dMmaZon

webservices

AWS Flow Framework for Ruby
Developer Guide
Release 2.4.0

Amazon Web Services

Jul 19, 2016

Contents

9

What is the AWS Flow Framework for Ruby?
Getting Started

Flow Concepts

Basic Workflow Programming

Advanced Topics

Working with Other AWS Products

Utilities

Additional Resources

Document History

10 About Amazon Web Services

Index

17

23

49

63

81

89

91

93

95

CHAPTER 1

What is the AWS Flow Framework for Ruby?

The AWS Flow Framework for Ruby is a version of AWS Flow Framework designed for the Ruby
programming language; it provides all of the benefits of the AWS Flow Framework while remaining true to
idiomatic Ruby programming practices. Since the AWS Flow Framework handles the mechanics of
coordinating workflow tasks and communicating with Amazon Simple Workflow Service, you can focus

instead on developing the code that describes your workflow logic.

Contents

» What’s in this guide?

e Important Notes About the AWS Flow Framework for Ruby
» Where to Find the Source Code and Samples

* Framework and SDK References in the Text

1.1 What’s in this guide?

Getting Started Provides basic information for new users about how to set up and use the framework.

Flow Concepts Describes the conceptual components of a flow application. Understanding these will help
you to understand how Amazon SWF works and what parts of a workflow you are responsible for
registering and implementing.

Basic Workflow Programming Covers the basics of workflow programming, describing how to register
domains, program activities and workflows, start task pollers, how to start a workflow execution, and

how to set options.

Advanced Topics Covers advanced workflow programming topics, such as setting task priority,
programming workflow patterns, error handling, asynchronous programming, retrying workflows
and troubleshooting.

Working with Other AWS Products Describes how to use the AWS Flow Framework for Ruby in
conjunction with other AWS services, such as CloudWatch, AWS OpsWorks, and Amazon EBS.

Utilities Describes the command-line utilities provided with the AWS Flow Framework for Ruby that you
can use to generate application skeletons and to start workers.

http://www.ruby-lang.org/

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Additional Resources Lists additional documentation, code samples, forums and videos that don’t fit
within this documentation.

Document History Provides a history of this documentation, including a description of changes made with
each major release.

genindex Provides an index of terms that can be used to navigate the documentation by keyword.

1.2 Important Notes About the AWS Flow Framework for Ruby

1.2.1 Tested Ruby runtimes

The AWS Flow Framework for Ruby has been tested with the official Ruby 1.9 runtime, also known as
YARV. Newer versions of the Ruby runtime may work, but have not been tested extensively. Older versions
of the Ruby runtime are unsupported.

1.2.2 Using the Framework on Microsoft Windows
Although the AWS Flow Framework for Ruby has been tested on Windows, forking does not work unless
you are using Cygwin to run Ruby.

If you are not using Cygwin, you will need to set use_forking to false in your WorkerOptions when
using the AWS Flow Framework for Ruby on Windows.

N - .new (
@domain.client, @domain, , klass) { { use_forking: false } }

If you are using the aws—flow—-ruby command to spawn workers on Windows, make sure that the
number_of _forks_per_worker parameter in the activity_workers section is set to 0. The
aws—flow-utils command will generate a suitable setup for you if you use the -c local argument
on Windows. For more information, see aws-flow-ruby and aws-flow-utils.

1.2.3 Update :version whenever you update activity or workflow options

Once registered, any workflow or activity type is immutable. Because a workflow or activity type is
identified by a combination of its name and version, whenever you modify any registration options for the
type, you must also update its version in order to register it as a new type.

1.2.4 The AWS Management Console and the AWS SDK for Ruby have different
region defaults

The AWS Management Console defaults to the us—west—2 region, but the AWS SDK for Ruby defaults
to the us—east-1 region.

Because of this, be sure to set your AWS Management Console to the same region as the one in which you
registered your Amazon SWF domain using the AWS Flow Framework for Ruby, or vice-versa. Otherwise,
you won’t see your registered domain in the AWS Management Console.

2 Chapter 1. What is the AWS Flow Framework for Ruby?

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkerOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

You can set the region used by the AWS SDK for Ruby by setting the :region option in AWS . config. For
example:

.config({

raccess_key_id => 'ACCESS_KEY_ID',
:secret_access_key => 'SECRET_ACCESS_KEY',
:region => 'us-west-2',

1)

1.3 Where to Find the Source Code and Samples

The AWS Flow Framework for Ruby is an open-source project. The source code is available on GitHub at:
* http://github.com/aws/aws-flow-ruby
Code samples and recipes for the AWS Flow Framework for Ruby are also available on GitHub at:

* awslabs/aws-flow-ruby-samples

1.4 Framework and SDK References in the Text

All classes and methods used by the AWS Flow Framework for Ruby reside in the AWS: : Flow
namespace. Because of this, AWS : : F1ow is usually dropped from the text when referring to the
framework’s classes or methods. For example, the AWS: :Flow: : Activities class is simply referred
to as the Activities class, and the AWS: :Flow#workflow_client method is simply referred to
as the workflow_client method.

Classes and their methods that reside within the AWS : : F 1ow namespace follow the same rule:
AWS::Flow::Activities#activity isreferred to as Activities#activity in the text, and
AWS::Flow::Core: :Future#fget isreferred to as Core: :Futurefget.

In some cases, references are made to the underlying AWS SDK for Ruby. For references such as these, the
full namespace is always used. AWS: : SimpleWorkflow and AWS: : SimpleWorkflow: :Domain
are written in full form to distinguish them from any names in the AWS : : 1 ow namespace.

1.3. Where to Find the Source Code and Samples 3

http://github.com/aws/aws-flow-ruby
https://github.com/awslabs/aws-flow-ruby-samples
http://aws.amazon.com/sdk-for-ruby/

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

4 Chapter 1. What is the AWS Flow Framework for Ruby?

CHAPTER 2

Getting Started

This section provides information about the prerequisites you need to use the AWS Flow Framework for
Ruby, how to set up the framework, and provides a short example of using the framework to write a simple
workflow.

More information about programming with the AWS Flow Framework for Ruby can be found in Basic
Workflow Programming.

2.1 Setting Up

To set up and use the AWS Flow Framework for Ruby, you will need to meet the prerequisites and then
install the framework.

Contents

* Prerequisites
* Installing the Framework
* Building and Installing from Source

2.1.1 Prerequisites

Before you can install the framework, you must have the following software installed:

* Ruby 1.9 or greater — The AWS Flow Framework for Ruby relies on fibers, which were introduced
with Ruby version 1.9.1. To determine the version of Ruby that you have installed, use the following
command:

ruby —--version

For information about installing Ruby for the first time, or about updating your Ruby version, visit
http://www.ruby-lang.org/en/downloads/.

* AWS SDK for Ruby — The AWS Flow Framework for Ruby is built upon the AWS SDK for Ruby.
If you use RubyGems to install the framework, then the SDK for Ruby will be automatically

http://www.ruby-lang.org/en/downloads/
http://rubygems.org/

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

downloaded and installed for you—you can ignore this prerequisite. Otherwise, you will need to
obtain and install the AWS SDK for Ruby before installing the AWS Flow Framework for Ruby.

2.1.2 Installing the Framework

You can install the AWS Flow Framework for Ruby using RubyGems or by downloading the source code
and building it yourself.

Installing with RubyGems

If you have Ruby and RubyGems installed, you can install the framework on your system with the
following command:

gem install aws—-flow

This command will also install any additional libraries needed by the framework.

2.1.3 Building and Installing from Source

Before building the AWS Flow Framework for Ruby from source, you will first need to make sure that you
have both of the prerequisites installed. You should also have Bundler installed on your system, which will
make it easy to assemble all of the dependencies for the framework. Then, use the following procedure to
get the framework installed on your system.

To build and install the framework from source
1. Download the source code from http://github.com/aws/aws-flow-ruby. There are two ways to do this:

* Clone the repository on your local system using either of the following git commands,
depending on whether you authenticate Git with SSH or HTTPS:

SSH git clone git@github.com:aws/aws-flow-ruby.git
HTTPS | git clone https://github.com/aws/aws-flow-ruby.git

* Download the code in a . zip archive using the URL
http://github.com/aws/aws-flow-ruby/archive/master.zip and unpack the archive on your local
system.

2. Using the command line, navigate to the directory where you cloned (or unpacked) the source code,
and then enter the aws—f1ow directory. For example, if you downloaded the source and unpacked it
in your Downloads directory, you would type:

cd Downloads/aws-flow-ruby-master/aws—flow

3. Install the framework with Bundler:

bundle install

6 Chapter 2. Getting Started

http://aws.amazon.com/sdk-for-ruby/
http://bundler.io/
http://github.com/aws/aws-flow-ruby
http://github.com/aws/aws-flow-ruby/archive/master.zip

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

2.2 Providing AWS Credentials

To connect to any AWS service, you must provide your AWS credentials. The AWS SDKs and CLIs use
provider chains to look for AWS credentials in a number of different places, including system or user
environment variables and in local AWS configuration files.

The AWS Flow Framework for Ruby is based on the SDK for Ruby; setup and specification of AWS
credentials is the same for each. For more information, see Setting up AWS Credentials for Use with the
SDK for Ruby in the AWS SDK for Ruby Developer Guide (V1).

Setting your credentials for use by the SDK for Ruby can be done in a number of ways, but here are the
recommended approaches:

* Set credentials in the AWS credentials profile file on your local system, located at:
- ~/.aws/credentials on Linux, OS X, or Unix
— C:\Users\USERNAME\.aws\credentials on Windows

This file should contain lines in the following format:

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

Note: Substitute your own AWS credentials values for the values your_access_key_id and
your_secret_access_key.

» Set the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.

To set these variables in Linux, OS X, or Unix, use export:

export AWS_ACCESS_KEY TID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key

To set these variables in Windows, use set:

set AWS ACCESS_KEY ID=your_access_key_id
set AWS SECRET ACCESS KEY=your_secret_access_key

* To set credentials for an EC2 instance, you should specify an IAM role and then give your EC2
instance access to that role as shown in Using IAM Roles for Amazon EC2 Instances in the AWS
SDK for Ruby Developer Guide (V1).

2.3 Hello World

To introduce you to programming with the AWS Flow Framework for Ruby, we’ll begin with a variant of
the famous “Hello, World” application. This version of Hello World will use Amazon SWF to schedule and

Once you have set your AWS credentials using one of these methods, they can be loaded automatically by
the AWS SDK for Ruby by using the default credential provider chain.

2.2. Providing AWS Credentials

7

http://docs.aws.amazon.com/sdk-for-ruby/latest/DeveloperGuide/set-up-creds.html
http://docs.aws.amazon.com/sdk-for-ruby/latest/DeveloperGuide/set-up-creds.html
http://docs.aws.amazon.com/sdk-for-ruby/latest/DeveloperGuide/ruby-dg-roles.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

run an activity, which implements some work to be done.

The complete code for the example is presented in this topic, but you will also find it in the
awslabs/aws-flow-ruby-samples repository on GitHub along with many other examples of programming
with the AWS Flow Framework for Ruby.

Contents

* Prerequisites

* Create an Activity

* Generate the Application

* Start an Activity Worker

o Starting a Workflow Execution

* Viewing your Execution with the AWS Management Console
* Next Steps

2.3.1 Prerequisites

This example assumes that you meet the following prerequisites:

* Ruby and the AWS Flow Framework for Ruby (at least version 2.4.0) are installed as described in
Setting Up.

* Your AWS credentials are configured as described in Providing AWS Credentials.

2.3.2 Create an Activity

An activity represents a single unit of work. At its most basic, an activity is a simple Ruby method that is
housed within a class. For this example, we’ll create a single activity called hello.

To create the “hello” activity:

1. Open a command-line (terminal) window and create a new file, hello. rb.

2. Add the following code:

class HelloWorld
def hello (input)
"Hello input [:name] } !'"
end
end

The method hello is our activity implementation—it prints a greeting customized by the value of the
input parameter, which is provided to the activity by Amazon SWF when the activity is run.

2.3.3 Generate the Application

You can use the aws—flow—utils command to automatically generate an application skeleton for you
based on the activity you just created. For this tutorial, we will create a locally-run application, but you can

8 Chapter 2. Getting Started

http://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

also create application skeletons ready for use with Elastic Beanstalk. For more information, see Deploying
Workflows with Elastic Beanstalk.

To create an Amazon SWF application with aws-flow-utils:

* Open a command-line (terminal) window and type:

aws—flow-utils —-c¢ local —-n HelloWorld —-a hello.rb —-A HelloWorld

An Amazon SWF application configured to use the AWS Flow Framework for Ruby will be created for
you in the local directory, called HelloWor1d. Here is the layout of the project that will be created:

HelloWorld/
| -—— Gemfile
|-—— flow/
| |-— activities.rb
| |-— hello.rb
| "—— workflows.rb
" —— worker.json

This is a standard layout for AWS Flow Framework for Ruby applications: a £ 1ow directory that contains
your activity and workflow classes and methods, and a worker . json configuration file used to spawn
workers.

2.3.4 Start an Activity Worker

To run the he11lo activity and provide it with its necessary input data, we need to start at least one activity
worker to receive activity tasks from Amazon SWEF. You can start the activity worker right now, and it will
begin polling for tasks.

To start the worker:

* Starting within the He11oWor1d directory, run the aws—£flow—ruby utility and specify the name
of your configuration file:

’ aws—flow-ruby —-f worker. json

The output of this command lists the process IDs of your worker threads:

’waiting on workers [10972, 10975] to complete

Your worker is now polling for tasks, but to provide it with tasks to process, you need to start a workflow
execution.

2.3.5 Starting a Workflow Execution

Now that your workers are running, you can start your activity by initiating a workflow execution.
This signals to Amazon SWF to begin running your workflow (or in this case, a single activity). You can do
this from anywhere: Amazon SWF will communicate with the workers you started to run the
HelloWorld.hello activity.

For example, you can use the following script (call it starter. rb) to start the activity:

2.3. Hello World 9

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

require 'aws/decider'

::start ("HelloWorld.hello", { name: "AWS Flow Framework!" })

To run this script, open a new command-line window and run it using Ruby:

ruby starter.rb

This will begin executing the he 1 1o activity in the background on the worker.

2.3.6 Viewing your Execution with the AWS Management Console

The application didn’t provide any output—how do you know that it ran? When you use the start
method to run an activity, Amazon SWF runs it as a workflow execution. Since Amazon SWF keeps a
history of all workflow executions that you’ve started, you can view your activity’s progress using the AWS
Management Console.

To view your activity’s execution history:

1.

Sign in to the AWS Management Console.

. Go to the SWF console and select the domain: FlowDefault.

2
3.
4

Click Workflow Executions. By default, only active workflow executions are listed.

. Perform one of the following actions:

* If your workflow execution has finished, select an Execution Status of Closed in the Workflow
Execution List Parameters view, then click List Executions to refresh the list.

* If your workflow execution is still running, leave the Execution Status as Active.

Click the Workflow Execution ID associated with your workflow execution to see the details of the
workflow execution.

Click the Events tab to see a view of individual workflow events, listed in order from most recent to
oldest. Once your workflow execution is complete, you will see a WorkflowExecutionCompleted
event at the top of the history.

Click on the date that’s associated with the Workflow ExecutionCompleted event to view the event
details, which include the result of the workflow execution:

¥ Event Date ID Event Type
Mon Jan 19 00:32:01 GMT-800 2015 11 WorkflowExecutionCompleted
Mon Jan 19 00:32:01 GMT-800 2015 10 DecisionTaskCompleted
Mon Jan 19 00:32:00 GMT-800 2015 9 DecisionTaskStarted
Mon Jan 19 00:32:00 GMT-800 2015 8 DecisionTaskScheduled
Ao mm i s mm e - e

WorkflowExecutionCompleted [with Eventld 11] selected

Decision Task Completed Event Id 10

Event Timestamp Mon Jan 19 00:32:01 GMT-800 2015

Result --- Hello AWS Flow Framework!! ...

Congratulations, you’ve run your first Amazon SWF workflow using the AWS Flow Framework for Ruby!

10

Chapter 2. Getting Started

https://console.aws.amazon.com/
https://console.aws.amazon.com/swf

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

2.3.7 Next Steps
This topic is meant to be only a simple introduction to the way you create workflows with AWS Flow
Framework for Ruby. Use the following topics and resources to learn more about the framework:

* To learn how to create a workflow with multiple activities, see Basic Workflow Example.

* To learn more about the AWS Flow Framework for Ruby and about how Amazon SWF applications
work, see Flow Concepts.

* For more information about and examples of programming with the AWS Flow Framework for
Ruby, see Basic Workflow Programming and Advanced Topics.

* For information about how you can use the AWS Flow Framework for Ruby with other AWS
products, see Working with Other AWS Products.

* To view and download working examples that demonstrate many of the features and techniques
described in this documentation, see the aws-flow-ruby-samples repository on GitHub.

2.4 Basic Workflow Example

Continuing from Hello World, this topic provides an introduction to creating a basic workflow with the
AWS Flow Framework for Ruby, and demonstrates the basic process of creating a multi-step workflow,
setting options, and starting a workflow execution.

Note: The complete code for the example is presented in this topic, but you will also find it in the
awslabs/aws-flow-ruby-samples repository on GitHub along with many other examples of programming
with the AWS Flow Framework for Ruby.

Contents

* Prerequisites

* Create your Application

* Create the Activities

* Create the Workflow

o Start Workers

o Start a Workflow Execution
* Next Steps

2.4.1 Prerequisites

This example assumes that you meet the following prerequisites:

* Ruby and the AWS Flow Framework for Ruby (at least version 2.4.0) are installed as described in
Setting Up.

* Your AWS credentials are configured as described in Providing AWS Credentials.

2.4. Basic Workflow Example 11

http://github.com/awslabs/aws-flow-ruby-samples
http://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

2.4.2 Create your Application

Just as with the Hello World example, we’ll use the aws—flow—utils command to generate an
application skeleton project.

To create the application project:

* Open a command-line (terminal) window and type:

aws—flow-utils -c local -n Booking

An Amazon SWF application configured to use the AWS Flow Framework for Ruby will be created for
you in the local directory, called Booking. Here is the layout of the project that will be created:

Booking/
| -— Gemfile
|—— flow/
| |-— activities.rb
| "—— workflows.rb
" —— worker.json

2.4.3 Create the Activities
For this example, we’ll define a couple of activities that emulate a travel-booking workflow:
reserve_car, reserve_air,and send_confirmation.
To define the Booking activities:
1. Openthe flow/activities.rb file in your generated Book ing project.

2. Add the following code:

BookingActivity class defines a set of activities for the Booking samplel

class BookingActivity
extend H -

The activity method is used to define activities. It accepts a list of
of activities and a block specifying registration options for those
activities
activity :reserve_car, :reserve_air, :send_confirmation do
{
version: "1.0",

}

end

This activity can be used to reserve a car for a given request_id
def reserve_car (request_id)

puts "Reserving car for Request ID: request_id/\n"
end

This activity can be used to reserve a flight for a given request_id
def reserve_air (request_id)
puts "Reserving airline for Request ID: request_id/\n"

12 Chapter 2. Getting Started

names

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

end

This activity can be used to send a booking confirmation to the customg

def send_confirmation (customer_id)
puts "Sending notification to customer: customer_id/\n"
end
end

The activity class is based on Activities, which provides a common interface for defining and working with

activity methods. In fact, in the activity defined in the Hello World tutorial, AWS Flow Framework for

Ruby converted the He11oWorld class to an Act ivities-based class behind the scenes, before
running it.

In this example, the activities are assigned options using the Activities#activity method, which takes a list

of activity names and assigns each of them the set of ActivityRegistrationOptions defined in the block.

As with HelloWorld, activities are defined by methods that take a single input parameter, and each one

performs a specific job in the workflow.

2.4.4 Create the Workflow

The defined activities comprise a synchronization workflow pattern: the customer could either reserve a

car, an airline ticket, or both. In any of these cases, a confirmation will be sent.

To implement the Booking workflow:
1. Open the flow/workflows. rb file in your generated Booking project.
2. Add the following code:

require 'flow/activities'

BookingWorkflow class defines the workflows for the Booking sample
class BookingWorkflow
extend

Use the workflow method to define workflow entry point.
workflow :make_booking do
{
version: "1.0",
default_execution_start_to_close_timeout: 120
}

end

Create an activity client using the activity_ client method to schedule

activities
activity_client (:client) { { from_class: "BookingActivity" } }

This is the entry point for the workflow
def make_booking options

puts "Workflow has started\n" unless is_replaying?

This array will hold all futures that are created when asynchronous

2.4. Basic Workflow Example

13

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html#activity-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityRegistrationOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

activities are scheduled
futures = []

if options|[:reserve_car]

puts "Reserving a car for customer\n" unless is_replaying?

The activity client can be used to schedule activities

asynchronously by using the send_async method

futures << client.send_async(:reserve_car, options|[:request_id])
end
if options|[:reserve_air]

puts "Reserving air ticket\n" unless is_replaying?

futures << client.send_async(:reserve_air, options[:customer_id])
end

puts "Waiting for reservation to complete\n" unless is_replaying?
wait_for_all is a flow construct that will wait on the array of
futures passed to it

wait_for_all (futures)

After waiting on the reservation activities to complete, the workflo
will call the send _confirmation activity.
client.send_confirmation (options|[:customer_id])

puts "Workflow has completed\n" unless is_replaying?
end

Helper method to check if Flow is replaying the workflow. This is used
avoid duplicate log messages
def is_replaying?
decision_context.workflow_clock.replaying
end
end

Workflow methods are defined in a class based on Workflows, and each workflow method takes an input
parameter, just as the activity methods did. Similarly, you can use the Workflows#workflow method to set
registration options for your workflows.

The workflow method, make_booking, uses the input parameter to choose whether or not to run the
reserve_car and reserve_air activities. Each booking activity runs asynchronously using
GenericClient#send_async, which returns immediately with a future that is filled once the activity
completes. For more information, see Executing Tasks Asynchronously.

Activities and workflows will normally be replayed if an exception occurs, which sets the value of
is_replayinginthe workflow_clock attribute of the DecisionContext object held by the
Workflows class. In this case, the workflow checks its value to avoid repeating its status messages with
every replay.

Finally, the workflow calls Core#wait_for_all to wait for all of the running activities to complete before
running the final activity, send_confirmation.

14 Chapter 2. Getting Started

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html#workflow-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#send_async-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/DecisionContext.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_all-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

2.4.5 Start Workers

For the workflow and activities to run, we need to start workers to listen for tasks and start running the
appropriate methods in our implementation. As with HelloWorld, we’ll start the worker using the

aws-flow-ruby utility.
To write the runner configuration:
1. Open the worker. json file in your Booking project.

2. Add the following JSON configuration data to the file:

{

"domain":
{
"name": "Booking",
"retention_in days": 10

I
"workflow workers": |
{
"number_ of workers'": 5,
"task_1list": "booking_tasklist"
}
1,
"activity workers": |

{

"number_ of workers": 5,
"number_of_ forks_per worker": 10,
"task_1l1list": "booking_activity_tasklist"

}

Now, start the workers so they can begin polling for tasks.

To start the workers:

* Starting within the Book ing directory, run the aws—flow-ruby utility:

’ aws—flow-ruby -f worker. json

The runner will provide you with some output that describes the process IDs of your worker threads:

’waiting on workers [10972, 10975, ...] to complete

Your worker is now polling for tasks, but to provide it with tasks to process, you need to start a workflow

execution.

2.4.6 Start a Workflow Execution

When executing a workflow instead of a single activity, use the start_workflow method instead of start.

To start the workflow execution:

2.4. Basic Workflow Example

15

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start_workflow-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

1. Create a new file (you can call it starter. rb) and add the following code:

require 'aws/decider'

input = {
request_id:
customer_id:
reserve_car:

"1234567890",
"1234567890™",
true,

reserve_air: true

}

opts = {
domain: "Booking",

version: "1.0"

::start_workflow ("BookingWorkflow.make booking",

input, opts)

2. Open a command-line window and run your script using Ruby:

ruby starter.rb

The call to start takes:
* the fully-qualified name (class.method) of your workflow method
* input data for the workflow

* ablock of StartWorkflowOptions

When you run the script, the make_booking workflow and its associated activities will begin running in

the background on the previously-started workers.

You can view your workflow execution the same way as for HelloWorld, just be sure to select the Booking

domain in the SWF console.

2.4.7 Next Steps

Use the following topics and resources to learn more about the framework:

* To learn more about the AWS Flow Framework for Ruby and about how Amazon SWF applications

work, see Flow Concepts.

* To learn how to deploy workflows and workers with Elastic Beanstalk or AWS OpsWorks, see
Deploying Workflows with Elastic Beanstalk and Tutorial: Hello AWS OpsWorks!.

* For more information about and examples of programming with the AWS Flow Framework for

Ruby, see Basic Workflow Programming and Advanced Topics.

* For information about how you can use the AWS Flow Framework for Ruby with other AWS

products, see Working with Other AWS Products.

* To view and download working examples that demonstrate many of the features and techniques
described in this documentation, see the aws-flow-ruby-samples repository on GitHub.

16

Chapter 2. Getting Started

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/StartWorkflowOptions.html
https://console.aws.amazon.com/swf
http://github.com/awslabs/aws-flow-ruby-samples

CHAPTER 3

Flow Concepts

Throughout the AWS Flow Framework for Ruby documentation, you will find references to a number of
code and conceptual terms specific to Amazon SWF and the flow framework. This section provides topics
that discuss the various parts of an Amazon SWF application and other essential concepts that you should
understand when designing Amazon SWF applications and workflows.

3.1 Parts of an Amazon SWF Application

An Amazon SWF application comprises various logical elements. Understanding these will help you
determine how to build your own flow applications.

Contents

* Domains

» Workflows

* Activities

e Task Lists

* Workers

» Workflow Execution

3.1.1 Domains

A domain is an identifier (name) that you create to hold workflow processes and data. When you register a
workflow type or activity type, you associate it with a domain name, in which all of the workflow activity
takes place. Workflows and activities can only communicate with workflows and activities that exist within
the same domain, and task lists that are used within a domain are distinct from task lists that exist in a
separate domain, even if the task list has the same name as one that is being used in the other domain.

When you register a domain, you provide it with a workflow retention period, which is the minimum
number of days that workflow history is retained for closed workflow executions within that domain.

Registering a domain is optional—The AWS Flow Framework for Ruby provides a default domain,
FlowDefault, which it uses for workflow executions that are started without specifying a domain name
to use. The default domain has a retention period of 7 days.

17

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

To learn how to register and deprecate domains, see Registering a Domain.

3.1.2 Workflows

A workflow is the primary element in all Amazon SWF applications. It represents a sequence of steps
required to perform a specific task. The steps needn’t be strictly sequential; a workflow can consist of tasks
that run sequentially, in parallel, synchronously or asynchronously. How your workflow behaves depends
largely upon your business logic—the steps that are required to complete a process.

Because workflows contain code that responds to events that are managed by the Amazon SWF service,
making decisions about what steps to take and how workflow execution proceeds, a workflow is also
commonly referred to as a decider. Workflows are also responsible for passing data from and to any
activities and child workflows that it runs.

The AWS Flow Framework for Ruby provides a default decider for you, so for simple, sequential
workflows, you may not need to write any workflow code yourself. For a very simple example of a AWS
Flow Framework for Ruby application that uses a default decider, see the Hello World topic.

A workflow consists of two parts: a workflow type registration and a workflow implementation:

* When you register a workflow, you provide a name, a version, and a set of options that provide
default settings. These settings are applied by default to any workflow that uses the same workflow
name and version.

* The workflow implementation consists of the code that provides your business logic. This is the part
of the workflow that is specifically referred to as the decider. Workflow code is associated with a
workflow type registration, but you can use the same code for different workflow types: the registered
workflow type controls the default options that will be applied to the workflow when it’s run.

3.1.3 Activities

An activity represents a step, or single unit of work, in a workflow. An activity can calculate a value based
on input data, receive input from a web application, wait for a human task to be completed, or perform any
other action that represents a step in your workflow.

Similar to workflows, an activity consists of an activity type registration, uniquely identified by a name and
version and which provides default options, and an activity implementation which provides the code that
will be executed when the activity is run.

Activities are scheduled by a workflow implementation, in response to decision tasks received from the
workflow’s task list.

See Implementing Activities to learn how to implement activities with the AWS Flow Framework for Ruby.

3.1.4 Task Lists

A task list is a logical entity used by Amazon SWF to manage events for your workflows and activities.
When you register a workflow or activity, you can provide it with a task list name that can be referred to in
order to receive tasks for that workflow or activity.

18 Chapter 3. Flow Concepts

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Workflow and activity tasks are polled for separately, even if they use the same task list name. Workflow
tasks, for example, are delivered only to pollers that exist within your workflow code, and activity tasks are
delivered only to your activities.

3.1.5 Workers

Workflow and Activity workers are responsible for receiving tasks from Amazon SWF and in taking
appropriate actions to start a workflow or schedule an activity to be run. They are each configured with a
task list to poll on.

With the AWS Flow Framework for Ruby, you can start workers using the Activity Worker and
WorkflowWorker classes, or by using the aws—£f1low-ruby command-line utility to spawn a number of
workers when provided with activity and workflow classes.

Your workers will not begin receiving workflow or activity task events until a workflow execution is started.

For more information about starting workers, see Starting Workflow and Activity Workers.
3.1.6 Workflow Execution
A workflow execution refers to an individual execution of a workflow using a workflow_client’s

WorkflowClient#start_execution method (or by any other means, such as starting a workflow from the
command line or using the AWS Management Console).

Once you begin executing a workflow, your workers will begin receiving task events from Amazon SWF.

3.2 Amazon SWF Timeout Types

This topic provides information about the various timeouts that you can set in your workflows and activities
to control your workflow behavior.

Contents

* About Amazon SWF timeouts
» Timeouts for Workflows and Workflow Executions
» Timeouts for Activities

3.2.1 About Amazon SWF timeouts

To ensure that workflow executions run correctly, Amazon Simple Workflow Service enables you to set
different types of timeouts. Some timeouts specify how long the workflow can run in its entirety. Other
timeouts specify how long activity tasks can take before being assigned to a worker and how long they can
take to complete from the time they are scheduled. All timeouts in the Amazon SWF API are specified in
seconds. Amazon SWF also supports the string “NONE” as a timeout value, which indicates no timeout.

3.2. Amazon SWF Timeout Types 19

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityWorker.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowWorker.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html#start_execution-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

For timeouts related to decision tasks and activity tasks, Amazon SWF adds an event to the workflow
execution history. The attributes of the event provide information about what type of timeout occurred and
which decision task or activity task was affected. Amazon SWF also schedules a decision task. When the
decider receives the new decision task, it will see the timeout event in the history and take an appropriate
action by calling the RespondDecisionTaskCompleted action.

A task is considered open from the time that it is scheduled until it is closed. Therefore a task is reported as
open while a worker is processing it. A task is closed when a worker reports it as completed, canceled, or
failed. A task may also be closed by Amazon SWF as the result of a timeout.

3.2.2 Timeouts for Workflows and Workflow Executions

The following diagram shows how workflow execution and workflow (decider) timeouts are related to the
lifetime of a workflow:

Execution Start to Close timeout

Task Start to Close Task Start to Close
timeout . timeout
Waorkflow Execution | Decision Task Decision Task Decision Task Decision Task
Started started completed started completed
Decision Task Decision Task Workflow Execution Closed
scheduled scheduled {completed, failed, terminated,

canceled or timed out)

There are two timeout types that are relevant to workflow and decision tasks:

Execution Start to Close This timeout specifies the maximum time that a workflow execution can take to
complete. It is set as a default during workflow registration, but it can be overridden with a different
value when the workflow is started. If this timeout is exceeded, Amazon SWF closes the workflow
execution and adds an event of type WorkflowExecutionTimedOut to the workflow execution history.

In addition to the timeoutType, the event attributes specify the childPolicy that is in effect for this
workflow execution. The child policy specifies how child workflow executions are handled if the
parent workflow execution times out or otherwise terminates. For example, if the childPolicy is set to
TERMINATE, then child workflow executions will be terminated.

Once a workflow execution has timed out, you cannot take any action on it other than visibility calls.

Task Start to Close This timeout specifies the maximum time that the corresponding decider can take to
complete a decision task. It is set during workflow type registration. If this timeout is exceeded, the
task is marked as timed out in the workflow execution history, and Amazon SWF adds an event of
type DecisionTaskTimedOut to the workflow history.

The event attributes will include the IDs for the events that correspond to when this decision task was
scheduled (scheduledEventld) and when it was started (startedEventld). In addition to adding the

20 Chapter 3. Flow Concepts

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

event, Amazon SWF also schedules a new decision task to alert the decider that this decision task
timed out.

After this timeout occurs, an attempt to complete the timed-out decision task using
RespondDecisionTaskCompleted will fail.

3.2.3 Timeouts for Activities

The following diagram shows how timeouts are related to the lifetime of an activity task:

Schedule to Close timeout

! Schedule to Start timeout
= 1
* Start to Close timeout

Heartbeat timeout

Task Task started Heartbeat Heartbeat Heartbeat
scheduled (dispatched recorded recorded recorded
ScheduleActivityTask to worker) Task closed
decision received (completed, failed,

or timed out)

There are four timeout types that are relevant to activity tasks:

Activity Task Start to Close This timeout specifies the maximum time that an activity worker can take to
process a task after the worker has received the task. Attempts to close a timed out activity task using
RespondActivityTaskCanceled, RespondActivityTaskCompleted, and RespondActivityTaskFailed
will fail.

Activity Task Heartbeat This timeout specifies the maximum time that a task can run before providing its
progress through the RecordActivityTaskHeartbeat action.

Activity Task Schedule to Start This timeout specifies how long Amazon SWF waits before timing out
the activity task if no workers are available to perform the task. Once timed out, the expired task will
not be assigned to another worker.

Activity Task Schedule to Close This timeout specifies how long the task can take from the time it is
scheduled to the time it is complete. As a best practice, this value should not be greater than the sum
of the task schedule-to-start timeout and the task start-to-close timeout.

Note: Each of the timeout types has a default value, which is generally set to NONE (infinite). The
maximum time for any activity execution is limited to one year, however.

You set default values for these during activity type registration, but you can override them with new values
when you schedule the activity task. When one of these timeouts occurs, Amazon SWF will add an event
of type ActivityTaskTimedOut to the workflow history. The timeoutType value attribute of this event will
specify which of these timeouts occurred. For each of the timeouts, the value of timeoutType is shown in
parentheses. The event attributes will also include the IDs for the events that correspond to when the

3.2. Amazon SWF Timeout Types 21

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

activity task was scheduled (scheduledEventld) and when it was started (startedEventld). In addition to

adding the event, Amazon SWF also schedules a new decision task to alert the decider that the timeout
occurred.

22 Chapter 3. Flow Concepts

CHAPTER 4

Basic Workflow Programming

This section covers the basics of workflow programming, describing how to register domains, program
activities and workflows, start task pollers, how to start a workflow execution, and how to set options. You
can find further information about programming with the AWS Flow Framework for Ruby in the Advanced
Topics section.

Note: In addition to the examples provided within these topics, code samples that demonstrate many of
the features discussed here can be found in the AWS Flow Framework for Ruby samples and recipes
repository, available at:

* https://github.com/awslabs/aws-flow-ruby-samples

4.1 Registering a Domain

To register a domain with the AWS Flow Framework for Ruby, use the underlying AWS SDK for Ruby.
When you register a domain, you must provide Amazon SWF with the domain’s name and retention
period, measured in days. The retention period is the number of days that workflow execution history will
be retained for closed workflows.

Here’s a typical method that either retrieves an existing domain, or registers it if the domain name has not
yet been registered:

require 'aws/decider'

get a SWF object from the AWS Ruby SDK.
swf = HI .new

attempt to retrieve a domain. If it doesn't already exist, then register it.

domain = swf.domains['ExampleDomain']
unless domain.exists?

domain = swf.domains.create ('ExampleDomain', 10)
end

You can also use the aws-flow-ruby utility to register a domain—if you specify a domain in its worker
configuration file that doesn’t yet exist, the AWS Flow Framework for Ruby will attempt to register it for

23

https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

you.

Note: When using the AWS Flow Framework for Ruby, registering a domain is optional. If you don’t
declare a domain to use for your workflows, the framework will use the default domain, F1lowDefault,
with a retention period of 7 days.

For more information about registering domains with the AWS SDK for Ruby, see
SWF::Client#register_domain in the AWS SDK for Ruby Reference.

4.1.1 Deprecating a Registered Domain
If you have registered a domain name and you would like to stop any new workflows from being created in
it, you can deprecate a registered domain. However, once you deprecate a domain:

* You can no longer run any workflows within it.

* You cannot re-register the domain within the same region and using the same account as the
deprecated domain.

Given these caveats, you can deprecate a domain by using the
AWS::SimpleWorkflow::Client#deprecate_domain method:

require 'aws/decider'

get a SWF object from the AWS Ruby SDK.
swf = - .new

deprecate the domain
swf.client.deprecate_domain ({ name: 'ExampleDomain' })

4.2 Implementing Activities

All activities in that are run with Amazon SWF use a registered activity type to identify the activity and set
its default options. You can have the AWS Flow Framework for Ruby register the activity for you, or you
can do this yourself. Either way, the primary attribute of any activity is the code that is run when the
activity is run.

Contents

* An Activity Implementation is a Ruby Method
* Activity Registration
* Scheduling and Running Activities

* For More Information

24 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/sdkforruby/api/Aws/SWF/Client.html#register_domain-instance_method
http://docs.aws.amazon.com/sdkforruby/api/
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Client.html#deprecate_domain-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

4.2.1 An Activity Implementation is a Ruby Method

In Hello World, an activity was defined simply by creating an enclosing class and defining an activity
method:

class HelloWorld
def hello (input)
"Hello #{input[:name] }!"
end
end

The activity takes an input parameter that can receive data supplied to it by Amazon SWF when the activity
is run.

Activities that are implemented this way are ideal if you’re running a single activity with a default decider
and default activity type. For more control over your activity type registration and to set activity options,
you should base your activities classes on the Activities class, such as this set of activities from the
Booking sample:

BookingActivity class defines a set of activities for the Booking sample.
class BookingActivity
extend -

The activity method is used to define activities. It accepts a list of namqg
of activities and a block specifying registration options for those
activities
activity :reserve_car, :reserve_air, :send_confirmation do
{
version: "1.0",

}
end

This activity can be used to reserve a car for a given request_id
def reserve_car (request_id)

puts "Reserving car for Request ID: #{request_id}\n"
end

This activity can be used to reserve a flight for a given request_id
def reserve_air (request_id)

puts "Reserving airline for Request ID: #{request_id}\n"
end

This activity can be used to send a booking confirmation to the customer
def send_confirmation (customer_id)
puts "Sending notification to customer: #{customer_id}\n"
end
end

This class defines three activities and sets the same activity registration options for each. In your own
Activities-based classes, you can use this technique to set the same options for multiple activity
methods, or you can provide separate options for each activity.

4.2. Implementing Activities 25

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

4.2.2 Activity Registration

Amazon SWF must know about your activity type in order to process tasks for it; registering an activity
type provides the activity’s name, version, and default options to Amazon SWF so that the activity can be
referenced and run in your workflows.

Activities that you define using the AWS Flow Framework for Ruby are automatically registered by the
framework when necessary. Activities that have already been registered are used when they are referenced
in your code, and any activities that are not yet registered will be registered for you by the framework when
your code is run for the first time.

When the AWS Flow Framework for Ruby registers an activity type for you, its name is taken to be a
combination of the activity’s class and method names. For example, the reserve_car method defined in
the Booking example’s BookingActivities class will be named
BookingActivities.reserve_car in your workflow history.

Whether you define one or not, version of an activity is required by Amazon SWF, and is either
automatically assigned by the framework (in the case that you define an activity to run as in the Hello
World sample) or can be set using an the version registration option when the activity is declared in your
Activities-based class, as with the Booking sample. When an activity version is automatically applied,
the default value of 1.0 is used. Activity versions are not restricted to numeric values: “1.0”, “1.2a”, and
“version_three” are all valid version fields.

Like all Amazon SWF types, activity types are scoped to a particular domain, AWS account, and region.
Activities that are registered in other domains, regions, or to another account are unrelated, even if they
share the same name, version or other options.

Within a domain, region and account, an activity type is uniquely identified by the combination of its name
and version. Once registered, an activity type is immutable: Any changes you make to an activity’s default
options must be accompanied by either a change to its name, its version, or both.

4.2.3 Scheduling and Running Activities

Activities are scheduled to be run within your workflow implementation, also known as your workflow’s
decider logic. The AWS Flow Framework for Ruby provides a default decider that can run a single activity
that you provide to the start method:

require 'aws/decider'
::start ("HelloWorld.hello", { name: "AWS Flow Framework!" })

When working with multi-step workflows, you will often want to write the decider logic yourself. The
Booking sample implements a synchronization-pattern workflow by scheduling two activities
asynchronously, and then waiting for all of the futures to be set before completing the workflow:

require 'flow/activities'
BookingWorkflow class defines the workflows for the Booking sample
class BookingWorkflow

extend

Use the workflow method to define workflow entry point.

26 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start-class_method

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

workflow :make_booking do
{
version: "1.0",
default_execution_start_to_close_timeout: 120
}

end

Create an activity client using the activity_ client method to schedule
activities
activity_client (:client) { { from_class: "BookingActivity" } }

This is the entry point for the workflow
def make_booking options

puts "Workflow has started\n" unless is_replaying?

This array will hold all futures that are created when asynchronous
activities are scheduled

futures = []

if options|[:reserve_car]

puts "Reserving a car for customer\n" unless is_replaying?

The activity client can be used to schedule activities

asynchronously by using the send_async method

futures << client.send_async(:reserve_car, options[:request_id])
end
if options[:reserve_air]

puts "Reserving air ticket\n" unless is_replaying?

futures << client.send_async(:reserve_air, options|[:customer_id])
end

puts "Waiting for reservation to complete\n" unless is_replaying?
wait_for_all is a flow construct that will wait on the array of
futures passed to it

wait_for_all (futures)

After waiting on the reservation activities to complete, the workflow
will call the send confirmation activity.
client.send_confirmation (options|[:customer_id])

puts "Workflow has completed\n" unless is_replaying?
end

Helper method to check if Flow is replaying the workflow. This is used to
avoid duplicate log messages
def is_replaying?
decision_context.workflow_clock.replaying
end
end

Note: For more information about implementing workflow patterns and about writing asynchronous
workflows, see the topics Implementing Workflow Patterns and Executing Tasks Asynchronously,

4.2. Implementing Activities 27

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

respectively.

Activities are run when an activity worker that is polling for activity tasks receives an activity task event
from Amazon SWF for a particular activity, runs the activity and then reports the result back to Amazon
SWE.

You can code activity workers yourself, or you can use the aws—flow—-ruby utility to spawn workers that
will automatically run activities for you. Information about how to use each method is provided in the
linked topics.

4.2.4 For More Information
More information and further examples of activity implementation, registration and scheduling, refer to the
following topics and resources:

* Specifying Workflow and Activity Options — Provides information about setting activity options
during registration or when scheduling an activity.

* Amazon SWF Timeout Types — Provides information about timeouts for activities and what they mean
in the context of the activity’s life-cycle.

» Implementing Workflow Patterns — Provides information about how to design your decider code to
replicate many common workflow patterns.

* Setting Task Priority — Provides information about how to set a task priority value to your activities
to affect which activity tasks are delivered to your workers first.

* aws-flow-ruby — Provides information about how to set up and spawn workers for your activities and
workflows with a simple configuration file and the aws—flow—ruby utility.

* awslabs/aws-flow-ruby-samples — A GitHub repository with examples and recipes that provide code
examples of activity and workflow implementations using the AWS Flow Framework for Ruby.

4.3 Running Activities

If you need to run only a single activity at a time, you don’t need to write any workflow code—you can use
the start method to automatically create a workflow and start a workflow execution to run your activity.

Note: The start method can run only one activity per workflow execution. If your workflow consists of
more than one activity, create decider methods of your own. For more information, see Implementing
Workflows.

To run an activity

1. Write an activity method that takes one parameter, the activity input. The activity method must
reside within a class. For example:

28 Chapter 4. Basic Workflow Programming

http://github.com/awslabs/aws-flow-ruby-samples
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start-class_method

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

class HelloWorld
def hello (input)
"Hello input [:name] }!
end
end

n

2. Call the start method, providing it with the activity’s name (a combination of its class name and
method name, joined by a period) and a block of optional input data to pass to the activity. For
example, to run the hel1o activity method and provide it with input:

require 'aws/decider'
: ::start ("HelloWorld.hello", { name: "AWS Flow Framework!" 1})

The start method will register your activity if necessary, create and register a workflow to run it, and will
start a workflow execution.

If you do not provide any activity options to start, it will use the following defaults:

Option Value

version “1.0”

data_converter YAMLDataConverter
exponential_retry { maximum_attempts: 3 }
start_to_close_timeout “NONE”

schedule_to_close_timeout | “NONE”
schedule_to_start_timeout | “NONE”
heartbeat_timeout “NONE”
task_list “USE_WORKER_TASK_LIST”

You can modify any of these activity options by passing them as a block after the input data when you call
start:

require 'aws/decider'
s ::start ("HelloWorld.hello", { name: "AWS Flow Framework!" }) {
{
heartbeat_timeout: 10,
task_priority: 500,

4.3.1 For More Information

Use the following topics and resources to learn more about running activities:

* Hello World — A basic tutorial that leads you through the process of creating and launching an
activity using the start method.

e Implementing Activities — Provides more information about writing activity code.
P 8 g y

» Specifying Workflow and Activity Options — Provides information about the options that can be set on
activities and how to set them.

* Retrying Failed Tasks — Shows how to run activities that are automatically retried when they fail.

4.3. Running Activities 29

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start-class_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/YAMLDataConverter.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

4.4 Implementing Workflows

A workflow represents the path of execution required to perform a sequence of tasks, which are usually
activities, but which can also be child workflows (which might also have activities and child workflows of
their own).

In some cases, you don’t need to implement your own workflow. If you would like to run a single activity,
you can use the start method to run a single activity using a default workflow. For more information, see
the Hello World tutorial for an example, and Running Activities for detailed information about the AWS
Flow Framework for Ruby-supplied default decider.

Contents

* A Decider Implementation Defines Your Workflow
* Registering Workflows

* Launching and Running Workflows

* For More Information

4.4.1 A Decider Implementation Defines Your Workflow

At the center of a workflow implementation is your decider logic. Similarly to activities, you provide a
workflow implementation by declaring a class based on the Workflows class and provide methods that
define your deciders. For example, here is the implementation of the workflow used in the Booking sample:

require 'flow/activities'

BookingWorkflow class defines the workflows for the Booking sample
class BookingWorkflow
extend

Use the workflow method to define workflow entry point.
workflow :make_booking do
{
version: "1.0",
default_execution_start_to_close_timeout: 120
}
end

Create an activity client using the activity_client method to schedule
activities
activity_client (:client) { { from_class: "BookingActivity" } 1}

This is the entry point for the workflow
def make_booking options

puts "Workflow has started\n" unless is_replaying?

This array will hold all futures that are created when asynchronous
activities are scheduled

futures = []

30 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start-class_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

if options|[:reserve_car]

puts "Reserving a car for customer\n" unless is_replaying?

The activity client can be used to schedule activities

asynchronously by using the send_async method

futures << client.send_async (:reserve_car, options[:request_id])
end
if options[:reserve_air]

puts "Reserving air ticket\n" unless is_replaying?

futures << client.send_async(:reserve_air, options|[:customer_id])
end

puts "Waiting for reservation to complete\n" unless is_replaying?
wait_for_all is a flow construct that will wait on the array of
futures passed to it

wait_for_all (futures)

After waiting on the reservation activities to complete, the workflow
will call the send confirmation activity.
client.send_confirmation (options|[:customer_id])

puts "Workflow has completed\n" unless is_replaying?
end

Helper method to check if Flow 1is replaying the workflow. This is used to
avoid duplicate log messages
def is_replaying-?
decision_context.workflow_clock.replaying
end
end

This example defines a single decider, make_booking, which declares an activity client using the
Workflows#activity_client method to schedule activities with. The activity client takes a set of
ActivityOptions that it will use when an activity is scheduled using the client.

Your decider can schedule activities synchronously or asynchronously, can spawn child workflows, and can
perform many other functions to allow you to customize how your workflow progresses. While you design
your workflow classes and decider methods, keep the following points in mind:

* Do not use decider methods to perform long-running tasks. The AWS Flow Framework for Ruby
replay mechanism will repeat that task multiple times. Even asynchronous workflow methods will
typically run more than once. Instead, use activities for long running tasks; the replay mechanism
executes activities only once.

* Your workflow logic must be completely deterministic. Every episode (a single replay of the
workflow) must take the same control flow path. For example, the control flow path should not
depend on the current time.

4.4.2 Registering Workflows

Amazon SWF workflows are represented by a workflow type that is registered with Amazon SWEF. As with
activities, the AWS Flow Framework for Ruby handles workflow registration automatically for your

4.4. Implementing Workflows 31

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html#activity_client-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

workflow types when necessary.

Workflow types registered by the framework are named using a combination of the workflow class name
and decider method name; in the Booking example, the workflow type registered for the make_booking
decider method will be BookingWorkflow.make_booking.

You can set default options for workflow types when you declare decider methods in your
Workflows-based class:

workflow :make_booking do
{
version: "1.0",
default_execution_start_to_close_timeout: 120
}

end

The block of options associated with the make_booking declaration are used as default options whenever
the workflow is run, unless they are overridden when launching the workflow. As with activities, workflow
types are immutable once registered, so if you need to change the default options for a workflow, you will
also need to change its name, version or both in order to keep it from interfering with workflows associated
with the previously-registered type.

When using the default decider, the AWS Flow Framework for Ruby will register and use its own
workflow type, named RubyFlowDefaultWorkflow. start, with a version number of 1. 0. You
cannot redefine or change the default options associated with this workflow type.

4.4.3 Launching and Running Workflows

Your decider code won’t be run until:
1. A workflow execution is started.
2. A workflow worker receives a decision task to start the workflow.

You can start a workflow worker that polls for decision tasks by implementing one yourself or by using the
aws—-flow-ruby to spawn workers for you. Information about how to use each method is provided in
the linked topics.

To start a workflow execution, you can use the start_workflow method, providing it with your registered
workflow name, a block of input data for your workflow, and a set of WorkflowOptions used to start the
workflow. For example:

require 'aws/decider'

input = {
request_id: "1234567890",
customer_id: "1234567890",
reserve_car: true,
reserve_air: true

opts = {
domain: "Booking",

32 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start_workflow-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

version: "1.0"

::start_workflow ("BookingWorkflow.make_booking", input, opts)

4.4.4 For More Information
* Specifying Workflow and Activity Options — Provides information about setting workflow options
during registration or when launching a workflow.

* Amazon SWF Timeout Types — Provides information about timeouts for workflows and what they
mean in the context of the workflow’s life-cycle.

» Implementing Workflow Patterns — Provides information about how to design your decider code to
replicate many common workflow patterns.

* Setting Task Priority — Provides information about how to set a task priority value to your workflows
to affect which decider tasks are delivered to your workers first.

* aws-flow-ruby — Provides information about how to set up and spawn workers for your workflows
and activities with a simple configuration file and the aws—flow—ruby utility.

* awslabs/aws-flow-ruby-samples — A GitHub repository with examples and recipes that provide code
examples of workflow and activity implementations using the AWS Flow Framework for Ruby.

4.5 Starting Workflow and Activity Workers

You can start workflow and activity workers easily using the aws—£1ow—ruby utility, or in code.

Contents

* About Workers

* Using aws—flow—-ruby to Start Workers
o Starting Activity Workers in Code

» Starting Workflow Workers in Code

e For More Information

4.5.1 About Workers

Workflows and Activities are run by workflow and activity workers. A worker is responsible for polling for
tasks from Amazon SWF on a rask [ist, then starting the appropriate workflow or activity based on the
message in the task event.

The AWS Flow Framework for Ruby takes care of managing the workers for you. All you need to do is
instantiate and start the workers, passing optional configuration data to control how the workers operate.

4.5. Starting Workflow and Activity Workers 33

http://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

You can start the workers in your Ruby code, or start them by using the aws—£f1low—ruby utility. If you
are planning on deploying fleets of workers using AWS OpsWorks, you should use aws—flow—ruby. For
more information about using Amazon SWF with AWS OpsWorks, see Tutorial: Hello AWS OpsWorks!.

4.5.2 Using aws-flow-ruby to Start Workers

You can begin both activity and workflow workers by providing a small JSON configuration file to the
aws-flow-ruby utility, also referred to as the runner. Here is an example configuration,
worker. json, that configures a small fleet of workers for the Booking sample:

{
"domain":
{
"name": "Booking",
"retention_in_days": 10
b
"workflow workers": |
{
"number of workers": 5,
"task_1list": "booking_tasklist"
}
1,
"activity workers": [

{

"number of_ workers": 5,
"number_ of forks_per worker": 10,
"task_1list": "booking_ activity_tasklist"

}

The runner interprets this file and creates a set of workers as you specify, using the activities and workflows
that are defined in activities.rb and workflows. rb files within the £1ow directory where the
configuration file exists. See aws-flow-ruby for a complete description of how to configure the runner.

4.5.3 Starting Activity Workers in Code

To start activity workers in your code:

1. Create a new ActivityWorker object, providing it with a AWS::SimpleWorkflow::Client object, the
domain, the task list name to poll for activity tasks on, and an Activities-based class to use to access
its activity implementations. For example:

require 'aws/decider'
swf = HIS .new
activity_worker = I S .new (

swf.client, "HelloWorldDomain", "hello_world_activity_tasks",

)

34 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityWorker.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Client.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

2. Call start onthe ActivityWorker. You can set whether or not the activities should be
registered first by using the should_register parameter.

activity_worker.start (true)

4.5.4 Starting Workflow Workers in Code

To start workflow workers in your code:

1. Create a new WorkflowWorker object, providing it with similar options as with an
ActivityWorker: a AWS::SimpleWorkflow::Client object, the domain, the task list name to poll
for workflow tasks on, and a Workflows-based class to use to access its activity implementations. For
example:

require 'aws/decider'
swf = HS .new
workflow_worker = HI - .new (

swf.client, "HelloWorldDomain", "hello_world_decision_tasks",

)

2. Call start onthe WorkflowWorker. You can set whether or not the workflows should be
registered first by using the should_register parameter.

workflow_worker.start (true)

4.5.5 For More Information

For more information about implementing workers, refer to the following topics and resources:

* aws-flow-ruby — Provides information about how to set up and spawn workers for your activities and
workflows with a simple configuration file and the aws—flow—-ruby utility.

» Tutorial: Hello AWS OpsWorks! — A tutorial that leads you through the process of spawning SWF
worker fleets with AWS OpsWorks.

* awslabs/aws-flow-ruby-samples — A GitHub repository with examples and recipes that provide code
examples of activity and workflow implementations using the AWS Flow Framework for Ruby.

4.6 Starting a Workflow Execution

Once you have defined your workflows and activities, have registered them with Amazon SWF and have
started activity and workflow workers, your workflow is ready to run. However, until you start a workflow
execution, Amazon SWF will not begin delivering tasks to your workers.

You have a number of options when starting a workflow with the AWS Flow Framework for Ruby:

1. If you are running a single activity only, use AWS : : Flow#start.

4.6. Starting a Workflow Execution 35

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowWorker.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Client.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

2. If you are running multiple activities, use AWS : :Flow#start_workflow.

3. Use a workflow client to start a workflow execution with
AWS: :Flow: :WorkflowClient#start_execution.

Since most workflows use multiple activities, this topic will focus on the final two methods. For
information about using the st art method to run a single activity, see Hello World and Running Activities.

Contents

» Starting a Workflow Execution with start_workflow
e Starting a Workflow Execution with a WorkflowClient
» For More Information

4.6.1 Starting a Workflow Execution with start_workflow

To start a workflow execution, the preferred method is to use start_workflow, which can be run simply by
passing it the workflow name (class.method), input data, and a hash of StartWorkflowOptions:

require 'aws/decider'

: ::start_workflow(
"BookingWorkflow.make_booking",
{
request_id: "1234567890", customer_id: "1234567890",
reserve_car: true, reserve_air: true,

b
{

domain: "Booking",
version: "1.0a"

Important: The domain and version options are required.

You can also pass the workflow class as the first argument, and specify the method to run in the passed-in
options. This is equivalent to the preceding method:

require 'aws/decider'

I ::start_workflow (
"BookingWorkflow",
{
request_id: "1234567890", customer_id: "1234567890",
reserve_car: true, reserve_air: true,
}I
{
domain: "Booking",
execution_method: "make_lbooking",

36 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start_workflow-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/StartWorkflowOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

version: "1.0a"

Use the from_class option to use options set in the workflow class:

require 'aws/decider'
require_relative 'flow/workflows.rb'

AWS::Flow::start_workflow(
"BookingWorkflow",

{
request_id: "1234567890", customer_id: "1234567890",

reserve_car: true, reserve_alr: true,

s

domain: "Booking",
from_class: "BookingWorkflow"

4.6.2 Starting a Workflow Execution with a WorkflowClient

In addition to using start_workflow, you can start a workflow execution by using a WorkflowClient

object.
To start a workflow execution:

1. Get a WorkflowClient object by calling workflow_client and providing it with an

AWS::SimpleWorkflow object, a AWS::SimpleWorkflow::Domain object, and an optional block of

StartWorkflowOptions:

require 'aws/decider'

swf = HI .new
domain = swf.domains|['HelloWorldDomain']
workflow_client = H ::workflow_client (swf.client, domain)

{ task_list: "hello_world decision_tasks" }

2. Use the WorkflowClient#start_execution method, passing it optional input data for the workflow, and

a hash of WorkflowOptions:

workflow_input = "Amazon SWE"
workflow_client.start_execution (

workflow_input, { { workflow_name: 'my workflow_execution name'

b))

Once you’ve started the workflow execution, your workflow and activity pollers will begin receiving events

on their respective task lists.

4.6. Starting a Workflow Execution

37

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#workflow_client-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Domain.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/StartWorkflowOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html#start_execution-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

4.6.3 For More Information
» Specifying Workflow and Activity Options — Provides information about setting options on a
workflow client or when starting a workflow execution.

* awslabs/aws-flow-ruby-samples — A GitHub repository with examples and recipes that provide
working code using the AWS Flow Framework for Ruby.

4.7 Specifying Workflow and Activity Options

The AWS Flow Framework for Ruby allows you to set options that affect how your workflows and
activities are run. This topic lists each of the options that you can set, as well as providing detail about how,
and when, you can set them.

Contents

* Activity Registration Options

» Workflow Registration Options
* Activity Runtime Options

e Workflow Runtime Options

* How to Set Options

o Setting Other Types of Options

4.7.1 Activity Registration Options

The following registration options can be set only when declaring an activity type. Workers will use these
values to register the type with Amazon SWEF. Once these values are set, you must set a different version
(essentially declaring a new type) if you want to change any of the registration options.

default_task heartbeat_timeout The time, in seconds, within which an activity must record a heartbeat
progress notification (by calling record_activity_heartbeat in the
ActivityExecutionContext class).

Optional. The default value is "NONE", which will allow tasks to run indefinitely before reporting
progress.

default_task_list The name of the task list used for this activity type.

Optional. The default value is "USE_WORKER_TASK_LIST", a restricted string that, when used,
will cause the activity to use the same task list that the activity worker is polling on.

default_task_priority The task priority to set, from 2147483647 to 2147483647, where higher
numbers indicate higher priority. Higher-priority tasks are delivered before lower-priority tasks on
the same task list. Tasks that are not assigned a priority are given the default value of 0. For more
information, see Setting Task Priority.

Optional. The default value is 0.

38 Chapter 4. Basic Workflow Programming

http://github.com/awslabs/aws-flow-ruby-samples
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityExecutionContext.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

default_task_schedule_to_close_timeout The maximum duration, in seconds, of an activity execution
from the time it is scheduled to when it is marked as complete.

Optional. The default value is "NONE™"; the activity has no restriction on when it must complete
after being scheduled.

default_task schedule to_start timeout The maximum duration, in seconds, from the time when the
activity is scheduled to when it starts.

Optional. The default value is "NONE"; the activity has no restriction on when it must start after
being scheduled.

default_task_start_to_close_timeout The maximum duration, in seconds, of the activity execution from
the time it starts to when it is marked as complete.

Optional. The default value is "NONE"; the activity has no restriction on when it must complete
after being started.

version The activity version to use. This value can be set only when declaring a activity type.

Required. You must always set version when you register a activity type, or when changing any
activity registration options.

4.7.2 Workflow Registration Options

The following registration options can be set only when declaring a workflow type. Workers will use these
values to register the type with Amazon SWF. Once these values are set, you must set a different version
(essentially declaring a new type) if you want to change any of the registration options.

default_child_policy The optional policy to use for the child workflow executions when a workflow
execution of this type is terminated.

Optional. The default value is "TERMINATE", which will automatically terminate all child
executions when the parent workflow is terminated.

default_execution_start_to_close_timeout The maximum duration, in seconds, of a workflow execution
from the time it starts to when it is marked as complete.

Required. There is no default value. You must set this value either during registration or when
executing the workflow.

default_task_list The name of the default task list used for this workflow type.

Optional. The default value is "USE_WORKER_TASK_LIST", a restricted string that, when used,
will cause the workflow to use the same task list that the workflow worker is polling on.

default_task_priority The task priority to set, from —2147483647 to 2147483647, where higher
numbers indicate higher priority. Higher-priority tasks are delivered before lower-priority tasks on
the same task list. Tasks that are not assigned a priority are given the default value of 0. For more
information, see Serting Task Priority.

Optional. The default value is 0.

default_task_start_to_close_timeout The maximum duration, in seconds, of a workflow task from the
time it starts to when it is complete.

4.7. Specifying Workflow and Activity Options 39

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Optional. The default value is 30.
version The workflow version to use. This value can be set only when declaring a workflow type.

Required. You must always set version when you register a workflow type, or when changing any
workflow registration options.

4.7.3 Activity Runtime Options

These options can be set when declaring an activity, initializing a new activity client or when scheduling
an activity. They will override any default options with the same name.

data_converter The data converter class to use to interpret data delivered from Amazon SWF. If not
specified, then YAMLDataConverter will be used by default.

heartbeat_timeout The time, in seconds, within which an activity must record a heartbeat progress
notification (by calling record_activity_heartbeat in the ActivityExecutionContext class).

input Input data that will be passed to the activity when it starts. You can also pass input directly as a
parameter when scheduling the activity.

manual_completion Set to t rue when you have a human task (an activity that will be completed
manually). In this case, the activity will return immediately after starting, but it will not complete
automatically when it returns.

schedule_to_close_timeout The maximum duration, in seconds, of an activity execution from the time it
is scheduled to when it is marked as complete.

schedule_to_start_timeout The maximum duration, in seconds, from the time when the activity is
scheduled to when it starts.

start_to_close_timeout The maximum duration, in seconds, of the activity execution from the time it
starts to when it is marked as complete.

task_list The name of the task list used for this activity.

task_priority The task priority to set, from —2147483647 to 2147483647, where higher numbers
indicate higher priority. Higher-priority tasks are delivered before lower-priority tasks on the same
task list. Tasks that are not assigned a priority are given the default value of 0. For more information,
see Setting Task Priority.

4.7.4 Workflow Runtime Options
These options can be set when declaring a workflow type, initializing a new workflow client or when
starting the workflow. They will override default options with the same name.

child_policy The optional policy to use for the child workflow executions when a workflow execution of
this type is terminated.

data_converter The data converter class to use to interpret data delivered from Amazon SWF. If not
specified, then YAMLDataConverter will be used by default.

40 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/YAMLDataConverter.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityExecutionContext.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/YAMLDataConverter.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

execution_method The workflow method to call when the workflow begins executing. By default, this
method is defined when you use the work £1ow method in the Workflows class to register your
workflows.

This option is not required; it is used only if you start a workflow using the start_execution
method on the client in your workflow class. By default, the client will select the first defined
workflow in that class.

This will not be used if you start a workflow execution by calling the workflow method directly from
the client (for example, workflow_client .workflow_a) or by calling send (for example,
workflow_client.send(:workflow_a)).

execution_start_to_close_timeout The maximum duration, in seconds, of a workflow execution from the
time it starts to when it is marked as complete.

input Input data that will be passed to the workflow upon execution. You can also pass input directly as a
parameter when starting the workflow.

tag_list A list of tags to associate with the workflow. This is an empty list by default.
task_list The name of the default task list used for this workflow.

task_priority The task priority to set, from —2147483647 to 2147483647, where higher numbers
indicate higher priority. Higher-priority tasks are delivered before lower-priority tasks on the same
task list. Tasks that are not assigned a priority are given the default value of 0. For more information,
see Setting Task Priority.

task_start_to_close_timeout The maximum duration, in seconds, of a workflow task from the time it
starts to when it is complete.

workflow_id An optional workflow ID. If you don’t set it, the AWS Flow Framework for Ruby will
choose one for you.

4.7.5 How to Set Options

You can set options for activities and workflows at the following times:

* At type declaration — when you declare a new type, you can specify default options that will be used
for all activities/workflows of that type unless options are overridden on the client or at scheduling.

* On an activity/workflow client — if you set activity options on an activity client, then any activities
that are scheduled and launched with that client will inherit the options that it holds. These will act
as overrides for any options set at type declaration.

* At scheduling — when you schedule a workflow or activity for execution, you can specify options that
will override any that were set at type declaration or on the client.

Setting Registration (Type) Options

To set options in activity or workflow declarations that will be used when the type is registered with
Amazon SWEF, pass them as a block when you declare the activity or workflow using the activity or
workflow methods in Activities or Workflows, respectively.

4.7. Specifying Workflow and Activity Options 41

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Using this method, you can send the same block of options to activities that share settings. For example, to
set activity registration options:

class BookingActivity
extend -

activity :reserve_car, :reserve_air, :send_confirmation do
{
version: "1.0",
default_task_list: "activity_tasklist",
default_task_schedule_to_start_timeout: 30,
default_task_start_to_close_timeout: 30

}

end

Workflow registration options are set the same way:

class BookingWorkflow
extend H-

workflow :make_booking do

{

version: "1.0",
default_task_list: "workflow_tasklist",
default_execution_start_to_close_timeout: 120

end

Important: Once an activity or workflow type is registered, its default (registration) options cannot be
changed. If you need to change the default options of a registered activity or workflow type, you will need
to register a new type with either a different name or different version to differentiate it from other activity

types.

Setting Both Registration and Runtime Options at Declaration

You can set both registration and runtime options during declaration. If you do this, then the registration
options will be set as the defaults for that type (you will see them if you view the type in the console, and
they will be used as defaults for any other clients that use the type).

Any runtime options that you set at declaration, however, will immediately override these type-defining
default options, and will be automatically used when scheduling an activity or workflow of that type in
your code, unless they are subsequently overridden on the client or when scheduling. You can freely
modify runtime options at type declaration without any need to update the version value for the type.

In effect, you can declare a type with different runtime options in different parts of your code, as long as
you don’t change any of the type’s registration options. If you do, you will need to also specify a new
version.

42 Chapter 4. Basic Workflow Programming

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Setting Options on the Client

If you set options when creating your workflow or activity clients, they will override any options set at type
declaration. For example:

activity_client (:my_activity_client) ({
{
heartbeat_timeout: 30,
start_to_close_timeout: 300

The same technique is used to set workflow client options:

swf = S .new
domain = swf.domains['MyDomain']
workflow_client = S c:workflow_client (swf, domain) {

{
task_list: 'workflow_task_list',
execution_start_to_close_timeout: 3600

You can also use the from_class: attribute to copy options from another class. Any options that are set by
the class you specify will override those set when the activity was declared (default options).

activity_client (:client) { { from_class: "BookingActivity" } }

Copying Client Options Using with_opts

You can use the with_opts method available in the GenericClient class to create a new client that copies
options from an existing client, overriding them with options that are passed to the with_opts method in
a hash.

Setting Options at Scheduling
If you set options when an activity is scheduled or when starting a workflow, the values will override those
that are set on the client and any that were set at type declaration.

To set options during activity scheduling, pass the options block to the activity client’s
schedule_activity method or when calling the activity method directly from the client:

file_client.process_file(local_source, local_target) do
{ task_list: "new_activity_task_list" }
end

Setting workflow options when starting a workflow is similar:

workflow_client.start_execution () {

{

4.7. Specifying Workflow and Activity Options 43

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

task_list: "new_workflow_ task_list",
tag_list: ["orderinfo", "web"]

4.7.6 Setting Other Types of Options

While this topic has focused on options that you can set on workflows and activities, there are options for
other classes in the AWS Flow Framework for Ruby. For information about setting these options, refer to
the sections in which they are discussed:

* Options that can be set when retrying failed tasks are covered in Retrying Failed Tasks.

4.8 Handling Errors

The way you handle errors in AWS Flow Framework for Ruby depends on whether the workflow is
synchronous or asynchronous.

Contents

* Errors in Synchronous Workflows
* Errors in Asynchronous Workflows
* Additional Error Handling Examples

4.8.1 Errors in Synchronous Workflows

If your activities or workflows are synchronous, you can use Ruby’s standard begin/rescue/ensure
pattern to handle errors. For example:

from within a decider
begin
my_activity_client.my_activity
rescue => e
handle timeout
rescue => e
handle failure
ensure
clean up and stuff
end

Tip: AWS Flow Framework for Ruby exception names are based on the event types specified in
HistoryEvent in the Amazon Simple Workflow Service API Reference. You can predict the exception name
by adding “Exception” to the end of the event type. For example, an exception in TimerFired will result
ina TimerFiredException.

44 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

4.8.2 Errors in Asynchronous Workflows

If your activities or workflows are asynchronous, (using send_async), use the Core#error_handler core
method, which is modeled after Ruby’s begin/rescue/ensure pattern. Here is an example of its use:

error_handler do |t|
t.begin do
my_activity_client.send_async :my_activity
end
t.rescue do |e]
handle timeout
end
t.rescue do |e|
handle failure
end
t.ensure do
clean up and stuff
end
end

You pass the error_handler method a block that takes a single argument (a Core::BeginRescueEnsure
object). The BeginRescueEnsure class has three methods: begin, rescue, and ensure, which
take parts of your error handling logic.

For more information about writing code for asynchronous tasks, see Executing Tasks Asynchronously.
4.8.3 Additional Error Handling Examples

The handle_error recipe in the public aws-flow-ruby-samples project on GitHub provides a number of
examples of handling errors for both synchronous and asynchronous tasks.

4.9 Troubleshooting and Debugging Workflows

This section provides information about how to troubleshoot your workflow executions. It includes
strategies for examining and replaying workflows, and lists some common causes of errors in workflow
executions.

Contents

» Examining Workflow Executions with the AWS Management Console
» Using the WorkflowReplayer Class
* Common Causes of Errors in Workflow Executions

4.9.1 Examining Workflow Executions with the AWS Management Console

The first step in troubleshooting a workflow execution is to use the AWS Management Console to look at
the workflow history. The workflow history is a complete and authoritative record of all the events that

4.9. Troubleshooting and Debugging Workflows 45

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#error_handler-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/BeginRescueEnsure.html
https://github.com/awslabs/aws-flow-ruby-samples/tree/master/recipes/handle_error
http://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

changed the execution state of the workflow execution. This history is maintained by Amazon SWF and is
invaluable for diagnosing problems. The Amazon SWF console enables you to search for workflow
executions and drill down into individual history events.

To learn more about using the AWS Management Console with Amazon SWF, see Managing Your
Workflow Executions in the Amazon SWF Developer Guide.

4.9.2 Using the WorkflowReplayer Class

The AWS Flow Framework provides a Replayer:: WorkflowReplayer that you can use to replay a workflow
execution locally and debug it. Using this class, you can debug closed and running workflow executions.
WorkflowReplayer relies on the history stored in Amazon SWF to perform the replay. You can point it
to a workflow execution in your Amazon SWF account.

When you replay a workflow execution using WorkflowReplayer, it does not impact the workflow
execution running in your account: the replay is done completely on the client. You can debug the
workflow, create breakpoints, and step into code using your debugging tools as usual.

For example, the following code snippet can be used to replay a workflow execution:

require 'replayer'

Create an instance of the replayer with the required options
replayer = H - - .new (
domain: '<domain_name>",
execution: {
workflow_id: "<workflow_id",
run_id: "<run_id>"
}I

workflow_class:

Call the replay method with the replay_upto event_id number -
decision = replayer.replay (20)

puts decision.inspect

4.9.3 Common Causes of Errors in Workflow Executions
Unknown Resource Fault

Amazon SWF returns an unknown resource fault when you try to perform an operation on a resource that is
not available. The common causes for this fault are:

* You configure a worker with a domain that does not exist. To fix this, first register the domain using
the Amazon SWF console or with the Amazon SWF service API.

* You try to create workflow execution or activity tasks of types that have not been registered. This can
happen if you try to create the workflow execution before the workers have been run. Since workers
register their types when they are run for the first time, you must run them at least once before
attempting to start executions (or manually register the types using the AWS Management Console

46 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-console-manage-workflow-executions.html
http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-console-manage-workflow-executions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Replayer/WorkflowReplayer.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

or the service API). Note that once types have been registered, you can create executions even if no
worker is running.

* A worker attempts to complete a task that has already timed out. For example, if a worker takes too
long to process a task and exceeds a timeout, it will get an UnknownResource fault when it attempts
to complete or fail the task. The AWS Flow Framework workers will continue to poll Amazon SWF
and process additional tasks. However, you should consider adjusting the timeout. Adjusting the
timeout requires that you register a new version of the activity type.

Non Deterministic Workflows

The implementation of your workflow must be deterministic. Some common mistakes that can lead to
nondeterminism are:

* Use of the system clock
¢ Use of random numbers
¢ Generation of GUIDs

Since these constructs may return different values at different times, the control flow of your workflow may
take different paths each time it is executed. If the framework detects nondeterminism while executing the
workflow, an exception will be thrown.

Problems Due to Versioning

When you implement a new version of your workflow or activity—for instance, when you add a new
feature—you should change the version string of the type by providing a new version when declaring your
workflow or activity type.

When new versions of a workflow are deployed, you might have executions of the existing version that are

still running. Therefore, you need to make sure that workers get tasks that match the correct version of your
workflow and activities. One way to accomplish this is by using a different set of task lists for each version.
For example, you can append the version string to the name of a task list. This ensures that tasks belonging
to different versions of the workflow and activities are assigned to the appropriate workers.

Lost Tasks

Sometimes you may shut down workers and start new ones in quick succession only to discover that tasks
get delivered to the old workers. This can happen due to race conditions in the system, which is distributed
across several processes. The problem can also appear when you are running unit tests in a tight loop.

To make sure that the problem is, in fact, due to old workers getting tasks, you should look at the workflow
history to determine which process received the task that you expected the new worker to receive. For
example, the DecisionTaskStarted event in the workflow history contains the identity of the
workflow worker that received the task. The id used by the AWS Flow Framework is of the form:
{processld} @ {host name}. Here is an example of the details for a DecisionTaskStarted event in the
Amazon SWF console for a sample execution:

4.9. Troubleshooting and Debugging Workflows 47

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Event Timestamp

Mon Feb 20 11:52:40 GMT-800 2012

Identity

2276@ip—-0A6CI1DFS

Scheduled Event Id

33

In order to avoid this situation, use different task lists for each test. Also, consider adding a delay between
shutting down old workers and starting new ones.

48

Chapter 4. Basic Workflow Programming

CHAPTER 5

Advanced Topics

This topic advanced workflow programming topics, such as setting task priority, programming workflow
patterns, error handling, asynchronous programming, retrying workflows and troubleshooting. For basic
information about programming with the AWS Flow Framework for Ruby, see Basic Workflow
Programming.

Note: In addition to the examples provided within these topics, code samples that demonstrate many of
the features discussed here can be found in the AWS Flow Framework for Ruby samples and recipes
repository, available at:

* https://github.com/awslabs/aws-flow-ruby-samples

5.1 Setting Task Priority

By default, tasks on a task list are delivered based upon their arrival time: tasks that are scheduled first are
run first. By setting an optional task priority, you can give priority to certain tasks: Amazon SWF will
attempt to deliver higher-priority tasks on a task list before those with lower priority. Tasks with the same
priority are ordered by arrival time.

You can set a task priority for both workflows and activities. A workflow’s task priority does not affect the
priority of any activity tasks it schedules, nor does it affect any child workflows it starts. The default
priority for an activity or workflow is set (either by you or by Amazon SWF) during registration, and the
registered task priority is always used unless it is overridden while scheduling the activity or starting a
workflow execution.

Task priority values can range from “-2147483648” to “2147483647”, with higher numbers indicating
higher priority. If you don’t set the task priority for an activity or workflow, it will be assigned a priority of
zero (“07).

49

https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Contents
 Setting Task Priority for Workflows
* Setting Task Priority for Activities

* For More Information

5.1.1 Setting Task Priority for Workflows

You can set the task priority for a workflow when you register it or start it. The task priority that is set when
the workflow type is registered is used as the default for any workflow executions of that type, unless it is
overridden when starting the workflow execution.

To register a workflow type with a default task priority, use the default_task_priority option when declaring
it:

workflow :priority_workflow do
{
default_task_list: "workflow_tasks",
default_task_priority: 10,
version: "1.0",

}

end

You can override a workflow type’s registered (default) task priority by setting task_priority when you start
the workflow execution:

workflow_client.start_execution () {
{
task_list: "workflow_tasks",
tag_list: ["lowpriority"],
task_priority: -5

5.1.2 Setting Task Priority for Activities

You can set the task priority for an activity either when registering it or when scheduling it. The task
priority that is set when registering an activity type is used as the default priority when the activity is run,
unless it is overridden when scheduling the activity.

Just as with workflow types, to register an activity type with a default task priority use the
default_task_priority option when declaring it:

activity :do_something_important do

{
version: "1.5",
default_task_list: "activity_list",
default_task_priority: 10,
default_task_schedule_to_start_timeout: 30,
default_task_start_to_close_timeout: 30

50 Chapter 5. Advanced Topics

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

}

end

You can also set the task_priority option for an activity when you schedule it, overriding the registered
(default) task priority.

important_activity_client.send_async(
:do_something_important, { task_priority: 20 })

5.1.3 For More Information

» Specifying Workflow and Activity Options

5.2 Implementing Workflow Patterns

This section demonstrates how to implement common workflow patterns using the AWS Flow Framework
for Ruby. Much more information about commonly-used workflow patterns can be found on the Workflow
Patterns page, presented by the Eindhoven and Queensland Universities of Technology.

Contents

* Sequence
Parallel Split

» Synchronization
* Exclusive Choice
o Simple Merge

* Multi Choice

5.2.1 Sequence

L——{]

A sequence pattern refers to a workflow in which one task follows another in sequential order. It is
implemented by calling activities synchronously:

client.activityl
client.activity?2
client.activity3

Since each activity blocks execution of the main thread when it runs, act ivity2 will run only after
activityl has completed. Likewise, act ivity3 won’t run until after act ivity2 is complete.

5.2. Implementing Workflow Patterns 51

http://www.workflowpatterns.com/
http://www.workflowpatterns.com/

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

5.2.2 Parallel Split

A parallel split pattern refers to a workflow in which one or more tasks are executed concurrently. It is
implemented by calling activities asynchronously with GenericClient#send_async:

client.activityl
client.send_async(:activity2)
client.send_async(:activity3)

The send_async method launches a fiber to run the activity on and returns immediately. In this case,
activity3 will be run immediately, without waiting for act ivity?2 to complete. Likewise, execution
of the main thread will continue without waiting for either activity2 or activity3 to complete.

If you want your main thread to wait for one or both activities to finish before proceeding, see simple merge
or synchronization.

5.2.3 Synchronization

O—(]

A synchronization pattern refers to a workflow in which the main thread waits for one or more
concurrently-running tasks to complete before continuing. It is implemented by calling Core#wait_for_all
with the futures that are returned from the activities that you want to synchronize:

first_future = client.send_async (:activityl)
second_future = client.send_async(:activity?2)
wait_for_all (first_future, second_future)
client.activity3

52 Chapter 5. Advanced Topics

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#send_async-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_all-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

5.2.4 Exclusive Choice

B

An exclusive choice pattern refers to a workflow in which the results of one activity are used to select one
subsequent activity to run from a set of two or more activities. It is implemented by choosing the activity to
run based on the value returned by a predicate function acting on a decision value:

decision_value = client.activityl

if (predicate_function(decision_value))
client.activity2

else
client.activity3

end

5.2.5 Simple Merge

A simple merge pattern refers to a workflow in which the completion of one or more activities triggers the
next activity in the sequence. It is implemented by calling Core#wait_for_any with the futures that are
returned from the activities that you want to merge:

O—{]

first_future = client.send_async(:activityl)
second_future = client.send_async(:activity?2)
wait_for_any (first_future, second_future)
client.activity3

5.2. Implementing Workflow Patterns 53

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_any-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

5.2.6 Multi Choice

a

A multi choice pattern refers to a workflow in which the results of one activity are used to select one or
more subsequent activities to run from a set of two or more activities. This is very similar to exclusive
choice, but more than one branch in the workflow may be run. Like exclusive choice, it is commonly
implemented with a predicate function that chooses one or more activities to run based on a decision value:

decision_value = client.activityl

if (predicate_function(decision_value))
client.activity2

elsif (predicate_function2 (decision_value))
client.activity3

else
client.send_async(:activity3)
client.send_async(:activity4)

end

5.3 Executing Tasks Asynchronously

You can schedule tasks to run asynchronously in a number of different ways:

* Use the GenericClient class method send_async to schedule an asynchronous task using an
activity or workflow client.

» Use the Core instance method task to execute any block of code asynchronously in the context of
the AWS Flow Framework for Ruby.

Whichever method you use, the Framework will return an instance of the Core::Future class, which is used
to determine when the asynchronous task has been completed.

54 Chapter 5. Advanced Topics

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/Future.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Contents

» Waiting for a Future

o Scheduling an Asynchronous Task Using a Workflow or Activity Client
» Executing a Block Asynchronously

* Handling Errors in Asynchronous Code

* Additional Examples

5.3.1 Waiting for a Future

A Core::Future provides a mechanism for determining whether or not the task that it is tracking has
completed. When the task is complete, the Fut ure becomes set. The Future class itself provides three
methods that can be used to determine when the task has completed:

* get, which blocks until the future is ready.

* set?, which returns t rue when the future is ready.

* on_set, which takes a callback block that will be executed once the task has been completed.
There are also a number of methods in the Core namespace that operate on Futures:

* Core#wait_for_all takes a list of Future instances and does not return until all of them are set.

» Core#wait_for_any takes a list of Future instances and returns as soon as any one of them is set.

To obtain a Future, you can use either the client’s send_async method or the Core namespace’s
task method.

5.3.2 Scheduling an Asynchronous Task Using a Workflow or Activity Client

To schedule an asynchronous task using a workflow or activity client, use the client’s
GenericClient#send_async method (provided by the parent class, GenericClient) method to schedule the
activity. send_async returns a Core::Future immediately.

def make_booking options
puts "Workflow has started\n" unless is_replaying?
futures = []

if options|[:reserve_car]
puts "Reserving a car for customer\n" unless is_replaying?
futures << client.send_async (:reserve_car, options[:request_id])
end

if options|[:reserve_air]

puts "Reserving air ticket\n" unless is_replaying?

futures << client.send_async(:reserve_air, options|[:customer_id])
end

puts "Waiting for reservation to complete\n" unless is_replaying?
wait_for_all (futures)

5.3. Executing Tasks Asynchronously 55

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/Future.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_all-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_any-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#send_async-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/Future.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

client.send_confirmation (options|[:customer_id])
puts "Workflow has completed\n" unless is_replaying?
end

In the preceding code, send_async is used to schedule two asynchronous activities, and then
wait_for_all is used to wait for both activities to complete before scheduling a third activity.

5.3.3 Executing a Block Asynchronously

Using the Core#ftask method, you can execute any block of code asynchronously. Like send_async, the
task method returns a Core::Future immediately and then begins executing the asynchronous code. When
the code has completed, the returned Future instance will be set.

5.3.4 Handling Errors in Asynchronous Code

Asynchronous code requires special consideration when handling errors. The AWS Flow Framework for
Ruby provides an Core#error_handler method that provides a Ruby-like way, using
begin/rescue/end-like semantic for error handling. You pass error_handler a block of the
following form:

error_handler do |t]|
t.begin do
my_activity_client.send_async :my_activity
end
t.rescue do |e|
handle timeout
end
t.rescue do |e]
handle failure
end
t.ensure do
clean up and stuff
end
end

See Handling Errors for more information about handling errors in the AWS Flow Framework for Ruby.

You can also use error_handler to provide custom logic for retry attempts on failed tasks. For more
information, see Providing your own Retry Logic.

5.3.5 Additional Examples

For additional examples of working with asynchronous tasks, see the AWS Flow Framework for Ruby
Samples project. Many of the recipes and samples demonstrate the use of asynchronous tasks to create
various workflow patterns.

The AWS Flow Framework for Ruby samples are hosted on GitHub at:

* http://github.com/awslabs/aws-flow-ruby-samples/

56 Chapter 5. Advanced Topics

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#task-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/Future.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#error_handler-instance_method
http://github.com/awslabs/aws-flow-ruby-samples/

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

5.4 Retrying Failed Tasks

There are a number of ways to retry failed activity or workflow tasks, or even arbitrary methods or blocks
of code with the AWS Flow Framework for Ruby:

* If you have an activity or workflow task that you want to configure for automatic retries, you can set
ExponentialRetryOptions during activity/workflow registration, or when scheduling a task.

* You can retry any method by using one of the generic client methods: GenericClient#retry or
GenericClient#exponential_retry.

* You can use the AWS : : F low method with_retry to retry any block of code.

Contents

» Configuring a Task for Automatic Exponential Retries
* Exponential Retry Attempts and Jitter Logic

* Synchronous Example

* Asynchronous Example

5.4.1 Configuring a Task for Automatic Exponential Retries

To configure an activity or workflow to automatically retry when it fails, pass in a block of
ExponentialRetryOptions in the exponential_retry section of the options block when you declare the type.
For example:

activity :unreliable_activity_with_retry_options do
{
version: "1.0",
default_task_list: "activity_tasklist",
default_task_schedule_to_start_timeout: 30,
default_task_start_to_close_timeout: 30,
exponential_ retry: { maximum_attempts: 5 }
}
end

In the preceding snippet, the activity will automatically be retried (up to 5 times) using an exponential retry
algorithm if any exception occurs.

You can also pass exponential retry options when scheduling the task:

client.send(:unreliable_activity_without_retry_options) do
{
exponential_ retry: {
maximum_attempts: 5,
exceptions_to_include: [1,

end

5.4. Retrying Failed Tasks 57

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ExponentialRetryOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#retry-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#exponential_retry-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#with_retry-class_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ExponentialRetryOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

In this example, the optional parameter exceptions_to_include was specified, restricting retry attempts to
occur only in the case of an ArgumentError. This overrides the default behavior, which attempts a retry
after any exception.

5.4.2 Exponential Retry Attempts and Jitter Logic

When you specify exponential retry options, the AWS Flow Framework for Ruby applies a jitter function
by default, to add some randomization to the retry attempts. This helps to reduce the chance that many
activities will be retried at exactly the same time.

If you want to use your own jitter logic when using exponential retries, you can use the jitter_function
option to set your own jitter function:

activity_client (:client) do
{

from_class: "RetryActivities",

exponential_retry: {
should_jitter: true,
Jjitter_function: lambda do |seed, max_value|

.new(seed.to_1) .rand (max_value)

end,
maximum_attempts: 5,
exceptions_to_include: [1,

end

Tip: If you don’t want any jitter function applied to exponential retry attempts, you can turn it off by
specifying False for the should_jitter option.

Retrying Methods Using an Activity or Workflow Client

You can retry tasks that were not configured at declaration by using the client methods:

You can add exponential retry options using send, as described in Configuring a Task for Automatic
Exponential Retries, or by using the exponential_retry or retry methods of the GenericClient
class (inherited by both GenericActivityClient and WorkflowClient). You can retry the method with either
the built-in exponential retry algorithm or by supplying your own retry method.

To use the exponential retry algorithm, use exponential_retzry with a method to retry, arguments for
the method, and a block of ExponentialRetryOptions:

activity_client.exponential_retry(:my_activity_method, activity_input) {
exponential_retry: {
maximum_attempts: 2,
exceptions_to_include: [1,

58 Chapter 5. Advanced Topics

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericActivityClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ExponentialRetryOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

If you want to define your own retry algorithm, use the ret ry method by sending it the method to retry,
your own retry function, arguments for the method to retry, and a block of RetryOptions:

retry_time_secs = lambda do |first_attempt_time, failure_time, num_retries|
secs_in_day = 3600 * 24
if ((failure_time - first_attempt_time) > secs_in_day) then
return -1
else

Constant rate: just divide the total number of seconds by the number of
retries.
return secs_in_day / num_retries
end
end

activity_client.retry (:my_activity_method, retry_time_secs, activity_input) {
exponential_retry: {
maximum_attempts: 2,
exceptions_to_include: [1,

Retrying an Arbitrary Block of Code

Using the with_retry method, you can execute any block of code with retries in the AWS Flow context, by
supplying a set of RetryOptions and the block of code to execute.

In this example, with_retry is used to add retry options to an activity that was registered without them:

def handle_unreliable_activity
retry_options = {
exponential_ retry: {
maximum_attempts: 5,
exceptions_to_include: [1,

i ::with_retry (retry_options) do
client.unreliable_activity_without_retry_options
end
end

Providing your own Retry Logic

Although you can provide a list of errors to automatically retry in the exceptions_to_include RetryOptions,
and a list of errors to automatically exclude from retry attempts in the exceptions_to_exclude option, there
might be times where you want more control over which conditions will initiate a retry attempt.

To provide your own retry logic, use an exception handling strategy and initiate your own retries in a
function called by the code that handles the exception.

5.4. Retrying Failed Tasks 59

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/RetryOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#with_retry-class_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/RetryOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/RetryOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

5.4.3 Synchronous Example

In a synchronous workflow, you can use the standard begin/rescue/ensure pattern:

def handle_unreliable_activity

begin
client.unreliable_activity_without_retry_options
rescue => e
retry_on_failure (e)
end
end

def retry_on_failure (ex)
handle_unreliable_activity if should_retry (ex)
end

def should_retry (ex)
custom logic to decide to retry the activity or not according to 'ex'
return true

end

5.4.4 Asynchronous Example

For an asynchronous workflow, you can use a similar technique, using error_handler and
wait_for_all to handle the details of error handling for, and waiting for the results of, an
asynchronous task.

def handle_unreliable_activity
failure = .new
error_handler do |t|
t.begin do
client.send_async (:unreliable_activity_without_retry_options)
end
t.rescue do |e]
failure.set (e)
end
t.ensure do
failure.set unless failure.set?
end
end
wait_for_all (failure)
retry_on_failure (failure)
end

def retry_on_failure(failure)

ex = failure.get
handle_unreliable_activity if !ex.nil? && should_retry (ex)
end

def should_retry (ex)
insert your custom logic here.
return true

60 Chapter 5. Advanced Topics

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

\end

Additional Information and Examples

Refer to the following resources for more information about the subjects in this topic:

* For more information about error handling in the AWS Flow Framework for Ruby, see Handling
Errors.

* For more information about programming asynchronous tasks, see Executing Tasks Asynchronously.

» To view additional examples of retrying tasks, see the retry_activity recipe in the public AWS Flow
Framework for Ruby Samples project on GitHub.

5.5 Using S3DataConverter to Manage Large Workflow Data

By default, the AWS Flow Framework for Ruby uses YAMLDataConverter to serialize Ruby objects that
you pass to (as input data), and that is returned from, your workflows and activities.

The Amazon SWF service-defined limit for input or output data from activities and workflows is 32,768
(32K) characters. Any data structure that you want to pass as data directly must fit within this limit.

If you want to pass more than 32K characters of data to a workflow or activity, use S3DataConverter. Data
larger than 32K characters is stored in an Amazon S3 bucket, and S3DataConverter passes a hash
containing an Amazon S3 path to the data for the workflow instead of passing the data itself.

S3DataConverter locally caches data that it serializes or deserializes and uses the cached data if it
exists; it only downloads data from S3 when necessary.

To use S3DataConverter

1. Activate S3Dataconverter by setting the AWS_SWF_BUCKET_NAME environment variable to an
Amazon S3 bucket name.

2. (Optional) Set a bucket lifecycle on the Amazon S3 bucket used to store your SWF data.

5.5.1 Activate S3DataConverter

S3DataConverter will be used automatically instead of YAMLDataConverter if you set the
AWS_SWF_BUCKET_NAME environment variable. For example, on Linux, OS X or unix, use:

export AWS_SWF_BUCKET_NAME="bucketname"

On Windows, use set instead of export.

Note: If you deploy your Ruby applications using AWS Elastic Beanstalk, see Customizing and
Configuring a Ruby Environment in the Elastic Beanstalk Developer Guide for information about how to
set environment variables on your instances.

5.5. Using S3DataConverter to Manage Large Workflow Data 61

https://github.com/awslabs/aws-flow-ruby-samples/tree/master/recipes/retry_activity
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/YAMLDataConverter.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/S3DataConverter.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/S3DataConverter.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/YAMLDataConverter.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Ruby_custom_container.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Ruby_custom_container.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

5.5.2 Set a bucket lifecycle

The AWS Flow Framework for Ruby doesn’t delete files from S3 in order to prevent loss of data. It is
recommended that you use Object Lifecycle Management in Amazon S3 to automatically delete objects
after a certain period of time.

For example, here is an Amazon S3 bucket lifecycle policy that deletes objects automatically after three
days:

{

"Rules": |
{
"Status": "Enabled",
"Prefix" . " H’
"Expiration": {
"Days": 3
b
"ID": "swf-bucket-rule"

}

You should set your bucket lifecycle so that it respects the run-time of your workflows. For more
information about setting bucket lifecycle configurations, see Specifying a Lifecycle Configuration in the
Amazon S3 Developer Guide.

62 Chapter 5. Advanced Topics

http://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/how-to-set-lifecycle-configuration-intro.html

CHAPTER 6

Working with Other AWS Products

This section contains guidance about how to use the AWS Flow Framework for Ruby in conjunction with
other Amazon Web Services products, such as CloudWatch, AWS OpsWorks, and Elastic Beanstalk.

6.1 Deploying Workflows with Elastic Beanstalk

You can use Elastic Beanstalk to deploy and run your AWS Flow Framework for Ruby workflows,
activities and workers. This topic will lead you through the procedure to do so, using the example provided
in Hello World.

Contents

* Prerequisites

* Create the Workflow Application

* Configure your Application using the Elastic Beanstalk Console
o Start a Workflow Execution

6.1.1 Prerequisites

This example assumes that you meet the following prerequisites:

* Ruby and the AWS Flow Framework for Ruby (at least version 2.4.0) are installed as described in
Setting Up.

* Your AWS credentials are configured as described in Providing AWS Credentials.

6.1.2 Create the Workflow Application

Creating a workflow application that can be deployed and run on Elastic Beanstalk is similar to creating a
local application with aws—flow—utils.

To create the application:

63

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

1. Open a command-line window and use aws—flow—utils to create an application skeleton,
specifying —c eb to create an Elastic Beanstalk-compatible application. You also need to set the
region to run the EC2 instances in, using the —r argument:

aws—flow-utils —-n HelloBeanstalk -c eb -r us-west-2

2. This will create a project in the HelloBeanstalk directory in the path where you ran
aws—flow-utils, and will output a 1-Click URL that you can use to create your Elastic
Beanstalk application. It will look something like this:

Your AWS Flow Framework for Ruby application will be located at:
/path/to/HelloBeanstalk/

AWS Elastic Beanstalk 1-Click URL:
http://console.aws.amazon.com/elasticbeanstalk/?region=...

Save the generated URL—you will use it to configure your application.

The project directory will contain the following directories and files:

HelloBeanstalk
| -— Gemfile
|-— config.ru
|-—— flow
| | -— activities.rb
| "—— workflows.rb
'—— worker. json

3. Inthe flow/activities. rb file, add the following code:

class HelloWorld
def hello (input)
"Hello input [:name] } !'"
end
end

4. Create a .zip archive of the Hel1loBeanstalk directory in a way that is supported by your
operating system. On Linux, Unix or OS X systems, you can type:

zip —-r HelloBeanstalk.zip HelloBeanstalk

That’s all you need in order to create your workflow application. Now you can deploy it with Elastic
Beanstalk.

6.1.3 Configure your Application using the Elastic Beanstalk Console

The 1-Click URL that was printed to the screen as output when you ran aws—flow—utils will be used
now to configure your application on the Elastic Beanstalk console so that you can deploy it.

To configure your application on the AWS Elastic Beanstalk console:

1. Sign in to the AWS Management Console, and follow the 1-Click URL provided in the output of the
aws—-flow-utils command. The URL will bring you to Elastic Beanstalk‘s Create New

64 Chapter 6. Working with Other AWS Products

https://console.aws.amazon.com/

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Application page, pre-configured for your application.

Application Information

To create a new application, enter the details of your application. Learn more.

Application name: | HelloBeanstalk Must be less than 100 characters and cannot contain a /

Description: Optional.

Cancel Review and Launch

2. Enter an optional Description and click Next.

3. On the Environment Type page, choose Web Server for the Environment tier option.

Environment Type

Choose whether to launch an environment and if so which tier and type.

® Launch a new environment running this application

Environment tier: §§Web Server j Learn more

Elastic Beanstalk will create a Web Server 1.0 environment.

Predefined configuration: Ruby j Looking for a different platform? Let us kno

Elastic Beanstalk will create an environment running Ruby 2.1 (Puma) on 64bit Amazon

Environment type: Load balancing, autoscaling j Learn more

4. Ensure that the Predefined Configuration is Ruby, and click Next.

5. On the Application Version page, choose Upload your own, and click Browse..., choosing the
HelloBeanstalk.zip file that you created earlier.

Select a source for your application version.

Source:) Sample application

@ Upload your own (Learn more)

Browse... | HelloBeanstalk.zip

) S3 URL

(e.g. https://s3.amazonaws.com/s3Bucket/s3Key)

6. Click Next to proceed to the Environment Information page. There are no options that need to be

6.1. Deploying Workflows with Elastic Beanstalk 65

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

set on this page.

7. Click Next to proceed to the Additional Resources page. Again, there are no options that need to be
set on this page.

8. Click Next to proceed to the Configuration Details page.

9. On the Configuration Details page, choose an EC2 key pair, or open a new browser window and
configure one now, using the IAM Console.

10. Choose an Instance Profile that has access to Amazon EC2, Elastic Beanstalk, and Amazon SWF.
11. Click Next to proceed to the Environment Tags page. You can leave the tags empty.

12. Click Next to proceed to the Review page.

13. Review your application’s settings, and click Launch to begin creating your deployment.

Elastic Beanstalk will take some time to fully launch your application. When it is ready, you’ll see Health
of your Elastic Beanstalk deployment turn to a green circle:

Qverview < Refresh
Health Running Version Configuration
Green First Release 64bit Amazon Linux 2014.09
v1.0.9 running Ruby 2.1 (Puma)
Monitor Upload and Deploy
Edit
Recent Events Show All

Your workflow is now deployed!

6.1.4 Start a Workflow Execution

Lastly, you need to start a workflow execution so that your workers receive tasks to process.
To start a workflow execution:

1. Open a command-line window and create a local script (call it starter. rb). Add the following
code:

require 'aws/decider'
::start ("HelloWorld.hello", { name: "AWS Flow Framework!" })

2. Run the script using Ruby:

ruby starter.rb

This will begin executing the he11o activity on your Elastic Beanstalk-deployed application.

66 Chapter 6. Working with Other AWS Products

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

6.2 Tutorial: Hello AWS OpsWorks!

This tutorial will show you how to use the AWS Flow Framework for Ruby layer for AWS OpsWorks to
deploy and run the Hello World sample application that is described in detail in Hello World.

Contents

* Amazon SWF support for AWS OpsWorks

* Developing and Testing an AWS Flow Framework for Ruby Application using AWS OpsWorks
* Deploying and Running Hello World on AWS OpsWorks

» Experiment with your own application

* For More Information

6.2.1 Amazon SWF support for AWS OpsWorks

Amazon SWF now provides a dedicated layer in AWS OpsWorks that simplifies deployment of workflows
and activities written using AWS Flow Framework for Ruby. Using AWS OpsWorks with Amazon SWF,
you can easily set up a worker fleet that is cloud-deployable and can use advanced Amazon EC2 features
such as load-based auto scaling.

Amazon SWF support for AWS OpsWorks includes updates to the Opsworks console, allowing you to
deploy workflow and activity workers from AWS OpsWorks. It also includes updates to the AWS Flow
Framework for Ruby to make it easy to specify the details necessary to spawn workers with a simple JSON
file, registering any necessary workflow and activity types and starting the activity and workflow workers.
This component is called the runner, and is provided by a new command-line utility: aws—flow—ruby.

The typical steps for deploying a new AWS Flow Framework for Ruby application on AWS OpsWorks are
the following:

1. Develop your AWS Flow Framework for Ruby workflows and activities normally.

2. Test your application by using the runner to check that your workflow runs as expected. AWS Flow
Framework for Ruby version 2.0.1 or greater is required to run this step.

Note: AWS Flow Framework for Ruby version 2.4.0 introduces changes that are incompatible with
the current version of the flow layer in AWS OpsWorks. For now, you should use a version of the
framework previous to 2.4.0.

3. Set up your application on AWS OpsWorks using the AWS Management Console by creating a
stack, layer, and application to deploy.

4. Deploy your application using AWS OpsWorks and monitor your workflow’s progress.

The following sections walk through the full set of steps to learn how to configure and use the runner to test
how your application will run with AWS OpsWorks. However, if you’re interested only in learning how to
set up and deploy a working AWS Flow Framework for Ruby application with AWS OpsWorks, you can
skip ahead to Deploying and Running Hello World on AWS OpsWorks.

6.2. Tutorial: Hello AWS OpsWorks! 67

https://console.aws.amazon.com/opsworks

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

6.2.2 Developing and Testing an AWS Flow Framework for Ruby Application using
AWS OpsWorks

In this section, we’ll use AWS OpsWorks and a local utility (aws—£flow—ruby) to deploy and test an
AWS Flow Framework for Ruby application based on the Hello World sample used in Hello World.

Prerequisites

To deploy the sample on AWS OpsWorks, you must have an AWS account with access to both Amazon
SWF and AWS OpsWorks. If you haven’t yet signed up for AWS, go to http://aws.amazon.com and click
the Sign Up link to get started.

To run the sample locally using the aws—£f1low—-ruby command-line utility (frequently referred to as the
runner):

* You will need to have at least version 2.0.1 of the AWS Flow Framework for Ruby gem installed.
For more information about setting up the framework, see Getting Started.

* Make sure that you have provided your AWS credentials using the AWS CLI or by setting the
AWS_ACCESS_KEY IDand AWS_SECRET ACCESS_KEY environment variables. For more
information, see Providing AWS Credentials.

Get the Tutorial Source Code

The source code used in this tutorial is provided on GitHub at:
¢ http://github.com/awslabs/aws-flow-ruby-opsworks-helloworld
You can view the code there, or download it using the following link:
* http://github.com/awslabs/aws-flow-ruby-opsworks-helloworld/archive/master.zip

This code is a slightly modified version of the Hello World sample from the
awslabs/aws-flow-ruby-samples project on GitHub.

Once you have the sample installed in a local directory on your system, open a terminal (command-line)
window and change to the directory where you unzipped the sample code.

The sample’s top-level directory contains the following files and directories:

Name Description

Gemfile The gem specification. Sets the AWS Flow Framework gem version to use (must be at
least 2.0.1)

helloworldDgseribes the runner (aws—£flow—ruby) configuration.

flow Contains files that are used by the runner to find the activities and workflows.

directory

lib Contains the workflow worker, activity worker, and workflow starter code that is run to

directory start the workflow. These files are the same files that are described in Hello World, but
have been modified to run in the context of the runner.

The contents of these files will be described fully in later sections of the tutorial.

68 Chapter 6. Working with Other AWS Products

http://aws.amazon.com
http://github.com/awslabs/aws-flow-ruby-opsworks-helloworld
http://github.com/awslabs/aws-flow-ruby-opsworks-helloworld/archive/master.zip

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Add the Required Gemfile

AWS OpsWorks requires that you add a Gemfile to your code in the root directory of your project to
identify which version of the AWS Flow Framework for Ruby gem to use when deploying and running
your code.

Here is the Gemfile for the Hello World sample:

source "http://www.rubygems.org"

gem 'aws—-flow', '~> 2', '>= 2.0.1"

Set Up the Runner Configuration

To discover details about how the workflows and activities will be run, aws—flow-ruby reads a
JSON-formatted configuration file, as described in aws-flow-ruby.

Note: While using AWS OpsWorks, you don’t need to specify a configuration file—the AWS Flow
Framework for Ruby layer creates its own configuration based on values that you specify in the AWS
Management Console. However, to test your workflow setup locally before deploying it to AWS
OpsWorks, you will need to create a local runner configuration file.

To set up the runner configuration:

1. If you have not already done so, open a terminal window and change to the location where you
unzipped the sample code (aws—flow-ruby-opsworks-helloworld).

2. In the sample’s root directory, create or view the file called helloworld. json. It contains the
following lines:

{
"domain":
{
"name": "HelloWorld"
b
"workflow workers": |
{
"task list": "workflow_tasklist"
}
1,
"activity workers": [
{
"task_list": "activity_tasklist"
}

}

This file specifies the domains to register (if necessary) and use for the workflow and activity
workers. It also specifies the number of workflow and activity workers to spawn and the number of
process forks allowed when running the activities.

6.2. Tutorial: Hello AWS OpsWorks! 69

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

3. In the flow directory within the aws—flow-ruby-opsworks—helloworld directory, create or
view activities.rb and workflows.rb. The runner loads these files to discover where the activity and
workflow code is.

The flow/activities.rb file provides the activity code:

require 'lib/helloworld_activity'

The flow/workflows.rb file provides the workflow code:

require 'lib/helloworld_workflow'

In the sample, these files simply require files that exist in the /ib directory. The runner will look in
these files for classes that extend Activities and Workflows, which it will take to be the activities and
workflows to run, respectively.

Note: If you want to explicitly specify which activity and workflow classes to run, add them to the runner
configuration file instead. For more information, see Runner specification file.

The contents of the files are similar to the original files from the Hello World sample, but have been
simplified. The runner takes care of most of the configuration for you. Here are the contents of each:

lib/helloworld_activity.rb

require 'aws/decider'

The HelloWorldActivity class defines a set of activities for the HelloWorld 4
class HelloWorldActivity
extend S -

Define which activities to run.
activity :say_hello do
{
version: '1.0"'",

}
end

This activity will say hello when invoked by the workflow
def say_hello (name)
puts "Hello, name }!"
end
end

lib/helloworld_workflow.rb

require_relative "helloworld_activity"

HelloWorldwWorkflow class defines the workflows for the HelloWorld sample
class HelloWorldWorkflow
extend -

Define which workflows to run.
workflow :hello do

70 Chapter 6. Working with Other AWS Products

ample.

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

version: '1.0',
default_execution_start_to_close_timeout: 120

}

end

Create an activity client using the activity_client method to schedule
activities
activity_client (:client) { { from_class: "HelloWorldActivity" } }

This is the entry point for the workflow
def hello (name)
Use the activity client 'client' to invoke the say_hello activity
client.say_hello (name)
end
end

Verify the Code and Configuration

You can now execute aws—flow—ruby locally to make sure the runner can find and launch your
workflow and activity. Because AWS OpsWorks also uses the AWS Flow Framework for Ruby runner to
run your workflow code, this is a good way to test your code’s readiness for AWS OpsWorks.

To verify the setup locally:

1. If you have not already done so, open a terminal window and change to the
aws-flow-ruby-opsworks-helloworld directory where you cloned or unzipped the
sample code.

2. Execute the runner from within the aws-flow—ruby-opsworks—-helloworld directory,
passing it the name of the configuration file you created. For example:

aws—flow-ruby —-f helloworld. json

This will start the workflow worker and activity worker using the domain that is specified in
helloworld. json. When it runs, you will see output from the runner, such as:

waiting on workers [4573, 4574] to complete

The workflow and activity workers are waiting for Amazon SWF tasks to schedule the workflows
and activities for execution. Next, you’ll need to start a workflow execution to begin workflow and
activity scheduling.

3. Runthe helloworld_workflow_starter. rb script to start the workflow execution:

bundle exec ruby lib/helloworld_workflow_starter.rb helloworld. json

After a short time, you should see the results of the Hello World activity running:

Hello, AWS Flow Framework!

Now you’re ready to run the sample on AWS OpsWorks instead of the local machine.

6.2. Tutorial: Hello AWS OpsWorks! 71

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

6.2.3 Deploying and Running Hello World on AWS OpsWorks

In this section, we’ll set up and deploy the AWS OpsWorks-enabled version of the Hello World application
on AWS OpsWorks. If you completed the previous section, Developing and Testing an AWS Flow
Framework for Ruby Application using AWS OpsWorks, you will soon note that these steps use the same
settings that you used when configuring the runner. If you didn’t download and test the application locally,
don’t worry—the application we’ll be using has been set up for AWS OpsWorks already.

Set up a Stack
First, you will need to set up an AWS OpsWorks stack. A stack may consist of a number of layers, each of
which can have apps that are deployed to the layers.
To set up the stack:
1. Sign in to the AWS Management Console and open the AWS OpsWorks console at opsworks.
2. Add a new stack by clicking the Add Stack button or by selecting Add Stack in the Select Stack menu.

3. You can use the default values that are provided to create your AWS OpsWorks stack, or set your

own. Here are suggested values for each of the fields on the screen:

Field Name | Choose...

Name a unique name, or leave blank to allow AWS OpsWorks to choose a name for
you.

Region US East (N. Virginia)

VPC No VPC

Default us-east-1a

Availability

Zone

Default Amazon Linux

operating

system

Default root Instance store

device type

IAM role an existing role with access to Amazon SWEF, such as
“aws-opsworks-service-role”, or choose a new role and give that role access to
Amazon SWF.

Default SSH an SSH key that you’ve created, or create a new one. For information about

key using key pairs to log in to an AWS OpsWorks instance, see Using SSH to Log
In to a Linux Instance in the AWS OpsWorks User Guide.

Default IAM an existing instance profile with access to Amazon SWF, such as

instance “aws-opsworks-ec2-role”, or choose a new instance profile and give the profile

profile access to Amazon SWF.

Hostname any hostname theme you like.

theme

Stack color any stack color you like.

Important: Be sure that Chef version 11.10 is selected. You can click Advanced on the Add Stack

72

Chapter 6. Working with Other AWS Products

https://console.aws.amazon.com/opsworks
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-ssh.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-ssh.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

4.

screen to see what the Chef version is or to change it. If you’ve already created a stack, you can
change the Chef version by editing the existing stack.

When you’re finished configuring your layer, click the Add Stack button at the bottom of the
configuration screen to create your stack and continue.

Add a Layer to the Stack

Now that the stack is set up, add a new layer to the stack.

To add the layer:

1.
2.
3.

Select your new AWS OpsWorks stack if it is not already selected, and then click Add a Layer.
Set the Layer Type to AWS Flow. You’ll find this type in the Other category in the drop-down list.

Since you selected a default IAM profile for your layer, it will be automatically selected for the
layer’s EC2 instance profile.

. When you have finished setting your layer options, click Add Layer to complete adding the layer to

your stack.

Add an Instance

Next, add an Amazon EC?2 instance to the layer using the Amazon EC2 instance profile that you set. The
instance provides the computing platform to run your workflow code.

To add an instance to the layer:

1.

Choose the Instances view on the left sidebar if it is not already selected.

2. Click Add an instance to add a new instance to the stack.

You can accept the default options (copied from your layer), or modify the Hostname and Instance
Size.

Important: Running an Amazon EC2 instance will incur AWS costs. For information about the
costs of running various Amazon EC2 instance types, see the Amazon EC2 Pricing page.

Click the Add Instance button to finalize your settings and add the instance to your layer. Your
instance will initially be in the stopped state.

If you’ll be proceeding with adding the Hello World application and running it, start your instance
now. It may take a few minutes for your instance to start.

Add the Hello World Application

Next, you will add the modified Hello World application to your stack. This will instruct AWS OpsWorks
to deploy your application to the Amazon EC2 instances that it starts on your behalf.

6.2. Tutorial: Hello AWS OpsWorks! 73

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

To add the Hello World application to your stack:

1.

Click the Navigation heading and choose Apps in the list. If your browser window is large enough,
you’ll find the Apps link positioned on the left sidebar.

Click Add an app to begin adding a new application.

In the Settings section, choose a name that is memorable, such as helloworld. Verify that the Type is
set to AWS Flow (Ruby).

Under AWS Flow (Ruby) Settings, choose an Amazon SWF domain name to run your workflows and
activities under. This doesn’t need to be the same domain that you used in the local test of the Hello
World application. The runner will register the domain if necessary, so feel free to choose a new
domain name if you would like to.

You can accept the default workflow retention period of /0 days.

Under Run Workflows and Run Activities, set the name of the workflow and activity task lists to use.
If you chose to use the same domain that you used in the local test, you should pick new workflow
and activity task names so that your workflows and activities don’t receive tasks from the local test.

Note: The workflow starter that you initiate later in Start your workflow execution will need to use
the same task list name as the one you set for your workflow worker in order to start the workflow.

Under Data Sources, choose None for the Data Source Type.

. Under Application Source, choose the Git repository type and then set the Repository URL to the

clone URL of the Hello World AWS OpsWorks sample:
http://github.com/awslabs/aws-flow-ruby-opsworks-helloworld.git.

You can leave the Repository SSH Key and Branch/Revision settings blank.

Note: Alternatively, you can choose the Http Archive repository type, download or create a . zip or
.tar.gz archive of the sample, and publish it in a accessible location (such as Amazon S3). You
can then provide the public URL of the sample archive for this setting.

For more information, see Adding Apps in the AWS OpsWorks User Guide.

. Under Environment Variables, add a key named AWS_REGION with its value set to the AWS region

that you plan to deploy the worker to, such as us-west-2.

Click Add App to complete adding the Hello World application to your layer.

Note: The helloworld. json file that exists within the repository is ignored. When AWS OpsWorks
deploys the application to your Amazon EC2 instances, it will create its own JSON configuration file that
contains the application settings that you have just set.

74

Chapter 6. Working with Other AWS Products

http://github.com/awslabs/aws-flow-ruby-opsworks-helloworld.git
http://docs.aws.amazon.com/opsworks/latest/userguide/workingapps-creating.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Deploy Hello World

To see if your instance is running, click the Instances item on the left sidebar or in the Navigation menu.
Once the instance is running, you can deploy the Hello World application to it.

To deploy the Hello World application to your EC2 instance:

1. Once your instance is running, click the Apps item and click Deploy on the Hello World application
that you’ve just finished setting up.

2. Verify that the Command setting is Deploy, and then click the Deploy button at the bottom of the
screen. The view will automatically proceed to Deployments, and you can monitor the progress of
your deployment. It may take a few minutes before it is ready.

Verify Your Deployment

Now that you have deployed Hello World to the Amazon EC2 instance, you can log in and verify your
deployment. In order to do this, you will need the SSH key-pair that you associated with your Amazon
EC2 instance.

To verify your deployment on the EC2 instance:

1. If you are not already on the Instances view in your AWS OpsWorks console, select Instances in the
menu or in the left sidebar.

2. Click the SSH link. If you have not yet associated the SSH key with your account, the next screen
will provide instructions and a link to do so. Otherwise, you will be presented with a list of ways to
connect to your instance, through your browser or by using the command-line to SSH to the instance.

For example, from the command-line, you can specify your private key file and the instance address,
as shown in the Connect Directly section of the page you receive when clicking the SSH link:

ssh -i ~/.ssh/YOUR-KEYFILE my-account@INSTANCE-DNS

Replace YOUR-KEYFILE and INSTANCE-DNS with your key file name and the IP address of your
instance, respectively.

3. Once you are logged in to your instance, view the runner configuration file by typing the following
commands (assuming that the application name you chose was helloworld):

cd srv/www/helloworld
cat runner_config. json

Important: The contents of runner_config. json must match the values that you entered when
setting up your application.

Start your workflow execution

When Hello World is deployed, AWS OpsWorks starts your workflow and activity workers, which start
polling on the task lists that you specified when setting up your application.

6.2. Tutorial: Hello AWS OpsWorks! 75

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

However, since a workflow execution has not started, the workers won’t receive any tasks and no activities
will be run. You can start a workflow execution on the command line as was performed in Verify the Code
and Configuration, or you can start the workflow execution using the AWS Management Console. Both
methods will be shown.

Starting a workflow execution on the command line

To start a workflow execution using the command line:

1. Open a terminal (command-line) window and locate the directory where you unpacked or cloned the
sample code, as per Get the Tutorial Source Code. You could also clone or unpack a new instance of
the code if you don’t want to modify the existing code.

2. Whichever method you chose (whether it was to use the existing code or download a new copy),
change to the tutorial code directory. For example:

cd aws—-flow-ruby-opsworks—-helloworld

3. Edithelloworld. json and make sure that it contains the same values that you chose when
setting up your application in Add the Hello World Application. If you chose different values when
setting up the application, change the values in helloworld. json to match.

Note: For convenience, the AWS OpsWorks version of
helloworld_workflow_starter.rb uses the same helloworld. json file that the runner uses
to find the domain and task lists to use. If you’re curious to see how this is done, you can open the
file to examine it.

4. If you made any modifications to helloworld.json, save the file and then run
hello_workflow_starter.rb just as you did when testing the code in Verify the Code and Configuration:

bundle exec ruby lib/helloworld_workflow_starter.rb helloworld. json

5. Open the AWS Management Console, navigate to the SWF section and click Workflow Executions to
monitor the progress of your workflow execution. You should be able to see your workflow events in
the Events tab, and your running activities in the Activities tab of the displayed workflow execution.

Starting a workflow execution using the AWS Management Console

Alternatively to executing the workflow on the command line, you can start it using the AWS Management
Console.

To start a workflow execution using the console:

1. Using the AWS Management Console, navigate to the Amazon SWF section by selecting SWF in the
Services menu.

2. Click Dashboard and then select the same domain that you used when setting up your application in
Add the Hello World Application.

76 Chapter 6. Working with Other AWS Products

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

3. Click Start a new Workflow Execution in the Quick Links section of the page.

4. Set the Workflow Type Name and Workflow Type Version that was specified in the Hello World
application. You can verify these settings by viewing the helloworld_utils. rb file in the
sample. If you did not modify it, these values will be HelloWorldWorkflow and 1.0. Enter any value
you like for the Workflow Execution ID.

5. Click Advanced Options and set Task List to be the same task list that you used when adding the
application on AWS OpsWorks. Choose reasonable values for the Execution Start to Close Timeout
and the Task Start to Close Timeout.

For reference, the values used in the sample code are 3600 and 30 seconds, respectively.
6. Click Continue to proceed to the next screen.

7. Enter any values you like for the Execution Input, or leave it blank. Click the Review button to
review the values that you’ve entered.

8. When you’re satisfied with the values, click Start Execution to start your workflow execution and
begin executing your workflow and activity tasks.

9. Click Workflow Executions and then click the name of the workflow execution you just initiated to
monitor its progress as with the command-line initiated execution.

6.2.4 Experiment with your own application
You’ve successfully created an AWS OpsWorks-ready stack, layer, instance, and application and have
completed a deployment to the Amazon EC2 instance you created.

Now that you’ve proceeded through an entire AWS Flow Framework for Ruby deployment on AWS
OpsWorks, you can try deploying your own workflow code. For the best results, follow the steps as they
were presented in this guide, substituting your own application in place of the Hello World sample.

With AWS OpsWorks and the AWS Flow Framework for Ruby, you can deploy as many workflow and
activity workers as you like on the AWS cloud with minimal setup!

6.2.5 For More Information

For more information about working with AWS Flow Framework for Ruby and AWS OpsWorks, refer to
these topics:

* aws-flow-ruby

* Adding Apps: AWS Flow (Ruby) in the AWS OpsWorks User Guide

6.3 Amazon SWF Metrics for CloudWatch

Amazon SWF now provides metrics for Amazon CloudWatch that you can use to track your workflows and
activities and set alarms on threshold values that you choose.

6.3. Amazon SWF Metrics for CloudWatch 77

http://docs.aws.amazon.com/opsworks/latest/userguide/workingapps-creating.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

You can view metrics using the AWS Management Console or using the AWS CLI. For more information,
see Viewing, Graphing, and Publishing Metrics in the CloudWatch Developer Guide.

Contents

» Working with Metrics
* Amazon SWF Workflow Metrics
* Amazon SWF Activity Metrics

6.3.1 Working with Metrics

Metrics that Report a Time Interval

Amazon SWF metrics for CloudWatch that report time intervals are always measured in milliseconds.
These metrics generally correspond to stages of your workflow execution for which you can set workflow
and activity timeouts, and have similar names.

For example, the DecisionTaskStartToCloseTime metric measures the time it took for the decision task to
complete after it began executing, which is the same time period for which you can set a
DecisionTaskStartToCloseTimeout value.

For a diagram of each of these workflow stages and to learn when they occur over the workflow and
activity lifecycles, see Amazon SWF Timeout Types.

Metrics that Report a Count

Some of the Amazon SWF metrics for CloudWatch report results as a count. For example,
WorkflowsCanceled, records a result as either one or zero, indicating whether or not the workflow was
canceled, respectively.

Note: A value of zero indicates only that the condition described by the metric did not occur, not that the
metric isn’t reported.

For count metrics, minimum and maximum will always be either zero or one, but average will be a value
ranging from zero to one.

6.3.2 Amazon SWF Workflow Metrics

The following metrics are available for Amazon SWF workflows:

78 Chapter 6. Working with Other AWS Products

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/working_with_metrics.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Metric Description

DecisionTaskSched- the time interval in milliseconds between the time that the decision task was
uleToStartTime scheduled and the time it was picked up by a worker and started
DecisionTaskStartTo- | the time interval in milliseconds between the time that the decision task was
CloseTime started and the time it was closed

DecisionTasksCom- the count of decision tasks that have been completed

pleted

StartedDecision- the count of decision tasks that started but timed out on closing
TasksTimedOutOn-

Close

WorkflowStartToClos- | the time in milliseconds between the time the workflow started and the time it
eTime closed

WorkflowsCanceled the count of workflows that were canceled

WorkflowsCompleted | the count of workflows that completed

WorkflowsContin- the count of workflows that continued as new

uedAsNew

WorkflowsFailed the count of workflows that failed

WorkflowsTerminated | the count of workflows that were terminated

WorkflowsTimedOut The count of workflows that timed out for any reason

Dimensions for Amazon SWF Workflow Metrics

Dimension Description

Domain The Amazon SWF domain that the workflow is running in
WorkflowTypeName The name of the workflow type for this workflow execution
WorkflowTypeVersion | The version of the workflow type for this workflow execution

6.3.3 Amazon SWF Activity Metrics

The following metrics are available for Amazon SWF activities:

6.3. Amazon SWF Metrics for CloudWatch 79

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Metric

Description

ActivityTaskScheduleTo-
CloseTime

The time interval in milliseconds between the time when the activity
was scheduled to when it closed

ActivityTaskSchedule-
ToStartTime

The time interval in milliseconds between the time when the activity
task was scheduled and when it started

ActivityTaskStartToClose-
Time

The time interval in milliseconds between the time when the activity
task started and when it was closed

ActivityTasksCanceled

The count of activity tasks that were canceled

ActivityTasksCompleted

The count of activity tasks that completed

ActivityTasksFailed The count of activity tasks that failed

ScheduledActivity- The count of activity tasks that were scheduled but timed out on close
TasksTimedOutOnClose

ScheduledActivity- The count of activity tasks that were scheduled but timed out on start
TasksTimedOutOnStart

Started ActivityTasksTimed-
OutOnClose

The count of activity tasks that were started but timed out on close

Started Activity TasksTimed-
OutOnHeartbeat

The count of activity tasks that were started but timed out due to a
heartbeat timeout

Dimensions for Amazon SWF Activity Metrics

Dimension Description

Domain The Amazon SWF domain that the activity is running in

ActivityTypeName The name of the activity type

ActivityTypeVersion | The version of the activity type

80

Chapter 6. Working with Other AWS Products

CHAPTER 7

Utilities

The AWS Flow Framework for Ruby is packaged with two utilities, aws—flow—-ruby, which can be used
to spawn and manage workers, and aws—flow-utils, which can generate AWS Flow Framework for
Ruby application skeletons for you.

7.1 aws—-flow-ruby

aws—-flow-ruby (also referred to as the runner) is a command-line utility that you can use to spawn
workflow and activity workers according to a specification that you provide in a JSON configuration file. It
is provided with the AWS Flow Framework for Ruby beginning with version 1.3.0.

Note: While aws—flow—-ruby will start activity and workflow workers, it is not designed to start the
workflow execution itself. See Starting a Workflow Execution for more information.

Contents

* Starting workers with aws—flow—ruby
* Runner specification file

7.1.1 Starting workers with aws-flow-ruby

To use aws—£low—ruby to launch your activity and workflow workers, provide it with the JSON
configuration file as its sole argument:

aws—-flow-ruby —-f runnerspec.json

The JSON file that you provide must adhere to the format specified in Runner specification file.

Note: The runner will start the workflow and activity workers that are defined in the file, and they’ll start
polling for tasks. It does not start a workflow execution. You must perform that step separately. For more

81

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

information, see Tutorial: Hello AWS OpsWorks!.

The runner is configured by passing it a JSON-formatted configuration file. Here is a minimal example,
providing only the required fields:

{

"domain": { "name": "ExampleDomain" 1},
"activity_ workers": |
{ "task_list": "example activity_tasklist" }

1,
"workflow workers": |
{ "task_1list": "example_workflow_tasklist" }

}

You do not need to specify either the workflow or activity classes using this minimal setup. The runner will
automatically look for the presence of the activities.rb and workflows.rb filesin the flow
subdirectory in the location that you start aws—flow—-ruby, and will use those as the activity and
workflow classes, respectively.

If the activities within the activities. rb file are not based on the Activities class, then an Activities
class will be generated for you. However, in this case you must explicitly list the class names in the
activity_classes option.

Tip: You don’t need to implement your activities and workflows in the activities.rb and workflows.rb files.
You can use these files to simply require activity and workflow code that is located elsewhere.

If you want to override the use of these files, specify the activity_paths, workflow_paths, and
related activity_classes and workflow_classes fields in the runner configuration file.

7.1.2 Runner specification file

Here is a complete list of the sections and fields that can be set in the runner configuration file.

domain Provides the domain name that will be used (or registered, if necessary) by aws—£flow—ruby,
and optionally, the domain retention period. If domain is not provided, then the domain
FlowDefault will be used by default.

Parame- | Description
ter
name Required. The domain name to register. This domain name must be unique to your
account and region (Two domains in different regions that share the same name are
still considered to be wholly different domains).

reten- Optional. The number of days for which the workflow history will be preserved. If
tion_in_daythis is not specified, a default retention period of 7 days is used.

Example

82 Chapter 7. Utilities

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

"domain": {
"name": "MyExampleDomain",
"retention_in_days": 10

}

activity_paths Optional. Specifies a list of paths to Ruby source files containing activity classes based on
the Activities class.

If not specified, aws—flow—ruby will attempt to load the file flow/activities. rb, which
will typically contain require lines that load the activity source files. For example:

require 'lib/helloworld_activity.rb'

The paths that are specified should be relative to the location of the configuration file (where the
runner is executed).

Example

"activity_paths": [
"aws—-flow-ruby-samples/Samples/hello_world/lib/helloworld_activity.rb"
1

activity_workers Specifies a list of activity worker groups to spawn. Each worker takes the following
options:

7.1. aws-flow-ruby 83

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Parameter Description

activity_classes Optional. A list of activity class names that the
activity worker will run.

If not provided, then the activity classes to
be run will be auto-discovered by looking in
the files specified in the activity_paths member
(or, alternatively, flow/activities.rb)
for classes that are based on Activities.

Note: Any activities that are not based on
AWS::Flow::Activities must be listed here, or
they will not be used.

number_of_forks_per_worker Required on Windows; Optional on other plat-
forms. The number of forked processes that are
spawned per activity worker. This sets the num-
ber of activity tasks that an activity worker can
work on in parallel. If not specified, a default
value of 20 will be used.

You can set this to zero (0) to turn forking off,
which is required on Windows. See Using the
Framework on Microsoft Windows for more in-
formation.

number_of_workers Optional. The number of activity workers
(AWS::Flow::ActivityWorker) to spawn. For
each activity worker spawned, a default work-
flow implementation (decider) will be gener-
ated, as well. If not specified, a default value
of 1 will be used. you can override this value in
the default deciders section.

task_list Optional. The task list to use for the activity
execution. If this is not specified, then a task
list name will be generated for you, based on the
name of the first activity class found.

Example

"activity_workers": {
"number_of_workers": 1,
"number_of_forks_per_worker": 10,
"activity_classes": ["HelloWorldActivity"],
"task_list": "activity_tasklist"

}

default_deciders Optional. Specifies behavior when the AWS Flow Framework for Ruby automatically
generates a workflow implementation for your activities.

A single option can be set, number_of workers, which sets how many workers are launched. This
can be used to override the value set in the activity_workers section.

84 Chapter 7. Utilities

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Example

"default_deciders": {
"number_of_workers" : 3,

}

Note: Generated workflows and workers use the task list “flow_default_ruby”.

workflow_paths Optional. Specifies a list of paths to Ruby source files containing workflow classes based
on the Workflows class.

If not specified, aws—£flow—ruby will attempt to load the file flow/workflows.rb, which will
typically contain require lines that load the workflow source files. For example:

require 'lib/helloworld_workflow.rb'

The paths that are specified should be relative to the location of the configuration file (where
aws—-flow-ruby is executed).

Example

"workflow_paths": [
"aws—flow-ruby-samples/Samples/hello_world/lib/helloworld_workflow.rb"
]

workflow_workers Required. Specifies a list of workflow worker groups to spawn. These take the
following options:

Parameter Description

number_of_workers Optional. The number of workflow workers
(AWS::Flow::WorkflowWorker) to spawn. If
not specified, a default value of 1 will be used.

task_list Required. The task list to use for the workflow
execution.
workflow_classes Optional. The list of workflow class names that

the workflow worker will run.

If not provided, then the workflow classes to be
run will be auto-discovered by looking in the
files specified in the workflow_paths member
(or, alternatively, flow/workflows. rb) for
classes that are based on Workflows.

Note: Any workflows that are not based on
AWS::Flow::Workflows must be listed here, or
they will not be used.

Example

7.1. aws-flow-ruby 85

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

"workflow_workers": {
"number_of_workers": 1,
"workflow_classes": ["HelloWorldWorkflow"],
"task_list": "workflow_tasklist"

}

7.2 aws—-flow-utils

The aws—flow—utils utility can be used to generate application skeletons suitable for running locally
or hosted on Amazon EC2 using Elastic Beanstalk. It is provided with the AWS Flow Framework for Ruby
beginning with version 2.4.0.

Basic syntax:

aws—-flow-utils -c TYPE -n APPNAME [OPTIONS]

At the minimum, you must specify the rype of application to create (either 1ocal or eb) and give it a
name. If you specify eb, then aws—flow—utils will create an application that you can deploy using
Elastic Beanstalk. For more information about deploying a workflow using Elastic Beanstalk, see
Deploying Workflows with Elastic Beanstalk.

7.2.1 Options Reference

There are a number of arguments that you can specify when running aws—flow—utils:

86 Chapter 7. Utilities

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Option

Description

-c, ——command TYPE

Required. Create a project of the specified TYPE.
You can specify either:
* local to build a locally-executable Ama-
zon SWF application.
* eb to build an Amazon SWF applica-
tion configured for use with AWS Elastic
Beanstalk.

Note: on Windows, 1local will create an activ-
ity worker that sets number_of _forks_per_worker
in the resulting worker. json file to zero, turn-
ing forking off. For more information, see Using
the Framework on Microsoft Windows.

-n, ——name NAME

Required. Set the name of the application.

-r,——region REGION

Optional. Set the AWS Region. If this argument
is not specified, the default value is taken from the
environment variable AWS_REGION.

If AWS_REGION is not set, then this argument is
required.

-p, ——path PATH

Optional. Set the location where the application
will be created. The default is in the local directory

(.).

-a, ——act_path PATH

Optional. Sets the path to an activity class that will
be copied into your project. If this argument is not
specified, then an empty activity.rb file will
be generated that you can fill in yourself.

-w, ——wf_path PATH

Optional. A path to a workflow class that will be
copied into your project.

-A, ——activitiesxyz

Optional. Set the names of activity classes within
the file set using the ——act_path argument. This
argument is only necessary if your activity classes
are not based on the Activities class.

-W, ——workflows x,y,z

Optional. Set the names of workflow classes within
the file set using the ——wf_path option. This op-
tion is only necessary if your workflow classes are
not based on the Workflows class.

Tip: There’s no need to memorize this list; you can use aws—-flow-utils ——help to geta list of the

command syntax and available options.

7.2. aws-flow-utils

87

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

88 Chapter 7. Utilities

CHAPTER 8

Additional Resources

In addition to using the contents of this guide, you can learn more about the AWS Flow Framework for
Ruby by using the online resources listed in this topic.

Contents

* AWS Flow Framework for Ruby API Reference
* Amazon Simple Workflow Service Forums

* Videos

» Samples and Recipes

8.1 AWS Flow Framework for Ruby API Reference

The AWS Flow Framework for Ruby Reference provides details about each of the classes, methods and
data structures that make up the framework.

8.2 Amazon Simple Workflow Service Forums

The Amazon SWF forums are a great place to post questions and read answers from the Amazon SWF
team and other coders working with the AWS Flow Framework and other Amazon SDKGs.

8.3 Videos

The video, Introduction to Programming the AWS Flow Framework for Ruby (video), introduces viewers
to the AWS Flow Framework for Ruby and walks through the Hello World tutorial, providing details about
the code and how to run it.

89

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/
http://forums.aws.amazon.com/forum.jspa?forumID=133
http://www.youtube.com/watch?v=Z_dvXy4AVEE

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

8.4 Samples and Recipes

A set of AWS Flow Framework for Ruby code samples and recipes is available on GitHub, at
awslabs/aws-flow-ruby-samples.

90 Chapter 8. Additional Resources

https://github.com/awslabs/aws-flow-ruby-samples

CHAPTER 9

Document History

This topic lists important changes to the documentation over the history of the AWS Flow Framework for
Ruby Developer Guide.

* API version: 2012-01-25
* Latest documentation update: Jul 19, 2016

September 3, 2015 A number of issues in the guide have been fixed, and the topics Handling Errors and
Troubleshooting and Debugging Workflows have been moved to Basic Workflow Programming from
Advanced Topics.

January 22, 2015 The AWS Flow Framework for Ruby provides a new utility, aws—flow—utils,
which can generate application skeletons that you can run locally or on Elastic Beanstalk. Many of
the tutorials and related content has been updated. For details, refer to the following walkthroughs,
which are new (or, in the case of the Hello World tutorial, has been completely rewritten):

* Hello World
* Basic Workflow Example
* Deploying Workflows with Elastic Beanstalk

Additionally, the rest of the documentation has been re-organized and refreshed. For an overview of
the new layout, see What is the AWS Flow Framework for Ruby?.

December 17,2014 Amazon SWF now includes support for setting the priority of tasks on a task list, and
will attempt to deliver those with higher priority before tasks with lower priority. Information about
this feature is provided in Setting Task Priority.

November 10, 2014 A number of topics in the Programming Guide section have been revised for better
clarity:

* Specifying Workflow and Activity Options

* Retrying Failed Tasks

* Executing Tasks Asynchronously

* Handling Errors

* Troubleshooting and Debugging Workflows

91

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

Additionally, Troubleshooting and Debugging Workflows provides information about using the new
WorkflowReplayer class.

September 8, 2014 Added content and a new tutorial about ow fo use AWS OpsWorks with Amazon SWF.

August 19, 2014 Added documentation about the runner, a new command-line utility that helps to
configure and launch activities and workflows.

August 18, 2014 The guide has been restructured to more closely resemble other AWS guides. Some of
the changes include the following:

* The Introduction topic has been renamed What is the AWS Flow Framework for Ruby?, and
now includes the sections Important Notes and Where to Find the Source Code and Samples.

* The Sample Code and Recipes sections have been moved into the Programming Guide.

* The Additional Resources section has been promoted to a top-level chapter, instead of being
hidden within the introduction.

April 8, 2014 A new chapter has been added to the documentation: Recipes. This chapter provides recipes
for common use cases.

The official AWS Flow Framework for Ruby samples are now described in the Sample Code chapter.
These are fully-functional Amazon SWF applications that use the AWS Flow Framework for Ruby.

The Hello World tutorial has been updated to match the version that currently exists in the AWS
Flow Framework for Ruby samples.

November 13, 2013 The code for the basic code example was missing from its topic—this has been fixed.

August 1, 2013 Initial release of the AWS Flow Framework for Ruby Developer Guide.

92 Chapter 9. Document History

CHAPTER 10

About Amazon Web Services

Amazon Web Services (AWS) is a collection of digital infrastructure services that developers can leverage
when developing their applications. The services include computing, storage, database, and application
synchronization (messaging and queuing). AWS uses a pay-as-you-go service model: you are charged only
for the services that you—or your applications—use. For new AWS users, a free usage tier is available. On
this tier, services are free below a certain level of usage. For more information about AWS costs and the
Free Tier, see Use the AWS Free Tier. To obtain an AWS account, visit the AWS home page and click
Create a Free Account.

93

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-free-tier.html
http://aws.amazon.com/

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

94 Chapter 10. About Amazon Web Services

Index

A
activities
asynchronous, 54
description, 17
implementing, 24, 61
options, 38
registering, 24, 61
activity workers
programming, 33
aws credentials, 6
AWS_ACCESS_KEY_ID, 68
AWS_SECRET_ACCESS_KEY, 68

C

CloudWatch

list of metrics, 77
code

basic workflow, 11
command

aws-flow-ruby, 81

aws-flow-utils, 86
command-line

utilities, 80
concepts

main topic, 16
credentials

setting, 6

D

decider
implementing, 29
workflow patterns, 51

E

environment variable
AWS_ACCESS_KEY_ID, 68

AWS_SECRET_ACCESS_KEY, 68

€rrors

G

handling, 44

getting started, 3

H

installing, 5

hello world, 7, 11

installing, 5

O

options

P

setting, 38

programming, 22, 35

R

activities, 24, 61
asynchronous, 54
debugging, 45
decider, 29

error handling, 44
options, 38
registering a domain, 23
retries, 56
troubleshooting, 45
workers, 33
workflow patterns, 51
workflows, 29

registering

activity type, 24, 61

95

AWS Flow Framework for Ruby Developer Guide, Release 2.4.0

domain, 23
workflow type, 29
runner, 81
S
single
application
creating with aws-flow-utils, 86
workers
starting with aws-flow-ruby, 81
T
task priority
setting, 49
tasks
asynchronous, 54
U

utilities, 80
aws-flow-ruby, 81
aws-flow-utils, 86

W

workflow workers
programming, 33

workflows
debugging, 45
description, 17
implementing, 29
options, 38
patterns, 51
registering, 29
troubleshooting, 45

96

Index

	What is the AWS Flow Framework for Ruby?
	Getting Started
	Flow Concepts
	Basic Workflow Programming
	Advanced Topics
	Working with Other AWS Products
	Utilities
	Additional Resources
	Document History
	About Amazon Web Services
	Index

