AWS Flow Framework for Java

Developer Guide
APl Version 2012-01-25

amazon
webservices™

AWS Flow Framework for Java Developer Guide

AWS Flow Framework for Java Developer Guide

AWS Flow Framework for Java: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS Flow Framework for Java Developer Guide

Table of Contents

What is the AWS FIow Framework fOr JAVA?couiiuiiiiiiiiiie e 1
WhAL'S iN thiS GUIAE? ..ttt ettt ettt ea e 1
ADOUt AMAZON WED SEIVICES .. .o e e 2

(CToT 1110 To [RS3 F= T4 CTo [P PTRIPR 3
Setting UP the FramMeWOTKiuii e 3

INSEAllING TOr MAVEN ...t 4
INSEAIlING TOr ECHPSE ...icvieii e 4
HelloWOrld APPHCALION ...t e e e e e e 12
HelloWorld Activities IMplementationo.iuieiiii e 12
HelloWorld WOrKFIOW WOTKET e 13
HelloWorld WOTKFIOW SEAIETc.ieiiiiii e 14
HelloWorldWorkflow APPICALIONcuiei e 14
HelloWorldWorkflow ACHIVIIES WOTKETiiiiiii e 16
HelloWorldWorkflow WOrkflow WOTKETouiiiiiii e 17
HelloWorldWorkflow Workflow and Activities Implementationc.ccooviviiiiiniiniiniinineenee, 20
HelloWOorldWOrKIIOW SEAIterce.ieieii e e 23
HelloWorldWorkfloOWASYNC APPIICALIONvuiiiiii et 25
HelloWorldWorkflowAsync Activities Implementationcoooviiiiiiiiiniieee 26
HelloWorldWorkflowAsync Workflow Implementationc..ccoooviiiiiiiiiiicee 26
HelloWorldWorkflowAsync Workflow and Activities Host and Startercccovvevviiinnnnnn. 28
HelloWorldWorkflowDistributed APPIICALIONiuieiii e 29
HelloWorldWorkflowParallel APPICALIONc.iiiiii e 31
HelloWorldWorkflowParallel ACtivitiesS WOIKETc.iiuiiiiiiii e 31
HelloWorldWorkflowParallel WOorkflow WOTKErc.iiiiiiiiiiii e 32
HelloWorldWorkflowParallel Workflow and Activities Host and Startercooevviiininnes 33
27 1] (o @0 o o1 o TR 34
APPHCALION STIUCTUIE ...t et et e e e e an e 34
Role oOf the ACLIVIY WOTKET e 36
Role of the WOrKfIOW WOTKETouiiii e 36
Role of the WOrKfIOW STArEr oo e 36
How Amazon SWF Interacts with Your AppliCatioNc.oiuiiiiiiiiiiieee e 36
FOr MOre INFOMMALIONouit e et 37
RENADIE EXECULION ...ttt et et 37
Providing Reliable COMMUNICALIONiuiiii e 37
Ensuring that ReSUItS @re NOt LOSEiuieiiiiiie e 37
Handling Failed Distributed COMPONENTSc.uiuiiiiiiiii e 38
DiIStriDULEA EXECULION ...ttt e et e et e e e e e e e et e e en e eaeenes 38
Replaying WOIKIIOWS 38
Replay and Asynchronous Workflow Methodscooiiiiiiiiiiii 39
Replay and Workflow Implementationcoooviiiiiiii 40
Task Lists and Task EXECULIONc.uiiuinii e et e et e e 40
Scalable APPIICALIONS e 41
Data Exchange Between Activities and WOrKfOWScooiiiiiiiiii e 42
THE PrOMISERT > Ty PR ittt ettt ettt ettt e e eneees 42
Data Converters and Marshalingo.ouiiiiii e 43
Data Exchange Between Applications and Workflow EXECULIONSovvvviiiiiiiiiiiiiiiiieieieeenes 43
BT aT=To T LA Y/ o 1= 2 S PP PPTPIPPR 44
Timeouts in Workflow and DeciSion Tasksoiiiiiiiii e 44
TIMEOULS 1N ACHVILY TASKS ...euiiiiiiie e e e e 45

Programming GUITEouiniiiii ettt et e et et et et e e et eas a7
Implementing WOrkflow ApPPlCALIONSo e a7
WoOrkflow and ACLIVItY CONIIACESuiiii i e e e e e e anas 49
Workflow and Activity Type ReQISITAtiONcuuiuiiiiiiiiie e 50

Workflow Type Name and VEISIONc.viuiiuiitiiiiiiie e 51
SIONAI NAME e 51

API Version 2012-01-25
iv

AWS Flow Framework for Java Developer Guide

Activity Type Name and VEISIONouiiiiiiie e e 51
Default TASK LIST ...ttt et 52
Other RegiStration OPLIONSuie ittt e e et eenees 52
Activity and WOrKIIOW ClENTSo e e as 52
WOTKFIOW ClHIEINTS ..ottt ettt ens 52

o 1171V =T o1 £ 58

STl g T=T o 1] 1 o @] o] 1o o S 61
Y= L0 [O 11T | £ 62
WOrKflow IMpPIEMENTALION e e e 63
[D=Tol] To] g I @ o141 (= PP 64
EXPOSING EXECULION STALEeiieiiiiie e e et e e e e 64
WOTKFIOW LOCAIS ...ceeieceee et 66
ACHIVItY IMPIEMENTALION ... e e e e 67
Manually Completing ACHVILIESo.iuii e 67
Implementing Lambda Tasks ... e 69
ADOUE AWS LaMBDUA ... 69
Benefits and Limitations of using Lambda Taskscoviiiiiiiiii e 69
Using Lambda tasks in your AWS Flow Framework for Java workflowsc.oeni 69

View the HelloLambda SampPle ... 72
Running Programs Written with the AWS Flow Framework for Javacccoooiiiiiiiiiicninns 72
WOTKFIOWMVOTKET ..ottt et et e 73
11713 A AT 0 2= 74
Worker Threading MOEI ... e ee e 74
Worker EXIENSIDIILY ... e 75
EXECULION CONTEXE ...ttt ittt ettt et ettt et et e e e e e eans 76
[D=Tol] To] g I @ o141 (= PP 76
ACLIVItY EXECULION CONIEXT ..ottt e et e e e nea s 78
Child WOrKfIOW EXECULIONSottt ettt et 78
CoNtiNUOUS WOTKIIOWS ...ttt e aees 80
Y=Y TV T =] o T 81
Setting Task Priority for WOrkflOWS ..o 81
Setting Task Priority for ACHVILIES ... e 82
DAACONVEITEIS ...ttt 82
Passing Data to ASynchronous MethOOSc.oeiniiiiii e 83
Passing Collections and Maps to Asynchronous Methodsccooviiiiiiiiiiiiiiiieas 83

S A T > e 84
L@\ [XA = U1 85
PrOMISERVOIO> ..ottt 85
ANAPromise and OFPTOIMISEuuiiii it e 85
Testability and Dependency INJECTION ... eees 86
I o] 1o T 11 1= |- 1o o 86
08171 1 =T o = o] o 91
o] g =TT |11V 96
TryCatChFinally SEMANTICS ... e e ene e 97
CANCEIIALION ... ettt 98
Nested TryCatChFIiNally ..o e 101
Retry Failed ACHVILIES e e et 102
Retry-Until-SUCCESS STrAtEOYvuieiiiiiiii e e 102
EXponential RetrY StratEOYc.ouiiuiuiiii i e 104
CUSIOM REINY SITAIEGY .. .uenttitit ittt e e ettt et e e e e e et eneaaaas 108
DAEBIMON TASKS ...ttt ettt ettt et e 110
REPIAY BENAVIOL ...t e 112
Example 1: Synchronous REPIAYooieiiiiiiiiii e 112
Example 2: ASYNChronoUS REPIAYoueieiii e 113

S AlSD et 114
UNEr The HOOA .. .eeee e e e ettt ettt ettt e e 115
LI CS] PP PP PPP 115
Order Of EXECULION ...ttt ettt et 116

API Version 2012-01-25
v

AWS Flow Framework for Java Developer Guide

WOTKFIOW EXECULION ...ttt ettt et e e e e e e e 117
NONAEIEIMINISIN ..ttt et et et e e e e e e e 119
Troubleshooting and DebUGGING TIPS .. .uiuiniiii e et e e e ee e 120
(0] 0] 011 F= U1 o I =t o £ 120
UNKNOWN RESOUICE FAUILceuieieiei et 120
Exceptions When Calling get() 0N @ PrOmMISEcuiiiiiiiie i 121
Non Deterministic WOIKFIOWSo 121
Problems DU 10 VEISIONINGuuiiie i e eae e 121
Troubleshooting and Debugging a Workflow EXECULIONoouiiiiiiiiiiiiie e 121
LOSE TASKS ..ttt 123
REIEIEINCE ... e e 124
ANNOTALIONS ...ttt ettt et et ettt e 124
@ A VIS ..ottt e e s 124
(@3 11/ 1 125
@ACLIVItYRegIStratioNOPLIONSieeie e e 125
(@S T a0 g T T L 126

(@] (oL (< 126

@ EXPONENIAIREIIY ...t e e 126

(@ 1<) = (< 127
@ManUalACHVIEYCOMPIETION ... e e aens 127

@ SIGNAI .. s 127

@ SKIPREGISIIALION ... ie ittt et et 127
@Wat AN @NOWAL ..o et e e ettt e e e e aaeaaeaan 127

[TAY 01 (o L. 128
@WOrkflowRegistratioNOPLIONSiiie e 128
o= o] 1o 1N 129
ACHIVItYFaIUFEEXCEPLION ...t e e 129
ACHVIEYTASKEXCEPLON ... ettt et e e e 130
ACtiVity TaSKFaIlEAEXCEPLIONceeiie et e e e e 130
ActivityTask TIMEAOULEXCEPLION ...t e e ee e 130
ChildWOIKFIOWEXCEPLION ... ettt et et ettt et e e e aenes 130
ChildWorkfloOWFailedEXCEPLIONuei e e eaes 130
ChildWorkflowTerminatedEXCEPLIONouiei e 130
ChildWorkflowTIimedOULEXCEPLIONeiie et 130
DataCoNnVertErEXCEPLIONuieit it e 131

[T o3 1= [0 T o= o 1o o 131
ScheduleActivity TaskFailedEXCEPLIONuieeiii e 131
SignalExternalWorkfIOWEXCEPHON ...t e 131
StartChildWorkflowFailedEXCEPLONeieii e 131
StartTIMerFailedEXCEPLION e e 131

QLI TS 0o =T) o] o 131
WOTKFIOWEXCEPLION ... e e et e e aaeaes 131

P ACKAGES ...t e 131
[0 o0] 0 =Y oLl T3 (] Y/ 133

API Version 2012-01-25
vi

AWS Flow Framework for Java Developer Guide
What's in this Guide?

What is the AWS Flow Framework
for Java®?

The Amazon Simple Workflow Service (Amazon SWF) provides a powerful and flexible way for
developers to implement distributed asynchronous workflow applications. The AWS Flow Framework

is a programming framework that simplifies the process of implementing a distributed asynchronous
application while providing all the benefits of Amazon SWF. It is ideal for implementing applications that
address a broad range of scenarios including business processes, media encoding, long-running tasks,
and background processing.

By using the AWS Flow Framework, you can focus on implementing your workflow logic, while leaving
the details of communication and coordination with Amazon SWF to the framework. Behind the scenes,
the framework uses Amazon SWF to manage your workflow's execution and make it scalable, reliable,
and auditable. AWS Flow Framework-based workflows are highly concurrent, and workflows can be
distributed across multiple components—each of which can run as separate processes on separate
computers and can be scaled independently. The workflow will continue to run if any of its components
are running, making it highly fault tolerant.

Topics
¢ What's in this Guide? (p. 1)
¢ About Amazon Web Services (p. 2)

What's in this Guide?

This is the AWS Flow Framework for Java Developer Guide, which aims to provide you with
information about how to install, set up, and use the Flow Framework to develop Amazon SWF
applications.

Here is a guide to the contents:

Getting Started (p. 3)
If you are just starting out with the AWS Flow Framework for Java, you should first read through
the Getting Started (p. 3) section. It will guide you through downloading and installing the AWS
Flow Framework for Java, how to set up your development environment, and lead you through a
simple example of creating a workflow using the Flow Framework.

API Version 2012-01-25
1

AWS Flow Framework for Java Developer Guide
About Amazon Web Services

Basic Concepts (p. 34)
Introduces basic Amazon SWF and Flow Framework concepts, describing the basic structure of a
Flow Framework application and how data is exchanged between parts of a distributed workflow.

Programming Guide (p. 47)
This chapter provides basic programming guidance for developing workflow applications with the
AWS Flow Framework for Java, including how to register activity and workflow types, implement
workflow clients, create child workflows, handle errors, and more.

Under the Hood (p. 115)
This chapter provides a more in-depth look at the way the AWS Flow Framework for Java works,
providing you with additional information about the order of execution of asynchronous workflows
and a logical step-through of a standard workflow execution.

Troubleshooting and Debugging Tips (p. 120)
This chapter provides information about common errors that you can use to troubleshoot your
workflows, or that you can use to learn to avoid common errors.

Reference (p. 124)
This chapter is a reference to the Annotations, Exceptions and Packages that the AWS Flow
Framework for Java adds to the SDK for Java.

Document History (p. 133)

This chapter provides details about major changes to the documentation. New sections and topics
as well as significantly revised topics are listed here.

About Amazon Web Services

Amazon Web Services (AWS) is a collection of digital infrastructure services that developers can
leverage when developing their applications. The services include computing, storage, database,

and application synchronization(messaging and queuing). AWS uses a pay-as-you-go service model.
You are charged only for the services that you—or your applications—use. Also, to make AWS more
approachable as a platform for prototyping and experimentation, AWS offers a free usage tier. On this
tier, services are free below a certain level of usage. For more information about AWS costs and the
Free Tier, see Test-Driving AWS in the Free Usage Tier. To obtain an AWS account, open the AWS
home page and then click Sign Up.

API Version 2012-01-25
2

http://docs.aws.amazon.com/FeaturedArticles/latest/TestDriveFreeTier.html
https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
https://portal.aws.amazon.com/gp/aws/developer/registration/index.html

AWS Flow Framework for Java Developer Guide
Setting up the Framework

Getting Started with the AWS Flow
Framework for Java

This section introduces the AWS Flow Framework by walking you through a series of simple example
applications that introduce the basic programming model and API. The example applications are
based on the standard Hello World application that is used to introduce C and related programming
languages. Here is a typical Java implementation of Hello World:

public class HelloWrld {
public static void main(String[] args) {
Systemout.printin("Hello Wrld!'");
}

The following is a brief description of the example applications. They include complete source code
so you can implement and run the applications yourself. Before starting, you should first configure
your development environment and create an AWS Flow Framework for Java project, as described in
Setting up the Framework (p. 3).

« HellowWorld Application (p. 12) introduces workflow applications by implementing Hello World as a
standard Java application, but structuring it like a workflow application.

¢ HelloWorldWorkflow Application (p. 14) uses the AWS Flow Framework for Java to convert
HelloWorld into an Amazon SWF workflow.

* HelloWorldWorkflowAsync Application (p. 25) modifies Hel | oWor | dWor kf | owto use an
asynchronous workflow method.

¢ HelloWorldWorkflowDistributed Application (p. 29) modifies Hel | oWor | dWor kf | owAsync so that
the workflow and activity workers can run on separate systems.

* HelloWorldWorkflowParallel Application (p. 31) modifies Hel | oWor | dWér kf | owto run two
activities in parallel.

Setting up the AWS Flow Framework for Java

The AWS Flow Framework for Java is included with the AWS SDK for Java. If you have not already
set up the AWS SDK for Java, visit Getting Started in the AWS SDK for Java Developer Guide for
information about installing and configuring the SDK itself.

API Version 2012-01-25
3

http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/getting-started.html

AWS Flow Framework for Java Developer Guide
Installing for Maven

This topic provides information about additional steps required to use the AWS Flow Framework for
Java. Steps are provided for Eclipse and Maven.

Topics
« Installing for Maven (p. 4)

« Installing for Eclipse (p. 4)

Installing for Maven

Amazon provides Amazon SWF build tools in the Maven Central Repository to aid setup of AWS Flow
Framework for Java in your Maven projects.

To set up the flow framework for Maven, add the following dependency to your project's pom xnl file:

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<version>1. 2. 17</versi on>

</ dependency>

<dependency>
<gr oupl d>com amazonaws</ gr oupl d>
<artifactld>aws-swf-build-tools</artifactld>
<versi on>1. 0</ ver si on>

</ dependency>

The Amazon SWF build tools are open source—to view or download the code or to build the tools
yourself, visit the repository at https://github.com/aws/aws-swf-build-tools.

Installing for Eclipse

If you use the Eclipse IDE, install the AWS Flow Framework for Java using the AWS Toolkit for Eclipse.

Topics
« Installing the AWS Toolkit for Eclipse (p. 4)

¢ Creating an AWS Flow Framework for Java Project (p. 5)

Installing the AWS Toolkit for Eclipse

Installing the Toolkit for Eclipse is the simplest way to get started with the AWS Flow Framework for
Java. To install the Toolkit for Eclipse, see Setting Up the AWS Toolkit for Eclipse in the AWS Toolkit
for Eclipse Getting Started Guide.

Important
Be sure to include both the AWS SDK for Java and AWS Simple Workflow Tools when
selecting which packages to install in Eclipse's Available Software dialog box:

API Version 2012-01-25
4

http://search.maven.org/#search|ga|1|a%3A%22aws-swf-build-tools%22
https://github.com/aws/aws-swf-build-tools
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/tke_setup.html

AWS Flow Framework for Java Developer Guide
Installing for Eclipse

Available Software

Check the items that you wish to install.

Work with: | http://aws.amazon.comfeclipse

Find more software by working with the "Available

type filter text

3
o

=[rAmazon RD5 Management

Yr Amazon SimpleDB Management
X[t AWS CloudFormation Tools

L[+ AWS Elastic Beanstalk

L+ AWS SDK for Android

L[+ AWS SDK for Java

=':j::=AW5 Simple Workflow Tools

== AWS Toolkit for Eclipse Core

AREREQREEE]

| Selectall | | Deselect All |

If you installed all of the available packages (by clicking the AWS Toolkit for Eclipse top-level
node, or clicking Select All), both of these packages were automatically selected and installed
for you.

Creating an AWS Flow Framework for Java Project

Creating a properly configured AWS Flow Framework for Java project in Eclipse involves a number of
steps:

1. Create an AWS Java project.
2. Enable annotation processing for your project.
3. Enable and configure AspectJ.

Each of these steps will now be described in detail.

To create an AWS Java project

1. Launch Eclipse.
2. To select the Java perspective, click Window > Open Perspective > Java.
3. Click File > New > AWS Java Project.

API Version 2012-01-25
5

AWS Flow Framework for Java Developer Guide
Installing for Eclipse

Wizards:

type filter text

'@Java Project
aﬁjava Project from Existing Ant Buildfile

Q[:{EPlug—in Project
k(= General
¥ = AWS

AWS Java Web Project
F = CVS
P (= Eclipse Modeling Framework
> = EIB
P (= Java
P (= Java EE
P = JavaScript

b [JAXB

@ < Back [Next >] | Cancel

Fil

4. Use the AWS Java project wizard to create a new project.

Note
The first time you create an AWS Java project with Eclipse, the SDK for Java will be
automatically downloaded and installed when the project wizard starts.

After creating your AWS Java project, enable annotation processing for the project. The AWS Flow
Framework for Java includes an annotation processor that generates several key classes based on
annotated source code.

To enable annotation processing

1. InProject Explorer, right-click your project and select Properties.
2. Inthe Properties dialog box, navigate to Java Compiler > Annotation Processing.

3. Check Enable project specific settings (which should also Enable annotation processing, but
if it doesn't make sure that this option is also checked). Then click OK.

API Version 2012-01-25
6

AWS Flow Framework for Java Developer Guide
Installing for Eclipse

806

Properties for MyTestSWFProj

type filter text

b Resource
Builders
Java Build Path
b Java Code Style
¥lava Compiler
[
Building
Errors /Warnings
Javadoc
Task Tags
P Java Editor
Javadoc Location
Project Facets
Project References
Run/Debug Settings
b Task Repository
Task Tags
- Validation
WikiText

Annotation Processing

EI Enable project specific settings

EI Enable annotation processing

[EI Enable processing in editor

Generated source directory:

Apt_generated

Processor aoptions (-Akey=value):

'h’.ev Value

Mote: options such as "-classpath” and "-sourcepat
values corresponding to the project's Java settings.

@

Note

You will need to rebuild your project after enabling annotation processing.

API Version 2012-01-25

AWS Flow Framework for Java Developer Guide
Installing for Eclipse

Enabling and Configuring AspectJ

Next, you should enable and configure AspectJ. Certain AWS Flow Framework for Java annotations
such as @synchr onous require AspectJ. You don't need to use Aspect]J directly, but you must
enable it with either load-time weaving or compile-time weaving.

'II\'lt?etfecommended approach is to use load-time weaving.
Topics
e Prerequisites (p. 8)
¢ Configuring AspectJ Load-Time Weaving (p. 8)
¢ AspectJ Compile-Time Weaving (p. 9)
¢ Working around issues with AspectJ and Eclipse (p. 11)

Prerequisites

Before configuring AspectJ, you need the AspectJ version that matches your Java version:

¢ If you are using Java 7 (recommended), download the latest AspectJ 1.7.X release.

¢ If you are using Java 6, download the latest AspectJ 1.6.X release.

You can download either of these versions of AspectJ from: http://www.eclipse.org/aspectj/
downloads.php.

After you have finished downloading AspectJ, execute the downloaded . j ar file to install AspectJ.
The Aspect] installation will ask you where you would like to install the binaries, and on the final
screen, will provide recommended steps for completing the installation. Remember the location of the
aspectjweaver.jar file; you'll need it to configure AspectJ in Eclipse.

Configuring AspectJ Load-Time Weaving

To configure AspectJ load-time weaving for your AWS Flow Framework for Java project, first designate
the AspectJ JAR file as a Java agent, and then configure it by adding an aop. xmi file to your project.

To add AspectJ as a Java agent

To open the Preferences dialog box, click Window > Preferences.
Navigate to Java > Installed JREs.
Select the appropriate JRE and click Edit.

P o N PR

In the Default VM arguments box, enter the path to the installed AspectJ binary. This will be
a path such as/ hone/ user/ aspectj 1. 7/ 1 i b/ aspect j weaver. j ar, depending on your
operating system and on the version of AspectJ you downloaded.

On Linux, OS X, or Unix use:

-javaagent : / your _path/aspectj/|ib/aspectjweaver.jar

On Windows, use a standard Windows-style path instead:

-javaagent: C:\your _path\aspectj\|ib\aspectjweaver.jar

API Version 2012-01-25
8

http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/downloads.php
http://www.eclipse.org/aspectj/downloads.php

AWS Flow Framework for Java Developer Guide
Installing for Eclipse

JRE Definition
Specify attributes for a JRE

JRE home: fusr/lib/jvm/java-7-openjdk-amd64
JRE name: java-T-openjdk-amd64
Default VM arguments: |-javaagent:/Users/myname/aspectj1.7/lib/a

To configure AspectJ for AWS Flow Framework for Java, add an aop. xni file to the project.

To add an aop.xml file

In your project's src directory, add a directory named META- | NF.
Add a file named aop. xnl to META- | NF with the following contents.

<aspectj >
<aspect s>
<l-- declare two existing aspects to the weaver -->
<aspect
name="com anmazonaws. servi ces. si npl ewor kf | ow. f| ow. aspectj. Asynchr onousAspect "/
>
<aspect
name="com anmazonaws. servi ces. si npl ewor kf | ow. f| ow. aspectj . Exponenti al RetryAspect"/
>
</ aspect s>
<weaver options="-verbose">
<i ncl ude w t hi n="MSi npl eWor kfl ow. *"/ >
</ weaver >
</ aspectj >

The value of <i ncl ude wi t hi n=""/> depends on how you name your project's packages. The
above example assumes that the project's packages followed the pattern MySimpleWorkflow.*.
Use a value appropriate for your own project's packages.

AspectJ Compile-Time Weaving

To enable and configure AspectJ compile-time weaving, you must first install the AspectJ developer
tools for Eclipse, which are available from http://www.eclipse.org/aspectj/downloads.php.

To install the AspectJ Developer Tools in Eclipse

1. Onthe Help menu, click Install New Software.

API Version 2012-01-25
9

http://www.eclipse.org/aspectj/downloads.php

AWS Flow Framework for Java Developer Guide
Installing for Eclipse

2. Inthe Available Software dialog box, enter http://download.eclipse.org/tools/ajdt/ver si on/
update, where version represents your Eclipse version number. For example, if you are using
Eclipse 4.3 (Kepler), you would enter: http://download.eclipse.org/tools/ajdt/43/update.

Important
Be sure that the AspectJ version matches your Eclipse version, or installation of AspectJ
will fail.

3. Click Add to add the location. Once the location is added, the AspectJ developer tools will be
listed.

Available Software

Check the items that you wish to install.

Work with: “ Aspect] Developer Tools - http:,.f,fduwnlnad.eclip5e.::rrg,.ftmls.n'ajdt,|’43.n'tl

Find more software by working with the "Available

type filter text

‘Name

IEI b 100 Aspect] Development Tools (Required)

IEI b 100 Aspect] Development Tools Source (Optional)
IEI b (00 Other AJDT Tools (Optional)

| SelectAll | | Deselect All | 9 items selected

® < Back [Mext =

4. Click Select All to select all of the AspectJ developer tools, then click Next to install them.

Note
You will need to restart Eclipse to complete the installation.

You must then configure your project.

To configure your project for Aspectd compile-time weaving

1. InProject Explorer, right-click your project and select Configure > Convert to AspectJ Project.

API Version 2012-01-25
10

AWS Flow Framework for Java Developer Guide
Installing for Eclipse

rﬁ_ﬁ Project Explorer £ II""F"':?"f"f--- g
. Export... _
i P p |
" Bere #1 Refresh Fo

b = JRE System b
b m) AWS SDK e Close Project .
b 22 MyTestSWFPro Close Unrelated Projects

Validate

Show in Remote Systems view
Profile As

Debug As

Run As

Team

Compare With

Restore from Local History...

Conve
Conve

yFrYyryYywvyy

Configure > Conve

Source > Conve

_ Conve

=) MyExampleswFpro] Properties

The AspectJ Runtime Library will be added to your project.

2. Right-click your project again and click Properties.

3. Click AspectJ Build and then click the Aspect Path tab.

4. Click Add External JARs and add the AWS SDK for Java JAR file to your project's Aspect Path.
Note
The AWS Toolkit for Eclipse installs the AWS SDK for Java JAR file in your workspace,
in the . net adat a/ . pl ugi ns/ com anazonaws. ecl i pse. cor e/ aws-j ava- sdk/ AWS
Ver si on/ | i b directory, where you replace AWS Version with the installed AWS SDK

version number. Otherwise, you can use the JAR file that is included with the regular
AWS SDK installation, which is in the | i b directory.

Working around issues with AspectJ and Eclipse

The AspectJ Eclipse plug-in has an issue that can prevent generated code from being compiled. To
work around this issue, first remove AspectJ and then re-convert your project:

1. Right-click your project, click Aspectd Tools > Remove AspectJ Capability, and then click Yes to
confirm.

2. Right-click your project, click Configure > Convert to AspectJ Project.

API Version 2012-01-25
11

AWS Flow Framework for Java Developer Guide
HellowWorld Application

HelloWorld Application

To introduce the way Amazon SWF applications are structured, we'll create a Java application that
behaves like a workflow, but that runs locally in a single process. No connection to Amazon Web
Services will be needed.

Note
The HelloWorldWorkflow (p. 14) example builds upon this one, connecting to Amazon SWF
to handle management of the workflow.

A workflow application consists of three basic components:

« An activities worker supports a set of activities, each of which is a method that executes
independently to perform a particular task.

¢ A workflow worker orchestrates the activities' execution and manages data flow. It is a programmatic
realization of a workflow topology, which is basically a flow chart that defines when the various
activities execute, whether they execute sequentially or concurrently, and so on.

« A workflow starter starts a workflow instance, called an execution, and can interact with it during
execution.

HelloWorld is implemented as three classes and two related interfaces, which are described in the
following sections. Before starting, you should set up your development environment and create a new
AWS Java project as described in Setting up the Framework (p. 3). The packages used for the
following walkthroughs are all named helloWorld.XYZ. To use those names, set the within attribute in
aop.xml as follows:

<weaver options="-verbose">
<i nclude wi thin="helloWrld..*"/>
</ weaver >

To implement HelloWorld, create a new Java package in your AWS SDK project named
hel I owor | d. Hel I owor | d and add the following files:

¢ An interface file named Greet er Activities.java

¢ Aclass file named Greet er Act i vi ti esl npl . j ava, which implements the activities worker.
¢ An interface file named Gr eet er Wr kf | ow. j ava.

¢ Aclass file named Gr eet er Wor kf | ow npl . j ava, which implements the workflow worker.

¢ Aclass file named Gr eet er Mai n. j ava, which implements the workflow starter.

The details are discussed in the following sections and include the complete code for each component,
which you can add to the appropriate file.

HelloWorld Activities Implementation

HelloWorld breaks the overall task of printing a "Hello World!" greeting to the console into three
tasks, each of which is performed by an activity method. The activity methods are defined in the
GreeterActivities interface, as follows.

public interface GeeterActivities {
public String getName();

API Version 2012-01-25
12

AWS Flow Framework for Java Developer Guide
HelloWorld Workflow Worker

public String getGeeting(String nane);
public void say(String what);

HelloWorld has one activity implementation, G- eet er Act i vi ti esl npl , which provides the
GreeterActivities methods as shown:

public class GeeterActivitieslnpl inplements GeeterActivities {
@verride
public String getName() {
return "World";
}

@verride

public String getGeeting(String nane) {
return "Hello " + name + "!";

}

@verride

public void say(String what) {
Systemout. println(what);

}

Activities are independent of each other and can often be used by different workflows. For example,
any workflow can use the say activity to print a string to the console. Workflows can also have multiple
activity implementations, each performing a different set of tasks.

HelloWorld Workflow Worker

To print "Hello World!" to the console, the activity tasks must execute in sequence in the correct order
with the correct data. The HelloWorld workflow worker orchestrates the activities' execution based on a
simple linear workflow topology, which is shown in the following figure.

-

e e name greeting Pri e\
{ Sl getName getGreeting » say —H’ Prmt.grleetmg]
. (Start) _(Finish) Y,
s

¥

The three activities execute in sequence, and the data flows from one activity to the next.

The HelloWorld workflow worker has a single method, the workflow's entry point, which is defined in
the Gr eet er Wr kf | ow interface, as follows:

public interface G eeterWrkflow {
public void greet();
}

The Gr eet er Wor kf | owl npl class implements this interface, as follows:

public class G eeterWrkflow npl inplenents G eeterWrkflow
private GreeterActivities operations = new GreeterActivitieslnpl();

public void greet() {
String nane = operations. getName();

API Version 2012-01-25
13

AWS Flow Framework for Java Developer Guide
HelloWorld Workflow Starter

String greeting = operations. getGeeting(nanme);
oper ations. say(greeting);

The gr eet method implements HelloWorld topology by creating an instance of
GreeterActivitieslnpl, calling each activity method in the correct order, and passing the
appropriate data to each method.

HelloWorld Workflow Starter

A workflow starter is an application that starts a workflow execution, and might also communicate
with the workflow while it is executing. The Gr eet er Mai n class implements the HelloWorld workflow
starter, as follows:

public class GreeterMin {
public static void main(String[] args) {
G eeterWrkflow greeter = new G eeterWrkflow npl ();
greeter.greet();

G eet er Mai n creates an instance of G eet er Wr kf | owl npl and calls gr eet to run the workflow
worker. Run Gr eet er Mai n as a Java application and you should see "Hello World!" in the console
output.

HelloWorldWorkflow Application

Although the basic HelloWorld (p. 12) example is structured like a workflow, it differs from an
Amazon SWF workflow in several key respects:

Conventional and Amazon SWF Workflow Applications

HelloWorld Amazon SWF Workflow

Runs locally as a single process. Runs as multiple processes that can be distributed across
multiple systems, including Amazon EC2 instances, private
data centers, client computers, and so on. They don't even
have to run the same operating system.

Activities are synchronous methods, Activities are represented by asynchronous methods, which
which block until they complete. return immediately and allow the workflow to perform other
tasks while waiting for the activity to complete.

The workflow worker interacts with Workflow workers interact with activities workers by
an activities worker by calling the using HTTP requests, with Amazon SWF acting as an
appropriate method. intermediary.

The workflow starter interacts with Workflow starters interact with workflow workers by
workflow worker by calling the using HTTP requests, with Amazon SWF acting as an
appropriate method. intermediary.

You could implement a distributed asynchronous workflow application from scratch, for example, by
having your workflow worker interact with an activities worker directly through web services calls.

API Version 2012-01-25
14

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Application

However, you must then implement all the complicated code required to manage the asynchronous
execution of multiple activities, handle the data flow, and so on. The AWS Flow Framework for Java
and Amazon SWF take care of all those details, which allows you to focus on implementing the
business logic.

HelloWorldWorkflow is a modified version of HelloWorld that runs as an Amazon SWF workflow. The
following figure summarizes how the two applications work.

Waorkflow |~ GreeterMain
Starter

GreeterWorkflowClientExternal

Activities
Worker Workflow Activities
Task Task
List List

5 Amazon SWF

i)

GreeterActivitieslmpl

|
|
|
|
|
|
|
|
|
Y |
|
|
|
|
|
|
|
|
|

HTTP HTTP
GreeterWorkflowlmpl | A S —
Workil L ‘ GreeterActivitiesClientimpl ‘ AR
orkflow | /é L
] i ActivityWorker
Starter reeterMain GreeterWorkflowlmpl !
Workflow WorkflowWarker GreeterWorker
Worker Il,"ll
Helloworld Workflow HelloWorldWorkflow Activities
Warker Warker

HelloWorld runs as a single process and the starter, workflow worker, and activities worker interact

by using conventional method calls. With Hel | oWor | dWor kf | ow, the starter, workflow worker,

and activities worker are distributed components that interact through Amazon SWF by using HTTP
requests. Amazon SWF manages the interaction by maintaining lists of workflow and activities tasks,
which it dispatches to the respective components. This section describes how the framework works for
HelloWorldWorkflow.

HelloWorldWorkflow is implemented by using the AWS Flow Framework for Java API, which handles
the sometimes complicated details of interacting with Amazon SWF in the background and simplifies
the development process considerably. You can use the same project that you did for HellowWorld,
which is already configured for AWS Flow Framework for Java applications. However, to run the
application, you must set up an Amazon SWF account, as follows:

¢ Sign up for an AWS account, if you don't already have one, at Amazon Web Services.

» Assign your account's Access ID and secret ID to the AWS_ACCESS_KEY_ID and
AWS_SECRET_KEY environment variables, respectively. It's a good practice to not expose the
literal key values in your code. Storing them in environment variables is a convenient way to handle
the issue.

¢ Sign up for Amazon SWF account at Amazon Simple Workflow Service.
¢ Log into the AWS Management Console and select the Amazon SWF service.

» Click Manage Domains in the upper right corner and register a new Amazon SWF domain. A
domain is a logical container for your application resources, such as workflow and activity types,
and workflow executions. You can use any convenient domain name, but the walkthroughs use
"helloWorldWalkthrough".

API Version 2012-01-25
15

http://aws.amazon.com//
http://aws.amazon.com//swf/

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Activities Worker

For more details about how to manage Amazon SWF workflows, see Getting Set Up.

To implement the HelloWorldWorkflow, create a copy of the helloWorld.HelloWorld package in your
project folder and name it helloWorld.HelloWorldWorkflow. The following sections describe how to
modify the original HelloWorld code to use the AWS Flow Framework for Java and run as an Amazon
SWF workflow application.

HelloWorldWorkflow Activities Worker

HelloWorld implemented its activities worker as a single class. An AWS Flow Framework for Java
activities worker has three basic components:

¢ The activity methods—which perform the actual tasks—are defined in an interface and implemented
in a related class.

¢ An ActivityWorker class manages the interaction between the activity methods and Amazon SWF.
« An activities host application registers and starts the activities worker, and handles cleanup.

This section discusses the activity methods; the other two classes are discussed later.

HelloWorldWorkflow defines the activities interface in Gr eet er Acti vi ti es, as follows:

i mport com anmzonaws. servi ces. si npl ewor kf | ow. f| ow. annot ati ons. Activities;

i mport
com anmazonaws. servi ces. si npl ewor kf | ow. f| ow. annot ati ons. Acti vityRegi strati onOpt

@\ctivityRegi strationOptions(defaul t TaskSchedul eToSt art Ti neout Seconds = 300,
def aul t TaskSt art Tod oseTi neout Seconds = 10)
@\ctivities(version="1.0")

public interface GreeterActivities {
public String getName();
public String getGeeting(String nane);
public void say(String what);

This interface wasn't strictly necessary for HelloWorld, but it is for an AWS Flow Framework for
Java application. Notice that the interface definition itself hasn't changed. However, you must apply
two AWS Flow Framework for Java annotations, @ActivityRegistrationOptions (p. 125) and
@Activities (p. 124), to the interface definition. The annotations provide configuration information
and direct the AWS Flow Framework for Java annotation processor to use the interface definition to
generate an activities client class, which is discussed later.

@Acti vityRegi strati onOpti ons has several named values that are used to configure the
activities' behavior. HelloWorldWorkflow specifies two timeouts:

e defaul t TaskSchedul eToSt art Ti meout Seconds specifies how long the tasks can be queued in
the activities task list, and is set to 300 seconds (5 minutes).

e defaul t TaskSt art ToC oseTi neout Seconds specifies the maximum time the activity can take to
perform the task and is set to 10 seconds.

These timeouts ensure that the activity completes its task in a reasonable amount of time. If either
timeout is exceeded, the framework generates an error and the workflow worker must decide how to
handle the issue. For a discussion of how to handle such errors, see Error Handling (p. 96).

@Act i vi ti es has several values, but typically it just specifies the activities' version number,
which allows you to keep track of different generations of activity implementations. If you change

API Version 2012-01-25
16

i ons;

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-dev-amzn-swf.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow Worker

an activity interface after you have registered it with Amazon SWF, including changing the
@ActivityRegi strationOpti ons values, you must use a new version number.

HelloWorldWorkflow implements the activity methods in Gr eet er Acti vi ti esl npl , as follows:

public class GreeterActivitieslnpl inplements GeeterActivities {
@verride
public String getNanme() {
return "World";

}

@verride

public String getGeeting(String nane) {
return "Hello " + nane;

}

@verride

public void say(String what) {
System out . println(what);

}

Notice that the code is identical to the HelloWorld implementation. At its core, an AWS Flow
Framework activity is just a method that executes some code and perhaps returns a result. The
difference between a standard application and an Amazon SWF workflow application lies in how the
workflow executes the activities, where the activities execute, and how the results are returned to the
workflow worker.

HelloWorldWorkflow Workflow Worker

An Amazon SWF workflow worker has three basic components.

« A workflow implementation, which is a class that performs the workflow-related tasks.

¢ An activities client class, which is basically a proxy for the activities class and is used by a workflow
implementation to execute activity methods asynchronously.

« A WorkflowWorker class, which manages the interaction between the workflow and Amazon SWF.

This section discusses the workflow implementation and activities client; the WorkflowWorker class is
discussed later.

HelloWorldWorkflow defines the workflow interface in G eet er Wor kf | ow, as follows:

i mport com amazonaws. servi ces. si mpl ewor kf | ow. f | ow. annot ati ons. Execut e;
i mport com amazonaws. servi ces. si npl ewor kf | ow. f | ow. annot ati ons. Wor kf | ow;

i mport

com amazonaws. servi ces. si npl ewor kf | ow. f | ow. annot at i ons. Wr kf | owRegi strati onOpt
@or kf | ow
@\or kf | owRegi strationOpti ons(defaul t Executi onStart ToC oseTi meout Seconds =

3600)

public interface G eeterWrkflow {
@xecute(version = "1.0")
public void greet();

This interface also isn't strictly necessary for HelloWorld but is essential for an AWS Flow
Framework for Java application. You must apply two AWS Flow Framework for Java annotations,

API Version 2012-01-25
17

i ons;

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow Worker

@Workflow (p. 128) and @WorkflowRegistrationOptions (p. 128), to the workflow interface

definition. The annotations provide configuration information and also direct the AWS Flow Framework
for Java annotation processor to generate a workflow client class based on the interface, as discussed
later.

@\or kf | ow has one optional parameter, dataConverter, which is often used with its default value,
NullDataConverter, which indicates that JsonDataConverter should be used.

@\or kf | owRegi strati onOpti ons also has a number of optional parameters that can be used to
configure the workflow worker. Here, we set def aul t Executi onSt art Tod oseTi neout Seconds—
which specifies how long the workflow can run—to 3600 seconds (1 hour).

The Gr eet er Wor kf | owinterface definition differs from HelloWorld in one important way, the
@Execute (p. 126) annotation. Workflow interfaces specify the methods that can be called by
applications such as the workflow starter and are limited to a handful of methods, each with a particular
role. The framework doesn't specify a name or parameter list for workflow interface methods; you use a
name and parameter list that is suitable for your workflow and apply an AWS Flow Framework for Java
annotation to identify the method's role.

@Execut e has two purposes:

« Itidentifies gr eet as the workflow's entry point—the method that the workflow starter calls to start
the workflow. In general, an entry point can take one or more parameters, which allows the starter to
initialize the workflow, but this example doesn't require initialization.

« It specifies the workflow's version number, which allows you to keep track of different generations of
workflow implementations. To change a workflow interface after you have registered it with Amazon
SWEF, including changing the timeout values, you must use a new version number.

For information on the other methods that can be included in a workflow interface, see Workflow and
Activity Contracts (p. 49).

HelloWorldWorkflow implements the workflow in Gr eet er Wor kf | owl npl , as follows:

i mport com anazonaws. servi ces. si npl ewor kf | ow. f| ow. cor e. Proni se;

public class G eeterWrkflow npl inplenments G eeterWrkflow {
private GreeterActivitiesOient operations = new
GeeterActivitiesOientlnpl();

public void greet() {
Prom se<String> name = operations. get Nane();
Prom se<String> greeting = operations. get Greeting(nane);
operations. say(greeting);

}

The code is similar to HelloWorld, but with two important differences.

e GreeterWorkfl ow npl creates an instance of Greet er Acti viti esd i entl npl, the activities
client, instead of Gr eet er Acti vi ti esl npl , and executes activities by calling methods on the
client object.

¢ The name and greeting activities return Pr om se<St ri ng> objects instead of St ri ng objects.

HelloWorld is a standard Java application that runs locally as a single process, so

G eet er Wr kf | owd npl can implement the workflow topology by simply creating an instance of
GreeterActivitieslnpl, calling the methods in order, and passing the return values from one
activity to the next. With an Amazon SWF workflow, an activity's task is still performed by an activity

API Version 2012-01-25
18

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow Worker

method from Gr eet er Acti vi ti esl npl . However, the method doesn't necessarily run in the same
process as the workflow—it might not even run on the same system—and the workflow needs to
execute the activity asynchronously. These requirements raise the following issues:

* How to execute an activity method that might be running in a different process, perhaps on a
different system.

* How to execute an activity method asynchronously.

« How to manage activities' input and return values. For example, if the Activity A return value is an
input to Activity B, you must ensure that Activity B doesn't execute until Activity A is complete.

You can implement a variety of workflow topologies through the application's control flow by using
familiar Java flow control combined with the activities client and the Pr omi se<T>.

Activities Client

GeeterActivitiesOientlnpl isbasically a proxy for Greet er Activitiesl npl thatallows a
workflow implementation to execute the Gr eet er Acti vi ti esl npl methods asynchronously.

The GreeterActivitiesdient and GeeterActivitiesdientlnpl classes are
generated automatically for you using the information provided in the annotations applied to your
GreeterActivities class. You don't need to implement these yourself.

Note
Eclipse generates these classes when you save your project. If you want to view the
generated code, you will find them within the .apt_generated folder in your project directory.

A workflow worker executes an activity by calling the corresponding client method. The method is
asynchronous and immediately returns a Pr oni se<T> object, where T is the activity's return type.
The returned Pr om se<T> object is basically a placeholder for the value that the activity method will
eventually return.

¢ When the activities client method returns, the Pr omi se<T> object is initially in an unready state,
which indicates that the object does not yet represent a valid return value.

* When the corresponding activity method completes its task and returns, the framework assigns the
return value to the Pr om se<T> object and puts it in the ready state.

Promise<T> Type

The primary purpose of Pr om se<T> objects is to manage data flow between asynchronous
components and control when they execute. It relieves your application of the need to explicitly
manage synchronization or depend on mechanisms such as timers to ensure that asynchronous
components do not execute prematurely. When you call an activities client method, it immediately
returns but the framework defers executing the corresponding activity method until any input

Pr om se<T> objects are ready and represent valid data.

From Gr eet er Wor kf | owl npl perspective, all three activities client methods return immediately. From
the Greet er Acti vi ti esl npl perspective, the framework doesn't call get Gr eet i ng until nane
completes, and doesn't call say until get Gr eet i ng completes.

By using Pr om se<T> to pass data from one activity to the next, Hel | oWér | dWér kf | ow not only
ensures that activity methods don't attempt to use invalid data, it also controls when the activities
execute and implicitly defines the workflow topology. Passing each activity's Pr omi se<T> return value
to the next activity requires the activities to execute in sequence, defining the linear topology discussed
earlier. With AWS Flow Framework for Java, you don't need to use any special modeling code to define
even complex topologies, just standard Java flow control and Pr om se<T>. For an example of how to
implement a simple parallel topology, see HelloWorldWorkflowParallel Activities Worker (p. 31).

API Version 2012-01-25
19

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow
and Activities Implementation

Note

When an activity method such as say doesn't return a value, the corresponding client method
returns a Pr om se<Voi d> object. The object doesn't represent data, but it is initially unready
and becomes ready when the activity completes. You can therefore pass a Pr om se<Voi d>
object to other activities client methods to ensure that they defer execution until the original
activity completes.

Prom se<T> allows a workflow implementation to use activities client methods and their return values
much like synchronous methods. However, you must be careful about accessing a Prom se<T>
object's value. Unlike the Java Future<T> type, the framework handles synchronization for

Pr om se<T>, not the application. If you call Pr om se<T>. get and the object is not ready, get throws
an exception. Notice that Hel | oWor | dWor kf | ow never accesses a Pr om se<T> object directly; it
simply passes the objects from one activity to the next. When an object becomes ready, the framework
extracts the value and passes it to the activity method as a standard type.

Pr om se<T> objects should be accessed only by asynchronous code, where the framework
guarantees that the object is ready and represents a valid value. Hel | oWor | dWer kf | ow deals

with this issue by passing Pr omi se<T> objects only to activities client methods. You can access a

Pr om se<T> object's value in your workflow implementation by passing the object to an asynchronous
workflow method, which behaves much like an activity. For an example, see HelloWorldWorkflowAsync
Application (p. 25).

HelloWorldWorkflow Workflow and Activities
Implementation

The workflow and activities implementations have associated worker classes, ActivityWorker and
WorkflowWorker. They handle communication between Amazon SWF and the activities and workflow
implementations by polling the appropriate Amazon SWF task list for tasks, executing the appropriate
method for each task, and managing the data flow. For details, see Application Structure (p. 34)

To associate the activity and workflow implementations with the corresponding worker objects, you
implement one or more worker applications which:

* Register workflows or activities with Amazon SWF.
» Create worker objects and associate them with the workflow or activity worker implementations.
¢ Direct the worker objects to start communicating with Amazon SWF.

If you want to run the workflow and activities as separate processes, you must implement separate
workflow and activities worker hosts. For an example, see HelloWorldWorkflowDistributed
Application (p. 29). For simplicity, HelloWorldWorkflow implements a single worker host that runs
activities and workflow workers in the same process, as follows:

i mport com amazonaws. Cl i ent Confi gurati on;

i mport com amazonaws. aut h. AWSCr edent i al s;

i mport com amazonaws. aut h. Basi cCAWECr edenti al s;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | ow;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | owd i ent ;
i mport com anmzonaws. servi ces. si npl ewor kf | ow. f1 ow. Acti vi t yWor ker ;

i mport com amazonaws. servi ces. si npl ewor kf | ow. f | ow. Wor kf | owWér ker ;

public class GeeterWrker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
Client Configuration().w thSocket Ti neout (70*1000);

String swfAccessld = System getenv("AWS_ACCESS KEY_ID");

API Version 2012-01-25
20

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow
and Activities Implementation

String swfSecretKey = System getenv("AWS_SECRET_KEY");
AWSCr edential s awsCredenti al s = new Basi cAWSCr edent i al s(swf Accessl d,
swf Secr et Key) ;

AnazonSi npl eWor kf | ow service = new
AmazonSi npl eWor kf | owCl i ent (awsCr edenti al s, config);
service. set Endpoi nt ("https://swf . us-east-1. amazonaws. cont');

String domain = "hel |l oWor| dWal kt hr ough";
String taskListToPoll = "HelloWrldList";

ActivityWrker aw = new ActivityWrker(service, domain, taskListToPoll);
aw. addActi vitieslnpl ementation(new GreeterActivitieslnpl());
aw. start();

Wor kf | owbr ker wfw = new Wor kf | owdr ker (servi ce, donai n,

t askLi st ToPol |) ;
wf w. addWor kf | owl npl enent ati onType(G eet er Wor kf | owl npl . cl ass);
wfw. start();

}

G eet er Wr ker has no HelloWorld counterpart, so you must add a Java class named
G eet er Wr ker to the project and copy the example code to that file.

The first step is to create and configure an AmazonSimpleWorkflowClient object, which invokes the
underlying Amazon SWF service methods. To do so, Gr eet er Wr ker :

1. Creates a ClientConfiguration object and specifies a socket timeout of 70 seconds. This value
specifies long to wait for data to be transferred over an established open connection before closing
the socket.

2. Creates a BasicAWSCredentials object to identify the Amazon AWS account and passes the
account keys to the constructor. For convenience, and to avoid exposing them as plain text in the
code, the keys are stored as environment variables.

3. Creates an AmazonSimpleWorkflowClient object to represent the workflow, and passes the
BasicAWSCredentials and ClientConfiguration objects to the constructor.

4. Sets the client object's service endpoint URL. Amazon SWF is currently available in all AWS
regions.

For convenience, G- eet er Wr ker defines two string constants.

¢ domai n is the workflow's Amazon SWF domain name, which you created when you set up your
Amazon SWF account. Hel | oWor | dWor kf | owassumes that you are running the workflow in the
"helloWorldWalkthrough" domain.

* taskLi st ToPol | is the name of the task lists that Amazon SWF uses to manage communication
between the workflow and activities workers. You can set the name to any convenient string.
HelloWorldWorkflow uses "HelloWorldList" for both workflow and activity task lists. Behind the
scenes, the names end up in different namespaces, so the two task lists are distinct.

G eet er Wr ker uses the string constants and the AmazonSimpleWorkflowClient object to create
worker objects, which manage the interaction between the activities and worker implementations and
Amazon SWF. In particular, the worker objects handle the task of polling the appropriate task list for
tasks.

G eet er Wor ker creates an Act i vi t yWor ker object and configures it to handle
GreeterActivitieslnpl byadding a new class instance. Gr eet er Wor ker then calls the

API Version 2012-01-25
21

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/BasicAWSCredentials.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow
and Activities Implementation

Acti vi t yWor ker object's st art method, which directs the object to start polling the specified
activities task list.

G eet er Wor ker creates a Wor kf | owMébr ker object and configures it to handle

G eet er Wor kf | owl npl by adding the class file name, Gr eet er Wor kf | ow npl . cl ass. It then calls
the Wor kf | owbr ker object's st art method, which directs the object to start polling the specified
workflow task list.

You can run Gr eet er Wor ker successfully at this point. It registers the workflow and activities
with Amazon SWF and starts the worker objects polling their respective task lists. To verify this,
run Gr eet er Wr ker and go to the Amazon SWF console and select hel | oWor | dwal kt hr ough
from the list of domains. If you click Workflow Types in the Navigation pane, you should see

G eet er Wr kf | ow. gr eet , as shown in the following screen shot.

» Dashboard Domain: helloWorldWalkthrough | -

» Workflow Executions

¥ Workflow Types ¥ Workflow Type List Parameters
¥ Activity Types

Filter by: | No Filter n

Workflow Type Status: (3) Registered () Deprecated

List Types

Workflow Actions: | Register New

4 Name Version

[GreeterWorkflow.greet 1.0

If you click Activity Types, you should see the Gr eet er Act i vi ti es methods, as shown in the
following screen shot.

Wy ActiviyTypes —— |

Domain:| heloWoridWalkthrough | =

¥ Activity Type List Parameters

Filter by: No Filter -

Activity Type Status: @ Registered ' Deprecated

List Types
Activity Actions: | Register New
4 Name Version
[GreeterActivities.getGreeting 1.0
[GreeterActivities getName 10
[GreeterActivities say 10

However, if you click Workflow Executions, you will not see any active executions. Although the
workflow and activities workers are polling for tasks, we have not yet started a workflow execution.

API Version 2012-01-25
22

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Starter

HelloWorldWorkflow Starter

The final piece of the puzzle is to implement a workflow starter, which is an application that starts the
workflow execution. The execution state is stored by Amazon SWF, so that you can view its history and
execution status. HelloWorldWorkflow implements a workflow starter by modifying the Gr eet er Mai n
class, as follows:

i mport com anmzonaws. Cl i ent Confi gurati on;

i mport com anmzonaws. aut h. AWSCr edent i al s;

i mport com anmzonaws. aut h. Basi cAWSCr edent i al s;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | ow;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | owd i ent ;

public class GreeterMin {

public static void main(String[] args) throws Exception {
ClientConfiguration config = new
Cl i ent Configuration().w thSocket Ti neout (70*1000) ;

String swfAccessld = System getenv("AW_ACCESS KEY_ID");

String swfSecretKey = System getenv("AWS_SECRET_KEY") ;

AWSCr edential s awsCredenti al s = new Basi cAWSCr edent i al s(swf Accessl d,
swf Secr et Key) ;

AnmazonSi npl eWor kfl ow service = new
AnmazonSi npl eWor kf I owCl i ent (awsCr edenti al s, config);
service. set Endpoi nt ("https://swf . us-east-1. amazonaws. cont');

String domain = "hel |l oWor| dWal kt hr ough";

G eet er Wr kf | owCl i ent Ext ernal Factory factory = new

G eet er Wr kf I owCl i ent Ext er nal Fact oryl npl (servi ce, domain);
G eeterWrkflowC ient External greeter = factory.getCient("sonelD");
greeter.greet();

}

G eet er Mai n creates an AmazonSi npl eWor kf | owd i ent object by using the same code
as G eet er Wir ker . It then creates a G eet er Wor kf | owd i ent Ext er nal object, which
acts as a proxy for the workflow in much the same way that the activities client created in
GreeterWorkfl owCd i ent | npl acts as a proxy for the activity methods. Rather than create a
workflow client object by using new, you must:

1. Create an external client factory object and pass the AmazonSi npl eWor kf | owCl i ent object
and Amazon SWF domain name to the constructor. The client factory object is created by
the framework's annotation processor, which creates the object name by simply appending
"ClientExternalFactorylmpl" to the workflow interface name.

2. Create an external client object by calling the factory object's get C i ent method, which creates the
object name by appending "ClientExternal” to the workflow interface name. You can optionally pass
get d i ent a string which Amazon SWF will use to identify this instance of the workflow. Otherwise,
Amazon SWF represents a workflow instance by using a generated GUID.

The client returned from the factory will only create workflows that are named with the string passed
into the getClient method, (the client returned from the factory already has state in Amazon SWF). To
run a workflow with a different id, you need to go back to the factory and create a new client with the
different id specified.

API Version 2012-01-25
23

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowClientFactoryExternal.html#getClient(java.lang.String)

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Starter

The workflow client exposes a gr eet method that Gr eet er Mai n calls to begin the workflow, as
gr eet () was the method specified with the @xecut e annotation.

Note
The annotation processor also creates an internal client factory object that is used to create
child workflows. For details, see Child Workflow Executions (p. 78).

Shut down Gr eet er Wor ker for the moment if it is still running, and run Gr eet er Mai n. You should
now see somelD on the Amazon SWF console's list of active workflow executions, as shown in the
following screenshot.

Domain: heloWoridWalkthrough | +
¥ Workflow Execution List Parameters

Filter by: Mo Filter -

Execution Status: @ Active O Closed

Started between ~ 2012Aug231543:06 and 2012 Aug 24 23:5959

List Executions
Execution Actions:
[Tl Workflow Execution ID Run ID Name (Version)
[| somelD 1i2ktedcIHFsKFhmVs20T1wKASIy6r6EYSYBSd 1z GreeterWorkflow greet (1.0)

If you click somelD and click the Events tab, you should see events shown in the following screen
shot.

Domain: helloWorldWalkthrough

Summary Events Activities

¥ Event Date] Event Type
Fri Aug 24 15:50:30 GMT-700 2012 2 DecisionTaskScheduled

Fri Aug 24 15:50:30 GMT-700 2012 1 WorkflowExecutionStarted

Note
If you started Gr eet er Wor ker earlier, and it is still running, you will see a longer event list for
reasons discussed shortly. Stop Gr eet er Wor ker and try running Gr eat er Mai n again.

The Events tab shows only two events:

« Wir kf | owExecut i onSt ar t ed indicates that the workflow has started executing.
» Deci si onTaskSchedul ed indicates that Amazon SWF has queued the first decision task.

The reason that the workflow is blocked at the first decision task is that the workflow is distributed
across two applications, Gr eet er Mai n and G eet er Wr ker . Gr eet er Mai n started the workflow
execution, but Gr eet er Wor ker is not running, so the workers aren't polling the lists and executing
tasks. You can run either application independently, but you need both for workflow execution to
proceed beyond the first decision task. If you now run Gr eet er Wr ker , the workflow and activity
workers will start polling and the various tasks will be completed rapidly. If you now check the Event s
tab, you should see something like the following screen shot, which shows the first eleven events.

API Version 2012-01-25
24

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowAsync Application

Domain: helloWorldWalkthrough

Summary Events | Activities

4 Event Date
Fri Aug 24 15:50:30 GMT-700 2012
Fri Aug 24 15:50:30 GMT-700 2012
Fri Aug 24 15:52:19 GMT-700 2012
Fri Aug 24 15:52:19 GMT-700 2012
Fri Aug 24 15:52:19 GMT-700 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-700 2012

Fri Aug 24 15:52:20 GMT-700 2012

Event Type
WorkflowExecutionStarted
DecisionTaskScheduled
DecisionTaskStarted
DecisionTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
DecisionTaskScheduled
DecisionTaskStarted
DecisionTaskCompleted

ActivityTaskScheduled

You can click individual events to get more information. By the time you've finished looking, the
workflow should have printed "Hello World!" to your console.

After the workflow completes, it no longer appears on the list of active executions. However, if you want
to review it, click the Closed execution status button and click List Executions. This displays all the
completed workflow instances in the specified domain that have not exceeded their retention time,
which you specified when you created the domain.

The following screen shot shows a list of completed workflows in the helloWorldWalkthrough domain.

Domain: helloWorldWalkthrough =~

¥ Workflow Execution List Parameters

Filter by: No Filter -

Execution Status: © Active @ Closed

Started between ~ 2012Aug231628:52 and 2012 Aug 24 23:59:59

List Executions

Execution Actions

[Workflow Execution 1D Run ID Name (Version)
[somelD 1iZzktedclHvFsKFhmVs20TIwK4SIyereEYS GreeterWWorkflow.greet (1.0)
£ somelD TMHLRDRNwKT+anWpORnyo3jFIVoVIVG5a GreeterWorkflow greet (1.0)

Notice that each workflow instance has a unique Run ID value. You can use the same Execution ID for
different workflow instances, but only for one active execution at a time.

HelloWorldWorkflowAsync Application

Sometimes, it's preferable to have a workflow perform certain tasks locally instead of using activity.
However, workflow tasks often involve processing the values represented by Pr om se<T> objects.

If you pass a Pr om se<T> object to a synchronous workflow method, the method executes
immediately but it can't access the Pr om se<T> object's value until the object is ready. You could poll
Prom se<T>. i sReady until it returns t r ue, but that's inefficient and the method might block for a long
time. A better approach is to use an asynchronous method.

API Version 2012-01-25
25

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowAsync Activities Implementation

An asynchronous method is implemented much like a standard method—often as a member of the
workflow implementation class—and runs in the workflow implementation's context. You designate it as
an asynchronous method by applying an @Asynchr onous annotation, which directs the framework to
treat it much like an activity.

* When a workflow implementation calls an asynchronous method, it returns immediately.
Asynchronous methods typically return a Pr o se<T> object, which becomes ready when the
method completes.

« If you pass an asynchronous method one or more Pr om se<T> objects, it defers execution until all
the input objects are ready. An asynchronous method can therefore access its input Pr om se<T>
values without risking an exception.

Note

Because of the way that the AWS Flow Framework for Java executes the workflow,
asynchronous methods typically execute multiple times, so you should use them only
for quick low-overhead tasks. You should use activities to perform lengthy tasks such as
large computations. For details, see AWS Flow Framework Basic Concepts: Distributed
Execution (p. 38).

This topic is a walkthrough of HelloWorldWorkflowAsync, a modified version of HelloworldWorkflow
that replaces one of the activities with an asynchronous method. To implement the application,
create a copy of the helloWorld.HelloWorldWorkflow package in your project folder and name it
helloWorld.HelloWorldWorkflowAsync. The following sections describe how to modify the original
HelloWorldWorkflow code to use an asynchronous method.

HelloWorldWorkflowAsync Activities Implementation

HelloWorldWorkflowAsync implements its activities worker interface in G- eet er Acti viti es, as
follows:

i mport com amazonaws. servi ces. si npl ewor kfl ow. f| ow. annot ati ons. Activities;
i mport
com amazonaws. servi ces. si npl ewor kf | ow. f| ow. annot ati ons. Acti vi t yRegi strati onQpt

@\ctivities(version="2.0")
@\ctivityRegi strationOpti ons(defaul t TaskSchedul eToSt art Ti neout Seconds = 300,
def aul t TaskSt art ToC oseTi neout Seconds = 10)
public interface GreeterActivities {
public String getNane();
public void say(String what);

This interface is similar to the one used by HelloWorldWorkflow, with the following exceptions:

¢ It omits the get Gr eet i ng activity; that task is now handled by an asynchronous method.

¢ The version number is set to 2.0. After you have registered an activities interface with Amazon SWF,
you can't modify it unless you change the version number.

The remaining activity method implementations are identical to HelloWorldWorkflow. Just delete
get Greeting from GreeterActivitieslnpl.

HelloWorldWorkflowAsync Workflow Implementation

HelloWorldWorkflowAsync defines the workflow interface as follows:

API Version 2012-01-25
26

i ons;

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowAsync Workflow Implementation

i mport com amazonaws. servi ces. si npl ewor kf | ow. f| ow. annot ati ons. Execut e;
i mport com amazonaws. servi ces. si npl ewor kf | ow. f | ow. annot ati ons. Wor kf | ow;

i mport

com anmazonaws. servi ces. si npl ewor kf | ow. f| ow. annot ati ons. Wor kf | owRegi strati onOpt
@or kf | ow
@\or kf | owRegi strationOpti ons(def aul t Executi onStart Tod oseTi neout Seconds =

3600)

public interface G eeterWrkflow {

@xecute(version = "2.0")
public void greet();

The interface is identical to HelloWorldWorkflow apart from a new version number. As with activities, if
you want to change a registered workflow, you must change its version.

HelloWorldWorkflowAsync implements the workflow as follows:

i mport com amazonaws. servi ces. si nmpl ewor kf | ow. f| ow. annot at i ons. Asynchr onous;
i mport com amazonaws. servi ces. si nmpl ewor kf | ow. f| ow. cor e. Promi se;

public class GeeterWrkflow nmpl inplenents G eeterWrkflow {
private GreeterActivitiesCient operations = new
GeeterActivitiesCientlnpl();

@verride

public void greet() {
Prom se<String> nane = operations. get Nane();
Prom se<String> greeting = get Geeting(nane);
oper ations. say(greeting);

}

@\synchr onous

private Prom se<String> get G eeting(Proni se<String> nanme) {
String returnString = "Hello " + nane.get() + "!";
return Pronise.asProm se(returnString);

HelloWorldWorkflowAsync replaces the get Gr eet i ng activity with a get Gr eet i ng asynchronous
method but the gr eet method works in much the same way:

1. Execute the get Nane activity, which immediately returns a Pr om se<St ri ng> object, nane, that
represents the name.

2. Call the get Gr eet i ng asynchronous method and pass it the nane object. get Gr eet i ng
immediately returns a Pr oni se<St ri ng> object, gr eet i ng, that represents the greeting.

3. Execute the say activity and pass it the gr eet i ng object.

4. When get Nanme completes, nanme becomes ready and get Gr eet i ng uses its value to construct the
greeting.
5. When get G eet i ng completes, gr eet i ng becomes ready and say prints the string to the console.

The difference is that, instead of calling the activities client to execute a get G eet i ng activity, greet
calls the asynchronous get Gr eet i ng method. The net result is the same, but the get Gr eet i ng
method works somewhat differently than the get Gr eet i ng activity.

API Version 2012-01-25
27

i ons;

AWS Flow Framework for Java Developer Guide
HellowWorldWorkflowAsync Workflow
and Activities Host and Starter

¢ The workflow worker uses standard function call semantics to execute get G eet i ng. However, the
asynchronous execution of the activity is mediated by Amazon SWF.

e get G eeti ng runs in the workflow implementation's process.
e get Greeti ng returns a Prom se<St ri ng> object rather than a St ri ng object. To get the String
value held by the Pr omi se, you call its get () method. However, since the activity is being run

asynchronously, its return value might not be ready immediately; get () will raise an exception until
the return value of the asynchronous method is available.

For more information about how Pr omi se works, see Data Exchange Between Activities and
Workflows (p. 42).

get G eet i ng creates a return value by passing the greeting string to the static Pr oni se. asPromni se
method. This method creates a Pr om se<T> object of the appropriate type, sets the value, and puts it
in the ready state.

HelloWorldWorkflowAsync Workflow and Activities
Host and Starter

HelloWorldWorkflowAsync implements G- eet er Wor ker as the host class for the workflow and
activity implementations. It is identical to the HelloWorldWorkflow implementation except for the
t askLi st ToPol I name, which is set to "Hel | oWor | dAsynclLi st".

i mport com amazonaws. Cl i ent Confi gurati on;

i mport com amazonaws. aut h. AWSCr edent i al s;

i mport com amazonaws. aut h. Basi cAWECr edenti al s;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | ow;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | owd i ent ;
i mport com anmzonaws. servi ces. si npl ewor kf | ow. f| ow. Acti vi t yWor ker;

i mport com amazonaws. servi ces. si npl ewor kf | ow. f | ow. Wor kf | owWér ker ;

public class G eeterWrker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
Cl i ent Configuration().w thSocket Ti neout (70*1000) ;

String swfAccessld = System getenv("AWS_ACCESS KEY_ | D");

String swf Secret Key = System getenv("AWS_SECRET_KEY");

AWECr edenti al s awsCredentials = new Basi cAWSCr edenti al s(swf Accessl d,
swf Secr et Key) ;

AmazonSi npl eWor kf | ow service = new
AnmazonSi npl eWor kf | owCl i ent (awsCredenti al s, config);
servi ce. set Endpoi nt ("https://swf.us-east-1. anazonaws. conl');

String domain = "hel |l oWr| dwal kt hr ough";
String taskListToPoll = "HelloWrl dAsyncList";

ActivityWrker aw = new ActivityWrker(service, donain,

t askLi st ToPol 1) ;
aw. addActivitiesl npl enentation(new GeeterActivitieslnpl());
aw. start();

Wor kf | owMbr ker wfw = new Wor kf | owébr ker (servi ce, donmai n,

t askLi st ToPol 1) ;
wf w. addWor kf | owl npl enrent at i onType(Gr eet er Wor kf | oM npl . cl ass);
wfw start();

API Version 2012-01-25
28

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowDistributed Application

HelloworldWorkflowAsync implements the workflow starter in Gr eet er Mai n; it is identical to the
HelloWorldWorkflow implementation.

To execute the workflow, run Gr eet er Wr ker and Gr eet er Mai n, just as with HelloWorldWorkflow.

HelloWorldWorkflowDistributed Application

With HelloWorldWorkflow and HelloWorldWorkflowAsync, Amazon SWF mediates the interaction
between the workflow and activities implementations, but they run locally as a single process.
G eet er Mai n is in a separate process, but it still runs on the same system.

A key feature of Amazon SWF is that it supports distributed applications. For example, you could run
the workflow worker on an Amazon EC2 instance, the workflow starter on a data center computer, and
the activities on a client desktop computer. You can even run different activities on different systems.

The HelloWorldWorkflowDistributed application extends HelloWorldWorkflowAsync to distribute the
application across two systems and three processes.

¢ The workflow and workflow starter run as separate processes on one system.
¢ The activities run on a separate system.

To implement the application, create a copy of the helloworld.HelloworldWorkflowAsync package

in your project folder and name it helloWorld.HelloWorldWorkflowDistributed. The following sections
describe how to modify the original HelloWorldWorkflowAsync code to distribute the application across
two systems and three processes.

You don't need to change the workflow or activities implementations to run them on separate systems,
not even the version numbers. You also don't need to modify Gr eet er Mai n. All you need to change is
the activities and workflow host.

With HelloWorldWorkflowAsync, a single application serves as the workflow and activity host.
To run the workflow and activity implementations on separate systems, you must implement
separate applications. Delete GreeterWorker from the project and add two new class files,
GreeterWorkflowWorker and GreeterActivitiesWorker.

HelloWorldWorkflowDistributed implements its activities host in GreeterActivitiesWorker, as follows:

i mport com amazonaws. Cl i ent Confi gurati on;

i mport com amazonaws. aut h. AWSCr edent i al s;

i mport com amazonaws. aut h. Basi cCAWECr edenti al s;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | ow;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | owd i ent ;
i mport com anmzonaws. servi ces. si npl ewor kf | ow. f1 ow. Acti vi t yWor ker ;

public class GeeterActivitiesWrker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
Client Configuration().w thSocket Ti neout (70*1000);

String swfAccessld = System getenv("AWS_ACCESS KEY_ | D");

String swf Secret Key = System getenv("AWS_SECRET_KEY");

AWECr edenti al s awsCredentials = new Basi cAWSCr edenti al s(swf Accessl d,
swf Secr et Key) ;

API Version 2012-01-25
29

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowDistributed Application

AmazonSi npl eWor kf | ow service = new
AmazonSi npl eWor kf | owCl i ent (awsCr edenti al s, config);
service. set Endpoi nt ("https://swf. us-east-1. anazonaws. conl');

String domain = "hel | oWr| dExanpl es";
String taskListToPoll = "Hell oWrl dAsyncList";

ActivityWrrker aw = new ActivityWrker(service, donain,

t askLi st ToPol |) ;
aw. addActivitiesl npl enentation(new GeeterActivitieslnpl());
aw. start();

HelloworldWorkflowDistributed implements its workflow host in G- eet er Wr kf | owr ker, as
follows:

i mport com amazonaws. Cl i ent Confi gurati on;

i mport com amazonaws. aut h. AWSCr edent i al s;

i mport com amazonaws. aut h. Basi cCAWBCr edenti al s;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | ow;

i mport com amazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | owd i ent ;
i mport com amazonaws. servi ces. si npl ewor kf | ow. f | ow. Wor kf | owWér ker ;

public class G eeterWrkfl owbrker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
Cl i ent Configuration().w thSocket Ti neout (70*1000);

String swfAccessld = System getenv("AWS_ACCESS KEY_ I D");

String swf SecretKey = System getenv("AWS_SECRET_KEY");

AWECr edenti al s awsCredentials = new Basi cCAWSCr edenti al s(swf Accessl d,
swf Secr et Key) ;

AmazonSi npl eWor kf | ow service = new
AnmazonSi npl eWor kfl owCl i ent (awsCr edentials, config);
service. set Endpoi nt ("https://swf. us-east-1. anazonaws. cont');

String domain = "hel | oWor | dExanpl es";
String taskListToPoll = "Hell oWrl dAsyncList”;

Wor kf | owbr ker wfw = new Wor kf | owébr ker (servi ce, donai n,

t askLi st ToPol |) ;
wf w. addWor kf | owl npl enent at i onType(Gr eet er Wor kf | oM npl . cl ass);
wfw. start();

Note that Greet er Acti vi ti esWor ker is just G eet er Wor ker without the Wor kf | owWr ker code
and Gr eet er Wor kf | owMér ker is just G eet er Wor ker without the Acti vi t yWor ker code.

To run the workflow:

Create a runnable JAR file with Gr eet er Acti vi ti esWor ker as the entry point.

Copy the JAR file from Step 1 to another system, which can be running any operating system that
supports Java.

API Version 2012-01-25
30

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowParallel Application

3. Ensure that AWS credentials with access to the same Amazon SWF domain are made available
on the other system.

4. Runthe JAR file.
5. On your development system, use Eclipse to run G eet er Wor kf | owdr ker and G eet er Mai n.

Other than the fact that the activities are running on a different system than the workflow worker and
workflow starter, the workflow works in exactly the same way as HelloWorldAsync. However, because
printl n call that prints "Hello World!" to the console is in the say activity, the output will appear on
the system that is running the activities worker.

HelloWorldWorkflowParallel Application

The preceding versions of Hello World! all use a linear workflow topology. However, Amazon SWF is
not limited to linear topologies. The HelloWorldWorkflowParallel application is a modified version of
HelloWorldWorkflow that uses a parallel topology, as shown in the following figure.

name

getName

/Print greeting"

__ (Finish))/

,/ Call greeting R

\ (Start)

h 4

say

getGreeting

greeting

With HelloWorldWorkflowParallel, get Nane and get Gr eet i ng run in parallel and each return part of
the greeting. say then merges the two strings into a greeting, and prints it to the console.

To implement the application, create a copy of the helloworld.HelloWorldWorkflow package in your
project folder and name it helloWorld.HelloWorldWorkflowParallel. The following sections describe how
to modify the original HelloWorldWorkflow code to run get Nane and get G eet i ng in parallel.

HelloWorldWorkflowParallel Activities Worker

The HelloWorldWorkflowParallel activities interface is implemented in Gr eet er Acti viti es, as shown
in the following example.

i mport com anmzonaws. servi ces. si npl ewor kf | ow. f| ow. annot ati ons. Activities;

i mport
com amazonaws. servi ces. si npl ewor kf | ow. f1 ow. annot ati ons. Acti vityRegi strati onOpti ons;

@\ctivities(version="5.0")
@\ctivityRegi strationOptions(defaul t TaskSchedul eToSt art Ti neout Seconds = 300,
def aul t TaskSt art ToC oseTi neout Seconds = 10)
public interface GreeterActivities {
public String getName();
public String getGeeting();
public void say(String greeting, String nane);

The interface is similar to HelloWorldWorkflow, with the following exceptions:

¢ get Gr eet i ng does not take any input; it simply returns a greeting string.
¢ say takes two input strings, the greeting and the name.

¢ The interface has a new version number, which is required any time that you change a registered
interface.

API Version 2012-01-25
31

AWS Flow Framework for Java Developer Guide
HelloworldWorkflowParallel Workflow Worker

HelloWorldWorkflowParallel implements the activities in Gr eet er Acti vi ti esl npl , as follows:

public class GreeterActivitieslnpl inplements GeeterActivities {

@verride

public String getNanme() {
return "World'";

}

@verride

public String getGeeting() {
return "Hello ";

}

@verride

public void say(String greeting, String nane) ({
Systemout. println(greeting + nane);

}

get Nane and get Gr eet i ng now simply return half of the greeting string. say concatenates the two
pieces to produce the complete phrase, and prints it to the console.

HelloWorldWorkflowParallel Workflow Worker

The HelloWorldWorkflowParallel workflow interface is implemented in Gr eet er Wor kf | ow, as follows:

i mport com amazonaws. servi ces. si nmpl ewor kf | ow. f | ow. annot ati ons. Execut e;
i mport com amazonaws. servi ces. si npl ewor kf | ow. f | ow. annot ati ons. Wr kf | ow;
i mport

com anmazonaws. ser Vi ces. si npl ewor kf | ow. f| ow. annot ati ons. Wr kf | owRegi strati onOpt

@\or kf | ow

@\or kf | owRegi strati onOptions(defaul t Executi onStart ToC oseTi neout Seconds =
3600)

public interface G eeterWrkflow {

@xecute(version = "5.0")
public void greet();

The class is identical to the HelloWorldWorkflow version, except that the version number has been
changed to match the activities worker.

The workflow is implemented in Gr eet er Wor kf | owl npl , as follows:

i mport com anmzonaws. servi ces. si npl ewor kf | ow. f| ow. core. Proni se;

public class G eeterWrkflow npl inplenents G eeterWrkflow {
private GreeterActivitiesCient operations = new
GeeterActivitiesOientlnpl();

public void greet() {
Prom se<String> nane = operations. get Nane();
Prom se<String> greeting = operations.getGeeting();

API Version 2012-01-25
32

i ons;

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowParallel Workflow
and Activities Host and Starter

oper ations. say(greeting, nane);

At a glance, this implementation looks very similar to HelloWorldWorkflow; the three activities client
methods execute in sequence. However, the activities do not.

* HelloWorldWorkflow passed nane to get G- eet i ng. Because nane was a Pr oni se<T> object,
get G eet i ng deferred executing the activity until get Name completed, so the two activities
executed in sequence.

¢ HelloWorldWorkflowParallel doesn't pass any input get Nane or get G eet i ng. Neither method
defers execution and the associated activity methods execute immediately, in parallel.

The say activity takes both gr eet i ng and nane as input parameters. Because they are Pr onmi se<T>
objects, say defers execution until both activities complete, and then constructs and prints the
greeting.

Notice that HelloWorldWorkflowParallel doesn't use any special modeling code to define the workflow
topology. It does it implicitly by using standard Java flow control and taking advantage of the properties
of Pr om se<T> objects. AWS Flow Framework for Java applications can implement even complex
topologies simply by using Pr om se<T> objects in conjunction with conventional Java control flow
constructs.

HelloWorldWorkflowParallel Workflow and Activities
Host and Starter

HelloWorldWorkflowParallel implements Gr eet er Wor ker as the host class for the workflow and
activity implementations. It is identical to the HelloWorldWorkflow implementation except for the
t askLi st ToPol | name, which is set to "HelloWorldParallelList".

Hel | oWor | dWor kf | owPar al | el implements the workflow starter in Gr eet er Mai n, and it is identical
to the HelloWorldWorkflow implementation.

To execute the workflow, run G- eet er Wr ker and G eet er Mai n, just as with
Hel | oWor | dWor kf | ow.

API Version 2012-01-25
33

AWS Flow Framework for Java Developer Guide
Application Structure

AWS Flow Framework for Java
Basic Concepts

The AWS Flow Framework for Java works with Amazon SWF to make it easy to create scalable and
fault-tolerant applications to perform asynchronous tasks that may be long running, remote, or both.
The "Hello World!" examples in What is the AWS Flow Framework for Java? (p. 1) introduced the
basics of how to use the AWS Flow Framework to implement basic workflow applications. This section
provides conceptual information about how AWS Flow Framework applications work. The first section
summarizes the basic structure of an AWS Flow Framework application, and the remaining sections
provide further detail about how AWS Flow Framework applications work.

Topics
« AWS Flow Framework Basic Concepts: Application Structure (p. 34)
¢ AWS Flow Framework Basic Concepts: Reliable Execution (p. 37)
¢ AWS Flow Framework Basic Concepts: Distributed Execution (p. 38)
* AWS Flow Framework Basic Concepts: Task Lists and Task Execution (p. 40)
¢ AWS Flow Framework Basic Concepts: Scalable Applications (p. 41)

¢ AWS Flow Framework Basic Concepts: Data Exchange Between Activities and
Workflows (p. 42)

¢ AWS Flow Framework Basic Concepts: Data Exchange Between Applications and Workflow
Executions (p. 43)

¢ Amazon SWF Timeout Types (p. 44)

AWS Flow Framework Basic Concepts:
Application Structure

Conceptually, an AWS Flow Framework application consists of three basic components: workflow
starters, workflow workers, and activity workers. One or more host applications are responsible for
registering the workers (workflow and activity) with Amazon SWF, starting the workers, and handling
cleanup. The workers handle the mechanics of executing the workflow and may be implemented on
several hosts.

API Version 2012-01-25
34

AWS Flow Framework for Java Developer Guide
Application Structure

This diagram represents a basic AWS Flow Framework application:

Amazon SWF

Decision
Task List

Activities
Task List

Workflow Starter
Application

Woarkflow
Client

Workflow Host

Activities Host

Workflow Starter

Note
Implementing these components in three separate applications is convenient conceptually, but
you can create applications to implement this functionality in a variety of ways. For example,
you can use a single host application for the activity and workflow workers, or use separate
activity and workflow hosts. You can also have multiple activity workers, each handling a
different set of activities on separate hosts, and so on.

Application Application

WorkflowWorker ActivityWorker
Waorkflow

Implementation -

Activities
Activities Methods
Client
Workflow Worker Activities Worker

The three AWS Flow Framework components interact indirectly by sending HTTP requests to Amazon
SWF, which manages the requests. Amazon SWF does the following:

Maintains one or more decision task lists, which determine the next step to be performed by a
workflow worker.

Maintains one or more activities task lists, which determine which tasks will be performed by an
activity worker.

Maintains a detailed step-by-step history of the workflow's execution.

With the AWS Flow Framework, your application code does not need to deal directly with many of the
details shown in the figure, such as sending HTTP requests to Amazon SWF. You simply call AWS
Flow Framework methods and the framework handles the details behind the scenes.

API Version 2012-01-25

35

AWS Flow Framework for Java Developer Guide
Role of the Activity Worker

Role of the Activity Worker

The activity worker performs the various tasks that the workflow must accomplish. It consists of:

« The activities implementation, which includes a set of activity methods that perform particular tasks
for the workflow.

¢ An ActivityWorker object, which uses HTTP long poll requests to poll Amazon SWF for activity tasks
to be performed. When a task is needed, Amazon SWF responds to the request by sending the
information required to perform the task. The ActivityWorker object then calls the appropriate activity
method, and returns the results to Amazon SWF.

Role of the Workflow Worker

The workflow worker orchestrates the execution of the various activities, manages data flow, and
handles failed activities. It consists of:

* The workflow implementation, which includes the activity orchestration logic, handles failed activities,
and so on.

« An activities client, which serves as a proxy for the activity worker and enables the workflow worker
to schedule activities to be executed asynchronously.

* A WorkflowWorker object, which uses HTTP long poll requests to poll Amazon SWF for decision
tasks. If there are tasks on the workflow task list, Amazon SWF responds to the request by returning
the information that is required to perform the task. The framework then executes the workflow to
perform the task and returns the results to Amazon SWF.

Role of the Workflow Starter

The workflow starter starts a workflow instance, also referred to as a workflow execution, and can
interact with an instance during execution in order to pass additional data to the workflow worker or
obtain the current workflow state.

The workflow starter uses a workflow client to start the workflow execution, interacts with the workflow
as needed during execution, and handles cleanup. The workflow starter could be a locally-run
application, a web application, the AWS CLI or even the AWS Management Console.

How Amazon SWF Interacts with Your Application

Amazon SWF mediates the interaction between the workflow components and maintains a detailed
workflow history. Amazon SWF does not initiate communication with the components; it waits for HTTP
requests from the components and manages the requests as required. For example:

« If the request is from a worker, polling for available tasks, Amazon SWF responds directly to the
worker if a task is available. For more information on how polling works, see Polling for Tasks in the
Amazon Simple Workflow Service Developer Guide.

« If the request is a notification from an activity worker that a task is complete, Amazon SWF records
the information in the execution history and adds a task to the decision task list to inform the
workflow worker that the task is complete, allowing it to proceed to the next step.

« If the request is from the workflow worker to execute an activity, Amazon SWF records the
information in the execution history and adds a task to the activities task list to direct an activity
worker to execute the appropriate activity method.

This approach allows workers to run on any system with an Internet connection, including Amazon EC2
instances, corporate data centers, client computers, and so on. They don't even have to be running the

API Version 2012-01-25
36

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-comm-proto

AWS Flow Framework for Java Developer Guide
For More Information

same operating system. Because the HTTP requests originate with the workers, there is no need for
externally visible ports; workers can run behind a firewall.

For More Information

For a more thorough discussion of how Amazon SWF works, see Amazon Simple Workflow Service
Developer Guide.

AWS Flow Framework Basic Concepts: Reliable
Execution

Asynchronous distributed applications must deal with reliability issues that are not encountered by
conventional applications, including:

* How to provide reliable communication between asynchronous distributed components, such as
long-running components on remote systems.

« How to ensure that results are not lost if a component fails or is disconnected, especially for long-
running applications.

« How to handle failed distributed components.

Applications can rely on the AWS Flow Framework and Amazon SWF to manage these issues. We'll
explore how Amazon SWF provides mechanisms to ensure that your workflows operate reliably and
in a predictable way, even when they are long-running and depend on asynchronous tasks carried out
computationally and with human interaction.

Providing Reliable Communication

AWS Flow Framework provides reliable communication between a workflow worker and its activities
workers by using Amazon SWF to dispatch tasks to distributed activities workers and return the results
to the workflow worker. Amazon SWF uses the following methods to ensure reliable communication
between a worker and its activities:

*« Amazon SWF durably stores scheduled activity and workflow tasks and guarantees that they will be
performed at most once.

« Amazon SWF guarantees that an activity task will either complete successfully and return a valid
result or it will notify the workflow worker that the task failed.

* Amazon SWF durably stores each completed activity's result or, for failed activities, it stores relevant
error information.

The AWS Flow Framework then uses the activity results from Amazon SWF to determine how to
proceed with the workflow's execution.

Ensuring that Results are Not Lost

Maintaining Workflow History

An activity that performs a data-mining operation on a petabyte of data might take hours to complete,
and an activity that directs a human worker to perform a complex task might take days, or even weeks
to complete!

API Version 2012-01-25
37

http://docs.aws.amazon.com/amazonswf/latest/developerguide/
http://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework for Java Developer Guide
Handling Failed Distributed Components

To accommodate scenarios such as these, AWS Flow Framework workflows and activities can take
arbitrarily long to complete: up to a limit of one year for a workflow execution. Reliably executing long
running processes requires a mechanism to durably store the workflow's execution history on an
ongoing basis.

The AWS Flow Framework handles this by depending on Amazon SWF, which maintains a running
history of each workflow instance. The workflow's history provides a complete and authoritative record
of the workflow's progress, including all the workflow and activity tasks that have been scheduled and
completed, and the information returned by completed or failed activities.

AWS Flow Framework applications usually do not need to interact with the workflow history directly,
although they can access it if necessary. For most purposes, applications can simply let the framework
interact with the workflow history behind the scenes. For a full discussion of workflow history, see
Workflow History in the Amazon Simple Workflow Service Developer Guide.

Stateless Execution

The execution history allows workflow workers to be stateless. If you have multiple instances of
a workflow or activity worker, any worker can perform any task. The worker receives all the state
information that it needs to perform the task from Amazon SWF.

This approach makes workflows more reliable. For example, if an activity worker fails, you don't have to
restart the workflow. Just restart the worker and it will start polling the task list and processing whatever
tasks are on the list, regardless of when the failure occurred. You can make your overall workflow fault-
tolerant by using two or more workflow and activity workers, perhaps on separate systems. Then, if
one of the workers fails, the others will continue to handle scheduled tasks without any interruption in
workflow progress.

Handling Failed Distributed Components

Activities often fail for ephemeral reasons, such as a brief disconnection, so a common strategy for
handling failed activities is to retry the activity. Instead of handling the retry process by implementing
complex message passing strategies, applications can depend on the AWS Flow Framework. It
provides several mechanisms for retrying failed activities, and provides a built-in exception-handling
mechanism that works with asynchronous, distributed execution of tasks in a workflow.

AWS Flow Framework Basic Concepts:
Distributed Execution

A workflow instance is essentially a virtual thread of execution that can span activities and
orchestration logic running on multiple remote computers. Amazon SWF and the AWS Flow
Framework function as an operating system that manages workflow instances on a virtual CPU by:
¢ Maintaining each instance's execution state.

¢ Switching between instances.

« Resuming execution of an instance at the point that it was switched out.

Replaying Workflows

Because activities can be long-running, it's undesirable to have the workflow simply block until
it completes. Instead, the AWS Flow Framework manages workflow execution by using a replay

API Version 2012-01-25
38

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history

AWS Flow Framework for Java Developer Guide
Replay and Asynchronous Workflow Methods

mechanism, which relies on the workflow history maintained by Amazon SWF to execute the workflow
in episodes.

Each episode replays the workflow logic in a way that executes each activity only once, and ensures
that activities and asynchronous methods don't execute until their Promise (p. 42) objects are ready.

The workflow starter initiates the first replay episode when it starts the workflow execution. The
framework calls the workflow's entry point method and:

1. Executes all workflow tasks that do not depend on activity completion, including calling all activity
client methods.

2. Gives Amazon SWF a list of activities tasks to be scheduled for execution. For the first episode,
this list consists of only those activities that do not depend on a Promise and can be executed
immediately.

3. Notifies Amazon SWF that the episode is complete.

Amazon SWF stores the activity tasks in the workflow history and schedules them for execution by
placing them on the activity task list. The activity workers poll the task list and execute the tasks.

When an activity worker completes a task, it returns the result to Amazon SWF, which records it in the
workflow execution history and schedules a new workflow task for the workflow worker by placing it on
the workflow task list. The workflow worker polls the task list and when it receives the task, it runs the
next replay episode, as follows:

1. The framework runs the workflow's entry point method again and:

» Executes all workflow tasks that do not depend on activity completion, including calling all activity
client methods. However, the framework checks the execution history and does not schedule
duplicate activity tasks.

¢ Checks the history to see which activity tasks have completed and executes any asynchronous
workflow methods that depend on those activities.

2. When all workflow tasks that can be executed have completed, the framework reports back to
Amazon SWF:

¢ It gives Amazon SWF a list of any activities whose input Pr om se<T> objects have become ready
since the last episode and can be scheduled for execution.

« If the episode generated no additional activity tasks but there are still uncompleted activities, the
framework notifies Amazon SWF that the episode is complete. It then waits for another activity to
complete, initiating the next replay episode.

« If the episode generated no additional activity tasks and all activities have completed, the
framework notifies Amazon SWF that the workflow execution is complete.

For examples of replay behavior, see Replay Behavior (p. 112).

Replay and Asynchronous Workflow Methods

Asynchronous workflow methods are often used much like activities, because the method defers
execution until all input Pr om se<T> objects are ready. However, the replay mechanism handles
asynchronous methods differently than activities.

¢ Replay does not guarantee that an asynchronous method will execute only once. It defers execution
on an asynchronous method until its input Promise objects are ready, but it then executes that
method for all subsequent episodes.

« When an asynchronous method completes, it does not start a new episode.

An example of replaying an asynchronous workflow is provided in Replay Behavior (p. 112).

API Version 2012-01-25
39

AWS Flow Framework for Java Developer Guide
Replay and Workflow Implementation

Replay and Workflow Implementation

For the most part, you don't need to be concerned with the details of the replay mechanism. It is
basically something that happens behind the scenes. However, replay has two important implications
for your workflow implementation.

¢ Do not use workflow methods to perform long-running tasks, because replay will repeat that task
multiple times. Even asynchronous workflow methods typically run more than once. Instead, use
activities for long running tasks; replay executes activities only once.

¢ Your workflow logic must be completely deterministic; every episode must take the same control
flow path. For example, the control flow path should not depend on the current time. For a detailed
description of replay and the determinism requirement, see Nondeterminism (p. 119).

AWS Flow Framework Basic Concepts: Task Lists
and Task Execution

Amazon SWF manages workflow and activity tasks by posting them to named lists. Amazon SWF
maintains at least two task lists, one for workflow workers and one for activity workers. However, you
can specify as many task lists as needed, with different workers assigned to each list. You typically
specify a worker's task list in the worker host application when you create the worker object. The
following excerpt from the HelloWorldWorkflow host application creates a new activity worker and
assigns it to the "HelloWorldList" activities task list.

public class GeeterWrker ({
public static void main(String[] args) throws Exception {

String domain = " hell oWr | dExanpl es";
String taskListToPoll = "HelloWrldList";

ActivityWrker aw = new ActivityWrker(service, domain, taskListToPoll);
aw. addActivitiesl npl enentation(new GreeterActivitieslnpl());
aw. start();

By default, Amazon SWF will schedule the worker's tasks on the HelloWorldList list and the worker will
poll that list for tasks. You can assign any name you prefer to a task list. You can even use the same
name for both workflow and activity lists; internally, Amazon SWF puts workflow and activity task list
names in different namespaces, so the two lists will be distinct.

If you don't specify a task list, the AWS Flow Framework specifies a default list when the
worker registers the type with Amazon SWF. For more details, see Workflow and Activity Type
Registration (p. 50).

It is sometimes useful to have certain tasks performed by a specific worker or a group of workers. For
example, an image processing workflow might use one activity to download an image and another
activity to process the image. It is more efficient to perform both tasks on the same system, and
avoid the overhead of transferring large files over the network. To support such scenarios, you can
explicitly specify a task list when you call an activity client method by using an overload that includes
a schedulingOptions parameter. You specify the task list by passing the method an appropriately
configured ActivitySchedulingOptions object.

For example, suppose that the HelloWorldWorkflow application's say activity is hosted by a different
activity worker than getName and get Gr eet i ng. The following example shows how to ensure that say

API Version 2012-01-25
40

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivitySchedulingOptions.html

AWS Flow Framework for Java Developer Guide
Scalable Applications

uses the same task list as get Nanme and getGreeting, even if they were originally assigned to different
lists.

public class G eeterWrkflow npl inplenents G eeterWrkflow {
private GreeterActivitiesCient operationsl = new
GreeterActivitiesCientlnmpl1(); //getGeeting and get Nane
private GreeterActivitiesCient operations2 = new
GreeterActivitiesCientlnpl2(); //say
@verride
public void greet() {
Prom se<String> nane = operationsl. get Name();
Prom se<String> greeting = operationsl. getGeeting(nane);
runSay(greeting);
}
@\synchr onous
private void runSay(Prom se<String> greeting){
String taskLi st = operationsl. get Schedul i ngOptions(). get TaskLi st();
Acti vi tySchedul i ngOpti ons schedul i ngOpti ons = new
ActivitySchedul i ngOptions();
schedul i ngOpt i ons. set TaskLi st (taskList);
oper ati ons2. say(greeting, schedulingQOptions);
}

}

The asynchronous r unSay method gets the get Gr eet i ng task list from its client object, and creates
and configures an Act i vi t ySchedul i ngOpt i ons object that ensures that say polls the same task
list as get Gr eeti ng.

Note

When you pass a schedul i ngOpt i ons to an activity client method, it overrides the original
task list only for that activity execution. If you call the activities client method again without
specifying a task list, Amazon SWF assigns the task to the original list, and the activity worker
will poll that list.

AWS Flow Framework Basic Concepts: Scalable
Applications

Amazon SWF has two key features that make it easy to scale a workflow application to handle the
current load:

« A complete workflow execution history, which allows you to implement a stateless application.

¢ Task scheduling that is loosely coupled to task execution, which makes it easy to scale your
application to meet current demands.

Amazon SWF schedules tasks by posting them to dynamically allocated task lists, not by
communicating directly with workflow and activity workers. Instead, the workers use HTTP requests
to poll their respective lists for tasks. This approach loosely couples task scheduling to task execution
and allows workers to run on any suitable system, including Amazon EC2 instances, corporate data
centers, client computers, and so on. Since the HTTP requests originate with the workers, there is no
need for externally visible ports, which enables workers to even run behind a firewall.

The long-polling mechanism that workers use to poll for tasks ensures that workers don't get
overloaded. Even if there is a spike in scheduled tasks, workers pull tasks at their own pace. However,

API Version 2012-01-25
41

AWS Flow Framework for Java Developer Guide
Data Exchange Between Activities and Workflows

because workers are stateless, you can dynamically scale an application to meet increased load by
starting additional worker instances. Even if they are running on different systems, each instance polls
the same task list and the first available worker instance executes each task, regardless of where the
worker is located or when it started. When the load declines, you can reduce the number of workers
accordingly.

AWS Flow Framework Basic Concepts: Data
Exchange Between Activities and Workflows

When you call an asynchronous activity client method, it immediately returns a Promise (also known
as a Future) object, which represents the activity method's return value. Initially, the Promise is in
an unready state and the return value is undefined. After the activity method completes its task and
returns, the framework marshals the return value across the network to the workflow worker, which
assigns a value to the Promise and puts the object in a ready state.

Even if an activity method has no return value, you can still use the Promise for managing workflow
execution. If you pass a returned Promise to an activity client method or an asynchronous workflow
method, it defers execution until object is ready.

If you pass one or more Promises to an activity client method, the framework queues the task but
defers scheduling it until all the objects are ready. It then extracts the data from each Promise and
marshals it across the internet to the activity worker, which passes it to the activity method as a
standard type.

Note

If you need to transfer large amounts of data between workflow and activity workers, the
preferred approach is to store the data in a convenient location and just pass the retrieval
information. For example, you can store the data in an Amazon S3 bucket and pass the
associated URL.

The Promise<T> Type

The Pr om se<T> type is similar in some ways to the Java Fut ur e<T> type. Both types represent
values returned by asynchronous methods and are initially undefined. You access an object's value by
calling its get method. Beyond that, the two types behave quite differently.

¢ Fut ur e<T> is a synchronization construct that allows an application to wait on an asynchronous
method's completion. If you call get and the object is not ready, it blocks until the object is ready.

¢ With Pr oni se<T>, synchronization is handled by the framework. If you call get and the object is not
ready, get throws an exception.

The primary purpose of Pr om se<T> is to manage data flow from one activity to another. It ensures
that an activity doesn't execute until the input data is valid. In many cases, workflow workers don't need
to access Pr om se<T> objects directly; they simply pass the objects from one activity to another and
let the framework and the activity workers handle the details. To access a Pr oni se<T> object's value
in a workflow worker, you must be certain that the object is ready before calling its get method.

* The preferred approach is to pass the Pr om se<T> object to an asynchronous workflow method
and process the values there. An asynchronous method defers execution until all of its input
Pr oni se<T> objects are ready, which guarantees that you can safely access their values.

¢ Prom se<T> exposes an i sReady method that returns t r ue if the object is ready. Using i sReady
to poll a Pr om se<T> object is not recommended, but i sReady is useful in certain circumstances.
For an example, see AWS Flow Framework Recipes.

API Version 2012-01-25
42

http://aws.amazon.com/code/2535278400103493

AWS Flow Framework for Java Developer Guide
Data Converters and Marshaling

The AWS Flow Framework for Java also includes a Set t abl e<T> type, which is derived from

Pr om se<T> and has similar behavior. The difference is that the framework usually sets the value of
a Prom se<T> object and the workflow worker is responsible for setting the value of a Set t abl e<T>
For an example, see AWS Flow Framework Recipes

There are some circumstance where a workflow worker needs to create a Pr om se<T> object and set
its value. For example, an asynchronous method that returns a Pr om se<T> object needs to create a
return value.

« To create an object that represents a typed value, call the static Pr omi se. asPr om se method,
which creates a Pr omi se<T> object of the appropriate type, sets its value, and puts it in the ready
state.

¢ To create a Pr oni se<Voi d> object, call the static Pr om se. Voi d method.

Note

Pr om se<T> can represent any valid type. However, if the data must be marshaled across
the internet, the type must be compatible with the data converter. See the next section for
details.

Data Converters and Marshaling

The AWS Flow Framework marshals data across the internet by using a data converter. By default,
the framework uses a data converter that is based on the Jackson JSON processor. However, this
converter has some limitations. For example, it cannot marshal maps that do not use strings as keys.
If the default converter isn't sufficient for your application, you can implement a custom data converter.
For details, see DataConverters (p. 82).

AWS Flow Framework Basic Concepts: Data
Exchange Between Applications and Workflow
Executions

A workflow entry point method can have one or more parameters, which allows the workflow starter
to pass initial data to the workflow. It can also useful to provide additional data to the workflow during
execution. For example, if a customer changes their shipping address, you could notify the order-
processing workflow so that it can make appropriate changes.

Amazon SWF allows workflows to implement a signal method, which allows applications such as the
workflow starter to pass data to the workflow at any time. A signal method can have any convenient
name and parameters. You designate it as a signal method by including it in your workflow interface
definition, and applying a @i gnal annotation to the method declaration.

The following example shows an order processing workflow interface that declares a signal method,
changeOr der, which allows the workflow starter to change the original order after the workflow has
started.

@or kf | ow
@\or kf | owRegi strationOpti ons(def aul t Executi onStart Tod oseTi neout Seconds =
300)
public interface Wit ForSi gnal Wrkf | ow {
@xecute(version = "1.0")
public void placeOrder(int anpbunt);
@i gnal

API Version 2012-01-25
43

http://aws.amazon.com/code/2535278400103493
https://github.com/codehaus/jackson

AWS Flow Framework for Java Developer Guide
Timeout Types

public void changeOrder(int anount);

The framework's annotation processor creates a workflow client method with the same name as the
signal method and the workflow starter calls the client method to pass data to the workflow. For an
example, see AWS Flow Framework Recipes

Amazon SWF Timeout Types

To ensure that workflow executions run correctly, Amazon SWF enables you to set different types

of timeouts. Some timeouts specify how long the workflow can run in its entirety. Other timeouts
specify how long activity tasks can take before being assigned to a worker and how long they can
take to complete from the time they are scheduled. All timeouts in the Amazon SWF API are specified
in seconds. Amazon SWF also supports the string "NONE" as a timeout value, which indicates no
timeout.

For timeouts related to decision tasks and activity tasks, Amazon SWF adds an event to the workflow
execution history. The attributes of the event provide information about what type of timeout occurred
and which decision task or activity task was affected. Amazon SWF also schedules a decision task.
When the decider receives the new decision task, it will see the timeout event in the history and take
an appropriate action by calling the RespondDecisionTaskCompleted action.

A task is considered open from the time that it is scheduled until it is closed. Therefore a task
is reported as open while a worker is processing it. A task is closed when a worker reports it as
completed, canceled, or failed. A task may also be closed by Amazon SWF as the result of a timeout.

Timeouts in Workflow and Decision Tasks

The following diagram shows how workflow and decision timeouts are related to the lifetime of a
workflow:

Execution Start to Close timeout

A
W

Task Start to Close Task Start to Close
timeout timeout

[E i | il
b H -
-~ H -~

Workflow Execution | Decision Task Decision Task Decision Task Decision Task
Started started completed started completed
Decision Task Decision Task Workflow Execution Closed
scheduled scheduled (completed, failed, terminated,

canceled or timed out)

There are two timeout types that are relevant to workflow and decision tasks:

¢ Workflow Start to Close (timeoutType: START_TO_CLOSE): This timeout specifies the
maximum time that a workflow execution can take to complete. It is set as a default during workflow
registration, but it can be overridden with a different value when the workflow is started. If this
timeout is exceeded, Amazon SWF closes the workflow execution and adds an event of type
WorkflowExecutionTimedOut to the workflow execution history. In addition to the t i neout Type,

API Version 2012-01-25
44

http://aws.amazon.com/code/2535278400103493
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html

AWS Flow Framework for Java Developer Guide
Timeouts in Activity Tasks

the event attributes specify the chi | dPol i cy that is in effect for this workflow execution. The child
policy specifies how child workflow executions are handled if the parent workflow execution times
out or otherwise terminates. For example, if the chi | dPol i cy is set to TERMINATE, then child
workflow executions will be terminated. Once a workflow execution has timed out, you cannot take
any action on it other than visibility calls.

¢ Decision Task Start to Close (timeoutType: START_TO_CLOSE): This timeout specifies the
maximum time that the corresponding decider can take to complete a decision task. It is set during
workflow type registration. If this timeout is exceeded, the task is marked as timed out in the
workflow execution history, and Amazon SWF adds an event of type DecisionTaskTimedOut to the
workflow history. The event attributes will include the IDs for the events that correspond to when this
decision task was scheduled (schedul edEvent | d) and when it was started (st art edEvent | d). In
addition to adding the event, Amazon SWF also schedules a new decision task to alert the decider
that this decision task timed out. After this timeout occurs, an attempt to complete the timed-out
decision task using RespondDeci si onTaskConpl et ed will fail.

Timeouts in Activity Tasks

The following diagram shows how timeouts are related to the lifetime of an activity task:

Schedule to Close timeout

Schedule to Start timeout

1
. Start to Close timeout

: Heartbeat timeout

| -

Task Task started Heartbeat Heartbeat
scheduled (dispatched recorded recorded
ScheduleActivityTask to worker)

decision received

There are four timeout types that are relevant to activity tasks:

¢ Activity Task Start to Close (timeoutType: START_TO_CLOSE): This timeout specifies the
maximum time that an activity worker can take to process a task after the worker has received
the task. Attempts to close a timed out activity task using RespondActivityTaskCanceled,
RespondActivityTaskCompleted, and RespondActivityTaskFailed will fail.

« Activity Task Heartbeat (timeoutType: HEARTBEAT): This timeout specifies the maximum time
that a task can run before providing its progress through the Recor dAct i vi t yTaskHear t beat
action.

¢ Activity Task Schedule to Start (timeoutType: SCHEDULE_TO_START): This timeout specifies
how long Amazon SWF waits before timing out the activity task if no workers are available to perform
the task. Once timed out, the expired task will not be assigned to another worker.

¢ Activity Task Schedule to Close (timeoutType: SCHEDULE_TO_CLOSE): This timeout specifies
how long the task can take from the time it is scheduled to the time it is complete. As a best practice,

API Version 2012-01-25
45

Heartbeat
recorded

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework for Java Developer Guide
Timeouts in Activity Tasks

this value should not be greater than the sum of the task schedule-to-start timeout and the task start-
to-close timeout.

Note
Each of the timeout types has a default value, which is generally set to NONE (infinite). The
maximum time for any activity execution is limited to one year, however.

You set default values for these during activity type registration, but you can override them with new
values when you schedule the activity task. When one of these timeouts occurs, Amazon SWF will
add an event of type ActivityTaskTimedOut to the workflow history. The t i neout Type value attribute
of this event will specify which of these timeouts occurred. For each of the timeouts, the value of

ti meout Type is shown in parentheses. The event attributes will also include the IDs for the events
that correspond to when the activity task was scheduled (schedul edEvent | d) and when it was
started (st art edEvent | d). In addition to adding the event, Amazon SWF also schedules a new
decision task to alert the decider that the timeout occurred.

API Version 2012-01-25
46

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

AWS Flow Framework for Java Developer Guide
Implementing Workflow Applications

AWS Flow Framework for Java
Programming Guide

This section provides details about how to use the features of the AWS Flow Framework for Java to
implement workflow applications.

Topics
¢ Implementing Workflow Applications with the AWS Flow Framework (p. 47)
¢ Workflow and Activity Contracts (p. 49)
« Workflow and Activity Type Registration (p. 50)
e Activity and Workflow Clients (p. 52)
¢ Workflow Implementation (p. 63)
¢ Activity Implementation (p. 67)
¢ Implementing AWS Lambda Tasks (p. 69)
¢ Running Programs Written with the AWS Flow Framework for Java (p. 72)
¢ Execution Context (p. 76)
¢ Child Workflow Executions (p. 78)
¢ Continuous Workflows (p. 80)
e Setting Task Priority (p. 81)
¢ DataConverters (p. 82)
¢ Passing Data to Asynchronous Methods (p. 83)
¢ Testability and Dependency Injection (p. 86)
¢ Error Handling (p. 96)
¢ Retry Failed Activities (p. 102)
¢ Daemon Tasks (p. 110)
¢ AWS Flow Framework for Java Replay Behavior (p. 112)

Implementing Workflow Applications with the
AWS Flow Framework

The typical steps involved in developing a workflow with the AWS Flow Framework are:

API Version 2012-01-25
47

AWS Flow Framework for Java Developer Guide
Implementing Workflow Applications

Define activity and workflow contracts. Analyze your application's requirements, then determine
the required activities and the workflow topology. The activities handle the required processing
tasks, while the workflow topology defines the workflow's basic structure and business logic.

For example, a media processing application might need to download a file, process it, and then
upload the processed file to an Amazon Simple Storage Service (S3) bucket. This can broken
down into four activity tasks:

1. download the file from a server

2. process the file (for instance, by transcoding it to a different media format)
3. upload the file to the S3 bucket

4. perform cleanup by deleting the local files

This workflow would have an entry point method and would implement a simple linear topology
that runs the activities in sequence, much like the HelloWorldWorkflow Application (p. 14).

Implement activity and workflow interfaces. The workflow and activity contracts are defined by
Java interfaces, making their calling conventions predictable by SWF, and providing you flexibility
when implementing your workflow logic and activity tasks. The various parts of your program can
act as consumers of each others' data, yet do not need to be aware of much of the implementation
details of any of the other parts.

For example, you can define a Fi | ePr ocessi ngWor kf | ow interface and provide different
workflow implementations for video encoding, compression, thumbnails, and so on. Each of those
workflows can have different control flows and can call different activity methods; your workflow
starter doesn't need to know. By using interfaces, it is also simple to test your workflows by using
mock implementations that can be replaced later with working code.

Generate activity and workflow clients. The AWS Flow Framework eliminates the need for
you to implement the details of managing asynchronous execution, sending HTTP requests,
marshaling data, and so forth. Instead, the workflow starter executes a workflow instance by
calling a method on the workflow client, and the workflow implementation executes activities by
calling methods on the activities client. The framework handles the details of these interactions in
the background.

If you are using Eclipse and you have configured your project as described in Setting up the
Framework (p. 3), the AWS Flow Framework annotation processor uses the interface definitions to
automatically generate workflow and activities clients that expose the same set of methods as the
corresponding interface.

Implement activity and workflow host applications. Your workflow and activity implementations
must be embedded in host applications that poll Amazon SWF for tasks, marshal any data,

and call the appropriate implementation methods. AWS Flow Framework for Java includes
WorkflowWorker and ActivityWorker classes that make implementing host applications
straightforward and easy to do.

Test your workflow. AWS Flow Framework for Java provides JUnit integration that you can use
to test your workflows inline and locally.

Deploy the workers. You can deploy your workers as appropriate—for example, you can deploy
them to Amazon EC2 instances or to computers in your data center. Once deployed and started,
the workers start polling Amazon SWF for tasks and handle them as required.

Start executions. An application starts a workflow instance by using the workflow client to call
the workflow's entry point. You can also start workflows by using the Amazon SWF console.
Regardless of how you start a workflow instance, you can use Amazon SWF console to monitor
running workflow instance and examine the workflow history for running, completed, and failed
instances.

The AWS SDK for Java includes a set of AWS Flow Framework for Java samples that you can browse
and run by following the instructions in the readme.html file in the root folder. There are also a set of

API Version 2012-01-25
48

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
http://aws.amazon.com/sdkforjava/

AWS Flow Framework for Java Developer Guide
Workflow and Activity Contracts

recipes —simple applications — that show how to handle a variety of specific programming issue,
which are available from AWS Flow Framework Recipes.

Workflow and Activity Contracts

Java interfaces are used to declare the signatures of workflows and activities. The interface forms the
contract between the implementation of the workflow (or activity) and the client of that workflow (or
activity). For example, a workflow type MyWor kf | owis defined using an interface that is annotated with
the @\or kf | ow annotation:

@or kf | ow
@\or kf | owRegi st rati onOpti ons(
def aul t Executi onStart ToC oseTi meout Seconds = 60,
def aul t TaskSt art Tod oseTi neout Seconds = 10)
public interface MyWrkfl ow

{
@xecute(version = "1.0")
void start WMWF(int a, String b);
@i gnal
void signal 1(int a, int b, String c);
@t St at e
MWor kfl owSt ate get State();
}

The contract has no implementation-specific settings. This use of implementation-neutral contracts
allows clients to be decoupled from the implementation and hence provides the flexibility to change
the implementation details without breaking the client. Conversely, you may also change the client
without necessitating changes to the workflow or activity being consumed. For example, the client

may be modified to call an activity asynchronously using promises (Pr om se<T>) without requiring a
change to the activity implementation. Similarly, the activity implementation may be changed so that it
is completed asynchronously, for example, by a person sending an email—without requiring the clients
of the activity to be changed.

In the example above, the workflow interface MyWor kf | ow contains a method, st ar t MyWF, for starting
a new execution. This method is annotated with the @xecut e annotation and must have a return type
of void or Pr omi se<>. In a given workflow interface, at most one method can be annotated with this
annotation. This method is the entry point of the workflow logic, and the framework calls this method to
execute the workflow logic when a decision task is received.

The workflow interface also defines the signals that may be sent to the workflow. The signal method
gets invoked when a signal with a matching name is received by the workflow execution. For
example, the MyWor kf | owinterface declares a signal method, si gnal 1, annotated with the @i gnal
annotation.

The @i gnal annotation is required on signal methods. The return type of a signal method must be
void. A workflow interface may have zero or more signal methods defined in it. You may declare a
workflow interface without an @xecut e method and some @i gnal methods to generate clients that
cannot start their execution but can send signals to running executions.

Methods annotated with @xecut e and @i gnal annotations may have any number of parameters of
any type other than Pr omi se<T> or its derivatives. This allows you to pass strongly typed inputs to a
workflow execution at start and while it is running. The return type of the @xecut e method must be
void or Prom se<>.

API Version 2012-01-25
49

https://aws.amazon.com/code/2535278400103493

AWS Flow Framework for Java Developer Guide
Workflow and Activity Type Registration

Additionally, you may also declare a method in the workflow interface to report the latest state of a
workflow execution, for instance, the get St at e method in the previous example. This state is not the
entire application state of the workflow. The intended use of this feature is to allow you to store up to 32
KB of data to indicate the latest status of the execution. For example, in an order processing workflow,
you may store a string that indicates that the order has been received, processed, or canceled. This
method is called by the framework every time a decision task is completed to get the latest state. The
state is stored in Amazon Simple Workflow Service (Amazon SWF) and can be retrieved using the
generated external client. This allows you to check the latest state of a workflow execution. Methods
annotated with @Bet St at e must not take any arguments and must not have a void return type. You
can return any type, which fits your needs, from this method. In the above example, an object of
MyWor kf | owSt at e (see definition below) is returned by the method that is used to store a string state
and a numeric percent complete. The method is expected to perform read-only access of the workflow
implementation object and is invoked synchronously, which disallows use of any asynchronous
operations like calling methods annotated with @\synchr onous. At most one method in a workflow
interface can be annotated with @zet St at e annotation.

public class MyWrkflowState {
public String status;
public int percent Conplete;

Similarly, a set of activities are defined using an interface annotated with @\ct i vi t i es annotation.
Each method in the interface corresponds to an activity—for example:

@\ctivities(version = "1.0")
@\ctivityRegistrationOptions(
def aul t TaskSchedul eToSt art Ti meout Seconds = 300,
def aul t TaskSt art Tod oseTi neout Seconds = 3600)
public interface M/Activities {
/1 Overrides values fromannotation found on the interface
@\ctivityRegistrationOptions(description = "This is a sanple activity",
def aul t TaskSchedul eToSt art Ti meout Seconds = 100,

def aul t TaskSt art ToC oseTi neout Seconds = 60)
int activityl();

void activity2(int a);

The interface allows you to group together a set of related activities. You can define any number of
activities within an activities interface, and you can define as many activities interfaces as you want.
Similar to @xecut e and @i gnal methods, activity methods can take any number of arguments
of any type other than Pr om se<T> or its derivatives. The return type of an activity must not be

Pr oni se<T> or its derivatives.

Workflow and Activity Type Registration

Amazon SWF requires activity and workflow types to be registered before they can be used.
The framework automatically registers the workflows and activities in the implementations you
add to the worker. The framework looks for types that implement workflows and activities and
registers them with Amazon SWF. By default, the framework uses the interface definitions to

API Version 2012-01-25
50

AWS Flow Framework for Java Developer Guide
Workflow Type Name and Version

infer registration options for workflow and activity types. All workflow interfaces are required to

have either the @\or kf | owRegi strati onOpti ons annotation or the @ki pRegi strati on
annotation. The workflow worker registers all workflow types it is configured with that have

the @\or kf | owRegi strati onOpti ons annotation. Similarly, each activity method is

required to be annotated with either the @Act i vi t yRegi strati onOpti ons annotation or

the @ki pRegi st r ati on annotation or one of these annotations must be present on the

@Act i vi ti es interface. The activity worker registers all activity types that it is configured with that an
@ActivityRegi strati onOpti ons annotation applies to. The registration is performed automatically
when you start one of the workers. Workflow and activity types that have the @ki pRegi strati on
annotation are not registered. @Act i vi t yRegi strati onOpti ons, and @ki pRegi strati on
annotations have override semantics and the most specific one is applied to an activity type.

Note that Amazon SWF does not allow you to re-register or modify the type once it has been
registered. The framework will try to register all types, but if the type is already registered it will not be
re-registered and no error will be reported.

If you need to modify registered settings, you must register a new version of the type. You can also
override registered settings when starting a new execution or when calling an activity that uses the
generated clients.

The registration requires a type name and some other registration options. The default implementation
determines these as follows:

Workflow Type Name and Version

The framework determines the name of the workflow type from the workflow interface. The form of the
default workflow type name is {pr ef i x}{nane}. The {pr ef i x} is set to the name of the @\r kf | ow
interface followed by a '.' and the {nane} is set to the name of the @xecut e method. The default
name of the workflow type in the preceding example is MyWor kf | ow. st art MyWF. You can override
the default name using the name parameter of the @xecut e method. The default name of the
workflow type in the example is st ar t MyWF. The name must not be an empty string. Note that when
you override the name using @xecut e, the framework does not automatically prepend a prefix to it.
You are free to use your own naming scheme.

The workflow version is specified using the ver si on parameter of the @xecut e annotation. There is
no default for ver si on and it must be explicitly specified; ver si onis a free form string, and you are
free to use your own versioning scheme.

Signal Name

The name of the signal can be specified using the name parameter of the @i gnal annotation. If not
specified, it is defaulted to the name of the signal method.

Activity Type Name and Version

The framework determines the name of the activity type from the activities interface. The form of the
default activity type name is {pr ef i x}{nane}. The {pr ef i x} is set to the name of the @\ct i vities
interface followed by a '.' and the {nane} is set to the method name. The default {pr ef i x} can be
overridden in the @\ct i vi t i es annotation on the activities interface. You can also specify the activity
type name using the @\ct i vi t y annotation on the activity method. Note that when you override the
name using @Act i vi t y, the framework will not automatically prepend a prefix to it. You are free to
user your own naming scheme.

The activity version is specified using the version parameter of the @\ct i vi t i es annotation. This
version is used as the default for all activities defined in the interface and can be overridden on a per-
activity basis using the @Act i vi t y annotation.

API Version 2012-01-25
51

AWS Flow Framework for Java Developer Guide
Default Task List

Default Task List

The default task list can be configured using the @\r kf | owRegi strati onOpti ons and

@Acti vityRegi strati onOpti ons annotations and setting the def aul t TaskLi st parameter.

By default, it is set to USE_WORKER_TASK_LI ST. This is a special value that instructs the framework

to use the task list that is configured on the worker object that is used to register the activity or
workflow type. You can also choose to not register a default task list by setting the default task list

to NO_DEFAULT_TASK_ LI ST using these annotations. This can be used in cases where you want

to require that the task list be specified at run time. If no default task list has been registered, then

you must specify the task list when starting the workflow or calling the activity method using the

St ar t Wor kf | owOpt i ons and Acti vi t ySchedul i ngOpt i ons parameters on the respective method
overload of the generated client.

Other Registration Options

All workflow and activity type registration options that are allowed by the Amazon SWF API can be
specified through the framework.

For a complete list of workflow registration options, see @Workflow (p. 128), @Execute (p. 126),
@WorkflowRegistrationOptions (p. 128), and @Signal (p. 127).

For a complete list of activity registration options, see @Activity (p. 125), @Activities (p. 124), and
@ActivityRegistrationOptions (p. 125).

If you want to have complete control over type registration, see Worker Extensibility (p. 75).

Activity and Workflow Clients

Workflow and activity clients are generated by the framework based on the @\r kf | owand

@Act i vi ti es interfaces. Separate client interfaces are generated that contain methods and settings
that make sense only on the client. If you are developing using Eclipse, this is done by the Amazon
SWF Eclipse plug-in every time you save the file containing the appropriate interface. The generated
code is placed in the generated sources directory in your project in the same package as the interface.

Note

Note that the default directory name used by Eclipse is .apt_generated. Eclipse does not show
directories whose names start with a '." in Package Explorer. Use a different directory name

if you want to view the generated files in Project Explorer. In Eclipse, right-click the package

in Package Explorer, and then click Properties > Java Compiler > Annotation processing,
and modify the Generate source directory setting.

Workflow Clients

The generated artifacts for the workflow contain three client-side interfaces and the classes that
implement them. The generated clients include:

* An asynchronous client intended to be consumed from within a workflow implementation that
provides asynchronous methods to start workflow executions and send signals

¢ An external client that can be used to start executions and send signals and retrieve workflow state
from outside the scope of a workflow implementation

« A self client that can be used to create continuous workflows

For example, the generated client interfaces for the example MyWor kf | ow interface are:

API Version 2012-01-25
52

AWS Flow Framework for Java Developer Guide
Workflow Clients

//dient for use fromw thin a workflow
public interface MyWrkflowd i ent extends Workfl owd i ent
{
Pr om se<Voi d> st art MyWr(
int a, String b);

Pr om se<Voi d> st art MyWr(
int a, String b,
Prom se<?>... waitFor);

Pr om se<Voi d> st art MyWr(
int a, String b,
St art Wor kf | owOpt i ons opti onsOverri de,
Prom se<?>... waitFor);

Pr om se<Voi d> st art MyWr(
Prom se<l nteger> a,
Prom se<String> b);

Pr om se<Voi d> st art MyWr(
Prom se<l nteger> a,
Prom se<String> b,

Promi se<?>... waitFor);

Pr om se<Voi d> st art MyWr(
Prom se<l nteger> a,
Prom se<String> b,
St art Wor kf | owOpt i ons opti onsOverri de,
Promi se<?>... waitFor);

voi d signal 1(
int a, int b, String c);
}

// External client for use outside workflows
public interface M/Wrkfl owd i ent Ext ernal extends Workfl owd i ent Ext er nal
{
voi d start MyW(
int a, String b);

voi d start MyW(
int a, String b,
St art Wor kf | owOpt i ons optionsOverride);

voi d signal 1(
int a, int b, String c);

MVor kf | owSt ate get State();
}

/lself client for creating continuous workfl ows
public interface MyWirkfl owSel fCient extends Workfl owSel fdient
{
voi d start MyWF(
int a, String b);

voi d start MyWF(
int a, String b,
Prom se<?>... waitFor);

API Version 2012-01-25
53

AWS Flow Framework for Java Developer Guide
Workflow Clients

voi d start MyW(
int a, String b,
St art Wor kf | owOpt i ons opti onsOverri de,
Prom se<?>... waitFor);

voi d start MyW(
Prom se<l nteger> a,

Prom se<String> b);

voi d start MyW(
Prom se<l nteger> a,
Prom se<String> b,

Prom se<?>... waitFor);

voi d start MyW(

Prom se<l nteger> a,

Prom se<String> b,

St art Wor kf | owOpt i ons opti onsOverri de,

Prom se<?>... waitFor);

The interfaces have overloaded methods corresponding to each method in the @\or kf | owinterface
that you declared.

The external client mirrors the methods on the @Vr kf | ow interface with one additional overload of the
@Execut e method that takes St ar t Wor kf | owOpt i ons. You can use this overload to pass additional
options when starting a new workflow execution. These options allow you to override the default task
list, timeout settings, and associate tags with the workflow execution.

On the other hand, the asynchronous client has methods that allow asynchronous invocation of the
@Execut e method. The following method overloads are generated in the client interface for the
@xecut e method in the workflow interface:

1. An overload that takes the original arguments as is. The return type of this overload will be
Pr omi se<Voi d> if the original method returned void; otherwise, it will be the Pr onmi se<> as
declared on the original method. For example:

Original method:

void start WWF(int a, String b);

Generated method:

Prom se<Voi d> start WWF(int a, String b);

This overload should be used when all the arguments of the workflow are available and don't need
to be waited for.

2. An overload that takes the original arguments as is and additional variable arguments of type
Prom se<?>. The return type of this overload will be Pr omi se<Voi d> if the original method
returned void; otherwise, it will be the Pr om se<> as declared on the original method. For example:

Original method:

void start WMWF(int a, String b);

API Version 2012-01-25
54

AWS Flow Framework for Java Developer Guide
Workflow Clients

Generated method:

Prom se<void> start WWF(int a, String b, Prom se<?>...waitFor);

This overload should be used when all the arguments of the workflow are available and don't need
to be waited for, but you want to wait for some other promises to become ready. The variable
argument can be used to pass such Pr oni se<?> objects that were not declared as arguments, but
you want to wait for before executing the call.

. An overload that takes the original arguments as is, an additional argument of type

St ar t Wor kf | owOpt i ons and additional variable arguments of type Pr om se<?>. The return type
of this overload will be Pr om se<Voi d> if the original method returned void; otherwise, it will be the
Pr onmi se<> as declared on the original method. For example:

Original method:

void start WWF(int a, String b);

Generated method:

Prom se<voi d> st art MyW(
int a,
String b,
St art Wor kf | owOpt i ons opti onOverri des,
Prom se<?>...waitFor);

This overload should be used when all the arguments of the workflow are available and don't need
to be waited for, when you want to override default settings used to start the workflow execution,
or when you want to wait for some other promises to become ready. The variable argument can be
used to pass such Pr om se<?> objects that were not declared as arguments, but you want to wait
for before executing the call.

. An overload with each argument in the original method replaced with a Pr onmi se<> wrapper. The
return type of this overload will be Pr omi se<Voi d> if the original method returned void; otherwise, it
will be the Pr om se<> as declared on the original method. For example:

Original method:

void start WMWF(int a, String b);

Generated method:

Pr om se<Voi d> st art MyWF(
Prom se<l nteger> a,
Prom se<String> b);

This overload should be used when the arguments to be passed to the workflow execution are to be
evaluated asynchronously. A call to this method overload will not execute until all arguments passed
to it become ready.

If some of the arguments are already ready, then convert them to a Pr om se that is already in ready
state through the Pr omi se. asPr om se(val ue) method. For example:

API Version 2012-01-25
55

AWS Flow Framework for Java Developer Guide
Workflow Clients

Prom se<Integer> a = getA();
String b = getB();
start M\WF(a, Pronise.asProm se(b));

5. An overload with each argument in the original method is replaced with a Pr onmi se<> wrapper.
The overload also has additional variable arguments of type Pr om se<?>. The return type of this
overload will be Pr om se<Voi d> if the original method returned void; otherwise, it will be the
Pr om se<> as declared on the original method. For example:

Original method:

void start WWF(int a, String b);

Generated method:

Pr om se<voi d> start MyWr(
Prom se<l nteger> a,
Prom se<String> b,
Prom se<?>...waitFor);

This overload should be used when the arguments to be passed to the workflow execution are to be
evaluated asynchronously and you want to wait for some other promises to become ready as well. A
call to this method overload will not execute until all arguments passed to it become ready.

6. An overload with each argument in the original method replaced with a Pr onmi se<?> wrapper. The
overload also has an additional argument of type St ar t Wor kf | owOpt i ons and variable arguments
of type Pr om se<?>. The return type of this overload will be Pr om se<Voi d> if the original method
returned void; otherwise, it will be the Pr om se<> as declared on the original method. For example:

Original method:

void start WWF(int a, String b);

Generated method:

Prom se<voi d> st art MyW(
Prom se<l nteger> a,
Prom se<String> b,
St art Wor kf | owOpti ons opti onOverri des,
Promi se<?>...wait For);

Use this overload when the arguments to be passed to the workflow execution will be evaluated
asynchronously and you want to override default settings used to start the workflow execution. A call
to this method overload will not execute until all arguments passed to it become ready.

A method is also generated corresponding to each signal in the workflow interface—for example:

Original method:

void signal 1(int a, int b, String c);

API Version 2012-01-25
56

AWS Flow Framework for Java Developer Guide
Workflow Clients

Generated method:

void signal 1(int a, int b, String c);

The asynchronous client does not contain a method corresponding to the method annotated with
@et St at e in the original interface. Since retrieval of state requires a web service call, it is not suitable
for use within a workflow. Hence, it is provided only through the external client.

The self client is intended to be used from within a workflow to start a new execution on completion of
the current execution. The methods on this client are similar to the ones on the asynchronous client,
but return void. This client does not have methods corresponding to methods annotated with @i gnal
and @t St at e. For more details, see the Continuous Workflows (p. 80).

The generated clients derive from base interfaces: Wor kf | owCl i ent and

Wor kf | owd i ent Ext er nal , respectively, which provide methods that you can use to cancel or
terminate the workflow execution. For more details about these interfaces, see the AWS SDK for Java
documentation.

The generated clients allow you to interact with workflow executions in a strongly typed fashion. Once
created, an instance of a generated client is tied to a specific workflow execution and can be used only
for that execution. In addition, the framework also provides dynamic clients that are not specific to a
workflow type or execution. The generated clients rely on this client under the covers. You may also
directly use these clients. See the section on Dynamic Clients (p. 62).

The framework also generates factories for creating the strongly typed clients. The generated client
factories for the example MyWor kf | ow interface are:

//Factory for clients to be used fromw thin a workfl ow
public interface MyWorkflowd i ent Factory

ext ends Wor kfl owd i ent Fact or y<MyWor kf | ond i ent >
{

}

//Factory for clients to be used outside the scope of a workflow
public interface MyWrkfl owd i ent Ext er nal Factory

{
Generi cWor kfl owd i ent Ext ernal getGenericdient();
voi d set Genericd ient(Generi cWrkfl owC ientExternal genericCient);
Dat aConverter getDataConverter();
voi d set Dat aConverter (Dat aConverter dataConverter);
St art Wor kf | owOpt i ons get St art Wor kf | owOpti ons() ;
voi d set StartWorkfl owOpti ons(StartWrkfl owOpti ons startWorkfl owOpti ons);
MyWor kf | owCl i ent External getdient();
MyWor kf | owCl i ent External getdient(String workflow d);
MyWor kf | owd i ent Ext ernal get d i ent (Wor kf | owExecuti on wor kf | owExecuti on);
MyWor kf | owCl i ent Ext ernal getd i ent(
Wor kf | owExecut i on wor kf | owExecut i on,
Generi cWorkfl owd i ent External genericdient,
Dat aConvert er dataConverter,
St art Wor kf | owOpt i ons options);
}

The Wor kf | ond i ent Fact or y base interface is:

public interface WrkflowdientFactory<T> {
Generi cWorkfl owd i ent getGenericCient();

API Version 2012-01-25
57

AWS Flow Framework for Java Developer Guide
Activity Clients

voi d setCenericdient(CGenericWrkflowdient genericdient);
Dat aConverter getDataConverter();
voi d set Dat aConverter (Dat aConverter dataConverter);
St art Wr kf | owOpt i ons get St art Wor kf | owOpti ons();
voi d set StartWorkfl owOpti ons(StartWrkfl owOptions startWrkfl owOptions);
T getdient();
T getCient(String workflow d);
T getdient (Wrkfl owExecuti on execution);
T getdient (Workfl owExecuti on execution,
St art Wr kf | owOpti ons opti ons);
T getdient (Workfl owExecution execution,
St art Wr kf | owOpt i ons opti ons,
Dat aConverter dataConverter);

You should use these factories to create instances of the client. The factory allows you to configure
the generic client (the generic client should be used for providing custom client implementation)

and the Dat aConvert er used by the client to marshal data, as well as the options used to start

the workflow execution. For more details, see the DataConverters (p. 82) and Child Workflow
Executions (p. 78) sections. The St ar t Wor kf | owOpt i ons contains settings that you can use to
override the defaults—for example, timeouts—specified at registration time. For more details about the
St art Wor kf | owOpt i ons class, see the AWS SDK for Java documentation.

The external client can be used to start workflow executions from outside of the scope of a workflow
while the asynchronous client can be used to start a workflow execution from code within a workflow. In
order to start an execution, you simply use the generated client to call the method that corresponds to
the method annotated with @xecut e in the workflow interface.

The framework also generates implementation classes for the client interfaces. These clients create
and send requests to Amazon SWF to perform the appropriate action. The client version of the
@xecut e method either starts a new workflow execution or creates a child workflow execution using
Amazon SWF APIs. Similarly, the client version of the @i gnal method uses Amazon SWF APIs to
send a signal.

Note: The external workflow client must be configured with the Amazon SWF client and domain. You
can either use the client factory constructor that takes these as parameters or pass in a generic client
implementation that is already configured with the Amazon SWF client and domain.

Note: The framework walks the type hierarchy of the workflow interface and also generates client
interfaces for parent workflow interfaces and derives from them.

Activity Clients

Similar to the workflow client, a client is generated for each interface annotated with @\cti vi ti es.
The generated artifacts include a client side interface and a client class. The generated interface for the
example @\ct i vi ti es interface above (MyActi vi ti es) is as follows:

public interface MyActivitiesCient extends ActivitiesCient

{

Prom se<Integer> activityl();

Prom se<Integer> activityl(Prom se<?>. .. waitFor);
Prom se<l nteger> activityl(ActivitySchedulingOptions optionsQverri de,
Promi se<?>... waitFor);

Prom se<Voi d> activity2(int a);
Prom se<Voi d> activity2(int a,

Prom se<?>... waitFor);
Prom se<Voi d> activity2(int a,

API Version 2012-01-25
58

AWS Flow Framework for Java Developer Guide
Activity Clients

Activi tySchedul i ngOpti ons optionsOverri de,
Prom se<?>... waitFor);

Prom se<Voi d> activity2(Promn se<l nteger> a);

Prom se<Voi d> activity2(Prom se<lnteger> a,
Prom se<?>... waitFor);

Prom se<Voi d> activity2(Prom se<lnteger> a,
Acti vitySchedul i ngOpti ons optionsOverri de,
Prom se<?>... waitFor);

The interface contains a set of overloaded methods corresponding to each activity method in the
@Act i vi ti es interface. These overloads are provided for convenience and allow calling activities
asynchronously. For each activity method in the @\ct i vi t i es interface, the following method
overloads are generated in the client interface:

1. An overload that takes the original arguments as is. The return type of this overload is Pr om se<T>,
where T is the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Prom se<Voi d> activity2(int foo);

This overload should be used when all the arguments of the workflow are available and don't need
to be waited for.

2. An overload that takes the original arguments as is, an argument of type
Acti vi t ySchedul i ngOpt i ons and additional variable arguments of type Pr om se<?>. The
return type of this overload is Pr onmi se<T>, where T is the return type of the original method. For
example:

Original method:

void activity2(int foo);

Generated method:

Prom se<Voi d> acti vity2(

int foo,
Activi tySchedul i ngOpti ons optionsOverri de,
Prom se<?>... waitFor);

This overload should be used when all the arguments of the workflow are available and don't

need to be waited for, when you want to override the default settings, or when you want to wait for
additional Pr om ses to become ready. The variable arguments can be used to pass such additional
Pr om se<?> objects that were not declared as arguments, but you want to wait for before executing
the call.

3. An overload with each argument in the original method replaced with a Pr om se<> wrapper. The
return type of this overload is Pr om se<T>, where T is the return type of the original method. For
example:

Original method:

API Version 2012-01-25
59

AWS Flow Framework for Java Developer Guide
Activity Clients

void activity2(int foo);

Generated method:

Prom se<Voi d> acti vi t y2(Promi se<| nt eger> fo0);

This overload should be used when the arguments to be passed to the activity will be evaluated
asynchronously. A call to this method overload will not execute until all arguments passed to it
become ready.

. An overload with each argument in the original method replaced with a Pr oni se<> wrapper. The
overload also has an additional argument of type Act i vi t ySchedul i ngOpt i ons and variable
arguments of type Pr om se<?>. The return type of this overload is Pr om se<T>, where T is the
return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Prom se<Voi d> acti vity2(
Prom se<lI nt eger > f oo,
ActivitySchedul i ngOpti ons optionsQverri de,
Prom se<?>...waitFor);

This overload should be used when the arguments to be passed to the activity will be evaluated
asynchronously, when you want to override the default settings registered with the type, or when
you want to wait for additional Pr omi ses to become ready. A call to this method overload will not
execute until all arguments passed to it become ready. The generated client class implements this
interface. The implementation of each interface method creates and sends a request to Amazon
SWEF to schedule an activity task of the appropriate type using Amazon SWF APIs.

. An overload that takes the original arguments as is and additional variable arguments of type
Pr omi se<?>. The return type of this overload is Pr om se<T>, where T is the return type of the
original method. For example:

Original method:

void activity2(int foo);

Generated method:

Prom se< Void > activity2(int foo,
Promi se<?>...wait For);

This overload should be used when all the activity's arguments are available and don't need to be
waited for, but you want to wait for other Pr onmi se objects to become ready.

. An overload with each argument in the original method replaced with a Pr om se wrapper and
additional variable arguments of type Pr omi se<?>. The return type of this overload is Pr oni se<T>,
where T is the return type of the original method. For example:

Original method:

API Version 2012-01-25
60

AWS Flow Framework for Java Developer Guide
Scheduling Options

void activity2(int foo);

Generated method:

Prom se<Voi d> acti vity2(
Pr om se<I nt eger> f oo,
Prom se<?>... waitFor);

This overload should be used when all the arguments of the activity will be waited for
asynchronously and you also want to wait for some other Pr oni ses to become ready. A call to this
method overload will execute asynchronously when all Pr omi se objects passed become ready.

The generated activity client also has a protected method corresponding to each activity method,
named {activity nmethod nane}l npl (), that all activity overloads call into. You can override this
method to create mock client implementations. This method takes as arguments: all the arguments

to the original method in Pr om se<> wrappers, Acti vi t ySchedul i ngOpt i ons, and variable
arguments of type Pr onmi se<?>. For example:

Original method:

void activity2(int foo);

Generated method:

Prom se<Voi d> acti vity2l mpl (
Prom se<I nt eger > f oo,
ActivitySchedul i ngOpti ons optionsQverri de,
Prom se<?>...waitFor);

Scheduling Options

The generated activity client allows you to pass in Acti vi t ySchedul i ngOpt i ons as an argument.
The Acti vi t ySchedul i ngOpt i ons structure contains settings that determine the configuration of
the activity task that the framework schedules in Amazon SWF. These settings override the defaults
that are specified as registration options. To specify scheduling options dynamically, create an

Acti vi t ySchedul i ngOpt i ons object, configure it as desired, and pass it to the activity method. In
the following example, we have specified the task list that should be used for the activity task. This will
override the default registered task list for this invocation of the activity.

public class O derProcessi ngWrkfl ow npl inplements O der Processi ngWor kf | ow {

O der Processi ngActivitiesClient activitiesdient
= new OrderProcessingActivitiesOientlnpl();

/1 Workflow entry point
@verride
public void processOrder(Order order) {
Pr om se<Voi d> paynent Processed =
activitiesCient.processPaynent (order);
Activi tySchedul i ngOpti ons schedul i ngOpti ons

API Version 2012-01-25
61

AWS Flow Framework for Java Developer Guide
Dynamic Clients

= new ActivitySchedul i ngOptions();

if (order.getLocation() == "Japan") {
schedul i ngOpt i ons. set TaskLi st (" Taskl i st Asi a");
} else {

schedul i ngOpt i ons. set TaskLi st (" Taskl i st Nort hAnmerica");
}

activitiesdient.shipOder(order,
schedul i ngOpti ons,
paynent Processed) ;

Dynamic Clients

In addition to the generated clients, the framework also provides general purpose clients

—Dynami cWor kf | owd i ent and Dynamni cActi vi t yd i ent —that you can use to dynamically start
workflow executions, send signals, schedule activities, etc. For instance, you may want to schedule

an activity whose type is not known at design time. You can use the Dynamni cActi vi tyd i ent for
scheduling such an activity task. Similarly, you can dynamically schedule a child workflow execution by
using the Dynam cWor kf | owCl i ent . In the following example, the workflow looks up the activity from
a database and uses the dynamic activity client to schedule it:

/1 Wor kfl ow entrypoint
@verride
public void start() {
My/ActivitiesClient client = new M/ActivitiesClientlnpl();
Prom se<ActivityType> activityType
= client.|ookUpActivityFronDB();
Prom se<String> input = client.getlnput(activityType);
schedul eDynani cActivity(activityType,
i nput);
}
@\synchr onous
voi d schedul eDynam cActi vity(Promi se<ActivityType> type,
Promi se<String> input){
Prom se<?>[] args = new Proni se<?>[1];
args[0] = input;
Dynami cActivitiesCient activitydient
= new Dynam cActivitiesCientlnpl();
activitydient.schedul eActivity(type.get(),
ar gs,
nul |,
Voi d. cl ass);

For more details, see the AWS SDK for Java documentation.

Signaling and Canceling Workflow Executions

The generated workflow client has methods corresponding to each signal that can be sent to the
workflow. You can use them from within a workflow to send signals to other workflow executions. This
provides a typed mechanism for sending signals. However, sometimes you may need to dynamically

API Version 2012-01-25
62

AWS Flow Framework for Java Developer Guide
Workflow Implementation

determine the signal name—for example, when the signal name is received in a message. You can
use the dynamic workflow client to dynamically send signals to any workflow execution. Similarly, you
can use the client to request cancellation of another workflow execution.

In the following example, the workflow looks up the execution to send a signal to from a database and
sends the signal dynamically using the dynamic workflow client.

/1 Wor kf | ow ent rypoi nt
public void start()
{
MyActivitiesCient client = new MyActivitiesCientlnpl();
Pr om se<Wor kf | owExecuti on> execution = client.|ookUpExecutionl nDB();
Prom se<String> signal Nane = client.getSignal ToSend();
Prom se<String> input = client.getlnput(signal Nane);
sendDynani cSi gnal (executi on, signal Nane, input);

}

@\synchr onous

voi d sendDynanmi cSi gnal (
Prom se<Wor kf | owExecut i on> executi on,
Prom se<String> si gnal Nane,
Prom se<String> input)

{
Dynam cWor kfl owCl i ent wor kfl owCl i ent
= new Dynanmi cWor kfl owCl i ent | npl (execution.get());
hject[] args = new Prom se<?>[1];
args[0] = input.get();
wor kf | owd i ent . si gnal Wor kf | owExecut i on(si gnal Nane. get (), args);
}

Workflow Implementation

In order to implement a workflow, you write a class that implements the desired @\or kf | owinterface.
For instance, the example workflow interface (MyWor kf | ow) can be implemented like so:

public class MyWI npl i npl enents MyWor kf | ow
{
MyActivitiesCient client = new MyActivitiesCientlnpl();
@verride
public void start WWF(int a, String b){
Prom se<lnteger> result = client.activityl();
client.activity2(result);
}
@verride
public void signal1(int a, int b, String c){
/' Process signal
client.activity2(a + b);

The @xecut e method in this class is the entry point of the workflow logic. Since the framework uses
replay to reconstruct the object state when a decision task is to be processed, a new object is created
for each decision task.

API Version 2012-01-25
63

AWS Flow Framework for Java Developer Guide
Decision Context

The use of Prom se<T> as a parameter is disallowed in the @xecut e method within a @\br kf | ow
interface. This is done because making an asynchronous call is purely a decision of the caller.

The workflow implementation itself doesn't depend on whether the invocation was synchronous

or asynchronous. Therefore, the generated client interface has overloads that take Pr omi se<T>
parameters so that these methods can be called asynchronously.

The return type of an @xecut e method can only be void or Pr om se<T>. Note that a return type of
the corresponding external client is void and not Pr onmi se<>. Since the external client is not intended
to be used from the asynchronous code, the external client does not return Pr om se objects. For
getting results of workflow executions stated externally, you can design the workflow to update state in
an external data store through an activity. Amazon SWF's visibility APIs can also be used to retrieve
the result of a workflow for diagnostic purposes. It is not recommended that you use the visibility
APIs to retrieve results of workflow executions as a general practice since these API calls may get
throttled by Amazon SWF. The visibility APIs require you to identify the workflow execution using a
Wor kf | owExecut i on structure. You can get this structure from the generated workflow client by
calling the get Wor kf | owExecut i on method. This method will return the Wor kf | owExecut i on
structure corresponding to the workflow execution that the client is bound to. See the Amazon Simple
Workflow Service API Reference for more details about the visibility APIs.

When calling activities from your workflow implementation, you should use the generated activities
client. Similarly, to send signals, use the generated workflow clients.

Decision Context

The framework provides an ambient context anytime workflow code is executed by the framework. This
context provides context-specific functionality that you may access in your workflow implementation,
such as creating a timer. See the section on Execution Context (p. 76) for more information.

Exposing Execution State

Amazon SWF allows you to add custom state in the workflow history. The latest state reported by

the workflow execution is returned to you through visibility calls to the Amazon SWF service and in
the Amazon SWF console. For example, in an order processing workflow, you may report the order
status at different stages like 'order received', 'order shipped’, and so on. In the AWS Flow Framework
for Java, this is accomplished through a method on your workflow interface that is annotated with the
@zet St at e annotation. When the decider is done processing a decision task, it calls this method to
get the latest state from the workflow implementation. Besides visibility calls, the state can also be
retrieved using the generated external client (which uses the visibility API calls internally).

The following example demonstrates how to set the execution context.

@or kf | ow

@\or kf | owRegi strati onOpti ons(defaul t ExecutionStart ToC oseTi meout Seconds = 60,
def aul t TaskSt art Tod oseTi neout Seconds = 10)

public interface Periodi cWrkfl ow {

@xecute(version = "1.0")
voi d periodi cWrkflow);

@t St at e
String getState();

}

@\ctivities(version = "1.0")

@\ctivityRegi strationOptions(defaul t TaskSchedul eToSt art Ti neout Seconds = 300,
def aul t TaskSt art Tod oseTi neout Seconds = 3600)

public interface PeriodicActivity {

API Version 2012-01-25
64

http://docs.aws.amazon.com/amazonswf/latest/apireference/
http://docs.aws.amazon.com/amazonswf/latest/apireference/

AWS Flow Framework for Java Developer Guide
Exposing Execution State

void activityl();
}
public class Periodi cWrkflow npl inplenments Periodi cWorkfl ow {

private DecisionContextProvider contextProvider
= new Deci si onCont ext Provi der | npl ();

private Workfl owd ock cl ock
= cont ext Provi der. get Deci si onCont ext (). get Wr kf | owC ock() ;

private Periodi cActivitylient activityCient
= new PeriodicActivityCientlnpl();

private String state;

@verride
public void periodi cWorkflow() {
state = "Just Started";
cal | Peri odi cActivity(0);
}
@\synchronous
private void call PeriodicActivity(int count,
Prom se<?>... waitFor)
{
if(count == 100) {
state = "Finished Processing";
return;
}
/1 call activity
activitydient.activityl();
/1 Repeat the activity after 1 hour.
Prom se<Voi d> tinmer = cl ock. createTi ner(3600);
state = "Waiting for tiner to fire. Count = "+count;
cal | Peri odi cActivity(count+1, tinmer);
}
@verride

public String getState() {
return state;

}
}
public class PeriodicActivitylnmpl inplenments PeriodicActivity
{
@verride

public static void activityl()
{

}

}

The generated external client can be used to retrieve the latest state of the workflow execution at any
time.

API Version 2012-01-25
65

AWS Flow Framework for Java Developer Guide
Workflow Locals

Peri odi cWor kfl ond i ent External client
= new Peri odi cWor kfl owd i ent Ext ernal Factorylnpl ().getdient();
Systemout.println(client.getState());

In the above example, the execution state is reported at various stages. When the workflow
instance starts, peri odi cWor kf | ow reports the initial state as 'Just Started'. Each call to

cal | Peri odi cActi vi ty then updates the workflow state. Once acti vi t y1 has been called 100
times, the method returns and the workflow instance completes.

Workflow Locals

Sometimes, you may have a need for the use of static variables in your workflow implementation. For
example, you may want to store a counter that is to be accessed from various places (possibly different
classes) in the implementation of the workflow. However, you cannot rely on static variables in your
workflows because static variables are shared across threads, which is problematic because a worker
may process different decision tasks on different threads at the same time. Alternatively, you may store
such state in a field on the workflow implementation, but then you will need to pass the implementation
object around. To address this need, the framework provides a Wor kf | owExecut i onLocal <?> class.
Any state that needs to have static variable like semantics should be kept as an instance local using
Wor kf | owExecut i onLocal <?>. You can declare and use a static variable of this type. For example,
in the following snippet, a Wor kf | owExecut i onLocal <Stri ng> is used to store a user name.

public class MyWFI npl inpl ements MYWF {
public static Workfl owExecutionLocal <String> usernane
= new Wor kfl owExecuti onLocal <String>();

@verride

public void start(String usernane){
t hi s. user nane. set (user nane) ;
Processor p = new Processor();
p. updat eLast Logi n() ;
p. greet User ();

}

public static Workfl owExecuti onLocal <String> getUsernane() {
return usernane;

}

public static void setUsernane(Wrkfl owExecuti onLocal <Stri ng> username) {
M/WFI npl . user nane = user nane;
}
}

public class Processor {
voi d updat eLast Logi n(){
UserActivitiesCient ¢ = new UserActivitiesCientlnpl();
c.refreshlLast Logi n(MyWFI npl . get User nane() . get());
}
voi d greetUser(){
GreetingActivitiesOient ¢ = new GreetingActivitiesCientlnpl();
c. greet User (MyWFI npl . get Usernane().get());
}
}

API Version 2012-01-25
66

AWS Flow Framework for Java Developer Guide
Activity Implementation

Activity Implementation

Activities are implemented by providing an implementation of the @ct i vi ti es interface. The AWS
Flow Framework for Java uses the activity implementation instances configured on the worker to
process activity tasks at run time. The worker automatically looks up the activity implementation of the

appropriate type.

You can use properties and fields to pass resources to activity instances, such as database
connections. Since the activity implementation object may be accessed from multiple threads, shared
resources must be thread safe.

Note that the activity implementation does not take parameters of type Pr onmi se<> or return objects of
that type. This is because the implementation of the activity should not depend on how it was invoked
(synchronously or asynchronously).

The activities interface shown before can be implemented like this:

public class MyActivitieslnpl inplenents M/Activities {

@verride

@manual Acti vityConpl etion

public int activityl(){
//inplementation

}

@verride
public void activity2(int foo){
/1inplenmentation

}

A thread local context is available to the activity implementation that can be used to retrieve the

task object, data converter object being used, etc. The current context can be accessed through
Acti vi t yExecuti onCont ext Provi der. get Acti vi t yExecuti onCont ext () . For more details,
see the AWS SDK for Java documentation for Act i vi t yExecut i onCont ext and the section
Execution Context (p. 76).

Manually Completing Activities

The @anual Acti vi t yConpl et i on annotation in the example above is an optional annotation.
It is allowed only on methods that implement an activity and is used to configure the activity to
not automatically complete when the activity method returns. This could be useful when you want
to complete the activity asynchronously—for example, manually after a human action has been
completed.

By default, the framework considers the activity completed when your activity method returns.

This means that the activity worker reports activity task completion to Amazon SWF and provides
it with the results (if any). However, there are use cases where you don't want the activity task to
be marked completed when the activity method returns. This is especially useful when you are
modeling human tasks. For example, the activity method may send an email to a person who must
complete some work before the activity task is completed. In such cases, you can annotate the
activity method with @vanual Acti vi t yConpl et i on annotation to tell the activity worker that

it should not complete the activity automatically. In order to complete the activity manually, you

API Version 2012-01-25
67

AWS Flow Framework for Java Developer Guide
Manually Completing Activities

can either use the Manual Acti vi t yConpl eti onC i ent provided in the framework or use the
RespondAct i vi t yTaskConpl et ed method on the Amazon SWF Java client provided in the Amazon
SWF SDK. For more details, see the AWS SDK for Java documentation.

In order to complete the activity task, you need to provide a task token. The task

token is used by Amazon SWF to uniquely identify tasks. You can access this

token from the Acti vi t yExecut i onCont ext in your activity implementation.

You must pass this token to the party that is responsible for completing the task.

This token can be retrieved from the Act i vi t yExecut i onCont ext by calling

Acti vit yExecuti onCont ext Provi der. get Acti vi t yExecuti onCont ext (). get TaskToken() .

The get Nane activity of the Hello World example can be implemented to send an email asking
someone to provide a greeting message:

@mnual Acti vi t yConpl eti on
@verride
public String getName() throws InterruptedException {
ActivityExecuti onCont ext executionCont ext
= cont ext Provi der. get Acti vit yExecuti onCont ext ();
String taskToken = executi onCont ext. get TaskToken();
sendEnai | ("abc@yz. cont',
"Pl ease provide a nane for the greeting message and close task with
token: " + taskToken);
return "This will not be returned to the caller";

The following code snippet can be used to provide the greeting and close the task by using the
Manual Acti vi t yConpl eti onCl i ent . Alternatively, you can also fail the task:

public class Conpl eteActivityTask {
public void conpl eteGet NameActivity(String taskToken) {

AmazonSi npl eWor kf | ow swf d i ent
= new AmazonSi npl eWorkflowC ient(...); // use AWS access keys
Manual Acti vi t yConpl eti ond i ent Fact ory nmanual Conpl eti onCl i ent Factory
= new Manual Acti vi tyConpl etiond i entFactoryl npl (swfCient);
Manual Acti vi tyConpl eti ond i ent manual Conpl eti onCl i ent
= nanual Conpl eti onCd i ent Factory. getCient(taskToken);
String result = "Hello World!'";
nmanual Conpl eti ond i ent.conplete(result);

}

public void fail Get NameActivity(String taskToken, Throwable failure) {
AmazonSi npl eWor kf | ow swf d i ent
= new AmazonSi npl eWorkflowC ient(...); // use AWS access keys
Manual Acti vi t yConpl eti ond i ent Fact ory nmanual Conpl eti onCl i ent Factory
= new Manual Acti vi tyConpl etiond i entFactoryl npl (swfCient);
Manual Acti vit yConpl etionClient manual Conpl etionC i ent
= nanual Conpl eti onCd i ent Factory. getC i ent(taskToken);
manual Conpl etionClient.fail (failure);

API Version 2012-01-25
68

AWS Flow Framework for Java Developer Guide
Implementing Lambda Tasks

Implementing AWS Lambda Tasks

Topics
e About AWS Lambda (p. 69)
¢ Benefits and Limitations of using Lambda Tasks (p. 69)
¢ Using Lambda tasks in your AWS Flow Framework for Java workflows (p. 69)
¢ View the HelloLambda sample (p. 72)

About AWS Lambda

AWS Lambda is a fully managed compute service that runs your code in response to events generated
by custom code or from various AWS services such as Amazon S3, DynamoDB, Amazon Kinesis,
Amazon SNS, and Amazon Cognito. For more information about Lambda, see the AWS Lambda
Developer Guide.

Amazon Simple Workflow Service provides a Lambda task so that you can run Lambda functions in
place of, or alongside traditional Amazon SWF activities.

Important

Your AWS account will be charged for Lambda executions (requests) executed by Amazon
SWF on your behalf. For details about Lambda pricing, see http://aws.amazon.com/lambda/
pricing/.

Benefits and Limitations of using Lambda Tasks

There are a number of benefits of using Lambda tasks in place of a traditional Amazon SWF activity:

* Lambda tasks don’t need to be registered or versioned like Amazon SWF activity types.
¢ You can use any existing Lambda functions that you've already defined in your workflows.

¢ Lambda functions are called directly by Amazon SWF; there is no need for you to implement a
worker program to execute them as you must do with traditional activities.

¢ Lambda provides you with metrics and logs for tracking and analyzing your function executions.

There are also a number of limitations regarding Lambda tasks that you should be aware of:

¢ Lambda tasks can only be run in AWS regions that provide support for Lambda. See Lambda
Regions and Endpoints in the Amazon Web Services General Reference for details about the
currently-supported regions for Lambda.

¢ Lambda tasks are currently supported only by the base SWF HTTP API and in the AWS Flow
Framework for Java. There is currently no support for Lambda tasks in the AWS Flow Framework for
Ruby.

Using Lambda tasks in your AWS Flow Framework
for Java workflows

There are three requirements to use Lambda tasks in your AWS Flow Framework for Java workflows:

API Version 2012-01-25
69

http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/
http://aws.amazon.com/lambda/pricing/
http://aws.amazon.com/lambda/pricing/
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

AWS Flow Framework for Java Developer Guide
Using Lambda tasks in your AWS
Flow Framework for Java workflows

¢ A Lambda function to execute. You can use any Lambda function that you've defined. For more
information about how to create Lambda functions, see the AWS Lambda Developer Guide.

* An IAM role that provides access to execute Lambda functions from your Amazon SWF workflows.
¢ Code to schedule the Lambda task from within your workflow.

Set up an IAM role

Before you can invoke Lambda functions from Amazon SWF you must provide an IAM role that
provides access to Lambda from Amazon SWF. You can either:

» choose a pre-defined role, AWSLambdaRole, to give your workflows permission to invoke any
Lambda function associated with your account.

« define your own policy and associated role to give workflows permission to invoke particular Lambda
functions, specified by their Amazon Resource Names (ARNS).

Providing Amazon SWF with access to invoke any Lambda role

You can use the pre-defined role, AWSLambdaRole, to give your Amazon SWF workflows the ability to
invoke any Lambda function associated with your account.

To use AWSLambdaRole to give Amazon SWF access to invoke Lambda functions

Open the Amazon IAM console.

Click Roles, then Create New Role.

Give your role a name, such as swf - | anbda and click Next Step.
Under AWS Service Roles, choose Amazon SWF, and click Next Step.
On the Attach Policy screen, choose AWSLambdaRole from the list.
Click Next Step and then Create Role once you've reviewed the role.

o0k wdRE

Defining an IAM role to provide access to invoke a specific Lambda function

If you want to provide access to invoke a specific Lambda function from your workflow, you will need to
define your own IAM policy.

To create an IAM policy to provide access to a particular Lambda function

1. Open the Amazon IAM console.
2. Click Paolicies, then Create Policy.

3. Choose Copy an AWS Managed Policy and select AWSLambdaRole from the list. A policy will
be generated for you. Optionally edit its name and description to suit your needs.

4. In the Resource field of the Policy Document, add the ARN of your Lambda function(s). For

example:
{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Alow',
"Action": [
"I anbda: | nvokeFuncti on"

1.

"Resource": [

API Version 2012-01-25
70

http://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Flow Framework for Java Developer Guide
Using Lambda tasks in your AWS
Flow Framework for Java workflows

"arn: aws: | anbda: us-
east-1:111111000000: functi on: hel | o_| anbda_f uncti on"
]
}
]
}

Note
For a complete description of how to specify resources in an IAM role, see Overview of
IAM Policies in Using IAM.

5. Click Create Policy to finish creating your policy.

You can then select this policy when creating a new IAM role, and use that role to give invoke
access to your Amazon SWF workflows. This procedure is very similar to creating a role with the
AWSLambdaRole policy. instead, choose your own policy when creating the role.

To create a Amazon SWF role using your Lambda policy

Open the Amazon IAM console.

Click Roles, then Create New Role.

Give your role a name, such as swf - | anbda- f uncti on and click Next Step.

Under AWS Service Roles, choose Amazon SWF, and click Next Step.

On the Attach Policy screen, choose your Lambda function-specific policy from the list.
Click Next Step and then Create Role once you've reviewed the role.

o0k wdRE

Schedule a Lambda task for execution

Once you've defined an IAM role that allows you to invoke Lambda functions, you can schedule them
for execution as part of your workflow.

Note
This process is fully demonstrated by the HelloLambda sample (p. 72) in the AWS SDK for
Java.

To schedule a Lambda task for execution

1. Inyour workflow implementation, get an instance of LarbdaFuncti onCl i ent by calling
get LanbdaFuncti ond i ent () on a Deci si onCont ext instance.

/'l Get a LanmbdaFunctiondient instance
Deci si onCont ext Provi der deci si onProvi der = new
Deci si onCont ext Provi der | npl () ;
Deci si onCont ext deci si onCont ext = deci si onProvi der. get Deci si onCont ext () ;
LanmbdaFunctionCl i ent | anbdaCient =
deci si onCont ext . get LanbdaFuncti onCd i ent();

2. Schedule the task using the schedul eLanbdaFuncti on() method on the
LanmbdaFuncti ond i ent, passing it the name of the Lambda function that you created and any
input data for the Lambda task.

/1 Schedul e the Lanbda function for execution, using your IAMrole for
access.
String | anbda_functi on_name = "The nanme of your Lanmbda function.";

API Version 2012-01-25
71

http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
https://console.aws.amazon.com/iam/

AWS Flow Framework for Java Developer Guide
View the HelloLambda sample

String | anbda_function_input = "I nput data for your Lanbda task.";

| anbdad i ent . schedul eLanbdaFuncti on(| anbda_f uncti on_nane,
| ambda_function_i nput);

3. In your workflow execution starter, add the IAM lambda role to your default workflow options by
using St art Wor kf | owOpt i ons. wi t hLambdaRol e(), and then pass the options when starting
the workflow.

/1 Workflow client classes are generated for you when you use the
@\or kf | ow
/1 annotation on your workflow interface declaration.
MyWor kf | ond i ent Ext ernal Factory clientFactory =
new MyWor kf | owCl i ent Ext er nal Fact oryl npl (sdk_swf _client, swf_domain);

MyWor kf | ond i ent Ext ernal workflow client = clientFactory.getdient();

/1 Gve the ARN of an IAMrole that allows SW to i nvoke Lanbda functions
on

/1 your behal f.

String lanbda_iamrole = "arn:aws:iam:111111000000: rol e/ swf _| anbda_r ol e";

St art Wor kf | owOpt i ons wor kfl ow_options =
new St artWrkfl owOpti ons().w thLanbdaRol e(| anbda_i am rol e);

/1 Start the workfl ow execution
wor kf |l ow_client. hell oWorl d("User", workflow options);

View the HelloLambda sample

A sample that provides an implementation of a workflow that uses a Lambda task is provided in the
AWS SDK for Java. To view and/or run it, download the source.

A full description of how to build and run the HelloLambda sample is provided in the README file
provided with the AWS Flow Framework for Java samples.

Running Programs Written with the AWS Flow
Framework for Java

Topics
« WorkflowWorker (p. 73)
« ActivityWorker (p. 74)
¢ Worker Threading Model (p. 74)
¢ Worker Extensibility (p. 75)

The framework provides worker classes to initialize the AWS Flow Framework for Java runtime and
communicate with Amazon SWF. In order to implement a workflow or an activity worker, you must
create and start an instance of a worker class. These worker classes are responsible for managing
ongoing asynchronous operations, invoking asynchronous methods that become unblocked, and

API Version 2012-01-25
72

http://aws.amazon.com/code/3015904745387737

AWS Flow Framework for Java Developer Guide
WorkflowWorker

communicating with Amazon SWF. They can be configured with workflow and activity implementations,
the number of threads, the task list to poll, and so on.

The framework comes with two worker classes, one for activities and one for workflows. In order to run
the workflow logic, you use the Wor kf | owMér ker class. Similarly for activities the Acti vi t yWor ker
class is used. These classes automatically poll Amazon SWF for activity tasks and invoke the
appropriate methods in your implementation.

The following example shows how to instantiate a Wor kf | owWér ker and start polling for tasks:

AmazonSi npl eWor kfl ow swfd i ent = new
AmazonSi npl eWor kf | owCl i ent (awsCr edenti al s);

Wor kf | owdr ker wor ker = new Wor kf | owwor ker (swfd i ent, "domai nl",
"tasklistl");

/1 Add workflow i npl ementation types

wor ker . addWor kf | owl npl enent ati onType(MyWor kf | owl npl . cl ass) ;

/1 Start worker
wor ker.start();

The basic steps to create an instance of the Act i vi t yWor ker and starting polling for tasks are as
follows:

AmazonSi npl eWor kf | ow swf C i ent
= new AmazonSi npl eWor kfl owd i ent (awsCr edenti al s);
ActivityWworker worker = new ActivityWrker(swfdient,
"donmi n1",
"tasklistl");
wor ker . addActiviti esl npl enentati on(new MyActivitieslinpl());

/1 Start worker
wor ker.start();

When you want to shut down an activity or decider, your application should shut down the instances of
the worker classes being used as well as the Amazon SWF Java client instance. This will ensure that
all resources used by the worker classes are properly released.

wor ker . shut down() ;
wor ker . awai t Termi nation(1, TineUnit.M NUTES);

In order to start an execution, simply create an instance of the generated external client and call the
@Execut e method.

MWor kf | owd i ent Ext er nal Factory factory = new
MyWor kf | owd i ent Ext er nal Fact oryl npl () ;

MWor kfl owC i ent External client = factory.getdient();
client.start();

WorkflowWorker

As the name suggests, this worker class is intended for use by the workflow implementation. It is
configured with a task list and the workflow implementation type. The worker class runs a loop to poll

API Version 2012-01-25
73

AWS Flow Framework for Java Developer Guide
ActivityWorker

for decision tasks in the specified task list. When a decision task is received, it creates an instance of
the workflow implementation and calls the @xecut e method to process the task.

ActivityWorker

For implementing activity workers, you can use the Acti vi t yWor ker class to conveniently poll a task
list for activity tasks. You configure the activity worker with activity implementation objects. This worker
class runs a loop to poll for activity tasks in the specified task list. When an activity task is received, it
looks up the appropriate implementation that you provided and calls the activity method to process the
task. Unlike the Wor kf | owMébr ker , which calls the factory to create a new instance for every decision
task, the Acti vi t yWor ker simply uses the object you provided.

The Acti vi t yWor ker class uses the AWS Flow Framework for Java annotations to determine the
registration and execution options.

Worker Threading Model

In the AWS Flow Framework for Java, the embodiment of an activity or decider is an instance of the
worker class. Your application is responsible for configuring and instantiating the worker object on each
machine and process that should act as a worker. The worker object then automatically receives tasks
from Amazon SWF, dispatches them to your activity or workflow implementation and reports results to
Amazon SWF. It is possible for a single workflow instance to span many workers. When Amazon SWF
has one or more pending activity tasks, it assigns a task to the first available worker, then the next one,
and so on. This makes it possible for tasks belonging to the same workflow instance to be processed
on different workers concurrently.

Amazon SWF °*

Ve 7

= =
M

Activity worker Decider

ALy Wi Rei (W

ALY WUl R e

Moreover, each worker can be configured to process tasks on multiple threads. This means that the
activity tasks of a workflow instance can run concurrently even if there is only one worker.

Decision tasks behave similarly with the exception that Amazon SWF guarantees that for a given
workflow execution only one decision can be executed at a time. A single workflow execution will
typically require multiple decision tasks; hence, it may end up executing on multiple processes and
threads as well. The decider is configured with the type of the workflow implementation. When a
decision task is received by the decider, it creates an instance (object) of the workflow implementation.
The framework provides an extensible factory pattern for creating these instances. The default
workflow factory creates a new object every time. You can provide custom factories to override this
behavior.

API Version 2012-01-25
74

AWS Flow Framework for Java Developer Guide
Worker Extensibility

Contrary to deciders, which are configured with workflow implementation types, activity workers are
configured with instances (objects) of the activity implementations. When an activity task is received by
the activity worker, it is dispatched to the appropriate activity implementation object.

Warkflow
_— Implementation
instances

Threid 1 Threid 2 Thl%ad 2 Th+ad 1 Thread 2 ThrLad 3

Activity warker Decider

The workflow worker maintains a single pool of threads and executes the workflow on the same

thread that was used to poll Amazon SWF for the task. Since activities are long running (at least when
compared to the workflow logic), the activity worker class maintains two separate pools of threads; one
for polling Amazon SWF for activity tasks and the other for processing tasks by executing the activity
implementation. This allows you to configure the number of threads to poll for tasks separate from the
number of threads to execute them. For example, you can have a small number of threads to poll and
a large number of threads to execute the tasks. The activity worker class polls Amazon SWF for a task
only when it has a free poll thread as well as a free thread to process the task.

This threading and instancing behavior implies that:

1. Activity implementations must be stateless. You should not use instance variables to store
application state in activity objects. You may, however, use fields to store resources such as
database connections.

2. Activity implementations must be thread safe. Since the same instance may be used to process
tasks from different threads at the same time, access to shared resources from the activity code
must be synchronized.

3. Workflow implementation can be stateful, and instance variables may be used to store state. Even
though a new instance of the workflow implementation is created to process each decision task, the
framework will ensure that state is properly recreated. However, the workflow implementation must
be deterministic. See the section Under the Hood (p. 115) for more details.

4. Workflow implementations don't need to be thread safe when using the default factory. The default
implementation ensures that only one thread uses an instance of the workflow implementation at a
time.

Worker Extensibility

The AWS Flow Framework for Java also contains a couple of low-level worker classes that give you
fine-grained control as well as extensibility. Using them, you can completely customize workflow and
activity type registration and set factories for creating implementation objects. These workers are
Gener i cWor kf | owodr ker and Generi cActi vi t yWorker.

The Generi cWor kf | owWér ker can be configured with a factory for creating workflow

definition factories. The workflow definition factory is responsible for creating instances of the
workflow implementation and for providing configuration settings such as registration options.
Under normal circumstances, you should use the Wor kf | owWér ker class directly. It will
automatically create and configure implementation of the factories provided in the framework,
PQIOWr kf | owDef i ni ti onFact or yFact ory and PQIOWr kf | owDef i ni ti onFactory. The
factory requires that the workflow implementation class must have a no argument constructor. This
constructor is used to create instances of the workflow object at run time. The factory looks at the

API Version 2012-01-25
75

AWS Flow Framework for Java Developer Guide
Execution Context

annotations you used on the workflow interface and implementation to create appropriate registration
and execution options.

You may provide your own implementation of the factories by implementing

Wor kf | owDef i ni ti onFact ory, Wor kf | owDef i ni ti onFact oryFact ory, and

Wor kf | owDef i ni ti on. The Wor kf | owDef i ni ti on class is used by the worker class to dispatch
decision tasks and signals. By implementing these base classes, you can completely customize the
factory and the dispatch of requests to the workflow implementation. For example, you can use these
extensibility points to provide a custom programming model for writing workflows, for instance, based
on your own annotations or generating it from WSDL instead of the code first approach used by the
framework. In order to use your custom factories, you will have to use the Gener i c\Wor kf | owWdr ker
class. For more details about these classes, see the AWS SDK for Java documentation.

Similarly, Generi cActi vi t yWor ker allows you to provide a custom activity implementation factory.
By implementing the Acti vi t yl npl ement at i onFact ory and Acti vi tyl npl ement at i on classes
you can completely control activity instantiation as well as customize registration and execution
options. For more details of these classes, see the AWS SDK for Java documentation.

Execution Context

Topics
¢ Decision Context (p. 76)
¢ Activity Execution Context (p. 78)

The framework provides an ambient context to workflow and activity implementations. This
context is specific to the task being processed and provides some utilities that you can use in your
implementation. A context object is created every time a new task is processed by the worker.

Decision Context

When a decision task is executed, the framework provides the context to workflow implementation
through the Deci si onCont ext class. Deci si onCont ext provides context-sensitive information like
workflow execution run Id and clock and timer functionality.

Accessing DecisionContext in Workflow Implementation

You can access the Deci si onCont ext in your workflow implementation using the

Deci si onCont ext Provi der I npl class. Alternatively, you can inject the context in a field or property
of your workflow implementation using Spring as shown in the Testability and Dependency Injection
section.

Deci si onCont ext Provi der cont ext Provi der
= new Deci si onCont ext Provi der | npl ();
Deci si onCont ext context = context Provi der. get Deci si onCont ext () ;

Creating a Clock and Timer

The Deci si onCont ext contains a property of type Wor kf | owd ock that provides timer and clock
functionality. Since the workflow logic needs to be deterministic, you should not directly use the system
clock in your workflow implementation. The curr ent Ti neM | | s method on the Wor kf | owd ock
returns the time of the start event of the decision being processed. This ensures that you get the same
time value during replay, hence, making your workflow logic deterministic.

Wor kf | owd ock also has a cr eat eTi mer method which returns a Pr omi se object that becomes
ready after the specified interval. You can use this value as a parameter to other asynchronous

API Version 2012-01-25
76

AWS Flow Framework for Java Developer Guide
Decision Context

methods to delay their execution by the specified period of time. This way you can effectively schedule
an asynchronous method or activity for execution at a later time.

The example in the following listing demonstrates how to periodically call an activity.

@or kf | ow

@\or kf | owRegi strati onOpti ons(defaul t ExecutionStartToC oseTi meout Seconds = 60,
def aul t TaskSt art Tod oseTi neout Seconds = 10)

public interface Periodi cWrkfl ow {

@xecute(version = "1.0")
voi d periodi cWorkfl ow);
}

@\ctivities(version = "1.0")
@\ctivityRegi strationOptions(defaul t TaskSchedul eToSt art Ti neout Seconds = 300,
def aul t TaskSt art Tod oseTi neout Seconds = 3600)
public interface PeriodicActivity {
void activityl();
}

public class Periodi cWrkflow npl inplenments Periodi cWrkfl ow {

private DecisionContextProvider contextProvider
= new Deci si onCont ext Provi der | npl ();

private Workfl owd ock cl ock
= cont ext Provi der. get Deci si onCont ext (). get Wr kf | owCd ock() ;

@verride
public void periodi cWorkflow() {
cal | Peri odi cActivity(0);

}
@\synchronous
private void call PeriodicActivity(int count,
Prom se<?>... waitFor) ({
if (count == 100) {
return;
}
Periodi cActivityCient client = new PeriodicActivitydientlnpl();
/1 call activity
Prom se<Voi d> activityConpletion = client.activityl();
Prom se<Voi d> tinmer = cl ock. createTi ner(3600);
/! Repeat the activity either after 1 hour or after previous activity
run
/1 if it takes longer than 1 hour
cal | Peri odi cActivity(count + 1, tiner, activityConpletion);
}

public class PeriodicActivitylnmpl inplenments PeriodicActivity

{
@verride
public void activityl() {

API Version 2012-01-25
77

AWS Flow Framework for Java Developer Guide
Activity Execution Context

In the above listing, the cal | Peri odi cActi vi t y asynchronous method calls acti vi t y1 and then
creates a timer using the current AsyncDeci si onCont ext . It passes the returned Pr oni se as

an argument to a recursive call to itself. This recursive call waits until the timer fires (1 hour in this
example) before executing.

Activity Execution Context

Just as the Deci si onCont ext provides context information when a decision task is being
processed, Acti vi t yExecut i onCont ext provides similar context information when

an activity task is being processed. This context is available to your activity code through
Acti vi t yExecuti onCont ext Provi der | npl class.

Acti vi t yExecuti onCont ext Provi der provi der
= new Acti vityExecutionCont ext Providerl npl ();
ActivityExecutionContext aec = provider.getActivityExecutionContext();

Using Act i vi t yExecut i onCont ext , you can perform the following:

Heartbeat a Long Running Activity

If the activity is long running, it must periodically report its progress to Amazon SWF to let it

know that the task is still making progress. In the absence of such a heartbeat, the task may

timeout if a task heartbeat timeout was set at activity type registration or while scheduling the

activity. In order to send a heartbeat, you can use the r ecor dActi vi t yHear t beat method on

Acti vi t yExecut i onCont ext . Heartbeat also provides a mechanism for canceling ongoing activities.
See the Error Handling (p. 96) section for more details and an example.

Get Details of the Activity Task

If you want, you can get all the details of the activity task that were passed by Amazon SWF when
the executor got the task. This includes information regarding the inputs to the task, task type, task
token, etc. If you want to implement an activity that is manually completed—for example, by a human
action—then you must use the Acti vi t yExecut i onCont ext to retrieve the task token and pass it
to the process that will eventually complete the activity task. See the section on Manually Completing
Activities (p. 67) for more details.

Get the Amazon SWF Client Object that is Being Used by the
Executor

The Amazon SWF client object being used by the executor can be retrieved by calling get Ser vi ce
method on Act i vi t yExecut i onCont ext . This is useful if you want to make a direct call to the
Amazon SWF service.

Child Workflow Executions

In the examples so far, we have started workflow execution directly from an application. However, a
workflow execution may be started from within a workflow by calling the workflow entry point method
on the generated client. When a workflow execution is started from the context of another workflow

API Version 2012-01-25
78

AWS Flow Framework for Java Developer Guide
Child Workflow Executions

execution, it is called a child workflow execution. This allows you to refactor complex workflows into
smaller units and potentially share them across different workflows. For example, you can create a
payment processing workflow and call it from an order processing workflow.

Semantically, the child workflow execution behaves the same as a standalone workflow except for the
following differences:

1. When the parent workflow terminates due to an explicit action by the user—for example, by calling
the Ter mi nat eWbr kf | owExecut i on Amazon SWF API, or it is terminated due to a timeout—then
the fate of the child workflow execution will be determined by a child policy. You can set this child
policy to terminate, cancel, or abandon (keep running) child workflow executions.

2. The output of the child workflow (return value of the entry point method) can be used by the parent
workflow execution just like the Pr om se<T> returned by an asynchronous method. This is different
from standalone executions where the application must get the output by using Amazon SWF APIs.

In the following example, the Or der Pr ocessor workflow creates a Paynent Pr ocessor child
workflow:

@or kf | ow

@\or kf | owRegi strati onOpti ons(defaul t ExecutionStart ToC oseTi meout Seconds = 60,
def aul t TaskSt art Tod oseTi neout Seconds = 10)

public interface O derProcessor {

@xecute(version = "1.0")
voi d processOrder (Order order);

}

public class O derProcessorlnpl inplenents O derProcessor {
Paynent Processor d i ent Factory factory
= new Payment Processor C i ent Factoryl mpl ();

@verride

public void processOrder(Order order) {
float anpbunt = order. get Anount ();
Cardl nfo cardinfo = order. getCardl nfo();

Payment ProcessorClient chil dwrkflowdient = factory.getdient();
chi |l dwor kf Il owd i ent. processPaynent (anount, cardl nfo);

}

@or kf | ow

@\or kf | owRegi strati onOpti ons(defaul t ExecutionStartToC oseTi meout Seconds = 60,
def aul t TaskSt art Tod oseTi neout Seconds = 10)

public interface Paynent Processor {

@xecute(version = "1.0")
voi d processPaynent (fl oat anount, Cardlnfo cardlnfo);

}

public class Paynent Processorl npl inplenments Paynent Processor {
Paynent ActivitiesOient activitiesOient = new
Payment ActivitiesCientlnpl();

@verride
public void processPaynent (fl oat anount, Cardlnfo cardlnfo) {

API Version 2012-01-25
79

AWS Flow Framework for Java Developer Guide
Continuous Workflows

Pr om se<Paynent Type> payType =
activitiesCient.getPaynent Type(cardl nfo);

swi tch(payType.get()) {

case Visa:
activitiesCient.processVisa(amunt, cardlnfo);
br eak;

case Anex:
activitiesCient.processAmex(amount, cardlnfo);
br eak;

def aul t:
t hr ow new UnSupport edPaynent TypeExcepti on();

}

}

@\ctivities(version = "1.0")
@\ctivityRegi strationOptions(defaul t TaskSchedul eToSt art Ti neout Seconds = 3600,
def aul t TaskSt art Tod oseTi neout Seconds = 3600)
public interface PaynentActivities {
Paynent Type get Paynent Type(Cardl nfo cardl nfo);
voi d processVisa(float amount, Cardlnfo cardlnfo);

voi d processAmex(float amount, Cardlnfo cardlnfo);

Continuous Workflows

In some use cases, you may need a workflow that executes forever or runs for a long duration, for
example, a workflow that monitors the health of a server fleet. Since Amazon SWF keeps the entire
history of a workflow execution, the history will keep growing over time. The framework retrieves this
history from Amazon SWF when it performs a replay and this will become expensive if the history size
is too large. In such long running or continuous workflows, you should periodically close the current
execution and start a new one to continue processing. This is a logical continuation of the workflow
execution. The generated self client can be used for this purpose. In your workflow implementation,
simply call the @xecut e method on the self client. Once the current execution completes, the
framework will start a new execution using the same workflow Id.

You can also continue the execution by calling the cont i nueAsNewOnConpl et i on method on the
Generi cWor kf I owd i ent that you can retrieve from the current Deci si onCont ext . For example,
the following workflow implementation sets a timer to fire after a day and calls its own entry point to
start a new execution.

public class ContinueAsNewor kf |l ow npl i npl ements Conti nueAsNewWbr kf | ow {

private DecisionContextProvider contextProvider
= new Deci si onCont ext Provi der | npl ();

private ContinueAsNewbr kfl owSel fCient selfdient
= new Conti nueAsNewr kf Il owSel fClientlnpl ();

private Workfl owd ock cl ock

API Version 2012-01-25
80

AWS Flow Framework for Java Developer Guide
Setting Task Priority

= cont ext Provi der. get Deci si onCont ext (). get Wr kf | owC ock() ;

@verride

public void startWrkflow) {
Prom se<Voi d> timer = cl ock. createTi mer (86400);
conti nueAsNew(tiner);

}

@\synchronous
voi d continueAsNew(Proni se<Void> timer) {
selfdient.startWrkflow);

}

When a workflow recursively calls itself, the framework will close the current workflow when all pending
tasks have completed and start a new workflow execution. Note that as long as there are pending
tasks, the current workflow execution will not close. The new execution will not automatically inherit any
history or data from the original execution; if you want to carry over some state to the new execution,
then you must pass it explicitly as input.

Setting Task Priority

By default, tasks on a task list are delivered based upon their arrival time: tasks that are scheduled first
are generally run first, as far as possible. By setting an optional task priority, you can give priority to
certain tasks: Amazon SWF will attempt to deliver higher-priority tasks on a task list before those with
lower priority.

You can set task priorities for both workflows and activities. A workflow's task priority does not affect
the priority of any activity tasks it schedules, nor does it affect any child workflows it starts. The default
priority for an activity or workflow is set (either by you or by Amazon SWF) during registration, and the
registered task priority is always used unless it is overridden while scheduling the activity or starting a
workflow execution.

Task priority values can range from "-2147483648" to "2147483647", with higher numbers indicating
higher priority. If you don't set the task priority for an activity or workflow, it will be assigned a priority of
zero ("0").

Topics
¢ Setting Task Priority for Workflows (p. 81)
e Setting Task Priority for Activities (p. 82)

Setting Task Priority for Workflows

You can set the task priority for a workflow when you register it or start it. The task priority that is set
when the workflow type is registered is used as the default for any workflow executions of that type,
unless it is overridden when starting the workflow execution.

To register a workflow type with a default task priority, set the defaultTaskPriority option in
WorkflowRegistrationOptions when declaring it:

@or kf | ow
@\or kf | owRegi st rati onOpti ons(

def aul t TaskPriority = 10,

def aul t TaskSt art ToC oseTi neout Seconds = 240)
public interface PriorityWrkflow

API Version 2012-01-25
81

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/WorkflowRegistrationOptions.html

AWS Flow Framework for Java Developer Guide
Setting Task Priority for Activities

@xecute(version = "1.0")
void startWorkflow(int a);

You can also set the taskPriority for a workflow when you start it, overriding the registered (default)
task priority.

St art Wr kf | owOpti ons priorityWrkfl owOptions
= new StartWrkfl owOptions().w thTaskPriority(10);

PriorityWwrkflowd ient External Factory cf
= new PriorityWrkflowd ient External Factoryl npl (swf Servi ce, domnain);

priority_workflow client = cf.getdient();

priority_workflow client.startWrkflow
"Smth, John", priorityWrkflowOptions);

Additionally, you can set the task priority when starting a child workflow or
continuing a workflow as new. For example, you can set the taskPriority option in
ContinueAsNewWorkflowExecutionParameters or in StartChildWorkflowExecutionParameters.

Setting Task Priority for Activities

You can set the task priority for an activity either when registering it or when scheduling it. The task
priority that is set when registering an activity type is used as the default priority when the activity is
run, unless it is overridden when scheduling the activity.

To register an activity type with a default task priority, set the defaultTaskPriority option in
ActivityRegistrationOptions when declaring it:

@\ ctivities(version = "1.0")
@\ctivityRegi strationOptions(
def aul t TaskPriority = 10,
def aul t TaskSt art ToCl oseTi meout Seconds = 120)
public interface InportantActivities {
i nt doSomet hi ngl nportant();
}

You can also set the taskPriority for an activity when you schedule it, overriding the registered (default)
task priority.

ActivitySchedul i ngOptions activityOpti ons = new
ActivitySchedul i ngOptions. wi thTaskPriority(10);

Important ActivitiesClient activitydient = new
Important ActivitiesClientlnpl();

activitydient.doSoret hi ngl nportant (activityOptions);

DataConverters

When your workflow implementation calls a remote activity, the inputs passed to it and the result of
executing the activity must be serialized so they can be sent over the wire. The framework uses the

API Version 2012-01-25
82

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/ContinueAsNewWorkflowExecutionParameters.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/StartChildWorkflowExecutionParameters.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/ActivityRegistrationOptions.html

AWS Flow Framework for Java Developer Guide
Passing Data to Asynchronous Methods

DataConverter class for this purpose. This is an abstract class that you can implement to provide
your own serializer. A default Jackson serializer—based implementation, JsonDat aConvert er, is
provided in the framework. For more details, see the AWS SDK for Java documentation. Refer to the
Jackson JSON Processor documentation for details about how Jackson performs serialization as well
as Jackson annotations that can be used to influence it. The wire format used is considered part of
the contract. Hence, you can specify a Dat aConvert er on your activities and workflow interfaces by
setting the Dat aConvert er property of the @\cti vi ti es and @\r kf | ow annotations.

The framework will create objects of the Dat aConvert er type you specified on @\cti vities
annotation to serialize the inputs to the activity and to deserialize its result. Similarly, objects of the
Dat aConvert er type you specify on @\or kf | ow annotation will be used to serialize parameters you
pass to the workflow, and in the case of child workflow, to deserialize the result. In addition to inputs,
the framework also passes additional data to Amazon SWF—for example, exception details—the
workflow serializer will be used for serializing this data as well.

You can also provide an instance of the Dat aConver t er if you don't want the framework to
automatically create it. The generated clients have constructor overloads that take a Dat aConvert er.

If you don't specify a Dat aConvert er type and don't pass a Dat aConvert er object, the
JsonDat aConvert er will be used by default.

Passing Data to Asynchronous Methods

Topics
¢ Passing Collections and Maps to Asynchronous Methods (p. 83)
e Settable<T> (p. 84)
¢ @NoWait (p. 85)
¢ Promise<Void> (p. 85)
¢ AndPromise and OrPromise (p. 85)

The use of Pr oni se<T> has been explained in previous sections. Some advanced use cases of
Prom se<T> are discussed here.

Passing Collections and Maps to Asynchronous
Methods

The framework supports passing arrays, collections, and maps as Pr oni se types to asynchronous
methods. For example, an asynchronous method may take Pr onmi se<ArraylLi st <Stri ng>> as an
argument as shown in the following listing.

@\synchr onous
public void printList(Prom se<List<String>> list) {
for (String s: list.get()) {
activityCGient.printActivity(s);
}

Semantically, this behaves as any other Pr oni se typed parameter and the asynchronous method
will wait until the collection becomes available before executing. If the members of a collection
are Pr om se objects, then you can make the framework wait for all members to become ready as

API Version 2012-01-25
83

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html

AWS Flow Framework for Java Developer Guide
Settable<T>

shown in the following snippet. This will make the asynchronous method wait on each member of the
collection to become available.

@\synchronous
public void printList(@Wit List<Prom se<String>> list) {
for (Promi se<String> s: list) {

activitydient.printActivity(s);
}
}

Note that the @\i t annotation must be used on the parameter to indicate that it contains Pr om se
objects.

Note also that the activity pri nt Acti vi ty takes a St ri ng argument but the matching method in the
generated client takes a Promise<String>. We are calling the method on the client and not invoking the
activity method directly.

Settable<T>

Set t abl e<T> is a derived type of Pr om se<T> that provides a set method that allows you to manually
set the value of a Pr oni se. For example, the following workflow waits for a signal to be received by
waiting on a Set t abl e<?>, which is set in the signal method:

public class MyWorkflow npl inplements M/Workfl ow{
final Settable<String> result = new Settabl e<String>();

/| @xecut e net hod

@verride

public Promi se<String> start() {
return done(result);

}

/1 Si gnal

@verride

public void manual ProcessConpl et edSi gnal (String data) {
resul t.set(data);

}

@\synchronous

public Prom se<String> done(Settabl e<String> result)({
return result;

}

A Set t abl e<?> can also be chained to another promise at a time. You can use AndPr oni se and

O Promi se to group promises. You can unchain a chained Set t abl e by calling the unchai n()
method on it. When chained, the Set t abl e<?> automatically becomes ready when the promise that
it is chained to becomes ready. Chaining is especially useful when you want to use a promise returned
from within the scope of a doTr y() in other parts of your program. Since Tr yCat chFi nal | y is used
as a nested class, you cannot declare a Pr oni se<> in the parent's scope and set it in doTry() . This
is because Java requires variables to be declared in parent scope and used in nested classes to be
marked final. For example:

API Version 2012-01-25
84

AWS Flow Framework for Java Developer Guide
@NoWait

@\synchronous
public Promi se<String> chain(final Promise<String> input) {
final Settable<String> result = new Settabl e<String>();

new TryFinal ly() {

@verride

protected void doTry() throws Throwabl e {
Prom se<String> result ToChain = activityl(input);
activity2(resultToChain);

/1 Chain the pronmise to Settable
resul t.chain(resul t ToChain);

}

@verride
protected void doFinally() throws Throwabl e {
if (result.isReady()) { // Was a result returned before the
exception?
/1 Do cl eanup here

}s

return result;

A Set t abl e can be chained to one promise at a time. You can unchain a chained Set t abl e by
calling the unchai n() method on it.

@NoWait

When you pass a Pr omi se to an asynchronous method, by default, the framework will wait for the
Pr om se(s) to become ready before executing the method (except for collection types). You may
override this behavior by using the @NoWai t annotation on parameters in the declaration of the
asynchronous method. This is useful if you are passing in Set t abl e<T>, which will be set by the
asynchronous method itself.

Promise<Void>

Dependencies in asynchronous methods are implemented by passing the Pr omi se returned by one
method as an argument to another. However, there may be cases where you want to return void from a
method, but still want other asynchronous methods to execute after its completion. In such cases, you
can use Pr onm se<Voi d> as the return type of the method. The Pr omi se class provides a static Voi d
method that you can use to create a Pr oni se<Voi d> object. This Pr oni se will become ready when
the asynchronous method finishes execution. You can pass this Pr om se to another asynchronous
method just like any other Pr om se object. If you are using Set t abl e<Voi d>, then call the set
method on it with null to make it ready.

AndPromise and OrPromise

AndPr om se and O Proni se allow you to group multiple Pr om se<> objects into a single logical
promise. An AndPr omi se becomes ready when all promises used to construct it become ready.
An O Proni se becomes ready when any promise in the collection of promises used to construct it
becomes ready. You can call get Val ues() on AndProni se and Or Pr omi se to retrieve the list of
values of the constituent promises.

API Version 2012-01-25
85

AWS Flow Framework for Java Developer Guide
Testability and Dependency Injection

Testability and Dependency Injection

Topics
¢ Spring Integration (p. 86)
e JUnit Integration (p. 91)

The framework is designed to be Inversion of Control (1oC) friendly. Activity and workflow
implementations as well as the framework supplied workers and context objects can be configured and
instantiated using containers like Spring. Out of the box, the framework provides integration with the
Spring Framework. In addition, integration with JUnit has been provided for unit testing workflow and
activity implementations.

Spring Integration

The com.amazonaws.services.simpleworkflow.flow.spring package contains classes that make
it easy to use the Spring framework in your applications. These include a custom Scope and
Spring-aware activity and workflow workers: Wr kf | owScope, Spri ngWor kf | owwbr ker and
Spri ngActi vi t yWor ker . These classes allow you to configure your workflow and activity
implementations as well as the workers entirely through Spring.

WorkflowScope

Wor kf | owScope is a custom Spring Scope implementation provided by the framework. This scope
allows you to create objects in the Spring container whose lifetime is scoped to that of a decision task.
The beans in this scope are instantiated every time a new decision task is received by the worker. You
should use this scope for workflow implementation beans and any other beans it depends on. The
Spring-provided singleton and prototype scopes should not be used for workflow implementation beans
because the framework requires that a new bean be created for each decision task. Failure to do so
will result in unexpected behavior.

The following example shows a snippet of Spring configuration that registers the Wor kf | owScope and
then uses it for configuring a workflow implementation bean and an activity client bean.

<l-- register &wsflowjava; WrkflowScope -->
<bean
cl ass="org. spri ngfranewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property nanme="scopes">
<n‘Bp>
<entry key="workfl ow"'>
<bean
cl ass="com anazonaws. servi ces. si npl ewor kf | ow. f| ow. spri ng. Wr kf | owScope" />
</entry>
</ map>
</ property>
</ bean>

<l-- activities client -->

<bean id="activitiesCient" class="aws.flow sanple. MyActivitiesdientlnpl"
scope="wor kf | ow'>

</ bean>

<I-- workflow inplenentation -->
<bean i d="workfl ow npl" cl ass="aws. fl ow. sanpl e. MyWor kf | owl npl "
scope="wor kf | ow'>
<property nanme="client" ref="activitiesCient"/>

API Version 2012-01-25
86

AWS Flow Framework for Java Developer Guide
Spring Integration

<aop: scoped- proxy proxy-target-class="false" />
</ bean>

The line of configuration: <aop: scoped- proxy proxy-target-class="fal se" />, usedinthe
configuration of the wor kf | owl npl bean, is required because the Wor kf | owScope does not support
proxying using CGLIB. You should use this configuration for any bean in the Wor kf | owScope that is
wired to another bean in a different scope. In this case, the wor kf | owl npl bean needs to be wired to
a workflow worker bean in singleton scope (see complete example below).

You can learn more about using custom scopes in the Spring Framework documentation.

Spring-Aware Workers

When using Spring, you should use the Spring-aware worker classes provided by the framework:
Spri ngWor kf | owMér ker and Spri ngActi vi t yWor ker . These workers can be injected in your
application using Spring as shown in the next example. The Spring-aware workers implement Spring's
Smart Li f ecycl e interface and, by default, automatically start polling for tasks when the Spring
context is initialized. You can turn off this functionality by setting the di sabl eAut oSt ar t up property
of the worker to t r ue.

The following example shows how to configure a decider. This example uses

MyActi viti es and MyWor kf | owinterfaces (not shown here) and corresponding
implementations, MyAct i vi ti esl mpl and MyWor kf | ow npl . The generated client
interfaces and implementations are MyWor kf | owd i ent /MyWor kf | owd i ent | npl and
MyActivitiesdient/MActivitiesdientlnpl (alsonotshown here).

The activities client is injected in the workflow implementation using Spring's auto wire feature:

public class MyWrkflow npl inplements MyWorkfl ow {
@\ut owi red
public MyActivitiesOient client;

@verride

public void start() {
client.activityl();

}

The Spring configuration for the decider is as follows:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranework. org/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: aop="http://ww. spri ngfranmework. or g/ schena/ aop"

xm ns: context="http://ww. springfranmework. org/ schema/ cont ext"

xsi : schenmaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans http://
www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd

http://ww. springfranework. org/ schema/aop http://ww. springframework. org/
schema/ aop/ spri ng- aop- 2. 5. xsd

http://wwv. springfranmework. org/ schena/ cont ext

http://ww. springframewor k. or g/ schema/ cont ext/ spri ng-cont ext - 3. 0. xsd" >

<l-- register custom workflow scope -->

API Version 2012-01-25
87

AWS Flow Framework for Java Developer Guide
Spring Integration

<bean
cl ass="org. spri ngframewor k. beans. fact ory. confi g. Cust onScopeConf i gurer">
<property nanme="scopes">
<n’ap>
<entry key="workfl ow"'>
<pean
cl ass="com anazonaws. servi ces. si npl ewor kf | ow. f| ow. spri ng. Wr kf | owScope" />
</entry>
</ map>
</ property>
</ bean>
<cont ext: annot ati on-confi g/ >

<bean i d="accesskeys" class="com anazonaws. aut h. Basi cAWSCr edenti al s" >
<constructor-arg val ue="{ AWs. Access. | D}"/>
<constructor-arg val ue="{AWS. Secret. Key}"/>

</ bean>

<bean i d="clientConfiguration" class="com amazonaws. C i ent Confi guration">
<property nanme="socket Ti neout" val ue="70000" />
</ bean>

<l-- &SWF; client -->
<bean id="swfdient"

cl ass="com anazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | owCl i ent " >
<constructor-arg ref="accesskeys" />
<constructor-arg ref="clientConfiguration" />
<property nanme="endpoi nt" val ue="{service.url}" />

</ bean>

<l-- activities client -->

<bean id="activitiesCient" class="aws.flow sanple. MyActivitiesdientlnpl"
scope="wor kf | ow'>

</ bean>

<I-- workflow inplenentation -->
<bean i d="workfl ow npl" cl ass="aws. fl ow. sanpl e. MyWor kf | owl npl "
scope="wor kf | ow'>
<property nane="client" ref="activitiesCient"/>
<aop: scoped- proxy proxy-target-class="false" />
</ bean>

<!-- workfl ow worker -->
<bean i d="wor kf | owMér ker"

cl ass="com anazonaws. servi ces. si npl ewor kf | ow. f| ow. spri ng. Spri ngWor kf | owMér ker'

<constructor-arg ref="swfClient" />
<constructor-arg val ue="domai n1" />
<constructor-arg value="tasklistl" />
<property nanme="regi sterDormai n" val ue="true" />
<property nanme="donmi nRet enti onPeri odl nDays" val ue="1" />
<property name="workfl ow npl enent ati ons" >

<list>

<ref bean="workfl owl npl" />

</list>

</ property>
</ bean>
</ beans>

API Version 2012-01-25
88

AWS Flow Framework for Java Developer Guide
Spring Integration

Since the Spri ngWor kf | owWér ker is fully configured in Spring and automatically starts polling when
the Spring context is initialized, the host process for the decider is simple:

public class Wrkfl owHost {
public static void main(String[] args){
Appl i cati onCont ext cont ext
= new Fi | eSyst emXm Appl i cati onCont ext ("resources/ spring/
Wor kf | owHost Bean. xm ") ;
System out . println("Wrkfl ow worker started");

}

Similarly, the activity worker can be configured as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. org/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: aop="http://ww. spri ngfranmework. org/ schena/ aop"

xm ns: context="http://ww. springfranmework. org/ schema/ cont ext"

xsi : schemaLocati on="http://ww. spri ngfranework. or g/ schema/ beans http://
www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd

http://ww. springfranework. org/ schema/aop http://ww. springframework. org/
schena/ aop/ spri ng- aop- 2. 5. xsd

http://wwv. springfranework. org/ schena/ cont ext

http://ww. springframewor k. or g/ schema/ cont ext/ spri ng-cont ext -3. 0. xsd">

<l-- register custom scope -->
<bean
cl ass="org. spri ngframewor k. beans. fact ory. confi g. Cust onScopeConf i gurer">
<property nanme="scopes">
<map>
<entry key="workfl ow'>
<bean

cl ass="com anazonaws. servi ces. si npl ewor kf | ow. f| ow. spri ng. Wr kf | owScope" />
</entry>
</ map>
</ property>
</ bean>

<bean i d="accesskeys" class="com anazonaws. aut h. Basi cAWSCr edenti al s" >
<constructor-arg val ue="{ AWs. Access. | D}"/>
<constructor-arg val ue="{AWS. Secret. Key}"/>

</ bean>

<bean i d="clientConfiguration" class="com amazonaws. C i ent Confi guration">
<property nanme="socket Ti neout" val ue="70000" />
</ bean>

<l-- &SWF; client -->
<bean id="swfdient"

cl ass="com anazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | owCl i ent " >

API Version 2012-01-25
89

AWS Flow Framework for Java Developer Guide
Spring Integration

<constructor-arg ref="accesskeys" />
<constructor-arg ref="clientConfiguration" />
<property nanme="endpoi nt" val ue="{service.url}" />

</ bean>

<l-- activities impl -->

<bean nanme="activitieslnpl" class="asadj.spring.test. M/Activitieslnpl">
</ bean>

<l-- activity worker -->

<bean id="activityWwrker"

cl ass="com anazonaws. servi ces. si npl ewor kf | ow. f| ow. spri ng. Spri ngActi vi t yWor ker'

<constructor-arg ref="swfClient" />
<constructor-arg val ue="domai n1" />
<constructor-arg value="tasklistl" />
<property nanme="regi sterDormai n" val ue="true" />
<property nanme="donmi nRet enti onPeri odl nDays" val ue="1" />
<property name="activitieslnpl enentati ons">

<list>

<ref bean="activitieslnpl" />

</list>

</ property>
</ bean>
</ beans>

The activity worker host process is similar to the decider:

public class ActivityHost {
public static void main(String[] args) {
Appl i cati onCont ext context = new Fil eSyst emXm Appl i cati onCont ext (
"resources/spring/ActivityHost Bean. xm ") ;
Systemout.println("Activity worker started");

Injecting Decision Context

If your workflow implementation depends on the context objects, then you can easily inject them
through Spring as well. The framework automatically registers context-related beans in the Spring
container. For example, in the following snippet, the various context objects have been auto wired. No
other Spring configuration of the context objects is required.

public class MyWrkflow npl inplements MyWorkfl ow {
@\ut owi r ed
public MyActivitiesOient client;
@\ut owi r ed
public Workfl owd ock cl ock;
@\ut owi r ed
publ i ¢ Deci si onCont ext dcCont ext;
@\ut owi r ed
public GenericActivityCient activitydient;
@\ut owi r ed

API Version 2012-01-25
90

AWS Flow Framework for Java Developer Guide
JUnit Integration

public GenericWrkflowdient workflowdient;
@\ut owi r ed
publ i ¢ Wor kfl owCont ext wf Cont ext ;
@verride
public void start() {
client.activityl();
}

If you want to configure the context objects in the workflow implementation through Spring XML
configuration, then use the bean names declared in the Wor kf | owScopeBeanNanes class in the
com.amazonaws.services.simpleworkflow.flow.spring package. For example:

<!-- workflow inplenmentation -->
<bean id="workflow npl" class="asadj.spring.test. M\yWor kfl om npl "
scope="wor kf | ow' >
<property nane="client" ref="activitiesOient"/>
<property nane="cl ock" ref="workfl owd ock"/>
<property nane="activityCient" ref="genericActivitylient"/>
<property nane="dcContext" ref="decisionContext"/>
<property nanme="workflowCient" ref="generi cWwrkflowdient"/>
<property nane="wf Context" ref="workfl owContext"/>
<aop: scoped- proxy proxy-target-class="fal se" />
</ bean>

Alternatively, you may inject a Deci si onCont ext Pr ovi der in the workflow implementation bean and
use it to create the context. This can be useful if you want to provide custom implementations of the
provider and context.

Injecting Resources in Activities

You can instantiate and configure activity implementations using an Inversion of Control (IoC) container
and easily inject resources like database connections by declaring them as properties of the activity
implementation class. Such resources will typically be scoped as singletons. Note that activity
implementations are called by the activity worker on multiple threads. Therefore, access to shared
resources must be synchronized.

JUnit Integration

The framework provides JUnit extensions as well as test implementations of the context objects, such
as a test clock, that you can use to write and run unit tests with JUnit. With these extensions, you can
test your workflow implementation locally inline.

Writing a Simple Unit Test

In order to write tests for your workflow, use the Wr kf | owTest class in the
com.amazonaws.services.simpleworkflow.flow.junit package. This class is a framework-specific JUnit
Met hodRul e implementation and runs your workflow code locally, calling activities inline as opposed
to going through Amazon SWF. This gives you the flexibility to run your tests as frequently as you
desire without incurring any charges.

In order to use this class, simply declare a field of type Wor kf | owTest and annotate it with the @rul e
annotation. Before running your tests, create a new Wor kf | owTest object and add your activity and

API Version 2012-01-25
91

AWS Flow Framework for Java Developer Guide
JUnit Integration

workflow implementations to it. You can then use the generated workflow client factory to create a
client and start an execution of the workflow. The framework also provides a custom JUnit runner,
FI owBl ockJUni t 40 assRunner , that you must use for your workflow tests. For example:

@RunW t h(Fl owBl ockJUni t 4Cl assRunner . cl ass)
public cl ass Booki ngWor kf | owTest {

@l e
public Workfl owTest workfl owTest = new Wor kf | owTest () ;

Li st<String> trace;

private Booki ngWor kfl owd i ent Fact ory wor kf | owFact ory
= new Booki ngWor kfl owCl i ent Fact oryl npl () ;

@Bef ore

public void setUp() throws Exception {
trace = new ArraylList<String>();
/1 Register activity inplenentation to be used during test run
Booki ngActivities activities = new Booki ngActivitieslnpl(trace);
wor kf | owTest . addActivitiesl npl ementation(activities);

wor kf | owTest . addWor kf | owl npl enent ati onType(Booki ngWor kf | ow npl . cl ass) ;
}

@\fter
public void tearDown() throws Exception {
trace = null;

}

@rest
public void testReserveBoth() {
Booki ngWor kfl owCl i ent wor kfl ow = wor kfl owFactory. getdient();
Pr om se<Voi d> booked = wor kf | ow. nakeBooki ng(123, 345, true, true);
Li st<String> expected = new ArraylList<String>();
expect ed. add("reserveCar-123");
expect ed. add("reserveAirline-123");
expect ed. add(" sendConfirnmati on- 345");
AsyncAssert . assert Equal sWai t For ("i nval i d booki ng", expected, trace,
booked) ;

}

You can also specify a separate task list for each activity implementation that you add to
Wor kf | owTest . For example, if you have a workflow implementation that schedules activities in host-
specific task lists, then you can register the activity in the task list of each host:

for (int i =0; i < 10; i++) {
String hostnane = "host" + i;
wor kf | owTest . addActi viti esl npl ement ati on(host nane,

new
| mageProcessi ngActivities(hostnane));

}

API Version 2012-01-25
92

AWS Flow Framework for Java Developer Guide
JUnit Integration

Notice that the code in the @est is asynchronous. Therefore, you should use the asynchronous
workflow client to start an execution. In order to verify the results of your test, an AsyncAssert help
class is also provided. This class allows you to wait for promises to become ready before verifying
results. In this example, we wait for the result of the workflow execution to be ready before verifying the
test output.

If you are using Spring, then the Spri ngWr kf | owTest class can be used instead of the

Wor kf | owTest class. Spri ngWor kf | owTest provides properties that you can use to configure
activity and workflow implementations easily through Spring configuration. Just like the Spring-aware
workers, you should use the Wor kf | owScope to configure workflow implementation beans. This
ensures that a new workflow implementation bean is created for every decision task. Make sure to
configure these beans with the scoped-proxy proxy-target-class setting set to f al se. See the Spring
Integration section for more details. The example Spring configuration shown in the Spring Integration
section can be changed to test the workflow using Spri ngWor kf | owTest :

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xm ns: aop="http://
www. spri ngf ramewor k. or g/ schena/ aop"
xm ns: context="http://ww. spri ngfranmework. org/ scherma/ cont ext"
xsi : schemaLocati on="http://wwv. spri ngfranework. org/ schena/ beans ht
tp: // ww. spri ngfranmewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schena/ aop http://ww. springframe
wor k. or g/ schena/ aop/ spri ng-aop- 2. 5. xsd
http://ww. springframework. or g/ schena/ cont ext
http://ww. springframewor k. or g/ schema/ cont ext/ spri ng-cont ext -3. 0. xsd">
<l-- register custom workflow scope -->
<bean
cl ass="org. spri ngfranewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property nanme="scopes">
<map>
<entry key="workfl ow'>
<bean

cl ass="com anazonaws. servi ces. si npl ewor kf | ow. f| ow. spri ng. Wr kf | owScope" />
</entry>
</ map>

</ property>

</ bean>

<cont ext:annotation-config />

<bean i d="accesskeys" cl ass="com amazonaws. aut h. Basi cAWSCr edenti al s" >
<constructor-arg val ue="{ AWs. Access.ID}" />
<constructor-arg val ue="{ AWS. Secret. Key}" />

</ bean>

<bean id="clientConfiguration" class="com amazonaws. C i ent Confi gurati on">
<property nanme="socket Ti neout" val ue="70000" />

</ bean>

<l-- &SWF; client -->

<bean id="swfdient"
cl ass="com anazonaws. servi ces. si npl ewor kf | ow. AmazonSi npl eWor kf | owCl i ent " >
<constructor-arg ref="accesskeys" />
<constructor-arg ref="clientConfiguration" />
<property nanme="endpoi nt" val ue="{service.url}" />

</ bean>

<l-- activities client -->

<bean id="activitiesdient" class="aws.fl ow sanple. MyActivitiesOientlnpl"
scope="wor kf | ow' >

</ bean>

API Version 2012-01-25
93

AWS Flow Framework for Java Developer Guide
JUnit Integration

<l-- workflow inplenentation -->

<bean id="workfl ow npl" cl ass="aws. fl ow. sanpl e. MyWor kf | ow npl "
scope="wor kf | ow' >
<property name="client" ref="activitiesCient" />
<aop: scoped- proxy proxy-target-class="false" />

</ bean>

<I-- Workfl owTest -->

<bean i d="workf | owTest"

cl ass="com anmazonaws. servi ces. si npl ewor kf [ow. f| ow. j uni t. spring. Spri ngWr kf | ow]
<property name="wor kfl ow npl enent ati ons" >

<list>
<ref bean="workflow npl" />
</list>

</ property>
<property nane="t askLi st Activitieslnpl ementati onvap">
<rTap>
<entry>
<key>
<val ue>l i st 1</ val ue>
</ key>
<ref bean="activitieslnplHost1" />
</entry>
</ map>
</ property>
</ bean>
</ beans>

Test" >

Mocking Activity Implementations

You may use the real activity implementations during testing, but if you want to unit test just the
workflow logic, you should mock the activities. This can do this by providing a mock implementation of
the activities interface to the Wor kf | owTest class. For example:

@RunW t h(Fl owBl ockJUni t 4C1 assRunner . cl ass)
public cl ass Booki ngWor kf | owTest {

@ul e
publ i c Workfl owTest workfl owTest = new Wor kf | owTest () ;

Li st<String> trace;

private Booki ngWor kf | owCl i ent Fact ory wor kf | owFact ory
= new Booki ngWor kf | owCl i ent Fact oryl npl () ;

@ef ore
public void setUp() throws Exception {
trace = new ArraylList<String>();
/1l Create and register nock activity inplenentation to be used during
test run
Booki ngActivities activities = new BookingActivities() {

@verride
public void sendConfirnmati onActivity(int custonmerld) ({
trace. add("sendConfirmati on-" + custonerld);

}

API Version 2012-01-25
94

AWS Flow Framework for Java Developer Guide
JUnit Integration

@verride

public void reserveCar(int requestld) {
trace. add("reserveCar-" + requestld);

}

@verride

public void reserveAirline(int requestld) {
trace.add("reserveAirline-" + requestld);

}

}s

wor kf | owTest . addActivitiesl npl ementation(activities);

wor kf | owTest . addWor kf | owl npl enent ati onType(Booki ngWor kf | ow npl . cl ass) ;
}

@t er
public void tearDown() throws Exception {
trace = null;

}

@est
public void testReserveBoth() {
Booki ngWor kfl owCl i ent wor kfl ow = wor kfl owFactory. getdient();
Pr om se<Voi d> booked = wor kf | ow. nekeBooki ng(123, 345, true, true);
Li st<String> expected = new ArraylLi st<String>();
expect ed. add("reserveCar-123");
expect ed. add("reserveAirline-123");
expect ed. add(" sendConfirnati on-345");
AsyncAssert . assert Equal sWai t For ("i nval i d booki ng", expected, trace,
booked) ;

}

Alternatively, you can provide a mock implementation of the activities client and inject that into your
workflow implementation.

Test Context Objects

If your workflow implementation depends on the framework context objects—for example,

the Deci si onCont ext —you don't have to do anything special to test such workflows.

When a test is run through Wor kf | owTest , it automatically injects test context objects.

When your workflow implementation accesses the context objects—for example, using

Deci si onCont ext Provi der | mpl —it will get the test implementation. You can manipulate these test
context objects in your test code (@'est method) to create interesting test cases. For example, if your
workflow creates a timer, you can make the timer fire by calling the cl ockAdvanceSeconds method
on the Wor kf | owTest class to move the clock forward in time. You can also accelerate the clock

to make timers fire earlier than they normally would using the Cl ockAccel erati onCoeffi ci ent
property on Wor kf | owTest . For example, if your workflow creates a timer for one hour, you can

set the O ockAccel erati onCoef fi ci ent to 60 to make the timer fire in one minute. By default,

Cl ockAccel erati onCoefficient issetto 1.

For more details about the com.amazonaws.services.simpleworkflow.flow.test and
com.amazonaws.services.simpleworkflow.flow.junit packages, see the AWS SDK for Java
documentation.

API Version 2012-01-25
95

AWS Flow Framework for Java Developer Guide
Error Handling

Error Handling

Topics
¢ TryCatchFinally Semantics (p. 97)
¢ Cancellation (p. 98)
¢ Nested TryCatchFinally (p. 101)

The try/cat ch/fi nal | y construct in Java makes it simple to handle errors and is used ubiquitously.
It allows you to associate error handlers to a block of code. Internally, this works by stuffing additional
metadata about the error handlers on the call stack. When an exception is thrown, the runtime looks
at the call stack for an associated error handler and invokes it; and if no appropriate error handler is
found, it propagates the exception up the call chain.

This works well for synchronous code, but handling errors in asynchronous and distributed programs
poses additional challenges. Since an asynchronous call returns immediately, the caller is not on

the call stack when the asynchronous code executes. This means that unhandled exceptions in

the asynchronous code cannot be handled by the caller in the usual way. Typically, exceptions that
originate in asynchronous code are handled by passing error state to a callback that is passed to

the asynchronous method. Alternatively, if a Fut ur e<?> is being used, it reports an error when you

try to access it. This is less than ideal because the code that receives the exception (the callback or
code that uses the Fut ur e<?>) does not have the context of the original call and may not be able to
handle the exception adequately. Furthermore, in a distributed asynchronous system, with components
running concurrently, more than one error may occur simultaneously. These errors could be of different
types and severities and need to be handled appropriately.

Cleaning up resource after an asynchronous call is also difficult. Unlike synchronous code, you cannot
use try/catchf/finally in the calling code to clean up resources since work initiated in the try block may
still be ongoing when the finally block executes.

The framework provides a mechanism that makes error handling in distributed asynchronous code
similar to, and almost as simple as, Java's try/catch/finally.

I mageProcessi ngActivitiesCient activitiesdient
= new | mageProcessi ngActivitiesCientlnpl();

public void createThunbnail (final String webPageUrl) {
new TryCat chFinal | y() {

@verride
protected void doTry() throws Throwabl e {
Li st<String> i nages = getl mageUr| s(webPagelrl);
for (String inmage: inmages) {
Prom se<String> | ocal | nage
= activitiesdient.dowl oadl mage(i nage);
Prom se<String> thunbnail File
= activitiesdient.createThunbnail (I ocal | mage);
activitiesCient.uploadl nage(thunbnail File);
}
}

@verride
protected void doCatch(Throwabl e e) throws Throwabl e {

/1 Handl e exception and rethrow fail ures
Loggi ngActivitiesdient logCient = new Loggi ngActivitiesOientlnpl();

API Version 2012-01-25
96

AWS Flow Framework for Java Developer Guide
TryCatchFinally Semantics

logClient.reportError(e);
throw new Runti neException("Failed to process inages", e);

}

@verride

protected void doFinally() throws Throwabl e {
activitiesCient.cleanUp();

}

}s
}

The TryCat chFi nal | y class and its variants, Tr yFi nal | y and Tr yCat ch, work similar to Java's
try/cat ch/final | y. Using it, you can associate exception handlers to blocks of workflow code

that may execute as asynchronous and remote tasks. The doTry() method is logically equivalent

to the t ry block. The framework automatically executes the code in doTry() . A list of Prom se
objects can be passed to the constructor of Tr yCat chFi nal | y. The doTr y method will be executed
when all Proni se objects passed in to the constructor become ready. If an exception is raised

by code that was asynchronously invoked from within doTr y() , any pending work in doTry() is
canceled and doCat ch() is called to handle the exception. For instance, in the listing above, if
downl oadl nage throws an exception, then cr eat eThunbnai | and upl oadl nage will be canceled.
Finally, doFi nal I y() is called when all asynchronous work is done (completed, failed, or canceled). It
can be used for resource cleanup. You can also nest these classes to suit your needs.

When an exception is reported in doCat ch() , the framework provides a complete logical call stack
that includes asynchronous and remote calls. This can be helpful when debugging, especially if you
have asynchronous methods calling other asynchronous methods. For example, an exception from
downloadimage will produce an exception like this:

Runti neExcepti on: error downl oadi ng i mage
at downl oadl mage(Mai n. j ava: 35)

at ---continuation---.(repeated: 1)
at errorHandl i ngAsync$l. doTry(Mai n. j ava: 24)
at ---continuation---.(repeated: 1)

TryCatchFinally Semantics

The execution of an AWS Flow Framework for Java program can be visualized as a tree

of concurrently executing branches. A call to an asynchronous method, an activity, and

TryCat chFi nal | y itself creates a new branch in this tree of execution. For example, the image
processing workflow can be viewed as the tree shown in the following figure.

An error in one branch of execution will cause the unwinding of that branch, just as an exception
causes the unwinding of the call stack in a Java program. The unwinding keeps moving up the
execution branch until either the error is handled or the root of the tree is reached, in which case the
workflow execution is terminated.

API Version 2012-01-25
97

AWS Flow Framework for Java Developer Guide
Cancellation

The framework reports errors that happen while processing tasks as exceptions. It associates the
exception handlers (doCat ch() methods) defined in Tr yCat chFi nal | y with all tasks that are
created by the code in the corresponding doTry() . If a task fails—for example, due to a timeout or an
unhandled exception—then the appropriate exception will be raised and the corresponding doCat ch()
will be invoked to handle it. To accomplish this, the framework works in tandem with Amazon SWF to
propagate remote errors and resurrects them as exceptions in the caller's context.

Cancellation

When an exception occurs in synchronous code, the control jumps directly to the cat ch block,
skipping over any remaining code in the t r y block. For example:

try {
a();
b();
c();

}

catch (Exception e) {
e.printStackTrace();

}

In this code, if b() throws an exception, then c() is never invoked. Compare that to a workflow:

new TryCatch() {

@verride

protected void doTry() throws Throwabl e {
activityA();
activityB();
activityC();

}

@verride
protected void doCatch(Throwabl e e) throws Throwabl e {
e.printStackTrace();
}
b

In this case, callsto acti vi t yA, acti vityB, and acti vi t yCall return successfully and result in the
creation of three tasks that will be executed asynchronously. Let's say at a later time that the task for
acti vi t yBresults in an error. This error is recorded in the history by Amazon SWF. In order to handle
this, the framework will first try to cancel all other tasks that originated within the scope of the same
doTry();inthis case, acti vityAand acti vi t yC. When all such tasks complete (cancel, fail, or
successfully complete), the appropriate doCat ch() method will be invoked to handle the error.

Unlike the synchronous example, where c() was never executed, act i vi t yCwas invoked and a
task was scheduled for execution; hence, the framework will make an attempt to cancel it, but there

is no guarantee that it will be canceled. Cancellation cannot be guaranteed because the activity may
have already completed, may ignore the cancellation request, or may fail due to an error. However,
the framework does provide the guarantee that doCat ch() is called only after all tasks started from
the corresponding doTry() have completed. It also guarantees that doFi nal | y() is called only after
all tasks started from the doTry() and doCat ch() have completed. If, for instance, the activities in
the above example depend on each other, say acti vi t yBdepends onactivityAandactivityC
on act i vi t yB, then the cancellation of act i vi t yCwill be immediate because it is not scheduled in
Amazon SWF until acti vi t yB completes:

new TryCatch() ({

API Version 2012-01-25
98

AWS Flow Framework for Java Developer Guide
Cancellation

@verride

protected void doTry() throws Throwabl e {
Prom se<Voi d> a = activityA();
Prom se<Void> b = activityB(a);
activityC(b);

}

@verride

protected void doCatch(Throwabl e e) throws Throwabl e {
e.printStackTrace();
}

}s

Activity Heartbeat

The AWS Flow Framework for Java's cooperative cancellation mechanism allows in-flight activity
tasks to be canceled gracefully. When cancellation is triggered, tasks that blocked or are waiting to be
assigned to a worker are automatically canceled. If, however, a task is already assigned to a worker,
the framework will request the activity to cancel. Your activity implementation must explicitly handle
such cancellation requests. This is done by reporting heartbeat of your activity.

Reporting heartbeat allows the activity implementation to report the progress of an ongoing activity
task, which is useful for monitoring, and it lets the activity check for cancellation requests. The
recordActi vi t yHear t beat method will throw a Cancel | ati onExcept i on if a cancellation
has been requested. The activity implementation can catch this exception and act on the
cancellation request, or it can ignore the request by swallowing the exception. In order to honor
the cancellation request, the activity should perform the desired clean up, if any, and then rethrow
Cancel | ati onExcept i on. When this exception is thrown from an activity implementation, the
framework records that the activity task has been completed in canceled state.

The following example shows an activity that downloads and processes images. It heartbeats after
processing each image, and if cancellation is requested, it cleans up and rethrows the exception to
acknowledge cancellation.

@verride
public void processl mages(List<String> urls) {
int imgeCounter = O;
for (String url: urls) {
i mgeCount er ++;
I mage i nage = downl oad(url);
process(i mage) ;
try {
Acti vi t yExecuti onCont ext cont ext
= cont ext Provi der. get Acti vi t yExecuti onCont ext ();
context.recordActivityHeartbeat (I nteger.toString(i mageCounter));
} catch(Cancel | ati onException ex) {
cl eanDownl oadFol der () ;
throw ex;

Reporting activity heartbeat is not required, but it is recommended if your activity is long running or may
be performing expensive operations that you wish to be canceled under error conditions. You should
call hear t beat Act i vi t yTask periodically from the activity implementation.

API Version 2012-01-25
99

AWS Flow Framework for Java Developer Guide
Cancellation

If the activity times out, the Acti vi t yTaskTi medQut Except i on will be thrown and

get Det ai | s on the exception object will return the data passed to the last successful call to

hear t beat Acti vi t yTask for the corresponding activity task. The workflow implementation may use
this information to determine how much progress was made before the activity task was timed out.

Note: It is not a good practice to heartbeat too frequently because Amazon SWF may throttle heartbeat
requests. See the Amazon Simple Workflow Service Developer Guide for limits placed by Amazon
SWF.

Explicitly Canceling a Task

Besides error conditions, there are other cases where you may explicitly cancel a task. For

example, an activity to process payments using a credit card may need to be canceled if the user
cancels the order. The framework allows you to explicitly cancel tasks created in the scope of a

TryCat chFi nal | y. In the following example, the payment task is canceled if a signal is received while
the payment was being processed.

public class O derProcessorlnpl inplenents O derProcessor {
private Paynent ProcessordientFactory factory
= new Paynent ProcessorC i ent Factoryl npl ();
bool ean processi ngPaynment = fal se;
private TryCatchFinally paynent Task = nul | ;

@verride
public void processOrder(int orderld, final float amount) {
payment Task = new TryCat chFinal ly() {

@verride
protected void doTry() throws Throwabl e {
processi ngPaynent = true;

Paynent Processordient paynentCdient = factory.getClient();
paynment Cl i ent . processPaynent (amount) ;

}

@verride
protected void doCatch(Throwabl e e) throws Throwabl e {
if (e instanceof Cancell ationException) {
paynment Cl i ent. | og("Paynment canceled.");

} else {
t hrow e;
}
}
@verride

protected void doFinally() throws Throwabl e {
processi ngPaynent = fal se;
}
s

}

@verride
public void cancel Paynent () {
i f (processingPayment) {
payment Task. cancel (nul I');
}

API Version 2012-01-25
100

http://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework for Java Developer Guide
Nested TryCatchFinally

‘ }

Receiving Notification of Canceled Tasks

When a task is completed in canceled state, the framework informs the workflow logic by throwing a
Cancel | ati onExcept i on. When an activity completes in canceled state, a record is made in the
history and the framework calls the appropriate doCat ch() with a Cancel | ati onExcepti on. As
shown in the previous example, when the payment processing task is canceled, the workflow receives
a Cancel | ati onExcepti on.

An unhandled Cancel | ati onExcept i on is propagated up the execution branch just like any other
exception. However, the doCat ch() method will receive the Cancel | ati onExcepti on only if there
is no other exception in the scope; other exceptions are prioritized higher than cancellation.

Nested TryCatchFinally

You may nest Tr yCat chFi nal | y's to suit your needs. Since each TryCat chFi nal | y creates a

new branch in the execution tree, you can create nested scopes. Exceptions in the parent scope will
cause cancellation attempts of all tasks initiated by nested Tr yCat chFi nal | y's within it. However,
exceptions in a nested Tr yCat chFi nal | y don't automatically propagate to the parent. If you wish

to propagate an exception from a nested Tr yCat chFi nal | y to its containing TryCat chFi nal | y,
you should rethrow the exception in doCat ch() . In other words, only unhandled exceptions are
bubbled up, just like Java's t r y/cat ch. If you cancel a nested Tr yCat chFi nal | y by calling the
cancel method, the nested Tr yCat chFi nal | y will be canceled but the containing TryCat chFi nal | y
will not automatically get canceled.

new TryCatch() ({
@verride
protected void doTry() throws Throwabl e {
activityA();
new TryCatch() ({
@verride
protected void doTry() throws Throwabl e {
activityB();
}
@verride

protected void doCatch(Throwabl e e) throws Throwabl e {
reportError(e);
}

}s

activityC();

API Version 2012-01-25
101

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

@verride

protected void doCatch(Throwabl e e) throws Throwabl e {
reportError(e);

}

}s

Retry Failed Activities

Activities sometimes fail for ephemeral reasons, such as a temporary loss of connectivity. At another
time, the activity might succeed, so the appropriate way to handle activity failure is often to retry the
activity, perhaps multiple times.

There are a variety of strategies for retrying activities; the best one depends on the details of your
workflow. The strategies fall into three basic categories:

¢ The retry-until-success strategy simply keeps retrying the activity until it completes.

¢ The exponential retry strategy increases the time interval between retry attempts exponentially
until the activity completes or the process reaches a specified stopping point, such as a maximum
number of attempts.

¢ The custom retry strategy decides whether or how to retry the activity after each failed attempt.

The following sections describe how to implement these strategies. The example workflow workers all
use a single activity, unr el i abl eAct i vi t y, which randomly does one of following:

¢ Completes immediately
¢ Fails intentionally by exceeding the timeout value
« Fails intentionally by throwing |1 | | egal St at eExcepti on

Retry-Until-Success Strategy

The simplest retry strategy is to keep retrying the activity each time it fails until it eventually succeeds.
The basic pattern is:

1. Implement a nested Tr yCat ch or Tr yCat chFi nal | y class in your workflow's entry point method.
2. Execute the activity in doTry

3. If the activity fails, the framework calls doCat ch, which runs the entry point method again.

4. Repeat Steps 2 - 3 until the activity completes successfully.

The following workflow implements the retry-until-success strategy. The workflow

interface is implemented in Ret ryAct i vi t yReci peWor kf | owand has one method,

runUnreliabl eActivityTill Success, which is the workflow's entry point. The workflow worker is
implemented in Ret r yAct i vi t yReci peWor kf | ow npl , as follows:

public class RetryActivityReci peWrkfl ow npl
i mpl enents RetryActivityReci peWrkf | ow {

@verride
public void runUnreliableActivityTill Success() {
final Settabl e<Bool ean> retryActivity = new Settabl e<Bool ean>();

API Version 2012-01-25
102

AWS Flow Framework for Java Developer Guide
Retry-Until-Success Strategy

new TryCatch() ({
@verride
protected void doTry() throws Throwabl e {
Prom se<Voi d> activi tyRanSuccessful |y
= client.unreliableActivity();
set RetryActivityToFal se(activityRanSuccessfully,
retryActivity);

@verride
protected void doCatch(Throwabl e e) throws Throwabl e {
retryActivity.set(true);

}
s
restart RunUnrel i abl eActivityTill Success(retryActivity);
}
@\synchronous

private void setRetryActivityToFal se(
Prom se<Voi d> activityRanSuccessful |y,
@\oWai t Settabl e<Bool ean> retryActivity) {
retryActivity.set(fal se);

}

@\synchr onous
private void restartRunUnreliabl eActivityTill Success(
Sett abl e<Bool ean> retryActivity) {
if (retryActivity.get()) {
runUnrel i abl eActivityTill Success();
}

The workflow works as follows:

1. runUnreliabl eActivityTill Success creates a Set t abl e<Bool ean> object named
retryActivi ty which is used to indicate whether the activity failed and should be retried.
Set t abl e<T> is derived from Pr omi se<T> and works much the same way, but you set a
Set t abl e<T> object's value manually.

2. runUnreliabl eActivityTill Success implements an anonymous nested Tr yCat ch class to
handle any exceptions that are thrown by the unr el i abl eActi vi ty activity. For more discussion
of how to handle exceptions thrown by asynchronous code, see Error Handling (p. 96).

3. doTry executes the unr el i abl eAct i vi ty activity, which returns a Pr om se<Voi d> object
named act i vi t yRanSuccessful | y.
4. doTry calls the asynchronous set Ret r yActi vi t yToFal se method, which has two parameters:
e activityRanSuccessful | y takes the Proni se<Voi d> object returned by the
unr el i abl eActi vi ty activity.

e retryActivity takestheretryActivity object.

Ifunrel i abl eActi vi ty completes, acti vi t yRanSuccessf ul | y becomes

ready and set Ret ryActi vi t yToFal se setsretryActi vity to false. Otherwise,

acti vityRanSuccessf ul | y never becomes ready and set Ret r yActi vi t yToFal se does not
execute.

5. Ifunrel i abl eActi vi ty throws an exception, the framework calls doCat ch and passes it the
exception object. doCat ch setsretryActi vi ty to true.

6. runUnrel i abl eActivityTill Success calls the asynchronous
restart RunUnrel i abl eActivityTill Success method and passes it the

API Version 2012-01-25
103

AWS Flow Framework for Java Developer Guide
Exponential Retry Strategy

retryActivity object. BecauseretryActivity isaProm se<T> type,
restart RunUnrel i abl eActivityTill Success defers executionuntilretryActivity is
ready, which occurs after Tr yCat ch completes.

7. WhenretryActivity isready, restart RunUnreliabl eActivityTill Success extracts the
value.

« If the value is f al se, the retry succeeded. rest art RunUnrel i abl eActivityTill Success
does nothing and the retry sequence terminates.

« If the value is true, the retry failed. r est art RunUnr el i abl eActi vityTill Success calls
runUnrel i abl eActivityTill Success to execute the activity again.

8. Steps 1 - 7 repeat until unr el i abl eActi vi t y completes.

Note

doCat ch does not handle the exception; it simply sets the retryActivity

object to true to indicate that the activity failed. The retry is handled by the
asynchronous r est art RunUnr el i abl eActi vityTill Success method, which
defers execution until Tr yCat ch completes. The reason for this approach is that,

if you retry an activity in doCat ch, you cannot cancel it. Retrying the activity in
restart RunUnrel i abl eActivityTill Success allows you to execute cancellable
activities.

Exponential Retry Strategy

With the exponential retry strategy, the framework executes a failed activity again after a specified
period of time, N seconds. If that attempt fails the framework executes the activity again after 2N
seconds, and then 4N seconds and so on. Because the wait time can get quite large, you typically stop
the retry attempts at some point rather than continuing indefinitely.

The framework provides three ways to implement an exponential retry strategy:

¢ The @xponenti al Ret ry annotation is the simplest approach, but you must set the retry
configuration options at compile time.

» The RetryDecor at or class allows you to set retry configuration at run time and change it as
needed.

¢ The AsyncRet ryi ngExecut or class allows you to set retry configuration at run time and change
it as needed. In addition, the framework calls a user-implemented AsyncRunnabl e. r un method to
run each retry attempt.

All approaches support the following configuration options, where time values are in seconds:

¢ The initial retry wait time.
» The back-off coefficient, which is used to compute the retry intervals, as follows:

retrylnterval = initialRetrylnterval Seconds * Math. pow(backof f Coeffi cient,
nunberOf Tries - 2)

The default value is 2.0.
¢ The maximum number of retry attempts. The default value is unlimited.
¢ The maximum retry interval. The default value is unlimited.

¢ The expiration time. Retry attempts stop when the total duration of the process exceeds this value.
The default value is unlimited.

« The exceptions that will trigger the retry process. By default, every exception triggers the retry
process.

API Version 2012-01-25
104

AWS Flow Framework for Java Developer Guide
Exponential Retry Strategy

¢ The exceptions that will not trigger a retry attempt. By default, no exceptions are excluded.

The following sections describe the various ways that you can implement an exponential retry strategy.

Exponential Retry with @ExponentialRetry

The simplest way to implement an exponential retry strategy for an activity is to apply an
@xponent i al Retry annotation to the activity in the interface definition. If the activity fails, the
framework handles the retry process automatically, based on the specified option values. The basic
pattern is:

1. Apply @xponent i al Ret ry to the appropriate activities and specify the retry configuration.

2. If an annotated activity fails, the framework automatically retries the activity according to the
configuration specified by the annotation's arguments.

The Exponent i al Ret r yAnnot at i onWor kf | ow workflow worker implements the exponential retry
strategy by using an @xponent i al Ret ry annotation. It uses an unr el i abl eActi vi ty activity
whose interface definition is implemented in Exponent i al RetryAnnot ati onActivities, as
follows:

@\ctivities(version = "1.0")
@\ctivityRegistrationOptions(
def aul t TaskSchedul eToSt art Ti neout Seconds = 30,
def aul t TaskSt art Tod oseTi neout Seconds = 30)
public interface Exponenti al RetryAnnotati onActivities {
@xponenti al Retry(
initial Retrylnterval Seconds = 5,
mexi numittenpts = 5,
exceptionsToRetry = Il1egal Stat eException. cl ass)
public void unreliableActivity();

The @xponent i al Ret ry options specify the following strategy:

¢ Retry only if the activity throws I | | egal St at eExcepti on.
¢ Use an initial wait time of 5 seconds.
¢ No more than 5 retry attempts.

The workflow interface is implemented in Ret r yWor kf | owand has one method,
pr ocess, which is the workflow's entry point. The workflow worker is implemented in
Exponenti al Ret r yAnnot at i onWor kf | owl npl , as follows:

public class Exponential RetryAnnot ati onWorkfl ow npl inpl enents RetryWrkfl ow
{

public void process() {
handl eUnr el i abl eActivity();
}

public void handl eUnreliabl eActivity() {
client.unreliableActivity();

}

The workflow works as follows:

API Version 2012-01-25
105

AWS Flow Framework for Java Developer Guide
Exponential Retry Strategy

1. pr ocess runs the synchronous handl eUnr el i abl eActi vi ty method.
2. handl eUnrel i abl eActi vi ty executes the unr el i abl eActi vi ty activity.

If the activity fails by throwing | | | egal St at eExcept i on, the framework automatically runs the retry
strategy specified in Exponent i al RetryAnnot ati onActivities.

Exponential Retry with the RetryDecorator Class

@Exponent i al Ret ry is simple to use. However, the configuration is static and set at compile time,

so the framework uses the same retry strategy every time the activity fails. You can implement a more
flexible exponential retry strategy by using the Ret r yDecor at or class, which allows you to specify the
configuration at run time and change it as needed. The basic pattern is:

1. Create and configure an Exponent i al Ret r yPol i cy object that specifies the retry configuration.

2. Create a Ret r yDecor at or object and pass the Exponent i al Ret r yPol i cy object from Step 1 to
the constructor.

3. Apply the decorator object to the activity by passing the activity client's class name to the
Ret r yDecor at or object's decorate method.

4. Execute the activity.

If the activity fails, the framework retries the activity according to the Exponenti al RetryPol i cy
object's configuration. You can change the retry configuration as needed by modifying this object.

Note

The @xponent i al Ret ry annotation and the Ret r yDecor at or class are mutually
exclusive. You cannot use Ret r yDecor at or to dynamically override a retry policy specified
by an @xponenti al Ret ry annotation.

The following workflow implementation shows how to use the Ret r yDecor at or class to implement
an exponential retry strategy. It uses an unr el i abl eActi vi t y activity that does not have an
@xponent i al Ret ry annotation. The workflow interface is implemented in Ret r yWor kf | owand
has one method, pr ocess, which is the workflow's entry point. The workflow worker is implemented in
Decor at or Ret r yWor kf | owl npl , as follows:

public class DecoratorRetryWrkflow nmpl inplenents RetryWrkflow {

public void process() {
long initial Retrylnterval Seconds = 5;
int maxi mumAttenpts = 5;
Exponenti al RetryPolicy retryPolicy = new Exponenti al RetryPolicy(

initial Retryl nterval Seconds) . w t hMaxi nmumAt t enpt s(naxi numAt t enpt s) ;

Decorator retryDecorator = new RetryDecorator(retryPolicy);
client = retryDecorator.decorate(RetryActivitiesCient.class, client);
handl eUnrel i abl eActivity();

}

public void handl eUnreliabl eActivity() ({
client.unreliableActivity();
}
}

The workflow works as follows:

1. pr ocess creates and configures an Exponent i al Ret ryPol i cy object by:

API Version 2012-01-25
106

AWS Flow Framework for Java Developer Guide
Exponential Retry Strategy

» Passing the initial retry interval to the constructor.

¢ Calling the object's wi t hMaxi mumAt t enpt s method to set the maximum number of attempts to
5. Exponenti al Ret ryPol i cy exposes other wi t h objects that you can use to specify other
configuration options.

2. process creates a Ret r yDecor at or object named r et r yDecor at or and passes the
Exponenti al RetryPol i cy object from Step 1 to the constructor.

3. process applies the decorator to the activity by calling the r et r yDecor at or . decor at e method
and passing it the activity client's class name.

4. handl eUnr el i abl eActi vi t y executes the activity.

If the activity fails, the framework retries it according to the configuration specified in Step 1.

Note

Several of the Exponent i al Ret ryPol i cy class's wi t h methods

have a corresponding set method that you can call to modify the
corresponding configuration option at any time: set Backof f Coef fi ci ent,
set Maxi mumAt t enpt s, set Maxi munRet ryl nt er val Seconds, and

set Maxi munRet r yExpi r ati onl nt er val Seconds.

Exponential Retry with the AsyncRetryingExecutor Class

The Ret r yDecor at or class provides more flexibility in configuring the retry process than

@Exponent i al Ret ry, but the framework still runs the retry attempts automatically, based on the
Exponenti al Ret ryPol i cy object's current configuration. A more flexible approach is to use the
AsyncRet ryi ngExecut or class. In addition to allowing you to configure the retry process at run
time, the framework calls a user-implemented AsyncRunnabl e. r un method to run each retry attempt
instead of simply executing the activity.

The basic pattern is:

1. Create and configure an Exponenti al Ret ryPol i cy object to specify the retry configuration.

2. Create an AsyncRet ryi ngExecut or object, and pass it the Exponent i al Ret r yPol i cy object
and an instance of the workflow clock.

3. Implement an anonymous nested Tr yCat ch or Tr yCat chFi nal | y class.

4. Implement an anonymous AsyncRunnabl e class and override the r un method to implement
custom code for running the activity.

5. Override doTry to call the AsyncRet ryi ngExecut or object's execut e method and pass
it the AsyncRunnabl e class from Step 4. The AsyncRet r yi ngExecut or object calls
AsyncRunnabl e. r un to run the activity.

6. If the activity fails, the AsyncRet r yi ngExecut or object calls the AsyncRunnabl e. r un method
again, according to the retry policy specified in Step 1.

The following workflow shows how to use the AsyncRet ryi ngExecut or class to implement

an exponential retry strategy. It uses the same unr el i abl eActi vi ty activity as the

Decor at or Ret r yWor kf I owworkflow discussed earlier. The workflow interface is implemented in
Ret r ywor kf I owand has one method, pr ocess, which is the workflow's entry point. The workflow
worker is implemented in AsyncExecut or Ret r yWor kf | ow npl , as follows:

public class AsyncExecutor Ret ryWsrkfl owl npl inpl enents RetryWrkfl ow {
private final RetryActivitiesClient client = new
RetryActivitiesCientlnpl();
private final DecisionContextProvider contextProvider = new
Deci si onCont ext Provi der | npl () ;
private final Wrkflowd ock clock =
cont ext Provi der. get Deci si onCont ext (). get Wr kf | owC ock();

API Version 2012-01-25
107

AWS Flow Framework for Java Developer Guide
Custom Retry Strategy

public void process() {
long initial Retrylnterval Seconds = 5;
int maxi mumAttenpts = 5;
handl eUnrel i abl eActivity(initial Retrylnterval Seconds, maxi numittenpts);

public void handl eUnreliabl eActivity(long initial Retrylnterval Seconds, int
maxi mumitt enpts) {

Exponenti al RetryPolicy retryPolicy = new

Exponenti al RetryPolicy(initial Retrylnterval Seconds).w t hMaxi mumAt t enpt s(naxi m

final AsyncExecutor executor = new AsyncRetryi ngExecutor(retryPolicy,
cl ock);

new TryCatch() ({
@verride
protected void doTry() throws Throwabl e {
execut or. execut e(new AsyncRunnabl e() {
@verride
public void run() throws Throwabl e {
client.unreliableActivity();
}
1
}

@verride
protected void doCatch(Throwabl e e) throws Throwabl e {
}

s

UMAL t enpt S) ;

The workflow works as follows:

1. process calls the handl eUnr el i abl eActi vi t y method and passes it the configuration settings.
2. handl eUnrel i abl eActi vi ty uses the configuration settings from Step 1 to create an
Exponenti al RetryPol i cy object, retryPolicy.

3. handl eUnrel i abl eActi vi ty creates an AsyncRet r yExecut or object, execut or, and passes
the Exponenti al Ret r yPol i cy object from Step 2 and an instance of the workflow clock to the
constructor

4. handl eUnr el i abl eActi vi t y implements an anonymous nested Tr yCat ch class and overrides
the doTry and doCat ch methods to run the retry attempts and handle any exceptions.

5. doTry creates an anonymous AsyncRunnabl e class and overrides the r un method to implement
custom code to execute unr el i abl eActi vi ty. For simplicity, r un just executes the activity, but
you can implement more sophisticated approaches as appropriate.

6. doTry calls execut or . execut e and passes it the AsyncRunnabl e object. execut e calls the
AsyncRunnabl e object's r un method to run the activity.

7. If the activity fails, executor calls r un again, according to the r et r yPol i cy object configuration.

For more discussion of how to use the Tr yCat ch class to handle errors, see Exceptions (p. 129).

Custom Retry Strategy

The most flexible approach to retrying failed activities is a custom strategy, which recursively calls an
asynchronous method that runs the retry attempt, much like the retry-until-success strategy. However,
instead of simply running the activity again, you implement custom logic that decides whether and how
to run each successive retry attempt. The basic pattern is:

API Version 2012-01-25
108

AWS Flow Framework for Java Developer Guide
Custom Retry Strategy

. Create a Set t abl e<T> status object, which is used to indicate whether the activity failed.
. Implement a nested Tr yCat ch or TryCat chFi nal | y class.

. doTry executes the activity.

. If the activity fails, doCat ch sets the status object to indicate that the activity failed.

. Call an asynchronous failure handling method and pass it the status object. The method defers
execution until Tr yCat ch or Tr yCat chFi nal | y completes.

6. The failure handling method decides whether to retry the activity, and if so, when.

ga b W N P

The following workflow shows how to implement a custom retry strategy. It uses

the same unr el i abl eActi vi ty activity as the Decor at or Ret r yWor kf | owand

AsyncExecut or Ret r yWor kf | owworkflows. The workflow interface is implemented in

Ret r yWwor kf | owand has one method, pr ocess, which is the workflow's entry point. The workflow
worker is implemented in Cust onlLogi cRet r yWor kf | ow npl , as follows:

public class Custonlogi cRetryWorkfl ow npl inplenents RetryWrkflow {

public void process() {
cal | ActivityWthRetry();
}

@\synchr onous
public void callActivityWthRetry() {
final Settabl e<Throwabl e> failure = new Settabl e<Thr owabl e>();
new TryCatchFinal ly() {
protected void doTry() throws Throwabl e {
client.unreliableActivity();
}

protected void doCatch(Throwable e) {
failure.set(e);
}

protected void doFinally() throws Throwabl e {
if (!failure.isReady()) {
failure.set(null);

}
}
}
retryOnFailure(failure);
}
@\synchr onous

private void retryOnFail ure(Prom se<Throwabl e> failureP) {
Throwabl e failure = failureP.get();
if (failure !'= null && shouldRetry(failure)) {
call ActivityWthRetry();
}

}

prot ect ed Bool ean shoul dRetry(Throwabl e e) {
//customlogic to decide to retry the activity or not
return true;

The workflow works as follows:

1. process calls the asynchronous cal | Acti vi t yW t hRet ry method.

2. call ActivityWthRetry creates a Set t abl e<Thr owabl e> object named failure which is used
to indicate whether the activity has failed. Set t abl e<T> is derived from Pr om se<T> and works
much the same way, but you set a Set t abl e<T> object's value manually.

API Version 2012-01-25
109

AWS Flow Framework for Java Developer Guide
Daemon Tasks

3. call ActivityWthRetry implements an anonymous nested Tr yCat chFi nal | y class to handle
any exceptions that are thrown by unr el i abl eAct i vi t y. For more discussion of how to handle
exceptions thrown by asynchronous code, see Exceptions (p. 129).

4. doTry executes unrel i abl eActivity.

5. Ifunrel i abl eActi vi ty throws an exception, the framework calls doCat ch and passes it the
exception object. doCat ch sets f ai | ur e to the exception object, which indicates that the activity
failed and puts the object in a ready state.

6. doFi nal | y checks whether f ai | ur e is ready, which will be true only if f ai | ur e was set by
doCat ch.

o Iffail ure isready, doFi nal | y does nothing.
e Iffai |l ur e is not ready, the activity completed and doFi nal | y sets failure to nul | .

7.call ActivityWthRetry calls the asynchronous r et r yOnFai | ur e method and passes it failure.
Because failure is a Set t abl e<T> type, cal | Acti vi t yWt hRet ry defers execution until failure is
ready, which occurs after Tr yCat chFi nal | y completes.

8. ret ryOnFai | ur e gets the value from failure.

« If failure is set to null, the retry attempt was successful. r et r yOnFai | ur e does nothing, which
terminates the retry process.

« If failure is set to an exception object and shoul dRet ry returns true, r et r yOnFai | ur e calls
cal | ActivityWthRetry to retry the activity.

shoul dRet r y implements custom logic to decide whether to retry a failed activity. For simplicity,
shoul dRet ry always returns t r ue and r et r yOnFai | ur e executes the activity immediately, but
you can implement more sophisticated logic as needed.

9. Steps 2-8 repeat until unr el i abl eActi vi t y completes or shoul dRet r y decides to stop the
process.

Note

doCat ch does not handle the retry process; it simply sets failure to indicate that the activity
failed. The retry process is handled by the asynchronous r et r yOnFai | ur e method, which
defers execution until Tr yCat ch completes. The reason for this approach is that, if you retry
an activity in doCat ch, you cannot cancel it. Retrying the activity in r et r yOnFai | ur e allows
you to execute cancellable activities.

The AWS Flow Framework for Java allows the marking of certain tasks as daenon. This allows you
to create tasks that do some background work that should get canceled when all other work is done.
For example, a health monitoring task should be canceled when the rest of the workflow is complete.
You can accomplish this by setting the daenon flag on an asynchronous method or an instance of
TryCat chFi nal | y. In the following example, the asynchronous method noni t or Heal t h() is
marked as daenon.

public class M/Wrkflow npl inplements MyWorkfl ow {
MyActivitiesClient activitiesCient = new M/ActivitiesCientlnpl();

@verride

public void start WWF(int a, String b) {
activitiesCient.doUseful WrkActivity();
noni torHeal t h();

}

@\synchr onous(daenon=t r ue)

API Version 2012-01-25
110

AWS Flow Framework for Java Developer Guide
Daemon Tasks

voi d nonitorHeal th(Prom se<?>... waitFor) {
activitiesCient.nonitoringActivity();
}
}

In the above example, when doUsef ul Wor kAct i vi t y completes, nmoni t or i ngHeal t h will be
automatically canceled. This will in turn cancel the whole execution branch rooted at this asynchronous
method. The semantics of cancellation are the same as described in Tr yCat chFi nal | y. Similarly,
you can mark a Tr yCat chFi nal | y daemon by passing a Boolean flag to the constructor.

public class MWrkflow npl inplements MyWorkfl ow {
MyActivitiesCient activitiesCient = new M/ActivitiesCientlnpl();

@verride
public void start WWF(int a, String b) {
activitiesCient.doUseful WorkActivity();
new TryFinally(true) {
@verride
protected void doTry() throws Throwabl e {
activitiesCient.nonitoringActivity();
}

@verride

protected void doFinally() throws Throwabl e {
/'l clean up

}

}s

A daemon task started within a Tr yCat chFi nal | y is scoped to the context it is created in—
that is, it will be scoped to either the doTry(), doCat ch(), or doFi nal | y() methods. For
example, in the following example the startMonitoring asynchronous method is marked daemon
and called from doTr y() . The task created for it will be canceled as soon as the other tasks
(doUsef ul Wor kAct i vi ty in this case) started within doTr y() are complete.

public class MyWrkflow npl inplements MyWorkfl ow {
MyActivitiesCient activitiesCient = new MyActivitiesCientlnpl();

@verride
public void start WWF(int a, String b) {
new TryFinal ly() {
@verride
protected void doTry() throws Throwabl e {
activitiesCient.doUseful WorkActivity();
startMnitoring();

}
@verride

protected void doFinally() throws Throwabl e {
/1 Cean up
}

}s

API Version 2012-01-25
111

AWS Flow Framework for Java Developer Guide
Replay Behavior

@\synchronous(daenon = true)
voi d starthMonitoring(){
activitiesCient.nonitoringActivity();

}

AWS Flow Framework for Java Replay Behavior

This topic discusses examples of replay behavior, using the examples in the What is the AWS Flow
Framework for Java? (p. 1) section. Both synchronous (p. 112) and asynchronous (p. 113)
scenarios are discussed.

Example 1. Synchronous Replay

For an example of how replay works in a synchronous workflow, modify the
HelloWorldWorkflow (p. 14) workflow and activity implementations by adding pri nt | n calls within their
respective implementations, as follows:

public class G eeterWrkflow nmpl inplenents G eeterWrkflow {

public void greet() {
Systemout. println("greet executes");
Prom se<String> nane = operations. get Nane();
Systemout.println("client.getNanme returns");
Prom se<String> greeting = operations. get G eeting(nane);
Systemout.println("client.greeting returns");
oper ati ons. say(greeting);
Systemout.println("client.say returns");
}
}
kkhkkhkhkkkkhkkhkhkhkkkk*k
public class GreeterActivitieslnpl inplements GeeterActivities {
public String getName() {
Systemout.println("activity.getNane conpl etes");
return "Wrld";
}

public String getGeeting(String nane) ({
Systemout.println("activity.getGeeting conpletes");
return "Hello " + name + "!";

}

public void say(String what) {
System out . printl n(what);

}

For details about the code, see HelloWorldWorkflow Application (p. 14). The following is an edited
version of the output, with comments that indicate the start of each replay episode.

/| Epi sode 1
greet executes

API Version 2012-01-25
112

AWS Flow Framework for Java Developer Guide
Example 2: Asynchronous Replay

client.getNane returns
client.greeting returns
client.say returns

activity.getNanme conpl etes
/ | Epi sode 2

greet executes
client.getNane returns
client.greeting returns
client.say returns

activity.getGeeting conpletes
/ | Epi sode 3

greet executes

client.getNane returns
client.greeting returns
client.say returns

Hello World! //say conpl etes
/| Epi sode 4

greet executes
client.getName returns
client.greeting returns
client.say returns

The replay process for this example works as follows:

» The first episode schedules the get Nane activity task, which has no dependencies.
¢ The second episode schedules the get Gr eet i ng activity task, which depends on get Nane.
¢ The third episode schedules the say activity task, which depends on get G eet i ng.

* The final episode schedules no additional tasks and finds no uncompleted activities, which
terminates the workflow execution.

Note
The three activities client methods are called once for each episode. However, only one of
those calls results in an activity task, so each task is performed only once.

Example 2: Asynchronous Replay

Similarly to the synchronous replay example (p. 112), you can modify HelloWorldWorkflowAsync
Application (p. 25) to see how an asynchronous replay works. It produces the following output:

/| Epi sode 1

greet executes

client.nane returns

wor kf | ow. get Greeting returns
client.say returns

activity.getNane conpl etes

/ | Epi sode 2

greet executes

client.nane returns

wor kf | ow. get Greeting returns
client.say returns

wor kf | ow. get Greeti ng conpl etes

API Version 2012-01-25
113

AWS Flow Framework for Java Developer Guide
See Also

Hello World! //say conpletes
/| Epi sode 3

greet executes

client.nane returns

wor kf | ow. get Greeting returns
client.say returns

wor kf | ow. get Greeti ng conpl etes

HelloWorldAsync uses three replay episodes because there are only two activities. The get Gr eet i ng
activity was replaced by the getGreeting asynchronous workflow method, which does not initiate a
replay episode when it completes.

The first episode does not call get G eet i ng, because it depends on the completion of the name

activity. However, after getName completes, replay calls getGreeting once for each succeeding
episode.

See Also

¢ AWS Flow Framework Basic Concepts: Distributed Execution (p. 38)

API Version 2012-01-25
114

AWS Flow Framework for Java Developer Guide
Task

Under the Hood

Task

Topics
e Task (p. 115)
¢ Order of Execution (p. 116)
¢ Workflow Execution (p. 117)
¢ Nondeterminism (p. 119)

The underlying primitive that the AWS Flow Framework for Java uses to manage the execution

of asynchronous code is the Task class. An object of type Task represents work that has to be
performed asynchronously. When you call an asynchronous method, the framework creates a Task
to execute the code in that method and puts it in a list for execution at a later time. Similarly, when you
invoke an Act i vi ty, a Task is created for it. The method call returns after this, usually returning a
Prom se<T> as the future result of the call.

The Task class is public and may be used directly. For example, we can rewrite the Hello World
example to use a Task instead of an asynchronous method.

@verride
public void startHell oWorl d(){
final Prom se<String> greeting = client.getNanme();
new Task(greeting) {
@verride
protected void doExecute() throws Throwabl e {
client.printGeeting("Hello " + greeting.get() +"!");
}
s

The framework calls the doExecut e() method when all the Pr om ses passed to the constructor
of the Task become ready. For more details about the Task class, see the AWS Java SDK
documentation.

The framework also includes a class called Funct or which represents a Task that is also a
Prom se<T>. The Funct or object becomes ready when the Task completes. In the following
example, a Funct or is created to get the greeting message:

API Version 2012-01-25
115

AWS Flow Framework for Java Developer Guide
Order of Execution

Prom se<String> greeting = new Functor<String>() {
@verride
protected Prom se<String> doExecute() throws Throwable {
return client.getGeeting();
}
s
client.printGeeting(greeting);

Order of Execution

Tasks become eligible for execution only when all Pr om se<T> typed parameters, passed to the
corresponding asynchronous method or activity, become ready. A Task that is ready for execution

is logically moved to a ready queue. In other words, it is scheduled for execution. The worker class
executes the task by invoking the code that you wrote in the body of the asynchronous method, or by
scheduling an activity task in Amazon Simple Workflow Service (AWS) in case of an activity method.

As tasks execute and produce results, they cause other tasks to become ready and the execution of
the program keeps moving forward. The way the framework executes tasks is important to understand
the order in which your asynchronous code executes. Code that appears sequentially in your program
may not actually execute in that order.

Prom se<Stri ng> nane = get User Nane();
print Hel | oNane(nane) ;

printHell oWorld();
Systemout.println("Hello, Amazon!");

@\synchr onous
private Promi se<String> getUser Nanme(){
return Prom se. asProm se("Bob");

}

@\synchr onous

private void printHell oName(Pronm se<String> nane) {
Systemout.printin("Hello, " + nane.get() + "!");

}

@\synchronous

private void printHellowrld(){
Systemout.printin("Hello, Wrld!'");
}

The code in the listing above will print the following:

Hel | o, Amazon!
Hel | o, Worl d!
Hel | o, Bob

This may not be what you expected but can be easily explained by thinking through how the tasks for
the asynchronous methods were executed:

API Version 2012-01-25
116

AWS Flow Framework for Java Developer Guide
Workflow Execution

1. The call to get User Nane creates a Task. Let's call it Task1. Since get User Nane does not take
any parameters, Task1 is immediately put in the ready queue.

2. Next, the call to pri nt Hel | oNane creates a Task that needs to wait for the result of
get User Nane. Let's call it Task2. Since the requisite value isn't ready yet, Task2 is put in the wait
list.

. Then atask for print Hel | oWbr| d is created and added to the ready queue. Let's call it Task3.
. The pri nt| n statement then prints "Hello, Amazon!" to the console.
. At this point, Task1 and Task3 are in the ready queue and Task?2 is in the wait list.

. The worker executes Task1, and its result makes Task?2 ready. Task2 gets added to ready queue
behind Task3.

7. Task3 and Task?2 are then executed in that order.

o 01 AW

The execution of activities follows the same pattern. When you call a method on the activity client, it
creates a Task that, upon execution, schedules an activity in Amazon SWF.

The framework relies on features like code generation and dynamic proxies to inject the logic for
converting method calls to activity invocations and asynchronous tasks in your program.

The execution of the workflow implementation is also managed by the worker class. When you call
a method on the workflow client, it calls Amazon SWF to create a workflow instance. The tasks in
Amazon SWF should not be confused with the tasks in the framework. A task in Amazon SWF is
either an activity task or a decision task. The execution of activity tasks is simple. The activity worker
class receives activity tasks from Amazon SWF, invokes the appropriate activity method in your
implementation, and returns the result to Amazon SWF.

The execution of decision tasks is more involved. The workflow worker receives decision tasks from
Amazon SWF. A decision task is effectively a request asking the workflow logic what to do next. The
first decision task is generated for a workflow instance when it is started through the workflow client.
Upon receiving this decision task, the framework starts executing the code in the workflow method
annotated with @xecut e. This method executes the coordination logic that schedules activities. When
the state of the workflow instance changes—for example, when an activity completes—further decision
tasks get scheduled. At this point, the workflow logic can decide to take an action based on the result
of the activity; for example, it may decide to schedule another activity.

The framework hides all these details from the developer by seamlessly translating decision tasks

to the workflow logic. From a developer's point of view, the code looks just like a regular program.
Under the covers, the framework maps it to calls to Amazon SWF and decision tasks using the history
maintained by Amazon SWF. When a decision task arrives, the framework replays the program
execution plugging in the results of the activities completed so far. Asynchronous methods and
activities that were waiting for these results get unblocked, and the program execution moves forward.

The execution of the example image processing workflow and the corresponding history is shown in
the following table.

Execution of thumbnail workflow
Workflow program execution History maintained by Amazon SWF
Initial execution

1. Dispatch loop 1. Workflow instance started, id="1"
2. getimageUrls 2. downloadlmage scheduled
3. downloadimage

API Version 2012-01-25
117

AWS Flow Framework for Java Developer Guide
Workflow Execution

Workflow program execution History maintained by Amazon SWF
4. createThumbnail (task in wait queue)

5. uploadimage (task in wait queue)

6. <next iteration of the loop>

Replay
1. Dispatch loop 1. Workflow instance started, id="1"
2. getimageUrls 2. downloadlmage scheduled
3. downloadimage image path="foo" 3. downloadimage completed, return="foo"
4. createThumbnail 4. createThumbnail scheduled
5. uploadimage (task in wait queue)
6. <next iteration of the loop>

Replay
1. Dispatch loop 1. Workflow instance started, id="1"
2. getimageUrls 2. downloadlmage scheduled
3. downloadimage image path="foo" 3. downloadlmage completed, return="foo"
4. createThumbnail thumbnail path="bar" 4. createThumbnail scheduled
5. uploadimage 5. createThumbnail completed, return="bar"
6. <next iteration of the loop> 6. uploadimage scheduled

Replay
1. Dispatch loop 1. Workflow instance started, id="1"
2. getlmageUrls 2. downloadlimage scheduled
3. downloadimage image path="foo" 3. downloadimage completed, return="foo"
4. createThumbnail thumbnail path="bar" 4. createThumbnail scheduled
5. uploadlmage 5. createThumbnail completed, return="bar"
6. <next iteration of the loop> 6. uploadimage scheduled

7. uploadimage completed

When a call to pr ocessl nage is made, the framework creates a new workflow instance in Amazon
SWEF. This is a durable record of the workflow instance being started. The program executes until the
call to the downl oadl mage activity, which asks Amazon SWF to schedule an activity. The workflow
executes further and creates tasks for subsequent activities, but they cannot be executed until the
downl oadl mage activity completes; hence, this episode of replay ends. Amazon SWF dispatches
the task for downl oadl nage activity for execution, and once it is completed, a record is made in

the history along with the result. The workflow is now ready to move forward and a decision task is
generated by Amazon SWF. The framework receives the decision task and replays the workflow
plugging in the result of the downloaded image as recorded in the history. This unblocks the task

for cr eat eThunbnai | , and the execution of the program continues farther by scheduling the

creat eThunbnai | activity task in Amazon SWF. The same process repeats for upl oadl nage. The
execution of the program continues this way until the workflow has processed all images and there
are no pending tasks. Since no execution state is stored locally, each decision task may be potentially
executed on a different machine. This allows you to easily write programs that are fault tolerant and
easily scalable.

API Version 2012-01-25
118

AWS Flow Framework for Java Developer Guide
Nondeterminism

Nondeterminism

Since the framework relies on replay, it is important that the orchestration code (all workflow code
with the exception of activity implementations) be deterministic. For example, the control flow in your
program should not depend on a random number or the current time. Since these things will change
between invocations, the replay may not follow the same path through the orchestration logic. This
will lead to unexpected results or errors. The framework provides a Wor kf | owCl ock that you can use
to get the current time in a deterministic way. See the section on Execution Context (p. 76) for more
details.

Note

Incorrect Spring wiring of workflow implementation objects can also lead to nondeterminism.
Workflow implementation beans as well as beans that they depend on must be in the workflow
scope (Wor kf | owScope). For example, wiring a workflow implementation bean to a bean

that keeps state and is in the global context will result in unexpected behavior. See the Spring
Integration (p. 86) section for more details.

API Version 2012-01-25
119

AWS Flow Framework for Java Developer Guide
Compilation Errors

Troubleshooting and Debugging
Tips

Topics
¢ Compilation Errors (p. 120)
¢ Unknown Resource Fault (p. 120)
¢ Exceptions When Calling get() on a Promise (p. 121)
¢ Non Deterministic Workflows (p. 121)
¢ Problems Due to Versioning (p. 121)
¢ Troubleshooting and Debugging a Workflow Execution (p. 121)
e Lost Tasks (p. 123)

This section describes some common pitfalls that you might run into while developing workflows using
AWS Flow Framework for Java. It also provides some tips to help you diagnose and debug problems.

Compilation Errors

If you are using the AspectJ compile time weaving option, you may run into compile time errors in
which the compiler is not able to find the generated client classes for your workflow and activities. The
likely cause of such compilation errors is that the AspectJ builder ignored the generated clients during
compilation. You can fix this issue by removing AspectJ capability from the project and re-enabling it.
Note that you will need to do this every time your workflow or activities interfaces change. Because of
this issue, we recommend that you use the load time weaving option instead. See the section Setting
up the Framework (p. 3) for more details.

Unknown Resource Fault

Amazon SWF returns unknown resource fault when you try to perform an operation on a resource that
is not available. The common causes for this fault are:

¢ You configure a worker with a domain that does not exist. To fix this, first register the domain using
the Amazon SWF console or the Amazon SWF service API.

API Version 2012-01-25
120

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-register-domain-console.html
http://docs.aws.amazon.com//amazonswf/latest/apireference/API_RegisterDomain.html

AWS Flow Framework for Java Developer Guide
Exceptions When Calling get() on a Promise

« You try to create workflow execution or activity tasks of types that have not been registered. This
can happen if you try to create the workflow execution before the workers have been run. Since
workers register their types when they are run for the first time, you must run them at least once
before attempting to start executions (or manually register the types using the Console or the service
API). Note that once types have been registered, you can create executions even if no worker is
running.

¢ A worker attempts to complete a task that has already timed out. For example, if a worker takes too
long to process a task and exceeds a timeout, it will get an UnknownResource fault when it attempts
to complete or fail the task. The AWS Flow Framework workers will continue to poll Amazon SWF
and process additional tasks. However, you should consider adjusting the timeout. Adjusting the
timeout requires that you register a new version of the activity type.

Exceptions When Calling get() on a Promise

Unlike Java Future, Pr oni se is a non-blocking construct and calling get () on a Pr oni se that is not
ready yet will throw an exception instead of blocking. The correct way to use a Pr oni se is to pass it

to an asynchronous method (or a task) and access its value in the asynchronous method. AWS Flow
Framework for Java ensures that an asynchronous method is called only when all Pr oni se arguments
passed to it have become ready. If you believe your code is correct or if you run into this while running
one of the AWS Flow Framework samples, then it is most likely due to AspectJ not being properly
configured. For details, see the section Setting up the Framework (p. 3).

Non Deterministic Workflows

As described in the section Nondeterminism (p. 119), the implementation of your workflow must be
deterministic. Some common mistakes that can lead to nondeterminism are use of system clock, use
of random numbers, and generation of GUIDs. Since these constructs may return different values

at different times, the control flow of your workflow may take different paths each time it is executed
(see the sections AWS Flow Framework Basic Concepts: Distributed Execution (p. 38) and Under the
Hood (p. 115) for details). If the framework detects nondeterminism while executing the workflow, an
exception will be thrown.

Problems Due to Versioning

When you implement a new version of your workflow or activity—for instance, when you add a new
feature—you should increase the version of the type by using the appropriate annotation: @\6r kf | ow,
@Activites,or @ctivity. When new versions of a workflow are deployed, often times you will
have executions of the existing version that are already running. Therefore, you need to make sure that
workers with the appropriate version of your workflow and activities get the tasks. You can accomplish
this by using a different set of task lists for each version. For example, you can append the version
number to the name of the task list. This ensures that tasks belonging to different versions of the
workflow and activities are assigned to the appropriate workers.

Troubleshooting and Debugging a Workflow
Execution

The first step in troubleshooting a workflow execution is to use the Amazon SWF console to look at
the workflow history. The workflow history is a complete and authoritative record of all the events that

API Version 2012-01-25
121

AWS Flow Framework for Java Developer Guide
Troubleshooting and Debugging a Workflow Execution

changed the execution state of the workflow execution. This history is maintained by Amazon SWF and
is invaluable for diagnosing problems. The Amazon SWF console enables you to search for workflow
executions and drill down into individual history events.

AWS Flow Framework provides a Wor kf | owRepl ayer class that you can use to replay a workflow
execution locally and debug it. Using this class, you can debug closed and running workflow
executions. Wir kf | owRepl ayer relies on the history stored in Amazon SWF to perform the replay.
You can point it to a workflow execution in your Amazon SWF account or provide it with the history
events (for example, you can retrieve the history from Amazon SWF and serialize it locally for later
use). When you replay a workflow execution using the Wor kf | owRepl ayer , it does not impact the
workflow execution running in your account. The replay is done completely on the client. You can
debug the workflow, create breakpoints, and step into code using your debugging tools as usual. If you
are using Eclipse, consider adding step filters to filter AWS Flow Framework packages.

For example, the following code snippet can be used to replay a workflow execution:

String workflow d = "testWrkfl ow';

String runld = "<run id>";

Cl ass<Hel | oWor | dI npl > wor kf | ow npl enent ati onType = Hel | oWbr | dl npl . cl ass;
Wor kf | owExecut i on wor kf | owExecuti on = new Wor kf | owExecution();

wor kf | owExecut i on. set Wr kf | ow d(wor kf | owl d) ;

wor kf | owExecut i on. set Runl d(runl d);

Wor kf | owRepl ayer <Hel | oWor | dl npl > repl ayer = new
Wor kf | owRepl ayer <Hel | oWor | dI mpl >(
swf Servi ce, domain, workfl owExecution, workflow npl enentationType);

System out . println("Begi nning workflow replay for " + workfl owExecuti on);
Obj ect workflow = repl ayer. | oadWorkfl ow();

System out . println("Wrkflow inplenentati on object:");

System out. printl n(workfl ow);

Systemout. println("Done workflow replay for " + workfl owExecution);

AWS Flow Framework also allows you to get an asynchronous thread dump of your workflow
execution. This thread dump gives you the call stacks of all open asynchronous tasks. This information
can be useful to determine which tasks in the execution are pending and possibly stuck. For example:

String workflow d = "testWrkfl ow';

String runld = "<run id>";

Cl ass<Hel | oWor | dl npl > wor kf | ow npl enent ati onType = Hel | owbr | dl npl . cl ass;
Wor kf | owExecuti on wor kf | owExecuti on = new Wor kf | owExecution();

wor kf | owExecut i on. set Wor kf | ow d(wor kf | owl d) ;

wor kf | owExecut i on. set Runl d(runl d);

Wor kf | owRepl ayer <Hel | oWor | dl npl > repl ayer = new
Wor kf | owRepl ayer <Hel | oWor | dI npl >(
swf Servi ce, domain, workfl owExecution, workflow npl enentationType);

try {
String flowThreadDunp = repl ayer. get Asynchr onousThr eadDunpAsStri ng() ;

System out . println("Wrkfl ow asynchronous thread dunp:");
System out . printl n(fl owThr eadDunp) ;
}
catch (Workfl owException e) {
Systemout. println("No asynchronous thread dunp avail abl e as wor kfl ow has
failed: " + e);

API Version 2012-01-25
122

AWS Flow Framework for Java Developer Guide
Lost Tasks

‘ }

Lost Tasks

Sometimes you may shut down workers and start new ones in quick succession only to discover that
tasks get delivered to the old workers. This can happen due to race conditions in the system, which is
distributed across several processes. The problem can also appear when you are running unit tests in
a tight loop. Stopping a test in Eclipse can also sometimes cause this because shutdown handlers may
not get called.

In order to make sure that the problem is in fact due to old workers getting tasks, you should look

at the workflow history to determine which process received the task that you expected the new
worker to receive. For example, the Deci si onTaskSt ar t ed event in history contains the identity

of the workflow worker that received the task. The id used by the Flow Framework is of the form:
{processld}@{host name}. For instance, following are the details of the Deci si onTaskSt art ed event
in the Amazon SWF console for a sample execution:

Event Timestamp Mon Feb 20 11:52:40 GMT-800 2012
Identity 2276@ip-0A6C1DF5
Scheduled Event Id 33

In order to avoid this situation, use different task lists for each test. Also, consider adding a delay
between shutting down old workers and starting new ones.

API Version 2012-01-25
123

AWS Flow Framework for Java Developer Guide
Annotations

AWS Flow Framework for Java
Reference

Topics
¢ AWS Flow Framework for Java Annotations (p. 124)
¢ AWS Flow Framework for Java Exceptions (p. 129)
¢ AWS Flow Framework for Java Packages (p. 131)

AWS Flow Framework for Java Annotations

Topics
e @Activities (p. 124)
e @Activity (p. 125)
¢ @ActivityRegistrationOptions (p. 125)
¢ @Asynchronous (p. 126)
* @Execute (p. 126)
¢ @ExponentialRetry (p. 126)
¢ @GetState (p. 127)
¢ @ManualActivityCompletion (p. 127)
e @Signal (p. 127)
¢ @SkipRegistration (p. 127)
¢ @Wait and @NoWait (p. 127)
e @Workflow (p. 128)
* @WorkflowRegistrationOptions (p. 128)

@ACctivities

This annotation can be used on an interface to declare a set of activity types. Each method in an
interface annotated with this annotation represents an activity type. An interface cannot have both
@\or kfl owand @Acti vi ti es annotations-

The following parameters can be specified on this annotation:

API Version 2012-01-25
124

AWS Flow Framework for Java Developer Guide
@Activity

activityNamePrefi x
Specifies the prefix of the name of the activity types declared in the interface. If set to an empty
string (which is the default), the name of the interface followed by "." is used as the prefix.

version
Specifies the default version of the activity types declared in the interface. The default value is
1.0.

dat aConverter
Specifies the type of the Dat aConvert er to use for serializing/deserializing data when creating
tasks of this activity type and its results. Set to Nul | Dat aConver t er by default, which indicates
that the JsonDat aConvert er should be used.

@ACctivity

This annotation can be used on methods within an interface annotated with @\cti vi ti es.
The following parameters can be specified on this annotation:

name
Specifies the name of the activity type. The default is an empty string, which indicates that the
default prefix and the activity method name should be used to determine the name of the activity
type (which is of the form {prefix}{name}). Note that when you specify a name in an @\cti vity
annotation, the framework will not automatically prepend a prefix to it. You are free to use your
own naming scheme.

ver si on
Specifies the version of the activity type. This overrides the default version specified in the
@Act i vi ti es annotation on the containing interface. The default is an empty string.

@ActivityRegistrationOptions

Specifies the registration options of an activity type. This annotation can be used on an interface
annotated with @Act i vi ti es or the methods within. If specified in both places, then the annotation
used on the method takes effect.

The following parameters can be specified on this annotation:

def aul t Taskl i st
Specifies the default task list to be registered with Amazon SWF for this activity type. This
default can be overridden when calling the activity method on the generated client using the
Acti vi t ySchedul i ngOpt i ons parameter. Set to USE_WORKER_TASK_LI ST by default. This
is a special value which indicates that the task list used by the worker, which is performing the
registration, should be used.

def aul t TaskSchedul eToSt art Ti neout Seconds
Specifies the defaultTaskScheduleToStartTimeout registered with Amazon SWF for this activity
type. This is the maximum time a task of this activity type is allowed to wait before it is assigned to
a worker. See the Amazon Simple Workflow Service API Reference for more details.

def aul t TaskHear t beat Ti meout Seconds
Specifies the def aul t TaskHear t beat Ti neout registered with Amazon SWF for this activity
type. Activity workers must provide heartbeat within this duration; otherwise, the task will be timed
out. Set to -1 by default, which is a special value that indicates this timeout should be disabled.
See the Amazon Simple Workflow Service API Reference for more details.

def aul t TaskSt art ToCl oseTi meout Second
Specifies the defaultTaskStartToCloseTimeout registered with Amazon SWF for this activity type.
This timeout determines the maximum time a worker can take to process an activity task of this
type. See the Amazon Simple Workflow Service API Reference for more details.

API Version 2012-01-25
125

http://docs.aws.amazon.com//amazonswf/latest/apireference
http://docs.aws.amazon.com//amazonswf/latest/apireference
http://docs.aws.amazon.com//amazonswf/latest/apireference

AWS Flow Framework for Java Developer Guide
@Asynchronous

def aul t TaskSchedul eToCl oseTi neout Seconds
Specifies the def aul t Schedul eToC oseTi meout registered with Amazon SWF for this activity
type. This timeout determines the total duration that the task can stay in open state. Set to -1 by
default, which is a special value that indicates this timeout should be disabled. See the Amazon
Simple Workflow Service API Reference for more details.

@Asynchronous

When used on a method in the workflow coordination logic, indicates that the method should be
executed asynchronously. A call to the method will return immediately, but the actual execution will
happen asynchronously when all Promise<> parameters passed to the methods become ready.
Methods annotated with @Asynchronous must have a return type of Promise<> or void.

daenon
Indicates if the task created for the asynchronous method should be a daemon task. Fal se by
default.

@Execute

When used on a method in an interface annotated with the @\r kf | ow annotation, identifies the entry
point of the workflow.

Important
Only one method in the interface can be decorated with @xecut e.

The following parameters can be specified on this annotation:

name
Specifies the name of the workflow type. If not set, the name defaults to {prefix}{name}, where
{prefix} is the name of the workflow interface followed by a ." and {name} is the name of the
@xecut e-decorated method in the workflow.

version
Specifies the version of the workflow type.

@ExponentialRetry

When used on an activity or asynchronous method, sets an exponential retry policy if the method
throws an unhandled exception. A retry attempt is made after a back-off period, which is calculated by
the power of the number of attempts.

The following parameters can be specified on this annotation:

intial Retryl nterval Seconds
Specifies the duration to wait before the first retry attempt. This value should not be greater than
maxi munRet ryl nt er val Seconds and r et r yExpi r at i onSeconds.

maxi munRet ryl nt er val Seconds
Specifies the maximum duration between retry attempts. Once reached, the retry interval is
capped to this value. Set to -1 by default, which means unlimited duration.

retryExpirati onSeconds
Specifies the duration after which exponential retry will stop. Set to -1 by default, which means
there is no expiration.

backof f Coef fi ci ent
Specifies the coefficient used to calculate the retry interval. Set to 2 by default. You can set this to
1 to get linear back-off or 0 to get a constant back-off.

API Version 2012-01-25
126

http://docs.aws.amazon.com//amazonswf/latest/apireference
http://docs.aws.amazon.com//amazonswf/latest/apireference

AWS Flow Framework for Java Developer Guide
@GetState

maxi mumAt t enpt s
Specifies the number of attempts after which exponential retry will stop. Set to -1 by default, which
means there is no limit on the number of retry attempts.

exceptionsToRetry
Specifies the list of exception types that should trigger a retry. Unhandled exception of these
types will not propagate further and the method will be retried after the calculated retry interval. By
default, the list contains Thr owabl e.

excl udeExcepti ons
Specifies the list of exception types that should not trigger a retry. Unhandled exceptions of this
type will be allowed to propagate. The list is empty by default.

@GetState

When used on a method in an interface annotated with the @\r kf | ow annotation, identifies that the
method is used to retrieve the latest workflow execution state. There can be at most one method with
this annotation in an interface with the @\r kf | ow annotation. Methods with this annotation must not
take any parameters and must have a return type other than voi d.

@ManualActivityCompletion

This annotation can be used on an activity method to indicate that the activity task should not be
completed when the method returns. The activity task will not be automatically completed and would
need to be completed manually directly using the Amazon SWF API. This is useful for use cases
where the activity task is delegated to some external system that is not automated or requires human
intervention to be completed.

@Signal

When used on a method in an interface annotated with the @\r kf | ow annotation, identifies a
signal that can be received by executions of the workflow type declared by the interface. Use of this
annotation is required to define a signal method.

The following parameters can be specified on this annotation:

name
Specifies the name portion of the signal name. If not set, the name of the method is used.

@ SkipRegistration

When used on an interface annotated with the @\r kf | ow annotation, indicates that the workflow
type should not be registered with Amazon SWF. One of @\or kf | owRegi st rati onOpti ons and
@ki pRegi st rati onOpti ons annotations must be used on an interface annotated with @\r kf | ow,
but not both.

@Wait and @NoWait

These annotations can be used on a parameter of type Pr om se<> to indicate whether the AWS
Flow Framework for Java should wait for it to become ready before executing the method. By default,
Pr om se<> parameters passed into @\synchr onous methods must become ready before method
execution occurs. In certain scenarios, it is necessary to override this default behavior. Pr om se<>
parameters passed into @Asynchr onous methods and annotated with @NoWai t are not waited for.

API Version 2012-01-25
127

AWS Flow Framework for Java Developer Guide
@Workflow

Collections parameters (or subclasses of) that contain promises, such as Li st <Pr om se<I| nt >>,
must be annotated with @\ai t annotation. By default, the framework does not wait for the members of
a collection.

@Workflow

This annotation is used on an interface to declare a workflow type. An interface decorated with
this annotation should contain exactly one method that is decorated with the @Execute (p. 126)
annotation to declare an entry point for your workflow.

Note
An interface cannot have both @\r kf | owand @A\ct i vi t i es annotations declared at once;
they are mutually exclusive.

The following parameters can be specified on this annotation:
dat aConverter
Specifies which Dat aConvert er to use when sending requests to, and receiving results from,

workflow executions of this workflow type.

The default is Nul | Dat aConvert er which, in turn, falls back to JsonDat aConvert er to process
all request and response data as JavaScript Object Notation (JSON).

Example

i mport com amazonaws. servi ces. si mpl ewor kf | ow. f | ow. annot ati ons. Execut e;
i mport com amazonaws. servi ces. si npl ewor kf | ow. f | ow. annot ati ons. Wr kf | ow;

i mport

com anmazonaws. servi ces. si npl ewor kf | ow. f| ow. annot at i ons. Wr kf | owRegi strati onOpt
@\or kf | ow
@\or kf | owRegi strati onOptions(defaul t Executi onStart ToC oseTi neout Seconds =

3600)

public interface G eeterWrkflow {
@xecute(version = "1.0")
public void greet();

@WorkflowRegistrationOptions

When used on an interface annotated with @\r kf | ow, provides default settings used by Amazon
SWF when registering the workflow type.

Note
Either @\or kf | owRegi strati onOpti ons or @ki pRegi st rati onOpti ons must be used
on an interface annotated with @\br kf | ow, but you can't specify both.

The following parameters can be specified on this annotation:

Description
An optional text description of the workflow type.

def aul t Executi onSt art ToCl oseTi meout Seconds
Specifies the def aul t Executi onSt art ToC oseTi neout registered with Amazon SWF for the
workflow type. This is the total time that a workflow execution of this type can take to complete.

For more information about workflow timeouts, see Timeout Types (p. 44).

API Version 2012-01-25
128

i ons;

AWS Flow Framework for Java Developer Guide
Exceptions

def aul t TaskSt art ToC oseTi meout Seconds
Specifies the def aul t TaskSt art ToCl oseTi neout registered with Amazon SWF for the
workflow type. This specifies the time a single decision task for a workflow execution of this type
can take to complete.

If you don't specify def aul t TaskSt art Tod oseTi neout , it will default to 30 seconds.

For more information about workflow timeouts, see Timeout Types (p. 44).

def aul t TaskLi st
The default task list used for decision tasks for executions of this workflow type. The default set
here can be overridden by using St ar t Wr kf | owOpt i ons when starting a workflow execution.

If you don't specify def aul t TaskLi st , it will be set to USE_WORKER_TASK_LI ST by default. This

indicates that the task list used by the worker that is performing the workflow registration should be

used.
defaul t Chi | dPol i cy

Specifies the policy to use for child workflows if an execution of this type is terminated. The default

value is ABANDON. The possible values are:

« ABANDON: Allow the child workflow executions to keep running

* TERM NATE: Terminate child workflow executions

¢ REQUEST_CANCEL: Request cancellation of the child workflow executions

AWS Flow Framework for Java Exceptions

The following exceptions are used by the AWS Flow Framework for Java. This section provides
an overview of the exception. For more details, see the AWS SDK for Java documentation of the
individual exceptions.

Topics
¢ ActivityFailureException (p. 129)
¢ ActivityTaskException (p. 130)
¢ ActivityTaskFailedException (p. 130)
¢ ActivityTaskTimedOutException (p. 130)
¢ ChildWorkflowException (p. 130)
¢ ChildWorkflowFailedException (p. 130)
¢ ChildWorkflowTerminatedException (p. 130)
¢ ChildWorkflowTimedOutException (p. 130)
¢ DataConverterException (p. 131)
¢ DecisionException (p. 131)
¢ ScheduleActivityTaskFailedException (p. 131)
¢ SignalExternalWorkflowException (p. 131)
» StartChildWorkflowFailedException (p. 131)
e StartTimerFailedException (p. 131)
e TimerException (p. 131)
¢ WorkflowException (p. 131)

ActivityFailureException

This exception is used by the framework internally to communicate activity failure. When an activity
fails due to an unhandled exception, it is wrapped in Act i vi t yFai | ur eExcept i on and reported

API Version 2012-01-25
129

AWS Flow Framework for Java Developer Guide
ActivityTaskException

to Amazon SWF. You need to deal with this exception only if you use the activity worker extensibility
points. Your application code will never need to deal with this exception.

ActivityTaskException

This is the base class for activity task failure exceptions:

Schedul eActi vityTaskFai | edExcepti on, Acti vi t yTaskFai | edExcepti on,

Acti vi t yTaskTi medout Except i on. It contains the task Id and activity type of the failed task. You
can catch this exception in your workflow implementation to deal with activity failures in a generic way.

ActivityTaskFailedException

Unhandled exceptions in activities are reported back to the workflow implementation by throwing an
Acti vi t yTaskFai | edExcept i on. The original exception can be retrieved from the cause property
of this exception. The exception also provides other information that is useful for debugging purposes,
such as the unique activity identifier in the history.

The framework is able to provide the remote exception by serializing the original exception from the
activity worker.

ActivityTaskTimedOutException

This exception is thrown if an activity was timed out by Amazon SWF. This could happen if the
activity task could not be assigned to the worker within the require time period or could not be
completed by the worker in the required time. You can set these timeouts on the activity using the
@ActivityRegi strati onOpti ons annotation or using the Act i vi t ySchedul i ngOpti ons
parameter when calling the activity method.

ChildWorkflowException

Base class for exceptions used to report failure of child workflow execution. The exception contains the
Ids of the child workflow execution as well as its workflow type. You can catch this exception to deal
with child workflow execution failures in a generic way.

ChildWorkflowFailedException

Unhandled exceptions in child workflows are reported back to the parent workflow implementation
by throwing a Chi | dWor kf | owFai | edExcept i on. The original exception can be retrieved from
the cause property of this exception. The exception also provides other information that is useful for
debugging purposes, such as the unique identifiers of the child execution.

ChildWorkflowTerminatedException

This exception is thrown in parent workflow execution to report the termination of a child workflow
execution. You should catch this exception if you want to deal with the termination of the child
workflow, for example, to perform cleanup or compensation.

ChildWorkflowTimedOutException

This exception is thrown in parent workflow execution to report that a child workflow execution was
timed out and closed by Amazon SWF. You should catch this exception if you want to deal with the
forced closure of the child workflow, for example, to perform cleanup or compensation.

API Version 2012-01-25
130

AWS Flow Framework for Java Developer Guide
DataConverterException

DataConverterException

The framework uses the Dat aConver t er component to marshal and unmarshal data that is sent

over the wire. This exception is thrown if the Dat aConver t er fails to marshal or unmarshal data. This
could happen for various reasons, for example, due to a mismatch in the Dat aConvert er components
being used to marshal and unmarshal the data.

DecisionException

This is the base class for exceptions that represent failures to enact a decision by Amazon SWF. You
can catch this exception to generically deal with such exceptions.

ScheduleActivityTaskFailedException

This exception is thrown if Amazon SWF fails to schedule an activity task. This could happen due to
various reasons—for example, the activity was deprecated, or an Amazon SWF limit on your account
has been reached. The f ai | ur eCause property in the exception specifies the exact cause of failure to
schedule the activity.

SignalExternalWorkflowException

This exception is thrown if Amazon SWF fails to process a request by the workflow execution to signal
another workflow execution. This happens if the target workflow execution could not be found—that is,
the workflow execution you specified does not exist or is in closed state.

StartChildWorkflowFailedException

This exception is thrown if Amazon SWF fails to start a child workflow execution. This could happen
due to various reasons—for example, the type of child workflow specified was deprecated, or a
Amazon SWF limit on your account has been reached. The f ai | ur eCause property in the exception
specifies the exact cause of failure to start the child workflow execution.

StartTimerFailedException

This exception is thrown if Amazon SWF fails to start a timer requested by the workflow execution. This
could happen if the specified timer ID is already in use, or an Amazon SWF limit on your account has
been reached. The f ai | ur eCause property in the exception specifies the exact cause of failure.

TimerException

This is the base class for exceptions related to timers.

WorkflowException

This exception is used internally by the framework to report failures in workflow execution. You need to
deal with this exception only if you are using a workflow worker extensibility point.

AWS Flow Framework for Java Packages

This section provides an overview of the packages included with the AWS Flow Framework for Java.
For more information about each package, see the com.amazonaws.services.simpleworkflow.flow in
the AWS SDK for Java API Reference.

API Version 2012-01-25
131

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/

AWS Flow Framework for Java Developer Guide
Packages

com.amazonaws.services.simpleworkflow.flow
Contains components that integrate with Amazon SWF.

com.amazonaws.services.simpleworkflow.flow.annotations
Contains the annotations used by the AWS Flow Framework for Java programming model.

com.amazonaws.services.simpleworkflow.flow.aspectj
Contains AWS Flow Framework for Java components required for features such as
@Asynchronous (p. 126) and @ExponentialRetry (p. 126).

com.amazonaws.services.simpleworkflow.flow.common
Contains common utilities such as framework-defined constants.

com.amazonaws.services.simpleworkflow.flow.core
Contains core features such as Task and Pr oni se.

com.amazonaws.services.simpleworkflow.flow.generic
Contains core components, such as generic clients, that other features build on.

com.amazonaws.services.simpleworkflow.flow.interceptors
Contains implementations of framework provided decorators including Ret r yDecor at or .

com.amazonaws.services.simpleworkflow.flow.junit
Contains components that provide Junit integration.

com.amazonaws.services.simpleworkflow.flow.pojo
Contains classes that implement activity and workflow definitions for the annotation-based
programming model.

com.amazonaws.services.simpleworkflow.flow.spring
Contains components that provide Spring integration.

com.amazonaws.services.simpleworkflow.flow.test
Contains helper classes, such as Test Wor kf | owd ock, for unit testing workflow
implementations.

com.amazonaws.services.simpleworkflow.flow.worker
Contains implementations of activity and workflow workers.

API Version 2012-01-25
132

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/aspectj/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/common/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/core/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/interceptors/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/junit/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/pojo/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/spring/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/test/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/worker/package-summary.html

AWS Flow Framework for Java Developer Guide

Document History

The following table describes the important changes to the documentation since the last release of the
AWS Flow Framework for Java Developer Guide.

* APl version: 2012-01-25
e Latest documentation update: December 17, 2014

Change

Lambda task support

Support for setting
task priority

Update

Documentation
Update

Initial Release

Description Date
Changed
You can specify Lambda tasks in addition to traditional July 21, 2015

Activity tasks in your workflows. For more information, see
Implementing Lambda Tasks (p. 69).

Amazon SWF now includes support for setting the priority December 17,
of tasks on a task list, and will attempt to deliver those with 2014

higher priority before tasks with lower priority. Information

about how to set the task priority for workflows and for

activities is provided in Setting Task Priority (p. 81).

Updates and fixes. August 1,
2013
The documentation has been corrected in a number of June 28, 2013

places due to customer feedback, and has been updated
with setup instructions (p. 3) for the latest versions of Eclipse
(4.3 "Kepler") and AWS SDK for Java (1.4.7) at the time of
this release.

The What is the AWS Flow Framework for Java? (p. 1) has
been updated with a new set of walkthroughs that take the
user step-by-step through building a number of Hello-world
scenarios, each building upon the previous.

This is the initial public release of the AWS Flow Framework | February 27,
for Java Developer Guide. 2012

API Version 2012-01-25
133

	AWS Flow Framework for Java
	Table of Contents
	What is the AWS Flow Framework for Java?
	What's in this Guide?
	About Amazon Web Services

	Getting Started with the AWS Flow Framework for Java
	Setting up the AWS Flow Framework for Java
	Installing for Maven
	Installing for Eclipse
	Installing the AWS Toolkit for Eclipse
	Creating an AWS Flow Framework for Java Project
	Enabling and Configuring AspectJ
	Prerequisites
	Configuring AspectJ Load-Time Weaving
	AspectJ Compile-Time Weaving
	Working around issues with AspectJ and Eclipse

	HelloWorld Application
	HelloWorld Activities Implementation
	HelloWorld Workflow Worker
	HelloWorld Workflow Starter

	HelloWorldWorkflow Application
	HelloWorldWorkflow Activities Worker
	HelloWorldWorkflow Workflow Worker
	Activities Client
	Promise<T> Type

	HelloWorldWorkflow Workflow and Activities Implementation
	HelloWorldWorkflow Starter

	HelloWorldWorkflowAsync Application
	HelloWorldWorkflowAsync Activities Implementation
	HelloWorldWorkflowAsync Workflow Implementation
	HelloWorldWorkflowAsync Workflow and Activities Host and Starter

	HelloWorldWorkflowDistributed Application
	HelloWorldWorkflowParallel Application
	HelloWorldWorkflowParallel Activities Worker
	HelloWorldWorkflowParallel Workflow Worker
	HelloWorldWorkflowParallel Workflow and Activities Host and Starter

	AWS Flow Framework for Java Basic Concepts
	AWS Flow Framework Basic Concepts: Application Structure
	Role of the Activity Worker
	Role of the Workflow Worker
	Role of the Workflow Starter
	How Amazon SWF Interacts with Your Application
	For More Information

	AWS Flow Framework Basic Concepts: Reliable Execution
	Providing Reliable Communication
	Ensuring that Results are Not Lost
	Maintaining Workflow History
	Stateless Execution

	Handling Failed Distributed Components

	AWS Flow Framework Basic Concepts: Distributed Execution
	Replaying Workflows
	Replay and Asynchronous Workflow Methods
	Replay and Workflow Implementation

	AWS Flow Framework Basic Concepts: Task Lists and Task Execution
	AWS Flow Framework Basic Concepts: Scalable Applications
	AWS Flow Framework Basic Concepts: Data Exchange Between Activities and Workflows
	The Promise<T> Type
	Data Converters and Marshaling

	AWS Flow Framework Basic Concepts: Data Exchange Between Applications and Workflow Executions
	Amazon SWF Timeout Types
	Timeouts in Workflow and Decision Tasks
	Timeouts in Activity Tasks

	AWS Flow Framework for Java Programming Guide
	Implementing Workflow Applications with the AWS Flow Framework
	Workflow and Activity Contracts
	Workflow and Activity Type Registration
	Workflow Type Name and Version
	Signal Name
	Activity Type Name and Version
	Default Task List
	Other Registration Options

	Activity and Workflow Clients
	Workflow Clients
	Activity Clients
	Scheduling Options
	Dynamic Clients
	Signaling and Canceling Workflow Executions

	Workflow Implementation
	Decision Context
	Exposing Execution State
	Workflow Locals

	Activity Implementation
	Manually Completing Activities

	Implementing AWS Lambda Tasks
	About AWS Lambda
	Benefits and Limitations of using Lambda Tasks
	Using Lambda tasks in your AWS Flow Framework for Java workflows
	Set up an IAM role
	Providing Amazon SWF with access to invoke any Lambda role
	Defining an IAM role to provide access to invoke a specific Lambda function

	Schedule a Lambda task for execution

	View the HelloLambda sample

	Running Programs Written with the AWS Flow Framework for Java
	WorkflowWorker
	ActivityWorker
	Worker Threading Model
	Worker Extensibility

	Execution Context
	Decision Context
	Accessing DecisionContext in Workflow Implementation
	Creating a Clock and Timer

	Activity Execution Context
	Heartbeat a Long Running Activity
	Get Details of the Activity Task
	Get the Amazon SWF Client Object that is Being Used by the Executor

	Child Workflow Executions
	Continuous Workflows
	Setting Task Priority
	Setting Task Priority for Workflows
	Setting Task Priority for Activities

	DataConverters
	Passing Data to Asynchronous Methods
	Passing Collections and Maps to Asynchronous Methods
	Settable<T>
	@NoWait
	Promise<Void>
	AndPromise and OrPromise

	Testability and Dependency Injection
	Spring Integration
	WorkflowScope
	Spring-Aware Workers
	Injecting Decision Context
	Injecting Resources in Activities

	JUnit Integration
	Writing a Simple Unit Test
	Mocking Activity Implementations

	Test Context Objects

	Error Handling
	TryCatchFinally Semantics
	Cancellation
	Activity Heartbeat
	Explicitly Canceling a Task
	Receiving Notification of Canceled Tasks

	Nested TryCatchFinally

	Retry Failed Activities
	Retry-Until-Success Strategy
	Exponential Retry Strategy
	Exponential Retry with @ExponentialRetry
	Exponential Retry with the RetryDecorator Class
	Exponential Retry with the AsyncRetryingExecutor Class

	Custom Retry Strategy

	Daemon Tasks
	AWS Flow Framework for Java Replay Behavior
	Example 1: Synchronous Replay
	Example 2: Asynchronous Replay
	See Also

	Under the Hood
	Task
	Order of Execution
	Workflow Execution
	Nondeterminism

	Troubleshooting and Debugging Tips
	Compilation Errors
	Unknown Resource Fault
	Exceptions When Calling get() on a Promise
	Non Deterministic Workflows
	Problems Due to Versioning
	Troubleshooting and Debugging a Workflow Execution
	Lost Tasks

	AWS Flow Framework for Java Reference
	AWS Flow Framework for Java Annotations
	@Activities
	@Activity
	@ActivityRegistrationOptions
	@Asynchronous
	@Execute
	@ExponentialRetry
	@GetState
	@ManualActivityCompletion
	@Signal
	@SkipRegistration
	@Wait and @NoWait
	@Workflow
	Example

	@WorkflowRegistrationOptions

	AWS Flow Framework for Java Exceptions
	ActivityFailureException
	ActivityTaskException
	ActivityTaskFailedException
	ActivityTaskTimedOutException
	ChildWorkflowException
	ChildWorkflowFailedException
	ChildWorkflowTerminatedException
	ChildWorkflowTimedOutException
	DataConverterException
	DecisionException
	ScheduleActivityTaskFailedException
	SignalExternalWorkflowException
	StartChildWorkflowFailedException
	StartTimerFailedException
	TimerException
	WorkflowException

	AWS Flow Framework for Java Packages

	Document History

