail page.

The page shows a number of tabbed windows that provide different types of detail about the execution.

• Graph Tab

• Code Tab

• Info Tab

• Input Tab

• Output Tab

• Step Details Tab

1.9. Console Reference 59

AWS Step Functions Developer Guide, Release 1.0

Graph Tab

Shows a graphical representation of the state machine that was executed.

Code Tab

Shows the code that defines the state machine, using Amazon States Language notation. For more
information, see Amazon States Language Overview.

Info Tab

Lists general information about the execution:

Field Description
Execution Status The current status of this execution.
State Machine Arn The Amazon Resource Name (ARN) of the state machine.
Execution ID When displayed, the execution ID.
Started The timestamp indicating when the execution started.
Closed The timestamp indicating when the execution was closed.

Input Tab

Shows the input data, in JSON text format, that was provided when the execution was started.

Output Tab

Displays any output data generated by the execution.

Step Details Tab

Lists the events (steps) that occurred over the course of this execution. The list items contain the following
fields:

Field Description
(not la-
beled)

Click the down/up arrow to expand/collapse details about the event which will be shown in
the “Type” column.

ID The event ID, which corresponds with the order in which the events occurred in the execution
history.

Type The event type, along with additional information when expanded (including, depending on
the event type, the state name, input, output, resource ARN, etc.)

Times-
tamp

The time at which the event occurred.

60 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

1.9.5 Tasks

The Tasks menu item on the left pane of the AWS Step Functions console displays a list of any existing
created tasks and provides you with the ability to create new tasks.

• Create New Activity Button

• Activities List

• Lambdas List

Create New Activity Button

Click the Create new activity button to start the process of creating a new activity. A New Activity pane is
opened that allows you to set the name of your new activity, which must be unique for your account and
region.

Once you enter a name for the activity, click the Create Activity button to the right of the New Activity
pane. Your activity will be created and displayed in the created activity list.

Activities List

This part contains a list of the activities that you have created, each identified by a name and Amazon
Resource Name (ARN).

1.9. Console Reference 61

AWS Step Functions Developer Guide, Release 1.0

Lambdas List

The bottom part of the page contains a list of the Lambda functions that you have created, each identified
by a name and Amazon Resource Name (ARN). There is also a link to the Lambda console where you can
create a new Lambda function.

1.10 Amazon States Language Overview

This section describes the syntax and some features of Amazon States Language, which is used to define
state machines for AWS Step Functions.

1.10.1 State Machine Structure

State machines are defined using JSON text that represents a structure containing the following fields:

Comment A human-readable description of the state machine. [Optional]

StartAt A string that must exactly match (case-sensitive) the name of one of the state objects.
[Required]

TimeoutSeconds The maximum number of seconds an execution of the state machine may run; if it
runs longer than the specified time, then the execution fails with an States.Timeout Error name.
[Optional]

Version The version of Amazon States Language used in the state machine, default is “1.0”. [Optional]

States This field’s value is an object containing a comma-delimited set of states. [Required]

The States field contains a number of states:

{
"State1" : {
},

"State2" : {
},
...

}

A state machine is defined by the states it contains and the relationships between them.

Here’s an example:

{
"Comment": "A Hello World example of the Amazon States Language using an

→˓AWS Lambda Function",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:REGION:ACCOUNT_ID:function:FUNCTION_NAME",

62 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

"End": true
}

}
}

When an execution of this state machine is launched, the system begins with the state referenced in the
StartAt field ("HelloWorld"). If this state has an "End": true field, the execution stops and
returns a result. Otherwise, the system looks for a "Next": field and continues with that state next. This
process repeats until the system reaches a terminal state (i.e. a state with "Type": "Succeed",
"Type": "Fail", or "End": true), or a runtime error occurs.

In the previous example, the state machine contains a single state ("HelloWorld") and because it is a
Task state, AWS Step Functions invokes the Lambda function pointed to by its Resource field. Assuming
the Lambda function runs successfully, the execution stops successfully as well.

The following rules apply to states within a state machine:

• States can occur in any order within the enclosing block, but the order in which they’re listed doesn’t
affect the order in which they’re run, which is determined by the contents of the states themselves.

• Within a state machine, there can be only one state that’s designated as the start state (designated by
the value of the StartAt field in the top-level structure.) This state is the one that is executed first
when the execution starts.

• Any state for which the End field is true is considered to be an end (or terminal) state. Depending
on your state machine logic—for example, if your state machine has multiple branches of
execution—you may have more than one end state.

• If your state machine consists of only one state, it can be both the start state and the end state.

1.10.2 States

States are top-level elements within a state machine’s States field, and can take a number of different roles
in your state machine depending on their type.

"FirstState" : {
"Type" : "Task",
...

}

States are identified by their name, which must be unique within the state machine specification, but
otherwise can be any valid string in JSON text format. Each state also contains a number of fields with
options that vary according to the contents of the state’s required Type field.

Common State Fields

Type The state’s type. Can be any of the values listed in State Types. [Required]

Next The name of the next state that will be run when the current state finishes. Some state types, such as
Choice, allow multiple transition states.

1.10. Amazon States Language Overview 63

AWS Step Functions Developer Guide, Release 1.0

End Designates this state as a terminal state (it ends the execution) if set to true. There can be any
number of terminal states per state machine. Only one of Next or End can be used in a state. Some
state types, such as Choice, do not support or use the End field.

Comment Holds a human-readable description of the state. [Optional]

InputPath A Path that selects a portion of the state’s input to be passed to the state’s task for
processing. If omitted, it has the value $ which designates the entire input. (See Filters). [Optional]

OutputPath A Path that selects a portion of the state’s input to be passed to the state’s output. If
omitted, it has the value $ which designates the entire input. (See Filters.) [Optional]

State Types

Task

A Task state ("Type": "Task") represents a single unit of work performed by a state machine.

In addition to the common state fields, Task states have the following fields:

Resource A URI, especially an Amazon Resource Name (ARN) that uniquely identifies the specific task
to execute. [Required]

ResultPath Specifies where (in the input) to place the results of executing the task specified in
Resource. The input is then filtered as prescribed by the OutputPath field (if present) before being
used as the state’s output. (See Paths) [Optional]

Retry An array of objects, called Retriers, that define a retry policy in case the state encounters runtime
errors. See Retrying After an Error. [Optional]

Catch An array of objects, called Catchers, that define a fallback state which is executed in case the state
encounters runtime errors and its retry policy has been exhausted or is not defined. See Fallback
States. [Optional]

TimeoutSeconds If the task runs longer than the specified seconds, then this state fails with a
States.Timeout Error Name. Must be a positive, non-zero integer. If not provided, the default value is
99999999. [Optional]

HeartbeatSeconds If more time than the specified seconds elapses between heartbeats from the task,
then this state fails with an States.Timeout Error Name. Must be a positive, non-zero integer less than
the number of seconds specified in the TimeoutSeconds field. If not provided, the default value is
99999999. [Optional]

A Task state must set either the End field to true if the state ends the execution, or must provide a state in
the Next field that will be run upon completion of the Task state.

Here is an example:

"ActivityState": {
"Type": "Task",
"Resource": "arn:aws:states:us-east-1:123456789012:activity:HelloWorld",
"TimeoutSeconds": 300,
"HeartbeatSeconds": 60,

64 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

"Next": "NextState"
}

In this example, ActivityState will schedule the HelloWorld activity for execution in the us-east-1
region on the caller’s AWS account. When HelloWorld completes, the next state (here called
NextState) will be run.

If this task fails to complete within 300 seconds, or does not send heartbeat notifications in intervals of 60
seconds, then the task is marked as failed. It’s a good practice to set a timeout value and a heartbeat interval
for long-running activities.

Specifying Resource ARNs in Tasks

The Resource field’s Amazon Resource Name (ARN) is specified using the following pattern:

arn:<partition>:<service>:<region>:<account>:<task_type>:<name>

Where:

• partition is the AWS Step Functions partition to use, most commonly aws.

• service indicates the AWS service used to execute the task, and is either:

– states for an Activity.

– lambda for a Lambda function.

• region is the AWS region in which the Step Functions activity/state machine type or Lambda
function has been created.

• account is your AWS account id.

• task_type is the type of task to run. It will be one of the following values:

– activity – an Activity.

– function – a Lambda function.

• name is the registered resource name (activity name or Lambda function name).

Note: Step Functions does not support referencing ARNs across partitions (For example: “aws-cn” cannot
invoke tasks in the “aws” partition, and vice versa);

Task Types

The following task types are supported:

• Activity

• Lambda Functions

1.10. Amazon States Language Overview 65

http://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Step Functions Developer Guide, Release 1.0

The following sections will provide more detail about each type.

Activity

Activities represent workers (processes or threads), implemented and hosted by you, that perform a specific
task.

Activity resource ARNs use the following syntax:

arn:<partition>:states:<region>:<account>:activity:<name>

For details about any of these fields, see Specifying Resource ARNs in Tasks.

Note: activities must be created with Step Functions (using a CreateActivity, API call, or the Step
Functions console) before their first use.

For more information about creating an activity and implementing workers, see Implementing Activities.

Lambda Functions

Lambda functions execute a function using AWS Lambda. To specify a Lambda function, use the ARN of
the Lambda function in the Resource field.

Lambda function Resource ARNs use the following syntax:

arn:<partition>:lambda:<region>:<account>:function:<function_name>

For details about any of these fields, see Specifying Resource ARNs in Tasks.

For example:

"LambdaState": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloWorld",
"Next": "NextState"

}

Once the Lambda function specified in the Resource field completes, its output is sent to the state identified
in the Next field (“NextState”).

Wait

A Wait state ("Type": "Wait") delays the state machine from continuing for a specified time. You
can choose either a relative time, specified in seconds from when the state begins, or an absolute end-time,
specified as a timestamp.

In addition to the common state fields, Wait states have one of the following fields:

66 Chapter 1. Contents

http://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html

AWS Step Functions Developer Guide, Release 1.0

Seconds A time, in seconds, to wait before beginning the state specified in the Next field.

Timestamp An absolute time to wait until before beginning the state specified in the Next field. This
string must conform to the RFC3339 profile of ISO 8601, with the further restrictions that an
uppercase “T” must be used to separate the date and time portions, and an uppercase “Z” must be
used if no numeric time zone offset is present, e.g. “2016-08-18T17:33:00Z”.

SecondsPath A time, in seconds, to wait before beginning the state specified in the Next field, specified
using a path from the state’s input data.

TimestampPath An absolute time to wait until before beginning the state specified in the Next field,
specified using a path from the state’s input data.

Note: You must specify exactly one of Seconds, Timestamp, SecondsPath or TimestampPath.

For example, the following Wait state introduces a ten second delay into a state machine:

"wait_ten_seconds": {
"Type": "Wait",
"Seconds": 10,
"Next": "NextState"

}

In the next example, the Wait state waits until an absolute time: March 14th, 2016, at 1:59 PM UTC.

"wait_until" : {
"Type": "Wait",
"Timestamp": "2016-03-14T01:59:00Z",
"Next": "NextState"

}

The wait duration does not have to be hard-coded. For example, given the following input data:

{
"expirydate": "2016-03-14T01:59:00Z"

}

You can select the value of “expirydate” from the input using a reference path to select it from the input
data:

"wait_until" : {
"Type": "Wait",
"TimestampPath": "$.expirydate",
"Next": "NextState"

}

Pass

A Pass state ("Type": "Pass") simply passes its input to its output, performing no work. Pass states
are useful when constructing and debugging state machines.

1.10. Amazon States Language Overview 67

AWS Step Functions Developer Guide, Release 1.0

In addition to the common state fields, Pass states allow the following fields:

Result Treated as the output of a virtual task to be passed on to the next state, and filtered as prescribed
by the ResultPath field (if present). [Optional]

ResultPath Specifies where (in the input) to place the “output” of the virtual task specified in Result.
The input is further filtered as prescribed by the OutputPath field (if present) before being used as the
state’s output. (See Paths) [Optional]

Here is an example of a Pass state that injects some fixed data into the state machine, probably for testing
purposes.

"No-op": {
"Type": "Pass",
"Result": {

"x-datum": 0.381018,
"y-datum": 622.2269926397355

},
"ResultPath": "$.coords",
"Next": "End"

}

Suppose the input to this state is:

{
"georefOf": "Home"

}

Then the output would be:

{
"georefOf": "Home",
"coords": {

"x-datum": 0.381018,
"y-datum": 622.2269926397355

}
}

Succeed

A Succeed state ("Type": "Succeed") stops an execution successfully. The Succeed state is a useful
target for Choice state branches that don’t do anything but stop the execution.

Because Succeed states are terminal states, they have no Next field, nor do they have need of an End field.

Here’s an example:

"SuccessState": {
"Type": "Succeed"

}

68 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

Fail

A Fail state ("Type": "Fail") stops the execution of the state machine and marks it as a failure.

The Fail state only allows the use of Type and Comment fields from the set of common state fields. In
addition, the Fail state allows the following fields:

Cause Provides a custom failure string that can be used for operational or diagnostic purposes. [Optional]

Error Provides an error name that can be used for error handling (Retry/Catch), operational or diagnostic
purposes. [Optional]

Because Fail states always exit the state machine, they have no Next field nor do they require an End field.

For example:

"FailState": {
"Type": "Fail",
"Cause": "Invalid response.",
"Error": "ErrorA"

}

Choice

A Choice state ("Type": "Choice") adds branching logic to a state machine.

In addition to the common state fields, Choice states introduce these additional fields:

Choices An array of Choice Rules that determine which state the state machine transitions to next.
[Required]

Default The name of a state to transition to if none of the transitions in Choices is taken. [Optional, but
recommended]

Important: Choice states do not support the End field. Also, they use Next only inside their Choices field.

Here is an example of a Choice state, with some other states that it transitions to:

"ChoiceStateX": {
"Type": "Choice",
"Choices": [

{
"Not": {

"Variable": "$.type",
"StringEquals": "Private"

},
"Next": "Public"

},
{

"Variable": "$.value",
"NumericEquals": 0,

1.10. Amazon States Language Overview 69

AWS Step Functions Developer Guide, Release 1.0

"Next": "ValueIsZero"
},
{

"And": [
{

"Variable": "$.value",
"NumericGreaterThanEquals": 20

},
{

"Variable": "$.value",
"NumericLessThan": 30

}
],
"Next": "ValueInTwenties"

}
],
"Default": "DefaultState"

},

"Public": {
"Type" : "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Foo",
"Next": "NextState"

},

"ValueIsZero": {
"Type" : "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Zero",
"Next": "NextState"

},

"ValueInTwenties": {
"Type" : "Task",
"Resource": "arn:aws:lambda:us-states-1:123456789012:function:Bar",
"Next": "NextState"

},

"DefaultState": {
"Type": "Fail",
"Cause": "No Matches!"

}

In the example, suppose the state machine is started with an input value of:

{
"type": "private",
"value": 22

}

Then AWS Step Functions will transition to the “ValueInTwenties” state, based on the “value” field.

If there are no matches for the Choice state’s Choices, then the state provided in the Default field is run
instead. If there is no Default state provided, then the execution will fail with an error.

70 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

Choice Rules

A Choice state must have a Choices field whose value is a non-empty array, each element of which is a
object called a Choice Rule. A Choice Rule contains a comparison (two fields that specify an input variable
to be compared, the type of comparison and the value with which to compare it) and a Next field, whose
value must match a state name in the state machine.

For example:

{
"Variable": "$.foo",
"NumericEquals": 1,
"Next": "FirstMatchState"

},

Step Functions looks at each of the Choice Rules in the order listed in the Choices field, and transitions to
the state specified in the Next field of the first Choice Rule in which the variable matches the value
according to the comparison operator.

The following comparison operators are supported:

• StringEquals

• StringLessThan

• StringGreaterThan

• StringLessThanEquals

• StringGreaterThanEquals

• NumericEquals

• NumericLessThan

• NumericGreaterThan

• NumericLessThanEquals

• NumericGreaterThanEquals

• BooleanEquals

• TimestampEquals

• TimestampLessThan

• TimestampGreaterThan

• TimestampLessThanEquals

• TimestampGreaterThanEquals

• And

• Or

• Not

1.10. Amazon States Language Overview 71

AWS Step Functions Developer Guide, Release 1.0

For each of these operators, the corresponding value must be of the appropriate type: String, number,
boolean, or Timestamp (see below). Step Functions will not attempt to match a numeric field to a string
value. However, since Timestamp fields are logically strings, it is possible that a field that is thought of as a
time-stamp could be matched by a “StringEquals” comparator.

Note that for interoperability, numeric comparisons should not be assumed to work with values outside the
magnitude or precision representable using the IEEE 754-2008 “binary64” data type. In particular, integers
outside of the range [-253+1, 253-1] might fail to compare in the expected way.

Timestamps must conform to the RFC3339 profile of ISO 8601, with the further restrictions that an
uppercase “T” must be used to separate the date and time portions, and an uppercase “Z” must be used if a
numeric time zone offset is not present, e.g. “2016-08-18T17:33:00Z”.

The values of the “And” and “Or” operators must be non-empty arrays of Choice Rules that must not
themselves contain “Next” fields. Likewise, the value of a “Not” operator must be a single Choice Rule
that must not itself contain “Next” fields. Using “And”, “Or” and “Not”, you can create complex, nested
Choice Rules, however the “Next” field can only appear in a top-level Choice Rule. See the extended
example at the outset of this section.

Parallel

The Parallel state ("Type": "Parallel") can be used to create parallel branches of execution in
your state machine.

In addition to the common state fields, Parallel states introduce these additional fields:

Branches An array of objects that specify state machines to execute in parallel. Each such state machine
object must have fields named States and StartAt whose meanings are exactly like those in the top
level of a state machine. [Required]

ResultPath Specifies where (in the input) to place the output of the branches. The input is then filtered
as prescribed by the OutputPath field (if present) before being used as the state’s output. (See Paths)
[Optional]

Retry An array of objects, called Retriers that define a retry policy in case the state encounters runtime
errors. See Retrying After an Error. [Optional]

Catch An array of objects, called Catchers that define a fallback state which is executed in case the state
encounters runtime errors and its retry policy has been exhausted or is not defined. See Fallback
States. [Optional]

A Parallel state causes AWS Step Functions to execute each branch, starting with the state named in that
branch’s StartAt field, as concurrently as possible, and wait until all branches terminate (reach a terminal
state) before processing the Parallel state’s Next field.

Here is an example:

"LookupCustomerInfo": {
"Type": "Parallel",
"Branches": [

{
"StartAt": "LookupAddress",

72 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

"States": {
"LookupAddress": {

"Type": "Task",
"Resource":

"arn:aws:lambda:us-east-1:123456789012:function:AddressFinder",
"End": true

}
}

},
{

"StartAt": "LookupPhone",
"States": {

"LookupPhone": {
"Type": "Task",
"Resource":

"arn:aws:lambda:us-east-1:123456789012:function:PhoneFinder",
"End": true

}
}

}
],
"Next": "NextState"

},

In this example, the LookupAddress and LookupPhone branches are executed in parallel.

Each branch must be self-contained. A state in one branch of a Parallel state must not have a Next field that
targets a field outside of that branch, nor can any other state outside the branch transition into that branch.

Parallel State Output

A Parallel state provides each branch with a copy of its own input data (subject to modification by the
InputPath field). It generates output which is an array with one element for each branch containing the
output from that branch. There is no requirement that all elements be of the same type. The output array
can be inserted into the input data (and the whole sent as the Parallel state’s output) by using a ResultPath
field in the usual way (see Paths).

Here is another example:

"FunWithMath": {
"Type": "Parallel",
"Branches": [

{
"StartAt": "Add",
"States": {

"Add": {
"Type": "Task",
"Resource": "arn:aws:swf:::task:Add",
"End": true

}

1.10. Amazon States Language Overview 73

AWS Step Functions Developer Guide, Release 1.0

}
},
{

"StartAt": "Subtract",
"States": {

"Subtract": {
"Type": "Task",
"Resource": "arn:aws:swf:::task:Subtract",
"End": true

}
}

}
],
"Next": "NextState"

},

If the FunWithMath state was given the array [3,2] as input, then both the Add and Subtract states
receive that array as input. The output of Add would be 5, that of Subtract would be 1, and the output
of the Parallel state would be an array:

[5, 1]

Error Handling

If any branch fails, due to either an unhandled error or by transitioning to a Fail state, the entire Parallel
state is considered to have failed and all its branches are stopped. If the error is not handled by the Parallel
state itself, Step Functions will stop the execution with an error.

1.10.3 Paths

A path is a string used to select a member or subtree of an object defined in JSON text, typically used with
state input or output data.

When declaring a path, the top level of an object is referred to with the $ symbol, and its elements are
accessed using dot (.) notation. Nested elements can be selected using further dots ($.x.y) to select
sub-levels of the structure.

For example, given this data:

{
"foo": 123,
"bar": ["a", "b", "c"],
"car": {

"cdr": true,
"tires": 4

}
}

74 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

The following table shows what values are obtained by applying various paths to the data:

Path Value
$.foo 123
$.bar [”a”, “b”, “c”]
$.car.cdr true

Paths are frequently used to extract elements from the state’s input data for use in the state’s fields, for
example, to make a Choice about the next state to run, or to select a Wait time. Paths are also used to refer
to parts of a tree in which to put output data.

Reference Paths

A reference path is a path that must be an unambiguous reference to a single node in a structure. Because
of this, a reference path’s syntax is limited:

• Object fields can only be accessed using the dot (”.”) notation.

• The operators @ .. , : ? and [] are not supported.

Paths in InputPath, ResultPath and OutputPath Fields

Paths are used in the InputPath, ResultPath and OutputPath fields of certain states to specify how part of
the state’s input is used and what is sent as output to the next state.

InputPath

The InputPath field selects a portion of the state’s input to be passed to the state’s task for processing. If
omitted, it is considered to have the value of $ which represents the whole input. If null, the input is
discarded (not sent to the state’s task) so the task receives JSON text representing an empty object {}.

Note that a path can yield a selection of values. For example, given:

{ "a": [1, 2, 3, 4] }

if the path $.a[0..1] is applied, the result will be:

[1, 2]

ResultPath

Ordinarily, if a state executes a task, the results of that task are sent along as the state’s output (which
becomes the input to the next task.) If a state does not execute a task, the state’s own input is sent,
unmodified, as its output. However, when a path is specified in the value of a state’s ResultPath and
OutputPath fields, some different scenarios are possible.

The ResultPath takes the results of executing the state’s task and puts this in the input. After that, the
OutputPath selects a portion of that input to send as the state’s output (more on that later). The ResultPath
may add the results of executing the state’s task to the input, overwrite an existing part, or overwrite (that
is, replace) the entire input:

1.10. Amazon States Language Overview 75

AWS Step Functions Developer Guide, Release 1.0

1. If the ResultPath matches an item in the state’s input, then only that input item is overwritten with the
results of executing the state’s task, and the entire input, thus modified, is available to become the
state’s output.

2. If the ResultPath does not match an item in the state’s input, then an item is added to the input,
containing the results of executing the state’s task, and the expanded input becomes available to be
the state’s output.

3. If the ResultPath is $ (the default if it is omitted) this matches the input in its entirety. In this case,
the results of executing the state overwrite the input entirely, and this is what is available to be passed
along.

4. If the ResultPath is null the results of executing the state are discarded and the input is untouched.

Note: ResultPath field values must be reference paths.

OutputPath

1. If the OutputPath matches an item in the state’s input, then only that input item is selected and it
becomes the state’s output.

2. If the OutputPath does not match an item in the state’s input, then an exception is thrown
complaining of an invalid path. (See Errors)

3. If the OutputPath has a value of $ (the default), this matches the input in its entirety. In this case, the
entire input is passed along to the next state. (But see the explanation of ResultPath above for the
effect it has on the input for those states which allow it.)

4. If the OutputPath is null, a JSON text representing an empty object {} is sent to the next state.

Here is an example of how InputPath, ResultPath and OutputPath fields work in practice. Let’s say the
current state has an input of

{
"title": "Numbers to add",
"numbers": { "val1": 3, "val2": 4 }

}

Further, let’s say the state has the following InputPath, ResultPath and OutputPath fields:

"InputPath": "$.numbers",
"ResultPath": "$.sum",
"OutputPath": "$"

So the state’s task will receive just the "numbers" object from the input. Now, let’s suppose this task
returns { 7 }, then the output of this state would be

{
"title": "Numbers to add",
"numbers": { "val1": 3, "val2": 4 }
"sum": 7

}

76 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

Let’s change the OutputPath in our example slightly...

"InputPath": "$.numbers",
"ResultPath": "$.sum"
"OutputPath": "$.sum"

As before, with the following state input data:

{
"numbers": [3, 4]

}

But now, the state output data will be:

{
7

}

1.10.4 Errors

Any state can encounter runtime errors. Errors can arise because of state machine definition issues (e.g. no
matching rule in a Choice state), task failures (e.g. an exception thrown by a Lambda function) or because
of transient issues, such as network partition events. When a state reports an error, the default course of
action for AWS Step Functions is to fail the execution entirely.

Error Representation

Errors are identified in Amazon States Language by case-sensitive strings, called Error Names. Amazon
States Language defines a set of built-in strings naming well-known errors, all of which begin with the
prefix “States.”:

Predefined Error Codes

States.ALL A wild-card that matches any Error Name.

States.Timeout A Task state either ran longer than the “TimeoutSeconds” value, or failed to send a
heartbeat for a time longer than the “HeartbeatSeconds” value.

States.TaskFailed A Task state failed during the execution.

States.Permissions A Task state failed because it had insufficient privileges to execute the specified
code.

States may report errors with other names, which must not begin with the prefix “States.”.

Retrying After an Error

Task and Parallel states may have a field named Retry, whose value must be an array of objects, called
Retriers. An individual Retrier represents a certain number of retries, usually at increasing time intervals.

A Retrier contains the following fields:

1.10. Amazon States Language Overview 77

AWS Step Functions Developer Guide, Release 1.0

ErrorEquals A non-empty array of Strings that match Error Names. When a state reports an error, Step
Functions scans through the Retriers and, when the Error Name appears in this array, it implements
the retry policy described in this Retrier. [Required]

IntervalSeconds An integer that represents the number of seconds before the first retry attempt
(default 1). [Optional]

MaxAttempts A positive integer, representing the maximum number of retry attempts (default 3). If the
error recurs more times than specified, retries cease and normal error handling resumes. A value of 0
is permitted and indicates that the error or errors should never be retried. [Optional]

BackoffRate A number that is the multiplier by which the retry interval increases on each attempt
(default 2.0). [Optional]

Here is an example of a Retry field that will make 2 retry attempts after waits of 3 and 4.5 seconds:

"Retry" : [
{

"ErrorEquals": ["States.Timeout"],
"IntervalSeconds": 3,
"MaxAttempts": 2,
"BackoffRate": 1.5

}
]

The reserved name States.ALL appearing in a Retrier’s ErrorEquals field is a wildcard that matches
any Error Name. It must appear alone in the ErrorEquals array and must appear in the last Retrier in
the Retry array.

Here is an example of a Retry field that will retry any error except for States.Timeout:

"Retry" : [
{

"ErrorEquals": ["States.Timeout"],
"MaxAttempts": 0

},
{

"ErrorEquals": ["States.ALL"]
}

]

Complex Retry Scenarios

A Retrier’s parameters apply across all visits to that Retrier in the context of a single state execution. This
is best illustrated by an example; consider the following Task state:

"X": {
"Type": "Task",
"Resource": "arn:aws:states:us-east-1:123456789012:task:X",
"Next": "Y",
"Retry": [

{
"ErrorEquals": ["ErrorA", "ErrorB"],
"IntervalSeconds": 1,

78 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

"BackoffRate": 2,
"MaxRetries": 2

},
{

"ErrorEquals": ["ErrorC"],
"IntervalSeconds": 5

}
],
"Catch": [

{
"ErrorEquals": ["States.ALL"],
"Next": "Z"

}
]

}

Suppose that this task fails five successive times, throwing Error Names “ErrorA”, “ErrorB”, “ErrorC”,
“ErrorB” and “ErrorB”. The first two errors match the first retrier and cause waits of one and two seconds.
The third error matches the second retrier and causes a wait of five seconds. The fourth error matches the
first retrier and causes a wait of four seconds. The fifth error also matches the first retrier, but it has already
reached its limit of two retries (“MaxRetries”) for that particular error (“ErrorB”) so it fails and execution
is redirected to the “Z” state via the “Catch” field.

Note that once the system transitions to another state, no matter how, all Retrier parameters are reset.

Fallback States

Task and Parallel states may have a field named Catch, whose value must be an array of objects, called
Catchers.

A Catcher contains the following fields:

ErrorEquals A non-empty array of Strings that match Error Names, specified exactly as with the
Retrier field of the same name. [Required]

Next A string which must exactly match one of the state machine’s state names. [Required]

ResultPath A path which determines what is sent as input to the state specified by the Next field.
[Optional]

When a state reports an error and either there is no Retry field, or retries have failed to resolve the error,
AWS Step Functions scans through the Catchers in the order listed in the array, and when the Error Name
appears in the value of a Catcher’s ErrorEquals field, the state machine transitions to the state named in the
Next field.

The reserved name States.ALL appearing in a Catcher’s ErrorEquals field is a wildcard that
matches any Error Name. It must appear alone in the ErrorEquals array and must appear in the last
Catcher in the Catch array.

Here is an example of a Catch field that will transition to the state named “RecoveryState” when a Lambda
function throws an unhandled Java Exception, and otherwise to the “EndState” state.

1.10. Amazon States Language Overview 79

AWS Step Functions Developer Guide, Release 1.0

"Catch": [
{

"ErrorEquals": ["java.lang.Exception"],
"ResultPath": "$.error-info",
"Next": "RecoveryState"

},
{

"ErrorEquals": ["States.ALL"],
"Next": "EndState"

}
]

Each Catcher can specify multiple errors to handle.

When AWS Step Functions transitions to the state specified in a Catcher, it sends along as input a JSON
text that is different than what it would normally send to the next state when there was no error. This JSON
text represents an object containing a field "Error" whose value is a string containing the error name.
The object will also, usually, contain a field "Cause" that has a human-readable description of the error.
We refer to this object as the Error Output.

In this example, the first Catcher contains a ResultPath field. This works in a similar fashion to a
ResultPath field in a state’s top level—it takes the results of executing the state and overwrites a portion of
the state’s input, or all of the state’s input, or it takes the results and adds them to the input. In the case of
an error handled by a Catcher, the result of executing the state is the Error Output.

So in the example, for the first Catcher the Error Output will be added to the input as a field named
error-info (assuming there is not already a field by that name in the input) and the entire input will be
sent to RecoveryState. For the second Catcher, the Error Output will overwrite the input and so just
the Error Output will be sent to EndState. (When not specified, the ResultPath field defaults to $ which
selects, and so overwrites, the entire input.)

When a state has both Retry and Catch fields, Step Functions uses any appropriate Retriers first and only
applies the matching Catcher transition if the retry policy fails to resolve the error.

1.10.5 Filters

Some states, such as Task, have InputPath, ResultPath and OutputPath fields. The values of these fields are
paths.

The InputPath field selects a portion of the state’s input to be passed to the state’s processing logic (an
Activity, Lambda function, or so on). If the InputPath field is omitted, the entire state input is selected by
default (i.e. $.) If it is null, an empty object {} is passed.

The ResultPath field selects a portion of the state’s input to be overwritten by, or added to, with result data
from the state’s processing logic. The ResultPath field is optional and, if omitted, defaults to $, which
overwrites the entire input. However, before the input is sent as the state’s output, a portion can be selected
with the OutputPath field...

The OutputPath field is also optional and, if omitted, defaults to $, which selects the entire input (as
modified by the ResultPath), sending it as the state’s output.

80 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

The ResultPath field’s value can be null, which causes any output from your state’s processing logic to be
discarded instead of added to the state’s input (and, so its output.) In this scenario, the state’s output is
identical to the state’s input, given the default value for the OutputPath field.

If the OutputPath field’s value is null, and empty object {} is sent as the state’s output.

Here is an example. Given the following ResultPath field in a state that outputs the sum of its input values:

"InputPath": "$.numbers",
"ResultPath": "$.sum"
"OutputPath": "$"

With the following state input data:

{
"numbers": [3, 4]

}

The state output data will have the following structure and values:

{
"numbers": [3, 4],
"sum": 7

}

Let’s change the OutputPath in our example slightly...

"InputPath": "$.numbers",
"ResultPath": "$.sum"
"OutputPath": "$.sum"

As before, with the following state input data:

{
"numbers": [3, 4]

}

But now, the state output data will be:

{
7

}

By using the InputPath and ResultPath fields in this way, you can design separation between the names of
data members in your state machine data, and the functions that process it.

More information is available in the Amazon States Language specification.

You might also be interested in Statelint, a tool to validate your Amazon States Language code.

1.10. Amazon States Language Overview 81

https://states-language.net/spec.html
https://github.com/awslabs/statelint

AWS Step Functions Developer Guide, Release 1.0

1.11 AWS Step Functions Limits

AWS Step Functions places limits on the sizes of certain state machine parameters, such as the number of
API calls that can be made during a certain period or the number of state machines that can be defined.
These limits are designed to prevent an erroneous state machine from consuming all of the resources of the
system, but are not hard limits.

Contents

• General Account Limits for AWS Step Functions

• Limits on Executions

• Limits on Task Executions

• AWS Step Functions Throttling Limits

1.11.1 General Account Limits for AWS Step Functions

• Maximum number of state machines and activities: 10,000

• API call limit: Beyond infrequent spikes, applications may be throttled if they make a large number
of API calls in a very short period of time.

• Maximum request size: 1 MB per request

This is the total data size per Step Functions API request, including the request header and all other
associated request data.

1.11.2 Limits on Executions

• Maximum open executions: 1,000,000

• Maximum execution time: 1 year

• Maximum execution history size: 25,000 events

• Execution idle time limit: 1 year (constrained by execution time limit)

• Execution history retention time limit: 90 days

After this time, the execution history can no longer be retrieved or viewed. There is no further limit
to the number of closed executions that are retained by AWS Step Functions.

If your use case requires you to go beyond these limits, you can use features Step Functions provides to
continue executions.

Note: You can configure state machine timeouts to cause a timeout event to occur if a particular stage of
your state machine takes too long.

82 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

1.11.3 Limits on Task Executions

• Maximum task execution time: 1 year (constrained by execution time limit)

• Maximum time AWS Step Functions will keep a task in the queue: 1 year (constrained by
execution time limit)

• Maximum open activities: 1,000 per execution.

This limit includes both activities that have been scheduled and those being processed by workers.

• Maximum input/result data size: 32,000 characters

This limit affects activity or execution result data, input data when scheduling activities or
executions, and input sent with an execution signal.

Note: You can configure default activity timeouts during activity creation that will cause a timeout event
to occur if a particular stage of your activity execution takes too long.

1.11.4 AWS Step Functions Throttling Limits

In addition to the service limits described previously, certain Step Functions API calls are throttled to
maintain service bandwidth, using a token bucket scheme.

Throttling limits are per account / region.

Throttling Limits

API name Bucket size Refill rate / s
CreateActivity 100 1
CreateStateMachine 100 1
DeleteActivity 100 1
DeleteStateMachine 100 1
DescribeActivity 200 1
DescribeExecution 200 1
DescribeStateMachine 200 1
GetActivityTask 1000 10
GetExecutionHistory 50 1
ListActivities 100 1
ListExecutions 100 1
ListStateMachines 100 1
SendTaskFailure 1000 10
SendTaskHeartbeat 1000 10
SendTaskSuccess 1000 10
StartExecution 100 2
StopExecution 100 2

1.11. AWS Step Functions Limits 83

AWS Step Functions Developer Guide, Release 1.0

1.12 Monitoring AWS Step Functions

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS Step
Functions and your AWS solutions. You should collect monitoring data from all of the parts of your AWS
solution so that you can more easily debug a multi-point failure if one occurs. Before you start monitoring
Step Functions, however, you should create a monitoring plan that includes answers to the following
questions:

• What are you monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal Step Functions performance in your environment, by
measuring performance at various times and under different load conditions. As you monitor Step
Functions, you should consider storing historical monitoring data. This stored data will give you a baseline
to compare against current performance data, identify normal performance patterns and performance
anomalies, and devise methods to address issues.

For example, with Step Functions, you can monitor how many activities or lambda tasks failed due to a
heartbeat timeout. When performance falls outside your established baseline, you might have to change
your heartbeat interval.

To establish a baseline you should, at a minimum, monitor the following items:

• ExecutionsStarted

• ExecutionsTimedOut

• ActivititesStarted

• ActivititesTimedOut

• LambdaFunctionsStarted

• LambdaFunctionsTimedOut

The following sections describe metrics that Step Functions provides for CloudWatch that you can use to
track your state machines and activities and set alarms on threshold values that you choose. You can view
metrics using the AWS Management Console.

• Metrics that Report a Time Interval

• Metrics that Report a Count

• State Machine Metrics

• Viewing Metrics for Step Functions

84 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

• Setting Alarms

1.12.1 Metrics that Report a Time Interval

Some of the Step Functions CloudWatch metrics are time intervals, always measured in milliseconds.
These metrics generally correspond to stages of your execution for which you can set state machine,
lambda function and activity timeouts, and have similar names.

For example, the ActivityRunTime metric measures the time it took for the activity to complete after it
began executing, which is the same time period for which you can set a timeout value.

Note: In the Cloud Watch console, you will get the best results if you choose average as the statistic to
display for time interval metrics.

1.12.2 Metrics that Report a Count

Some of the Step Functions CloudWatch metrics report results as a count. For example, ExecutionsFailed,
records the number of state machine executions which failed.

Note: In the Cloud Watch console, you will get the best results if you choose sum as the statistic to display
for count metrics.

1.12.3 State Machine Metrics

The following metrics are available for Step Functions state machines:

Execution Metrics

Dimension Description
StateMachineArn The ARN of the state machine for the execution in question.

Metric Description
ExecutionTime The time interval, in milliseconds, between the time the execution started and the

time it closed.
ExecutionsStarted The number of executions started.
ExecutionsSuc-
ceeded

The number of executions that completed successfully.

ExecutionsFailed The number of executions that failed.
Executions-
Aborted

The number of executions that were aborted/terminated.

ExecutionsTimed-
Out

The number of executions that timed out for any reason.

1.12. Monitoring AWS Step Functions 85

AWS Step Functions Developer Guide, Release 1.0

Activity Metrics

Dimension Description
ActivityArn The ARN of the activity.

Metric Description
ActivityScheduleTime The time interval, in milliseconds, that the activity stayed in the schedule state.
ActivityRunTime The time interval, in milliseconds, between the time the activity was started

and when it was closed.
ActivityTime The time interval, in milliseconds, between the time the activity was scheduled

and when it was closed.
ActivitiesScheduled The number of activities that were scheduled.
ActivitiesStarted The number of activities that were started.
ActivitiesSucceeded The number of activities that completed successfully.
ActivitiesFailed The number of activities that failed.
ActivitiesTimedOut The number of activities that were timed out on close.
ActivitiesHeartbeat-
TimedOut

The number of activities that were timed out due to a heartbeat timeout.

Lambda Function Metrics

Dimension Description
LambdaFunctionArn The ARN of the lambda function.

Metric Description
LambdaFunctionSched-
uleTime

The time interval, in milliseconds, that the activity stayed in the schedule
state.

LambdaFunctionRun-
Time

The time interval, in milliseconds, between the time the lambda function
was started and when it was closed.

LambdaFunctionTime The time interval, in milliseconds, between the time the lambda function
was scheduled and when it was closed.

LambdaFunctionsSched-
uled

The number of lambda functions that were scheduled.

LambdaFunctionsStarted The number of lambda functions that were started.
LambdaFunctionsSuc-
ceeded

The number of lambda functions that completed successfully.

LambdaFunctionsFailed The number of lambda functions that failed.
LambdaFunctionsTimed-
Out

The number of lambda functions that were timed out on close.

LambdaFunctionsHeart-
beatTimedOut

The number of lambda functions that were timed out due to a heartbeat
timeout.

1.12.4 Viewing Metrics for Step Functions

1. Open the AWS Management Console and navigate to CloudWatch.

86 Chapter 1. Contents

https://console.aws.amazon.com/console/home

AWS Step Functions Developer Guide, Release 1.0

2. In the navigation pane, click Metrics.

3. In the area beneath the All Metrics tab, click on States.

1.12. Monitoring AWS Step Functions 87

AWS Step Functions Developer Guide, Release 1.0

If you have run any executions recently, you will see up to three types of metrics presented: Lambda
Function Metrics, Activity Function Metrics and Execution Metrics.

4. Click on one of the metric types to see a list of the metrics.

88 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

You can use the interactive headings above the columns in the list to sort your metrics by
StateMachineArn or Metric Name.

You can view graphs for metrics by clicking the boxes next to the metric row in the list. Change the graph
parameters using the time range controls above the graph view. You can choose custom time ranges
specified in relative or absolute values (i.e. specific days and times). You can also use the drop-down box to
display values as lines, stacked areas, or numbers (values).

For details about a metric on the graph, place your cursor over the metric color code which appears below
the graph.

A detail of the metric will be shown.

For more information about working with CloudWatch metrics, see Viewing, Graphing, and Publishing
Metrics in the CloudWatch Developer Guide.

1.12.5 Setting Alarms

You can use CloudWatch alarms to perform actions such as notifying you when an alarm threshold is
reached. For example, you can set an alarm to send a notification to an Amazon SNS topic or to send an
email when the StateMachinesFailed metric rises above a certain threshold.

To set an alarm on any of your metrics

1. In the list of metrics under the All metrics tab, choose a metric by clicking its box to view its graph.

1.12. Monitoring AWS Step Functions 89

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/working_with_metrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/working_with_metrics.html

AWS Step Functions Developer Guide, Release 1.0

2. Click on the Graphed metrics tab to view the metrics shown in the graph.

3. Under the Actions column for a metric, click on the bell icon. The Create Alarm screen will open.

90 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

4. On the Create Alarm screen, enter the alarm threshold value, period parameters, and actions to take.

For more information about setting and using CloudWatch alarms, see Creating Amazon CloudWatch
Alarms in the CloudWatch Developer Guide.

1.13 Logging AWS Step Functions API Calls with AWS CloudTrail

AWS Step Functions is integrated with AWS CloudTrail, a service that captures specific API calls and
delivers log files to an Amazon S3 bucket that you specify. With the information collected by CloudTrail,
you can determine what request was made to Step Functions, the IP address from which the request was
made, who made the request, when it was made, and so on.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

1.13.1 Step Functions Information in CloudTrail

When CloudTrail logging is enabled in your AWS account, API calls made to specific Step Functions
actions are tracked in CloudTrail log files. Step Functions actions are written, together with other AWS

1.13. Logging AWS Step Functions API Calls with AWS CloudTrail 91

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS Step Functions Developer Guide, Release 1.0

service records. CloudTrail determines when to create and write to a new file based on a time period and
file size.

The following actions are supported:

• CreateActivity

• CreateStateMachine

• DeleteActivity

• DeleteStateMachine

• StartExecution

• StopExecution

Every log entry contains information about who generated the request. The user identity information in the
log helps you determine the following:

• Whether the request was made with root or IAM user credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another AWS service

For more information, see the userIdentity element in the CloudTrail Event Reference.

You can store your log files in your S3 bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted with
Amazon S3 server-side encryption.

If you want to be notified upon log file delivery, you can configure CloudTrail to publish Amazon SNS
notifications when new log files are delivered. For more information, see Configuring Amazon SNS
Notifications for CloudTrail.

You can also aggregate Step Functions log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Receiving CloudTrail Log Files from Multiple
Regions and Receiving CloudTrail Log Files from Multiple Accounts.

1.13.2 Understanding Step Functions Log File Entries

CloudTrail log files contain one or more log entries. Each entry lists multiple JSON-formatted events. A
log entry represents a single request from any source and includes information about the requested action,
the date and time of the action, request parameters, and so on. The log entries are not an ordered stack trace
of the public API calls, so they do not appear in any specific order.

CreateActivity

The following example shows a CloudTrail log entry that demonstrates the CreateActivity action:

{
"eventVersion": "1.04",
"userIdentity": {

92 Chapter 1. Contents

http://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteActivity.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachine.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
http://docs.aws.amazon.com/step-functions/latest/apireference/API_StopExecution.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS Step Functions Developer Guide, Release 1.0

"type": "IAMUser",
"principalId": "AIDAJYDLDBVBI4EXAMPLE",
"arn": "arn:aws:iam::123456789012:user/test-user",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "test-user"

},
"eventTime": "2016-10-28T01:17:56Z",
"eventSource": "states.amazonaws.com",
"eventName": "CreateActivity",
"awsRegion": "us-east-1",
"sourceIPAddress": "10.61.88.189",
"userAgent": "Coral/Netty",
"requestParameters": {

"name": "OtherActivityPrefix.2016-10-27-18-16-56.894c791e-2ced-4cf4-
→˓8523-376469410c25"

},
"responseElements": {

"activityArn": "arn:aws:states:us-east-1:123456789012:activity:
→˓OtherActivityPrefix.2016-10-27-18-16-56.894c791e-2ced-4cf4-8523-376469410c25
→˓",

"creationDate": "Oct 28, 2016 1:17:56 AM"
},
"requestID": "37c67602-9cac-11e6-aed5-5b57d226e9ef",
"eventID": "dc3becef-d06d-49bf-bc93-9b76b5f00774",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

}

CreateStateMachine

The following example shows a CloudTrail log entry that demonstrates the CreateStateMachine action:

{
"eventVersion": "1.04",
"userIdentity": {

"type": "IAMUser",
"principalId": "AIDAJYDLDBVBI4EXAMPLE",
"arn": "arn:aws:iam::123456789012:user/test-user",
"accountId": "123456789012",
"accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
"userName": "test-user"

},
"eventTime": "2016-10-28T01:18:07Z",
"eventSource": "states.amazonaws.com",
"eventName": "CreateStateMachine",
"awsRegion": "us-east-1",
"sourceIPAddress": "10.61.88.189",
"userAgent": "Coral/Netty",
"requestParameters": {

"name": "testUser.2016-10-27-18-17-06.bd144e18-0437-476e-9bb",

1.13. Logging AWS Step Functions API Calls with AWS CloudTrail 93

AWS Step Functions Developer Guide, Release 1.0

"roleArn": "arn:aws:iam::123456789012:role/graphene/tests/graphene-
→˓execution-role",

"definition": "{ \"StartAt\": \"SinglePass\", \"States\": {
→˓\"SinglePass\": { \"Type\": \"Pass\", \"End\": true
→˓ } }}"

},
"responseElements": {

"stateMachineArn": "arn:aws:states:us-east-1:123456789012:
→˓stateMachine:testUser.2016-10-27-18-17-06.bd144e18-0437-476e-9bb",

"creationDate": "Oct 28, 2016 1:18:07 AM"
},
"requestID": "3da6370c-9cac-11e6-aed5-5b57d226e9ef",
"eventID": "84a0441d-fa06-4691-a60a-aab9e46d689c",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

}

DeleteActivity

The following example shows a CloudTrail log entry that demonstrates the DeleteActivity action:

{
"eventVersion": "1.04",
"userIdentity": {

"type": "IAMUser",
"principalId": "AIDAJYDLDBVBI4EXAMPLE",
"arn": "arn:aws:iam::123456789012:user/test-user",
"accountId": "123456789012",
"accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
"userName": "test-user"

},
"eventTime": "2016-10-28T01:18:27Z",
"eventSource": "states.amazonaws.com",
"eventName": "DeleteActivity",
"awsRegion": "us-east-1",
"sourceIPAddress": "10.61.88.189",
"userAgent": "Coral/Netty",
"requestParameters": {

"activityArn": "arn:aws:states:us-east-1:123456789012:activity:
→˓testUser.2016-10-27-18-11-35.f017c391-9363-481a-be2e-"

},
"responseElements": null,
"requestID": "490374ea-9cac-11e6-aed5-5b57d226e9ef",
"eventID": "e5eb9a3d-13bc-4fa1-9531-232d1914d263",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

}

94 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

DeleteStateMachine

The following example shows a CloudTrail log entry that demonstrates the DeleteStateMachine action:

{
"eventVersion": "1.04",
"userIdentity": {

"type": "IAMUser",
"principalId": "AIDAJABK5MNKNAEXAMPLE",
"arn": "arn:aws:iam::123456789012:user/graphene/tests/test-user",
"accountId": "123456789012",
"accessKeyId": "AKIAJA2ELRVCPEXAMPLE",
"userName": "test-user"

},
"eventTime": "2016-10-28T01:17:37Z",
"eventSource": "states.amazonaws.com",
"eventName": "DeleteStateMachine",
"awsRegion": "us-east-1",
"sourceIPAddress": "10.61.88.189",
"userAgent": "Coral/Netty",
"errorCode": "AccessDenied",
"errorMessage": "User: arn:aws:iam::123456789012:user/graphene/tests/test-

→˓user is not authorized to perform: states:DeleteStateMachine on resource:
→˓arn:aws:states:us-east-1:123456789012:stateMachine:testUser.2016-10-27-18-
→˓16-38.ec6e261f-1323-4555-9fa",

"requestParameters": null,
"responseElements": null,
"requestID": "2cf23f3c-9cac-11e6-aed5-5b57d226e9ef",
"eventID": "4a622d5c-e9cf-4051-90f2-4cdb69792cd8",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

}

StartExecution

The following example shows a CloudTrail log entry that demonstrates the StartExecution action:

{
"eventVersion": "1.04",
"userIdentity": {

"type": "IAMUser",
"principalId": "AIDAJYDLDBVBI4EXAMPLE",
"arn": "arn:aws:iam::123456789012:user/test-user",
"accountId": "123456789012",
"accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
"userName": "test-user"

},
"eventTime": "2016-10-28T01:17:25Z",
"eventSource": "states.amazonaws.com",
"eventName": "StartExecution",
"awsRegion": "us-east-1",
"sourceIPAddress": "10.61.88.189",

1.13. Logging AWS Step Functions API Calls with AWS CloudTrail 95

AWS Step Functions Developer Guide, Release 1.0

"userAgent": "Coral/Netty",
"requestParameters": {

"input": "{}",
"stateMachineArn": "arn:aws:states:us-east-1:123456789012:

→˓stateMachine:testUser.2016-10-27-18-16-26.482bea32-560f-4a36-bd",
"name": "testUser.2016-10-27-18-16-26.6e229586-3698-4ce5-8d"

},
"responseElements": {

"startDate": "Oct 28, 2016 1:17:25 AM",
"executionArn": "arn:aws:states:us-east-1:123456789012:execution:

→˓testUser.2016-10-27-18-16-26.482bea32-560f-4a36-bd:testUser.2016-10-27-18-
→˓16-26.6e229586-3698-4ce5-8d"

},
"requestID": "264c6f08-9cac-11e6-aed5-5b57d226e9ef",
"eventID": "30a20c8e-a3a1-4b07-9139-cd9cd73b5eb8",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

}

StopExecution

The following example shows a CloudTrail log entry that demonstrates the StopExecution action:

{
"eventVersion": "1.04",
"userIdentity": {

"type": "IAMUser",
"principalId": "AIDAJYDLDBVBI4EXAMPLE",
"arn": "arn:aws:iam::123456789012:user/test-user",
"accountId": "123456789012",
"accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
"userName": "test-user"

},
"eventTime": "2016-10-28T01:18:20Z",
"eventSource": "states.amazonaws.com",
"eventName": "StopExecution",
"awsRegion": "us-east-1",
"sourceIPAddress": "10.61.88.189",
"userAgent": "Coral/Netty",
"requestParameters": {

"executionArn": "arn:aws:states:us-east-1:123456789012:execution:
→˓testUser.2016-10-27-18-17-00.337b3344-83:testUser.2016-10-27-18-17-00.
→˓3a0801c5-37"

},
"responseElements": {

"stopDate": "Oct 28, 2016 1:18:20 AM"
},
"requestID": "4567625b-9cac-11e6-aed5-5b57d226e9ef",
"eventID": "e658c743-c537-459a-aea7-dafb83c18c53",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

96 Chapter 1. Contents

AWS Step Functions Developer Guide, Release 1.0

}

1.14 Document History

This topic lists major changes to the AWS Step Functions Developer Guide over the course of its history.

• Latest documentation update: Dec 01, 2016

December 1, 2016 General release.

1.15 About Amazon Web Services

Amazon Web Services (AWS) is a collection of digital infrastructure services that developers can leverage
when developing their applications. The services include computing, storage, database, and application
synchronization (messaging and queuing). AWS uses a pay-as-you-go service model: you are charged only
for the services that you—or your applications—use. For new AWS users, a free usage tier is available. On
this tier, services are free below a certain level of usage. For more information about AWS costs and the
Free Tier, see Use the AWS Free Tier. To obtain an AWS account, visit the AWS home page and click
Create a Free Account.

1.14. Document History 97

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-free-tier.html
http://aws.amazon.com/

