
Amazon API Gateway
Developer Guide

Amazon API Gateway Developer Guide

Amazon API Gateway Developer Guide

Amazon API Gateway: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon API Gateway Developer Guide

Table of Contents
What Is Amazon API Gateway? .. 1

API Gateway Concepts .. 2
Getting Started ... 4

Get Ready to Use API Gateway ... 4
Sign Up for AWS .. 5
Create an IAM User, Group or Role in Your AWS Account .. 5
Grant IAM Users Permissions to Access API Gateway Control and Execution Services 5
Next Step .. 6

Build an API to Expose an HTTP Endpoint ... 6
Create an API from an Example ... 7
Build the API Step By Step .. 14
Map Request Parameters ... 22
Map Response Payload ... 31

Build an API to Expose a Lambda Function .. 44
Step 1: Prerequisites ... 44
Step 2: Create an API ... 44
Step 3: Create a Resource ... 44
Step 4: Create Lambda Functions ... 44
Step 5: Create and Test a GET Method ... 48
Step 6: Create and Test a POST Method ... 49
Step 7: Deploy the API .. 50
Step 8: Test the API .. 50
Step 9: Clean Up .. 51
Next Steps ... 52
Create Lambda Invocation and Execution Roles .. 52

Build an API Using Proxy Integration and a Proxy Resource .. 54
Create and Test an API with HTTP Proxy Integration through a Proxy Resource 55
Create an API with Lambda Proxy Integration through a Proxy Resource 59

Create an AWS Service Proxy .. 64
Prerequisites .. 65
Step 1: Create the Resource .. 65
Step 2: Create the GET Method .. 66
Step 3: Create the AWS Service Proxy Execution Role ... 66
Step 4: Specify Method Settings and Test the Method .. 67
Step 5: Deploy the API .. 68
Step 6: Test the API .. 68
Step 7: Clean Up .. 69

Creating an API .. 70
Create an API in API Gateway .. 70

Create an API Using the API Gateway Console ... 70
Create an API Using the API Gateway Control Service API .. 71
Create an API Using the AWS SDK for API Gateway .. 71
Create an API Using the AWS CLI .. 71

Set up Method and Integration .. 71
Before Setting Up Methods and Integration ... 71
Configure How a Method Is Integrated with a Back End .. 72
Configure How a User Calls an API Method .. 74
Configure How Data Is Mapped between Method and Integration .. 75
Enable Support for Binary Payloads ... 78
Configure Mock Integration for a Method .. 94
Configure Proxy Integration for a Proxy Resource .. 97
After Setting Up Methods and Integration .. 105

Set Up Payload Mappings .. 105
Models ... 106
Mapping Templates ... 109

iv

Amazon API Gateway Developer Guide

Tasks for Models and Mapping Templates .. 112
Create a Model ... 112
View a List of Models .. 113
Delete a Model ... 113
Photos Example .. 114
News Article Example .. 117
Sales Invoice Example ... 121
Employee Record Example ... 125

Request and Response Parameter-Mapping Reference ... 131
Map Data to Integration Request Parameters ... 131
Map Data to Method Response Headers ... 132
Transform Request and Response Bodies ... 133

Request and Response Payload-Mapping Reference .. 134
Accessing the $context Variable .. 134
Accessing the $input Variable ... 136
Accessing the $stageVariables Variable .. 139
Accessing the $util Variable .. 139
Integration Passthrough Behaviors ... 140

Import and Export API .. 141
Import an API ... 142
Export an API ... 145
API Gateway Extensions to Swagger .. 147

Controlling Access ... 160
Use IAM Permissions ... 160

Control Access to API Gateway with IAM Policies ... 160
Create and Attach a Policy to an IAM User ... 162
Statement Reference of IAM Policies for Managing API in API Gateway 163
Statement Reference of IAM Policies for Executing API in API Gateway 164
IAM Policy Examples for API Gateway APIs .. 165
IAM Policy Examples for API Execution Permissions ... 169

Enable CORS for a Resource ... 170
Prerequisites ... 171
Enable CORS Using the Console .. 171
Enable CORS Using Swagger Definition ... 172

Use API Gateway Custom Authorizers .. 174
API Gateway Custom Authorizers .. 174
Create the Custom Authorizer Lambda Function ... 175
Input to a Custom Authorizer .. 176
Output from an Amazon API Gateway Custom Authorizer .. 177
Configure Custom Authorizer ... 178
Call an API with Custom authorization .. 180

Use Amazon Cognito Your User Pool ... 182
Create a User Pool .. 183
Integrate an API with a User Pool .. 183
Call an API Integrated with a User Pool .. 186

Use Client-Side SSL Certificates .. 186
Generate a Client Certificate Using the API Gateway Console .. 187
Configure an API to Use SSL Certificates ... 187
Test Invoke .. 188
Configure Back End to Authenticate API ... 189

Supported Certificate Authorities for HTTP and HTTP Proxy Integration 189
Use API Gateway Usage Plans ... 212

What Is a Usage Plan? .. 212
How to Configure a Usage Plan? ... 212
Set Up API Keys Using the API Gateway Console .. 213
Create and Configure Usage Plans with the API Gateway Console 216
Set Up API Keys Using the API Gateway REST API ... 219
Create and Configure Usage Plans with the API Gateway REST API 220

v

Amazon API Gateway Developer Guide

API Gateway API Key File Format ... 222
Use API Keys without Usage Plans Enabled .. 223

Maintaining an API .. 227
View a List of APIs .. 227

Prerequisites ... 227
View a List of APIs with the API Gateway Console ... 227

Delete an API ... 227
Prerequisites ... 228
Delete an API with the API Gateway Console .. 228

Delete a Resource ... 228
Delete a Resource with the API Gateway Console .. 228

View a Methods List .. 228
Prerequisites ... 228
View a Methods List with the API Gateway Console .. 229

Delete a Method ... 229
Delete a Method with the API Gateway Console ... 229

Deploying an API .. 230
Deploy an API with the API Gateway Console ... 230

Prerequisites ... 230
Deploy an API with the API Gateway Console ... 230
Update deployment configuration with the API Gateway Console 231
Change a Stage to Use a Different Deployment with the API Gateway Console 231

Deploy an API in Stages .. 232
Create a Stage ... 232
View a List of Stages ... 232
Set Up a Stage ... 233
Delete a Stage .. 235

Manage API Request Throttling ... 236
Account-Level Throttling ... 236
Stage-Level and Method-Level Throttling ... 236

Enable API Caching ... 236
API Caching Overview ... 237
Enable API Caching ... 237
Override Stage Caching for Method Caching ... 238
Use Method/Integration Parameters as Cache Keys .. 239
Flush the API Stage Cache in API Gateway .. 240
Invalidate an API Gateway Cache Entry .. 240

Manage API Deployment with Stage Variables ... 242
Use Cases ... 242
Examples ... 242
Set Stage Variables ... 243
Use Stage Variables .. 246
Stage Variables Reference ... 253

Generate and Use an SDK for an API .. 254
Use the API Gateway Console to Generate the SDKs of an API .. 254
Use an Android SDK generated by API Gateway .. 266
Use iOS SDK Generated by API Gateway in Objective-C or Swift 268
Use a JavaScript SDK Generated by API Gateway ... 278

Use a Custom Domain Name .. 280
Prerequisites ... 281
Set Up a Custom Domain Name for an API Gateway API .. 281
Specify API Mappings for a Custom Domain Name ... 284
Base Path Examples of API Mappings for a Custom Domain Name 284
Upload and Renew an Expiring Certificate ... 285
Call Your API with Custom Domain Names ... 286

Documenting an API .. 287
Representation of API Documentation in API Gateway .. 287

Documentation Parts .. 288

vi

Amazon API Gateway Developer Guide

Documentation Versions ... 294
Document an API Using the API Gateway Console .. 294

Document the API Entity .. 295
Document a RESOURCE Entity .. 297
Document a METHOD Entity ... 297
Document a QUERY_PARAMETER Entity ... 298
Document a PATH_PARAMETER Entity ... 299
Document a REQUEST_HEADER Entity .. 300
Document a REQUEST_BODY Entity .. 300
Document a RESPONSE Entity .. 300
Document a RESPONSE_HEADER Entity ... 301
Document a RESPONSE_BODY Entity ... 301
Document a MODEL Entity ... 301
Document an AUTHORIZER Entity .. 302

Document an API Using the API Gateway REST API ... 302
Document the API Entity .. 303
Document a RESOURCE Entity .. 304
Document a METHOD Entity ... 307
Document a QUERY_PARAMETER Entity ... 309
Document a PATH_PARAMETER Entity ... 311
Document a REQUEST_BODY Entity .. 312
Document a REQUEST_HEADER Entity ... 313
Document a RESPONSE Entity .. 314
Document a RESPONSE_HEADER Entity ... 314
Document an AUTHORIZER Entity .. 315
Document a MODEL Entity ... 317
Update Documentation Parts ... 318
List Documentation Parts .. 319

Publish API Documentation ... 319
Create a Documentation Snapshot and Associate it with an API Stage 319
Create a Documentation Snapshot ... 320
Update a Documentation Snapshot .. 320
Get a Documentation Snapshot ... 321
Associate a Documentation Snapshot with an API Stage ... 321
Download a Documentation Snapshot Associated with a Stage ... 322

Import API Documentation .. 325
Importing Documentation Parts Using the API Gateway REST API 325
Importing Documentation Parts Using the API Gateway Console 327

Control Access to API Documentation .. 327
Calling a Deployed API .. 329

Prerequisites ... 329
Obtain an API's Invoke URL in the API Gateway Console .. 330
Test a Method Using the Console .. 330

Prerequisites ... 330
Test a Method with the API Gateway Console ... 330

Use Postman to Test an API ... 331
Monitoring and Troubleshooting ... 332

Log API Management Calls with CloudTrail ... 332
API Gateway Information in CloudTrail .. 333
Understanding API Gateway Log File Entries ... 333

Monitor API execution with Amazon CloudWatch .. 334
Amazon API Gateway Dimensions and Metrics .. 334
View Metrics with the API Dashboard ... 336
View Metrics in the CloudWatch Console .. 336
Monitoring Tools in AWS .. 337

Selling an API as SaaS .. 339
Initialize AWS Marketplace Integration with API Gateway ... 339

List a Product on AWS Marketplace ... 339

vii

Amazon API Gateway Developer Guide

Create the Metering Role .. 340
Associate Usage Plan with AWS Marketplace Product ... 340

Handle Customer Subscription to Usage Plans .. 341
Authorize a Customer to Access a Usage Plan .. 341
Associate a Customer with an API Key ... 342

Tutorials ... 343
Create an API as a Lambda Proxy ... 343

Set Up an IAM Role and Policy for an API to Invoke Lambda Functions 345
Create a Lambda Function in the Back End ... 346
Create API Resources for the Lambda Function ... 347
Create a GET Method with Query Strings to Call the Lambda Function 347
Create a POST Method with a JSON Payload to Call the Lambda Function 350
Create a GET Method with Path Parameters to Call the Lambda Function 352
Swagger Definitions of a Sample API as Lambda Proxy .. 356

Create an API as an Amazon S3 Proxy .. 359
Set Up IAM Permissions for the API to Invoke Amazon S3 Actions 360
Create API Resources to Represent Amazon S3 Resources ... 361
Expose an API Method to List the Caller's Amazon S3 Buckets .. 362
Expose API Methods to Access an Amazon S3 Bucket ... 369
Expose API Methods to Access an Amazon S3 Object in a Bucket 372
Call the API Using a REST API Client .. 374
Swagger Definitions of a Sample API as an Amazon S3 Proxy ... 378

Create an API as an Amazon Kinesis Proxy .. 388
Create an IAM Role and Policy for the API to Access Amazon Kinesis 390
Start to Create an API as an Amazon Kinesis Proxy ... 391
List Streams in Amazon Kinesis .. 391
Create, Describe, and Delete a Stream in Amazon Kinesis ... 393
Get Records from and Add Records to a Stream in Amazon Kinesis 400
Swagger Definitions of an API as a Kinesis Proxy .. 410

API Gateway REST API ... 418
Limits, Pricing and Known Issues ... 419

API Gateway Limits ... 419
API Gateway Limits for Configuring and Running an API ... 419
API Gateway Limits for Creating, Deploying and Managing an API 420

API Gateway Pricing .. 421
Known Issues ... 421

Document History .. 423
AWS Glossary .. 427

viii

Amazon API Gateway Developer Guide

What Is Amazon API Gateway?

Amazon API Gateway supports the following two major functionalities:

• It lets you create, manage and host a RESTful API to expose AWS Lambda functions, HTTP
endpoints as well as other services from the AWS family including, but not limited to, Amazon
DynamoDB, Amazon S3 Amazon Kinesis. You can use this feature through the API Gateway REST
API requests and responses, the API Gateway console, AWS Command-Line Interface (CLI), or an
API Gateway SDK of supported platforms/languages. This feature is sometimes referred to as the
API Gateway control service.

• It lets you or 3rd-party app developer to call a deployed API to access the integrated back-end
features, using standard HTTP protocols or a platform- or language-specific SDK generated by API
Gateway for the API. This feature is sometimes known as the API Gateway execution service.

The API you create in API Gateway consists of a set of resources and methods. A resource is a
logical entity that can be accessed through a resource path using the API. A resource can have one
or more operations that are defined by appropriate HTTP verbs such as GET, POST, and DELETE.
A combination of a resource path and an operation identify a method in the API. Each method
corresponds to a REST API request submitted by the user of your API and the corresponding response
returned to the user. API Gateway integrates the method with a targeted back end by mapping the
method request to an integration request acceptable by the back end and then mapping the integration
response from the back end to the method response returned to the user. As an API developer, you
can configure how methods are mapped to integrations and vice versa by stipulating what parameters
to use and specifying mapping templates to transform payloads of given data models.

You can create an API by using the API Gateway management console, described in Getting
Started (p. 4), or by using the API Gateway API Gateway REST API (p. 418). In addition,
you can integrate API creation with AWS CloudFormation templates or API Gateway Extensions to
Swagger (p. 147). For a list of regions where API Gateway is available, as well as the associated
control service endpoints, see Regions and Endpoints.

API Gateway helps developers deliver robust, secure, and scalable mobile and web application back
ends. API Gateway allows developers to securely connect mobile and web applications to business
logic hosted on AWS Lambda, APIs hosted on Amazon EC2, or other publicly addressable web
services hosted inside or outside of AWS. With API Gateway, developers can create and operate APIs
for their back-end services without developing and maintaining infrastructure to handle authorization
and access control, traffic management, monitoring and analytics, version management, and software
development kit (SDK) generation.

API Gateway is designed for web and mobile developers who want to provide secure, reliable access
to back-end APIs for access from mobile apps, web apps, and server apps that are built internally or by

1

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-reference.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide
API Gateway Concepts

third-party ecosystem partners. The business logic behind the APIs can either be provided by a publicly
accessible endpoint that API Gateway proxies call, or it can be entirely run as a Lambda function.

To better understand the terminology used in this documentation, you may find it useful to peruse the
API Gateway Concepts (p. 2) section.

Amazon API Gateway Concepts
API Gateway An AWS service that 1) supports creating, deploying and managing

a RESTful application programming interface (API) to expose
back-end HTTP endpoints, AWS Lambda function, or other AWS
services; and 2) invoking exposed API methods through the front-
end HTTP endpoints.

API Gateway API A collection of resources and methods that are integrated with
back-end HTTP endpoints, Lambda functions or other AWS
services and can be deployed in one or more stages. API methods
are invoked through front-end HTTP endpoints that can be
associated with a registered custom domain names. Permissions
to invoke a method can be granted using IAM roles and policies or
API Gateway custom authorizers. An API can present a certificate
to be authenticated by the back end. Typically, API resources are
organized in a resource tree according to the application logic.
Each API resource can expose one or more API methods that must
have unique HTTP verbs supported by API Gateway.

API developer or API owner An AWS account that owns an API Gateway deployment (for
example, a service provider who also supports programmatic
access.)

App developer or client
developer

An app creator who may or may not have an AWS account and
interacts with the API deployed by the API developer. An app
developer can be represented by an API Key.

App user, end user or client
endpoint

An entity that uses the application built by an app developer that
interacts with APIs in Amazon API Gateway. An app user can be
represented by an Amazon Cognito identity or a bearer token.

API Key An alphanumeric string, which can be generated by API Gateway
on behalf of an API owner or imported from an external source
such as a CSV file, is used to identify an app developer of the API.
An API owner can use API keys to permit or deny access of given
APIs based on the apps in use.

API Deployment and stage An API deployment is a point-in-time snapshot of the API Gateway
API resources and methods. For a deployment to be accessible
for invocation by a client, it must be associated with one or more
stages. A stage is a logical reference to a life-cycle status of your
API (e.g., 'dev', 'prod', 'beta', 'v2'). The identifier of an API stage
consists of an API ID and stage name.

Method request The public interface of an API method in API Gateway that defines
the parameters and body that an app developer must send in the
requests to access the back end through the API.

Integration request An API Gateway internal interface that defines how API Gateway
maps the parameters and body of a method request into the
formats required by the back end.

2

Amazon API Gateway Developer Guide
API Gateway Concepts

Integration response An API Gateway internal interface that defines how API Gateway
maps data. The integration response includes the status codes,
headers, and payload that are received from the back end into the
formats defined for an app developer.

Method response The public interface of an API that defines the status codes,
headers, and body models that an app developer should expect
from API Gateway.

Proxy Integration A simplified API Gateway integration configuration. You can set up
a proxy integration as an HTTP proxy integration type or a Lambda
proxy integration type. For the HTTP proxy integration API Gateway
passes the entire request and response between the front end and
an HTTP back end. For the Lambda proxy integration API Gateway
sends the entire request as an input to a back-end Lambda function
and transforms the Lambda function output to a front-end HTTP
response. The proxy integration is most commonly used with a
proxy resource, which is represented by a greedy path variable
(e.g., {proxy+}) combined with a catch-all ANY method.

Mapping template Scripts, expressed in Velocity Template Language (VTL), to
transform a request body from the front-end data format to the
back-end data format or to transform a response body from the
back-end data format to the front-end data format. Mapping
templates are specified in the integration request or integration
response and they can reference data made available at run time in
the forms of context and stage variables. An identity transformation
is referred to as pass-through in which a payload is passed as-is
from the client to the back end for a request and from the back end
to the client for a response.

Model Data schema specifying the data structure of a request or response
payload. It is required for generating strongly typed SDK of an
API, used for validating payload, and convenient for generating
a sample mapping template to initiate creation of a production
mapping template. Although useful, a model is not required for
creating a mapping template.

Usage plan A usage plan provides selected API clients with access to one or
more deployed APIs with configurable throttling and quota limits
enforced on individual client API keys.

3

http://velocity.apache.org/engine/devel/vtl-reference.html

Amazon API Gateway Developer Guide
Get Ready to Use API Gateway

Getting Started with Amazon API
Gateway

The following walkthroughs include hands-on exercises, using the API Gateway console, to help you
learn about API Gateway.

Topics

• Get Ready to Use Amazon API Gateway (p. 4)

• Build an API Gateway API to Expose an HTTP Endpoint (p. 6)

• Build an API to Expose a Lambda Function (p. 44)

• Build an API Gateway API Using Proxy Integration and a Proxy Resource (p. 54)

• Create an AWS Service Proxy for Amazon SNS (p. 64)

Get Ready to Use Amazon API Gateway
Before using API Gateway for the first time, you must have an AWS account set up. To create,
configure and deploy an API in API Gateway, you must have appropriate IAM policy provisioned with
permissible access rights to the API Gateway control service. To permit your API clients to invoke your
API in API Gateway, you must set up the right IAM policy to allow the clients to call the API Gateway
execution service. To allow API Gateway to invoke an AWS service in the back end, API Gateway
must have permissions to assume the roles required to call the back-end AWS service. When an API
Gateway API is set up to use AWS IAM roles and policies to control client access, the client must sign
API Gateway API requests with Signature Version 4.

Understanding of these topics are important to use API Gateway and to follow the tutorials and
instructions presented here. This section provides brief discussions of or quick references to these
topics.

Topics

• Sign Up for AWS (p. 5)

4

http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide
Sign Up for AWS

• Create an IAM User, Group or Role in Your AWS Account (p. 5)

• Grant IAM Users Permissions to Access API Gateway Control and Execution Services (p. 5)

• Next Step (p. 6)

Sign Up for AWS
Go to http://aws.amazon.com/, choose Create an AWS Account, and follow the instructions therein.

Create an IAM User, Group or Role in Your AWS
Account
For better security practices, you should refrain from using your AWS root account to access API
Gateway. Instead, create a new AWS Identity and Access Management (IAM) user or use an existing
one in your AWS account, and then access API Gateway with that IAM user credentials.

To manage access for a user, you can create an IAM user, grant the user API Gateway access
permissions. To create a new IAM user, see Creating an IAM User.

To manage access for a group of users, you can create an IAM group, grant the group API Gateway
access permissions and then add one or more IAM users to the group. To create an IAM group, see
Creating IAM Groups.

To delegate access to specific users, apps or service, you can create an IAM role, add the specified
users or groups to the role, and grant the users or groups API Gateway access permissions. To create
an IAM role, see Creating IAM Roles.

When setting up your API, you need to specify the ARN of an IAM role to control access the API's
methods. Make sure that this is ready when creating an API.

Grant IAM Users Permissions to Access API
Gateway Control and Execution Services
In AWS, access permissions are stated as policies. A policy created by AWS is a managed policy and
one created by a user is an inline policy.

For the API Gateway control service, the managed policy of AmazonAPIGatewayAdministrator
(arn:aws:iam::aws:policy/AmazonAPIGatewayAdministrator) grants the full access to
create, configure and deploy an API in API Gateway:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": "arn:aws:apigateway:*::/*"
 }
]
}

5

http://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

Amazon API Gateway Developer Guide
Next Step

To grant the stated permissions to a user, attach the policy to the user, a group containing the user. To
attach a policy, see Attaching Managed Policies.

Attaching the preceding policy to an IAM user provides the user with access to all API Gateway
control service actions and resources associated with the AWS account. To learn how to restrict
IAM users to a limited set of API Gateway control service actions and resources, see Use IAM
Permissions (p. 160).

For the API Gateway execution service, the managed policy of
AmazonAPIGatewayInvokeFullAccess (arn:aws:iam::aws:policy/
AmazonAPIGatewayInvokeFullAccess) provides full access to invoke an API in API Gateway:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": "arn:aws:execute-api:*:*:*"
 }
]
}

Attaching the preceding policy to an IAM user provides the user with access to all API Gateway
execution service actions and resources associated with the AWS account. To learn how to restrict
IAM users to a limited set of API Gateway execution service actions and resources, see Use IAM
Permissions (p. 160).

To grant the state permissions to a user, attach the policy to the user, a group containing the user. To
attach a policy, see Attaching Managed Policies.

In this documentation, we will use managed policies, whenever possible. To create and use inline
policies, see Working with Inline Policies.

Note
To complete the steps above, you must have permission to create the IAM policy and attach it
to the desired IAM user.

Next Step
You are now ready to start using API Gateway. See Create an API Gateway API from an
Example (p. 7).

Build an API Gateway API to Expose an HTTP
Endpoint

You can create an API in the Amazon API Gateway console from the ground up. In essence, you use
the console as an API design studio to scope the API features, to experiment with its behaviors, to
build the API, and to deploy your API in stages.

Topics

6

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon API Gateway Developer Guide
Create an API from an Example

• Create an API Gateway API from an Example (p. 7)

• Build the API Step By Step (p. 14)

• Map Request Parameters for an API Gateway API (p. 22)

• Map Response Payload (p. 31)

Create an API Gateway API from an Example
The Amazon API Gateway console now provides an option for you to create an API Gateway API by
example, with helpful hints provided along the way. If you are new to API Gateway, you may find it
useful as a learning tool. The following steps walk you through using this create-by-example option to
create and test the example API.

1. Do one of the following:

a. For the first API in your account, choose Get Started from the API Gateway console welcome
page:

If prompted with a modal dialog box containing hints at a stage of the process, choose OK to
close the modal dialog and continue.

b. For your next API, choose Create API from the API Gateway APIs home page:

7

Amazon API Gateway Developer Guide
Create an API from an Example

2. Under Create new API, select Examples API and then choose Import to create the example API.
For your first API, the API Gateway console will start with this option as default.

You can scroll down the Swagger definition for details of this example API before choosing
Import.

3. The resulting display shows the newly created API:

The API Gateway navigation pane on the left shows your available APIs, any API keys, custom
domain names and client certificates that you created for your APIs, as well as the settings for
logging your APIs' performance metrics. API-specific resources, deployment, custom authorizers
and payload-mapping data models are organized under individual APIs.

The Resources pane in the middle shows the structure of the selected API as a tree of nodes.
API methods defined on each resource are edges of the tree. When a resource is selected, all of

8

Amazon API Gateway Developer Guide
Create an API from an Example

its methods are listed in the Methods pane on the right. Displayed under each method is a brief
summary of the method, including its endpoint URL, authorization type, and API Key requirement.

4. To view the details of a method, to modify its set-up, or to test the method invocation, choose the
method name from either the method list or the resource tree.

The resulting Method Execution pane for the chosen method presents a logical view of the
method's structure and behaviors: a client accesses a back-end service by interacting with the
API through Method Request. API Gateway translates the client request, if necessary, into the
form acceptable to the back end before forwarding the request to the back end. The transformed
request is known as the integration request and is depicted by Integration Request in the display.
Similarly, the response from the back end goes through Integration Response and then Method
Response before being received by the client. Again, if necessary, API Gateway maps the
response from the form shaped in the back end to a form expected by the client.

For the POST method on this API's root (/) resource, the method's integration request shows that
the method is integrated with the endpoint of http://petstore-demo-endpoint.execute-
api.com/petstore/pets in the back end. The method request payload will be passed through
to the integration request without modification. The GET / method request uses the MOCK
integration type and is not tied to any endpoint in the back end. When the method is called, the
API Gateway simply accepts the request and immediately returns a response, by way of from
Integration Response to Method Response. You can use the mock integration to test an API
without requiring a back-end endpoint. You can also use it to serve a local response. In fact, the
example API uses it to return a local HTML page as the home page of the API. It uses a mapping
template to generate the home page in Integration Response.

As an API developer, you control the behaviors of your API's front-end interactions by configuring
the method request and a method response. You control the behaviors of your API's back-end
interactions by setting up the integration request and integration response. They involve data
mappings between a method and its corresponding integration. We will cover the method setup in
Build an API Gateway API to Expose an HTTP Endpoint (p. 6). For now, we focus on testing
the API to provide an end-to-end user experience.

9

Amazon API Gateway Developer Guide
Create an API from an Example

5. Choose Test shown on Client (as shown in the previous image) to start testing. Enter the
following {"type": "dog","price": 249.99} payload into the Request Body before
choosing the Test button.

The input specifies the attributes of the pet that we wish to add to the list of pets on the PetStore
website.

6. The results display as follows:

10

Amazon API Gateway Developer Guide
Create an API from an Example

The Logs entry of the output shows the state changes from the method request to the integration
request and from the integration response to the method response. This can be useful for
troubleshooting any mapping errors that cause the request to fail. In this example, no mapping is
applied: the method request is identical to the integration request and the integration response is
the same as the method response.

To test the API using a client other than the API Gateway test-invoke-request feature, you must
first deploy the API to a stage.

7. To deploy the sample API, select the PetStore API and the root / resource, and then choose
Deploy API from the Actions menu.

11

Amazon API Gateway Developer Guide
Create an API from an Example

In Deploy API, for Deployment stage, choose [New Stage] because this is the first deployment
of the API. Type a name (e.g., test) in Stage name and, optionally, type descriptions in Stage
description and Deployment description. Choose Deploy.

In the resulting Stage Editor pane, Invoke URL displays the URL to invoke the API's GET /
method request.

12

Amazon API Gateway Developer Guide
Create an API from an Example

8. On Stage Editor, follow the Invoke URL link to submit the GET / method request in a browser.
The result, generated from the mapping template in the integration response, is shown as follows:

9. In the Stages navigation pane, expand the test stage, select GET on /pets/{petId}, and then
copy the Invoke URL value of https://api-id.execute-api.region.amazonaws.com/
test/pets/{petId}. {petId} stands for a path variable.

Paste the Invoke URL value (obtained in the previous step) into the address bar of a browser,
replacing {petId} by, for example, 1, and press Enter to submit the request. A 200 OK response
should return with the following JSON payload:

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

Invoking the API method as shown is possible because its Authorization type is set to NONE. If
the AWS_IAM authorization were used, you would sign the request using the Signature Version 4

13

Amazon API Gateway Developer Guide
Build the API Step By Step

protocols. For an example of such a request, see Build an API Gateway API to Expose an HTTP
Endpoint (p. 6).

See Also

Use API Gateway Custom Authorizers (p. 174), Deploying an API (p. 230)

Build the API Step By Step
This section walks you through the steps to create resources, expose methods on a resource,
configure a method to achieve the desired API behaviors, and to test and deploy the API.

1. From Create new API, select New API, type a name in API Name, optionally add a description in
Description, and then choose Create API.

As a result, an empty API is created. The Resources tree shows the root resource (/) without any
methods. In this exercise, we will build the API with the HTTP integration of the PetStore demo
website (http://petstore-demo-endpoint.execute-api.com.) For illustration purposes, we will create
a /pets resource as a child of the root and expose a GET method on this resource for a client to
retrieve a list of available Pets items from the PetStore website.

2. To create the /pets resource, select the root, choose Actions and then choose Create
Resource.

Type Pets in Resource Name, leave the Resource Path value as given, and choose Create
Resource.

14

Amazon API Gateway Developer Guide
Build the API Step By Step

3. To expose a GET method on the /pets resource, choose Actions and then Create Method.

Choose GET from the list under the /pets resource node and choose the checkmark icon to finish
creating the method.

Note
Other options for an API method include:

• POST, primarily used to create child resources.

• PUT, primarily used to update existing resources (and, although not recommended, can
be used to create child resources).

• DELETE, used to delete resources.

• PATCH, used to update resources.

15

Amazon API Gateway Developer Guide
Build the API Step By Step

• HEAD, primarily used in testing scenarios. It is the same as GET but does not return
the resource representation.

• OPTIONS, which can be used by callers to get information about available
communication options for the target service.

The method created is not yet integrated with the back end. The next step sets this up.

4. In the method's Setup pane, select HTTP for Integration type, select GET from the HTTP
method drop-down list, type http://petstore-demo-endpoint.execute-api.com/
petstore/pets as the Endpoint URL value, and then choose Save.

Note
For the integration request's HTTP method, you must choose one supported by the
back end. For HTTP or Mock integration, it makes sense that the method request
and the integration request use the same HTTP verb. For other integration types the
method request will likely use an HTTP verb different from the integration request. For
example, to call a Lambda function, the integration request must use POST to invoke the
function, whereas the method request may use any HTTP verb depending on the logic of
the Lambda function.

When the method setup finishes, you are presented with the Method Execution pane, where you
can further configure the method request to add query string or custom header parameters. You
can also update the integration request to map input data from the method request to the format
required by the back end.

The PetStore website allows you to retrieve a list of Pet items by the pet type (e.g., "Dog" or "Cat")
on a given page. It uses the type and page query string parameters to accept such input. As
such, we must add the query string parameters to the method request and map them into the
corresponding query strings of the integration request.

5. In the GET method's Method Execution pane, choose Method Request, select AWS_IAM for
Authorization, expand the URL Query String Parameters section, and choose Add query
string to create two query string parameters named type and page. Choose the checkmark icon
to save the newly added query string parameters.

16

Amazon API Gateway Developer Guide
Build the API Step By Step

The client can now supply a pet type and a page number as query string parameters when
submitting a request. These input parameters must be mapped into the integration's query string
parameters to forward the input values to our PetStore website in the back end. Because the
method uses AWS_IAM, you must sign the request to invoke the method.

6. From the method's Integration Request page, expand the URL Query String Parameters
section. By default, the method request query string parameters are mapped to the like-named
integration request query string parameters. This default mapping works for our demo API. We
will leave them as given. To map a different method request parameter to the corresponding
integration request parameter, choose the pencil icon for the parameter to edit the mapping
expression, shown in the Mapped from column. To map a method request parameter to a
different integration request parameter, first choose the delete icon to remove the existing
integration request parameter, choose Add query string to specify a new name and the desired
method request parameter mapping expression.

17

Amazon API Gateway Developer Guide
Build the API Step By Step

This completes building the simple demo API. It's time to test the API.

7. To test the API using the API Gateway console, choose Test from the GET-on-Pets method's
Method Execution pane. In the Method Test pane, enter Dog and 2 for the type and page query
strings, respectively, and then choose Test.

18

Amazon API Gateway Developer Guide
Build the API Step By Step

The result is shown as follows. (You may need to scroll down to see the test result.)

19

Amazon API Gateway Developer Guide
Build the API Step By Step

Now that the test is successful, we can deploy the API to make it publicly available.

8. To deploy the API, select the API and then choose Deploy API from the Actions drop-down
menu.

In the Deploy API dialog, choose a stage (or [New Stage] for the API's first deployment);
enter a name (e.g., "test", "prod", "dev", etc.) in the Stage name input field; optionally, provide a
description in Stage description and/or Deployment description; and then choose Deploy.

20

Amazon API Gateway Developer Guide
Build the API Step By Step

Once deployed, you can obtain the invocation URLs (Invoke URL) of the API's endpoints. For
example, the GET on Pets method's invocation URL is as follows:

To invoke this API method in a client (e.g., a Postman browser), append the query string
parameters to the stage-specific method invocation URL (as shown in the previous image) to
create the complete method request URL:

https://api-id.execute-api.region.amazonaws.com/test/pets?type=Dog&page=2

Specify this URL in the address bar of the browser. Choose GET as the HTTP verb. Select
AWS Signature for the Authorization type and then specify the required properties (as shown),
following the Signature Version 4 protocols. Finally, send the request.

21

https://www.getpostman.com/
http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide
Map Request Parameters

If you use an SDK to create a client, you can call the methods exposed by the SDK to sign the
request. For implementation details, see the AWS SDK of your choosing.

Note
When changes are made to your API, you must redeploy the API to make the new or
updated features available before invoking the request URL again.

Map Request Parameters for an API Gateway API
In this walkthrough, you will learn how to map method request parameters to the corresponding
integration request parameters for an API Gateway API. As an illustration, we will create an example
API with the HTTP integration and use it to demonstrate how to use API Gateway to map a method
request parameter to the corresponding integration request parameter and to access the publicly
accessible HTTP endpoint of:

http://petstore-demo-endpoint.execute-api.com/petstore/pets

If you copy the above URL, paste it into the address bar of a web browser, and hit the Enter or
Return key, you will get the following JSON-formatted response body:

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

The above endpoint can take two query parameters: type and page. For example, if you change the
above URL to the following:

22

https://aws.amazon.com/tools/

Amazon API Gateway Developer Guide
Map Request Parameters

http://petstore-demo-endpoint.execute-api.com/petstore/pets?type=cat&page=2

you will receive the following JSON-formatted response payload, displaying page 2 of only the cats:

[
 {
 "id": 4,
 "type": "cat",
 "price": 999.99
 },
 {
 "id": 5,
 "type": "cat",
 "price": 249.99
 },
 {
 "id": 6,
 "type": "cat",
 "price": 49.97
 }
]

This endpoint also supports the use of an item ID, as expressed by a URL path parameter. For
example, if you browse to the following:

http://petstore-demo-endpoint.execute-api.com/petstore/pets/1

The following JSON-formatted information about the item with an ID of 1 is displayed:

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

In addition to supporting GET operations, this endpoint also take POST requests with a payload. For
example, if you use Postman to send a POST method request to the following:

http://petstore-demo-endpoint.execute-api.com/petstore/pets

including the header Content-type: application/json and the following request body:

{
 "type": "dog",
 "price": 249.99
}

you will receive following JSON object in the response body:

{
 "pet": {
 "type": "dog",

23

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Map Request Parameters

 "price": 249.99
 },
 "message": "success"
}

We now expose these and other features by building an API Gateway API with the HTTP integration of
this PetStore website. The tasks includes the following:

• Create an API with a resource of https://my-api-id.execute-api.region-
id.amazonaws.com/test/petstorewalkthrough/pets acting as a proxy to the HTTP endpoint
of http://petstore-demo-endpoint.execute-api.com/petstore/pets.

• Enable the API to accept two method request query parameters of petType and petsPage, map
them to the type and page query parameters of the integration request, respectively, and pass the
request to the HTTP endpoint.

• Support a path parameter of {petId} on the API's method request URL to specify an item ID, map
it to the {id} path parameter in the integration request URL, and send the request to the HTTP
endpoint.

• Enable the method request to accept the JSON payload of the format defined by the back end
website, pass the payload without modifications through the integration request to the back-end
HTTP endpoint.

Topics

• Prerequisites (p. 24)

• Step 1: Create Resources (p. 24)

• Step 2: Create GET and POST Methods (p. 25)

• Step 3: Set Up and Test the Methods (p. 25)

• Step 4: Deploy the API (p. 28)

• Step 5: Test the API (p. 29)

• Next Steps (p. 31)

Prerequisites

Before you begin this walkthrough, you should do the following:

1. Complete the steps in Get Ready to Use API Gateway (p. 4), including assigning API
Gateway access permission to the IAM user.

2. At a minimum, follow the steps in Build an API Gateway API to Expose an HTTP
Endpoint (p. 6) to create a new API named MyDemoAPI in the API Gateway console.

Step 1: Create Resources

In this step, you will create three resources that will enable the API to interact with the HTTP endpoint.

To create the first resource

1. In the Resources pane, select the resource root, as represented by a single forward slash (/),
and then choose Create Resource from the Actions drop-down menu.

2. For Resource Name, type petstorewalkthrough.

This maps to petstore in the HTTP endpoint.

24

Amazon API Gateway Developer Guide
Map Request Parameters

3. For Resource Path, accept the default of /petstorewalkthrough, and then choose Create
Resource.

This maps to /petstore in the HTTP endpoint.

To create the second resource

1. In the Resources pane, choose /petstorewalkthrough, and then choose Create Resource.

2. For Resource Name, type pets.

This maps to pets in the HTTP endpoint.

3. For Resource Path, accept the default of /petstorewalkthrough/pets, and then choose Create
Resource.

This maps to /petstore/pets in the HTTP endpoint.

To create the third resource

1. In the Resources pane, choose /petstorewalkthrough/pets, and then choose Create Resource.

2. For Resource Name, type petId. This maps to the item ID in the HTTP endpoint.

3. For Resource Path, overwrite petid with {petId}. Be sure to use curly braces ({ }) around
petId so that /petstorewalkthrough/pets/{petId} is displayed, and then choose Create
Resource.

This maps to /petstore/pets/my-item-id in the HTTP endpoint.

Step 2: Create GET and POST Methods

In this step, you will create two GET methods and a POST method to interact with the HTTP endpoint.

To create the first GET method

1. In the Resources pane, choose /petstorewalkthrough/pets, and then choose Create Method
from the Actions drop-down menu.

2. For the HTTP method, choose GET, and then save your choice.

To create the second GET method

1. In the Resources pane, choose /petstorewalkthrough/pets/{petId}, and then choose Create
Method.

2. For the HTTP method, choose GET, and then save your choice.

To create the POST method

1. In the Resources pane, choose /petstorewalkthrough/pets again, and then choose Create
Method.

2. For the HTTP method, choose POST, and then save your choice.

Step 3: Set Up and Test the Methods

In this step, you will integrate the methods with the back-end HTTP endpoints, map the GET method
request parameters to the corresponding integration request parameters, and then test the methods.

25

Amazon API Gateway Developer Guide
Map Request Parameters

To set up and test the first GET method

This procedure demonstrates the following:

• Create and integrate the method request of GET /petstorewalkthrough/pets with the
integration request of GET http://petstore-demo-endpoint.execute-api.com/petstore/
pets.

• Map the method request query parameters of petType and petsPage to the integration request
query string parameters of type and page, respectively.

1. In the Resources pane, choose /petstorewalkthrough/pets, choose Create Method from the
Actions menu, and then choose GET under /pets from the drop-down list of the method names.

2. In the /petstorewalkthrough/pets - GET - Setup pane, choose HTTP for Integration type and
choose GET for HTTP method.

3. For Endpoint URL, type http://petstore-demo-endpoint.execute-api.com/petstore/
pets.

4. Choose Save.

5. In the Method Execution pane, choose Method Request, and then choose the arrow next to
URL Query String Parameters.

6. Choose Add query string.

7. For Name, type petType.

This specifies the petType query parameter in the API's method request.

8. Choose the pencil icon to finish creating the method request URL query string parameter.

9. Choose Add query string again.

10. For Name, type petsPage.

This specifies the petsPage query parameter in the API's method request.

11. Choose the pencil icon to finish creating the method request URL query string parameter.

12. Choose Method Execution, choose Integration Request, and then choose the arrow next to
URL Query String Parameters.

13. Delete the petType entry mapped from method.request.querystring.petType and the
petsPage entry mapped from method.request.querystring.petsPage. This is because the
endpoint expects query string parameters named type and page for the request URL, instead of
the default values.

14. Choose Add query string

15. For Name, type type. This creates the required query string parameter for the integration request
URL.

16. For Mapped from, type method.request.querystring.petType.

This maps the method request's petType query parameter to the integration request's type query
parameter.

17. Choose the pencil icon to finish creating the integration request URL query string parameter.

18. Choose Add query string again.

19. For Name, type page. This creates the required query string parameter for the integration request
URL.

20. For Mapped from, type method.request.querystring.petsPage.

This maps the method request's petsPage query parameter to the integration request's page
query parameter.

21. Choose the pencil icon to finish creating the integration request URL query string parameter.

26

Amazon API Gateway Developer Guide
Map Request Parameters

22. Choose Method Execution, and in the Client box, choose TEST. In the Query Strings area, for
petType, type cat. For petsPage, type 2.

23. Choose Test. If successful, Response Body will display the following:

[
 {
 "id": 4,
 "type": "cat",
 "price": 999.99
 },
 {
 "id": 5,
 "type": "cat",
 "price": 249.99
 },
 {
 "id": 6,
 "type": "cat",
 "price": 49.97
 }
]

To set up and test the second GET method

This procedure demonstrates the following:

• Create and integrate the method request of GET /petstorewalkthrough/pets/{petId}
with the integration request of GET http://petstore-demo-endpoint.execute-api.com/
petstore/pets/{id}.

• Map the method request path parameters of petId to the integration request path parameters of id.

1. In the Resources list, choose /petstorewalkthrough/pets/{petId}, choose Create Method from
the Actions drop-down menu, and then choose GET as the HTTP verb for the method.

2. In the Setup pane, choose HTTP for Integration type and choose GET for HTTP method.

3. For Endpoint URL, type http://petstore-demo-endpoint.execute-api.com/petstore/
pets/{id}.

4. Choose Save.

5. In the Method Execution pane, choose Integration Request, and then choose the arrow next to
URL Path Parameters.

6. Delete the petId entry mapped from method.request.querystring.petId. This is because
the endpoint expects query string parameters named id for the request URL, instead of the
default value.

7. Choose Add path.

8. For Name, type id.

9. For Mapped from, type method.request.path.petId.

This maps the method request's path parameter of petId to the integration request's path
parameter of id.

10. Choose the pencil icon to finish creating the URL path parameter.

11. Choose Method Execution, and in the Client box, choose TEST. In the Path area, for petId, type
1.

12. Choose Test. If successful, Response Body will display the following:

27

Amazon API Gateway Developer Guide
Map Request Parameters

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

To set up and test the POST method

This procedure demonstrates the following:

• Create and integrate the method request of POST /petstorewalkthrough/pets with the
integration request of POST http://petstore-demo-endpoint.execute-api.com/
petstore/pets.

• Pass the method request JSON payload through to the integration request payload, without
modification.

1. In the Resources pane, choose /petstorewalkthrough/pets, choose Create Method from the
Actions drop-down menu, and then choose POST as the HTTP verb for the method.

2. In the Setup pane, choose HTTP for Integration type and choose POST for HTTP method.

3. For Endpoint URL, type http://petstore-demo-endpoint.execute-api.com/petstore/
pets.

4. Choose Save.

5. In the Method Execution pane, in the Client box, choose TEST. Expand Request Body, and
then type the following:

{
 "type": "dog",
 "price": 249.99
}

6. Choose Test. If successful, Response Body will display the following:

{
 "pet": {
 "type": "dog",
 "price": 249.99
 },
 "message": "success"
}

Step 4: Deploy the API

In this step, you will deploy the API so that you can begin calling it outside of the API Gateway console.

To deploy the API

1. In the Resources pane, choose Deploy API.

2. For Deployment stage, choose test.

Note
The input must be UTF-8 encoded (i.e., unlocalized) text.

3. For Deployment description, type Calling HTTP endpoint walkthrough.

28

Amazon API Gateway Developer Guide
Map Request Parameters

4. Choose Deploy.

Step 5: Test the API

In this step, you will go outside of the API Gateway console and use your API to access the HTTP
endpoint.

1. In the Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look
something like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

2. Paste this URL in the address box of a new browser tab.

3. Append /petstorewalkthrough/pets so that it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/
petstorewalkthrough/pets

Browse to the URL. The following information should be displayed:

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

4. After petstorewalkthrough/pets, type ?petType=cat&petsPage=2 so that it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/
petstorewalkthrough/pets?petType=cat&petsPage=2

5. Browse to the URL. The following information should be displayed:

[
 {
 "id": 4,
 "type": "cat",
 "price": 999.99
 },
 {
 "id": 5,
 "type": "cat",
 "price": 249.99

29

Amazon API Gateway Developer Guide
Map Request Parameters

 },
 {
 "id": 6,
 "type": "cat",
 "price": 49.97
 }
]

6. After petstorewalkthrough/pets, replace ?petType=cat&petsPage=2 with /1 so that it
looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/
petstorewalkthrough/pets/1

7. Browse to the URL. The following information should be displayed:

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

8. Using a web debugging proxy tool or the cURL command-line tool, send a POST method request
to the URL from the previous procedure. Be sure to append /petstorewalkthrough/pets so
that it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/
petstorewalkthrough/pets

Also, be sure to append the following header:

Content-Type: application/json

And be sure to add the following code to the request body:

{
 "type": "dog",
 "price": 249.99
}

For example, if you use the cURL command-line tool, run a command similar to the following:

curl -H "Content-Type: application/json" -X POST -d "{\"type\":
 \"dog\",\"price\": 249.99}" https://my-api-id.execute-api.region-
id.amazonaws.com/test/petstorewalkthrough/pets

The following information should be returned in the response body:

{
 "pet": {
 "type": "dog",
 "price": 249.99
 },
 "message": "success"

30

Amazon API Gateway Developer Guide
Map Response Payload

}

You have reached the end of this walkthrough.

Next Steps
You may want to begin the next walkthrough, which shows you how to use models and mappings
in API Gateway to transform the output of an API call from one data format to another. See Map
Response Payload (p. 31).

Map Response Payload
In this walkthrough, you will learn how to use models and mapping templates in API Gateway to
transform the output of an API call from one data schema to another. This walkthrough builds on the
instructions and concepts in the Build an API to Expose a Lambda Function (p. 44) and the Map
Request Parameters (p. 22). If you have not yet completed those walkthroughs, we suggest you do
them first.

This walkthrough will use API Gateway to get example data from a publicly-accessible HTTP endpoint
and from an AWS Lambda function you will create. Both the HTTP endpoint and the Lambda function
return the same example data:

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

You will use models and mapping templates to transform this data to one or more output formats. In
API Gateway, a model defines the format, also known as the schema or shape, of some data. In API
Gateway, a mapping template is used to transform some data from one format to another. For more
information, see Set Up Payload Mappings (p. 105).

The first model and mapping template is used to rename id to number, type to class, and price to
salesPrice, as follows:

[
 {
 "number": 1,
 "class": "dog",
 "salesPrice": 249.99
 },
 {
 "number": 2,
 "class": "cat",

31

Amazon API Gateway Developer Guide
Map Response Payload

 "salesPrice": 124.99
 },
 {
 "number": 3,
 "class": "fish",
 "salesPrice": 0.99
 }
]

The second model and mapping template is used to combine id and type into description, and to
rename price to askingPrice, as follows:

[
 {
 "description": "Item 1 is a dog.",
 "askingPrice": 249.99
 },
 {
 "description": "Item 2 is a cat.",
 "askingPrice": 124.99
 },
 {
 "description": "Item 3 is a fish.",
 "askingPrice": 0.99
 }
]

The third model and mapping template is used to combine id, type, and price into a set of
listings, as follows:

{
 "listings": [
 "Item 1 is a dog. The asking price is 249.99.",
 "Item 2 is a cat. The asking price is 124.99.",
 "Item 3 is a fish. The asking price is 0.99."
]
}

Topics

• Prerequisites (p. 32)

• Step 1: Create Models (p. 33)

• Step 2: Create Resources (p. 35)

• Step 3: Create GET Methods (p. 36)

• Step 4: Create a Lambda Function (p. 36)

• Step 5: Set Up and Test the Methods (p. 37)

• Step 6: Deploy the API (p. 41)

• Step 7: Test the API (p. 41)

• Step 8: Clean Up (p. 43)

• Next Steps (p. 44)

Prerequisites

Before you begin this walkthrough, you should have already done the following:

32

Amazon API Gateway Developer Guide
Map Response Payload

1. Complete the steps in Get Ready to Use API Gateway (p. 4), including assigning API
Gateway access permission to an IAM user.

2. Open the API Gateway console and create a new API named MyDemoAPI. For more information,
see Build an API Gateway API to Expose an HTTP Endpoint (p. 6).

3. Create two resources: petstorewalkthrough and pets. For more information, see Create
Resources (p. 24) in the Map Request Parameters (p. 22).

4. To use the Lambda portions of this walkthrough, make sure the IAM user has full access to
work with Lambda. You can use the IAM console to attach the AWSLambdaFullAccess AWS
managed policy to the IAM user.

5. Make sure the IAM user has access to create policies and roles in IAM. If you have not done so
already, create a Lambda execution role named APIGatewayLambdaExecRole in IAM. For more
information, see Create Lambda Functions (p. 44) in the Build an API to Expose a Lambda
Function (p. 44).

Step 1: Create Models

In this step, you will create four models. The first three models represent the data output formats
for use with the HTTP endpoint and the Lambda function. The last model represents the data input
schema for use with the Lambda function.

To create the first output model

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If MyDemoAPI is displayed, choose Models.

3. Choose Create.

4. For Model name, type PetsModelNoFlatten.

5. For Content type, type application/json.

6. For Model description, type Changes id to number, type to class, and price to
salesPrice.

7. For Model schema, type the following JSON Schema-compatible definition:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PetsModelNoFlatten",
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "number": { "type": "integer" },
 "class": { "type": "string" },
 "salesPrice": { "type": "number" }
 }
 }
}

8. Choose Create model.

To create the second output model

1. Choose Create.

2. For Model name, type PetsModelFlattenSome.

3. For Content type, type application/json.

33

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Map Response Payload

4. For Model description, type Combines id and type into description, and changes
price to askingPrice.

5. For Model schema, type the following:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PetsModelFlattenSome",
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "description": { "type": "string" },
 "askingPrice": { "type": "number" }
 }
 }
}

6. Choose Create model.

To create the third output model

1. Choose Create.

2. For Model name, type PetsModelFlattenAll.

3. For Content type, type application/json.

4. For Model description, type Combines id, type, and price into a set of listings.

5. For Model schema, type the following:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PetsModelFlattenAll",
 "type": "object",
 "properties": {
 "listings": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
}

6. Choose Create model.

To create the input model

1. Choose Create.

2. For Model name, type PetsLambdaModel.

3. For Content type, type application/json.

4. For Model description, type GetPetsInfo model.

5. For Model schema, type the following:

{
 "$schema": "http://json-schema.org/draft-04/schema#",

34

Amazon API Gateway Developer Guide
Map Response Payload

 "title": "PetsLambdaModel",
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "integer" },
 "type": { "type": "string" },
 "price": { "type": "number" }
 }
 }
}

6. Choose Create model.

Step 2: Create Resources

In this step, you will create four resources. The first three resources will enable you to get the example
data from the HTTP endpoint in the three output formats. The last resource will enable you to get
the example data from the Lambda function in the output schema that combines id and type into
description and renames price to askingPrice.

To create the first resource

1. In the links list, choose Resources.

2. In the Resources pane, choose /petstorewalkthrough, and then choose Create Resource.

3. For Resource Name, type NoFlatten.

4. For Resource Path, accept the default of /petstorewalkthrough/noflatten, and then choose
Create Resource.

To create the second resource

1. In the Resources pane, choose /petstorewalkthrough again, and then choose Create
Resource.

2. For Resource Name, type FlattenSome.

3. For Resource Path, accept the default of /petstorewalkthrough/flattensome, and then choose
Create Resource.

To create the third resource

1. In the Resources pane, choose /petstorewalkthrough again, and then choose Create
Resource.

2. For Resource Name, type FlattenAll.

3. For Resource Path, accept the default of /petstorewalkthrough/flattenall, and then choose
Create Resource.

To create the fourth resource

1. In the Resources pane, choose /petstorewalkthrough again, and then choose Create
Resource.

2. For Resource Name, type LambdaFlattenSome.

3. For Resource Path, accept the default of /petstorewalkthrough/lambdaflattensome, and then
choose Create Resource.

35

Amazon API Gateway Developer Guide
Map Response Payload

Step 3: Create GET Methods

In this step, you will create a GET method for each of the resources you created in the previous step.

To create the first GET method

1. In the Resources list, choose /petstorewalkthrough/flattenall, and then choose Create Method.

2. From the drop-down list, choose GET, and then choose the checkmark icon to save your choice.

3. In the Setup pane, choose HTTP for the Integration type and GET for HTTP method, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets in Endpoint URL,
and choose Save.

To create the second GET method

1. In the Resources list, choose /petstorewalkthrough/lambdaflattensome, and then choose
Create Method.

2. From the drop-down list, choose GET, and then choose the checkmark to save your choice.

3. In the Setup pane, choose Lambda Function for the Integration type, choose the region where
you have created the GetPetsInfo Lambda function (p. 36) from the Lambda Region drop-
down list, choose GetPetsInfo for Lambda Function, and choose Save. Choose OK when
prompted to add permission to the Lambda function.

To create the third GET method

1. In the Resources list, choose /petstorewalkthrough/flattensome, and then choose Create
Method.

2. From the drop-down list, choose GET, and then choose the checkmark icon to save your choice.

3. In the Setup pane, choose HTTP for the Integration type and GET for HTTP method, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets in Endpoint URL,
and then choose Save.

To create the fourth GET method

1. In the Resources list, choose /petstorewalkthrough/noflatten, and then choose Actions,
Create Method.

2. From the drop-down list, choose GET, and then choose the checkmark icon to save your choice.

3. In the Setup pane, choose HTTP for the Integration type and GET for HTTP method, type
http://petstore-demo-endpoint.execute-api.com/petstore/pets in Endpoint URL,
and then choose Save.

Step 4: Create a Lambda Function

In this step, you will create a Lambda function that returns the sample data.

To create the Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Do one of the following:

• If a welcome page appears, choose Get Started Now.

• If the Lambda: Function list page appears, choose Create a Lambda function.

3. For Name, type GetPetsInfo.

36

https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide
Map Response Payload

4. For Description, type Gets information about pets.

5. For Code template, choose None.

6. Type the following code:

console.log('Loading event');

exports.handler = function(event, context) {
 context.done(null,
 [{"id": 1, "type": "dog", "price": 249.99},
 {"id": 2, "type": "cat", "price": 124.99},
 {"id": 3, "type": "fish", "price": 0.99}]); // SUCCESS with message
};

Tip
In the preceding code, written in Node.js, console.log writes information to an Amazon
CloudWatch log. event contains the event's data. context contains callback context.
Lambda uses context.done to perform follow-up actions. For more information about
how to write Lambda function code, see the "Programming Model" section in AWS
Lambda: How it Works and the sample walkthroughs in the AWS Lambda Developer
Guide.

7. For Handler name, leave the default of index.handler.

8. For Role, choose the Lambda execution role, APIGatewayLambdaExecRole, you created in the
Build an API to Expose a Lambda Function (p. 44).

9. Choose Create Lambda function.

10. In the list of functions, choose GetPetsInfo to show the function's details.

11. Make a note of the AWS region where you created this function. You will need it later.

12. In the pop-up list, choose Edit or test function.

13. For Sample event, replace any code that appears with the following:

{

}

Tip
The empty curly braces mean there are no input values for this Lambda function. This
function simply returns the JSON object containing the pets information, so those key/
value pairs are not required here.

14. Choose Invoke. Execution result shows [{"id":1,"type":"dog","price":249.99},
{"id":2,"type":"cat","price":124.99},{"id":3,"type":"fish","price":0.99}],
which is also written to the CloudWatch logs.

15. Choose Go to function list.

Step 5: Set Up and Test the Methods

In this step, you will configure the method responses, integration requests and integration responses
to specify the input and output data schemas (or models) for the GET methods associated with the
HTTP endpoint and the Lambda function. You will also learn to test calling these methods using the
API Gateway console.

To set up the integration for the first GET method and then test it

1. From the API's Resources tree, choose GET under the /petstorewalkthrough/flattenall node.

37

http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

Amazon API Gateway Developer Guide
Map Response Payload

2. In the Method Execution pane, choose Method Response, and then choose the arrow next to
200.

3. In the Response Models for 200 area, for application/json, choose the pencil icon to start
setting up the model for the method output. For Models, choose PetsModelFlattenAll, and then
choose the checkmark icon to save the setting.

4. Choose Method Execution, choose Integration Response, and then choose the arrow next to
200.

5. Expand the Body Mapping Templates section, choose application/json under Content-Type.

6. For Generate template from model, choose PetsModelFlattenAll to display a mapping template
after the PetsModelFlattenAll model as a starting point.

7. Modify the mapping template code as follows:

#set($inputRoot = $input.path('$'))
{
 "listings" : [
#foreach($elem in $inputRoot)
 "Item number $elem.id is a $elem.type. The asking price is
 $elem.price."#if($foreach.hasNext),#end

#end
]
}

8. Choose Save.

9. Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If
successful, Response Body will display the following:

{
 "listings" : [
 "Item number 1 is a dog. The asking price is 249.99.",
 "Item number 2 is a cat. The asking price is 124.99.",
 "Item number 3 is a fish. The asking price is 0.99."
]
}

To set up integration for the second GET method and then test it

1. From the API's Resources tree, choose GET under the /petstorewalkthrough/
lambdaflattensome node.

2. In the Method Execution pane, choose Integration Request to set up mapping of the input to the
GetPetsInfo Lambda function.

3. Expand the Body Mapping Templates section, choose Add mapping template.

4. For Content-Type, type application/json and choose the check-mark icon to save the choice.
When prompted choose Yes, secure this integration to allow change of passthrough behavior.

5. For Generate template, choose PetsLambdaModel to display the input mapping script template.

6. Copy the following mapping script and paste it into the code editor before choosing Save:

#set($inputRoot = $input.path('$'))
[
#foreach($elem in $inputRoot)
 {
 "id" : $elem.id,
 "type" : "$elem.type",

38

Amazon API Gateway Developer Guide
Map Response Payload

 "price" : $elem.price
 }#if($foreach.hasNext),#end

#end
]

7. Go back to Method Execution and choose Method Response. Choose the arrow next to 200 to
expand the section.

8. In the Response Models for 200 area, choose the pencil icon on the row for the content type of
application/json. Choose PetsModelFlattenSome for Models, and then choose the check mark
icon to save the choice.

9. Go back to Method Execution. Choose Integration Response, and then choose the arrow next
to 200.

10. In the Body Mapping Templates section, choose application/json under Content-Type.

11. For Generate template, choose PetsModelFlattenSome to display the mapping script template
for the output of this method.

12. Modify the code as follows, and then choose Save:

#set($inputRoot = $input.path('$'))
[
#foreach($elem in $inputRoot)
 {
 "description" : "Item $elem.id is a $elem.type.",
 "askingPrice" : $elem.price
 }#if($foreach.hasNext),#end

#end
]

13. Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If
successful, Response Body will display the following:

[
 {
 "description" : "Item 1 is a dog.",
 "askingPrice" : 249.99
 },
 {
 "description" : "Item 2 is a cat.",
 "askingPrice" : 124.99
 },
 {
 "description" : "Item 3 is a fish.",
 "askingPrice" : 0.99
 }
]

To set up integration for the third GET method and then test it

1. From the API's Resources tree, choose GET under the /petstorewalkthrough/flattensome
node.

2. In the Method Execution pane, choose Method Response.

3. Choose the arrow next to 200.

4. In the Response Models for 200 area, for application/json, choose the pencil icon. For Models,
choose PetsModelFlattenSome, and then choose the check-mark icon to save the choice.

39

Amazon API Gateway Developer Guide
Map Response Payload

5. Go back to Method Execution and choose Integration Response.

6. Choose the arrow next to 200 to expand the section.

7. Expand the Body Mapping Templates area. Choose application/json for Content-Type. For
Generate template, choose PetsModelFlattenSome to display a mapping script template for the
output of this method.

8. Modify the code as follows:

#set($inputRoot = $input.path('$'))
[
#foreach($elem in $inputRoot)
 {
 "description": "Item $elem.id is a $elem.type.",
 "askingPrice": $elem.price
 }#if($foreach.hasNext),#end

#end
]

9. Choose Save.

10. Go back to Method Execution and choose TEST in the Client box. And then choose Test. If
successful, Response Body will display the following:

[
 {
 "description": "Item 1 is a dog.",
 "askingPrice": 249.99
 },
 {
 "description": "Item 2 is a cat.",
 "askingPrice": 124.99
 },
 {
 "description": "Item 3 is a fish.",
 "askingPrice": 0.99
 }
]

To set up integration for the fourth GET method and then test it

1. From the API's Resources tree, choose GET under the /petstorewalkthrough/noflatten node.

2. In the Method Execution pane, choose Method Response, and then expand the 200 section.

3. In the Response Models for 200 area, for application/json, choose the pencil icon to update the
response model for this method.

4. Choose PetsModelNoFlatten as the model for the content type of application/json, and then
choose the check-mark icon to save the choice.

5. Choose Method Execution, choose Integration Response, and then choose the arrow next to
200 to expand the section.

6. Expand the Mapping Mapping Templates section. Choose application/json for Content-Type.
For Generate templates, choose PetsModelNoFlatten to display a mapping script template for
the output of this method.

7. Modify the code as follows:

#set($inputRoot = $input.path('$'))

40

Amazon API Gateway Developer Guide
Map Response Payload

[
#foreach($elem in $inputRoot)
 {
 "number": $elem.id,
 "class": "$elem.type",
 "salesPrice": $elem.price
 }#if($foreach.hasNext),#end

#end
]

8. Choose Save.

9. Go back to Method Execution, and in the Client box, choose TEST, and then choose Test. If
successful, Response Body will display the following:

[
 {
 "number": 1,
 "class": "dog",
 "salesPrice": 249.99
 },
 {
 "number": 2,
 "class": "cat",
 "salesPrice": 124.99
 },
 {
 "number": 3,
 "class": "fish",
 "salesPrice": 0.99
 }
]

Step 6: Deploy the API
In this step, you will deploy the API so that you can begin calling it outside of the API Gateway console.

To deploy the API

1. In the Resources pane, choose Deploy API.

2. For Deployment stage, choose test.

3. For Deployment description, type Using models and mapping templates walkthrough.

4. Choose Deploy.

Step 7: Test the API
In this step, you will go outside of the API Gateway console to interact with both the HTTP endpoint
and the Lambda function.

1. In the Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look
something like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

2. Paste this URL in the address box of a new browser tab.

41

Amazon API Gateway Developer Guide
Map Response Payload

3. Append /petstorewalkthrough/noflatten so that it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/
petstorewalkthrough/noflatten

Browse to the URL. The following information should be displayed:

[
 {
 "number": 1,
 "class": "dog",
 "salesPrice": 249.99
 },
 {
 "number": 2,
 "class": "cat",
 "salesPrice": 124.99
 },
 {
 "number": 3,
 "class": "fish",
 "salesPrice": 0.99
 }
]

4. After petstorewalkthrough/, replace noflatten with flattensome.

5. Browse to the URL. The following information should be displayed:

[
 {
 "description": "Item 1 is a dog.",
 "askingPrice": 249.99
 },
 {
 "description": "Item 2 is a cat.",
 "askingPrice": 124.99
 },
 {
 "description": "Item 3 is a fish.",
 "askingPrice": 0.99
 }
]

6. After petstorewalkthrough/, replace flattensome with flattenall.

7. Browse to the URL. The following information should be displayed:

{
 "listings" : [
 "Item number 1 is a dog. The asking price is 249.99.",
 "Item number 2 is a cat. The asking price is 124.99.",
 "Item number 3 is a fish. The asking price is 0.99."
]
}

8. After petstorewalkthrough/, replace flattenall with lambdaflattensome.

9. Browse to the URL. The following information should be displayed:

42

Amazon API Gateway Developer Guide
Map Response Payload

[
 {
 "description" : "Item 1 is a dog.",
 "askingPrice" : 249.99
 },
 {
 "description" : "Item 2 is a cat.",
 "askingPrice" : 124.99
 },
 {
 "description" : "Item 3 is a fish.",
 "askingPrice" : 0.99
 }
]

Step 8: Clean Up

If you no longer need the Lambda function you created for this walkthrough, you can delete it now. You
can also delete the accompanying IAM resources.

Caution
If you delete a Lambda function your APIs rely on, those APIs will no longer work. Deleting a
Lambda function cannot be undone. If you want to use the Lambda function again, you must
re-create the function.
If you delete an IAM resource a Lambda function relies on, the Lambda function and any
APIs that rely on it will no longer work. Deleting an IAM resource cannot be undone. If you
want to use the IAM resource again, you must re-create the resource. If you plan to continue
experimenting with the resources you created for this and the other walkthroughs, do not
delete the Lambda invocation role or the Lambda execution role.
API Gateway does not currently support the deactivation or deletion of APIs that no longer
work.

To delete the Lambda function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. On the Lambda: Function list page, in the list of functions, choose the button next to
GetPetsInfo, and then choose Actions, Delete. When prompted, choose Delete again.

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the Details area, choose Roles.

3. Select APIGatewayLambdaExecRole, and then choose Role Actions, Delete Role. When
prompted, choose Yes, Delete.

4. In the Details area, choose Policies.

5. Select APIGatewayLambdaExecPolicy, and then choose Policy Actions, Delete. When
prompted, choose Delete.

You have now reached the end of this walkthrough.

43

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Build an API to Expose a Lambda Function

Next Steps
You may want to begin the next walkthrough, which shows you how to create an API Gateway API to
access an AWS service. See Create an AWS Service Proxy (p. 64).

Build an API to Expose a Lambda Function
AWS Lambda provides an easy way to build back ends without managing servers. API Gateway
and Lambda together can be powerful to create and deploy serverless Web applications. In this
walkthrough, you learn how to create Lambda functions and build an API Gateway API to enable a
Web client to call the Lambda functions synchronously. For more information about Lambda, see the
AWS Lambda Developer Guide. For information about asynchronous invocation of Lambda functions,
see Create an API as a Lambda Proxy (p. 343).

Topics

• Step 1: Prerequisites (p. 44)

• Step 2: Create an API (p. 44)

• Step 3: Create a Resource (p. 44)

• Step 4: Create Lambda Functions (p. 44)

• Step 5: Create and Test a GET Method (p. 48)

• Step 6: Create and Test a POST Method (p. 49)

• Step 7: Deploy the API (p. 50)

• Step 8: Test the API (p. 50)

• Step 9: Clean Up (p. 51)

• Next Steps (p. 52)

• Create Lambda Invocation and Execution Roles (p. 52)

Step 1: Prerequisites
You must grant API Gateway access permission to the IAM user who will perform the tasks
discussed here. The IAM user must have full access to work with Lambda. For this, you can use
or customize the managed policy of AWSLambdaFullAccess (arn:aws:iam::aws:policy/
AWSLambdaFullAccess) and attach it to the IAM user. For more information, see Get Ready to Use
API Gateway (p. 4). The IAM user must also be allowed to create policies and roles in IAM. For
this you can use or customize the managed policy of IAMFullAccess (arn:aws:iam::aws:policy/
IAMFullAccess and attach it to the user.

Step 2: Create an API
In this step, you will create a new API named MyDemoAPI. To create the new API, follow the instruction
given in Step 1 of Build the API Step By Step (p. 14) .

Step 3: Create a Resource
In this step, you will create a new resource named MyDemoResource. To create this resource, follow
the instruction given in Step 2 of Build the API Step By Step (p. 14).

Step 4: Create Lambda Functions
Note
Creating Lambda functions may result in charges to your AWS account.

44

http://docs.aws.amazon.com/lambda/latest/dg/

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

In this step, you will create two new Lambda functions. The first Lambda function, GetHelloWorld,
will log the call to Amazon CloudWatch and return the JSON object {"Hello": "World"}. For more
information about JSON, see Introducing JSON.

The second Lambda function, GetHelloWithName, will take an input ("name"), log the call to
CloudWatch, and return the JSON object {"Hello": user-supplied-input-value}. If no input
value is provided, the value will be "No-Name".

You will use the Lambda console to create the Lambda functions and set up the required execution
role/policy. You will then use the API Gateway console to create an API to integrate API methods with
the Lambda functions; the API Gateway console will set up the required Lambda invocation role/policy.
If you set up the API without using the API Gateway console, such as when importing an API from
Swagger, you must explicitly create, if necessary, and set up an invocation role/policy for API Gateway
to invoke the Lambda functions. For more information on how to set up Lambda invocation and
execution roles, see Create Lambda Invocation and Execution Roles (p. 52). For more information
about Lambda see AWS Lambda Developer Guide.

To create the GetHelloWorld Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Do one of the following:

• If the welcome page appears, choose Get Started Now.

• If the Lambda > Functions list page appears, choose Create a Lambda function.

3. From Select blueprint, choose the hello-world blueprint for nodejs. You may need to type
Hello as the search filter to bring the blueprint in focus.

4. In the Configure triggers pane, choose Next.

5. For Name, type GetHelloWorld.

6. For Description, type Returns {"Hello":"World"}.

7. For Runtime, choose Node.js 4.3.

8. Under Lambda function code, replace the default code statements in the inline code editor with
the following:

'use strict';
console.log('Loading event');

exports.handler = function(event, context, callback) {
 console.log('"Hello":"World"');
 callback(null, {"Hello":"World"}); // SUCCESS with message
};

Tip
In the preceding Lambda function code in Node.js 4.3, the console.log method
writes information to an Amazon CloudWatch log. The event parameter contains
the input to the function. The context parameter contains execution context and
callback the callback function. For the Lambda function to return successfully, call
callback(null, result) to exit the function. To return an error message, call
callback(error) upon exit. For more information about how to write Lambda function
code, see the "Programming Model" section in AWS Lambda: How it Works and the
sample walkthroughs in the AWS Lambda Developer Guide.

9. Under Lambda function handler and role, leave the default of index.handler for Handler.

10. For Role, choose Create new role from template(s):

a. For Role name, type a name for your role (e.g., execute_my_lambda).

45

http://json.org
https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://console.aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

b. For Policy templates, choose Simple Microservice permissions.

Tip
To use an existing IAM role, choose Choose an existing role for Role and then
select an entry from the drop-down list of the existing roles. Alternatively, to create a
custom role, choose Create a Custom Role and follow the instructions therein.

11. For Advanced settings leave the default setting as is.

12. Choose Next

13. Choose Create function.

Make a note of the AWS region where you created this function. You will need it later.

14. To test the newly created function, as a good practice, choose Actions and then select Configure
test event.

15. For Input test event, replace any default code statements with the following, and then choose
Save and test.

{ }

Tip
This function does not use any input. Therefore, we provide an empty JSON object as the
input.

16. Choose Test to invoke the function. The Execution result section shows {"Hello": "World"}.
The output is also written to CloudWatch Logs.

You can use the IAM console to view the IAM role (execute_my_lambda) created as part of the
Lambda function creation. Attached to this IAM role is the following inline policy that grants users of
your AWS account permission to call the CloudWatch CreateLogGroup, CreateLogStreams, and
PutLogEvents actions on any of the CloudWatch resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

A trusted entity of this IAM role is lambda.amazonaws.com, which has the following trust relationship:

{
 "Version": "2012-10-17",
 "Statement": [
 {

46

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The combination of this trust relationship and the inline policy makes it possible for the user to invoke
the Lambda function and for Lambda to call the supported CloudWatch actions on the user's behalf.

To create the GetHelloWithName Lambda function

1. Go back to the Lambda > Functions list to create the next Lambda function that takes an input
value.

2. Choose Create a Lambda function.

3. From Select blueprint, select the hello-world blueprint for nodejs.

4. Type GetHelloWithName for Name.

5. For Description, type Returns {"Hello":", a user-provided string, and "}.

6. For Runtime, choose Node.js 4.3.

7. In the code editor under Lambda function code replace the default code statements with the
following:

'use strict';
console.log('Loading event');

exports.handler = function(event, context, callback) {
 var name = (event.name === undefined ? 'No-Name' : event.name);
 console.log('"Hello":"' + name + '"');
 callback(null, {"Hello":name}); // SUCCESS with message
};

8. Under Lambda function handler and role, leave the default of index.handler for Handler.

9. For Role, choose Use existing role and then choose the execute_my_lambda role, created
previously, from the drop-down list of existing roles.

10. Leave the default values for Advanced settings. Then choose Next.

11. Choose Create function.

Make a note of the AWS region where you created this function. You will need it in later.

12. To test this newly created function, choose Actions and then Configure test event.

13. In Input test event, replace any default code statements with the following, and then choose Save
and test.

{
 "name": "User"
}

Tip
The function calls event.name to read the input name. We expect it to return
{"Hello": "User"}, given the above input.

47

Amazon API Gateway Developer Guide
Step 5: Create and Test a GET Method

You can experiment with this function by removing "name": "User" from the Input test event
for the function and choosing Save and test again. You should see the output of {"Hello":
"No-Name"} under Execution result in the Lambda console, as well as in CloudWatch Logs.

Step 5: Create and Test a GET Method
Switch back to the API Gateway console. In this step, you will create a GET method, connect it to your
GetHelloWorld function in Lambda, and then test it. You use a GET method primarily to retrieve
or read a representation of a resource. If successful, the GET method will return a JSON-formatted
object.

To create and test the GET method

1. In the API Gateway console, from APIs, choose MyDemoAPI.

2. In the Resources pane, choose /mydemoresource. From Actions, choose Create Method.
Choose GET from the HTTP method drop-down list and then choose the checkmark to create the
method.

3. In the GET method Setup pane, for Integration type, choose Lambda Function. For Lambda
Region, choose the region (.e.g, us-east-1) where you created the Lambda functions. In
Lambda Function, type GetHelloWorld. Choose Save to finish setting up the integration
request for this method.

For a list of region names and identifiers, see AWS Lambda in the Amazon Web Services General
Reference.

4. For Add Permission to Lambda Function, choose OK.

5. In the Method Execution pane, choose TEST from the Client box, and then choose the Test
button. If successful, Response Body will display the following:

{
 "Hello": "World"
}

By default, API Gateway will pass through the request from the API caller. For the GET method call
you just created, as well as for HEAD method calls, a Lambda function will receive an empty JSON
response by default and then return the response from the Lambda function without modifications.

In the next step, you will create a POST method call. For POST and PUT method calls, you can pass
in a request body in JSON format, which the Lambda function will receive as its input event. Optionally,
you can transform the input to the Lambda function by using mapping templates in API Gateway.

48

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

Amazon API Gateway Developer Guide
Step 6: Create and Test a POST Method

Step 6: Create and Test a POST Method
In this step, you will create a new POST method, connect it to your GetHelloWithName function in
Lambda, and then test it. If successful, the POST method typically returns to the caller the URI of the
newly created resource. In this walkthrough, the POST method will simply return a JSON-formatted
object.

To create and test the POST method

1. In the Resources pane, choose /mydemoresource, and then choose Create Method.

2. For the HTTP method, choose POST, and then choose the checkmark to save your choice.

3. In the Setup pane, for Integration Type, choose Lambda Function.

4. For Lambda Region, choose the region identifier that corresponds to the region name in which
you created the GetHelloWithName Lambda function.

5. For Lambda Function, type GetHelloWithName, and then choose Save.

6. When you are prompted to give API Gateway permission to invoke your Lambda function, choose
OK.

7. In the Method Execution pane, in the Client box, and then choose TEST. Expand Request
Body, and type the following:

{
 "name": "User"
}

8. Choose Test. If successful, Response Body will display the following:

{
 "Hello": "User"
}

9. Change Request Body by removing "name": "User" so that only a set of curly braces ({ })
remain, and then choose Test again. If successful, Response Body will display the following:

{
 "Hello": "No-Name"
}

The API Gateway console-assisted Lambda function integration uses the AWS service proxy
integration type for Lambda. It streamlines the process to integrate an API method with a Lambda
function by setting up, among other things, the required Lambda function invocation URI and the
invocation role on behalf of the API developer.

The GET and POST methods discussed here are both integrated with a POST request in the back end:

POST /2015-03-31/functions/FunctionArn/invocations?Qualifier=Qualifier
 HTTP/1.1
X-Amz-Invocation-Type: RequestReponse
...
Content-Type: application/json
Content-Length: PayloadSize

Payload

49

Amazon API Gateway Developer Guide
Step 7: Deploy the API

The X-Amz-Invocation-Type: RequestReponse header specifies that the Lambda function
be invoked synchronously. FunctionArn is of the arn:aws:lambda:region:account-
id:function:FunctionName format. In this walkthrough, the console sets FunctionName as
GetHelloWorld for the GET method request and supplies an empty JSON payload when you test-
invoke the method. For the POST method, the console sets FunctionName as GetHelloWithName
and passes the caller-supplied method request payload to the integration request. You can regain full
control of a method creation and setup by going through the AWS service proxy integration directly. For
more information, see Create an API as a Lambda Proxy (p. 343).

Step 7: Deploy the API
You are now ready to deploy your API so that you can call it outside of the API Gateway console.
In this step, you will create a stage. In API Gateway, a stage defines the path through which an API
deployment is accessible. For example, you can define a test stage and deploy your API to it, so that
a resource named MyDemoAPI is accessible through a URI that ends in .../test/MyDemoAPI.

To deploy the API

1. Choose the API from the APIs pane or choose a resource or method from the Resources pane.
Choose Deploy API from the Actions drop-down menu.

2. For Deployment stage, choose New Stage.

3. For Stage name, type test.

Note
The input must be UTF-8 encoded (i.e., unlocalized) text.

4. For Stage description, type This is a test.

5. For Deployment description, type Calling Lambda functions walkthrough.

6. Choose Deploy.

Step 8: Test the API
In this step, you will go outside of the API Gateway console to call the GET and POST methods in the
API you just deployed.

To test the GET-on-mydemoresource method

1. In the Stage Editor pane, copy the URL from Invoke URL to the clipboard. It should look
something like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

2. In a separate web browser tab or window, paste the URL into the address box. Append the path
to your resource (/mydemoresource) to the end of the URL. The URL should look something like
this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoresource

3. Browse to this URL. If the GET method is successfully called, the web page will display:

{"Hello":"World"}

50

Amazon API Gateway Developer Guide
Step 9: Clean Up

To test the POST-on-mydemoresource method

1. You will not be able to test a POST method request with your web browser's address bar. Instead,
use an advanced REST API client, such as Postman, or the cURL command-line tool.

2. Send a POST method request to the URL from the previous procedure. The URL should look
something like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoresource

Be sure to append to the request headers the following header:

Content-Type: application/json

Also, be sure to add the following code to the request body:

{
 "name": "User"
}

For example, if you use the cURL command-line tool, run a command similar to the following:

curl -H "Content-Type: application/json" -X POST -d "{\"name\": \"User\"}"
 https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoresource

If the POST method is successfully called, the response should contain:

{"Hello":"User"}

Step 9: Clean Up
If you no longer need the Lambda functions you created for this walkthrough, you can delete them now.
You can also delete the accompanying IAM resources.

Caution
If you plan to complete the other walkthroughs in this series, do not delete the Lambda
execution role or the Lambda invocation role. If you delete a Lambda function that your APIs
rely on, those APIs will no longer work. Deleting a Lambda function cannot be undone. If you
want to use the Lambda function again, you must re-create the function.
If you delete an IAM resource that a Lambda function relies on, that Lambda function will
no longer work, and any APIs that rely on that function will no longer work. Deleting an IAM
resource cannot be undone. If you want to use the IAM resource again, you must re-create
the resource.

To delete the Lambda functions

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. From the list of functions, choose GetHelloWorld, choose Actions and then choose Delete
function. When prompted, choose Delete again.

3. From the list of functions, choose GetHelloWithName, choose Actions, and then choose Delete
function. When prompted, choose Delete again.

51

https://www.getpostman.com/
https://curl.haxx.se/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide
Next Steps

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. From Details, choose Roles.

3. From the list of roles, choose APIGatewayLambdaExecRole, choose Role Actions and then
choose Delete Role. When prompted, choose Yes, Delete.

4. From Details, choose Policies.

5. From the list of policies, choose APIGatewayLambdaExecPolicy, choose Policy Actions and
then choose Delete. When prompted, choose Delete.

You have now reached the end of this walkthrough.

Next Steps
You may want to proceed to the next walkthrough, which shows how to map header parameters
from the method request to the integration request and from the integration response to the method
response. It uses the HTTP proxy integration to connect your API to HTTP endpoints in the back end.

For more information about API Gateway, see What Is Amazon API Gateway? (p. 1). For more
information about REST, see RESTful Web Services: A Tutorial.

Create Lambda Invocation and Execution Roles
Before you create AWS Lambda functions, you must assign appropriate permissions for the functions
to execute the specified Amazon CloudWatch action (namely, writing to the CloudWatch Log) and for
API Gateway to invoke the Lambda functions. You set up the permissions using IAM roles and policies
for API Gateway to invoke your code and for Lambda to execute your code. For more information
about invocation and execution roles/policies in Lambda see Permission Model in the AWS Lambda
Developer Guide.

To create the Lambda invocation role and its policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

If you are using the IAM-managed AWSLambdaRole policy, skip to Step 8 to create an invocation
role.

2. In Details, choose Policies.

3. Do one of the following:

• If a list of policies appears, choose Create Policy.

• If the Welcome to Managed Policies page appears, choose Get Started, and then choose
Create Policy.

4. For Create Your Own Policy, choose Select.

5. For Policy Name, type a name for the policy; for example, APIGatewayLambdaInvokePolicy.

6. For Description, type Enables API Gateway to call Lambda functions.

7. For Policy Document, type the following, and then choose Create Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {

52

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Create Lambda Invocation and Execution Roles

 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Action": [
 "lambda:InvokeFunction"
]
 }
]
}

8. In Details, choose Roles.

9. Choose Create New Role.

10. For Role Name, type a name for the invocation role; for example,
APIGatewayLambdaInvokeRole, and then choose Next Step.

11. Under Select Role Type, with the option button next to AWS Service Roles already chosen, for
Amazon API Gateway, choose Select.

12. For Attach Policy, if the policy you want is in the list, choose it before choosing Next Step.
Otherwise, simply choose Next Step to proceed.

13. For Role ARN, make a note of the invocation role's Amazon Resource Name (ARN). You will
need this ARN in later steps when you specify the invocation role explicitly. The ARN should look
similar to this: arn:aws:iam::123456789012:role/APIGatewayLambdaInvokeRole, where
123456789012 is your AWS account ID.

14. Choose Create Role.

The newly created IAM role will have the following trust policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The preceding policy document enables API Gateway to assume roles taken up by and, hence,
take actions on behalf of your AWS account.

To create the Lambda execution role and its policies

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In Details, choose Policies.

3. Choose Create Policy.

4. For Create Your Own Policy, choose Select.

5. For Policy Name, type a name for the policy (for example, APIGatewayLambdaExecPolicy).

6. For Description, type Enables Lambda to execute code.

7. For Policy Document, type the following, and then choose Create Policy.

53

https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Build an API Using Proxy

Integration and a Proxy Resource

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:*"
],
 "Effect": "Allow",
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

Note
The preceding policy document permits all log actions on Amazon CloudWatch Logs.
Typically, you would add other permissions required by your Lambda function to interact
with AWS services, such as uploading an object to an Amazon S3 bucket. In this
walkthrough, the Lambda functions you create are very simple; they do not interact with
AWS services.

8. In Details, choose Roles.

9. Choose Create New Role.

10. In Role Name, type a name for the execution role (for example, APIGatewayLambdaExecRole),
and then choose Next Step.

11. Next to AWS Lambda, choose Select.

Note
IAM will attach the following resource-policy document in Trust Relationships:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

This policy document enables Lambda to assume roles taken up by and, hence, to take
actions on behalf of your AWS account.

Build an API Gateway API Using Proxy
Integration and a Proxy Resource

As an API developer, you can configure a proxy resource in an API Gateway API to enable a
client to access an HTTP back end or to call a Lambda function following various routes with a
single integration setup on a catch-all ANY method. For more information about the proxy resource,

54

Amazon API Gateway Developer Guide
Create and Test an API with HTTP Proxy

Integration through a Proxy Resource

ANY method and proxy resource integration types, see Configure Proxy Integration for a Proxy
Resource (p. 97).

This tutorial describes how to build and test two APIs with proxy resources, one for an HTTP back end
and the other for a Lambda function. To follow the instructions, you must have signed up for an AWS
account. For more information about signing up for AWS, see Getting Started (p. 4).

Topics

• Create and Test an API with HTTP Proxy Integration through a Proxy Resource (p. 55)

• Create an API with Lambda Proxy Integration through a Proxy Resource (p. 59)

Create and Test an API with HTTP Proxy Integration
through a Proxy Resource
In this tutorial, we will create an API to integrate with the PetStore website through a proxy resource
using the HTTP proxy integration.

Topics

• Create an API with HTTP Proxy Integration through a Proxy Resource (p. 55)

• Test an API with HTTP Proxy Integration through Proxy Resource (p. 57)

Create an API with HTTP Proxy Integration through a Proxy
Resource

The following procedure walks you through the steps to create and test an API with a proxy resource
for an HTTP back end using the API Gateway console. The HTTP back end is the PetStore website
(http://petstore-demo-endpoint.execute-api.com/) from Build an API Gateway API to
Expose an HTTP Endpoint (p. 6).

To build an API with HTTP Proxy Integration with the PetStore website through a proxy
resource

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. To create an API, choose Create new API (for creating the first API) or Create API (for creating
any subsequent API). Next, do the following:

a. Choose New API.

b. Type a name in API Name .

c. Optionally, add a brief description in Description.

d. Choose Create API.

For this tutorial, use ProxyResourceForPetStore for the API name.

3. To create a child resource, choose a parent resource item under the Resources tree and then
choose Create Resource from the Actions drop-down menu. Then, do the following in the New
Child Resource pane.

a. Select the Configure as proxy resource option to create a proxy resource. Otherwise, leave
it de-selected.

b. Type a name in the Resource Name* input text field.

c. Type a new name or use the default name in the Resource Path* input text field.

d. Choose Create Resource.

55

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Create and Test an API with HTTP Proxy

Integration through a Proxy Resource

e. Select Enable API Gateway CORS, if required.

For this tutorial, select Configure as proxy resource. For Resource Name, use the default,
proxy. For Resource Path, use /{proxy+}. Select Enable API Gateway CORS.

4. To set up the ANY method for integration with the HTTP back end, do the following:

a. Choose HTTP Proxy for Integration type.

b. Type an HTTP back-end resource URL in Endpoint URL.

c. Choose Save to finish configuring the ANY method.

For this tutorial, use http://petstore-demo-endpoint.execute-api.com/{proxy} for the
Endpoint URL.

56

Amazon API Gateway Developer Guide
Create and Test an API with HTTP Proxy

Integration through a Proxy Resource

Test an API with HTTP Proxy Integration through Proxy
Resource

In the API we just created, the API's proxy resource path of {proxy+} becomes the placeholder of
any of the back-end endpoints under http://petstore-demo-endpoint.execute-api.com/. For
example, it can be petstore, petstore/pets, and petstore/pets/{petId}. The ANY method
serves as a placeholder for any of the supported HTTP verbs at run time. These are illustrated in the
following testing procedure.

To test an API integrated with the PetStore website using HTTP proxy integration
through the proxy resource

1. To use the API Gateway console to test invoking the API, do the following.

a. Choose ANY on a proxy resource in the Resources tree.

b. Choose Test in the Method Execution pane.

c. From the Method drop-down list, choose an HTTP verb supported by the back end.

d. Under Path, type a specific path for the proxy resource supporting the chosen operation.

e. If required, type a supported query expression for the chosen operation under the Query
Strings heading.

f. If required, type one or more supported header expressions for the chosen operation under
the Headers heading.

g. If configured, set the required stage variable values for the chosen operation under the Stage
Variables heading.

h. If prompted and required, choose an API Gateway-generated client certificate under the
Client Certificate heading to the operation to be authenticated by the back end.

i. If prompted, type an appropriate request body in the text editor under the Request Body
heading.

j. Choose Test to test invoking the method.

57

Amazon API Gateway Developer Guide
Create and Test an API with HTTP Proxy

Integration through a Proxy Resource

For this tutorial, use GET for the ANY method, use petstore/pets in place of the proxy resource
path ({proxy}), and type=fish for the query string.

Because the back-end website supports the GET /petstore/pets?type=fish request, it will
return a successful response similar to the following:

[
 {
 "id": 1,
 "type": "fish",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "fish",

58

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy

Integration through a Proxy Resource

 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

If you try to call GET /petstore, you will get a 404 response with an error message of Cannot
GET /petstore. This is because the back end does not support the specified operation. On the
other, if you call GET /petstore/pets/1, you will get a 200 OK response with the following
payload, because the request is supported by the PetStore website.

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

2. To use a browser to call a GET method on a specific resource of the API, do the following.

a. If you have not done so, choose Deploy API from the Actions drop-down menu for the API
you created. Follow the instructions to deploy the API to a specific stage. Note the Invoke
URL that displays on the resulting Stage Editor page. This is the base URL of the API.

b. To submit a GET request on a specific resource, append the resource path, including possible
query string expressions to the Invoke URL value obtained in the previous step, copy the
complete URL into the address bar of a browser, and choose Enter.

For this tutorial, deploy the API to a test stage, append petstore/pets?type=fish to
the API's Invoke URL. This produces a URL of https://4z9giyi2c1.execute-api.us-
west-2.amazonaws.com/test/petstore/pets?type=fish.

The result should be the same as the result that is returned when you use TestInvoke from the
API Gateway console.

Create an API with Lambda Proxy Integration
through a Proxy Resource
As a prerequisite, we create a Lambda function as the back end of our API through the Lambda proxy
integration with a proxy resource. As an illustration, we will create the following Node.js function,
named SimpleLambda4ProxyResource, using the AWS Lambda console.

We then create an API with the Lambda proxy integration by using the
SimpleLambda4ProxyResource function through a proxy resource by using the API Gateway
console. In conclusion, we demonstrate how to test the API.

Topics

• Lambda Function for Proxy Integration (p. 60)

• Create a Back End for Lambda Proxy Integration (p. 61)

• Create API with Lambda Proxy Integration (p. 61)

• Test API with Lambda Proxy Integration (p. 62)

59

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy

Integration through a Proxy Resource

Lambda Function for Proxy Integration
The following Lambda function in Node.js is a "Hello, World!" application. The function shows how
to parse the input event parameter that contains a request made by a client to an API Gateway
proxy resource. This resource is integrated with the function using the Lambda proxy integration.
The function also demonstrates how to format the output of the Lambda function for API Gateway
to return the results as an HTTP response. For more information about the input and output formats
that this type of Lambda function must follow, see Input Format of a Lambda Function for Proxy
Integration (p. 103) and Output Format of a Lambda Function for Proxy Integration (p. 105).

'use strict';
console.log('Loading hello world function');

exports.handler = function(event, context) {
 var name = "World";
 var responseCode = 200;
 console.log("request: " + JSON.stringify(event));
 if (event.queryStringParameters !== null && event.queryStringParameters !
== undefined) {
 if (event.queryStringParameters.name !==
 undefined && event.queryStringParameters.name !== null &&
 event.queryStringParameters.name !== "") {
 console.log("Received name: " +
 event.queryStringParameters.name);
 name = event.queryStringParameters.name;
 }

 if (event.queryStringParameters.httpStatus !==
 undefined && event.queryStringParameters.httpStatus !== null &&
 event.queryStringParameters.httpStatus !== "") {
 console.log("Received http status: " +
 event.queryStringParameters.httpStatus);
 responseCode = event.queryStringParameters.httpStatus;
 }
 }

 var responseBody = {
 message: "Hello " + name + "!",
 input: event
 };
 var response = {
 statusCode: responseCode,
 headers: {
 "x-custom-header" : "my custom header value"
 },
 body: JSON.stringify(responseBody)
 };
 console.log("response: " + JSON.stringify(response))
 context.succeed(response);
};

When used with a proxy resource in API Gateway, the input contains an API request marshalled by
API Gateway. The input can include the request's HTTP method, path, query parameters, headers,
and payload as well as the context and stage variables. This example Lambda function parses the
query string parameters of name and httpStatus from the input (event). The function then returns
a greeting to the named user in the message property of the responseBody object. The function also
outputs the caller-supplied HTTP status code as part of a response object. If name and httpStatus

60

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy

Integration through a Proxy Resource

query parameters are not set, the default values ("World" and 200, respectively) are returned instead.
In any case, the response body contains event, which is the input to the Lambda function. When
structured as shown, the Lambda function output is un-marshalled by API Gateway and returned to the
client as an HTTP response.

Create a Back End for Lambda Proxy Integration

Now let's create the Lambda function in API Gateway using the Lambda management console.

Create a Lambda function for an API with a proxy resource in the Lambda console

For this tutorial, use LambdaForSimpleProxy as the function name and choose the standard Simple
Microservice permissions policy templates to create the required Lambda execution role.

1. Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

2. From the upper-right corner of the console, choose an available region for the Lambda function.

3. From the main navigation pane, choose Functions.

4. Choose Create a Lambda function or Get Started Now to create your first Lambda function in a
region, and then do the following.

a. On the Select blueprint page, choose Skip.

b. On the Configure triggers page, choose Next.

c. On the Configure function page, do the following:

- Type a function name in the Name input field.

- Type a brief function description in the Description input field.

- From the Runtime drop-down list, choose Node.js 4.3.

d. Under Lambda function code, do the following:

- Choose Edit code inline from the Code entry type drop-down list.

- Type or copy your Node.js code into the inline code editor.

e. Under Lambda function handler and role, do the following:

- Leave index.handler as-is for Handler.

- Choose an existing or create a new IAM role for the function execution.

f. Keep the default values for Advanced settings.

g. Choose Next.

h. In the Review pane, choose Create function.

Note
Make note of the region where you created the Lambda function. You will need it next when
creating the API for the function.

Create API with Lambda Proxy Integration

Now create an API with a proxy resource for a Lambda function by using the API Gateway console.

Build an API with a proxy resource for a Lambda function

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. To create an API, choose Create new API (for creating the first API) or Create API (for creating
any subsequent API). Next, do the following:

61

https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy

Integration through a Proxy Resource

a. Choose New API.

b. Type a name in API Name .

c. Optionally, add a brief description in Description.

d. Choose Create API.

For this tutorial, use LambdaSimpleProxy as the API name.

3. To create a child resource, choose a parent resource item under the Resources tree and then
choose Create Resource from the Actions drop-down menu. Then, do the following in the New
Child Resource pane.

a. Select the Configure as proxy resource option to create a proxy resource. Otherwise, leave
it de-selected.

b. Type a name in the Resource Name* input text field.

c. Type a new name or use the default name in the Resource Path* input text field.

d. Choose Create Resource.

e. Select Enable API Gateway CORS, if required.

For this tutorial, use the root resource (/) as the parent resource. Select Configure as proxy
resource. For Resource Name, use the default, proxy. For Resource Path, use /{proxy+}.
De-select Enable API Gateway CORS.

4. To set up the ANY method for integration with the Lambda back end, do the following:

a. Choose Lambda Function Proxy for Integration type.

b. Choose a region from Lambda Region.

c. Type the name of your Lambda function in Lambda Function.

d. Choose Save.

e. Choose OK when prompted with Add Permission to Lambda Function.

For this tutorial, use the previously created LambdaForProxyResource for the Lambda
Function.

For the proxy resource API that Lambda just created, API Gateway forwards the raw request from the
client to the back end for the Lambda function to process. The request includes the request method,
its path, query string and headers parameters, any payload, and context and stage variables. The next
procedure describes how to test this.

Test API with Lambda Proxy Integration

The following procedure describes how to test the proxy integration.

Call the LambdaForProxyResource Lambda function through the proxy resource

1. To use a browser to call a GET method on a specific resource of the API, do the following.

a. If you have not done so, choose Deploy API from the Actions drop-down menu for the API
you created. Follow the instructions to deploy the API to a specific stage. Note the Invoke
URL that displays on the resulting Stage Editor page. This is the base URL of the API.

b. To submit a GET request on a specific resource, append the resource path, including possible
query string expressions to the Invoke URL value obtained in the previous step, copy the
complete URL into the address bar of a browser, and choose Enter.

62

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy

Integration through a Proxy Resource

For this tutorial, deploy the API to a test stage and append hello?name=me to the
API's base URL to produce a URL of https://wt6mne2s9k.execute-api.us-
west-2.amazonaws.com/test/hello?name=me.

The successful response returns a result similar to the following output from the back-end
Lambda function. The input property captures the raw request from API Gateway. The response
contains httpMethod, path, headers, pathParameters, queryStringParameters,
requestContext, and stageVariables.

{
 "message": "Hello me!",
 "input": {
 "path": "/test/hello",
 "headers": {
 "Accept": "text/html,application/xhtml+xml,application/
xml;q=0.9,image/webp,*/*;q=0.8",
 "Accept-Encoding": "gzip, deflate, lzma, sdch, br",
 "Accept-Language": "en-US,en;q=0.8",
 "CloudFront-Forwarded-Proto": "https",
 "CloudFront-Is-Desktop-Viewer": "true",
 "CloudFront-Is-Mobile-Viewer": "false",
 "CloudFront-Is-SmartTV-Viewer": "false",
 "CloudFront-Is-Tablet-Viewer": "false",
 "CloudFront-Viewer-Country": "US",
 "Host": "wt6mne2s9k.execute-api.us-west-2.amazonaws.com",
 "Upgrade-Insecure-Requests": "1",
 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.82 Safari/537.36
 OPR/39.0.2256.48",
 "Via": "1.1 fb7cca60f0ecd82ce07790c9c5eef16c.cloudfront.net
 (CloudFront)",
 "X-Amz-Cf-Id":
 "nBsWBOrSHMgnaROZJK1wGCZ9PcRcSpq_oSXZNQwQ10OTZL4cimZo3g==",
 "X-Forwarded-For": "192.168.100.1, 192.168.1.1",
 "X-Forwarded-Port": "443",
 "X-Forwarded-Proto": "https"
 },
 "pathParameters": {"proxy": "hello"},
 "requestContext": {
 "accountId": "123456789012",
 "resourceId": "us4z18",
 "stage": "test",
 "requestId": "41b45ea3-70b5-11e6-b7bd-69b5aaebc7d9",
 "identity": {
 "cognitoIdentityPoolId": "",
 "accountId": "",
 "cognitoIdentityId": "",
 "caller": "",
 "apiKey": "",
 "sourceIp": "192.168.100.1",
 "cognitoAuthenticationType": "",
 "cognitoAuthenticationProvider": "",
 "userArn": "",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X
 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.82
 Safari/537.36 OPR/39.0.2256.48",
 "user": ""

63

Amazon API Gateway Developer Guide
Create an AWS Service Proxy

 },
 "resourcePath": "/{proxy+}",
 "httpMethod": "GET",
 "apiId": "wt6mne2s9k"
 },
 "resource": "/{proxy+}",
 "httpMethod": "GET",
 "queryStringParameters": {"name": "me"},
 "stageVariables": {"stageVarName": "stageVarValue"}
 }
}

You can use a different proxy resource path of /hello/world?name=me to call the Lambda
function. The input.path property value of the JSON payload of the successful response will
become test/hello/world.

If you use POST for the ANY method instead, the input property of the response payload
contains a body JSON property. To test a POST request, you can use the API Gateway console
TestInvoke feature, a Curl command, the Postman extension, or an AWS SDK.

2. To use the API Gateway console to test invoking the API, do the following.

a. Choose ANY on a proxy resource in the Resources tree.

b. Choose Test in the Method Execution pane.

c. From the Method drop-down list, choose an HTTP verb supported by the back end.

d. Under Path, type a specific path for the proxy resource supporting the chosen operation.

e. If required, type a supported query expression for the chosen operation under the Query
Strings heading.

f. If required, type one or more supported header expressions for the chosen operation under
the Headers heading.

g. If configured, set the required stage variable values for the chosen operation under the Stage
Variables heading.

h. If prompted and required, choose an API Gateway-generated client certificate under the
Client Certificate heading to the operation to be authenticated by the back end.

i. If prompted, type an appropriate request body in the text editor under the Request Body
heading.

j. Choose Test to test invoking the method.

For this tutorial, use GET as the HTTP method, hello as the proxy resource path of {proxy}, and
name=me as the query expression.

The successful response will return a JSON payload that is similar to the payload shown in the
previous step.

Create an AWS Service Proxy for Amazon SNS
In addition to exposing Lambda functions or HTTP endpoints, you can also create an API Gateway
API as a proxy to an AWS service, such as Amazon SNS, Amazon S3, Amazon Kinesis, enabling your
client to access the back-end AWS services through your APIs. In this walkthrough, we illustrate this by
creating an API to expose Amazon SNS. For examples of integrating an API with other AWS services,
see Tutorials (p. 343).

An AWS service proxy can call only one action in an AWS service, and that action typically does not
change. If you want more flexibility, you should call a Lambda function instead.

64

Amazon API Gateway Developer Guide
Prerequisites

API Gateway does not retry when the endpoint times out. The API caller must implement a retry logic
to handle endpoint timeouts.

This walkthrough builds on the instructions and concepts in the Build an API to Expose a Lambda
Function (p. 44), which shows you how to use API Gateway to create a custom API, connect it to a
set of AWS Lambda functions, and then call the Lambda functions from your API. If you have not yet
completed that walkthrough, we suggest that you do it first.

Topics

• Prerequisites (p. 65)

• Step 1: Create the Resource (p. 65)

• Step 2: Create the GET Method (p. 66)

• Step 3: Create the AWS Service Proxy Execution Role (p. 66)

• Step 4: Specify Method Settings and Test the Method (p. 67)

• Step 5: Deploy the API (p. 68)

• Step 6: Test the API (p. 68)

• Step 7: Clean Up (p. 69)

Prerequisites
Before you begin this walkthrough, you should have already done the following:

1. Complete the steps in Get Ready to Use API Gateway (p. 4).

2. Make sure the IAM user has access to create policies and roles in IAM. You will need to create an
IAM policy and role in this walkthrough.

3. At a minimum, open the API Gateway console and create a new API named MyDemoAPI. For
more information, see Build an API Gateway API to Expose an HTTP Endpoint (p. 6).

4. Deploy the API at least once to a stage named test. For more information, see Deploy the
API (p. 50) in the Build an API to Expose a Lambda Function (p. 44).

5. Complete the rest of the steps in the Build an API to Expose a Lambda Function (p. 44).

6. Create at least one topic in Amazon Simple Notification Service (Amazon SNS). You will use the
deployed API to get a list of topics in Amazon SNS that are associated with your AWS account.
To learn how to create a topic in Amazon SNS, see Create a Topic. (You do not need to copy the
topic ARN mentioned in step 5.)

Step 1: Create the Resource
In this step, you will create a resource that will enable the AWS service proxy to interact with the AWS
service.

To create the resource

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If MyDemoAPI is displayed, choose Resources.

3. In the Resources pane, choose the resource root, represented by a single forward slash (/), and
then choose Create Resource.

4. For Resource Name, type MyDemoAWSProxy, and then choose Create Resource.

65

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Step 2: Create the GET Method

Step 2: Create the GET Method
In this step, you will create a GET method that will enable the AWS service proxy to interact with the
AWS service.

To create the GET method

1. In the Resources pane, choose /mydemoawsproxy, and then choose Create Method.

2. For the HTTP method, choose GET, and then save your choice.

Step 3: Create the AWS Service Proxy Execution
Role
In this step, you will create an IAM role that your AWS service proxy will use to interact with the AWS
service. We call this IAM role an AWS service proxy execution role. Without this role, API Gateway
cannot interact with the AWS service. In later steps, you will specify this role in the settings for the GET
method you just created.

To create the AWS service proxy execution role and its policy

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Choose Policies.

3. Do one of the following:

• If the Welcome to Managed Policies page appears, choose Get Started, and then choose
Create Policy.

• If a list of policies appears, choose Create Policy.

4. Next to Create Your Own Policy, choose Select.

5. For Policy Name, type a name for the policy (for example, APIGatewayAWSProxyExecPolicy).

6. For Description, type Enables API Gateway to call AWS services.

7. For Policy Document, type the following, and then choose Create Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Action": [
 "sns:ListTopics"
]
 }
]
}

Note
This policy document allows the caller to get a list of the Amazon SNS topics for the AWS
account.

66

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Step 4: Specify Method Settings and Test the Method

8. Choose Roles.

9. Choose Create New Role.

10. For Role Name, type a name for the execution role (for example,
APIGatewayAWSProxyExecRole), and then choose Next Step.

11. Next to Amazon EC2, choose Select.

Note
You choose Select here because you need to choose a standard AWS service role
statement before you can continue. There is currently no option to choose a standard API
Gateway service role statement. Later in this step, you will modify the standard Amazon
EC2 service role statement for use with API Gateway.

12. In the list of policies, select APIGatewayAWSProxyExecPolicy, and then choose Next Step.

13. For Role ARN, make a note of the Amazon Resource Name (ARN) for the execution role. You
will need it later. The ARN should look similar to: arn:aws:iam::123456789012:role/
APIGatewayAWSProxyExecRole, where 123456789012 is your AWS account ID.

14. Choose Create Role.

The invocation role IAM just created enables Amazon EC2 to get a list of the Amazon SNS topics
for the AWS account. You will change this role to enable API Gateway to get a list of the Amazon
SNS topics for the AWS account instead.

15. In the list of roles, select APIGatewayAWSProxyExecRole.

16. In the Trust Relationships area, choose Edit Trust Relationship.

17. For Policy Document, replace ec2.amazonaws.com with apigateway.amazonaws.com so
that the access control policy document now looks as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

This policy document enables API Gateway to take actions on behalf of your AWS account.

18. Choose Update Trust Policy.

Step 4: Specify Method Settings and Test the
Method
In this step, you will specify the settings for the GET method so that it can interact with an AWS service
through an AWS service proxy. You will then test the method.

To specify settings for the GET method and then test it

1. In the API Gateway console, in the Resources pane for the API named MyDemoAPI, in /
mydemoawsproxy, choose GET.

67

Amazon API Gateway Developer Guide
Step 5: Deploy the API

2. In the Setup pane, for Integration type, choose Show advanced, and then choose AWS Service
Proxy.

3. For AWS Region, choose the name of the AWS region where you want to get the Amazon SNS
topics.

4. For AWS Service, choose SNS.

5. For HTTP method, choose GET.

6. For Action, type ListTopics.

7. For Execution Role, type the ARN for the execution role.

8. Leave Path Override blank.

9. Choose Save.

10. In the Method Execution pane, in the Client box, choose TEST, and then choose Test. If
successful, Response Body will display a response similar to the following:

{
 "ListTopicsResponse": {
 "ListTopicsResult": {
 "NextToken": null,
 "Topics": [
 {
 "TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-1"
 },
 {
 "TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-2"
 },
 ...
 {
 "TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-N"
 }
]
 },
 "ResponseMetadata": {
 "RequestId": "abc1de23-45fa-6789-b0c1-d2e345fa6b78"
 }
 }
}

Step 5: Deploy the API
In this step, you will deploy the API so that you can begin calling it from outside of the API Gateway
console.

To deploy the API

1. In the Resources pane, choose Deploy API.

2. For Deployment stage, choose test.

3. For Deployment description, type Calling AWS service proxy walkthrough.

4. Choose Deploy.

Step 6: Test the API
In this step, you will go outside of the API Gateway console and use your AWS service proxy to interact
with the Amazon SNS service.

68

Amazon API Gateway Developer Guide
Step 7: Clean Up

1. In the Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look like
this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

2. Paste the URL into the address box of a new browser tab.

3. Append /mydemoawsproxy so that it looks like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoawsproxy

Browse to the URL. Information similar to the following should be displayed:

{"ListTopicsResponse":{"ListTopicsResult":{"NextToken": null,"Topics":
[{"TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-1"},
{"TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-2"},...
{"TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-
N}]},"ResponseMetadata":{"RequestId":"abc1de23-45fa-6789-b0c1-
d2e345fa6b78}}}

Step 7: Clean Up
You can delete the IAM resources the AWS service proxy needs to work.

Caution
If you delete an IAM resource an AWS service proxy relies on, that AWS service proxy and
any APIs that rely on it will no longer work. Deleting an IAM resource cannot be undone. If you
want to use the IAM resource again, you must re-create it.

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the Details area, click Roles.

3. Select APIGatewayAWSProxyExecRole, and then choose Role Actions, Delete Role. When
prompted, choose Yes, Delete.

4. In the Details area, choose Policies.

5. Select APIGatewayAWSProxyExecPolicy, and then choose Policy Actions, Delete. When
prompted, choose Delete.

You have reached the end of this walkthrough. For more detailed discussions about creating API as an
AWS service proxy, see Create an API as an Amazon S3 Proxy (p. 359), Create an API as a Lambda
Proxy (p. 343) or Create an API as an Amazon Kinesis Proxy (p. 388).

69

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Create an API in API Gateway

Creating an API in Amazon API
Gateway

Topics

• Create an API in API Gateway (p. 70)

• Set up API Gateway API Method and Integration (p. 71)

• Set Up Amazon API Gateway API Request and Response Payload Mappings (p. 105)

• Amazon API Gateway API Request and Response Parameter-Mapping Reference (p. 131)

• API Gateway API Request and Response Payload-Mapping Template Reference (p. 134)

• Import and Export API Gateway API with Swagger Definition Files (p. 141)

Create an API in API Gateway
In Amazon API Gateway you can create an API using the API Gateway console, AWS CLI, the API
Gateway control service REST API, and platform-specific or language-specific SDKs.

Topics

• Create an API Using the API Gateway Console (p. 70)

• Create an API Using the API Gateway Control Service API (p. 71)

• Create an API Using the AWS SDK for API Gateway (p. 71)

• Create an API Using the AWS CLI (p. 71)

Create an API Using the API Gateway Console
To create an API Gateway API using the API Gateway console, see Build an API Gateway API to
Expose an HTTP Endpoint (p. 6).

70

Amazon API Gateway Developer Guide
Create an API Using the API Gateway Control Service API

You can learn how to create an API by following an example. For more information, see Create an API
Gateway API from an Example (p. 7).

Alternatively, you can create an API by using the API Gateway Import API (p. 142) feature to upload
an external API definition, such as one expressed in the Swagger 2.0 with the API Gateway Extensions
to Swagger (p. 147). The example provided in Create an API Gateway API from an Example (p. 7)
uses the Import API feature.

Create an API Using the API Gateway Control
Service API
For more information about the API Gateway Control Service API, see Amazon API Gateway REST
API Reference.

Create an API Using the AWS SDK for API Gateway
For more information using a AWS SDK, see AWS SDKs.

Create an API Using the AWS CLI
For an example of creating an API Gateway API Using AWS CLI, see Create an API Gateway API for
Lambda tutorial.

Set up API Gateway API Method and Integration

Before Setting Up Methods and Integration
• You must have the method available in API Gateway. Follow the instructions in Build an API

Gateway API to Expose an HTTP Endpoint (p. 6).

• If you want the method to communicate with a Lambda function, you must have already created the
Lambda invocation role and Lambda execution role in IAM and created the Lambda function with
which your method will communicate in AWS Lambda. To create the roles and function, use the
instructions in Step 4: Create Lambda Functions (p. 44) of the Build an API to Expose a Lambda
Function (p. 44).

• If you want the method to communicate with an HTTP or HTTP proxy integration, you must
have already created and have access to the HTTP endpoint URL with which your method will
communicate.

• Verify that your certificates for HTTP and HTTP proxy endpoints are supported by API Gateway. For
details see Supported Certificate Authorities for HTTP and HTTP Proxy Integration (p. 189)

Topics

• Configure How API Gateway Integrates the Method with a Back End (p. 72)

• Configure How an API User Calls an API Method in Amazon API Gateway (p. 74)

• Configure How Data Is Mapped between a Method and its Integration in Amazon API
Gateway (p. 75)

• Enable Support for Binary Payloads in API Gateway (p. 78)

• Configure Mock Integration for a Method in API Gateway (p. 94)

• Configure Proxy Integration for a Proxy Resource (p. 97)

71

http://swagger.io/specification/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html

Amazon API Gateway Developer Guide
Configure How a Method Is Integrated with a Back End

• After Setting Up Methods and Integration (p. 105)

Configure How API Gateway Integrates the Method
with a Back End
The settings of an API method defines the method and describes its behaviors. To create a method,
you must specify a resource, including the root (“/”), on which the method is exposed, a method type
(GET, POST, etc.), and how it will be integrated with the targeted back end. The method request and
response specify the contract with the calling app, stipulating which parameters the API can receive
and what the response looks like. The integration request and response specifies how API Gateway
interacts with their back end: enforcing secure communications over HTTPS with the back end and
translating data formats between the client and back end. The following topics describe how to use the
API Gateway console to specify a method settings.

1. In the Resources pane, choose the method.

2. In the Method Execution pane, choose Integration Request. For Integration type, choose one
of the following:

• Choose Lambda Function if your API will be communicating with a Lambda function.

• Choose HTTP Proxy if your API will be communicating with an HTTP endpoint.

• Choose Show Advanced, AWS Service Proxy if your API will be communicating directly with
an AWS service.

• Choose Mock Integration if your API is not yet final, but you want to generate API responses
from API Gateway anyway to unblock dependent teams for testing. If you choose this
option, skip the rest of the instructions in this topic and see Configure Mock Integration for a
Method (p. 94).

3. If you chose Lambda Function, do the following:

1. For Lambda Region, choose the region identifier that corresponds to the region where you
created the Lambda function. For example, if you created the Lambda function in the US East
(N. Virginia) region, you would choose us-east-1. For a list of region names and identifiers,
see AWS Lambda in the Amazon Web Services General Reference.

2. For Lambda Function, type the name of the Lambda function, and then choose the function's
corresponding ARN.

3. Choose Save.

4. If you chose HTTP Proxy, do the following:

1. For HTTP method, choose the HTTP method type that most closely matches the method in
the HTTP proxy.

2. For Endpoint URL, type the URL of the HTTP proxy you want this method to use.

3. Choose Save.

5. If you chose Mock Integration, do the following:

• Choose Save.

6. If you chose Show advanced, AWS Service Proxy, do the following:

1. For AWS Region, choose the AWS region you want this method to use to call the action.

2. For AWS Service, choose the AWS service you want this method to call.

3. For HTTP method, choose the HTTP method type that corresponds to the action. For HTTP
method type, see the API reference documentation for the AWS service you chose for AWS
Service.

4. For Action, type the action you want to use. For a list of available actions, see the API
reference documentation for the AWS service you chose for AWS Service.

72

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

Amazon API Gateway Developer Guide
Configure How a Method Is Integrated with a Back End

5. For Execution Role, type the ARN of the IAM role the method will use to call the action.

To create the IAM role, you can adapt the instructions in "To create the Lambda invocation
role and its policies" and "To create the Lambda execution role and its policy" in the Create
Lambda Functions (p. 44) section of the Build an API to Expose a Lambda Function (p. 44);
and specify an access policy of the following format, with the desired number of action and
resource statements:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "action-statement"
],
 "Resource": [
 "resource-statement"
]
 },
 ...
]
}

For the action and resource statement syntax, see the documentation for the AWS service
you chose for AWS Service.

For the IAM role's trust relationship, specify the following, which enables API Gateway to take
actions on behalf of your AWS account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

6. If the action you typed for Action provides a custom resource path you want this method to
use, for Path Override, type this custom resource path. For the custom resource path, see
the API reference documentation for the AWS service you chose for AWS Service.

7. Choose Save.

7. Do both of the following:

• Specify how the method will receive requests from, and send responses to, callers (which API
Gateway refers to as the API's method request/response), and how the method will authorize
requests by following the instructions in Configure How a User Calls an API Method (p. 74).

• Specify how the method will send requests to, and receive responses from, the Lambda
function, HTTP proxy, or AWS service proxy (which API Gateway refers to as the API's
integration request/response) by following the instructions in Configure How Data Is Mapped
between Method and Integration (p. 75).

73

Amazon API Gateway Developer Guide
Configure How a User Calls an API Method

Configure How an API User Calls an API Method in
Amazon API Gateway
To use the API Gateway console to specify an API's method request/response and the way in which
the method will authorize requests, follow these instructions.

Note
These instructions assume you have already completed the steps in Configure How a Method
Is Integrated with a Back End (p. 72).

1. With the method selected in the Resources pane, in the Method Execution pane, choose
Method Request.

2. To assign custom access permissions to the method, in the Authorization Settings area, for
Authorization Type, choose Edit, and then choose AWS_IAM. Only IAM roles with the correct
IAM policy attached will be allowed to call this method. If you do not want to assign custom access
permissions to the method, choose NONE.

•
To create the IAM role, specify an access policy with a format like the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "resource-statement"
]
 }
]
}

In this access policy, resource-statement is the value of the ARN field in the Authorization
Settings section.

To create the IAM role, you can adapt the instructions in "To create the Lambda invocation role
and its policy" and "To create the Lambda execution role and its policy" in the Create Lambda
Functions (p. 44) section of the Build an API to Expose a Lambda Function (p. 44).

To save your choice, choose Update. Otherwise, choose Cancel.

Note
You can also enable an API key. For instructions, see Use an API Key without Usage
Plans (p. 223).

3. To add a query string parameter to the method, do the following:

a. Choose the arrow next to URL Query String Parameters, and then choose Add query
string.

b. For Name, type the name of the query string parameter.

c. Choose Create a new query string.

74

Amazon API Gateway Developer Guide
Configure How Data Is Mapped
between Method and Integration

Note
To remove the query string parameter, choose Cancel or Remove.
To change the name of the query string parameter, you must remove it and create a new
one.

4. To add a header parameter to the method, do the following:

a. Choose the arrow next to HTTP Request Headers, and then choose Add header.

b. For Name, type the name of the header parameter.

c. Optionally, check the Caching option to make this method as an API cache key. For more
information, see Use Method/Integration Parameters as Cache Keys (p. 239).

d. Choose Create

Tip
To remove the header parameter, choose Cancel or Remove.
To change the name of the header parameter, you must remove the old header
parameter and create a new one in its place.

5. For non-GET method types, expand Request Models, and for Content Type and Model name,
type the content type and choose the name of a model that will transform caller-supplied data into
the expected format.

To create a model, see Create a Model (p. 112).

6. To send a set of custom response headers, a custom response data format, or both, back to
callers based on the HTTP status code returned by the method, do the following:

a. In the Method Execution pane, choose Method Response. By default, 200 response is
included in the method responses. You can modify it, e.g., to have the method return 201
instead. In addition, you can add other responses, e.g., 409 for access denial and 500 for
uninitialized stage variables used. Either choose the arrow icon next to 200 to specify settings
for the 200 response, or choose Add Response to specify settings for any other HTTP
response status code. If you choose Add Response, for HTTP Status, choose the response,
choose Create, and choose the arrow next to the response.

Tip
You will use Method Response to specify all possible response codes for your API
and use Integration Response to indicate to API Gateway how back-end errors are
mapped to an HTTP status code.

b. For each custom header you want to include in the response, in the Response Headers area,
choose Add Header, type the name of the header, and then choose Save. (Choose Remove
to remove a header from this list.)

To specify a response model to transform the output's data from one format to another, in
the Response Models area, choose Add Response Model. Type the content type (for
Content type), choose the model's name (for Models), and then choose Save. Choose Add
Response Model to specify an additional model, or choose Create a model to define a new
model. (Choose Remove to remove a response model selection from this list.)

Configure How Data Is Mapped between a Method
and its Integration in Amazon API Gateway

Note
API Gateway does not currently support binary payloads. Binary data can be passed around
in a payload as a JSON property value of a Base64-encoded string.

75

Amazon API Gateway Developer Guide
Configure How Data Is Mapped
between Method and Integration

To use the API Gateway console to define the API's integration request/response, follow these
instructions.

Note
These instructions assume you have already completed the steps in Configure How a Method
Is Integrated with a Back End (p. 72).

1. With the method selected in the Resources pane, in the Method Execution pane, choose
Integration Request.

2. For an HTTP proxy or an AWS service proxy, to associate a path parameter, a query string
parameter, or a header parameter defined in the integration request with a corresponding path
parameter, query string parameter, or header parameter in the method request of the HTTP proxy
or AWS service proxy, do the following:

a. Choose the arrow next to URL Path Parameters, URL Query String Parameters, or HTTP
Headers respectively, and then choose Add path, Add query string, or Add header,
respectively.

b. For Name, type the name of the path parameter, query string parameter, or header parameter
in the HTTP proxy or AWS service proxy.

c. For Mapped from, type the mapping value for the path parameter, query string parameter, or
header parameter. Use one of the following formats:

• method.request.path.parameter-name for a path parameter named parameter-
name as defined in the Method Request page.

• method.request.querystring.parameter-name for a query string parameter named
parameter-name as defined in the Method Request page.

• method.request.header.parameter-name for a header parameter named
parameter-name as defined in the Method Request page.

Alternatively, you can set a literal string value (enclosed by a pair of single quotes) to an
integration header.

d. Choose Create. (To delete a path parameter, query string parameter, or header parameter,
choose Cancel or Remove next to the parameter you want to delete.)

3. In the Body Mapping Templates area, choose an option for Request body passthrough to
configure how the method request body of an unmapped content type will be passed through the
integration request without transformation to the Lambda function, HTTP proxy, or AWS service
proxy. There are three options:

• Choose When no template matches the request Content-Type header if you want
the method request body to pass through the integration request to the back end without
transformation when the method request content type does not match any content types
associated with the mapping templates, as defined in the next step.

Note
When calling the API Gateway API, you choose this option by setting WHEN_NO_MATCH
as the passthroughBehavior property value on the Integration resource.

• Choose When there are no templates defined (recommended) if you want the method
request body to pass through the integration request to the back end without transformation
when no mapping template is defined in the integration request. If a template is defined when
this option is selected, the method request of an unmapped content type will be rejected with an
HTTP 415 Unsupported Media Type response.

Note
When calling the API Gateway API, you choose this option by setting
WHEN_NO_TEMPLATE as the passthroughBehavior property value on the Integration
resource.

• Choose Never if you do not want the method request to pass through when either the
method request content type does not match any content type associated with the mapping

76

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
Configure How Data Is Mapped
between Method and Integration

templates defined in the integration request or no mapping template is defined in the integration
request. The method request of an unmapped content type will be rejected with an HTTP 415
Unsupported Media Type response.

Note
When calling the API Gateway API, you choose this option by setting NEVER as the
passthroughBehavior property value on the Integration resource.

For more information about the integration passthrough behaviors, see Integration Passthrough
Behaviors (p. 140).

4. To define a mapping template for an incoming request, choose Add mapping template under
Content-Type. Type a content type (e.g., application/json) in the input text box and then
choose the check mark icon to save the input. Then, type the mapping template manually or
choose Generate template to create one from a model template. For more information, see Set
Up Payload Mappings (p. 105).

5. You can map an integration response from the back-end to a method response of the API returned
to the calling app. This includes returning to the client selected response headers from the
available ones from the back end, transforming the data format of the back-end response payload
to an API-specified format. You can specify such mapping by configuring Method Response and
Integration Response from the Method Execution page.

a. In the Method Execution pane, choose Integration Response. Choose either the arrow next
to 200 to specify settings for a 200 HTTP response code from the method, or choose Add
integration response to specify settings for any other HTTP response status code from the
method.

b. For Lambda error regex (for a Lambda function) or HTTP status regex (for an HTTP
proxy or AWS service proxy), type a regular expression to specify which Lambda function
error strings (for a Lambda function) or HTTP response status codes (for an HTTP proxy
or AWS service proxy) map to this output mapping. For example, to map all 2xx HTTP
response status codes from an HTTP proxy to this output mapping, type "2\\d{2}" for
HTTP status regex. To return an error message containing "Invalid Request" from a Lambda
function to a 400 Bad Request response, type ".*Invalid request.*" as the Lambda
error regex expression. On the other hand, to return 400 Bad Request for all unmapped
error messages from Lambda, type "(\n|.)+" in Lambda error regex. This last regular
expression can be used for the default error response of an API.

Note
The error patterns are matched against the entire string of the
errorMessage property in the Lambda response, which is populated
by context.fail(errorMessage) in Node.js or by throw new
MyException(errorMessage) in Java. Also, escaped characters are unescaped
before the regular expression is applied.
If you use '.+' as the selection pattern to filter responses, be aware that it may not
match a response containing a newline ('\n') character.

c. If enabled, for Method response status, choose the HTTP response status code you defined
in the Method Response page.

d. For Header Mappings, for each header you defined for the HTTP response status code in the
Method Response page, specify a mapping value by choosing Edit. For Mapping value, use
the format integration.response.header.header-name where header-name is the
name of a response header from the backend. For example, to return the backend response's
Date header as an API method's response's Timestamp header, the Response header
column will contain an Timestamp entry and the associated Mapping value should be set to
integration.response.header.Date.

e. In the Template Mappings area, next to Content type, choose Add. In the Content type
box, type the content type of the data that will be passed from the Lambda function, HTTP
proxy, or AWS service proxy to the method. Choose Update.

77

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

f. Select Output passthrough if you want the method to receive, but not modify, the data from
the Lambda function, HTTP proxy, or AWS service proxy.

g. If Output passthrough is cleared, for Output mapping, specify the output mapping template
you want the Lambda function, HTTP proxy, or AWS service proxy to use to send data to
the method. You can either type the mapping template manually or choose a model from
Generate template from model.

h. Choose Save.

Enable Support for Binary Payloads in API Gateway
In API Gateway, the API request and response can have a text or binary payload. By default, API
Gateway treats the message body as a UTF-8-encoded JSON string. For API Gateway to handle
binary payloads, you add the media types to the binaryMediaTypes list of the RestApi resource
or set the contentHandling properties on the Integration and the IntegrationResponse resources.
The contentHandling value can be CONVERT_TO_BINARY, CONVERT_TO_TEXT, or undefined.
Depending on the contentHandling value, and whether the Content-Type header of the response
or the Accept header of the incoming request matches an entry in the binaryMediaTypes list, API
Gateway can encode the raw binary bytes as a Base64-encoded string, decode a Base64-encoded
string back to its raw bytes, or pass the body through without modification.

You must configure the API as follows to support binary payloads for your API in API Gateway:

• Add the desired binary media types to the binaryMediaTypes list on the RestApi resource. If this
property and the contentHandling property are not defined, the payloads are handled as UTF-8
encoded JSON strings.

• Set the contentHandling property of the Integration resource to CONVERT_TO_BINARY to have
the request payload converted from a Base64-encoded string to its binary blob, or set the property to
CONVERT_TO_TEXT to have the request payload converted from a binary blob to a Base64-encoded
string. If this property is not defined, API Gateway passes the payload through without modification.
This occurs when the Content-Type header value matches one of the binaryMediaTypes entries
and the passthrough behaviors (p. 140) are also enabled for the API.

• Set the contentHandling property of the IntegrationResponse resource to CONVERT_TO_BINARY
to have the response payload converted from a Base64-encoded string to its binary blob, or set
the property to CONVERT_TO_TEXT to have the response payload converted from a binary blob
to a Base64-encoded string. If contentHandling is not defined, and if the Content-Type
header of the response and the Accept header of the original request match an entry of the
binaryMediaTypes list, API Gateway passes through the body. This occurs when the Content-
Type header and the Accept header are the same; otherwise, API Gateway converts the response
body to the type specified in the Accept header.

Topics

• Content Type Conversions in API Gateway (p. 78)

• Enable Binary Support Using the API Gateway Console (p. 81)

• Enable Binary Support Using API Gateway REST API (p. 84)

• Import and Export Content Encodings (p. 87)

• Examples of Binary Support (p. 87)

Content Type Conversions in API Gateway

The following table shows how API Gateway converts the request payload for specific configurations
of a request's Content-Type header, the binaryMediaTypes list of a RestApi resource, and the
contentHandling property value of the Integration resource.

78

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/#binaryMediaTypes
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/#contentHandling
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

API Request Content Type Conversions in API Gateway

Method request
payload

Request
Content-Type
header

binaryMediaTypescontentHandling Integration
request payload

Text data Any data type Undefined Undefined UTF8-encoded
string

Text data Any data type Undefined CONVERT_TO_BINARYBase64-decoded
binary blob

Text data Any data type Undefined CONVERT_TO_TEXT UTF8-encoded
string

Text data A text data type Set with matching
media types

Undefined Text data

Text data A text data type Set with matching
media types

CONVERT_TO_BINARYBase64-decoded
binary blob

Text data A text data type Set with matching
media types

CONVERT_TO_TEXT Text data

Binary data A binary data type Set with matching
media types

Undefined Binary data

Binary data A binary data type Set with matching
media types

CONVERT_TO_BINARYBinary data

Binary data A binary data type Set with matching
media types

CONVERT_TO_TEXT Base64-encoded
string

The following table shows how API Gateway converts the response payload for specific configurations
of a request's Accept header, the binaryMediaTypes list of a RestApi resource, and the
contentHandling property value of the IntegrationResponse resource.

API Gateway Response Content Type Conversions

Integration
response
payload

Request Accept
header

binaryMediaTypescontentHandling Method
response
payload

Text or binary
data

A text type Undefined Undefined UTF8-encoded
string

Text or binary
data

A text type Undefined CONVERT_TO_BINARYBase64-decoded
blob

Text or binary
data

A text type Undefined CONVERT_TO_TEXT UTF8-encoded
string

Text data A text type Set with matching
media types

Undefined Text data

Text data A text type Set with matching
media types

CONVERT_TO_BINARYBase64-decoded
blob

Text data A text type Set with matching
media types

CONVERT_TO_TEXT UTF8-encoded
string

79

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Integration
response
payload

Request Accept
header

binaryMediaTypescontentHandling Method
response
payload

Text data A binary type Set with matching
media types

Undefined Base64-decoded
blob

Text data A binary type Set with matching
media types

CONVERT_TO_BINARYBase64-decoded
blob

Text data A binary type Set with matching
media types

CONVERT_TO_TEXT UTF8-encoded
string

Binary data A text type Set with matching
media types

Undefined Base64-encoded
string

Binary data A text type Set with matching
media types

CONVERT_TO_BINARYBinary data

Binary data A text type Set with matching
media types

CONVERT_TO_TEXT Base64-encoded
string

Binary data A binary type Set with matching
media types

Undefined Binary data

Binary data A binary type Set with matching
media types

CONVERT_TO_BINARYBinary data

Binary data A binary type Set with matching
media types

CONVERT_TO_TEXT Base64-encoded
string

Tip
When a request contains multiple media types in its Accept header, API Gateway only
honors the first Accept media type. In the situation where you cannot control the order of the
Accept media types and the media type of your binary content is not the first in the list, you
can add the first Accept media type in the binaryMediaTypes list of your API, API Gateway
will return your content as binary. For example, to send a JPEG file using an element
in a browser, the browser might send Accept:image/webp,image/*,*/*;q=0.8 in a
request. By adding image/webp to the binaryMediaTypes list, the endpoint will receive the
JPEG file as binary.

When converting a text payload to a binary blob, API Gateway assumes that the text data is a Base64-
encoded string and outputs the binary data as a Base64-decoded blob. If the conversion fails, it returns
a 500 response indicating an API configuration error. You do not provide a mapping template for such
a conversion, although you must enable the passthrough behaviors (p. 140) on the API.

When converting a binary payload to a text string, API Gateway always applies a Base64 encoding
on the binary data. You can define a mapping template for such a payload, but can only access the
Base64-encoded string in the mapping template through $input.body, as shown in the following
excerpt of an example mapping template.

{
 "data": "$input.body"
}

To have the binary payload passed through without modification, you must enable the passthrough
behaviors (p. 140) on the API.

80

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Enable Binary Support Using the API Gateway Console

The section explains how to enable binary support using the API Gateway console. As an example,
we use an API integrated with Amazon S3. We focus on the tasks to set the supported media types
and to specify how the payload should be handled. For detailed information on how to create an API
integrated with Amazon S3, see Create an API as an Amazon S3 Proxy (p. 359).

To enable binary support using the API Gateway console

1. Set binary media types for the API:

a. Create a new API or choose an existing API. For this example, we name the API FileMan.

b. Choose Binary Support under the API.

c. In the Binary Support pane, choose Edit.

d. Choose Add binary media types and type a MIME type to be supported for your API.

e. Choose Save.

2. Set how message payloads are handled for the API method:

a. Create a new or choose an existing resource in the API. For this example, we use the /
{folder}/{item} resource.

b. Create a new or choose an existing method on the resource. As an example, we use the
GET /{folder}/{item} method integrated with the Object GET action in Amazon S3.

c. In Content Handling, choose an option.

81

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Choose Passthrough if you do not want to convert the body when the client and back end
accepts the same binary format. Choose Convert to text (if needed) to convert the binary
body to a Base64-encoded string when, for example, the back end requires that a binary
request payload is passed in as a JSON property. And choose Convert to binary (if needed)
when the client submits a Base64-encoded string and the back end requires the original
binary format, or when the endpoint returns a Base64-encoded string and the client accepts
only the binary output.

d. Preserve the incoming request's Accept header in the integration request. You should do
this if you've set contentHandling to passthrough and want to override that setting at run
time.

82

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

e. Enable the passthrough behavior on the request body.

f. For conversion to text, define a mapping template to put the Base64-encoded binary data into
the required format.

The format of this mapping template depends on the endpoint requirements of the input.

83

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Enable Binary Support Using API Gateway REST API

The following tasks show how to enable binary support using the API Gateway REST API calls.

Topics

• Add and Update Supported Binary Media Types to an API (p. 84)

• Configure Request Payload Conversions (p. 84)

• Configure Response Payload Conversions (p. 85)

• Convert Binary Data to Text Data (p. 85)

• Convert Text Data to a Binary Payload (p. 86)

• Pass through a Binary Payload (p. 86)

Add and Update Supported Binary Media Types to an API

To enable API Gateway to support a new binary media type, you must add the binary media type to the
binaryMediaTypes list of the RestApi resource. For example, to have API Gateway handle JPEG
images, submit a PATCH request to the RestApi resource:

PATCH /restapis/<restapi_id>

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/binaryMediaTypes/image~1jpeg"
 }
]
}

The MIME type specification of image/jpeg that is part of the path property value is escaped as
image~1jpeg.

To update the supported binary media types, replace or remove the media type from the
binaryMediaTypes list of the RestApi resource. For example, to change binary support from JPEG
files to raw bytes, submit a PATCH request to the RestApi resource, as follows.

PATCH /restapis/<restapi_id>

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/binaryMediaTypes/image~1jpeg",
 "value" : "application/octet-stream"
 },
 {
 "op" : "remove",
 "path" : "/binaryMediaTypes/image~1jpeg"
 }]
}

Configure Request Payload Conversions

If the endpoint requires a binary input, set the contentHandling property of the Integration
resource to CONVERT_TO_BINARY. To do so, submit a PATCH request, as shown next:

84

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/
integration

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/contentHandling",
 "value" : "CONVERT_TO_BINARY"
 }]
}

Configure Response Payload Conversions

If the client accepts the result as a binary blob instead of a Base64-encoded payload returned from
the endpoint, set the contentHandling property of the IntegrationResponse resource to
CONVERT_TO_BINARY by submitting a PATCH request, as shown next:

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/
integration/responses/<status_code>

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/contentEncoding",
 "value" : "CONVERT_TO_BINARY"
 }]
}

Convert Binary Data to Text Data

To send binary data as a JSON property of the input to AWS Lambda or Amazon Kinesis through API
Gateway, do the following:

1. Enable the binary payload support of the API by adding the new binary media type of
application/octet-stream to the API's binaryMediaTypes list.

PATCH /restapis/<restapi_id>

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/binaryMediaTypes/application~1octet-stream"
 }
]
}

2. Set CONVERT_TO_TEXT on the contentHandling property of the Integration resource and
provide a mapping template to assign the Base64-encoded string of the binary data to a JSON
property. In the following example, the JSON property is body and $input.body holds the Base64-
encoded string.

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/
integration

{
 "patchOperations" : [

85

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

 {
 "op" : "replace",
 "path" : "/contentHandling",
 "value" : "CONVERT_TO_TEXT"
 },
 {
 "op" : "add",
 "path" : "/requestTemplates/application~1octet-stream",
 "value" : "{\"body\": \"$input.body\"}"
 }
]
}

Convert Text Data to a Binary Payload

Suppose a Lambda function returns an image file as a Base64-encoded string. To pass this binary
output to the client through API Gateway, do the following:

1. Update the API's binaryMediaTypes list by adding the binary media type of application/
octet-stream, if it is not already in the list.

PATCH /restapis/<restapi_id>

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/binaryMediaTypes/application~1octet-stream",
 }]
}

2. Set the contentHandling property on the Integration resource to CONVERT_TO_BINARY. Do
not define a mapping template. When you do not define a mapping template, API Gateway invokes
the passthrough template to return the Base64-decoded binary blob as the image file to the client.

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/
integration/responses/<status_code>

{
 "patchOperations" : [
 {
 "op" : "replace",
 "path" : "/contentHandling",
 "value" : "CONTEXT_TO_BINARY"
 }
]
}

Pass through a Binary Payload

To store an image in an Amazon S3 bucket using API Gateway, do the following:

1. Update the API's binaryMediaTypes list by adding the binary media type of application/
octet-stream, if it is not already in the list.

PATCH /restapis/<restapi_id>

86

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/binaryMediaTypes/application~1octet-stream"
 }
]
}

2. On the contentHandling property of the Integration resource, set CONVERT_TO_BINARY.
Set WHEN_NO_MATCH as the passthroughBehavior property value without defining a mapping
template. This enables API Gateway to invoke the passthrough template.

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/
integration

{
 "patchOperations" : [
 {
 "op" : "replace",
 "path" : "/contentHandling",
 "value" : "CONTEXT_TO_BINARY"
 },
 {
 "op" : "replace",
 "path" : "/passthroughBehaviors",
 "value" : "WHEN_NO_MATCH"
 }
]
}

Import and Export Content Encodings

To import the binaryMediaTypes list on a RestApi, use the following API Gateway extension to the
API's Swagger definition file. The extension is also used to export the API settings.

• x-amazon-apigateway-binary-media-types Property (p. 151)

To import and export the contentHandling property value on an Integration or
IntegrationResponse resource, use the following API Gateway extensions to the Swagger
definitions:

• x-amazon-apigateway-integration (p. 152)

• x-amazon-apigateway-integration.response (p. 157)

Examples of Binary Support

The following example demonstrates how to access a binary file in Amazon S3 through an API
Gateway API. The sample API is presented in a Swagger file. The code example uses the API
Gateway REST API calls.

Topics

• Access Binary Files in Amazon S3 through an API Gateway API (p. 88)

• Access Binary Files in Lambda Using an API Gateway API (p. 91)

87

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Access Binary Files in Amazon S3 through an API Gateway API

The following examples show the Swagger file used to access images in Amazon S3, how to download
an image from Amazon S3, and how to upload an image to Amazon S3.

Topics

• Swagger File of a Sample API to Access Images in Amazon S3 (p. 88)

• Download an Image from Amazon S3 (p. 90)

• Upload an Image to Amazon S3 (p. 90)

Swagger File of a Sample API to Access Images in Amazon S3

The following Swagger file shows a sample API that illustrates downloading an image file from Amazon
S3 and uploading an image file to Amazon S3. This API exposes the GET /s3?key={file-name}
and PUT /s3?key={file-name} methods for downloading and uploading a specified image file. The
GET method returns the image file as a Base64-encoded string as part of a JSON output, following the
supplied mapping template, in a 200 OK response. The PUT method takes a raw binary blob as input
and returns

{
 "swagger": "2.0",
 "info": {
 "version": "2016-10-21T17:26:28Z",
 "title": "ApiName"
 },
 "host": "abcdefghi.execute-api.us-east-1.amazonaws.com",
 "basePath": "/v1",
 "schemes": [
 "https"
],
 "paths": {
 "/s3": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/binarySupportRole",

88

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "{\n \"image\": \"$input.body\"\n}"
 }
 }
 },
 "requestParameters": {
 "integration.request.path.key": "method.request.querystring.key"
 },
 "uri": "arn:aws:apigateway:us-east-1:123456789012:path/{key}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "aws"
 }
 },
 "put": {
 "produces": [
 "application/json", "application/octet-stream"
],
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/binarySupportRole",
 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.path.key": "method.request.querystring.key"
 },
 "uri": "arn:aws:apigateway:us-east-1:123456789012:path/{key}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "PUT",

89

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

 "type": "aws",
 "contentHandling" : "CONVERT_TO_BINARY"
 }
 }
 }
 },
 "x-amazon-apigateway-binary-media-types" : ["application/octet-stream",
 "image/jpeg"],
 "definitions": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
}

Download an Image from Amazon S3

To download an image file (image.jpg) as a binary blob from Amazon S3:

GET /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/octet-stream

The successful response looks like this:

200 OK HTTP/1.1

[raw bytes]

The raw bytes are returned because the Accept header is set to a binary media type of
application/octet-stream and binary support is enabled for the API.

To download an image file (image.jpg) as a Base64-encoded string, formatted as a JSON property,
from Amazon S3:

GET /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/json

The successful response looks like this:

200 OK HTTP/1.1

{
 "image": "W3JhdyBieXRlc10="
}

Upload an Image to Amazon S3

To upload an image file (image.jpg) as a binary blob to Amazon S3:

PUT /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/octet-stream

90

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Accept: application/json

[raw bytes]

The successful response looks like this:

200 OK HTTP/1.1

To upload an image file (image.jpg) as a Base64-encoded string to Amazon S3:

PUT /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/json

W3JhdyBieXRlc10=

Notice that the input payload must be a Base64-encoded string, because the Content-Type header
value is set to application/json. The successful response looks like this:

200 OK HTTP/1.1

Access Binary Files in Lambda Using an API Gateway API

The following example demonstrates how to access a binary file in AWS Lambda through an API
Gateway API. The sample API is presented in a Swagger file. The code example uses the API
Gateway REST API calls.

Topics

• Swagger File of a Sample API to Access Images in Lambda (p. 91)

• Download an Image from Lambda (p. 93)

• Upload an Image to Lambda (p. 94)

Swagger File of a Sample API to Access Images in Lambda

The following Swagger file shows an example API that illustrates downloading an image file from
Lambda and uploading an image file to Lambda.

{
 "swagger": "2.0",
 "info": {
 "version": "2016-10-21T17:26:28Z",
 "title": "ApiName"
 },
 "host": "abcdefghi.execute-api.us-east-1.amazonaws.com",
 "basePath": "/v1",
 "schemes": [
 "https"
],
 "paths": {
 "/lambda": {
 "get": {
 "produces": [
 "application/json"
],

91

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:123456789012:function:image/invocations",
 "type": "AWS",
 "credentials": "arn:aws:iam::123456789012:role/Lambda",
 "httpMethod": "POST",
 "requestTemplates": {
 "application/json": "{\n \"imageKey\":
 \"$input.params('key')\"\n}"
 },
 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200"
 "responseTemplates": {
 "application/json": "{\n \"image\": \"$input.body\"\n}"
 }
 }
 }
 }
 },
 "put": {
 "produces": [
 "application/json", "application/octet-stream"
],
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"

92

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:123456789012:function:image/invocations",
 "type": "AWS",
 "credentials": "arn:aws:iam::123456789012:role/Lambda",
 "httpMethod": "POST",
 "contentHandling" : "CONVERT_TO_TEXT",
 "requestTemplates": {
 "application/json": "{\n \"imageKey\":
 \"$input.params('key')\", \"image\": \"$input.body\"\n}"
 },
 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200"
 }
 }
 }
 }
 }
 },
 "x-amazon-apigateway-binary-media-types" : ["application/octet-stream",
 "image/jpeg"],
 "definitions": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
}

Download an Image from Lambda

To download an image file (image.jpb) as a binary blob from Lambda:

GET /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/octet-stream

The successful response looks like this:

200 OK HTTP/1.1

[raw bytes]

To download an image file (image.jpg) as a Base64-encoded string, formatted as a JSON property,
from Lambda:

93

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

GET /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/json

The successful response looks like this:

200 OK HTTP/1.1

{
 "image": "W3JhdyBieXRlc10="
}

Upload an Image to Lambda

To upload an image file (image.jpg) as a binary blob to Lambda:

PUT /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/octet-stream
Accept: application/json

[raw bytes]

The successful response looks like this:

200 OK

To upload an image file (image.jpg) as a Base64-encoded string to Lambda:

PUT /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/json

W3JhdyBieXRlc10=

The successful response looks like this:

200 OK

Configure Mock Integration for a Method in API
Gateway
Amazon API Gateway supports mock integrations for API methods. This feature enables API
developers to generate API responses from API Gateway directly, without the need for an integration
back end. As an API developer, you can use this feature to unblock other dependent teams needing
to work with an API before the project development is complete. You can also leverage this feature to
provision a landing page of your API, which can provide an overview of and navigation to your API. For
an example of such a landing page, see the integration request and response of the GET method on
the root resource of the example API discussed in Create an API Gateway API from an Example (p. 7).

94

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

As an API developer, you decide how API Gateway responds to a mock integration request. For this,
you configure the method's integration request and integration response to associate a response with
a given status code. The tasks involve setting up a mapping template in the integration request to
specify a supported status code in the request payload and setting up mapping templates, one for
a supported status code, in the integration response to provide associated response payloads. At
run time API Gateway retrieves the status code from the request payload and invokes the matching
template to return the associated response payload. The integration request payload's content type
must be application/json and its format must be of {"statusCode": ddd, ... }, where ddd
stands for an HTTP status code. The integration response payload's content type can be any of those
matching the response data, including application/json, application/xml, text/html, text/
plain and etc.

In this section, you will learn how to use the API Gateway console to enable the mock integration for an
API method.

Topics

• Prerequisites (p. 95)

• Enable Mock Integration on a Method (p. 95)

• Example Request Templates (p. 96)

• Example Response Templates (p. 97)

Prerequisites

• You must have the method available in API Gateway. Follow the instructions in Build an API
Gateway API to Expose an HTTP Endpoint (p. 6).

Enable Mock Integration on a Method

1. Choose an API resource and create a method. In the Setup pane, choose Mock Integration , and
then choose Save.

2. In the Method Execution pane, choose Integration Request.

3. By default, mock integrations return a 200 HTTP status code. To customize this default behavior,
do the following:

1. Expand Mapping Templates.

2. For Content-Type, do one of the following:

• If the desired content type is already visible (for example, application/json), then choose it.

• If the desired content type is not already visible, then choose Add mapping template, type
the desired content type (for example, application/json), and then choose Create.

3. In the Template editor, type the content of the template you want API Gateway to use to
determine which HTTP status code to use in the integration response. The template must
output a JSON payload containing the statusCode property. For more information, see
Example Request Templates (p. 96).

4. Next to Mapping template, choose Save.

4. For each query string parameter or header parameter you want to add to the method, do the
following:

1. Choose Method Execution, and then choose Method Request.

2. Choose the arrow next to URL Query String Parameters or HTTP Request Headers, and
then choose Add query string or Add header, respectively.

3. For Name, type the name of the query string parameter or header parameter, and then
choose Create a new query string or Create, respectively.

95

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

Note
To remove a query string parameter or header parameter, choose Cancel or
Remove. To change the name of a query string parameter or header parameter, you
must remove it and create a new one in its place.

5. Choose Method Execution, and then choose Method Response.

6. Do one of the following:

• If all of the HTTP Status entries you want to use are already visible (for example, 200), then
skip ahead to step 8.

• If any of the HTTP Status entries you want to use are not already visible, then for each missing
HTTP Status entry, choose Add Response, choose the HTTP status code that you want to
use, and then choose Create.

7. Choose Method Execution, and then choose Integration Response.

8. Do one of the following:

• If all of the Method response status entries you want to use are already visible (for example,
200), then skip ahead to step 10.

• If any of the Method response status entries you want to use are not already visible, then for
each missing Method response status entry, choose Add integration response, for Method
response status choose the HTTP Status entry you created earlier, and then choose Save.

9. For each Method response status entry you want to use, do the following:

1. Expand the row that corresponds to the Method response status entry you want to use.

2. For HTTP status regex, type the matching HTTP Status entry (for example, type 400 for a
400 HTTP Status entry or 500 for a 500 HTTP Status entry). Or specify a range of matching
HTTP status codes (for example, 5\d{2} matches all 5XX HTTP status codes).

3. Expand Mapping Templates.

4. For Content-Type, do one of the following:

• If the desired content type is already visible (for example, application/json), then choose it.

• If the desired content type is not already visible, then choose Add mapping template, type
the desired content type (for example, application/json), and then choose Create.

5. In the Template editor, type the contents of the template that you want API Gateway to use to
respond to the caller. For more information, see Example Response Templates (p. 97).

6. Next to Mapping template, choose Save.

10. Do one of the following to test the method:

• Call the method from the API Gateway console. Follow the instructions in Test a Method Using
the Console (p. 330).

• Call the method from a web browser, a web debugging proxy tool or the cURL command-line
tool, or from your own API. Follow the instructions in Calling a Deployed API (p. 329).

Example Request Templates
The following example shows a request template that always uses the 200 HTTP status code.

{
 "statusCode": 200
}

The following example shows a request template that uses the 200 HTTP status code if the request
specifies the petType parameter of cat; 400 if the request specifies dog; and uses 500 otherwise.
This example is based on the one in the Map Request Parameters (p. 22).

96

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

{
 #if($input.params('petType') == "cat")
 "statusCode": 200
 #elseif($input.params('petType') == "dog")
 "statusCode": 400
 #else
 "statusCode": 500
 #end
}

Example Response Templates

The following two examples show response templates that respond with the same information every
time. These examples are based on the one in the Map Request Parameters (p. 22).

Example 400 response.
{
 "Message": "Error: petType not valid."
}

Example 500 response.
{
 "Message": "Error: petType not valid or not specified."
}

The following example shows a response template that responds with the same information every time,
but includes the value the caller specified for the petType parameter. This example is based on the
one in the Map Request Parameters (p. 22).

Example 200 response for ?petType=cat (response will contain "type":
 "cat").
{
 "id": 1,
 "name": "Kitty",
 "type": "$input.params('petType')"
}

Configure Proxy Integration for a Proxy Resource
To set up a proxy resource in an API Gateway API with a proxy integration, you perform the following
three tasks:

• Create a proxy resource with a greedy path variable of {proxy+}.

• Set the ANY method on the proxy resource.

• Integrate the resource and method with a back end using the HTTP or Lambda integration type.

Note
Greedy path variables, ANY methods, and proxy integration types are independent features,
although they are commonly used together. You can configure a specific HTTP method on a
greedy resource or apply non-proxy integration types to a proxy resource.

API Gateway enacts certain restrictions and limitations when handling methods with either Lambda
proxy integration or HTTP proxy integration. For details, Known Issues (p. 421).

97

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

Topics

• API Gateway Proxy Resource (p. 98)

• API Gateway Proxy Integration Types (p. 98)

• Set Up a Proxy Resource with the HTTP Proxy Integration (p. 98)

• Set Up a Proxy Resource with the Lambda Proxy Integration (p. 102)

• Input Format of a Lambda Function for Proxy Integration (p. 103)

• Output Format of a Lambda Function for Proxy Integration (p. 105)

API Gateway Proxy Resource

API Gateway defines a proxy resource with the following properties:

• A special path parameter denoted as {proxy+}. This path parameter represents any of the child
resources under its parent resource of an API. In other words, /parent/{proxy+} can stand for
any resource matching the path patten of /parent/*. The + symbol indicates to API Gateway to
intercept all requests on the matched resource. This special path parameter is also known as a
greedy path variable. The proxy variable is the greedy path variable name and can be replaced by
another string in the same way you treat a regular path parameter name.

• A special method, named ANY, used to define the same integration set up for all supported methods:
DELETE, GET, HEAD, OPTIONS, PATCH, POST, and PUT.

API Gateway Proxy Integration Types

A proxy resource is most powerful when it is integrated with a back end using one of the following two
proxy integration types:

• The HTTP proxy integration, designated by HTTP_PROXY in the API Gateway REST API, is for
integrating a method request with a back-end HTTP endpoint. With this integration type, API
Gateway simply passes the entire request and response between the front end and the back end,
subject to certain restrictions and limitations (p. 421).

• The Lambda proxy integration, designated by AWS_PROXY in the API Gateway REST API, is for
integrating a method request with a Lambda function in the back end. With this integration type, API
Gateway applies a default mapping template to send the entire request to the Lambda function and
transforms the output from the Lambda function to HTTP responses.

When applying the HTTP proxy integration to a proxy resource, you can set up your API to expose
a portion or an entire endpoint hierarchy of the HTTP back end with a single integration set up. For
example, suppose your back-end website is organized into multiple branches of tree nodes off the
root node (/site) as: /site/a0/a1/.../aN, /site/b0/b1/.../bM, etc. If you integrate the ANY
method on a proxy resource of /api/{proxy+} with the back-end endpoints with URL paths of /
site/{proxy}, a single integration request can support any HTTP operations (GET, POST, etc.) on
any of [a0, a1, ..., aN, b0, b1, ...bM, ...]. If you apply a proxy integration to a specific
HTTP method, e.g., GET, instead, the resulting integration request will work with the specified (e.g.,
GET) operations on any of those back-end nodes.

Similarly, you can apply the Lambda proxy integration to a proxy resource of /api/{proxy+} to set
up a single integration to have a back-end Lambda function react individually to changes in any of the
API resources under /api.

Set Up a Proxy Resource with the HTTP Proxy Integration

To set up a proxy resource with the HTTP proxy integration type, create an API resource with a greedy
path parameter (e.g., /parent/{proxy+}) and integrate this resource with an HTTP back-end

98

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

endpoint (e.g., https://petstore-demo-endpoint.execute-api.com/petstore/{proxy}) on
the ANY method. The greedy path parameter must be at the end of the resource path.

As with a non-proxy resource, you can set up a proxy resource with the HTTP proxy integration using
the API Gateway console, importing a Swagger definition file, or calling the API Gateway REST API
directly. For detailed instructions about using the API Gateway console to configure a proxy resource
with the HTTP integration, see Create and Test an API with HTTP Proxy Integration through a Proxy
Resource (p. 55).

The following Swagger API definition file shows an example of an API with a proxy resource that is
integrated with the PetStore website.

{
 "swagger": "2.0",
 "info": {
 "version": "2016-09-12T23:19:28Z",
 "title": "PetStoreWithProxyResource"
 },
 "host": "4z9giyi2c1.execute-api.us-east-1.amazonaws.com",
 "basePath": "/test",
 "schemes": [
 "https"
],
 "paths": {
 "/{proxy+}": {
 "x-amazon-apigateway-any-method": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "proxy",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {},
 "x-amazon-apigateway-integration": {
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.path.proxy": "method.request.path.proxy"
 },
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/
{proxy}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "ANY",
 "cacheNamespace": "rbftud",
 "cacheKeyParameters": [
 "method.request.path.proxy"
],
 "type": "http_proxy"
 }
 }
 }

99

http://petstore-demo-endpoint.execute-api.com/petstore

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

 }
}

In this example, a cache key is declared on the method.request.path.proxy path parameter of
the proxy resource. This is the default setting when you create the API using the API Gateway console.
The API's base path (/test, corresponding to a stage) is mapped to the website's PetStore page (/
petstore). The single integration request serves to mirror the entire PetStore website using the API's
greedy path variable and the catch-all ANY method. The following examples illustrate this mirroring.

• Set ANY as GET and {proxy+} as pets

Method request initiated from the front end:

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets
 HTTP/1.1

Integration request sent to the back end:

GET http://petstore-demo-endpoint.execute-api.com/petstore/pets HTTP/1.1

The run-time instances of the ANY method and proxy resource are both valid. The call will return a
200 OK response with the payload containing the first batch of pets, as returned from the back end.

• Set ANY as GET and {proxy+} as pets?type=dog

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets?
type=dog HTTP/1.1

Integration request sent to the back end:

GET http://petstore-demo-endpoint.execute-api.com/petstore/pets?type=dog
 HTTP/1.1

The run-time instances of the ANY method and proxy resource are both valid. The call will return a
200 OK response with the payload containing the first batch of specified dogs, as returned from the
back end.

• Set ANY as GET and {proxy+} as pets/{petId}

Method request initiated from the front end:

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets/1
 HTTP/1.1

Integration request sent to the back end:

GET http://petstore-demo-endpoint.execute-api.com/petstore/pets/1 HTTP/1.1

The run-time instances of the ANY method and proxy resource are both valid. The call will return a
200 OK response with the payload containing the specified pet, as returned from the back end.

• Set ANY as POST and {proxy+} as pets

Method request initiated from the front end:

100

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

POST https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets
 HTTP/1.1
Content-Type: application/json
Content-Length: ...

{
 "type" : "dog",
 "price" : 1001.00
}

Integration request sent to the back end:

POST http://petstore-demo-endpoint.execute-api.com/petstore/pets HTTP/1.1
Content-Type: application/json
Content-Length: ...

{
 "type" : "dog",
 "price" : 1001.00
}

The run-time instances of the ANY method and proxy resource are both valid. The call will return a
200 OK response with the payload containing the newly created pet, as returned from the back end.

• Set ANY as GET and {proxy+} as pets/cat

Method request initiated from the front end:

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets/cat

Integration request sent to the back end:

GET http://petstore-demo-endpoint.execute-api.com/petstore/pets/cat

The run-time instance of the proxy resource path does not correspond to a back-end endpoint and
the resulting request is invalid. As a result, a 400 Bad Request response is returned with the
following error message.

{
 "errors": [
 {
 "key": "Pet2.type",
 "message": "Missing required field"
 },
 {
 "key": "Pet2.price",
 "message": "Missing required field"
 }
]
}

• Set ANY as GET and {proxy+} as null

Method request initiated from the front end:

101

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test

Integration request sent to the back end:

GET http://petstore-demo-endpoint.execute-api.com/petstore

The targeted resource is the parent of the proxy resource, but the run-time instance of the ANY
method is not defined in the API on that resource. As a result, this GET request returns a 403
Forbidden response with the "Missing Authentication Token" error message as returned by API
Gateway. If the API exposes the ANY or GET method on the parent resource, (/), the call will return a
404 Not Found response with the Cannot GET /petstore message as returned from the back
end.

For any client request, if the targeted endpoint URL is invalid or the HTTP verb is valid but not
supported, the back end returns a 404 Not Found response. For an unsupported HTTP method, a
403 Forbidden response is returned.

Set Up a Proxy Resource with the Lambda Proxy Integration

To set up a proxy resource with the Lambda proxy integration type, create an API
resource with a greedy path parameter (e.g., /parent/{proxy+}) and integrate
this resource with a Lambda function back end (e.g., arn:aws:lambda:us-
west-2:123456789012:function:SimpleLambda4ProxyResource) on the ANY method. The
greedy path parameter must be at the end of the API resource path. As with a non-proxy resource, you
can set up the proxy resource using the API Gateway console, importing a Swagger definition file, or
calling the API Gateway REST API directly.

For detailed instructions about using the API Gateway console to configure a proxy resource with
the Lambda proxy integration, see Create an API with Lambda Proxy Integration through a Proxy
Resource (p. 59).

The following Swagger API definition file shows an example of an API with a proxy resource that is
integrated with the SimpleLambda4ProxyResource (p. 60) Lambda function.

{
 "swagger": "2.0",
 "info": {
 "version": "2016-09-12T17:50:37Z",
 "title": "ProxyIntegrationWithLambda"
 },
 "host": "gy415nuibc.execute-api.us-east-1.amazonaws.com",
 "basePath": "/testStage",
 "schemes": [
 "https"
],
 "paths": {
 "/{proxy+}": {
 "x-amazon-apigateway-any-method": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "proxy",
 "in": "path",

102

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

 "required": true,
 "type": "string"
 }
],
 "responses": {},
 "x-amazon-apigateway-integration": {
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-
east-1:123456789012:function:SimpleLambda4ProxyResource/invocations",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST",
 "cacheNamespace": "roq9wj",
 "cacheKeyParameters": [
 "method.request.path.proxy"
],
 "type": "aws_proxy"
 }
 }
 }
 }
}

With the Lambda proxy integration, at run time, API Gateway maps an incoming request into the input
event parameter of the Lambda function. The input includes the request method, path, headers, any
query parameters, any payload, associated context, and any defined stage variables. The input format
is explained in Input Format of a Lambda Function for Proxy Integration (p. 103). For API Gateway to
map the Lambda output to HTTP responses successfully, the Lambda function must output the result
in the format explained in Output Format of a Lambda Function for Proxy Integration (p. 105).

With the Lambda proxy integration of a proxy resource through the ANY method, the single back-end
Lambda function serves as the event handler for all requests through the proxy resource. For example,
to log traffic patterns, you can have a mobile device send its location in terms of state, city, street, and
building by submitting a request with /state/city/street/house in the URL path for the proxy
resource. The back-end Lambda function can then parse the URL path and insert the location tuples
into a DynamoDB table.

Input Format of a Lambda Function for Proxy Integration
Let's use an example to illustrate the input format of a Lambda function with the Lambda proxy
integration. The following POST request shows an API deployed to testStage with a stage variable of
stageVariableName=stageVariableValue:

POST /testStage/hello/world?name=me HTTP/1.1
Host: gy415nuibc.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
headerName: headerValue

{
 "a": 1
}

API Gateway maps the entire client request to the input event parameter of the back-end Lambda
function as follows:

103

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

{
 "message": "Hello me!",
 "input": {
 "resource": "/{proxy+}",
 "path": "/hello/world",
 "httpMethod": "POST",
 "headers": {
 "Accept": "*/*",
 "Accept-Encoding": "gzip, deflate",
 "cache-control": "no-cache",
 "CloudFront-Forwarded-Proto": "https",
 "CloudFront-Is-Desktop-Viewer": "true",
 "CloudFront-Is-Mobile-Viewer": "false",
 "CloudFront-Is-SmartTV-Viewer": "false",
 "CloudFront-Is-Tablet-Viewer": "false",
 "CloudFront-Viewer-Country": "US",
 "Content-Type": "application/json",
 "headerName": "headerValue",
 "Host": "gy415nuibc.execute-api.us-east-1.amazonaws.com",
 "Postman-Token": "9f583ef0-ed83-4a38-aef3-eb9ce3f7a57f",
 "User-Agent": "PostmanRuntime/2.4.5",
 "Via": "1.1 d98420743a69852491bbdea73f7680bd.cloudfront.net
 (CloudFront)",
 "X-Amz-Cf-Id": "pn-
PWIJc6thYnZm5P0NMgOUglL1DYtl0gdeJky8tqsg8iS_sgsKD1A==",
 "X-Forwarded-For": "54.240.196.186, 54.182.214.83",
 "X-Forwarded-Port": "443",
 "X-Forwarded-Proto": "https"
 },
 "queryStringParameters": {
 "name": "me"
 },
 "pathParameters": {
 "proxy": "hello/world"
 },
 "stageVariables": {
 "stageVariableName": "stageVariableValue"
 },
 "requestContext": {
 "accountId": "12345678912",
 "resourceId": "roq9wj",
 "stage": "testStage",
 "requestId": "deef4878-7910-11e6-8f14-25afc3e9ae33",
 "identity": {
 "cognitoIdentityPoolId": null,
 "accountId": null,
 "cognitoIdentityId": null,
 "caller": null,
 "apiKey": null,
 "sourceIp": "192.168.196.186",
 "cognitoAuthenticationType": null,
 "cognitoAuthenticationProvider": null,
 "userArn": null,
 "userAgent": "PostmanRuntime/2.4.5",
 "user": null
 },
 "resourcePath": "/{proxy+}",
 "httpMethod": "POST",

104

Amazon API Gateway Developer Guide
After Setting Up Methods and Integration

 "apiId": "gy415nuibc"
 },
 "body": "{\r\n\t\"a\": 1\r\n}"
 }
}

Note
API Gateway enacts certain restrictions and limitations when handling methods with either
Lambda proxy integration or HTTP proxy integration. For details, Known Issues (p. 421).

Output Format of a Lambda Function for Proxy Integration

With the Lambda proxy integration, API Gateway requires the back-end Lambda function to return
output according to the following JSON format:

{
 "statusCode": httpStatusCode,
 "headers": { "headerName": "headerValue", ... },
 "body": "..."
}

A Lambda function in Node.js can supply a JSON object of this format as the input to the
context.succeed({...}); function call. If the function output is of a different format, API
Gateway will return a 502 Bad Gateway error response.

After Setting Up Methods and Integration
The next step is to deploy the API to make it open for access. For instructions, see Deploying an
API (p. 230).

To configure access control to your API, see Controlling Access in API Gateway (p. 160).

Set Up Amazon API Gateway API Request and
Response Payload Mappings

In API Gateway, an API's method request can take a payload in a different format from the
corresponding integration request payload, as required in the back end. Similarly, the back end may
return an integration response payload different from the method response payload, as expected by
the front end. API Gateway lets you map the payload from a method request to the corresponding
integration request and from an integration response to the corresponding method response. You use
mapping templates to specify the mapping and can create model to facilitate the template generation.
The section explains how to map the API request and response payload using models and mapping
templates.

Topics

• Models (p. 106)

• Mapping Templates (p. 109)

• Tasks for Models and Mapping Templates (p. 112)

• Create a Model in API Gateway (p. 112)

• View a List of Models in API Gateway (p. 113)

• Delete a Model in API Gateway (p. 113)

105

Amazon API Gateway Developer Guide
Models

• Photos Example (API Gateway Models and Mapping Templates) (p. 114)

• News Article Example (API Gateway Models and Mapping Templates) (p. 117)

• Sales Invoice Example (API Gateway Models and Mapping Templates) (p. 121)

• Employee Record Example (API Gateway Models and Mapping Templates) (p. 125)

Models
In API Gateway, a model defines the structure or shape of a payload and is also known as the schema
of the payload. API Gateway requires that the JSON Schema be used to describe the model of a JSON
payload.

API Gateway maps a payload according to a mapping template. A model is useful, but not required, to
generate a template. However, models are necessary for generating strongly typed SDK of your API.
They can also be useful to validate a payload.

The following JSON object describes a sample data describing the fruit or vegetable inventory in the
produce department of a likely supermarket:

{
 "department": "produce",
 "categories": [
 "fruit",
 "vegetables"
],
 "bins": [
 {
 "category": "fruit",
 "type": "apples",
 "price": 1.99,
 "unit": "pound",
 "quantity": 232
 },
 {
 "category": "fruit",
 "type": "bananas",
 "price": 0.19,
 "unit": "each",
 "quantity": 112
 },
 {
 "category": "vegetables",
 "type": "carrots",
 "price": 1.29,
 "unit": "bag",
 "quantity": 57
 }
]
}

The JSON object has three properties

• The department property has a string value (produce).

• The categories property is an array of two strings: fruit and vegetables.

• The bins property is an array of objects, each having the string- or number-valued properties of
category, type, price, unit and quantity.

106

http://json-schema.org/

Amazon API Gateway Developer Guide
Models

We express the corresponding model in the following JSON Schema notation:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreInputModel",
 "type": "object",
 "properties": {
 "department": { "type": "string" },
 "categories": {
 "type": "array",
 "items": { "type": "string" }
 },
 "bins": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "category": { "type": "string" },
 "type": { "type": "string" },
 "price": { "type": "number" },
 "unit": { "type": "string" },
 "quantity": { "type": "integer" }
 }
 }
 }
 }
}

In the preceding example:

• The $schema object represents a valid JSON Schema version identifier. In this example, it refers to
JSON Schema, draft v4.

• The title object is a human-readable identifier for the model. In this example, it is
GroceryStoreInputModel.

• The top-level, or root, construct in the JSON data is an object.

• The root object in the JSON data contains department, categories, and bins properties.

• The department property is a string object in the JSON data.

• The categories property is an array in the JSON data. The array contains string values in the
JSON data.

• The bins property is an array in the JSON data. The array contains objects in the JSON data. Each
of these objects in the JSON data contains a category string, a type string, a price number, a
unit string, and a quantity integer (a number without a fraction or exponent part).

Alternatively, you could include part of this schema, for example, the item definition of the bins array,
in a separate section of the same file and use the $ref primitive to reference this reusable definition in
other parts of the schema. Using $ref, the above model definition file can be expressed as follows:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreInputModel",
 "type": "object",
 "properties": {
 "department": { "type": "string" },
 "categories": {
 "type": "array",

107

Amazon API Gateway Developer Guide
Models

 "items": { "type": "string" }
 },
 "bins": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/Bin"
 }
 }
 },
 "definitions": {
 "Bin" : {
 "type": "object",
 "properties": {
 "category": { "type": "string" },
 "type": { "type": "string" },
 "price": { "type": "number" },
 "unit": { "type": "string" },
 "quantity": { "type": "integer" }
 }
 }
 }
}

The definitions section contains the schema definition of the Bin item that is referenced in the
bins array with "ref": "#/definitions/Bin". Using reusable definitions this way makes your
model definition easier to read.

In addition, you can also reference another model schema defined in an external model
file by setting that model's URL as the value of the $ref property: "$ref": "https://
apigateway.amazonaws.com/restapis/{restapi_id}/models/{model_name}". For
example, supposed you have the following full-fledged model named Bin2 created under an API with
an identifier of fugvjdxtri:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreInputModel",
 "type": "object",
 "properties": {
 "Bin" : {
 "type": "object",
 "properties": {
 "category": { "type": "string" },
 "type": { "type": "string" },
 "price": { "type": "number" },
 "unit": { "type": "string" },
 "quantity": { "type": "integer" }
 }
 }
 }
}

You can then reference it from the GroceryStoreInputModel from the same API, as shown as
follows:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreInputModel",
 "type": "object",

108

Amazon API Gateway Developer Guide
Mapping Templates

 "properties": {
 "department": { "type": "string" },
 "categories": {
 "type": "array",
 "items": { "type": "string" }
 },
 "bins": {
 "type": "array",
 "items": {
 "$ref": "https://apigateway.amazonaws.com/restapis/fugvjdxtri/models/
Bin2"
 }
 }
 }
}

The referencing and referenced models must be from the same API.

The examples do not use advanced JSON Schema features, such as specifying required items;
minimum and maximum allowed string lengths, numeric values, and array item lengths; regular
expressions; and more. For more information, see Introducing JSON and JSON Schema.

For more complex JSON data formats and their models, see the following examples:

• Input Model (Photos Example) (p. 115) and Output Model (Photos Example) (p. 116) in the
Photos Example (p. 114)

• Input Model (News Article Example) (p. 118) and Output Model (News Article Example) (p. 120)
in the News Article Example (p. 117)

• Input Model (Sales Invoice Example) (p. 122) and Output Model (Sales Invoice
Example) (p. 124) in the Sales Invoice Example (p. 121)

• Input Model (Employee Record Example) (p. 126) and Output Model (Employee Record
Example) (p. 129) in the Employee Record Example (p. 125)

To experiment with models in API Gateway, follow the instructions in Map Response Payload (p. 31),
specifically Step 1: Create Models (p. 33).

Mapping Templates
In API Gateway, a mapping template is used to transform some data from one format to another. You
create and use input mapping templates and output mapping templates when you need to inform API
Gateway about the schema of the data being sent from or returned to the caller, respectively. API
Gateway uses the Velocity Template Language (VTL) and JSONPath expressions to define mapping
templates.

For an example of an input mapping template, consider the example JSON data from the previous
section. The following input mapping template makes no transform to the JSON data as API Gateway
receives the JSON data from the caller:

#set($inputRoot = $input.path('$'))
{
 "department": "$inputRoot.department",
 "categories": [
#foreach($elem in $inputRoot.categories)
 "$elem"#if($foreach.hasNext),#end

#end
],

109

http://json.org
http://json-schema.org
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath/

Amazon API Gateway Developer Guide
Mapping Templates

 "bins" : [
#foreach($elem in $inputRoot.bins)
 {
 "category" : "$elem.category",
 "type" : "$elem.type",
 "price" : $elem.price,
 "unit" : "$elem.unit",
 "quantity" : $elem.quantity
 }#if($foreach.hasNext),#end

#end
]
}

The preceding input mapping template is expressed as follows:

• Let the variable $inputRoot in the input mapping template represent the root object in the original
JSON data.

• The values of the department object and categories and bins arrays in the input mapping
template (represented by $inputRoot.department, $inputRoot.categories, and
$inputRoot.bins) map to the corresponding values of the department object and categories
and bins arrays in the root object in the original JSON data.

• In the input mapping template, each of the values in the categories array (represented by the first
$elem), and each of the objects in the bins array (represented by the second $elem), map to the
corresponding values in the categories array and objects in the bins array, respectively, within
the root object in the original JSON data.

• For each of objects in the bins object, the values of the category, type, price, unit, and
quantity objects in the input mapping template (represented by $elem.category, $elem.type,
$elem.price, $elem.unit, and $elem.quantity, respectively) map to the corresponding
values of the category, type, price, unit, and quantity objects in the original JSON data,
respectively.

For an example of an output mapping template, first consider the following JSON data schema, which
is based on the example JSON data from the previous section.

Note
None of the array and object names in this JSON data schema match the JSON data from the
previous section:

{
 "choices": [
 {
 "kind": "apples",
 "suggestedPrice": "1.99 per pound",
 "available": 232
 },
 {
 "kind": "bananas",
 "suggestedPrice": "0.19 per each",
 "available": 112
 },
 {
 "kind": "carrots",
 "suggestedPrice": "1.29 per bag",
 "available": 57
 }
]

110

Amazon API Gateway Developer Guide
Mapping Templates

}

To transform the example JSON data from the previous section into this JSON data schema, you
would use the following model:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GroceryStoreOutputModel",
 "type": "object",
 "properties": {
 "choices": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "kind": { "type": "string" },
 "suggestedPrice": { "type": "string" },
 "available": { "type": "integer" }
 }
 }
 }
 }
}

In the preceding example, the JSON schema is expressed as follows:

• The $schema object represents a valid JSON Schema version identifier. In this example, it refers to
JSON Schema, draft v4.

• The title object is a human-readable identifier for the model. In this example, it is
GroceryStoreOutputModel.

• The top-level, or root, construct in the JSON data is an object.

• The root object in the JSON data contains an array of objects.

• Each object in the array of objects contains a kind string, a suggestedPrice string, and an
available integer (a number without a fraction or exponent part).

You would then use the following output mapping template, which is based on this model:

#set($inputRoot = $input.path('$'))
{
 "choices": [
#foreach($elem in $inputRoot.bins)
 {
 "kind": "$elem.type",
 "suggestedPrice": "$elem.price per $elem.unit",
 "available": $elem.quantity
 }#if($foreach.hasNext),#end

#end
]
}

The preceding output mapping template is expressed as follows:

• Let the variable $inputRoot in the output mapping template represent the root object in the original
JSON data from the previous section. Note the variables in the output mapping template map to the
original JSON data, not the desired transformed JSON data schema.

111

Amazon API Gateway Developer Guide
Tasks for Models and Mapping Templates

• The choices array in the output mapping template maps to the bins array with the root object in
the original JSON data ($inputRoot.bins).

• In the output mapping template, each of the objects in the choices array (represented by $elem)
map to the corresponding objects in the bins array within the root object in the original JSON data.

• In the output mapping template, for each of objects in the choices object, the values of the
kind and available objects (represented by $elem.type and $elem.quantity) map to the
corresponding values of the type and value objects in each of the objects in the original JSON
data's bins array, respectively.

• In the output mapping template, for each of objects in the choices object, the value of the
suggestedPrice object is a concatenation of the corresponding value of the price and unit
objects in each of the objects in the original JSON data, respectively, with each value separated by
the word per.

For more information about the Velocity Template Language, see Apache Velocity - VTL Reference.
For more information about JSONPath, see JSONPath - XPath for JSON.

To explore more complex mapping templates, see the following examples:

• Input Mapping Template (Photos Example) (p. 115) and Output Mapping Template (Photos
Example) (p. 117) in the Photos Example (p. 114)

• Input Mapping Template (News Article Example) (p. 119) and Output Mapping Template (News
Article Example) (p. 120) in the News Article Example (p. 117)

• Input Mapping Template (Sales Invoice Example) (p. 123) and Output Mapping Template (Sales
Invoice Example) (p. 125) in the Sales Invoice Example (p. 121)

• Input Mapping Template (Employee Record Example) (p. 127) and Output Mapping Template
(Employee Record Example) (p. 130) in the Employee Record Example (p. 125)

To experiment with mapping templates in API Gateway, follow the instructions in Map Response
Payload (p. 31), specifically Step 5: Set Up and Test the Methods (p. 37).

Tasks for Models and Mapping Templates
For additional things you can do with models and mapping templates, see the following:

• Create a Model (p. 112)

• View a List of Models (p. 113)

• Delete a Model (p. 113)

Create a Model in API Gateway
Use the API Gateway console to create a model for an API.

Topics

• Prerequisites (p. 112)

• Create a Model With the API Gateway Console (p. 113)

Prerequisites

• You must have an API available in API Gateway. Follow the instructions in Creating an
API (p. 70).

112

http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath

Amazon API Gateway Developer Guide
View a List of Models

Create a Model With the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API where you want to create the model, choose Models.

3. Choose Create.

4. For Model Name, type a name for the model.

5. For Content Type, type the model's content type (for example, application/json for JSON).

6. (Optional) For Model description, type a description for the model.

7. For Model schema, type the model's schema. For more information about model schemas, see
Set Up Payload Mappings (p. 105).

8. Choose Create model.

View a List of Models in API Gateway
Use the API Gateway console to view a list of models.

Topics

• Prerequisites (p. 113)

• View a List of Models with the API Gateway Console (p. 113)

Prerequisites

• You must have at least one model in API Gateway. Follow the instructions in Create a
Model (p. 112).

View a List of Models with the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API, choose Models.

Delete a Model in API Gateway
Use the API Gateway console to delete a model.

Warning
Deleting a model may cause part or all of the corresponding API to become unusable by API
callers. Deleting a model cannot be undone.

Delete a Model with the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the model, choose Models.

3. In the Models pane, choose the model you want to delete, and then choose Delete Model.

4. When prompted, choose Delete.

113

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Photos Example

Photos Example (API Gateway Models and Mapping
Templates)
The following sections provide examples of models and mapping templates that could be used for a
sample photo API in API Gateway. For more information about models and mapping templates in API
Gateway, see Set Up Payload Mappings (p. 105).

Topics

• Original Data (Photos Example) (p. 114)

• Input Model (Photos Example) (p. 115)

• Input Mapping Template (Photos Example) (p. 115)

• Transformed Data (Photos Example) (p. 116)

• Output Model (Photos Example) (p. 116)

• Output Mapping Template (Photos Example) (p. 117)

Original Data (Photos Example)

The following is the original JSON data for the photos example:

{
 "photos": {
 "page": 1,
 "pages": "1234",
 "perpage": 100,
 "total": "123398",
 "photo": [
 {
 "id": "12345678901",
 "owner": "23456789@A12",
 "secret": "abc123d456",
 "server": "1234",
 "farm": 1,
 "title": "Sample photo 1",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0
 },
 {
 "id": "23456789012",
 "owner": "34567890@B23",
 "secret": "bcd234e567",
 "server": "2345",
 "farm": 2,
 "title": "Sample photo 2",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0
 }
]
 }
}

114

Amazon API Gateway Developer Guide
Photos Example

Input Model (Photos Example)

The following is the input model that corresponds to the original JSON data for the photos example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PhotosInputModel",
 "type": "object",
 "properties": {
 "photos": {
 "type": "object",
 "properties": {
 "page": { "type": "integer" },
 "pages": { "type": "string" },
 "perpage": { "type": "integer" },
 "total": { "type": "string" },
 "photo": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "owner": { "type": "string" },
 "secret": { "type": "string" },
 "server": { "type": "string" },
 "farm": { "type": "integer" },
 "title": { "type": "string" },
 "ispublic": { "type": "integer" },
 "isfriend": { "type": "integer" },
 "isfamily": { "type": "integer" }
 }
 }
 }
 }
 }
 }
}

Input Mapping Template (Photos Example)

The following is the input mapping template that corresponds to the original JSON data for the photos
example:

#set($inputRoot = $input.path('$'))
{
 "photos": {
 "page": $inputRoot.photos.page,
 "pages": "$inputRoot.photos.pages",
 "perpage": $inputRoot.photos.perpage,
 "total": "$inputRoot.photos.total",
 "photo": [
#foreach($elem in $inputRoot.photos.photo)
 {
 "id": "$elem.id",
 "owner": "$elem.owner",
 "secret": "$elem.secret",
 "server": "$elem.server",

115

Amazon API Gateway Developer Guide
Photos Example

 "farm": $elem.farm,
 "title": "$elem.title",
 "ispublic": $elem.ispublic,
 "isfriend": $elem.isfriend,
 "isfamily": $elem.isfamily
 }#if($foreach.hasNext),#end

#end
]
 }
}

Transformed Data (Photos Example)

The following is one example of how the original photos example JSON data could be transformed for
output:

{
 "photos": [
 {
 "id": "12345678901",
 "owner": "23456789@A12",
 "title": "Sample photo 1",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0
 },
 {
 "id": "23456789012",
 "owner": "34567890@B23",
 "title": "Sample photo 2",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0
 }
]
}

Output Model (Photos Example)

The following is the output model that corresponds to the transformed JSON data format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PhotosOutputModel",
 "type": "object",
 "properties": {
 "photos": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "owner": { "type": "string" },
 "title": { "type": "string" },
 "ispublic": { "type": "integer" },

116

Amazon API Gateway Developer Guide
News Article Example

 "isfriend": { "type": "integer" },
 "isfamily": { "type": "integer" }
 }
 }
 }
 }
}

Output Mapping Template (Photos Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "photos": [
#foreach($elem in $inputRoot.photos.photo)
 {
 "id": "$elem.id",
 "owner": "$elem.owner",
 "title": "$elem.title",
 "ispublic": $elem.ispublic,
 "isfriend": $elem.isfriend,
 "isfamily": $elem.isfamily
 }#if($foreach.hasNext),#end

#end
]
}

News Article Example (API Gateway Models and
Mapping Templates)
The following sections provide examples of models and mapping templates that could be used for a
sample news article API in API Gateway. For more information about models and mapping templates
in API Gateway, see Set Up Payload Mappings (p. 105).

Topics

• Original Data (News Article Example) (p. 117)

• Input Model (News Article Example) (p. 118)

• Input Mapping Template (News Article Example) (p. 119)

• Transformed Data (News Article Example) (p. 119)

• Output Model (News Article Example) (p. 120)

• Output Mapping Template (News Article Example) (p. 120)

Original Data (News Article Example)

The following is the original JSON data for the news article example:

{
 "count": 1,

117

Amazon API Gateway Developer Guide
News Article Example

 "items": [
 {
 "last_updated_date": "2015-04-24",
 "expire_date": "2016-04-25",
 "author_first_name": "John",
 "description": "Sample Description",
 "creation_date": "2015-04-20",
 "title": "Sample Title",
 "allow_comment": "1",
 "author": {
 "last_name": "Doe",
 "email": "johndoe@example.com",
 "first_name": "John"
 },
 "body": "Sample Body",
 "publish_date": "2015-04-25",
 "version": "1",
 "author_last_name": "Doe",
 "parent_id": 2345678901,
 "article_url": "http://www.example.com/articles/3456789012"
 }
],
 "version": 1
}

Input Model (News Article Example)

The following is the input model that corresponds to the original JSON data for the news article
example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "NewsArticleInputModel",
 "type": "object",
 "properties": {
 "count": { "type": "integer" },
 "items": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "last_updated_date": { "type": "string" },
 "expire_date": { "type": "string" },
 "author_first_name": { "type": "string" },
 "description": { "type": "string" },
 "creation_date": { "type": "string" },
 "title": { "type": "string" },
 "allow_comment": { "type": "string" },
 "author": {
 "type": "object",
 "properties": {
 "last_name": { "type": "string" },
 "email": { "type": "string" },
 "first_name": { "type": "string" }
 }
 },
 "body": { "type": "string" },
 "publish_date": { "type": "string" },

118

Amazon API Gateway Developer Guide
News Article Example

 "version": { "type": "string" },
 "author_last_name": { "type": "string" },
 "parent_id": { "type": "integer" },
 "article_url": { "type": "string" }
 }
 }
 },
 "version": { "type": "integer" }
 }
}

Input Mapping Template (News Article Example)

The following is the input mapping template that corresponds to the original JSON data for the news
article example:

#set($inputRoot = $input.path('$'))
{
 "count": $inputRoot.count,
 "items": [
#foreach($elem in $inputRoot.items)
 {
 "last_updated_date": "$elem.last_updated_date",
 "expire_date": "$elem.expire_date",
 "author_first_name": "$elem.author_first_name",
 "description": "$elem.description",
 "creation_date": "$elem.creation_date",
 "title": "$elem.title",
 "allow_comment": "$elem.allow_comment",
 "author": {
 "last_name": "$elem.author.last_name",
 "email": "$elem.author.email",
 "first_name": "$elem.author.first_name"
 },
 "body": "$elem.body",
 "publish_date": "$elem.publish_date",
 "version": "$elem.version",
 "author_last_name": "$elem.author_last_name",
 "parent_id": $elem.parent_id,
 "article_url": "$elem.article_url"
 }#if($foreach.hasNext),#end

#end
],
 "version": $inputRoot.version
}

Transformed Data (News Article Example)

The following is one example of how the original news article example JSON data could be
transformed for output:

{
 "count": 1,
 "items": [
 {

119

Amazon API Gateway Developer Guide
News Article Example

 "creation_date": "2015-04-20",
 "title": "Sample Title",
 "author": "John Doe",
 "body": "Sample Body",
 "publish_date": "2015-04-25",
 "article_url": "http://www.example.com/articles/3456789012"
 }
],
 "version": 1
}

Output Model (News Article Example)

The following is the output model that corresponds to the transformed JSON data format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "NewsArticleOutputModel",
 "type": "object",
 "properties": {
 "count": { "type": "integer" },
 "items": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "creation_date": { "type": "string" },
 "title": { "type": "string" },
 "author": { "type": "string" },
 "body": { "type": "string" },
 "publish_date": { "type": "string" },
 "article_url": { "type": "string" }
 }
 }
 },
 "version": { "type": "integer" }
 }
}

Output Mapping Template (News Article Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "count": $inputRoot.count,
 "items": [
#foreach($elem in $inputRoot.items)
 {
 "creation_date": "$elem.creation_date",
 "title": "$elem.title",
 "author": "$elem.author.first_name $elem.author.last_name",
 "body": "$elem.body",
 "publish_date": "$elem.publish_date",
 "article_url": "$elem.article_url"

120

Amazon API Gateway Developer Guide
Sales Invoice Example

 }#if($foreach.hasNext),#end

#end
],
 "version": $inputRoot.version
}

Sales Invoice Example (API Gateway Models and
Mapping Templates)
The following sections provide examples of models and mapping templates that could be used for a
sample sales invoice API in API Gateway. For more information about models and mapping templates
in API Gateway, see Set Up Payload Mappings (p. 105).

Topics

• Original Data (Sales Invoice Example) (p. 121)

• Input Model (Sales Invoice Example) (p. 122)

• Input Mapping Template (Sales Invoice Example) (p. 123)

• Transformed Data (Sales Invoice Example) (p. 124)

• Output Model (Sales Invoice Example) (p. 124)

• Output Mapping Template (Sales Invoice Example) (p. 125)

Original Data (Sales Invoice Example)

The following is the original JSON data for the sales invoice example:

{
 "DueDate": "2013-02-15",
 "Balance": 1990.19,
 "DocNumber": "SAMP001",
 "Status": "Payable",
 "Line": [
 {
 "Description": "Sample Expense",
 "Amount": 500,
 "DetailType": "ExpenseDetail",
 "ExpenseDetail": {
 "Customer": {
 "value": "ABC123",
 "name": "Sample Customer"
 },
 "Ref": {
 "value": "DEF234",
 "name": "Sample Construction"
 },
 "Account": {
 "value": "EFG345",
 "name": "Fuel"
 },
 "LineStatus": "Billable"
 }
 }
],

121

Amazon API Gateway Developer Guide
Sales Invoice Example

 "Vendor": {
 "value": "GHI456",
 "name": "Sample Bank"
 },
 "APRef": {
 "value": "HIJ567",
 "name": "Accounts Payable"
 },
 "TotalAmt": 1990.19
}

Input Model (Sales Invoice Example)

The following is the input model that corresponds to the original JSON data for the sales invoice
example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "InvoiceInputModel",
 "type": "object",
 "properties": {
 "DueDate": { "type": "string" },
 "Balance": { "type": "number" },
 "DocNumber": { "type": "string" },
 "Status": { "type": "string" },
 "Line": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "Description": { "type": "string" },
 "Amount": { "type": "integer" },
 "DetailType": { "type": "string" },
 "ExpenseDetail": {
 "type": "object",
 "properties": {
 "Customer": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "Ref": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "Account": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "LineStatus": { "type": "string" }

122

Amazon API Gateway Developer Guide
Sales Invoice Example

 }
 }
 }
 }
 },
 "Vendor": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "APRef": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "TotalAmt": { "type": "number" }
 }
}

Input Mapping Template (Sales Invoice Example)

The following is the input mapping template that corresponds to the original JSON data for the sales
invoice example:

#set($inputRoot = $input.path('$'))
{
 "DueDate": "$inputRoot.DueDate",
 "Balance": $inputRoot.Balance,
 "DocNumber": "$inputRoot.DocNumber",
 "Status": "$inputRoot.Status",
 "Line": [
#foreach($elem in $inputRoot.Line)
 {
 "Description": "$elem.Description",
 "Amount": $elem.Amount,
 "DetailType": "$elem.DetailType",
 "ExpenseDetail": {
 "Customer": {
 "value": "$elem.ExpenseDetail.Customer.value",
 "name": "$elem.ExpenseDetail.Customer.name"
 },
 "Ref": {
 "value": "$elem.ExpenseDetail.Ref.value",
 "name": "$elem.ExpenseDetail.Ref.name"
 },
 "Account": {
 "value": "$elem.ExpenseDetail.Account.value",
 "name": "$elem.ExpenseDetail.Account.name"
 },
 "LineStatus": "$elem.ExpenseDetail.LineStatus"
 }
 }#if($foreach.hasNext),#end

#end

123

Amazon API Gateway Developer Guide
Sales Invoice Example

],
 "Vendor": {
 "value": "$inputRoot.Vendor.value",
 "name": "$inputRoot.Vendor.name"
 },
 "APRef": {
 "value": "$inputRoot.APRef.value",
 "name": "$inputRoot.APRef.name"
 },
 "TotalAmt": $inputRoot.TotalAmt
}

Transformed Data (Sales Invoice Example)

The following is one example of how the original sales invoice example JSON data could be
transformed for output:

{
 "DueDate": "2013-02-15",
 "Balance": 1990.19,
 "DocNumber": "SAMP001",
 "Status": "Payable",
 "Line": [
 {
 "Description": "Sample Expense",
 "Amount": 500,
 "DetailType": "ExpenseDetail",
 "Customer": "ABC123 (Sample Customer)",
 "Ref": "DEF234 (Sample Construction)",
 "Account": "EFG345 (Fuel)",
 "LineStatus": "Billable"
 }
],
 "TotalAmt": 1990.19
}

Output Model (Sales Invoice Example)

The following is the output model that corresponds to the transformed JSON data format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "InvoiceOutputModel",
 "type": "object",
 "properties": {
 "DueDate": { "type": "string" },
 "Balance": { "type": "number" },
 "DocNumber": { "type": "string" },
 "Status": { "type": "string" },
 "Line": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "Description": { "type": "string" },
 "Amount": { "type": "integer" },

124

Amazon API Gateway Developer Guide
Employee Record Example

 "DetailType": { "type": "string" },
 "Customer": { "type": "string" },
 "Ref": { "type": "string" },
 "Account": { "type": "string" },
 "LineStatus": { "type": "string" }
 }
 }
 },
 "TotalAmt": { "type": "number" }
 }
}

Output Mapping Template (Sales Invoice Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "DueDate": "$inputRoot.DueDate",
 "Balance": $inputRoot.Balance,
 "DocNumber": "$inputRoot.DocNumber",
 "Status": "$inputRoot.Status",
 "Line": [
#foreach($elem in $inputRoot.Line)
 {
 "Description": "$elem.Description",
 "Amount": $elem.Amount,
 "DetailType": "$elem.DetailType",
 "Customer": "$elem.ExpenseDetail.Customer.value
 ($elem.ExpenseDetail.Customer.name)",
 "Ref": "$elem.ExpenseDetail.Ref.value ($elem.ExpenseDetail.Ref.name)",
 "Account": "$elem.ExpenseDetail.Account.value
 ($elem.ExpenseDetail.Account.name)",
 "LineStatus": "$elem.ExpenseDetail.LineStatus"
 }#if($foreach.hasNext),#end

#end
],
 "TotalAmt": $inputRoot.TotalAmt
}

Employee Record Example (API Gateway Models
and Mapping Templates)
The following sections provide examples of models and mapping templates that can be used for
a sample employee record API in API Gateway. For more information about models and mapping
templates in API Gateway, see Set Up Payload Mappings (p. 105).

Topics

• Original Data (Employee Record Example) (p. 126)

• Input Model (Employee Record Example) (p. 126)

• Input Mapping Template (Employee Record Example) (p. 127)

• Transformed Data (Employee Record Example) (p. 128)

125

Amazon API Gateway Developer Guide
Employee Record Example

• Output Model (Employee Record Example) (p. 129)

• Output Mapping Template (Employee Record Example) (p. 130)

Original Data (Employee Record Example)

The following is the original JSON data for the employee record example:

{
 "QueryResponse": {
 "maxResults": "1",
 "startPosition": "1",
 "Employee": {
 "Organization": "false",
 "Title": "Mrs.",
 "GivenName": "Jane",
 "MiddleName": "Lane",
 "FamilyName": "Doe",
 "DisplayName": "Jane Lane Doe",
 "PrintOnCheckName": "Jane Lane Doe",
 "Active": "true",
 "PrimaryPhone": { "FreeFormNumber": "505.555.9999" },
 "PrimaryEmailAddr": { "Address": "janedoe@example.com" },
 "EmployeeType": "Regular",
 "status": "Synchronized",
 "Id": "ABC123",
 "SyncToken": "1",
 "MetaData": {
 "CreateTime": "2015-04-26T19:45:03Z",
 "LastUpdatedTime": "2015-04-27T21:48:23Z"
 },
 "PrimaryAddr": {
 "Line1": "123 Any Street",
 "City": "Any City",
 "CountrySubDivisionCode": "WA",
 "PostalCode": "01234"
 }
 }
 },
 "time": "2015-04-27T22:12:32.012Z"
}

Input Model (Employee Record Example)

The following is the input model that corresponds to the original JSON data for the employee record
example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "EmployeeInputModel",
 "type": "object",
 "properties": {
 "QueryResponse": {
 "type": "object",
 "properties": {
 "maxResults": { "type": "string" },

126

Amazon API Gateway Developer Guide
Employee Record Example

 "startPosition": { "type": "string" },
 "Employee": {
 "type": "object",
 "properties": {
 "Organization": { "type": "string" },
 "Title": { "type": "string" },
 "GivenName": { "type": "string" },
 "MiddleName": { "type": "string" },
 "FamilyName": { "type": "string" },
 "DisplayName": { "type": "string" },
 "PrintOnCheckName": { "type": "string" },
 "Active": { "type": "string" },
 "PrimaryPhone": {
 "type": "object",
 "properties": {
 "FreeFormNumber": { "type": "string" }
 }
 },
 "PrimaryEmailAddr": {
 "type": "object",
 "properties": {
 "Address": { "type": "string" }
 }
 },
 "EmployeeType": { "type": "string" },
 "status": { "type": "string" },
 "Id": { "type": "string" },
 "SyncToken": { "type": "string" },
 "MetaData": {
 "type": "object",
 "properties": {
 "CreateTime": { "type": "string" },
 "LastUpdatedTime": { "type": "string" }
 }
 },
 "PrimaryAddr": {
 "type": "object",
 "properties": {
 "Line1": { "type": "string" },
 "City": { "type": "string" },
 "CountrySubDivisionCode": { "type": "string" },
 "PostalCode": { "type": "string" }
 }
 }
 }
 }
 }
 },
 "time": { "type": "string" }
 }
}

Input Mapping Template (Employee Record Example)

The following is the input mapping template that corresponds to the original JSON data for the
employee record example:

#set($inputRoot = $input.path('$'))

127

Amazon API Gateway Developer Guide
Employee Record Example

{
 "QueryResponse": {
 "maxResults": "$inputRoot.QueryResponse.maxResults",
 "startPosition": "$inputRoot.QueryResponse.startPosition",
 "Employee": {
 "Organization": "$inputRoot.QueryResponse.Employee.Organization",
 "Title": "$inputRoot.QueryResponse.Employee.Title",
 "GivenName": "$inputRoot.QueryResponse.Employee.GivenName",
 "MiddleName": "$inputRoot.QueryResponse.Employee.MiddleName",
 "FamilyName": "$inputRoot.QueryResponse.Employee.FamilyName",
 "DisplayName": "$inputRoot.QueryResponse.Employee.DisplayName",
 "PrintOnCheckName":
 "$inputRoot.QueryResponse.Employee.PrintOnCheckName",
 "Active": "$inputRoot.QueryResponse.Employee.Active",
 "PrimaryPhone": { "FreeFormNumber":
 "$inputRoot.QueryResponse.Employee.PrimaryPhone.FreeFormNumber" },
 "PrimaryEmailAddr": { "Address":
 "$inputRoot.QueryResponse.Employee.PrimaryEmailAddr.Address" },
 "EmployeeType": "$inputRoot.QueryResponse.Employee.EmployeeType",
 "status": "$inputRoot.QueryResponse.Employee.status",
 "Id": "$inputRoot.QueryResponse.Employee.Id",
 "SyncToken": "$inputRoot.QueryResponse.Employee.SyncToken",
 "MetaData": {
 "CreateTime":
 "$inputRoot.QueryResponse.Employee.MetaData.CreateTime",
 "LastUpdatedTime":
 "$inputRoot.QueryResponse.Employee.MetaData.LastUpdatedTime"
 },
 "PrimaryAddr" : {
 "Line1": "$inputRoot.QueryResponse.Employee.PrimaryAddr.Line1",
 "City": "$inputRoot.QueryResponse.Employee.PrimaryAddr.City",
 "CountrySubDivisionCode":
 "$inputRoot.QueryResponse.Employee.PrimaryAddr.CountrySubDivisionCode",
 "PostalCode":
 "$inputRoot.QueryResponse.Employee.PrimaryAddr.PostalCode"
 }
 }
 },
 "time": "$inputRoot.time"
}

Transformed Data (Employee Record Example)

The following is one example of how the original employee record example JSON data could be
transformed for output:

{
 "QueryResponse": {
 "maxResults": "1",
 "startPosition": "1",
 "Employees": [
 {
 "Title": "Mrs.",
 "GivenName": "Jane",
 "MiddleName": "Lane",
 "FamilyName": "Doe",
 "DisplayName": "Jane Lane Doe",
 "PrintOnCheckName": "Jane Lane Doe",

128

Amazon API Gateway Developer Guide
Employee Record Example

 "Active": "true",
 "PrimaryPhone": "505.555.9999",
 "Email": [
 {
 "type": "primary",
 "Address": "janedoe@example.com"
 }
],
 "EmployeeType": "Regular",
 "PrimaryAddr": {
 "Line1": "123 Any Street",
 "City": "Any City",
 "CountrySubDivisionCode": "WA",
 "PostalCode": "01234"
 }
 }
]
 },
 "time": "2015-04-27T22:12:32.012Z"
}

Output Model (Employee Record Example)

The following is the output model that corresponds to the transformed JSON data format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "EmployeeOutputModel",
 "type": "object",
 "properties": {
 "QueryResponse": {
 "type": "object",
 "properties": {
 "maxResults": { "type": "string" },
 "startPosition": { "type": "string" },
 "Employees": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "Title": { "type": "string" },
 "GivenName": { "type": "string" },
 "MiddleName": { "type": "string" },
 "FamilyName": { "type": "string" },
 "DisplayName": { "type": "string" },
 "PrintOnCheckName": { "type": "string" },
 "Active": { "type": "string" },
 "PrimaryPhone": { "type": "string" },
 "Email": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "type": { "type": "string" },
 "Address": { "type": "string" }
 }
 }
 },

129

Amazon API Gateway Developer Guide
Employee Record Example

 "EmployeeType": { "type": "string" },
 "PrimaryAddr": {
 "type": "object",
 "properties": {
 "Line1": {"type": "string" },
 "City": { "type": "string" },
 "CountrySubDivisionCode": { "type": "string" },
 "PostalCode": { "type": "string" }
 }
 }
 }
 }
 }
 }
 },
 "time": { "type": "string" }
 }
}

Output Mapping Template (Employee Record Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "QueryResponse": {
 "maxResults": "$inputRoot.QueryResponse.maxResults",
 "startPosition": "$inputRoot.QueryResponse.startPosition",
 "Employees": [
 {
 "Title": "$inputRoot.QueryResponse.Employee.Title",
 "GivenName": "$inputRoot.QueryResponse.Employee.GivenName",
 "MiddleName": "$inputRoot.QueryResponse.Employee.MiddleName",
 "FamilyName": "$inputRoot.QueryResponse.Employee.FamilyName",
 "DisplayName": "$inputRoot.QueryResponse.Employee.DisplayName",
 "PrintOnCheckName":
 "$inputRoot.QueryResponse.Employee.PrintOnCheckName",
 "Active": "$inputRoot.QueryResponse.Employee.Active",
 "PrimaryPhone":
 "$inputRoot.QueryResponse.Employee.PrimaryPhone.FreeFormNumber",
 "Email" : [
 {
 "type": "primary",
 "Address":
 "$inputRoot.QueryResponse.Employee.PrimaryEmailAddr.Address"
 }
],
 "EmployeeType": "$inputRoot.QueryResponse.Employee.EmployeeType",
 "PrimaryAddr": {
 "Line1": "$inputRoot.QueryResponse.Employee.PrimaryAddr.Line1",
 "City": "$inputRoot.QueryResponse.Employee.PrimaryAddr.City",
 "CountrySubDivisionCode":
 "$inputRoot.QueryResponse.Employee.PrimaryAddr.CountrySubDivisionCode",
 "PostalCode":
 "$inputRoot.QueryResponse.Employee.PrimaryAddr.PostalCode"
 }
 }

130

Amazon API Gateway Developer Guide
Request and Response Parameter-Mapping Reference

]
 },
 "time": "$inputRoot.time"
}

Amazon API Gateway API Request and
Response Parameter-Mapping Reference

This section explains how to set up data mappings from an API's method request data, including other
data stored in context (p. 134), stage (p. 139) or util (p. 139) variables, to the corresponding
integration request parameters and from an integration response data, including the other data, to the
method response parameters. The method request data includes request parameters (path, query
string, headers) and the body The integration response data includes response parameters (headers),
and the body. For more information about using the stage variables, see Amazon API Gateway Stage
Variables Reference (p. 253).

Topics

• Map Data to Integration Request Parameters (p. 131)

• Map Data to Method Response Headers (p. 132)

• Transform Request and Response Bodies (p. 133)

Map Data to Integration Request Parameters
Integration request parameters, in the form of path variables, query strings or headers, can be mapped
from any defined method request parameters and the payload.

Integration request data mapping expressions

Mapped data source Mapping expression

Method request path method.request.path.PARAM_NAME

Method request query string method.request.querystring.PARAM_NAME

Method request header method.request.header.PARAM_NAME

Method request body method.request.body

Method request body (JsonPath) method.request.body.JSONPath_EXPRESSION.

Stage variables stageVariables.VARIABLE_NAME

Context variables context.VARIABLE_NAME that must be one of
the supported context variables (p. 134).

Static value 'STATIC_VALUE'. The STATIC_VALUE is a
string literal and must be enclosed within a pair of
single quotes.

Here, PARAM_NAME is the name of a method request parameter of the given parameter type. It must
have been defined before it can be referenced. JSONPath_EXPRESSION is a JSONPath expression for
a JSON field of the body of a request or response. However, the "$." prefix is omitted in this syntax.

131

Amazon API Gateway Developer Guide
Map Data to Method Response Headers

Example mappings from method request parameter in Swagger

The following example shows a Swagger snippet that maps 1) the method request's header,
named methodRequestHeadParam, into the integration request path parameter, named
integrationPathParam; 2) the method request query string, named methodRequestQueryParam,
into the integration request query string, named integrationQueryParam.

...
"requestParameters" : {

 "integration.request.path.integrationPathParam" :
 "method.request.header.methodRequestHeaderParam",
 "integration.request.querystring.integrationQueryParam" :
 "method.request.querystring.methodRequestQueryParam"

}
...

Integration request parameters can also be mapped from fields in the JSON request body using a
JSONPath expression. The following table shows the mapping expressions for a method request body
and its JSON fields.

Example mapping from method request body in Swagger

The following example shows a Swagger snippet that maps 1) the method request body to the
integration request header, named body-header, and 2) a JSON field of the body, as expressed by a
JSON expression (petstore.pets[0].name, without the $. prefix).

...
"requestParameters" : {

 "integration.request.header.body-header" : "method.request.body",
 "integration.request.path.pet-name" :
 "method.request.body.petstore.pets[0].name",

}
...

Map Data to Method Response Headers
Method response header parameters can be mapped from any integration response header or from the
integration response body.

Method response header mapping expressions

Mapped Data Source Mapping expression

Integration response header integration.response.header.PARAM_NAME

Integration response body integration.response.body

132

http://goessner.net/articles/JsonPath/index.html#e2

Amazon API Gateway Developer Guide
Transform Request and Response Bodies

Mapped Data Source Mapping expression

Integration response body (JsonPath) integration.response.body.JSONPath_EXPRESSION

Stage variable stageVariables.VARIABLE_NAME

Context variable context.VARIABLE_NAME that must be one of
the supported context variables (p. 134).

Static value 'STATIC_VALUE'. The STATIC_VALUE is a
string literal and must be enclosed within a pair of
single quotes.

Example data mapping from integration response in Swagger

The following example shows a Swagger snippet that maps 1) the integration response's
redirect.url, JSONPath field into the request response's location header; and 2) the integration
response's x-app-id header to the method response's id header.

...
"responseParameters" : {

 "method.response.header.location" :
 "integration.response.body.redirect.url",
 "method.response.header.id" : "integration.response.header.x-app-id",

}
...

Transform Request and Response Bodies
Integration request and method response bodies can be transformed from the method request
and integration response bodies, respectively, by using Mapping Templates (p. 109) written in
Velocity Template Language (VTL). JSON data can be manipulated using VTL logic and JSONPath
expressions, and additional data can be included from HTTP parameters, the calling context, and stage
variables.

Select Mapping Templates

The request mapping template used to transform the method request body into the integration request
body is selected by the value of the "Content-Type" header sent in the client request.

The response mapping template used to transform the integration response body into the method
response body is selected by the value of the "Accept" header sent in the client request.

For example, if the client sends headers of "Content-Type : application/xml", and
"Accept : application/json", the request template with the application/xml key will be
used for the integration request, and the response template with the application/json key will be
used for the method response.

Only the MIME type is used from the Accept and Content-Type headers when selecting a mapping
template. For example, a header of "Content-Type: application/json; charset=UTF-8" will
have a request template with the application/json key selected.

133

http://velocity.apache.org/engine/devel/vtl-reference-guide.html

Amazon API Gateway Developer Guide
Request and Response Payload-Mapping Reference

API Gateway API Request and Response
Payload-Mapping Template Reference

Amazon API Gateway defines a set of variables for working with models and mapping templates. This
document describes those functions and provides examples for working with input payloads.

Topics

• Accessing the $context Variable (p. 134)

• Accessing the $input Variable (p. 136)

• Accessing the $stageVariables Variable (p. 139)

• Accessing the $util Variable (p. 139)

• Integration Passthrough Behaviors (p. 140)

Accessing the $context Variable
The $context variable holds all the contextual information of your API call.

$context Variable Reference

Parameter Description

$context.apiId The identifier API Gateway assigns to your API.

$context.authorizer.claims.property A property of the claims returned from the
Amazon Cognito user pool after the method
caller is successfully authenticated.

Note
Calling
$context.authorizer.claims
returns null.

$context.authorizer.principalId The principal user identification associated with
the token sent by the client and returned from
an API Gateway custom authorizer Lambda
function.

$context.authorizer.property The value of the specified key-value pair
of the context map returned from an API
Gateway custom authorizer Lambda function. For
example, if the authorizer returns the following
context map:

"context" : {
 "key": "value",
 "numKey": 1,
 "boolKey": true
}

calling $context.authorizer.key
returns value, calling
$context.authorizer.numKey returns 1,
and calling $context.authorizer.boolKey
returns true.

134

Amazon API Gateway Developer Guide
Accessing the $context Variable

Parameter Description

$context.httpMethod The HTTP method used. Valid values include:
DELETE, GET, HEAD, OPTIONS, PATCH, POST,
and PUT.

$context.identity.accountId The AWS account ID associated with the
request.

$context.identity.apiKey The API owner key associated with your API.

$context.identity.caller The principal identifier of the caller making the
request.

$context.identity.cognitoAuthenticationProviderThe Amazon Cognito authentication provider
used by the caller making the request. Available
only if the request was signed with Amazon
Cognito credentials.

For information related to this and the other
Amazon Cognito $context variables, see
Amazon Cognito Identity.

$context.identity.cognitoAuthenticationTypeThe Amazon Cognito authentication type of
the caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

$context.identity.cognitoIdentityId The Amazon Cognito identity ID of the caller
making the request. Available only if the request
was signed with Amazon Cognito credentials.

$context.identity.cognitoIdentityPoolIdThe Amazon Cognito identity pool ID of the caller
making the request. Available only if the request
was signed with Amazon Cognito credentials.

$context.identity.sourceIp The source IP address of the TCP connection
making the request to API Gateway.

$context.identity.user The principal identifier of the user making the
request.

$context.identity.userAgent The User Agent of the API caller.

$context.identity.userArn The Amazon Resource Name (ARN) of the
effective user identified after authentication.

$context.requestId An automatically generated ID for the API call.

$context.resourceId The identifier API Gateway assigns to your
resource.

$context.resourcePath The path to your resource. For more information,
see Build an API Gateway API to Expose an
HTTP Endpoint (p. 6).

$context.stage The deployment stage of the API call (for
example, Beta or Prod).

135

http://docs.aws.amazon.com/cognito/devguide/identity/

Amazon API Gateway Developer Guide
Accessing the $input Variable

Example

You may want to use the $context variable if you're using AWS Lambda as the target backend
that the API method calls. For example, you may want to perform two different actions depending on
whether the stage is in Beta or in Prod.

Context Variables Template Example

The following example shows how to get context variables:

{
 "stage" : "$context.stage",
 "request_id" : "$context.requestId",
 "api_id" : "$context.apiId",
 "resource_path" : "$context.resourcePath",
 "resource_id" : "$context.resourceId",
 "http_method" : "$context.httpMethod",
 "source_ip" : "$context.identity.sourceIp",
 "user-agent" : "$context.identity.userAgent",
 "account_id" : "$context.identity.accountId",
 "api_key" : "$context.identity.apiKey",
 "caller" : "$context.identity.caller",
 "user" : "$context.identity.user",
 "user_arn" : "$context.identity.userArn"
}

Accessing the $input Variable
The $input variable represents the input payload and parameters to be processed by your template. It
provides four functions:

Function Reference

Variable and Function Description

$input.body Returns the raw payload as a string.

$input.json(x) This function evaluates a JSONPath expression
and returns the results as a JSON string.

For example, $input.json('$.pets') will
return a JSON string representing the pets
structure.

For more information about JSONPath, see
JSONPath or JSONPath for Java.

$input.params() Returns a map of all the request parameters of
your API call.

$input.params(x) Returns the value of a method request parameter
from the path, query string, or header value (in
that order) given a parameter name string x.

$input.path(x) Takes a JSONPath expression string (x) and
returns an object representation of the result.
This allows you to access and manipulate

136

http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Amazon API Gateway Developer Guide
Accessing the $input Variable

Variable and Function Description

elements of the payload natively in Apache
Velocity Template Language (VTL).

For example,
$input.path('$.pets').size()

For more information about JSONPath, see
JSONPath or JSONPath for Java.

Examples

You may want to use the $input variable to get query strings and the request body with or without
using models. You may also want to get the parameter and the payload, or a subsection of the
payload, into your AWS Lambda function. The examples below show how to do this.

Example JSON Mapping Template

The following example shows how to use a mapping to read a name from the query string and then
include the entire POST body in an element:

{
 "name" : "$input.params('name')",
 "body" : $input.json('$')
}

If the JSON input contains unescaped characters that cannot be parsed by JavaScript, a 400 response
may be returned. Applying $util.escapeJavaScript($input.json('$')) above will ensure that
the JSON input can be parsed properly.

Example Inputs Mapping Template

The following example shows how to pass a JSONPath expression to the json() method. You could
also read a specific property of your request body object by using a period (.), followed by your
property name:

{
 "name" : "$input.params('name')",
 "body" : $input.json('$.mykey')
}

If a method request payload contains unescaped characters that cannot be parsed by JavaScript, you
may get 400 response. In this case, you need to call $util.escapeJavaScript() function in the
mapping template, as shown as follows:

{
 "name" : "$input.params('name')",
 "body" : $util.escapeJavaScript($input.json('$.mykey'))
}

Param Mapping Template Example

The following parameter-mapping example passes all parameters, including path, querystring and
header, through to the integration endpoint via a JSON payload

137

http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Amazon API Gateway Developer Guide
Accessing the $input Variable

#set($allParams = $input.params())
{
 "params" : {
 #foreach($type in $allParams.keySet())
 #set($params = $allParams.get($type))
 "$type" : {
 #foreach($paramName in $params.keySet())
 "$paramName" : "$util.escapeJavaScript($params.get($paramName))"
 #if($foreach.hasNext),#end
 #end
 }
 #if($foreach.hasNext),#end
 #end
 }
}

In effect, this mapping template outputs all the request parameters in the payload as outlined as
follows:

{
 "parameters" : {
 "path" : {
 "path_name" : "path_value",
 ...
 }
 "header" : {
 "header_name" : "header_value",
 ...
 }
 'querystring" : {
 "querystring_name" : "querystring_value",
 ...
 }
 }
}

Example Request and Response

Here’s an example that uses all three functions:

Request Template:

Resource: /things/{id}

With input template:
{
 "id" : "$input.params('id')",
 "count" : "$input.path('$.things').size()",
 "things" : $util.escapeJavaScript($input.json('$.things'))
}

POST /things/abc
{
 "things" : {
 "1" : {},
 "2" : {},

138

Amazon API Gateway Developer Guide
Accessing the $stageVariables Variable

 "3" : {}
 }
}

Response:

{
 "id": "abc",
 "count": "3",
 "things": {
 "1": {},
 "2": {},
 "3": {}
 }
}

For more mapping examples, see Set Up Payload Mappings (p. 105)

Accessing the $stageVariables Variable
The syntax for inserting a stage variable looks like this: $stageVariables.

$stageVariables Reference

Syntax Description

$stageVariables.<variable_name> <variable_name> represents a stage variable
name.

$stageVariables['<variable_name>'] <variable_name> represents any stage
variable name.

${stageVariables['<variable_name>']} <variable_name> represents any stage
variable name.

Accessing the $util Variable
The $util variable contains utility functions for use in mapping templates.

Note
Unless otherwise specified, the default character set is UTF-8.

$util Variable Reference

Function Description

$util.escapeJavaScript() Escapes the characters in a string using
JavaScript string rules.

Note
This function will turn any regular single
quotes (') into escaped ones (\').
However, the escaped single quotes
are not valid in JSON. Thus, when the
output from this function is used in

139

Amazon API Gateway Developer Guide
Integration Passthrough Behaviors

Function Description

a JSON property, you must turn any
escaped single quotes (\') back to
regular single quotes ('). This is shown
in the following example:

 $util.escapeJavaScript(data).replaceAll("\
\'","'")

$util.parseJson() Takes "stringified" JSON and returns an object
representation of the result. You can use
the result from this function to access and
manipulate elements of the payload natively in
Apache Velocity Template Language (VTL). For
example, if you have the following payload:

{"errorMessage":"{\"key1\":\"var1\",
\"key2\":{\"arr\":[1,2,3]}}"}

and use the following mapping template

#set ($errorMessageObj =
 $util.parseJson($input.path('$.errorMessage')))
{
 "errorMessageObjKey2ArrVal" :
 $errorMessageObj.key2.arr[0]
}

You will get the following output:

{
 "errorMessageObjKey2ArrVal" : 1
}

$util.urlEncode() Converts a string into "application/x-www-form-
urlencoded" format.

$util.urlDecode() Decodes an "application/x-www-form-
urlencoded" string.

$util.base64Encode() Encodes the data into a base64-encoded string.

$util.base64Decode() Decodes the data from a base64-encoded string.

Integration Passthrough Behaviors
When a method request carries a payload and either the Content-Type header does not match any
specified mapping template or no mapping template is defined, you can choose to pass the client
supplied request payload through the integration request to the back end without transformation. The
process is known as integration passthrough. The actual passthrough behavior of an incoming request
is determined by the option you choose for a specified mapping template, during integration request
set-up (p. 75), and the Content Type header that a client set in the incoming request. The following
examples illustrate the possible passthrough behaviors.

140

Amazon API Gateway Developer Guide
Import and Export API

Example 1: One mapping template is defined in the integration request for the application/json
content type.

Content-Type
header\Selected
passthrough option

WHEN_NO_MATCH WHEN_NO_TEMPLATE NEVER

None (default to
application/json

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

application/json The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

application/xml The request payload
is not transformed and
is sent to the back end
as-is.

The request is rejected
with an HTTP 415
Unsupported Media
Type response.

The request is rejected
with an HTTP 415
Unsupported Media
Type response.

Example 2: One mapping template is defined in the integration request for the application/xml
content type.

Content-Type
header\Selected
passthrough option

WHEN_NO_MATCH WHEN_NO_TEMPLATE NEVER

None (default to
application/json

The request payload
is not transformed and
is sent to the back end
as-is.

The request is rejected
with an HTTP 415
Unsupported Media
Type response.

The request is rejected
with an HTTP 415
Unsupported Media
Type response.

application/json The request payload
is not transformed and
is sent to the back end
as-is.

The request is rejected
with an HTTP 415
Unsupported Media
Type response.

The request is rejected
with an HTTP 415
Unsupported Media
Type response.

application/xml The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

Import and Export API Gateway API with Swagger
Definition Files

As an alternative to using the Amazon API Gateway console to create and update your API, you
can use the API Gateway Import API feature to upload API definitions into API Gateway from
external API definition files, such as those using the Swagger specification with the API Gateway
extensions (p. 147).

After an API is created and configured in API Gateway, you can download it as a Swagger definition
file using the Amazon API Gateway Export API. The API Gateway console has enabled this feature for
you to export an API using intuitive visual interfaces.

Topics

• Import an API into API Gateway (p. 142)

141

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

Amazon API Gateway Developer Guide
Import an API

• Export an API from API Gateway (p. 145)

• API Gateway Extensions to Swagger (p. 147)

Import an API into API Gateway
You can use the API Gateway Import API feature to import an API from an external definition file into
API Gateway. Currently, the Import API feature supports Swagger v2.0 definition files.

With the Import API, you can either create a new API by submitting a POST request that includes a
definition as the payload, or you can update an existing API by using a PUT request that contains
a definition in the payload. You can update an API by overwriting it with a new definition, or merge
a definition with an existing API. You specify the options in the request URL using a mode query
parameter.

Note
For RAML API definitions, you can continue to use API Gateway Importer.

Besides making explicit calls to the REST API, as described below, you can also use the Import API
feature in the API Gateway console. The option is available as an item in the Actions drop-down
menu. For an example of using the Import API feature from the API Gateway console, see Create an
API Gateway API from an Example (p. 7).

Use the Import API to Create a New API
To use the Import API feature to create a new API, POST your API definition file to https://
apigateway.<region>.amazonaws.com/restapis?mode=import. This request results in a new
RestApi, along with Resources, Models, and other items defined in the definition file.

The following code snippet shows an example of the POST request with the payload of a JSON-
formatted Swagger definition:

POST /restapis?mode=import
Host:apigateway.<region>.amazonaws.com
Content-Type: application/json
Content-Length: ...

Swagger API definition in JSON (p. 356)

Use the Import API to Update an Existing API
You can use the Import API feature to update an existing API when there are aspects of that API you
would like to preserve, such as stages and stage variables, or references to the API from API Keys.

An API update can occur in two modes: merge or overwrite. Merging an API is useful when you have
decomposed your external API definitions into multiple, smaller parts and only want to apply changes
from one of those parts at a time. For example, this might occur if multiple teams are responsible for
different parts of an API and have changes available at different rates. In this mode, items from the
existing API that are not specifically defined in the imported definition will be left alone.

Overwriting an API is useful when an external API definition contains the complete definition of an API.
In this mode, items from an existing API that are not specifically defined in the imported definition will
be deleted.

To merge an API, submit a PUT request to https://apigateway.<region>.amazonaws.com/
restapis/<restapi_id>?mode=merge. The restapi_id path parameter value specifies the API
to which the supplied API definition will be merged.

142

http://swagger.io/specification/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference//link-relation/restapi-put/
https://github.com/awslabs/aws-apigateway-importer

Amazon API Gateway Developer Guide
Import an API

The following code snippet shows an example of the PUT request to merge a Swagger API definition in
JSON, as the payload, with the specified API already in API Gateway.

PUT /restapis/<restapi_id>?mode=merge
Host:apigateway.<region>.amazonaws.com
Content-Type: application/json
Content-Length: ...

A Swagger API definition in JSON (p. 356)

The merging update operation takes two complete API definitions and merges them together. For a
small and incremental change, you can use the resource update operation.

To overwrite an API, submit a PUT request to https://apigateway.<region>.amazonaws.com/
restapis/<restapi_id>?mode=overwrite. The restapi_id path parameter specifies the API
that will be overwritten with the supplied API definitions.

The following code snippet shows an example of an overwriting request with the payload of a JSON-
formatted Swagger definition:

PUT /restapis/<restapi_id>?mode=overwrite
Host:apigateway.<region>.amazonaws.com
Content-Type: application/json
Content-Length: ...

A Swagger API definition in JSON (p. 356)

When the mode query parameter is not specified, merge is assumed.

Note
The PUT operations are idempotent, but not atomic. That means if a system error occurs part
way through processing, the API can end up in a bad state. However, repeating the operation
will put the API into the same final state as if the first operation had succeeded.

Swagger basePath

In Swagger, you can use the basePath property to provide one or more path parts that precede each
path defined in the paths property. Because API Gateway has several ways to express a resource’s
path, the Import API feature provides three options for interpreting the basePath property during an
import:

ignore

If the Swagger file has a basePath value of "/a/b/c" and the paths property contains "/e" and "/
f", the following POST or PUT request:

POST /restapis?mode=import&basepath=ignore

PUT /restapis/api_id?basepath=ignore

143

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-update/
http://swagger.io/specification/

Amazon API Gateway Developer Guide
Import an API

will result in the following resources in the API:

• /

• /e

• /f

The effect is to treat the basePath as if it was not present, and all of the declared API resources are
served relative to the host. This can be used, for example, when you have a custom domain name with
an API mapping that does not include a Base Path and a Stage value that refers to your production
stage.

Note
API Gateway will automatically create a root resource for you, even if it is not explicitly
declared in your definition file.

prepend

If the Swagger file has a basePath value of "/a/b/c" and the paths property contains "/e" and "/
f", the following POST or PUT request:

POST /restapis?mode=import&basepath=prepend

PUT /restapis/api_id?basepath=prepend

will result in the following resources in the API:

• /

• /a

• /a/b

• /a/b/c

• /a/b/c/e

• /a/b/c/f

The effect is to treat the basePath as specifying additional resources (without methods) and to
add them to the declared resource set. This can be used, for example, when different teams are
responsible for different parts of an API and the basePath could reference the path location for each
team's API part.

Note
API Gateway will automatically create intermediate resources for you, even if they are not
explicitly declared in your definition.

split

If the Swagger file has a basePath value of "/a/b/c" and the paths property contains "/e" and "/
f", the following POST or PUT request:

POST /restapis?mode=import&basepath=split

PUT /restapis/api_id?basepath=split

144

Amazon API Gateway Developer Guide
Export an API

will result in the following resources in the API:

• /

• /b

• /b/c

• /b/c/e

• /b/c/f

The effect is to treat top-most path part, "/a", as the beginning of each resource's path, and to create
additional (no method) resources within the API itself. This could, for example, be used when "a" is a
stage name that you want to expose as part of your API.

Errors during Import

During the import, errors can be generated for major issues like an invalid Swagger document. Errors
are returned as exceptions (e.g., BadRequestException) in an unsuccessful response. When an
error occurs, the new API definition is discarded and no change is made to the existing API.

Warnings during Import

During the import, warnings can be generated for minor issues like a missing model reference. If
a warning occurs, the operation will continue if the failonwarnings=false query expression
is appended to the request URL. Otherwise, the updates will be rolled back. By default,
failonwarnings is set to false. In such cases, warnings are returned as a field in the resulting
RestApi resource. Otherwise, warnings are returned as a message in the exception.

Export an API from API Gateway
Once you created and configured an API in API Gateway, using the API Gateway console or
otherwise, you can export it to a Swagger file using the API Gateway Export API, which is part of
the Amazon API Gateway Control Service. You have options to include the API Gateway integration
extensions, as well as the Postman extensions, in the exported Swagger definition file.

You cannot export an API if its payloads are not of the application/json type. If you try, you will get
an error response stating that JSON body models are not found.

Request to Export an API

With the Export API, you export an existing API by submitting a GET request, specifying the to-be-
exported API as part of URL paths. The request URL is of the following format:

 https://<host>/restapis/<restapi_id>/stages/<stage_name>/exports/swagger

You can append the extensions query string to specify whether to include API Gateway extensions
(with the integration value) or Postman extensions (with the postman value).

In addition, you can set the Accept header to application/json or application/yaml to receive
the API definition output in JSON or YAML format, respectively.

For more information about submitting GET requests using the API Gateway Export API, see Making
HTTP Requests.

145

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://www.getpostman.com
http://docs.aws.amazon.com/apigateway/api-reference/making-http-requests
http://docs.aws.amazon.com/apigateway/api-reference/making-http-requests

Amazon API Gateway Developer Guide
Export an API

Note
If you define models in your API, they must be for the content type of "application/json" for API
Gateway to export the model. Otherwise, API Gateway throws an exception with the "Only
found non-JSON body models for ..." error message.

Download API Swagger Definition in JSON

To export and download an API in Swagger definitions in JSON format:

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger
Host: apigateway.<region>.amazonaws.com
Accept: application/json

Here, <region> could be, for example, us-east-1. For all the regions where API Gateway is
available, see Regions and Endpoints

Download API Swagger Definition in YAML

To export and download an API in Swagger definitions in YAML format:

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger
Host: apigateway.<region>.amazonaws.com
Accept: application/yaml

Download API Swagger Definition with Postman Extensions in
JSON

To export and download an API in Swagger definitions with the Postman extension in JSON format:

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger?
extensions=postman
Host: apigateway.<region>.amazonaws.com
Accept: application/json

Download API Swagger Definition with API Gateway
Integration in YAML

To export and download an API in Swagger definitions with API Gateway integration in YAML format:

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger?
extensions=integration
Host: apigateway.<region>.amazonaws.com

146

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Accept: application/yaml

Export API Using the API Gateway Console

From the stage configuration page in the API Gateway console, choose the Export tab and then one
of the available options (Export as Swagger, Export as Swagger + API Gateway Integrations and
Export as Postman) to download your API's Swagger definition.

API Gateway Extensions to Swagger
The API Gateway extensions support the AWS-specific authorization and API Gateway-specific API
integrations. In this section, we will describe the API Gateway extensions to the Swagger specification.

Tip
To understand how the API Gateway extensions are used in an app, you can use the
API Gateway console to create an API and export it to a Swagger definition file. For more
information on how to export an API, see Export an API (p. 145).

Topics

• x-amazon-apigateway-any-method Object (p. 148)

• x-amazon-apigateway-authorizer Object (p. 148)

• x-amazon-apigateway-authtype Property (p. 150)

• x-amazon-apigateway-binary-media-types Property (p. 151)

• x-amazon-apigateway-documentation Object (p. 151)

• x-amazon-apigateway-integration Object (p. 152)

• x-amazon-apigateway-integration.requestTemplates Object (p. 154)

• x-amazon-apigateway-integration.requestParameters Object (p. 155)

• x-amazon-apigateway-integration.responses Object (p. 156)

• x-amazon-apigateway-integration.response Object (p. 157)

• x-amazon-apigateway-integration.responseTemplates Object (p. 158)

• x-amazon-apigateway-integration.responseParameters Object (p. 159)

147

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

x-amazon-apigateway-any-method Object

Specifies the Swagger Operation Object for the API Gateway catch-all ANY method in a Swagger Path
Item Object. This object can exist alongside other Operation objects and will catch any HTTP method
that was not explicitly declared.

The following table lists the properties extended by API Gateway. For the other Swagger Operation
properties, see the Swagger specification.

Properties

Property Name Type Description

x-amazon-apigateway-
integration

x-amazon-apigateway-
integration (p. 152)

Specifies the integration of
the method with the back end.
This is an extended property
of the Swagger Operation
object. The integration can be
of type AWS, AWS_PROXY, HTTP,
HTTP_PROXY, or MOCK.

x-amazon-apigateway-any-method Example

The following example integrates the ANY method on a proxy resource, {proxy+}, with a Lambda
function, TestSimpleProxy.

 "/{proxy+}": {
 "x-amazon-apigateway-any-method": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "proxy",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {},
 "x-amazon-apigateway-integration": {
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:123456789012:function:TestSimpleProxy/
invocations",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST",
 "type": "aws_proxy"
 }

x-amazon-apigateway-authorizer Object

Defines a custom authorizer to be applied for authorization of method invocations in API Gateway. This
object is an extended property of the Swagger Security Definitions Operation object.

148

http://swagger.io/specification/#operationObject
http://swagger.io/specification/#pathItemObject
http://swagger.io/specification/#pathItemObject
http://swagger.io/specification/#operationObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityDefinitionsObject

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Properties

Property Name Type Description

type string The type of the authorizer. This
is a required property and the
value must be "token".

authorizerUri string The Uniform Resource Identifier
(URI) of the authorizer (a
Lambda function). For example,

"arn:aws:apigateway:us-
east-1:lambda:path/2015-03-31/
functions/
arn:aws:lambda:us-
east-1:account-
id:function:auth_function_name/
invocations"

authorizerCredentials string Credentials required for
the authorizer, if any, in the
form of an ARN of an IAM
execution role. For example,
"arn:aws:iam::account-
id:IAM_role".

identityValidationExpression string A regular expression for
validating the incoming identity.
For example, "^x-[a-z]+".

authorizerResultTtlInSeconds string The number of seconds during
which the resulting IAM policy is
cached.

x-amazon-apigateway-authorizer Example

The following Swagger security definitions example specifies a custom authorizer named test-
authorizer.

 "securityDefinitions" : {
 "test-authorizer" : {
 "type" : "apiKey", // Required and the value
 must be "apiKey" for an API Gateway API.
 "name" : "Authorization", // The source header name
 identifying this authorizer.
 "in" : "header", // Required and the value
 must be "header" for an AAPI Gateway API.
 "x-amazon-apigateway-authtype" : "oauth2", // Specifies the
 authorization mechanism for the client.
 "x-amazon-apigateway-authorizer" : { // An API Gateway custom
 authorizer definition
 "type" : "token", // Required property and the
 value must "token"

149

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

 "authorizerUri" : "arn:aws:apigateway:us-
east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-east-1:account-
id:function:function-name/invocations",
 "authorizerCredentials" : "arn:aws:iam::account-id:role",
 "identityValidationExpression" : "^x-[a-z]+",
 "authorizerResultTtlInSeconds" : 60
 }
 }
 }

The following Swagger operation object snippet sets the GET /http to use the custom authorizer
specified above.

 "/http" : {
 "get" : {
 "responses" : { },
 "security" : [{
 "test-authorizer" : []
 }],
 "x-amazon-apigateway-integration" : {
 "type" : "http",
 "responses" : {
 "default" : {
 "statusCode" : "200"
 }
 },
 "httpMethod" : "GET",
 "uri" : "http://api.example.com"
 }
 }
 }

x-amazon-apigateway-authtype Property
Specify the type of a custom authorizer. It is parsed by the API Gateway API import and export
features.

This property is an extended property of the Swagger Security Definitions Operation object.

x-amazon-apigateway-authtype Example

The following example sets the type of a custom authorizer using OAuth 2.

 "cust-authorizer" : {
 "type" : "...", // required
 "name" : "...", // name of the identity source header
 "in" : "header", // must be header
 "x-amazon-apigateway-authtype" : "oauth2", // Specifies the
 authorization mechanism for the client.
 "x-amazon-apigateway-authorizer" : {
 ...
 }
 }

150

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityDefinitionsObject

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

The following security definition example specifies authorization using AWS Signature Version 4:

 "sigv4" : {
 "type" : "apiKey",
 "name" : "Authorization",
 "in" : "header",
 "x-amazon-apigateway-authtype" : "awsSigv4"
 }

x-amazon-apigateway-binary-media-types Property
Specifies the list of binary media types to be supported by API Gateway, such as application/
octet-stream, image/jpeg, etc. This extension is a JSON Array.

x-amazon-apigateway-binary-media-types Example

The following example shows the encoding lookup order of an API.

"x-amazon-apigateway-binary-media-types: ["application/octet", "image/
jpeg"]

x-amazon-apigateway-documentation Object
Defines the documentation parts to be imported into API Gateway. This object is a JSON object
containing an array of the DocumentationPart instances.

Properties

Property Name Type Description

documentationParts Array An array of the exported or
imported DocumentationPart
instances.

version String The version identifier of the
snapshot of the exported
documentation parts.

x-amazon-apigateway-documentation Example

The following example of the API Gateway extension to Swagger defines DocumentationParts
instances to be imported to or exported from an API in API Gateway.

{ ...
 "x-amazon-apigateway-documentation": {
 "version": "1.0.3",
 "documentationParts": [
 {
 "location": {
 "type": "API"
 },
 "properties": {
 "description": "api description",
 "info": {

151

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

 "description": "api info description 4",
 "version": "api info version 3"
 }
 }
 },
 {
 … // Another DocumentationPart instance
 }
]
 }
}

x-amazon-apigateway-integration Object
Specifies details of the back-end integration used for this method. This extension is an extended
property of the Swagger Operation object. The result is an API Gateway integration object.

Properties

Property Name Type Description

type string The type of integration with the
specified back end. The valid
value is http (for integration
with an HTTP back end) or
aws (for integration with AWS
Lambda functions or other AWS
services, such as DynamoDB,
SNS or SQS).

contentHandling string Request payload encoding
conversion types. Valid values
are 1) CONVERT_TO_TEXT, for
converting a binary payload
into a Base64-encoded string
or converting a text payload
into a utf-8-encoded string or
passing through the text payload
natively without modification,
and 2) CONVERT_TO_BINARY,
for converting a text payload
into Base64-decoded blob
or passing through a binary
payload natively without
modification.

uri string The endpoint URI of the back
end. For integrations of the aws
type, this is an ARN value. For
the HTTP integration, this is
the URL of the HTTP endpoint
including the https or http
scheme.

httpMethod string The HTTP method used in the
integration request. For Lambda
function invocations, the value
must be POST.

152

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Property Name Type Description

credentials string For AWS IAM role-based
credentials, specify the ARN
of an appropriate IAM role. If
unspecified, credentials will
default to resource-based
permissions that must be added
manually to allow the API to
access the resource. For more
information, see Granting
Permissions Using a Resource
Policy. Note: when using IAM
credentials, please ensure that
AWS STS regional endpoints
are enabled for the region where
this API is deployed for best
performance.

requestTemplates x-amazon-apigateway-
integration.requestTemplates (p. 154)

Mapping templates for a request
payload of specified MIME
types.

requestParameters x-amazon-apigateway-
integration.requestParameters (p. 155)

Specifies mappings from
method request parameters to
integration request parameters.
Supported request parameters
are querystring, path,
header, and body.

cacheNamespace string An API-specific tag group of
related cached parameters.

cacheKeyParameters An array of string A list of request parameters
whose values are to be cached.

responses x-amazon-apigateway-
integration.responses (p. 156)

Defines the method's responses
and specifies desired parameter
mappings or payload mappings
from integration responses to
method responses.

x-amazon-apigateway-integration Example

The following example integrates an API's POST method with a Lambda function in the back end.
For demonstration purposes, the sample mapping templates shown in requestTemplates and
responseTemplates of the examples below are assumed to apply to the following JSON-formatted
payload: { "name":"value_1", "key":"value_2", "redirect": {"url" :"..."} } to
generate a JSON output of { "stage":"value_1", "user-id":"value_2" } or an XML output
of <stage>value_1</stage>.

"x-amazon-apigateway-integration" : {
 "type" : "aws",
 "uri" : "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:012345678901:function:HelloWorld/invocations",
 "httpMethod" : "POST",

153

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

 "credentials" : "arn:aws:iam::012345678901:role/apigateway-invoke-lambda-
exec-role",
 "requestTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage
\": \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>
$root.name</stage> "
 },
 "requestParameters" : {
 "integration.request.path.stage" :
 "method.request.querystring.version",
 "integration.request.querystring.provider" :
 "method.request.querystring.vendor"
 },
 "cacheNamespace" : "cache namespace",
 "cacheKeyParameters" : [],
 "responses" : {
 "2\\d{2}" : {
 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.requestId" :
 "integration.response.header.cid"
 },
 "responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage
\": \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>
$root.name</stage> "
 }
 },
 "302" : {
 "statusCode" : "302",
 "responseParameters" : {
 "method.response.header.Location" :
 "integration.response.body.redirect.url"
 }
 },
 "default" : {
 "statusCode" : "400",
 "responseParameters" : {
 "method.response.header.test-method-response-header" :
 "'static value'"
 }
 }
 }
}

Note that double quotes (") of the JSON string in the mapping templates must be string-escaped (\").

x-amazon-apigateway-integration.requestTemplates Object

Specifies mapping templates for a request payload of the specified MIME types.

154

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Properties

Property Name Type Description

MIME type string An example of the MIME type
is application/json. For
information about creating a
mapping template, see Mapping
Templates (p. 109).

x-amazon-apigateway-integration.requestTemplates Example

The following example sets mapping templates for a request payload of the application/json and
application/xml MIME types.

"requestTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
 \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</
stage> "
}

x-amazon-apigateway-integration.requestParameters Object

Specifies mappings from named method request parameters to integration request parameters. The
method request parameters must be defined before being referenced.

Properties

Property Name Type Description

integration.request.<param-
type>.<param-name>

string The value must be a predefined
method request parameter of the
method.request.<param-
type>.<param-name> format,
where <param-type> can
be querystring, path,
header, or body. For the body
parameter, the <param-name>
is a JSON path expression
without the $. prefix.

x-amazon-apigateway-integration.requestParameters Example

The following request parameter mappings example translates a method request's query (version),
header (x-user-id) and path (service) parameters to the integration request's query (stage),
header (x-userid), and path parameters (op), respectively.

"requestParameters" : {
 "integration.request.querystring.stage" :
 "method.request.querystring.version",

155

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

 "integration.request.header.x-userid" : "method.request.header.x-user-
id",
 "integration.request.path.op" : "method.request.path.service"
},

x-amazon-apigateway-integration.responses Object

Defines the method's responses and specifies parameter mappings or payload mappings from
integration responses to method responses.

Properties

Property Name Type Description

Response status pattern x-amazon-apigateway-
integration.response (p. 157)

Selection regular expression
used to match the integration
response to the method
response. For HTTP
integrations, this regex applies
to the integration response
status code. For Lambda
invocations, the regex applies
to the errorMessage field of
the error information object
returned by AWS Lambda as
a failure response body when
the Lambda function execution
throws an exception.

Note
The Response
status pattern
property name refers to
a response status code
or regular expression
describing a group of
response status codes.
It does not correspond
to any identifier of an
IntegrationResponse
resource in the API
Gateway REST API.

x-amazon-apigateway-integration.responses Example

The following example shows a list of responses from 2xx and 302 responses. For the 2xx response,
the method response is mapped from the integration response's payload of the application/json
or application/xml MIME type. This response uses the supplied mapping templates. For the
302 response, the method response returns a Location header whose value is derived from the
redirect.url property on the integration response's payload.

"responses" : {

156

url-lam-dev;nodejs-prog-mode-exceptions.html
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

 "2\\d{2}" : {
 "statusCode" : "200",
 "responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
 \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>
$root.name</stage> "
 }
 },
 "302" : {
 "statusCode" : "302",
 "responseParameters" : {
 "method.response.header.Location":
 "integration.response.body.redirect.url"
 }
 }
}

x-amazon-apigateway-integration.response Object

Defines a response and specifies parameter mappings or payload mappings from the integration
response to the method response.

Properties

Property Name Type Description

statusCode string HTTP status code for the
method response; for example,
"200". This must correspond
to a matching response in the
Swagger Operation responses
field.

responseTemplates x-amazon-apigateway-
integration.responseTemplates (p. 158)

Specifies MIME type-specific
mapping templates for the
response’s payload.

responseParameters x-amazon-apigateway-
integration.responseParameters (p. 159)

Specifies parameter mappings
for the response. Only the
header and body parameters
of the integration response
can be mapped to the header
parameters of the method.

contentHandling string Response payload encoding
conversion types. Valid values
are 1) CONVERT_TO_TEXT, for
converting a binary payload
into a Base64-encoded string
or converting a text payload
into a utf-8-encoded string or
passing through the text payload
natively without modification,
and 2) CONVERT_TO_BINARY,
for converting a text payload

157

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Property Name Type Description

into Base64-decoded blob
or passing through a binary
payload natively without
modification.

x-amazon-apigateway-integration.response Example

The following example defines a 302 response for the method that derives a payload of the
application/json or application/xml MIME type from the back end. The response uses the
supplied mapping templates and returns the redirect URL from the integration response in the method's
Location header.

{
 "statusCode" : "302",
 "responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
 \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>
$root.name</stage> "
 },
 "responseParameters" : {
 "method.response.header.Location":
 "integration.response.body.redirect.url"
 }
}

x-amazon-apigateway-integration.responseTemplates Object

Specifies mapping templates for a response payload of the specified MIME types.

Properties

Property Name Type Description

MIME type string Specifies a mapping template
to transform the integration
response body to the method
response body for a given
MIME type. For information
about creating a mapping
template, see Mapping
Templates (p. 109). An
example of the MIME type is
application/json.

x-amazon-apigateway-integration.responseTemplate Example

The following example sets mapping templates for a request payload of the application/json and
application/xml MIME types.

158

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

"responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
 \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</
stage> "
}

x-amazon-apigateway-integration.responseParameters Object

Specifies mappings from integration method response parameters to method response parameters.
Only the header and body types of the integration response parameters can be mapped to the
header type of the method response.

Properties

Property Name Type Description

method.response.header.<param-
name>

string The named parameter value can
be derived from the header and
body types of the integration
response parameters only.

x-amazon-apigateway-integration.responseParameters Example

The following example maps body and header parameters of the integration response to two header
parameters of the method response.

"responseParameters" : {
 "method.response.header.Location" :
 "integration.response.body.redirect.url",
 "method.response.header.x-user-id" : "integration.response.header.x-
userid"
}

159

Amazon API Gateway Developer Guide
Use IAM Permissions

Controlling Access in API Gateway

API Gateway supports multiple mechanisms of access control, including metering or tracking API
uses by clients using API keys. The standard AWS IAM roles and policies offer flexible and robust
access controls that can be applied to an entire API set or individual methods. Custom authorizers and
Amazon Cognito user pools provide customizable authorization and authentication solutions.

Topics

• Use IAM Permissions to Access API Gateway API (p. 160)

• Enable CORS for an API Gateway Resource (p. 170)

• Use Amazon API Gateway Custom Authorizers (p. 174)

• Use Amazon Cognito Your User Pool (p. 182)

• Use Client-Side SSL Certificates for Authentication by the Back End (p. 186)

• API Gateway-Supported Certificate Authorities for HTTP and HTTP Proxy Integrations (p. 189)

• Create and Use API Gateway Usage Plans (p. 212)

Use IAM Permissions to Access API Gateway API
Topics

• Control Access to API Gateway with IAM Policies (p. 160)

• Create and Attach a Policy to an IAM User (p. 162)

• Statement Reference of IAM Policies for Managing API in API Gateway (p. 163)

• Statement Reference of IAM Policies for Executing API in API Gateway (p. 164)

• IAM Policy Examples for API Gateway APIs (p. 165)

• IAM Policy Examples for API Execution Permissions (p. 169)

Control Access to API Gateway with IAM Policies
When working with Amazon API Gateway, you access two services. You use one to create, configure,
deploy and update your API and the other to actually execute your deployed API upon requests by a
client. When setting access permissions in an IAM policy, you reference the API managing service as

160

Amazon API Gateway Developer Guide
Control Access to API Gateway with IAM Policies

apigateway and the API executing service as execute-api. The apigateway service supports the
actions of GET, POST, PUT, PATCH, DELETE, OPTIONS, HEAD and the execute-api service supports
the Invoke and InvalidateCache actions. To create an IAM policy using the Policy Generator in the
IAM console, select Manage Amazon API Gateway as AWS Service to set permissions statements
for apigateway and select Amazon API Gateway as AWS Service to set permission statements for
execute-api.

You can use IAM to allow IAM users and roles in your AWS account to manage only certain API
Gateway entities (for example, APIs, resources, methods, models, and stages) and perform only
certain actions against those entities. You may want to do this, for example, if you have IAM users you
want to allow to list, but not create, resources and methods for selected APIs. You may have other IAM
users you want to allow to list and create new resources and methods for any API they have access to
in API Gateway.

In the Get Ready to Use API Gateway (p. 4) instructions, you attached an access policy to an IAM user
in your AWS account that contains a policy statement similar to this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "*"
]
 }
]
}

This statement allows the IAM user in your AWS account to perform all available actions and access all
available resources in API Gateway to which your AWS account has access. In practice, you may not
want to give the IAM users in your AWS account this much access.

You can also use IAM to enable users inside your organization to interact with only certain API
methods in API Gateway.

In the Configure How a User Calls an API Method (p. 74) instructions, the API Gateway console may
have displayed a resource ARN you used to create a policy statement similar to this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:my-aws-account-id:my-api-id/my-stage/
GET/my-resource-path"
]
 }
]
}

161

Amazon API Gateway Developer Guide
Create and Attach a Policy to an IAM User

This statement allows the IAM user to call the GET method for the resource path associated with the
specified resource ARN in API Gateway. In practice, you may want to give IAM users access to more
methods.

Note
IAM policies are effective only if IAM authentication is enabled. If you, as the API owner, has
enabled AWS identity and access management on a specific resource, users from other AWS
accounts cannot access your API. If you do not enable IAM authentication on the resource,
that resource is effectively public accessible.

Create and Attach a Policy to an IAM User
To create and attach an access policy to an IAM user that restricts the API Gateway entities the IAM
user can manage or the API methods the IAM user can call, do the following:

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Choose Policies, and then choose Create Policy. (If a Get Started button appears, choose it,
and then choose Create Policy.)

3. Next to Create Your Own Policy, choose Select.

4. For Policy Name, type any value that will be easy for you to refer to later, if needed.

5. For Policy Document, type a policy statement with the following format, and then choose Create
Policy:

{
 "Version": "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "action-statement"
],
 "Resource" : [
 "resource-statement"
]
 },
 {
 "Effect" : "Allow",
 "Action" : [
 "action-statement"
],
 "Resource" : [
 "resource-statement"
]
 }
]
}

In this statement, substitute action-statement and resource-statement as needed, and
add additional statements as needed, to specify the API Gateway entities you want to allow the
IAM user to manage, the API methods the IAM user can call, or both. (By default, the IAM user will
not have permissions unless a corresponding Allow statement is explicitly stated.)

6. Choose Users.

7. Choose the IAM user to whom you want to attach the policy.

8. For Permissions, for Managed Policies, choose Attach Policy.

162

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Statement Reference of IAM Policies

for Managing API in API Gateway

9. Select the policy you just created, and then choose Attach Policy.

Statement Reference of IAM Policies for Managing
API in API Gateway
The following information describes the Action and Resource format used in an IAM policy statement
to grant or revoke permissions for managing API Gateway API entities, such as restapis, resources,
methods, models, stages, custom domain names, API keys, etc.

Action Format of Permissions for Managing API in API
Gateway

The API-managing Action expression has the following general format:

apigateway:action

where action is one of the following API Gateway actions:

• *, which represents all of the following actions.

• GET, which is used to get information about resources.

• POST, which is primarily used to create child resources.

• PUT, which is primarily used to update resources (and, although not recommended, can be used to
create child resources).

• DELETE, which is used to delete resources.

• PATCH, which can be used to update resources.

• HEAD, which is the same as GET but does not return the resource representation. HEAD is used
primarily in testing scenarios.

• OPTIONS, which can be used by callers to get information about available communication options
for the target service.

Some examples of the Action expression include:

• apigateway:* for all API Gateway actions.

• apigateway:GET for just the GET action in API Gateway.

Resource Format of Permissions for Managing API in API
Gateway

The API-managing Resource expression has the following general format:

arn:aws:apigateway:region::resource-path-specifier

where region is a target AWS region (such as us-east-1 or * for all supported AWS regions), and
resource-path-specifier is the path to the target resources.

Some example resource expressions include:

• arn:aws:apigateway:region::/restapis/* for all resources, methods, models, and stages in
the AWS region of region.

163

Amazon API Gateway Developer Guide
Statement Reference of IAM Policies

for Executing API in API Gateway

• arn:aws:apigateway:region::/restapis/api-id/* for all resources, methods, models, and
stages in the API with the identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/resources/resource-id/* for all
resources and methods in the resource with the identifier resource-id, which is in the API with the
identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/resources/resource-id/methods/
* for all of the methods in the resource with the identifier resource-id, which is in the API with the
identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/resources/resource-id/methods/
GET for just the GET method in the resource with the identifier resource-id, which is in the API
with the identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/models/* for all of the models in the API
with the identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/models/model-name for the model with
the name of model-name, which is in the API with the identifier of api-id in the AWS region of
region.

• arn:aws:apigateway:region::/restapis/api-id/stages/* for all of the stages in the API
with the identifier of api-id in the AWS region of region.

• arn:aws:apigateway:region::/restapis/api-id/stages/stage-name for just the stage
with the name of stage-name in the API with the identifier of api-id in the AWS region of region.

Statement Reference of IAM Policies for Executing
API in API Gateway
The following information describes the Action and Resource format of IAM policy statements of
access permissions for executing an API.

Action Format of Permissions for Executing API in API
Gateway

The API-executing Action expression has the following general format:

execute-api:action

where action is an available API-executing action:

• *, which represents all of the following actions.

• Invoke, used to invoke an API upon a client request.

• InvalidateCache, used to invalidate API cache upon a client request.

Resource Format of Permissions for Executing API in API
Gateway

The API-executing Resource expression has the following general format:

arn:aws:execute-api:region:account-id:api-id/stage-name/HTTP-VERB/resource-
path-specifier

where:

164

Amazon API Gateway Developer Guide
IAM Policy Examples for API Gateway APIs

• region is the AWS region (such as us-east-1 or * for all AWS regions) that corresponds to the
deployed API for the method.

• account-id is the 12-digit AWS account Id of the REST API owner.

• api-id is the identifier API Gateway has assigned to the API for the method. (* can be used for all
APIs, regardless of the API's identifier.)

• stage-name is the name of the stage associated with the method (* can be used for all stages,
regardless of the stage's name.)

• HTTP-VERB is the HTTP verb for the method. It can be one of the following: GET, POST, PUT,
DELETE, PATCH, HEAD, OPTIONS.

• resource-path-specifier is the path to the desired method. (* can be used for all paths).

Some example resource expressions include:

• arn:aws:execute-api:*:*:* for any resource path in any stage, for any API in any AWS region.
(This is equivalent to *).

• arn:aws:execute-api:us-east-1:*:* for any resource path in any stage, for any API in the
AWS region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/* for any resource path in any stage, for the API
with the identifier of api-id in the AWS region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/test/* for resource path in the stage of test,
for the API with the identifier of api-id in the AWS region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/test/*/mydemoresource/* for any resource
path along the path of mydemoresource, for any HTTP method in the stage of test, for the API
with the identifier of api-id in the AWS region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/test/GET/mydemoresource/* for GET
methods under any resource path along the path of mydemoresource, in the stage of test, for the
API with the identifier of api-id in the AWS region of us-east-1.

IAM Policy Examples for API Gateway APIs
The following example policy documents shows various use cases to set access permissions for
managing API resources in API Gateway. For permissions model and other background information,
see Control Access to API Gateway with IAM Policies (p. 160).

Topics

• Simple Read Permissions (p. 165)

• Read-Only Permissions on any APIs (p. 166)

• Full Access Permissions for any API Gateway Resources (p. 167)

• Full-Access Permissions for Managing API Stages (p. 168)

• Block Specified Users from Deleting any API Resources (p. 168)

Simple Read Permissions

The following policy statement gives the user permission to get information about all of the resources,
methods, models, and stages in the API with the identifier of a123456789 in the AWS region of us-
east-1:

{
 "Version": "2012-10-17",
 "Statement": [
 {

165

Amazon API Gateway Developer Guide
IAM Policy Examples for API Gateway APIs

 "Effect": "Allow",
 "Action": [
 "apigateway:GET"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/a123456789/*"
]
 }
]
}

The following example policy statement gives the IAM user permission to list information for all
resources, methods, models, and stages in any region. The user also has permission to perform all
available API Gateway actions for the API with the identifier of a123456789 in the AWS region of us-
east-1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:GET"
],
 "Resource": [
 "arn:aws:apigateway:*::/restapis/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/a123456789/*"
]
 }
]
}

Read-Only Permissions on any APIs

The following policy document will permit attached entities (users, groups or roles) to retrieve any
of the APIs of the caller's AWS account. This includes any of the child resources of an API, such as
method, integration, etc.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1467321237000",
 "Effect": "Deny",
 "Action": [
 "apigateway:POST",
 "apigateway:PUT",
 "apigateway:PATCH",
 "apigateway:DELETE"

166

Amazon API Gateway Developer Guide
IAM Policy Examples for API Gateway APIs

],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/*"
]
 },
 {
 "Sid": "Stmt1467321341000",
 "Effect": "Deny",
 "Action": [
 "apigateway:GET",
 "apigateway:HEAD",
 "apigateway:OPTIONS"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/",
 "arn:aws:apigateway:us-east-1::/account",
 "arn:aws:apigateway:us-east-1::/clientcertificates",
 "arn:aws:apigateway:us-east-1::/domainnames",
 "arn:aws:apigateway:us-east-1::/apikeys"
]
 },
 {
 "Sid": "Stmt1467321344000",
 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:HEAD",
 "apigateway:OPTIONS"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*"
]
 }
]
}

The first Deny statement explicitly prohibits any calls of POST, PUT, PATCH, DELETE on any resources
in API Gateway. This ensures that such permissions will not be overridden by other policy documents
also attached to the caller. The second Deny statement blocks the caller to query the root (/) resource,
account information (/account), client certificates (/clientcertificates), custom domain names
(/domainnames) and API keys (/apikeys. Together, the three statements ensure that the caller can
only query API-related resources. This can be useful in API testing when you do not want the tester to
modify any of the code.

To restrict the above read-only access to specified APIs, replace the Resource property of Allow
statement by the following:

"Resource": ["arn:aws:apigateway:us-east-1::/restapis/restapi_id1/*",
 "arn:aws:apigateway:us-east-1::/restapis/restapi_id2/*"]

Full Access Permissions for any API Gateway Resources

The following example policy document grants the full access to any of the API Gateway resource of
the AWS account.

{
 "Version": "2012-10-17",

167

Amazon API Gateway Developer Guide
IAM Policy Examples for API Gateway APIs

 "Statement": [
 {
 "Sid": "Stmt1467321765000",
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "*"
]
 }
]
}

In general, you should refrain from using such a broad and open access policy. It may be necessary to
do so for your API development core team so that they can create, deploy, update, and delete any API
Gateway resources.

Full-Access Permissions for Managing API Stages

The following example policy documents grants full-access permissions on Stage related resources of
any API in the caller's AWS account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*/stages",
 "arn:aws:apigateway:us-east-1::/restapis/*/stages/*"
]
 }
]
}

The above policy document grants full access permissions only to the stages collection and any of
the contained stage resources, provided that no other policies granting more accesses have been
attached to the caller. Otherwise, you must explicitly deny all the other accesses.

Using the above policy, caller must find out the REST API's identifier beforehand because the
user cannot call GET /respais to query the available APIs. Also, if arn:aws:apigateway:us-
east-1::/restapis/*/stages is not specified in the Resource list, the Stages resource becomes
inaccessible. In this case, the caller will not be able to create a stage nor get the existing stages,
although he or she can still view, update or delete a stage, provided that he stage's name is known.

To grant permissions for a specific API's stages, simply replace the restapis/* portion of the
Resource specifications by restapis/restapi_id, where restapi_id is the identifier of the API
of interest.

Block Specified Users from Deleting any API Resources

The following example IAM policy document blocks a specified user from deleting any API resources in
API Gateway.

168

Amazon API Gateway Developer Guide
IAM Policy Examples for API Execution Permissions

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1467331998000",
 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:HEAD",
 "apigateway:OPTIONS",
 "apigateway:PATCH",
 "apigateway:POST",
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*"
]
 },
 {
 "Sid": "Stmt1467332141000",
 "Effect": "Allow",
 "Action": [
 "apigateway:DELETE"
],
 "Condition": {
 "StringNotLike": {
 "aws:username": "johndoe"
 }
 },
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*"
]
 }
]
}

This IAM policy grants full access permission to create, deploy, update and delete API for attached
users, groups or roles, except for the specified user (johndoe), who cannot delete any API resources.
It assumes that no other policy document granting Allow permissions on the root, API keys, client
certificates or custom domain names has been attached to the caller.

To block the specified user from deleting specific API Gateway resources, e.g., a specific API or an
API's resources, replace the Resource specification above by this:

"Resource": ["arn:aws:apigateway:us-east-1::/restapis/restapi_id_1",
 "arn:aws:apigateway:us-east-1::/restapis/restapi_id_2/resources"]

IAM Policy Examples for API Execution Permissions
For permissions model and other background information, see Control Access to API Gateway with
IAM Policies (p. 160).

The following policy statement gives the user permission to call any POST method along the path of
mydemoresource, in the stage of test, for the API with the identifier of a123456789, assuming the
corresponding API has been deployed to the AWS region of us-east-1:

{

169

Amazon API Gateway Developer Guide
Enable CORS for a Resource

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:*:a123456789/test/POST/mydemoresource/
*"
]
 }
]
}

The following example policy statement gives the user permission to call any method on the resource
path of petstorewalkthrough/pets, in any stage, for the API with the identifier of a123456789, in
any AWS region where the corresponding API has been deployed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:*:*:a123456789/test/*/petstorewalkthrough/pets"
]
 }
]
}

Enable CORS for an API Gateway Resource
When your API's resources receive requests from a domain other than the API's own domain, you
must enable cross-origin resource sharing (CORS) for selected methods on the resource. This
amounts to having your API respond to the OPTIONS preflight request with at least the following
CORS-required response headers:

• Access-Control-Allow-Methods

• Access-Control-Allow-Headers

• Access-Control-Allow-Origin

In API Gateway you enable CORS by setting up an OPTIONS method with the mock integration type
to return the preceding response headers (with static values discussed in the following) as the method
response headers. In addition, the actual CORS-enabled methods must also return the Access-
Control-Allow-Origin:'*' header in at least its 200 response.

Tip
You must set up an OPTIONS method to handle preflight requests to support CORS.
However, OPTIONS methods are optional if 1) an API resource exposes only the GET, HEAD
or POST methods and 2) the request payload content type is application/x-www-form-
urlencoded, multipart/form-data or text/plain and 3) the request does not contain

170

Amazon API Gateway Developer Guide
Prerequisites

any custom headers. When possible, we recommend to use OPTIONS method to enable
CORS in your API.

This section describes how to enable CORS for a method in API Gateway using the API Gateway
console or the API Gateway Import API.

Topics

• Prerequisites (p. 171)

• Enable CORS on a Resource Using the API Gateway Console (p. 171)

• Enable CORS for a Resource Using the API Gateway Import API (p. 172)

Prerequisites
• You must have the method available in API Gateway. For instructions on how to create and

configure a method, see Build an API Gateway API to Expose an HTTP Endpoint (p. 6).

Enable CORS on a Resource Using the API
Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the API Gateway console, choose an API under APIs.

3. Choose a resource under Resources. This will enable CORS for all the methods on the resource.

Alternatively, you could choose a method under the resource to enable CORS for just this method.

4. Choose Enable CORS from the Actions drop-down menu.

5. In the Enable CORS form, do the following:

a. In the Access-Control-Allow-Headers input field, type a static string of a comma-separated
list of headers that the client must submit in the actual request of the resource. Use the
console-provided header list of 'Content-Type,X-Amz-Date,Authorization,X-Api-
Key,X-Amz-Security-Token' or specify your own headers.

b. Use the console-provided value of '*' as the Access-Control-Allow-Origin header value
to allow access requests from all domains, or specify a named domain to all access requests
from the specified domain.

171

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-import-api.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Enable CORS Using Swagger Definition

c. Choose Enable CORS and replace existing CORS headers.

6. In Confirm method changes, choose Yes, overwrite existing values to confirm the new CORS
settings.

After CORS is enabled on the GET method, an OPTIONS method is added to the resource, if it is not
already there. The 200 response of the OPTIONS method is automatically configured to return the
three Access-Control-Allow-* headers to fulfill preflight handshakes. In addition, the actual (GET)
method is also configured by default to return the Access-Control-Allow-Origin header in its
200 response as well. For other types of responses, you will need to manually configure them to return
Access-Control-Allow-Origin' header with '*' or specific origin domain names, if you do not
want to return the Cross-origin access error.

Enable CORS for a Resource Using the API
Gateway Import API
If you are using the API Gateway Import API (p. 142), you can set up CORS support using a Swagger
file. You must first define an OPTIONS method in your resource that returns the required headers.

Note
Web browsers expect Access-Control-Allow-Headers, and Access-Control-Allow-Origin
headers to be set up in each API method that accepts CORS requests. In addition, some
browsers first make an HTTP request to an OPTIONS method in the same resource, and then
expect to receive the same headers.

172

Amazon API Gateway Developer Guide
Enable CORS Using Swagger Definition

The following example creates an OPTIONS method and specifies mock integration. For more
information, see Configure Mock Integration for a Method (p. 94).

/users
 options:
 summary: CORS support
 description: |
 Enable CORS by returning correct headers
 consumes:
 - application/json
 produces:
 - application/json
 tags:
 - CORS
 x-amazon-apigateway-integration:
 type: mock
 requestTemplates:
 application/json: |
 {
 "statusCode" : 200
 }
 responses:
 "default":
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Headers :
 "'Content-Type,X-Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Methods : "'*'"
 method.response.header.Access-Control-Allow-Origin : "'*'"
 responseTemplates:
 application/json: |
 {}
 responses:
 200:
 description: Default response for CORS method
 headers:
 Access-Control-Allow-Headers:
 type: "string"
 Access-Control-Allow-Methods:
 type: "string"
 Access-Control-Allow-Origin:
 type: "string"

Once you have configured the OPTIONS method for your resource, you can add the required headers
to the other methods in the same resource that need to accept CORS requests.

1. Declare the Access-Control-Allow-Origin and Headers to the response types.

 responses:
 200:
 description: Default response for CORS method
 headers:
 Access-Control-Allow-Headers:
 type: "string"
 Access-Control-Allow-Methods:
 type: "string"
 Access-Control-Allow-Origin:

173

Amazon API Gateway Developer Guide
Use API Gateway Custom Authorizers

 type: "string"

2. In the x-amazon-apigateway-integration tag, set up the mapping for those headers to your
static values:

 responses:
 "default":
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Headers :
 "'Content-Type,X-Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Methods : "'*'"
 method.response.header.Access-Control-Allow-Origin : "'*'"

Use Amazon API Gateway Custom Authorizers

Topics

• Amazon API Gateway Custom Authorizers (p. 174)

• Create the API Gateway Custom Authorizer Lambda Function (p. 175)

• Input to an Amazon API Gateway Custom Authorizer (p. 176)

• Output from an Amazon API Gateway Custom Authorizer (p. 177)

• Configure Custom Authorizer Using the API Gateway Console (p. 178)

• Call an API Using API Gateway Custom Authorization (p. 180)

Amazon API Gateway Custom Authorizers
An Amazon API Gateway custom authorizer is a Lambda function that you provide to control access to
your APIs using bearer token authentication strategies, such as OAuth or SAML.

When a client calls your API, API Gateway verifies whether a custom authorizer is configured for
the API. If so, API Gateway calls the Lambda function, supplying the authorization token extracted
from a specified request header. You use this Lambda function to implement various authorization
strategies, such as JSON Web Token (JWT) verification and OAuth provider callout, to return IAM
policies that authorize the request. If the returned policy is invalid or the permissions are denied, the
API call will not succeed. For a valid policy, API Gateway caches the returned policy, associated with
the incoming token and used for the current and subsequent requests, over a pre-configured time-to-
live (TTL) period of up to 3600 seconds. You can set the TTL period to zero seconds to disable the
policy caching. The default TTL value is 300 seconds. Currently, the maximum TTL value of 3600
seconds cannot be increased.

174

Amazon API Gateway Developer Guide
Create the Custom Authorizer Lambda Function

Create the API Gateway Custom Authorizer Lambda
Function
Before creating an API Gateway custom authorizer, you must first create the AWS Lambda function
that implements the logic to authenticate and authorize the caller. You can do so in the Lambda
console, using the code template available from the API Gateway Custom Authorizer blueprint. Or you
can create one from scratch. For illustration purposes, we will explain here the creation of the Lambda
function without using the blueprint.

Note
The custom authorizer Lambda function presented here is for illustration purposes. In
production code, you should follow the API Gateway Custom Authorizer blueprint to
implement your authorizer Lambda function.

When creating the Lambda function for your API Gateway custom authorizer, you will be asked to
assign an execution role for the Lambda function if it calls other AWS services. For the following
example, the basic AWSLambdaRole will suffice. For more involved use cases, follow the instructions to
grant permissions in an execution role for the Lambda function.

In the code editor of the Lambda console, enter the following Node.js code.

console.log('Loading function');

exports.handler = function(event, context) {
 var token = event.authorizationToken;
 // Call oauth provider, crack jwt token, etc.
 // In this example, the token is treated as the status for simplicity.

 switch (token) {
 case 'allow':
 context.succeed(generatePolicy('user', 'Allow',
 event.methodArn));
 break;
 case 'deny':
 context.succeed(generatePolicy('user', 'Deny', event.methodArn));
 break;
 case 'unauthorized':
 context.fail("Unauthorized");
 break;
 default:

175

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role

Amazon API Gateway Developer Guide
Input to a Custom Authorizer

 context.fail("error");
 }
};

var generatePolicy = function(principalId, effect, resource) {
 var authResponse = {};
 authResponse.principalId = principalId;
 if (effect && resource) {
 var policyDocument = {};
 policyDocument.Version = '2012-10-17'; // default version
 policyDocument.Statement = [];
 var statementOne = {};
 statementOne.Action = 'execute-api:Invoke'; // default action
 statementOne.Effect = effect;
 statementOne.Resource = resource;
 policyDocument.Statement[0] = statementOne;
 authResponse.policyDocument = policyDocument;
 }
 return authResponse;
}

The preceding Lambda function returns an Allow IAM policy on a specified method if the request's
authorization token contains an 'allow' value, thereby permitting a caller to invoke the specified
method. The caller receives an 200 OK response. The function returns a Deny policy against the
specified method if the authorization token has a 'deny' value, thus blocking the caller from calling
the method. The client will receive a 403 Forbidden response. If the token is 'unauthorized', the
client will receive a 401 Unauthorized response. If the token is 'fail' or anything else, the client will
receive a 500 Internal Server Error response. In both of the last two cases, the calls will not succeed.

Note
In production code, you may need to authenticate the user before granting authorizations.
If so, you can add authentication logic in the Lambda function as well. Consult the provider-
specific documentation for instructions on how to call such an authentication provider.

Besides returning an IAM policy in a custom authorizer, the Lambda function must also return the
caller's principal identifier and can also return a key-value map named context to contain additional
information. For example, see Output from an Amazon API Gateway Custom Authorizer (p. 177).

You can then configure the integration request to pass returned context map entries to the back end.
When the context map entries refer to cached credentials, the back-end service can provide better
latency and, hence, improved custom experience by leveraging the cached credentials to reduce the
need to access the secret keys and open the authorization tokens for every request.

Before going further, you may want to test the Lambda function from within the Lambda Console. To do
this, configure the sample event to provide the input and verify the result by examining the output. The
next two sections explain the Input to a Custom Authorizer (p. 176) and Output from an Amazon API
Gateway Custom Authorizer (p. 177).

Input to an Amazon API Gateway Custom
Authorizer
When a custom authorizer is enabled on an API method, you must specify a custom header for the
method caller to pass the required authorization token in the initial client request. Upon receiving the
request, API Gateway extracts the token from the custom header as the input authorizationToken
parameter value into the Lambda function and calls the custom authorizer with the following request
payload.

176

Amazon API Gateway Developer Guide
Output from an Amazon API Gateway Custom Authorizer

{
 "type":"TOKEN",
 "authorizationToken":"<caller-supplied-token>",
 "methodArn":"arn:aws:execute-
api:<regionId>:<accountId>:<apiId>/<stage>/<method>/<resourcePath>"
}

In this example, the type property specifies the payload type. Currently, the only valid value is the
TOKEN literal. The <caller-supplied-token> originates from the custom authorization header in
a client request. The methodArn is the ARN of the incoming method request and is populated by API
Gateway in accordance with the custom authorizer configuration.

For the custom authorizer shown in the preceeding section, the <caller-supplied-token> string
is allow, deny, unauthorized, or any other string value. An empty string value is the same as
unauthorized. The following shows an example of such an input to obtain an Allow policy on the
GET method of an API (ymy8tbxw7b) of the AWS account (123456789012) in any stage (*).

{
 "type":"TOKEN",
 "authorizationToken":"allow",
 "methodArn":"arn:aws:execute-api:us-west-2:123456789012:ymy8tbxw7b/*/
GET/"
}

Output from an Amazon API Gateway Custom
Authorizer
The custom authorizer's Lambda function returns an output that must include the principal identifier
(principalId) and a policy document (policyDocument) containing a list of policy statements. The
output can also include a context map containing key-value pairs. The following shows an example of
this output.

{
 "principalId": "yyyyyyyy", // The principal user identification associated
 with the token sent by the client.
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Allow|Deny",
 "Resource": "arn:aws:execute-
api:<regionId>:<accountId>:<appId>/<stage>/<httpVerb>/[<resource>/<httpVerb>/
[...]]"
 }
]
 },
 "context": {
 "key": "value",
 "numKey": 1,

177

Amazon API Gateway Developer Guide
Configure Custom Authorizer

 "boolKey": true
 }
}

Here, a policy statement stipulates whether to allow or deny (Effect) the API Gateway execution
service to invoke (Action) the specified API method (Resource). You can use a wild card (*) to
specify a resource type (method). For information about setting valid policies for calling an API, see
Statement Reference of IAM Policies for Executing API in API Gateway (p. 164).

You can access the principalId value in a mapping template using the
$context.authorizer.principalId variable. This is useful if you want to pass the value to the
back end. For more information, see Accessing the $context Variable (p. 134).

You can access the key, numKey, or boolKey value (i.e., value, 1, or true) of the context map
in a mapping template by calling $context.authorizer.key, $context.authorizer.numKey,
or $context.authorizer.boolKey, respectively. Notice that a JSON object or array is not a valid
value of any key in the context map.

The following shows example output from the example custom authorizer. The example output
contains a policy statement to block (Deny) calls to the GET method in an API (ymy8tbxw7b) of an
AWS account (123456789012) in any stage (*).

{
 "principalId": "user",
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Deny",
 "Resource": "arn:aws:execute-api:us-west-2:123456789012:ymy8tbxw7b/*/
GET/"
 }
]
 }
}

Configure Custom Authorizer Using the API
Gateway Console
After you create the Lambda function and verify that it works, you can configure the API Gateway
Custom Authorizer in the API Gateway console.

Enable a Custom Authorizer on API Methods

1. Sign in to the API Gateway console.

2. Create a new or select an existing API and choose Authorizers.

3. Choose Create, select Custom Authorizer, and do the following:

• In Lambda region, select the region where you upload your custom authorizer's Lambda
function.

• In Lambda function, select the Lambda function for your custom authorizer.

178

Amazon API Gateway Developer Guide
Configure Custom Authorizer

Note
You must first create a custom authorizer Lambda function in the region for it to be
available in the drop-down list.

• In Authorizer Name, enter a name for your new custom authorizer.

• Leave Execution role blank to let the API Gateway console to set a resource-based policy
to grant API Gateway permissions to invoke the authorizer Lambda function or type the
name of an IAM role to allow API Gateway to invoke the authorizer Lambda function. For an
example of such a role, see Set Up an IAM Role and Policy for an API to Invoke Lambda
Functions (p. 345).

• In Identity token source, type the mapping expression for your authorizer's custom header.

Note
The custom header mapping expression is of the method.request.header.<name>
format, where <name> is the name of a custom authorization header submitted as part
of the client request. In the following example, this custom header name is Auth.

• In Token validation expression, you can optionally provide a RegEx statement for API
Gateway to validate the input token before calling the custom authorizer Lambda function. This
helps you avoid or reduce the chances of being charged for processing invalid tokens.

• In Result TTL in seconds, you can change or use the default (300) value to enable caching
(>0) or disable caching (=0) of the policy returned from the Lambda function.

Note
The policy caching uses a cache key generated from the supplied token for the
targeted API and custom authorizer in a specified stage. To enable caching, your
authorizer must return a policy that is applicable to all methods across an API. To
enforce method-specific policy, you can set the TTL value to zero to disable policy
caching for the API.

4. If you choose to let the API Gateway console to set the resource-based policy, the Add
Permission to Lambda Function dialog will be displayed. Choose OK. After the custom
authorization is created, you can test it with appropriate authorization token values to verify that it
works as expected.

This completes the procedure to create a custom authorization. The next procedure shows how to
configure an API method to use the custom authorizer.

Configure an API Method to Use the Custom Authorizer

1. Go back to the API. Create a new method or choose an existing method. If necessary, create a
new resource.

179

Amazon API Gateway Developer Guide
Call an API with Custom authorization

2. In Method Execution, choose the Method Request link.

3. Under Authorization Settings, expand the Authorization drop-down list to select the custom
authorizer you just created (myTestApiAuthorizer), and then choose the checkmark icon to save
the choice.

4. Optionally, while still on the Method Request page, choose Add header if you also want to pass
the custom authorization header to the back end. In Name, type a custom header name that
matches the header mapping expression you used when you created the custom authorization,
and then choose the checkmark icon to save the settings.

5. Choose Deploy API to deploy the API to a stage. Make a note of the Invoke URL value. You will
need it when calling the API.

Call an API Using API Gateway Custom
Authorization
After you configure your API to use the custom authorizer, you or your customers can call the API
using the custom authorizer. Because it involves submitting a custom authorization token header in
the requests, you need a REST client that supports this. In the following examples, API calls are made
using the Postman Chrome App.

Note
When calling an authorizer-enabled method, API Gateway will not log the call to CloudWatch
if the required token is not set, null or invalidated by the specified Token validation
expression.

Calling an API with Custom Authorization Tokens

1. Open the Postman Chrome App, choose the GET method and paste the API's Invoke URL into
the adjacent URL field.

Add the custom authorization token header and set the value to allow. Choose Send.

180

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Call an API with Custom authorization

The response shows that the API Gateway custom authorizer returns a 200 OK response and
successfully authorizes the call to access the HTTP endpoint (http://httpbin.org/get) integrated with
the method.

2. Still in Postman, change the custom authorization token header value to deny. Choose Send.

The response shows that the API Gateway custom authorizer returns a 403 Forbidden response
without authorizing the call to access the HTTP endpoint.

3. In Postman, change the custom authorization token header value to unauthorized and choose
Send.

181

Amazon API Gateway Developer Guide
Use Amazon Cognito Your User Pool

The response shows that API Gateway returns a 401 Unauthorized response without authorizing
the call to access the HTTP endpoint.

4. Now, change the custom authorization token header value to fail. Choose Send.

The response shows that API Gateway returns a 500 Internal Server Error response without
authorizing the call to access the HTTP endpoint.

Use Amazon Cognito Your User Pool
In addition to using IAM roles and policies (p. 160) or custom authorizers (p. 174), you can also use
a user pool in Amazon Cognito to control who can access your API in API Gateway. A user pool serves
as your own identity provider to maintain a user directory. It supports user registration and sign-in, as
well as provisioning identity tokens for signed-in users.

A user pool is integrated with an API as a method authorizer. When calling the methods with such an
authorizer enabled, an API client includes in the request headers the user's identity token provisioned
from the user pool. API Gateway then validates the token to ensure it belongs to the configured user
pool and authenticates the caller before passing the request to the back end.

To integrate an API with the Amazon Cognito identity provider, you, as an API developer, create
and own a user pool, create an API Gateway authorizer connected to the user pool, and enable

182

http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
http://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

Amazon API Gateway Developer Guide
Create a User Pool

the authorizer on selected API methods. You must also distribute to your API client developers the
user pool ID, a client ID, and possibly the associated client secret that are provisioned from the user
pool. The client will need this information to register users with the user pool, to provide the sign-in
functionality, and to have the user's identity token provisioned from the user pool.

In this section, you will learn how to create a user pool, how to integrate an API Gateway API with the
user pool, and how to invoke an API integrated with the user pool.

Topics

• Create a User Pool (p. 183)

• Integrate an API with a User Pool (p. 183)

• Call an API Integrated with a User Pool (p. 186)

Create a User Pool
Before integrating your API with a user pool, you must create the user pool in Amazon Cognito. For
instructions on how to create a user pool, see Setting up User Pools in the Amazon Cognito Developer
Guide.

Note
Make a note of the user pool ID, client ID and the client secret, if selected. The client will
need to provide them to Amazon Cognito for the user to register with the user pool, to sign in
to the user pool, and to get an identity token to be included in requests to call API methods
configured with the user pool. Also, you will need to specify the user pool name when you
configure the user pool as an authorizer in API Gateway, as described next.

Integrate an API with a User Pool
To integrate your API with a user pool, you must create in API Gateway a user pool authorizer
connected to the user pool. The following procedure walks you through the steps to do this using the
API Gateway console.

To create a user pool authorizer using the API Gateway console

1. Create a new API or select an existing API in API Gateway.

2. From the main navigation pane, choose Authorizers under the specified API.

3. Under Authorizers, choose Create and then choose Cognito User Pool Authorizer.

4. To configure this authorizer:

a. Choose a region for Cognito region.

b. For Cognito User Pool, choose an available user pool.

c. The Authorizer name field will be automatically populated with the chosen user pool name.
However, you can customize it if you want to.

d. The Identity token source field will be set to method.request.header.Authorization
by default. However, you can customize it if you want to. Using the default, Authorization
will be the name of the incoming request header to contain an API caller's identity token.

e. Optionally, type a regular expression in the App client ID regex field to validate client IDs
associated with the user pool.

f. Choose Create to finish integrating the user pool with the API.

5. Having created the authorizer, you can, optionally, test it by supplying an identity token
provisioned from the user pool.

183

http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-cognito-user-identity-pools.html

Amazon API Gateway Developer Guide
Integrate an API with a User Pool

To enable a user pool authorizer on methods

1. Choose (or create) a method of your API.

2. Choose Method Request.

3. Under Authorization Settings, choose the edit icon by the Authorization field.

4. Choose one of the available Amazon Cognito User Pool authorizers from the drop-down list.

5. Choose the check-mark icon to save the settings.

6. Repeat these steps for other methods of your choosing.

7. If needed, choose Integration Request to add $context.authorizer.claims['property-
name'] or $context.authorizer.claims.property-name expressions in a body-mapping
template to pass the specified identity claims property from the user pool to the back end. For
simple property names, such as sub or custom-sub, the two notations are identical. For complex
property names, such as custom:role, the dot notation may not be used. For example, the
following mapping expressions pass the claim's standard fields of sub and email to the back end:

{
 "context" : {
 "sub" : "$context.authorizer.claims.sub",
 "email" : "$context.authorizer.claims.email"
 }
}

If you have declared a custom claim field when configuring your user pool, you can follow the
same pattern to access the custom fields. The following example gets a custom role field of a
claim:

{
 "context" : {
 "role" : "$context.authorizer.claims.role"
 }
}

If the custom claim field is declared as custom:role, use the following example to get the claim's
property:

{
 "context" : {
 "role" : "$context.authorizer.claims['custom:role']"
 }
}

Instead of using the API Gateway console, you can also enable a Amazon Cognito user pool on a
method by configuring the settings in a Swagger definition file and import the API definition into API
Gateway.

To import a user pool authorizer with a Swagger definition file

1. Create (or export) a Swagger definition file for your API.

2. Add the user pool settings to the securityDefinitions:

 "securityDefinitions": {
 "MyUserPool": {
 "type": "apiKey",

184

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon API Gateway Developer Guide
Integrate an API with a User Pool

 "name": "Authorization",
 "in": "header",
 "x-amazon-apigateway-authtype": "cognito_user_pools",
 "x-amazon-apigateway-authorizer": {
 "type": "cognito_user_pools",
 "providerARNs": [
 "arn:aws:cognito-idp:{region}:{account_id}:userpool/
{user_pool_id}"
]
 }
 }

3. Enable the Cognito user pool (MyUserPool) as an authorizer for a method, as shown in the
following GET method on the root resource.

 "paths": {
 "/": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "text/html"
],
 "responses": {
 "200": {
 "description": "200 response",
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "security": [
 {
 "MyUserPool": []
 }
],
 "x-amazon-apigateway-integration": {
 "type": "mock",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "'text/html'"
 },
 }
 },
 "requestTemplates": {
 "application/json": "{\"statusCode\": 200}"
 },
 "passthroughBehavior": "when_no_match"
 }
 },
 ...
 }

185

Amazon API Gateway Developer Guide
Call an API Integrated with a User Pool

4. If needed, you can set other API configuration using appropriate Swagger definitions or
extensions. For more information, see Import and Export API (p. 141).

Call an API Integrated with a User Pool
To call a method with a user pool authorizer configured, the client must do the following:

• Enable the user to sign up with the user pool.

• Enable the user to sign in to the user pool.

• Obtain an identity token of the signed-in user from the user pool.

• Include the identity token in the Authorization header (or another header you specified when
creating the authorizer).

You can use one of the AWS SDKs to perform these tasks. For example:

• To use the Android SDK, see Setting up the AWS Mobile SDK for Android to Work with User Pools.

• To use the iOS SDK, see Setting Up the AWS Mobile SDK for iOS to Work with User Pools.

• To use JavaScript, see Setting up the AWS SDK for JavaScript in the Browser to Work with User
Pools.

The following procedure outlines the steps to perform these tasks. For more information, see the blog
posts on Using Android SDK with Amazon Cognito Your User Pools and Using Your Amazon Cognito
User Pool for iOS.

To call an API integrated with a user pool

1. Sign up a first-time user to a specified user pool.

2. Sign in a user to the user pool.

3. Get the user's identity token.

4. Call API methods configured with a user pool authorizer, supplying the unexpired token in the
Authorization header or another header of your choosing.

5. When the token expires, repeat Step 2-4. Identity tokens provisioned by Amazon Cognito expire
within an hour.

For code examples, see an Android Java sample and an iOS Objective-C sample.

Use Client-Side SSL Certificates for
Authentication by the Back End

You can use API Gateway to generate an SSL certificate and use its public key in the back end to
verify that HTTP requests to your back-end system are from API Gateway. This allows your HTTP back
end to control and accept only requests originating from Amazon API Gateway, even if the back end is
publicly accessible.

The API Gateway-generated SSL certificates are self-signed and only the public key of a certificate is
visible in the API Gateway console or through the APIs.

Topics

186

https://aws.amazon.com/tools#SDK
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-android-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/walkthrough-using-the-ios-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-the-javascript-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-the-javascript-sdk.html
http://mobile.awsblog.com/post/TxNYVQQ3A2LT6Y/Using-Android-SDK-with-Amazon-Cognito-Your-User-Pools
http://mobile.awsblog.com/post/TxGNH1AUKDRZDH/Announcing-Your-User-Pools-in-Amazon-Cognito
http://mobile.awsblog.com/post/TxGNH1AUKDRZDH/Announcing-Your-User-Pools-in-Amazon-Cognito
https://github.com/awslabs/aws-sdk-android-samples/tree/master/AmazonCognitoYourUserPoolsDemo
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/CognitoYourUserPools-Sample/Objective-C

Amazon API Gateway Developer Guide
Generate a Client Certificate

Using the API Gateway Console

• Generate a Client Certificate Using the API Gateway Console (p. 187)

• Configure an API to Use SSL Certificates (p. 187)

• Test Invoke (p. 188)

• Configure Back End to Authenticate API (p. 189)

Generate a Client Certificate Using the API Gateway
Console
1. In the main navigation pane, choose Client Certificates.

2. From Client Certificates, choose Generate.

3. Optionally, For Description, enter a short descriptive title for the generated certificate. API
Gateway generates a new certificate and returns the new certificate GUID, along with the PEM-
encoded public key.

4. Choose the Save button to save the certificate to API Gateway.

You are now ready to configure an API to use the certificate.

Configure an API to Use SSL Certificates
These instructions assume you have already completed Generate a Client Certificate Using the API
Gateway Console (p. 187).

1. In the API Gateway console, create or open an API for which you want to use the client certificate.
Make sure the API has been deployed to a stage.

2. Choose Stages under the selected API and then choose a stage.

3. In the Stage Editor panel, select a certificate under the Client Certificate section.

4. Choose the Save Changes button to save the settings.

187

Amazon API Gateway Developer Guide
Test Invoke

After a certificate is selected for the API and saved, API Gateway will use the certificate for all calls to
HTTP integrations in your API.

Test Invoke
1. Choose an API method. In Client, choose Test.

2. From Client Certificate, choose Test to invoke the method request.

188

Amazon API Gateway Developer Guide
Configure Back End to Authenticate API

API Gateway will present the chosen SSL certificate for the HTTP back end to authenticate the API.

Configure Back End to Authenticate API
These instructions assume you have already completed Generate a Client Certificate Using the API
Gateway Console (p. 187) and Configure an API to Use SSL Certificates (p. 187).

When receiving HTTPS requests from API Gateway, your back end can authenticate your API using
the PEM-encoded certificate generated by API Gateway, provided that the back end is properly
configured. Most Web servers can be easily configured to do so.

For example, in Node.js you can use the HTTPS module to create an HTTPS back end and use the
client-certificate-auth modules to authenticate client requests with PEM-encoded certificates.
For more information, see HTTPS on the Nodejs.org website and see client-certificate-auth on the
https://www.npmjs.com/ website.

API Gateway-Supported Certificate Authorities for
HTTP and HTTP Proxy Integrations

The following list shows the certificate authorities supported by API Gateway for HTTP and HTTP
Proxy integrations.

Alias name: mozillacert81.pem
 MD5: D5:E9:81:40:C5:18:69:FC:46:2C:89:75:62:0F:AA:78
 SHA1: 07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:A2:59:3A:19:A7:0F:06:9E
 SHA256:
 5C:58:46:8D:55:F5:8E:49:7E:74:39:82:D2:B5:00:10:B6:D1:65:37:4A:CF:83:A7:D4:A3:2D:B7:68:C4:40:8E

189

https://nodejs.org/api/https.html#https_https
https://www.npmjs.com/package/client-certificate-auth

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Alias name: mozillacert99.pem
 MD5: 2B:70:20:56:86:82:A0:18:C8:07:53:12:28:70:21:72
 SHA1: F1:7F:6F:B6:31:DC:99:E3:A3:C8:7F:FE:1C:F1:81:10:88:D9:60:33
 SHA256:
 97:8C:D9:66:F2:FA:A0:7B:A7:AA:95:00:D9:C0:2E:9D:77:F2:CD:AD:A6:AD:6B:A7:4A:F4:B9:1C:66:59:3C:50
Alias name: swisssignplatinumg2ca
 MD5: C9:98:27:77:28:1E:3D:0E:15:3C:84:00:B8:85:03:E6
 SHA1: 56:E0:FA:C0:3B:8F:18:23:55:18:E5:D3:11:CA:E8:C2:43:31:AB:66
 SHA256:
 3B:22:2E:56:67:11:E9:92:30:0D:C0:B1:5A:B9:47:3D:AF:DE:F8:C8:4D:0C:EF:7D:33:17:B4:C1:82:1D:14:36
Alias name: mozillacert145.pem
 MD5: 60:84:7C:5A:CE:DB:0C:D4:CB:A7:E9:FE:02:C6:A9:C0
 SHA1: 10:1D:FA:3F:D5:0B:CB:BB:9B:B5:60:0C:19:55:A4:1A:F4:73:3A:04
 SHA256:
 D4:1D:82:9E:8C:16:59:82:2A:F9:3F:CE:62:BF:FC:DE:26:4F:C8:4E:8B:95:0C:5F:F2:75:D0:52:35:46:95:A3
Alias name: mozillacert37.pem
 MD5: AB:57:A6:5B:7D:42:82:19:B5:D8:58:26:28:5E:FD:FF
 SHA1: B1:2E:13:63:45:86:A4:6F:1A:B2:60:68:37:58:2D:C4:AC:FD:94:97
 SHA256:
 E3:B6:A2:DB:2E:D7:CE:48:84:2F:7A:C5:32:41:C7:B7:1D:54:14:4B:FB:40:C1:1F:3F:1D:0B:42:F5:EE:A1:2D
Alias name: mozillacert4.pem
 MD5: 4F:EB:F1:F0:70:C2:80:63:5D:58:9F:DA:12:3C:A9:C4
 SHA1: E3:92:51:2F:0A:CF:F5:05:DF:F6:DE:06:7F:75:37:E1:65:EA:57:4B
 SHA256:
 0B:5E:ED:4E:84:64:03:CF:55:E0:65:84:84:40:ED:2A:82:75:8B:F5:B9:AA:1F:25:3D:46:13:CF:A0:80:FF:3F
Alias name: mozillacert70.pem
 MD5: 5E:80:9E:84:5A:0E:65:0B:17:02:F3:55:18:2A:3E:D7
 SHA1: 78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:BA:9E:A8:7E:FE:9A:CE:3C
 SHA256:
 06:3E:4A:FA:C4:91:DF:D3:32:F3:08:9B:85:42:E9:46:17:D8:93:D7:FE:94:4E:10:A7:93:7E:E2:9D:96:93:C0
Alias name: mozillacert88.pem
 MD5: 73:9F:4C:4B:73:5B:79:E9:FA:BA:1C:EF:6E:CB:D5:C9
 SHA1: FE:45:65:9B:79:03:5B:98:A1:61:B5:51:2E:AC:DA:58:09:48:22:4D
 SHA256:
 BC:10:4F:15:A4:8B:E7:09:DC:A5:42:A7:E1:D4:B9:DF:6F:05:45:27:E8:02:EA:A9:2D:59:54:44:25:8A:FE:71
Alias name: mozillacert134.pem
 MD5: FC:11:B8:D8:08:93:30:00:6D:23:F9:7E:EB:52:1E:02
 SHA1: 70:17:9B:86:8C:00:A4:FA:60:91:52:22:3F:9F:3E:32:BD:E0:05:62
 SHA256:
 69:FA:C9:BD:55:FB:0A:C7:8D:53:BB:EE:5C:F1:D5:97:98:9F:D0:AA:AB:20:A2:51:51:BD:F1:73:3E:E7:D1:22
Alias name: mozillacert26.pem
 MD5: DC:32:C3:A7:6D:25:57:C7:68:09:9D:EA:2D:A9:A2:D1
 SHA1: 87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:59:3E:7D:44:D9:34:FF:11
 SHA256:
 F1:C1:B5:0A:E5:A2:0D:D8:03:0E:C9:F6:BC:24:82:3D:D3:67:B5:25:57:59:B4:E7:1B:61:FC:E9:F7:37:5D:73
Alias name: buypassclass2ca
 MD5: 46:A7:D2:FE:45:FB:64:5A:A8:59:90:9B:78:44:9B:29
 SHA1: 49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:C7:6B:EB:C6:0B:12:40:99
 SHA256:
 9A:11:40:25:19:7C:5B:B9:5D:94:E6:3D:55:CD:43:79:08:47:B6:46:B2:3C:DF:11:AD:A4:A0:0E:FF:15:FB:48
Alias name: chunghwaepkirootca
 MD5: 1B:2E:00:CA:26:06:90:3D:AD:FE:6F:15:68:D3:6B:B3
 SHA1: 67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:56:4B:CF:E2:3D:69:C6:F0
 SHA256:
 C0:A6:F4:DC:63:A2:4B:FD:CF:54:EF:2A:6A:08:2A:0A:72:DE:35:80:3E:2F:F5:FF:52:7A:E5:D8:72:06:DF:D5
Alias name: verisignclass2g2ca
 MD5: 2D:BB:E5:25:D3:D1:65:82:3A:B7:0E:FA:E6:EB:E2:E1
 SHA1: B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:B6:CC:A0:08:1B:67:EC:9D

190

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA256:
 3A:43:E2:20:FE:7F:3E:A9:65:3D:1E:21:74:2E:AC:2B:75:C2:0F:D8:98:03:05:BC:50:2C:AF:8C:2D:9B:41:A1
Alias name: mozillacert77.pem
 MD5: CD:68:B6:A7:C7:C4:CE:75:E0:1D:4F:57:44:61:92:09
 SHA1: 13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
 SHA256:
 EB:04:CF:5E:B1:F3:9A:FA:76:2F:2B:B1:20:F2:96:CB:A5:20:C1:B9:7D:B1:58:95:65:B8:1C:B9:A1:7B:72:44
Alias name: mozillacert123.pem
 MD5: C1:62:3E:23:C5:82:73:9C:03:59:4B:2B:E9:77:49:7F
 SHA1: 2A:B6:28:48:5E:78:FB:F3:AD:9E:79:10:DD:6B:DF:99:72:2C:96:E5
 SHA256:
 07:91:CA:07:49:B2:07:82:AA:D3:C7:D7:BD:0C:DF:C9:48:58:35:84:3E:B2:D7:99:60:09:CE:43:AB:6C:69:27
Alias name: utndatacorpsgcca
 MD5: B3:A5:3E:77:21:6D:AC:4A:C0:C9:FB:D5:41:3D:CA:06
 SHA1: 58:11:9F:0E:12:82:87:EA:50:FD:D9:87:45:6F:4F:78:DC:FA:D6:D4
 SHA256:
 85:FB:2F:91:DD:12:27:5A:01:45:B6:36:53:4F:84:02:4A:D6:8B:69:B8:EE:88:68:4F:F7:11:37:58:05:B3:48
Alias name: mozillacert15.pem
 MD5: 88:2C:8C:52:B8:A2:3C:F3:F7:BB:03:EA:AE:AC:42:0B
 SHA1: 74:20:74:41:72:9C:DD:92:EC:79:31:D8:23:10:8D:C2:81:92:E2:BB
 SHA256:
 0F:99:3C:8A:EF:97:BA:AF:56:87:14:0E:D5:9A:D1:82:1B:B4:AF:AC:F0:AA:9A:58:B5:D5:7A:33:8A:3A:FB:CB
Alias name: digicertglobalrootca
 MD5: 79:E4:A9:84:0D:7D:3A:96:D7:C0:4F:E2:43:4C:89:2E
 SHA1: A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
 SHA256:
 43:48:A0:E9:44:4C:78:CB:26:5E:05:8D:5E:89:44:B4:D8:4F:96:62:BD:26:DB:25:7F:89:34:A4:43:C7:01:61
Alias name: mozillacert66.pem
 MD5: 3D:41:29:CB:1E:AA:11:74:CD:5D:B0:62:AF:B0:43:5B
 SHA1: DD:E1:D2:A9:01:80:2E:1D:87:5E:84:B3:80:7E:4B:B1:FD:99:41:34
 SHA256:
 E6:09:07:84:65:A4:19:78:0C:B6:AC:4C:1C:0B:FB:46:53:D9:D9:CC:6E:B3:94:6E:B7:F3:D6:99:97:BA:D5:98
Alias name: mozillacert112.pem
 MD5: 37:41:49:1B:18:56:9A:26:F5:AD:C2:66:FB:40:A5:4C
 SHA1: 43:13:BB:96:F1:D5:86:9B:C1:4E:6A:92:F6:CF:F6:34:69:87:82:37
 SHA256:
 DD:69:36:FE:21:F8:F0:77:C1:23:A1:A5:21:C1:22:24:F7:22:55:B7:3E:03:A7:26:06:93:E8:A2:4B:0F:A3:89
Alias name: utnuserfirstclientauthemailca
 MD5: D7:34:3D:EF:1D:27:09:28:E1:31:02:5B:13:2B:DD:F7
 SHA1: B1:72:B1:A5:6D:95:F9:1F:E5:02:87:E1:4D:37:EA:6A:44:63:76:8A
 SHA256:
 43:F2:57:41:2D:44:0D:62:74:76:97:4F:87:7D:A8:F1:FC:24:44:56:5A:36:7A:E6:0E:DD:C2:7A:41:25:31:AE
Alias name: verisignc2g1.pem
 MD5: B3:9C:25:B1:C3:2E:32:53:80:15:30:9D:4D:02:77:3E
 SHA1: 67:82:AA:E0:ED:EE:E2:1A:58:39:D3:C0:CD:14:68:0A:4F:60:14:2A
 SHA256:
 BD:46:9F:F4:5F:AA:E7:C5:4C:CB:D6:9D:3F:3B:00:22:55:D9:B0:6B:10:B1:D0:FA:38:8B:F9:6B:91:8B:2C:E9
Alias name: mozillacert55.pem
 MD5: 74:9D:EA:60:24:C4:FD:22:53:3E:CC:3A:72:D9:29:4F
 SHA1: AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:DD:F4:1D:DB:08:9E:F0:12
 SHA256:
 A4:31:0D:50:AF:18:A6:44:71:90:37:2A:86:AF:AF:8B:95:1F:FB:43:1D:83:7F:1E:56:88:B4:59:71:ED:15:57
Alias name: mozillacert101.pem
 MD5: DF:F2:80:73:CC:F1:E6:61:73:FC:F5:42:E9:C5:7C:EE
 SHA1: 99:A6:9B:E6:1A:FE:88:6B:4D:2B:82:00:7C:B8:54:FC:31:7E:15:39
 SHA256:
 62:F2:40:27:8C:56:4C:4D:D8:BF:7D:9D:4F:6F:36:6E:A8:94:D2:2F:5F:34:D9:89:A9:83:AC:EC:2F:FF:ED:50
Alias name: mozillacert119.pem
 MD5: 94:14:77:7E:3E:5E:FD:8F:30:BD:41:B0:CF:E7:D0:30

191

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA1: 75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:DD:DE:38:E4:B7:24:2E:FE
 SHA256:
 CA:42:DD:41:74:5F:D0:B8:1E:B9:02:36:2C:F9:D8:BF:71:9D:A1:BD:1B:1E:FC:94:6F:5B:4C:99:F4:2C:1B:9E
Alias name: verisignc3g1.pem
 MD5: EF:5A:F1:33:EF:F1:CD:BB:51:02:EE:12:14:4B:96:C4
 SHA1: A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
 SHA256:
 A4:B6:B3:99:6F:C2:F3:06:B3:FD:86:81:BD:63:41:3D:8C:50:09:CC:4F:A3:29:C2:CC:F0:E2:FA:1B:14:03:05
Alias name: mozillacert44.pem
 MD5: 72:E4:4A:87:E3:69:40:80:77:EA:BC:E3:F4:FF:F0:E1
 SHA1: 5F:43:E5:B1:BF:F8:78:8C:AC:1C:C7:CA:4A:9A:C6:22:2B:CC:34:C6
 SHA256:
 96:0A:DF:00:63:E9:63:56:75:0C:29:65:DD:0A:08:67:DA:0B:9C:BD:6E:77:71:4A:EA:FB:23:49:AB:39:3D:A3
Alias name: mozillacert108.pem
 MD5: 3E:45:52:15:09:51:92:E1:B7:5D:37:9F:B1:87:29:8A
 SHA1: B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:F2:15:01:52:A4:1D:82:9C
 SHA256:
 EB:D4:10:40:E4:BB:3E:C7:42:C9:E3:81:D3:1E:F2:A4:1A:48:B6:68:5C:96:E7:CE:F3:C1:DF:6C:D4:33:1C:99
Alias name: mozillacert95.pem
 MD5: 3D:3B:18:9E:2C:64:5A:E8:D5:88:CE:0E:F9:37:C2:EC
 SHA1: DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:C7:C2:81:A5:BC:A9:64:57
 SHA256:
 ED:F7:EB:BC:A2:7A:2A:38:4D:38:7B:7D:40:10:C6:66:E2:ED:B4:84:3E:4C:29:B4:AE:1D:5B:93:32:E6:B2:4D
Alias name: keynectisrootca
 MD5: CC:4D:AE:FB:30:6B:D8:38:FE:50:EB:86:61:4B:D2:26
 SHA1: 9C:61:5C:4D:4D:85:10:3A:53:26:C2:4D:BA:EA:E4:A2:D2:D5:CC:97
 SHA256:
 42:10:F1:99:49:9A:9A:C3:3C:8D:E0:2B:A6:DB:AA:14:40:8B:DD:8A:6E:32:46:89:C1:92:2D:06:97:15:A3:32
Alias name: mozillacert141.pem
 MD5: A9:23:75:9B:BA:49:36:6E:31:C2:DB:F2:E7:66:BA:87
 SHA1: 31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:4B:57:E8:B7:D8:F1:FC:A6
 SHA256:
 58:D0:17:27:9C:D4:DC:63:AB:DD:B1:96:A6:C9:90:6C:30:C4:E0:87:83:EA:E8:C1:60:99:54:D6:93:55:59:6B
Alias name: equifaxsecureglobalebusinessca1
 MD5: 51:F0:2A:33:F1:F5:55:39:07:F2:16:7A:47:C7:5D:63
 SHA1: 3A:74:CB:7A:47:DB:70:DE:89:1F:24:35:98:64:B8:2D:82:BD:1A:36
 SHA256:
 86:AB:5A:65:71:D3:32:9A:BC:D2:E4:E6:37:66:8B:A8:9C:73:1E:C2:93:B6:CB:A6:0F:71:63:40:A0:91:CE:AE
Alias name: affirmtrustpremiumca
 MD5: C4:5D:0E:48:B6:AC:28:30:4E:0A:BC:F9:38:16:87:57
 SHA1: D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:7D:6A:06:65:26:32:28:27
 SHA256:
 70:A7:3F:7F:37:6B:60:07:42:48:90:45:34:B1:14:82:D5:BF:0E:69:8E:CC:49:8D:F5:25:77:EB:F2:E9:3B:9A
Alias name: baltimorecodesigningca
 MD5: 90:F5:28:49:56:D1:5D:2C:B0:53:D4:4B:EF:6F:90:22
 SHA1: 30:46:D8:C8:88:FF:69:30:C3:4A:FC:CD:49:27:08:7C:60:56:7B:0D
 SHA256:
 A9:15:45:DB:D2:E1:9C:4C:CD:F9:09:AA:71:90:0D:18:C7:35:1C:89:B3:15:F0:F1:3D:05:C1:3A:8F:FB:46:87
Alias name: mozillacert33.pem
 MD5: 22:2D:A6:01:EA:7C:0A:F7:F0:6C:56:43:3F:77:76:D3
 SHA1: FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:90:8F:FD:28:86:65:64:7D
 SHA256:
 A2:2D:BA:68:1E:97:37:6E:2D:39:7D:72:8A:AE:3A:9B:62:96:B9:FD:BA:60:BC:2E:11:F6:47:F2:C6:75:FB:37
Alias name: mozillacert0.pem
 MD5: CA:3D:D3:68:F1:03:5C:D0:32:FA:B8:2B:59:E8:5A:DB
 SHA1: 97:81:79:50:D8:1C:96:70:CC:34:D8:09:CF:79:44:31:36:7E:F4:74
 SHA256:
 A5:31:25:18:8D:21:10:AA:96:4B:02:C7:B7:C6:DA:32:03:17:08:94:E5:FB:71:FF:FB:66:67:D5:E6:81:0A:36
Alias name: mozillacert84.pem

192

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 MD5: 49:63:AE:27:F4:D5:95:3D:D8:DB:24:86:B8:9C:07:53
 SHA1: D3:C0:63:F2:19:ED:07:3E:34:AD:5D:75:0B:32:76:29:FF:D5:9A:F2
 SHA256:
 79:3C:BF:45:59:B9:FD:E3:8A:B2:2D:F1:68:69:F6:98:81:AE:14:C4:B0:13:9A:C7:88:A7:8A:1A:FC:CA:02:FB
Alias name: mozillacert130.pem
 MD5: 65:58:AB:15:AD:57:6C:1E:A8:A7:B5:69:AC:BF:FF:EB
 SHA1: E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:8C:E8:6A:81:10:9F:E4:8E
 SHA256:
 F4:C1:49:55:1A:30:13:A3:5B:C7:BF:FE:17:A7:F3:44:9B:C1:AB:5B:5A:0A:E7:4B:06:C2:3B:90:00:4C:01:04
Alias name: mozillacert148.pem
 MD5: 4C:56:41:E5:0D:BB:2B:E8:CA:A3:ED:18:08:AD:43:39
 SHA1: 04:83:ED:33:99:AC:36:08:05:87:22:ED:BC:5E:46:00:E3:BE:F9:D7
 SHA256:
 6E:A5:47:41:D0:04:66:7E:ED:1B:48:16:63:4A:A3:A7:9E:6E:4B:96:95:0F:82:79:DA:FC:8D:9B:D8:81:21:37
Alias name: mozillacert22.pem
 MD5: 02:26:C3:01:5E:08:30:37:43:A9:D0:7D:CF:37:E6:BF
 SHA1: 32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:10:0D:D6:02:90:37:F0:96
 SHA256:
 37:D5:10:06:C5:12:EA:AB:62:64:21:F1:EC:8C:92:01:3F:C5:F8:2A:E9:8E:E5:33:EB:46:19:B8:DE:B4:D0:6C
Alias name: verisignc1g1.pem
 MD5: 97:60:E8:57:5F:D3:50:47:E5:43:0C:94:36:8A:B0:62
 SHA1: 90:AE:A2:69:85:FF:14:80:4C:43:49:52:EC:E9:60:84:77:AF:55:6F
 SHA256:
 D1:7C:D8:EC:D5:86:B7:12:23:8A:48:2C:E4:6F:A5:29:39:70:74:2F:27:6D:8A:B6:A9:E4:6E:E0:28:8F:33:55
Alias name: mozillacert7.pem
 MD5: 32:4A:4B:BB:C8:63:69:9B:BE:74:9A:C6:DD:1D:46:24
 SHA1: AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:14:C3:D0:E3:37:0E:B5:8A
 SHA256:
 14:65:FA:20:53:97:B8:76:FA:A6:F0:A9:95:8E:55:90:E4:0F:CC:7F:AA:4F:B7:C2:C8:67:75:21:FB:5F:B6:58
Alias name: mozillacert73.pem
 MD5: D6:39:81:C6:52:7E:96:69:FC:FC:CA:66:ED:05:F2:96
 SHA1: B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:92:F4:FE:39:D4:E7:0F:0E
 SHA256:
 2C:E1:CB:0B:F9:D2:F9:E1:02:99:3F:BE:21:51:52:C3:B2:DD:0C:AB:DE:1C:68:E5:31:9B:83:91:54:DB:B7:F5
Alias name: mozillacert137.pem
 MD5: D3:D9:BD:AE:9F:AC:67:24:B3:C8:1B:52:E1:B9:A9:BD
 SHA1: 4A:65:D5:F4:1D:EF:39:B8:B8:90:4A:4A:D3:64:81:33:CF:C7:A1:D1
 SHA256:
 BD:81:CE:3B:4F:65:91:D1:1A:67:B5:FC:7A:47:FD:EF:25:52:1B:F9:AA:4E:18:B9:E3:DF:2E:34:A7:80:3B:E8
Alias name: swisssignsilverg2ca
 MD5: E0:06:A1:C9:7D:CF:C9:FC:0D:C0:56:75:96:D8:62:13
 SHA1: 9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:93:DF:A7:F0:40:D1:1D:CB
 SHA256:
 BE:6C:4D:A2:BB:B9:BA:59:B6:F3:93:97:68:37:42:46:C3:C0:05:99:3F:A9:8F:02:0D:1D:ED:BE:D4:8A:81:D5
Alias name: mozillacert11.pem
 MD5: 87:CE:0B:7B:2A:0E:49:00:E1:58:71:9B:37:A8:93:72
 SHA1: 05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:4B:DF:B5:A8:99:B2:4D:43
 SHA256:
 3E:90:99:B5:01:5E:8F:48:6C:00:BC:EA:9D:11:1E:E7:21:FA:BA:35:5A:89:BC:F1:DF:69:56:1E:3D:C6:32:5C
Alias name: mozillacert29.pem
 MD5: D3:F3:A6:16:C0:FA:6B:1D:59:B1:2D:96:4D:0E:11:2E
 SHA1: 74:F8:A3:C3:EF:E7:B3:90:06:4B:83:90:3C:21:64:60:20:E5:DF:CE
 SHA256:
 15:F0:BA:00:A3:AC:7A:F3:AC:88:4C:07:2B:10:11:A0:77:BD:77:C0:97:F4:01:64:B2:F8:59:8A:BD:83:86:0C
Alias name: mozillacert62.pem
 MD5: EF:5A:F1:33:EF:F1:CD:BB:51:02:EE:12:14:4B:96:C4
 SHA1: A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
 SHA256:
 A4:B6:B3:99:6F:C2:F3:06:B3:FD:86:81:BD:63:41:3D:8C:50:09:CC:4F:A3:29:C2:CC:F0:E2:FA:1B:14:03:05

193

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Alias name: mozillacert126.pem
 MD5: 77:0D:19:B1:21:FD:00:42:9C:3E:0C:A5:DD:0B:02:8E
 SHA1: 25:01:90:19:CF:FB:D9:99:1C:B7:68:25:74:8D:94:5F:30:93:95:42
 SHA256:
 AF:8B:67:62:A1:E5:28:22:81:61:A9:5D:5C:55:9E:E2:66:27:8F:75:D7:9E:83:01:89:A5:03:50:6A:BD:6B:4C
Alias name: securetrustca
 MD5: DC:32:C3:A7:6D:25:57:C7:68:09:9D:EA:2D:A9:A2:D1
 SHA1: 87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:59:3E:7D:44:D9:34:FF:11
 SHA256:
 F1:C1:B5:0A:E5:A2:0D:D8:03:0E:C9:F6:BC:24:82:3D:D3:67:B5:25:57:59:B4:E7:1B:61:FC:E9:F7:37:5D:73
Alias name: soneraclass1ca
 MD5: 33:B7:84:F5:5F:27:D7:68:27:DE:14:DE:12:2A:ED:6F
 SHA1: 07:47:22:01:99:CE:74:B9:7C:B0:3D:79:B2:64:A2:C8:55:E9:33:FF
 SHA256:
 CD:80:82:84:CF:74:6F:F2:FD:6E:B5:8A:A1:D5:9C:4A:D4:B3:CA:56:FD:C6:27:4A:89:26:A7:83:5F:32:31:3D
Alias name: mozillacert18.pem
 MD5: F1:6A:22:18:C9:CD:DF:CE:82:1D:1D:B7:78:5C:A9:A5
 SHA1: 79:98:A3:08:E1:4D:65:85:E6:C2:1E:15:3A:71:9F:BA:5A:D3:4A:D9
 SHA256:
 44:04:E3:3B:5E:14:0D:CF:99:80:51:FD:FC:80:28:C7:C8:16:15:C5:EE:73:7B:11:1B:58:82:33:A9:B5:35:A0
Alias name: mozillacert51.pem
 MD5: 18:98:C0:D6:E9:3A:FC:F9:B0:F5:0C:F7:4B:01:44:17
 SHA1: FA:B7:EE:36:97:26:62:FB:2D:B0:2A:F6:BF:03:FD:E8:7C:4B:2F:9B
 SHA256:
 EA:A9:62:C4:FA:4A:6B:AF:EB:E4:15:19:6D:35:1C:CD:88:8D:4F:53:F3:FA:8A:E6:D7:C4:66:A9:4E:60:42:BB
Alias name: mozillacert69.pem
 MD5: A6:B0:CD:85:80:DA:5C:50:34:A3:39:90:2F:55:67:73
 SHA1: 2F:78:3D:25:52:18:A7:4A:65:39:71:B5:2C:A2:9C:45:15:6F:E9:19
 SHA256:
 25:30:CC:8E:98:32:15:02:BA:D9:6F:9B:1F:BA:1B:09:9E:2D:29:9E:0F:45:48:BB:91:4F:36:3B:C0:D4:53:1F
Alias name: mozillacert115.pem
 MD5: 2B:9B:9E:E4:7B:6C:1F:00:72:1A:CC:C1:77:79:DF:6A
 SHA1: 59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:32:17:65:CF:17:D8:94:E9
 SHA256:
 91:E2:F5:78:8D:58:10:EB:A7:BA:58:73:7D:E1:54:8A:8E:CA:CD:01:45:98:BC:0B:14:3E:04:1B:17:05:25:52
Alias name: verisignclass3g5ca
 MD5: CB:17:E4:31:67:3E:E2:09:FE:45:57:93:F3:0A:FA:1C
 SHA1: 4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
 SHA256:
 9A:CF:AB:7E:43:C8:D8:80:D0:6B:26:2A:94:DE:EE:E4:B4:65:99:89:C3:D0:CA:F1:9B:AF:64:05:E4:1A:B7:DF
Alias name: utnuserfirsthardwareca
 MD5: 4C:56:41:E5:0D:BB:2B:E8:CA:A3:ED:18:08:AD:43:39
 SHA1: 04:83:ED:33:99:AC:36:08:05:87:22:ED:BC:5E:46:00:E3:BE:F9:D7
 SHA256:
 6E:A5:47:41:D0:04:66:7E:ED:1B:48:16:63:4A:A3:A7:9E:6E:4B:96:95:0F:82:79:DA:FC:8D:9B:D8:81:21:37
Alias name: addtrustqualifiedca
 MD5: 27:EC:39:47:CD:DA:5A:AF:E2:9A:01:65:21:A9:4C:BB
 SHA1: 4D:23:78:EC:91:95:39:B5:00:7F:75:8F:03:3B:21:1E:C5:4D:8B:CF
 SHA256:
 80:95:21:08:05:DB:4B:BC:35:5E:44:28:D8:FD:6E:C2:CD:E3:AB:5F:B9:7A:99:42:98:8E:B8:F4:DC:D0:60:16
Alias name: mozillacert40.pem
 MD5: 56:5F:AA:80:61:12:17:F6:67:21:E6:2B:6D:61:56:8E
 SHA1: 80:25:EF:F4:6E:70:C8:D4:72:24:65:84:FE:40:3B:8A:8D:6A:DB:F5
 SHA256:
 8D:A0:84:FC:F9:9C:E0:77:22:F8:9B:32:05:93:98:06:FA:5C:B8:11:E1:C8:13:F6:A1:08:C7:D3:36:B3:40:8E
Alias name: mozillacert58.pem
 MD5: 01:5E:D8:6B:BD:6F:3D:8E:A1:31:F8:12:E0:98:73:6A
 SHA1: 8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:8B:51:9A:99:E6:10:D7:B0

194

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA256:
 5E:DB:7A:C4:3B:82:A0:6A:87:61:E8:D7:BE:49:79:EB:F2:61:1F:7D:D7:9B:F9:1C:1C:6B:56:6A:21:9E:D7:66
Alias name: verisignclass3g3ca
 MD5: CD:68:B6:A7:C7:C4:CE:75:E0:1D:4F:57:44:61:92:09
 SHA1: 13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
 SHA256:
 EB:04:CF:5E:B1:F3:9A:FA:76:2F:2B:B1:20:F2:96:CB:A5:20:C1:B9:7D:B1:58:95:65:B8:1C:B9:A1:7B:72:44
Alias name: mozillacert104.pem
 MD5: 55:5D:63:00:97:BD:6A:97:F5:67:AB:4B:FB:6E:63:15
 SHA1: 4F:99:AA:93:FB:2B:D1:37:26:A1:99:4A:CE:7F:F0:05:F2:93:5D:1E
 SHA256:
 1C:01:C6:F4:DB:B2:FE:FC:22:55:8B:2B:CA:32:56:3F:49:84:4A:CF:C3:2B:7B:E4:B0:FF:59:9F:9E:8C:7A:F7
Alias name: mozillacert91.pem
 MD5: 30:C9:E7:1E:6B:E6:14:EB:65:B2:16:69:20:31:67:4D
 SHA1: 3B:C0:38:0B:33:C3:F6:A6:0C:86:15:22:93:D9:DF:F5:4B:81:C0:04
 SHA256:
 C1:B4:82:99:AB:A5:20:8F:E9:63:0A:CE:55:CA:68:A0:3E:DA:5A:51:9C:88:02:A0:D3:A6:73:BE:8F:8E:55:7D
Alias name: thawtepersonalfreemailca
 MD5: 53:4B:1D:17:58:58:1A:30:A1:90:F8:6E:5C:F2:CF:65
 SHA1: E6:18:83:AE:84:CA:C1:C1:CD:52:AD:E8:E9:25:2B:45:A6:4F:B7:E2
 SHA256:
 5B:38:BD:12:9E:83:D5:A0:CA:D2:39:21:08:94:90:D5:0D:4A:AE:37:04:28:F8:DD:FF:FF:FA:4C:15:64:E1:84
Alias name: certplusclass3pprimaryca
 MD5: E1:4B:52:73:D7:1B:DB:93:30:E5:BD:E4:09:6E:BE:FB
 SHA1: 21:6B:2A:29:E6:2A:00:CE:82:01:46:D8:24:41:41:B9:25:11:B2:79
 SHA256:
 CC:C8:94:89:37:1B:AD:11:1C:90:61:9B:EA:24:0A:2E:6D:AD:D9:9F:9F:6E:1D:4D:41:E5:8E:D6:DE:3D:02:85
Alias name: verisignc3g4.pem
 MD5: 3A:52:E1:E7:FD:6F:3A:E3:6F:F3:6F:99:1B:F9:22:41
 SHA1: 22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
 SHA256:
 69:DD:D7:EA:90:BB:57:C9:3E:13:5D:C8:5E:A6:FC:D5:48:0B:60:32:39:BD:C4:54:FC:75:8B:2A:26:CF:7F:79
Alias name: swisssigngoldg2ca
 MD5: 24:77:D9:A8:91:D1:3B:FA:88:2D:C2:FF:F8:CD:33:93
 SHA1: D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:45:25:3A:6F:9F:1A:27:61
 SHA256:
 62:DD:0B:E9:B9:F5:0A:16:3E:A0:F8:E7:5C:05:3B:1E:CA:57:EA:55:C8:68:8F:64:7C:68:81:F2:C8:35:7B:95
Alias name: mozillacert47.pem
 MD5: ED:41:F5:8C:50:C5:2B:9C:73:E6:EE:6C:EB:C2:A8:26
 SHA1: 1B:4B:39:61:26:27:6B:64:91:A2:68:6D:D7:02:43:21:2D:1F:1D:96
 SHA256:
 E4:C7:34:30:D7:A5:B5:09:25:DF:43:37:0A:0D:21:6E:9A:79:B9:D6:DB:83:73:A0:C6:9E:B1:CC:31:C7:C5:2A
Alias name: mozillacert80.pem
 MD5: 64:B0:09:55:CF:B1:D5:99:E2:BE:13:AB:A6:5D:EA:4D
 SHA1: B8:23:6B:00:2F:1D:16:86:53:01:55:6C:11:A4:37:CA:EB:FF:C3:BB
 SHA256:
 BD:71:FD:F6:DA:97:E4:CF:62:D1:64:7A:DD:25:81:B0:7D:79:AD:F8:39:7E:B4:EC:BA:9C:5E:84:88:82:14:23
Alias name: mozillacert98.pem
 MD5: 43:5E:88:D4:7D:1A:4A:7E:FD:84:2E:52:EB:01:D4:6F
 SHA1: C9:A8:B9:E7:55:80:5E:58:E3:53:77:A7:25:EB:AF:C3:7B:27:CC:D7
 SHA256:
 3E:84:BA:43:42:90:85:16:E7:75:73:C0:99:2F:09:79:CA:08:4E:46:85:68:1F:F1:95:CC:BA:8A:22:9B:8A:76
Alias name: mozillacert144.pem
 MD5: A3:EC:75:0F:2E:88:DF:FA:48:01:4E:0B:5C:48:6F:FB
 SHA1: 37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:B7:41:10:B4:F2:E4:9A:27
 SHA256:
 79:08:B4:03:14:C1:38:10:0B:51:8D:07:35:80:7F:FB:FC:F8:51:8A:00:95:33:71:05:BA:38:6B:15:3D:D9:27
Alias name: starfieldclass2ca
 MD5: 32:4A:4B:BB:C8:63:69:9B:BE:74:9A:C6:DD:1D:46:24

195

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA1: AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:14:C3:D0:E3:37:0E:B5:8A
 SHA256:
 14:65:FA:20:53:97:B8:76:FA:A6:F0:A9:95:8E:55:90:E4:0F:CC:7F:AA:4F:B7:C2:C8:67:75:21:FB:5F:B6:58
Alias name: mozillacert36.pem
 MD5: F0:96:B6:2F:C5:10:D5:67:8E:83:25:32:E8:5E:2E:E5
 SHA1: 23:88:C9:D3:71:CC:9E:96:3D:FF:7D:3C:A7:CE:FC:D6:25:EC:19:0D
 SHA256:
 32:7A:3D:76:1A:BA:DE:A0:34:EB:99:84:06:27:5C:B1:A4:77:6E:FD:AE:2F:DF:6D:01:68:EA:1C:4F:55:67:D0
Alias name: mozillacert3.pem
 MD5: 39:16:AA:B9:6A:41:E1:14:69:DF:9E:6C:3B:72:DC:B6
 SHA1: 87:9F:4B:EE:05:DF:98:58:3B:E3:60:D6:33:E7:0D:3F:FE:98:71:AF
 SHA256:
 39:DF:7B:68:2B:7B:93:8F:84:71:54:81:CC:DE:8D:60:D8:F2:2E:C5:98:87:7D:0A:AA:C1:2B:59:18:2B:03:12
Alias name: globalsignr2ca
 MD5: 94:14:77:7E:3E:5E:FD:8F:30:BD:41:B0:CF:E7:D0:30
 SHA1: 75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:DD:DE:38:E4:B7:24:2E:FE
 SHA256:
 CA:42:DD:41:74:5F:D0:B8:1E:B9:02:36:2C:F9:D8:BF:71:9D:A1:BD:1B:1E:FC:94:6F:5B:4C:99:F4:2C:1B:9E
Alias name: mozillacert87.pem
 MD5: 6C:39:7D:A4:0E:55:59:B2:3F:D6:41:B1:12:50:DE:43
 SHA1: 5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:19:19:C3:73:34:B9:C7:74
 SHA256:
 51:3B:2C:EC:B8:10:D4:CD:E5:DD:85:39:1A:DF:C6:C2:DD:60:D8:7B:B7:36:D2:B5:21:48:4A:A4:7A:0E:BE:F6
Alias name: mozillacert133.pem
 MD5: D6:ED:3C:CA:E2:66:0F:AF:10:43:0D:77:9B:04:09:BF
 SHA1: 85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:22:00:46:13:DB:17:92:84
 SHA256:
 7D:3B:46:5A:60:14:E5:26:C0:AF:FC:EE:21:27:D2:31:17:27:AD:81:1C:26:84:2D:00:6A:F3:73:06:CC:80:BD
Alias name: mozillacert25.pem
 MD5: CB:17:E4:31:67:3E:E2:09:FE:45:57:93:F3:0A:FA:1C
 SHA1: 4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
 SHA256:
 9A:CF:AB:7E:43:C8:D8:80:D0:6B:26:2A:94:DE:EE:E4:B4:65:99:89:C3:D0:CA:F1:9B:AF:64:05:E4:1A:B7:DF
Alias name: verisignclass1g2ca
 MD5: DB:23:3D:F9:69:FA:4B:B9:95:80:44:73:5E:7D:41:83
 SHA1: 27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47
 SHA256:
 34:1D:E9:8B:13:92:AB:F7:F4:AB:90:A9:60:CF:25:D4:BD:6E:C6:5B:9A:51:CE:6E:D0:67:D0:0E:C7:CE:9B:7F
Alias name: mozillacert76.pem
 MD5: 82:92:BA:5B:EF:CD:8A:6F:A6:3D:55:F9:84:F6:D6:B7
 SHA1: F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:DC:E9:6E:2C:C7:B2:78:B7
 SHA256:
 03:76:AB:1D:54:C5:F9:80:3C:E4:B2:E2:01:A0:EE:7E:EF:7B:57:B6:36:E8:A9:3C:9B:8D:48:60:C9:6F:5F:A7
Alias name: mozillacert122.pem
 MD5: 1D:35:54:04:85:78:B0:3F:42:42:4D:BF:20:73:0A:3F
 SHA1: 02:FA:F3:E2:91:43:54:68:60:78:57:69:4D:F5:E4:5B:68:85:18:68
 SHA256:
 68:7F:A4:51:38:22:78:FF:F0:C8:B1:1F:8D:43:D5:76:67:1C:6E:B2:BC:EA:B4:13:FB:83:D9:65:D0:6D:2F:F2
Alias name: mozillacert14.pem
 MD5: D4:74:DE:57:5C:39:B2:D3:9C:85:83:C5:C0:65:49:8A
 SHA1: 5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:E6:D3:8F:1A:61:C7:DC:25
 SHA256:
 74:31:E5:F4:C3:C1:CE:46:90:77:4F:0B:61:E0:54:40:88:3B:A9:A0:1E:D0:0B:A6:AB:D7:80:6E:D3:B1:18:CF
Alias name: equifaxsecureca
 MD5: 67:CB:9D:C0:13:24:8A:82:9B:B2:17:1E:D1:1B:EC:D4
 SHA1: D2:32:09:AD:23:D3:14:23:21:74:E4:0D:7F:9D:62:13:97:86:63:3A
 SHA256:
 08:29:7A:40:47:DB:A2:36:80:C7:31:DB:6E:31:76:53:CA:78:48:E1:BE:BD:3A:0B:01:79:A7:07:F9:2C:F1:78
Alias name: mozillacert65.pem

196

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 MD5: A2:6F:53:B7:EE:40:DB:4A:68:E7:FA:18:D9:10:4B:72
 SHA1: 69:BD:8C:F4:9C:D3:00:FB:59:2E:17:93:CA:55:6A:F3:EC:AA:35:FB
 SHA256:
 BC:23:F9:8A:31:3C:B9:2D:E3:BB:FC:3A:5A:9F:44:61:AC:39:49:4C:4A:E1:5A:9E:9D:F1:31:E9:9B:73:01:9A
Alias name: mozillacert111.pem
 MD5: F9:03:7E:CF:E6:9E:3C:73:7A:2A:90:07:69:FF:2B:96
 SHA1: 9C:BB:48:53:F6:A4:F6:D3:52:A4:E8:32:52:55:60:13:F5:AD:AF:65
 SHA256:
 59:76:90:07:F7:68:5D:0F:CD:50:87:2F:9F:95:D5:75:5A:5B:2B:45:7D:81:F3:69:2B:61:0A:98:67:2F:0E:1B
Alias name: certumtrustednetworkca
 MD5: D5:E9:81:40:C5:18:69:FC:46:2C:89:75:62:0F:AA:78
 SHA1: 07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:A2:59:3A:19:A7:0F:06:9E
 SHA256:
 5C:58:46:8D:55:F5:8E:49:7E:74:39:82:D2:B5:00:10:B6:D1:65:37:4A:CF:83:A7:D4:A3:2D:B7:68:C4:40:8E
Alias name: mozillacert129.pem
 MD5: 92:65:58:8B:A2:1A:31:72:73:68:5C:B4:A5:7A:07:48
 SHA1: E6:21:F3:35:43:79:05:9A:4B:68:30:9D:8A:2F:74:22:15:87:EC:79
 SHA256:
 A0:45:9B:9F:63:B2:25:59:F5:FA:5D:4C:6D:B3:F9:F7:2F:F1:93:42:03:35:78:F0:73:BF:1D:1B:46:CB:B9:12
Alias name: mozillacert54.pem
 MD5: B5:E8:34:36:C9:10:44:58:48:70:6D:2E:83:D4:B8:05
 SHA1: 03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:20:D2:D9:32:3A:4C:2A:FD
 SHA256:
 B4:78:B8:12:25:0D:F8:78:63:5C:2A:A7:EC:7D:15:5E:AA:62:5E:E8:29:16:E2:CD:29:43:61:88:6C:D1:FB:D4
Alias name: mozillacert100.pem
 MD5: CD:E0:25:69:8D:47:AC:9C:89:35:90:F7:FD:51:3D:2F
 SHA1: 58:E8:AB:B0:36:15:33:FB:80:F7:9B:1B:6D:29:D3:FF:8D:5F:00:F0
 SHA256:
 49:E7:A4:42:AC:F0:EA:62:87:05:00:54:B5:25:64:B6:50:E4:F4:9E:42:E3:48:D6:AA:38:E0:39:E9:57:B1:C1
Alias name: mozillacert118.pem
 MD5: 8F:5D:77:06:27:C4:98:3C:5B:93:78:E7:D7:7D:9B:CC
 SHA1: 7E:78:4A:10:1C:82:65:CC:2D:E1:F1:6D:47:B4:40:CA:D9:0A:19:45
 SHA256:
 5F:0B:62:EA:B5:E3:53:EA:65:21:65:16:58:FB:B6:53:59:F4:43:28:0A:4A:FB:D1:04:D7:7D:10:F9:F0:4C:07
Alias name: gd-class2-root.pem
 MD5: 91:DE:06:25:AB:DA:FD:32:17:0C:BB:25:17:2A:84:67
 SHA1: 27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:D7:77:70:02:8F:20:EE:E4
 SHA256:
 C3:84:6B:F2:4B:9E:93:CA:64:27:4C:0E:C6:7C:1E:CC:5E:02:4F:FC:AC:D2:D7:40:19:35:0E:81:FE:54:6A:E4
Alias name: mozillacert151.pem
 MD5: 86:38:6D:5E:49:63:6C:85:5C:DB:6D:DC:94:B7:D0:F7
 SHA1: AC:ED:5F:65:53:FD:25:CE:01:5F:1F:7A:48:3B:6A:74:9F:61:78:C6
 SHA256:
 7F:12:CD:5F:7E:5E:29:0E:C7:D8:51:79:D5:B7:2C:20:A5:BE:75:08:FF:DB:5B:F8:1A:B9:68:4A:7F:C9:F6:67
Alias name: thawteprimaryrootcag3
 MD5: FB:1B:5D:43:8A:94:CD:44:C6:76:F2:43:4B:47:E7:31
 SHA1: F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:5B:17:15:89:CA:F3:6B:F2
 SHA256:
 4B:03:F4:58:07:AD:70:F2:1B:FC:2C:AE:71:C9:FD:E4:60:4C:06:4C:F5:FF:B6:86:BA:E5:DB:AA:D7:FD:D3:4C
Alias name: quovadisrootca
 MD5: 27:DE:36:FE:72:B7:00:03:00:9D:F4:F0:1E:6C:04:24
 SHA1: DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:BC:07:62:01:00:89:76:C9
 SHA256:
 A4:5E:DE:3B:BB:F0:9C:8A:E1:5C:72:EF:C0:72:68:D6:93:A2:1C:99:6F:D5:1E:67:CA:07:94:60:FD:6D:88:73
Alias name: thawteprimaryrootcag2
 MD5: 74:9D:EA:60:24:C4:FD:22:53:3E:CC:3A:72:D9:29:4F
 SHA1: AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:DD:F4:1D:DB:08:9E:F0:12
 SHA256:
 A4:31:0D:50:AF:18:A6:44:71:90:37:2A:86:AF:AF:8B:95:1F:FB:43:1D:83:7F:1E:56:88:B4:59:71:ED:15:57

197

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Alias name: deprecateditsecca
 MD5: A5:96:0C:F6:B5:AB:27:E5:01:C6:00:88:9E:60:33:E5
 SHA1: 12:12:0B:03:0E:15:14:54:F4:DD:B3:F5:DE:13:6E:83:5A:29:72:9D
 SHA256:
 9A:59:DA:86:24:1A:FD:BA:A3:39:FA:9C:FD:21:6A:0B:06:69:4D:E3:7E:37:52:6B:BE:63:C8:BC:83:74:2E:CB
Alias name: entrustrootcag2
 MD5: 4B:E2:C9:91:96:65:0C:F4:0E:5A:93:92:A0:0A:FE:B2
 SHA1: 8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:1E:57:EF:BB:93:22:72:D4
 SHA256:
 43:DF:57:74:B0:3E:7F:EF:5F:E4:0D:93:1A:7B:ED:F1:BB:2E:6B:42:73:8C:4E:6D:38:41:10:3D:3A:A7:F3:39
Alias name: mozillacert43.pem
 MD5: 40:01:25:06:8D:21:43:6A:0E:43:00:9C:E7:43:F3:D5
 SHA1: F9:CD:0E:2C:DA:76:24:C1:8F:BD:F0:F0:AB:B6:45:B8:F7:FE:D5:7A
 SHA256:
 50:79:41:C7:44:60:A0:B4:70:86:22:0D:4E:99:32:57:2A:B5:D1:B5:BB:CB:89:80:AB:1C:B1:76:51:A8:44:D2
Alias name: mozillacert107.pem
 MD5: BE:EC:11:93:9A:F5:69:21:BC:D7:C1:C0:67:89:CC:2A
 SHA1: 8E:1C:74:F8:A6:20:B9:E5:8A:F4:61:FA:EC:2B:47:56:51:1A:52:C6
 SHA256:
 F9:6F:23:F4:C3:E7:9C:07:7A:46:98:8D:5A:F5:90:06:76:A0:F0:39:CB:64:5D:D1:75:49:B2:16:C8:24:40:CE
Alias name: trustcenterclass4caii
 MD5: 9D:FB:F9:AC:ED:89:33:22:F4:28:48:83:25:23:5B:E0
 SHA1: A6:9A:91:FD:05:7F:13:6A:42:63:0B:B1:76:0D:2D:51:12:0C:16:50
 SHA256:
 32:66:96:7E:59:CD:68:00:8D:9D:D3:20:81:11:85:C7:04:20:5E:8D:95:FD:D8:4F:1C:7B:31:1E:67:04:FC:32
Alias name: mozillacert94.pem
 MD5: 46:A7:D2:FE:45:FB:64:5A:A8:59:90:9B:78:44:9B:29
 SHA1: 49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:C7:6B:EB:C6:0B:12:40:99
 SHA256:
 9A:11:40:25:19:7C:5B:B9:5D:94:E6:3D:55:CD:43:79:08:47:B6:46:B2:3C:DF:11:AD:A4:A0:0E:FF:15:FB:48
Alias name: mozillacert140.pem
 MD5: 5E:39:7B:DD:F8:BA:EC:82:E9:AC:62:BA:0C:54:00:2B
 SHA1: CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:88:80:48:39:19:93:7C:F7
 SHA256:
 85:A0:DD:7D:D7:20:AD:B7:FF:05:F8:3D:54:2B:20:9D:C7:FF:45:28:F7:D6:77:B1:83:89:FE:A5:E5:C4:9E:86
Alias name: ttelesecglobalrootclass3ca
 MD5: CA:FB:40:A8:4E:39:92:8A:1D:FE:8E:2F:C4:27:EA:EF
 SHA1: 55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:19:9D:2A:BE:11:E3:81:D1
 SHA256:
 FD:73:DA:D3:1C:64:4F:F1:B4:3B:EF:0C:CD:DA:96:71:0B:9C:D9:87:5E:CA:7E:31:70:7A:F3:E9:6D:52:2B:BD
Alias name: amzninternalcorpca
 MD5: 7B:0E:9D:67:A9:3A:88:DD:BA:81:8D:A9:3C:74:AA:BB
 SHA1: 43:E3:E6:37:C5:88:05:67:91:37:E3:72:4D:01:7F:F4:1B:CE:3A:97
 SHA256:
 01:29:04:6C:60:EF:5C:51:60:D3:9F:A2:3A:1D:0C:52:0A:AF:DA:4F:17:87:95:AA:66:82:01:9F:76:C9:11:DC
Alias name: starfieldservicesrootg2ca
 MD5: 17:35:74:AF:7B:61:1C:EB:F4:F9:3C:E2:EE:40:F9:A2
 SHA1: 92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:FF:22:D8:63:E8:25:6F:3F
 SHA256:
 56:8D:69:05:A2:C8:87:08:A4:B3:02:51:90:ED:CF:ED:B1:97:4A:60:6A:13:C6:E5:29:0F:CB:2A:E6:3E:DA:B5
Alias name: mozillacert32.pem
 MD5: 0C:7F:DD:6A:F4:2A:B9:C8:9B:BD:20:7E:A9:DB:5C:37
 SHA1: 60:D6:89:74:B5:C2:65:9E:8A:0F:C1:88:7C:88:D2:46:69:1B:18:2C
 SHA256:
 B9:BE:A7:86:0A:96:2E:A3:61:1D:AB:97:AB:6D:A3:E2:1C:10:68:B9:7D:55:57:5E:D0:E1:12:79:C1:1C:89:32
Alias name: mozillacert83.pem
 MD5: 2C:8C:17:5E:B1:54:AB:93:17:B5:36:5A:DB:D1:C6:F2
 SHA1: A0:73:E5:C5:BD:43:61:0D:86:4C:21:13:0A:85:58:57:CC:9C:EA:46

198

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA256:
 8C:4E:DF:D0:43:48:F3:22:96:9E:7E:29:A4:CD:4D:CA:00:46:55:06:1C:16:E1:B0:76:42:2E:F3:42:AD:63:0E
Alias name: verisignroot.pem
 MD5: 8E:AD:B5:01:AA:4D:81:E4:8C:1D:D1:E1:14:00:95:19
 SHA1: 36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
 SHA256:
 23:99:56:11:27:A5:71:25:DE:8C:EF:EA:61:0D:DF:2F:A0:78:B5:C8:06:7F:4E:82:82:90:BF:B8:60:E8:4B:3C
Alias name: mozillacert147.pem
 MD5: B3:A5:3E:77:21:6D:AC:4A:C0:C9:FB:D5:41:3D:CA:06
 SHA1: 58:11:9F:0E:12:82:87:EA:50:FD:D9:87:45:6F:4F:78:DC:FA:D6:D4
 SHA256:
 85:FB:2F:91:DD:12:27:5A:01:45:B6:36:53:4F:84:02:4A:D6:8B:69:B8:EE:88:68:4F:F7:11:37:58:05:B3:48
Alias name: camerfirmachambersca
 MD5: 5E:80:9E:84:5A:0E:65:0B:17:02:F3:55:18:2A:3E:D7
 SHA1: 78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:BA:9E:A8:7E:FE:9A:CE:3C
 SHA256:
 06:3E:4A:FA:C4:91:DF:D3:32:F3:08:9B:85:42:E9:46:17:D8:93:D7:FE:94:4E:10:A7:93:7E:E2:9D:96:93:C0
Alias name: mozillacert21.pem
 MD5: E0:06:A1:C9:7D:CF:C9:FC:0D:C0:56:75:96:D8:62:13
 SHA1: 9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:93:DF:A7:F0:40:D1:1D:CB
 SHA256:
 BE:6C:4D:A2:BB:B9:BA:59:B6:F3:93:97:68:37:42:46:C3:C0:05:99:3F:A9:8F:02:0D:1D:ED:BE:D4:8A:81:D5
Alias name: mozillacert39.pem
 MD5: CE:78:33:5C:59:78:01:6E:18:EA:B9:36:A0:B9:2E:23
 SHA1: AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:FE:68:5D:79:42:21:15:6E
 SHA256:
 E6:B8:F8:76:64:85:F8:07:AE:7F:8D:AC:16:70:46:1F:07:C0:A1:3E:EF:3A:1F:F7:17:53:8D:7A:BA:D3:91:B4
Alias name: mozillacert6.pem
 MD5: 91:DE:06:25:AB:DA:FD:32:17:0C:BB:25:17:2A:84:67
 SHA1: 27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:D7:77:70:02:8F:20:EE:E4
 SHA256:
 C3:84:6B:F2:4B:9E:93:CA:64:27:4C:0E:C6:7C:1E:CC:5E:02:4F:FC:AC:D2:D7:40:19:35:0E:81:FE:54:6A:E4
Alias name: verisignuniversalrootca
 MD5: 8E:AD:B5:01:AA:4D:81:E4:8C:1D:D1:E1:14:00:95:19
 SHA1: 36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
 SHA256:
 23:99:56:11:27:A5:71:25:DE:8C:EF:EA:61:0D:DF:2F:A0:78:B5:C8:06:7F:4E:82:82:90:BF:B8:60:E8:4B:3C
Alias name: mozillacert72.pem
 MD5: 80:3A:BC:22:C1:E6:FB:8D:9B:3B:27:4A:32:1B:9A:01
 SHA1: 47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
 SHA256:
 45:14:0B:32:47:EB:9C:C8:C5:B4:F0:D7:B5:30:91:F7:32:92:08:9E:6E:5A:63:E2:74:9D:D3:AC:A9:19:8E:DA
Alias name: geotrustuniversalca
 MD5: 92:65:58:8B:A2:1A:31:72:73:68:5C:B4:A5:7A:07:48
 SHA1: E6:21:F3:35:43:79:05:9A:4B:68:30:9D:8A:2F:74:22:15:87:EC:79
 SHA256:
 A0:45:9B:9F:63:B2:25:59:F5:FA:5D:4C:6D:B3:F9:F7:2F:F1:93:42:03:35:78:F0:73:BF:1D:1B:46:CB:B9:12
Alias name: mozillacert136.pem
 MD5: 49:79:04:B0:EB:87:19:AC:47:B0:BC:11:51:9B:74:D0
 SHA1: D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:F1:F1:60:17:64:D8:E3:49
 SHA256:
 D7:A7:A0:FB:5D:7E:27:31:D7:71:E9:48:4E:BC:DE:F7:1D:5F:0C:3E:0A:29:48:78:2B:C8:3E:E0:EA:69:9E:F4
Alias name: mozillacert10.pem
 MD5: F8:38:7C:77:88:DF:2C:16:68:2E:C2:E2:52:4B:B8:F9
 SHA1: 5F:3A:FC:0A:8B:64:F6:86:67:34:74:DF:7E:A9:A2:FE:F9:FA:7A:51
 SHA256:
 21:DB:20:12:36:60:BB:2E:D4:18:20:5D:A1:1E:E7:A8:5A:65:E2:BC:6E:55:B5:AF:7E:78:99:C8:A2:66:D9:2E
Alias name: mozillacert28.pem
 MD5: 5C:48:DC:F7:42:72:EC:56:94:6D:1C:CC:71:35:80:75

199

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA1: 66:31:BF:9E:F7:4F:9E:B6:C9:D5:A6:0C:BA:6A:BE:D1:F7:BD:EF:7B
 SHA256:
 0C:2C:D6:3D:F7:80:6F:A3:99:ED:E8:09:11:6B:57:5B:F8:79:89:F0:65:18:F9:80:8C:86:05:03:17:8B:AF:66
Alias name: affirmtrustnetworkingca
 MD5: 42:65:CA:BE:01:9A:9A:4C:A9:8C:41:49:CD:C0:D5:7F
 SHA1: 29:36:21:02:8B:20:ED:02:F5:66:C5:32:D1:D6:ED:90:9F:45:00:2F
 SHA256:
 0A:81:EC:5A:92:97:77:F1:45:90:4A:F3:8D:5D:50:9F:66:B5:E2:C5:8F:CD:B5:31:05:8B:0E:17:F3:F0:B4:1B
Alias name: mozillacert61.pem
 MD5: 42:81:A0:E2:1C:E3:55:10:DE:55:89:42:65:96:22:E6
 SHA1: E0:B4:32:2E:B2:F6:A5:68:B6:54:53:84:48:18:4A:50:36:87:43:84
 SHA256:
 03:95:0F:B4:9A:53:1F:3E:19:91:94:23:98:DF:A9:E0:EA:32:D7:BA:1C:DD:9B:C8:5D:B5:7E:D9:40:0B:43:4A
Alias name: mozillacert79.pem
 MD5: C4:5D:0E:48:B6:AC:28:30:4E:0A:BC:F9:38:16:87:57
 SHA1: D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:7D:6A:06:65:26:32:28:27
 SHA256:
 70:A7:3F:7F:37:6B:60:07:42:48:90:45:34:B1:14:82:D5:BF:0E:69:8E:CC:49:8D:F5:25:77:EB:F2:E9:3B:9A
Alias name: affirmtrustcommercialca
 MD5: 82:92:BA:5B:EF:CD:8A:6F:A6:3D:55:F9:84:F6:D6:B7
 SHA1: F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:DC:E9:6E:2C:C7:B2:78:B7
 SHA256:
 03:76:AB:1D:54:C5:F9:80:3C:E4:B2:E2:01:A0:EE:7E:EF:7B:57:B6:36:E8:A9:3C:9B:8D:48:60:C9:6F:5F:A7
Alias name: mozillacert125.pem
 MD5: D6:A5:C3:ED:5D:DD:3E:00:C1:3D:87:92:1F:1D:3F:E4
 SHA1: B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:D4:4D:F5:D4:67:49:52:F9
 SHA256:
 73:C1:76:43:4F:1B:C6:D5:AD:F4:5B:0E:76:E7:27:28:7C:8D:E5:76:16:C1:E6:E6:14:1A:2B:2C:BC:7D:8E:4C
Alias name: mozillacert17.pem
 MD5: 21:D8:4C:82:2B:99:09:33:A2:EB:14:24:8D:8E:5F:E8
 SHA1: 40:54:DA:6F:1C:3F:40:74:AC:ED:0F:EC:CD:DB:79:D1:53:FB:90:1D
 SHA256:
 76:7C:95:5A:76:41:2C:89:AF:68:8E:90:A1:C7:0F:55:6C:FD:6B:60:25:DB:EA:10:41:6D:7E:B6:83:1F:8C:40
Alias name: mozillacert50.pem
 MD5: 2C:20:26:9D:CB:1A:4A:00:85:B5:B7:5A:AE:C2:01:37
 SHA1: 8C:96:BA:EB:DD:2B:07:07:48:EE:30:32:66:A0:F3:98:6E:7C:AE:58
 SHA256:
 35:AE:5B:DD:D8:F7:AE:63:5C:FF:BA:56:82:A8:F0:0B:95:F4:84:62:C7:10:8E:E9:A0:E5:29:2B:07:4A:AF:B2
Alias name: mozillacert68.pem
 MD5: 73:3A:74:7A:EC:BB:A3:96:A6:C2:E4:E2:C8:9B:C0:C3
 SHA1: AE:C5:FB:3F:C8:E1:BF:C4:E5:4F:03:07:5A:9A:E8:00:B7:F7:B6:FA
 SHA256:
 04:04:80:28:BF:1F:28:64:D4:8F:9A:D4:D8:32:94:36:6A:82:88:56:55:3F:3B:14:30:3F:90:14:7F:5D:40:EF
Alias name: starfieldrootg2ca
 MD5: D6:39:81:C6:52:7E:96:69:FC:FC:CA:66:ED:05:F2:96
 SHA1: B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:92:F4:FE:39:D4:E7:0F:0E
 SHA256:
 2C:E1:CB:0B:F9:D2:F9:E1:02:99:3F:BE:21:51:52:C3:B2:DD:0C:AB:DE:1C:68:E5:31:9B:83:91:54:DB:B7:F5
Alias name: mozillacert114.pem
 MD5: B8:A1:03:63:B0:BD:21:71:70:8A:6F:13:3A:BB:79:49
 SHA1: 51:C6:E7:08:49:06:6E:F3:92:D4:5C:A0:0D:6D:A3:62:8F:C3:52:39
 SHA256:
 B0:BF:D5:2B:B0:D7:D9:BD:92:BF:5D:4D:C1:3D:A2:55:C0:2C:54:2F:37:83:65:EA:89:39:11:F5:5E:55:F2:3C
Alias name: buypassclass3ca
 MD5: 3D:3B:18:9E:2C:64:5A:E8:D5:88:CE:0E:F9:37:C2:EC
 SHA1: DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:C7:C2:81:A5:BC:A9:64:57
 SHA256:
 ED:F7:EB:BC:A2:7A:2A:38:4D:38:7B:7D:40:10:C6:66:E2:ED:B4:84:3E:4C:29:B4:AE:1D:5B:93:32:E6:B2:4D
Alias name: mozillacert57.pem

200

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 MD5: A8:0D:6F:39:78:B9:43:6D:77:42:6D:98:5A:CC:23:CA
 SHA1: D6:DA:A8:20:8D:09:D2:15:4D:24:B5:2F:CB:34:6E:B2:58:B2:8A:58
 SHA256:
 F9:E6:7D:33:6C:51:00:2A:C0:54:C6:32:02:2D:66:DD:A2:E7:E3:FF:F1:0A:D0:61:ED:31:D8:BB:B4:10:CF:B2
Alias name: verisignc2g3.pem
 MD5: F8:BE:C4:63:22:C9:A8:46:74:8B:B8:1D:1E:4A:2B:F6
 SHA1: 61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:C3:59:12:AF:9F:EB:63:11
 SHA256:
 92:A9:D9:83:3F:E1:94:4D:B3:66:E8:BF:AE:7A:95:B6:48:0C:2D:6C:6C:2A:1B:E6:5D:42:36:B6:08:FC:A1:BB
Alias name: verisignclass2g3ca
 MD5: F8:BE:C4:63:22:C9:A8:46:74:8B:B8:1D:1E:4A:2B:F6
 SHA1: 61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:C3:59:12:AF:9F:EB:63:11
 SHA256:
 92:A9:D9:83:3F:E1:94:4D:B3:66:E8:BF:AE:7A:95:B6:48:0C:2D:6C:6C:2A:1B:E6:5D:42:36:B6:08:FC:A1:BB
Alias name: mozillacert103.pem
 MD5: E6:24:E9:12:01:AE:0C:DE:8E:85:C4:CE:A3:12:DD:EC
 SHA1: 70:C1:8D:74:B4:28:81:0A:E4:FD:A5:75:D7:01:9F:99:B0:3D:50:74
 SHA256:
 3C:FC:3C:14:D1:F6:84:FF:17:E3:8C:43:CA:44:0C:00:B9:67:EC:93:3E:8B:FE:06:4C:A1:D7:2C:90:F2:AD:B0
Alias name: mozillacert90.pem
 MD5: 69:C1:0D:4F:07:A3:1B:C3:FE:56:3D:04:BC:11:F6:A6
 SHA1: F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:CE:19:2B:DD:C7:8E:9C:AC
 SHA256:
 55:92:60:84:EC:96:3A:64:B9:6E:2A:BE:01:CE:0B:A8:6A:64:FB:FE:BC:C7:AA:B5:AF:C1:55:B3:7F:D7:60:66
Alias name: verisignc3g3.pem
 MD5: CD:68:B6:A7:C7:C4:CE:75:E0:1D:4F:57:44:61:92:09
 SHA1: 13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
 SHA256:
 EB:04:CF:5E:B1:F3:9A:FA:76:2F:2B:B1:20:F2:96:CB:A5:20:C1:B9:7D:B1:58:95:65:B8:1C:B9:A1:7B:72:44
Alias name: mozillacert46.pem
 MD5: AA:8E:5D:D9:F8:DB:0A:58:B7:8D:26:87:6C:82:35:55
 SHA1: 40:9D:4B:D9:17:B5:5C:27:B6:9B:64:CB:98:22:44:0D:CD:09:B8:89
 SHA256:
 EC:C3:E9:C3:40:75:03:BE:E0:91:AA:95:2F:41:34:8F:F8:8B:AA:86:3B:22:64:BE:FA:C8:07:90:15:74:E9:39
Alias name: godaddyclass2ca
 MD5: 91:DE:06:25:AB:DA:FD:32:17:0C:BB:25:17:2A:84:67
 SHA1: 27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:D7:77:70:02:8F:20:EE:E4
 SHA256:
 C3:84:6B:F2:4B:9E:93:CA:64:27:4C:0E:C6:7C:1E:CC:5E:02:4F:FC:AC:D2:D7:40:19:35:0E:81:FE:54:6A:E4
Alias name: verisignc4g3.pem
 MD5: DB:C8:F2:27:2E:B1:EA:6A:29:23:5D:FE:56:3E:33:DF
 SHA1: C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:7E:57:67:F3:14:95:73:9D
 SHA256:
 E3:89:36:0D:0F:DB:AE:B3:D2:50:58:4B:47:30:31:4E:22:2F:39:C1:56:A0:20:14:4E:8D:96:05:61:79:15:06
Alias name: mozillacert97.pem
 MD5: A2:33:9B:4C:74:78:73:D4:6C:E7:C1:F3:8D:CB:5C:E9
 SHA1: 85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
 SHA256:
 83:CE:3C:12:29:68:8A:59:3D:48:5F:81:97:3C:0F:91:95:43:1E:DA:37:CC:5E:36:43:0E:79:C7:A8:88:63:8B
Alias name: mozillacert143.pem
 MD5: F1:BC:63:6A:54:E0:B5:27:F5:CD:E7:1A:E3:4D:6E:4A
 SHA1: 36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:0F:C6:56:8F:5D:AC:B2:F7
 SHA256:
 E7:5E:72:ED:9F:56:0E:EC:6E:B4:80:00:73:A4:3F:C3:AD:19:19:5A:39:22:82:01:78:95:97:4A:99:02:6B:6C
Alias name: mozillacert35.pem
 MD5: 3F:45:96:39:E2:50:87:F7:BB:FE:98:0C:3C:20:98:E6
 SHA1: 2A:C8:D5:8B:57:CE:BF:2F:49:AF:F2:FC:76:8F:51:14:62:90:7A:41
 SHA256:
 92:BF:51:19:AB:EC:CA:D0:B1:33:2D:C4:E1:D0:5F:BA:75:B5:67:90:44:EE:0C:A2:6E:93:1F:74:4F:2F:33:CF

201

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Alias name: mozillacert2.pem
 MD5: 3A:52:E1:E7:FD:6F:3A:E3:6F:F3:6F:99:1B:F9:22:41
 SHA1: 22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
 SHA256:
 69:DD:D7:EA:90:BB:57:C9:3E:13:5D:C8:5E:A6:FC:D5:48:0B:60:32:39:BD:C4:54:FC:75:8B:2A:26:CF:7F:79
Alias name: utnuserfirstobjectca
 MD5: A7:F2:E4:16:06:41:11:50:30:6B:9C:E3:B4:9C:B0:C9
 SHA1: E1:2D:FB:4B:41:D7:D9:C3:2B:30:51:4B:AC:1D:81:D8:38:5E:2D:46
 SHA256:
 6F:FF:78:E4:00:A7:0C:11:01:1C:D8:59:77:C4:59:FB:5A:F9:6A:3D:F0:54:08:20:D0:F4:B8:60:78:75:E5:8F
Alias name: mozillacert86.pem
 MD5: 10:FC:63:5D:F6:26:3E:0D:F3:25:BE:5F:79:CD:67:67
 SHA1: 74:2C:31:92:E6:07:E4:24:EB:45:49:54:2B:E1:BB:C5:3E:61:74:E2
 SHA256:
 E7:68:56:34:EF:AC:F6:9A:CE:93:9A:6B:25:5B:7B:4F:AB:EF:42:93:5B:50:A2:65:AC:B5:CB:60:27:E4:4E:70
Alias name: mozillacert132.pem
 MD5: 14:F1:08:AD:9D:FA:64:E2:89:E7:1C:CF:A8:AD:7D:5E
 SHA1: 39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:F0:7D:21:D8:05:0B:56:6A
 SHA256:
 77:40:73:12:C6:3A:15:3D:5B:C0:0B:4E:51:75:9C:DF:DA:C2:37:DC:2A:33:B6:79:46:E9:8E:9B:FA:68:0A:E3
Alias name: addtrustclass1ca
 MD5: 1E:42:95:02:33:92:6B:B9:5F:C0:7F:DA:D6:B2:4B:FC
 SHA1: CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:9F:CD:12:EB:24:E3:94:9D
 SHA256:
 8C:72:09:27:9A:C0:4E:27:5E:16:D0:7F:D3:B7:75:E8:01:54:B5:96:80:46:E3:1F:52:DD:25:76:63:24:E9:A7
Alias name: mozillacert24.pem
 MD5: 7C:A5:0F:F8:5B:9A:7D:6D:30:AE:54:5A:E3:42:A2:8A
 SHA1: 59:AF:82:79:91:86:C7:B4:75:07:CB:CF:03:57:46:EB:04:DD:B7:16
 SHA256:
 66:8C:83:94:7D:A6:3B:72:4B:EC:E1:74:3C:31:A0:E6:AE:D0:DB:8E:C5:B3:1B:E3:77:BB:78:4F:91:B6:71:6F
Alias name: verisignc1g3.pem
 MD5: B1:47:BC:18:57:D1:18:A0:78:2D:EC:71:E8:2A:95:73
 SHA1: 20:42:85:DC:F7:EB:76:41:95:57:8E:13:6B:D4:B7:D1:E9:8E:46:A5
 SHA256:
 CB:B5:AF:18:5E:94:2A:24:02:F9:EA:CB:C0:ED:5B:B8:76:EE:A3:C1:22:36:23:D0:04:47:E4:F3:BA:55:4B:65
Alias name: mozillacert9.pem
 MD5: 37:85:44:53:32:45:1F:20:F0:F3:95:E1:25:C4:43:4E
 SHA1: F4:8B:11:BF:DE:AB:BE:94:54:20:71:E6:41:DE:6B:BE:88:2B:40:B9
 SHA256:
 76:00:29:5E:EF:E8:5B:9E:1F:D6:24:DB:76:06:2A:AA:AE:59:81:8A:54:D2:77:4C:D4:C0:B2:C0:11:31:E1:B3
Alias name: amzninternalrootca
 MD5: 08:09:73:AC:E0:78:41:7C:0A:26:33:51:E8:CF:E6:60
 SHA1: A7:B7:F6:15:8A:FF:1E:C8:85:13:38:BC:93:EB:A2:AB:A4:09:EF:06
 SHA256:
 0E:DE:63:C1:DC:7A:8E:11:F1:AB:BC:05:4F:59:EE:49:9D:62:9A:2F:DE:9C:A7:16:32:A2:64:29:3E:8B:66:AA
Alias name: mozillacert75.pem
 MD5: 67:CB:9D:C0:13:24:8A:82:9B:B2:17:1E:D1:1B:EC:D4
 SHA1: D2:32:09:AD:23:D3:14:23:21:74:E4:0D:7F:9D:62:13:97:86:63:3A
 SHA256:
 08:29:7A:40:47:DB:A2:36:80:C7:31:DB:6E:31:76:53:CA:78:48:E1:BE:BD:3A:0B:01:79:A7:07:F9:2C:F1:78
Alias name: entrustevca
 MD5: D6:A5:C3:ED:5D:DD:3E:00:C1:3D:87:92:1F:1D:3F:E4
 SHA1: B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:D4:4D:F5:D4:67:49:52:F9
 SHA256:
 73:C1:76:43:4F:1B:C6:D5:AD:F4:5B:0E:76:E7:27:28:7C:8D:E5:76:16:C1:E6:E6:14:1A:2B:2C:BC:7D:8E:4C
Alias name: secomscrootca2
 MD5: 6C:39:7D:A4:0E:55:59:B2:3F:D6:41:B1:12:50:DE:43
 SHA1: 5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:19:19:C3:73:34:B9:C7:74

202

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA256:
 51:3B:2C:EC:B8:10:D4:CD:E5:DD:85:39:1A:DF:C6:C2:DD:60:D8:7B:B7:36:D2:B5:21:48:4A:A4:7A:0E:BE:F6
Alias name: camerfirmachambersignca
 MD5: 9E:80:FF:78:01:0C:2E:C1:36:BD:FE:96:90:6E:08:F3
 SHA1: 4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:A1:2C:5B:29:F6:D6:AA:0C
 SHA256:
 13:63:35:43:93:34:A7:69:80:16:A0:D3:24:DE:72:28:4E:07:9D:7B:52:20:BB:8F:BD:74:78:16:EE:BE:BA:CA
Alias name: secomscrootca1
 MD5: F1:BC:63:6A:54:E0:B5:27:F5:CD:E7:1A:E3:4D:6E:4A
 SHA1: 36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:0F:C6:56:8F:5D:AC:B2:F7
 SHA256:
 E7:5E:72:ED:9F:56:0E:EC:6E:B4:80:00:73:A4:3F:C3:AD:19:19:5A:39:22:82:01:78:95:97:4A:99:02:6B:6C
Alias name: mozillacert121.pem
 MD5: 1E:42:95:02:33:92:6B:B9:5F:C0:7F:DA:D6:B2:4B:FC
 SHA1: CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:9F:CD:12:EB:24:E3:94:9D
 SHA256:
 8C:72:09:27:9A:C0:4E:27:5E:16:D0:7F:D3:B7:75:E8:01:54:B5:96:80:46:E3:1F:52:DD:25:76:63:24:E9:A7
Alias name: mozillacert139.pem
 MD5: 27:DE:36:FE:72:B7:00:03:00:9D:F4:F0:1E:6C:04:24
 SHA1: DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:BC:07:62:01:00:89:76:C9
 SHA256:
 A4:5E:DE:3B:BB:F0:9C:8A:E1:5C:72:EF:C0:72:68:D6:93:A2:1C:99:6F:D5:1E:67:CA:07:94:60:FD:6D:88:73
Alias name: mozillacert13.pem
 MD5: C5:A1:B7:FF:73:DD:D6:D7:34:32:18:DF:FC:3C:AD:88
 SHA1: 06:08:3F:59:3F:15:A1:04:A0:69:A4:6B:A9:03:D0:06:B7:97:09:91
 SHA256:
 6C:61:DA:C3:A2:DE:F0:31:50:6B:E0:36:D2:A6:FE:40:19:94:FB:D1:3D:F9:C8:D4:66:59:92:74:C4:46:EC:98
Alias name: mozillacert64.pem
 MD5: 06:9F:69:79:16:66:90:02:1B:8C:8C:A2:C3:07:6F:3A
 SHA1: 62:7F:8D:78:27:65:63:99:D2:7D:7F:90:44:C9:FE:B3:F3:3E:FA:9A
 SHA256:
 AB:70:36:36:5C:71:54:AA:29:C2:C2:9F:5D:41:91:16:3B:16:2A:22:25:01:13:57:D5:6D:07:FF:A7:BC:1F:72
Alias name: mozillacert110.pem
 MD5: D0:A0:5A:EE:05:B6:09:94:21:A1:7D:F1:B2:29:82:02
 SHA1: 93:05:7A:88:15:C6:4F:CE:88:2F:FA:91:16:52:28:78:BC:53:64:17
 SHA256:
 9A:6E:C0:12:E1:A7:DA:9D:BE:34:19:4D:47:8A:D7:C0:DB:18:22:FB:07:1D:F1:29:81:49:6E:D1:04:38:41:13
Alias name: mozillacert128.pem
 MD5: 0E:40:A7:6C:DE:03:5D:8F:D1:0F:E4:D1:8D:F9:6C:A9
 SHA1: A9:E9:78:08:14:37:58:88:F2:05:19:B0:6D:2B:0D:2B:60:16:90:7D
 SHA256:
 CA:2D:82:A0:86:77:07:2F:8A:B6:76:4F:F0:35:67:6C:FE:3E:5E:32:5E:01:21:72:DF:3F:92:09:6D:B7:9B:85
Alias name: entrust2048ca
 MD5: EE:29:31:BC:32:7E:9A:E6:E8:B5:F7:51:B4:34:71:90
 SHA1: 50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:E7:92:7D:7D:65:2D:34:31
 SHA256:
 6D:C4:71:72:E0:1C:BC:B0:BF:62:58:0D:89:5F:E2:B8:AC:9A:D4:F8:73:80:1E:0C:10:B9:C8:37:D2:1E:B1:77
Alias name: mozillacert53.pem
 MD5: 7E:23:4E:5B:A7:A5:B4:25:E9:00:07:74:11:62:AE:D6
 SHA1: 7F:8A:B0:CF:D0:51:87:6A:66:F3:36:0F:47:C8:8D:8C:D3:35:FC:74
 SHA256:
 2D:47:43:7D:E1:79:51:21:5A:12:F3:C5:8E:51:C7:29:A5:80:26:EF:1F:CC:0A:5F:B3:D9:DC:01:2F:60:0D:19
Alias name: mozillacert117.pem
 MD5: AC:B6:94:A5:9C:17:E0:D7:91:52:9B:B1:97:06:A6:E4
 SHA1: D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:2C:78:DB:28:52:CA:E4:74
 SHA256:
 16:AF:57:A9:F6:76:B0:AB:12:60:95:AA:5E:BA:DE:F2:2A:B3:11:19:D6:44:AC:95:CD:4B:93:DB:F3:F2:6A:EB
Alias name: mozillacert150.pem
 MD5: C5:E6:7B:BF:06:D0:4F:43:ED:C4:7A:65:8A:FB:6B:19

203

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA1: 33:9B:6B:14:50:24:9B:55:7A:01:87:72:84:D9:E0:2F:C3:D2:D8:E9
 SHA256:
 EF:3C:B4:17:FC:8E:BF:6F:97:87:6C:9E:4E:CE:39:DE:1E:A5:FE:64:91:41:D1:02:8B:7D:11:C0:B2:29:8C:ED
Alias name: thawteserverca
 MD5: EE:FE:61:69:65:6E:F8:9C:C6:2A:F4:D7:2B:63:EF:A2
 SHA1: 9F:AD:91:A6:CE:6A:C6:C5:00:47:C4:4E:C9:D4:A5:0D:92:D8:49:79
 SHA256:
 87:C6:78:BF:B8:B2:5F:38:F7:E9:7B:33:69:56:BB:CF:14:4B:BA:CA:A5:36:47:E6:1A:23:25:BC:10:55:31:6B
Alias name: secomvalicertclass1ca
 MD5: 65:58:AB:15:AD:57:6C:1E:A8:A7:B5:69:AC:BF:FF:EB
 SHA1: E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:8C:E8:6A:81:10:9F:E4:8E
 SHA256:
 F4:C1:49:55:1A:30:13:A3:5B:C7:BF:FE:17:A7:F3:44:9B:C1:AB:5B:5A:0A:E7:4B:06:C2:3B:90:00:4C:01:04
Alias name: mozillacert42.pem
 MD5: 74:01:4A:91:B1:08:C4:58:CE:47:CD:F0:DD:11:53:08
 SHA1: 85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:D6:13:30:FD:8C:DE:37:BF
 SHA256:
 B6:19:1A:50:D0:C3:97:7F:7D:A9:9B:CD:AA:C8:6A:22:7D:AE:B9:67:9E:C7:0B:A3:B0:C9:D9:22:71:C1:70:D3
Alias name: verisignc2g6.pem
 MD5: 7D:0B:83:E5:FB:7C:AD:07:4F:20:A9:B5:DF:63:ED:79
 SHA1: 40:B3:31:A0:E9:BF:E8:55:BC:39:93:CA:70:4F:4E:C2:51:D4:1D:8F
 SHA256:
 CB:62:7D:18:B5:8A:D5:6D:DE:33:1A:30:45:6B:C6:5C:60:1A:4E:9B:18:DE:DC:EA:08:E7:DA:AA:07:81:5F:F0
Alias name: godaddyrootg2ca
 MD5: 80:3A:BC:22:C1:E6:FB:8D:9B:3B:27:4A:32:1B:9A:01
 SHA1: 47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
 SHA256:
 45:14:0B:32:47:EB:9C:C8:C5:B4:F0:D7:B5:30:91:F7:32:92:08:9E:6E:5A:63:E2:74:9D:D3:AC:A9:19:8E:DA
Alias name: gtecybertrustglobalca
 MD5: CA:3D:D3:68:F1:03:5C:D0:32:FA:B8:2B:59:E8:5A:DB
 SHA1: 97:81:79:50:D8:1C:96:70:CC:34:D8:09:CF:79:44:31:36:7E:F4:74
 SHA256:
 A5:31:25:18:8D:21:10:AA:96:4B:02:C7:B7:C6:DA:32:03:17:08:94:E5:FB:71:FF:FB:66:67:D5:E6:81:0A:36
Alias name: mozillacert106.pem
 MD5: 7B:30:34:9F:DD:0A:4B:6B:35:CA:31:51:28:5D:AE:EC
 SHA1: E7:A1:90:29:D3:D5:52:DC:0D:0F:C6:92:D3:EA:88:0D:15:2E:1A:6B
 SHA256:
 D9:5F:EA:3C:A4:EE:DC:E7:4C:D7:6E:75:FC:6D:1F:F6:2C:44:1F:0F:A8:BC:77:F0:34:B1:9E:5D:B2:58:01:5D
Alias name: equifaxsecureebusinessca1
 MD5: 14:C0:08:E5:A3:85:03:A3:BE:78:E9:67:4F:27:CA:EE
 SHA1: AE:E6:3D:70:E3:76:FB:C7:3A:EB:B0:A1:C1:D4:C4:7A:A7:40:B3:F4
 SHA256:
 2E:3A:2B:B5:11:25:05:83:6C:A8:96:8B:E2:CB:37:27:CE:9B:56:84:5C:6E:E9:8E:91:85:10:4A:FB:9A:F5:96
Alias name: mozillacert93.pem
 MD5: 78:4B:FB:9E:64:82:0A:D3:B8:4C:62:F3:64:F2:90:64
 SHA1: 31:F1:FD:68:22:63:20:EE:C6:3B:3F:9D:EA:4A:3E:53:7C:7C:39:17
 SHA256:
 C7:BA:65:67:DE:93:A7:98:AE:1F:AA:79:1E:71:2D:37:8F:AE:1F:93:C4:39:7F:EA:44:1B:B7:CB:E6:FD:59:95
Alias name: quovadisrootca3
 MD5: 31:85:3C:62:94:97:63:B9:AA:FD:89:4E:AF:6F:E0:CF
 SHA1: 1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:BE:FD:3A:2D:82:75:51:85
 SHA256:
 18:F1:FC:7F:20:5D:F8:AD:DD:EB:7F:E0:07:DD:57:E3:AF:37:5A:9C:4D:8D:73:54:6B:F4:F1:FE:D1:E1:8D:35
Alias name: quovadisrootca2
 MD5: 5E:39:7B:DD:F8:BA:EC:82:E9:AC:62:BA:0C:54:00:2B
 SHA1: CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:88:80:48:39:19:93:7C:F7
 SHA256:
 85:A0:DD:7D:D7:20:AD:B7:FF:05:F8:3D:54:2B:20:9D:C7:FF:45:28:F7:D6:77:B1:83:89:FE:A5:E5:C4:9E:86
Alias name: soneraclass2ca

204

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 MD5: A3:EC:75:0F:2E:88:DF:FA:48:01:4E:0B:5C:48:6F:FB
 SHA1: 37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:B7:41:10:B4:F2:E4:9A:27
 SHA256:
 79:08:B4:03:14:C1:38:10:0B:51:8D:07:35:80:7F:FB:FC:F8:51:8A:00:95:33:71:05:BA:38:6B:15:3D:D9:27
Alias name: mozillacert31.pem
 MD5: 7C:62:FF:74:9D:31:53:5E:68:4A:D5:78:AA:1E:BF:23
 SHA1: 9F:74:4E:9F:2B:4D:BA:EC:0F:31:2C:50:B6:56:3B:8E:2D:93:C3:11
 SHA256:
 17:93:92:7A:06:14:54:97:89:AD:CE:2F:8F:34:F7:F0:B6:6D:0F:3A:E3:A3:B8:4D:21:EC:15:DB:BA:4F:AD:C7
Alias name: mozillacert49.pem
 MD5: DF:3C:73:59:81:E7:39:50:81:04:4C:34:A2:CB:B3:7B
 SHA1: 61:57:3A:11:DF:0E:D8:7E:D5:92:65:22:EA:D0:56:D7:44:B3:23:71
 SHA256:
 B7:B1:2B:17:1F:82:1D:AA:99:0C:D0:FE:50:87:B1:28:44:8B:A8:E5:18:4F:84:C5:1E:02:B5:C8:FB:96:2B:24
Alias name: mozillacert82.pem
 MD5: 7F:30:78:8C:03:E3:CA:C9:0A:E2:C9:EA:1E:AA:55:1A
 SHA1: 2E:14:DA:EC:28:F0:FA:1E:8E:38:9A:4E:AB:EB:26:C0:0A:D3:83:C3
 SHA256:
 FC:BF:E2:88:62:06:F7:2B:27:59:3C:8B:07:02:97:E1:2D:76:9E:D1:0E:D7:93:07:05:A8:09:8E:FF:C1:4D:17
Alias name: mozillacert146.pem
 MD5: 91:F4:03:55:20:A1:F8:63:2C:62:DE:AC:FB:61:1C:8E
 SHA1: 21:FC:BD:8E:7F:6C:AF:05:1B:D1:B3:43:EC:A8:E7:61:47:F2:0F:8A
 SHA256:
 48:98:C6:88:8C:0C:FF:B0:D3:E3:1A:CA:8A:37:D4:E3:51:5F:F7:46:D0:26:35:D8:66:46:CF:A0:A3:18:5A:E7
Alias name: baltimorecybertrustca
 MD5: AC:B6:94:A5:9C:17:E0:D7:91:52:9B:B1:97:06:A6:E4
 SHA1: D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:2C:78:DB:28:52:CA:E4:74
 SHA256:
 16:AF:57:A9:F6:76:B0:AB:12:60:95:AA:5E:BA:DE:F2:2A:B3:11:19:D6:44:AC:95:CD:4B:93:DB:F3:F2:6A:EB
Alias name: mozillacert20.pem
 MD5: 24:77:D9:A8:91:D1:3B:FA:88:2D:C2:FF:F8:CD:33:93
 SHA1: D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:45:25:3A:6F:9F:1A:27:61
 SHA256:
 62:DD:0B:E9:B9:F5:0A:16:3E:A0:F8:E7:5C:05:3B:1E:CA:57:EA:55:C8:68:8F:64:7C:68:81:F2:C8:35:7B:95
Alias name: mozillacert38.pem
 MD5: 93:2A:3E:F6:FD:23:69:0D:71:20:D4:2B:47:99:2B:A6
 SHA1: CB:A1:C5:F8:B0:E3:5E:B8:B9:45:12:D3:F9:34:A2:E9:06:10:D3:36
 SHA256:
 A6:C5:1E:0D:A5:CA:0A:93:09:D2:E4:C0:E4:0C:2A:F9:10:7A:AE:82:03:85:7F:E1:98:E3:E7:69:E3:43:08:5C
Alias name: mozillacert5.pem
 MD5: A1:0B:44:B3:CA:10:D8:00:6E:9D:0F:D8:0F:92:0A:D1
 SHA1: B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:54:F3:4C:52:B7:E5:58:C6
 SHA256:
 CE:CD:DC:90:50:99:D8:DA:DF:C5:B1:D2:09:B7:37:CB:E2:C1:8C:FB:2C:10:C0:FF:0B:CF:0D:32:86:FC:1A:A2
Alias name: mozillacert71.pem
 MD5: 9E:80:FF:78:01:0C:2E:C1:36:BD:FE:96:90:6E:08:F3
 SHA1: 4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:A1:2C:5B:29:F6:D6:AA:0C
 SHA256:
 13:63:35:43:93:34:A7:69:80:16:A0:D3:24:DE:72:28:4E:07:9D:7B:52:20:BB:8F:BD:74:78:16:EE:BE:BA:CA
Alias name: verisignclass3g4ca
 MD5: 3A:52:E1:E7:FD:6F:3A:E3:6F:F3:6F:99:1B:F9:22:41
 SHA1: 22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
 SHA256:
 69:DD:D7:EA:90:BB:57:C9:3E:13:5D:C8:5E:A6:FC:D5:48:0B:60:32:39:BD:C4:54:FC:75:8B:2A:26:CF:7F:79
Alias name: mozillacert89.pem
 MD5: DB:C8:F2:27:2E:B1:EA:6A:29:23:5D:FE:56:3E:33:DF
 SHA1: C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:7E:57:67:F3:14:95:73:9D
 SHA256:
 E3:89:36:0D:0F:DB:AE:B3:D2:50:58:4B:47:30:31:4E:22:2F:39:C1:56:A0:20:14:4E:8D:96:05:61:79:15:06

205

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Alias name: mozillacert135.pem
 MD5: 2C:8F:9F:66:1D:18:90:B1:47:26:9D:8E:86:82:8C:A9
 SHA1: 62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:34:8E:06:42:51:B1:81:18
 SHA256:
 D8:E0:FE:BC:1D:B2:E3:8D:00:94:0F:37:D2:7D:41:34:4D:99:3E:73:4B:99:D5:65:6D:97:78:D4:D8:14:36:24
Alias name: camerfirmachamberscommerceca
 MD5: B0:01:EE:14:D9:AF:29:18:94:76:8E:F1:69:33:2A:84
 SHA1: 6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:DB:72:2E:31:30:61:F0:B1
 SHA256:
 0C:25:8A:12:A5:67:4A:EF:25:F2:8B:A7:DC:FA:EC:EE:A3:48:E5:41:E6:F5:CC:4E:E6:3B:71:B3:61:60:6A:C3
Alias name: mozillacert27.pem
 MD5: CF:F4:27:0D:D4:ED:DC:65:16:49:6D:3D:DA:BF:6E:DE
 SHA1: 3A:44:73:5A:E5:81:90:1F:24:86:61:46:1E:3B:9C:C4:5F:F5:3A:1B
 SHA256:
 42:00:F5:04:3A:C8:59:0E:BB:52:7D:20:9E:D1:50:30:29:FB:CB:D4:1C:A1:B5:06:EC:27:F1:5A:DE:7D:AC:69
Alias name: verisignc1g6.pem
 MD5: 2F:A8:B4:DA:F6:64:4B:1E:82:F9:46:3D:54:1A:7C:B0
 SHA1: 51:7F:61:1E:29:91:6B:53:82:FB:72:E7:44:D9:8D:C3:CC:53:6D:64
 SHA256:
 9D:19:0B:2E:31:45:66:68:5B:E8:A8:89:E2:7A:A8:C7:D7:AE:1D:8A:AD:DB:A3:C1:EC:F9:D2:48:63:CD:34:B9
Alias name: verisignclass3g2ca
 MD5: A2:33:9B:4C:74:78:73:D4:6C:E7:C1:F3:8D:CB:5C:E9
 SHA1: 85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
 SHA256:
 83:CE:3C:12:29:68:8A:59:3D:48:5F:81:97:3C:0F:91:95:43:1E:DA:37:CC:5E:36:43:0E:79:C7:A8:88:63:8B
Alias name: mozillacert60.pem
 MD5: B7:52:74:E2:92:B4:80:93:F2:75:E4:CC:D7:F2:EA:26
 SHA1: 3B:C4:9F:48:F8:F3:73:A0:9C:1E:BD:F8:5B:B1:C3:65:C7:D8:11:B3
 SHA256:
 BF:0F:EE:FB:9E:3A:58:1A:D5:F9:E9:DB:75:89:98:57:43:D2:61:08:5C:4D:31:4F:6F:5D:72:59:AA:42:16:12
Alias name: mozillacert78.pem
 MD5: 42:65:CA:BE:01:9A:9A:4C:A9:8C:41:49:CD:C0:D5:7F
 SHA1: 29:36:21:02:8B:20:ED:02:F5:66:C5:32:D1:D6:ED:90:9F:45:00:2F
 SHA256:
 0A:81:EC:5A:92:97:77:F1:45:90:4A:F3:8D:5D:50:9F:66:B5:E2:C5:8F:CD:B5:31:05:8B:0E:17:F3:F0:B4:1B
Alias name: gd_bundle-g2.pem
 MD5: 96:C2:50:31:BC:0D:C3:5C:FB:A7:23:73:1E:1B:41:40
 SHA1: 27:AC:93:69:FA:F2:52:07:BB:26:27:CE:FA:CC:BE:4E:F9:C3:19:B8
 SHA256:
 97:3A:41:27:6F:FD:01:E0:27:A2:AA:D4:9E:34:C3:78:46:D3:E9:76:FF:6A:62:0B:67:12:E3:38:32:04:1A:A6
Alias name: certumca
 MD5: 2C:8F:9F:66:1D:18:90:B1:47:26:9D:8E:86:82:8C:A9
 SHA1: 62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:34:8E:06:42:51:B1:81:18
 SHA256:
 D8:E0:FE:BC:1D:B2:E3:8D:00:94:0F:37:D2:7D:41:34:4D:99:3E:73:4B:99:D5:65:6D:97:78:D4:D8:14:36:24
Alias name: deutschetelekomrootca2
 MD5: 74:01:4A:91:B1:08:C4:58:CE:47:CD:F0:DD:11:53:08
 SHA1: 85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:D6:13:30:FD:8C:DE:37:BF
 SHA256:
 B6:19:1A:50:D0:C3:97:7F:7D:A9:9B:CD:AA:C8:6A:22:7D:AE:B9:67:9E:C7:0B:A3:B0:C9:D9:22:71:C1:70:D3
Alias name: mozillacert124.pem
 MD5: 27:EC:39:47:CD:DA:5A:AF:E2:9A:01:65:21:A9:4C:BB
 SHA1: 4D:23:78:EC:91:95:39:B5:00:7F:75:8F:03:3B:21:1E:C5:4D:8B:CF
 SHA256:
 80:95:21:08:05:DB:4B:BC:35:5E:44:28:D8:FD:6E:C2:CD:E3:AB:5F:B9:7A:99:42:98:8E:B8:F4:DC:D0:60:16
Alias name: mozillacert16.pem
 MD5: 41:03:52:DC:0F:F7:50:1B:16:F0:02:8E:BA:6F:45:C5
 SHA1: DA:C9:02:4F:54:D8:F6:DF:94:93:5F:B1:73:26:38:CA:6A:D7:7C:13

206

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA256:
 06:87:26:03:31:A7:24:03:D9:09:F1:05:E6:9B:CF:0D:32:E1:BD:24:93:FF:C6:D9:20:6D:11:BC:D6:77:07:39
Alias name: secomevrootca1
 MD5: 22:2D:A6:01:EA:7C:0A:F7:F0:6C:56:43:3F:77:76:D3
 SHA1: FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:90:8F:FD:28:86:65:64:7D
 SHA256:
 A2:2D:BA:68:1E:97:37:6E:2D:39:7D:72:8A:AE:3A:9B:62:96:B9:FD:BA:60:BC:2E:11:F6:47:F2:C6:75:FB:37
Alias name: mozillacert67.pem
 MD5: C5:DF:B8:49:CA:05:13:55:EE:2D:BA:1A:C3:3E:B0:28
 SHA1: D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:09:26:DF:5B:85:69:76:AD
 SHA256:
 CB:B5:22:D7:B7:F1:27:AD:6A:01:13:86:5B:DF:1C:D4:10:2E:7D:07:59:AF:63:5A:7C:F4:72:0D:C9:63:C5:3B
Alias name: globalsignr3ca
 MD5: C5:DF:B8:49:CA:05:13:55:EE:2D:BA:1A:C3:3E:B0:28
 SHA1: D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:09:26:DF:5B:85:69:76:AD
 SHA256:
 CB:B5:22:D7:B7:F1:27:AD:6A:01:13:86:5B:DF:1C:D4:10:2E:7D:07:59:AF:63:5A:7C:F4:72:0D:C9:63:C5:3B
Alias name: mozillacert113.pem
 MD5: EE:29:31:BC:32:7E:9A:E6:E8:B5:F7:51:B4:34:71:90
 SHA1: 50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:E7:92:7D:7D:65:2D:34:31
 SHA256:
 6D:C4:71:72:E0:1C:BC:B0:BF:62:58:0D:89:5F:E2:B8:AC:9A:D4:F8:73:80:1E:0C:10:B9:C8:37:D2:1E:B1:77
Alias name: gdroot-g2.pem
 MD5: 80:3A:BC:22:C1:E6:FB:8D:9B:3B:27:4A:32:1B:9A:01
 SHA1: 47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
 SHA256:
 45:14:0B:32:47:EB:9C:C8:C5:B4:F0:D7:B5:30:91:F7:32:92:08:9E:6E:5A:63:E2:74:9D:D3:AC:A9:19:8E:DA
Alias name: aolrootca2
 MD5: D6:ED:3C:CA:E2:66:0F:AF:10:43:0D:77:9B:04:09:BF
 SHA1: 85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:22:00:46:13:DB:17:92:84
 SHA256:
 7D:3B:46:5A:60:14:E5:26:C0:AF:FC:EE:21:27:D2:31:17:27:AD:81:1C:26:84:2D:00:6A:F3:73:06:CC:80:BD
Alias name: trustcenteruniversalcai
 MD5: 45:E1:A5:72:C5:A9:36:64:40:9E:F5:E4:58:84:67:8C
 SHA1: 6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:CE:BB:9D:D9:4F:4E:39:F3
 SHA256:
 EB:F3:C0:2A:87:89:B1:FB:7D:51:19:95:D6:63:B7:29:06:D9:13:CE:0D:5E:10:56:8A:8A:77:E2:58:61:67:E7
Alias name: aolrootca1
 MD5: 14:F1:08:AD:9D:FA:64:E2:89:E7:1C:CF:A8:AD:7D:5E
 SHA1: 39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:F0:7D:21:D8:05:0B:56:6A
 SHA256:
 77:40:73:12:C6:3A:15:3D:5B:C0:0B:4E:51:75:9C:DF:DA:C2:37:DC:2A:33:B6:79:46:E9:8E:9B:FA:68:0A:E3
Alias name: verisignc2g2.pem
 MD5: 2D:BB:E5:25:D3:D1:65:82:3A:B7:0E:FA:E6:EB:E2:E1
 SHA1: B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:B6:CC:A0:08:1B:67:EC:9D
 SHA256:
 3A:43:E2:20:FE:7F:3E:A9:65:3D:1E:21:74:2E:AC:2B:75:C2:0F:D8:98:03:05:BC:50:2C:AF:8C:2D:9B:41:A1
Alias name: mozillacert56.pem
 MD5: FB:1B:5D:43:8A:94:CD:44:C6:76:F2:43:4B:47:E7:31
 SHA1: F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:5B:17:15:89:CA:F3:6B:F2
 SHA256:
 4B:03:F4:58:07:AD:70:F2:1B:FC:2C:AE:71:C9:FD:E4:60:4C:06:4C:F5:FF:B6:86:BA:E5:DB:AA:D7:FD:D3:4C
Alias name: verisignclass1g3ca
 MD5: B1:47:BC:18:57:D1:18:A0:78:2D:EC:71:E8:2A:95:73
 SHA1: 20:42:85:DC:F7:EB:76:41:95:57:8E:13:6B:D4:B7:D1:E9:8E:46:A5
 SHA256:
 CB:B5:AF:18:5E:94:2A:24:02:F9:EA:CB:C0:ED:5B:B8:76:EE:A3:C1:22:36:23:D0:04:47:E4:F3:BA:55:4B:65
Alias name: mozillacert102.pem
 MD5: AA:C6:43:2C:5E:2D:CD:C4:34:C0:50:4F:11:02:4F:B6

207

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA1: 96:C9:1B:0B:95:B4:10:98:42:FA:D0:D8:22:79:FE:60:FA:B9:16:83
 SHA256:
 EE:C5:49:6B:98:8C:E9:86:25:B9:34:09:2E:EC:29:08:BE:D0:B0:F3:16:C2:D4:73:0C:84:EA:F1:F3:D3:48:81
Alias name: addtrustexternalca
 MD5: 1D:35:54:04:85:78:B0:3F:42:42:4D:BF:20:73:0A:3F
 SHA1: 02:FA:F3:E2:91:43:54:68:60:78:57:69:4D:F5:E4:5B:68:85:18:68
 SHA256:
 68:7F:A4:51:38:22:78:FF:F0:C8:B1:1F:8D:43:D5:76:67:1C:6E:B2:BC:EA:B4:13:FB:83:D9:65:D0:6D:2F:F2
Alias name: verisignc3g2.pem
 MD5: A2:33:9B:4C:74:78:73:D4:6C:E7:C1:F3:8D:CB:5C:E9
 SHA1: 85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
 SHA256:
 83:CE:3C:12:29:68:8A:59:3D:48:5F:81:97:3C:0F:91:95:43:1E:DA:37:CC:5E:36:43:0E:79:C7:A8:88:63:8B
Alias name: verisignclass3ca
 MD5: EF:5A:F1:33:EF:F1:CD:BB:51:02:EE:12:14:4B:96:C4
 SHA1: A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
 SHA256:
 A4:B6:B3:99:6F:C2:F3:06:B3:FD:86:81:BD:63:41:3D:8C:50:09:CC:4F:A3:29:C2:CC:F0:E2:FA:1B:14:03:05
Alias name: mozillacert45.pem
 MD5: 1B:2E:00:CA:26:06:90:3D:AD:FE:6F:15:68:D3:6B:B3
 SHA1: 67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:56:4B:CF:E2:3D:69:C6:F0
 SHA256:
 C0:A6:F4:DC:63:A2:4B:FD:CF:54:EF:2A:6A:08:2A:0A:72:DE:35:80:3E:2F:F5:FF:52:7A:E5:D8:72:06:DF:D5
Alias name: verisignc4g2.pem
 MD5: 26:6D:2C:19:98:B6:70:68:38:50:54:19:EC:90:34:60
 SHA1: 0B:77:BE:BB:CB:7A:A2:47:05:DE:CC:0F:BD:6A:02:FC:7A:BD:9B:52
 SHA256:
 44:64:0A:0A:0E:4D:00:0F:BD:57:4D:2B:8A:07:BD:B4:D1:DF:ED:3B:45:BA:AB:A7:6F:78:57:78:C7:01:19:61
Alias name: digicertassuredidrootca
 MD5: 87:CE:0B:7B:2A:0E:49:00:E1:58:71:9B:37:A8:93:72
 SHA1: 05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:4B:DF:B5:A8:99:B2:4D:43
 SHA256:
 3E:90:99:B5:01:5E:8F:48:6C:00:BC:EA:9D:11:1E:E7:21:FA:BA:35:5A:89:BC:F1:DF:69:56:1E:3D:C6:32:5C
Alias name: verisignclass1ca
 MD5: 86:AC:DE:2B:C5:6D:C3:D9:8C:28:88:D3:8D:16:13:1E
 SHA1: CE:6A:64:A3:09:E4:2F:BB:D9:85:1C:45:3E:64:09:EA:E8:7D:60:F1
 SHA256:
 51:84:7C:8C:BD:2E:9A:72:C9:1E:29:2D:2A:E2:47:D7:DE:1E:3F:D2:70:54:7A:20:EF:7D:61:0F:38:B8:84:2C
Alias name: mozillacert109.pem
 MD5: 26:01:FB:D8:27:A7:17:9A:45:54:38:1A:43:01:3B:03
 SHA1: B5:61:EB:EA:A4:DE:E4:25:4B:69:1A:98:A5:57:47:C2:34:C7:D9:71
 SHA256:
 E2:3D:4A:03:6D:7B:70:E9:F5:95:B1:42:20:79:D2:B9:1E:DF:BB:1F:B6:51:A0:63:3E:AA:8A:9D:C5:F8:07:03
Alias name: thawtepremiumserverca
 MD5: A6:6B:60:90:23:9B:3F:2D:BB:98:6F:D6:A7:19:0D:46
 SHA1: E0:AB:05:94:20:72:54:93:05:60:62:02:36:70:F7:CD:2E:FC:66:66
 SHA256:
 3F:9F:27:D5:83:20:4B:9E:09:C8:A3:D2:06:6C:4B:57:D3:A2:47:9C:36:93:65:08:80:50:56:98:10:5D:BC:E9
Alias name: verisigntsaca
 MD5: F2:89:95:6E:4D:05:F0:F1:A7:21:55:7D:46:11:BA:47
 SHA1: 20:CE:B1:F0:F5:1C:0E:19:A9:F3:8D:B1:AA:8E:03:8C:AA:7A:C7:01
 SHA256:
 CB:6B:05:D9:E8:E5:7C:D8:82:B1:0B:4D:B7:0D:E4:BB:1D:E4:2B:A4:8A:7B:D0:31:8B:63:5B:F6:E7:78:1A:9D
Alias name: mozillacert96.pem
 MD5: CA:FB:40:A8:4E:39:92:8A:1D:FE:8E:2F:C4:27:EA:EF
 SHA1: 55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:19:9D:2A:BE:11:E3:81:D1
 SHA256:
 FD:73:DA:D3:1C:64:4F:F1:B4:3B:EF:0C:CD:DA:96:71:0B:9C:D9:87:5E:CA:7E:31:70:7A:F3:E9:6D:52:2B:BD
Alias name: mozillacert142.pem

208

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 MD5: 31:85:3C:62:94:97:63:B9:AA:FD:89:4E:AF:6F:E0:CF
 SHA1: 1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:BE:FD:3A:2D:82:75:51:85
 SHA256:
 18:F1:FC:7F:20:5D:F8:AD:DD:EB:7F:E0:07:DD:57:E3:AF:37:5A:9C:4D:8D:73:54:6B:F4:F1:FE:D1:E1:8D:35
Alias name: thawteprimaryrootca
 MD5: 8C:CA:DC:0B:22:CE:F5:BE:72:AC:41:1A:11:A8:D8:12
 SHA1: 91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:99:29:5C:75:6C:81:7B:81
 SHA256:
 8D:72:2F:81:A9:C1:13:C0:79:1D:F1:36:A2:96:6D:B2:6C:95:0A:97:1D:B4:6B:41:99:F4:EA:54:B7:8B:FB:9F
Alias name: mozillacert34.pem
 MD5: BC:6C:51:33:A7:E9:D3:66:63:54:15:72:1B:21:92:93
 SHA1: 59:22:A1:E1:5A:EA:16:35:21:F8:98:39:6A:46:46:B0:44:1B:0F:A9
 SHA256:
 41:C9:23:86:6A:B4:CA:D6:B7:AD:57:80:81:58:2E:02:07:97:A6:CB:DF:4F:FF:78:CE:83:96:B3:89:37:D7:F5
Alias name: mozillacert1.pem
 MD5: C5:70:C4:A2:ED:53:78:0C:C8:10:53:81:64:CB:D0:1D
 SHA1: 23:E5:94:94:51:95:F2:41:48:03:B4:D5:64:D2:A3:A3:F5:D8:8B:8C
 SHA256:
 B4:41:0B:73:E2:E6:EA:CA:47:FB:C4:2F:8F:A4:01:8A:F4:38:1D:C5:4C:FA:A8:44:50:46:1E:ED:09:45:4D:E9
Alias name: xrampglobalca
 MD5: A1:0B:44:B3:CA:10:D8:00:6E:9D:0F:D8:0F:92:0A:D1
 SHA1: B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:54:F3:4C:52:B7:E5:58:C6
 SHA256:
 CE:CD:DC:90:50:99:D8:DA:DF:C5:B1:D2:09:B7:37:CB:E2:C1:8C:FB:2C:10:C0:FF:0B:CF:0D:32:86:FC:1A:A2
Alias name: mozillacert85.pem
 MD5: AA:08:8F:F6:F9:7B:B7:F2:B1:A7:1E:9B:EA:EA:BD:79
 SHA1: CF:9E:87:6D:D3:EB:FC:42:26:97:A3:B5:A3:7A:A0:76:A9:06:23:48
 SHA256:
 BF:D8:8F:E1:10:1C:41:AE:3E:80:1B:F8:BE:56:35:0E:E9:BA:D1:A6:B9:BD:51:5E:DC:5C:6D:5B:87:11:AC:44
Alias name: valicertclass2ca
 MD5: A9:23:75:9B:BA:49:36:6E:31:C2:DB:F2:E7:66:BA:87
 SHA1: 31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:4B:57:E8:B7:D8:F1:FC:A6
 SHA256:
 58:D0:17:27:9C:D4:DC:63:AB:DD:B1:96:A6:C9:90:6C:30:C4:E0:87:83:EA:E8:C1:60:99:54:D6:93:55:59:6B
Alias name: mozillacert131.pem
 MD5: 34:FC:B8:D0:36:DB:9E:14:B3:C2:F2:DB:8F:E4:94:C7
 SHA1: 37:9A:19:7B:41:85:45:35:0C:A6:03:69:F3:3C:2E:AF:47:4F:20:79
 SHA256:
 A0:23:4F:3B:C8:52:7C:A5:62:8E:EC:81:AD:5D:69:89:5D:A5:68:0D:C9:1D:1C:B8:47:7F:33:F8:78:B9:5B:0B
Alias name: mozillacert149.pem
 MD5: B0:01:EE:14:D9:AF:29:18:94:76:8E:F1:69:33:2A:84
 SHA1: 6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:DB:72:2E:31:30:61:F0:B1
 SHA256:
 0C:25:8A:12:A5:67:4A:EF:25:F2:8B:A7:DC:FA:EC:EE:A3:48:E5:41:E6:F5:CC:4E:E6:3B:71:B3:61:60:6A:C3
Alias name: geotrustprimaryca
 MD5: 02:26:C3:01:5E:08:30:37:43:A9:D0:7D:CF:37:E6:BF
 SHA1: 32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:10:0D:D6:02:90:37:F0:96
 SHA256:
 37:D5:10:06:C5:12:EA:AB:62:64:21:F1:EC:8C:92:01:3F:C5:F8:2A:E9:8E:E5:33:EB:46:19:B8:DE:B4:D0:6C
Alias name: mozillacert23.pem
 MD5: 8C:CA:DC:0B:22:CE:F5:BE:72:AC:41:1A:11:A8:D8:12
 SHA1: 91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:99:29:5C:75:6C:81:7B:81
 SHA256:
 8D:72:2F:81:A9:C1:13:C0:79:1D:F1:36:A2:96:6D:B2:6C:95:0A:97:1D:B4:6B:41:99:F4:EA:54:B7:8B:FB:9F
Alias name: verisignc1g2.pem
 MD5: DB:23:3D:F9:69:FA:4B:B9:95:80:44:73:5E:7D:41:83
 SHA1: 27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47
 SHA256:
 34:1D:E9:8B:13:92:AB:F7:F4:AB:90:A9:60:CF:25:D4:BD:6E:C6:5B:9A:51:CE:6E:D0:67:D0:0E:C7:CE:9B:7F

209

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Alias name: mozillacert8.pem
 MD5: 22:4D:8F:8A:FC:F7:35:C2:BB:57:34:90:7B:8B:22:16
 SHA1: 3E:2B:F7:F2:03:1B:96:F3:8C:E6:C4:D8:A8:5D:3E:2D:58:47:6A:0F
 SHA256:
 C7:66:A9:BE:F2:D4:07:1C:86:3A:31:AA:49:20:E8:13:B2:D1:98:60:8C:B7:B7:CF:E2:11:43:B8:36:DF:09:EA
Alias name: mozillacert74.pem
 MD5: 17:35:74:AF:7B:61:1C:EB:F4:F9:3C:E2:EE:40:F9:A2
 SHA1: 92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:FF:22:D8:63:E8:25:6F:3F
 SHA256:
 56:8D:69:05:A2:C8:87:08:A4:B3:02:51:90:ED:CF:ED:B1:97:4A:60:6A:13:C6:E5:29:0F:CB:2A:E6:3E:DA:B5
Alias name: mozillacert120.pem
 MD5: 64:9C:EF:2E:44:FC:C6:8F:52:07:D0:51:73:8F:CB:3D
 SHA1: DA:40:18:8B:91:89:A3:ED:EE:AE:DA:97:FE:2F:9D:F5:B7:D1:8A:41
 SHA256:
 CF:56:FF:46:A4:A1:86:10:9D:D9:65:84:B5:EE:B5:8A:51:0C:42:75:B0:E5:F9:4F:40:BB:AE:86:5E:19:F6:73
Alias name: geotrustglobalca
 MD5: F7:75:AB:29:FB:51:4E:B7:77:5E:FF:05:3C:99:8E:F5
 SHA1: DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:A3:49:A7:F9:96:2A:82:12
 SHA256:
 FF:85:6A:2D:25:1D:CD:88:D3:66:56:F4:50:12:67:98:CF:AB:AA:DE:40:79:9C:72:2D:E4:D2:B5:DB:36:A7:3A
Alias name: mozillacert138.pem
 MD5: 91:1B:3F:6E:CD:9E:AB:EE:07:FE:1F:71:D2:B3:61:27
 SHA1: E1:9F:E3:0E:8B:84:60:9E:80:9B:17:0D:72:A8:C5:BA:6E:14:09:BD
 SHA256:
 3F:06:E5:56:81:D4:96:F5:BE:16:9E:B5:38:9F:9F:2B:8F:F6:1E:17:08:DF:68:81:72:48:49:CD:5D:27:CB:69
Alias name: mozillacert12.pem
 MD5: 79:E4:A9:84:0D:7D:3A:96:D7:C0:4F:E2:43:4C:89:2E
 SHA1: A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
 SHA256:
 43:48:A0:E9:44:4C:78:CB:26:5E:05:8D:5E:89:44:B4:D8:4F:96:62:BD:26:DB:25:7F:89:34:A4:43:C7:01:61
Alias name: comodoaaaca
 MD5: 49:79:04:B0:EB:87:19:AC:47:B0:BC:11:51:9B:74:D0
 SHA1: D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:F1:F1:60:17:64:D8:E3:49
 SHA256:
 D7:A7:A0:FB:5D:7E:27:31:D7:71:E9:48:4E:BC:DE:F7:1D:5F:0C:3E:0A:29:48:78:2B:C8:3E:E0:EA:69:9E:F4
Alias name: mozillacert63.pem
 MD5: F8:49:F4:03:BC:44:2D:83:BE:48:69:7D:29:64:FC:B1
 SHA1: 89:DF:74:FE:5C:F4:0F:4A:80:F9:E3:37:7D:54:DA:91:E1:01:31:8E
 SHA256:
 3C:5F:81:FE:A5:FA:B8:2C:64:BF:A2:EA:EC:AF:CD:E8:E0:77:FC:86:20:A7:CA:E5:37:16:3D:F3:6E:DB:F3:78
Alias name: certplusclass2primaryca
 MD5: 88:2C:8C:52:B8:A2:3C:F3:F7:BB:03:EA:AE:AC:42:0B
 SHA1: 74:20:74:41:72:9C:DD:92:EC:79:31:D8:23:10:8D:C2:81:92:E2:BB
 SHA256:
 0F:99:3C:8A:EF:97:BA:AF:56:87:14:0E:D5:9A:D1:82:1B:B4:AF:AC:F0:AA:9A:58:B5:D5:7A:33:8A:3A:FB:CB
Alias name: mozillacert127.pem
 MD5: F7:75:AB:29:FB:51:4E:B7:77:5E:FF:05:3C:99:8E:F5
 SHA1: DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:A3:49:A7:F9:96:2A:82:12
 SHA256:
 FF:85:6A:2D:25:1D:CD:88:D3:66:56:F4:50:12:67:98:CF:AB:AA:DE:40:79:9C:72:2D:E4:D2:B5:DB:36:A7:3A
Alias name: ttelesecglobalrootclass2ca
 MD5: 2B:9B:9E:E4:7B:6C:1F:00:72:1A:CC:C1:77:79:DF:6A
 SHA1: 59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:32:17:65:CF:17:D8:94:E9
 SHA256:
 91:E2:F5:78:8D:58:10:EB:A7:BA:58:73:7D:E1:54:8A:8E:CA:CD:01:45:98:BC:0B:14:3E:04:1B:17:05:25:52
Alias name: mozillacert19.pem
 MD5: 37:A5:6E:D4:B1:25:84:97:B7:FD:56:15:7A:F9:A2:00
 SHA1: B4:35:D4:E1:11:9D:1C:66:90:A7:49:EB:B3:94:BD:63:7B:A7:82:B7

210

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

 SHA256:
 C4:70:CF:54:7E:23:02:B9:77:FB:29:DD:71:A8:9A:7B:6C:1F:60:77:7B:03:29:F5:60:17:F3:28:BF:4F:6B:E6
Alias name: digicerthighassuranceevrootca
 MD5: D4:74:DE:57:5C:39:B2:D3:9C:85:83:C5:C0:65:49:8A
 SHA1: 5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:E6:D3:8F:1A:61:C7:DC:25
 SHA256:
 74:31:E5:F4:C3:C1:CE:46:90:77:4F:0B:61:E0:54:40:88:3B:A9:A0:1E:D0:0B:A6:AB:D7:80:6E:D3:B1:18:CF
Alias name: amzninternalinfoseccag3
 MD5: E9:34:94:02:BA:BB:31:6B:22:E6:2B:A9:C4:F0:26:04
 SHA1: B9:B1:CA:38:F7:BF:9C:D2:D4:95:E7:B6:5E:75:32:9B:A8:78:2E:F6
 SHA256:
 81:03:0B:C7:E2:54:DA:7B:F8:B7:45:DB:DD:41:15:89:B5:A3:81:86:FB:4B:29:77:1F:84:0A:18:D9:67:6D:68
Alias name: mozillacert52.pem
 MD5: 21:BC:82:AB:49:C4:13:3B:4B:B2:2B:5C:6B:90:9C:19
 SHA1: 8B:AF:4C:9B:1D:F0:2A:92:F7:DA:12:8E:B9:1B:AC:F4:98:60:4B:6F
 SHA256:
 E2:83:93:77:3D:A8:45:A6:79:F2:08:0C:C7:FB:44:A3:B7:A1:C3:79:2C:B7:EB:77:29:FD:CB:6A:8D:99:AE:A7
Alias name: mozillacert116.pem
 MD5: AE:B9:C4:32:4B:AC:7F:5D:66:CC:77:94:BB:2A:77:56
 SHA1: 2B:B1:F5:3E:55:0C:1D:C5:F1:D4:E6:B7:6A:46:4B:55:06:02:AC:21
 SHA256:
 F3:56:BE:A2:44:B7:A9:1E:B3:5D:53:CA:9A:D7:86:4A:CE:01:8E:2D:35:D5:F8:F9:6D:DF:68:A6:F4:1A:A4:74
Alias name: globalsignca
 MD5: 3E:45:52:15:09:51:92:E1:B7:5D:37:9F:B1:87:29:8A
 SHA1: B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:F2:15:01:52:A4:1D:82:9C
 SHA256:
 EB:D4:10:40:E4:BB:3E:C7:42:C9:E3:81:D3:1E:F2:A4:1A:48:B6:68:5C:96:E7:CE:F3:C1:DF:6C:D4:33:1C:99
Alias name: mozillacert41.pem
 MD5: 45:E1:A5:72:C5:A9:36:64:40:9E:F5:E4:58:84:67:8C
 SHA1: 6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:CE:BB:9D:D9:4F:4E:39:F3
 SHA256:
 EB:F3:C0:2A:87:89:B1:FB:7D:51:19:95:D6:63:B7:29:06:D9:13:CE:0D:5E:10:56:8A:8A:77:E2:58:61:67:E7
Alias name: mozillacert59.pem
 MD5: 8E:AD:B5:01:AA:4D:81:E4:8C:1D:D1:E1:14:00:95:19
 SHA1: 36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
 SHA256:
 23:99:56:11:27:A5:71:25:DE:8C:EF:EA:61:0D:DF:2F:A0:78:B5:C8:06:7F:4E:82:82:90:BF:B8:60:E8:4B:3C
Alias name: mozillacert105.pem
 MD5: 5B:04:69:EC:A5:83:94:63:18:A7:86:D0:E4:F2:6E:19
 SHA1: 77:47:4F:C6:30:E4:0F:4C:47:64:3F:84:BA:B8:C6:95:4A:8A:41:EC
 SHA256:
 F0:9B:12:2C:71:14:F4:A0:9B:D4:EA:4F:4A:99:D5:58:B4:6E:4C:25:CD:81:14:0D:29:C0:56:13:91:4C:38:41
Alias name: trustcenterclass2caii
 MD5: CE:78:33:5C:59:78:01:6E:18:EA:B9:36:A0:B9:2E:23
 SHA1: AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:FE:68:5D:79:42:21:15:6E
 SHA256:
 E6:B8:F8:76:64:85:F8:07:AE:7F:8D:AC:16:70:46:1F:07:C0:A1:3E:EF:3A:1F:F7:17:53:8D:7A:BA:D3:91:B4
Alias name: mozillacert92.pem
 MD5: C9:3B:0D:84:41:FC:A4:76:79:23:08:57:DE:10:19:16
 SHA1: A3:F1:33:3F:E2:42:BF:CF:C5:D1:4E:8F:39:42:98:40:68:10:D1:A0
 SHA256:
 E1:78:90:EE:09:A3:FB:F4:F4:8B:9C:41:4A:17:D6:37:B7:A5:06:47:E9:BC:75:23:22:72:7F:CC:17:42:A9:11
Alias name: verisignc3g5.pem
 MD5: CB:17:E4:31:67:3E:E2:09:FE:45:57:93:F3:0A:FA:1C
 SHA1: 4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
 SHA256:
 9A:CF:AB:7E:43:C8:D8:80:D0:6B:26:2A:94:DE:EE:E4:B4:65:99:89:C3:D0:CA:F1:9B:AF:64:05:E4:1A:B7:DF
Alias name: geotrustprimarycag3
 MD5: B5:E8:34:36:C9:10:44:58:48:70:6D:2E:83:D4:B8:05

211

Amazon API Gateway Developer Guide
Use API Gateway Usage Plans

 SHA1: 03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:20:D2:D9:32:3A:4C:2A:FD
 SHA256:
 B4:78:B8:12:25:0D:F8:78:63:5C:2A:A7:EC:7D:15:5E:AA:62:5E:E8:29:16:E2:CD:29:43:61:88:6C:D1:FB:D4
Alias name: geotrustprimarycag2
 MD5: 01:5E:D8:6B:BD:6F:3D:8E:A1:31:F8:12:E0:98:73:6A
 SHA1: 8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:8B:51:9A:99:E6:10:D7:B0
 SHA256:
 5E:DB:7A:C4:3B:82:A0:6A:87:61:E8:D7:BE:49:79:EB:F2:61:1F:7D:D7:9B:F9:1C:1C:6B:56:6A:21:9E:D7:66
Alias name: mozillacert30.pem
 MD5: 15:AC:A5:C2:92:2D:79:BC:E8:7F:CB:67:ED:02:CF:36
 SHA1: E7:B4:F6:9D:61:EC:90:69:DB:7E:90:A7:40:1A:3C:F4:7D:4F:E8:EE
 SHA256:
 A7:12:72:AE:AA:A3:CF:E8:72:7F:7F:B3:9F:0F:B3:D1:E5:42:6E:90:60:B0:6E:E6:F1:3E:9A:3C:58:33:CD:43
Alias name: affirmtrustpremiumeccca
 MD5: 64:B0:09:55:CF:B1:D5:99:E2:BE:13:AB:A6:5D:EA:4D
 SHA1: B8:23:6B:00:2F:1D:16:86:53:01:55:6C:11:A4:37:CA:EB:FF:C3:BB
 SHA256:
 BD:71:FD:F6:DA:97:E4:CF:62:D1:64:7A:DD:25:81:B0:7D:79:AD:F8:39:7E:B4:EC:BA:9C:5E:84:88:82:14:23
Alias name: mozillacert48.pem
 MD5: B8:08:9A:F0:03:CC:1B:0D:C8:6C:0B:76:A1:75:64:23
 SHA1: A0:A1:AB:90:C9:FC:84:7B:3B:12:61:E8:97:7D:5F:D3:22:61:D3:CC
 SHA256:
 0F:4E:9C:DD:26:4B:02:55:50:D1:70:80:63:40:21:4F:E9:44:34:C9:B0:2F:69:7E:C7:10:FC:5F:EA:FB:5E:38

Create and Use API Gateway Usage Plans
After you create, test, and deploy your APIs, you can extend them as product offerings for your
customers. You can provide usage plans to allow specified customers to access selected APIs at
agreed-upon request rates and quotas that can meet their business requirements and budgetary
constraints.

What Is a Usage Plan?
A usage plan provides access to one or more deployed API stages with configurable throttling and
quota limits enforced on individual client API keys. API callers are identified by API keys that can be
generated by API Gateway or imported from external sources. The throttling prescribes the request
rate limits applied to each API key. The quotas are the maximum number of requests with a given API
key submitted within a specified time interval. Individual API methods can be configured to require API
key authorization based on usage plan configuration. An API stage is identified by an API identifier and
a stage name.

Note
Throttling and quota limits apply to requests for individual API keys that are aggregated across
all API stages within a usage plan.

How to Configure a Usage Plan?
The following steps outlines how you, as the API owner, configure a usage plan for your customers.

To configure a usage plan

1. Create one or more APIs, configure the methods to require an API key, and deploy the APIs in
stages.

2. Generate API keys and distribute the keys to app developers (your customers) using your APIs.

212

Amazon API Gateway Developer Guide
Set Up API Keys Using the API Gateway Console

3. Create the usage plan with the desired throttle and quota limits.

4. Associate selected API stages and API keys to the usage plan.

Callers of the API must supply an assigned API key in the x-api-key header in requests to the API.

Note
To enforce authorization of the API key in requests to the API, individual API methods must
be configured to require an API key (p. 213). Setting this configuration ensures the incoming
API key will be authorized according to the usage plan configuration.

The following sections provide detailed instructions for these tasks.

Topics

• Set Up API Keys Using the API Gateway Console (p. 213)

• Create and Configure Usage Plans with the API Gateway Console (p. 216)

• Set Up API Keys Using the API Gateway REST API (p. 219)

• Create and Configure Usage Plans with the API Gateway REST API (p. 220)

• API Gateway API Key File Format (p. 222)

• Use API Keys in API Gateway without Usage Plans Enabled (p. 223)

Set Up API Keys Using the API Gateway Console
To set up API keys, do the following:

• Configure API methods to require an API key.

• Create or import an API key for the API in a region.

Before setting up API keys, you must have created an API and deployed it to a stage.

For instructions on how to create and deploy an API using the API Gateway console, see Creating an
API (p. 70) and Deploying an API (p. 230), respectively.

Topics

• Require API Key on a Method (p. 213)

• Create an API Key (p. 214)

• Import API Keys (p. 215)

Require API Key on a Method

The following procedure describes how to configure an API method to require an API key.

To configure an API method to require an API key

1. Sign in to the AWS Management Console and open the API Gateway console at https://
console.aws.amazon.com/apigateway/.

2. In the API Gateway main navigation pane, choose Resources.

3. Under Resources, create a new method or choose an existing one.

4. Choose Method Request.

5. Under the Authorization Settings section, choose true for API Key Required.

6. Select the check-mark icon to save the settings.

213

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/

Amazon API Gateway Developer Guide
Set Up API Keys Using the API Gateway Console

7. Deploy or redeploy the API for the requirement to take effect.

If the API Key Required option is set to false and you do not execute the steps above, any API key
associated with an API stage will not used for the method.

Create an API Key

If you have already created or imported API keys for use with usage plans, you can skip this and the
next procedure.

To create an API key

1. Sign in to the AWS Management Console and open the API Gateway console at https://
console.aws.amazon.com/apigateway/.

2. In the API Gateway main navigation pane, choose API Keys.

3. From the Actions drop-down menu, choose Create API key.

4. In Create API Key, do the following:

a. Type an API key name (e.g., MyFirstKey) in the Name input field.

214

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/

Amazon API Gateway Developer Guide
Set Up API Keys Using the API Gateway Console

b. Choose Auto Generate to have API Gateway to generate the key value or choose Custom to
enter the key manually.

c. Choose Save.

5. Repeat the preceding steps to create more API keys, if needed.

Import API Keys

The following procedure describes how to import API keys to use with usage plans.

To import API keys

1. In the main navigation pane, choose API Keys.

2. From the Actions drop-down menu, choose Import API keys.

3. To load a comma-separated key file, choose Select CSV File. You can also type the keys
manually. For information about the file format, see API Gateway API Key File Format (p. 222).

4. Choose Fail on warnings to stop import when there is an error, or choose Ignore warnings to
continue to import valid key entries when there is an error.

5. To start importing the selected API keys, choose Import.

215

Amazon API Gateway Developer Guide
Create and Configure Usage Plans

with the API Gateway Console

Now that you have set up the API key, you can proceed to create and use a usage plan (p. 216).

Create and Configure Usage Plans with the API
Gateway Console
Before creating a usage plan, make sure you have set up the desired API keys. For more information,
see Set Up API Keys Using the API Gateway Console (p. 213).

This section describes steps needed to create and use a usage plan using the API Gateway console.

Topics

• Migrate to Default Usage Plans (p. 216)

• Create Usage Plans (p. 216)

• Test a Usage Plan (p. 218)

• Maintain Plan Usage (p. 218)

Migrate to Default Usage Plans

If you start to use API Gateway after the Usage Plans feature was rolled out on August 11, 2016, you
will automatically have usage plans enabled for you in all supported regions.

If you started to use API Gateway before then, you will be prompted with the Enable Usage Plans
option before using Usage Plans for the first time in the selected region. By enabling this option, you
will have default usage plans created for every unique API stage associated with existing API keys. In
the default usage plan, no throttle and quota limits are set initially, existing API keys are converted to
a collection of UsagePlanKey resources, and existing API keys are converted to API stage Ids. The
API will behave the same as before. However, you must use the UsagePlan apiStages property to
associate specified API stage values (apiId and stage) with included API keys (via UsagePlanKey),
instead of using the ApiKey stageKeys property.

If you choose to ignore the Enable Usage Plans option, you can continue to create and use API keys
as described in Use API Keys without Usage Plans Enabled (p. 223).

Create Usage Plans

The following procedure describes how to create a usage plan.

To create a usage plan

1. In the Amazon API Gateway main navigation pane, choose Usage Plans, and then choose
Create.

2. Under Create Usage Plan, do the following:

a. For Name, type a name for your plan (e.g., Plan_A).

b. For Description, type a description for your plan.

c. Select Enable throttling and set Rate (e.g., 100) and Burst (e.g., 200).

d. Choose Enable quota and set its limit (e.g., 5000) for a selected time interval (e.g., Month).

e. Choose Save.

216

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan/
http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/api-key/

Amazon API Gateway Developer Guide
Create and Configure Usage Plans

with the API Gateway Console

3. To add a stage to the plan, do the following in the Associated API Stages pane:

a. Choose Add API Stage.

b. Choose an API (e.g., PetStore) from the API drop-down list.

c. Choose a stage (e.g., Stage_1) from the Stage drop-down list.

d. Choose the check-mark icon to save.

e. Choose Next.

4. To add a key to the plan, do the following in the Usage Plan API Keys pane:

a. To use an existing key, choose Add API Key to Usage Plan.

b. For Name, type a name for the key you want to add (e.g., MyFirstKey).

c. Choose the check-mark icon to save.

d. If desired, repeat the preceding steps to add other existing API keys to this usage plan.

217

Amazon API Gateway Developer Guide
Create and Configure Usage Plans

with the API Gateway Console

Note
To add a new API key to the usage plan, choose Create API Key and add to Usage
Plan and follow the instructions.

5. To finish creating the usage plan, choose Done.

6. If you want to add more API stages to the usage plan, choose Add API Stage to repeat the
preceding steps.

Test a Usage Plan

To test the usage plan, you can use an AWS SDK, AWS CLI, or a REST API client like Postman. For
an example of using Postman to test the usage plan, see Test Usage Plans (p. 221)

Maintain Plan Usage

Maintaining a usage plan involves monitoring the used and remaining quotas over a given time period
and extending the remaining quotas by a specified amount. The following procedures describe how to
monitor and extend quotas.

To monitor used and remaining quotas

1. In the API Gateway main navigation pane, choose Usage Plans.

2. Choose a usage plan from the list of the usage plans in the secondary navigation pane in the
middle.

3. From within the specified plan, choose API Keys.

4. Choose an API key. Then choose Usage to view Subscriber's Traffic from the plan you are
monitoring.

5. Optionally, choose Export, choose a From date and a To date, choose JSON or CSV for the
exported data format, and then choose Export.

The following example shows an exported file.

{
 "thisPeriod": {
 "px1KW6...qBazOJH": [
 [

218

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Set Up API Keys Using the API Gateway REST API

 0,
 5000
],
 [
 0,
 5000
],
 [
 0,
 10
]
]
 },
 "startDate": "2016-08-01",
 "endDate": "2016-08-03"
}

The usage data in the example shows the daily usage data for an API client, as identified by the
API key (px1KW6...qBazOJH), between August 1, 2016, and August 3, 2016. Each daily usage
data shows used and remaining quotas. In this example, the subscriber has not yet used any
allotted quotas and the API owner or administrator has reduced the remaining quota from 5000 to
10 on the third day.

To extend the remaining quotas

1. Repeat steps 1-3 of the previous procedure.

2. On the usage plan page, choose Extension from the usage plan window.

3. Type a number for the Remaining request quotas.

4. Choose Save.

Set Up API Keys Using the API Gateway REST API
To set up API keys, do the following:

• Configure API methods to require an API key.

• Create or import an API key for the API in a region.

Before setting up API keys, you must have created an API and deployed it to a stage.

For the REST API calls to create and deploy an API, see restapi:create and deployment:create,
respectively.

Topics

• Require an API Key on a Method (p. 219)

• Create or Import API Keys (p. 220)

Require an API Key on a Method

To require an API key on a method, do one of the following:

• Call method:put to create a method, setting apiKeyRequired to true in the request payload.

• Call method:update to set apiKeyRequired to true.

219

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/deployment-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-put/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-update/

Amazon API Gateway Developer Guide
Create and Configure Usage Plans
with the API Gateway REST API

Create or Import API Keys

To create or import an API key, do one of the following:

• Call apikey:create to create an API key.

• Call apikey:import to import an API key from a file. For the file format, see API Gateway API Key File
Format (p. 222).

With the API key created, you can now proceed to Create and Configure Usage Plans with the API
Gateway REST API (p. 220).

Create and Configure Usage Plans with the API
Gateway REST API
Before configuring a usage plan, you must have already set up methods of a selected API to require
API keys, deployed or redeployed the API to a stage, and the created or imported one or more API
keys. For more information, see Set Up API Keys Using the API Gateway REST API (p. 219).

To configure a usage plan using the API Gateway REST API, use the following instructions, assuming
you have already created the APIs to be added to the usage plan.

Topics

• Migrate to Default Usage Plans (p. 220)

• Create a Usage Plan (p. 220)

• Manage a Usage Plan (p. 221)

• Test Usage Plans (p. 221)

Migrate to Default Usage Plans

When creating a usage plan the first time, you can migrate existing API stages associated with
selected API keys to a usage plan by calling account:update with the following body:

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/features",
 "value" : "UsagePlans"
 }]
}

For more information about migrating API stages associated with API keys see Migrate to Default
Usage Plans in the API Gateway Console (p. 216).

Create a Usage Plan

The following procedure describes how to create a usage plan.

To create a usage plan with the REST API

1. Call usageplan:create to create a usage plan, specifying in the payload the name and description
of the plan, associated API stages, rate limits, and quotas.

Make note of the resultant usage plan identifier. You will need it in the next step.

220

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/account-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-create/

Amazon API Gateway Developer Guide
Create and Configure Usage Plans
with the API Gateway REST API

2. Do one of the following:

a. Call usageplankey:create to add an API key to the usage plan, specifying keyId and
keyType in the payload.

To add more API keys to the usage plan, repeat the above call, one API key at a time.

b. Call apikey:import to add one or more API keys directly to the specified usage plan. The
request payload should contain API key values, the associated usage plan identifier, the
Boolean flags to indicate the keys are enabled for the usage plan, and, possibly, the API key
names and descriptions.

The following example of the apikey:import request will add three API keys (as identified
by key, name, and description) to one usage plan (as identified by usageplanIds):

POST /apikeys?mode=import&format=csv&failonwarnings=fase HTTP/1.1
Host: apigateway.us-east-1.amazonaws.com
Content-Type: text/csv
Authorization: ...

key,name, description, enabled, usageplanIds
abcdef1234ghijklmnop8901234567, importedKey_1, firstone, tRuE,
 n371pt
abcdef1234ghijklmnop0123456789, importedKey_2, secondone, TRUE, n371pt
abcdef1234ghijklmnop9012345678, importedKey_3, , true, n371pt

As a result, three UsagePlanKey resources will be created and added to the UsagePlan.

You can also add API keys to more than one usage plan this way. To do this, change each
usageplanIds column value to a comma-separated string that contains the selected
usage plan identifiers and is enclosed within a pair of quotes ("n371pt,m282qs" or
'n371pt,m282qs').

Manage a Usage Plan

The following procedure describes how to manage a usage plan.

To manage a usage plan with the REST API

1. Call usageplan:by-id to get a usage plan of a given plan Id. To see the available usage plans, call
apigateway:usage-plans.

2. Call usageplan:update to add a new API stage to the plan, to replace an existing API stage in the
plan, to remove an API stage from the plan, or to modify the rate limits or quotas.

3. Call usage:get to query the usage data in a specified time interval.

4. Call usage:update to grant an extension to the current usage in a usage plan.

Test Usage Plans

As an example, let's use the PetStore API, created in Create an API Gateway API from an
Example (p. 7). Assume the API is configured to use an API key of Hiorr45VR...c4GJc. The
following steps describe how to test a usage plan.

To test your usage plan

• Make a GET request on the Pets resource (/pets), with the ?type=...&page=... query
parameters, of the API (e.g., xbvxlpijch) in a usage plan:

221

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplankey-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-by-id/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apigateway-usage-plans/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usage-get/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usage-update/

Amazon API Gateway Developer Guide
API Gateway API Key File Format

GET /testStage/pets?type=dog&page=1 HTTP/1.1
x-api-key: Hiorr45VR...c4GJc
Content-Type: application/x-www-form-urlencoded
Host: xbvxlpijch.execute-api.ap-southeast-1.amazonaws.com
X-Amz-Date: 20160803T001845Z
Authorization: AWS4-HMAC-SHA256 Credential={access_key_ID}/20160803/ap-
southeast-1/execute-api/aws4_request, SignedHeaders=content-type;host;x-
amz-date;x-api-key, Signature={sigv4_hash}

Note
You must submit this request to the execute-api component of API Gateway and
provide the required API key (e.g., Hiorr45VR...c4GJc) in the required x-api-key
header.

The successful response returns a 200 OK status code and a payload containing the requested
results from the back end. If you forget to set the x-api-key header or set it with an incorrect key,
you will get a 403 Forbidden response. On the other hand, if you did not configure the method
to require an API key, you will likely to get a 200 OK response whether you set the x-api-key
header correctly or not and the throttle and quota limits of the usage plan are bypassed.

API Gateway API Key File Format
API Gateway can import API keys from external files of a comma-separated value (CSV) format and
associate the imported keys with one or more usage plans. The imported file must contain the Name
and Key columns. The column header names are not case-sensitive and columns can be in any order,
as shown in the following example:

Key,name
apikey1234abcdefghij0123456789,MyFirstApiKey

A Key value must be between 30 and 128 characters.

An API key file can also have the Description, Enabled, or UsagePlanIds column, as shown in
the following example:

Name,key,description,Enabled,usageplanIds
MyFirstApiKey,apikey1234abcdefghij0123456789,An imported key,TRUE,c7y23b

When a key is associated with more than one usage plan, the UsagePlanIds value is a comma-
separated string of the usage plan Ids enclosed with a pair of double or single quotes, as shown in the
following example:

Enabled,Name,key,UsageplanIds
true,MyFirstApiKey,apikey1234abcdefghij0123456789,"c7y23b,glvrsr"

Unrecognized columns are permitted, but will be ignored. The default value is an empty string or a
true Boolean value.

The same API key can be imported multiple times with the most recent version overwriting the previous
one. Two API keys are identical if they have the same key value.

222

Amazon API Gateway Developer Guide
Use API Keys without Usage Plans Enabled

Use API Keys in API Gateway without Usage Plans
Enabled
Since the API Gateway usage plans feature was launched on August 11, 2016, usage plans will be
enabled for you in a region where you start using API Gateway the first time. In this case, you must use
a usage plan to associate an API key with an API stage and follow the instructions in Use API Gateway
Usage Plans (p. 212).

If, on the other hand, you created an API Gateway API before then and have not enabled usage plans
in the region since then, you can follow the instructions given in this section to associate an API key
with an API stage to identify API callers, to restrict API access to those users with matching API keys,
and to curtail abusive uses with different API keys.

To use an API key without enabling usage plans, you need to perform the following tasks:

• Create an API key.

• Enabled it on specific API methods.

• Deploy the API to a stage.

• Associate the key with the API stage.

• Distribute the key to your customers and ask them to supply it in calls to the enabled API methods.

API keys are not meant as a security mechanism for controlling access to an API. To enable secure
access control, use IAM permissions (p. 160), custom authorizers (p. 174) or a Amazon Cognito
Your User Pool (p. 182).

Topics

• Prerequisites (p. 223)

• Use an API Key without Usage Plans (p. 223)

Prerequisites

1. You must not have API Gateway usage plans enabled.

2. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 70).

3. You must have deployed the API in API Gateway at least once. Follow the instructions in
Deploying an API (p. 230).

Use an API Key without Usage Plans
Note
The following instructions apply only if usage plans are enabled for you. To associate an API
key with an API stage in a usage plan, follow the instructions in Use API Gateway Usage
Plans (p. 212).

To use the API Gateway console to enable an API key without usage plans, follow these instructions:

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Enable API key on an method:

a. Choose a method under a resource of your choosing.

b. Choose the Method Request box

c. If API Key Required is set to false, choose the pencil icon next to it. Choose true from the
drop-down list and then choose the check-mark icon to save the setting.

223

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Use API Keys without Usage Plans Enabled

Note that the steps above configure the API Gateway to enforce using API key on the method.
Otherwise, the API key created following the instructions below will not be used for any of such
calls.

3. Deploy or redeploy the API for the requirement to take effect.

4. Create an API key:

a. In the API Gateway main navigation pane, choose API Keys.

b. Choose Create API Key from the Actions drop-down menu.

c. For Name, type a name for the API key entry.

d. Choose either the Auto Generate option for API Gateway to generate the key or the Custom
option for you specify the key value manually. A key value is an alphanumeric string of a size
between 30 and 128 characters long.

e. Optionally, type a description for the API key in the Description text box.

f. Choose Save. Make a note of the key displayed in API key. Callers of the enabled method
must specify the key value in the x-api-key header.

224

Amazon API Gateway Developer Guide
Use API Keys without Usage Plans Enabled

g. Choose Show next to API key to view the newly created API key. Your customers must
provide this key as the x-api-key header value when they call this method.

The generated API key is enabled by default, allowing the API caller to access the API,
provided that the supplied API key matches the one configured. To prevent the apps with the

225

Amazon API Gateway Developer Guide
Use API Keys without Usage Plans Enabled

specified API key from accessing the API, choose Edit, deselect the Enabled option, and
then choose Save.

5. Associate an API key with an API stage (outside of a usage plan):

a. Under API Stage Association, choose the name of the API from the Select API drop-down
list.

b. Choose the name of a stage of the chosen API from the Select stage drop-down list.

c. Choose Add to save the setting.

Note: this step is available only when usage plans have not been enabled for your account and
region.

6. Distribute the API key to your customers and ask them to add the key as the x-
api-key header to call the key-required method. For example, if the API key of
hzYAVO9Sg98nsNh81M84O2kyXVy6K1xwHD8 is required on the GET / method in the test stage
of an API (yd4f8dz2vf), the caller must submit the following request to invoke the method.

GET /test HTTP/1.1
Host: yd4f8dz2vf.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
x-api-key: hzYAVO9Sg98nsNh81M84O2kyXVy6K1xwHD8

226

Amazon API Gateway Developer Guide
View a List of APIs

Maintaining an API in Amazon API
Gateway

Topics

• View a List of APIs in API Gateway (p. 227)

• Delete an API in API Gateway (p. 227)

• Delete a Resource in API Gateway (p. 228)

• View a Methods List in API Gateway (p. 228)

• Delete a Method in API Gateway (p. 229)

View a List of APIs in API Gateway
Use the API Gateway console to view a list of APIs.

Topics

• Prerequisites (p. 227)

• View a List of APIs with the API Gateway Console (p. 227)

Prerequisites
• You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 70).

View a List of APIs with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. The list of APIs is displayed.

Delete an API in API Gateway
Use the API Gateway console to delete an API.

227

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Prerequisites

Warning
Deleting an API means that you can no longer call it. This action cannot be undone.

Topics

• Prerequisites (p. 228)

• Delete an API with the API Gateway Console (p. 228)

Prerequisites
• You must have deployed the API at least once. Follow the instructions in Deploying an

API (p. 230).

Delete an API with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API you want to delete, choose Resources.

3. Choose Delete API.

4. When prompted to delete the API, choose Ok.

Delete a Resource in API Gateway
Use the API Gateway console to delete a resource.

Warning
When you delete a resource, you also delete its child resources and methods. Deleting a
resource may cause part of the corresponding API to be unusable. Deleting a resource cannot
be undone.

Delete a Resource with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the resource you want to delete, choose
Resources.

3. In the Resources pane, choose the resource, and then choose Delete Resource.

4. When prompted, choose Delete.

View a Methods List in API Gateway
Use the API Gateway console to view a list of methods for a resource.

Topics

• Prerequisites (p. 228)

• View a Methods List with the API Gateway Console (p. 229)

Prerequisites
• You must have methods available in API Gateway. Follow the instructions in Build an API

Gateway API to Expose an HTTP Endpoint (p. 6).

228

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
View a Methods List with the API Gateway Console

View a Methods List with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API, choose Resources.

3. The list of methods is displayed in the Resources pane.

Tip
You may need to choose the arrow next to one or more resources to display all of the
available methods.

Delete a Method in API Gateway
Use the API Gateway console to delete a method.

Warning
Deleting a method may cause part of the corresponding API to become unusable. Deleting a
method cannot be undone.

Delete a Method with the API Gateway Console
1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the method, choose Resources.

3. In the Resources pane, choose the arrow next to the resource for the method.

4. Choose the method, and then choose Delete Method.

5. When prompted, choose Delete.

229

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Deploy an API with the API Gateway Console

Deploying an API in Amazon API
Gateway

After an API is created, you must deploy it to make it public callable. A deployment takes place in
stages. A stage corresponds to a version of the API in service. In each stage, you can configure stage-
level throttling settings, in addition to enabling or disabling API cache or CloudWatch logs for the API's
requests and responses. If the stage-level settings are enabled, you have options to override them for
individual methods. You can also define stage variables and use them to pass deployment-specific
environment data to the API integration at the run time.

Topics

• Deploy an API with the Amazon API Gateway Console (p. 230)

• Deploy an API in Stages in Amazon API Gateway (p. 232)

• Manage API Request Throttling (p. 236)

• Enable Amazon API Gateway Caching in a Stage to Enhance API Performance (p. 236)

• Manage API Gateway API Deployment with Stage Variables (p. 242)

• Generate and Use an SDK for an API in API Gateway (p. 254)

• Use a Custom Domain Name in API Gateway (p. 280)

Deploy an API with the Amazon API Gateway
Console

Prerequisites
• You must specify settings for all of the methods in the API you want to deploy. Follow the

instructions in Set up Method and Integration (p. 71).

Deploy an API with the API Gateway Console
Note
If you want to change a stage in API Gateway to use a different deployment, see Change a
Stage to Use a Different Deployment with the API Gateway Console (p. 231) instead.

230

Amazon API Gateway Developer Guide
Update deployment configuration

with the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API you want to deploy, choose Resources.

3. In the Resources pane, choose Deploy API.

4. For Deployment stage, do one of the following:

• To deploy the API to an existing stage, choose the name of the stage.

• To deploy the API to a new stage, choose New Stage. For Stage name, type the name of the
stage you want to use for the deployment.

Tip
The stage name should be meaningful, but short enough to be easy and fast to type.
Your users will specify this name as part of the URL they will use to invoke the API.

5. (Optional) For Stage description, type a description for the stage.

6. (Optional) For Deployment description, type a description for the deployment.

7. Choose Deploy.

Update deployment configuration with the API
Gateway Console
After an API is deployed to a stage, you can, optionally, modify the deployment by updating the stage
settings or stage variables. After making any changes, you must redeploy the API. The following
procedure demonstrates how to accomplish with the API Gateway Console.

1. If needed, choose the Settings tab in the Stage Editor pane of the API Gateway Console.

You can then choose to use or not use API cache, to enable or disable CloudWatch logs, to
change throttling settings, or to select or deselect a client certificate.

2. If needed, choose the Stage Variables tab in the Stage Editor pane of the API Gateway Console.

You can then choose to update the values of selected stage variables.

3. If you made any change, choose the Save Changes button; go back to the Resources window;
and then choose Deploy API again.

Note
If the updated settings, such as enabling logging, requires a new IAM role, you can add the
required IAM role without redeploying the API. However, it can take a few minutes before the
new IAM role takes effect. Before that happens, traces of your API calls will not be logged
even if you have enabled the logging option.

Change a Stage to Use a Different Deployment with
the API Gateway Console
Once you have deployed an API more than once, you can choose a specific deployment for a given
stage. The following procedure shows how to do this.

1. You must have deployed to the stage at least twice. Follow the instructions in Deploy an API with
the API Gateway Console (p. 230).

2. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

3. In the box that contains the name of the API with the stage you want to change, choose Stages.

4. Choose the stage you want to update the deployment.

231

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Deploy an API in Stages

5. On the Deployment History tab, choose the option button next to the deployment you want the
stage to use.

6. Choose Change Deployment.

Deploy an API in Stages in Amazon API Gateway
In API Gateway, a stage defines the path through which an API deployment is accessible.

Use the API Gateway console to deploy an API in stages.

• Create a Stage (p. 232)

• View a List of Stages (p. 232)

• Set Up a Stage (p. 233)

• Delete a Stage (p. 235)

Create a Stage in API Gateway
Use the API Gateway console to create a stage for an API.

Topics

• Prerequisites (p. 232)

• Create a Stage with the API Gateway Console (p. 232)

Prerequisites

1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 70).

2. You must have deployed the API at least once. Follow the instructions in Deploying an
API (p. 230).

Create a Stage with the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API, choose Stages.

3. Choose Create Stage.

4. For Stage name, type a name for the stage.

5. (Optional) For Stage description, type a description for the stage.

6. For Deployment, choose the date and time of the existing API deployment you want to associate
with this stage.

7. Choose Create.

View a List of Stages in API Gateway
Use the API Gateway console to view a list of stages in API Gateway.

Topics

• Prerequisites (p. 233)

• View a List of Stages with the API Gateway Console (p. 233)

232

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Up a Stage

Prerequisites

1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 70).

2. You must have deployed the API in API Gateway at least once. Follow the instructions in
Deploying an API (p. 230).

View a List of Stages with the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API, choose Stages.

Set Up a Stage
This section walks you through the options to set up an API deployment stage in the API Gateway
console.

Topics

• Prerequisites (p. 233)

• Set Up an API Deployment Stage with the API Gateway Console (p. 233)

Prerequisites

• You must have a stage available in API Gateway. Follow the instructions in Create a
Stage (p. 232).

Set Up an API Deployment Stage with the API Gateway
Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the stage where you want to specify settings,
choose Stages.

3. In the Stages pane, choose the name of the stage.

4. To enable a cache for the API, on the Settings tab, in the Cache Settings area, select Enable
API cache. Then, for Cache capacity, choose a cache size. You can use the default for other
cache settings. For information on how to set up these, . Finally, choose Save Changes.

Important
By selecting this box, your AWS account may be charged for API caching.

Tip
To override enabled stage-level cache settings, expand the stage under the Stages
secondary navigation pane, choose a method. Then back in the stage editor, choose
Override for this method for Settings. In the ensuing Cache Settings area, clear
Enable Method Cache or customize any other desired options, before choosing Save
Changes. For more information about the method-level and other stage-level cache
settings, see Enable API Caching (p. 236).

5. To generate code to call the API from Android, iOS, or JavaScript, you use the SDK Generation
tab. For more information, see Generate and Use an SDK for an API (p. 254).

6. To enable Amazon CloudWatch Logs for all of the methods associated with this stage of this API
Gateway API, do the following:

233

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Up a Stage

1. On the Settings tab, in the CloudWatch Settings area, select Enable CloudWatch Logs.

Tip
To enable method-level CloudWatch settings, expand the stage under the Stages
secondary navigation pane, choose each method of interest, and, back in the stage
editor, choose Override for this method for Settings. In the ensuing CloudWatch
Settings area, make sure to select Log to CloudWatch Logs and any other desired
options, before choosing Save Changes.

Important
Your account will be charged for accessing method-level CloudWatch metrics, but
not the API- or stage- level metrics.

2. For Log level, choose ERROR to write only error-level entries to CloudWatch Logs, or
choose INFO to include all ERROR events as well as extra informational events. No sensitive
data will be logged unless the Log full requests/responses data option is selected.

3. To write entries to CloudWatch Logs that contain full API call request and response
information, select Log full requests/responses data.

4. Choose Save Changes. The new settings will take effect after a new deployment.

Important
Whether you enable CloudWatch Logs for all or only some of the methods, you must
also specify the ARN of an IAM role that enables API Gateway to write information
to CloudWatch Logs on behalf of your IAM user. To do this, in the secondary
navigation bar, in the first list next to the console home button, choose Settings.
Then type the ARN of the IAM role in the CloudWatch Logging role ARN box. For
common application scenarios, the IAM role could attach the managed policy of
AmazonAPIGatewayPushToCloudWatchLogs, which contains the following access
policy statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:GetLogEvents",
 "logs:FilterLogEvents"
],
 "Resource": "*"
 }
]
}

The IAM role must also contain the following trust relationship statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {

234

Amazon API Gateway Developer Guide
Delete a Stage

 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

To create the IAM role, you can adapt the instructions in "To create the Lambda
invocation role and its policy" and "To create the Lambda execution role and its
policy" in the Create Lambda Functions (p. 44) section of the Build an API to Expose
a Lambda Function (p. 44).
For more information about CloudWatch, see the Amazon CloudWatch User Guide.

7. To enable Amazon CloudWatch metrics for all of the methods associated with this API in API
Gateway, in the Stage Editor pane, on the Settings tab, in the CloudWatch Settings area, select
Enable CloudWatch metrics, and then choose Save Changes. The new settings will take effect
after a new deployment.

Important
By selecting this box, your AWS account may be charged for using CloudWatch.

Tip
To enable CloudWatch metrics for only some methods, clear Enable CloudWatch
metrics. In the Stages pane, choose each of the methods for which you want to enable
CloudWatch metrics. For each method you choose, on the Settings tab for the method,
choose Override for this method, and in the CloudWatch Settings area, select Enable
CloudWatch metrics. Finally, choose Save Changes.

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

8. To set a default throttle limit for all of the methods associated with this API in API Gateway, in the
Stage Editor pane, on the Settings tab, in the Throttle Settings area, do the following, and then
choose Save Changes:

• For Burst Limit, type the absolute maximum number of times API Gateway will allow this
method to be called per second. (The value of Burst Limit must be equal to or greater than the
value of Rate.) The default setting is 1000 request per second.

• For Rate, type the number of times API Gateway will allow this method to be called per second
on average. (The value of Rate must be equal to or less than the value of Burst Limit.) The
default setting is 500 request per second.

Note

• When creating a stage, if not supplied, API Gateway will enforce the default values of
1000 for Burst Limit and 500 for Rate in the stage settings.

• In addition, API Gateway enforces overall account level throttling at the default values
of 1000 for Burst Limitand 500 for Rate. If your require a higher level of throttling on
your account, contact the AWS Support Center to request an increase.

• API Gateway uses the token bucket algorithm, including average rate and burst size,
for both account and method throttling.

9. To change the stage to use a different deployment, in the Stage Editor pane, on the Change
Deployment tab, choose the option button next to the deployment you want the stage to use, and
then choose Change Deployment.

Delete a Stage in API Gateway
Use the API Gateway console to delete a stage in API Gateway.

235

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://console.aws.amazon.com/support/home#/
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket#Average_rate
https://en.wikipedia.org/wiki/Token_bucket#Burst_size

Amazon API Gateway Developer Guide
Manage API Request Throttling

Warning
Deleting a stage may cause part or all of the corresponding API to be unusable by API callers.
Deleting a stage cannot be undone.

Delete a Stage with the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the stage, choose Stages.

3. In the Stages pane, choose the stage you want to delete, and then choose Delete Stage.

4. When prompted, choose Delete.

Manage API Request Throttling
Topics

• Account-Level Throttling (p. 236)

• Stage-Level and Method-Level Throttling (p. 236)

Amazon API Gateway throttles API requests to your API using the token bucket algorithm. For more
information, see token bucket algorithm.

Account-Level Throttling
By default, API Gateway limits the steady-state request rates to 1000 requests per second (rps)
and allows bursts of up to 2000 rps across all APIs, stages, and methods within an AWS account. If
necessary, you can request an increase to your account-level limits. For more information, see API
Gateway Limits (p. 419).

You can view account-level throttling limits in the API Gateway console. The console displays the
default account-level settings before these settings are overridden by any customization. You can also
read the account-level throttling limits by using the API Gateway REST API (p. 418).

Stage-Level and Method-Level Throttling
As an API owner, you can override the account-level request throttling limits for a specific stage or for
individual methods in an API. Actual stage-level and method-level throttling limits are bounded by the
account-level rate limits, even if you set the stage-level or method-level throttling limits greater than the
account-level limits.

You can set the stage-level or method-level throttling limits by using the API Gateway console or
by calling the API Gateway REST API (p. 418). For instructions using the console, see Set Up a
Stage (p. 233).

Enable Amazon API Gateway Caching in a Stage
to Enhance API Performance

Topics

236

https://console.aws.amazon.com/apigateway
https://en.wikipedia.org/wiki/Token_bucket

Amazon API Gateway Developer Guide
API Caching Overview

• Amazon API Gateway Caching Overview (p. 237)

• Enable Amazon API Gateway Caching (p. 237)

• Override API Gateway Stage-Level Caching for Method Caching (p. 238)

• Use Method or Integration Parameters as Cache Keys to Index Cached Responses (p. 239)

• Flush the API Stage Cache in API Gateway (p. 240)

• Invalidate an API Gateway Cache Entry (p. 240)

Amazon API Gateway Caching Overview
You can enable API caching in Amazon API Gateway to cache your endpoint’s response. With
caching, you can reduce the number of calls made to your endpoint and also improve the latency of
the requests to your API. When you enable caching for a stage, API Gateway caches responses from
your endpoint for a specified time-to-live (TTL) period, in seconds. API Gateway then responds to
the request by looking up the endpoint response from the cache instead of making a request to your
endpoint. The default TTL value for API caching is 300 seconds. The maximum TTL value is 3600
seconds. TTL=0 means caching is disabled.

Note
Caching is charged by the hour and is not eligible for the AWS free tier.

Enable Amazon API Gateway Caching
In API Gateway, you can enable caching for all methods for a specified stage. When you enable
caching, you must choose a cache capacity. In general, a larger capacity gives a better performance,
but also costs more.

API Gateway enables caching by creating a dedicated cache instance. This process can take up to 4
minutes.

API Gateway changes caching capacity by removing the existing cache instance and recreating a new
one with a modified capacity. All existing cached data is deleted.

In the API Gateway console, you configure caching in the Settings tab of a named Stage Editor.

1. Go to the API Gateway console.

2. Navigate to the Stage Editor for the stage for which you want to enable caching.

3. Choose Settings.

4. Select Enable API cache.

5. Wait for the cache creation to complete.

Note
Creating or deleting a cache takes about 4 minutes for API Gateway to complete. When
cache is created, the Cache status value changes from CREATE_IN_PROGRESS to
AVAILABLE. When cache deletion is completed, the Cache status value changes from
DELETE_IN_PROGRESS to an empty string.

When you enable caching within a stage's Cache Settings, you enable caching for all methods in that
stage.

237

Amazon API Gateway Developer Guide
Override Stage Caching for Method Caching

If you would like to verify if caching is functioning as expected, you have two general options:

• Inspect the CloudWatch metrics of CacheHitCount and CacheMissCount for your API and stage.

• Put a timestamp in the response.

Note
You should not use the X-Cache header from the CloudFront response to determine if your
API is being served from your API Gateway cache instance.

Override API Gateway Stage-Level Caching for
Method Caching
If you want more granularity in your caching settings, you can override the stage-level caching for
individual methods . This includes disabling caching for a specific method, increasing or decreasing its
TTL period, and turning on or off encryption of the cached response. If you anticipate that a method will
receive sensitive data in its responses, in Cache Settings, choose Encrypt cache data.

238

Amazon API Gateway Developer Guide
Use Method/Integration Parameters as Cache Keys

Use Method or Integration Parameters as Cache
Keys to Index Cached Responses
When a cached method or integration has parameters, which can take the form of custom headers,
URL paths, or query strings, you can use some or all of the parameters to form cache keys. API
Gateway can cache the method's responses, depending on the parameter values used.

For example, suppose you have a request of the following format:

GET /users?type=... HTTP/1.1
host: example.com
...

In this request, type can take a value of admin or regular. If you include the type parameter as part
of the cache key, the responses from GET /users?type=admin will be cached separately from those
from GET /users?type=regular.

When a method or integration request takes more than one parameter, you can choose to include
some or all of the parameters to create the cache key. For example, you can include only the type
parameter in the cache key for the following request, made in the listed order within a TTL period:

GET /users?type=admin&department=A HTTP/1.1

239

Amazon API Gateway Developer Guide
Flush the API Stage Cache in API Gateway

host: example.com
...

The response from this request will be cached and will be used to serve the following request:

GET /users?type=admin&department=B HTTP/1.1
host: example.com
...

To include a method or integration request parameter as part of a cache key in the API Gateway
console, select Caching after you add the parameter.

Flush the API Stage Cache in API Gateway
When API caching is enabled, you can flush your API stage's entire cache to ensure your API's clients
get the most recent responses from your integration endpoints.

To flush the API stage cache, you can choose the Flush Cache button under the Stage tab in the API
Gateway console. Notice that flushing the cache will cause the responses to ensuing requests to be
serviced from the back end until the cache is build up again. During this period, the number of requests
sent to the integration endpoint may increase. That may affect the overall latency of your API.

Invalidate an API Gateway Cache Entry
A client of your API can invalidate an existing cache entry and reloads it from the integration endpoint
for individual requests. The client must send a request that contains the Cache-Control: max-
age=0 header. The client receives the response directly from the integration endpoint instead of the
cache, provided that the user is authorized to do so. This replaces the existing cache entry with the
new response, which is fetched from the integration endpoint.

To grant permission for a caller, attach a policy of the following format to an IAM execution role for the
user.

240

Amazon API Gateway Developer Guide
Invalidate an API Gateway Cache Entry

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:InvalidateCache"
],
 "Resource": [
 "arn:aws:execute-api:region:account-id:api-id/stage-name/HTTP-
VERB/resource-path-specifier"
]
 }
]
}

This policy allows the API Gateway execution service to invalidate cache for requests on the specified
resource (or resources). To specify a group of targeted resources, use a wildcard (*) character for
account-id, api-id, and other entries in the ARN value of Resource. For more information on how
to set permissions for the API Gateway execution service, see Use IAM Permissions (p. 160)

If you do not impose an InvalidateCache policy, any client can invalidate the API cache. If all or
most of the clients invalidate the API cache, there could be significant latency impact on your API.

When the policy is in place, caching is enabled, and authorization is required, you can control how
unauthorized requests are handled by choosing an option from Handle unauthorized requests in the
API Gateway console.

The three options result in the following behaviors:

241

Amazon API Gateway Developer Guide
Manage API Deployment with Stage Variables

• Fail the request with 403 status code: returns a 403 Unauthorized response.

To set this option using the API, use FAIL_WITH_403.

• Ignore cache control header; Add a warning in response header: process the request and add a
warning header in the response.

To set this option using the API, use SUCCEED_WITH_RESPONSE_HEADER.

• Ignore cache control header: process the request and do not add a warning header in the
response.

To set this option using the API, use SUCCEED_WITHOUT_RESPONSE_HEADER.

Manage API Gateway API Deployment with Stage
Variables

Stage variables are name-value pairs that you can define as configuration attributes associated with
a deployment stage of an API. They act like environment variables and can be used in your API setup
and mapping templates.

For example, you can define a stage variable in a stage configuration, and then set its value as
the URL string of an HTTP integration for a method in your API. Later, you can reference the URL
string using the associated stage variable name from the API setup. This way, you can use the
same API setup with a different endpoint at each stage by resetting the stage variable value to
the corresponding URLs. You can also access stage variables in the mapping templates, or pass
configuration parameters to your AWS Lambda or HTTP back end.

For more information about mapping templates, see Request and Response Payload-Mapping
Reference (p. 134).

Use Cases
With deployment stages in API Gateway, you can manage multiple release stages for each API,
such as alpha, beta, and production. Using stage variables you can configure an API deployment
stage to interact with different back-end endpoints. For example, your API can pass a GET request
as an HTTP proxy to the back-end web host (for example, http://example.com). In this case, the
back-end web host is configured in a stage variable so that when developers call your production
endpoint, API Gateway calls example.com. When you call your beta endpoint, API Gateway uses the
value configured in the stage variable for the beta stage, and calls a different web host (for example,
beta.example.com). Similarly, stage variables can be used to specify a different AWS Lambda
function name for each stage in your API.

You can also use stage variables to pass configuration parameters to a Lambda function through
your mapping templates. For example, you may want to re-use the same Lambda function for multiple
stages in your API, but the function should read data from a different Amazon DynamoDB table
depending on which stage is being called. In the mapping templates that generate the request for the
Lambda function, you can use stage variables to pass the table name to Lambda.

Examples
To use a stage variable to customize the HTTP integration endpoint, you must first configure a stage
variable of a specified name, e.g., url, and then assign it a value, e.g., example.com. Next, from your
method configuration, set up an HTTP proxy integration, and instead of entering the endpoint's URL,

242

Amazon API Gateway Developer Guide
Set Stage Variables

you can tell API Gateway to use the stage variable value, http://${stageVariables.url}. This
value tells API Gateway to substitute your stage variable ${} at runtime, depending on which stage
your API is running. You can reference stage variables in a similar way to specify a Lambda function
name, an AWS Service Proxy path, or an AWS role ARN in the credentials field.

When specifying a Lambda function name as a stage variable value, you must configure the
permissions on the Lambda function manually. You can use the AWS Command Line Interface to do
this.

aws lambda add-permission --function-name arn:aws:lambda:XXXXXX:your-
lambda-function-name --source-arn arn:aws:execute-api:us-
east-1:YOUR_ACCOUNT_ID:api_id/*/HTTP_METHOD/resource --principal
 apigateway.amazonaws.com --statement-id apigateway-access --action
 lambda:InvokeFunction

The following example assigns API Gateway permission to invoke a Lambda function named
helloWorld hosted in the US West (Oregon) region of an AWS account on behalf of the API method.

arn arn:aws:execute-api:us-west-2:123123123123:bmmuvptwze/*/GET/hello

Here is the same command using the AWS CLI.

aws lambda add-permission --function-name arn:aws:lambda:us-
east-1:123123123123:function:helloWorld --source-arn arn:aws:execute-
api:us-west-2:123123123123:bmmuvptwze/*/GET/hello --principal
 apigateway.amazonaws.com --statement-id apigateway-access --action
 lambda:InvokeFunction

Set Stage Variables Using the Amazon API
Gateway Console
In this tutorial, you will learn how to set stage variables for two deployment stages of a sample API,
using the Amazon API Gateway console.

Prerequisites

1. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 70).

2. You must have deployed the API at least once. Follow the instructions in Deploying an
API (p. 230).

3. You must have created the first stage for a deployed API. Follow the instructions in Create a
Stage (p. 232).

To Declare Stage Variables Using the API Gateway Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Create an API, create a GET method on the API's root resource, if you have not already done so.
Set the HTTP Endpoint URL value as "http://${stageVariables.url}", and then choose
Save.

243

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Stage Variables

3. Choose Deploy API. Choose New Stage and enter "beta" for Stage name. Choose Deploy.

4. In the beta Stage Editor panel; choose the Stage Variables tab; and then choose Add Stage
Variable.

5. Enter the "url" string in the Name field and the "httpbin.org/get" in the Value field. Choose
the checkmark icon to save the setting for the stage variable.

244

Amazon API Gateway Developer Guide
Set Stage Variables

6. Repeat the above step to add two more stage variables: version and function. Set their values
as "v-beta" and "HelloWorld", respectively.

Note
When setting a Lambda function as the value of a stage variable, use the function's
local name, possibly including its alias or version specification, as in HelloWorld,
HelloWorld:1 or HelloWorld:alpha. Do not use the function's ARN (for example,
arn:aws:lambda:us-east-1:123456789012:function:HelloWorld). The
API Gateway console assumes the stage variable value for a Lambda function as the
unqualified function name and will expand the given stage variable into an ARN.

7. From the Stages navigation pane, choose Create. For Stage name, type prod. Select a recent
deployment from Deployment and then choose Create.

245

Amazon API Gateway Developer Guide
Use Stage Variables

8. As with the beta stage, set the same three stage variables (url, version, and function) to different
values ("petstore-demo-endpoint.execute-api.com/petstore/pets", "v-prod", and
"HelloEveryone"), respectively.

Use Amazon API Gateway Stage Variables
You can use API Gateway stage variables to access the HTTP and Lambda back ends for different
API deployment stages and to pass stage-specific configuration metadata into an HTTP back end as a
query parameter and into a Lambda function as a payload generated in an input mapping template.

Prerequisites

You must create two stages with a url variable set to two different HTTP endpoints: a function
stage variable assigned to two different Lambda functions, and a version stage variable containing
stage-specific metadata. Follow the instructions in Set Stage Variables Using the Amazon API
Gateway Console (p. 243).

Access an HTTP endpoint through an API with a stage variable

1. In the Stages navigation pane, choose beta. In beta Stage Editor, choose the Invoke URL link.
This starts the beta stage GET request on the root resource of the API.

246

Amazon API Gateway Developer Guide
Use Stage Variables

Note
The Invoke URL link points to the root resource of the API in its beta stage. Navigating
to the URL by choosing the link calls the beta stage GET method on the root resource.
If methods are defined on child resources and not on the root resource itself, choosing
the Invoke URL link will return a {"message":"Missing Authentication Token"}
error response. In this case, you must append the name of a specific child resource to the
Invoke URL link.

2. The response you get from the beta stage GET request is shown next. You can also verify the
result by using a browser to navigate to http://httpbin.org/get. This value was assigned to the
url variable in the beta stage. The two responses are identical.

3. In the Stages navigation pane, choose the prod stage. From prod Stage Editor , choose the
Invoke URL link. This starts the prod stage GET request on the root resource of the API.

247

Amazon API Gateway Developer Guide
Use Stage Variables

4. The response you get from the prod stage GET request is shown next. You can verify the result by
using a browser to navigate to http://petstore-demo-endpoint-execute-api.com/petstore/pets.
This value was assigned to the url variable in the prod stage. The two responses are identical.

Pass stage-specific metadata to an HTTP back end via a stage
variable in a query parameter expression

This procedure describes how to use a stage variable value in a query parameter expression to pass
stage-specific metadata into an HTTP back end. We will use the version stage variable declared in
Set Stage Variables Using the Amazon API Gateway Console (p. 243).

1. In the Resource navigation pane, choose the GET method. To add a query string parameter
to the method's URL, in Method Execution, choose Method Request . Type version for the
parameter name.

248

Amazon API Gateway Developer Guide
Use Stage Variables

2. In Method Execution choose Integration Request. Edit the Endpoint URL value to append ?
version=${stageVariables.version} to the previously defined URL value, which, in this
case, is also expressed with the url stage variable. Choose Deploy API to deploy these changes.

3. In the Stages navigation pane, choose the beta stage. From beta Stage Editor, verify that the
current stage is in the most recent deployment, and then choose the Invoke URL link.

Note
We use the beta stage here because the HTTP endpoint, as specified by the url
variable, "http://httpbin.org/get", accepts query parameter expressions and returns them
as the args object in its response.

249

Amazon API Gateway Developer Guide
Use Stage Variables

4. The response is shown next. Notice that v-beta, assigned to the version stage variable, is
passed in the back end as the version argument.

Call Lambda function through API with a stage variable

This procedure describes how to use a stage variable to call a Lambda function as a back end of your
API. We will use the function stage variable declared earlier. For more information, see Set Stage
Variables Using the Amazon API Gateway Console (p. 243).

1. In the Resources pane, create a /lambdasv1 child resource under the root directory, and then
create a GET method on the child resource. Set the Integration type to Lambda Function, and in
Lambda Function, type ${stageVariables.function} . Choose Save.

Tip
When prompted with Add Permision to Lambda Function, make a note of the AWS CLI
command before choosing OK. You must run the command on each Lambda function

250

Amazon API Gateway Developer Guide
Use Stage Variables

that is or will be assigned to the function stage variable for each of the newly created
API methods. For example, if the $stageVariables.function value is HelloWorld
and you have not added permission to this function yet, you must run the following AWS
CLI command:

aws lambda add-permission --function-name arn:aws:lambda:us-
east-1:account-id:function:HelloWorld --source-arn arn:aws:execute-
api:us-east-1:account-id:api-id/*/GET/lambdasv1 --principal
 apigateway.amazonaws.com --statement-id statement-id-guid --action
 lambda:InvokeFunction

Failing to do so results in a 500 Internal Server Error response when invoking
the method. Make sure to replace ${stageVariables.function} with the Lambda
function name that is assigned to the stage variable.

2. Deploy the API to available stages.

3. In the Stages navigation pane, choose the beta stage. Verify that your most recent deployment
is in beta Stage Editor. Copy the Invoke URL link, paste it into the address bar of your browser,
and append /lambdasv1 to that URL. This calls the underlying Lambda function through the GET
method on the LambdaSv1 child resource of the API.

Note
Your HelloWorld Lambda function implements the following code.

exports.handler = function(event, context) {
 if (event.version)
 context.succeed('Hello, World! (' + event.version + ')');
 else
 context.succeed("Hello, world! (v-unknown)");
};

This implementation results in the following response.

"Hello, world! (v-unknown)"

Pass stage-specific metadata to a Lambda function via a stage
variable

This procedure describes how to use a stage variable to pass stage-specific configuration metadata
into a Lambda function. We will use a POST method and an input mapping template to generate
payload using the version stage variable declared earlier.

251

Amazon API Gateway Developer Guide
Use Stage Variables

1. In the Resources pane, choose the /lambdasv1 child resource. Create a POST
method on the child resource, set the Integration type to Lambda Function, and type
${stageVariables.function} in Lambda Function. Choose Save.

Tip
This step is similar to the step we used to create the GET method. For more information,
see Call Lambda function through API with a stage variable (p. 250).

2. From the /Method Execution pane, choose Integration Request. In the Integration Request
pane, expand Mapping Templates, and then choose Add mapping template to add a template
for the application/json content-type, as shown in the following.

Note
In a mapping template, a stage variable must be referenced within quotes (as
in "$stageVariables.version" or "${stageVariables.version}"),
whereas elsewhere it must be referenced without quotes (as in
${stageVariables.function}).

3. Deploy the API to available stages.

4. In the Stages navigation pane, choose beta. In beta Stage Editor , verify that the current stage
has the most recent deployment. Copy the Invoke URL link, paste it into the URL input field of
a REST API client, append /lambdasv1 to that URL, and then submit a POST request to the
underlying Lambda function.

Note
You will get the following response.

"Hello, world! (v-beta)"

To summarize, we have demonstrated how to use API Gateway stage variables to target different
HTTP and Lambda back ends for different stages of API deployment. In addition, we also showed
how to use the stage variables to pass stage-specific configuration data into HTTP and Lambda back
ends. Together, these procedures demonstrate the versatility of the API Gateway stage variables in
managing API development.

252

Amazon API Gateway Developer Guide
Stage Variables Reference

Amazon API Gateway Stage Variables Reference
You can use API Gateway stage variables in the following cases.

Parameter Mapping Expressions

A stage variable can be used in a parameter mapping expression for an API method's request or
response header parameter, without any partial substitution. In the following example, the stage
variable is referenced without the $ and the enclosing {...}.

• stageVariables.<variable_name>

Mapping Templates

A stage variable can be used anywhere in a mapping template, as shown in the following examples.

• { "name" : "$stageVariables.<variable_name>"}

• { "name" : "${stageVariables.<variable_name>}"}

HTTP Integration URIs

A stage variable can be used as part of an HTTP integration URL, as shown in the following examples.

• A full URI without protocol, e.g., http://${stageVariables.<variable_name>}

• A full domain: e.g., http://${stageVariables.<variable_name>}/resource/operation

• A subdomain: e.g., http://${stageVariables.<variable_name>}.example.com/
resource/operation

• A path, e.g., http://example.com/${stageVariables.<variable_name>}/bar

• A query string, e.g., http://example.com/foo?q=${stageVariables.<variable_name>}

AWS Integration URIs

A stage variable can be used as part of AWS URI action or path components, as shown in the following
example.

• arn:aws:apigateway:<region>:<service>:${stageVariables.<variable_name>}

AWS Integration URIs (Lambda Functions)

A stage variable can be used in place of a Lambda function name, or version/alias, as shown in the
following examples.

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/
functions/arn:aws:lambda::<account_id>:function:
${stageVariables.<function_variable_name>}/invocations

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/functions/
arn:aws:lambda::<account_id>:function:<function_name>:
${stageVariables.<version_variable_name>}/invocations

253

Amazon API Gateway Developer Guide
Generate and Use an SDK for an API

AWS Integration Credentials

A stage variable can be used as part of AWS user/role credential ARN, as shown in the following
example.

• arn:aws:iam::<account_id>:${stageVariables.<variable_name>}

Generate and Use an SDK for an API in API
Gateway

To call your API in a platform- and language-specific fashion, you must generate a platform- and
language-specific SDK for the API. Currently, API Gateway supports generating SDK for an API,
deployed to a specific stage, in JavaScript, in Java for Android, and in Objective-C or Swift for iOS.

This section explains how to generate an SDK for an API Gateway API and demonstrates how to use
the generated SDK in platform/language-specific apps.

To facilitate the discussions, we will reference this API Gateway API (p. 257) that exposes this
Simple Calculator (p. 255) Lambda function.

Before proceeding further, make sure you have created or imported the API and deployed it at least
once in API Gateway. For the instructions, see Deploying an API (p. 230).

Topics

• Use the API Gateway Console to Generate the SDKs of an API (p. 254)

• Use an Android SDK generated by API Gateway (p. 266)

• Use iOS SDK Generated by API Gateway in Objective-C or Swift (p. 268)

• Use a JavaScript SDK Generated by API Gateway (p. 278)

Use the API Gateway Console to Generate the
SDKs of an API
To generate a platform/language-specific SDK of an API in API Gateway, you must have created the
API, tested it, and deployed it in a stage. If you update an API, the generated SDK does not include the
updates unless the API is redeployed.

To generate the SDKs of an API in API Gateway

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the stage, choose Stages.

3. In the Stages pane, choose the name of the stage.

4. On the SDK Generation tab, for Platform, choose the platform.

a. For Android, specify the following:

• For Group ID, type the unique identifier for the corresponding project. This is used in the
pom.xml file (for example, com.mycompany).

• For Invoker package, type the namespace for the generated client classes (for example,
com.mycompany.clientsdk).

• For Artifact ID, type the name of the compiled .jar file without the version. This is used in
the pom.xml file (for example, aws-apigateway-api-sdk).

254

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

• For Artifact version, type the artifact version number for the generated client. This is used
in the pom.xml file and should follow a major.minor.patch pattern (for example, 1.0.0).

b. For iOS (Objective-C) or iOS (Swift), type a unique prefix in the Prefix box. The effect of
prefix is as follows: if you assign, for example, SIMPLE_CALC as the prefix for the SDK of
the SimpleCalc (p. 257) API with Input, Output, and Result models, the generated
SDK will contain the SIMPLE_CALCSimpleCalcClient class that encapsulates the API,
including the method requests/responses. In addition, the generated SDK will contain the
SIMPLE_CALCInput, SIMPLE_CALCOutput, and SIMPLE_CALCResult classes to represent
the input, output, and results, respectively, to represent the request input and response
output. For more information, see Use iOS SDK Generated by API Gateway in Objective-C or
Swift (p. 268).

5. Choose Generate SDK, and then follow the on-screen directions to download the SDK generated
by API Gateway.

6. Do one of the following:

• If you chose Android for Platform, follow the instructions in Use an Android SDK generated by
API Gateway (p. 266).

• If you chose iOS for Platform, follow the instructions in Use iOS SDK Generated by API
Gateway in Objective-C or Swift (p. 268).

• If you chose JavaScript for Platform, follow the instructions in Use a JavaScript SDK
Generated by API Gateway (p. 278).

Next, we show how to use the generated SDK to call the underlying API. To put the discussions in
context, we will make reference the following example API and its SDKs.

Topics

• Simple Calculator Lambda Function (p. 255)

• Simple Calculator API in API Gateway (p. 257)

• Simple Calculator API Swagger Definition (p. 261)

Simple Calculator Lambda Function

As an illustration, we will use a Node.js Lambda function that performs the binary operations of
addition, subtraction, multiplication and division.

Topics

• Simple Calculator Lambda Function Input Format (p. 255)

• Simple Calculator Lambda Function Output Format (p. 255)

• Simple Calculator Lambda Function Implementation (p. 256)

• Create the Simple Calculator Lambda Function (p. 256)

Simple Calculator Lambda Function Input Format

This function takes an input of the following format:

{ "a": "Number", "b": "Number", "op": "string"}

where op can be any of (+, -, *, /, add, sub, mul, div).

Simple Calculator Lambda Function Output Format

When an operation succeeds, it returns the result of the following format:

255

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

{ "a": "Number", "b": "Number", "op": "string", "c": "Number"}

where c holds the result of the calculation.

Simple Calculator Lambda Function Implementation

The implementation of the Lambda function is as follows:

console.log('Loading the Calc function');

exports.handler = function(event, context) {
 console.log('Received event:', JSON.stringify(event, null, 2));
 if (event.a === undefined || event.b === undefined || event.op ===
 undefined) {
 context.fail("400 Invalid Input");
 }

 var res = {};
 res.a = Number(event.a);
 res.b = Number(event.b);
 res.op = event.op;

 if (isNaN(event.a) || isNaN(event.b)) {
 context.fail("400 Invalid Operand");
 }

 switch(event.op)
 {
 case "+":
 case "add":
 res.c = res.a + res.b;
 break;
 case "-":
 case "sub":
 res.c = res.a - res.b;
 break;
 case "*":
 case "mul":
 res.c = res.a * res.b;
 break;
 case "/":
 case "div":
 res.c = res.b===0 ? NaN : Number(event.a) / Number(event.b);
 break;
 default:
 context.fail("400 Invalid Operator");
 break;
 }
 context.succeed(res);
};

Create the Simple Calculator Lambda Function

You can use the AWS Lambda console at https://console.aws.amazon.com/lambda/ to create the
function, pasting the above code listing into the online code editor as follows.

256

https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

Simple Calculator API in API Gateway
Our simple calculator API exposes three methods (GET, POST, GET) to invoke the Simple Calculator
Lambda Function (p. 255) (Calc). A graphical representation of this API is shown as follows:

These three methods show different ways to supply the input for the back-end Lambda function to
perform the same operation:

• The GET /?a=...&b=...&op=... method uses the query parameters to specify the input.

• The POST /? method uses a JSON payload of {"a":"Number", "b":"Number",
"op":"string"} to specify the input.

257

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

• The GET /{a}/{b}/{op} method uses the path parameters to specify the input.

Before showing how to call these methods using an SDK generated by API Gateway for this API, let's
recall briefly how to set them up. For detailed instructions, see Creating an API (p. 70). If you're new to
API Gateway, see Getting Started (p. 4) first.

Create Models for Input and Output

To specify strongly typed input in the SDK, we create an Input model for the API:

Similarly, to describe the response body data type, we create the following models in the API Gateway:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "c": {"type":"number"}
 },
 "title": "Output"
}

and

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type":"object",

258

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

 "properties":{
 "input":{
 "$ref":"https://apigateway.amazonaws.com/restapis/t7dve4zn36/
models/Input"
 },
 "output":{
 "$ref":"https://apigateway.amazonaws.com/restapis/t7dve4zn36/
models/Output"
 }
 },
 "title":"Result"
}

Set Up GET / Method Query Parameters

For the GET /?a=..&b=..&op=.. method, the query parameters are declared in Method Request:

Set Up Data Model for the Payload as Input to the Back End

For the POST / method, we create the Input model and add it to the method request to define the
shape of input data.

259

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

With this model, your API customers can parse a successful output by reading properties of a Result
object. Without this model, customers would be required to create dictionary object to represent the
JSON output.

Set Up Data Model for the Result Output from the Back End

For all three methods, we create the Result model and add it to the method's Method Response to
define the shape of output returned by the Lambda function.

260

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

With this model, your API customers can call the SDK to specify the input by instantiating an Input
object. Without this model, your customers would be required to create dictionary object to represent
the JSON input to the Lambda function.

In addition, you can also create and set up the API following the Swagger API definitions (p. 261).

Simple Calculator API Swagger Definition
The following is the Swagger definition of the simple calculator API. You can import it into
your account. However, you need to reset the resource-based permissions on the Lambda
function (p. 255) after the import. To do so, re-select the Lambda function that you created in your
account from the Integration Request in the API Gateway console. This will cause the API Gateway
console to reset the required permissions. Alternatively, you can use AWS Command Line Interface for
Lambda command of add-permission.

{
 "swagger": "2.0",
 "info": {
 "version": "2016-09-29T20:27:30Z",
 "title": "SimpleCalc"
 },
 "host": "t6dve4zn25.execute-api.us-west-2.amazonaws.com",
 "basePath": "/demo",
 "schemes": [
 "https"
],
 "paths": {
 "/": {
 "get": {
 "consumes": [

261

http://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "op",
 "in": "query",
 "required": false,
 "type": "string"
 },
 {
 "name": "a",
 "in": "query",
 "required": false,
 "type": "string"
 },
 {
 "name": "b",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Result"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "requestTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"a\" : $input.params('a'),\n \"b\" : $input.params('b'),\n \"op\" :
 \"$input.params('op')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "passthroughBehavior": "when_no_templates",
 "httpMethod": "POST",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n
 \"op\" : \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c
\n }\n}"
 }
 }
 },
 "type": "aws"
 }
 },
 "post": {
 "consumes": [

262

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "in": "body",
 "name": "Input",
 "required": true,
 "schema": {
 "$ref": "#/definitions/Input"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Result"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n
 \"op\" : \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c
\n }\n}"
 }
 }
 },
 "type": "aws"
 }
 }
 },
 "/{a}": {
 "x-amazon-apigateway-any-method": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "a",
 "in": "path",
 "required": true,
 "type": "string"
 }
],

263

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

 "responses": {
 "404": {
 "description": "404 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "requestTemplates": {
 "application/json": "{\"statusCode\": 200}"
 },
 "passthroughBehavior": "when_no_match",
 "responses": {
 "default": {
 "statusCode": "404",
 "responseTemplates": {
 "application/json": "{ \"Message\" : \"Can't
 $context.httpMethod $context.resourcePath\" }"
 }
 }
 },
 "type": "mock"
 }
 }
 },
 "/{a}/{b}": {
 "x-amazon-apigateway-any-method": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "a",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "b",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "404": {
 "description": "404 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "requestTemplates": {
 "application/json": "{\"statusCode\": 200}"
 },
 "passthroughBehavior": "when_no_match",
 "responses": {
 "default": {
 "statusCode": "404",
 "responseTemplates": {

264

Amazon API Gateway Developer Guide
Use the API Gateway Console

to Generate the SDKs of an API

 "application/json": "{ \"Message\" : \"Can't
 $context.httpMethod $context.resourcePath\" }"
 }
 }
 },
 "type": "mock"
 }
 }
 },
 "/{a}/{b}/{op}": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "a",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "b",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "op",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Result"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "requestTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"a\" : $input.params('a'),\n \"b\" : $input.params('b'),\n \"op\" :
 \"$input.params('op')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "passthroughBehavior": "when_no_templates",
 "httpMethod": "POST",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {

265

Amazon API Gateway Developer Guide
Use an Android SDK generated by API Gateway

 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n
 \"op\" : \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c
\n }\n}"
 }
 }
 },
 "type": "aws"
 }
 }
 }
 },
 "definitions": {
 "Input": {
 "type": "object",
 "properties": {
 "a": {
 "type": "number"
 },
 "b": {
 "type": "number"
 },
 "op": {
 "type": "string"
 }
 },
 "title": "Input"
 },
 "Output": {
 "type": "object",
 "properties": {
 "c": {
 "type": "number"
 }
 },
 "title": "Output"
 },
 "Result": {
 "type": "object",
 "properties": {
 "input": {
 "$ref": "#/definitions/Input"
 },
 "output": {
 "$ref": "#/definitions/Output"
 }
 },
 "title": "Result"
 }
 }
}

Use an Android SDK generated by API Gateway
In this section, we will outline the steps to use an Android SDK generated by API Gateway of an
API. Before proceeding further, you must have already completed the steps in Use the API Gateway
Console to Generate the SDKs of an API (p. 254).

266

Amazon API Gateway Developer Guide
Use an Android SDK generated by API Gateway

To install and use an Android SDK Generated by API Gateway

1. Extract the contents of the API Gateway-generated .zip file that you downloaded earlier.

2. Download and install Apache Maven (preferably version 3.x).

3. Download and install the JDK (preferably version 1.7 or later).

4. Set the JAVA_HOME environment variable.

5. Run the mvn install command to install the compiled artifact files to your local Maven repository.
This creates a target folder containing the compiled SDK library.

6. Copy the SDK file (the name of which is derived from the Artifact Id and Artifact Version you
specified when generating the SDK, e.g., simple-calcsdk-1.0.0.jar) from the target folder,
along with all of the other libraries from the target/lib folder, into your project's lib folder.

If you use Andriod Studio, create a libs folder under your client app module and copy the
required .jar file into this folder. Verify that the dependencies section in the module's gradle file
contains the following.

 compile fileTree(include: ['*.jar'], dir: 'libs')
 compile fileTree(include: ['*.jar'], dir: 'app/libs')

Make sure no duplicated .jar files are declared.

7. Use the ApiClientFactory class to initialize the API Gateway-generated SDK. For example:

ApiClientFactory factory = new ApiClientFactory();

// Create an instance of your SDK.
final MyApiClient client = factory.build(MyApiClient.class);

// Invoke a method:
// If the API exposes a 'GET /?a=1&b=2&op=+' method, you can call the
 following SDK method:
//
Result output = client.rootGet("1", "2", "+");

// where Result is the SDK class of the like-named API model.
//
// If the API exposes a 'GET /{a}/{b}/{op}' method, you can call the
 following SDK method to invoke the request,

Result.output = client.aBOpGet(a, b, c);

// where a, b, c can be "1", "2", "add", respectively.

// You can call the following SDK methods invoke this POST API method:
// POST /
// host: ...
// Content-Type: application/json
//
// { "a": 1, "b": 2, "op": "+" }
Input body = new Input();
input.a=1;
input.b=2;
input.op="+";
Result output = client.rootPost(body);

// Parse the result:

267

https://maven.apache.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

// If the 'Result' object is { "a": 1, "b": 2, "op": "add", "c":3"},
 you retrieve the result 'c') as

String result=output.c;

8. To use an Amazon Cognito credentials provider to authorize calls to your API, use the
ApiClientFactory class to pass a set of AWS credentials by using the SDK generated by API
Gateway, as shown in the following example.

// Use CognitoCachingCredentialsProvider to provide AWS credentials
// for the ApiClientFactory
AWSCredentialsProvider credentialsProvider = new
 CognitoCachingCredentialsProvider(
 context, // activity context
 "identityPoolId", // Cognito identity pool id
 Regions.US_EAST_1 // region of Cognito identity pool
};

ApiClientFactory factory = new ApiClientFactory()
 .credentialsProvider(credentialsProvider);

9. To set an API key by using the API Gateway- generated SDK, use code similar to the following.

ApiClientFactory factory = new ApiClientFactory()
 .apiKey("YOUR_API_KEY");

Use iOS SDK Generated by API Gateway in
Objective-C or Swift
In this tutorial, we will show how to use an iOS SDK generated by API Gateway in an Objective-C
or Swift app to call the underlying API. We will use the SimpleCalc API (p. 257) as an example to
illustrate the following topics:

• How to install the required AWS Mobile SDK components into your Xcode project

• How to create the API client object before calling the API's methods

• How to call the API methods through the corresponding SDK methods on the API client object

• How to prepare a method input and parse its result using the corresponding model classes of the
SDK

Topics

• Use an iOS SDK generated by API Gateway in an Objective-C App (p. 269)

• Use an iOS SDK generated by API Gateway in a Swift App (p. 273)

268

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

Use an iOS SDK generated by API Gateway in an Objective-C
App

Before beginning the following procedure, you must complete the steps in Use the API Gateway
Console to Generate the SDKs of an API (p. 254) for iOS in Objective-C and download the .zip file of
the generated SDK.

Install the AWS Mobile SDK and an iOS SDK generated by API Gateway in an
Objective-C Project

The following procedure describes how to install the SDK.

To install and use an iOS SDK generated by API Gateway in Objective-C

1. Extract the contents of the API Gateway-generated .zip file you downloaded earlier. Using the
SimpleCalc API (p. 257), you may want to rename the unzipped SDK folder to something like
sdk_objc_simple_calc. In this SDK folder there is a README.md file and a Podfile file. The
README.md file contains the instructions to install and use the SDK. This tutorial provides details
about these instructions. The installation leverages CocoaPods to import required API Gateway
libraries and other dependent AWS Mobile SDK components. You must update the Podfile
to import the SDKs into your app's XCode project. The unarchived SDK folder also contains a
generated-src folder that contains the source code of the generated SDK of your API.

2. Launch Xcode and create a new iOS Objective-C project. Make a note of the project's target. You
will need to set it in the Podfile.

3. To import the AWS Mobile SDK for iOS into the Xcode project by using CocoaPods, do the
following:

1. Install CocoaPods by running the following command in a terminal window:

sudo gem install cocoapods
pod setup

2. Copy the Podfile file from the extracted SDK folder into the same directory containing your
Xcode project file. Replace the following block:

target '<YourXCodeTarget>' do
 pod 'AWSAPIGateway', '~> 2.4.7'
end

with your project's target name:

269

https://cocoapods.org

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

target 'app_objc_simple_calc' do
 pod 'AWSAPIGateway', '~> 2.4.7'
end

If your Xcode project already contains a file named Podfile, add the following line of code to
it:

pod 'AWSAPIGateway', '~> 2.4.7'

3. Open a terminal window and run the following command:

pod install

This installs the API Gateway component and other dependent AWS Mobile SDK
components.

4. Close the Xcode project and then open the .xcworkspace file to relaunch Xcode.

5. Add all of the .h and .m files from the extracted SDK's generated-src directory into your
Xcode project.

To import the AWS Mobile SDK for iOS Objective-C into your project by explicitly downloading
AWS Mobile SDK or using Carthage, follow the instructions in the README.md file. Be sure to
use only one of these options to import the AWS Mobile SDK.

270

https://github.com/Carthage/Carthage#installing-carthage

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

Call API Methods Using the iOS SDK generated by API Gateway in an
Objective-C Project

When you generated the SDK with the prefix of SIMPLE_CALC for this SimpleCalc API (p. 257)
with two models for input (Input) and output (Result) of the methods, in the SDK, the resulting API
client class becomes SIMPLE_CALCSimpleCalcClient and the corresponding data classes are
SIMPLE_CALCInput and SIMPLE_CALCResult, respectively. The API requests and responses are
mapped to the SDK methods as follows:

• The API request of

GET /?a=...&b=...&op=...

becomes the SDK method of

(AWSTask *)rootGet:(NSString *)op a:(NSString *)a b:(NSString *)b

The AWSTask.result property is of the SIMPLE_CALCResult type if the Result model was
added to the method response. Otherwise, the property is of the NSDictionary type.

• This API request of

POST /

{
 "a": "Number",
 "b": "Number",
 "op": "String"
}

becomes the SDK method of

(AWSTask *)rootPost:(SIMPLE_CALCInput *)body

• The API request of

GET /{a}/{b}/{op}

becomes the SDK method of

(AWSTask *)aBOpGet:(NSString *)a b:(NSString *)b op:(NSString *)op

The following procedure describes how to call the API methods in Objective-C app source code; for
example, as part of the viewDidLoad delegate in a ViewController.m file.

To call the API through the iOS SDK generated by API Gateway

1. Import the API client class header file to make the API client class callable in the app:

#import "SIMPLE_CALCSimpleCalc.h"

The #import statement also imports SIMPLE_CALCInput.h and SIMPLE_CALCResult.h for
the two model classes.

271

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

2. Instantiate the API client class:

SIMPLE_CALCSimpleCalcClient *apiInstance = [SIMPLE_CALCSimpleCalcClient
 defaultClient];

To use Amazon Cognito with the API, set the defaultServiceConfiguration property
on the default AWSServiceManager object, as shown in the following, before calling the
defaultClient method to create the API client object (shown in the preceding example):

AWSCognitoCredentialsProvider *creds = [[AWSCognitoCredentialsProvider
 alloc] initWithRegionType:AWSRegionUSEast1
 identityPoolId:your_cognito_pool_id];
AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc]
 initWithRegion:AWSRegionUSEast1 credentialsProvider:creds];
AWSServiceManager.defaultServiceManager.defaultServiceConfiguration =
 configuration;

3. Call the GET /?a=1&b=2&op=+ method to perform 1+2:

[[apiInstance rootGet: @"+" a:@"1" b:@"2"] continueWithBlock:^id
 _Nullable(AWSTask * _Nonnull task) {
 _textField1.text = [self handleApiResponse:task];
 return nil;
}];

where the helper function handleApiResponse:task formats the result as a string to be
displayed in a text field (_textField1).

- (NSString *)handleApiResponse:(AWSTask *)task {
 if (task.error != nil) {
 return [NSString stringWithFormat: @"Error: %@",
 task.error.description];
 } else if (task.result != nil && [task.result isKindOfClass:
[SIMPLE_CALCResult class]]) {
 return [NSString stringWithFormat:@"%@ %@ %@ = %@
\n",task.result.input.a, task.result.input.op, task.result.input.b,
 task.result.output.c];
 }
 return nil;
}

The resulting display is 1 + 2 = 3.

4. Call the POST / with a payload to perform 1-2:

SIMPLE_CALCInput *input = [[SIMPLE_CALCInput alloc] init];
 input.a = [NSNumber numberWithInt:1];
 input.b = [NSNumber numberWithInt:2];
 input.op = @"-";
 [[apiInstance rootPost:input] continueWithBlock:^id _Nullable(AWSTask
 * _Nonnull task) {
 _textField2.text = [self handleApiResponse:task];
 return nil;
 }];

The resulting display is 1 - 2 = -1.

272

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

5. Call the GET /{a}/{b}/{op} to perform 1/2:

[[apiInstance aBOpGet:@"1" b:@"2" op:@"div"] continueWithBlock:^id
 _Nullable(AWSTask * _Nonnull task) {
 _textField3.text = [self handleApiResponse:task];
 return nil;
}];

The resulting display is 1 div 2 = 0.5. Here, div is used in place of / because the simple
Lambda function (p. 255) in the back end does not handle URL encoded path variables.

Use an iOS SDK generated by API Gateway in a Swift App

Before beginning the following procedure, you must complete the steps in Use the API Gateway
Console to Generate the SDKs of an API (p. 254) for iOS in Swift and download the .zip file of the
generated SDK.

Topics

• Install AWS Mobile SDK and API Gateway-Generated SDK in a Swift Project (p. 273)

• Call API methods through the iOS SDK generated by API Gateway in a Swift Project (p. 276)

Install AWS Mobile SDK and API Gateway-Generated SDK in a Swift Project

The following procedure describes how to install the SDK.

To install and use an iOS SDK generated by API Gateway in Swift

1. Extract the contents of the API Gateway-generated .zip file you downloaded earlier. Using the
SimpleCalc API (p. 257), you may want to rename the unzipped SDK folder to something like
sdk_swift_simple_calc. In this SDK folder there is a README.md file and a Podfile file.
The README.md file contains the instructions to install and use the SDK. This tutorial provides
details about these instructions. The installation leverages CocoaPods to import required AWS
Mobile SDK components. You must update the Podfile to import the SDKs into your Swift app's
XCode project. The unarchived SDK folder also contains a generated-src folder that contains
the source code of the generated SDK of your API.

2. Launch Xcode and create a new iOS Swift project. Make a note of the project's target. You will
need to set it in the Podfile.

273

https://cocoapods.org

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

3. To import the required AWS Mobile SDK components into the Xcode project by using CocoaPods,
do the following:

1. If it is not installed, install CocoaPods by running the following command in a terminal window:

sudo gem install cocoapods
pod setup

2. Copy the Podfile file from the extracted SDK folder into the same directory containing your
Xcode project file. Replace the following block:

target '<YourXCodeTarget>' do
 pod 'AWSAPIGateway', '~> 2.4.7'
end

with your project's target name as shown:

target 'app_swift_simple_calc' do
 pod 'AWSAPIGateway', '~> 2.4.7'
end

If your Xcode project already contains a Podfile with the correct target, you can simply add
the following line of code to the do ... end loop:

pod 'AWSAPIGateway', '~> 2.4.7'

3. Open a terminal window and run the following command in the app directory:

pod install

This installs the API Gateway component and any dependent AWS Mobile SDK components
into the app's project.

4. Close the Xcode project and then open the *.xcworkspace file to relaunch Xcode.

274

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

5. Add all of the SDK's header files (.h) and Swift source code files (.swift) from the extracted
generated-src directory to your Xcode project.

6. To enable calling the Objective-C libraries of the AWS Mobile SDK from your Swift code
project, set the Bridging_Header.h file path on the Objective-C Bridging Header property
under the Swift Compiler - General setting of your Xcode project configuration:

Tip
You can type bridging in the search box of Xcode to locate the Objective-C
Bridging Header property.

7. Build the Xcode project to verify that it is properly configured before proceeding further. If your
Xcode uses a more recent version of Swift than the one supported for the AWS Mobile SDK,
you will get Swift compiler errors. In this case, set the Use Legacy Swift Language Version
property to Yes under the Swift Compiler - Version setting:

275

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

To import the AWS Mobile SDK for iOS in Swift into your project by explicitly downloading the
AWS Mobile SDK or using Carthage, follow the instructions in the README.md file that comes with
the SDK package. Be sure to use only one of these options to import the AWS Mobile SDK.

Call API methods through the iOS SDK generated by API Gateway in a Swift
Project

When you generated the SDK with the prefix of SIMPLE_CALC for this SimpleCalc API (p. 257) with
two models to describe the input (Input) and output (Result) of the API's requests and responses,
in the SDK, the resulting API client class becomes SIMPLE_CALCSimpleCalcClient and the
corresponding data classes are SIMPLE_CALCInput and SIMPLE_CALCResult, respectively. The
API requests and responses are mapped to the SDK methods as follows:

• The API request of

GET /?a=...&b=...&op=...

becomes the SDK method of

public func rootGet(op: String?, a: String?, b: String?) -> AWSTask

The AWSTask.result property is of the SIMPLE_CALCResult type if the Result model was
added to the method response. Otherwise, it is of the NSDictionary type.

• This API request of

POST /

{
 "a": "Number",
 "b": "Number",
 "op": "String"
}

becomes the SDK method of

276

https://github.com/Carthage/Carthage#installing-carthage

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

public func rootPost(body: SIMPLE_CALCInput) -> AWSTask

• The API request of

GET /{a}/{b}/{op}

becomes the SDK method of

public func aBOpGet(a: String, b: String, op: String) -> AWSTask

The following procedure describes how to call the API methods in Swift app source code; for example,
as part of the viewDidLoad() delegate in a ViewController.m file.

To call the API through the iOS SDK generated by API Gateway

1. Instantiate the API client class:

let client = SIMPLE_CALCSimpleCalcClient.defaultClient()

To use Amazon Cognito with the API, set a default AWS service configuration (shown following)
before getting the defaultClient method (shown previously):

let credentialsProvider =
 AWSCognitoCredentialsProvider(regionType: AWSRegionType.USEast1,
 identityPoolId: "my_pool_id")
let configuration = AWSServiceConfiguration(region: AWSRegionType.USWest2,
 credentialsProvider: credentialsProvider)
AWSServiceManager.defaultServiceManager().defaultServiceConfiguration =
 configuration

2. Call the GET /?a=1&b=2&op=+ method to perform 1+2:

client.rootGet("+", a: "1", b:"2").continueWithBlock {(task: AWSTask) ->
 AnyObject? in
 self.showResult(task)
 return nil
}

where the helper function self.showResult(task) prints the result or error to the console; for
example:

func showResult(task: AWSTask) {
 if let error = task.error {
 print("Error: \(error)")
 } else if let result = task.result {
 if result is SIMPLE_CALCResult {
 let res = result as! SIMPLE_CALCResult
 print(String(format:"%@ %@ %@ = %@", res.input!.a!,
 res.input!.op!, res.input!.b!, res.output!.c!))
 } else if result is NSDictionary {
 let res = result as! NSDictionary
 print("NSDictionary: \(res)")

277

Amazon API Gateway Developer Guide
Use a JavaScript SDK Generated by API Gateway

 }
 }
}

In a production app, you can display the result or error in a text field. The resulting display is 1 +
2 = 3.

3. Call the POST / with a payload to perform 1-2:

let body = SIMPLE_CALCInput()
body.a=1
body.b=2
body.op="-"
client.rootPost(body).continueWithBlock {(task: AWSTask) -> AnyObject? in
 self.showResult(task)
 return nil
}

The resultant display is 1 - 2 = -1.

4. Call the GET /{a}/{b}/{op} to perform 1/2:

client.aBOpGet("1", b:"2", op:"div").continueWithBlock {(task: AWSTask) ->
 AnyObject? in
 self.showResult(task)
 return nil
}

The resulting display is 1 div 2 = 0.5. Here, div is used in place of / because the simple
Lambda function (p. 255) in the back end does not handle URL encoded path variables.

Use a JavaScript SDK Generated by API Gateway
Note
These instructions assume you have already completed the instructions in Use the API
Gateway Console to Generate the SDKs of an API (p. 254).

1. Extract the contents of the API Gateway-generated .zip file you downloaded earlier.

2. Enable cross-origin resource sharing (CORS) for all of the methods the SDK generated by API
Gateway will call. For instructions, see Enable CORS for a Resource (p. 170).

3. In your web page, include references to the following scripts.

<script type="text/javascript" src="lib/axios/dist/axios.standalone.js"></
script>
<script type="text/javascript" src="lib/CryptoJS/rollups/hmac-
sha256.js"></script>
<script type="text/javascript" src="lib/CryptoJS/rollups/sha256.js"></
script>
<script type="text/javascript" src="lib/CryptoJS/components/hmac.js"></
script>
<script type="text/javascript" src="lib/CryptoJS/components/enc-
base64.js"></script>
<script type="text/javascript" src="lib/url-template/url-template.js"></
script>
<script type="text/javascript" src="lib/apiGatewayCore/sigV4Client.js"></
script>

278

Amazon API Gateway Developer Guide
Use a JavaScript SDK Generated by API Gateway

<script type="text/javascript" src="lib/apiGatewayCore/
apiGatewayClient.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/
simpleHttpClient.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/utils.js"></script>
<script type="text/javascript" src="apigClient.js"></script>

4. In your code, initialize the SDK generated by API Gateway by using code similar to the following.

var apigClient = apigClientFactory.newClient();

5. Call the API methods in API Gateway by using code similar to the following. Each call returns a
promise with a success and failure callbacks.

var params = {
 // This is where any modeled request parameters should be added.
 // The key is the parameter name, as it is defined in the API in API
 Gateway.
 param0: '',
 param1: ''
};

var body = {
 // This is where you define the body of the request,
};

var additionalParams = {
 // If there are any unmodeled query parameters or headers that must be
 // sent with the request, add them here.
 headers: {
 param0: '',
 param1: ''
 },
 queryParams: {
 param0: '',
 param1: ''
 }
};

apigClient.methodName(params, body, additionalParams)
 .then(function(result){
 // Add success callback code here.
 }).catch(function(result){
 // Add error callback code here.
 });

Here, the methodName is constructed from the method request's resource path and the HTTP. For
example, for the GET / request, the methodName is rootGet. For the GET /a/b/op request, the
methodName will be aBOpGet.

6. To initialize the SDK generated by API Gateway with AWS credentials, use code similar to the
following. If you use AWS credentials, all requests to the API will be signed. This means you must
set the appropriate CORS Accept headers for each request.

var apigClient = apigClientFactory.newClient({
 accessKey: 'ACCESS_KEY',
 secretKey: 'SECRET_KEY',

279

Amazon API Gateway Developer Guide
Use a Custom Domain Name

});

7. To use an API key with the SDK generated by API Gateway, you can pass the API key as a
parameter to the Factory object by using code similar to the following. If you use an API key, it is
specified as part of the x-api-key header and all requests to the API will be signed. This means
you must set the appropriate CORS Accept headers for each request.

var apigClient = apigClientFactory.newClient({
 apiKey: 'API_KEY'
});

Use a Custom Domain Name in API Gateway
After deploying your API, you (and the client) can invoke the API using the default root URL of the
https://api-id.execute-api.region.amazonaws.com format. To provide a simpler and
more intuitive URL for your API users, you can use API Gateway to set up a custom domain name
(e.g., api.example.com) and choose a base path (e.g., myservice) to present an alternative URL
(e.g., https://api.example.com/myservice) for the API. You can also use an empty base
path for an API. In this case, the API's URL is the same as the custom domain (e.g., https://
api.example.com.)

For every API you create, API Gateway sets up an Amazon CloudFront distribution for the API.
Requests with the default API URL are routed to the corresponding CloudFront distribution. Similarly,
every custom domain name is backed by a CloudFront distribution. An API request with the custom
domain name passes through the custom domain name's CloudFront distribution before reaching the
API's CloudFront distribution. API Gateway supports custom domain names for APIs by leveraging
Server Name Indication (SNI) on the CloudFront distribution. For more information on using custom
domain names on a CloudFront distribution, including the required certificate format and the maximum
size of a certificate key length, see Using Alternate Domain Names and HTTPS in the Amazon
CloudFront Developer Guide.

Creating a custom domain name for your APIs involves deleting an existing CloudFront distribution and
creating a new one. The process may take approximately 30 minutes before the new custom domain
name becomes available. For more information, see Updating CloudFront Distributions.

To enable a custom domain name, you, as the API owner, must provide a server-side SSL certificate to
verify the custom domain name targeted by the client requests. You do this when setting up the domain
name initially and then when renewing an expiring certificate subsequently. In addition, you must have
registered the custom domain name with a domain name registrar. After setting up a custom domain
name in API Gateway, you must create or update your domain name service (DNS) provider's resource
record to map the custom domain name to its CloudFront distribution domain name. For the SSL
certificate, you must also have obtained from a certificate authority the PEM-formatted SSL certificate
body, its private key, and the certificate chain for the custom domain name. This section describes how
to configure a domain name for an API, to set up the certificate for a custom domain name, to map a
base path to an API, and to upload a new certificate to replace an expiring one. We will also provide
general guidance, by way of examples, on how to obtain the server-side certificate and create a DNS
alias record.

Topics

• Prerequisites (p. 281)

• Set Up a Custom Domain Name for an API Gateway API (p. 281)

• Specify API Mappings for a Custom Domain Name (p. 284)

• Base Path Examples of API Mappings for a Custom Domain Name (p. 284)

• Upload and Renew an Expiring Certificate (p. 285)

• Call Your API with Custom Domain Names (p. 286)

280

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html#CNAMEsAndHTTPS
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/HowToUpdateDistribution.html

Amazon API Gateway Developer Guide
Prerequisites

Prerequisites
Note
API Gateway, fronted by CloudFront, does not support self-signed SSL certificates.

The following steps describe how to prepare to use custom domain names in API Gateway.

To prepare to use custom domain names in API Gateway

1. Register your custom domain name. See the Accredited Registrar Directory at the ICANN website.

2. Get a PEM-encoded SSL certificate for your custom domain name from a certificate authority. For
a partial list, see Third-Party Certificate Authorities at the DMOZ website.

Here are the general steps to obtain an SSL certificate from your chosen certificate authority:

a. Generate a private key for the certificate and save output to a file, using the OpenSSL toolkit
at the OpenSSL website:

openssl genrsa -out private-key-file 2048

Note
Amazon API Gateway leverages Amazon CloudFront to support certificates for
custom domain names. As such, the requirements and constraints of a custom
domain name SSL certificate are dictated by CloudFront. For example, the maximum
size of the public key is 2048 and the private key size can be 1024, 2048 and 4096.
The public key size is determined by the CA you use. Inquire your CA to return keys
of a size different from the default length. For more information, see Secure access
to your objects and Create signed URLs and signed cookies.

b. Generate a certificate signing request (CSR) with the previously generated private key, using
OpenSSL:

openssl req -new -sha256 -key private-key-file -out CSR-file

c. Submit the CSR to the certificate authority and save the resulting certificate.

d. Download the certificate chain from the certificate authority.

Note
If you obtain the private key in another way and the key is encrypted, you can use the
following command to decrypt the key before submitting it to API Gateway for setting up a
custom domain name.

openssl pkcs8 -topk8 -inform pem -in MyEncryptedKey.pem -outform
 pem -nocrypt -out MyDecryptedKey.pem

Set Up a Custom Domain Name for an API Gateway
API
The following procedure describes how to set up a custom domain name.

To set up a custom domain name for an API Gateway API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

281

http://www.internic.net/regist.html
https://www.dmoz.org/Computers/Security/Public_Key_Infrastructure/PKIX/Tools_and_Services/Third_Party_Certificate_Authorities/
http://www.openssl.org
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Up a Custom Domain Name for an API Gateway API

2. Choose Custom Domain Names from the main navigation pane.

3. Choose Create in the secondary navigation pane.

4. In Create Custom Domain Name, specify the following:

a. For Domain name, type your domain name (for example, api.example.com).

b. For Certificate name, type a name for future reference (for example, my-example-
certificate).

c. For Certificate body, type or paste the body of the PEM-formatted server certificate from
your certificate authority. The following shows an abbreviated example of such a certificate.

-----BEGIN CERTIFICATE-----
EXAMPLECA+KgAwIBAgIQJ1XxJ8Pl++gOfQtj0IBoqDANBgkqhkiG9w0BAQUFADBB
...
az8Cg1aicxLBQ7EaWIhhgEXAMPLE
-----END CERTIFICATE-----

d. For Certificate private key, type or paste your PEM-formatted certificate's private key. The
following shows an abbreviated example of such a key.

-----BEGIN RSA PRIVATE KEY-----
EXAMPLEBAAKCAQEA2Qb3LDHD7StY7Wj6U2/opV6Xu37qUCCkeDWhwpZMYJ9/nETO
...
1qGvJ3u04vdnzaYN5WoyN5LFckrlA71+CszD1CGSqbVDWEXAMPLE
-----END RSA PRIVATE KEY-----

e. For Certificate chain, type or paste the PEM-formatted intermediate certificates and,
optionally, the root certificate, one after the other without any blank lines. If you include the
root certificate, your certificate chain must start with intermediate certificates and end with
the root certificate. Use the intermediate certificates provided by your certificate authority. Do
not include any intermediaries that are not in the chain of trust path. The following shows an
abbreviated example.

-----BEGIN CERTIFICATE-----
EXAMPLECA4ugAwIBAgIQWrYdrB5NogYUx1U9Pamy3DANBgkqhkiG9w0BAQUFADCB
...
8/ifBlIK3se2e4/hEfcEejX/arxbx1BJCHBvlEPNnsdw8EXAMPLE
-----END CERTIFICATE-----

Here is another example.

-----BEGIN CERTIFICATE-----
Intermediate certificate 2
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Intermediate certificate 1
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Optional: Root certificate
-----END CERTIFICATE-----

5. Choose Save.

6. While the new custom domain name is being created, the console displays the following
information to have an alias resource record created in your DNS provider to map your
custom domain name (api.example.com) to the API's CloudFront distribution domain name
(distribution-id.cloudfront.net).

282

Amazon API Gateway Developer Guide
Set Up a Custom Domain Name for an API Gateway API

Make note of the CloudFront distribution's domain name shown in the output. You will need it to
set the custom domain's CNAME or alias record in your DNS.

7. In this step, we will use Amazon Route 53 as an example DNS provider to show how to set up
the alias record to map the custom domain to its CloudFront distribution. The instructions can be
adapted to other DNS providers.

a. Go to the Amazon Route 53 console.

b. If necessary, register a custom domain name.

c. Create a hosted zone.

d. Create a record set (e.g., api.example.com.)

e. Choose Yes for Alias, type the CloudFront domain name (e.g.,
d3boq9ikothtgw.cloudfront.net) in Alias Target, and then choose Create.

For most DNS providers, including Amazon Route 53, your custom domain name is added to
the hosted zone as a CNAME resource record set. The CNAME record name specifies the
custom domain name you typed earlier for Domain Name (for example, api.example.com).
The CNAME record value specifies the domain name for the CloudFront distribution. However,
use of a CNAME record will not work if your custom domain is a zone apex (i.e., example.com

283

Amazon API Gateway Developer Guide
Specify API Mappings for a Custom Domain Name

instead of api.example.com). A zone apex is also commonly known as the root domain of your
organization.

With Amazon Route 53 you can also create an alias resource record set for your custom domain
name and specify the CloudFront distribution as the alias target. This means that Amazon
Route 53 can route your custom domain name even if it is a zone apex. For more information, see
Choosing Between Alias and Non-Alias Resource Record Sets in the Amazon Route 53 Developer
Guide.

Specify API Mappings for a Custom Domain Name
After you have set up a custom domain name, you must configure how individual APIs are invoked
with the custom domain name. This amounts to specifying an API's URL with the given domain name.
For example, if you have created an API named PetStore and another API named PetShop and
set up a custom domain name of api.example.com in API Gateway, you can set the PetStore
API's URL as https://api.example.com or https://api.example.com/myPetStore. This
involves setting up the API's base path. The first example uses an empty base path and the second
example uses myPetStore as the base path of the API, relative to the domain name. Similarly, you
can use https://api.example.com/yourPetStore as the PetShop API's URL. The base path
is yourPetShop. Thus, base paths can be used to host multiple APIs behind a single custom domain
name.

Complete the steps in Set Up a Custom Domain Name for an API Gateway API (p. 281) before
setting the base path for API mappings.

To set the base path for API mappings

1. For each URL variation you want to enable, choose Create API mapping.

2. (Optional) For Base path, type the base path name that API callers must provide as part of the
URL. This value must be unique for all of the mappings across a single API. Leave this blank if you
do not want callers to specify a base path name after the domain name.

3. For API, choose the name of an available API from the selected region in your AWS account.

4. (Optional) For Stage, choose the name of the API's stage you want to use for this mapping. Leave
this blank if you want callers to explicitly specify the stage name after any base path name.

5. Choose Save.

Note
To delete a mapping after you create it, next to the mapping that you want to delete, choose
Remove.

Base Path Examples of API Mappings for a Custom
Domain Name
The following examples use a custom domain name of api.example.com:

• Leave Base Path blank, specify an API of MyDemoAPI, and specify a Stage value of prod to
enable calls to https://api.example.com to be forwarded to https://my-api-id.execute-
api.region-id.amazonaws.com/prod (where my-api-id is the identifier API Gateway assigns
to the API named MyDemoAPI).

• Leave Base Path blank, specify an API of MyDemoAPI, and leave Stage blank to enable calls
to https://api.example.com/prod to be forwarded to https://my-api-id.execute-
api.region-id.amazonaws.com/prod (where my-api-id is the identifier API Gateway assigns
to the API named MyDemoAPI).

284

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html

Amazon API Gateway Developer Guide
Upload and Renew an Expiring Certificate

• Specify a Base Path value of billing, specify an API of MyDemoAPI, and leave Stage blank to
enable calls to https://api.example.com/billing/beta to be forwarded to https://my-
api-id.execute-api.region-id.amazonaws.com/beta (where my-api-id is the identifier
API Gateway assigns to the API named MyDemoAPI).

• Specify a Base Path value of scheduling, specify an API of MyDemoAPI, and specify a Stage
value of gamma to enable calls to https://api.example.com/scheduling to be forwarded to
https://my-api-id.execute-api.region-id.amazonaws.com/gamma (where my-api-id is
the identifier API Gateway assigns to the API named MyDemoAPI).

Upload and Renew an Expiring Certificate
The following steps describe how to upload and renew an expiring certificate for a custom domain
name using the API Gateway console. You cannot rotate custom domain name certificates
programmatically.

To upload a new certificate for a custom domain name

1. Choose Custom Domain Names from the API Gateway console main navigation pane.

2. Select a custom name under the Domain Names pane.

3. Choose Upload

Note
The upload feature will not be available when the certificate is being initialized or rotated
for the selected custom domain name. However, upload for a different domain name is
still available because the upload feature is independent for each custom domain name.

4. In Upload Backup Certificate for a-domain-name specify the following:

• Type a name for the new certificate in Certificate name. The name should be different from the
name of the expiring certificate.

• Type or paste the PEM-formatted new certificate body in Certificate body.

• Type or paste the PEM-formatted new certificate key in Certificate private key

• Type or paste the PEM-formatted new certificate chain in Certificate chain.

Then, choose Save.

5. Choose Rotate to start replacing the old certificate by the new certificate.

Note
The certificate rotation takes up to 40 minutes to finish. The custom domain name is
available during the rotation.

285

Amazon API Gateway Developer Guide
Call Your API with Custom Domain Names

Call Your API with Custom Domain Names
Calling an API with a custom domain name is the same as calling the API with its default domain
name, provided that the correct URL is used.

API Gateway supports custom domain names for an API by using Server Name Indication (SNI). After
a custom domain name is configured with the API, you can call the API with the custom domain name
by using a browser or a client library that supports SNI.

API Gateway enforces SNI on the CloudFront distribution. For information on how CloudFront uses
custom domain names, see Amazon CloudFront Custom SSL.

286

https://en.wikipedia.org/wiki/Server_Name_Indication
http://aws.amazon.com/cloudfront/custom-ssl-domains/

Amazon API Gateway Developer Guide
Representation of API Documentation in API Gateway

Documenting an API Gateway API

To help customers understand and use your API, you should document the API. To help you document
your API, API Gateway lets you add and update the help content for individual API entities as an
integral part of your API development process. API Gateway stores the source content and enables
you to archive different versions of the documentation. You can associate a documentation version
with an API stage, export a stage-specific documentation snapshot to an external Swagger file, and
distribute the file as a publication of the documentation.

To document your API, you can call the API Gateway REST API, use one of the AWS SDKs or AWS
CLIs for API Gateway, or use the API Gateway console. In addition, you can import or export the
documentation parts defined in an external Swagger file. Before explaining how to document your API,
we'll show how API documentation is represented in API Gateway.

Topics

• Representation of API Documentation in API Gateway (p. 287)

• Document an API Using the API Gateway Console (p. 294)

• Document an API Using the API Gateway REST API (p. 302)

• Publish API Documentation (p. 319)

• Import API Documentation (p. 325)

• Control Access to API Documentation (p. 327)

Representation of API Documentation in API
Gateway

API Gateway API documentation consists of individual documentation parts associated with specific
API entities that include API, resource, method, request, response, message parameters (i.e., path,
query, header), as well as authorizers and models.

In API Gateway, a documentation part is represented by a DocumentationPart resource. The API
documentation as a whole is represented by the DocumentationParts collection.

Documenting an API involves creating DocumentationPart instances, adding them to the
DocumentationParts collection, and maintaining versions of the documentation parts as your API
evolves.

Topics

• Documentation Parts (p. 288)

• Documentation Versions (p. 294)

287

http://docs.aws.amazon.com/apigateway/api-reference/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/cli/latest/reference/apigateway/
http://docs.aws.amazon.com/cli/latest/reference/apigateway/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-parts

Amazon API Gateway Developer Guide
Documentation Parts

Documentation Parts
A DocumentationPart resource is a JSON object that stores the documentation content applicable to
an individual API entity. Its properties field contains the documentation content as a map of key-
value pairs. Its location property identifies the associated API entity.

The shape of a content map is determined by you, the API developer. The value of a key-value pair
can be a string, number, boolean, object, or array. The shape of the location object depends on the
targeted entity type.

The DocumentationPart resource supports content inheritance: the documentation content of
an API entity is applicable to children of that API entity. For more information about the definition
of child entities and content inheritance, see Inherit Content from an API Entity of More General
Specification (p. 289).

Location of a Documentation Part
The location property of a DocumentationPart instance identifies an API entity to which the associated
content applies. The API entity can be an API Gateway REST API resource, such as RestApi,
Resource, Method, MethodResponse, Authorizer, or Model. The entity can also be a message
parameter, such as a URL path parameter, a query string parameter, a request or response header
parameter, a request or response body, or response status code.

To specify an API entity, set the type attribute of the location object to be one of API, AUTHORIZER,
MODEL, RESOURCE, METHOD, PATH_PARAMETER, QUERY_PARAMETER, REQUEST_HEADER,
REQUEST_BODY, RESPONSE, RESPONSE_HEADER, or RESPONSE_BODY.

Depending on the type of an API entity, you might specify other location attributes, including
method, name, path, and statusCode. Not all of these attributes are valid for a given API entity. For
example, type, path, name, and statusCode are valid attributes of the RESPONSE entity; only type
and path are valid location attributes of the RESOURCE entity. It is an error to include an invalid field in
the location of a DocumentationPart for a given API entity.

Not all valid location fields are required. For example, type is both the valid and required location
field of all API entities. However, method, path, and statusCode are valid but not required attributes
for the RESPONSE entity. When not explicitly specified, a valid location field assumes its default
value. The default path value is /, i.e., the root resource of an API. The default value of method, or
statusCode is *, meaning any method, or status code values, respectively.

Content of a Documentation Part
The properties value is encoded as a JSON string. The properties value contains any
information you choose to meet your documentation requirements. For example, the following is a valid
content map:

{
 "info": {
 "description": "My first API with Amazon API Gateway."
 },
 "x-custom-info" : "My custom info, recognized by Swagger.",
 "my-info" : "My custom info not recognized by Swagger."
}

To set it as a value of properties using the API Gateway REST API, encode this object as a JSON
string:

"{\n\t\"info\": {\n\t\t\"description\": \"My first API with Amazon API
 Gateway.\"\n\t}, … \n}"

288

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#location
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method-response/
http://docs.aws.amazon.com/apigateway/api-reference/resource/authorizer/
http://docs.aws.amazon.com/apigateway/api-reference/resource/model
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#type
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#method
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#name
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#path
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#statusCode

Amazon API Gateway Developer Guide
Documentation Parts

Although API Gateway accepts any valid JSON string as the content map, the content attributes
are treated as two categories: those that can be recognized by Swagger and those that cannot. In
the preceding example, info, description, and x-custom-info are recognized by Swagger
as a standard Swagger object, property, or extension. In contrast, my-info is not compliant with
the Swagger specification. API Gateway propagates Swagger-compliant content attributes into the
API entity definitions from the associated DocumentationPart instances. API Gateway does not
propagate the non-compliant content attributes into the API entity definitions.

As another example, here is DocumentationPart targeted for a Resource entity:

{
 "location" : {
 "type" : "RESOURCE",
 "path": "/pets"
 },
 "properties" : {
 "summary" : "The /pets resource represents a collection of pets in
 PetStore.",
 "description": "... a child resource under the root...",
 }
}

Here, both type and path are valid fields to identify the target of the RESOURCE type. For the root
resource (/), you can omit the path field.

{
 "location" : {
 "type" : "RESOURCE"
 },
 "properties" : {
 "description" : "The root resource with the default path
 specification."
 }
}

This is the same as the following DocumentationPart instance:

{
 "location" : {
 "type" : "RESOURCE",
 "path": "/"
 },
 "properties" : {
 "description" : "The root resource with an explicit path
 specification"
 }
}

Inherit Content from an API Entity of More General
Specifications
The default value of an optional location field provides a patterned description of an API entity.
Using the default value in the location object, you can add a general description in the properties
map to a DocumentationPart instance with this type of location pattern. API Gateway extracts the
applicable Swagger documentation attributes from the DocumentationPart of the generic API entity

289

Amazon API Gateway Developer Guide
Documentation Parts

and injects them into a specific API entity with the location fields matching the general location
pattern, or matching the exact value, unless the specific entity already has a DocumentationPart
instance associated with it. This behavior is also known as content inheritance from an API entity of
more general specifications.

Content inheritance does not apply to API entities of the API, AUTHORIZER, MODEL, or RESOURCE type.

When an API entity matches more than one DocumentationPart's location pattern, the entity will
inherit the documentation part with the location fields of the highest precedence and specificities.
The order of precedence is path > method > statusCode. For matching with the path field, API
Gateway chooses the entity with the most specific path value. The following table shows this with a few
examples.

Case path method statusCode name Remarks

1 /pets * * id Documentation associated with this location
pattern will be inherited by entities matching
the location pattern.

2 /pets * 200 id Documentation associated with this location
pattern will be inherited by entities matching
the location pattern when both Case 1 and
Case 2 are matched, because Case 2 is more
specific than Case 1.

3 /pets GET * id Documentation associated with this location
pattern will be inherited by entities matching
the location pattern when Cases 1, 2, and 3
are matched, because Case 3 has a higher
precedence than Case 2 and is more specific
than Case 1.

4 /pets GET 200 id Documentation associated with this location
pattern will be inherited by entities matching
the location pattern when Cases 1, 2, 3 and 4
are matched, because Case 4 is more specific
than Case 1, 2 or 3.

5 /pets/
petId

* * id Documentation associated with this location
pattern will be inherited when Cases 1, 2, 3,
4 and 5 are matched, because Case 5 has a
more specific path field and path takes the
highest precedence.

Here is another example to contrast a more generic DocumentationPart instance to a more specific
one. The following general error message of "Invalid request error" is injected into the
Swagger definitions of the 400 error responses, unless overridden.

{
 "location" : {
 "type" : "RESPONSE",
 "statusCode": "400"
 },
 "properties" : {
 "description" : "Invalid request error."
 }"
}

290

Amazon API Gateway Developer Guide
Documentation Parts

With the following overwrite, the 400 responses to any methods on the /pets resource has a
description of "Invalid petId specified" instead.

{
 "location" : {
 "type" : "RESPONSE",
 "path": "/pets",
 "statusCode": "400"
 },
 "properties" : "{
 "description" : "Invalid petId specified."
 }"
}

Valid Location Fields of DocumentationPart
The following table shows the valid and required fields as well as applicable default values of a
DocumentationPart resource that is associated with a given type of API entities.

API
entity

Valid location fields Required
location fields

Default field
values

Inheritable
Content

API
{
 "location": {
 "type": "API"
 },
 ...
}

type N/A No

Resource
{
 "location": {
 "type":
 "RESOURCE",
 "path":
 "resource_path"
 },
 ...
}

type The default value
of path is /.

No

Method
{
 "location": {
 "type":
 "METHOD",
 "path":
 "resource_path",
 "method":
 "http_verb"
 },
 ...
}

type The default values
of path and
method are / and
*, respectively.

Yes, matching
path by
prefix and
matching
method of
any values.

Query
parameter {

 "location": {

type The default values
of path and
method are / and
*, respectively.

Yes, matching
path by
prefix and
matching

291

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method/

Amazon API Gateway Developer Guide
Documentation Parts

API
entity

Valid location fields Required
location fields

Default field
values

Inheritable
Content

 "type":
 "QUERY_PARAMETER",
 "path":
 "resource_path",
 "method":
 "HTTP_verb",
 "name":
 "query_parameter_name"
 },
 ...
}

method by
exact values.

Request
body {

 "location": {
 "type":
 "REQUEST",
 "path":
 "resource_path",
 "method":
 "http_verb"
 },
 ...
}

type The default values
of path, and
method are /and
*, respectively.

Yes, matching
path by
prefix, and
matching
method by
exact values.

Request
header
parameter

{
 "location": {
 "type":
 "REQUEST_HEADER",
 "path":
 "resource_path",
 "method":
 "HTTP_verb",
 "name":
 "header_name"
 },
 ...
}

type, name The default values
of path and
method are / and
*, respectively.

Yes, matching
path by
prefix and
matching
method by
exact values.

Request
path
parameter

{
 "location": {
 "type":
 "PATH_PARAMETER",
 "path":
 "resource/
{path_parameter_name}",
 "method":
 "HTTP_verb",
 "name":
 "path_parameter_name"
 },
 ...
}

type, name The default values
of path and
method are / and
*, respectively.

Yes, matching
path by
prefix and
matching
method by
exact values.

292

Amazon API Gateway Developer Guide
Documentation Parts

API
entity

Valid location fields Required
location fields

Default field
values

Inheritable
Content

Response
{
 "location": {
 "type":
 "RESPONSE",
 "path":
 "resource_path",
 "method":
 "http_verb",
 "statusCode":
 "status_code"
 },
 ...
}

type The default values
of path, method,
and statusCode
are /, * and *,
respectively.

Yes, matching
path by
prefix and
matching
method and
statusCode
by exact
values.

Response
header {

 "location": {
 "type":
 "RESPONSE_HEADER",
 "path":
 "resource_path",
 "method":
 "http_verb",
 "statusCode":
 "status_code",
 "name":
 "header_name"
 },
 ...
}

type, name The default values
of path, method
and statusCode
are /, * and *,
respectively.

Yes, matching
path by
prefix and
matching
method, and
statusCode
by exact
values.

Response
body {

 "location": {
 "type":
 "RESPONSE_BODY",
 "path":
 "resource_path",
 "method":
 "http_verb",
 "statusCode":
 "status_code"
 },
 ...
}

type The default values
of path, method
and statusCode
are /, * and *,
respectively.

Yes, matching
path by
prefix and
matching
method, and
statusCode
by exact
values.

293

Amazon API Gateway Developer Guide
Documentation Versions

API
entity

Valid location fields Required
location fields

Default field
values

Inheritable
Content

Authorizer
{
 "location": {
 "type":
 "AUTHORIZER",
 "name":
 "authorizer_name"
 },
 ...
}

type N/A No

Model
{
 "location": {
 "type": "MODEL",
 "name":
 "model_name"
 },
 ...
}

type N/A No

Documentation Versions
A documentation version is a snapshot of the DocumentationParts collection of an API and is tagged
with a version identifier. Publishing the documentation of an API involves creating a documentation
version, associating it with an API stage, and exporting that stage-specific version of the API
documentation to an external Swagger file. In API Gateway, a documentation snapshot is represented
as a DocumentationVersion resource.

As you update an API, you create new versions of the API. In API Gateway, you maintain all the
documentation versions using the DocumentationVersions collection.

Document an API Using the API Gateway
Console

In this section, we describe how to create and maintain documentation parts of an API using the API
Gateway console.

A prerequisite for creating and editing the documentation of an API is that you must have already
created the API. In this section, we use the PetStore API as an example. To create an API using the
API Gateway console, follow the instructions in Create an API Gateway API from an Example (p. 7).

Topics

• Document the API Entity (p. 295)

• Document a RESOURCE Entity (p. 297)

• Document a METHOD Entity (p. 297)

• Document a QUERY_PARAMETER Entity (p. 298)

• Document a PATH_PARAMETER Entity (p. 299)

294

http://docs.aws.amazon.com/apigateway/api-reference/resource/authorizer/
http://docs.aws.amazon.com/apigateway/api-reference/resource/model/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-parts/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-versions
http://petstore-demo-endpoint.execute-api.amazonaws.com/petstore/pets

Amazon API Gateway Developer Guide
Document the API Entity

• Document a REQUEST_HEADER Entity (p. 300)

• Document a REQUEST_BODY Entity (p. 300)

• Document a RESPONSE Entity (p. 300)

• Document a RESPONSE_HEADER Entity (p. 301)

• Document a RESPONSE_BODY Entity (p. 301)

• Document a MODEL Entity (p. 301)

• Document an AUTHORIZER Entity (p. 302)

Document the API Entity
To add a documentation part for the API entity, choose Resources from the PetStore API. Choose
the Actions → Edit API Documentation menu item.

If a documentation part was not created for the API, you get the documentation part's properties
map editor. Type the following properties map in the text editor and then choose Save to create the
documentation part.

{
 "info": {
 "description": "Your first API Gateway API.",
 "contact": {
 "name": "John Doe",
 "email": "john.doe@api.com",
 }
 }
}

Note
You do not encode the properties map into a JSON string, as you must do when using the
API Gateway REST API. The API Gateway console stringifies the JSON object for you.

295

Amazon API Gateway Developer Guide
Document the API Entity

If a documentation part has already been created, you first get the properties map viewer, as shown
in the following.

296

Amazon API Gateway Developer Guide
Document a RESOURCE Entity

Choosing Edit brings up the properties map editor as shown previously.

Document a RESOURCE Entity
To add or edit the documentation part for the API's root resource, choose / under the Resource tree,
and then choose the Actions → Edit Resource Documentation menu item.

If no documentation part was created for this entity, you get the Documentation window. Type a valid
properties map in the editor. Then choose Save and Close.

{
 "description": "The PetStore's root resource."
}

If a documentation part has already been defined for the RESOURCE entity, you get the documentation
viewer. Choose Edit to open the Documentation editor. Modify the existing properties map.
Choose Save and then choose Close.

If necessary, repeat these steps to add a documentation part to other RESOURCE entities.

Document a METHOD Entity
To add or edit documentation for a MEHTOD entity, using the GET method on the root resource
as an example, choose GET under the / resource and the choose the Actions → Edit Method
Documentation menu item.

For the new documentation part, type the following properties map in the Documentation editor in
the Documentation window. Then choose Save and Close.

297

Amazon API Gateway Developer Guide
Document a QUERY_PARAMETER Entity

{
 "tags" : ["pets"],
 "description" : "PetStore HTML web page containing API usage information"
}

For the existing documentation, choose Edit from the Documentation viewer. Edit the documentation
content in the Documentation editor and choose Save. Choose Close.

From the Documentation viewer, you can also delete the documentation part.

If necessary, repeat these steps to add a documentation part to other methods.

Document a QUERY_PARAMETER Entity
To add or edit a documentation part for a request query parameter, using the GET /pets?
type=...&page=... method as an example, choose GET under /pets from the Resources
tree. Choose Method Request in the Method Execution window. Expand the URL Query String
Parameters section. Choose the page query parameter, for example, and choose the book icon to
open the Documentation viewer or editor.

Alternatively, you can choose Documentation under the PetStore API from the main navigation
pane. Then choose Query Parameter for Type. For the PetStore example API, this shows the
documentation parts for the page and type query parameters.

298

Amazon API Gateway Developer Guide
Document a PATH_PARAMETER Entity

For an API with query parameters defined for other methods, you can filter your selection by specifying
the path of the affected resource for Path, choosing the desired HTTP method from Method, or typing
the query parameter name in Name.

For example, choose the page query parameter. Choose Edit to modify the existing documentation.
Choose Save to save the change.

To add a new documentation part for a QUERY_PARAMETER entity, choose Create Documentation
Part. Choose Query Parameter for Type. Type a resource path (e.g., /pets) in Path. Choose an
HTTP verb (e.g., GET) for Method. Type a properties description in the text editor. Then choose
Save.

If necessary, repeat these steps to add a documentation part to other request query parameters.

Document a PATH_PARAMETER Entity
To add or edit documentation for a path parameter, go to Method Request of the method on the
resource specified by the path parameter. Expand the Request Paths section. Choose the book icon
for the path parameter to open the Documentation viewer or editor. Add or modify the properties of
the documentation part.

Alternatively, choose Documentation under the PetStore API from the main navigation pane. Choose
Path Parameter for Type. Choose Edit on a path parameter from the list. Modify the content and
then choose Save.

To add documentation for a path parameter not listed, choose Create Documentation Part. Choose
Path Parameter for Type. Set a resource path in Path, choose a method from Method, and set a path
parameter name in Name. Add the documentation's properties and choose Save.

If required, repeat these steps to add or edit a documentation part to other path parameters.

299

Amazon API Gateway Developer Guide
Document a REQUEST_HEADER Entity

Document a REQUEST_HEADER Entity
To add or edit documentation for a request header, go to Method Request of the method with the
header parameter. Expand the HTTP Request Headers section. Choose the book icon for the header
to open the Documentation viewer or editor. Add or modify the properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Request Header for Type. Choose Edit on a listed request header to change the documentation.
To add documentation for an unlisted request header, choose Create Documentation Part. Choose
Request Header for Type. Specify a resource path in Path. Choose a method for Method. Type a
header name in Name. Then add and save a properties map.

If required, repeat these steps to add or edit a documentation part to other request headers.

Document a REQUEST_BODY Entity
To add or edit documentation for a request body, go to Method Request for a method. Choose the
book icon for Request Body to open the Documentation viewer and then editor. Add or modify the
properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Request Body for Type. Choose Edit on a listed request body to change the documentation. To add
documentation for an unlisted request body, choose Create Documentation Part. Choose Request
Body for Type. Set a resource path in Path. Choose an HTTP verb for Method. Then add and save a
properties map.

If required, repeat these steps to add or edit a documentation part to other request bodies.

Document a RESPONSE Entity
To add or edit documentation for a response body, go to Method Response of a method. Choose the
book icon for Method Response to open the Documentation viewer and then editor. Add or modify
the properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Response (status code) for Type. Choose Edit on a listed response of a specified HTTP status
code to change the documentation. To add documentation for an unlisted response body, choose
Create Documentation Part. Choose Response (status code) for Type. Set a resource path in Path.
Choose an HTTP verb for Method. Type an HTTP status code in Status Code. Then add and save the
documentation part properties.

If required, repeat these steps to add or edit a documentation part to other responses.

300

Amazon API Gateway Developer Guide
Document a RESPONSE_HEADER Entity

Document a RESPONSE_HEADER Entity
To add or edit documentation for a response header, go to Method Response of a method. Expand
a response section of a given HTTP status. Choose the book icon for a response header under
Response Headers for StatusCode to open the Documentation viewer and then editor. Add or
modify the properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Response Header for Type. Choose Edit on a listed response header to change the documentation.
To add documentation for an unlisted response header, choose Create Documentation Part. Choose
Response Header for Type. Set a resource path in Path. Choose an HTTP verb for Method. Type an
HTTP status code in Status Code. Type the response header name in Name. Then add and save the
documentation part properties.

If required, repeat these steps to add or edit a documentation part to other response headers.

Document a RESPONSE_BODY Entity
To add or edit documentation for a response body, go to Method Response of a method. Expand the
response section of a given HTTP status. Choose the book icon for Response Body for StatusCode
to open the Documentation viewer and then editor. Add or modify the properties of the documentation
part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Response Body for Type. Choose Edit on a listed response body to change the documentation.
To add documentation for an unlisted response body, choose Create Documentation Part. Choose
Response Body for Type. Set a resource path in Path. Choose an HTTP verb for Method. Type an
HTTP status code in Status Code. Then add and save the documentation part properties.

If required, repeat these steps to add or edit a documentation part to other response bodies.

Document a MODEL Entity
Documenting a MODEL entity involves creating and managing DocumentPart instances for the model
and each of the model's properties'. For example, for the Error model that comes with every API
by default has the following schema definition,

{
 "$schema" : "http://json-schema.org/draft-04/schema#",
 "title" : "Error Schema",
 "type" : "object",
 "properties" : {
 "message" : { "type" : "string" }
 }
}

and requires two DocumentationPart instances, one for the Model and the other for its message
property:

{
 "location": {
 "type": "MODEL",
 "name": "Error"
 },
 "properties": {
 "title": "Error Schema",

301

Amazon API Gateway Developer Guide
Document an AUTHORIZER Entity

 "description": "A description of the Error model"
 }
}

and

{
 "location": {
 "type": "MODEL",
 "name": "Error.message"
 },
 "properties": {
 "description": "An error message."
 }
}

When the API is exported, the DocumentationPart's properties will override the values in the original
schema.

To add or edit documentation for a model, go to Models of the API in the main navigation pane.
Choose the book icon for the name of a listed model to open the Documentation viewer and then
editor. Add or modify the properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Model for Type. Choose Edit on a listed model to change the documentation. To add documentation
for an unlisted model, choose Create Documentation Part. Choose Model for Type. Give a name to
the model in Name. Then add and save the documentation part properties.

If required, repeat these steps to add or edit a documentation part to other models.

Document an AUTHORIZER Entity
To add or edit documentation for an authorizer, go to Authorizers for the API in the main navigation
pane. Choose the book icon for the listed authorizer to open the Documentation viewer and then
editor. Add or modify the properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Authorizer for Type. Choose Edit on a listed authorizer to change the documentation. To add
documentation for an unlisted authorizer, choose Create Documentation Part. Choose Authorizer for
Type. Give a name to the authorizer in Name. Then add and save the documentation part properties.

If required, repeat these steps to add or edit a documentation part to other authorizers.

To add a documentation part for an authorizer, choose Create Documentation Part. Choose
Authorizer for Type. Specify a value for the valid location field of Name for the authorizer.

Add and save the documentation content in the properties map editor.

If required, repeat these steps to add a documentation part to another authorizer.

Document an API Using the API Gateway REST
API

In this section, we describe how to create and maintain documentation parts of an API using the API
Gateway REST API.

302

Amazon API Gateway Developer Guide
Document the API Entity

Before creating and editing the documentation of an API, first create the API. In this section, we
use the PetStore API as an example. To create an API using the API Gateway console, follow the
instructions in Create an API Gateway API from an Example (p. 7).

Topics

• Document the API Entity (p. 303)

• Document a RESOURCE Entity (p. 304)

• Document a METHOD Entity (p. 307)

• Document a QUERY_PARAMETER Entity (p. 309)

• Document a PATH_PARAMETER Entity (p. 311)

• Document a REQUEST_BODY Entity (p. 312)

• Document a REQUEST_HEADER Entity (p. 313)

• Document a RESPONSE Entity (p. 314)

• Document a RESPONSE_HEADER Entity (p. 314)

• Document an AUTHORIZER Entity (p. 315)

• Document a MODEL Entity (p. 317)

• Update Documentation Parts (p. 318)

• List Documentation Parts (p. 319)

Document the API Entity
To add documentation for an API, add a DocumentationPart resource for the API entity:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "API"
 },
 "properties": "{\n\t\"info\": {\n\t\t\"description\" : \"Your first API
 with Amazon API Gateway.\"\n\t}\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 ...
 "id": "s2e5xf",
 "location": {
 "path": null,
 "method": null,
 "name": null,
 "statusCode": null,

303

http://petstore-demo-endpoint.execute-api.amazonaws.com/petstore/pets
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a RESOURCE Entity

 "type": "API"
 },
 "properties": "{\n\t\"info\": {\n\t\t\"description\" : \"Your first API
 with Amazon API Gateway.\"\n\t}\n}"
}

If the documentation part has already been added, a 409 Conflict response returns, containing the
error message of Documentation part already exists for the specified location:
type 'API'." In this case, you must call the documentationpart:update operation.

PATCH /restapis/4wk1k4onj3/documentation/parts/part_id HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/properties",
 "value" : "{\n\t\"info\": {\n\t\t\"description\" : \"Your first API with
 Amazon API Gateway.\"\n\t}\n}"
 }]
}

The successful response returns a 200 OK status code with the payload containing the updated
DocumentationPart instance in the payload.

Document a RESOURCE Entity
To add documentation for the root resource of an API, add a DocumentationPart resource targeted for
the corresponding Resource resource:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "RESOURCE",
 },
 "properties" : "{\n\t\"description\" : \"The PetStore root resource.
\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{

304

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/documentationpart-update/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/

Amazon API Gateway Developer Guide
Document a RESOURCE Entity

 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/p76vqo"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/p76vqo"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/p76vqo"
 }
 },
 "id": "p76vqo",
 "location": {
 "path": "/",
 "method": null,
 "name": null,
 "statusCode": null,
 "type": "RESOURCE"
 },
 "properties": "{\n\t\"description\" : \"The PetStore root resource.\"\n}"
}

When the resource path is not specified, the resource is assumed to be the root resource. You can add
"path": "/" to properties to make the specification explicit.

To create documentation for a child resource of an API, add a DocumentationPart resource targeted
for the corresponding Resource resource:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "RESOURCE",
 "path" : "/pets"
 },
 "properties": "{\n\t\"description\" : \"A child resource under the root
 of PetStore.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {

305

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/

Amazon API Gateway Developer Guide
Document a RESOURCE Entity

 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/qcht86"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/qcht86"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/qcht86"
 }
 },
 "id": "qcht86",
 "location": {
 "path": "/pets",
 "method": null,
 "name": null,
 "statusCode": null,
 "type": "RESOURCE"
 },
 "properties": "{\n\t\"description\" : \"A child resource under the root of
 PetStore.\"\n}"
}

To add documentation for a child resource specified by a path parameter, add a DocumentationPart
resource targeted for the Resource resource:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "RESOURCE",
 "path" : "/pets/{petId}"
 },
 "properties": "{\n\t\"description\" : \"A child resource specified by the
 petId path parameter.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true

306

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/

Amazon API Gateway Developer Guide
Document a METHOD Entity

 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/k6fpwb"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/k6fpwb"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/k6fpwb"
 }
 },
 "id": "k6fpwb",
 "location": {
 "path": "/pets/{petId}",
 "method": null,
 "name": null,
 "statusCode": null,
 "type": "RESOURCE"
 },
 "properties": "{\n\t\"description\" : \"A child resource specified by the
 petId path parameter.\"\n}"
}

Note
The DocumentationPart instance of a RESOURCE entity cannot be inherited by any of its child
resources.

Document a METHOD Entity
To add documentation for a method of an API, add a DocumentationPart resource targeted for the
corresponding Method resource:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "METHOD",
 "path" : "/pets",
 "method" : "GET"
 },
 "properties": "{\n\t\"summary\" : \"List all pets.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",

307

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method/

Amazon API Gateway Developer Guide
Document a METHOD Entity

 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 }
 },
 "id": "o64jbj",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": null,
 "statusCode": null,
 "type": "METHOD"
 },
 "properties": "{\n\t\"summary\" : \"List all pets.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 }
 },
 "id": "o64jbj",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": null,
 "statusCode": null,
 "type": "METHOD"
 },
 "properties": "{\n\t\"summary\" : \"List all pets.\"\n}"
}

If the location.method field is not specified in the preceding request, it is assumed to be ANY
method that is represented by a wild card * character.

308

Amazon API Gateway Developer Guide
Document a QUERY_PARAMETER Entity

To update the documentation content of a METHOD entity, call the documentationpart:update operation,
supplying a new properties map:

PATCH /restapis/4wk1k4onj3/documentation/parts/part_id HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/properties",
 "value" : "{\n\t\"tags\" : [\"pets\"], \n\t\"summary\" : \"List all
 pets.\"\n}"
 }]
}

The successful response returns a 200 OK status code with the payload containing the updated
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 }
 },
 "id": "o64jbj",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": null,
 "statusCode": null,
 "type": "METHOD"
 },
 "properties": "{\n\t\"tags\" : [\"pets\"], \n\t\"summary\" : \"List all
 pets.\"\n}"
}

Document a QUERY_PARAMETER Entity
To add documentation for a request query parameter, add a DocumentationPart resource targeted for
the QUERY_PARAMETER type, with the valid fields of path and name.

309

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/documentationpart-update/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a QUERY_PARAMETER Entity

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "QUERY_PARAMETER",
 "path" : "/pets",
 "method" : "GET",
 "name" : "page"
 },
 "properties": "{\n\t\"description\" : \"Page number of results to return.
\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h9ht5w"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h9ht5w"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h9ht5w"
 }
 },
 "id": "h9ht5w",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": "page",
 "statusCode": null,
 "type": "QUERY_PARAMETER"
 },
 "properties": "{\n\t\"description\" : \"Page number of results to return.
\"\n}"
}

The documentation part's properties map of a QUERY_PARAMETER entity can be inherited by
one of its child QUERY_PARAMETER entities. For example, if you add a treats resource after /
pets/{petId}, enable the GET method on /pets/{petId}/treats, and expose the page
query parameter, this child query parameter inherits the DocumentationPart's properties
map from the like-named query parameter of the GET /pets method, unless you explicitly add a

310

Amazon API Gateway Developer Guide
Document a PATH_PARAMETER Entity

DocumentationPart resource to the page query parameter of the GET /pets/{petId}/treats
method.

Document a PATH_PARAMETER Entity
To add documentation for a path parameter, add a DocumentationPart resource for the
PATH_PARAMETER entity.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "PATH_PARAMETER",
 "path" : "/pets/{petId}",
 "method" : "*",
 "name" : "petId"
 },
 "properties": "{\n\t\"description\" : \"The id of the pet to retrieve.
\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/ckpgog"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/ckpgog"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/ckpgog"
 }
 },
 "id": "ckpgog",
 "location": {
 "path": "/pets/{petId}",
 "method": "*",
 "name": "petId",
 "statusCode": null,
 "type": "PATH_PARAMETER"
 },
 "properties": "{\n \"description\" : \"The id of the pet to retrieve\"\n}"

311

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a REQUEST_BODY Entity

}

Document a REQUEST_BODY Entity
To add documentation for a request body, add a DocumentationPart resource for the request body.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "REQUEST_BODY",
 "path" : "/pets",
 "method" : "POST"
 },
 "properties": "{\n\t\"description\" : \"A Pet object to be added to
 PetStore.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/kgmfr1"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/kgmfr1"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/kgmfr1"
 }
 },
 "id": "kgmfr1",
 "location": {
 "path": "/pets",
 "method": "POST",
 "name": null,
 "statusCode": null,
 "type": "REQUEST_BODY"
 },
 "properties": "{\n\t\"description\" : \"A Pet object to be added to
 PetStore.\"\n}"
}

312

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a REQUEST_HEADER Entity

Document a REQUEST_HEADER Entity
To add documentation for a request header, add a DocumentationPart resource for the request
header.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "REQUEST_HEADER",
 "path" : "/pets",
 "method" : "GET",
 "name" : "x-my-token"
 },
 "properties": "{\n\t\"description\" : \"A custom token used to
 authorization the method invocation.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h0m3uf"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h0m3uf"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h0m3uf"
 }
 },
 "id": "h0m3uf",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": "x-my-token",
 "statusCode": null,
 "type": "REQUEST_HEADER"
 },
 "properties": "{\n\t\"description\" : \"A custom token used to
 authorization the method invocation.\"\n}"
}

313

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a RESPONSE Entity

Document a RESPONSE Entity
To add documentation for a response of a status code, add a DocumentationPart resource targeted for
the corresponding MethodResponse resource.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location": {
 "path": "/",
 "method": "*",
 "name": null,
 "statusCode": "200",
 "type": "RESPONSE"
 },
 "properties": "{\n \"description\" : \"Successful operation.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lattew"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lattew"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lattew"
 }
 },
 "id": "lattew",
 "location": {
 "path": "/",
 "method": "*",
 "name": null,
 "statusCode": "200",
 "type": "RESPONSE"
 },
 "properties": "{\n \"description\" : \"Successful operation.\"\n}"
}

Document a RESPONSE_HEADER Entity
To add documentation for a response header, add a DocumentationPart resource for the response
header.

POST /restapis/restapi_id/documentation/parts HTTP/1.1

314

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method-response/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document an AUTHORIZER Entity

Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

 "location": {
 "path": "/",
 "method": "GET",
 "name": "Content-Type",
 "statusCode": "200",
 "type": "RESPONSE_HEADER"
 },
 "properties": "{\n \"description\" : \"Media type of request\"\n}"

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/fev7j7"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/fev7j7"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/fev7j7"
 }
 },
 "id": "fev7j7",
 "location": {
 "path": "/",
 "method": "GET",
 "name": "Content-Type",
 "statusCode": "200",
 "type": "RESPONSE_HEADER"
 },
 "properties": "{\n \"description\" : \"Media type of request\"\n}"
}

The documentation of this Content-Type response header is the default documentation for the
Content-Type headers of any responses of the API.

Document an AUTHORIZER Entity
To add documentation for an API authorizer, add a DocumentationPart resource targeted for the
specified authorizer.

POST /restapis/restapi_id/documentation/parts HTTP/1.1

315

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document an AUTHORIZER Entity

Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "location" : {
 "type" : "AUTHORIZER",
 "name" : "myAuthorizer"
 },
 "properties": "{\n\t\"description\" : \"Authorizes invocations of
 configured methods.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/pw3qw3"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/pw3qw3"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/pw3qw3"
 }
 },
 "id": "pw3qw3",
 "location": {
 "path": null,
 "method": null,
 "name": "myAuthorizer",
 "statusCode": null,
 "type": "AUTHORIZER"
 },
 "properties": "{\n\t\"description\" : \"Authorizes invocations of
 configured methods.\"\n}"
}

Note
The DocumentationPart instance of an AUTHORIZER entity cannot be inherited by any of its
child resources.

316

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a MODEL Entity

Document a MODEL Entity
Documenting a MODEL entity involves creating and managing DocumentPart instances for the model
and each of the model's properties'. For example, for the Error model that comes with every API
by default has the following schema definition,

{
 "$schema" : "http://json-schema.org/draft-04/schema#",
 "title" : "Error Schema",
 "type" : "object",
 "properties" : {
 "message" : { "type" : "string" }
 }
}

and requires two DocumentationPart instances, one for the Model and the other for its message
property:

{
 "location": {
 "type": "MODEL",
 "name": "Error"
 },
 "properties": {
 "title": "Error Schema",
 "description": "A description of the Error model"
 }
}

and

{
 "location": {
 "type": "MODEL",
 "name": "Error.message"
 },
 "properties": {
 "description": "An error message."
 }
}

When the API is exported, the DocumentationPart's properties will override the values in the original
schema.
To add documentation for an API model, add a DocumentationPart resource targeted for the specified
model.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{

317

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Update Documentation Parts

 "location" : {
 "type" : "MODEL",
 "name" : "Pet"
 },
 "properties": "{\n\t\"description\" : \"Data structure of a Pet object.
\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lkn4uq"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lkn4uq"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lkn4uq"
 }
 },
 "id": "lkn4uq",
 "location": {
 "path": null,
 "method": null,
 "name": "Pet",
 "statusCode": null,
 "type": "MODEL"
 },
 "properties": "{\n\t\"description\" : \"Data structure of a Pet object.
\"\n}"
}

Repeat the same step to create a DocumentationPart instance for any of the model's properties.

Note
The DocumentationPart instance of a MODEL entity cannot be inherited by any of its child
resources.

Update Documentation Parts
To update the documentation parts of any type of API entities, submit a PATCH request on a
DocumentationPart instance of a specified part identifier to replace the existing properties map with
a new one.

PATCH /restapis/4wk1k4onj3/documentation/parts/part_id HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ

318

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
List Documentation Parts

Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "RESOURCE_PATH",
 "value" : "NEW_properties_VALUE_AS_JSON_STRING"
 }]
}

The successful response returns a 200 OK status code with the payload containing the updated
DocumentationPart instance in the payload.

You can update multiple documentation parts in a single PATCH request.

List Documentation Parts
To list the documentation parts of any type of API entities, submit a GET request on a
DocumentationParts collection.

GET /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

The successful response returns a 200 OK status code with the payload containing the available
DocumentationPart instances in the payload.

Publish API Documentation
To publish the documentation for an API, create, update, or get a documentation snapshot, and then
associate the documentation snapshot with an API stage. When creating a documentation snapshot,
you can also associate it with an API stage at the same time.

Topics

• Create a Documentation Snapshot and Associate it with an API Stage (p. 319)

• Create a Documentation Snapshot (p. 320)

• Update a Documentation Snapshot (p. 320)

• Get a Documentation Snapshot (p. 321)

• Associate a Documentation Snapshot with an API Stage (p. 321)

• Download a Documentation Snapshot Associated with a Stage (p. 322)

Create a Documentation Snapshot and Associate it
with an API Stage
To create a snapshot of an API's documentation parts and associate it with an API stage at the same
time, submit the following POST request:

319

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-parts/

Amazon API Gateway Developer Guide
Create a Documentation Snapshot

POST /restapis/restapi_id/documentation/versions HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "documentationVersion" : "1.0.0",
 "stageName": "prod",
 "description" : "My API Documentation v1.0.0"
}

If successful, the operation returns a 200 OK response, containing the newly created
DocumentationVersion instance as the payload.

Alternatively, you can create a documentation snapshot without associating it with an API stage first
and then call restapi:update to associate the snapshot with a specified API stage. You can also update
or query an existing documentation snapshot and then update its stage association. We show the
steps in the next four sections.

Create a Documentation Snapshot
To create a snapshot of an API's documentation parts, create a new DocumentationVersion resource
and add it to the DocumentationVersions collection of the API:

POST /restapis/restapi_id/documentation/versions HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "documentationVersion" : "1.0.0",
 "description" : "My API Documentation v1.0.0"
}

If successful, the operation returns a 200 OK response, containing the newly created
DocumentationVersion instance as the payload.

Update a Documentation Snapshot
You can only update a documentation snapshot by modifying the description property of the
corresponding DocumentationVersion resource. The following example shows how to update the
description of the documentation snapshot as identified by its version identifier, version, e.g., 1.0.0.

PATCH /restapis/restapi_id/documentation/versions/version HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

320

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-update/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-versions/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version/

Amazon API Gateway Developer Guide
Get a Documentation Snapshot

{
 "patchOperations": [{
 "op": "replace",
 "path": "/description",
 "value": "My API for testing purposes."
 }]
}

If successful, the operation returns a 200 OK response, containing the updated
DocumentationVersion instance as the payload.

Get a Documentation Snapshot
To get a documentation snapshot, submit a GET request against the specified DocumentationVersion
resource. The following example shows how to get a documentation snapshot of a given version
identifier, 1.0.0.

GET /restapis/<restapi_id>/documentation/versions/1.0.0 HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

Associate a Documentation Snapshot with an API
Stage
To publish the API documentation, associate a documentation snapshot with an API stage. You must
have already created an API stage before associating the documentation version with the stage.

To associate a documentation snapshot with an API stage using the API Gateway REST
API, call the stage:update operation to set the desired documentation version on the
stage.documentationVersion property:

PATCH /restapis/RESTAPI_ID/stages/STAGE_NAME
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "patchOperations": [{
 "op": "replace",
 "path": "/documentationVersion",
 "value": "VERSION_IDENTIFIER"
 }]
}

The following procedure describes how to publish a documentation version.

321

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/

Amazon API Gateway Developer Guide
Download a Documentation

Snapshot Associated with a Stage

To publish a documentation version using the API Gateway console

1. Choose Documentation for the API from the main navigation pane in the API Gateway console.

2. Choose Publish Documentation in the Documentation pane.

3. Set up the publication:

a. Choose an available name for Stage.

b. Type a version identifier, e.g., 1.0.0, in Version.

c. Optionally, provide a description about the publication in Description.

4. Choose Publish.

You can now proceed to download the published documentation by exporting the documentation to an
external Swagger file.

Download a Documentation Snapshot Associated
with a Stage
After a version of the documentation parts is associated with a stage, you can export the
documentation parts together with the API entity definitions, to an external file, using the API Gateway
console, the API Gateway REST API, one of its SDKs, or the AWS CLI for API Gateway. The process
is the same as for exporting the API. The exported file format can be JSON or YAML.

Using the API Gateway REST API, you can also explicitly set the
extension=documentation,integrations,authorizers query parameter to include the API
documentation parts, API integrations and authorizers in an API export. By default, documentation
parts are included, but integrations and authorizers are excluded, when you export an API. The default
output from an API export is suited for distribution of the documentation.

To export the API documentation in an external JSON Swagger file using the API Gateway REST API,
submit the following GET request:

GET /restapis/restapi_id/stages/stage_name/exports/swagger?
extensions=documentation HTTP/1.1
Accept: application/json
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

Here, the x-amazon-apigateway-documentation object contains the documentation parts
and the API entity definitions contains the documentation properties supported by Swagger. The
output does not include details of integration or custom authorizers. To include both details, set
extensions=integrations,authorizers,documentation. To include details of integrations but
not of authorizers, set extensions=integrations,documentation.

You must set the Accept:application/json header in the request to output the result in a JSON
file. To produce the YAML output, change the request header to Accept:application/yaml.

As an example, we will look at an API that exposes a simple GET method on the root resource (/).
This API has four API entities defined in a Swagger definition file, one for each of the API, MODEL,
METHOD, and RESPONSE types. A documentation part has been added to each of the API, METHOD,
and RESPONSE entities. Calling the preceding documentation-exporting command, we get the following

322

Amazon API Gateway Developer Guide
Download a Documentation

Snapshot Associated with a Stage

output, with the documentation parts listed within the x-amazon-apigateway-documentation
object as an extension to a standard Swagger file.

{
 "swagger" : "2.0",
 "info" : {
 "description" : "api info description",
 "version" : "2016-11-22T22:39:14Z",
 "title" : "doc",
 "x-bar" : "api info x-bar"
 },
 "host" : "rznaap68yi.execute-api.ap-southeast-1.amazonaws.com",
 "basePath" : "/test",
 "schemes" : ["https"],
 "paths" : {
 "/" : {
 "get" : {
 "description" : "Method description.",
 "produces" : ["application/json"],
 "responses" : {
 "200" : {
 "description" : "200 response",
 "schema" : {
 "$ref" : "#/definitions/Empty"
 }
 }
 },
 "x-example" : "x- Method example"
 },
 "x-bar" : "resource x-bar"
 }
 },
 "definitions" : {
 "Empty" : {
 "type" : "object",
 "title" : "Empty Schema"
 }
 },
 "x-amazon-apigateway-documentation" : {
 "version" : "1.0.0",
 "createdDate" : "2016-11-22T22:41:40Z",
 "documentationParts" : [{
 "location" : {
 "type" : "API"
 },
 "properties" : {
 "description" : "api description",
 "foo" : "api foo",
 "x-bar" : "api x-bar",
 "info" : {
 "description" : "api info description",
 "version" : "api info version",
 "foo" : "api info foo",
 "x-bar" : "api info x-bar"
 }
 }
 }, {
 "location" : {
 "type" : "METHOD",

323

Amazon API Gateway Developer Guide
Download a Documentation

Snapshot Associated with a Stage

 "method" : "GET"
 },
 "properties" : {
 "description" : "Method description.",
 "x-example" : "x- Method example",
 "foo" : "Method foo",
 "info" : {
 "version" : "method info version",
 "description" : "method info description",
 "foo" : "method info foo"
 }
 }
 }, {
 "location" : {
 "type" : "RESOURCE"
 },
 "properties" : {
 "description" : "resource description",
 "foo" : "resource foo",
 "x-bar" : "resource x-bar",
 "info" : {
 "description" : "resource info description",
 "version" : "resource info version",
 "foo" : "resource info foo",
 "x-bar" : "resource info x-bar"
 }
 }
 }]
 },
 "x-bar" : "api x-bar"
}

For a Swagger-compliant attribute defined in the properties map of a documentation part, API
Gateway inserts the attribute into the associated API entity definition. An attribute of x-something
is a standard Swagger extension. This extension gets propagated into the API entity definition. For
example, see the x-example attribute for the GET method. An attribute like foo is not part of the
Swagger specification and is not injected into its associated API entity definitions.

If a documentation-rendering tool (e.g., Swagger UI) parses the API entity definitions to
extract documentation attributes, any non Swagger-compliant properties attributes of a
DocumentationPart' instance are not available for the tool. However, if a documentation-rendering
tool parses the x-amazon-apigateway-documentation object to get content, or if the tool calls
restapi:documentation-parts and documenationpart:by-id to retrieve documentation parts from API
Gateway, all the documentation attributes are available for the tool to display.

To export the documentation with API entity definitions containing integration details to a JSON
Swagger file, submit the following GET request:

GET /restapis/restapi_id/stages/stage_name/exports/swagger?
extensions=integrations,documentation HTTP/1.1
Accept: application/json
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

324

http://swagger.io/swagger-ui/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-documentation-parts/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/documentationpart-by-id/

Amazon API Gateway Developer Guide
Import API Documentation

To export the documentation with API entity definitions containing details of integrations and
authorizers to a YAML Swagger file, submit the following GET request:

GET /restapis/restapi_id/stages/stage_name/exports/swagger?
extensions=integrations,authorizers,documentation HTTP/1.1
Accept: application/yaml
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

To use the API Gateway console to export and download the published documentation of an API,
follow the instructions in Export API Using the API Gateway Console (p. 147).

Import API Documentation
As with importing API entity definitions, you can import documentation parts from an external Swagger
file into an API in API Gateway. You specify the to-be-imported documentation parts within the x-
amazon-apigateway-documentation Object (p. 151) extension in a valid Swagger 2.0 definition file.
Importing documentation does not alter the existing API entity definitions.

You have an option to merge the newly specified documentation parts into existing documentation
parts in API Gateway or to overwrite the existing documentation parts. In the MERGE mode, a new
documentation part defined in the Swagger file is added to the DocumentationParts collection
of the API. If an imported DocumentationPart already exists, an imported attribute replaces the
existing one if the two are different. Other existing documentation attributes remain unaffected. In the
OVERWRITE mode, the entire DocumentationParts collection is replaced according to the imported
Swagger definition file.

Importing Documentation Parts Using the API
Gateway REST API
To import API documentation using the API Gateway REST API, call the documentationpart:import
operation. The following example shows how to overwrite existing documentation parts of an API with a
single GET / method, returning a 200 OK response when successful.

PUT /restapis/<restapi_id>/documentation/
parts&mode=overwrite&failonwarnings=true
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=sigv4_secret

{
 "swagger": "2.0",
 "info": {
 "description": "description",
 "version": "1",
 "title": "doc"
 },
 "host": "",

325

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/documentationpart-import/

Amazon API Gateway Developer Guide
Importing Documentation Parts

Using the API Gateway REST API

 "basePath": "/",
 "schemes": [
 "https"
],
 "paths": {
 "/": {
 "get": {
 "description": "Method description.",
 "produces": [
 "application/json"
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 }
 }
 }
 },
 "definitions": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 },
 "x-amazon-apigateway-documentation": {
 "version": "1.0.3",
 "documentationParts": [
 {
 "location": {
 "type": "API"
 },
 "properties": {
 "description": "api description",
 "info": {
 "description": "api info description 4",
 "version": "api info version 3"
 }
 }
 },
 {
 "location": {
 "type": "METHOD",
 "method": "GET"
 },
 "properties": {
 "description": "Method description."
 }
 },
 {
 "location": {
 "type": "MODEL",
 "name": "Empty"
 },
 "properties": {
 "title": "Empty Schema"

326

Amazon API Gateway Developer Guide
Importing Documentation Parts
Using the API Gateway Console

 }
 },
 {
 "location": {
 "type": "RESPONSE",
 "method": "GET",
 "statusCode": "200"
 },
 "properties": {
 "description": "200 response"
 }
 }
]
 }
}

When successful, this request returns a 200 OK response containing the imported
DocumentationPartId in the payload.

{
 "ids": [
 "kg3mth",
 "796rtf",
 "zhek4p",
 "5ukm9s"
]
}

In addition, you can also call restapi:import or restapi:put, supplying the documentation parts in the x-
amazon-apigateway-documentation object as part of the input Swagger file of the API definition.
To exclude the documentation parts from the API import, set ignore=documentation in the request
query parameters.

Importing Documentation Parts Using the API
Gateway Console
The following instructions describe how to import documentation parts.

To use the console to import documentation parts of an API from an external file

1. Choose Documentation for the API from the main navigation pane on the console.

2. Choose Import Documentation in the Documentation pane.

3. Choose Select Swagger File to load a file from a drive, or copy and paste a file contents into the
file view. For an example, see the payload of the example request in Importing Documentation
Parts Using the API Gateway REST API (p. 325).

4. Optionally, choose Fail on warnings or Ignore warnings, and choose Merge or Overwrite from
Import mode.

5. Choose Import.

Control Access to API Documentation
If you have a dedicated documentation team to write and edit your API documentation, you can
configure separate access permissions for your developers (for API development) and for your writers

327

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference//link-relation/restapi-put/

Amazon API Gateway Developer Guide
Control Access to API Documentation

or editors (for content development). This is especially appropriate when a third-party vendor is
involved in creating the documentation for you.

To grant your documentation team the access to create, update, and publish your API documentation,
you can assign the documentation team an IAM role with the following IAM policy, where account_id
is the AWS account ID of your documentation team.

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Sid": "StmtDocPartsAddEditViewDelete",
 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:PUT",
 "apigateway:POST",
 "apigateway:PATCH",
 "apigateway:DELETE"
],
 "Resource": [
 "arn:aws:apigateway::account_id:/restapis/*/documentation/*"
]
 }
]
}

For information on setting permissions to access API Gateway resources, see Control Access to API
Gateway with IAM Policies (p. 160).

328

Amazon API Gateway Developer Guide
Prerequisites

Calling a Deployed API in Amazon
API Gateway

Calling a deployed API involves submitting requests to the execute-api component of API Gateway.
The request URL is the Invoke URL generated by API Gateway when the API is successfully
deployed. You can obtain this invocation URL from the API Gateway console or you can construct it
yourself according to the following format:

https://{restapi_id}.execute-api.{region}.amazonaws.com/{stage_name}/

If your API permits anonymous access, you can use any web browser to invoke any GET-method calls
by pasting the Invoke URL to the browser's address bar. For other methods or any authentication-
required calls, the invocation will be more involved because you must specify a payload or sign the
requests. You can handle these in a script behind an HTML page or in a client app using one of the
AWS SDKs.

For testing, you can use the API Gateway console to call an API using the API Gateway's TestInvoke
feature, which bypasses the Invoke URL and allows API testing before the API is deployed.
Alternatively, you can use the Postman Chrome extension to test a successfully deployed API, without
writing a script or a client.

Topics

• Prerequisites (p. 329)

• Obtain an API's Invoke URL in the API Gateway Console (p. 330)

• Test a Method Using the API Gateway Console (p. 330)

• Use Postman to Test an API (p. 331)

Prerequisites
• You must have already deployed the API in API Gateway. Follow the instructions in Deploying an

API (p. 230).

329

http://www.getpostman.com/

Amazon API Gateway Developer Guide
Obtain an API's Invoke URL in the API Gateway Console

Obtain an API's Invoke URL in the API Gateway
Console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API you want to call, choose Stages.

3. In the Stages pane, choose the name of the stage.

4. The URL displayed next to Invoke URL should look something like this, where my-api-id is the
identifier API Gateway assigns to your API, region-id is the AWS region identifier (for example,
us-east-1) where you deployed your API, and stage-name is the name of the stage for the API
you want to call:

https://my-api-id.execute-api.region-id.amazonaws.com/stage-name/
{resourcePath}

Depending on the method type you want to call and the tool you want to use, copy this URL to your
clipboard, and then paste and modify it to call the API from a web browser, a web debugging proxy tool
or the cURL command-line tool, or from your own API.

If you are not familiar with which method to call or the format you must use to call it, browse the list of
available methods by following the instructions in View a Methods List (p. 228).

To call the method directly from the API Gateway console, see Test a Method Using the
Console (p. 330).

For more options, contact the API owner.

Test a Method Using the API Gateway Console
Use the API Gateway console to test a method.

Topics

• Prerequisites (p. 330)

• Test a Method with the API Gateway Console (p. 330)

Prerequisites
• You must specify the settings for the methods you want to test. Follow the instructions in Set up

Method and Integration (p. 71).

Test a Method with the API Gateway Console
Important
Testing methods with the API Gateway console may result in changes to resources that
cannot be undone. Testing a method with the API Gateway console is the same as calling
the method outside of the API Gateway console. For example, if you use the API Gateway
console to call a method that deletes an API's resources, if the method call is successful, the
API's resources will be deleted.

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

330

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Use Postman to Test an API

2. In the box that contains the name of the API for the method, choose Resources.

3. In the Resources pane, choose the method you want to test.

4. In the Method Execution pane, in the Client box, choose TEST. Type values in any of the
displayed boxes (such as Query Strings, Headers, and Request Body).

For additional options you may need to specify, contact the API owner.

5. Choose Test. The following information will be displayed:

• Request is the resource's path that was called for the method.

• Status is the response's HTTP status code.

• Latency is the time between the receipt of the request from the caller and the returned
response.

• Response Body is the HTTP response body.

• Response Headers are the HTTP response headers.

Tip
Depending on the mapping, the HTTP status code, response body, and response
headers may be different from those sent from the Lambda function, HTTP proxy, or
AWS service proxy.

• Logs are the simulated Amazon CloudWatch Logs entries that would have been written if this
method were called outside of the API Gateway console.

Note
Although the CloudWatch Logs entries are simulated, the results of the method call are
real.

Use Postman to Test an API
Use the Postman Chrome extension is a convenient tool to test an API in API Gateway.

1. Launch Postman.

2. Enter the endpoint URL of a request in the address bar and choose the appropriate HTTP method
from the drop-down list to the left of the address bar.

3. If required, choose the Authorization tab. Choose AWS Signature for the authorization Type.
Enter your AWS IAM user's access key ID in the AccessKey input field. Enter your IAM user
secret key in SecretKey. Specify an appropriate AWS region that matches the region specified in
the invocation URL. Enter execute-api in Service Name.

4. Choose the Headers tab. Optionally, delete any existing headers. This can clear any stale settings
that may cause errors. Add any required custom headers. For example, if API keys are enabled,
you can set the x-api-key:{api_key} name/value pair here.

5. Choose Send to submit the request and receive a response.

For an example of using Postman, see Call an API with Custom authorization (p. 180).

331

http://www.getpostman.com

Amazon API Gateway Developer Guide
Log API Management Calls with CloudTrail

Monitoring and Troubleshooting in
API Gateway

Topics

• Log API management calls to Amazon API Gateway Using AWS CloudTrail (p. 332)

• Monitor API execution with Amazon CloudWatch (p. 334)

For API execution, API Gateway automatically reports to Amazon CloudWatch your API's execution
metrics on the API- and stage-levels. The metrics include statistics about caching, latency and
detected errors. You can also opt in for API Gateway to send to CloudWatch method-level metrics,
using the API Gateway console (p. 233) or calling the API Gateway REST API or one of its SDKs.
Based on these metrics, you can set CloudWatch custom alarms for troubleshooting any performance
issues of your APIs. For more information about CloudWatch, see the Amazon CloudWatch User
Guide.

For API management using API Gateway REST API, you can create AWS CloudTrail trails to log
events involved in the API Gateway REST API calls. You can use the logs to troubleshoot API creation,
deployment and updates. You can also use Amazon CloudWatch to monitor the CloudTrail logs. To
learn more about CloudTrail, see the AWS CloudTrail User Guide.

Note
CloudTrail logs API Gateway REST API calls an API developer or owner made against the
apigateway component, whereas CloudWatch logs API calls an API customer or client made
against the execute-api component of API Gateway.

Log API management calls to Amazon API
Gateway Using AWS CloudTrail

You can use AWS CloudTrail to capture API Gateway REST API calls in your AWS account and
deliver the log files to an Amazon S3 bucket you specify. Examples of these API calls include creating
a new API, resource, or method in API Gateway. CloudTrail captures such API calls from the API
Gateway console or from the API Gateway APIs directly. Using the information collected by CloudTrail,
you can determine which request was made to API Gateway, the source IP address from which
the request was made, who made the request, when it was made, and so on. To learn more about
CloudTrail, including how to configure and enable it, see the AWS CloudTrail User Guide.

332

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon API Gateway Developer Guide
API Gateway Information in CloudTrail

API Gateway Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to API Gateway actions are
tracked in log files. API Gateway records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

All of the API Gateway actions are logged and documented in the API Gateway REST API (p. 418).
For example, calls to create a new API, resource, or method in API Gateway generate entries in
CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon
S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by
using Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
so you can take action quickly. For more information, see Configuring Amazon SNS Notifications.

You can also aggregate API Gateway log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a
Single Amazon S3 Bucket.

Understanding API Gateway Log File Entries
CloudTrail log files can contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the
public API calls.

The following example shows a CloudTrail log entry that demonstrates the API Gateway get resource
action:

{
 Records: [
 {
 eventVersion: "1.03",
 userIdentity: {
 type: "Root",
 principalId: "AKIAI44QH8DHBEXAMPLE",
 arn: "arn:aws:iam::123456789012:root",
 accountId: "123456789012",
 accessKeyId: "AKIAIOSFODNN7EXAMPLE",
 sessionContext: {
 attributes: {
 mfaAuthenticated: "false",
 creationDate: "2015-06-16T23:37:58Z"
 }
 }
 },
 eventTime: "2015-06-17T00:47:28Z",
 eventSource: "apigateway.amazonaws.com",
 eventName: "GetResource",

333

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

Amazon API Gateway Developer Guide
Monitor API execution with Amazon CloudWatch

 awsRegion: "us-east-1",
 sourceIPAddress: "203.0.113.11",
 userAgent: "example-user-agent-string",
 requestParameters: {
 restApiId: "3rbEXAMPLE",
 resourceId: "5tfEXAMPLE",
 template: false
 },
 responseElements: null,
 requestID: "6d9c4bfc-148a-11e5-81b6-7577cEXAMPLE",
 eventID: "4d293154-a15b-4c33-9e0a-ff5eeEXAMPLE",
 readOnly: true,
 eventType: "AwsApiCall",
 recipientAccountId: "123456789012"
 },
 ... additional entries ...
]
}

Monitor API execution with Amazon CloudWatch
You can monitor API execution using CloudWatch, which collects and processes raw data from
API Gateway into readable, near real-time metrics. These statistics are recorded for a period of
two weeks, so that you can access historical information and gain a better perspective on how your
web application or service is performing. By default, API Gateway metric data is automatically sent
to CloudWatch in one-minute periods. For more information, see What Are Amazon CloudWatch,
Amazon CloudWatch Events, and Amazon CloudWatch Logs? in the Amazon CloudWatch User Guide.

The metrics reported by API Gateway provide information that you can analyze in different ways. The
list below shows some common uses for the metrics. These are suggestions to get you started, not a
comprehensive list.

• Monitor the IntegrationLatency metrics to measure the responsiveness of the back end.

• Monitor the Latency metrics to measure the overall responsiveness of your API calls.

• Monitor the CacheHitCount and CacheMissCount metrics to optimize cache capacities to achieve
a desired performance.

Topics

• Amazon API Gateway Dimensions and Metrics (p. 334)

• View CloudWatch Metrics with the API Dashboard in API Gateway (p. 336)

• View API Gateway Metrics in the CloudWatch Console (p. 336)

• Monitoring Tools in AWS (p. 337)

Amazon API Gateway Dimensions and Metrics
The metrics and dimensions that API Gateway sends to Amazon CloudWatch are listed below. For
more information, see Monitor API Execution with Amazon CloudWatch in the Amazon API Gateway
Developer Guide.

API Gateway Metrics

Amazon API Gateway sends metric data to CloudWatch every minute.

334

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/monitoring-cloudwatch.html

Amazon API Gateway Developer Guide
Amazon API Gateway Dimensions and Metrics

The AWS/ApiGateway namespace includes the following metrics.

Metric Description

4XXError The number of client-side errors captured

Unit: count

5XXError The number of server-side errors captured.

Unit: count

CacheHitCount The number of requests served from the API cache.

Unit: count

CacheMissCount The number of requests served from the back end
when API caching is enabled.

Unit: count

Count The number of calls to API methods.

Unit: count

IntegrationLatency The time between when API Gateway relays a request
to the back end and when it receives a response from
the back end.

Unit: millisecond

Latency The time between when API Gateway receives a
request from a client and when it returns a response to
the client.

Unit: millisecond

Dimensions for Metrics
You can use the dimensions in the following table to filter API Gateway metrics.

Dimension Description

ApiName Filters API Gateway metrics for an API of the specified
API name.

ApiName, Method, Resource, Stage Filters API Gateway metrics for an API method of the
specified API, stage, resource, and method.

API Gateway will not send such metrics unless
you have explicitly enabled detailed CloudWatch
metrics. You can do this in the console by selecting
Enable CloudWatch Metrics under a stage Settings
tab. Alternatively, you can call the stage:update
action of the API Gateway REST API to update the
metricsEnabled property to true.

Enabling such metrics will incur additional charges to
your account. For pricing information, see Amazon
CloudWatch Pricing.

335

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/
http://aws.amazon.com/cloudwatch/pricing/
http://aws.amazon.com/cloudwatch/pricing/

Amazon API Gateway Developer Guide
View Metrics with the API Dashboard

Dimension Description

ApiName, Stage Filters API Gateway metrics for an API stage of the
specified API and stage.

View CloudWatch Metrics with the API Dashboard in
API Gateway
You can use the API dashboard in the API Gateway Console to display the CloudWatch metrics of your
deployed API in API Gateway. These are shown as a summary of API activity over time.

Topics

• Prerequisites (p. 336)

• Examine API activities in the Dashboard (p. 336)

Prerequisites

1. You must have an API created in API Gateway. Follow the instructions in Creating an API (p. 70).

2. You must have the API deployed at least once. Follow the instructions in Deploying an
API (p. 230).

3. To get CloudWatch metrics for individual methods, you must have CloudWatch Logs enabled
for those methods in a given stage. The process is prescribed in Set Up a Stage (p. 233). Your
account will be charged for accessing method-level logs, but not for accessing API- or stage-level
logs.

Examine API activities in the Dashboard

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose the name of the API.

3. Under the selected API, choose Dashboard.

4. To display a summary of API activity over time, for Stage, choose the desired stage.

5. Use From and To to enter the date range.

6. Refresh, if needed, and view individual metrics displayed in separate graphs titled API
Calls, Integration Latency, Latency, 4xx Error and 5xx Error. The CacheHitCount and
CacheMissCount graphs will be displayed only if API caching has been enabled.

Tip
To examine method-level CloudWatch metrics, make sure that you have enabled
CloudWatch Logs on a method level. For more information about how to set up
method-level logging, see Set Up an API Deployment Stage with the API Gateway
Console (p. 233).

View API Gateway Metrics in the CloudWatch
Console
To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations
within each namespace.

336

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Monitoring Tools in AWS

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the region. From the navigation bar, select the region where your AWS
resources reside. For more information, see Regions and Endpoints.

3. In the navigation pane, choose Metrics.

4. In the CloudWatch Metrics by Category pane, under the metrics category for API Gateway,
select a metrics category, and then in the upper pane, scroll down to view the full list of metrics.

To view metrics using the AWS CLI

• At a command prompt, use the following command:

aws cloudwatch list-metrics --namespace "AWS/ApiGateway"

Monitoring Tools in AWS
AWS provides various tools that you can use to monitor API Gateway. You can configure some of
these tools to do the monitoring for you automatically, while other tools require manual intervention. We
recommend that you automate monitoring tasks as much as possible.

Automated Monitoring Tools in AWS

You can use the following automated monitoring tools to watch API Gateway and report when
something is wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over a
number of time periods. The action is a notification sent to an Amazon Simple Notification Service
(Amazon SNS) topic or Auto Scaling policy. CloudWatch alarms do not invoke actions simply
because they are in a particular state; the state must have changed and been maintained for
a specified number of periods. For more information, see Monitor API execution with Amazon
CloudWatch (p. 334).

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Monitoring Log Files in the Amazon CloudWatch User
Guide.

• Amazon CloudWatch Events – Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see Using Events in the Amazon CloudWatch User Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information, see
Working with CloudTrail Log Files in the AWS CloudTrail User Guide.

Manual Monitoring Tools

Another important part of monitoring API Gateway involves manually monitoring those items that the
CloudWatch alarms don't cover. The API Gateway, CloudWatch, and other AWS console dashboards
provide an at-a-glance view of the state of your AWS environment. We recommend that you also check
the log files on API execution.

• API Gateway dashboard shows the following statistics for a given API stage during a specified period
of time:

• API Calls

337

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

Amazon API Gateway Developer Guide
Monitoring Tools in AWS

• Cache Hit, only when API caching is enabled.

• Cache Miss, only when API caching is enabled.

• Latency

• Integration Latency

• 4XX Error

• 5XX Error

• The CloudWatch home page shows:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your AWS resource metrics

• Create and edit alarms to be notified of problems

Creating CloudWatch Alarms to Monitor API Gateway

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period you specify, and performs one or more
actions based on the value of the metric relative to a given threshold over a number of time periods.
The action is a notification sent to an Amazon SNS topic or Auto Scaling policy. Alarms invoke actions
for sustained state changes only. CloudWatch alarms do not invoke actions simply because they are in
a particular state; the state must have changed and been maintained for a specified number of periods.

338

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon API Gateway Developer Guide
Initialize AWS Marketplace Integration with API Gateway

Selling an API Gateway API through
AWS Marketplace

After you build, test, and deploy your API, you can package it in an API Gateway usage plan and sell
the plan as a Software as a Service (SaaS) product through AWS Marketplace. API buyers subscribing
to your product offering are billed by AWS Marketplace based on the number of requests made to the
usage plan (p. 212).

To sell your API on AWS Marketplace, you must set up the sales channel to integrate AWS
Marketplace with API Gateway. Generally speaking, this involves listing your product on AWS
Marketplace, setting up an IAM role with appropriate policies to allow API Gateway to send usage
metrics to AWS Marketplace, associating an AWS Marketplace product with an API Gateway usage
plan, and associating an AWS Marketplace buyer with an API Gateway API key. Details are discussed
in the following sections.

To enable your customers to buy your product on AWS Marketplace, you must register your developer
portal (an external application) with AWS Marketplace. The developer portal must handle the
subscription requests that are redirected from the AWS Marketplace console.

For more information about selling your API as a SaaS product on AWS Marketplace, see AWS
Marketplace SaaS Subscriptions - Seller Integration Guide.

Topics

• Initialize AWS Marketplace Integration with API Gateway (p. 339)

• Handle Customer Subscription to Usage Plans (p. 341)

Initialize AWS Marketplace Integration with API
Gateway

The following tasks are for one-time initialization of AWS Marketplace integration with API Gateway,
which enables you to sell your API as a SaaS product.

List a Product on AWS Marketplace
To list your usage plan as a SaaS product, submit a product load form through AWS Marketplace. The
product must contain a dimension named apigateway of the requests type. This dimension defines
the price-per-request and is used by API Gateway to meter requests to your API.

339

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan/
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
http://aws.amazon.com/marketplace/management/tour/

Amazon API Gateway Developer Guide
Create the Metering Role

Create the Metering Role
Create an IAM role named ApiGatewayMarketplaceMeteringRole with the following execution
policy and trust policy. This role allows API Gateway to send usage metrics to AWS Marketplace on
your behalf.

Execution Policy of the Metering Role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:BatchMeterUsage",
 "aws-marketplace:ResolveCustomer"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

Trusted Relationship Policy of the Metering Role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Associate Usage Plan with AWS Marketplace
Product
When you list a product on AWS Marketplace, you receive an AWS Marketplace product code. To
integrate API Gateway with AWS Marketplace, associate your usage plan with the AWS Marketplace
product code. You enable the association by setting the API Gateway UsagePlan's productCode field
to your AWS Marketplace product code, using the API Gateway console, the API Gateway REST API,
the AWS CLI for API Gateway, or AWS SDK for API Gateway. The following code example uses the
API Gateway REST API:

PATCH /usageplans/USAGE_PLAN_ID
Host: apigateway.region.amazonaws.com
Authorization: ...

{
 "patchOperations" : [{

340

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan/#productCode

Amazon API Gateway Developer Guide
Handle Customer Subscription to Usage Plans

 "path" : "/productCode",
 "value" : "MARKETPLACE_PRODUCT_CODE",
 "op" : "replace"
 }]
}

Handle Customer Subscription to Usage Plans
The following tasks are handled by your developer portal application.

When a customer subscribes to your product through AWS Marketplace, AWS Marketplace forwards
a POST request to the SaaS subscriptions URL that you registered when listing your product on AWS
Marketplace. The POST request comes with an x-amzn-marketplace-token header parameter
containing buyer information. Follow the instructions in the Register Application section of the SaaS
Seller Integration Guide to handle this redirect in your developer portal application.

Responding to a customer's subscribing request, AWS Marketplace sends a subscribe-success
notification to an Amazon SNS topic that you can subscribe to (See Step 6.4 of the SaaS Seller
Integration Guide). To accept the customer subscription request, you handle the subscribe-
success notification by creating or retrieving an API Gateway API key for the customer, associating
the customer's AWS Marketplace-provisioned customerId with the API keys, and then adding the API
key to your usage plan.

When the customer's subscription request completes, the developer portal application should present
the customer with the associated API key and inform the customer that the API key must be included in
the x-api-key header in requests to the API.

When a customer cancels a subscription to a usage plan, AWS Marketplace sends an unsubscribe-
success notification to the SNS topic. To complete the process of unsubscribing the customer, you
handle the unsubscribe-success notification by removing the customer's API keys from the usage
plan.

Authorize a Customer to Access a Usage Plan
To authorize access to your usage plan for a given customer, use the API Gateway API to fetch or
create an API key for the customer and add the API key to the usage plan.

The following example shows how to call the API Gateway REST API to create a new API key with a
specific AWS Marketplace customerId value (MARKETPLACE_CUSTOMER_ID).

POST apikeys HTTP/1.1
Host: apigateway.region.amazonaws.com
Authorization: ...

{
 "name" : "my_api_key",
 "description" : "My API key",
 "enabled" : "false",
 "stageKeys" : [{
 "restApiId" : "uycll6xg9a",
 "stageName" : "prod"
 }],
 "customerId" : "MARKETPLACE_CUSTOMER_ID"
}

341

https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf

Amazon API Gateway Developer Guide
Associate a Customer with an API Key

The following example shows how to get an API key with a specific AWS Marketplace customerId
value (MARKETPLACE_CUSTOMER_ID).

GET apikeys?customerId=MARKETPLACE_CUSTOMER_ID HTTP/1.1
Host: apigateway.region.amazonaws.com
Authorization: ...

To add an API key to a usage plan, create a UsagePlanKey with the API key for the relevant usage
plan. The following example shows how to accomplish this using the API Gateway REST API, where
n371pt is the usage plan ID and q5ugs7qjjh is an example API keyId returned from the preceding
examples.

POST /usageplans/n371pt/keys HTTP/1.1
Host: apigateway.region.amazonaws.com
Authorization: ...

{
 "keyId": "q5ugs7qjjh",
 "keyType": "API_KEY"
}

Associate a Customer with an API Key
You must update the ApiKey's customerId field to the AWS Marketplace customer ID of the
customer. This associates the API key with the AWS Marketplace customer, which enables metering
and billing for the buyer. The following code example calls the API Gateway REST API to do that.

PATCH /apikeys/q5ugs7qjjh
Host: apigateway.region.amazonaws.com
Authorization: ...

{
 "patchOperations" : [{
 "path" : "/customerId",
 "value" : "MARKETPLACE_CUSTOMER_ID",
 "op" : "replace"
 }]
}

342

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/api-key/

Amazon API Gateway Developer Guide
Create an API as a Lambda Proxy

Tutorials for Using Amazon API
Gateway

The following tutorials provide hands-on exercises to help you learn about API Gateway.

Topics

• Create an API Gateway API as an AWS Lambda Proxy (p. 343)

• Create an API as an Amazon S3 Proxy (p. 359)

• Create an API Gateway API as an Amazon Kinesis Proxy (p. 388)

Create an API Gateway API as an AWS Lambda
Proxy

Note
To integrate your API Gateway API with Lambda, you must choose a region where both the
API Gateway and Lambda services are available. For region availability, see Regions and
Endpoints.

If your API makes only synchronous calls to Lambda functions in the back end, you should use
the Lambda Function integration type. For instructions, see Build an API to Expose a Lambda
Function (p. 44).

If your API makes asynchronous calls to Lambda functions, you must use the AWS Service Proxy
integration type described in this section. The instructions apply to requests for synchronous Lambda
function invocations as well. For the asynchronous invocation, you must explicitly add the X-Amz-
Invocation-Type:Event header to the integration request. For the synchronous invocation, you can
add the X-Amz-Invocation-Type:RequestResponse header to the integration request or leave it
unspecified. The following example shows the integration request of an asynchronous Lambda function
invocation:

343

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide
Create an API as a Lambda Proxy

POST /2015-03-31/functions/FunctionArn/invocations?Qualifier=Qualifier
 HTTP/1.1
X-Amz-Invocation-Type: Event
...
Authorization: ...
Content-Type: application/json
Content-Length: PayloadSize

Payload

In this example, FunctionArn is the ARN of the Lambda function to be invoked. The
Authorization header is required by secure invocation of Lambda functions over HTTPS. For more
information, see the Invoke action in the AWS Lambda Developer Guide.

To illustrate how to create and configure an API as an AWS service proxy for Lambda, we will create
a Lambda function (Calc) that performs addition (+), subtraction (-), multiplication (*), and division (/).
When a client submits a method request to perform any of these operations, API Gateway will post the
corresponding integration request to call the specified Lambda function, passing the required input (two
operands and one operator) as a JSON payload. A synchronous call will return the result, if any, as the
JSON payload. An asynchronous call will return no data.

The API can expose a GET or POST method on the /calc resource to invoke the Lambda function.
With the GET method, a client supplies the input to the back-end Lambda function through three
query string parameters (operand1, operand2, and operator). These are mapped to the JSON
payload of the integration request. With the POST method, a client provides the input to the Lambda
function as a JSON payload of the method request, which is then passed through to the integration
request. Alternatively, the API can expose a GET method on the /calc/{operand1}/{operand2}/
{operator} resource. With this method, the client specifies the Lambda function input as the values
of the path parameters. Parameter mappings and mapping templates are used to translate the method
request data into the Lambda function input and to translate the output from the integration responses
to the method response.

This section provides more detailed discussions for the following tasks:

• Create the Calc Lambda function to implement the arithmetic operations, accepting and returning
JSON-formatted input and output.

• Expose GET on the /calc resource to invoke the Lambda function, supplying the input as query
strings.

• Expose POST on the /calc resource to invoke the Lambda function, supplying the input in the
payload.

• Expose GET on the /calc/{operand1}/{operand2}/{operator} resource to invoke the
Lambda function, specifying the input in the path parameters.

You can import the sample API as a Lambda proxy from the Swagger Definitions of a Sample API as
Lambda Proxy (p. 356). To do so, copy the Swagger definition, paste it into a file, and use the API
Gateway Swagger Importer. For more information, see Getting Started with the API Gateway Swagger
Importer.

To use the API Gateway console to create the API, you must first sign up for an AWS account.

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.

344

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://github.com/awslabs/aws-apigateway-importer
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://aws.amazon.com/

Amazon API Gateway Developer Guide
Set Up an IAM Role and Policy for

an API to Invoke Lambda Functions

2. Follow the online instructions.

To allow the API to invoke Lambda functions, you must have an IAM role that has appropriate IAM
policies attached to it. The next section describes how to verify and to create, if necessary, the required
IAM role and policies.

Topics

• Set Up an IAM Role and Policy for an API to Invoke Lambda Functions (p. 345)

• Create a Lambda Function in the Back End (p. 346)

• Create API Resources for the Lambda Function (p. 347)

• Create a GET Method with Query Strings to Call the Lambda Function (p. 347)

• Create a POST Method with a JSON Payload to Call the Lambda Function (p. 350)

• Create a GET Method with Path Parameters to Call the Lambda Function (p. 352)

• A Sample API as a Lambda Proxy in Swagger with API Gateway Extensions (p. 356)

Set Up an IAM Role and Policy for an API to Invoke
Lambda Functions
The API will use the InvokeFunction action to call a Lambda function. At minimum, you must attach the
following IAM policy to an IAM role for API Gateway to assume the policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "*"
 }
]
}

If you do not enact this policy, the API caller will receive a 500 Internal Server Error response. The
response contains the "Invalid permissions on Lambda function" error message. For a complete list of
error messages returned by Lambda, see the Invoke topic.

An API Gateway assumable role is an IAM role with the following trusted relationship:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"

345

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide
Create a Lambda Function in the Back End

 }
]
}

Create a Lambda Function in the Back End
Copy the following Lambda function and paste it into the code editor in the Lambda console.

exports.handler = function(event, context) {
 //console.log('Received event:', JSON.stringify(event, null, 2));
 var res = {};
 res.a = event.a;
 res.b = event.b;
 res.op = event.op;

 switch(event.op)
 {
 case "+":
 res.c = Number(event.a) + Number(event.b);
 break;
 case "-":
 res.c = Number(event.a) - Number(event.b);
 break;
 case "*":
 res.c = Number(event.a) * Number(event.b);
 break;
 case "/":
 res.c = Number(event.b)===0 ? NaN : Number(event.a) /
 Number(event.b);
 break;
 default:
 res.c = "Invalid op";
 }
 context.succeed(res);
};

This function requires two operands (a and b) and an operator (op) from the event input parameter.
The input is a JSON object of the following format:

{
 "a": "Number" | "String",
 "b": "Number" | "String",
 "op": "String"
}

This function returns the calculated result (c) and the input. For an invalid input, the function returns
either the null value or the "Invalid op" string as the result. The output is of the following JSON format:

{

346

Amazon API Gateway Developer Guide
Create API Resources for the Lambda Function

 "a": "Number",
 "b": "Number",
 "op": "String",
 "c": "Number" | "String"
}

You should test the function in the Lambda console before integrating it with the API, which is created
next.

Create API Resources for the Lambda Function
The following procedure describes how to create API resources for the Lambda function.

To create API resources for Lambda functions

1. In the API Gateway console, create an API named LambdaGate. You can create child resources
to represent different Lambda functions; in the following, you will create a single child resource of
the API root.

2. For the simple calculator function you created, create the /calc resource off the API's root. You
will expose the GET and POST methods on this resource for the client to invoke the back-end
Lambda function, supplying the required input as query string parameters (to be declared as ?
operand1=...&operand2=...&operator=...) in the GET request and as a JSON payload in
the POST request, respectively.

You will also create the /calc/{operand1}/{operand2}/{operator} to expose the GET method
to invoke the Lambda function and to supply the required input as the three path parameters
(operand1, operand2, and operator).

We will show how to apply API Gateway request and response data mapping to normalize the
input to the back end Lambda function.

Create a GET Method with Query Strings to Call the
Lambda Function
Use the following steps to expose a GET method with query strings to call a Lambda function.

To set up the GET method with query strings to invoke the Lambda function

1. Choose Create Method in the API Gateway console to create a GET method for the API's /calc
resource.

In the method's Set up pane, configure the method with the following settings.

347

Amazon API Gateway Developer Guide
Create a GET Method with Query

Strings to Call the Lambda Function

You must use the POST method for the integration request when calling a Lambda function,
although you can use any other HTTP verbs for the method request.

The Path override value must the URL path of the Lambda Invoke action. The path is of the
following format:

/2015-03-31/functions/FunctionName/invocations?Qualifier=version

where FunctionName is the ARN of the Lambda function to be invoked. The optional Qualifier
query string can be used to select a version of the function. If it not specified, the $LATEST version
will be used.

You can also add the X-Amz-Invocation-Type: Event | RequestReponse | DryRun
header to have the action invoked asynchronously, as request and response, or as a test run,
respectively. If the header is not specified, the action will be invoked as request and response. For
the example shown here, this header has the default value.

We will come back to setting up Mapping Templates after setting up the query string parameters
to hold the input data for the Lambda function.

2. In Method Request for the GET method on /calc, expand the URL Query String Parameters
section. Choose Add query string to add the operand1, operand2, and operator query string
parameters.

348

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide
Create a GET Method with Query

Strings to Call the Lambda Function

3. Go back to Integration Request. Expand the Mapping Templates section. If necessary, in
Content-Type, under application/json, choose Add mapping template. Type the following in the
Mapping template editor:

{
 "a": "$input.params('operand1')",
 "b": "$input.params('operand2')",
 "op": "$input.params('operator')"
}

349

Amazon API Gateway Developer Guide
Create a POST Method with a JSON
Payload to Call the Lambda Function

This template maps the three query string parameters declared in Method Request into
designated property values of the JSON object as the input to the back-end Lambda function. The
transformed JSON object will be included as the integration request payload.

4. You can now choose Test to verify that the GET method on the /calc resource has been properly
set up to invoke the Lambda function.

Create a POST Method with a JSON Payload to Call
the Lambda Function
The following steps describe how to expose a POST method with a JSON payload.

To set up the POST method with a JSON payload to invoke a Lambda function

1. Choose Create Method in the API Gateway console to create a POST method for the
LambdaGate API's /calc resource.

In the method's Set Up panel, configure the POST method with the following settings.

350

Amazon API Gateway Developer Guide
Create a POST Method with a JSON
Payload to Call the Lambda Function

Using a POST request with a JSON payload is the simplest way to invoke a Lambda function,
because no mappings are needed.

2. You can now choose Test to verify the POST method works as expected. The following input:

{
 "a": 1,
 "b": 2,
 "op": "+"
}

should produce the following output:

{
 "a": 1,
 "b": 2,
 "op": "+",
 "c": 3
}

If you would like to implement POST as an asynchronous call, you can add an
InvocationType:Event header in the method request and map it to the X-Amz-
Invocation-Type header in the integration request, using the header mapping expression
of method.request.header.InvocationType. You must inform the clients to include the
InvocationType:Event header in the method request. Alternatively, you can set the X-Amz-

351

Amazon API Gateway Developer Guide
Create a GET Method with Path

Parameters to Call the Lambda Function

Invocation-Type header with the 'Event' string literal in the integration request, without requiring
the client to include the header. The asynchronous call will return an empty response, instead.

Create a GET Method with Path Parameters to Call
the Lambda Function
The following steps describe how to set up the GET method with path parameters to call the Lambda
function.

To set up the GET method with URL path parameters to invoke the Lambda function

1. Choose Create Method in the API Gateway console to create a GET method for the API's /calc/
{operand1}/{operand2}/{operator} resource.

In the method's Set up pane, configure this GET method with the following settings.

Next, we will set up Mapping Templates to translate the URL path parameters into the integration
request JSON payload as the input to the Lambda function.

2. In Method Request for the GET method on /calc/{operand1}/{operand2}/{operator}, expand the
Request Paths section to verify that the path parameters are there.

352

Amazon API Gateway Developer Guide
Create a GET Method with Path

Parameters to Call the Lambda Function

3. Go back to Integration Request. Expand the Mapping Templates section. If necessary, in
Content-Type, under application/json, choose Add mapping template.

Type the following in the Mapping Template editor:

{
 "a": "$input.params('operand1')",

353

Amazon API Gateway Developer Guide
Create a GET Method with Path

Parameters to Call the Lambda Function

 "b": "$input.params('operand2')",
 "op":
 #if($input.params('operator')=='%2F')"/"#{else}"$input.params('operator')"#end

}

This template maps the three URL path parameters, declared when the /calc/{operand1}/
{operand2}/{operator} resource was created, into designated property values of the JSON
object. Because URL paths must be URL-encoded, the division operator must be specified as %2F
instead of /. This template maps these translations as well. The transformed JSON object will be
included as the integration request payload.

4. As another exercise, we demonstrate how to translate the JSON returned from the Lambda
function to show the output as a plain text string to the caller. This involves resetting the method
request's Content-Type header to "text/plain" and providing a mapping template to translate the
JSON output into a plain string.

First, make sure that Content-Type header is included in the Response Headers for 200 section
in Method Response.

5. In Integration Response, expand the 200 method response entry. Expand the Header Mappings
section. In Mapping value for Content-Type, type 'text/plain'. This header mapping
expression overrides the Content-Type header with a literal string, which must be enclosed within
a pair of single quotes.

354

Amazon API Gateway Developer Guide
Create a GET Method with Path

Parameters to Call the Lambda Function

Next, expand the Mapping Templates section, highlight the application/json entry under the
Content-Type header (of integration response), open the Mapping template editor, enter and
save the following mapping script:

$input.path('$.a') $input.path('$.op') $input.path('$.b') =
 $input.path('$.c')

6. Choose Test to verify the GET method on the /calc/{operand1}/{operand2}/{operator} works as
expected. The following request URL:

/calc/1/2/%2F

should produce the following plain text output:

1 / 2 = 0.5

Note
As part of a URL, the division operator (/) is URL-encoded (%2F).

7. After testing the API using the Test Invoke in the API Gateway console, you must deploy the API
to make it public available. If you update the API, such as adding, modifying or deleting a resource
or method, updating any data mapping, you must redeploy the API to make the new features or
updates available.

355

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as Lambda Proxy

A Sample API as a Lambda Proxy in Swagger with
API Gateway Extensions

{
 "swagger": "2.0",
 "info": {
 "version": "2016-02-23T05:35:54Z",
 "title": "LambdaGate"
 },
 "host": "a123456789.execute-api.us-east-1.amazonaws.com",
 "basePath": "/test",
 "schemes": [
 "https"
],
 "paths": {
 "/calc": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "operand2",
 "in": "query",
 "required": false,
 "type": "string"
 },
 {
 "name": "operator",
 "in": "query",
 "required": false,
 "type": "string"
 },
 {
 "name": "operand1",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "operand_1": {
 "type": "string"
 },
 "operand_2": {
 "type": "string"
 },
 "operator": {
 "type": "string"
 }

356

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as Lambda Proxy

 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.operator":
 "integration.response.body.op",
 "method.response.header.operand_2":
 "integration.response.body.b",
 "method.response.header.operand_1":
 "integration.response.body.a"
 },
 "responseTemplates": {
 "application/json": "#set($res= $input.path('$'))\n{\n
 \"result\": \"$res.a, $res.b, $res.op => $res.c\"\n}"
 }
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"a\":
 \"$input.params('operand1')\",\n \"b\": \"$input.params('operand2')\",
 \n \"op\": \"$input.params('operator')\" \n}"
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path//2015-03-31/
functions/arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "httpMethod": "POST",
 "type": "aws"
 }
 },
 "post": {
 "produces": [
 "application/json"
],
 "parameters": [],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {}
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "__passthrough__"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path//2015-03-31/
functions/arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",

357

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample API as Lambda Proxy

 "httpMethod": "POST",
 "type": "aws"
 }
 }
 },
 "/calc/{operand1}/{operand2}/{operator}": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "operand2",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "operator",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "operand1",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "'text/plain'"
 },
 "responseTemplates": {
 "application/json": "\"$input.path('$.a') $input.path('$.op')
 $input.path('$.b') = $input.path('$.c')\""
 }
 }
 },
 "requestTemplates": {

358

Amazon API Gateway Developer Guide
Create an API as an Amazon S3 Proxy

 "application/json": "\n{\n \"a\":
 \"$input.params('operand1')\",\n \"b\": \"$input.params('operand2')\",
\n \"op\": #if($input.params('operator')=='%2F')\"/
\"#{else}\"$input.params('operator')\"#end\n \n}"
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path//2015-03-31/
functions/arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "httpMethod": "POST",
 "type": "aws"
 }
 }
 }
 },
 "definitions": {
 "Empty": {
 "type": "object"
 }
 }
}

Create an API as an Amazon S3 Proxy
As an example to showcase using an API in API Gateway to proxy Amazon S3, this section describes
how to create and configure an API to expose the following Amazon S3 operations:

• Expose GET on the API's root resource to list all of the Amazon S3 buckets of a caller.

• Expose GET on a Folder resource to view a list of all of the objects in an Amazon S3 bucket.

• Expose PUT on a Folder resource to add a bucket to Amazon S3.

• Expose DELETE on a Folder resource to remove a bucket from Amazon S3.

• Expose GET on a Folder/Item resource to view or download an object from an Amazon S3 bucket.

• Expose PUT on a Folder/Item resource to upload an object to an Amazon S3 bucket.

• Expose HEAD on a Folder/Item resource to get object metadata in an Amazon S3 bucket.

• Expose DELETE on a Folder/Item resource to remove an object from an Amazon S3 bucket.

Note
To integrate your API Gateway API with Amazon S3, you must choose a region where both
the API Gateway and Amazon S3 services are available. For region availability, see Regions
and Endpoints.

You may want to import the sample API as an Amazon S3 proxy, as shown in Swagger Definitions of
the Sample API as an Amazon S3 Proxy (p. 378). For instructions on how to import an API using the
Swagger definition, see Import an API (p. 142).

To use the API Gateway console to create the API, you must first sign up for an AWS account.

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.

2. Follow the online instructions.

Topics

359

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://aws.amazon.com/

Amazon API Gateway Developer Guide
Set Up IAM Permissions for the

API to Invoke Amazon S3 Actions

• Set Up IAM Permissions for the API to Invoke Amazon S3 Actions (p. 360)

• Create API Resources to Represent Amazon S3 Resources (p. 361)

• Expose an API Method to List the Caller's Amazon S3 Buckets (p. 362)

• Expose API Methods to Access an Amazon S3 Bucket (p. 369)

• Expose API Methods to Access an Amazon S3 Object in a Bucket (p. 372)

• Call the API Using a REST API Client (p. 374)

• Swagger Definitions of the Sample API as an Amazon S3 Proxy (p. 378)

Set Up IAM Permissions for the API to Invoke
Amazon S3 Actions
To allow the API to invoke required Amazon S3 actions, you must have appropriate IAM policies
attached to an IAM role. The next section describes how to verify and to create, if necessary, the
required IAM role and policies.

For your API to view or list Amazon S3 buckets and objects, you can use the IAM-
provided AmazonS3ReadOnlyAccess policy in the IAM role. The ARN of this policy is
arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess, which is as shown as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": "*"
 }
]
}

This policy document states that any of the Amazon S3 Get* and List* actions can be invoked on
any of the Amazon S3 resources.

For your API to update Amazon S3 buckets and objects , you can use a custom policy for any of the
Amazon S3 Put* actions as shown as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:Put*",
 "Resource": "*"
 }
]
}

For your API to work with Amazon S3 Get*, List* and Put* actions, you can add the above read-
only and put-only policies to the IAM role.

360

Amazon API Gateway Developer Guide
Create API Resources to

Represent Amazon S3 Resources

For your API to invoke the Amazon S3 Post* actions, you must use an Allow policy for the s3:Post*
actions in the IAM role. For a complete list of Amazon S3 actions, see Specifying Amazon S3
Permissions in a Policy.

For your API to create, view, update, and delete buckets and objects in Amazon S3,
you can use the IAM -provided AmazonS3FullAccess policy in the IAM role. The ARN is
arn:aws:iam::aws:policy/AmazonS3FullAccess.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": s3:*,
 "Resource": "*"
 }
]
}

Having chosen the desired IAM policies to use, create an IAM role and attach to it the policies. The
resulting IAM role must contain the following trust policy for API Gateway to assume this role at
runtime.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

When using the IAM console to create the role, choose the Amazon API Gateway role type to ensure
that this trust policy is automatically included.

Create API Resources to Represent Amazon S3
Resources
We will use the API's root (/ resource as the container of an authenticated caller's Amazon S3 buckets.
We will also create a Folder and Item resources to represent a particular Amazon S3 bucket and a
particular Amazon S3 object, respectively. The folder name and object key will be specified, in the form
of path parameters as part of a request URL, by the caller.

To create an API resource that exposes the Amazon S3 service features

1. In the API Gateway console, create an API named MyS3. This API's root resource (/) represents
the Amazon S3 service.

2. Under the API's root resource, create a child resource named Folder and set the required
Resource Path as /{folder}.

361

http://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html

Amazon API Gateway Developer Guide
Expose an API Method to List

the Caller's Amazon S3 Buckets

3. For the API's Folder resource, create an Item child resource. Set the required Resource Path as
/{item}.

Expose an API Method to List the Caller's Amazon
S3 Buckets
Getting the list of Amazon S3 buckets of the caller involves invoking the GET Service action on
Amazon S3. On the API's root resource, (/), create the GET method. Configure the GET method to
integrate with the Amazon S3, as follows.

To create and initialize the API's GET / method

1. Choose Create method on the root node (/) from the Actions drop-down menu at the top-right
corner of the Resources panel.

2. Choose the GET from the drop-down list of HTTP verbs, and choose the check-mark icon to start
creating the method.

362

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html

Amazon API Gateway Developer Guide
Expose an API Method to List

the Caller's Amazon S3 Buckets

3. In the / - GET - Setup pane, choose AWS Service Proxy for the Integration type.

4. From the list, choose an AWS Region.

5. From AWS Service, choose S3.

6. From HTTP method, choose GET.

7. For Action Type, choose Use path override.

8. (Optional) In Path override type /.

9. Copy the previously created IAM role's ARN (from the IAM console) and paste it into Execution
role.

10. Choose Save to finish setting up this method.

This setup integrates the front-end GET https://your-api-host/stage/ request with the back-
end GET https://your-s3-host/.

Note
After the initial setup, you can modify these settings in the Integration Request page of the
method.

363

Amazon API Gateway Developer Guide
Expose an API Method to List

the Caller's Amazon S3 Buckets

To control who can call this method of our API, we turn on the method authorization flag and set it to
AWS_IAM.

To enable IAM to control access to the GET / method

1. From the Method Execution, choose Method Request.

2. Choose the pencil icon next to Authorization

3. Choose AWS_IAM from the drop-down list.

4. Choose the check-mark icon to save the setting.

For our API to return successful responses and exceptions properly to the caller, let us declare the
200, 400 and 500 responses in Method Response. We use the default mapping for 200 responses
so that back-end responses of the status code not declared here will be returned to the caller as 200
ones.

To declare response types for the GET / method

1. From the Method Execution pane, choose the Method Response box. The API Gateway
declares the 200 response by default.

2. Choose Add response, enter 400 in the input text box, and choose the check-mark to finish the
declaration.

3. Repeat the above step to declare the 500 response type. The final setting is shown as follows:

364

Amazon API Gateway Developer Guide
Expose an API Method to List

the Caller's Amazon S3 Buckets

Because the successful integration response from Amazon S3 returns the bucket list as an XML
payload and the default method response from API Gateway returns a JSON payload, we must map
the back-end Content-Type header parameter value to the front-end counterpart. Otherwise, the client
will receive application/json for the content type when the response body is actually an XML
string. The following procedure shows how to set this up. In addition, we also want to display to the
client other header parameters, such as Date and Content-Length.

To set up response header mappings for the GET / method

1. In the API Gateway console, choose Method Response. Add the Content-Type header for the
200 response type.

365

Amazon API Gateway Developer Guide
Expose an API Method to List

the Caller's Amazon S3 Buckets

2. In Integration Response, for Content-Type, type integration.response.header.Content-
Type for the method response.

366

Amazon API Gateway Developer Guide
Expose an API Method to List

the Caller's Amazon S3 Buckets

With the above header mappings, API Gateway will translate the Date header from the back end
to the Timestamp header for the client.

3. Still in Integration Response, choose Add integration response, type an appropriate regular
expression in the HTTP status regex text box for a remaining method response status. Repeat
until all the method response status are covered.

367

Amazon API Gateway Developer Guide
Expose an API Method to List

the Caller's Amazon S3 Buckets

As a good practice, let us test our API we have configured so far.

Test the GET method on the API root resource

1. Go back to Method Execution, choose Test from the Client box.

2. Choose Test in the GET / - Method Test pane. An example result is shown as follows.

368

Amazon API Gateway Developer Guide
Expose API Methods to Access an Amazon S3 Bucket

Note
To use the API Gateway console to test the API as an Amazon S3 proxy, make sure that the
targeted S3 bucket is from a different region from the API's region. Otherwise, you may get a
500 Internal Server Error response. This limitation does not apply to any deployed API.

Expose API Methods to Access an Amazon S3
Bucket
To work with an Amazon S3 bucket, we expose the GET, PUT, and DELETE methods on the /
{folder} resource to list objects in a bucket, create a new bucket, and delete an existing bucket. The
instructions are similar to those prescribed in Expose an API Method to List the Caller's Amazon S3
Buckets (p. 362). In the following discussions, we outline the general tasks and highlight relevant
differences.

To expose GET, PUT and DELETE methods on a folder resource

1. On the /{folder} node from the Resources tree, create the DELETE, GET and PUT methods, one
at a time.

2. Set up the initial integration of each created method with its corresponding Amazon S3 endpoints.
The following screen shot illustrates this setting for the PUT /{folder} method. For the
DELETE /{folder} and GET /{folder} method, replace the PUT value of HTTP method by
DELETE and GET, respectively.

369

Amazon API Gateway Developer Guide
Expose API Methods to Access an Amazon S3 Bucket

Notice that we used the {bucket} path parameter in the Amazon S3 endpoint URLs to specify
the bucket. We will need to map the {folder} path parameter of the method requests to the
{bucket} path parameter of the integration requests.

3. To map {folder} to {bucket}:

a. Choose Method Execution and then Integration Request.

b. Expand URL Path Parameters and choose Add path

c. Type bucket in the Name column and method.request.path.folder in the Mapped
from column. Choose the check-mark icon to save the mapping.

4. In Method Request, add the Content-Type to the HTTP Request Headers section.

370

Amazon API Gateway Developer Guide
Expose API Methods to Access an Amazon S3 Bucket

This is mostly needed for testing, when using the API Gateway console, when you must specify
application/xml for an XML payload.

5. In Integration Request, set up the following header mappings, following the instructions
described in Expose an API Method to List the Caller's Amazon S3 Buckets (p. 362).

The x-amz-acl header is for specifying access control on the folder (or the corresponding
Amazon S3 bucket). For more information, see Amazon S3 PUT Bucket Request. The
Expect:'100-continue' header ensures that a request payload is submitted only when the
request parameters are validated.

6. To test the PUT method, choose Test in the Client box from Method Execution, and enter the
following as input to the testing:

a. In folder, type a bucket name,

b. For the Content-Type header, type application/xml.

c. In Request Body, provide the bucket region as the location constraint, declared in an XML
fragment as the request payload. For example,

<CreateBucketConfiguration xmlns="http://s3.amazonaws.com/
doc/2006-03-01/">
 <LocationConstraint>us-west-2</LocationConstraint>
</CreateBucketConfiguration>

371

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html#RESTBucketPUT-requests

Amazon API Gateway Developer Guide
Expose API Methods to Access

an Amazon S3 Object in a Bucket

7. Repeat the preceding steps to create and configure the GET and DELETE method on the API's /
{folder} resource.

The above examples illustrate how to create a new bucket in the specified region, to view the list of
objects in the bucket, and to delete the bucket. Other Amazon S3 bucket operations allow you work
with the metadata or properties of the bucket. For example, you can set up your API to call the Amazon
S3's PUT /?notification action to set up notifications on the bucket, to call PUT /?acl to set an access
control list on the bucket, etc. The API set up is similar, except for that you must append appropriate
query parameters to the Amazon S3 endpoint URLs. At run time, you must provide the appropriate
XML payload to the method request. The same can be said about supporting the other GET and
DELETE operations on a Amazon S3 bucket. For more information on possible &S3; actions on a
bucket, see Amazon S3 Operations on Buckets.

Expose API Methods to Access an Amazon S3
Object in a Bucket
Amazon S3 supports GET, DELETE, HEAD, OPTIONS, POST and PUT actions to access and
manage objects in a given bucket. For the complete list of supported actions, see Amazon S3
Operations on Objects.

In this tutorial, we expose the PUT Object operation, the GET Object operation, HEAD Object
operation, and the DELETE Object operation through the API methods of PUT /{folder}/
{item}, GET /{folder}/{item}, HEAD /{folder}/{item} and DELETE /{folder}/{item},
respectively.

The API setups for the PUT, GET and DELETE methods on /{folder}/{item} are the
similar to those on /{folder}, as prescribed in Expose API Methods to Access an Amazon S3
Bucket (p. 369). One major difference is that the additional path parameter of {object} is appended
to the method request URL and this path parameter is mapped to the Amazon S3 endpoint URL path
parameter of {item} in the back end.

372

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html#RESTBucketPUTnotification-requests
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html#RESTBucketPUTacl-requests
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketOps.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectOps.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectOps.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html

Amazon API Gateway Developer Guide
Expose API Methods to Access

an Amazon S3 Object in a Bucket

The same is true for the GET and DELETE methods.

As an illustration, the following screen shot shows the output when testing the GET method on a
{folder}/{item} resource using the API Gateway console. The request correctly returns the plain
text of ("Welcome to README.txt") as the content of the specified file (README.txt) in the given
Amazon S3 bucket (apig-demo).

373

Amazon API Gateway Developer Guide
Call the API Using a REST API Client

Call the API Using a REST API Client
To provide an end-to-end tutorial, we now show how to call the API using Postman, which supports the
AWS IAM authorization.

To call our Amazon S3 proxy API using Postman

1. Deploy or redeploy the API. Make a note of the base URL of the API that is displayed next to
Invoke URL at the top of the Stage Editor.

2. Launch Postman.

3. Choose Authorization and then choose AWS Signature. Type your IAM user's Access Key ID
and Secret Access Key into the AccessKey and SecretKeyinput fields, respectively. Type the
AWS region to which your API is deployed in the AWS Region text box. Type execute-api in
the Service Name input field.

374

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Call the API Using a REST API Client

You can create a pair of the keys from the Security Credentials tab from your IAM user account
in the IAM Management Console.

4. To add a bucket named apig-demo-5 to your Amazon S3 account in the us-west-2 region:

Note
Be sure that the bucket name must be globally unique.

a. Choose PUT from the drop-down method list and type the method URL (https://api-
id.execute-api.aws-region.amazonaws.com/stage/folder-name

b. Set the Content-Type header value as application/xml. You may need to delete any
existing headers before setting the content type.

375

Amazon API Gateway Developer Guide
Call the API Using a REST API Client

c. Choose Body menu item and type the following XML fragment as the request body:

<CreateBucketConfiguration>
 <LocationConstraint>us-west-2</LocationConstraint>
</CreateBucketConfiguration>

d. Choose Send to submit the request. If successful, you should receive a 200 OK response
with an empty payload.

5. To add a text file to a bucket, follow the instructions above. If you specify a bucket name of apig-
demo-5 for {folder} and a file name of Readme.txt for {item} in the URL and provide a text
string of Hello, World! as the request payload, the request becomes

PUT /S3/apig-demo-5/Readme.txt HTTP/1.1
Host: 9gn28ca086.execute-api.us-east-1.amazonaws.com
Content-Type: application/xml
X-Amz-Date: 20161015T062647Z
Authorization: AWS4-HMAC-SHA256 Credential=access-
key-id/20161015/us-east-1/execute-api/aws4_request,
 SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=ccadb877bdb0d395ca38cc47e18a0d76bb5eaf17007d11e40bf6fb63d28c705b
Cache-Control: no-cache
Postman-Token: 6135d315-9cc4-8af8-1757-90871d00847e

Hello, World!

If everything goes well, you should receive a 200 OK response with an empty payload.

6. To get the content of the Readme.txt file we just added to the apig-demo-5 bucket, do a GET
request like the following one:

376

Amazon API Gateway Developer Guide
Call the API Using a REST API Client

GET /S3/apig-demo-5/Readme.txt HTTP/1.1
Host: 9gn28ca086.execute-api.us-east-1.amazonaws.com
Content-Type: application/xml
X-Amz-Date: 20161015T063759Z
Authorization: AWS4-HMAC-SHA256 Credential=access-
key-id/20161015/us-east-1/execute-api/aws4_request,
 SignedHeaders=content-type;host;x-amz-date,
 Signature=ba09b72b585acf0e578e6ad02555c00e24b420b59025bc7bb8d3f7aed1471339
Cache-Control: no-cache
Postman-Token: d60fcb59-d335-52f7-0025-5bd96928098a

If successful, you should receive a 200 OK response with the Hello, World! text string as the
payload.

7. To list items in the apig-demo-5 bucket, submit the following request:

GET /S3/apig-demo-5 HTTP/1.1
Host: 9gn28ca086.execute-api.us-east-1.amazonaws.com
Content-Type: application/xml
X-Amz-Date: 20161015T064324Z
Authorization: AWS4-HMAC-SHA256 Credential=access-
key-id/20161015/us-east-1/execute-api/aws4_request,
 SignedHeaders=content-type;host;x-amz-date,
 Signature=4ac9bd4574a14e01568134fd16814534d9951649d3a22b3b0db9f1f5cd4dd0ac
Cache-Control: no-cache
Postman-Token: 9c43020a-966f-61e1-81af-4c49ad8d1392

If successful, you should receive a 200 OK response with an XML payload showing a single item
in the specified bucket, unless you added more files to the bucket before submitting this request.

<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>apig-demo-5</Name>
 <Prefix></Prefix>
 <Marker></Marker>
 <MaxKeys>1000</MaxKeys>
 <IsTruncated>false</IsTruncated>
 <Contents>
 <Key>Readme.txt</Key>
 <LastModified>2016-10-15T06:26:48.000Z</LastModified>
 <ETag>"65a8e27d8879283831b664bd8b7f0ad4"</ETag>
 <Size>13</Size>
 <Owner>
 <ID>06e4b09e9d...603addd12ee</ID>
 <DisplayName>user-name</DisplayName>
 </Owner>
 <StorageClass>STANDARD</StorageClass>
 </Contents>
</ListBucketResult>

377

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

Swagger Definitions of the Sample API as an
Amazon S3 Proxy
The following Swagger definitions describe the sample API , referenced in this tutorial, as an Amazon
S3 proxy.

{
 "swagger": "2.0",
 "info": {
 "version": "2016-10-13T23:04:43Z",
 "title": "MyS3"
 },
 "host": "9gn28ca086.execute-api.us-east-1.amazonaws.com",
 "basePath": "/S3",
 "schemes": [
 "https"
],
 "paths": {
 "/": {
 "get": {
 "produces": [
 "application/json"
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Timestamp": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::<replaceable>123456789012</
replaceable>:role/apigAwsProxyRole",
 "responses": {

378

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Content-Length":
 "integration.response.header.Content-Length",
 "method.response.header.Timestamp":
 "integration.response.header.Date"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path//",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "aws"
 }
 }
 },
 "/{folder}": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Date": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },

379

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::<replaceable>123456789012</
replaceable>:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Date":
 "integration.response.header.Date",
 "method.response.header.Content-Length":
 "integration.response.header.content-length"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "aws"
 }
 },
 "put": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "required": false,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {

380

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::<replaceable>123456789012</
replaceable>:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Content-Length":
 "integration.response.header.Content-Length"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.header.x-amz-acl": "'authenticated-read'",
 "integration.request.header.Expect": "'100-continue'",
 "integration.request.path.bucket": "method.request.path.folder",
 "integration.request.header.Content-Type":
 "method.request.header.Content-Type"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "PUT",
 "type": "aws"
 }
 },

381

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

 "delete": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Date": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::<replaceable>123456789012</
replaceable>:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Date":
 "integration.response.header.Date"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },

382

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

 "requestParameters": {
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "DELETE",
 "type": "aws"
 }
 }
 },
 "/{folder}/{item}": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "content-type": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::<replaceable>123456789012</
replaceable>:role/apigAwsProxyRole",

383

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.content-type":
 "integration.response.header.content-type",
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "aws"
 }
 },
 "head": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }

384

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::<replaceable>123456789012</
replaceable>:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Content-Length":
 "integration.response.header.Content-Length"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "HEAD",
 "type": "aws"
 }
 },
 "put": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "required": false,
 "type": "string"
 },
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"

385

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::<replaceable>123456789012</
replaceable>:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Content-Length":
 "integration.response.header.Content-Length"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.header.x-amz-acl": "'authenticated-read'",
 "integration.request.header.Expect": "'100-continue'",

386

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample

API as an Amazon S3 Proxy

 "integration.request.path.bucket": "method.request.path.folder",
 "integration.request.header.Content-Type":
 "method.request.header.Content-Type"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "PUT",
 "type": "aws"
 }
 },
 "delete": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::<replaceable>123456789012</
replaceable>:role/apigAwsProxyRole",
 "responses": {

387

Amazon API Gateway Developer Guide
Create an API as an Amazon Kinesis Proxy

 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200"
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "DELETE",
 "type": "aws"
 }
 }
 }
 },
 "securityDefinitions": {
 "sigv4": {
 "type": "apiKey",
 "name": "Authorization",
 "in": "header",
 "x-amazon-apigateway-authtype": "awsSigv4"
 }
 },
 "definitions": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
}

Create an API Gateway API as an Amazon
Kinesis Proxy

This section describes how to create and configure an API Gateway API as an AWS proxy to access
Amazon Kinesis.

Note
To integrate your API Gateway API with Amazon Kinesis, you must choose a region where
both the API Gateway and Amazon Kinesis services are available. For region availability, see
Regions and Endpoints.

For the purpose of illustration, we will create an example API to enable a client to do the following:

1. List the user's available streams in Amazon Kinesis

2. Create, describe, or delete a specified stream

3. Read data records from or write data records into the specified stream

388

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide
Create an API as an Amazon Kinesis Proxy

To accomplish the preceding tasks, the API exposes methods on various resources to invoke the
following, respectively:

1. The ListStreams action in Amazon Kinesis

2. The CreateStream, DescribeStream, or DeleteStream action

3. The GetRecords or PutRecords (including PutRecord) action in Amazon Kinesis

Specifically, we will build the API as follows:

• Expose an HTTP GET method on the API's /streams resource and integrate the method with the
ListStreams action in Amazon Kinesis to list the streams in the caller's account.

• Expose an HTTP POST method on the API's /streams/{stream-name} resource and integrate
the method with the CreateStream action in Amazon Kinesis to create a named stream in the caller's
account.

• Expose an HTTP GET method on the API's /streams/{stream-name} resource and integrate
the method with the DescribeStream action in Amazon Kinesis to describe a named stream in the
caller's account.

• Expose an HTTP DELETE method on the API's /streams/{stream-name} resource and integrate
the method with the DeleteStream action in Amazon Kinesis to delete a stream in the caller's
account.

• Expose an HTTP PUT method on the API's /streams/{stream-name}/record resource and
integrate the method with the PutRecord action in Amazon Kinesis. This enables the client to add a
single data record to the named stream.

• Expose an HTTP PUT method on the API's /streams/{stream-name}/records resource and
integrate the method with the PutRecords action in Amazon Kinesis. This enables the client to add a
list of data records to the named stream.

• Expose an HTTP GET method on the API's /streams/{stream-name}/records resource and
integrate the method with the GetRecords action in Amazon Kinesis. This enables the client to list
data records in the named stream, with a specified shard iterator. A shard iterator specifies the shard
position from which to start reading data records sequentially.

• Expose an HTTP GET method on the API's /streams/{stream-name}/sharditerator
resource and integrate the method with the GetShardIterator action in Amazon Kinesis. This helper
method must be supplied to the ListStreams action in Amazon Kinesis.

You can apply the instructions presented here to other Amazon Kinesis actions. For the complete list of
the Amazon Kinesis actions, see Amazon Kinesis API Reference.

Instead of using the API Gateway console to create the sample API, you can import the sample API
into API Gateway, using either the API Gateway Import API or the API Gateway Swagger Importer. For
information on how to use the Import API, see Import an API (p. 142). For information on how to use
the API Gateway Swagger Importer, see Getting Started with the API Gateway Swagger Importer.

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.

2. Follow the online instructions.

389

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeleteStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://aws.amazon.com/

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for
the API to Access Amazon Kinesis

Create an IAM Role and Policy for the API to Access
Amazon Kinesis
To allow the API to invoke Amazon Kinesis actions, you must have appropriate IAM policies attached
to an IAM role. This section explains how to verify and to create, if necessary, the required IAM role
and policies.

To enable read-only access to Amazon Kinesis, you can use the AmazonKinesisReadOnlyAccess
policy that allows the Get*, List*, and Describe* actions in Amazon Kinesis to be invoked.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:Get*",
 "kinesis:List*",
 "kinesis:Describe*"
],
 "Resource": "*"
 }
]
}

This policy is available from the IAM console and its ARN is arn:aws:iam::aws:policy/
AmazonKinesisReadOnlyAccess.

To enable read-write actions in Amazon Kinesis, you can use the AmazonKinesisFullAccess policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "*"
 }
]
}

This policy is also available from the IAM console. Its ARN is arn:aws:iam::aws:policy/
AmazonKinesisFullAccess.

After you decide which IAM policy to use, attach it to a new or existing IAM role. Make sure that the API
Gateway control service (apigateway.amazonaws.com) is a trusted entity of the role and is allowed
to assume the execution role (sts:AssumeRole).

{
 "Version": "2012-10-17",
 "Statement": [

390

Amazon API Gateway Developer Guide
Start to Create an API as an Amazon Kinesis Proxy

 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

If you create the execution role in the IAM console and choose the Amazon API Gateway role type,
this trust policy is automatically attached.

Note the ARN of the execution role. You will need it when creating an API method and setting up its
integration request.

Start to Create an API as an Amazon Kinesis Proxy
Use the following steps to create the API in the API Gateway console.

To create an API as an AWS service proxy for Amazon Kinesis

1. In the API Gateway console, choose Create API.

2. In API name, type KinesisProxy. Leave the default values in the other fields.

3. For Clone from API, choose Do not clone from existing API.

4. Type a description in Description.

5. Choose Create API.

After the API is created, the API Gateway console displays the Resources page, which contains only
the API's root (/) resource.

List Streams in Amazon Kinesis
To list streams in Amazon Kinesis, add a /streams resource to the API's root, expose a GET method
on the resource, and integrate the method to the ListStreams action of Amazon Kinesis.

The following procedure describes how to list Amazon Kinesis streams by using the API Gateway
console.

To list Amazon Kinesis streams by using the API Gateway console

1. Select the API root resource. In Actions, choose Create Resource.

In Resource Name, type Streams, leave Resource Path as the default, and choose Create
Resource.

2. Select the /Streams resource. From Actions, choose Create Method, choose GET from the list,
and then choose the checkmark icon to finish creating the method.

Note
You can choose any of the available HTTP verbs for a method request. We use GET here,
because listing streams is a READ operation.

3. In the method's Setup pane, choose Show Advanced and then choose AWS Service Proxy.

a. For AWS Region, choose a region (e.g., us-east-1).

391

Amazon API Gateway Developer Guide
List Streams in Amazon Kinesis

b. For AWS Service, choose Kinesis.

c. For HTTP method, choose POST.

Note
For the integration request with Amazon Kinesis, you must choose the POST HTTP
verb to invoke the action, although you can use any of the available HTTP verbs for
the API's method request.

d. For Action Type, choose Use action name.

e. For Action, type ListStreams.

f. For Execution role, type the ARN for your execution role.

g. Choose Save to finish the initial setup of the method.

The initial setup of the integration request will suffice if there is no need to map data between
the method and integration requests and/or between the method and integration responses.
Examples discussed in this topic require data mapping, which is covered in the second half of the
Integration Request pane.

4. In the Integration Request pane, expand the HTTP Headers section:

a. Choose Add header.

b. In the Name column, type Content-Type.

c. In the Mapped from column, type 'application/x-amz-json-1.1'.

d. Choose the checkmark icon to save the setting.

5. Expand the Body Mapping Templates section:

a. Choose Add mapping template.

b. For Content-Type, type application/json.

c. Choose the checkmark icon to save the setting.

d. Choose the pencil icon to the right of Mapping template.

e. Choose Mapping template from the drop-down list to open the Template editor.

f. Type {} in the template editor.

g. Choose the checkmark icon to save the mapping template.

The ListStreams request takes a payload of the following JSON format:
392

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html#API_ListStreams_RequestSyntax

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

{
 "ExclusiveStartStreamName": "string",
 "Limit": number
}

However, the properties are optional. To use the default values, we opted for an empty JSON
payload here.

6. Test the GET method on the Streams resource to invoke the ListStreams action in Amazon
Kinesis:

From the API Gateway console, select the /streams/GET entry from the Resources pane, choose
the Test invocation option, and then choose Test.

If you have already created two streams named "myStream" and "yourStream" in Amazon Kinesis,
the successful test will return a 200 OK response containing the following payload:

{
 "HasMoreStreams": false,
 "StreamNames": [
 "myStream",
 "yourStream"
]
}

Create, Describe, and Delete a Stream in Amazon
Kinesis

393

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

Creating, describing, and deleting a stream in Amazon Kinesis involves making the following Amazon
Kinesis REST API requests, respectively:

POST /?Action=CreateStream HTTP/1.1
Host: kinesis.region.domain
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ShardCount": number,
 "StreamName": "string"
}

POST /?Action=DescribeStream HTTP/1.1
Host: kinesis.region.domain
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ExclusiveStartShardId": "string",
 "Limit": number,
 "StreamName": "string"
}

POST /?Action=DeleteStream HTTP/1.1
Host: kinesis.region.domain
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "StreamName":"string"
}

We can build our API to accept the required input as a JSON payload of the method request and pass
the payload through to the integration request. However, to provide more examples of data mapping
between method and integration requests, and method and integration responses, we will create our
API slightly differently.

We will expose the GET, POST, and Delete HTTP methods on a to-be-named Stream resource. We
will use the {stream-name} path variable to hold the to-be-named stream resource and integrate
these API methods with the Amazon Kinesis' DescribeStream, CreateStream, and DeleteStream
actions, respectively. We require that the client pass other input data as headers, query parameters,
or the payload of a method request, and we provide mapping templates to transform the data to the
required integration request payload.

After the methods are created on a to-be-named stream resource, the structure of the API looks like
the following:

394

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

To configure and test the GET method on a stream resource

1. Set up the GET method to describe a named stream in Amazon Kinesis, as shown in the following.

2. Map data from the GET method request to the integration request, as shown in the following:

395

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

3. Test the GET method to invoke the DescribeStream action in Amazon Kinesis:

From the API Gateway console, select /streams/{stream-name}/GET in the Resources pane,
choose Test to start testing, type the name of an existing Amazon Kinesis stream in the Path field
for stream-name, and choose Test. If the test is successful, a 200 OK response is returned with a
payload similar to the following:

{
 "StreamDescription": {
 "HasMoreShards": false,
 "RetentionPeriodHours": 24,
 "Shards": [
 {
 "HashKeyRange": {
 "EndingHashKey": "68056473384187692692674921486353642290",
 "StartingHashKey": "0"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "49559266461454070523309915164834022007924120923395850242"
 },
 "ShardId": "shardId-000000000000"
 },
 ...
 {
 "HashKeyRange": {
 "EndingHashKey": "340282366920938463463374607431768211455",
 "StartingHashKey": "272225893536750770770699685945414569164"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "49559266461543273504104037657400164881014714369419771970"
 },

396

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

 "ShardId": "shardId-000000000004"
 }
],
 "StreamARN": "arn:aws:kinesis:us-east-1:12345678901:stream/myStream",
 "StreamName": "myStream",
 "StreamStatus": "ACTIVE"
 }
}

After you deploy the API, you can make a REST request against this API method:

GET https://your-api-id.execute-api.region.amazonaws.com/stage/
streams/myStream HTTP/1.1
Host: your-api-id.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: ...
X-Amz-Date: 20160323T194451Z

To configure and test the POST method on a stream resource

1. Set up the POST method on a stream resource to create the stream in Amazon Kinesis, as shown
in the following:

2. Map data from the POST method request to the integration request, as shown in the following:

397

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

In this example, we use the following mapping template to set ShardCount to a fixed value of 5 if
the client does not specify a value in the method request payload. Otherwise, we pass the client-
supplied value to the back end.

{
 "ShardCount": #if($input.path('$.ShardCount') == '') 5 #else
 $input.path('$.ShardCount')",
 "StreamName": "$input.params('stream-name')"
}

The preceding if ($input.path('$.ShardCount') == '') ... Boolean expression
tests if the method request's JSON payload does not have the ShardCount property declared or if
the property value is empty.

3. Test the POST method to create a named stream in Amazon Kinesis:

From the API Gateway console, select /streams/{stream-name}/POST in the Resources pane,
choose Test to start testing, type the name of an existing Amazon Kinesis stream in Path for
stream-name, and choose Test. If the test is successful, a 200 OK response is returned with no
data.

After you deploy the API, you can also make a REST API request against the POST method on a
Stream resource to invoke the CreateStream action in Amazon Kinesis:

POST https://your-api-id.execute-api.region.amazonaws.com/stage/
streams/yourStream HTTP/1.1
Host: your-api-id.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: ...
X-Amz-Date: 20160323T194451Z

{
 "ShardCount": 5

398

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

}

Configure and test the DELETE method on a stream resource

1. Set up the DELETE method to invoke the DeleteStream action in Amazon Kinesis, as shown in
the following.

2. Map data from the DELETE method request to the integration request, as shown in the following:

399

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

3. Test the DELETE method to delete a named stream in Amazon Kinesis:

From the API Gateway console, select the /streams/{stream-name}/DELETE method node in
the Resources pane, choose Test to start testing, type the name of an existing Amazon Kinesis
stream in Path for stream-name, and choose Test. If the test is successful, a 200 OK response is
returned with no data.

After you deploy the API, you can also make the following REST API request against the DELETE
method on the Stream resource to call the DeleteStream action in Amazon Kinesis:

DELETE https://your-api-id.execute-api.region.amazonaws.com/stage/
streams/yourStream HTTP/1.1
Host: your-api-id.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: ...
X-Amz-Date: 20160323T194451Z

{}

Get Records from and Add Records to a Stream in
Amazon Kinesis
After you create a stream in Amazon Kinesis, you can add data records to the stream and read the
data from the stream. Adding data records involves calling the PutRecords or PutRecord action in

400

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html#API_PutRecords_Examples
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html#API_PutRecord_Examples

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

Amazon Kinesis. The former adds multiple records whereas the latter adds a single record to the
stream.

POST /?Action=PutRecords HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "Records": [
 {
 "Data": blob,
 "ExplicitHashKey": "string",
 "PartitionKey": "string"
 }
],
 "StreamName": "string"
}

or

POST /?Action=PutRecord HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "Data": blob,
 "ExplicitHashKey": "string",
 "PartitionKey": "string",
 "SequenceNumberForOrdering": "string",
 "StreamName": "string"
}

Here, StreamName identifies the target stream to add records. StreamName, Data, and
PartitionKey are required input data. In our example, we use the default values for all of the
optional input data and will not explicitly specify values for them in the input to the method request.

Reading data in Amazon Kinesis amounts to calling the GetRecords action:

POST /?Action=GetRecords HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ShardIterator": "string",

401

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html#API_GetRecords_Examples

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

 "Limit": number
}

Here, the source stream from which we are getting records is specified in the required
ShardIterator value, as is shown in the following Amazon Kinesis action to obtain a shard iterator:

POST /?Action=GetShardIterator HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ShardId": "string",
 "ShardIteratorType": "string",
 "StartingSequenceNumber": "string",
 "StreamName": "string"
}

For the GetRecords and PutRecords actions, we expose the GET and PUT methods, respectively, on
a /records resource that is appended to a named stream resource (/{stream-name}). Similarly, we
expose the PutRecord action as a PUT method on a /record resource.

Because the GetRecords action takes as input a ShardIterator value, which is obtained by calling
the GetShardIterator helper action, we expose a GET helper method on a ShardIterator
resource (/sharditerator).

The following figure shows the API structure of resources after the methods are created:

The following four procedures describe how to set up each of the methods, how to map data from the
method requests to the integration requests, and how to test the methods.

To configure and test the PUT method on the record resource in the API to invoke the
PutRecord action in Amazon Kinesis:

1. Set up the PUT method, as shown in the following:

402

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

2. Configure data mapping for the PUT-on-Record method, as shown in the following:

The preceding mapping template assumes that the method request payload is of the following
format:

{
 "Data": "some data",
 "PartitionKey": "some key"
}

This data can be modeled by the following JSON schema:

{

403

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PutRecord proxy single-record payload",
 "type": "object",
 "properties": {
 "Data": { "type": "string" },
 "PartitionKey": { "type": "string" }
 }
}

You can create a model to include this schema and use the model to facilitate generating the
mapping template. However, you can generate a mapping template without using any model.

3.
To test the PUT method, set the stream-name path variable to an existing stream, supply a
payload of the preceding format, and then submit the method request. The successful result is a
200 OK response with a payload of the following format:

{
 "SequenceNumber":
 "49559409944537880850133345460169886593573102115167928386",
 "ShardId": "shardId-000000000004"
}

To configure and test the PUT method on the records resource in the API to invoke the
PutRecords action in Amazon Kinesis

1. Set up the PUT method, as shown in the following:

2. Configure data mapping for the PUT method, as shown in the following:

404

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

The preceding mapping template assumes the method request payload can be modeled by
following JSON schema:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PutRecords proxy payload data",
 "type": "object",
 "properties": {
 "records": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "data": { "type": "string" },
 "partition-key": { "type": "string" }
 }
 }
 }
 }
}

3.
To test the PUT method, set the stream-name path variable to an existing stream, supply a
payload as previously shown, and submit the method request. The successful result is a 200 OK
response with a payload of the following format:

{
 "records": [
 {
 "data": "some data",
 "partition-key": "some key"

405

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

 },
 {
 "data": "some other data",
 "partition-key": "some key"
 }
]
}

The response payload will be similar to the following output:

{
 "FailedRecordCount": 0,
 "Records": [
 {
 "SequenceNumber":
 "49559409944537880850133345460167468741933742152373764162",
 "ShardId": "shardId-000000000004"
 },
 {
 "SequenceNumber":
 "49559409944537880850133345460168677667753356781548470338",
 "ShardId": "shardId-000000000004"
 }
]
}

To configure and test the GET method on the ShardIterator resource in the API to
invoke the GetShardIterator action in Amazon Kinesis

The GET-on-ShardIterator method is a helper method to acquire a required shard iterator before calling
the GET-on-Records method.

1. Set up the GET-on-ShardIterator method, as shown in the following:

2.

406

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

The GetShardIterator action requires an input of a ShardId value. To pass a client-supplied
ShardId value, we add a shard-id query parameter to the method request, as shown in the
following:

In the following mapping template, we add the translation of the shard-id query parameter
value to the ShardId property value of the JSON payload for the GetShardIterator action in
Amazon Kinesis.

3. Configure data mapping for the GET-on-ShardIterator method:

4.

407

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

Using the Test option in the API Gateway console, enter an existing stream name as the stream-
name Path variable value, set the shard-id Query string to an existing ShardId value (e.g.,
shard-000000000004), and choose Test.

The successful response payload will be similar to the following output:

{
 "ShardIterator": "AAAAAAAAAAFYVN3VlFy..."
}

Make note of the ShardIterator value. You will need it to get records from a stream.

To configure and test the GET Method on the records resource in the API to invoke the
GetRecords action in Amazon Kinesis

1. Set up the GET method, as shown in the following:

2.
The GetRecords action requires an input of a ShardIterator value. To pass a client-supplied
ShardIterator value, we add a Shard-Iterator header parameter to the method request, as
shown in the following:

408

Amazon API Gateway Developer Guide
Get Records from and Add Records

to a Stream in Amazon Kinesis

In the following mapping template, we add the mapping from the Shard-Iterator header
value to the ShardIterator property value of the JSON payload for the GetRecords action in
Amazon Kinesis.

3. Configure data mapping for the GET-on-Records method:

4.
Using the Test option in the API Gateway console, type an existing stream name as the stream-
name Path variable value, set the Shard-Iterator Header to the ShardIterator value
obtained from the test run of the GET-on-ShardIterator method (above), and choose Test.

The successful response payload will be similar to the following output:

{
 "MillisBehindLatest": 0,

409

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "NextShardIterator": "AAAAAAAAAAF...",
 "Records": [...]
}

Swagger Definitions of a Sample API as an Amazon
Kinesis Proxy

{
 "swagger": "2.0",
 "info": {
 "version": "2016-03-31T18:25:32Z",
 "title": "KinesisProxy"
 },
 "host": "wd4zclrobb.execute-api.us-east-1.amazonaws.com",
 "basePath": "/test",
 "schemes": [
 "https"
],
 "paths": {
 "/streams": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/ListStreams",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "type": "aws"
 }
 }
 },

410

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "/streams/{stream-name}": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\":
 \"$input.params('stream-name')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/
DescribeStream",
 "httpMethod": "POST",
 "type": "aws"
 }
 },
 "post": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",

411

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardCount\": 5,\n \"StreamName
\": \"$input.params('stream-name')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/CreateStream",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "type": "aws"
 }
 },
 "delete": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response",
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }

412

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 },
 "500": {
 "description": "500 response",
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 },
 "5\\d{2}": {
 "statusCode": "500",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\":
 \"$input.params('stream-name')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/DeleteStream",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "type": "aws"
 }
 }
 },
 "/streams/{stream-name}/record": {
 "put": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {

413

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName
\": \"$input.params('stream-name')\",\n \"Data\":
 \"$util.base64Encode($input.path('$.Data'))\",\n \"PartitionKey\":
 \"$input.path('$.PartitionKey')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/PutRecord",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "type": "aws"
 }
 }
 },
 "/streams/{stream-name}/records": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "Shard-Iterator",
 "in": "header",
 "required": false,
 "type": "string"
 }
],

414

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardIterator\":
 \"$input.params('Shard-Iterator')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/GetRecords",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "type": "aws"
 }
 },
 "put": {
 "consumes": [
 "application/json",
 "application/x-amz-json-1.1"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "required": false,
 "type": "string"
 },
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "in": "body",
 "name": "PutRecordsMethodRequestPayload",
 "required": true,
 "schema": {
 "$ref": "#/definitions/PutRecordsMethodRequestPayload"
 }
 }
],
 "responses": {

415

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\":
 \"$input.params('stream-name')\",\n \"Records\": [\n #foreach($elem
 in $input.path('$.records'))\n {\n \"Data\":
 \"$util.base64Encode($elem.data)\",\n \"PartitionKey\":
 \"$elem.partition-key\"\n }#if($foreach.hasNext),#end\n #end
\n]\n}",
 "application/x-amz-json-1.1": "#set($inputRoot =
 $input.path('$'))\n{\n \"StreamName\": \"$input.params('stream-name')\",\n
 \"records\" : [\n #foreach($elem in $inputRoot.records)\n {\n
 \"Data\" : \"$elem.data\",\n \"partition-key\" : \"$elem.partition-
key\"\n }#if($foreach.hasNext),#end\n #end\n]\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/PutRecords",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "type": "aws"
 }
 }
 },
 "/streams/{stream-name}/sharditerator": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "shard-id",
 "in": "query",
 "required": false,
 "type": "string"
 }
],

416

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardId\": \"$input.params('shard-
id')\",\n \"ShardIteratorType\": \"TRIM_HORIZON\",\n \"StreamName\":
 \"$input.params('stream-name')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/
GetShardIterator",
 "httpMethod": "POST",
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "type": "aws"
 }
 }
 }
 },
 "definitions": {
 "PutRecordsMethodRequestPayload": {
 "type": "object",
 "properties": {
 "records": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "data": {
 "type": "string"
 },
 "partition-key": {
 "type": "string"
 }
 }
 }
 }
 }
 },
 "Empty": {
 "type": "object"
 }
 }
}

417

Amazon API Gateway Developer Guide

Amazon API Gateway REST API

When you use the Amazon API Gateway console to create, configure, update, and deploy an API, the
console calls the API Gateway REST API behind the scenes to make things happen.

When you use AWS Command Line Interface to create, configure, update, and deploy an API, the
AWS CLI tool calls the API Gateway REST API as well. For an example, see Create an API using API
Gateway and Test It in the AWS Lambda Developer Guide . For more information, see AWS Command
Line Interface User Guide.

When you use an AWS SDK to create, configure, update, and deploy an API, the SDK calls the API
Gateway REST API behind the scenes.

Instead, you can call the API Gateway REST API directly to create, configure, update, and deploy an
API in API Gateway.

For more information on how to use the API Gateway REST API, see Amazon API Gateway REST API
Reference.

418

http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/

Amazon API Gateway Developer Guide
API Gateway Limits

Amazon API Gateway Limits and
Pricing

Topics

• API Gateway Limits (p. 419)

• API Gateway Pricing (p. 421)

• Known Issues (p. 421)

API Gateway Limits
Unless noted otherwise, the limits can be increased upon request. To request a limit increase, contact
the AWS Support Center.

API Gateway Limits for Configuring and Running an
API
The following limits apply to configuring and running an API in Amazon API Gateway.

Resource or
Operation

Default Limit Can Be
Increased

Throttle limits per
account

1000 request per second (rps) with a burst limit of 2000 rps. Yes

APIs per account 60 Yes

API keys per
account

500 Yes

Client certificates
per account

60 Yes

Custom authorizers
per API

10 Yes

419

https://console.aws.amazon.com/support/home#/

Amazon API Gateway Developer Guide
API Gateway Limits for Creating,
Deploying and Managing an API

Resource or
Operation

Default Limit Can Be
Increased

Documentation
parts per account

2000 Yes

Resources per API 300 Yes

Stages per API 10 Yes

Usage plans per
account

300 Yes

API caching TTL 300 seconds by default and configurable between 0 and 3600 by
an API owner.

Not for
the upper
bound
(3600)

Integration timeout 30 seconds for all integration types, including Lambda, Lambda
proxy, HTTP, HTTP proxy, and AWS integrations.

No

Payload size 10 MB No

Number of iterations
in a #foreach ...
#end loop in
mapping templates

1000 No

ARN length of
a method with
authorization

1600 bytes No

When authorization is enabled on a method, the maximum length of the method's ARN (e.g.,
arn:aws:execute-api:{region-id}:{account-id}:{api-id}/{stage-id}/{method}/
{resource}/{path}) is 1600 bytes. The path parameter values, the size of which are determined at
run time, can cause the ARN length to exceed the limit. When this happens, the API client will receive
a 414 Request URI too long response.

API Gateway Limits for Creating, Deploying and
Managing an API
The following fixed limits apply to creating, deploying, and managing an API in API Gateway, using the
AWS CLI, the API Gateway console, or the API Gateway REST API and its SDKs. These limits cannot
be increased.

Action Default Limit Can Be Increased

CreateRestApi 2 requests per minute (rpm) per
account.

No

ImportRestApi 2 requests per minute per
account

No

PutRestApi 60 requests per minutes per
account

No

DeleteRestApi 2 requests per minutes per
account

No

420

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-put/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-delete/

Amazon API Gateway Developer Guide
API Gateway Pricing

Action Default Limit Can Be Increased

CreateDeployment 3 requests per minutes per
account

No

UpdateAccount 3 requests per minutes per
account

No

GetResources 150 requests per minutes per
account

No

CreateResource 300 requests per minutes per
account

No

DeleteResource 300 requests per minutes per
account

No

CreateDomainName 2 requests per minutes per
account

No

UpdateUsagePlan 3 requests per minutes per
account

No

Other operations No limit up to the total account
limit.

No

Total operations 10 request per second (rps)
with a burst limit of 40 rps.

No

API Gateway Pricing
For API Gateway region-specific pricing information, see Amazon API Gateway Pricing.

Note
API caching in Amazon API Gateway is not eligible for the AWS Free Tier.

Known Issues

• Cross-account authentication is not currently supported in API Gateway. An API caller must be an
IAM user of the same AWS account of the API owner.

• When using the API Gateway console to test an API, you may get an "unknown endpoint errors"
response if a self-signed certificate is presented to the back end, the intermediate certificate is
missing from the certificate chain, or any other unrecognizable certificate-related exceptions thrown
by the back end.

• API Gateway enacts the following restrictions and limitations when handling methods with either
Lambda proxy integration or HTTP proxy integration.

• Duplicated query string parameters are not supported.

• Duplicated headers are not supported.

• The Host header will not be forwarded to HTTP endpoints.

• The following headers may be remapped to x-amzn-Remapped-HEADER when sent to your
integration endpoint or sent back by your integration endpoint:

• Accept

• Accept-Charset

421

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/deployment-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/account-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-resources/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-delete/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/domainname-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-update/
http://aws.amazon.com/api-gateway/pricing/

Amazon API Gateway Developer Guide
Known Issues

• Accept-Encoding

• Age

• Authorization

• Connection

• Content-Encoding

• Content-Length

• Content-MD5

• Content-Type

• Date

• Expect

• Host

• Max-Forwards

• Pragma

• Proxy-Authenticate

• Range

• Referer

• Server

• TE

• Trailer

• Transfer-Encoding

• Upgrade

• User-Agent

• Via

• Warn

422

Amazon API Gateway Developer Guide

Document History

The following table describes the important changes to the documentation since the last release of the
API Gateway Developer Guide.

• Latest documentation update: December 1, 2016

Change Description Date
Changed

Integrating with AWS
Marketplace

Sell your API in a usage plan as a SaaS product through
AWS Marketplace. Use AWS Marketplace to extend the
reach of your API. Rely on AWS Marketplace for customer
billing on your behalf. Let API Gateway handle user
authorization and usage metering. For more information, see
Selling an API as SaaS (p. 339).

December 1,
2016

Enabling
Documentation
Support for your API

Add documentation for API entities in DocumentationPart
resources in API Gateway. Associate a snapshot of the
collection DocumentationPart instances with an API
stage to create a DocumentationVersion. Publish API
documentation by exporting a documentation version to an
external file, such as a Swagger file. For more information,
see Documenting an API (p. 287).

December 1,
2016

Updated custom
authorizer

A customer authorizer Lambda function now returns the
caller's principal identifier. The function also can return other
information as key-value pairs of the context map and
an IAM policy. For more information, see Output from an
Amazon API Gateway Custom Authorizer (p. 177).

December 1,
2016

Supporting binary
payloads

Set binaryMediaTypes on your API to support
binary payloads of a request or response. Set the
contentHandling property on an Integration or
IntegrationResponse to specify whether to handle a binary
payload as the native binary blob, as a Base64-enocded
string, or as a passthrough without modifications. For more
information, see Enable Support for Binary Payloads in API
Gateway (p. 78).

November 17,
2016

423

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/#binaryMediaTypes
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/

Amazon API Gateway Developer Guide

Change Description Date
Changed

Enabling a proxy
integration with an
HTTP or Lambda
back end through a
proxy resource of an
API.

Create a proxy resource with a greedy path parameter of the
form {proxy+} and the catch-all ANY method. The proxy
resource is integrated with an HTTP or Lambda back end
using the HTTP or Lambda proxy integration, respectively.
For more information, see Configure Proxy Integration for a
Proxy Resource (p. 97).

September
20, 2016

Extending selected
APIs in API Gateway
as product offerings
for your customers
by providing one or
more usage plans.

Create a usage plan in API Gateway to enable selected
API clients to access specified API stages at agreed-upon
request rates and quotas. For more information, see Use
API Gateway Usage Plans (p. 212).

August 11,
2016

Enabling method-
level authorization
with a user pool in
Amazon Cognito

Create a user pool in Amazon Cognito and use it as your
own identity provider. You can configure the user pool as a
method-level authorizer to grant access for users who are
registered with the user pool. For more information, see Use
Amazon Cognito Your User Pool (p. 182).

July 28, 2016

Enabling Amazon
CloudWatch metrics
and dimensions
under the AWS/
ApiGateway
namespace.

The API Gateway metrics are now standardized under the
CloudWatch namespace of AWS/ApiGateway. You can view
them in both the API Gateway console and the Amazon
CloudWatch console. For more information, see Amazon
API Gateway Dimensions and Metrics (p. 334).

July 28, 2016

Enabling certificate
rotation for a custom
domain name

Certificate rotation allows you to upload and renew
an expiring certificate for a custom domain name. For
more information, see Upload and Renew an Expiring
Certificate (p. 285).

April 27, 2016

Documenting
changes for the
updated Amazon API
Gateway console.

Learn how to create and set up an API using the updated
API Gateway console. For more information, see Create an
API Gateway API from an Example (p. 7) and Build an API
Gateway API to Expose an HTTP Endpoint (p. 6).

April 5, 2016

Enabling the Import
API feature to create
a new or update
an existing API
from external API
definitions.

With the Import API features, you can create a new API
or update an existing one by uploading an external API
definition expressed in Swagger 2.0 with the API Gateway
extensions. For more information about the Import API, see
Import an API (p. 142).

April 5, 2016

Exposing the
$input.body
variable to access
the raw payload
as string and the
$util.parseJson()
function to turn a
JSON string into a
JSON object in a
mapping template.

For more information about $input.body and
$util.parseJson(), see Request and Response
Payload-Mapping Reference (p. 134).

April 5, 2016

424

Amazon API Gateway Developer Guide

Change Description Date
Changed

Enabling client
requests with
method-level
cache invalidation,
and improving
request throttling
management.

Flush API stage-level cache and invalidate individual cache
entry. For more information, see Flush the API Stage Cache
in API Gateway (p. 240) and Invalidate an API Gateway
Cache Entry (p. 240). Improve the console experience for
managing API request throttling. For more information, see
Manage API Request Throttling (p. 236).

March 25,
2016

Enabling and calling
API Gateway API
using custom
authorization

Create and configure an AWS Lambda function to
implement custom authorization. The function returns
an IAM policy document that grants the Allow or Deny
permissions to client requests of an API Gateway API.
For more information, see Use API Gateway Custom
Authorizers (p. 174).

February 11,
2016

Importing and
exporting API
Gateway API using
a Swagger definition
file and extensions

Create and update your API Gateway API using the
Swagger specification with the API Gateway extensions.
Import the Swagger definitions using the API Gateway
Importer. Export an API Gateway API to a Swagger
definition file using the API Gateway console or API
Gateway Export API. For more information, see Import and
Export API (p. 141).

December 18,
2015

Mapping request or
response body or
body's JSON fields to
request or response
parameters.

Map method request body or its JSON fields into integration
request's path, query string, or headers. Map integration
response body or its JSON fields into request response's
headers. For more information, see Request and Response
Parameter-Mapping Reference (p. 131).

December 18,
2015

Working with Stage
Variables in Amazon
API Gateway

Learn how to associate configuration attributes with a
deployment stage of an API in Amazon API Gateway.
For more information, see Manage API Gateway API
Deployment with Stage Variables (p. 242).

November 5,
2015

How to: Enable
CORS for a Method

It is now easier to enable cross-origin resource sharing
(CORS) for methods in Amazon API Gateway. For more
information, see Enable CORS for a Resource (p. 170).

November 3,
2015

How to: Use
Client Side SSL
Authentication

Use Amazon API Gateway to generate SSL certificates
that you can use to authenticate calls to your HTTP
backend. For more information, see Use Client-Side SSL
Certificates (p. 186).

September
22, 2015

Mock integration of
methods

Learn how to mock-integrate an API with Amazon API
Gateway (p. 94). This feature enables developers to
generate API responses from API Gateway directly without
the need for a final integration back end beforehand.

September 1,
2015

Amazon Cognito
Identity support

Amazon API Gateway has expanded the scope of the
$context variable so that it now returns information
about Amazon Cognito Identity when requests are signed
with Amazon Cognito credentials. In addition, we have
added a $util variable for escaping characters in
JavaScript and encoding URLs and strings. For more
information, see Request and Response Payload-Mapping
Reference (p. 134).

August 28,
2015

425

Amazon API Gateway Developer Guide

Change Description Date
Changed

Swagger integration Use the Swagger import tool on GitHub to import Swagger
API definitions into Amazon API Gateway. Learn more
about Import and Export API (p. 141) to create and deploy
APIs and methods using the import tool. With the Swagger
importer tool you can also update existing APIs.

July 21, 2015

Mapping Template
Reference

Read about the $input parameter and its functions
in the Request and Response Payload-Mapping
Reference (p. 134).

July 18, 2015

Initial public release This is the initial public release of the Amazon API Gateway
Developer Guide.

July 9, 2015

426

https://github.com/awslabs/aws-apigateway-swagger-importer

Amazon API Gateway Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

427

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon API Gateway
	Table of Contents
	What Is Amazon API Gateway?
	Amazon API Gateway Concepts

	Getting Started with Amazon API Gateway
	Get Ready to Use Amazon API Gateway
	Sign Up for AWS
	Create an IAM User, Group or Role in Your AWS Account
	Grant IAM Users Permissions to Access API Gateway Control and Execution Services
	Next Step

	Build an API Gateway API to Expose an HTTP Endpoint
	Create an API Gateway API from an Example
	See Also

	Build the API Step By Step
	Map Request Parameters for an API Gateway API
	Prerequisites
	Step 1: Create Resources
	Step 2: Create GET and POST Methods
	Step 3: Set Up and Test the Methods
	Step 4: Deploy the API
	Step 5: Test the API
	Next Steps

	Map Response Payload
	Prerequisites
	Step 1: Create Models
	Step 2: Create Resources
	Step 3: Create GET Methods
	Step 4: Create a Lambda Function
	Step 5: Set Up and Test the Methods
	Step 6: Deploy the API
	Step 7: Test the API
	Step 8: Clean Up
	Next Steps

	Build an API to Expose a Lambda Function
	Step 1: Prerequisites
	Step 2: Create an API
	Step 3: Create a Resource
	Step 4: Create Lambda Functions
	Step 5: Create and Test a GET Method
	Step 6: Create and Test a POST Method
	Step 7: Deploy the API
	Step 8: Test the API
	Step 9: Clean Up
	Next Steps
	Create Lambda Invocation and Execution Roles

	Build an API Gateway API Using Proxy Integration and a Proxy Resource
	Create and Test an API with HTTP Proxy Integration through a Proxy Resource
	Create an API with HTTP Proxy Integration through a Proxy Resource
	Test an API with HTTP Proxy Integration through Proxy Resource

	Create an API with Lambda Proxy Integration through a Proxy Resource
	Lambda Function for Proxy Integration
	Create a Back End for Lambda Proxy Integration
	Create API with Lambda Proxy Integration
	Test API with Lambda Proxy Integration

	Create an AWS Service Proxy for Amazon SNS
	Prerequisites
	Step 1: Create the Resource
	Step 2: Create the GET Method
	Step 3: Create the AWS Service Proxy Execution Role
	Step 4: Specify Method Settings and Test the Method
	Step 5: Deploy the API
	Step 6: Test the API
	Step 7: Clean Up

	Creating an API in Amazon API Gateway
	Create an API in API Gateway
	Create an API Using the API Gateway Console
	Create an API Using the API Gateway Control Service API
	Create an API Using the AWS SDK for API Gateway
	Create an API Using the AWS CLI

	Set up API Gateway API Method and Integration
	Before Setting Up Methods and Integration
	Configure How API Gateway Integrates the Method with a Back End
	Configure How an API User Calls an API Method in Amazon API Gateway
	Configure How Data Is Mapped between a Method and its Integration in Amazon API Gateway
	Enable Support for Binary Payloads in API Gateway
	Content Type Conversions in API Gateway
	Enable Binary Support Using the API Gateway Console
	Enable Binary Support Using API Gateway REST API
	Add and Update Supported Binary Media Types to an API
	Configure Request Payload Conversions
	Configure Response Payload Conversions
	Convert Binary Data to Text Data
	Convert Text Data to a Binary Payload
	Pass through a Binary Payload

	Import and Export Content Encodings
	Examples of Binary Support
	Access Binary Files in Amazon S3 through an API Gateway API
	Swagger File of a Sample API to Access Images in Amazon S3
	Download an Image from Amazon S3
	Upload an Image to Amazon S3

	Access Binary Files in Lambda Using an API Gateway API
	Swagger File of a Sample API to Access Images in Lambda
	Download an Image from Lambda
	Upload an Image to Lambda

	Configure Mock Integration for a Method in API Gateway
	Prerequisites
	Enable Mock Integration on a Method
	Example Request Templates
	Example Response Templates

	Configure Proxy Integration for a Proxy Resource
	API Gateway Proxy Resource
	API Gateway Proxy Integration Types
	Set Up a Proxy Resource with the HTTP Proxy Integration
	Set Up a Proxy Resource with the Lambda Proxy Integration
	Input Format of a Lambda Function for Proxy Integration
	Output Format of a Lambda Function for Proxy Integration

	After Setting Up Methods and Integration

	Set Up Amazon API Gateway API Request and Response Payload Mappings
	Models
	Mapping Templates
	Tasks for Models and Mapping Templates
	Create a Model in API Gateway
	Prerequisites
	Create a Model With the API Gateway Console

	View a List of Models in API Gateway
	Prerequisites
	View a List of Models with the API Gateway Console

	Delete a Model in API Gateway
	Delete a Model with the API Gateway Console

	Photos Example (API Gateway Models and Mapping Templates)
	Original Data (Photos Example)
	Input Model (Photos Example)
	Input Mapping Template (Photos Example)
	Transformed Data (Photos Example)
	Output Model (Photos Example)
	Output Mapping Template (Photos Example)

	News Article Example (API Gateway Models and Mapping Templates)
	Original Data (News Article Example)
	Input Model (News Article Example)
	Input Mapping Template (News Article Example)
	Transformed Data (News Article Example)
	Output Model (News Article Example)
	Output Mapping Template (News Article Example)

	Sales Invoice Example (API Gateway Models and Mapping Templates)
	Original Data (Sales Invoice Example)
	Input Model (Sales Invoice Example)
	Input Mapping Template (Sales Invoice Example)
	Transformed Data (Sales Invoice Example)
	Output Model (Sales Invoice Example)
	Output Mapping Template (Sales Invoice Example)

	Employee Record Example (API Gateway Models and Mapping Templates)
	Original Data (Employee Record Example)
	Input Model (Employee Record Example)
	Input Mapping Template (Employee Record Example)
	Transformed Data (Employee Record Example)
	Output Model (Employee Record Example)
	Output Mapping Template (Employee Record Example)

	Amazon API Gateway API Request and Response Parameter-Mapping Reference
	Map Data to Integration Request Parameters
	Map Data to Method Response Headers
	Transform Request and Response Bodies
	Select Mapping Templates

	API Gateway API Request and Response Payload-Mapping Template Reference
	Accessing the $context Variable
	Example
	Context Variables Template Example

	Accessing the $input Variable
	Examples
	Example JSON Mapping Template
	Example Inputs Mapping Template
	Param Mapping Template Example
	Example Request and Response

	Accessing the $stageVariables Variable
	Accessing the $util Variable
	Integration Passthrough Behaviors

	Import and Export API Gateway API with Swagger Definition Files
	Import an API into API Gateway
	Use the Import API to Create a New API
	Use the Import API to Update an Existing API
	Swagger basePath
	ignore
	prepend
	split

	Errors during Import
	Warnings during Import

	Export an API from API Gateway
	Request to Export an API
	Download API Swagger Definition in JSON
	Download API Swagger Definition in YAML
	Download API Swagger Definition with Postman Extensions in JSON
	Download API Swagger Definition with API Gateway Integration in YAML
	Export API Using the API Gateway Console

	API Gateway Extensions to Swagger
	x-amazon-apigateway-any-method Object
	x-amazon-apigateway-any-method Example

	x-amazon-apigateway-authorizer Object
	x-amazon-apigateway-authorizer Example

	x-amazon-apigateway-authtype Property
	x-amazon-apigateway-authtype Example

	x-amazon-apigateway-binary-media-types Property
	x-amazon-apigateway-binary-media-types Example

	x-amazon-apigateway-documentation Object
	x-amazon-apigateway-documentation Example

	x-amazon-apigateway-integration Object
	x-amazon-apigateway-integration Example

	x-amazon-apigateway-integration.requestTemplates Object
	x-amazon-apigateway-integration.requestTemplates Example

	x-amazon-apigateway-integration.requestParameters Object
	x-amazon-apigateway-integration.requestParameters Example

	x-amazon-apigateway-integration.responses Object
	x-amazon-apigateway-integration.responses Example

	x-amazon-apigateway-integration.response Object
	x-amazon-apigateway-integration.response Example

	x-amazon-apigateway-integration.responseTemplates Object
	x-amazon-apigateway-integration.responseTemplate Example

	x-amazon-apigateway-integration.responseParameters Object
	x-amazon-apigateway-integration.responseParameters Example

	Controlling Access in API Gateway
	Use IAM Permissions to Access API Gateway API
	Control Access to API Gateway with IAM Policies
	Create and Attach a Policy to an IAM User
	Statement Reference of IAM Policies for Managing API in API Gateway
	Action Format of Permissions for Managing API in API Gateway
	Resource Format of Permissions for Managing API in API Gateway

	Statement Reference of IAM Policies for Executing API in API Gateway
	Action Format of Permissions for Executing API in API Gateway
	Resource Format of Permissions for Executing API in API Gateway

	IAM Policy Examples for API Gateway APIs
	Simple Read Permissions
	Read-Only Permissions on any APIs
	Full Access Permissions for any API Gateway Resources
	Full-Access Permissions for Managing API Stages
	Block Specified Users from Deleting any API Resources

	IAM Policy Examples for API Execution Permissions

	Enable CORS for an API Gateway Resource
	Prerequisites
	Enable CORS on a Resource Using the API Gateway Console
	Enable CORS for a Resource Using the API Gateway Import API

	Use Amazon API Gateway Custom Authorizers
	Amazon API Gateway Custom Authorizers
	Create the API Gateway Custom Authorizer Lambda Function
	Input to an Amazon API Gateway Custom Authorizer
	Output from an Amazon API Gateway Custom Authorizer
	Configure Custom Authorizer Using the API Gateway Console
	Call an API Using API Gateway Custom Authorization

	Use Amazon Cognito Your User Pool
	Create a User Pool
	Integrate an API with a User Pool
	Call an API Integrated with a User Pool

	Use Client-Side SSL Certificates for Authentication by the Back End
	Generate a Client Certificate Using the API Gateway Console
	Configure an API to Use SSL Certificates
	Test Invoke
	Configure Back End to Authenticate API

	API Gateway-Supported Certificate Authorities for HTTP and HTTP Proxy Integrations
	Create and Use API Gateway Usage Plans
	What Is a Usage Plan?
	How to Configure a Usage Plan?
	Set Up API Keys Using the API Gateway Console
	Require API Key on a Method
	Create an API Key
	Import API Keys

	Create and Configure Usage Plans with the API Gateway Console
	Migrate to Default Usage Plans
	Create Usage Plans
	Test a Usage Plan
	Maintain Plan Usage

	Set Up API Keys Using the API Gateway REST API
	Require an API Key on a Method
	Create or Import API Keys

	Create and Configure Usage Plans with the API Gateway REST API
	Migrate to Default Usage Plans
	Create a Usage Plan
	Manage a Usage Plan
	Test Usage Plans

	API Gateway API Key File Format
	Use API Keys in API Gateway without Usage Plans Enabled
	Prerequisites
	Use an API Key without Usage Plans

	Maintaining an API in Amazon API Gateway
	View a List of APIs in API Gateway
	Prerequisites
	View a List of APIs with the API Gateway Console

	Delete an API in API Gateway
	Prerequisites
	Delete an API with the API Gateway Console

	Delete a Resource in API Gateway
	Delete a Resource with the API Gateway Console

	View a Methods List in API Gateway
	Prerequisites
	View a Methods List with the API Gateway Console

	Delete a Method in API Gateway
	Delete a Method with the API Gateway Console

	Deploying an API in Amazon API Gateway
	Deploy an API with the Amazon API Gateway Console
	Prerequisites
	Deploy an API with the API Gateway Console
	Update deployment configuration with the API Gateway Console
	Change a Stage to Use a Different Deployment with the API Gateway Console

	Deploy an API in Stages in Amazon API Gateway
	Create a Stage in API Gateway
	Prerequisites
	Create a Stage with the API Gateway Console

	View a List of Stages in API Gateway
	Prerequisites
	View a List of Stages with the API Gateway Console

	Set Up a Stage
	Prerequisites
	Set Up an API Deployment Stage with the API Gateway Console

	Delete a Stage in API Gateway
	Delete a Stage with the API Gateway Console

	Manage API Request Throttling
	Account-Level Throttling
	Stage-Level and Method-Level Throttling

	Enable Amazon API Gateway Caching in a Stage to Enhance API Performance
	Amazon API Gateway Caching Overview
	Enable Amazon API Gateway Caching
	Override API Gateway Stage-Level Caching for Method Caching
	Use Method or Integration Parameters as Cache Keys to Index Cached Responses
	Flush the API Stage Cache in API Gateway
	Invalidate an API Gateway Cache Entry

	Manage API Gateway API Deployment with Stage Variables
	Use Cases
	Examples
	Set Stage Variables Using the Amazon API Gateway Console
	Prerequisites

	Use Amazon API Gateway Stage Variables
	Prerequisites
	Access an HTTP endpoint through an API with a stage variable
	Pass stage-specific metadata to an HTTP back end via a stage variable in a query parameter expression
	Call Lambda function through API with a stage variable
	Pass stage-specific metadata to a Lambda function via a stage variable

	Amazon API Gateway Stage Variables Reference
	Parameter Mapping Expressions
	Mapping Templates
	HTTP Integration URIs
	AWS Integration URIs
	AWS Integration URIs (Lambda Functions)
	AWS Integration Credentials

	Generate and Use an SDK for an API in API Gateway
	Use the API Gateway Console to Generate the SDKs of an API
	Simple Calculator Lambda Function
	Simple Calculator Lambda Function Input Format
	Simple Calculator Lambda Function Output Format
	Simple Calculator Lambda Function Implementation
	Create the Simple Calculator Lambda Function

	Simple Calculator API in API Gateway
	Create Models for Input and Output
	Set Up GET / Method Query Parameters
	Set Up Data Model for the Payload as Input to the Back End
	Set Up Data Model for the Result Output from the Back End

	Simple Calculator API Swagger Definition

	Use an Android SDK generated by API Gateway
	Use iOS SDK Generated by API Gateway in Objective-C or Swift
	Use an iOS SDK generated by API Gateway in an Objective-C App
	Install the AWS Mobile SDK and an iOS SDK generated by API Gateway in an Objective-C Project
	Call API Methods Using the iOS SDK generated by API Gateway in an Objective-C Project

	Use an iOS SDK generated by API Gateway in a Swift App
	Install AWS Mobile SDK and API Gateway-Generated SDK in a Swift Project
	Call API methods through the iOS SDK generated by API Gateway in a Swift Project

	Use a JavaScript SDK Generated by API Gateway

	Use a Custom Domain Name in API Gateway
	Prerequisites
	Set Up a Custom Domain Name for an API Gateway API
	Specify API Mappings for a Custom Domain Name
	Base Path Examples of API Mappings for a Custom Domain Name
	Upload and Renew an Expiring Certificate
	Call Your API with Custom Domain Names

	Documenting an API Gateway API
	Representation of API Documentation in API Gateway
	Documentation Parts
	Location of a Documentation Part
	Content of a Documentation Part
	Inherit Content from an API Entity of More General Specifications
	Valid Location Fields of DocumentationPart

	Documentation Versions

	Document an API Using the API Gateway Console
	Document the API Entity
	Document a RESOURCE Entity
	Document a METHOD Entity
	Document a QUERY_PARAMETER Entity
	Document a PATH_PARAMETER Entity
	Document a REQUEST_HEADER Entity
	Document a REQUEST_BODY Entity
	Document a RESPONSE Entity
	Document a RESPONSE_HEADER Entity
	Document a RESPONSE_BODY Entity
	Document a MODEL Entity
	Document an AUTHORIZER Entity

	Document an API Using the API Gateway REST API
	Document the API Entity
	Document a RESOURCE Entity
	Document a METHOD Entity
	Document a QUERY_PARAMETER Entity
	Document a PATH_PARAMETER Entity
	Document a REQUEST_BODY Entity
	Document a REQUEST_HEADER Entity
	Document a RESPONSE Entity
	Document a RESPONSE_HEADER Entity
	Document an AUTHORIZER Entity
	Document a MODEL Entity
	Update Documentation Parts
	List Documentation Parts

	Publish API Documentation
	Create a Documentation Snapshot and Associate it with an API Stage
	Create a Documentation Snapshot
	Update a Documentation Snapshot
	Get a Documentation Snapshot
	Associate a Documentation Snapshot with an API Stage
	Download a Documentation Snapshot Associated with a Stage

	Import API Documentation
	Importing Documentation Parts Using the API Gateway REST API
	Importing Documentation Parts Using the API Gateway Console

	Control Access to API Documentation

	Calling a Deployed API in Amazon API Gateway
	Prerequisites
	Obtain an API's Invoke URL in the API Gateway Console
	Test a Method Using the API Gateway Console
	Prerequisites
	Test a Method with the API Gateway Console

	Use Postman to Test an API

	Monitoring and Troubleshooting in API Gateway
	Log API management calls to Amazon API Gateway Using AWS CloudTrail
	API Gateway Information in CloudTrail
	Understanding API Gateway Log File Entries

	Monitor API execution with Amazon CloudWatch
	Amazon API Gateway Dimensions and Metrics
	API Gateway Metrics
	Dimensions for Metrics

	View CloudWatch Metrics with the API Dashboard in API Gateway
	Prerequisites
	Examine API activities in the Dashboard

	View API Gateway Metrics in the CloudWatch Console
	Monitoring Tools in AWS
	Automated Monitoring Tools in AWS
	Manual Monitoring Tools
	Creating CloudWatch Alarms to Monitor API Gateway

	Selling an API Gateway API through AWS Marketplace
	Initialize AWS Marketplace Integration with API Gateway
	List a Product on AWS Marketplace
	Create the Metering Role
	Execution Policy of the Metering Role
	Trusted Relationship Policy of the Metering Role

	Associate Usage Plan with AWS Marketplace Product

	Handle Customer Subscription to Usage Plans
	Authorize a Customer to Access a Usage Plan
	Associate a Customer with an API Key

	Tutorials for Using Amazon API Gateway
	Create an API Gateway API as an AWS Lambda Proxy
	Set Up an IAM Role and Policy for an API to Invoke Lambda Functions
	Create a Lambda Function in the Back End
	Create API Resources for the Lambda Function
	Create a GET Method with Query Strings to Call the Lambda Function
	Create a POST Method with a JSON Payload to Call the Lambda Function
	Create a GET Method with Path Parameters to Call the Lambda Function
	A Sample API as a Lambda Proxy in Swagger with API Gateway Extensions

	Create an API as an Amazon S3 Proxy
	Set Up IAM Permissions for the API to Invoke Amazon S3 Actions
	Create API Resources to Represent Amazon S3 Resources
	Expose an API Method to List the Caller's Amazon S3 Buckets
	Expose API Methods to Access an Amazon S3 Bucket
	Expose API Methods to Access an Amazon S3 Object in a Bucket
	Call the API Using a REST API Client
	Swagger Definitions of the Sample API as an Amazon S3 Proxy

	Create an API Gateway API as an Amazon Kinesis Proxy
	Create an IAM Role and Policy for the API to Access Amazon Kinesis
	Start to Create an API as an Amazon Kinesis Proxy
	List Streams in Amazon Kinesis
	Create, Describe, and Delete a Stream in Amazon Kinesis
	Get Records from and Add Records to a Stream in Amazon Kinesis
	Swagger Definitions of a Sample API as an Amazon Kinesis Proxy

	Amazon API Gateway REST API
	Amazon API Gateway Limits and Pricing
	API Gateway Limits
	API Gateway Limits for Configuring and Running an API
	API Gateway Limits for Creating, Deploying and Managing an API

	API Gateway Pricing
	Known Issues

	Document History
	AWS Glossary

