Amazon APl Gateway

Developer Guide

amazon
webservices™

Amazon API Gateway Developer Guide

Amazon API Gateway Developer Guide

Amazon API Gateway: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon API Gateway Developer Guide

Table of Contents

What IS AMAZON APL GAIEWAY?iuiiiitiiit ettt ettt et et e e e en e eens 1
F o e I T 10 VA Ofe] (ol o £ TP 2
L= ui] T S - (=T o 4
Get REAdY 10 USE API GAEWAYuivuieitiiiietei et et e e e e e et e et e et et e e eaeens 4
SION UP FOr AV S et et 5
Create an IAM User, Group or Role in Your AWS ACCOUNEc.uiuriiniineieieieie e ee e 5
Grant IAM Users Permissions to Access API Gateway Control and Execution Services 5

N] (= PP 6

Build an API to Expose an HTTP ENCPOINTiuiiiiiii e 6
Create an APl from an EXAmMPIE ... 7
BUild the AP SEEP BY SEEP ..uiuiiiiieiiii i 14

Map ReqUEST ParamMetersSciiiiii e 22

Map RESPONSE PAYIOAUiniiiiiiie e 31

Build an API to Expose a Lambda FUNCHONc.iiuiiiiiii e 44
SEEP L PrErEQUISITES ..ueiitiite ittt 44

SteP 2: Create @n AP ... e 44

StEP 3: Crea@te @ RESOUITE ...uiiii ittt e et e e aaees 44

Step 4: Create Lambda FUNCHONSc.ieieiii e enea e 44

Step 5: Create and Test @ GET MEthOdcouviiniiiiii e ae e 48

Step 6: Create and Test @ POST Methodocuvuiiiiiiii e ee e 49

StEP 7: DEPIOY the AP ..ot 50

SEEP 8. TSt TN AP ot e e e e 50

SEEP 9 ClEAN UP ettt 51

N (] (= T PP 52
Create Lambda Invocation and EXecution ROIESc.oiiuiiiiiiiiiiiiiiii e 52

Build an API Using Proxy Integration and a ProxXy RESOUICEovuiuiiniiiiiineiiieieieiieeaneneananns 54
Create and Test an APl with HTTP Proxy Integration through a Proxy Resource 55
Create an API with Lambda Proxy Integration through a Proxy Resourcec..ccocovevnee. 59
Create an AWS SEIVICE PrOXYiuiiiiiiiii ettt eas 64
PrEIEQUISITES ...ttt ettt e 65

SteP 1: Create the RESOUICEiv.iiii ittt et e e e e e e e aees 65

Step 2: Create the GET MEthOdcuiviriiii e e ae e 66

Step 3: Create the AWS Service Proxy Execution ROIEcocoviiiiiiiiiiniiiice 66

Step 4: Specify Method Settings and Test the Methodc.cooiiiiiiiiiiieee 67

StEP 5: DEPIOY the APl ..o e e 68

SEEP B: TESE TN AP ot e e e 68

SEEP 72 ClEAN UP ot 69
CrEatING AN AP e e 70
Create an APL N API GAIEWAYcuieiiiiiiiei it 70
Create an API Using the APl Gateway CONSOIEoouiiniiiiiiiiee e 70
Create an API Using the APl Gateway Control Service APlccocooiiiiiiiiiiii, 71
Create an API Using the AWS SDK fOr APl GAtEWAYc.uveuiiniiniiiiineiiaieiieie e 71
Create an APl USING the AWS CLI ...iuiiiiiiii e 71

Set up Method and INTEGIAtIONoiuitii e et enas 71
Before Setting Up Methods and INtegrationoouuiiiiiiiiii e 71
Configure How a Method Is Integrated with @ Back ENdccoooiiiiiiiiiiniicceeenes 72
Configure How a User Calls an API Methodc.oouiuiiiiii e 74
Configure How Data Is Mapped between Method and Integrationccocvvieiiiiiiinininnnns 75
Enable Support for Binary Payloadsccoiiiiiiiiii e 78
Configure Mock Integration for @ Methodoooiiiiiiiiii 94
Configure Proxy Integration for a ProXy RESOUICEc.iuiiniiiiiiiiie e ie e e ens 97

After Setting Up Methods and INtegrationooiiiiiiiiii e 105

Set Up Payload MapPingsSo.ieieieiii it 105
1Y oo L] PP 106
MaPPING TEMPIALESieitiii e et a e 109

Amazon API Gateway Developer Guide

Tasks for Models and Mapping TemMPIatesc.veiiriiiii e 112
Cre@ate @ MOGEI 112
View @ LisSt OFf MOGEIS ... e 113
Delete 8 MOUEI ... e 113
PhotOS EXAMPIE ... e 114
NEWS AFtICIE EXAMPIEoeeiiti e et e et enas 117
Sales INVOICE EXAMPIE ... e 121
Employee ReCOrd EXamPIE ... 125
Request and Response Parameter-Mapping Referenceocoooviiiiiiiiiiiiiii 131
Map Data to Integration ReqUest Parametersc.ouiiiuiiiiiiiii e 131

Map Data to Method ResSponse Headerscoouiiiiiiiiii e 132
Transform Request and ReSpoNSe BOGIESouivieiiiiiiiiiiii e 133
Request and Response Payload-Mapping Referencecooiiiiiiiiiiiiiiiii e 134
Accessing the $context Variable ... 134
Accessing the $IiNput Variable 136
Accessing the $stageVariables Variable ..o 139
Accessing the SUtil Variable ... 139
Integration Passthrough Behaviors ... 140
IMPOIt @Nd EXPOIt AP ..ot et 141
I POt AN AP e 142
EXPOIT AN AP e e 145

API Gateway EXtENSIONS 10 SWAGGET . .uvuuuninitinit ettt ens 147
(O] 11 0] [T o Ao o P 160
USE TAM PEIMISSIONS ... ittt ettt ettt e et et ettt ettt et et e e e e e 160
Control Access to APl Gateway with IAM POIICIESooviiiiiiiii e 160
Create and Attach a Policy t0 an JAM USEr ..o 162
Statement Reference of IAM Policies for Managing APl in APl Gatewayccocoevennnen. 163
Statement Reference of IAM Policies for Executing APl in APl Gatewayccccocoevvennnen. 164

IAM Policy Examples for APl Gateway APIS ... 165

IAM Policy Examples for APl Execution PermiSSIONSocuieiieiiiiiiiiiieiiee e 169
Enable CORS fOr @ RESOUITE ... c.uieiiiiiiii et 170
L (=TT [LS (= 171
Enable CORS UsING the CONSOIE ... 171
Enable CORS Using Swagger Definitionccoiiiiiii e 172

Use AP| Gateway CUStOM AULNOTIZEISiuii i aeaes 174
API Gateway CUStOmM AULNOMIZEISo e 174
Create the Custom Authorizer Lambda FUNCHONo.iiiiiiiiiiiic e 175

INpUt t0 @ CUSTOM AULNOTIZET . ..oee e e enas 176
Output from an Amazon API Gateway Custom AUthOFZErccoviiiiiiiiiiii e, 177
Configure CUSTtOM AULNOTIZETui e 178

Call an APl with Custom autROMZALIONocuiiiiii e 180

Use Amazon Cognito YOUr USEN POOIouiuiiiii e 182
Create @ USEI POOI ... 183
Integrate an APl with @ USEr POOI ..o e 183

Call an API Integrated with @ USer POOI ..o 186

Use Client-Side SSL CertifiCAESiuuirieitiiee e 186
Generate a Client Certificate Using the API Gateway Consolec..cooiiiiiviiiinienennn. 187
Configure an APl to Use SSL CertifiCatescouiiiiiiiii e 187

TOSE INVOKE ..ottt ettt 188
Configure Back End to Authenticate APl ... 189
Supported Certificate Authorities for HTTP and HTTP Proxy Integrationccocovvviiiiniennenne. 189
Use API Gateway UsSAge Plans ..o e e 212
What IS @ USAgE Plan? ... e e 212

How to Configure a Usage PlIan? ... 212

Set Up API Keys Using the APl Gateway CONSOIEc.ouiiuiiiiiiiiiii e 213
Create and Configure Usage Plans with the API Gateway Consoleccccveviviiiiennnnnn. 216

Set Up API Keys Using the API Gateway REST APl ... 219
Create and Configure Usage Plans with the API Gateway REST APlcccoviiiviiiiiniiinnnns 220

Amazon API Gateway Developer Guide

API Gateway APIl Key File FOMAL ..o e 222

Use API Keys without Usage Plans Enabled 223

1= T L= T T o = A . 227
VIEW @ LISE OF APIS oot 227
L (=TT [LS (= 227

View a List of APIs with the APl Gateway CONSOIEoooiuiiiiiiiiiiii e 227
DlEtE BN AP oo 227
L (=TT 0 [LS (= 228
Delete an API with the APl Gateway CONSOIEcoiuiiiiiiiiii e 228
DEIEIE 8 RESOUITE ...ttt ittt ettt ettt et e i enes 228
Delete a Resource with the APl Gateway CONSOIecoiiiiiiiiiiii e 228

VIEW @ MEENOAS LIST .. oeieieiii e 228
L (=TT 0 [LS (= 228

View a Methods List with the API Gateway CONSOIEocuiiiiiiiiiiii e 229
Delete @ MELNOU ... 229
Delete a Method with the APl Gateway CONSOIEc.iuiiiiiiii e 229
DEPIOYING BN AP o s 230
Deploy an APl with the APl Gateway CONSOIEociuiiiieiie e 230
L (=TT U LS (= 230
Deploy an API with the APl Gateway CONSOIEc.oiiuiiiiiiiiiie e 230
Update deployment configuration with the APl Gateway Consoleccocovvviiiiiiiiiniennen. 231
Change a Stage to Use a Different Deployment with the APl Gateway Console 231
DePIOY @n APL N STAGES ..outiiiiiii it 232
(02T LI B = Lo [PP P PPN 232
VIBW @ LISt OF StAGES ..euiuiiiiiiiiii it et 232

SOt U 8 SHBOE ettt e 233
(D21 (== W =T [235
Manage APl Request THrottingc.ouiiiiiii e e 236
Account-Level Throttling ..o e 236
Stage-Level and Method-Level Throtthingcoo.oeiiiii e 236
ENable APL CaChingouiiiiiii e e e 236
API CaChing OVEIVIEW ...ttt et e e e e aenees 237
ENnable APL CaChingc.ooiiiiiiii e e e 237
Override Stage Caching for Method Cachingccoiiiiiiiiii 238

Use Method/Integration Parameters as Cache KeYSoooiuiiiiiiiiiiiiiieeeee e 239
Flush the API Stage Cache in APl GAtEWAYovuiiiiniiiiiiia e 240
Invalidate an API Gateway Cache ENtryooiuiiiiiiiii e 240
Manage API Deployment with Stage Variables ... 242
USE CaSES ..iuitiititiiit ittt ettt 242
0= T 010 ST 242

Set Stage Variables ... 243

UsSE Stage Variables ..o 246
Stage Variables REefErenCe ..o 253
Generate and Use an SDK fOr @n AP ... 254
Use the API Gateway Console to Generate the SDKs of an APl ..., 254

Use an Android SDK generated by APl Gate@WAYc.veuiuiiiniiiaiiieeeie e e 266

Use iOS SDK Generated by APl Gateway in Objective-C or Swiftccocoivviiiiiiiinnnne. 268

Use a JavaScript SDK Generated by APl GateWaYocveiiiieiiiiaiiiiiiiae e 278

Use a Custom DOMEIN NAIME ...ttt et e e i ens 280
L (=TT U LS (= 281

Set Up a Custom Domain Name for an APl Gateway APlcoviiiiiiiiiiiiiiieieeean 281
Specify APl Mappings for a Custom Domain Namec.ooviiiiiiii e 284
Base Path Examples of APl Mappings for a Custom Domain Nameccccoceeiiinennnnn. 284
Upload and Renew an EXpiring CertifiCatecoouiiiiiiiii e 285

Call Your API with Custom Domain NamMESoeuiiniiiiiiie e 286
DOCUMENTING @N AP o e et et ettt eeaas 287
Representation of APl Documentation in APl GatEWAYc.euviiriiiniiiiii e 287
DOCUMENEALION PAITS ...ttt ettt ettt e e ens 288

vi

Amazon API Gateway Developer Guide

DOCUMENLALION VEISIONS ... ettt ittt ettt ettt e 294
Document an API Using the APl Gateway CONSOIEooiuiiiiiiiiieiiee e 294
DocuUmMENt the APL ENTItY ...t e e et e e aaeaas 295
Document @ RESOURCE ENTILYuiuieiit ittt ettt e e e e e e aenes 297
Document @ METHOD ENLILYouieieiei e e e s 297
Document a QUERY_PARANMETER ENLItYvuiniiiii e 298
Document a PATH PARANVETER ENItYcuiuiiiiii e aeaes 299
Document a REQUEST_HEADER ENItYouiuiiiiiii e 300
Document @ REQUEST_BODY ENLIYuvuieiiiieiee et aeae e 300
Document @ RESPONSE ENTILYiuieiit ittt e e e e e aeenees 300
Document a RESPONSE_HEADER ENItYuuieiiiiiii e 301
Document a RESPONSE_BODY ENLILYouitiiieeiieeiie et eeaes 301
Document @ MODEL ENULYuuinieiiii et enas 301
Document an AUTHORI ZER ENLILYuiniiiiei e ee e 302
Document an API Using the APl Gateway REST APl ... 302
DocuUmMENt the APL ENTItY ...ttt e e aeaas 303
Document @ RESOURCE ENTILYiuieiie ettt et et e e e e e e aenes 304
Document @ METHOD ENLILYouitiiiiii e e e 307
Document a QUERY_PARANMETER ENLItYvuiniiiiii e 309
Document a PATH PARANVETER ENItY ..o 311
Document @ REQUEST_BODY ENLILYuvuieiiiiei e e e aea e 312
Document a REQUEST_HEADER ENItYcuiuiiiiii e 313
Document @ RESPONSE ENTILYcuieiit ettt et e e e e e e aaenees 314
Document a RESPONSE_HEADER ENItYuuieiiiiii e 314
Document an AUTHORI ZER ENLILYuiniuiieie et ee e 315
Document @ MODEL ENULYuuiniiiiii et e 317
Update DocUMENtatioN PartSc.iiiieiiii e 318
LiSt DOCUMENTALION PAISi..itieitieite et ene 319
PUbIlish AP DOCUMENTALION ...ttt ettt et ettt et e e e n e 319
Create a Documentation Snapshot and Associate it with an APl Stagecocoeoviinanee. 319
Create a Documentation SNapShOt ..o 320
Update a Documentation SNapShot ..o e 320
Get a Documentation SNAPSNOL ... 321
Associate a Documentation Snapshot with an APl Stagecoooviiiiiiiiiiiieee, 321
Download a Documentation Snapshot Associated with a Stageccccoceiiviiiiiiiiiiniinenss 322
IMPOrt AP DOCUMENTATIONetiiit ittt e et et e e et e e e e e nene e 325
Importing Documentation Parts Using the API Gateway REST APlcccoiiiiiiiiiiiininnne. 325
Importing Documentation Parts Using the APl Gateway CONSOIecocoviiiiiiiiniiiininnanns. 327
Control Access t0 APl DOCUMENTALIONc.uieiiiieeiee e e 327
Calling @ DEPIOYEU APl . e eaas 329
L (=TT 0 LS = 329
Obtain an API's Invoke URL in the APl Gateway CONSOIEc..ovuieiiiiiiiiiii e 330
Test a Method Using the CONSOIE ... e 330
L (=TT [LS (= 330
Test a Method with the API Gateway CONSOIEooiiiiiiiii e 330
Use Postman t0 TeSE @N AP ... 331
Monitoring and TroubIESNOOTINGt e e et 332
Log APl Management Calls with CloudTrail ..o 332
API Gateway Information in CloudTrailcoiiiiiii e 333
Understanding APl Gateway Log File ENtriesScoouiiiiiiiii e 333
Monitor API execution with Amazon CIoudWatCh ..o 334
Amazon API Gateway DIimensions and MEetriCSc.ouiiuiiiiiiiiie e 334
View Metrics with the API Dashboardc.coiiiiiiii 336
View Metrics in the CloudWatCh CONSOIEc.oiuiiiiiiiiii e 336
MONItOriNG TOOIS 1N AVVS . e e e e e 337
SelliNG AN AP S SBASiuiiiiit e 339
Initialize AWS Marketplace Integration with APl Gatewaycccuveiiiiiiiiiiiiiiicneee e 339
List a Product on AWS Marketplacecouiiiiniiiiii e 339

vii

Amazon API Gateway Developer Guide

Create the Metering ROIE ... e 340
Associate Usage Plan with AWS Marketplace Productccoiiiiiiiiiiiiiiiiee 340
Handle Customer Subscription to Usage PIans ..o 341
Authorize a Customer to Access a Usage Plan ..o 341
Associate a Customer With an APL KEY ... 342
LI L0 1= PP PP PP 343
Create an APl as @ Lambda ProXYoooiuiiieiiiiii e 343
Set Up an IAM Role and Policy for an API to Invoke Lambda Functionscccovenis 345
Create a Lambda Function in the Back ENdccooiiiiiiiiiic e 346
Create API Resources for the Lambda FUNCHONc.viiiiiiini e 347
Create a GET Method with Query Strings to Call the Lambda Function 347
Create a POST Method with a JSON Payload to Call the Lambda Function 350
Create a GET Method with Path Parameters to Call the Lambda Function 352
Swagger Definitions of a Sample APl as Lambda ProxXycccocoiiviiiiiiiiiiniiiiieenn 356
Create an APl as an AmMAzZOon S3 PrOXY ...ttt 359
Set Up IAM Permissions for the API to Invoke Amazon S3 ACtiONScocoeviiiiiiniiiininennen. 360
Create APl Resources to Represent Amazon S3 RESOUICESo.iueiiiiiiiiiiiiiiieeaaaans 361
Expose an API Method to List the Caller's Amazon S3 Bucketsccooviiiiiiiiiiiiiininne. 362
Expose API Methods to Access an Amazon S3 BUCKetcooviiiiiiiiiiiiiiiie e 369
Expose API Methods to Access an Amazon S3 Objectin a Bucketcoooeviiiiiiiiinnne. 372
Call the AP1 Using @ REST AP ClIENEonieiiiii e e 374
Swagger Definitions of a Sample APl as an Amazon S3 ProXycocoveviiniiiiiiniiiinieenennsn 378
Create an APl as an AmMAazon KIiNESIS PrOXYuiuiiiiii it re e e 388
Create an IAM Role and Policy for the API to Access Amazon Kinesisccovviienennne. 390
Start to Create an APl as an Amazon KiNESIS PrOXYovuiuiiieiiiiiiii e 391
List Streams i AMAzZON KINESISiuiieiiiii e 391
Create, Describe, and Delete a Stream in AMazon KINESISoviuiiiiiii e 393
Get Records from and Add Records to a Stream in Amazon Kinesisccocevvviniiininnnn. 400
Swagger Definitions of an APl as @ Kinesis ProXYouiuiiiiiiiiiieeieeee e 410
APL GateWay REST AP ...t 418
Limits, Pricing and KNOWN ISSUESiuiiiiiiii e e e ettt ens 419
APL GatEWAY LIMItS ..ottt ettt et e e et ettt eaas 419
API Gateway Limits for Configuring and Running an APl ..., 419
API Gateway Limits for Creating, Deploying and Managing an APlc.coooiiiiiiiiinnnne. 420
F I T 1= NV T T T 421
KNMOWN ISSUBS ..ottt et ettt ettt e e e e 421
[0 o0] 0 =Y oLl T3 (] Y/ 423
AWS GlOSSAIY ...ttt e et e et eaaas 427

viii

Amazon API Gateway Developer Guide

What Is Amazon API Gateway?

Amazon API Gateway supports the following two major functionalities:

¢ |t lets you create, manage and host a RESTful API to expose AWS Lambda functions, HTTP
endpoints as well as other services from the AWS family including, but not limited to, Amazon
DynamoDB, Amazon S3 Amazon Kinesis. You can use this feature through the APl Gateway REST
API requests and responses, the APl Gateway console, AWS Command-Line Interface (CLI), or an
API Gateway SDK of supported platforms/languages. This feature is sometimes referred to as the
API Gateway control service.

« It lets you or 3rd-party app developer to call a deployed API to access the integrated back-end
features, using standard HTTP protocols or a platform- or language-specific SDK generated by API
Gateway for the API. This feature is sometimes known as the APl Gateway execution service.

The API you create in API Gateway consists of a set of resources and methods. A resource is a

logical entity that can be accessed through a resource path using the API. A resource can have one

or more operations that are defined by appropriate HTTP verbs such as GET, POST, and DELETE.

A combination of a resource path and an operation identify a method in the API. Each method
corresponds to a REST API request submitted by the user of your APl and the corresponding response
returned to the user. APl Gateway integrates the method with a targeted back end by mapping the
method request to an integration request acceptable by the back end and then mapping the integration
response from the back end to the method response returned to the user. As an API developer, you
can configure how methods are mapped to integrations and vice versa by stipulating what parameters
to use and specifying mapping templates to transform payloads of given data models.

You can create an API by using the APl Gateway management console, described in Getting
Started (p. 4), or by using the APl Gateway AP| Gateway REST API (p. 418). In addition,

you can integrate API creation with AWS CloudFormation templates or APl Gateway Extensions to
Swagger (p. 147). For a list of regions where AP| Gateway is available, as well as the associated
control service endpoints, see Regions and Endpoints.

API Gateway helps developers deliver robust, secure, and scalable mobile and web application back
ends. API Gateway allows developers to securely connect mobile and web applications to business
logic hosted on AWS Lambda, APIs hosted on Amazon EC2, or other publicly addressable web
services hosted inside or outside of AWS. With AP Gateway, developers can create and operate APIs
for their back-end services without developing and maintaining infrastructure to handle authorization
and access control, traffic management, monitoring and analytics, version management, and software
development kit (SDK) generation.

API Gateway is designed for web and mobile developers who want to provide secure, reliable access
to back-end APIs for access from mobile apps, web apps, and server apps that are built internally or by

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-reference.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide
API| Gateway Concepts

third-party ecosystem partners. The business logic behind the APIs can either be provided by a publicly
accessible endpoint that APl Gateway proxies call, or it can be entirely run as a Lambda function.

To better understand the terminology used in this documentation, you may find it useful to peruse the
API Gateway Concepts (p. 2) section.

Amazon APl Gateway Concepts

API Gateway An AWS service that 1) supports creating, deploying and managing
a RESTful application programming interface (API) to expose
back-end HTTP endpoints, AWS Lambda function, or other AWS
services; and 2) invoking exposed API methods through the front-
end HTTP endpoints.

API Gateway API A collection of resources and methods that are integrated with
back-end HTTP endpoints, Lambda functions or other AWS
services and can be deployed in one or more stages. API methods
are invoked through front-end HTTP endpoints that can be
associated with a registered custom domain names. Permissions
to invoke a method can be granted using IAM roles and policies or
API Gateway custom authorizers. An API can present a certificate
to be authenticated by the back end. Typically, API resources are
organized in a resource tree according to the application logic.
Each API resource can expose one or more APl methods that must
have unique HTTP verbs supported by API Gateway.

API developer or API owner An AWS account that owns an APl Gateway deployment (for
example, a service provider who also supports programmatic
access.)

App developer or client An app creator who may or may not have an AWS account and

developer interacts with the API deployed by the API developer. An app
developer can be represented by an API Key.

App user, end user or client An entity that uses the application built by an app developer that

endpoint interacts with APIs in Amazon API Gateway. An app user can be

represented by an Amazon Cognito identity or a bearer token.

API Key An alphanumeric string, which can be generated by AP| Gateway
on behalf of an API owner or imported from an external source
such as a CSV file, is used to identify an app developer of the API.
An APl owner can use API keys to permit or deny access of given
APIs based on the apps in use.

API Deployment and stage An API deployment is a point-in-time snapshot of the API Gateway
API resources and methods. For a deployment to be accessible
for invocation by a client, it must be associated with one or more
stages. A stage is a logical reference to a life-cycle status of your
API (e.g., 'deV', 'prod’, 'beta’, 'v2'). The identifier of an API stage
consists of an API ID and stage name.

Method request The public interface of an API method in API Gateway that defines
the parameters and body that an app developer must send in the
requests to access the back end through the API.

Integration request An API Gateway internal interface that defines how APl Gateway
maps the parameters and body of a method request into the
formats required by the back end.

Amazon API Gateway Developer Guide

API| Gateway Concepts

Integration response

Method response

Proxy Integration

Mapping template

Model

Usage plan

An API Gateway internal interface that defines how API Gateway
maps data. The integration response includes the status codes,
headers, and payload that are received from the back end into the
formats defined for an app developer.

The public interface of an API that defines the status codes,
headers, and body models that an app developer should expect
from API Gateway.

A simplified API Gateway integration configuration. You can set up
a proxy integration as an HTTP proxy integration type or a Lambda
proxy integration type. For the HTTP proxy integration APl Gateway
passes the entire request and response between the front end and
an HTTP back end. For the Lambda proxy integration APl Gateway
sends the entire request as an input to a back-end Lambda function
and transforms the Lambda function output to a front-end HTTP
response. The proxy integration is most commonly used with a
proxy resource, which is represented by a greedy path variable
(e.g., { pr oxy+}) combined with a catch-all ANY method.

Scripts, expressed in Velocity Template Language (VTL), to
transform a request body from the front-end data format to the
back-end data format or to transform a response body from the
back-end data format to the front-end data format. Mapping
templates are specified in the integration request or integration
response and they can reference data made available at run time in
the forms of context and stage variables. An identity transformation
is referred to as pass-through in which a payload is passed as-is
from the client to the back end for a request and from the back end
to the client for a response.

Data schema specifying the data structure of a request or response
payload. It is required for generating strongly typed SDK of an

API, used for validating payload, and convenient for generating

a sample mapping template to initiate creation of a production
mapping template. Although useful, a model is not required for
creating a mapping template.

A usage plan provides selected API clients with access to one or
more deployed APIs with configurable throttling and quota limits
enforced on individual client API keys.

http://velocity.apache.org/engine/devel/vtl-reference.html

Amazon API Gateway Developer Guide
Get Ready to Use API Gateway

Getting Started with Amazon API
Gateway

The following walkthroughs include hands-on exercises, using the APl Gateway console, to help you
learn about API Gateway.

Topics
¢ Get Ready to Use Amazon API Gateway (p. 4)
¢ Build an API Gateway API to Expose an HTTP Endpoint (p. 6)
¢ Build an API to Expose a Lambda Function (p. 44)
¢ Build an API Gateway API Using Proxy Integration and a Proxy Resource (p. 54)
¢ Create an AWS Service Proxy for Amazon SNS (p. 64)

Get Ready to Use Amazon AP| Gateway

Before using API Gateway for the first time, you must have an AWS account set up. To create,
configure and deploy an API in APl Gateway, you must have appropriate IAM policy provisioned with
permissible access rights to the APl Gateway control service. To permit your API clients to invoke your
APl in API Gateway, you must set up the right IAM policy to allow the clients to call the APl Gateway
execution service. To allow APl Gateway to invoke an AWS service in the back end, APl Gateway
must have permissions to assume the roles required to call the back-end AWS service. When an API
Gateway API is set up to use AWS IAM roles and policies to control client access, the client must sign
API Gateway API requests with Signature Version 4.

Understanding of these topics are important to use API Gateway and to follow the tutorials and
instructions presented here. This section provides brief discussions of or quick references to these
topics.
Topics

¢ Sign Up for AWS (p. 5)

http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide
Sign Up for AWS

¢ Create an IAM User, Group or Role in Your AWS Account (p. 5)
¢ Grant IAM Users Permissions to Access API Gateway Control and Execution Services (p. 5)
¢ Next Step (p. 6)

Sign Up for AWS

Go to http://aws.amazon.com/, choose Create an AWS Account, and follow the instructions therein.

Create an IAM User, Group or Role in Your AWS
Account

For better security practices, you should refrain from using your AWS root account to access API
Gateway. Instead, create a new AWS Identity and Access Management (IAM) user or use an existing
one in your AWS account, and then access API Gateway with that IAM user credentials.

To manage access for a user, you can create an IAM user, grant the user APl Gateway access
permissions. To create a new IAM user, see Creating an IAM User.

To manage access for a group of users, you can create an IAM group, grant the group API Gateway
access permissions and then add one or more IAM users to the group. To create an IAM group, see
Creating IAM Groups.

To delegate access to specific users, apps or service, you can create an IAM role, add the specified
users or groups to the role, and grant the users or groups API Gateway access permissions. To create
an IAM role, see Creating IAM Roles.

When setting up your API, you need to specify the ARN of an IAM role to control access the API's
methods. Make sure that this is ready when creating an API.

Grant IAM Users Permissions to Access API
Gateway Control and Execution Services

In AWS, access permissions are stated as policies. A policy created by AWS is a managed policy and
one created by a user is an inline policy.

For the API Gateway control service, the managed policy of AmazonAPIGatewayAdministrator
(arn:aws:iam: aws: pol i cy/ AmazonAPI Gat ewayAdmi ni st r at or) grants the full access to
create, configure and deploy an API in APl Gateway:

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Alow',
"Action": [
"api gat eway: *"
1.
"Resource": "arn:aws:api gateway: *::/*"
}
]
}

http://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

Amazon API Gateway Developer Guide
Next Step

To grant the stated permissions to a user, attach the policy to the user, a group containing the user. To
attach a policy, see Attaching Managed Policies.

Attaching the preceding policy to an IAM user provides the user with access to all APl Gateway
control service actions and resources associated with the AWS account. To learn how to restrict
IAM users to a limited set of API Gateway control service actions and resources, see Use |IAM
Permissions (p. 160).

For the API Gateway execution service, the managed policy of
AmazonAPIGatewaylnvokeFullAccess (arn: aws: i am : aws: pol i cy/
AmazonAPI Gat ewayl nvokeFul | Access) provides full access to invoke an APl in API Gateway:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Allow',
"Action": [
"execut e- api : | nvoke"
I,
"Resource": "arn:aws:execute-api:*:;*:*"
}
]
}

Attaching the preceding policy to an IAM user provides the user with access to all APl Gateway
execution service actions and resources associated with the AWS account. To learn how to restrict
IAM users to a limited set of API Gateway execution service actions and resources, see Use |IAM
Permissions (p. 160).

To grant the state permissions to a user, attach the policy to the user, a group containing the user. To
attach a policy, see Attaching Managed Policies.

In this documentation, we will use managed policies, whenever possible. To create and use inline
policies, see Working with Inline Policies.

Note
To complete the steps above, you must have permission to create the IAM policy and attach it
to the desired IAM user.

Next Step

You are now ready to start using API Gateway. See Create an AP Gateway API from an
Example (p. 7).

Build an APl Gateway API to Expose an HTTP
Endpoint

You can create an API in the Amazon API Gateway console from the ground up. In essence, you use
the console as an API design studio to scope the API features, to experiment with its behaviors, to
build the API, and to deploy your API in stages.

Topics

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon API Gateway Developer Guide
Create an API from an Example

¢ Create an API Gateway API from an Example (p. 7)

¢ Build the API Step By Step (p. 14)

¢ Map Request Parameters for an APl Gateway API (p. 22)
¢ Map Response Payload (p. 31)

Create an API Gateway API from an Example

The Amazon API Gateway console now provides an option for you to create an API Gateway API by
example, with helpful hints provided along the way. If you are new to APl Gateway, you may find it
useful as a learning tool. The following steps walk you through using this create-by-example option to

create and test the example API.

1. Do one of the following:

a. For the first APl in your account, choose Get Started from the APl Gateway console welcome
page:

1] AWS ~ Services ~

Amazon API Gateway

Amazon API Gateway helps developers to create and manage APls to
back-end systems running on Amazon EC2, AWS Lambda, or any
publicly addressable web service. With Amazon APl Gateway, you can
generate custom client SDKs for your APls, to connect your back-end
systems to mobile, web, and server applications or services.

AT R

Streamline API| development Performance at scale SDK generation
Amazon AP| Gateway can generate client

Amazon AP Gateway lets you simultaneously Amazon AP| Gateway helps you improve

run multiple versions and release stages of the performance by managing traffic to your SDKs for JavaScript, Java, i0S, and Android
same AP, allowing you to quickly iterafe, test, existing back-end systems, throttling API call which you can use fo quickly test new APIs
and release new versions. spikes, and enabling result caching from your applications and distribute SDKs to

third-party developers,

If prompted with a modal dialog box containing hints at a stage of the process, choose OK to
close the modal dialog and continue.

b. For your next API, choose Create API from the API Gateway APIs home page:

Support

B AWS v Services v Edit v
:1; Amazon APl Gateway | APis e
)

PetStore PetStore
APl Keys Ne deseription

Custom Domain Names

Client Certificates

Settings

Amazon API Gateway Developer Guide
Create an API from an Example

2. Under Create new API, select Examples API and then choose Import to create the example API.
For your first API, the APl Gateway console will start with this option as default.

Create new API

In Amazon AP| Gateway, an AP refers to a collection of resources and metheds that can be invoked through HTTPS endpoints.

Import from Swagger < Example APl

New API Clone from existing API

Example API

Learn about the service by importing an example API and turning on hints throughout the console.

L € ~ .
2 “swagger™: "2.8", =
3 "info":

4 "title”: "PetStore”

5 b

6 “schemes”: [

7 “https”

8 »

9 “paths”: {

1@ =73

11 “post™: {

12 “produces”: [

13 "application/json”

14)

15 "responses”: {

16 "20@": {

17 “description™: “208 response”,

18 “schema”: {

19 “$ref": "#/definitions/Empty"”

= / c
21 4 m 3

=

You can scroll down the Swagger definition for details of this example API before choosing
Import.

3. The resulting display shows the newly created API:

:’i Amazon APl Gateway ~ APls > PetStore (lepdigf4ej) > Resources > /(pn9a20tux4)

APIs Resources Actions- | o / Methods
PetStore &/ RE SOURCE ACTIONS
Create Method bsT
Resources
Create Resource . .
Stages Ipetstore-demo-endpoint. execute-api.com/...
Enable CORS
Custom Authorizers
- & pets
Models AP1 ACTIONS
API Keys Deploy API
TION Import API
Custom Domain Names ~ & /petid) Delete AP

Client Certificates

Mock Endpoint

Settings
Authorization None

APl Key Not Required

© OPTIONS

Mock Endpoint

Authorization lor

APl Key Not Required

The API Gateway navigation pane on the left shows your available APIs, any API keys, custom
domain names and client certificates that you created for your APIs, as well as the settings for
logging your APIs' performance metrics. API-specific resources, deployment, custom authorizers
and payload-mapping data models are organized under individual APIs.

The Resources pane in the middle shows the structure of the selected API as a tree of nodes.
API methods defined on each resource are edges of the tree. When a resource is selected, all of

Amazon API Gateway Developer Guide
Create an API from an Example

its methods are listed in the Methods pane on the right. Displayed under each method is a brief
summary of the method, including its endpoint URL, authorization type, and API Key requirement.

To view the details of a method, to modify its set-up, or to test the method invocation, choose the
method name from either the method list or the resource tree.

/ - POST - Method Execution

TES Method Request Integration Request 5]
5 ® L O
Auth: NONE Type: HTTP @

® ARN: arn:aws:execute- Input passthrough: Yes _g
apizeu- =

west-1:%18 "gdiv E

/POST/ &

e

?

aQ

< L1l » 3

= e
2 o
°]
Method Response Integration ResBonse 5

@ Ing

L]

HTTP Status: 200 HTTP status pattern: P

(¢}

Models: application/json - %

=> Empty Output passthrough: No o

=5

o

o

3

The resulting Method Execution pane for the chosen method presents a logical view of the
method's structure and behaviors: a client accesses a back-end service by interacting with the
API through Method Request. API Gateway translates the client request, if necessary, into the
form acceptable to the back end before forwarding the request to the back end. The transformed
request is known as the integration request and is depicted by Integration Request in the display.
Similarly, the response from the back end goes through Integration Response and then Method
Response before being received by the client. Again, if necessary, APl Gateway maps the
response from the form shaped in the back end to a form expected by the client.

For the POST method on this API's root (/) resource, the method's integration request shows that
the method is integrated with the endpoint of ht t p: / / pet st or e- denp- endpoi nt . execut e-
api . conl pet st or e/ pet s in the back end. The method request payload will be passed through
to the integration request without modification. The GET / method request uses the MOCK
integration type and is not tied to any endpoint in the back end. When the method is called, the
API Gateway simply accepts the request and immediately returns a response, by way of from
Integration Response to Method Response. You can use the mock integration to test an API
without requiring a back-end endpoint. You can also use it to serve a local response. In fact, the
example API uses it to return a local HTML page as the home page of the API. It uses a mapping
template to generate the home page in Integration Response.

As an API developer, you control the behaviors of your API's front-end interactions by configuring
the method request and a method response. You control the behaviors of your API's back-end
interactions by setting up the integration request and integration response. They involve data
mappings between a method and its corresponding integration. We will cover the method setup in
Build an API Gateway API to Expose an HTTP Endpoint (p. 6). For now, we focus on testing

the API to provide an end-to-end user experience.

Amazon API Gateway Developer Guide
Create an API from an Example

5. Choose Test shown on Client (as shown in the previous image) to start testing. Enter the
following {"type": "dog","price": 249.99} payload into the Request Body before
choosing the Test button.

€ Method Execution [/ - POST - Method Test

Make a test call to your method with the provided input

Path

No path parameters exist for this resource. You can define path
parameters by using the syntax {myPathParam} in a resource
path.

Query Strings
No query string parameters exist for this method. You can add
them via Method Request.

Headers
No header parameters exist for this method. You can add them
via Method Request.

Stage Variables
Mo stage variables exist for this method.

Client Certificate
Mo client certificates have been generated.

Request Body
1 @yge": dog", "price": 249‘999

The input specifies the attributes of the pet that we wish to add to the list of pets on the PetStore
website.

6. The results display as follows:

10

Amazon API Gateway Developer Guide
Create an API from an Example

Request: /
Status: 200
Latency: 1445 ms
Response Body

{
pet™: {
“type”: "dog”,
"price": 243.99

)
"message”: "success"

Response Headers
{"Access-control-Allow-Origin®:"s", "Content-Type™: "application/json"}
Logs

Execution log for reguest test-request

Mon Apr 84 84:59:85 UTC 2816 : Starting execution for reguest: test-invoke-request
Mon Apr 84 @4:59:85 UTC 2816 : WTTP Methed: POST, Resource Path: /

MOn Apr 84 @4:59:85 UTC 2816 : Method request path: {}

Mon Apr 84 @4:59:85 UTC 2816 : Method request query string: {}

Mon Apr 84 84:59:85 UTC 2816 : Method request headers: {}

MOn Apr @4 e4:59:85 UTC 2816 : Method request body before transformations: {“type": “dog","price™: 249
.99}

Mon Apr @4 @4:53:85 UTC 2816 : Endpoint request URI: htip://petstore-demo-endpoint.execute-api.com/pet
store/pets

Mon Apr 84 84:59:85 UTC 2816 : Endpoint request headers: {x-amzn-apigateway-apl-id=g4iukm23bf, Accept=
application/json, User-Agent=AmazonAPIGateway_g4iukm23bf, Content-Type=application/3j:
MOn Apr @4 @4:59:85 UTC 2816 : Endpoint request body after transformations: {“type™:

", price™: 24

9.99}
Mon Apr @4 @4:59:@6 UTC 2816 : Endpoint respense body before transformations: {
"pet: {

"type": "dog",
"price": 243.99
b
“"message”: “success”
T
Mon Apr @84 @4:59:86 UTC 2816 : Endpoint response headers: {date=mon, @4 Apr 2816 84:59:86 GMT, content
-length=81, x-powered-by=Express, content-type-application/json; charset=utf-g, connection-=keep-alive}
Mon Apr 84 @4:53:86 UTC 2816 : Method response body after transformations: {
"pet™: {
"type": "dog",
"price": 243.99
b
"message”: "success"
T
Mon Apr 84 @4:59:86 UTC 2816 : Method response headers: {Access-Control-Allow-Origin=*, Content-Type=a
pplication/json}
MON Apr @4 84:59:86 UTC 2816 : successfully completed execution
Mon Apr 84 @4:53:86 UTC 2816 : Method completed with status: 2ee

The Logs entry of the output shows the state changes from the method request to the integration
request and from the integration response to the method response. This can be useful for
troubleshooting any mapping errors that cause the request to fail. In this example, no mapping is
applied: the method request is identical to the integration request and the integration response is
the same as the method response.

To test the API using a client other than the API Gateway test-invoke-request feature, you must
first deploy the API to a stage.

To deploy the sample API, select the PetStore API and the root / resource, and then choose
Deploy API from the Actions menu.

11

Amazon API Gateway Developer Guide
Create an API from an Example

APls . Resources Actions- | o / Methods
PetStore & i RESOURCE ACTIONS
Create Method ST
I Resources
Create Resource X
Stages - Ipetstore-demo-endpoint.execute-api.com...
OPTIONS Enable CORS
Custom Authorizers o
-~ & /pets horization None
Models s APIKey Mot Required
AP Keys LI
CFTONS Import AP1
Custom Domain Names * & /fpetig) Delete AP
Client Certificates O GET
Seftings Mock Endpoint

Authorization Hone

APl Key Not Required

© OPTIONS

Mock Endpoint

Authorization Hone

APl Key Not Required

In Deploy API, for Deployment stage, choose [New Stage] because this is the first deployment
of the API. Type a name (e.g., t est) in Stage name and, optionally, type descriptions in Stage
description and Deployment description. Choose Deploy.

Deploy API

Choose a stage where your AP| will be deployed. For example, a test version of your
API could be deployed to a stage named beta.

Deployment stage

Stage name*

Stage description

I

Deployment description sample API first deploymen]

Cancel Deploy

In the resulting Stage Editor pane, Invoke URL displays the URL to invoke the API's GET /
method request.

12

Amazon API Gateway Developer Guide
Create an API from an Example

test Stage Editor

® Invoke URL@EXEC ute-api.us-west-2 am@

Seftings Stage Variables SDK Generation =~ Export = Deployment History

Configure the metering and caching settings for the test stage.

Cache Settings
Enable APl cache
CloudWatch Settings
Enable CloudWatch Logs | '@
Enable CloudWatch Metrics || @
Throttling Settings
Rate 500 :
Burst Limit 1000 ¢
Client Certificate

On Stage Editor, follow the Invoke URL link to submit the GET / method request in a browser.
The result, generated from the mapping template in the integration response, is shown as follows:

hittps://Om_msemevf execute-api.us-west-2.amazonaws.com/test > <, Search B ¥ # =
Welcome to your Pet Store API

You have succesfully deployed your first API. You are seeing this HTML page because the c=r method to the
root resource of your API returns this content as a Mock integration.

The Pet Store API contains the /pets and /pets/(pet1d} resources. By making a ser request to /pets you can
retrieve a list of Pets in your API. If you are looking for a specific pet, for example the pet with ID 1, you can
make a cer request to /pets/1.

You can use a REST client such as Postman to test the rost methods in your API to create a new pet. Use
the sample body below to send the posr request:

In the Stages navigation pane, expand the test stage, select GET on / pet s/ { pet | d}, and then
copy the Invoke URL value of htt ps: // api -i d. execut e- api . r egi on. amazonaws. coni
test/pets/{petld}.{petld} stands for a path variable.

Paste the Invoke URL value (obtained in the previous step) into the address bar of a browser,
replacing { pet | d} by, for example, 1, and press Enter to submit the request. A 200 OK response
should return with the following JSON payload:

{
"id" 1,
"type“: " dOg",
"price": 249.99
}

Invoking the APl method as shown is possible because its Authorization type is set to NONE. If
the AWE_| AMauthorization were used, you would sign the request using the Signature Version 4

13

Amazon API Gateway Developer Guide
Build the API Step By Step

protocols. For an example of such a request, see Build an API Gateway API to Expose an HTTP
Endpoint (p. 6).

See Also

Use API Gateway Custom Authorizers (p. 174), Deploying an API (p. 230)

Build the API Step By Step

This section walks you through the steps to create resources, expose methods on a resource,
configure a method to achieve the desired API behaviors, and to test and deploy the API.

1. From Create new API, select New API, type a name in APl Name, optionally add a description in
Description, and then choose Create API.

Create new API

In Amazon AP| Gateway, an AP| refers to a collection of resources and methods that can be invaked through HTTPS endpoints.

@ new aP1)) Clone from existing APl () Import from Swagger () Example API

Name and description

Choose a friendly name and description for your AP

APIname*
Description (A sample AP)}

* Required ‘ Create API

As aresult, an empty API is created. The Resources tree shows the root resource (/) without any
methods. In this exercise, we will build the API with the HTTP integration of the PetStore demo
website (http://petstore-demo-endpoint.execute-api.com.) For illustration purposes, we will create
a/ pet s resource as a child of the root and expose a GET method on this resource for a client to
retrieve a list of available Pets items from the PetStore website.

2. Tocreate the / pet s resource, select the root, choose Actions and then choose Create
Resource.

Resources e/ Methods
RESOURCE ACTIONS
.1
@ Create Method

Enable CORS

AP| ACTION S
Deploy API
Import API
Delete API

Type Pet s in Resource Name, leave the Resource Path value as given, and choose Create
Resource.

14

Amazon API Gateway Developer Guide
Build the API Step By Step

New Child Resource

Use this page to create a new child resource for your resource

Resource Name*

Resource Path” | pets

You can add path parameters using brackets. For example, the
resource path {username} represents a path parameter called
‘username’

To expose a GET method on the / pet s resource, choose Actions and then Create Method.

Resources ® /pets Methods

RESOURCE ACTION S

"
=

Create Resource
Enable CORS

Delete Resource

API ACTIONS
Deploy API
Import API
Delete API

Choose GET from the list under the /pets resource node and choose the checkmark icon to finish
creating the method.

Resources Actions ~ ./pets Methods
. &
& Ipets
& -@o
Note

Other options for an API method include:

e POST, primarily used to create child resources.

e PUT, primarily used to update existing resources (and, although not recommended, can
be used to create child resources).

DELETE, used to delete resources.

PATCH, used to update resources.

15

Amazon API Gateway Developer Guide
Build the API Step By Step

« HEAD, primarily used in testing scenarios. It is the same as GET but does not return
the resource representation.

* OPTIONS, which can be used by callers to get information about available
communication options for the target service.

The method created is not yet integrated with the back end. The next step sets this up.

In the method's Setup pane, select HTTP for Integration type, select GET from the HTTP
method drop-down list, type htt p: / / pet st or e- denp- endpoi nt . execut e- api . conf
pet st or e/ pet s as the Endpoint URL value, and then choose Save.

Note

For the integration request's HTTP method, you must choose one supported by the
back end. For HTTP or Mock i nt egr ati on, it makes sense that the method request
and the integration request use the same HTTP verb. For other integration types the
method request will likely use an HTTP verb different from the integration request. For
example, to call a Lambda function, the integration request must use POST to invoke the
function, whereas the method request may use any HTTP verb depending on the logic of
the Lambda function.

/pets - GET - Setup

Choose the integration point for your new method.

Integration type Lambda Function €

Mock

AWS Service O

Use HTTP Proxy integration Li)
HTTP method N
Endpoint URL {ndpoint.execute-api.com/petstore/pets

When the method setup finishes, you are presented with the Method Execution pane, where you
can further configure the method request to add query string or custom header parameters. You
can also update the integration request to map input data from the method request to the format
required by the back end.

The PetStore website allows you to retrieve a list of Pet items by the pet type (e.g., "Dog" or "Cat")
on a given page. It uses the t ype and page query string parameters to accept such input. As
such, we must add the query string parameters to the method request and map them into the
corresponding query strings of the integration request.

In the GET method's Method Execution pane, choose Method Request, select AWS_| AMfor
Authorization, expand the URL Query String Parameters section, and choose Add query
string to create two query string parameters named t ype and page. Choose the checkmark icon
to save the newly added query string parameters.

16

Amazon API Gateway Developer Guide
Build the API Step By Step

€ Method Execution /pets - GET - Method Request

Provide information about this method's authorization settings and the parameters it can receive.

Authorization Settings

Authorization Li]

APl Key Required false

~ URL Query String Parameters

Name Caching
(]

s

© Add query string
» HTTP Request Headers

» Request Models Create a Model

The client can now supply a pet type and a page number as query string parameters when
submitting a request. These input parameters must be mapped into the integration's query string
parameters to forward the input values to our PetStore website in the back end. Because the
method uses AW5_| AM you must sign the request to invoke the method.

From the method's Integration Request page, expand the URL Query String Parameters
section. By default, the method request query string parameters are mapped to the like-named
integration request query string parameters. This default mapping works for our demo API. We
will leave them as given. To map a different method request parameter to the corresponding
integration request parameter, choose the pencil icon for the parameter to edit the mapping
expression, shown in the Mapped from column. To map a method request parameter to a
different integration request parameter, first choose the delete icon to remove the existing
integration request parameter, choose Add query string to specify a new name and the desired
method request parameter mapping expression.

17

Amazon API Gateway Developer Guide
Build the API Step By Step

€ Method Execution /pets - GET - Integration Request

Provide information about the target backend that this method will call and whether the incoming request
data should be modified.

Integration type © Lambda Function €
O HTTP ©&
© Mock ©@

O AWS Service @

Use HTTP Proxy integration [

HTTP method GET #

Endpoint URL http:/#/petstore-demo-endpoint.execute-api.com/petstore/pets &
» URL Path Parameters

* URL Query String Parameters

Name Mapped from & Caching

method.request.querystring.type Ol &0

type

method.request.querystring.page

page

© Add query string

» HTTP Headers

» Body Mapping Templates

This completes building the simple demo API. It's time to test the API.

To test the API using the APl Gateway console, choose Test from the GET-on-Pets method's
Method Execution pane. In the Method Test pane, enter Dog and 2 for the type and page query
strings, respectively, and then choose Test.

18

Amazon API Gateway Developer Guide
Build the API Step By Step

€ Method Execution /pets - GET {Method Test

Make a test call to your method with the provided input

Path
No path parameters exist for this resource. You can define path parameters by using the syntax
{myPathParam} in a resource path

Query Strings
type

page

€

Headers
No header parameters exist for this method. You can add them via Method Request

Stage Variables

No stage variables exist for this method.

Client Certificate
No client certificates have been generated.

Request Body
Request Body is not supported for GET methods.

The result is shown as follows. (You may need to scroll down to see the test result.)

19

Amazon API Gateway Developer Guide
Build the API Step By Step

Request: /pets?type=Dog&page=2
Status: 200

Latency: 1036 ms

Response Body

{
"id": 4,
"type": "Dog",
“price™: 999.99
1,
{
"id=: 5,
"type": "Dog",
"price™: 249.99
I
{
~id~: 6,
"type": "Dog",
"price™: 49.97
¥

]

Response Headers
{"Content-Type": "application/json"}
Logs

Execution log for request test-request

Mon Apr @4 @5:48:@1 UTC 2016 : Starting execution for request: test-invoke-request
Mon Apr @4 @5:48:01 UTC 2016 : HTTP Method: GET, Resource Path: /pets

Mon Apr 84 @5:48:81 UTC 2816 : Method request path: {}

Mon Apr 04 @5:48:01 UTC 2016 : Method request query string: {page=2, type=Dog}
Mon Apr @4 @5:48:01 UTC 2016 : Method request headers: {}

Mon Apr @4 @5:48:01 UTC 2016 : Method request body before transformations: null

Now that the test is successful, we can deploy the API to make it publicly available.
8. To deploy the API, select the API and then choose Deploy API from the Actions drop-down

menu.
APIs . Resources Actions- | o / Methods
RESOURCE ACTIONS
<>
Create Method
I Resources > & Ipets
. Create Resource
Stages y
Enable CORS
Custom Autharizers
Models API ACTIONS
PetStore Deploy API
Import API
API Keys Delete API

Custom Domain Names
Client Certificates

Settings

In the Deploy API dialog, choose a stage (or [New St age] for the API's first deployment);
enter a name (e.g., "test”, "prod”, "dev", etc.) in the Stage name input field; optionally, provide a
description in Stage description and/or Deployment description; and then choose Deploy.

20

Amazon API Gateway Developer Guide
Build the API Step By Step

Deploy APD

Choose a stage where your API will be deployed. For example, a test version of your
API could be deployed to a stage named beta.

Deployment stage [New Stage] El

Stage name*
Stage description T on Pets only

Deployment description nitial deployment > l
Cancel (QrlllA%

Once deployed, you can obtain the invocation URLs (Invoke URL) of the API's endpoints. For
example, the GET on Pets method's invocation URL is as follows:

48 Amazon APIGateway APl > myApi (ngminfiSOg) > Stages > lest > ipels > GET [2]
Stages m test - GET - /pets

«

‘ myApi - & fost
Resaurces “

pels
® Use this page o override the test stage selfings for the GET 1o jpets method

Settings @ |nhent from stage

| APIs

Override for this method

Dashbo:
PetStore
APl Keys

Custom Domain Names
Client Certificates

Settings

To invoke this APl method in a client (e.g., a Postman browser), append the query string
parameters to the stage-specific method invocation URL (as shown in the previous image) to
create the complete method request URL:

https://api-id.execute-api.regi on.anazonaws. coni t est/ pet s?t ype=Dog&page=2

Specify this URL in the address bar of the browser. Choose GET as the HTTP verb. Select
AWS Signature for the Authorization type and then specify the required properties (as shown),
following the Signature Version 4 protocols. Finally, send the request.

21

https://www.getpostman.com/
http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide
Map Request Parameters

If you use an SDK to create a client, you can call the methods exposed by the SDK to sign the
request. For implementation details, see the AWS SDK of your choosing.

Note
When changes are made to your API, you must redeploy the API to make the new or
updated features available before invoking the request URL again.

Map Request Parameters for an APl Gateway API

In this walkthrough, you will learn how to map method request parameters to the corresponding
integration request parameters for an APl Gateway API. As an illustration, we will create an example
API with the HTTP integration and use it to demonstrate how to use APl Gateway to map a method
request parameter to the corresponding integration request parameter and to access the publicly
accessible HTTP endpoint of:

http:// petstore-denb-endpoi nt. execut e-api.conf petstore/pets

If you copy the above URL, paste it into the address bar of a web browser, and hit the Ent er or
Ret ur n key, you will get the following JSON-formatted response body:

{
"id'ro1,
"type": "dog",
"price": 249.99
1
{
"id" 2,
"type": "cat",
"price": 124.99
1
{
"id" 3,
"type": "fish",
"price": 0.99
}

The above endpoint can take two query parameters: t ype and page. For example, if you change the
above URL to the following:

22

https://aws.amazon.com/tools/

Amazon API Gateway Developer Guide
Map Request Parameters

http:// petstore-deno- endpoi nt. execut e-api . conl pet st or e/ pet s?t ype=cat &page=2

you will receive the following JSON-formatted response payload, displaying page 2 of only the cats:

{
"id": 4,
"type": "cat",
"price": 999.99
}
{
"id": 5,
"type": "cat",
"price": 249.99
}
{
"id": 6,
"type": "cat",
"price": 49.97
}

This endpoint also supports the use of an item ID, as expressed by a URL path parameter. For
example, if you browse to the following:

htt p: // pet st or e- denp- endpoi nt . execut e- api . conl pet store/ pets/1

The following JSON-formatted information about the item with an ID of 1 is displayed:

{
"id" 1,
"type": "dog",
"price": 249.99
}

In addition to supporting GET operations, this endpoint also take POST requests with a payload. For
example, if you use Postman to send a POST method request to the following:

http:// petstore-denp- endpoi nt. execut e-api . coni petstore/pets

including the header Cont ent -t ype: appl i cati on/j son and the following request body:

{
Iltypell: " dOg",
"price": 249.99

}

you will receive following JSON object in the response body:

{
"pet": {
"type": "dog",

23

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Map Request Parameters

}

"price": 249.99
b,

"message”: "success"

We now expose these and other features by building an API Gateway API with the HTTP integration of
this PetStore website. The tasks includes the following:

Create an API with a resource of htt ps: // ny- api -i d. execut e- api . r egi on-
i d. amazonaws. coni t est/ pet st or ewal kt hr ough/ pet s acting as a proxy to the HTTP endpoint
of htt p: // pet st or e- denp- endpoi nt. execut e- api . com pet store/ pets.

Enable the API to accept two method request query parameters of pet Type and pet sPage, map
them to the t ype and page query parameters of the integration request, respectively, and pass the
request to the HTTP endpoint.

Support a path parameter of { pet | d} on the API's method request URL to specify an item ID, map
it to the {i d} path parameter in the integration request URL, and send the request to the HTTP
endpoint.

Enable the method request to accept the JSON payload of the format defined by the back end
website, pass the payload without modifications through the integration request to the back-end
HTTP endpoint.

Topics

¢ Prerequisites (p. 24)

¢ Step 1: Create Resources (p. 24)

e Step 2: Create GET and POST Methods (p. 25)
¢ Step 3: Set Up and Test the Methods (p. 25)

e Step 4: Deploy the API (p. 28)

¢ Step 5: Test the API (p. 29)

¢ Next Steps (p. 31)

Prerequisites

Before you begin this walkthrough, you should do the following:

1.

Complete the steps in Get Ready to Use API Gateway (p. 4), including assigning API
Gateway access permission to the IAM user.

At a minimum, follow the steps in Build an APl Gateway API to Expose an HTTP
Endpoint (p. 6) to create a new APl named MyDenpAPI in the APl Gateway console.

Step 1: Create Resources

In this step, you will create three resources that will enable the API to interact with the HTTP endpoint.

To create the first resource

1.

In the Resources pane, select the resource root, as represented by a single forward slash (/),
and then choose Create Resource from the Actions drop-down menu.

For Resource Name, type pet st or ewal kt hr ough.

This maps to pet st or e in the HTTP endpoint.

24

Amazon API Gateway Developer Guide
Map Request Parameters

3. For Resource Path, accept the default of /petstorewalkthrough, and then choose Create
Resource.

This maps to / pet st or e in the HTTP endpoint.

To create the second resource

1. Inthe Resources pane, choose /petstorewalkthrough, and then choose Create Resource.
2. For Resource Name, type pet s.

This maps to pet s in the HTTP endpoint.

3. For Resource Path, accept the default of /petstorewalkthrough/pets, and then choose Create
Resource.

This maps to / pet st or e/ pet s in the HTTP endpoint.

To create the third resource

1. Inthe Resources pane, choose /petstorewalkthrough/pets, and then choose Create Resource.
For Resource Name, type pet | d. This maps to the item ID in the HTTP endpoint.

For Resource Path, overwrite petid with { pet | d} . Be sure to use curly braces ({ }) around
pet | d so that /petstorewalkthrough/pets/{petld} is displayed, and then choose Create
Resource.

This maps to / pet st or e/ pet s/ ny-itemidinthe HTTP endpoint.

Step 2: Create GET and POST Methods

In this step, you will create two GET methods and a POST method to interact with the HTTP endpoint.

To create the first GET method

1. Inthe Resources pane, choose /petstorewalkthrough/pets, and then choose Create Method
from the Actions drop-down menu.

2. For the HTTP method, choose GET, and then save your choice.

To create the second GET method

1. Inthe Resources pane, choose /petstorewalkthrough/pets/{petid}, and then choose Create
Method.

2. For the HTTP method, choose GET, and then save your choice.

To create the POST method

1. Inthe Resources pane, choose /petstorewalkthrough/pets again, and then choose Create
Method.

2. For the HTTP method, choose POST, and then save your choice.

Step 3: Set Up and Test the Methods

In this step, you will integrate the methods with the back-end HTTP endpoints, map the GET method
request parameters to the corresponding integration request parameters, and then test the methods.

25

Amazon API Gateway Developer Guide
Map Request Parameters

To set up and test the first GET method

This procedure demonstrates the following:

» Create and integrate the method request of GET / pet st or ewal kt hr ough/ pet s with the
integration request of GET htt p:// pet st or e- denp- endpoi nt . execut e- api . cont pet st or e/
pets.

* Map the method request query parameters of pet Type and pet sPage to the integration request
query string parameters of t ype and page, respectively.

10.

11.
12.

13.

14.
15.

16.

17.
18.
19.

20.

21.

In the Resources pane, choose /petstorewalkthrough/pets, choose Create Method from the
Actions menu, and then choose GET under /pets from the drop-down list of the method names.

In the /petstorewalkthrough/pets - GET - Setup pane, choose HTTP for Integration type and
choose GET for HTTP method.

For Endpoint URL, type htt p: / / pet st or e- denb- endpoi nt . execut e- api . cont pet st or e/
pets.

Choose Save.

In the Method Execution pane, choose Method Request, and then choose the arrow next to
URL Query String Parameters.

Choose Add query string.
For Name, type pet Type.

This specifies the pet Type query parameter in the API's method request.

Choose the pencil icon to finish creating the method request URL query string parameter.
Choose Add query string again.

For Name, type pet sPage.

This specifies the pet sPage query parameter in the API's method request.
Choose the pencil icon to finish creating the method request URL query string parameter.

Choose Method Execution, choose Integration Request, and then choose the arrow next to
URL Query String Parameters.

Delete the pet Type entry mapped from net hod. r equest . querystri ng. pet Type and the

pet sPage entry mapped from net hod. r equest . quer ystri ng. pet sPage. This is because the
endpoint expects query string parameters named t ype and page for the request URL, instead of
the default values.

Choose Add query string

For Name, type t ype. This creates the required query string parameter for the integration request
URL.

For Mapped from, type met hod. r equest . querystri ng. pet Type.

This maps the method request's pet Type query parameter to the integration request's t ype query
parameter.

Choose the pencil icon to finish creating the integration request URL query string parameter.
Choose Add query string again.

For Name, type page. This creates the required query string parameter for the integration request
URL.

For Mapped from, type net hod. r equest . querystri ng. pet sPage.

This maps the method request's pet sPage query parameter to the integration request's page
query parameter.

Choose the pencil icon to finish creating the integration request URL query string parameter.

26

Amazon API Gateway Developer Guide
Map Request Parameters

22. Choose Method Execution, and in the Client box, choose TEST. In the Query Strings area, for
petType, type cat . For petsPage, type 2.

23. Choose Test. If successful, Response Body will display the following:

[
{
"id": 4,
"type": "cat",
"price": 999.99
}
{
"id": 5,
"type": "cat",
"price": 249.99
}
{
"id": 6,
"type": "cat",
"price": 49.97
}
]

To set up and test the second GET method
This procedure demonstrates the following:

¢ Create and integrate the method request of GET / pet st or ewal kt hr ough/ pet s/ { pet | d}
with the integration request of GET htt p:// pet st or e- denp- endpoi nt . execut e- api . cont
petstore/ pets/{id}.

* Map the method request path parameters of pet | d to the integration request path parameters of i d.

1. Inthe Resources list, choose /petstorewalkthrough/pets/{petid}, choose Create Method from
the Actions drop-down menu, and then choose GET as the HTTP verb for the method.

In the Setup pane, choose HTTP for Integration type and choose GET for HTTP method.

For Endpoint URL, type ht t p: / / pet st or e- denb- endpoi nt . execut e- api . cont pet st or e/
pets/{id}.

4, Choose Save.

5. Inthe Method Execution pane, choose Integration Request, and then choose the arrow next to
URL Path Parameters.

6. Delete the pet | d entry mapped from net hod. r equest . querystri ng. pet | d. This is because
the endpoint expects query string parameters named i d for the request URL, instead of the
default value.

Choose Add path.
For Name, type i d.
9. For Mapped from, type net hod. r equest . pat h. pet | d.

This maps the method request's path parameter of pet | d to the integration request's path
parameter of i d.

10. Choose the pencil icon to finish creating the URL path parameter.

11. Choose Method Execution, and in the Client box, choose TEST. In the Path area, for petld, type
1.

12. Choose Test. If successful, Response Body will display the following:

27

Amazon API Gateway Developer Guide
Map Request Parameters

{
id': 1,
"type": "dog",
"price": 249.99
}

To set up and test the POST method

This procedure demonstrates the following:

Create and integrate the method request of POST / pet st or ewal kt hr ough/ pet s with the
integration request of POST htt p: // pet st or e- denp- endpoi nt . execut e- api . com
pet store/ pets.

Pass the method request JSON payload through to the integration request payload, without
modification.

In the Resources pane, choose /petstorewalkthrough/pets, choose Create Method from the
Actions drop-down menu, and then choose POST as the HTTP verb for the method.

In the Setup pane, choose HTTP for Integration type and choose POST for HTTP method.

For Endpoint URL, type htt p: // pet st or e- denp- endpoi nt . execut e- api . com pet st or e/
pets.

Choose Save.

In the Method Execution pane, in the Client box, choose TEST. Expand Request Body, and
then type the following:

{
"type": "dog",
"price": 249.99

}

Choose Test. If successful, Response Body will display the following:

{
"pet": {
"type": "dog",
"price": 249.99
I
"message": "success"
}

Step 4: Deploy the API

In this step, you will deploy the API so that you can begin calling it outside of the APl Gateway console.

To deploy the API

1.
2.

3.

In the Resources pane, choose Deploy API.
For Deployment stage, choose t est .
Note
The input must be UTF-8 encoded (i.e., unlocalized) text.
For Deployment description, type Cal | i ng HTTP endpoi nt wal kt hr ough.

28

Amazon API Gateway Developer Guide
Map Request Parameters

4. Choose Deploy.

Step 5: Test the API

In this step, you will go outside of the API Gateway console and use your API to access the HTTP
endpoint.

1. Inthe Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look
something like this:

https://nmy-api-id. execute-api.region-id. amazonaws. com't est

Paste this URL in the address box of a new browser tab.
Append / pet st or ewal kt hr ough/ pet s so that it looks like this:

https://ny-api-id.execute-api.region-id. amazonaws. comtest/
pet st or ewal kt hr ough/ pet s
Browse to the URL. The following information should be displayed:
[
{
"id" 1,
"type": "dog",
"price": 249.99
},
{
"id" 2,
"type": "cat",
"price": 124.99
},
{
"id": 3,
"type": "fish",
"price": 0.99
}
]

4. After pet st or ewal kt hr ough/ pet s, type ?pet Type=cat &pet sPage=2 so that it looks like this:

https://ny-api-id. execute-api.region-id. amazonaws. con'test/
pet st or ewal kt hr ough/ pet s?pet Type=cat &pet sPage=2

5. Browse to the URL. The following information should be displayed:

{
"id": 4,
"type": "cat",
"price": 999.99
}
{
"id": 5,
"type": "cat",

"price": 249.99

29

Amazon API Gateway Developer Guide
Map Request Parameters

},

{
"id": 6,
"type": "cat",
"price": 49.97

}

]

After pet st or ewal kt hr ough/ pet s, replace ?pet Type=cat &pet sPage=2 with / 1 so that it
looks like this:

https://my-api-id. execute-api.region-id.anazonaws. coni t est/
pet st or ewal kt hr ough/ pet s/ 1

Browse to the URL. The following information should be displayed:

{
"idro1,
"type": "dog",
"price": 249.99
}

Using a web debugging proxy tool or the cURL command-line tool, send a POST method request
to the URL from the previous procedure. Be sure to append / pet st or ewal kt hr ough/ pet s so
that it looks like this:

https://my-api-id. execute-api.region-id.anmazonaws. conitest/
pet st or ewal kt hr ough/ pet s

Also, be sure to append the following header:

Cont ent - Type: application/json

And be sure to add the following code to the request body:

{
"type": "dog",
"price": 249.99

}

For example, if you use the cURL command-line tool, run a command similar to the following:

curl -H "Content-Type: application/json" -X POST -d "{\"type\":
\"dog\",\"price\": 249.99}" https://ny-api-id. execute-api.region-
i d. amazonaws. coni t est/ pet st or ewal kt hr ough/ pet s

The following information should be returned in the response body:

{
"pet": {
"type": "dog",
"price": 249.99
}

"message": "success"

30

Amazon API Gateway Developer Guide
Map Response Payload

‘ }

You have reached the end of this walkthrough.

Next Steps

You may want to begin the next walkthrough, which shows you how to use models and mappings
in API Gateway to transform the output of an API call from one data format to another. See Map
Response Payload (p. 31).

Map Response Payload

In this walkthrough, you will learn how to use models and mapping templates in APl Gateway to
transform the output of an API call from one data schema to another. This walkthrough builds on the
instructions and concepts in the Build an API to Expose a Lambda Function (p. 44) and the Map
Request Parameters (p. 22). If you have not yet completed those walkthroughs, we suggest you do
them first.

This walkthrough will use API Gateway to get example data from a publicly-accessible HTTP endpoint
and from an AWS Lambda function you will create. Both the HTTP endpoint and the Lambda function
return the same example data:

[

{
"id"ro1,
"type": "dog",
"price": 249.99
1
{
"id" 2,
"type": "cat",
"price": 124.99
1
{
"id": 3,
"type": "fish",
"price": 0.99
}

You will use models and mapping templates to transform this data to one or more output formats. In
API Gateway, a model defines the format, also known as the schema or shape, of some data. In API
Gateway, a mapping template is used to transform some data from one format to another. For more
information, see Set Up Payload Mappings (p. 105).

The first model and mapping template is used to rename i d to nunber, t ype to cl ass, and pri ce to
sal esPri ce, as follows:

{
"nunber": 1,
"class": "dog",
"sal esPrice": 249.99
b,
{
"nunber": 2,
"class": "cat",

31

Amazon API Gateway Developer Guide
Map Response Payload

"sal esPrice": 124.99

b,

{
"nunber": 3,
"class": "fish",
"sal esPrice": 0.99

}

The second model and mapping template is used to combine i d and t ype into descri pti on, and to
rename pri ce to aski ngPri ce, as follows:

{
"description": "Iltem1l is a dog.",
"aski ngPrice": 249.99

8

{
"description": "ltem2 is a cat.",
"askingPrice": 124.99

8

{
"description": "ltem3 is a fish.",
"aski ngPrice": 0.99

}

The third model and mapping template is used to combine i d, t ype, and pri ce into a set of
I'i stings, as follows:

{
"listings": [
"Item1l is a dog. The asking price is 249.99.",
"Item2 is a cat. The asking price is 124.99.",
"Iltem3 is a fish. The asking price is 0.99."
]
}
Topics

¢ Prerequisites (p. 32)

¢ Step 1: Create Models (p. 33)

e Step 2: Create Resources (p. 35)

¢ Step 3: Create GET Methods (p. 36)

e Step 4: Create a Lambda Function (p. 36)

¢ Step 5: Set Up and Test the Methods (p. 37)
¢ Step 6: Deploy the API (p. 41)

e Step 7: Test the API (p. 41)

e Step 8: Clean Up (p. 43)

¢ Next Steps (p. 44)

Prerequisites

Before you begin this walkthrough, you should have already done the following:

32

Amazon API Gateway Developer Guide
Map Response Payload

Complete the steps in Get Ready to Use API Gateway (p. 4), including assigning API
Gateway access permission to an IAM user.

Open the API Gateway console and create a new APl named MyDenpAPI . For more information,
see Build an API Gateway API to Expose an HTTP Endpoint (p. 6).

Create two resources: pet st or ewal kt hr ough and pet s. For more information, see Create
Resources (p. 24) in the Map Request Parameters (p. 22).

To use the Lambda portions of this walkthrough, make sure the IAM user has full access to
work with Lambda. You can use the IAM console to attach the AWSLambdaFullAccess AWS
managed policy to the IAM user.

Make sure the IAM user has access to create policies and roles in IAM. If you have not done so
already, create a Lambda execution role named APl Gat ewayLanbdaExecRol e in IAM. For more
information, see Create Lambda Functions (p. 44) in the Build an API to Expose a Lambda
Function (p. 44).

Step 1: Create Models

In this step, you will create four models. The first three models represent the data output formats
for use with the HTTP endpoint and the Lambda function. The last model represents the data input
schema for use with the Lambda function.

To create the first output model

o0k~ wNPRE

8.

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
If MyDemoAPI is displayed, choose Models.

Choose Create.

For Model name, type Pet sMbdel NoFl at t en.

For Content type, type appl i cati on/j son.

For Model description, type Changes id to nunber, type to class, and price to
sal esPri ce.

For Model schema, type the following JSON Schema-compatible definition:

{
"$schema": "http://json-schema. org/draft-04/schema#",
"title": "PetsMdel NoFl atten",
"type": "array",
"items": {
"type": "object"”,
"properties": {
"nunber": { "type": "integer" },
"class": { "type": "string" },
"sal esPrice": { "type": "nunber" }
}
}
}

Choose Create model.

To create the second output model

1.
2.
3.

Choose Create.
For Model name, type Pet shbdel Fl at t enSorre.
For Content type, type appl i cati on/j son.

33

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Map Response Payload

4. For Model description, type Conmbi nes id and type into description, and changes
price to askingPrice.

5. For Model schema, type the following:

{
"$schemn": "http://json-schema. org/draft-04/schema#",
"title": "PetsModel Fl attenSome",
"type": "array",
"items": {
"type": "object",
"properties": {
"description": { "type": "string" },
"askingPrice": { "type": "nunber" }
}
}
}

6. Choose Create model.

To create the third output model

Choose Create.

For Model name, type Pet svbdel Fl attenAl | .

For Content type, type appl i cati on/j son.

For Model description, type Conbi nes id, type, and price into a set of |istings.

A

For Model schema, type the following:

"$schema": "http://json-schema. org/draft-04/ schema#",
"title": "PetsModel FlattenAll",
"type": "object"”,
"properties": {
"listings": {
"type": "array",
"items": {
"type": "string"
}
}
}
}

6. Choose Create model.

To create the input model

Choose Create.

For Model name, type Pet sLanbdaModel .

For Content type, type appl i cati on/j son.

For Model description, type Get Pet sl nf o nodel .

ok e Dd e

For Model schema, type the following:

{

"$schema": "http://json-schema. org/draft-04/schema#",

34

Amazon API Gateway Developer Guide
Map Response Payload

"title": "PetsLanbdaMWodel ",
"type": "array",
"items": {
"type": "object",
"properties": {
"id": { "type": "integer" },
"type": { "type": "string" },
"price": { "type": "number" }
}
}
}

6. Choose Create model.

Step 2: Create Resources

In this step, you will create four resources. The first three resources will enable you to get the example
data from the HTTP endpoint in the three output formats. The last resource will enable you to get

the example data from the Lambda function in the output schema that combines i d and t ype into
descri pti on and renames pri ce to aski ngPri ce.

To create the first resource

In the links list, choose Resources.
In the Resources pane, choose /petstorewalkthrough, and then choose Create Resource.
For Resource Name, type NoFl at t en.

P w PR

For Resource Path, accept the default of /petstorewalkthrough/noflatten, and then choose
Create Resource.

To create the second resource

1. Inthe Resources pane, choose /petstorewalkthrough again, and then choose Create
Resource.
For Resource Name, type Fl at t enSone.

For Resource Path, accept the default of /petstorewalkthrough/flattensome, and then choose
Create Resource.

To create the third resource

1. Inthe Resources pane, choose /petstorewalkthrough again, and then choose Create
Resource.

For Resource Name, type Fl att enAl | .

For Resource Path, accept the default of /petstorewalkthrough/flattenall, and then choose
Create Resource.

To create the fourth resource

1. Inthe Resources pane, choose /petstorewalkthrough again, and then choose Create
Resource.

For Resource Name, type LanbdaF| at t enSone.

For Resource Path, accept the default of /petstorewalkthrough/lambdaflattensome, and then
choose Create Resource.

35

Amazon API Gateway Developer Guide
Map Response Payload

Step 3: Create GET Methods

In this step, you will create a GET method for each of the resources you created in the previous step.

To create the first GET method

1.

In the Resources list, choose /petstorewalkthrough/flattenall, and then choose Create Method.
From the drop-down list, choose GET, and then choose the checkmark icon to save your choice.

In the Setup pane, choose HTTP for the Integration type and GET for HTTP method, type
http:// pet st or e- denp- endpoi nt . execut e- api . conl pet st or e/ pet s in Endpoint URL,
and choose Save.

To create the second GET method

1.

In the Resources list, choose /petstorewalkthrough/lambdaflattensome, and then choose
Create Method.

From the drop-down list, choose GET, and then choose the checkmark to save your choice.

In the Setup pane, choose Lambda Function for the Integration type, choose the region where
you have created the Get Pet sl nf o Lambda function (p. 36) from the Lambda Region drop-
down list, choose Get Pet sl| nf o for Lambda Function, and choose Save. Choose OK when
prompted to add permission to the Lambda function.

To create the third GET method

1.

In the Resources list, choose /petstorewalkthrough/flattensome, and then choose Create
Method.

From the drop-down list, choose GET, and then choose the checkmark icon to save your choice.

In the Setup pane, choose HTTP for the Integration type and GET for HTTP method, type
http:// pet st or e- denp- endpoi nt . execut e- api . conl pet st or e/ pet s in Endpoint URL,
and then choose Save.

To create the fourth GET method

1.

In the Resources list, choose /petstorewalkthrough/noflatten, and then choose Actions,
Create Method.

From the drop-down list, choose GET, and then choose the checkmark icon to save your choice.

In the Setup pane, choose HTTP for the Integration type and GET for HTTP method, type
http:// pet st or e- denpo- endpoi nt . execut e- api . conl pet st or e/ pet s in Endpoint URL,
and then choose Save.

Step 4: Create a Lambda Function

In this step, you will create a Lambda function that returns the sample data.

To create the Lambda function

1.
2.

3.

Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.
Do one of the following:

 If a welcome page appears, choose Get Started Now.
« If the Lambda: Function list page appears, choose Create a Lambda function.
For Name, type Get Pet sl nf o.

36

https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide
Map Response Payload

10.
11.
12.
13.

14.

15.

For Description, type Get s i nfornmati on about pets.
For Code template, choose None.
Type the following code:

consol e. | og(' Loadi ng event');

exports. handl er = function(event, context) {
cont ext . done(nul I,
[{"id": 1, "type": "dog", "price": 249.99},
{"id": 2, "type": "cat", "price": 124.99},
{"id": 3, "type": "fish", "price": 0.99}]); // SUCCESS with nmessage
b

Tip

In the preceding code, written in Node.js, consol e. | og writes information to an Amazon
CloudWatch log. event contains the event's data. cont ext contains callback context.
Lambda uses cont ext . done to perform follow-up actions. For more information about
how to write Lambda function code, see the "Programming Model" section in AWS
Lambda: How it Works and the sample walkthroughs in the AWS Lambda Developer
Guide.

For Handler name, leave the default of i ndex. handl er.

For Role, choose the Lambda execution role, APIGatewayLambdaExecRole, you created in the
Build an API to Expose a Lambda Function (p. 44).

Choose Create Lambda function.

In the list of functions, choose GetPetsInfo to show the function's details.

Make a note of the AWS region where you created this function. You will need it later.
In the pop-up list, choose Edit or test function.

For Sample event, replace any code that appears with the following:

Tip

The empty curly braces mean there are no input values for this Lambda function. This
function simply returns the JSON object containing the pets information, so those key/
value pairs are not required here.

Choose Invoke. Execution result shows [{"id": 1, "type": "dog", "price": 249. 99},
{"id":2,"type":"cat","price":124.99},{"id":3,"type":"fish","price":0.99}],
which is also written to the CloudWatch logs.

Choose Go to function list.

Step 5: Set Up and Test the Methods

In this step, you will configure the method responses, integration requests and integration responses
to specify the input and output data schemas (or models) for the GET methods associated with the
HTTP endpoint and the Lambda function. You will also learn to test calling these methods using the
API Gateway console.

To set up the integration for the first GET method and then test it

1.

From the API's Resources tree, choose GET under the /petstorewalkthrough/flattenall node.

37

http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

Amazon API Gateway Developer Guide
Map Response Payload

In the Method Execution pane, choose Method Response, and then choose the arrow next to
200.

In the Response Models for 200 area, for application/json, choose the pencil icon to start
setting up the model for the method output. For Models, choose PetsModelFlattenAll, and then
choose the checkmark icon to save the setting.

Choose Method Execution, choose Integration Response, and then choose the arrow next to
200.

Expand the Body Mapping Templates section, choose application/json under Content-Type.

For Generate template from model, choose PetsModelFlattenAll to display a mapping template
after the Pet sWbdel Fl att enAl | model as a starting point.

Modify the mapping template code as follows:

#set ($i nput Root = $input.path('$'))
{
"listings" : [
#f or each($el em i n $i nput Root)
"I'tem nunber $elemid is a $elemtype. The asking price is
$el em price. "#i f ($f oreach. hasNext), #end

#end

]
}

Choose Save.

Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If
successful, Response Body will display the following:

{
"listings" : [
"Itemnunber 1 is a dog. The asking price is 249.99.",
"Itemnunber 2 is a cat. The asking price is 124.99.",
"I'temnunber 3 is a fish. The asking price is 0.99."
]
}

To set up integration for the second GET method and then test it

1.

From the API's Resources tree, choose GET under the /petstorewalkthrough/
lambdaflattensome node.

In the Method Execution pane, choose Integration Request to set up mapping of the input to the
Get Pet sl nf o Lambda function.

Expand the Body Mapping Templates section, choose Add mapping template.

For Content-Type, type application/json and choose the check-mark icon to save the choice.
When prompted choose Yes, secure this integration to allow change of passthrough behavior.

For Generate template, choose PetsLambdaModel to display the input mapping script template.
Copy the following mapping script and paste it into the code editor before choosing Save:

#set ($i nput Root = $input.path('$'))
[
#f oreach($el emin $i nput Root)
{
"id" : $elemid,
"type" : "$elemtype”,

38

Amazon API Gateway Developer Guide
Map Response Payload

10.
11.

12.

13.

"price" : $elemprice
} #i f ($f oreach. hasNext), #end

#end
]

Go back to Method Execution and choose Method Response. Choose the arrow next to 200 to
expand the section.

In the Response Models for 200 area, choose the pencil icon on the row for the content type of
application/json. Choose PetsModelFlattenSome for Models, and then choose the check mark
icon to save the choice.

Go back to Method Execution. Choose Integration Response, and then choose the arrow next
to 200.

In the Body Mapping Templates section, choose application/json under Content-Type.

For Generate template, choose PetsModelFlattenSome to display the mapping script template
for the output of this method.

Modify the code as follows, and then choose Save:

#set ($i nput Root = $input.path('$'))
[
#f or each($el em i n $i nput Root)
{
"description" : "ltem$elemid is a $elemtype."”,
"askingPrice" : $elemprice
} #i f ($f oreach. hasNext), #end

#end
]

Choose Method Execution, and in the Client box, choose TEST, and then choose Test. If
successful, Response Body will display the following:

{
"description" : "ltem1 is a dog.",
"askingPrice" : 249.99

H

{
"description" : "ltem2 is a cat.",
"askingPrice" : 124.99

H

{
"description" : "ltem3 is a fish.",
"askingPrice" : 0.99

}

To set up integration for the third GET method and then test it

1.

From the API's Resources tree, choose GET under the /petstorewalkthrough/flattensome
node.

In the Method Execution pane, choose Method Response.
Choose the arrow next to 200.

In the Response Models for 200 area, for application/json, choose the pencil icon. For Models,
choose PetsModelFlattenSome, and then choose the check-mark icon to save the choice.

39

Amazon API Gateway Developer Guide
Map Response Payload

5. Go back to Method Execution and choose Integration Response.
Choose the arrow next to 200 to expand the section.

Expand the Body Mapping Templates area. Choose application/json for Content-Type. For
Generate template, choose PetsModelFlattenSome to display a mapping script template for the
output of this method.

8. Modify the code as follows:

#set ($i nput Root = $input.path('$'))
[

#f oreach($el emin $i nput Root)

{

"description': "ltem$elemid is a $elemtype.”,
"aski ngPrice": $elemprice
}#i f ($f oreach. hasNext), #end

#end
|

9. Choose Save.

10. Go back to Method Execution and choose TEST in the Client box. And then choose Test. If
successful, Response Body will display the following:

[
{
"description": "ltem1 is a dog.",
"askingPrice": 249.99
}
{
"description": "ltem2 is a cat.",
"askingPrice": 124.99
}
{
"description": "ltem3 is a fish.",
"askingPrice": 0.99
}
|

To set up integration for the fourth GET method and then test it

From the API's Resources tree, choose GET under the /petstorewalkthrough/noflatten node.
In the Method Execution pane, choose Method Response, and then expand the 200 section.

In the Response Models for 200 area, for application/json, choose the pencil icon to update the
response model for this method.

4. Choose PetsModelNoFlatten as the model for the content type of application/json, and then
choose the check-mark icon to save the choice.

5. Choose Method Execution, choose Integration Response, and then choose the arrow next to
200 to expand the section.

6. Expand the Mapping Mapping Templates section. Choose application/json for Content-Type.
For Generate templates, choose PetsModelNoFlatten to display a mapping script template for
the output of this method.

7. Modify the code as follows:

#set ($i nput Root = $input.path('$'))

40

Amazon API Gateway Developer Guide
Map Response Payload

[
#f or each($el em i n $i nput Root)

"nunber": $elemid,

"class": "$elemtype",

"sal esPrice": $elemprice
} #i f ($f oreach. hasNext), #end

#end
]

8. Choose Save.

9. Go back to Method Execution, and in the Client box, choose TEST, and then choose Test. If
successful, Response Body will display the following:

[
{
"nunber": 1,
"class": "dog",
"sal esPrice": 249.99
b
{
"nunber": 2,
"class": "cat",
"sal esPrice": 124.99
b
{
"nunber": 3,
"class": "fish",
"sal esPrice": 0.99
}
|

Step 6: Deploy the API
In this step, you will deploy the API so that you can begin calling it outside of the APl Gateway console.
To deploy the API

In the Resources pane, choose Deploy API.
For Deployment stage, choose t est .
For Deployment description, type Usi ng nodel s and mappi ng t enpl at es wal kt hr ough.

PR

Choose Deploy.

Step 7: Test the API

In this step, you will go outside of the API Gateway console to interact with both the HTTP endpoint
and the Lambda function.

1. Inthe Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look
something like this:

https://ny-api-id.execute-api.region-id. amazonaws. con t est

2. Paste this URL in the address box of a new browser tab.

41

Amazon API Gateway Developer Guide
Map Response Payload

3.

4.
5.

Append / pet st or ewal kt hr ough/ nof | at t en so that it looks like this:

https://ny-api-id. execute-api.region-id. amazonaws. com'test/
pet st or ewal kt hr ough/ nof | atten

Browse to the URL. The following information should be displayed:

{

"nunber": 1,

"class": "dog",

"sal esPrice": 249.99
},
{

"nunber": 2,

"class": "cat",

"sal esPrice": 124.99
},
{

"nunber": 3,

"class": "fish",

"sal esPrice": 0.99
}

]

After pet st or ewal kt hr ough/, replace nof | att en with f | at t ensone.
Browse to the URL. The following information should be displayed:

{
"description": "ltem1 is a dog.",
"askingPrice": 249.99

b

{
"description": "ltem2 is a cat.",
"askingPrice": 124.99

b

{
"description": "ltem3 is a fish.",
"askingPrice": 0.99

}

]

After pet st or ewal kt hr ough/ , replace f| at t ensonme withfl attenal | .
Browse to the URL. The following information should be displayed:

{
"listings" : [
"Itemnunber 1 is a dog. The asking price is 249.99.",
"Itemnunber 2 is a cat. The asking price is 124.99.",
"Item nunber 3 is a fish. The asking price is 0.99."
]
}

After pet st or ewal kt hr ough/ , replace f| at t enal | with | anbdaf | att ensone.
Browse to the URL. The following information should be displayed:

42

Amazon API Gateway Developer Guide
Map Response Payload

[
{
"description" : "ltem1 is a dog.",
"askingPrice" : 249.99
b
{
"description" : "ltem2 is a cat.",
"askingPrice" : 124.99
b
{
"description" : "ltem3 is a fish.",
"askingPrice" : 0.99
}
|

Step 8: Clean Up

If you no longer need the Lambda function you created for this walkthrough, you can delete it now. You
can also delete the accompanying IAM resources.

Caution

If you delete a Lambda function your APIs rely on, those APIs will no longer work. Deleting a
Lambda function cannot be undone. If you want to use the Lambda function again, you must
re-create the function.

If you delete an IAM resource a Lambda function relies on, the Lambda function and any
APIs that rely on it will no longer work. Deleting an IAM resource cannot be undone. If you
want to use the IAM resource again, you must re-create the resource. If you plan to continue
experimenting with the resources you created for this and the other walkthroughs, do not
delete the Lambda invocation role or the Lambda execution role.

API Gateway does not currently support the deactivation or deletion of APIs that no longer
work.

To delete the Lambda function
1. Signinto the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Onthe Lambda: Function list page, in the list of functions, choose the button next to
GetPetsInfo, and then choose Actions, Delete. When prompted, choose Delete again.

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.
In the Details area, choose Roles.

3. Select APIGatewayLambdaExecRole, and then choose Role Actions, Delete Role. When
prompted, choose Yes, Delete.

In the Details area, choose Policies.

Select APIGatewayLambdaExecPolicy, and then choose Policy Actions, Delete. When
prompted, choose Delete.

You have now reached the end of this walkthrough.

43

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Build an API to Expose a Lambda Function

Next Steps

You may want to begin the next walkthrough, which shows you how to create an API Gateway API to
access an AWS service. See Create an AWS Service Proxy (p. 64).

Build an API to Expose a Lambda Function

AWS Lambda provides an easy way to build back ends without managing servers. APl Gateway

and Lambda together can be powerful to create and deploy serverless Web applications. In this
walkthrough, you learn how to create Lambda functions and build an APl Gateway API to enable a
Web client to call the Lambda functions synchronously. For more information about Lambda, see the
AWS Lambda Developer Guide. For information about asynchronous invocation of Lambda functions,
see Create an APl as a Lambda Proxy (p. 343).

Topics
¢ Step 1: Prerequisites (p. 44)
¢ Step 2: Create an API (p. 44)
¢ Step 3: Create a Resource (p. 44)
¢ Step 4: Create Lambda Functions (p. 44)
¢ Step 5: Create and Test a GET Method (p. 48)
¢ Step 6: Create and Test a POST Method (p. 49)
¢ Step 7: Deploy the API (p. 50)
e Step 8: Test the API (p. 50)
¢ Step 9: Clean Up (p. 51)
« Next Steps (p. 52)
¢ Create Lambda Invocation and Execution Roles (p. 52)

Step 1: Prerequisites

You must grant APl Gateway access permission to the IAM user who will perform the tasks

discussed here. The IAM user must have full access to work with Lambda. For this, you can use

or customize the managed policy of AWSLambdaFullAccess (ar n: aws: i am : aws: pol i cy/
AWSLanbdaFul | Access) and attach it to the IAM user. For more information, see Get Ready to Use
API Gateway (p. 4). The IAM user must also be allowed to create policies and roles in IAM. For

this you can use or customize the managed policy of IAMFullAccess (ar n: aws: i am : aws: pol i cy/
I AMFul | Access and attach it to the user.

Step 2: Create an API

In this step, you will create a new APl named MyDenpAPI . To create the new API, follow the instruction
given in Step 1 of Build the API Step By Step (p. 14) .

Step 3: Create a Resource

In this step, you will create a new resource named MyDenoResour ce. To create this resource, follow
the instruction given in Step 2 of Build the API Step By Step (p. 14).

Step 4: Create Lambda Functions

Note
Creating Lambda functions may result in charges to your AWS account.

44

http://docs.aws.amazon.com/lambda/latest/dg/

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

In this step, you will create two new Lambda functions. The first Lambda function, Get Hel | oWor | d,
will log the call to Amazon CloudWatch and return the JSON object{"Hel | 0": "Worl d"}. For more
information about JSON, see Introducing JSON.

The second Lambda function, Get Hel | oW t hNane, will take an input ("name"), log the call to
CloudWatch, and return the JSON object{" Hel | 0": user - suppl i ed-i nput - val ue}. If no input
value is provided, the value will be " No- Nane" .

You will use the Lambda console to create the Lambda functions and set up the required execution
role/policy. You will then use the APl Gateway console to create an API to integrate APl methods with
the Lambda functions; the API Gateway console will set up the required Lambda invocation role/policy.
If you set up the API without using the AP Gateway console, such as when importing an API from
Swagger, you must explicitly create, if necessary, and set up an invocation role/policy for API Gateway
to invoke the Lambda functions. For more information on how to set up Lambda invocation and
execution roles, see Create Lambda Invocation and Execution Roles (p. 52). For more information
about Lambda see AWS Lambda Developer Guide.

To create the GetHelloWorld Lambda function

1. Openthe AWS Lambda console at https://console.aws.amazon.com/lambda/.
Do one of the following:

« If the welcome page appears, choose Get Started Now.
 If the Lambda > Functions list page appears, choose Create a Lambda function.

3. From Select blueprint, choose the hello-world blueprint for nodej s. You may need to type
Hel | o as the search filter to bring the blueprint in focus.

4. Inthe Configure triggers pane, choose Next.

5. For Name, type Get Hel | oWor | d.

6. For Description, type Returns {"Hell o":"Wrld"}.

7. For Runtime, choose Node.js 4.3.

8. Under Lambda function code, replace the default code statements in the inline code editor with
the following:
'use strict';

consol e. | og(' Loadi ng event');

exports. handl er = function(event, context, call back) {
console.log('"Hello":"World"");
cal | back(null, {"Hello":"Wrld"}); // SUCCESS with nmessage

h

Tip

In the preceding Lambda function code in Node.js 4.3, the consol e. | og method

writes information to an Amazon CloudWatch log. The event parameter contains

the input to the function. The cont ext parameter contains execution context and

cal | back the callback function. For the Lambda function to return successfully, call

cal | back(null, result) to exitthe function. To return an error message, call

cal | back(error) upon exit. For more information about how to write Lambda function
code, see the "Programming Model" section in AWS Lambda: How it Works and the
sample walkthroughs in the AWS Lambda Developer Guide.

9. Under Lambda function handler and role, leave the default of i ndex. handl er for Handler.
10. For Role, choose Create new role fromtenplate(s):

a. For Role name, type a name for your role (e.g., execut e_mny_I| anbda).

45

http://json.org
https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://console.aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

b. For Policy templates, choose Si npl e M croservi ce perm ssions.

Tip

To use an existing IAM role, choose Choose an exi sting rol e for Role and then
select an entry from the drop-down list of the existing roles. Alternatively, to create a
custom role, choose Creat e a Cust om Rol e and follow the instructions therein.

11. For Advanced settings leave the default setting as is.
12. Choose Next
13. Choose Create function.

Make a note of the AWS region where you created this function. You will need it later.

14. To test the newly created function, as a good practice, choose Actions and then select Configure
test event.

15. For Input test event, replace any default code statements with the following, and then choose
Save and test.

{1}
Tip
This function does not use any input. Therefore, we provide an empty JSON object as the
input.
16. Choose Test to invoke the function. The Execution result section shows {"Hel | 0": "World"}.

The output is also written to CloudWatch Logs.

You can use the IAM console to view the IAM role (execut e_ny_I| anbda) created as part of the
Lambda function creation. Attached to this 1AM role is the following inline policy that grants users of
your AWS account permission to call the CloudWatch Cr eat eLogGr oup, Cr eat eLogSt r eans, and
Put LogEvent s actions on any of the CloudWatch resources.

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Allow',
"Action": [
"1 ogs: Creat eLogG oup”,
"1 ogs: Creat eLogSt reant',
"1 ogs: Put LogEvent s”
1
"Resource": "arn:aws:|logs:*:*:*"
}
]
}

A trusted entity of this IAM role is | anbda. amazonaws. com which has the following trust relationship:

{
"Version": "2012-10-17",

"Statenent": [

{

46

Amazon API Gateway Developer Guide
Step 4: Create Lambda Functions

"Effect": "Alow',
"Principal": {
"Service": "lanbda. anazonaws. cont

}

ction": "sts:AssuneRol e"

The combination of this trust relationship and the inline policy makes it possible for the user to invoke
the Lambda function and for Lambda to call the supported CloudWatch actions on the user's behalf.

To create the GetHellowithName Lambda function

1. Go back to the Lambda > Functions list to create the next Lambda function that takes an input
value.

Choose Create a Lambda function.

From Select blueprint, select the hello-world blueprint for nodej s.

Type Get Hel | oW t hNane for Name.

For Description, type Returns {"Hell0":", a user-provided string, and "}.

For Runtime, choose Node.js 4.3.

No o~ wDd

In the code editor under Lambda function code replace the default code statements with the
following:

'use strict';
consol e. | og(' Loadi ng event');

exports. handl er = function(event, context, callback) {

var nane = (event.nane === undefined ? ' No-Name' : event.nane);
console.log('"Hello":"" + name + '"");

cal l back(null, {"Hello":nane}); // SUCCESS w th nessage

h

8. Under Lambda function handler and role, leave the default of i ndex. handl er for Handler.

9. For Role, choose Use existing role and then choose the execut e_ny_| anbda role, created
previously, from the drop-down list of existing roles.

10. Leave the default values for Advanced settings. Then choose Next.
11. Choose Create function.

Make a note of the AWS region where you created this function. You will need it in later.
12. To test this newly created function, choose Actions and then Configure test event.
13. In Input test event, replace any default code statements with the following, and then choose Save

and test.
{
"nanme": "User"
}
Tip

The function calls event . nane to read the input name. We expect it to return
{"Hello": "User"}, given the above input.

47

Amazon API Gateway Developer Guide
Step 5: Create and Test a GET Method

You can experiment with this function by removing " nane": "User" from the Input test event
for the function and choosing Save and test again. You should see the output of {"Hel | 0":
"No- Nanme"} under Execution result in the Lambda console, as well as in CloudWatch Logs.

Step 5: Create and Test a GET Method

Switch back to the APl Gateway console. In this step, you will create a GET method, connect it to your
Get Hel | oWor | d function in Lambda, and then test it. You use a GET method primarily to retrieve
or read a representation of a resource. If successful, the GET method will return a JSON-formatted

object.

To create and test the GET method

In the API Gateway console, from APIs, choose MyDemoAPI.

2. Inthe Resources pane, choose /mydemoresource. From Actions, choose Create Method.
Choose GET from the HTTP method drop-down list and then choose the checkmark to create the
method.

3. Inthe GET method Setup pane, for Integration type, choose Lambda Function. For Lambda
Region, choose the region (.e.g, us- east - 1) where you created the Lambda functions. In
Lambda Function, type Get Hel | oWor | d. Choose Save to finish setting up the integration
request for this method.

For a list of region names and identifiers, see AWS Lambda in the Amazon Web Services General
Reference.

Resources Actions~ | o /mydemoresource - GET - Setup

- &
- &b Imydemoreso

Choose the integration point for your new method. €

@ Integration typ& @ Lambada Functio

HTTP Proxy
Mock Integration

Show advanced

Lambda Reg\e
Lambda Function

For Add Permission to Lambda Function, choose OK.

In the Method Execution pane, choose TEST from the Client box, and then choose the Test
button. If successful, Response Body will display the following:

{
}

"Hello": "World"

By default, APl Gateway will pass through the request from the API caller. For the GET method call
you just created, as well as for HEAD method calls, a Lambda function will receive an empty JSON
response by default and then return the response from the Lambda function without modifications.

In the next step, you will create a POST method call. For POST and PUT method calls, you can pass
in a request body in JSON format, which the Lambda function will receive as its input event. Optionally,
you can transform the input to the Lambda function by using mapping templates in APl Gateway.

48

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

Amazon API Gateway Developer Guide
Step 6: Create and Test a POST Method

Step 6: Create and Test a POST Method

In this step, you will create a new POST method, connect it to your Get Hel | oW t hNane function in
Lambda, and then test it. If successful, the POST method typically returns to the caller the URI of the
newly created resource. In this walkthrough, the POST method will simply return a JSON-formatted
object.

To create and test the POST method

In the Resources pane, choose /mydemoresource, and then choose Create Method.
For the HTTP method, choose POST, and then choose the checkmark to save your choice.
In the Setup pane, for Integration Type, choose Lambda Function.

N

For Lambda Region, choose the region identifier that corresponds to the region name in which
you created the Get Hel | oW t hNanme Lambda function.

For Lambda Function, type Get Hel | oW t hNan®, and then choose Save.

6. When you are prompted to give API Gateway permission to invoke your Lambda function, choose
OK.

7. Inthe Method Execution pane, in the Client box, and then choose TEST. Expand Request
Body, and type the following:

{
}

"name": "User"

8. Choose Test. If successful, Response Body will display the following:

{
"Hell o": "User"
}
9. Change Request Body by removing "name": "User" so that only a set of curly braces ({ })

remain, and then choose Test again. If successful, Response Body will display the following:

"Hell 0": "No-Nane"

The API Gateway console-assisted Lambda function integration uses the AWS service proxy
integration type for Lambda. It streamlines the process to integrate an APl method with a Lambda
function by setting up, among other things, the required Lambda function invocation URI and the
invocation role on behalf of the API developer.

The GET and POST methods discussed here are both integrated with a POST request in the back end:

POST /2015-03-31/functions/ FunctionArn/invocations?Qualifier=Qualifier
HTTP/ 1.1
X- Anez- 1 nvocati on- Type: Request Reponse

Cont ent - Type: application/json
Cont ent - Lengt h: Payl oadSi ze

Payl oad

49

Amazon API Gateway Developer Guide
Step 7: Deploy the API

The X- Anz- | nvocat i on- Type: Request Reponse header specifies that the Lambda function

be invoked synchronously. Funct i onAr n is of the ar n: aws: | anbda: r egi on: account -

i d: function: Functi onNane format. In this walkthrough, the console sets Funct i onNane as

Get Hel | oWor | d for the GET method request and supplies an empty JSON payload when you test-
invoke the method. For the POST method, the console sets Funct i onNane as Get Hel | oW t hNane
and passes the caller-supplied method request payload to the integration request. You can regain full
control of a method creation and setup by going through the AWS service proxy integration directly. For
more information, see Create an API as a Lambda Proxy (p. 343).

Step 7: Deploy the API

You are now ready to deploy your API so that you can call it outside of the API Gateway console.

In this step, you will create a stage. In API Gateway, a stage defines the path through which an API
deployment is accessible. For example, you can define a t est stage and deploy your API to it, so that
a resource named MyDenpAPI is accessible through a URI thatendsin. ../t est/ MyDenpAPI .

To deploy the API

1. Choose the API from the APIs pane or choose a resource or method from the Resources pane.
Choose Deploy API from the Actions drop-down menu.
For Deployment stage, choose New Stage.
For Stage name, type t est .

Note
The input must be UTF-8 encoded (i.e., unlocalized) text.

For Stage description, type This is a test.
For Deployment description, type Cal | i ng Lanbda functi ons wal kt hr ough.
Choose Deploy.

Step 8: Test the API

In this step, you will go outside of the API Gateway console to call the GET and POST methods in the
API you just deployed.

To test the GET-on-mydemoresource method

1. Inthe Stage Editor pane, copy the URL from Invoke URL to the clipboard. It should look
something like this:

https://ny-api-id.execute-api.region-id. amazonaws. com t est

2. In a separate web browser tab or window, paste the URL into the address box. Append the path
to your resource (/ mydenor esour ce) to the end of the URL. The URL should look something like
this:

https://nmy-api-id. execute-api.region-id.amzonaws. com test/ mydenoresource

3. Browse to this URL. If the GET method is successfully called, the web page will display:

{"Hello":"World"}

50

Amazon API Gateway Developer Guide
Step 9: Clean Up

To test the POST-on-mydemoresource method

1.

You will not be able to test a POST method request with your web browser's address bar. Instead,
use an advanced REST API client, such as Postman, or the cURL command-line tool.

Send a POST method request to the URL from the previous procedure. The URL should look
something like this:

https://ny-api-id. execute-api.region-id.amzonaws. com test/ mydenoresource

Be sure to append to the request headers the following header:

Cont ent - Type: application/json

Also, be sure to add the following code to the request body:

nane": "User"

For example, if you use the cURL command-line tool, run a command similar to the following:

curl -H "Content-Type: application/json" -X POST -d "{\"nane\": \"User\"}"
https://ny-api-id. execute-api.region-id.amazonaws. conitest/ nydenor esource

If the POST method is successfully called, the response should contain:

{"Hello":"User"}

Step 9: Clean Up

If you no longer need the Lambda functions you created for this walkthrough, you can delete them now.
You can also delete the accompanying IAM resources.

Caution

If you plan to complete the other walkthroughs in this series, do not delete the Lambda
execution role or the Lambda invocation role. If you delete a Lambda function that your APIs
rely on, those APIs will no longer work. Deleting a Lambda function cannot be undone. If you
want to use the Lambda function again, you must re-create the function.

If you delete an IAM resource that a Lambda function relies on, that Lambda function will

no longer work, and any APIs that rely on that function will no longer work. Deleting an IAM
resource cannot be undone. If you want to use the IAM resource again, you must re-create
the resource.

To delete the Lambda functions

1.

Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

From the list of functions, choose GetHelloWorld, choose Actions and then choose Delete
function. When prompted, choose Delete again.

From the list of functions, choose GetHelloWithName, choose Actions, and then choose Delete
function. When prompted, choose Delete again.

51

https://www.getpostman.com/
https://curl.haxx.se/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide
Next Steps

To delete the associated IAM resources

1. Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.
From Details, choose Roles.

From the list of roles, choose APIGatewaylLambdaExecRole, choose Role Actions and then
choose Delete Role. When prompted, choose Yes, Delete.

From Details, choose Policies.

5. From the list of policies, choose APIGatewayLambdaExecPolicy, choose Policy Actions and
then choose Delete. When prompted, choose Delete.

You have now reached the end of this walkthrough.

Next Steps

You may want to proceed to the next walkthrough, which shows how to map header parameters
from the method request to the integration request and from the integration response to the method
response. It uses the HTTP proxy integration to connect your API to HTTP endpoints in the back end.

For more information about API Gateway, see What Is Amazon AP| Gateway? (p. 1). For more
information about REST, see RESTful Web Services: A Tutorial.

Create Lambda Invocation and Execution Roles

Before you create AWS Lambda functions, you must assign appropriate permissions for the functions
to execute the specified Amazon CloudWatch action (namely, writing to the CloudWatch Log) and for
API Gateway to invoke the Lambda functions. You set up the permissions using IAM roles and policies
for API Gateway to invoke your code and for Lambda to execute your code. For more information
about invocation and execution roles/policies in Lambda see Permission Model in the AWS Lambda
Developer Guide.

To create the Lambda invocation role and its policy
1. Open the IAM console at https://console.aws.amazon.com/iam/.

If you are using the IAM-managed AWSLambdaRole policy, skip to Step 8 to create an invocation
role.

In Details, choose Policies.
Do one of the following:

« If a list of policies appears, choose Create Policy.

« If the Welcome to Managed Policies page appears, choose Get Started, and then choose
Create Policy.

4. For Create Your Own Policy, choose Select.
5. For Policy Name, type a name for the policy; for example, APl Gat ewayLanbdal nvokePol i cy.
6. For Description, type Enabl es APl Gateway to call Lanbda functions.
7. For Policy Document, type the following, and then choose Create Policy.
{
"Version": "2012-10-17",
"Statement": [
{

52

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Create Lambda Invocation and Execution Roles

"Effect": "Alow',
"Resource": [

" n

1.
"Action": [
"| anbda: | nvokeFuncti on"
]
}
]
}

In Details, choose Roles.
Choose Create New Role.

10. For Role Name, type a name for the invocation role; for example,
API Gat ewayLanbdal nvokeRol e, and then choose Next Step.

11. Under Select Role Type, with the option button next to AWS Service Roles already chosen, for
Amazon API Gateway, choose Select.

12. For Attach Policy, if the policy you want is in the list, choose it before choosing Next Step.
Otherwise, simply choose Next Step to proceed.

13. For Role ARN, make a note of the invocation role's Amazon Resource Name (ARN). You will
need this ARN in later steps when you specify the invocation role explicitly. The ARN should look
similar to this: arn: aws: i am : 123456789012: r ol e/ APl Gat ewayLanbdal nvokeRol e, where
123456789012 is your AWS account ID.

14. Choose Create Role.

The newly created IAM role will have the following trust policy.

"Version": "2012-10-17",
"Statement": [
{
"Sidt:o ",
"Effect": "All ow',
"Principal": {
"Service": "apigateway.amazonaws. cont'

I

"Action": "sts:AssuneRol e"

The preceding policy document enables API Gateway to assume roles taken up by and, hence,
take actions on behalf of your AWS account.

To create the Lambda execution role and its policies

Open the IAM console at https://console.aws.amazon.com/iam/.

In Details, choose Policies.

Choose Create Policy.

For Create Your Own Policy, choose Select.

For Policy Name, type a name for the policy (for example, APl Gat ewayLanbdaExecPol i cy).
For Description, type Enabl es Lanbda to execute code.

No ok~ wDdPE

For Policy Document, type the following, and then choose Create Policy.

53

https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Build an API Using Proxy
Integration and a Proxy Resource

{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"l ogs: *"
1
"Effect": "Alow',
"Resource": "arn:aws:logs:*:*:*"
}
]
}
Note

The preceding policy document permits all log actions on Amazon CloudWatch Logs.
Typically, you would add other permissions required by your Lambda function to interact
with AWS services, such as uploading an object to an Amazon S3 bucket. In this
walkthrough, the Lambda functions you create are very simple; they do not interact with
AWS services.

In Details, choose Roles.
Choose Create New Role.

10. In Role Name, type a name for the execution role (for example, APl Gat ewaylLanbdaExecRol e),
and then choose Next Step.

11. Nextto AWS Lambda, choose Select.

Note
IAM will attach the following resource-policy document in Trust Relationships:

{
"Version": "2012-10-17",

"Statement": [
{
"Sid': ",
"Effect": "Alow',
"Principal": {
"Service": "l anbda. amazonaws. conf
b

"Action": "sts:AssuneRol e"

This policy document enables Lambda to assume roles taken up by and, hence, to take
actions on behalf of your AWS account.

Build an APl Gateway API Using Proxy
Integration and a Proxy Resource

As an API developer, you can configure a proxy resource in an APl Gateway API to enable a
client to access an HTTP back end or to call a Lambda function following various routes with a
single integration setup on a catch-all ANY method. For more information about the proxy resource,

54

Amazon API Gateway Developer Guide
Create and Test an API with HTTP Proxy
Integration through a Proxy Resource

ANY method and proxy resource integration types, see Configure Proxy Integration for a Proxy
Resource (p. 97).

This tutorial describes how to build and test two APIs with proxy resources, one for an HTTP back end
and the other for a Lambda function. To follow the instructions, you must have signed up for an AWS
account. For more information about signing up for AWS, see Getting Started (p. 4).

Topics
¢ Create and Test an API with HTTP Proxy Integration through a Proxy Resource (p. 55)
e Create an APl with Lambda Proxy Integration through a Proxy Resource (p. 59)

Create and Test an API with HTTP Proxy Integration
through a Proxy Resource

In this tutorial, we will create an API to integrate with the PetStore website through a proxy resource
using the HTTP proxy integration.

Topics
¢ Create an API with HTTP Proxy Integration through a Proxy Resource (p. 55)
e Test an APl with HTTP Proxy Integration through Proxy Resource (p. 57)

Create an APl with HTTP Proxy Integration through a Proxy
Resource

The following procedure walks you through the steps to create and test an API with a proxy resource
for an HTTP back end using the APl Gateway console. The HTTP back end is the Pet St or e website
(htt p: // pet st or e- denp- endpoi nt . execut e- api . com) from Build an API Gateway API to
Expose an HTTP Endpoint (p. 6).

To build an APl with HTTP Proxy Integration with the PetStore website through a proxy
resource

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

To create an API, choose Create new API (for creating the first API) or Create API (for creating
any subsequent API). Next, do the following:

Choose New API.

Type a name in APl Name .

Optionally, add a brief description in Description.
Choose Create API.

oo o p

For this tutorial, use Pr oxyResour ceFor Pet St or e for the APl name.

3. To create a child resource, choose a parent resource item under the Resources tree and then
choose Create Resource from the Actions drop-down menu. Then, do the following in the New
Child Resource pane.

a. Select the Configure as proxy resource option to create a proxy resource. Otherwise, leave
it de-selected.

Type a name in the Resource Name* input text field.
c. Type a new name or use the default name in the Resource Path* input text field.
d. Choose Create Resource.

55

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Create and Test an APl with HTTP Proxy
Integration through a Proxy Resource

e. Select Enable API Gateway CORS, if required.

For this tutorial, select Configure as proxy resource. For Resource Name, use the default,
pr oxy. For Resource Path, use / { pr oxy+}. Select Enable API Gateway CORS.

> ProxyResourceForPetStore (migyuu3ifg) > Resources > /(7ryftid7gl) = Create Show all hints

Resources Actions ~ New Child Resource

/ Use this page to create a new child resource for your resource,
Configure as Fproxy resource Li]
Resource Name* proxy
Resource Path* I {proxy+}

You can add path parameters using brackets. For example, the n
path {username} represents a path parameter called ‘username’
Configuring /{proxy+} as a proxy resource catches all requests to
sub-resources. For example, it works for a GET request to ffoo. |

requests to /, add a new ANY method on the / resource.

Enable APl Gateway CORS il

* Required Cancel Create

To set up the ANY method for integration with the HTTP back end, do the following:

a. Choose HTTP Proxy for Integration type.
b. Type an HTTP back-end resource URL in Endpoint URL.
c. Choose Save to finish configuring the ANY method.

For this tutorial, use ht t p: / / pet st or e- denp- endpoi nt . execut e- api . com { proxy} for the
Endpoint URL.

56

Amazon API Gateway Developer Guide
Create and Test an APl with HTTP Proxy
Integration through a Proxy Resource

/{proxy+} - ANY - Setup

AP| Gateway will configure your ANY method as a proxy integration. Proxy integrations can communicate with HTT
endpoints or Lambda functions. AP| Gateway sends the entire request to HTTP endpoints, including resource path,
query string parameters, and body. For Lambda integrations, API Gateway applies a default mapping to send all of
request information and responses follow a default interface. To learn more read our (f'documentation

Integration type Lambda Function Proxy @@

© HTTP Proxy @

Endpoint URL jemo-endpoint.execute-api.com/{proxy

Test an API with HTTP Proxy Integration through Proxy
Resource

In the API we just created, the API's proxy resource path of { pr oxy+} becomes the placeholder of
any of the back-end endpoints under ht t p: / / pet st or e- denb- endpoi nt . execut e- api . com . For
example, it can be pet st or e, pet st or e/ pet s, and pet st or e/ pet s/ { pet | d} . The ANY method
serves as a placeholder for any of the supported HTTP verbs at run time. These are illustrated in the
following testing procedure.

To test an APl integrated with the PetStore website using HTTP proxy integration
through the proxy resource

1. To use the APl Gateway console to test invoking the API, do the following.

® a0 o p

Choose ANY on a proxy resource in the Resources tree.

Choose Test in the Method Execution pane.

From the Method drop-down list, choose an HTTP verb supported by the back end.
Under Path, type a specific path for the proxy resource supporting the chosen operation.

If required, type a supported query expression for the chosen operation under the Query
Strings heading.

If required, type one or more supported header expressions for the chosen operation under
the Headers heading.

If configured, set the required stage variable values for the chosen operation under the Stage
Variables heading.

If prompted and required, choose an AP| Gateway-generated client certificate under the
Client Certificate heading to the operation to be authenticated by the back end.

If prompted, type an appropriate request body in the text editor under the Request Body
heading.

Choose Test to test invoking the method.

57

Amazon API Gateway Developer Guide
Create and Test an APl with HTTP Proxy
Integration through a Proxy Resource

For this tutorial, use GET for the ANY method, use pet st or e/ pet s in place of the proxy resource
path ({proxy}), and t ype=f i sh for the query string.

/{proxy+} - ANY - Method Test

€ Method Execution

Make a test call to your method with the provided input
Method
GET
Path
{proxy}

petstora/pets

Query Strings
{proxy}

type=fish|

Headers

{proxy}

Stage Variables

No 'stage variables exist for this method.

Client Certificate

Mo client certificates have been generated.

Request Body
Request Body is not supported for GET methods.

& Test

Because the back-end website supports the GET / pet st or e/ pet s?t ype=fi sh request, it will
return a successful response similar to the following:

{
id':o 1,
"type": "fish",
"price": 249.99
b
{
"id': 2,
"type": "fish",

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy
Integration through a Proxy Resource

"price": 124.99

b

{
"id": 3,
"type": "fish",
"price": 0.99

}

]

If you try to call GET / pet st or e, you will get a 404 response with an error message of Cannot
CGET / pet st or e. This is because the back end does not support the specified operation. On the
other, if you call GET / pet st or e/ pets/ 1, you will get a 200 OK response with the following
payload, because the request is supported by the PetStore website.

{
"id': 1,
"type": "dog",
"price": 249.99
}

2. Touse a browser to call a GET method on a specific resource of the API, do the following.

a. If you have not done so, choose Deploy API from the Actions drop-down menu for the API
you created. Follow the instructions to deploy the API to a specific stage. Note the Invoke
URL that displays on the resulting Stage Editor page. This is the base URL of the API.

b. To submit a GET request on a specific resource, append the resource path, including possible
guery string expressions to the Invoke URL value obtained in the previous step, copy the
complete URL into the address bar of a browser, and choose Enter.

For this tutorial, deploy the APl to at est stage, append pet st or e/ pet s?t ype=fi shto
the API's Invoke URL. This produces a URL of htt ps: //4z9gi yi 2c1. execut e- api . us-
west - 2. anazonaws. conl t est / pet st or e/ pet s?type=fi sh.

The result should be the same as the result that is returned when you use Test | nvoke from the
API Gateway console.

Create an API with Lambda Proxy Integration
through a Proxy Resource

As a prerequisite, we create a Lambda function as the back end of our API through the Lambda proxy
integration with a proxy resource. As an illustration, we will create the following Node.js function,
named Si npl eLanbda4Pr oxyResour ce, using the AWS Lambda console.

We then create an API with the Lambda proxy integration by using the
Si npl eLanbda4Pr oxyResour ce function through a proxy resource by using the API Gateway
console. In conclusion, we demonstrate how to test the API.
Topics
¢ Lambda Function for Proxy Integration (p. 60)
¢ Create a Back End for Lambda Proxy Integration (p. 61)
¢ Create APl with Lambda Proxy Integration (p. 61)
¢ Test APl with Lambda Proxy Integration (p. 62)

59

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy
Integration through a Proxy Resource

Lambda Function for Proxy Integration

The following Lambda function in Node.js is a "Hello, World!" application. The function shows how
to parse the input event parameter that contains a request made by a client to an AP| Gateway
proxy resource. This resource is integrated with the function using the Lambda proxy integration.
The function also demonstrates how to format the output of the Lambda function for APl Gateway
to return the results as an HTTP response. For more information about the input and output formats
that this type of Lambda function must follow, see Input Format of a Lambda Function for Proxy
Integration (p. 103) and Output Format of a Lambda Function for Proxy Integration (p. 105).

‘use strict';
consol e. |l og(' Loadi ng hello world function');

exports. handl er = function(event, context) {

var name = "World";

var responseCode = 200;

console.log("request: " + JSON.stringify(event));

if (event.queryStringParanmeters !== null && event.queryStringParaneters !

== undefined) {
if (event.queryStringParaneters.nane !==

undefined && event.queryStringParaneters. name !== null &&
event. queryStringParaneters.nane !=="") {
consol e. |l og(" Recei ved nane: " +

event . queryStri ngPar anet ers. nane) ;
nane = event.queryStringParaneters. nane;
}

if (event.queryStringParaneters. httpStatus !==
undefined && event.queryStringParaneters. httpStatus !== null &&
event. queryStringParaneters. httpStatus !'=="") {
consol e. | og("Received http status: " +
event . queryStringParaneters. httpStatus);
responseCode = event. queryStringParaneters. httpStatus;
}

}

var responseBody = {
nmessage: "Hello " + nane + "!",
i nput: event

s

var response = {
st at usCode: responseCode,

headers: {
"x-custom header" : "ny custom header val ue"
}s
body: JSON. stringify(responseBody)
s
consol e.l og("response: " + JSON. stringify(response))

cont ext . succeed(response);

}s

When used with a proxy resource in API Gateway, the input contains an API request marshalled by
API Gateway. The input can include the request's HTTP method, path, query parameters, headers,
and payload as well as the context and stage variables. This example Lambda function parses the
query string parameters of nanme and ht t pSt at us from the input (event). The function then returns
a greeting to the named user in the message property of the r esponseBody object. The function also
outputs the caller-supplied HTTP status code as part of ar esponse object. If name and ht t pSt at us

60

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy
Integration through a Proxy Resource

query parameters are not set, the default values ("Wor | d" and 200, respectively) are returned instead.
In any case, the response body contains event , which is the input to the Lambda function. When
structured as shown, the Lambda function output is un-marshalled by API Gateway and returned to the
client as an HTTP response.

Create a Back End for Lambda Proxy Integration

Now let's create the Lambda function in APl Gateway using the Lambda management console.
Create a Lambda function for an APl with a proxy resource in the Lambda console

For this tutorial, use LanbdaFor Si npl ePr oxy as the function name and choose the standard Simple
Microservice permissions policy templates to create the required Lambda execution role.

Sign in to the Lambda console at https://console.aws.amazon.com/lambda.
From the upper-right corner of the console, choose an available region for the Lambda function.
From the main navigation pane, choose Functions.

Choose Create a Lambda function or Get Started Now to create your first Lambda function in a
region, and then do the following.

PowodPE

a. Onthe Select blueprint page, choose Skip.
On the Configure triggers page, choose Next.
c. Onthe Configure function page, do the following:

- Type a function name in the Name input field.
- Type a brief function description in the Description input field.

- From the Runtime drop-down list, choose Node.js 4.3.
d. Under Lambda function code, do the following:

- Choose Edit code inline from the Code entry type drop-down list.

- Type or copy your Node.js code into the inline code editor.
e. Under Lambda function handler and role, do the following:

- Leave index.handler as-is for Handler.

- Choose an existing or create a new IAM role for the function execution.
f. Keep the default values for Advanced settings.
g. Choose Next.
h. Inthe Review pane, choose Create function.

Note
Make note of the region where you created the Lambda function. You will need it next when
creating the API for the function.

Create API with Lambda Proxy Integration
Now create an APl with a proxy resource for a Lambda function by using the API Gateway console.

Build an API with a proxy resource for a Lambda function

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Tocreate an API, choose Create new API (for creating the first API) or Create API (for creating
any subsequent API). Next, do the following:

61

https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy
Integration through a Proxy Resource

2 o o

Choose New API.

Type a name in APl Name .

Optionally, add a brief description in Description.
Choose Create API.

For this tutorial, use LanbdaSi npl ePr oxy as the APl name.

To create a child resource, choose a parent resource item under the Resources tree and then
choose Create Resource from the Actions drop-down menu. Then, do the following in the New
Child Resource pane.

a.

® a0 o

Select the Configure as proxy resource option to create a proxy resource. Otherwise, leave
it de-selected.

Type a name in the Resource Name* input text field.

Type a new name or use the default name in the Resource Path* input text field.
Choose Create Resource.

Select Enable API Gateway CORS, if required.

For this tutorial, use the root resource (/) as the parent resource. Select Configure as proxy
resource. For Resource Name, use the default, pr oxy. For Resource Path, use / { pr oxy+}.
De-select Enable API Gateway CORS.

To set up the ANY method for integration with the Lambda back end, do the following:

®© oo T p

Choose Lambda Function Proxy for Integration type.

Choose a region from Lambda Region.

Type the name of your Lambda function in Lambda Function.

Choose Save.

Choose OK when prompted with Add Permission to Lambda Function.

For this tutorial, use the previously created LanbdaFor Pr oxyResour ce for the Lambda
Function.

For the proxy resource API that Lambda just created, APl Gateway forwards the raw request from the
client to the back end for the Lambda function to process. The request includes the request method,
its path, query string and headers parameters, any payload, and context and stage variables. The next
procedure describes how to test this.

Test APl with Lambda Proxy Integration

The following procedure describes how to test the proxy integration.

Call the LanbdaFor Pr oxyResour ce Lambda function through the proxy resource

1.

To use a browser to call a GET method on a specific resource of the API, do the following.

a.

If you have not done so, choose Deploy API from the Actions drop-down menu for the API
you created. Follow the instructions to deploy the API to a specific stage. Note the Invoke
URL that displays on the resulting Stage Editor page. This is the base URL of the API.

To submit a GET request on a specific resource, append the resource path, including possible
query string expressions to the Invoke URL value obtained in the previous step, copy the
complete URL into the address bar of a browser, and choose Enter.

62

Amazon API Gateway Developer Guide
Create an API with Lambda Proxy
Integration through a Proxy Resource

For this tutorial, deploy the APl to at est stage and append hel | o?nanme=ne to the
API's base URL to produce a URL of ht t ps: // wt 6rme2s9k. execut e- api . us-
west - 2. amazonaws. coni t est/ hel | o?name=ne.

The successful response returns a result similar to the following output from the back-end
Lambda function. The i nput property captures the raw request from APl Gateway. The response
contains ht t pMet hod, pat h, header s, pat hPar anet er s, quer ySt ri ngPar anet er s,

r equest Cont ext , and st ageVari abl es.

"message": "Hello nme!",
"input": {
"path": "/test/hello",
"headers": {
"Accept": "text/htm ,application/xhtm +xm , application/
xm ; q=0. 9, i mage/ webp, */ *; g=0. 8",
"Accept - Encodi ng": "gzip, deflate, |zma, sdch, br",
"Accept - Language": "en-US, en; g=0. 8",
" C oudFr ont - Forwar ded- Prot o": "https",

"C oudFront -1 s-Deskt op-Viewer": "true",

"Cl oudFront-1s-Mbile-Viewer": "false",

"C oudFront-Is-SnartTV-Viewer": "false",

"Cl oudFront-Is-Tablet-Viewer": "false",

"C oudFront - Vi ewer - Country": "US",

"Host": "wt 6me2s9k. execut e- api . us-west - 2. amazonaws. cont',

" Upgr ade- | nsecur e- Requests": "1",

"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6)

Appl eWebKi t/537.36 (KHTM., |ike Gecko) Chrone/52.0.2743.82 Safari/537.36
OPR/ 39. 0. 2256. 48",
"Via": "1.1 fb7cca60f 0ecd82ce07790c9c5eef 16¢. cl oudfront. net
(C oudFront)",
"X-Ame-Cf -1 d":
" NnBsWBOr SHMgnaROZJK1WGCZ9PcRe Spg_0SXZNQMQLOOTZL4ci nZo3g==",
" X- Forwar ded- For": "192.168.100.1, 192.168.1.1",
" X- Forwar ded- Port": "443",
" X- Forwar ded- Proto": "https"
}
"pat hParaneters": {"proxy": "hello"},
"request Context": {
"account|d": "123456789012",
"resourceld": "us4z18",
"stage": "test",
"request|d": "41b45ea3- 70b5-11e6-b7bd- 69b5aaebc7d9",
"identity": {
"cognitoldentityPool Id": "",
"accountld": "",
"cognitoldentityld": "",
"caller": "",
"api Key": "",
"sourcel p": "192.168.100. 1",
"cogni t 0Aut henti cati onType": "",
"cogni t oAut henti cati onProvi der": "",
"userArn": "",
"userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X
10_11_6) Appl eWebKit/537.36 (KHTM., |ike Gecko) Chrone/52.0.2743.82
Saf ari/537.36 OPR/ 39.0.2256. 48",
"user":

63

Amazon API Gateway Developer Guide
Create an AWS Service Proxy

},

"resourcePath": "/{proxy+}",
"htt pMet hod": "GET",
"apild": "w 6me2s9k"

}

"resource": "/{proxy+}",

"httpMethod": "CET",

"queryStringParaneters”": {"name": "nme"},
"stageVariabl es": {"stageVarNane": "stageVarVal ue"}

You can use a different proxy resource path of / hel | o/ wor I d?name=n® to call the Lambda
function. The i nput . pat h property value of the JSON payload of the successful response will
become t est/ hel | o/ wor | d.

If you use PGST for the ANY method instead, the i nput property of the response payload
contains a body JSON property. To test a POST request, you can use the API Gateway console
Test | nvoke feature, a Curl command, the Postman extension, or an AWS SDK.

2. To use the API Gateway console to test invoking the API, do the following.

Choose ANY on a proxy resource in the Resources tree.

Choose Test in the Method Execution pane.

From the Method drop-down list, choose an HTTP verb supported by the back end.
Under Path, type a specific path for the proxy resource supporting the chosen operation.

® a0 o p

If required, type a supported query expression for the chosen operation under the Query
Strings heading.

f. If required, type one or more supported header expressions for the chosen operation under
the Headers heading.

g. If configured, set the required stage variable values for the chosen operation under the Stage
Variables heading.

h. If prompted and required, choose an AP| Gateway-generated client certificate under the
Client Certificate heading to the operation to be authenticated by the back end.

i. If prompted, type an appropriate request body in the text editor under the Request Body
heading.
j- Choose Test to test invoking the method.

For this tutorial, use GET as the HTTP method, hel | o as the proxy resource path of {proxy}, and
nane=me as the query expression.

The successful response will return a JSON payload that is similar to the payload shown in the
previous step.

Create an AWS Service Proxy for Amazon SNS

In addition to exposing Lambda functions or HTTP endpoints, you can also create an APl Gateway

API as a proxy to an AWS service, such as Amazon SNS, Amazon S3, Amazon Kinesis, enabling your
client to access the back-end AWS services through your APIs. In this walkthrough, we illustrate this by
creating an API to expose Amazon SNS. For examples of integrating an API with other AWS services,
see Tutorials (p. 343).

An AWS service proxy can call only one action in an AWS service, and that action typically does not
change. If you want more flexibility, you should call a Lambda function instead.

64

Amazon API Gateway Developer Guide
Prerequisites

API Gateway does not retry when the endpoint times out. The API caller must implement a retry logic
to handle endpoint timeouts.

This walkthrough builds on the instructions and concepts in the Build an API to Expose a Lambda
Function (p. 44), which shows you how to use API Gateway to create a custom API, connect it to a
set of AWS Lambda functions, and then call the Lambda functions from your API. If you have not yet
completed that walkthrough, we suggest that you do it first.

Topics
¢ Prerequisites (p. 65)
¢ Step 1: Create the Resource (p. 65)
¢ Step 2: Create the GET Method (p. 66)
¢ Step 3: Create the AWS Service Proxy Execution Role (p. 66)
¢ Step 4: Specify Method Settings and Test the Method (p. 67)
e Step 5: Deploy the API (p. 68)
e Step 6: Test the API (p. 68)
e Step 7: Clean Up (p. 69)

Prerequisites

Before you begin this walkthrough, you should have already done the following:

1. Complete the steps in Get Ready to Use API Gateway (p. 4).

Make sure the IAM user has access to create policies and roles in IAM. You will need to create an
IAM policy and role in this walkthrough.

3. At a minimum, open the API Gateway console and create a new APl named MyDenoAPI . For
more information, see Build an API Gateway API to Expose an HTTP Endpoint (p. 6).

4. Deploy the API at least once to a stage named t est . For more information, see Deploy the
API (p. 50) in the Build an API to Expose a Lambda Function (p. 44).

Complete the rest of the steps in the Build an API to Expose a Lambda Function (p. 44).

Create at least one topic in Amazon Simple Notification Service (Amazon SNS). You will use the
deployed API to get a list of topics in Amazon SNS that are associated with your AWS account.
To learn how to create a topic in Amazon SNS, see Create a Topic. (You do not need to copy the
topic ARN mentioned in step 5.)

Step 1: Create the Resource

In this step, you will create a resource that will enable the AWS service proxy to interact with the AWS
service.

To create the resource

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
If MyDemoAPI is displayed, choose Resources.

In the Resources pane, choose the resource root, represented by a single forward slash (/), and
then choose Create Resource.

4. For Resource Name, type MyDenpAWEPr oxy, and then choose Create Resource.

65

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Step 2: Create the GET Method

Step 2: Create the GET Method

In this step, you will create a GET method that will enable the AWS service proxy to interact with the
AWS service.

To create the GET method

1. Inthe Resources pane, choose /mydemoawsproxy, and then choose Create Method.
2. For the HTTP method, choose GET, and then save your choice.

Step 3: Create the AWS Service Proxy Execution
Role

In this step, you will create an 1AM role that your AWS service proxy will use to interact with the AWS
service. We call this IAM role an AWS service proxy execution role. Without this role, APl Gateway
cannot interact with the AWS service. In later steps, you will specify this role in the settings for the GET
method you just created.

To create the AWS service proxy execution role and its policy
1. Signin to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.
Choose Policies.
Do one of the following:
« If the Welcome to Managed Policies page appears, choose Get Started, and then choose
Create Policy.

« If a list of policies appears, choose Create Policy.

4. Nextto Create Your Own Policy, choose Select.
5. For Policy Name, type a name for the policy (for example, APl Gat eway AWEPr oxyExecPol i cy).
6. For Description, type Enabl es APl Gateway to call AWS services.
7. For Policy Document, type the following, and then choose Create Policy.
{
"Version": "2012-10-17",
"Statement": [
"Effect": "Alow',
"Resource": [
"
1.
"Action": [
"sns: Li st Topi cs"
]
}
]
}
Note
This policy document allows the caller to get a list of the Amazon SNS topics for the AWS
account.

66

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Step 4: Specify Method Settings and Test the Method

10.

11.

12.
13.

14.

15.
16.
17.

18.

Choose Roles.
Choose Create New Role.

For Role Name, type a name for the execution role (for example,
API Gat eway AWSPr oxyExecRol e), and then choose Next Step.

Next to Amazon EC2, choose Select.
Note
You choose Select here because you need to choose a standard AWS service role
statement before you can continue. There is currently no option to choose a standard API

Gateway service role statement. Later in this step, you will modify the standard Amazon
EC2 service role statement for use with APl Gateway.

In the list of policies, select APIGatewayAWSProxyExecPolicy, and then choose Next Step.

For Role ARN, make a note of the Amazon Resource Name (ARN) for the execution role. You
will need it later. The ARN should look similar to: ar n: aws: i am : 123456789012: r ol e/
API Gat eway AWSPr oxyExecRol e, where 123456789012 is your AWS account ID.

Choose Create Role.

The invocation role 1AM just created enables Amazon EC2 to get a list of the Amazon SNS topics
for the AWS account. You will change this role to enable API Gateway to get a list of the Amazon
SNS topics for the AWS account instead.

In the list of roles, select APIGatewayAWSProxyExecRole.
In the Trust Relationships area, choose Edit Trust Relationship.

For Policy Document, replace ec2. amazonaws. comwith api gat eway. anazonaws. comso
that the access control policy document now looks as follows:

"Version": "2012-10-17",
"Statement”: [
{
"sidv: ",
"Effect": "Alow',
"Principal": {
"Service": "apigateway.amazonaws. cont

H

"Action": "sts:AssuneRol e"

This policy document enables AP| Gateway to take actions on behalf of your AWS account.
Choose Update Trust Policy.

Step 4: Specify Method Settings and Test the
Method

In this step, you will specify the settings for the GET method so that it can interact with an AWS service
through an AWS service proxy. You will then test the method.

To specify settings for the GET method and then test it

1.

In the API Gateway console, in the Resources pane for the APl named MyDenoAPI , in/
mydemoawsproxy, choose GET.

67

Amazon API Gateway Developer Guide
Step 5: Deploy the API

In the Setup pane, for Integration type, choose Show advanced, and then choose AWS Service
Proxy.

For AWS Region, choose the name of the AWS region where you want to get the Amazon SNS
topics.

For AWS Service, choose SNS.

For HTTP method, choose GET.

For Action, type Li st Topi cs.

For Execution Role, type the ARN for the execution role.

Leave Path Override blank.

Choose Save.

. In the Method Execution pane, in the Client box, choose TEST, and then choose Test. If

successful, Response Body will display a response similar to the following:

{
"Li st Topi csResponse": {
"Li st Topi csResul t": {
"Next Token": null,
"Topics": [
{
"Topi cArn": "arn:aws:sns: us-east-1: 80398EXAMPLE: MySNSTopi c- 1"
},
{
"Topi cArn": "arn:aws:sns: us-east-1: 80398EXAMPLE: MySNSTopi c- 2"
H
{
"Topi cArn": "arn:aws:sns: us-east-1: 80398EXAMPLE: MySNSTopi c- N'
}
]
},
"ResponseMet adat a": {
"Request | d": "abclde23-45fa-6789-b0cl- d2e345f a6b78"
}
}
}

Step 5: Deploy the API

In this step, you will deploy the API so that you can begin calling it from outside of the API Gateway
console.

To deploy the API

P wonNPE

In the Resources pane, choose Deploy API.

For Deployment stage, choose t est .

For Deployment description, type Cal | i ng AWB servi ce proxy wal kt hr ough.
Choose Deploy.

Step 6: Test the API

In this step, you will go outside of the API Gateway console and use your AWS service proxy to interact
with the Amazon SNS service.

68

Amazon API Gateway Developer Guide
Step 7: Clean Up

In the Stage Editor pane, next to Invoke URL, copy the URL to the clipboard. It should look like
this:

https://nmy-api-id.execute-api.region-id. amazonaws. conl't est

Paste the URL into the address box of a new browser tab.
Append / nydenpaws pr oxy so that it looks like this:

https://nmy-api-id. execute-api.region-id.amzonaws. com t est/ mydenpawspr oxy

Browse to the URL. Information similar to the following should be displayed:

{"Li st Topi csResponse": {"Li st Topi csResul t": {" Next Token": null, " Topics":
[{"Topi cArn": "arn: aws: sns: us-east - 1: 80398EXAMPLE: MySNSTopi c- 1"},
{"Topi cArn": "arn:aws: sns: us-east-1: 80398EXAMPLE: MySNSTopi c-2"}, ...
{"Topi cArn": "arn:aws: sns: us-east - 1: 80398EXAMPLE: MySNSTopi c-

N}]}, " ResponseMet adat a": {" Request |1 d": "abclde23- 45f a- 6789- bOc1-

d2e345f a6b78} }}

Step 7: Clean Up

You can delete the IAM resources the AWS service proxy needs to work.

Caution

If you delete an IAM resource an AWS service proxy relies on, that AWS service proxy and
any APIs that rely on it will no longer work. Deleting an IAM resource cannot be undone. If you
want to use the IAM resource again, you must re-create it.

To delete the associated IAM resources

1.

Open the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

In the Details area, click Roles.

Select APIGatewayAWSProxyExecRole, and then choose Role Actions, Delete Role. When
prompted, choose Yes, Delete.

In the Details area, choose Policies.

Select APIGatewayAWSProxyExecPolicy, and then choose Policy Actions, Delete. When
prompted, choose Delete.

You have reached the end of this walkthrough. For more detailed discussions about creating APl as an
AWS service proxy, see Create an AP| as an Amazon S3 Proxy (p. 359), Create an APl as a Lambda
Proxy (p. 343) or Create an APl as an Amazon Kinesis Proxy (p. 388).

69

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Create an APl in API Gateway

Creating an APl in Amazon API
Gateway

Topics

Create an APl in API Gateway (p. 70)

Set up API Gateway APl Method and Integration (p. 71)

Set Up Amazon API Gateway API Request and Response Payload Mappings (p. 105)
Amazon API Gateway API Request and Response Parameter-Mapping Reference (p. 131)
API Gateway API| Request and Response Payload-Mapping Template Reference (p. 134)
Import and Export API Gateway API with Swagger Definition Files (p. 141)

Create an API in AP| Gateway

In Amazon API Gateway you can create an API using the API Gateway console, AWS CLI, the API
Gateway control service REST API, and platform-specific or language-specific SDKs.

Topics

Create an API Using the API Gateway Console (p. 70)

Create an API Using the API Gateway Control Service API (p. 71)
Create an APl Using the AWS SDK for API Gateway (p. 71)
Create an APl Using the AWS CLI (p. 71)

Create an API Using the API Gateway Console

To create an AP| Gateway API using the AP Gateway console, see Build an API Gateway API to
Expose an HTTP Endpoint (p. 6).

70

Amazon API Gateway Developer Guide
Create an API Using the API Gateway Control Service API

You can learn how to create an API by following an example. For more information, see Create an API
Gateway API from an Example (p. 7).

Alternatively, you can create an API by using the APl Gateway Import API (p. 142) feature to upload

an external AP definition, such as one expressed in the Swagger 2.0 with the API Gateway Extensions
to Swagger (p. 147). The example provided in Create an API Gateway API from an Example (p. 7)
uses the Import API feature.

Create an API Using the API Gateway Control
Service API

For more information about the APl Gateway Control Service API, see Amazon AP| Gateway REST
API Reference.

Create an API Using the AWS SDK for APl Gateway

For more information using a AWS SDK, see AWS SDKs.

Create an API Using the AWS CLI

For an example of creating an APl Gateway API Using AWS CLI, see Create an AP| Gateway API for
Lambda tutorial.

Set up API Gateway APl Method and Integration
Before Setting Up Methods and Integration

* You must have the method available in APl Gateway. Follow the instructions in Build an API
Gateway API to Expose an HTTP Endpoint (p. 6).

« If you want the method to communicate with a Lambda function, you must have already created the
Lambda invocation role and Lambda execution role in IAM and created the Lambda function with
which your method will communicate in AWS Lambda. To create the roles and function, use the
instructions in Step 4: Create Lambda Functions (p. 44) of the Build an API to Expose a Lambda
Function (p. 44).

« If you want the method to communicate with an HTTP or HTTP proxy integration, you must
have already created and have access to the HTTP endpoint URL with which your method will
communicate.

« Verify that your certificates for HTTP and HTTP proxy endpoints are supported by APl Gateway. For
details see Supported Certificate Authorities for HTTP and HTTP Proxy Integration (p. 189)

Topics
¢ Configure How API Gateway Integrates the Method with a Back End (p. 72)
¢ Configure How an API User Calls an APl Method in Amazon API Gateway (p. 74)

¢ Configure How Data Is Mapped between a Method and its Integration in Amazon API
Gateway (p. 75)

¢ Enable Support for Binary Payloads in APl Gateway (p. 78)
e Configure Mock Integration for a Method in APl Gateway (p. 94)
¢ Configure Proxy Integration for a Proxy Resource (p. 97)

71

http://swagger.io/specification/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html

Amazon API Gateway Developer Guide
Configure How a Method Is Integrated with a Back End

» After Setting Up Methods and Integration (p. 105)

Configure How API Gateway Integrates the Method
with a Back End

The settings of an APl method defines the method and describes its behaviors. To create a method,
you must specify a resource, including the root (“/"), on which the method is exposed, a method type
(GET, POST, etc.), and how it will be integrated with the targeted back end. The method request and
response specify the contract with the calling app, stipulating which parameters the API can receive
and what the response looks like. The integration request and response specifies how API Gateway
interacts with their back end: enforcing secure communications over HTTPS with the back end and
translating data formats between the client and back end. The following topics describe how to use the
API Gateway console to specify a method settings.

1.
2.

In the Resources pane, choose the method.

In the Method Execution pane, choose Integration Request. For Integration type, choose one
of the following:

Choose Lambda Function if your API will be communicating with a Lambda function.
Choose HTTP Proxy if your API will be communicating with an HTTP endpoint.

Choose Show Advanced, AWS Service Proxy if your API will be communicating directly with
an AWS service.

Choose Mock Integration if your APl is not yet final, but you want to generate API responses
from API Gateway anyway to unblock dependent teams for testing. If you choose this

option, skip the rest of the instructions in this topic and see Configure Mock Integration for a
Method (p. 94).

If you chose Lambda Function, do the following:

1.

3.

For Lambda Region, choose the region identifier that corresponds to the region where you
created the Lambda function. For example, if you created the Lambda function in the US East
(N. Virginia) region, you would choose us- east - 1. For a list of region names and identifiers,
see AWS Lambda in the Amazon Web Services General Reference.

For Lambda Function, type the name of the Lambda function, and then choose the function's
corresponding ARN.

Choose Save.

If you chose HTTP Proxy, do the following:

1.

2.
3.

For HTTP method, choose the HTTP method type that most closely matches the method in
the HTTP proxy.

For Endpoint URL, type the URL of the HTTP proxy you want this method to use.
Choose Save.

If you chose Mock Integration, do the following:

Choose Save.

If you chose Show advanced, AWS Service Proxy, do the following:

1.

For AWS Region, choose the AWS region you want this method to use to call the action.
For AWS Service, choose the AWS service you want this method to call.

For HTTP method, choose the HTTP method type that corresponds to the action. For HTTP
method type, see the API reference documentation for the AWS service you chose for AWS
Service.

For Action, type the action you want to use. For a list of available actions, see the API
reference documentation for the AWS service you chose for AWS Service.

72

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

Amazon API Gateway Developer Guide
Configure How a Method Is Integrated with a Back End

5. For Execution Role, type the ARN of the IAM role the method will use to call the action.

To create the IAM role, you can adapt the instructions in "To create the Lambda invocation

role and its policies" and "To create the Lambda execution role and its policy" in the Create
Lambda Functions (p. 44) section of the Build an API to Expose a Lambda Function (p. 44);
and specify an access policy of the following format, with the desired number of action and

resource statements:

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Al ow',
"Action": [
"action-statenment"
|
"Resource": [
"resource-statenent"”
]
b,
]
}

For the action and resource statement syntax, see the documentation for the AWS service
you chose for AWS Service.

For the 1AM role's trust relationship, specify the following, which enables API Gateway to take
actions on behalf of your AWS account:

"Version": "2012-10-17",
"Statement": [
{
"Sidv:ott,
"Effect": "Allow',
"Principal": {
"Service": "api gateway. amazonaws. cont
3
"Action": "sts:AssuneRol e"
}
]
}

6. If the action you typed for Action provides a custom resource path you want this method to
use, for Path Override, type this custom resource path. For the custom resource path, see
the API reference documentation for the AWS service you chose for AWS Service.

7. Choose Save.
7. Do both of the following:

« Specify how the method will receive requests from, and send responses to, callers (which API
Gateway refers to as the API's method request/response), and how the method will authorize
requests by following the instructions in Configure How a User Calls an APl Method (p. 74).

« Specify how the method will send requests to, and receive responses from, the Lambda
function, HTTP proxy, or AWS service proxy (which APl Gateway refers to as the API's
integration request/response) by following the instructions in Configure How Data Is Mapped
between Method and Integration (p. 75).

73

Amazon API Gateway Developer Guide
Configure How a User Calls an APl Method

Configure How an API User Calls an API Method in
Amazon API Gateway

To use the API Gateway console to specify an API's method request/response and the way in which
the method will authorize requests, follow these instructions.

Note
These instructions assume you have already completed the steps in Configure How a Method
Is Integrated with a Back End (p. 72).

1. With the method selected in the Resources pane, in the Method Execution pane, choose
Method Request.

2. To assign custom access permissions to the method, in the Authorization Settings area, for
Authorization Type, choose Edit, and then choose AWS_IAM. Only IAM roles with the correct
IAM policy attached will be allowed to call this method. If you do not want to assign custom access
permissions to the method, choose NONE.

To create the IAM role, specify an access policy with a format like the following:

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Alow',
"Action": [
"execut e- api : | nvoke"
1.
"Resource": [
"resource-statenent"”
]
}
]
}

In this access policy, r esour ce- st at ement is the value of the ARN field in the Authorization
Settings section.

To create the IAM role, you can adapt the instructions in "To create the Lambda invocation role
and its policy" and "To create the Lambda execution role and its policy" in the Create Lambda
Functions (p. 44) section of the Build an API to Expose a Lambda Function (p. 44).

To save your choice, choose Update. Otherwise, choose Cancel.

Note
You can also enable an API key. For instructions, see Use an API Key without Usage
Plans (p. 223).

3. To add a query string parameter to the method, do the following:
a. Choose the arrow next to URL Query String Parameters, and then choose Add query
string.
b. For Name, type the name of the query string parameter.
c. Choose Create a new query string.

74

Amazon API Gateway Developer Guide
Configure How Data Is Mapped
between Method and Integration

Note

To remove the query string parameter, choose Cancel or Remove.

To change the name of the query string parameter, you must remove it and create a hew
one.

4. To add a header parameter to the method, do the following:

a. Choose the arrow next to HTTP Request Headers, and then choose Add header.
b. For Name, type the name of the header parameter.

c. Optionally, check the Caching option to make this method as an API cache key. For more
information, see Use Method/Integration Parameters as Cache Keys (p. 239).

d. Choose Create

Tip

To remove the header parameter, choose Cancel or Remove.

To change the name of the header parameter, you must remove the old header
parameter and create a new one in its place.

5. For non-GET method types, expand Request Models, and for Content Type and Model name,
type the content type and choose the name of a model that will transform caller-supplied data into
the expected format.

To create a model, see Create a Model (p. 112).

6. To send a set of custom response headers, a custom response data format, or both, back to
callers based on the HTTP status code returned by the method, do the following:

a. Inthe Method Execution pane, choose Method Response. By default, 200 response is
included in the method responses. You can modify it, e.g., to have the method return 201
instead. In addition, you can add other responses, e.g., 409 for access denial and 500 for
uninitialized stage variables used. Either choose the arrow icon next to 200 to specify settings
for the 200 response, or choose Add Response to specify settings for any other HTTP
response status code. If you choose Add Response, for HTTP Status, choose the response,
choose Create, and choose the arrow next to the response.

Tip

You will use Method Response to specify all possible response codes for your API
and use Integration Response to indicate to APl Gateway how back-end errors are
mapped to an HTTP status code.

b. For each custom header you want to include in the response, in the Response Headers area,
choose Add Header, type the name of the header, and then choose Save. (Choose Remove
to remove a header from this list.)

To specify a response model to transform the output's data from one format to another, in
the Response Models area, choose Add Response Model. Type the content type (for
Content type), choose the model's name (for Models), and then choose Save. Choose Add
Response Model to specify an additional model, or choose Create a model to define a new
model. (Choose Remove to remove a response model selection from this list.)

Configure How Data Is Mapped between a Method
and its Integration in Amazon API Gateway
Note

API Gateway does not currently support binary payloads. Binary data can be passed around
in a payload as a JSON property value of a Base64-encoded string.

75

Amazon API Gateway Developer Guide
Configure How Data Is Mapped
between Method and Integration

To use the API Gateway console to define the API's integration request/response, follow these
instructions.

Note
These instructions assume you have already completed the steps in Configure How a Method
Is Integrated with a Back End (p. 72).

1. With the method selected in the Resources pane, in the Method Execution pane, choose
Integration Request.

2. Foran HTTP proxy or an AWS service proxy, to associate a path parameter, a query string
parameter, or a header parameter defined in the integration request with a corresponding path
parameter, query string parameter, or header parameter in the method request of the HTTP proxy
or AWS service proxy, do the following:

a. Choose the arrow next to URL Path Parameters, URL Query String Parameters, or HTTP
Headers respectively, and then choose Add path, Add query string, or Add header,
respectively.

b. For Name, type the name of the path parameter, query string parameter, or header parameter
in the HTTP proxy or AWS service proxy.

c. For Mapped from, type the mapping value for the path parameter, query string parameter, or
header parameter. Use one of the following formats:

* net hod. request . pat h. par anet er - nane for a path parameter named par anet er -
nane as defined in the Method Request page.

e net hod. request. querystring. par anet er - nane for a query string parameter named
par anet er - nane as defined in the Method Request page.

» et hod. request . header. par anet er - nane for a header parameter named
par anet er - nane as defined in the Method Request page.

Alternatively, you can set a literal string value (enclosed by a pair of single quotes) to an
integration header.

d. Choose Create. (To delete a path parameter, query string parameter, or header parameter,
choose Cancel or Remove next to the parameter you want to delete.)

3. Inthe Body Mapping Templates area, choose an option for Request body passthrough to
configure how the method request body of an unmapped content type will be passed through the
integration request without transformation to the Lambda function, HTTP proxy, or AWS service
proxy. There are three options:

» Choose When no template matches the request Content-Type header if you want
the method request body to pass through the integration request to the back end without
transformation when the method request content type does not match any content types
associated with the mapping templates, as defined in the next step.

Note
When calling the API Gateway API, you choose this option by setting WHEN_NO_MATCH
as the passt hr oughBehavi or property value on the Integration resource.

* Choose When there are no templates defined (recommended) if you want the method
request body to pass through the integration request to the back end without transformation
when no mapping template is defined in the integration request. If a template is defined when
this option is selected, the method request of an unmapped content type will be rejected with an
HTTP 415 Unsupported Media Type response.

Note

When calling the API Gateway API, you choose this option by setting
WHEN_NO_TEMPLATE as the passt hr oughBehavi or property value on the Integration
resource.

* Choose Never if you do not want the method request to pass through when either the
method request content type does not match any content type associated with the mapping

76

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
Configure How Data Is Mapped
between Method and Integration

templates defined in the integration request or no mapping template is defined in the integration
request. The method request of an unmapped content type will be rejected with an HTTP 415
Unsupported Media Type response.

Note
When calling the API Gateway API, you choose this option by setting NEVER as the
passt hr oughBehavi or property value on the Integration resource.

For more information about the integration passthrough behaviors, see Integration Passthrough
Behaviors (p. 140).

To define a mapping template for an incoming request, choose Add mapping template under
Content-Type. Type a content type (e.g., appl i cati on/j son) in the input text box and then
choose the check mark icon to save the input. Then, type the mapping template manually or
choose Generate template to create one from a model template. For more information, see Set
Up Payload Mappings (p. 105).

You can map an integration response from the back-end to a method response of the API returned
to the calling app. This includes returning to the client selected response headers from the
available ones from the back end, transforming the data format of the back-end response payload
to an API-specified format. You can specify such mapping by configuring Method Response and
Integration Response from the Method Execution page.

a. Inthe Method Execution pane, choose Integration Response. Choose either the arrow next
to 200 to specify settings for a 200 HTTP response code from the method, or choose Add
integration response to specify settings for any other HTTP response status code from the
method.

b. For Lambda error regex (for a Lambda function) or HTTP status regex (for an HTTP
proxy or AWS service proxy), type a regular expression to specify which Lambda function
error strings (for a Lambda function) or HTTP response status codes (for an HTTP proxy
or AWS service proxy) map to this output mapping. For example, to map all 2xx HTTP
response status codes from an HTTP proxy to this output mapping, type "2\ \ d{ 2} " for
HTTP status regex. To return an error message containing "Invalid Request" from a Lambda
function to a 400 Bad Request response, type ". *I nval i d request . *" as the Lambda
error regex expression. On the other hand, to return 400 Bad Request for all unmapped
error messages from Lambda, type "(\ n| .) +" in Lambda error regex. This last regular
expression can be used for the default error response of an API.

Note

The error patterns are matched against the entire string of the

err or Message property in the Lambda response, which is populated

by context.fail (errorMessage) in Node.js or by t hr ow new

MyExcepti on(error Message) in Java. Also, escaped characters are unescaped
before the regular expression is applied.

If you use ".+' as the selection pattern to filter responses, be aware that it may not
match a response containing a newline (\n') character.

c. Ifenabled, for Method response status, choose the HTTP response status code you defined
in the Method Response page.

d. For Header Mappings, for each header you defined for the HTTP response status code in the
Method Response page, specify a mapping value by choosing Edit. For Mapping value, use
the format i nt egrati on. response. header . header - nane where header - nane is the
name of a response header from the backend. For example, to return the backend response's
Dat e header as an APl method's response's Ti mest anp header, the Response header
column will contain an Timestamp entry and the associated Mapping value should be set to
integration.response.header.Date.

e. Inthe Template Mappings area, next to Content type, choose Add. In the Content type
box, type the content type of the data that will be passed from the Lambda function, HTTP
proxy, or AWS service proxy to the method. Choose Update.

77

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

f. Select Output passthrough if you want the method to receive, but not modify, the data from
the Lambda function, HTTP proxy, or AWS service proxy.

g. If Output passthrough is cleared, for Output mapping, specify the output mapping template
you want the Lambda function, HTTP proxy, or AWS service proxy to use to send data to
the method. You can either type the mapping template manually or choose a model from
Generate template from model.

h. Choose Save.

Enable Support for Binary Payloads in APl Gateway

In API Gateway, the API request and response can have a text or binary payload. By default, API
Gateway treats the message body as a UTF- 8-encoded JSON string. For APl Gateway to handle
binary payloads, you add the media types to the binaryMediaTypes list of the Rest Api resource

or set the contentHandling properties on the Integration and the IntegrationResponse resources.

The cont ent Handl i ng value can be CONVERT_TO_BI NARY, CONVERT_TO_TEXT, or undefined.
Depending on the cont ent Handl i ng value, and whether the Cont ent - Type header of the response
or the Accept header of the incoming request matches an entry in the bi nar yMedi aTypes list, API
Gateway can encode the raw binary bytes as a Base64-encoded string, decode a Base64-encoded
string back to its raw bytes, or pass the body through without modification.

You must configure the API as follows to support binary payloads for your APl in APl Gateway:

¢ Add the desired binary media types to the bi nar yMedi aTypes list on the RestApi resource. If this
property and the cont ent Handl i ng property are not defined, the payloads are handled as UTF-8
encoded JSON strings.

¢ Set the cont ent Handl i ng property of the Integration resource to CONVERT_TO_BI NARY to have
the request payload converted from a Base64-encoded string to its binary blob, or set the property to
CONVERT_TO_TEXT to have the request payload converted from a binary blob to a Base64-encoded
string. If this property is not defined, API Gateway passes the payload through without modification.
This occurs when the Cont ent - Type header value matches one of the bi nar yMedi aTypes entries
and the passthrough behaviors (p. 140) are also enabled for the API.

¢ Setthe cont ent Handl i ng property of the IntegrationResponse resource to CONVERT_TO Bl NARY
to have the response payload converted from a Base64-encoded string to its binary blob, or set
the property to CONVERT_TO_TEXT to have the response payload converted from a binary blob
to a Base64-encoded string. If cont ent Handl i ng is not defined, and if the Cont ent - Type
header of the response and the Accept header of the original request match an entry of the
bi nar yMedi aTypes list, API Gateway passes through the body. This occurs when the Cont ent -
Type header and the Accept header are the same; otherwise, API Gateway converts the response
body to the type specified in the Accept header.

Topics
¢ Content Type Conversions in APl Gateway (p. 78)
¢ Enable Binary Support Using the APl Gateway Console (p. 81)
¢ Enable Binary Support Using API Gateway REST API (p. 84)
¢ Import and Export Content Encodings (p. 87)
e Examples of Binary Support (p. 87)

Content Type Conversions in APl Gateway

The following table shows how API Gateway converts the request payload for specific configurations
of a request's Cont ent - Type header, the bi nar yMedi aTypes list of a RestApi resource, and the
cont ent Handl i ng property value of the Integration resource.

78

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/#binaryMediaTypes
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/#contentHandling
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

APl Request Content Type Conversions in API Gateway

Method request
payload

Text data

Text data

Text data

Text data

Text data

Text data

Binary data

Binary data

Binary data

Request

Cont ent - Type
header

Any data type
Any data type
Any data type

A text data type

A text data type

A text data type

A binary data type

A binary data type

A binary data type

bi nar yMedi aType cont ent Handl i ng Integration

Undefined

Undefined

Undefined

Set with matching
media types

Set with matching
media types

Set with matching
media types

Set with matching
media types

Set with matching
media types

Set with matching
media types

request payload

Undefined UTF8-encoded

string

CONVERT_TO_BI NARase64-decoded

binary blob
CONVERT_TO_TEXT UTF8-encoded

string
Undefined Text data

CONVERT_TO_BI NARase64-decoded
binary blob

CONVERT_TO TEXT Text data
Undefined Binary data

CONVERT_TO_BI NARinary data

CONVERT_TO_TEXT Base64-encoded
string

The following table shows how API Gateway converts the response payload for specific configurations
of a request's Accept header, the bi nar yMedi aTypes list of a RestApi resource, and the
cont ent Handl i ng property value of the IntegrationResponse resource.

API Gateway Response Content Type Conversions

Integration
response
payload

Text or binary
data

Text or binary
data

Text or binary
data
Text data

Text data

Text data

Request Accept
header

A text type

A text type

A text type

A text type

A text type

A text type

bi nar yMedi aType cont ent Handl i ng Method

Undefined

Undefined

Undefined

Set with matching
media types

Set with matching
media types

Set with matching
media types

response
payload

UTF8-encoded
string

Undefined

CONVERT_TO_BI NARase64-decoded

blob
CONVERT_TO _TEXT UTF8-encoded

string
Undefined Text data

CONVERT_TO_BI NARYase64-decoded
blob

CONVERT_TO_TEXT UTF8-encoded
string

79

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Integration Request Accept | bi naryMedi aType cont ent Handl i ng Method

response header response

payload payload

Text data A binary type Set with matching = Undefined Base64-decoded
media types blob

Text data A binary type Set with matching | CONVERT_TO_ Bl NARYase64-decoded
media types blob

Text data A binary type Set with matching = CONVERT_TO _TEXT UTF8-encoded
media types string

Binary data A text type Set with matching | Undefined Base64-encoded
media types string

Binary data A text type Set with matching ' CONVERT_TO_BI NARnary data
media types

Binary data A text type Set with matching | CONVERT_TO_TEXT Base64-encoded
media types string

Binary data A binary type Set with matching = Undefined Binary data
media types

Binary data A binary type Set with matching = CONVERT_TO_BI NARnary data
media types

Binary data A binary type Set with matching | CONVERT_TO_TEXT Base64-encoded
media types string

Tip

When a request contains multiple media types in its Accept header, API Gateway only
honors the first Accept media type. In the situation where you cannot control the order of the
Accept media types and the media type of your binary content is not the first in the list, you
can add the first Accept media type in the bi nar yMedi aTypes list of your API, APl Gateway
will return your content as binary. For example, to send a JPEG file using an <i ng> element
in a browser, the browser might send Accept : i mage/ webp, i mage/ *, */*; g=0. 8 ina
request. By adding i mage/ webp to the bi nar yMedi aTypes list, the endpoint will receive the

JPEG file as binary.

When converting a text payload to a binary blob, APl Gateway assumes that the text data is a Base64-
encoded string and outputs the binary data as a Base64-decoded blob. If the conversion fails, it returns
a 500 response indicating an API configuration error. You do not provide a mapping template for such
a conversion, although you must enable the passthrough behaviors (p. 140) on the API.

When converting a binary payload to a text string, APl Gateway always applies a Base64 encoding
on the binary data. You can define a mapping template for such a payload, but can only access the
Base64-encoded string in the mapping template through $i nput . body, as shown in the following
excerpt of an example mapping template.

"data": "$input.body"

To have the binary payload passed through without modification, you must enable the passthrough
behaviors (p. 140) on the API.

80

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Enable Binary Support Using the APl Gateway Console

The section explains how to enable binary support using the APl Gateway console. As an example,
we use an APl integrated with Amazon S3. We focus on the tasks to set the supported media types
and to specify how the payload should be handled. For detailed information on how to create an API
integrated with Amazon S3, see Create an API| as an Amazon S3 Proxy (p. 359).

To enable binary support using the API Gateway console
1. Set binary media types for the API:

Create a new API or choose an existing API. For this example, we name the API Fi | eMan.
Choose Binary Support under the API.

In the Binary Support pane, choose Edit.

Choose Add binary media types and type a MIME type to be supported for your API.

® a0 o p

Choose Save.

APls Binary Support
1
FileMan
You can configure binary support for your AP| by specifying which media types should be treated as bir
Resources Gateway will look at the Content-Type and Accept HTTP headers to decide how to handle the body.
Stages Bi i
inary media types
Authorizers y yP
Maodals application/octet-stream
| Binary Support
image/jpeg
Dashboard
image/png 0
Usage Plans
Add binary media type Ce
APl Keys

Custom Domain Names
Client Certificates

Settings
2. Set how message payloads are handled for the API method:

a. Create a new or choose an existing resource in the API. For this example, we use the /
{folder}/{itent resource.

b. Create a new or choose an existing method on the resource. As an example, we use the
GET /{fol der}/{iten} method integrated with the Cbj ect GET action in Amazon S3.

c. In Content Handling, choose an option.

81

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

[{folder}/{item} - GET - Setup

Choose the integration point for your new method.

Integration type Lambda Function @
HTTF &
Mock €
O AWS Service ©

AWS Region s-west-2 j
AWS Service g3 j
AWS Subdomain
HTTP method GET -

Action Type Use action name

© Use path override

Path override (optional) {bucket)/{object}

Execution role arn:aws:iam::123456789012:role/apigAwsProxyRole
i}

Content Handling passthrough j 1]

Choose Passthrough if you do not want to convert the body when the client and back end
accepts the same binary format. Choose Convert to text (if needed) to convert the binary
body to a Base64-encoded string when, for example, the back end requires that a binary
request payload is passed in as a JSON property. And choose Convert to binary (if needed)
when the client submits a Base64-encoded string and the back end requires the original
binary format, or when the endpoint returns a Base64-encoded string and the client accepts
only the binary output.

Preserve the incoming request's Accept header in the integration request. You should do
this if you've set cont ent Handl i ng to passt hr ough and want to override that setting at run
time.

82

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

+ HTTP Headers

Name Mapped from @
Accept method.request.header.Accept
Content-Type method.request.header.Content-Type

© Add header

e. Enable the passthrough behavior on the request body.

* Body Mapping Templates

Request body passthrough When no template matches the requast Content-Type header @
@ When there are no templates defined {recommeanded) &

Maver &
Content-Type
imagepng o0

© Add mapping template

Caching
- &S0

- £0O

f. For conversion to text, define a mapping template to put the Base64-encoded binary data into

the required format.

image/png

Ak

Generate template:

1= {

F "operation”: "thumbnail”™,

3 "base64Image” : "Sinput.body”
0k

Cancel Save

The format of this mapping template depends on the endpoint requirements of the input.

83

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Enable Binary Support Using API Gateway REST API

The following tasks show how to enable binary support using the APl Gateway REST API calls.

Topics
¢ Add and Update Supported Binary Media Types to an API (p. 84)
¢ Configure Request Payload Conversions (p. 84)
¢ Configure Response Payload Conversions (p. 85)
¢ Convert Binary Data to Text Data (p. 85)
¢ Convert Text Data to a Binary Payload (p. 86)
¢ Pass through a Binary Payload (p. 86)

Add and Update Supported Binary Media Types to an API
To enable API Gateway to support a new binary media type, you must add the binary media type to the

bi nar yMedi aTypes list of the Rest Api resource. For example, to have API Gateway handle JPEG
images, submit a PATCH request to the Rest Api resource:

PATCH /restapi s/ <restapi _i d>

{
"patchQOperations” : [{
"op" : "add",
"path" : "/binaryMedi aTypes/i mage~1j peg"
}
]
}

The MIME type specification of i nage/ j peg that is part of the pat h property value is escaped as
i mge~1j peg.

To update the supported binary media types, replace or remove the media type from the
bi nar yMedi aTypes list of the Rest Api resource. For example, to change binary support from JPEG
files to raw bytes, submit a PATCH request to the Rest Api resource, as follows.

PATCH /restapi s/ <restapi _id>

{
"patchOperations" : [{
"op" : "replace",
"path" : "/binaryMedi aTypes/i mage~1j peg",
"val ue" : "application/octet-streant
I8
{
"op" : "renove",
"path" : "/binaryMedi aTypes/i mage~1j peg"
}H
}

Configure Request Payload Conversions

If the endpoint requires a binary input, set the cont ent Handl i ng property of the | nt egrati on
resource to CONVERT_TO_BI NARY. To do so, submit a PATCH request, as shown next:

84

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

PATCH /restapi s/ <restapi _i d>/resources/ <resource_i d>/ net hods/ <htt p_net hod>/
integration

{
"patchOperations" : [{
"op" : "replace",
"path" : "/contentHandling",
"val ue" : " CONVERT_TO _BI NARY"
H
}

Configure Response Payload Conversions

If the client accepts the result as a binary blob instead of a Base64-encoded payload returned from
the endpoint, set the cont ent Handl i ng property of the | nt egr at i onResponse resource to
CONVERT_TO_BI NARY by submitting a PATCH request, as shown next:

PATCH /rest api s/ <restapi _i d>/resour ces/ <resour ce_i d>/ met hods/ <ht t p_mnet hod>/
i ntegration/responses/<status_code>

{
"patchOperations" : [{
"op" : "replace",
"path" : "/content Encodi ng",
"val ue" : "CONVERT_TO Bl NARY"
H
}

Convert Binary Data to Text Data

To send binary data as a JSON property of the input to AWS Lambda or Amazon Kinesis through API
Gateway, do the following:

1. Enable the binary payload support of the API by adding the new binary media type of
appl i cation/ oct et - st r eamto the API's bi nar yMedi aTypes list.

PATCH /rest api s/ <restapi _i d>
{
"patchOperations" : [{
"op" : "add",
"path" : "/binaryMedi aTypes/ appli cati on~loct et -streant
}
]
}

2. Set CONVERT_TO_TEXT on the cont ent Handl i ng property of the | nt egr ati on resource and
provide a mapping template to assign the Base64-encoded string of the binary data to a JSON
property. In the following example, the JSON property is body and $i nput . body holds the Base64-
encoded string.

PATCH /restapi s/ <restapi _i d>/resources/ <resource_i d>/ net hods/ <htt p_net hod>/
integration

"patchOperations" : [

85

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

{
"op" : "replace",
"path" : "/contentHandling",
"val ue" : "CONVERT_TO _TEXT"
3
{
"op" : "add",
"path" : "/request Tenpl at es/ appl i cati on~loctet-streant,
"value" : "{\"body\": \"$input.body\"}"
}

Convert Text Data to a Binary Payload

Suppose a Lambda function returns an image file as a Base64-encoded string. To pass this binary
output to the client through API Gateway, do the following:

1.

Update the API's bi nar yMedi aTypes list by adding the binary media type of appl i cati on/
oct et - st ream if it is not already in the list.

PATCH /restapi s/ <restapi _id>

{
"patchOperations" : [{
"op" : "add",
"path" : "/binaryMedi aTypes/ appli cati on~loctet-streant,
1
}

. Set the cont ent Handl i ng property on the | nt egr at i on resource to CONVERT_TO_BI NARY. Do

not define a mapping template. When you do not define a mapping template, AP Gateway invokes
the passthrough template to return the Base64-decoded binary blob as the image file to the client.

PATCH /restapi s/ <restapi _i d>/ resources/ <resource_i d>/ net hods/ <htt p_net hod>/
i ntegration/responses/<status_code>

{
"patchOperations" : [
{
"op" : "replace",
"path" : "/contentHandling",
"val ue" : "CONTEXT_TO_ Bl NARY"
}
]
}

Pass through a Binary Payload

To store an image in an Amazon S3 bucket using API Gateway, do the following:

1. Update the API's bi nar yMedi aTypes list by adding the binary media type of appl i cati on/

oct et - st ream if it is not already in the list.

PATCH /restapi s/ <restapi _id>

86

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

"patchOperations" : [{
" 0F)II : " a.ddll ,
"path" : "/binaryMedi aTypes/ appli cati on~loct et -streant
}
]
}

2. On the cont ent Handl i ng property of the | nt egr at i on resource, set CONVERT_TO _BI NARY.
Set WHEN_NO_MATCH as the passt hr oughBehavi or property value without defining a mapping
template. This enables API Gateway to invoke the passthrough template.

PATCH /restapi s/ <restapi _i d>/resources/ <resour ce_i d>/ net hods/ <htt p_net hod>/

integration
{
"patchOperations" : [
{
"op" : "replace",
"path" : "/contentHandling",
"val ue" : " CONTEXT_TO_BI NARY"
b,
{
"op" : "replace",
"path" : "/passthroughBehaviors",
"val ue" : "WHEN_NO MATCH'
}

Import and Export Content Encodings

To import the bi nar yMedi aTypes list on a RestApi, use the following APl Gateway extension to the
API's Swagger definition file. The extension is also used to export the API settings.

¢ X-amazon-apigateway-binary-media-types Property (p. 151)

To import and export the cont ent Handl i ng property value on an | nt egrati on or

I nt egr at i onResponse resource, use the following API Gateway extensions to the Swagger
definitions:

e X-anmazon- api gat eway-i ntegration (p. 152)

¢ X-amazon-apigateway-integration.response (p. 157)

Examples of Binary Support

The following example demonstrates how to access a binary file in Amazon S3 through an API
Gateway API. The sample API is presented in a Swagger file. The code example uses the API
Gateway REST API calls.
Topics

¢ Access Binary Files in Amazon S3 through an APl Gateway API (p. 88)

e Access Binary Files in Lambda Using an API Gateway API (p. 91)

87

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Access Binary Files in Amazon S3 through an API Gateway API

The following examples show the Swagger file used to access images in Amazon S3, how to download
an image from Amazon S3, and how to upload an image to Amazon S3.

Topics
e Swagger File of a Sample API to Access Images in Amazon S3 (p. 88)
¢ Download an Image from Amazon S3 (p. 90)
¢ Upload an Image to Amazon S3 (p. 90)

Swagger File of a Sample API to Access Images in Amazon S3

The following Swagger file shows a sample API that illustrates downloading an image file from Amazon
S3 and uploading an image file to Amazon S3. This API exposes the GET / s3?key={fi | e- nane}
and PUT /s3?key={fil e- name} methods for downloading and uploading a specified image file. The
GET method returns the image file as a Base64-encoded string as part of a JSON output, following the
supplied mapping template, in a 200 OK response. The PUT method takes a raw binary blob as input
and returns

"swagger": "2.0",

"info": {
"version": "2016-10-21T17: 26: 282",
"title": "Api Nanme"

}

ost": "abcdef ghi.execut e-api.us-east-1.amzonaws. cont
"basePath": "/v1"
"schenes": |
"https"
1,
"paths": {
"1s3": {
"get": {
"produces": |
"application/json"
1,

"paraneters": [

{
"name": "key",
"in": "query",
"required": false,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
H
"500": {
"description": "500 response"
}

}s
"X-anazon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: rol e/ bi nar ySupport Rol e",

88

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

"responses": {
"default": {
"statusCode": "500"

H
"2\ d{2}": {
"statusCode": "200",
"responseTenpl ates": {
"application/json": "{\n \"image\": \"&i nput.body\"\n}"
}
}
H
"request Paraneters": {
"integration.request.path. key": "nmethod.request. querystring. key"
H
"uri": "arn:aws: api gat eway: us- east-1: 123456789012: pat h/ { key}",
"passt hroughBehavi or": "when_no_nat ch",
"httpMethod": "GET",
"type": "aws"
}
H
"put": {
"produces": |
"application/json", "application/octet-streant
1,
"paraneters": [
{
"name": "key",
"in": "query",
"required": false,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
H
"500": {
"description": "500 response"
}
H

"X-anezon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ bi nar ySupport Rol e",
"responses": {
"default": {
"statusCode": "500"

H
"2\ d{2}": {
"statusCode": "200"

}
H
"request Paraneters": {

"integration.request.path. key": "nethod.request. querystring. key"
H
"uri": "arn:aws: api gat eway: us- east-1: 123456789012: pat h/ { key}",
"passt hr oughBehavi or": "when_no_natch",

"htt pMet hod": " PUT",

89

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

"type": "aws",
"cont ent Handl i ng" : " CONVERT_TO Bl NARY"
}
}
}
},
"Xx-amazon- api gat eway- bi nary-nedi a-types" : ["application/octet-streant,
"image/jpeg"],
"definitions": {
"Enpty": {
"type": "object",
“"title": "Enpty Scheman"
}
}

Download an Image from Amazon S3

To download an image file (i mage. j pg) as a binary blob from Amazon S3:

GET /v1l/s3?key=image.jpg HITP/ 1.1

Host: abcdef ghi. execut e-api . us-east-1. anazonaws. com
Cont ent - Type: application/json

Accept: application/octet-stream

The successful response looks like this:

200 K HTTP/ 1.1

[raw byt es]

The raw bytes are returned because the Accept header is set to a binary media type of
appl i cati on/ oct et - st r eamand binary support is enabled for the API.

To download an image file (i mage. j pg) as a Base64-encoded string, formatted as a JSON property,
from Amazon S3:

GET /v1l/s3?key=i mage.jpg HITP/ 1.1

Host: abcdef ghi . execut e-api . us-east-1. anazonaws. com
Cont ent - Type: application/json

Accept: application/json

The successful response looks like this:

200 K HTTP/ 1.1

{
}

"i mage": "WBJhdyBi exXRl c10="

Upload an Image to Amazon S3

To upload an image file (i mage. j pg) as a binary blob to Amazon S3:

PUT /v1/s3?key=i mage.jpg HITP/ 1.1
Host: abcdef ghi. execut e-api. us-east-1. anazonaws. com
Cont ent - Type: application/octet-stream

90

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

Accept: application/json

[raw byt es]

The successful response looks like this:

200 K HTTP/ 1.1

To upload an image file (i mage. j pg) as a Base64-encoded string to Amazon S3:

PUT /v1/s3?key=i mage.jpg HITP/ 1.1

Host: abcdef ghi . execut e-api . us-east-1. amazonaws. com
Content - Type: application/json

Accept: application/json

WBJhdyBi eXRl ¢10=

Notice that the input payload must be a Base64-encoded string, because the Cont ent - Type header
value is set to appl i cati on/ j son. The successful response looks like this:

200 K HTTP/ 1.1

Access Binary Files in Lambda Using an APl Gateway API

The following example demonstrates how to access a binary file in AWS Lambda through an API
Gateway API. The sample API is presented in a Swagger file. The code example uses the API
Gateway REST API calls.

Topics
¢ Swagger File of a Sample API to Access Images in Lambda (p. 91)
¢ Download an Image from Lambda (p. 93)
¢ Upload an Image to Lambda (p. 94)

Swagger File of a Sample API to Access Images in Lambda

The following Swagger file shows an example API that illustrates downloading an image file from
Lambda and uploading an image file to Lambda.

{
"swagger": "2.0",
"info": {
"version": "2016-10-21T17: 26: 282",
"title": "Api Nanme"
}

ost": "abcdef ghi . execut e-api . us-east-1. amazonaws. cont
"basePath": "/v1"
"schenes": |

"https"
1,
"pat hs": {
"/l anbda": {

"get": {

"produces": |
"application/json"

1

91

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

"paraneters": [

{
"name": "key",
"in": "query",
"required": false,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}s
"500": {
"description": "500 response"
}
}s
"X-anmazon- api gat eway-i ntegration": {
"uri": "arn:aws: api gat eway: us- east - 1: | anbda: pat h/ 2015- 03- 31/
functions/arn: aws: | anbda: us- east - 1: 123456789012: f uncti on: i mage/ i nvocati ons",
"type": "AWS',

"credentials": "arn:aws:iam:123456789012: rol e/ Lanbda",
"httpMethod": "POST",
"request Tenpl ates": {
"application/json": "{\n \"imgeKey\":
\ " $i nput . parans(' key')\"\n}"
"responses": {
"default": {
"statusCode": "500"
H
"2\ d{2}": {
"statusCode": "200"
"responseTenpl ates": {
"application/json": "{\n \"image\": \"&i nput.body\"\n}"
}
}
}
}
H
"put": {
"produces": |
"application/json", "application/octet-streant
1,
"paraneters": [

{

nane": "key",
"in": "query",
"required": false,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"

92

Amazon API Gateway Developer Guide
Enable Support for Binary Payloads

}
1
"500": {
"description": "500 response"
}
1
"X-anmazon- api gat eway-i ntegration": {
"uri": "arn:aws: api gateway: us- east-1: | ambda: pat h/ 2015- 03- 31/
functions/arn: aws: | anbda: us- east - 1: 123456789012: f uncti on: i mage/ i nvocati ons",
"type": "AWS',

"credential s": "arn:aws:iam:123456789012: rol e/ Lanbda",
"httpMethod": "POST",

"cont ent Handl i ng" : " CONVERT_TO_TEXT",
"request Tenpl ates": {
"application/json": "{\n \"imgeKey\":

\"S$i nput. parans(' key')\", \"inmage\": \"S$input.body\"\n}"
"responses": {
"default": {
"statusCode": "500"

H
"2\ d{2}": {
"statusCode": "200"
}
}
}
}
}
},
"X-anmazon- api gat eway- bi nary-nedi a-types" : ["application/octet-streant,
"image/jpeg"],
"definitions": {
"Enpty": {
"type": "object",
“"title": "Enpty Schemmn"
}
}

}

Download an Image from Lambda

To download an image file (i mage. j pb) as a binary blob from Lambda:

GET /v1l/s3?key=i mage. jpg HITP/ 1.1

Host: abcdef ghi. execut e-api. us-east-1. anazonaws. com
Cont ent - Type: application/json

Accept: application/octet-stream

The successful response looks like this:

200 K HTTP/ 1.1

[raw byt es]

To download an image file (i mage. j pg) as a Base64-encoded string, formatted as a JSON property,
from Lambda:

93

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

GET /vl/s3?key=i mage.jpg HITP/ 1.1

Host: abcdef ghi. execut e-api. us-east-1. anazonaws. com
Cont ent - Type: application/json

Accept: application/json

The successful response looks like this:

200 K HTTP/ 1.1

{
}

"i mage": "WBJhdyBi eXRl c10="

Upload an Image to Lambda

To upload an image file (i mage. j pg) as a binary blob to Lambda:

PUT /v1/s3?key=i mage.jpg HITP/ 1.1

Host: abcdef ghi. execut e-api . us-east-1. anazonaws. com
Cont ent - Type: application/octet-stream

Accept: application/json

[raw byt es]

The successful response looks like this:

200 &K

To upload an image file (i mage. j pg) as a Base64-encoded string to Lambda:

PUT /v1/s3?key=i mage.jpg HITP/ 1.1

Host: abcdef ghi. execut e- api . us- east-1. anazonaws. com
Content - Type: application/json

Accept: application/json

WBJhdyBi eXRl ¢10=

The successful response looks like this:

200 X

Configure Mock Integration for a Method in API
Gateway

Amazon API Gateway supports mock integrations for APl methods. This feature enables API
developers to generate API responses from API Gateway directly, without the need for an integration
back end. As an API developer, you can use this feature to unblock other dependent teams needing

to work with an API before the project development is complete. You can also leverage this feature to
provision a landing page of your API, which can provide an overview of and navigation to your API. For
an example of such a landing page, see the integration request and response of the GET method on
the root resource of the example API discussed in Create an API Gateway API from an Example (p. 7).

94

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

As an API developer, you decide how API Gateway responds to a mock integration request. For this,
you configure the method's integration request and integration response to associate a response with
a given status code. The tasks involve setting up a mapping template in the integration request to
specify a supported status code in the request payload and setting up mapping templates, one for

a supported status code, in the integration response to provide associated response payloads. At

run time API Gateway retrieves the status code from the request payload and invokes the matching
template to return the associated response payload. The integration request payload's content type
must be appl i cati on/j son and its format must be of { " st at usCode": ddd, ... },where ddd
stands for an HTTP status code. The integration response payload's content type can be any of those
matching the response data, including appl i cati on/j son, application/ xm ,text/htm 6 text/
pl ai n and etc.

In this section, you will learn how to use the API Gateway console to enable the mock integration for an
API method.

Topics
e Prerequisites (p. 95)
¢ Enable Mock Integration on a Method (p. 95)
¢ Example Request Templates (p. 96)
¢ Example Response Templates (p. 97)

Prerequisites

¢ You must have the method available in APl Gateway. Follow the instructions in Build an API
Gateway API to Expose an HTTP Endpoint (p. 6).

Enable Mock Integration on a Method

1. Choose an API resource and create a method. In the Setup pane, choose Mock Integration , and
then choose Save.

2. Inthe Method Execution pane, choose Integration Request.

3. By default, mock integrations return a 200 HTTP status code. To customize this default behavior,
do the following:

1. Expand Mapping Templates.
For Content-Type, do one of the following:

« If the desired content type is already visible (for example, application/json), then choose it.

« If the desired content type is not already visible, then choose Add mapping template, type
the desired content type (for example, appl i cati on/j son), and then choose Create.

3. Inthe Template editor, type the content of the template you want API Gateway to use to
determine which HTTP status code to use in the integration response. The template must
output a JSON payload containing the st at usCode property. For more information, see
Example Request Templates (p. 96).

4. Next to Mapping template, choose Save.

4. For each query string parameter or header parameter you want to add to the method, do the
following:

Choose Method Execution, and then choose Method Request.

Choose the arrow next to URL Query String Parameters or HTTP Request Headers, and
then choose Add query string or Add header, respectively.

3. For Name, type the name of the query string parameter or header parameter, and then
choose Create a new query string or Create, respectively.

95

Amazon API Gateway Developer Guide
Configure Mock Integration for a Method

Note

To remove a query string parameter or header parameter, choose Cancel or
Remove. To change the name of a query string parameter or header parameter, you
must remove it and create a new one in its place.

5. Choose Method Execution, and then choose Method Response.
6. Do one of the following:

« If all of the HTTP Status entries you want to use are already visible (for example, 200), then
skip ahead to step 8.

« If any of the HTTP Status entries you want to use are not already visible, then for each missing
HTTP Status entry, choose Add Response, choose the HTTP status code that you want to
use, and then choose Create.

7. Choose Method Execution, and then choose Integration Response.
8. Do one of the following:

« If all of the Method response status entries you want to use are already visible (for example,
200), then skip ahead to step 10.

 If any of the Method response status entries you want to use are not already visible, then for
each missing Method response status entry, choose Add integration response, for Method
response status choose the HTTP Status entry you created earlier, and then choose Save.

9. For each Method response status entry you want to use, do the following:

1. Expand the row that corresponds to the Method response status entry you want to use.

For HTTP status regex, type the matching HTTP Status entry (for example, type 400 for a
400 HTTP Status entry or 500 for a 500 HTTP Status entry). Or specify a range of matching
HTTP status codes (for example, 5\ d{ 2} matches all 5XX HTTP status codes).

3. Expand Mapping Templates.
4. For Content-Type, do one of the following:

« If the desired content type is already visible (for example, application/json), then choose it.

« If the desired content type is not already visible, then choose Add mapping template, type
the desired content type (for example, appl i cati on/j son), and then choose Create.

5. Inthe Template editor, type the contents of the template that you want API Gateway to use to
respond to the caller. For more information, see Example Response Templates (p. 97).

6. Nextto Mapping template, choose Save.
10. Do one of the following to test the method:

« Call the method from the API Gateway console. Follow the instructions in Test a Method Using
the Console (p. 330).

« Call the method from a web browser, a web debugging proxy tool or the cURL command-line
tool, or from your own API. Follow the instructions in Calling a Deployed API (p. 329).

Example Request Templates

The following example shows a request template that always uses the 200 HTTP status code.

{
}

"stat usCode": 200

The following example shows a request template that uses the 200 HTTP status code if the request
specifies the pet Type parameter of cat ; 400 if the request specifies dog; and uses 500 otherwise.
This example is based on the one in the Map Request Parameters (p. 22).

96

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

{
#i f($input.parans(' pet Type') == "cat")
"statusCode": 200
#el sei f ($i nput. parans(' pet Type') == "dog")
"statusCode": 400
#el se
"statusCode": 500
#end
}

Example Response Templates

The following two examples show response templates that respond with the same information every
time. These examples are based on the one in the Map Request Parameters (p. 22).

Exanpl e 400 response.

{
"Message": "Error: petType not valid."
}
Exanpl e 500 response.
{
"Message": "Error: petType not valid or not specified."
}

The following example shows a response template that responds with the same information every time,
but includes the value the caller specified for the pet Type parameter. This example is based on the
one in the Map Request Parameters (p. 22).

Exanpl e 200 response for ?pet Type=cat (response will contain "type":
"cat").

{

id"o1,

"name": "Kitty",

"type": "$input.parans(' petType')"
}

Configure Proxy Integration for a Proxy Resource

To set up a proxy resource in an APl Gateway API with a proxy integration, you perform the following
three tasks:

« Create a proxy resource with a greedy path variable of { pr oxy+}.
¢ Set the ANY method on the proxy resource.
¢ Integrate the resource and method with a back end using the HTTP or Lambda integration type.

Note

Greedy path variables, ANY methods, and proxy integration types are independent features,
although they are commonly used together. You can configure a specific HTTP method on a
greedy resource or apply non-proxy integration types to a proxy resource.

API Gateway enacts certain restrictions and limitations when handling methods with either Lambda
proxy integration or HTTP proxy integration. For details, Known Issues (p. 421).

97

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

Topics
« API Gateway Proxy Resource (p. 98)
¢ API Gateway Proxy Integration Types (p. 98)
¢ Set Up a Proxy Resource with the HTTP Proxy Integration (p. 98)
e Set Up a Proxy Resource with the Lambda Proxy Integration (p. 102)
¢ Input Format of a Lambda Function for Proxy Integration (p. 103)
¢ Output Format of a Lambda Function for Proxy Integration (p. 105)

API Gateway Proxy Resource

API Gateway defines a proxy resource with the following properties:

« A special path parameter denoted as { pr oxy+} . This path parameter represents any of the child
resources under its parent resource of an API. In other words, / par ent / { pr oxy+} can stand for
any resource matching the path patten of / par ent / *. The + symbol indicates to API Gateway to
intercept all requests on the matched resource. This special path parameter is also known as a
greedy path variable. The pr oxy variable is the greedy path variable name and can be replaced by
another string in the same way you treat a regular path parameter name.

¢ A special method, named ANY, used to define the same integration set up for all supported methods:
DELETE, GET, HEAD, OPTI ONS, PATCH, POST, and PUT.

API Gateway Proxy Integration Types

A proxy resource is most powerful when it is integrated with a back end using one of the following two
proxy integration types:

* The HTTP proxy integration, designated by HTTP_PROXY in the API Gateway REST AP, is for
integrating a method request with a back-end HTTP endpoint. With this integration type, API
Gateway simply passes the entire request and response between the front end and the back end,
subject to certain restrictions and limitations (p. 421).

¢ The Lambda proxy integration, designated by AW5S_PROXY in the API Gateway REST API, is for
integrating a method request with a Lambda function in the back end. With this integration type, API
Gateway applies a default mapping template to send the entire request to the Lambda function and
transforms the output from the Lambda function to HTTP responses.

When applying the HTTP proxy integration to a proxy resource, you can set up your API to expose

a portion or an entire endpoint hierarchy of the HTTP back end with a single integration set up. For
example, suppose your back-end website is organized into multiple branches of tree nodes off the
rootnode (/site)as:/sitelapglai/...lan /sitel b/ by/... /by etc. If youintegrate the ANY
method on a proxy resource of / api / { pr oxy+} with the back-end endpoints with URL paths of /
site/ {proxy}, asingle integration request can support any HTTP operations (GET, POST, etc.) on
anyof[ag, a1, ..., an bo, b1, ...bm ...].Ifyou apply a proxy integration to a specific
HTTP method, e.g., GET, instead, the resulting integration request will work with the specified (e.qg.,
GET) operations on any of those back-end nodes.

Similarly, you can apply the Lambda proxy integration to a proxy resource of / api / { pr oxy+} to set

up a single integration to have a back-end Lambda function react individually to changes in any of the
API resources under / api .

Set Up a Proxy Resource with the HTTP Proxy Integration

To set up a proxy resource with the HTTP proxy integration type, create an API resource with a greedy
path parameter (e.g., / par ent / { pr oxy+}) and integrate this resource with an HTTP back-end

98

http://docs.aws.amazon.com/apigateway/api-reference/resource/integration

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

endpoint (e.g., htt ps: // pet st or e- denp- endpoi nt . execut e- api . coni pet st or e/ { proxy}) on
the ANY method. The greedy path parameter must be at the end of the resource path.

As with a non-proxy resource, you can set up a proxy resource with the HTTP proxy integration using
the API Gateway console, importing a Swagger definition file, or calling the APl Gateway REST API
directly. For detailed instructions about using the APl Gateway console to configure a proxy resource
with the HTTP integration, see Create and Test an APl with HTTP Proxy Integration through a Proxy
Resource (p. 55).

The following Swagger API definition file shows an example of an API with a proxy resource that is
integrated with the PetStore website.

{
"swagger": "2.0"
"info": {
"version": "2016-09-12T23:19: 282",
"title": "PetStoreWthProxyResource"
H
"host": "4z9giyi 2cl. execut e-api . us-east - 1. anazonaws. cont',
"basePath": "/test",
"schenes": |
"https"
1,
"paths": {
"I{proxy+}": {
" X-anmazon- api gat eway- any- net hod": {
"produces": |
"application/json"
1,
"paraneters": [
{
"nanme": "proxy"
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {},
"X-anmazon- api gat eway-i ntegration": {
"responses": {
"default": {
"statusCode": "200"
}
H
"request Paraneters": {
"integration.request.path. proxy": "nethod.request. path. proxy"
H
"uri": "http://petstore-deno-endpoi nt.execute-api.com petstore/
{proxy}",
"passt hroughBehavi or": "when_no_nat ch",
"htt pMet hod": "ANY",
"cacheNanmespace": "rbftud"

"cacheKeyParaneters": [
"met hod. r equest . pat h. pr oxy"
]

ype": "http_proxy"

99

http://petstore-demo-endpoint.execute-api.com/petstore

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

In this example, a cache key is declared on the net hod. r equest . pat h. pr oxy path parameter of
the proxy resource. This is the default setting when you create the API using the APl Gateway console.
The API's base path (/ t est, corresponding to a stage) is mapped to the website's PetStore page (/
pet st or e). The single integration request serves to mirror the entire PetStore website using the API's
greedy path variable and the catch-all ANY method. The following examples illustrate this mirroring.

¢ Set ANY as GET and { pr oxy+} as pets

Method request initiated from the front end:

GET https://4z9giyi 2cl. execut e-api . us-west - 2. amazonaws. conf t est/ pets
HTTP/ 1.1

Integration request sent to the back end:

GET http://petstore-deno-endpoi nt. execut e-api.conl petstore/pets HITP/ 1.1

The run-time instances of the ANY method and proxy resource are both valid. The call will return a
200 OKresponse with the payload containing the first batch of pets, as returned from the back end.

e Set ANY as GET and { pr oxy+} as pet s?t ype=dog

GET https://4z9giyi 2cl. execut e-api . us-west - 2. anazonaws. coni t est/ pets?
type=dog HTTP/ 1.1

Integration request sent to the back end:

CET http://petstore-denp-endpoi nt. execut e-api . conl pet store/ pets?type=dog
HTTP/ 1.1

The run-time instances of the ANY method and proxy resource are both valid. The call will return a
200 Kresponse with the payload containing the first batch of specified dogs, as returned from the
back end.

¢ Set ANY as GET and { pr oxy+} as pets/{petld}

Method request initiated from the front end:

GET https://4z9giyi 2cl. execut e- api . us-west - 2. amazonaws. conf test/pets/1
HTTP/ 1.1

Integration request sent to the back end:

GET http:// petstore-deno-endpoi nt. execut e-api.com petstore/ pets/1 HITP/ 1.1

The run-time instances of the ANY method and proxy resource are both valid. The call will return a
200 OKresponse with the payload containing the specified pet, as returned from the back end.

¢ Set ANY as POST and { pr oxy+} as pets

Method request initiated from the front end:

100

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

POST https://4z9giyi 2cl. execut e-api . us-west-2. amazonaws. coni t est/ pets
HTTP/ 1.1

Cont ent - Type: application/json

Cont ent - Lengt h:

{
"type" : "dog",
"price" : 1001.00

}

Integration request sent to the back end:

POST http:// petstore-denp-endpoi nt. execut e-api.com petstore/ pets HITP/ 1.1
Cont ent - Type: application/json
Cont ent - Lengt h:

{
"type" : "dog",
"price" : 1001.00

}

The run-time instances of the ANY method and proxy resource are both valid. The call will return a
200 OKresponse with the payload containing the newly created pet, as returned from the back end.

¢ Set ANY as GET and { pr oxy+} as pet s/ cat

Method request initiated from the front end:

GET https://4z9giyi 2cl. execut e-api . us-west - 2. amazonaws. coni t est/ pet s/ cat

Integration request sent to the back end:

GET http://petstore-deno-endpoi nt. execut e-api . com pet st ore/ pets/cat

The run-time instance of the proxy resource path does not correspond to a back-end endpoint and
the resulting request is invalid. As a result, a 400 Bad Request response is returned with the
following error message.

{
"errors": [
{
"key": "Pet2.type",
"message": "M ssing required field"
}s
{
"key": "Pet2.price",
"message": "M ssing required field"
}
]
}

¢ Set ANY as GET and { pr oxy+} as nul |

Method request initiated from the front end:

101

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

GET https://4z9giyi 2cl. execut e- api . us- west - 2. amazonaws. coni t est

Integration request sent to the back end:

GET http://petstore-deno-endpoi nt. execut e-api .com petstore

The targeted resource is the parent of the proxy resource, but the run-time instance of the ANY
method is not defined in the API on that resource. As a result, this GET request returns a 403

For bi dden response with the "Missing Authentication Token" error message as returned by API
Gateway. If the API exposes the ANY or GET method on the parent resource, (/), the call will return a
404 Not Found response with the Cannot GET / pet st or e message as returned from the back
end.

For any client request, if the targeted endpoint URL is invalid or the HTTP verb is valid but not
supported, the back end returns a 404 Not Found response. For an unsupported HTTP method, a
403 For bi dden response is returned.

Set Up a Proxy Resource with the Lambda Proxy Integration

To set up a proxy resource with the Lambda proxy integration type, create an API

resource with a greedy path parameter (e.g., / par ent / { pr oxy+}) and integrate

this resource with a Lambda function back end (e.g., ar n: aws: | anbda: us-

west - 2: 123456789012: f unct i on: Si npl eLanbda4Pr oxyResour ce) on the ANY method. The
greedy path parameter must be at the end of the API resource path. As with a non-proxy resource, you
can set up the proxy resource using the APl Gateway console, importing a Swagger definition file, or
calling the APl Gateway REST API directly.

For detailed instructions about using the APl Gateway console to configure a proxy resource with
the Lambda proxy integration, see Create an API with Lambda Proxy Integration through a Proxy
Resource (p. 59).

The following Swagger API definition file shows an example of an APl with a proxy resource that is
integrated with the SimpleLambda4ProxyResource (p. 60) Lambda function.

{
"swagger": "2.0",
"info": {
"version": "2016-09-12T17:50: 372",
"title": "Proxylntegrati onWthLanbda"
1

"host": "gy415nui bc. execut e- api . us-east - 1. amazonaws. cont',
"basePath": "/test Stage",
"schenmes": [
"https"
1
"pat hs": {
"I {proxy+}": {
" X-amazon- api gat eway- any- met hod": {
"produces”: [
"application/json"
1
"paranmeters": [

{

name": "proxy",
"in": "path",

102

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

"required": true,
"type": "string"
}
1,
"responses": {},
"X-anmazon- api gat eway-i ntegration": {
"responses": {
"default": {
"statusCode": "200"
}
H
"uri": "arn:aws: api gat eway: us- east - 1: | anbda: pat h/ 2015- 03- 31/
functions/arn: aws: | anbda: us-
east-1:123456789012: functi on: Si npl eLanbda4Pr oxyResour ce/ i nvocati ons"

"passt hroughBehavi or": "when_no_nat ch",
"httpMethod": "POST",
"cacheNanmespace": "roq9wj ",

"cacheKeyPar aneters": [
"met hod. r equest . pat h. pr oxy"

]

ype": "aws_proxy"

With the Lambda proxy integration, at run time, APl Gateway maps an incoming request into the input
event parameter of the Lambda function. The input includes the request method, path, headers, any
query parameters, any payload, associated context, and any defined stage variables. The input format
is explained in Input Format of a Lambda Function for Proxy Integration (p. 103). For APl Gateway to
map the Lambda output to HTTP responses successfully, the Lambda function must output the result
in the format explained in Output Format of a Lambda Function for Proxy Integration (p. 105).

With the Lambda proxy integration of a proxy resource through the ANY method, the single back-end
Lambda function serves as the event handler for all requests through the proxy resource. For example,
to log traffic patterns, you can have a mobile device send its location in terms of state, city, street, and
building by submitting a request with / st at e/ ci ty/ street/ house in the URL path for the proxy
resource. The back-end Lambda function can then parse the URL path and insert the location tuples
into a DynamoDB table.

Input Format of a Lambda Function for Proxy Integration

Let's use an example to illustrate the input format of a Lambda function with the Lambda proxy
integration. The following POST request shows an API deployed to t est St age with a stage variable of
st ageVari abl eNane=st ageVari abl eVal ue:

PCOST /test Stage/ hel |l o/ worl d?nanme=ne HTTP/ 1.1

Host: gy415nui bc. execut e- api . us- east - 1. anmazonaws. com
Cont ent - Type: application/json

header Nane: header Val ue

{
}

"a': 1

API Gateway maps the entire client request to the input event parameter of the back-end Lambda
function as follows:

103

Amazon API Gateway Developer Guide
Configure Proxy Integration for a Proxy Resource

{
"message": "Hello me!",
"input": {
"resource": "/{proxy+}",

"path": "/hell o/ world",
"httpMethod": "POST",
"headers": {

"Accept": "*/[*",

"Accept - Encodi ng": "gzip, deflate",
"cache-control": "no-cache",

" Cl oudFr ont - For war ded- Proto": "https",
"Cl oudFront -1 s-Desktop-Viewer": "true",
"Cl oudFront-1s-Mbile-Viewer": "false",
"Cl oudFront-Ils-Smart TV-Viewer": "fal se",
"Cl oudFront-Is-Tablet-Viewer": "false",

"Cl oudFront - Vi ewer - Country": "US",
"Content-Type": "application/json",
"header Nane": "header Val ue",

"Host": "gy415nui bc. execut e- api . us-east - 1. anazonaws. cont',
"Post man- Token": " 9f 583ef 0- ed83-4a38- aef 3- eb9ce3f 7a57f ",

"User-Agent": "PostmanRuntine/2.4.5",

"Via": "1.1 d98420743a69852491bbdea73f 7680bd. cl oudf r ont . net

(d oudFront)",
"X-Ane-Cf-1d": "pn-

PW Jc6t hYnZnbPONMgOUgl L1DYt | OgdeJky8t qsg8i S_sgsKD1A==",
" X- Forwar ded- For": "54.240.196.186, 54.182.214.83",
"X- Forwar ded- Port": "443",

" X- Forwar ded- Proto": "https"
H
"queryStringParaneters": {
"nane": "ne"
H
"pat hParaneters": {
"proxy": "hell o/ world"
H
"stageVariabl es": {
"stageVari abl eNane": "stageVari abl eVal ue"
H
"request Context": {
"account | d": "12345678912",
"resourceld": "roq9w ",
"stage": "testStage",
"request!ld": "deef4878-7910-11e6- 8f 14- 25af c3e9ae33",
"identity": {
"cognitoldentityPool 1d": null,
"account!|d": null,
"cognitoldentityld": null,
"caller": null,
"api Key": null,
"sourcel p": "192.168.196. 186",
"cogni t oAut henti cati onType": null,
"cogni t oAut henti cati onProvider": null,
"user Arn": null,

"user Agent": "PostnmanRuntine/2.4.5",
"user": null

b

"resourcePath": "/{proxy+}",

“httpMethod": "POST",

104

Amazon API Gateway Developer Guide
After Setting Up Methods and Integration

"apild": "gy41l5nui bc"

}s
"body": "{\r\n\t\"a\": 1\r\n}"

Note
API Gateway enacts certain restrictions and limitations when handling methods with either
Lambda proxy integration or HTTP proxy integration. For details, Known Issues (p. 421).

Output Format of a Lambda Function for Proxy Integration

With the Lambda proxy integration, AP Gateway requires the back-end Lambda function to return
output according to the following JSON format:

{
"statusCode": httpStatusCode,
"headers": { "header Nane": "headerValue", ... },
"body":

}

A Lambda function in Node.js can supply a JSON object of this format as the input to the
context.succeed({...}); function call. If the function output is of a different format, API
Gateway will return a 502 Bad Gat eway error response.

After Setting Up Methods and Integration

The next step is to deploy the API to make it open for access. For instructions, see Deploying an
API (p. 230).

To configure access control to your API, see Controlling Access in API Gateway (p. 160).

Set Up Amazon AP| Gateway API Request and
Response Payload Mappings

In API Gateway, an API's method request can take a payload in a different format from the
corresponding integration request payload, as required in the back end. Similarly, the back end may
return an integration response payload different from the method response payload, as expected by
the front end. API Gateway lets you map the payload from a method request to the corresponding
integration request and from an integration response to the corresponding method response. You use
mapping templates to specify the mapping and can create model to facilitate the template generation.
The section explains how to map the API request and response payload using models and mapping
templates.

Topics
¢ Models (p. 106)
¢ Mapping Templates (p. 109)
¢ Tasks for Models and Mapping Templates (p. 112)
¢ Create a Model in API Gateway (p. 112)
¢ View a List of Models in API Gateway (p. 113)
¢ Delete a Model in API Gateway (p. 113)

105

Amazon API Gateway Developer Guide

Models

¢ Photos Example (APl Gateway Models and Mapping Templates) (p. 114)
* News Article Example (APl Gateway Models and Mapping Templates) (p. 117)

¢ Sales Invoice Example (API Gateway Models and Mapping Templates) (p. 121)

« Employee Record Example (APl Gateway Models and Mapping Templates) (p. 125)

Models

In API Gateway, a model defines the structure or shape of a payload and is also known as the schema
of the payload. API Gateway requires that the JSON Schema be used to describe the model of a JSON

payload.

API Gateway maps a payload according to a mapping template. A model is useful, but not required, to
generate a template. However, models are necessary for generating strongly typed SDK of your API.
They can also be useful to validate a payload.

The following JSON object describes a sample data describing the fruit or vegetable inventory in the
produce department of a likely supermarket:

{
"departnment": "produce",
"categories": [
"fruit",
"veget abl es"
1,
"bins": [
{
"category": "fruit",
"type": "apples",
"price": 1.99,
"unit": "pound",
"quantity": 232
3
{
"category": "fruit",
"type": "bananas",
"price": 0.19,
"unit": "each",
"quantity": 112
3
{
"category": "vegetabl es",
"type": "carrots",
"price": 1.29,
"unit": "bag",
"quantity": 57
}
]
}

The JSON object has three properties

¢ The depart ment property has a string value (pr oduce).

e The cat egori es property is an array of two strings: f rui t and veget abl es.

¢ The bi ns property is an array of objects, each having the string- or number-valued properties of
category,type,price,unit and quantity.

106

http://json-schema.org/

Amazon API Gateway Developer Guide
Models

We express the corresponding model in the following JSON Schema notation:

{
"$schemn": "http://json-schenn. org/draft-04/schema#"
"title": "GroceryStorel nput Model ",
"type": "object"
"properties": {
"department”: { "type": "string" },
"categories": {
"type": "array",
"itenms": { "type": "string" }
}
"bins": {
"type": "array",
"items": {
"type": "object"
"properties": {
"category": { "type": "string" },
"type": { "type": "string" },
"price": { "type": "nunber" },
"unit": { "type": "string" },
"quantity": { "type": "integer" }
}
}
}
}
}

In the preceding example:

* The $schena object represents a valid JSON Schema version identifier. In this example, it refers to
JSON Schema, draft v4.

* Theti tl e objectis a human-readable identifier for the model. In this example, it is
GrocerySt or el nput Model .

¢ The top-level, or root, construct in the JSON data is an object.
¢ The root object in the JSON data contains depar t nent , cat egori es, and bi ns properties.
« The depart nent property is a string object in the JSON data.

e The cat egori es property is an array in the JSON data. The array contains string values in the
JSON data.

¢ The bi ns property is an array in the JSON data. The array contains objects in the JSON data. Each
of these objects in the JSON data contains a cat egory string, a t ype string, a pri ce number, a
uni t string, and a quant i t y integer (a number without a fraction or exponent part).

Alternatively, you could include part of this schema, for example, the item definition of the bi ns array,
in a separate section of the same file and use the $r ef primitive to reference this reusable definition in
other parts of the schema. Using $r ef , the above model definition file can be expressed as follows:

"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "GroceryStorel nput Model ",
"type": "object",
"properties": {
"department": { "type": "string" },
"categories": {
"type": "array",

107

Amazon API Gateway Developer Guide
Models

"itenms": { "type": "string" }

}s
"bins": {
"type": "array",
"items": {
"$ref": "#/definitions/Bin"
}
}
b,
"definitions": {
"Bin" : {
"type": "object",
"properties": {
"category": { "type": "string" },
"type": { "type": "string" },
"price": { "type": "nunber" },
"unit": { "type": "string" },
"quantity": { "type": "integer" }
}
}
}

The defi ni ti ons section contains the schema definition of the Bi n item that is referenced in the
bi ns array with "ref": "#/ defi nitions/Bi n". Using reusable definitions this way makes your
model definition easier to read.

In addition, you can also reference another model schema defined in an external model

file by setting that model's URL as the value of the $r ef property: "$ref": "https://

api gat eway. amazonaws. cont r est api s/ {rest api _i d}/ nodel s/ { nrodel _nane}". For
example, supposed you have the following full-fledged model named Bi n2 created under an API with
an identifier of f ugvj dxtri :

{
"$schema": "http://json-schenma. org/draft-04/ schema#",
"title": "GroceryStorel nput Mbdel ",
"type": "object",
"properties": {
"Bin" : {
"type": "object",
"properties": {
"category": { "type": "string" },
"type": { "type": "string" },
"price": { "type": "nunmber" },
"unit": { "type": "string" },
"quantity": { "type": "integer" }
}
}
}
}

You can then reference it from the Gr ocer ySt or el nput Model from the same API, as shown as
follows:

{
"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "GroceryStorel nput Mbdel ",
"type": "object",

108

Amazon API Gateway Developer Guide
Mapping Templates

"properties": {
"department": { "type": "string" },
"categories": {
"type": "array",
"items": { "type": "string" }

H
"bins": {

"type": "array",

"items": {

"$ref": "https://api gateway. anmazonaws. cont r est api s/ fugvj dxtri/ nodel s/
Bi n2"

}

}

The referencing and referenced models must be from the same API.

The examples do not use advanced JSON Schema features, such as specifying required items;
minimum and maximum allowed string lengths, numeric values, and array item lengths; regular
expressions; and more. For more information, see Introducing JSON and JSON Schema.

For more complex JSON data formats and their models, see the following examples:

¢ Input Model (Photos Example) (p. 115) and Output Model (Photos Example) (p. 116) in the
Photos Example (p. 114)

« Input Model (News Article Example) (p. 118) and Output Model (News Article Example) (p. 120)
in the News Article Example (p. 117)

¢ Input Model (Sales Invoice Example) (p. 122) and Output Model (Sales Invoice
Example) (p. 124) in the Sales Invoice Example (p. 121)

¢ Input Model (Employee Record Example) (p. 126) and Output Model (Employee Record
Example) (p. 129) in the Employee Record Example (p. 125)

To experiment with models in API Gateway, follow the instructions in Map Response Payload (p. 31),
specifically Step 1: Create Models (p. 33).

Mapping Templates

In APl Gateway, a mapping template is used to transform some data from one format to another. You
create and use input mapping templates and output mapping templates when you need to inform API
Gateway about the schema of the data being sent from or returned to the caller, respectively. API
Gateway uses the Velocity Template Language (VTL) and JSONPath expressions to define mapping
templates.

For an example of an input mapping template, consider the example JSON data from the previous
section. The following input mapping template makes no transform to the JSON data as APl Gateway
receives the JSON data from the caller:

#set ($i nput Root = S$input.path('$'))

"department": "$i nput Root. departnment”,
"categories": [
#f oreach($el em i n $i nput Root. cat egori es)
"$el ent' #i f ($f or each. hasNext), #end

#end
1.

109

http://json.org
http://json-schema.org
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath/

Amazon API Gateway Developer Guide
Mapping Templates

"bins" : [
#f oreach($el em i n $i nput Root . bi ns)

{
"category" : "$elem category",
"type" : "$elemtype",
"price" : $elemprice,
"unit" : "$elemunit",
"quantity" : $elemquantity

} #i f ($f or each. hasNext) , #end

#end

]
}

The preceding input mapping template is expressed as follows:

« Let the variable $i nput Root in the input mapping template represent the root object in the original
JSON data.

* The values of the depar t nent object and cat egori es and bi ns arrays in the input mapping
template (represented by $i nput Root . depar t nent, $i nput Root . cat egori es, and
$i nput Root . bi ns) map to the corresponding values of the depar t ment object and cat egori es
and bi ns arrays in the root object in the original JSON data.

* In the input mapping template, each of the values in the cat egori es array (represented by the first
$el en), and each of the objects in the bi ns array (represented by the second $el en), map to the
corresponding values in the cat egor i es array and objects in the bi ns array, respectively, within
the root object in the original JSON data.

¢ For each of objects in the bi ns object, the values of the cat egory, t ype, pri ce, uni t, and
guant i t y objects in the input mapping template (represented by $el em cat egory, $el em t ype,
$el em price, $el em uni t, and $el em quant i t y, respectively) map to the corresponding
values of the cat egory, t ype, pri ce, uni t, and quant i t y objects in the original JSON data,
respectively.

For an example of an output mapping template, first consider the following JSON data schema, which
is based on the example JSON data from the previous section.

Note
None of the array and object names in this JSON data schema match the JSON data from the
previous section:

{
"choices": |

{
"kind": "apples",
"suggestedPrice": "1.99 per pound",
"avail abl e": 232

},

{
"kind": "bananas",
"suggestedPrice": "0.19 per each",
"avail able": 112

},

{
"kind": "carrots",
"suggestedPrice": "1.29 per bag",
"avail abl e": 57

}

110

Amazon API Gateway Developer Guide
Mapping Templates

}

To transform the example JSON data from the previous section into this JSON data schema, you
would use the following model:

{
"$schemn": "http://json-schenn. org/draft-04/ schema#",
"title": "G oceryStoreQutput Model ",
"type": "object",
"properties": {
"choi ces": {
"type": "array",
"items": {
"type": "object",
"properties": {
"kind": { "type": "string" },
"suggestedPrice": { "type": "string" },
"available": { "type": "integer" }
}
}
}
}
}

In the preceding example, the JSON schema is expressed as follows:

* The $schenn object represents a valid JSON Schema version identifier. In this example, it refers to
JSON Schema, draft v4.

e Thetitl e objectis a human-readable identifier for the model. In this example, it is
Grocer ySt or eQut put Model .

¢ The top-level, or root, construct in the JSON data is an object.
¢ The root object in the JSON data contains an array of objects.

« Each object in the array of objects contains a ki nd string, a suggest edPr i ce string, and an
avai | abl e integer (a number without a fraction or exponent part).

You would then use the following output mapping template, which is based on this model:

#set ($i nput Root = $input.path('$'))
{
"choices": [
#f oreach($el em i n $i nput Root . bi ns)
{
"kind": "$el emtype",
"suggestedPrice": "$elemprice per $elemunit",
"avail abl e": $el em quantity
} #i f ($f or each. hasNext), #end

#end

]
}

The preceding output mapping template is expressed as follows:

« Let the variable $i nput Root in the output mapping template represent the root object in the original
JSON data from the previous section. Note the variables in the output mapping template map to the
original JSON data, not the desired transformed JSON data schema.

111

Amazon API Gateway Developer Guide
Tasks for Models and Mapping Templates

¢ The choi ces array in the output mapping template maps to the bi ns array with the root object in
the original JSON data ($i nput Root . bi ns).

< In the output mapping template, each of the objects in the choi ces array (represented by $el em)
map to the corresponding objects in the bi ns array within the root object in the original JSON data.

¢ In the output mapping template, for each of objects in the choi ces object, the values of the
ki nd and avai | abl e objects (represented by $el em t ype and $el em quanti t y) map to the
corresponding values of the t ype and val ue objects in each of the objects in the original JSON
data's bi ns array, respectively.

< In the output mapping template, for each of objects in the choi ces object, the value of the
suggest edPri ce object is a concatenation of the corresponding value of the pri ce and uni t
objects in each of the objects in the original JSON data, respectively, with each value separated by
the word per .

For more information about the Velocity Template Language, see Apache Velocity - VTL Reference.
For more information about JSONPath, see JSONPath - XPath for JSON.

To explore more complex mapping templates, see the following examples:
¢ Input Mapping Template (Photos Example) (p. 115) and Output Mapping Template (Photos

Example) (p. 117) in the Photos Example (p. 114)

¢ Input Mapping Template (News Article Example) (p. 119) and Output Mapping Template (News
Article Example) (p. 120) in the News Article Example (p. 117)

¢ Input Mapping Template (Sales Invoice Example) (p. 123) and Output Mapping Template (Sales
Invoice Example) (p. 125) in the Sales Invoice Example (p. 121)

¢ Input Mapping Template (Employee Record Example) (p. 127) and Output Mapping Template
(Employee Record Example) (p. 130) in the Employee Record Example (p. 125)

To experiment with mapping templates in APl Gateway, follow the instructions in Map Response
Payload (p. 31), specifically Step 5: Set Up and Test the Methods (p. 37).

Tasks for Models and Mapping Templates

For additional things you can do with models and mapping templates, see the following:

¢ Create a Model (p. 112)
¢ View a List of Models (p. 113)
¢ Delete a Model (p. 113)

Create a Model in API Gateway

Use the API Gateway console to create a model for an API.

Topics
¢ Prerequisites (p. 112)
¢ Create a Model With the API Gateway Console (p. 113)

Prerequisites

¢ You must have an API available in APl Gateway. Follow the instructions in Creating an
API (p. 70).

112

http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath

Amazon API Gateway Developer Guide
View a List of Models

Create a Model With the API Gateway Console

1.
2
3
4.
5
6
7

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

In the box that contains the name of the API where you want to create the model, choose Models.
Choose Create.

For Model Name, type a name for the model.

For Content Type, type the model's content type (for example, appl i cati on/j son for JSON).
(Optional) For Model description, type a description for the model.

For Model schema, type the model's schema. For more information about model schemas, see
Set Up Payload Mappings (p. 105).

Choose Create model.

View a List of Models in API Gateway

Use the API Gateway console to view a list of models.

Topics

¢ Prerequisites (p. 113)
¢ View a List of Models with the API Gateway Console (p. 113)

Prerequisites

You must have at least one model in APl Gateway. Follow the instructions in Create a
Model (p. 112).

View a List of Models with the APl Gateway Console

1.
2.

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API, choose Models.

Delete a Model in APl Gateway

Use the API Gateway console to delete a model.

Warning

Deleting a model may cause part or all of the corresponding API to become unusable by API
callers. Deleting a model cannot be undone.

Delete a Model with the API Gateway Console

1
2
3.
4

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API for the model, choose Models.
In the Models pane, choose the model you want to delete, and then choose Delete Model.

When prompted, choose Delete.

113

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Photos Example

Photos Example (APl Gateway Models and Mapping
Templates)

The following sections provide examples of models and mapping templates that could be used for a
sample photo APl in APl Gateway. For more information about models and mapping templates in API
Gateway, see Set Up Payload Mappings (p. 105).
Topics

¢ Original Data (Photos Example) (p. 114)

¢ Input Model (Photos Example) (p. 115)

¢ Input Mapping Template (Photos Example) (p. 115)

¢ Transformed Data (Photos Example) (p. 116)

¢ Output Model (Photos Example) (p. 116)

¢ Output Mapping Template (Photos Example) (p. 117)

Original Data (Photos Example)

The following is the original JSON data for the photos example:

{
"phot os": {
"page": 1,
"pages": "1234",
"per page": 100,
"total ": "123398",
"photo": [
{
"id": "12345678901",
"owner": "23456789@A\12",
"secret": "abcl123d456",
"server": "1234",
"farni: 1,
"title": "Sanmple photo 1",
"ispublic": 1,
"isfriend": O,
"isfamly": 0O
}s
{
"id"': "23456789012",
"owner": "34567890@B23",
"secret": "bcd234e567",
"server": "2345",
"farnf: 2,
"title": "Sanmple photo 2",
"ispublic": 1,
"isfriend": O,
"isfamly": 0O
}
]
}
}

114

Amazon API Gateway Developer Guide
Photos Example

Input Model (Photos Example)

The following is the input model that corresponds to the original JSON data for the photos example:

{
"$schema": "http://json-schena. org/draft-04/schema#"
"title": "Photoslnput Model",
"type": "object"
"properties": {
"photos": {
"type": "object",
"properties": {
"page": { "type": "integer" },
"pages": { "type": "string" },
"perpage": { "type": "integer" },
"total": { "type": "string" },
"photo": {
"type": "array",
"items": {
"type": "object"
"properties": {
"id': { "type": "string" },
"owner": { "type": "string" },
"secret": { "type": "string" },
"server": { "type": "string" },
"farm': { "type": "integer" },
"title": { "type": "string" },
"ispublic": { "type": "integer" },
"isfriend": { "type": "integer" },
"isfam ly": { "type": "integer" }
}
}
}
}
}
}
}

Input Mapping Template (Photos Example)

The following is the input mapping template that corresponds to the original JSON data for the photos
example:

#set ($i nput Root = $i nput.path('$'))
{
"phot os": {
"page": $i nput Root. phot os. page
"pages": "$i nput Root. phot os. pages"
"per page": $i nput Root. phot 0s. per page,
"total ": "$inputRoot.photos.total"
"photo": [
#f oreach($el em i n $i nput Root . phot os. phot 0)
{
"id': "$elemid",
"owner": "$el em owner",
"secret": "$el em secret”
"server": "$el em server",

115

Amazon API Gateway Developer Guide
Photos Example

"farn: $elemfarm

"title": "$elemtitle",

"ispublic": $elemispublic,

"isfriend": $elemisfriend,

"isfam ly": $elemisfanmly
} #i f ($f or each. hasNext) , #end

#end

Transformed Data (Photos Example)

The following is one example of how the original photos example JSON data could be transformed for
output:

{
"photos": [
{

"id": "12345678901",
"owner": "23456789@A12",
"title": "Sanple photo
"ispublic": 1,
"isfriend": O,
"isfam ly": O

=

"id": "23456789012",
"owner": "34567890@B23",
"title": "Sanmple photo 2",
"ispublic": 1,

"isfriend": O,

"isfam ly": O

Output Model (Photos Example)

The following is the output model that corresponds to the transformed JSON data format:

"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "PhotosCQutput Model ",

"type": "object",

"properties": {

"phot os": {
"type": “array",
"items": {

"type": "object",
"properties": {
Ili dll: { Iltypell: " Stri r.]gll }’

"owner": { "type": "string" },
"title": { "type": "string" },
"ispublic": { "type": "integer" },

116

Amazon API Gateway Developer Guide
News Article Example

"isfriend": { "type": "integer" },
"isfam ly": { "type": "integer" }

Output Mapping Template (Photos Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set ($i nput Root = $i nput.path('$'))

{
"phot os": [
#f oreach($el em i n $i nput Root . phot os. phot 0)
{
"id': "$elemid",
"owner": "$el em owner",
"title": "$elemtitle",
"ispublic": $elemispublic,
"isfriend': $elemisfriend,
"isfam ly": $elemisfamly
}#i f ($f or each. hasNext), #end
#end
]
}

News Article Example (APl Gateway Models and
Mapping Templates)

The following sections provide examples of models and mapping templates that could be used for a
sample news article APl in API Gateway. For more information about models and mapping templates
in API Gateway, see Set Up Payload Mappings (p. 105).
Topics

¢ Original Data (News Article Example) (p. 117)

¢ Input Model (News Article Example) (p. 118)

¢ Input Mapping Template (News Article Example) (p. 119)

¢ Transformed Data (News Article Example) (p. 119)

¢ Output Model (News Article Example) (p. 120)

¢ Output Mapping Template (News Article Example) (p. 120)

Original Data (News Article Example)

The following is the original JSON data for the news article example:

"count": 1,

117

Amazon API Gateway Developer Guide
News Article Example

"items": [
{

"l ast _updat ed_date": "2015-04-24",
"expire_date": "2016-04-25",
"aut hor _first_nane": "John",
"description": "Sanple Description",
"creation_date": "2015-04-20",
"title": "Sanple Title",

"al |l ow_coment": "1",

"aut hor": {
"l ast _name": "Doe",
"emai | ": "johndoe@xanpl e. cont',
"first_name": "John"

}

ody": "Sanpl e Body",
"publish_date": "2015-04-25",

"version": "1",

"aut hor _| ast _nane": "Doe",

"parent _id": 2345678901,

"article_url": "http://ww. exanpl e.confarticl es/ 3456789012"

}
1

"version": 1

Input Model (News Article Example)

The following is the input model that corresponds to the original JSON data for the news article
example:

"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "NewsArticl el nput Model ",
"type": "object",
"properties": {
"count": { "type": "integer" },
"items": {
"type": "array",
"items": {
"type": "object",
"properties": {
"l ast _updated_date": { "type": "string" },
"expire_date": { "type": "string" },

"author _first_name": { "type": "string" },
"description": { "type": "string" },
"creation_date": { "type": "string" },
"title": { "type": "string" },

"all ow_comment": { "type": "string" },
"aut hor": {

"type": "object",
"properties": {

"last_name": { "type": "string" },
"email": { "type": "string" },
"first_name": { "type": "string" }

}
}

ody": { "type": "string" },
"publish_date": { "type": "string" },

118

Amazon API Gateway Developer Guide
News Article Example

"version": { "type": "string" },
"aut hor _l ast _name": { "type": "string" },
"parent _id": { "type": "integer" },
"article_url": { "type": "string" }
}
}
1
"version": { "type": "integer" }

}
}

Input Mapping Template (News Article Example)

The following is the input mapping template that corresponds to the original JSON data for the news
article example:

#set ($i nput Root = $i nput.path('$'))
{
"count": $i nput Root. count,
"items": [
#f oreach($el emin $i nput Root.itens)
{
"l ast _updated_date": "$el em | ast_updated_date",
"expire_date": "$el em expire_date",
"aut hor _first_nanme": "$el em author_first_nane",
"description": "$el em description”,
"creation_date": "$elem creation_date",
"title": "$elemtitle",
"all ow_coment": "$elem all ow _conment”,
"aut hor": {
"last_name": "$el em author. | ast_nane",
"emai | ": "$el em aut hor.email ",
"first_nanme": "$el em author.first_nane"

}

ody": "$el em body",
"publ i sh_date": "$el em publish_date",
"version": "$el emversion",
"aut hor _| ast _nanme": "$el em aut hor_| ast_nane",
"parent _id": $elem parent_id,
"article_url": "$elemarticle_url"
}#i f ($f or each. hasNext) , #end

#end
1.

"version": $inputRoot.version

}

Transformed Data (News Article Example)

The following is one example of how the original news article example JSON data could be
transformed for output:

{
"count": 1,
"items": [
{

119

Amazon API Gateway Developer Guide
News Article Example

"creation_date": "2015-04-20",
"title": "Sanple Title",
"aut hor": "John Doe",
"body": "Sanple Body",
"publish_date": "2015-04-25",
"article_url": "http://ww. exanpl e.confarticl es/ 3456789012"
}
1,
"version": 1

}

Output Model (News Article Example)

The following is the output model that corresponds to the transformed JSON data format:

{
"$schema": "http://json-schenn. org/draft-04/ schema#",
"title": "NewsArticl eQutput Mbdel ",
"type": "object",
"properties": {
"count": { "type": "integer" },
"items": {
"type": "array",
"items": {
"type": "object",
"properties": {
"creation_date": { "type": "string" },
"title": { "type": "string" },
"author": { "type": "string" },
"body": { "type": "string" },
"publish_date": { "type": "string" },
"article_url": { "type": "string" }
}
}
1
"version": { "type": "integer" }
}
}

Output Mapping Template (News Article Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set ($i nput Root = $input.path('$'))

{
"count": $i nput Root. count,
"items": [
#f oreach($el emin $i nput Root.itens)
{
"creation_date": "$elem creation_date",
"title": "$elemtitle",
"author": "S$el em author.first_name $el em aut hor.| ast_nane",

"body": "$el em body",
"publish_date": "$el em publish_date",
"article_url": "$elemarticle_url"

120

Amazon API Gateway Developer Guide
Sales Invoice Example

} #i f ($f or each. hasNext) , #end

#end
1.

"version": $inputRoot.version

}

Sales Invoice Example (APl Gateway Models and
Mapping Templates)

The following sections provide examples of models and mapping templates that could be used for a
sample sales invoice API in API Gateway. For more information about models and mapping templates
in API Gateway, see Set Up Payload Mappings (p. 105).
Topics

¢ Original Data (Sales Invoice Example) (p. 121)

¢ Input Model (Sales Invoice Example) (p. 122)

¢ Input Mapping Template (Sales Invoice Example) (p. 123)

¢ Transformed Data (Sales Invoice Example) (p. 124)

¢ Output Model (Sales Invoice Example) (p. 124)

¢ Output Mapping Template (Sales Invoice Example) (p. 125)

Original Data (Sales Invoice Example)

The following is the original JSON data for the sales invoice example:

"DueDate": "2013-02-15",
"Bal ance": 1990. 19,
"DocNunber": " SAWMPO01",
"Status": "Payabl e",

"Line": [
{
"Description": "Sanple Expense",
"Anpunt": 500,
"Detail Type": "ExpenseDetail",
"ExpenseDetail ": {

"Custoner": {
"val ue": "ABC123",

nane": "Sanple Custoner”

}.
"Ref": {

"val ue": "DEF234",

"name": "Sanple Construction"
}.
"Account": {

"val ue": "EFG345",

"name": "Fuel"
}.
"LineStatus": "Billable"

121

Amazon API Gateway Developer Guide
Sales Invoice Example

"Vendor": {
"val ue": "GHI 456",
"name": "Sanpl e Bank"
b,
"APRef ": {
"val ue": "H J567",
"name": "Accounts Payabl e"
}

"Total Ant": 1990. 19

Input Model (Sales Invoice Example)

The following is the input model that corresponds to the original JSON data for the sales invoice
example:

"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "lnvoicel nput Model ",
"type": "object",
"properties": {
"DueDate": { "type": "string" },
"Bal ance": { "type": "nunber" },
"DocNunber": { "type": "string" },
"Status": { "type": "string" },

"Line": {
"type": "array",
"items": {

"type": nobj eC'[u’
"properties": {
"Description": { "type": "string" },

"Amount": { "type": "integer" },
"Detail Type": { "type": "string" },
"ExpenseDetail ": {

"type": "object",
"properties": {
"Custoner": {
"type": "object",
"properties": {
"value": { "type": "string" },

"name": { "type": "string" }
}
b,
"Ref": {
"type": "object"
"properties": {
"value": { "type": "string" },
"name": { "type": "string" }
}
b,
"Account": {
"type": "object"
"properties": {
"value": { "type": "string" },
"name": { "type": "string" }
}
}

"LineStatus": { "type": "string" }

122

Amazon API Gateway Developer Guide
Sales Invoice Example

}
}
}
}
}s
"Vendor": {
"type": "object",
"properties": {
"value": { "type": "string" },
"name": { "type": "string" }
}
b,
"APRef ": {
"type": "object",
"properties": {
"value": { "type": "string" },
"name": { "type": "string" }
}
}

"Total Amt": { "type": "nunber" }

Input Mapping Template (Sales Invoice Example)

The following is the input mapping template that corresponds to the original JSON data for the sales
invoice example:

#set ($i nput Root = $i nput.path('$'))

{
"DueDat e": "$i nput Root. DueDat e",
"Bal ance": $i nput Root . Bal ance,
"DocNunber": "$i nput Root. DocNunber",
"Status": "$inputRoot. Status",

"Line": [
#f oreach($el em i n $i nput Root . Li ne)
{
"Description": "$el em Description",

"Amount ": $el em Anpunt,
"Detail Type": "$el em Detail Type",

"ExpenseDetail ": {

"Custoner": {
"val ue": "$el em ExpenseDet ai | . Cust oner. val ue",
"name": "$el em ExpenseDet ai | . Cust oner. nane"

H

"Ref": {
"val ue": "$el em ExpenseDetail . Ref. val ue",
"name": "$el em ExpenseDet ai | . Ref. nanme"

H

"Account": {
"val ue": "$el em ExpenseDet ai |l . Account . val ue",
"name": "$el em ExpenseDet ai | . Account. nanme"

H

"LineStatus": "$el em ExpenseDetail.LineStatus"

} #i f ($f oreach. hasNext) , #end

#end

123

Amazon API Gateway Developer Guide
Sales Invoice Example

1,

"Vendor": {
"val ue": "$i nput Root. Vendor. val ue",
"name": "$i nput Root . Vendor . nane"

},

"APRef ": {
"val ue": "$i nput Root. APRef. val ue",
"name": "$i nput Root . APRef . nane"

}

"Total Ant": $i nput Root. Tot al At

Transformed Data (Sales Invoice Example)

The following is one example of how the original sales invoice example JSON data could be
transformed for output:

"DueDate": "2013-02-15",
"Bal ance": 1990. 19,
"DocNunber": " SAMPOO1",
"Status": "Payabl e",
"Line": [
{
"Description": "Sanmple Expense",
"Amount ": 500,
"Detail Type": "ExpenseDetail",
"Custoner": "ABCl23 (Sanple Customer)”,
"Ref": "DEF234 (Sample Construction)",
"Account": "EFG345 (Fuel)",
"LineStatus": "Bill abl e"
}
]

"Total Ant": 1990. 19

Output Model (Sales Invoice Example)

The following is the output model that corresponds to the transformed JSON data format:

"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "lnvoi ceQut put Model ",
"type": "object",
"properties": {
"DueDate": { "type": "string" },
"Bal ance": { "type": "nunber" },
"DocNunber": { "type": "string" },
"Status": { "type": "string" },

"Line": {
"type": "array",
"items": {

"type": "object",

"properties": {
"Description": { "type": "string" },
"Amount": { "type": "integer" },

124

Amazon API Gateway Developer Guide
Employee Record Example

"Detail Type": { "type": "string" },
"Custoner": { "type": "string" },
"Ref": { "type": "string" },
"Account": { "type": "string" },
"LineStatus": { "type": "string" }
}
}
}s
"Total Amt": { "type": "nunber" }

Output Mapping Template (Sales Invoice Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set ($i nput Root = $input.path('$'))

{
"DueDat e": "$i nput Root. DueDat e",
"Bal ance": $i nput Root . Bal ance,
"DocNunber": "$i nput Root. DocNunber",
"Status": "$inputRoot. Status",
"Line": [
#f oreach($el em i n $i nput Root . Li ne)
{
"Description": "$el em Description",

"Amount": $el em Amount,
"Detail Type": "$el em Detail Type",
"Custoner": "$el em ExpenseDet ai |l . Cust oner. val ue
($el em ExpenseDet ai | . Cust oner . nane) ",
"Ref": "$el em ExpenseDet ai | . Ref . val ue ($el em ExpenseDet ai | . Ref . nane) ",

"Account": "$el em ExpenseDetail . Account. val ue
($el em ExpenseDet ai | . Account . nane) *,
"LineStatus": "$el em ExpenseDetail . Li neStat us"

} #i f ($f oreach. hasNext) , #end

#end

1.
"Total Ant": $i nput Root . Tot al Ant

Employee Record Example (APl Gateway Models
and Mapping Templates)

The following sections provide examples of models and mapping templates that can be used for
a sample employee record APl in API Gateway. For more information about models and mapping
templates in AP| Gateway, see Set Up Payload Mappings (p. 105).

Topics
¢ Original Data (Employee Record Example) (p. 126)
¢ Input Model (Employee Record Example) (p. 126)
¢ Input Mapping Template (Employee Record Example) (p. 127)
¢ Transformed Data (Employee Record Example) (p. 128)

125

Amazon API Gateway Developer Guide
Employee Record Example

¢ Output Model (Employee Record Example) (p. 129)
e Output Mapping Template (Employee Record Example) (p. 130)

Original Data (Employee Record Example)

The following is the original JSON data for the employee record example:

{
"Quer yResponse": {
"maxResul ts": "1",
"startPosition": "1",
"Enpl oyee": {
"Organi zation": "fal se",
"Title": "Ms.",
"d venNane": "Jane",
"M ddl eNanme": "Lane",
"Fam | yNanme": "Doe",
"Di spl ayNanme": "Jane Lane Doe",
"Pri nt OnCheckNane": "Jane Lane Doe",
"Active": "true",
"PrimaryPhone": { "FreeFormNunber": "505.555.9999" },
"PrimaryEmail Addr": { "Address": "janedoe@xanple.cont },
"Enpl oyeeType": "Regul ar",
"status": "Synchronized",
"Id": "ABC123",
"SyncToken": "1",
"MetaData": {
"CreateTine": "2015-04-26T19: 45: 032",
"Last Updat edTi ne": "2015-04-27T21: 48: 232"
1
"PrimaryAddr": {
"Linel": "123 Any Street",
"City": "Any Gty",
" Count r ySubDi vi si onCode": "WA",
"Post al Code": "01234"
}
}
}
"time": "2015-04-27T22:12:32.012Z"
}

Input Model (Employee Record Example)

The following is the input model that corresponds to the original JSON data for the employee record
example:

"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "Enployeel nput Model ",
"type": "object",
"properties": {
"QueryResponse": {
"type": "object",
"properties": {
"maxResul ts": { "type": "string" },

126

Amazon API Gateway Developer Guide
Employee Record Example

"startPosition": { "type": "string" },
"Enpl oyee": {
"type": "object",
"properties": {
"Organi zation": { "type": "string" },
"Title": { "type": "string" },
"G venNarme": { "type": "string" },
"M ddl eNane": { "type": "string" },
"Fam | yNane": { "type": "string" }
"Di spl ayName": { "type": "string" },
"Print OnCheckNane": { "type": "string" },
"Active": { "type": "string" },
"Pri maryPhone": {
"type": "object",
"properties": {
"FreeFormNunber": { "type": "string" }
}
b,
"PrimaryEmai | Addr": {
"type": "object",
"properties": {
"Address": { "type": "string" }
}

1

1
"Enpl oyeeType": { "type": "string" },
"status": { "type": "string" },
"Id": { "type": "string" },
"SyncToken": { "type": "string" },
"MetabData": {
"type": "object",
"properties": {
"CreateTime": { "type": "string" },
"Last Updat edTi nme": { "type": "string" }
}
1
"PrimaryAddr": {
"type": "object",
"properties": {
"Linel": { "type": "string" },
"City": { "type": "string" },
"Count rySubbDi vi si onCode": { "type": "string" },
"Postal Code": { "type": "string" }

"time": { "type": "string" }

Input Mapping Template (Employee Record Example)

The following is the input mapping template that corresponds to the original JSON data for the
employee record example:

‘#set ($i nput Root = $input.path('$'))

127

Amazon API Gateway Developer Guide
Employee Record Example

"QueryResponse": {

"maxResul t s": "$i nput Root . Quer yResponse. maxResul t s",
"startPosition": "$inputRoot.QueryResponse. startPosition",
"Enpl oyee": {

"Organi zation": "$input Root. Quer yResponse. Enpl oyee. Or gani zati on",
"Title": "$input Root. QueryResponse. Enpl oyee. Title",
"G venNane": "$i nput Root. Quer yResponse. Enpl oyee. G venNane",
"M ddl eNane": "$i nput Root. Quer yResponse. Enpl oyee. M ddl eNanme",
"Fam | yNane": "$i nput Root. Quer yResponse. Enpl oyee. Fami | yName",
"Di spl ayNane": "$i nput Root. Quer yResponse. Enpl oyee. Di spl ayNange",
"Pri nt OnCheckNane" :
nput Root . Quer yResponse. Enpl oyee. Pri nt OnCheckNane",
"Active": "$inputRoot. QueryResponse. Enpl oyee. Acti ve",
"PrimaryPhone": { "FreeFornmNunber":
nput Root . Quer yResponse. Enpl oyee. Pri mar yPhone. Fr eeFor mNunber" },
"PrinmaryEmail Addr": { "Address":
nput Root . Quer yResponse. Enpl oyee. Pri mar yEmai | Addr . Addr ess" },
"Enpl oyeeType": "$i nput Root. Quer yResponse. Enpl oyee. Enpl oyeeType",
"status": "$i nput Root. QueryResponse. Enpl oyee. st at us",
"Id": "$input Root. QueryResponse. Enpl oyee. | d",
"SyncToken": "$i nput Root. Quer yResponse. Enpl oyee. SyncToken",
"MetabData": {
"CreateTi me":
nput Root . Quer yResponse. Enpl oyee. Met aDat a. Cr eat eTi ne",
"Last Updat edTi ne":
nput Root . Quer yResponse. Enpl oyee. Met aDat a. Last Updat edTi ne"
H
"PrimaryAddr" : {
"Linel": "$inputRoot. QueryResponse. Enpl oyee. Pri mar yAddr. Li nel",
"City": "$inputRoot. QueryResponse. Enpl oyee. Pri maryAddr. City",
" Count rySubDi vi si onCode" :
nput Root . Quer yResponse. Enpl oyee. Pri nar yAddr . Count r ySubDi vi si onCode",
"Post al Code":
nput Root . Quer yResponse. Enpl oyee. Pri nar yAddr . Post al Code"
}
}

"$

"$

"$

"$

"$

"$

"$

}

ime": "$inputRoot.tine"

Transformed Data (Employee Record Example)

The following is one example of how the original employee record example JSON data could be
transformed for output:

"QueryResponse": {

"maxResul ts": "1",
"startPosition": "1",
"Enpl oyees": |

{

"Title": "Ms.",

"G venNane": "Jane",

"M ddl eNane": "Lane",

"Fam | yNane": "Doe",

"Di spl ayNane": "Jane Lane Doe",
"Print OnCheckNane": "Jane Lane Doe",

128

Amazon API Gateway Developer Guide
Employee Record Example

"Active": "true",
"Pri maryPhone": "505.555.9999",
"Email " [

{

"type": "prinmary",
"Address": "janedoe@xanpl e. cont
}
]

Enpl oyeeType": "Regul ar",
"PrimaryAddr": {

"Linel": "123 Any Street",
"City": "Any City",

"Count rySubDi vi si onCode": "WA",
"Post al Code": "01234"

"time": "2015-04-27T22:12:32.0122"

Output Model (Employee Record Example)

The following is the output model that corresponds to the transformed JSON data format:

"$schemn": "http://json-schena. org/draft-04/schema#",
"title": "Enpl oyeeQut put Model ",
"type": "object",
"properties": {
"QueryResponse": {
"type": "object",
"properties": {
"maxResul ts": { "type": "string" },
"startPosition": { "type": "string" },

"Enpl oyees": {
"type": "array",
"items": {

"type": "object",
"properties": {
"Title": { "type": "string" },
"G venNare": { "type": "string" },
"M ddl eNane": { "type": "string" },
"Fam | yNane": { "type": "string" }
"Di spl ayName": { "type": "string" },
"Print OnCheckNane": { "type": "string" },
"Active": { "type": "string" },
"PrimaryPhone": { "type": "string" },
"Email " {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": { "type": "string" },
"Address": { "type": "string" }

1

}
}
b

129

Amazon API Gateway Developer Guide
Employee Record Example

"Enpl oyeeType": { "type": "string" },
"PrimaryAddr": {
"type": "object",
"properties": {
"Linel": {"type": "string" },
"Cty": { "type": "string" },
"Count rySubbDi vi si onCode": { "type": "string" },
"Postal Code": { "type": "string" }
}

"time": { "type": "string" }

Output Mapping Template (Employee Record Example)

The following is the output mapping template that corresponds to the transformed JSON data format.
The template variables here are based on the original, not transformed, JSON data format:

#set ($i nput Root = S$input.path('$'))

"QueryResponse": {

"maxResul t s": "$i nput Root. Quer yResponse. maxResul t s",

"startPosition": "$inputRoot.QueryResponse. startPosition",

"Enpl oyees": [

{

"Title": "$input Root. QueryResponse. Enpl oyee. Title",
"G venNane": "$i nput Root. Quer yResponse. Enpl oyee. G venNane",
"M ddl eNane": "$i nput Root. Quer yResponse. Enpl oyee. M ddl eNanme",
"Fam | yNane": "$i nput Root. Quer yResponse. Enpl oyee. Fami | yName",
"Di spl ayNane": "$i nput Root. Quer yResponse. Enpl oyee. Di spl ayNange",
"Pri nt OnCheckNane" :

nput Root . Quer yResponse. Enpl oyee. Pri nt OnCheckNane",
"Active": "$inputRoot. QueryResponse. Enpl oyee. Active",
"Pri maryPhone":

"$

"$i nput Root . Quer yResponse. Enpl oyee. Pri mar yPhone. Fr eeFor mNurber ",
"Email" [
{
"type": "primary",
" Addr ess":
"$i nput Root . Quer yResponse. Enpl oyee. Pri mar yEnai | Addr . Addr ess"
}
1,
"Enpl oyeeType": "3$i nput Root. Quer yResponse. Enpl oyee. Enpl oyeeType",
"PrimaryAddr": {
"Linel": "$inputRoot. QueryResponse. Enpl oyee. Pri mar yAddr. Li nel",
"City": "$inputRoot. QueryResponse. Enpl oyee. Pri maryAddr. City",
" Count r ySubDi vi si onCode" :
" $i nput Root . Quer yResponse. Enpl oyee. Pri mar yAddr . Count r ySubDi vi si onCode",
"Post al Code":
"$i nput Root . Quer yResponse. Enpl oyee. Pri nar yAddr . Post al Code"

}
}

130

Amazon API Gateway Developer Guide
Request and Response Parameter-Mapping Reference

]
}

ime": "$inputRoot.tine"

Amazon API Gateway APl Request and
Response Parameter-Mapping Reference

This section explains how to set up data mappings from an API's method request data, including other
data stored in cont ext (p. 134), st age (p. 139) oruti | (p. 139) variables, to the corresponding
integration request parameters and from an integration response data, including the other data, to the
method response parameters. The method request data includes request parameters (path, query
string, headers) and the body The integration response data includes response parameters (headers),
and the body. For more information about using the stage variables, see Amazon AP| Gateway Stage
Variables Reference (p. 253).

Topics
¢ Map Data to Integration Request Parameters (p. 131)
¢ Map Data to Method Response Headers (p. 132)

¢ Transform Request and Response Bodies (p. 133)

Map Data to Integration Request Parameters

Integration request parameters, in the form of path variables, query strings or headers, can be mapped
from any defined method request parameters and the payload.

Integration request data mapping expressions

Mapped data source Mapping expression

Method request path met hod. r equest . pat h. PARAM NAVE

Method request query string nmet hod. r equest . quer ystri ng. PARAM _NAVE
Method request header net hod. r equest . header . PARAM_NAVE

Method request body nmet hod. r equest . body

Method request body (JsonPath) nmet hod. r equest . body. JSONPat h_ EXPRESSI ON.
Stage variables st ageVari abl es. VARl ABLE_NANVE

Context variables cont ext . VARI ABLE NANME that must be one of

the supported context variables (p. 134).

Static value ' STATI C_VALUE' . The STATI C_VALUE is a
string literal and must be enclosed within a pair of
single quotes.

Here, PARAM NAME is the name of a method request parameter of the given parameter type. It must
have been defined before it can be referenced. JSONPat h_ EXPRESSI ONis a JSONPath expression for
a JSON field of the body of a request or response. However, the "$." prefix is omitted in this syntax.

131

Amazon API Gateway Developer Guide
Map Data to Method Response Headers

Example mappings from method request parameter in Swagger

The following example shows a Swagger snippet that maps 1) the method request's header,

named net hodRequest HeadPar am into the integration request path parameter, named

i nt egrati onPat hPar am 2) the method request query string, named net hodRequest Quer yPar am
into the integration request query string, named i nt egr at i onQuer yPar am

"request Paraneters" : {

"integration.request.path.integrationPathParant
"met hod. request . header . net hodRequest Header Par ant',
"integration.request.querystring.integrati onQueryParani
"met hod. request . querystri ng. met hodRequest Quer yPar ant'

Integration request parameters can also be mapped from fields in the JSON request body using a
JSONPath expression. The following table shows the mapping expressions for a method request body
and its JSON fields.

Example mapping from method request body in Swagger

The following example shows a Swagger snippet that maps 1) the method request body to the
integration request header, named body- header , and 2) a JSON field of the body, as expressed by a
JSON expression (pet st or e. pet s[0] . nane, without the $. prefix).

"request Paraneters" : {

"integration.request. header. body-header" : "nmethod. request. body",
"integration.request. path. pet-nane"
"met hod. request . body. pet st ore. pet s[0] . nane",

Map Data to Method Response Headers

Method response header parameters can be mapped from any integration response header or from the
integration response body.

Method response header mapping expressions

Mapped Data Source Mapping expression
Integration response header i ntegration. response. header. PARAM NAMVE
Integration response body i nt egration. response. body

132

http://goessner.net/articles/JsonPath/index.html#e2

Amazon API Gateway Developer Guide
Transform Request and Response Bodies

Mapped Data Source Mapping expression

Integration response body (JsonPath) i nt egration. response. body. JSONPat h_ EXPRESSI ON
Stage variable st ageVari abl es. VARl ABLE_NANME

Context variable cont ext . VARI ABLE_NANME that must be one of

the supported context variables (p. 134).

Static value " STATI C_VALUE' . The STATI C_VALUE is a
string literal and must be enclosed within a pair of
single quotes.

Example data mapping from integration response in Swagger

The following example shows a Swagger snippet that maps 1) the integration response's
redi rect. url, JSONPath field into the request response's | ocat i on header; and 2) the integration
response's x- app- i d header to the method response's i d header.

"responseParaneters” : {

"met hod. response. header. | ocati on"
"integration.response. body.redirect.url",
"met hod. response. header.id" : "integration.response. header. x-app-id",

Transform Request and Response Bodies

Integration request and method response bodies can be transformed from the method request

and integration response bodies, respectively, by using Mapping Templates (p. 109) written in

Velocity Template Language (VTL). JSON data can be manipulated using VTL logic and JSONPath
expressions, and additional data can be included from HTTP parameters, the calling context, and stage
variables.

Select Mapping Templates

The request mapping template used to transform the method request body into the integration request
body is selected by the value of the "Content-Type" header sent in the client request.

The response mapping template used to transform the integration response body into the method
response body is selected by the value of the "Accept" header sent in the client request.

For example, if the client sends headers of " Cont ent - Type : application/xm ", and

"Accept : application/json", the request template with the appl i cati on/ xm key will be
used for the integration request, and the response template with the appl i cati on/ j son key will be
used for the method response.

Only the MIME type is used from the Accept and Cont ent - Type headers when selecting a mapping
template. For example, a header of " Cont ent - Type: application/json; charset=UTF-8" will
have a request template with the appl i cati on/j son key selected.

133

http://velocity.apache.org/engine/devel/vtl-reference-guide.html

Amazon API Gateway Developer Guide
Request and Response Payload-Mapping Reference

APl Gateway AP| Request and Response
Payload-Mapping Template Reference

Amazon API Gateway defines a set of variables for working with models and mapping templates. This
document describes those functions and provides examples for working with input payloads.

Topics
¢ Accessing the $context Variable (p. 134)
¢ Accessing the $input Variable (p. 136)
¢ Accessing the $stageVariables Variable (p. 139)
« Accessing the $util Variable (p. 139)
¢ Integration Passthrough Behaviors (p. 140)

Accessing the $context Variable

The $cont ext variable holds all the contextual information of your API call.

$context Variable Reference

Parameter Description
$context.apild The identifier API Gateway assigns to your API.
$cont ext. aut hori zer. cl ai ms. property A property of the claims returned from the

Amazon Cognito user pool after the method
caller is successfully authenticated.

Note
Calling
$cont ext . aut hori zer.cl ai ns
returns null.
$cont ext . aut hori zer. principal I d The principal user identification associated with

the token sent by the client and returned from
an API Gateway custom authorizer Lambda
function.

$cont ext . aut hori zer. property The value of the specified key-value pair
of the cont ext map returned from an API
Gateway custom authorizer Lambda function. For
example, if the authorizer returns the following
cont ext map:

"context" : {
" keyu : n Val uen ,
"nunkKey": 1,

"bool Key": true

}

calling $cont ext . aut hori zer. key

returns val ue, calling

$cont ext . aut hori zer. nunKey returns 1,
and calling $cont ext . aut hori zer . bool Key
returns t r ue.

134

Amazon API Gateway Developer Guide
Accessing the $context Variable

Parameter Description

$cont ext . htt pMet hod The HTTP method used. Valid values include:
DELETE, GET, HEAD, OPTI ONS, PATCH, POST,
and PUT.

$context.identity.accountld The AWS account ID associated with the
request.

$context.identity. api Key The API owner key associated with your API.

$context.identity.caller The principal identifier of the caller making the
request.

$context.identity. cognitoAuthenticati onPhevrdazon Cognito authentication provider
used by the caller making the request. Available
only if the request was signed with Amazon
Cognito credentials.

For information related to this and the other
Amazon Cognito $cont ext variables, see
Amazon Cognito Identity.

$cont ext . identity.cognitoAuthenticati onTReéAmazon Cognito authentication type of
the caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

$context.identity.cognitoldentityld The Amazon Cognito identity ID of the caller
making the request. Available only if the request
was signed with Amazon Cognito credentials.

$context.identity.cognitoldentityPool | dThe Amazon Cognito identity pool ID of the caller
making the request. Available only if the request
was signed with Amazon Cognito credentials.

$context.identity.sourcelp The source IP address of the TCP connection
making the request to APl Gateway.

$context.identity.user The principal identifier of the user making the
request.

$context.identity. userAgent The User Agent of the API caller.

$context.identity.userArn The Amazon Resource Name (ARN) of the

effective user identified after authentication.

$cont ext.request!ld An automatically generated ID for the API call.

$cont ext.resourceld The identifier API Gateway assigns to your
resource.

$cont ext . resourcePat h The path to your resource. For more information,

see Build an API Gateway API to Expose an
HTTP Endpoint (p. 6).

$cont ext . st age The deployment stage of the API call (for
example, Beta or Prod).

135

http://docs.aws.amazon.com/cognito/devguide/identity/

Amazon API Gateway Developer Guide
Accessing the $input Variable

Example

You may want to use the $cont ext variable if you're using AWS Lambda as the target backend
that the APl method calls. For example, you may want to perform two different actions depending on
whether the stage is in Beta or in Prod.

Context Variables Template Example

The following example shows how to get context variables:

{
"stage" : "$context.stage",
"request_id" : "$context.requestld",
"api _id" : "$context.apild",
"resource_path" : "$context.resourcePath",
"resource_id" : "$context.resourceld",
"http_nethod" : "$context.httpMethod",
"source_ip" : "$context.identity.sourcelp",
"user-agent" : "$context.identity.userAgent",
"account _id" : "$context.identity.accountld",
"api _key" : "$context.identity.api Key",
"caller" : "$context.identity.caller",
"user" : "$context.identity.user",
"user_arn" : "$context.identity.userArn"

}

Accessing the $input Variable

The $i nput variable represents the input payload and parameters to be processed by your template. It
provides four functions:

Function Reference

Variable and Function Description
$i nput . body Returns the raw payload as a string.
$i nput . j son(x) This function evaluates a JSONPath expression

and returns the results as a JSON string.

For example, $i nput. j son(' $. pets') will
return a JSON string representing the pets
structure.

For more information about JSONPath, see
JSONPath or JSONPath for Java.

$i nput . par ans() Returns a map of all the request parameters of
your API call.
$i nput . par ans(x) Returns the value of a method request parameter

from the path, query string, or header value (in
that order) given a parameter name string X.

$i nput . pat h(x) Takes a JSONPath expression string (x) and
returns an object representation of the result.
This allows you to access and manipulate

136

http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Amazon API Gateway Developer Guide
Accessing the $input Variable

Variable and Function Description

elements of the payload natively in Apache
Velocity Template Language (VTL).

For example,
$i nput . path(' $. pets').size()

For more information about JSONPath, see
JSONPath or JSONPath for Java.

Examples

You may want to use the $i nput variable to get query strings and the request body with or without
using models. You may also want to get the parameter and the payload, or a subsection of the
payload, into your AWS Lambda function. The examples below show how to do this.

Example JSON Mapping Template

The following example shows how to use a mapping to read a name from the query string and then
include the entire POST body in an element:

"nanme" : "$input.parans(’' nane')",
"body" : $input.json('$')

If the JSON input contains unescaped characters that cannot be parsed by JavaScript, a 400 response
may be returned. Applying $uti | . escapeJavaScri pt ($i nput.json(' $')) above will ensure that
the JSON input can be parsed properly.

Example Inputs Mapping Template
The following example shows how to pass a JSONPath expression to the j son() method. You could

also read a specific property of your request body object by using a period (.), followed by your
property name:

"name" : "$input.parans(' nane')",
"body" : $input.json('$. nykey')

If a method request payload contains unescaped characters that cannot be parsed by JavaScript, you
may get 400 response. In this case, you need to call $uti | . escapeJavaScri pt () function in the
mapping template, as shown as follows:

"name" : "$input.parans(' nane')",
"body" : $util.escapedavaScri pt ($i nput.json('$. mykey'))

Param Mapping Template Example

The following parameter-mapping example passes all parameters, including path, querystring and
header, through to the integration endpoint via a JSON payload

137

http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://velocity.apache.org/engine/devel/vtl-reference-guide.html
http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Amazon API Gateway Developer Guide
Accessing the $input Variable

#set ($al | Paranms = $i nput. parans())

{
"parans" : {
#f oreach($type in $all Parans. keySet ())
#set ($parans = $al | Par ans. get ($t ype))
"$type" : {
#f or each($paranNanme i n $parans. keySet ())
"$paranNane" : "S$util.escapedavaScri pt ($parans. get ($par anNane))"
#i f ($f oreach. hasNext), #end
#end
}
#i f ($f oreach. hasNext), #end
#end
}
}

In effect, this mapping template outputs all the request parameters in the payload as outlined as
follows:

{

"paraneters” : {
"path" : {
"path_name" : "path_val ue",

}

"header" : {
"header _nane" : "header val ue",

}
‘querystring” : {
"querystring_name" : "querystring_val ue",

Example Request and Response
Here’s an example that uses all three functions:

Request Template:

Resource: /things/{id}

Wth input tenplate:

{
"id" : "Sinput.parans('id)",
"count" : "S$input.path('$.things').size()",
"things" : $util.escapedavaScript($input.json('$.things'))
}
PGOST /t hi ngs/ abc
{
"things" : {
" 1I| : {}’
I|2I| . {}’

138

Amazon API Gateway Developer Guide
Accessing the $stageVariables Variable

"3 ()

Response:

For more mapping examples, see Set Up Payload Mappings (p. 105)

Accessing the $stageVariables Variable

The syntax for inserting a stage variable looks like this: $st ageVari abl es.

$stageVariables Reference

Syntax Description

$st ageVari abl es. <vari abl e_nane> <vari abl e_nane> represents a stage variable
name.

$stageVari abl es[' <vari abl e_nane>'] <vari abl e_nane> represents any stage

variable name.

${stageVari abl es[' <vari abl e_nane>']} <vari abl e_nane> represents any stage

variable name.

Accessing the $util Variable

The $ut i | variable contains utility functions for use in mapping templates.

Note

Unless otherwise specified, the default character set is UTF-8.

$util Variable Reference

Function

Description

$uti |l . escapedavaScript () Escapes the characters in a string using

JavasScript string rules.

Note

This function will turn any regular single
quotes (') into escaped ones (\ ').
However, the escaped single quotes
are not valid in JSON. Thus, when the
output from this function is used in

139

Amazon API Gateway Developer Guide
Integration Passthrough Behaviors

Function Description

a JSON property, you must turn any
escaped single quotes (\ ') back to
regular single quotes ('). This is shown
in the following example:

$util.escapedavaScript(data).replaceAl |l ("\
Ayttt

$util. parsedson() Takes "stringified" JSON and returns an object
representation of the result. You can use
the result from this function to access and
manipulate elements of the payload natively in
Apache Velocity Template Language (VTL). For
example, if you have the following payload:

{"errorMessage": "{\"keyl\":\"var1\",
\"key2\":{\"arr\":[1,2,3]}}"}

and use the following mapping template

#set ($errorMessageOhj =
$util . parsedson($input. path('$. errorMessage')))
{

"error MessageOhj Key2Arr Val "
$error Messagenj . key2. arr[0]

}

You will get the following output:

{
"error MessageObj Key2Arrval" : 1
}
$util.url Encode() Converts a string into "application/x-www-form-

urlencoded" format.

$util.url Decode() Decodes an "application/x-www-form-
urlencoded" string.

$util. base64Encode() Encodes the data into a base64-encoded string.

$uti |l . base64Decode() Decodes the data from a base64-encoded string.

Integration Passthrough Behaviors

When a method request carries a payload and either the Content-Type header does not match any
specified mapping template or no mapping template is defined, you can choose to pass the client
supplied request payload through the integration request to the back end without transformation. The
process is known as integration passthrough. The actual passthrough behavior of an incoming request
is determined by the option you choose for a specified mapping template, during integration request
set-up (p. 75), and the Content Type header that a client set in the incoming request. The following
examples illustrate the possible passthrough behaviors.

140

Amazon API Gateway Developer Guide
Import and Export API

Example 1: One mapping template is defined in the integration request for the appl i cati on/j son

content type.

Content-Type
header\Selected
passthrough option

None (default to

application/json

application/json

application/ xm

Example 2: One mapping template is defined in the integration request for the

content type.
Content-Type

header\Selected
passthrough option

None (default to
application/json

application/json

application/xm

WHEN_NO_MATCH

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request payload
is not transformed and
is sent to the back end
as-is.

WHEN_NO_MATCH

The request payload
is not transformed and
is sent to the back end
as-is.

The request payload
is not transformed and
is sent to the back end
as-is.

The request payload is
transformed using the
template.

WHEN_NO_TEMPLATE

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request is rejected
with an HTTP 415
Unsupported Media
Type response.

WHEN_NO_TEMPLATE

The request is rejected
with an HTTP 415
Unsupported Media
Type response.

The request is rejected
with an HTTP 415
Unsupported Media
Type response.

The request payload is
transformed using the
template.

NEVER

The request payload is
transformed using the
template.

The request payload is
transformed using the
template.

The request is rejected
with an HTTP 415
Unsupported Medi a
Type response.

application/ xm

NEVER

The request is rejected
with an HTTP 415
Unsupported Medi a
Type response.

The request is rejected
with an HTTP 415
Unsupported Medi a
Type response.

The request payload is
transformed using the
template.

Import and Export APl Gateway API with Swagger
Definition Files

As an alternative to using the Amazon API Gateway console to create and update your API, you
can use the AP| Gateway Import API feature to upload API definitions into APl Gateway from
external API definition files, such as those using the Swagger specification with the API Gateway

extensions (p. 147).

After an APl is created and configured in APl Gateway, you can download it as a Swagger definition
file using the Amazon API Gateway Export API. The API Gateway console has enabled this feature for

you to export an API using intuitive visual interfaces.

Topics

¢ Import an APl into API Gateway (p. 142)

141

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

Amazon API Gateway Developer Guide
Import an API

¢ Export an API from API Gateway (p. 145)
¢ API Gateway Extensions to Swagger (p. 147)

Import an API into APl Gateway

You can use the API Gateway Import API feature to import an API from an external definition file into
API Gateway. Currently, the Import API feature supports Swagger v2.0 definition files.

With the Import API, you can either create a new API by submitting a POST request that includes a
definition as the payload, or you can update an existing API by using a PUT request that contains
a definition in the payload. You can update an APl by overwriting it with a new definition, or merge
a definition with an existing API. You specify the options in the request URL using a node query
parameter.

Note
For RAML API definitions, you can continue to use AP| Gateway Importer.

Besides making explicit calls to the REST API, as described below, you can also use the Import API
feature in the API Gateway console. The option is available as an item in the Actions drop-down
menu. For an example of using the Import API feature from the API Gateway console, see Create an
AP| Gateway API from an Example (p. 7).

Use the Import API to Create a New API

To use the Import API feature to create a new API, POST your API definition file to ht t ps: //
api gat eway. <r egi on>. amazonaws. cont r est api s?node=i npor t . This request results in a new
RestApi, along with Resources, Models, and other items defined in the definition file.

The following code snippet shows an example of the POST request with the payload of a JSON-
formatted Swagger definition:

PCOST /restapi s?node=i nport

Host : api gat eway. <r egi on>. amazonaws. com
Cont ent - Type: application/json

Cont ent - Lengt h:

Swagger APl definition in JSON (p. 356)

Use the Import API to Update an Existing API

You can use the Import API feature to update an existing APl when there are aspects of that API you
would like to preserve, such as stages and stage variables, or references to the API from API Keys.

An API update can occur in two modes: merge or overwrite. Merging an API is useful when you have
decomposed your external API definitions into multiple, smaller parts and only want to apply changes
from one of those parts at a time. For example, this might occur if multiple teams are responsible for
different parts of an API and have changes available at different rates. In this mode, items from the
existing API that are not specifically defined in the imported definition will be left alone.

Overwriting an API is useful when an external API definition contains the complete definition of an API.
In this mode, items from an existing API that are not specifically defined in the imported definition will
be deleted.

To merge an API, submit a PUT request to ht t ps: / / api gat eway. <r egi on>. anazonaws. coni
restapi s/ <restapi _i d>?mode=ner ge. The r est api _i d path parameter value specifies the API
to which the supplied API definition will be merged.

142

http://swagger.io/specification/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference//link-relation/restapi-put/
https://github.com/awslabs/aws-apigateway-importer

Amazon API Gateway Developer Guide
Import an API

The following code snippet shows an example of the PUT request to merge a Swagger API definition in
JSON, as the payload, with the specified API already in API Gateway.

PUT /restapi s/ <restapi _i d>?node=ner ge
Host : api gat eway. <r egi on>. anazonaws. com
Cont ent - Type: application/json

Cont ent - Lengt h:

A Swagger APl definition in JSON (p. 356)

The merging update operation takes two complete API definitions and merges them together. For a
small and incremental change, you can use the resource update operation.

To overwrite an API, submit a PUT request to ht t ps: / / api gat eway. <r egi on>. amazonaws. coni
restapi s/ <restapi _i d>?mbde=overwite. Therestapi _id path parameter specifies the API
that will be overwritten with the supplied API definitions.

The following code snippet shows an example of an overwriting request with the payload of a JSON-
formatted Swagger definition:

PUT /restapi s/ <restapi i d>?node=overwite
Host : api gat eway. <r egi on>. anazonaws. com
Cont ent - Type: application/json

Cont ent - Lengt h:

A Swagger APl definition in JSON (p. 356)

When the node query parameter is not specified, merge is assumed.

Note

The PUT operations are idempotent, but not atomic. That means if a system error occurs part
way through processing, the APl can end up in a bad state. However, repeating the operation
will put the APl into the same final state as if the first operation had succeeded.

Swagger basepat h

In Swagger, you can use the basePat h property to provide one or more path parts that precede each
path defined in the paths property. Because AP| Gateway has several ways to express a resource’s
path, the Import API feature provides three options for interpreting the basePat h property during an
import:

ignore

If the Swagger file has a basePat h value of "/ a/ b/ ¢" and the pat hs property contains "/ e" and "/
f", the following POST or PUT request:

POST /rest api s?node=i nport &asepat h=i gnor e

PUT /restapi s/ api _i d?basepat h=i gnore

143

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-update/
http://swagger.io/specification/

Amazon API Gateway Developer Guide
Import an API

will result in the following resources in the API:

o/
e le
o /f

The effect is to treat the basePat h as if it was not present, and all of the declared API resources are
served relative to the host. This can be used, for example, when you have a custom domain name with
an APl mapping that does not include a Base Path and a Stage value that refers to your production
stage.

Note
API Gateway will automatically create a root resource for you, even if it is not explicitly
declared in your definition file.

prepend

If the Swagger file has a basePat h value of "/ a/ b/ ¢" and the pat hs property contains "/ e" and "/
f", the following POST or PUT request:

POST /rest api s?node=i nport &asepat h=pr epend

PUT /restapi s/ api _i d?basepat h=pr epend

will result in the following resources in the API:

o/

e Ja

e [alb

« /alblc
e Jalblcle
« [alb/c/f

The effect is to treat the basePat h as specifying additional resources (without methods) and to

add them to the declared resource set. This can be used, for example, when different teams are
responsible for different parts of an API and the basePat h could reference the path location for each
team's API part.

Note
API Gateway will automatically create intermediate resources for you, even if they are not
explicitly declared in your definition.

split

If the Swagger file has a basePat h value of "/ a/ b/ ¢" and the pat hs property contains "/ e" and "/
f", the following POST or PUT request:

POST /restapi s?nmode=i nport &asepat h=spl it

PUT /restapis/api _i d?basepat h=split

144

Amazon API Gateway Developer Guide
Export an API

will result in the following resources in the API:

o/
/b

e /blc
¢ /b/cle
« /blclf

The effect is to treat top-most path part, "/ a", as the beginning of each resource's path, and to create
additional (no method) resources within the API itself. This could, for example, be used when "a" is a
stage name that you want to expose as part of your API.

Errors during Import

During the import, errors can be generated for major issues like an invalid Swagger document. Errors
are returned as exceptions (e.g., BadRequest Except i on) in an unsuccessful response. When an
error occurs, the new API definition is discarded and no change is made to the existing API.

Warnings during Import

During the import, warnings can be generated for minor issues like a missing model reference. If
a warning occurs, the operation will continue if the f ai | onwar ni ngs=f al se query expression

is appended to the request URL. Otherwise, the updates will be rolled back. By default,

fail onwar ni ngs is setto f al se. In such cases, warnings are returned as a field in the resulting
RestApi resource. Otherwise, warnings are returned as a message in the exception.

Export an API from API Gateway

Once you created and configured an APl in APl Gateway, using the AP| Gateway console or
otherwise, you can export it to a Swagger file using the APl Gateway Export API, which is part of
the Amazon API Gateway Control Service. You have options to include the APl Gateway integration
extensions, as well as the Postman extensions, in the exported Swagger definition file.

You cannot export an API if its payloads are not of the appl i cati on/ j son type. If you try, you will get
an error response stating that JSON body models are not found.

Request to Export an API

With the Export API, you export an existing AP| by submitting a GET request, specifying the to-be-
exported API as part of URL paths. The request URL is of the following format:

https://<host>/restapi s/ <restapi _i d>/ st ages/ <st age_nane>/ export s/ swagger

You can append the ext ensi ons query string to specify whether to include API Gateway extensions
(with the i nt egr at i on value) or Postman extensions (with the post man value).

In addition, you can set the Accept header to appl i cati on/j son orapplication/yanl to receive
the API definition output in JISON or YAML format, respectively.

For more information about submitting GET requests using the APl Gateway Export API, see Making
HTTP Requests.

145

http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://www.getpostman.com
http://docs.aws.amazon.com/apigateway/api-reference/making-http-requests
http://docs.aws.amazon.com/apigateway/api-reference/making-http-requests

Amazon API Gateway Developer Guide
Export an API

Note

If you define models in your API, they must be for the content type of "application/json" for API
Gateway to export the model. Otherwise, APl Gateway throws an exception with the "Only
found non-JSON body models for ..." error message.

Download APl Swagger Definition in JSON

To export and download an API in Swagger definitions in JSON format:

GET /restapis/<restapi _i d>/ st ages/ <st age_nane>/ export s/ swagger
Host: api gat eway. <r egi on>. amazonaws. com
Accept: application/json

Here, <r egi on> could be, for example, us- east - 1. For all the regions where API Gateway is
available, see Regions and Endpoints

Download APl Swagger Definition in YAML

To export and download an API in Swagger definitions in YAML format:

GET /restapis/<restapi _i d>/ st ages/ <st age_nane>/ export s/ swagger
Host: api gat eway. <r egi on>. amazonaws. com
Accept: application/yam

Download APl Swagger Definition with Postman Extensions in
JSON

To export and download an APl in Swagger definitions with the Postman extension in JSON format:

GET /restapis/<restapi _i d>/ stages/ <stage_nane>/ export s/ swagger ?
ext ensi ons=post man

Host: api gat eway. <r egi on>. anmazonaws. com

Accept: application/json

Download APl Swagger Definition with API Gateway
Integration in YAML

To export and download an APl in Swagger definitions with APl Gateway integration in YAML format:

GET /restapi s/ <restapi _i d>/ stages/ <stage_nane>/ export s/ swagger ?
ext ensi ons=i ntegration
Host: api gat eway. <r egi on>. amazonaws. com

146

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Accept: application/yam

Export APl Using the API Gateway Console

From the stage configuration page in the APl Gateway console, choose the Export tab and then one
of the available options (Export as Swagger, Export as Swagger + APl Gateway Integrations and
Export as Postman) to download your API's Swagger definition.

Settings Stage Variables SDK Generation Export = Deployment History

Export as Swagger Export as Swagger + APl Gateway Integrations Export as Postman

JSON | YAML |

API Gateway Extensions to Swagger

The AP| Gateway extensions support the AWS-specific authorization and API Gateway-specific API
integrations. In this section, we will describe the API Gateway extensions to the Swagger specification.

Tip
To understand how the API Gateway extensions are used in an app, you can use the

API Gateway console to create an API and export it to a Swagger definition file. For more
information on how to export an API, see Export an API (p. 145).

Topics
¢ X-amazon-apigateway-any-method Object (p. 148)
¢ X-amazon-apigateway-authorizer Object (p. 148)
¢ X-amazon-apigateway-authtype Property (p. 150)
¢ X-amazon-apigateway-binary-media-types Property (p. 151)
¢ X-amazon-apigateway-documentation Object (p. 151)
¢ X-amazon-apigateway-integration Object (p. 152)
¢ X-amazon-apigateway-integration.requestTemplates Object (p. 154)
¢ X-amazon-apigateway-integration.requestParameters Object (p. 155)
¢ X-amazon-apigateway-integration.responses Object (p. 156)
¢ X-amazon-apigateway-integration.response Object (p. 157)
¢ X-amazon-apigateway-integration.responseTemplates Object (p. 158)
¢ X-amazon-apigateway-integration.responseParameters Object (p. 159)

147

Amazon API Gateway Developer Guide
AP| Gateway Extensions to Swagger

X-amazon-apigateway-any-method Object

Specifies the Swagger Operation Object for the APl Gateway catch-all ANY method in a Swagger Path
Item Object. This object can exist alongside other Operation objects and will catch any HTTP method
that was not explicitly declared.

The following table lists the properties extended by API Gateway. For the other Swagger Operation
properties, see the Swagger specification.

Properties
Property Name Type Description
X-amazon-apigateway- X-amazon- api gat eway- Specifies the integration of
integration i ntegration (p.152) the method with the back end.

This is an extended property

of the Swagger Operation
object. The integration can be
of type AW5, AW5_PROXY, HTTP,
HTTP_PROXY, or MOCK.

X-amazon-apigateway-any-method Example

The following example integrates the ANY method on a proxy resource, { pr oxy+}, with a Lambda
function, Test Si npl ePr oxy.

"I{proxy+}": {
" x-amazon- api gat eway- any- net hod": {
"produces": |
"application/json"
1,

"paraneters": [

{
"nane": "proxy",
"in": "path",
"required": true,
"type": "string"
}

1.
"responses": {},
"x-amazon- api gat eway-i ntegration": {

"uri": "arn:aws:api gat eway: us- east-1: | ambda: pat h/ 2015- 03- 31/
functions/arn: aws: | anbda: us- east - 1: 123456789012: f uncti on: Test Si npl ePr oxy/
i nvocati ons",

"passt hroughBehavi or": "when_no_mat ch",

"httpMethod": "POST",

"type": "aws_proxy"

}

X-amazon-apigateway-authorizer Object

Defines a custom authorizer to be applied for authorization of method invocations in APl Gateway. This
object is an extended property of the Swagger Security Definitions Operation object.

148

http://swagger.io/specification/#operationObject
http://swagger.io/specification/#pathItemObject
http://swagger.io/specification/#pathItemObject
http://swagger.io/specification/#operationObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityDefinitionsObject

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Properties

Property Name Type
type string
authorizerUri string
authorizerCredentials string
identityValidationExpression string
authorizerResultTtlinSeconds string

X-amazon-apigateway-authorizer Example

Description

The type of the authorizer. This
is a required property and the
value must be "token".

The Uniform Resource Identifier
(URI) of the authorizer (a
Lambda function). For example,

"arn:aws: api gat eway: us-
east - 1: | anbda: pat h/ 2015- 03
functions/

arn: aws: | anbda: us-

east-1: account -
id:function:auth function
i nvocati ons"

Credentials required for

the authorizer, if any, in the
form of an ARN of an IAM
execution role. For example,
"arn:aws:iam::account -
id:lAM role".

A regular expression for
validating the incoming identity.
For example, ""x-[a-z]+".

The number of seconds during
which the resulting 1AM policy is
cached.

The following Swagger security definitions example specifies a custom authorizer named t est -

aut hori zer.

3- 31/

Iname/

"securityDefinitions" : {
"test-authorizer" : {
"type" "api Key",
nmust be "api Key" for an APl Gateway API.
"name" " Aut hori zati on",
identifying this authorizer.
"in" "header",

nmust be "header" for an AAPI Gateway API.

" X-anmazon- api gat eway- aut ht ype" "oaut h2",
aut hori zati on mechanismfor the client.
" X-anmazon- api gat eway- aut hori zer" : {
aut hori zer definition
"type" "t oken",

val ue nmust "token"

11

11

11

11

11

11

Requi red and the val ue
The source header nane
Requi red and the val ue
Specifies the

An API

Gat eway custom

Requi red property and the

149

Amazon API Gateway Developer Guide
AP| Gateway Extensions to Swagger

"authorizerUri" : "arn:aws: api gat eway: us-
east - 1: | anbda: pat h/ 2015- 03- 31/ functi ons/ arn: aws: | anbda: us- east - 1: account -
i d: function: function-nane/invocations",

"authorizerCredentials" : "arn:aws:iam:account-id:role",
"identityValidati onExpression" : "“x-[a-z]+",
"aut hori zerResul t Tt| | nSeconds" : 60

The following Swagger operation object snippet sets the GET / ht t p to use the custom authorizer
specified above.

"Ihttp" @ {
"get" : {
"responses" : { },
"security" : [{
"test-authorizer" : []
P,
"Xx-anmazon- api gat eway-i ntegration" : {
"type" : "http",
"responses" : {
"default" : {
"st at usCode" : "200"
}
}s
"httpMethod" : "CGET",
"uri" : "http://api.exanple.cont

X-amazon-apigateway-authtype Property

Specify the type of a custom authorizer. It is parsed by the API Gateway APl import and export
features.

This property is an extended property of the Swagger Security Definitions Operation object.
X-amazon-apigateway-authtype Example

The following example sets the type of a custom authorizer using OAuth 2.

"cust-authorizer" : {

"type" : "...", I/l required

"name" : "...", // name of the identity source header

"in" : "header", // nust be header

"X-anmazon- api gat eway- aut htype" : "oauth2", // Specifies the
aut hori zati on nmechanismfor the client.

"Xx-anmazon- api gat eway- aut hori zer" : {

}

}

150

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityDefinitionsObject

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

The following security definition example specifies authorization using AWS Signature Version 4:

"sigvd" : {

"type" : "apiKey",

"nane" : "Authorization",

"in" : "header",

" X-anmazon- api gat eway- aut ht ype" : "awsSi gv4"
}

X-amazon-apigateway-binary-media-types Property

Specifies the list of binary media types to be supported by APl Gateway, such as appl i cati on/
oct et -stream i nage/ j peg, etc. This extension is a JSON Array.

X-amazon-apigateway-binary-media-types Example

The following example shows the encoding lookup order of an API.

" X-anmazon- api gat eway- bi nary-nedi a-types: ["application/octet", "inmage/
j peg”]

X-amazon-apigateway-documentation Object

Defines the documentation parts to be imported into API Gateway. This object is a JSON object
containing an array of the Docunent at i onPart instances.

Properties
Property Name Type Description
documentationParts Array An array of the exported or
imported Docunent at i onPart
instances.
version String The version identifier of the

snapshot of the exported
documentation parts.

X-amazon-apigateway-documentation Example

The following example of the APl Gateway extension to Swagger defines Docunent ati onParts
instances to be imported to or exported from an API in APl Gateway.

{ ...
" x-anmazon- api gat eway-docunent ati on": {
"version": "1.0.3",
"docunentati onParts": [
{
"l ocation": {
“type": "API"
o
"properties": {
"description": "api description",
"info": {

151

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

"description": "api info description 4",
"version": "api info version 3"
}
}
3
{
.../ 1 Anot her DocunentationPart instance
}

X-amazon-apigateway-integration Object

Specifies details of the back-end integration used for this method. This extension is an extended
property of the Swagger Operation object. The result is an API Gateway integration object.

Properties

Property Name Type
type string
contentHandling string
uri string
httpMethod string

Description

The type of integration with the
specified back end. The valid
value is ht t p (for integration
with an HTTP back end) or

aws (for integration with AWS
Lambda functions or other AWS
services, such as DynamoDB,
SNS or SQS).

Request payload encoding
conversion types. Valid values
are 1) CONVERT_TO_TEXT, for
converting a binary payload
into a Base64-encoded string
or converting a text payload
into a ut f - 8-encoded string or
passing through the text payload
natively without modification,
and 2) CONVERT_TO_BI NARY,
for converting a text payload
into Base64-decoded blob

or passing through a binary
payload natively without
modification.

The endpoint URI of the back
end. For integrations of the aws
type, this is an ARN value. For
the HTTP integration, this is
the URL of the HTTP endpoint
including the htt ps orhttp
scheme.

The HTTP method used in the
integration request. For Lambda
function invocations, the value
must be POST.

152

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

Property Name Type Description

credentials string For AWS IAM role-based
credentials, specify the ARN
of an appropriate 1AM role. If
unspecified, credentials will
default to resource-based
permissions that must be added
manually to allow the API to
access the resource. For more
information, see Granting
Permissions Using a Resource
Policy. Note: when using IAM
credentials, please ensure that
AWS STS regional endpoints
are enabled for the region where
this API is deployed for best

performance.
requestTemplates X-amazon-apigateway- Mapping templates for a request
integration.requestTemplates (p. layload of specified MIME
types.
requestParameters X-amazon-apigateway- Specifies mappings from

integration.requestParameters (p. ethod request parameters to
integration request parameters.
Supported request parameters
are querystri ng, pat h,
header, and body.

cacheNamespace string An API-specific tag group of
related cached parameters.

cacheKeyParameters An array of string A list of request parameters
whose values are to be cached.

responses X-amazon-apigateway- Defines the method's responses
integration.responses (p. 156) | and specifies desired parameter
mappings or payload mappings
from integration responses to
method responses.

X-amazon-apigateway-integration Example

The following example integrates an API's POST method with a Lambda function in the back end.

For demonstration purposes, the sample mapping templates shown in r equest Tenpl at es and
responseTenpl at es of the examples below are assumed to apply to the following JSON-formatted
payload: { "name":"val ue_1", "key":"value_2", "redirect": {"url" :"..."} } to
generate a JSON output of { "stage":"val ue_1", "user-id":"value_2" } oran XML output
of <st age>val ue_1</ st age>.

"X-amazon- api gat eway-i ntegration" : {
"type" "aws",
"uri" @ "arn:aws:api gat eway: us- east-1: | anbda: pat h/ 2015- 03- 31/ f uncti ons/
arn: aws: | anbda: us-east-1: 012345678901: f uncti on: Hel | oWorl d/ i nvocati ons",
"httpMet hod" : "POST",

153

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon API Gateway Developer Guide
AP| Gateway Extensions to Swagger

"credentials" : "arn:aws:iam:012345678901: r ol e/ api gat eway- i nvoke- | anbda-
exec-rol e",
"request Tenpl ates" : {
"application/json" : "#set ($root=$input.path('$')) { \"stage
\": \"$root.nane\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=%input.path('$')) <stage>
$r oot . nane</ st age> "
H
"request Paraneters" : {

"integration.request. path. stage"
"met hod. request . querystring. version",
"integration.request.querystring.provider"
"met hod. request . querystring. vendor"

1
"cacheNanmespace" : "cache nanespace",
"cacheKeyParaneters" : [],
"responses” : {
"2\ d{2}" : {
"statusCode" : "200",
"responseParaneters" : {

"met hod. response. header. request | d"
"integration.response. header. ci d"

H
"responseTenpl ates" : {
"application/json" : "#set ($root=$input.path('$')) { \"stage
\": \"$root.nane\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=8%input.path('$')) <stage>
$r oot . nane</ st age> "
}
H
"302" : {
"statusCode" : "302",
"responseParaneters”" : {

"met hod. response. header. Locati on"
"integration.response. body.redirect.url"

}

H

"default" : {
"statusCode" : "400",
"responseParaneters” : {

"met hod. response. header . t est - net hod-r esponse- header"
"'static value'"
}
}

Note that double quotes (") of the JSON string in the mapping templates must be string-escaped (\").

X-amazon-apigateway-integration.requestTemplates Object

Specifies mapping templates for a request payload of the specified MIME types.

154

Amazon API Gateway Developer Guide
AP| Gateway Extensions to Swagger

Properties
Property Name Type Description
M ME type string An example of the MIME type

isapplication/json. For
information about creating a
mapping template, see Mapping
Templates (p. 109).

X-amazon-apigateway-integration.requestTemplates Example

The following example sets mapping templates for a request payload of the appl i cati on/j son and
appl i cati on/ xm MIME types.

"request Tenpl ates" : {

“application/json" : "#set ($root=8$input.path('$)) { \"stage\":
\"$root.name\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=$input.path('$)) <stage>$root.nane</
stage> "

}

X-amazon-apigateway-integration.requestParameters Object

Specifies mappings from named method request parameters to integration request parameters. The
method request parameters must be defined before being referenced.

Properties

Property Name Type Description

i ntegration.request. <paranstring The value must be a predefined
t ype>. <par am name> method request parameter of the

nmet hod. r equest . <par am

t ype>. <par am nane> format,
where <par am t ype> can

be querystring, pat h,
header, or body. For the body
parameter, the <par am nanme>
is a JSON path expression
without the $. prefix.

X-anmazon- api gat eway-i nt egrati on. request Par anet er s Example

The following request parameter mappings example translates a method request's query (ver si on),
header (x- user - i d) and path (ser vi ce) parameters to the integration request's query (st age),
header (x- useri d), and path parameters (op), respectively.

"request Paraneters" : {
"integration.request.querystring.stage"
"met hod. request . querystring. versi on",

155

Amazon API Gateway Developer Guide
AP| Gateway Extensions to Swagger

"integration.request. header.x-userid" : "nethod.request. header. x-user-
id",
"integration.request.path.op" : "nethod.request. path. service"

b

X-amazon-apigateway-integration.responses Object

Defines the method's responses and specifies parameter mappings or payload mappings from
integration responses to method responses.

Properties
Property Name Type Description
Response status pattern | x-amazon-apigateway- Selection regular expression

integration.response (p. 157) used to match the integration
response to the method
response. For HTTP
integrations, this regex applies
to the integration response
status code. For Lambda
invocations, the regex applies
to the er r or Message field of
the error information object
returned by AWS Lambda as
a failure response body when
the Lambda function execution
throws an exception.

Note

The Response
status pattern
property name refers to
a response status code
or regular expression
describing a group of
response status codes.
It does not correspond
to any identifier of an
IntegrationResponse
resource in the API
Gateway REST API.

X- amazon- api gat eway-i ntegration. responses Example

The following example shows a list of responses from 2xx and 302 responses. For the 2xx response,
the method response is mapped from the integration response's payload of the appl i cati on/j son
or appl i cati on/ xm MIME type. This response uses the supplied mapping templates. For the

302 response, the method response returns a Locat i on header whose value is derived from the
redi rect. url property on the integration response's payload.

"responses" : {

156

url-lam-dev;nodejs-prog-mode-exceptions.html
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/

Amazon API Gateway Developer Guide
API Gateway Extensions to Swagger

"2\ d{2}" : {
"statusCode" : "200",
"responseTenpl ates" : {
"application/json" : "#set ($root=$input.path('$')) { \"stage\":
\"$root.nanme\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=%input.path('$')) <stage>
$r oot . nane</ st age> "
}
H
"302" : {
"statusCode" : "302",
"responseParaneters” : {
"met hod. response. header. Locati on":
"integration.response. body.redirect.url"
}
}

X-amazon-apigateway-integration.response Object

Defines a response and specifies parameter mappings or payload mappings from the integration
response to the method response.

Properties

Property Name Type Description

statusCode string HTTP status code for the
method response; for example,
"200". This must correspond
to a matching response in the
Swagger Operation r esponses
field.

responseTemplates X-amazon-apigateway- Specifies MIME type-specific
integration.responseTemplates (p.mM&gping templates for the
response’s payload.

responseParameters X-amazon-apigateway- Specifies parameter mappings
integration.responseParameters (fofL## response. Only the

header and body parameters
of the integration response

can be mapped to the header
parameters of the method.

contentHandling string Response payload encoding
conversion types. Valid values
are 1) CONVERT_TO_TEXT, for
converting a binary payload
into a Base64-encoded string
or converting a text payload
into a ut f - 8-encoded string or
passing through the text payload
natively without modification,
and 2) CONVERT_TO BI NARY,
for converting a text payload

157

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operationObject

Amazon API Gateway Developer Guide
AP| Gateway Extensions to Swagger

Property Name Type Description

into Base64-decoded blob
or passing through a binary
payload natively without
modification.

X-anmazon- api gat eway-i ntegrati on. response Example

The following example defines a 302 response for the method that derives a payload of the
application/jsonorapplication/xm MIME type from the back end. The response uses the
supplied mapping templates and returns the redirect URL from the integration response in the method's
Locat i on header.

{
"statusCode" : "302",
"responseTenpl ates” : {
"application/json" : "#set ($root=$input.path('$)) { \"stage\":
\"$root.nane\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=$input.path('$')) <stage>
$r oot . nane</ st age> "
}
"responseParaneters” : {
"met hod. response. header. Locati on":
"integration.response. body.redirect.url"
}
}

X-amazon-apigateway-integration.responseTemplates Object

Specifies mapping templates for a response payload of the specified MIME types.

Properties
Property Name Type Description
M ME type string Specifies a mapping template

to transform the integration
response body to the method
response body for a given
MIME type. For information
about creating a mapping
template, see Mapping
Templates (p. 109). An
example of the M MVE type is
application/json.

X-amazon-apigateway-integration.responseTemplate Example

The following example sets mapping templates for a request payload of the appl i cati on/j son and
appl i cati on/ xm MIME types.

158

Amazon API Gateway Developer Guide
AP| Gateway Extensions to Swagger

"responseTenpl ates" : {
"application/json" : "#set ($root=$input.path('$)) { \"stage\":
\"$root.name\", \"user-id\": \"$root.key\" }",
"application/xm" : "#set ($root=$input.path('$')) <stage>$root.nane</
stage> "

}

X-amazon-apigateway-integration.responseParameters Object

Specifies mappings from integration method response parameters to method response parameters.
Only the header and body types of the integration response parameters can be mapped to the
header type of the method response.

Properties

Property Name Type Description

nmet hod. r esponse. header . <pastaning The named parameter value can
nane> be derived from the header and

body types of the integration
response parameters only.

X- amazon- api gat eway-i ntegrati on. responseParaneters Example

The following example maps body and header parameters of the integration response to two header
parameters of the method response.

"responseParaneters” : {
"met hod. response. header. Locati on"
"integration.response. body.redirect.url"
"met hod. response. header . x-user-id" : "integration.response. header. x-
userid"

}

159

Amazon API Gateway Developer Guide
Use IAM Permissions

Controlling Access in APl Gateway

API Gateway supports multiple mechanisms of access control, including metering or tracking API

uses by clients using API keys. The standard AWS IAM roles and policies offer flexible and robust
access controls that can be applied to an entire API set or individual methods. Custom authorizers and
Amazon Cognito user pools provide customizable authorization and authentication solutions.

Topics
¢ Use IAM Permissions to Access API Gateway API (p. 160)
¢ Enable CORS for an API Gateway Resource (p. 170)
¢ Use Amazon API Gateway Custom Authorizers (p. 174)
¢ Use Amazon Cognito Your User Pool (p. 182)
¢ Use Client-Side SSL Certificates for Authentication by the Back End (p. 186)
« API Gateway-Supported Certificate Authorities for HTTP and HTTP Proxy Integrations (p. 189)
¢ Create and Use API Gateway Usage Plans (p. 212)

Use IAM Permissions to Access APl Gateway API

Topics
e Control Access to APl Gateway with IAM Policies (p. 160)
¢ Create and Attach a Policy to an IAM User (p. 162)
« Statement Reference of IAM Policies for Managing API in APl Gateway (p. 163)
« Statement Reference of IAM Policies for Executing API in APl Gateway (p. 164)
¢ |AM Policy Examples for APl Gateway APIs (p. 165)
* |AM Policy Examples for APl Execution Permissions (p. 169)

Control Access to API Gateway with IAM Policies

When working with Amazon API Gateway, you access two services. You use one to create, configure,
deploy and update your API and the other to actually execute your deployed API upon requests by a
client. When setting access permissions in an IAM policy, you reference the APl managing service as

160

Amazon API Gateway Developer Guide
Control Access to API Gateway with IAM Policies

api gat eway and the API executing service as execut e- api . The api gat eway service supports the
actions of GET, POST, PUT, PATCH, DELETE, OPTI ONS, HEAD and the execut e- api service supports
the I nvoke and | nval i dat eCache actions. To create an IAM policy using the Policy Generator in the
IAM console, select Manage Amazon API Gateway as AWS Service to set permissions statements
for api gat eway and select Amazon API Gateway as AWS Service to set permission statements for
execut e- api .

You can use IAM to allow IAM users and roles in your AWS account to manage only certain API
Gateway entities (for example, APIs, resources, methods, models, and stages) and perform only
certain actions against those entities. You may want to do this, for example, if you have IAM users you
want to allow to list, but not create, resources and methods for selected APIs. You may have other IAM
users you want to allow to list and create new resources and methods for any API they have access to
in AP| Gateway.

In the Get Ready to Use API Gateway (p. 4) instructions, you attached an access policy to an IAM user
in your AWS account that contains a policy statement similar to this:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "All ow',
"Action": [
"api gat eway: *"
I,
"Resource": [
e
]
}
]
}

This statement allows the IAM user in your AWS account to perform all available actions and access all
available resources in APl Gateway to which your AWS account has access. In practice, you may not
want to give the IAM users in your AWS account this much access.

You can also use IAM to enable users inside your organization to interact with only certain API
methods in API Gateway.

In the Configure How a User Calls an APl Method (p. 74) instructions, the APl Gateway console may
have displayed a resource ARN you used to create a policy statement similar to this:

{
"Version": "2012-10-17",

"Statenent": [

"Effect": "Alow',
"Action": [
"execut e- api : | nvoke"

]

Resource": [
"arn: aws: execut e-api : us-east-1: ny-aws-account -i d: ny-api -i d/ ny- st age/
GET/ ny- r esour ce- pat h"
]
}
]
}

161

Amazon API Gateway Developer Guide
Create and Attach a Policy to an IAM User

This statement allows the IAM user to call the GET method for the resource path associated with the
specified resource ARN in AP| Gateway. In practice, you may want to give IAM users access to more
methods.

Note

IAM policies are effective only if IAM authentication is enabled. If you, as the API owner, has
enabled AWS identity and access management on a specific resource, users from other AWS
accounts cannot access your API. If you do not enable IAM authentication on the resource,
that resource is effectively public accessible.

Create and Attach a Policy to an IAM User

To create and attach an access policy to an IAM user that restricts the APl Gateway entities the IAM
user can manage or the APl methods the IAM user can call, do the following:

1.

Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

Choose Policies, and then choose Create Policy. (If a Get Started button appears, choose it,
and then choose Create Policy.)

Next to Create Your Own Policy, choose Select.
For Policy Name, type any value that will be easy for you to refer to later, if needed.

For Policy Document, type a policy statement with the following format, and then choose Create
Policy:

{
"Version": "2012-10-17",
"Statement" : [
{
"Effect" : "Alow',
"Action" : |
"action-statenent"
I,
"Resource" : [
"resource-statenent”
|
},
{
"Effect" : "Alow',
"Action" : |
"action-statenent"
I,
"Resource" : [
"resource-statenent”
|
}
|
}

In this statement, substitute act i on- st at enent and r esour ce- st at enent as needed, and
add additional statements as needed, to specify the APl Gateway entities you want to allow the
IAM user to manage, the APl methods the IAM user can call, or both. (By default, the IAM user will
not have permissions unless a corresponding Al | ow statement is explicitly stated.)

Choose Users.
Choose the IAM user to whom you want to attach the policy.
For Permissions, for Managed Policies, choose Attach Policy.

162

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide
Statement Reference of IAM Policies
for Managing API in API Gateway

9. Select the policy you just created, and then choose Attach Policy.

Statement Reference of IAM Policies for Managing
APl in APl Gateway

The following information describes the Act i on and Resour ce format used in an IAM policy statement
to grant or revoke permissions for managing APl Gateway API entities, such as restapis, resources,
methods, models, stages, custom domain names, API keys, etc.

Action Format of Permissions for Managing APl in API
Gateway

The API-managing Act i on expression has the following general format:

api gat eway: acti on

where act i on is one of the following APl Gateway actions:

« * which represents all of the following actions.
« GET, which is used to get information about resources.
¢ POST, which is primarily used to create child resources.

« PUT, which is primarily used to update resources (and, although not recommended, can be used to
create child resources).

« DELETE, which is used to delete resources.
¢ PATCH, which can be used to update resources.

« HEAD, which is the same as GET but does not return the resource representation. HEAD is used
primarily in testing scenarios.

¢ OPTIONS, which can be used by callers to get information about available communication options
for the target service.

Some examples of the Act i on expression include:

¢ api gat eway: * for all APl Gateway actions.
e api gat eway: GET for just the GET action in API Gateway.

Resource Format of Permissions for Managing APl in API
Gateway

The APIl-managing Resour ce expression has the following general format:

arn: aws: api gat eway: r egi on: : resour ce- pat h- speci fier

where r egi on is a target AWS region (such as us- east - 1 or * for all supported AWS regions), and
resour ce- pat h- speci fi er is the path to the target resources.

Some example resource expressions include:

e arn: aws: api gat eway: regi on: : / rest api s/ * for all resources, methods, models, and stages in
the AWS region of r egi on.

163

Amazon API Gateway Developer Guide
Statement Reference of IAM Policies
for Executing API in API Gateway

arn: aws: api gat eway: regi on: : / rest api s/ api - i d/ * for all resources, methods, models, and
stages in the API with the identifier of api - i d in the AWS region of r egi on.

arn: aws: api gat eway: regi on: : / rest api s/ api -i d/ resources/ resour ce-id/* for all
resources and methods in the resource with the identifier r esour ce- i d, which is in the API with the
identifier of api - i d in the AWS region of r egi on.

arn: aws: api gat eway: regi on: : /restapi s/ api -i d/ resources/ resource-id/ met hods/
* for all of the methods in the resource with the identifier r esour ce- i d, which is in the APl with the
identifier of api - i d in the AWS region of r egi on.

arn: aws: api gat eway: regi on: :/ restapi s/ api -i d/ resources/resource-id/ nethods/
GET for just the GET method in the resource with the identifier r esour ce- i d, which is in the API
with the identifier of api - i d in the AWS region of r egi on.

arn: aws: api gat eway: regi on: : / rest api s/ api - i d/ nodel s/ * for all of the models in the API
with the identifier of api - i d in the AWS region of r egi on.

arn: aws: api gat eway: r egi on: : / rest api s/ api - i d/ nodel s/ nodel - nane for the model with
the name of nodel - nane, which is in the APl with the identifier of api - i d in the AWS region of
regi on.

arn: aws: api gat eway: regi on: : / rest api s/ api - i d/ st ages/ * for all of the stages in the API
with the identifier of api - i d in the AWS region of r egi on.

arn: aws: api gat eway: regi on: : / rest api s/ api -i d/ st ages/ st age- nane for just the stage
with the name of st age- nane in the API with the identifier of api - i d in the AWS region of r egi on.

Statement Reference of IAM Policies for Executing
APl in API Gateway

The following information describes the Action and Resource format of IAM policy statements of
access permissions for executing an API.

Action Format of Permissions for Executing API in API
Gateway

The API-executing Act i on expression has the following general format:

execut e-api : action

where act i on is an available API-executing action:

« * which represents all of the following actions.
¢ Invoke, used to invoke an API upon a client request.
¢ InvalidateCache, used to invalidate API cache upon a client request.

Resource Format of Permissions for Executing API in API
Gateway

The API-executing Resour ce expression has the following general format:

arn: aws: execut e- api : regi on: account -i d: api -i d/ st age- name/ HTTP- VERB/ r esour ce-
pat h- speci fi er

where:

164

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Gateway APIs

regi on is the AWS region (such as us- east - 1 or * for all AWS regions) that corresponds to the
deployed API for the method.

account -i d is the 12-digit AWS account Id of the REST API owner.

api - i d is the identifier APl Gateway has assigned to the API for the method. (* can be used for all
APIs, regardless of the API's identifier.)

st age- nane is the name of the stage associated with the method (* can be used for all stages,
regardless of the stage's name.)

HTTP- VERB is the HTTP verb for the method. It can be one of the following: GET, POST, PUT,
DELETE, PATCH, HEAD, OPTIONS.

resour ce- pat h-speci fi er is the path to the desired method. (* can be used for all paths).

Some example resource expressions include:

arn: aws: execut e- api : *: *: * for any resource path in any stage, for any APl in any AWS region.
(This is equivalent to *).

arn: aws: execut e- api : us- east - 1: *: * for any resource path in any stage, for any APl in the
AWS region of us- east - 1.

arn: aws: execut e- api : us-east-1: *: api -i d/ * for any resource path in any stage, for the API
with the identifier of api - i d in the AWS region of us-east-1.

arn: aws: execut e- api : us-east-1: *: api -i d/ t est/* for resource path in the stage of t est ,
for the API with the identifier of api - i d in the AWS region of us-east-1.

arn: aws: execut e- api : us-east-1: *: api-i d/ test/*/ mydenor esour ce/ * for any resource
path along the path of nydenor esour ce, for any HTTP method in the stage of t est , for the API
with the identifier of api - i d in the AWS region of us-east-1.

arn: aws: execut e- api : us-east-1: *: api -i d/ t est/ GET/ nydenor esour ce/ * for GET
methods under any resource path along the path of nydenor esour ce, in the stage of t est, for the
API with the identifier of api - i d in the AWS region of us-east-1.

IAM Policy Examples for APl Gateway APIs

The following example policy documents shows various use cases to set access permissions for
managing API resources in APl Gateway. For permissions model and other background information,
see Control Access to API Gateway with IAM Policies (p. 160).

Topics

¢ Simple Read Permissions (p. 165)

¢ Read-Only Permissions on any APIs (p. 166)

¢ Full Access Permissions for any APl Gateway Resources (p. 167)
¢ Full-Access Permissions for Managing API Stages (p. 168)

¢ Block Specified Users from Deleting any APl Resources (p. 168)

Simple Read Permissions

The following policy statement gives the user permission to get information about all of the resources,
methods, models, and stages in the API with the identifier of 2123456789 in the AWS region of us-
east-1:

{

"Version": "2012-10-17",
"Statenment": [

{

165

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Gateway APIs

"Effect": "Alow',
"Action": [

"api gat eway: GET"
]

Resource": [
"arn: aws: api gat eway: us-east-1::/restapi s/ al23456789/*"
]
}
]
}

The following example policy statement gives the IAM user permission to list information for all
resources, methods, models, and stages in any region. The user also has permission to perform all
available API Gateway actions for the API with the identifier of a123456789 in the AWS region of us-
east-1:

"Version": "2012-10-17",
"Statenment": [

"Effect": "Alow',
"Action": [

"api gat eway: GET"
]

Resource": [
"arn:aws: api gateway: *::/restapis/*"
]
}
{

"Effect": "Alow',
"Action": [
"api gat eway: *"

]

Resource": [
"arn: aws: api gat eway: us-east-1::/restapi s/ al23456789/*"
]
}
]

Read-Only Permissions on any APIs

The following policy document will permit attached entities (users, groups or roles) to retrieve any
of the APlIs of the caller's AWS account. This includes any of the child resources of an API, such as
method, integration, etc.

"Version": "2012-10-17",
"Statenent": [
{
"Sid': "Stnt1467321237000",
"Effect": "Deny",
"Action": [
"api gat eway: POST",
"api gat eway: PUT",
"api gat eway: PATCH",
"api gat eway: DELETE"

166

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Gateway APIs

]

Resource": [
"arn: aws: api gat eway: us-east-1::/*"

"Sid': "Stnt1467321341000",
"Effect": "Deny",
"Action": [
"api gat eway: GET",
"api gat eway: HEAD",
"api gat eway: OPTI ONS"
]

Resource": [
"arn: aws: api gat eway: us-east-1::/",
"arn: aws: api gat eway: us-east-1::/account",
"arn: aws: api gateway: us-east-1::/clientcertificates",
"arn: aws: api gat eway: us- east - 1: : / domai nnanes",
"arn: aws: api gat eway: us- east-1::/api keys"

"Sid': "Stnt1467321344000",
"Effect": "Alow',
"Action": [

"api gat eway: GET",

"api gat eway: HEAD",

"api gat eway: OPTI ONS"
]

Resource": [
"arn: aws: api gat eway: us-east-1::/restapis/*"

The first Deny statement explicitly prohibits any calls of POST, PUT, PATCH, DELETE on any resources
in AP| Gateway. This ensures that such permissions will not be overridden by other policy documents
also attached to the caller. The second Deny statement blocks the caller to query the root (/) resource,
account information (/ account), client certificates (/ cl i ent certi fi cat es), custom domain names
(/ domai nnanes) and API keys (/ api keys. Together, the three statements ensure that the caller can
only query API-related resources. This can be useful in API testing when you do not want the tester to
modify any of the code.

To restrict the above read-only access to specified APIs, replace the Resour ce property of Al | ow
statement by the following:

"Resource": ["arn:aws: api gateway: us-east-1::/restapis/restapi _idl/*",
"arn: aws: api gat eway: us-east-1::/restapis/restapi _id2/*"]

Full Access Permissions for any APl Gateway Resources

The following example policy document grants the full access to any of the APl Gateway resource of
the AWS account.

"Version": "2012-10-17",

167

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Gateway APIs

"Statenent": [

{
"Sid": "Stnt1467321765000",
"Effect": "Alow',
"Action": [
"api gat eway: *"
1.
"Resource": |
W
]
}

In general, you should refrain from using such a broad and open access policy. It may be necessary to
do so for your API development core team so that they can create, deploy, update, and delete any API
Gateway resources.

Full-Access Permissions for Managing API Stages

The following example policy documents grants full-access permissions on Stage related resources of
any APl in the caller's AWS account.

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "All ow',
"Action": [
"api gat eway: *"
1
"Resource": [
"arn: aws: api gat eway: us- east-1::/restapis/*/stages",
"arn: aws: api gat eway: us- east-1::/restapis/*/stages/*"
]
}
]
}

The above policy document grants full access permissions only to the st ages collection and any of
the contained st age resources, provided that no other policies granting more accesses have been
attached to the caller. Otherwise, you must explicitly deny all the other accesses.

Using the above policy, caller must find out the REST API's identifier beforehand because the

user cannot call GET /respai s to query the available APIs. Also, if ar n: aws: api gat eway: us-
east-1::/restapi s/ */stages is not specified in the Resour ce list, the Stages resource becomes
inaccessible. In this case, the caller will not be able to create a stage nor get the existing stages,
although he or she can still view, update or delete a stage, provided that he stage's name is known.

To grant permissions for a specific API's stages, simply replace the r est api s/ * portion of the
Resour ce specifications by r est api s/ rest api _i d, where r est api _i d is the identifier of the API
of interest.

Block Specified Users from Deleting any APl Resources

The following example IAM policy document blocks a specified user from deleting any API resources in
API| Gateway.

168

Amazon API Gateway Developer Guide
IAM Policy Examples for APl Execution Permissions

"Version": "2012-10-17",
"Statenment": [
{
"Sid": "Stnt1467331998000",
"Effect": "Allow',
"Action": [
"api gat eway: CGET",
"api gat eway: HEAD",
"api gat eway: OPTI ONS",
"api gat eway: PATCH",
"api gat eway: POST",
"api gat eway: PUT"
1,
"Resource": |
"arn: aws: api gat eway: us-east-1::/restapis/*"

]

"Sid": "Stnt1467332141000",
"Effect": "Allow',
"Action": [

"api gat eway: DELETE"
1,
"Condition": {

"StringNotLike": {

"aws: usernane": "j ohndoe"

}
1
"Resource": |

"arn: aws: api gat eway: us-east-1::/restapis/*"

]

This IAM policy grants full access permission to create, deploy, update and delete API for attached
users, groups or roles, except for the specified user (j ohndoe), who cannot delete any API resources.
It assumes that no other policy document granting Al | ow permissions on the root, API keys, client
certificates or custom domain names has been attached to the caller.

To block the specified user from deleting specific API Gateway resources, e.g., a specific APl or an
API's resources, replace the Resour ce specification above by this:

"Resource": ["arn:aws: api gateway: us-east-1::/restapis/restapi _id_ 1",
"arn: aws: api gat eway: us-east-1::/restapis/restapi _id_2/resources"]

|IAM Policy Examples for APl Execution Permissions

For permissions model and other background information, see Control Access to API Gateway with
IAM Policies (p. 160).

The following policy statement gives the user permission to call any POST method along the path of
mydenor esour ce, in the stage of t est , for the API with the identifier of a123456789, assuming the
corresponding API has been deployed to the AWS region of us-east-1:

{

169

Amazon API Gateway Developer Guide
Enable CORS for a Resource

"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"execut e- api : | nvoke"
1.
"Resource": |
"arn: aws: execut e-api : us-east-1: *:al123456789/t est / POST/ mydenor esour ce/
*n
]
}
]
}

The following example policy statement gives the user permission to call any method on the resource
path of pet st or ewal kt hr ough/ pet s, in any stage, for the API with the identifier of a123456789, in
any AWS region where the corresponding API has been deployed:

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": [
"execut e- api : | nvoke"
1,
"Resource": |
"arn: aws: execute-api:*:*:a123456789/t est/ */ pet st or ewal kt hr ough/ pet s"
]
}
]
}

Enable CORS for an APl Gateway Resource

When your API's resources receive requests from a domain other than the API's own domain, you
must enable cross-origin resource sharing (CORS) for selected methods on the resource. This
amounts to having your API respond to the OPTI ONS preflight request with at least the following
CORS-required response headers:

¢ Access- Control - Al | ow Met hods
¢ Access- Control - Al | ow Headers
e Access-Control -Allow Origin

In API Gateway you enable CORS by setting up an OPTI ONS method with the mock integration type
to return the preceding response headers (with static values discussed in the following) as the method
response headers. In addition, the actual CORS-enabled methods must also return the Access-
Control -All ow-Ori gi n: ' *' header in at least its 200 response.

Tip

You must set up an OPTIONS method to handle preflight requests to support CORS.

However, OPTIONS methods are optional if 1) an API resource exposes only the GET, HEAD

or POST methods and 2) the request payload content type is appl i cat i on/ x- ww« f or m

url encoded, mul ti part/formdataortext/plainand3)the request does not contain

170

Amazon API Gateway Developer Guide
Prerequisites

any custom headers. When possible, we recommend to use OPTIONS method to enable
CORS in your API.

This section describes how to enable CORS for a method in APl Gateway using the APl Gateway
console or the API Gateway Import API.

Topics
e Prerequisites (p. 171)
¢ Enable CORS on a Resource Using the APl Gateway Console (p. 171)
¢ Enable CORS for a Resource Using the API Gateway Import API (p. 172)

Prerequisites

You must have the method available in APl Gateway. For instructions on how to create and
configure a method, see Build an APl Gateway API to Expose an HTTP Endpoint (p. 6).

Enable CORS on a Resource Using the API
Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. Inthe API Gateway console, choose an APl under APIs.
3. Choose a resource under Resources. This will enable CORS for all the methods on the resource.
Alternatively, you could choose a method under the resource to enable CORS for just this method.
4. Choose Enable CORS from the Actions drop-down menu.
:1: Amazon APl Gateway ~ APIs > HelloWorld (vys2gggws7) > Resources > /hello (xz0g00) > GET
APIs , Resources Actions~ ¢ /hello - GET - Method Execution
HelloWorld - & METHOD ACTIONS
| Resources - & Mello Detcte: icihna Method Request .
Stages o senons] Auth: NONE
Custom Authoriz Create Method ARN: amcaws:execute-api us-
Models Create Resource east-1 7:vys2gggws7
Delete Resource
API Keys
MP1ACTIONS « 1 3
Custom Domain N.. De‘p[‘oy AP
Client Certificates Import API
X Delete AP Method Response []
Settings
HTTP Status: 200
Models: app'ucahon-ﬁm ==
Empty
5. Inthe Enable CORS form, do the following:

a. Inthe Access-Control-Allow-Headers input field, type a static string of a comma-separated
list of headers that the client must submit in the actual request of the resource. Use the
console-provided header list of ' Cont ent - Type, X- Anz- Dat e, Aut hori zati on, X- Api -
Key, X- Anz- Security- Token' or specify your own headers.

b. Use the console-provided value of ' *' as the Access-Control-Allow-Origin header value
to allow access requests from all domains, or specify a named domain to all access requests
from the specified domain.

171

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-import-api.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Enable CORS Using Swagger Definition

c. Choose Enable CORS and replace existing CORS headers.

Resources Actions~ | o Enable CORS

- &

Cross-Origin Resource Sharing (CORS) allows browsers to make HTTP requests to servers with a
- & mello

different domainforigin. Specify which methods in the /hello resource are available to CORS requesis. To
define static values surround the value in single quotes (eg. 'amazon com'). To define mappings use the
syntax described in the Method Editor (eg. method.request.querystring. myQueryString).

Methods® [¥|geT [/ oPTioNs @

A Control-All GET,OPTIONS @
Access-Control-Allow-Headers 'Content-Type X-Amz-Date Authorizatio €@
Access-Control-Allow-Origin® ™' [i JF:%

» Advanced

Enable CORS and replace existing CORS headers

6. In Confirm method changes, choose Yes, overwrite existing values to confirm the new CORS
settings.

Confirm method overwrite

The following £ i i ‘willl be made to this 's methods and will ovenarite any existing values. Ase you sure you want 1o
continue?
= Create OPTIONS mathod
= Add 200 Method Response with Empty Response Model 1o OPTIONS methad
= Add Mock Integration to OPTIONS method
+ Add 200 Integration Response to OPTIONS method
« Acd A Control-All -Head. Access-Control-All Access-Control-Allow-Origin Method Response
Headers to OPTIONS method
= Add Access-Control-Allow-Headers, Access-Control-Allow-Methods, Access-Control-Allow-Origin Integration Response
Header Mappings 1o OPTIONS method
- Add Access-Control-Allow-Origin Method Response Header to GET mathod
+ Add Access-Control-Allow-Origin Integration Response Header Mapping to GET method

Cancel Yes, overwrite axisting values

After CORS is enabled on the GET method, an OPTIONS method is added to the resource, if it is not
already there. The 200 response of the OPTIONS method is automatically configured to return the
three Access- Control - Al | ow * headers to fulfill preflight handshakes. In addition, the actual (GET)
method is also configured by default to return the Access- Control - Al | ow Ori gi n header in its
200 response as well. For other types of responses, you will need to manually configure them to return
Access-Control - Al l ow Ori gi n* header with ™' or specific origin domain names, if you do not
want to return the Cross-origin access error.

Enable CORS for a Resource Using the API
Gateway Import API

If you are using the API Gateway Import API (p. 142), you can set up CORS support using a Swagger
file. You must first define an OPTIONS method in your resource that returns the required headers.

Note
Web browsers expect Access-Control-Allow-Headers, and Access-Control-Allow-Origin
headers to be set up in each APl method that accepts CORS requests. In addition, some

browsers first make an HTTP request to an OPTIONS method in the same resource, and then
expect to receive the same headers.

172

Amazon API Gateway Developer Guide
Enable CORS Using Swagger Definition

The following example creates an OPTI ONS method and specifies mock integration. For more
information, see Configure Mock Integration for a Method (p. 94).

/users
opti ons:
summary: CORS support
descri ption:
Enabl e CORS by returning correct headers
CONnsunes:
- application/json
produces:
- application/json
t ags:
- CORS
X-anmezon- api gat eway-i ntegrati on:
type: nock
request Tenpl at es:
application/json:
{
"statusCode" : 200
}
responses:
"default":
st at usCode: " 200"
responsePar anet ers:
nmet hod. r esponse. header. Access- Control - Al | ow Headers :
"' Cont ent - Type, X- Anz- Dat e, Aut hori zati on, X- Api - Key' "
nmet hod. r esponse. header . Access- Control - Al |l ow- Methods : "'*"'"
met hod. r esponse. header. Access- Control -AllowOrigin @ "'*""
responseTenpl at es:
application/json:
{}
responses:
200:
description: Default response for CORS net hod
headers:
Access- Control - Al | ow Header s:
type: "string"
Access- Control - Al | ow Met hods
type: "string"
Access-Control - Al l ow Ori gi n:
type: "string"

Once you have configured the OPTI ONS method for your resource, you can add the required headers
to the other methods in the same resource that need to accept CORS requests.

1. Declare the Access-Control-Allow-Origin and Headers to the response types.

responses:
200:
description: Default response for CORS net hod
headers:
Access- Control - Al | ow Header s:
type: "string"
Access- Control - Al | ow Met hods:
type: "string"
Access-Control - Al l ow Ori gi n:

173

Amazon API Gateway Developer Guide
Use API Gateway Custom Authorizers

type: "string"

2. Inthe x- amazon- api gat eway- i nt egr at i on tag, set up the mapping for those headers to your
static values:

responses:
"defaul t":
st at usCode: " 200"
responsePar anet ers:
met hod. r esponse. header . Access- Control - Al | ow Headers :
"' Cont ent - Type, X- Anz- Dat e, Aut hori zat i on, X- Api - Key' "
met hod. r esponse. header . Access-Control - Al |l ow Methods : "' *""
nmet hod. r esponse. header. Access-Control -Allow Origin ;. "' *""

Use Amazon API Gateway Custom Authorizers

Topics
¢« Amazon API Gateway Custom Authorizers (p. 174)
¢ Create the API Gateway Custom Authorizer Lambda Function (p. 175)
¢ Input to an Amazon API| Gateway Custom Authorizer (p. 176)
e Output from an Amazon API Gateway Custom Authorizer (p. 177)
¢ Configure Custom Authorizer Using the APl Gateway Console (p. 178)
¢ Call an API Using API Gateway Custom Authorization (p. 180)

Amazon API Gateway Custom Authorizers

An Amazon API Gateway custom authorizer is a Lambda function that you provide to control access to
your APIs using bearer token authentication strategies, such as OAuth or SAML.

When a client calls your API, API Gateway verifies whether a custom authorizer is configured for

the API. If so, APl Gateway calls the Lambda function, supplying the authorization token extracted
from a specified request header. You use this Lambda function to implement various authorization
strategies, such as JSON Web Token (JWT) verification and OAuth provider callout, to return IAM
policies that authorize the request. If the returned policy is invalid or the permissions are denied, the
API call will not succeed. For a valid policy, APl Gateway caches the returned policy, associated with
the incoming token and used for the current and subsequent requests, over a pre-configured time-to-
live (TTL) period of up to 3600 seconds. You can set the TTL period to zero seconds to disable the
policy caching. The default TTL value is 300 seconds. Currently, the maximum TTL value of 3600
seconds cannot be increased.

174

Amazon API Gateway Developer Guide
Create the Custom Authorizer Lambda Function

P

Lambda Auth
function

Context + Token
Principal + Policy

Request w/ a bearer
token

. E t —: / Allowed

Client API Gateway Palicy is
evaluated

Any other publicly
accessible endpoint

403 Denied l

Policy is
cached

Create the API Gateway Custom Authorizer Lambda
Function

Before creating an API Gateway custom authorizer, you must first create the AWS Lambda function
that implements the logic to authenticate and authorize the caller. You can do so in the Lambda
console, using the code template available from the APl Gateway Custom Authorizer blueprint. Or you
can create one from scratch. For illustration purposes, we will explain here the creation of the Lambda
function without using the blueprint.

Note
The custom authorizer Lambda function presented here is for illustration purposes. In

production code, you should follow the APl Gateway Custom Authorizer blueprint to
implement your authorizer Lambda function.

When creating the Lambda function for your APl Gateway custom authorizer, you will be asked to
assign an execution role for the Lambda function if it calls other AWS services. For the following
example, the basic AWSLanbdaRol e will suffice. For more involved use cases, follow the instructions to
grant permissions in an execution role for the Lambda function.

In the code editor of the Lambda console, enter the following Node.js code.

consol e. |l og(' Loadi ng function');

exports. handl er = function(event, context) {
var token = event.authorizati onToken;
/1 Call oauth provider, crack jwt token, etc.
/1 In this exanple, the token is treated as the status for sinplicity.

switch (token) {

case 'allow :

cont ext . succeed(generatePolicy('user', "Alow,
event . met hodArn));

br eak;

case 'deny':
cont ext . succeed(generatePolicy('user', 'Deny', event.nethodArn));
br eak;

case 'unauthorized':
context. fail ("Unaut horized");
br eak;

defaul t:

175

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role

Amazon API Gateway Developer Guide
Input to a Custom Authorizer

context.fail("error");
s

var generatePolicy = function(principalld, effect, resource) {
var aut hResponse = {};
aut hResponse. principalld = principalld;
if (effect && resource) {
var policyDocunent = {};
pol i cyDocunent. Version = '2012-10-17"; // default version
pol i cyDocunent. Statenent = [];
var statenmentOne = {};
stat enent One. Action = 'execute-api:lnvoke'; // default action
statenent One. Effect = effect;
st at enent One. Resource = resource;
pol i cyDocunent. Statenent[0] = stat enent One;
aut hResponse. pol i cyDocunent = policyDocunent;

}

return aut hResponse;

The preceding Lambda function returns an Allow IAM policy on a specified method if the request's
authorization token contains an ' al | ow value, thereby permitting a caller to invoke the specified
method. The caller receives an 200 OK response. The function returns a Deny policy against the
specified method if the authorization token has a' deny' value, thus blocking the caller from calling
the method. The client will receive a 403 Forbidden response. If the token is ' unaut hori zed' , the
client will receive a 401 Unauthorized response. If the tokenis ' f ai | ' or anything else, the client will
receive a 500 Internal Server Error response. In both of the last two cases, the calls will not succeed.

Note

In production code, you may need to authenticate the user before granting authorizations.
If so, you can add authentication logic in the Lambda function as well. Consult the provider-
specific documentation for instructions on how to call such an authentication provider.

Besides returning an IAM policy in a custom authorizer, the Lambda function must also return the
caller's principal identifier and can also return a key-value map named cont ext to contain additional
information. For example, see Output from an Amazon API Gateway Custom Authorizer (p. 177).

You can then configure the integration request to pass returned cont ext map entries to the back end.
When the cont ext map entries refer to cached credentials, the back-end service can provide better
latency and, hence, improved custom experience by leveraging the cached credentials to reduce the
need to access the secret keys and open the authorization tokens for every request.

Before going further, you may want to test the Lambda function from within the Lambda Console. To do
this, configure the sample event to provide the input and verify the result by examining the output. The
next two sections explain the Input to a Custom Authorizer (p. 176) and Output from an Amazon API
Gateway Custom Authorizer (p. 177).

Input to an Amazon API Gateway Custom
Authorizer

When a custom authorizer is enabled on an APl method, you must specify a custom header for the
method caller to pass the required authorization token in the initial client request. Upon receiving the
request, API Gateway extracts the token from the custom header as the input aut hor i zati onToken
parameter value into the Lambda function and calls the custom authorizer with the following request
payload.

176

Amazon API Gateway Developer Guide
Output from an Amazon AP| Gateway Custom Authorizer

"type":" TOKEN',
"aut hori zati onToken": "<cal | er-suppl i ed-t oken>",
"met hodArn": "arn: aws: execut e-
api : <regi onl d>: <account | d>: <api | d>/ <st age>/ <nmet hod>/ <r esour cePat h>"

In this example, the t ype property specifies the payload type. Currently, the only valid value is the
TOKEN literal. The <cal | er - suppl i ed-t oken> originates from the custom authorization header in
a client request. The et hodAr n is the ARN of the incoming method request and is populated by API
Gateway in accordance with the custom authorizer configuration.

For the custom authorizer shown in the preceeding section, the <cal | er - suppl i ed- t oken> string
is al | ow, deny, unaut hori zed, or any other string value. An empty string value is the same as
unaut hori zed. The following shows an example of such an input to obtain an Al | ow policy on the
GET method of an API (yny8t bxw7b) of the AWS account (123456789012) in any stage (*).

"type":" TOKEN',

"aut hori zati onToken":"al | ow',

"met hodArn": "arn: aws: execut e- api : us-west - 2: 123456789012: yny 8t bxwrhb/ */
GET/ "

}

Output from an Amazon API Gateway Custom
Authorizer

The custom authorizer's Lambda function returns an output that must include the principal identifier
(pri nci pal I d) and a policy document (pol i cyDocunent) containing a list of policy statements. The
output can also include a cont ext map containing key-value pairs. The following shows an example of
this output.

{
“principalld": "yyyyyyyy", [/ The principal user identification associated
with the token sent by the client.
"pol i cyDocunment": {
"Version": "2012-10-17",
"Statenent": [

"Action": "execute-api:|nvoke",
"Effect": "All ow Deny",
"Resource": "arn:aws: execut e-

api : <regi onl d>: <account | d>: <appl d>/ <st age>/ <ht t pVer b>/ [<r esour ce>/ <ht t pVer b>/

[...1]"
}
]

}s

"context": {
"key": "val ue",
"nunkKey": 1,

177

Amazon API Gateway Developer Guide
Configure Custom Authorizer

"bool Key": true

}
}

Here, a policy statement stipulates whether to allow or deny (Ef f ect) the API Gateway execution
service to invoke (Act i on) the specified API method (Resour ce). You can use a wild card (*) to
specify a resource type (method). For information about setting valid policies for calling an API, see
Statement Reference of IAM Policies for Executing API in API Gateway (p. 164).

You can access the pri nci pal | d value in a mapping template using the
$cont ext . aut hori zer. princi pal | d variable. This is useful if you want to pass the value to the
back end. For more information, see Accessing the $context Variable (p. 134).

You can access the key, nunkKey, or bool Key value (i.e., val ue, 1, or t r ue) of the cont ext map
in a mapping template by calling $cont ext . aut hori zer . key, $cont ext . aut hori zer. nunKey,
or $cont ext . aut hori zer . bool Key, respectively. Notice that a JSON object or array is not a valid
value of any key in the cont ext map.

The following shows example output from the example custom authorizer. The example output
contains a policy statement to block (Deny) calls to the GET method in an API (yrmy 8t bxw7b) of an
AWS account (123456789012) in any stage (*).

{
“principalld": "user",
"pol i cyDocunment": {
"Version": "2012-10-17",
"Statenent": [
{
"Action": "execute-api:|nvoke",
"Effect": "Deny",
"Resource": "arn:aws:execute-api: us-west-2:123456789012: yny8t bxwrhb/ */
GET/
}
]
}
}

Configure Custom Authorizer Using the API
Gateway Console

After you create the Lambda function and verify that it works, you can configure the API Gateway
Custom Authorizer in the APl Gateway console.

Enable a Custom Authorizer on APl Methods

1. Signin to the API Gateway console.
Create a new or select an existing APl and choose Authorizers.
Choose Create, select Custom Authorizer, and do the following:

¢ In Lambda region, select the region where you upload your custom authorizer's Lambda
function.

« In Lambda function, select the Lambda function for your custom authorizer.

178

Amazon API Gateway Developer Guide
Configure Custom Authorizer

Note
You must first create a custom authorizer Lambda function in the region for it to be
available in the drop-down list.

¢ In Authorizer Name, enter a name for your new custom authorizer.

« Leave Execution role blank to let the APl Gateway console to set a resource-based policy
to grant API Gateway permissions to invoke the authorizer Lambda function or type the
name of an IAM role to allow AP| Gateway to invoke the authorizer Lambda function. For an
example of such a role, see Set Up an IAM Role and Policy for an API to Invoke Lambda
Functions (p. 345).

« In Identity token source, type the mapping expression for your authorizer's custom header.

Note

The custom header mapping expression is of the et hod. r equest . header . <nane>
format, where <nane> is the name of a custom authorization header submitted as part
of the client request. In the following example, this custom header name is Aut h.

« In Token validation expression, you can optionally provide a RegEx statement for API
Gateway to validate the input token before calling the custom authorizer Lambda function. This
helps you avoid or reduce the chances of being charged for processing invalid tokens.

« In Result TTL in seconds, you can change or use the default (300) value to enable caching
(>0) ordisable caching (=0) of the policy returned from the Lambda function.

Note

The policy caching uses a cache key generated from the supplied token for the
targeted API and custom authorizer in a specified stage. To enable caching, your
authorizer must return a policy that is applicable to all methods across an API. To
enforce method-specific policy, you can set the TTL value to zero to disable policy
caching for the API.

Authorizers create~ New Custom Authorizer

Provide a name, Lambda function, and identity token source for your authorizer.

Lambda region* us-west-2 [+
Lambda function* myCustomAuthorizer [i]
Authorizer name* myTestApiAuthorizer

Execution role R
Identity token source* method.request.header.Authl

Token validation expression

e @ @ ©

Result TTL in seconds™ 300

If you choose to let the APl Gateway console to set the resource-based policy, the Add
Permission to Lambda Function dialog will be displayed. Choose OK. After the custom
authorization is created, you can test it with appropriate authorization token values to verify that it
works as expected.

This completes the procedure to create a custom authorization. The next procedure shows how to
configure an API method to use the custom authorizer.

Configure an API Method to Use the Custom Authorizer

Go back to the API. Create a new method or choose an existing method. If necessary, create a
new resource.

179

Amazon API Gateway Developer Guide
Call an API with Custom authorization

In Method Execution, choose the Method Request link.

Under Authorization Settings, expand the Authorization drop-down list to select the custom
authorizer you just created (myTestApiAuthorizer), and then choose the checkmark icon to save
the choice.

Resources Actions- '@ ¢ Method Execution /- GET - Method Request

v & Provide information about this method's authorization settings and the parameters it can

receive.

Authorization Settings @

Authorization (myTestApiAuthorizer |v| o6

APl Key Required false
- & fHpelig)

» URL Query String Parameters °
» HTTP Request Headers

» Request Models Create a Model ®

Optionally, while still on the Method Request page, choose Add header if you also want to pass
the custom authorization header to the back end. In Name, type a custom header name that
matches the header mapping expression you used when you created the custom authorization,
and then choose the checkmark icon to save the settings.

Choose Deploy API to deploy the API to a stage. Make a note of the Invoke URL value. You will
need it when calling the API.

Call an API Using API Gateway Custom
Authorization

After you configure your API to use the custom authorizer, you or your customers can call the API
using the custom authorizer. Because it involves submitting a custom authorization token header in
the requests, you need a REST client that supports this. In the following examples, API calls are made
using the Postman Chrome App.

Note

When calling an authorizer-enabled method, API Gateway will not log the call to CloudWatch
if the required token is not set, null or invalidated by the specified Token validation
expression.

Calling an APl with Custom Authorization Tokens

Open the Postman Chrome App, choose the GET method and paste the API's Invoke URL into
the adjacent URL field.

Add the custom authorization token header and set the value to al | ow. Choose Send.

180

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Call an API with Custom authorization

No environment v e

https://y .
GET ~ https://, = 1.execute-api.us-west-2.amazonaws.com/test) Params
Pathvariable key value s
URL Parameter Key Value r
Authorization Headers (1) Pre-request script Tests <f> f)
@ Auth allow)
Heade Value s
Bod Cookies Head Tests (0/0] Status Time 3878ms
Raw Preview JSON v = Q
1-F
2 'args”: .
e "headers" :
4 "Accept”: "application/json,
5 "Host": "httpbin.crg",
6 "User-Agent": "AmazonAPIGateway_ymyStbxw7b",
7 "X-Amzn-Apigateway-Api-Id": "ymyB8tbxw7b"
8 3.
9 ‘origin": "54.186.57.187",
1@ 'url”: "http://httpbin.org/get”
1 }
W Scroll to response

The response shows that the APl Gateway custom authorizer returns a 200 OK response and
successfully authorizes the call to access the HTTP endpoint (http://httpbin.org/get) integrated with
the method.

Still in Postman, change the custom authorization token header value to deny. Choose Send.

GET https://y .execute-api.us-west-2.amazonaws.com/test Params

Patl e s
URL Parameter Key Value s
Authorization Headers (1) Pre-request script Tests <f> f)
© wun
Heade Value s Presetsss

Body Cookies Headers(9) Tests(0/0) Status(403 Forbidden) Time 848ms
—

Raw Preview JSON v =

4
C 'Message": "User is not authorized to access this resource”

=
jol

[P

The response shows that the API Gateway custom authorizer returns a 403 Forbidden response
without authorizing the call to access the HTTP endpoint.

In Postman, change the custom authorization token header value to unaut hor i zed and choose
Send.

181

Amazon API Gateway Developer Guide
Use Amazon Cognito Your User Pool

https:/fy No environment v 6

GET hittps:// - Lexecute-apl.us-west-2.amazonaws.com/test Params
7

7
Authorization Headers (1) Pre-request script Tests <) (D

@ auth

Body kies He Test ‘i:d(usTi'ﬂe 508 ms

Raw Preview

<
u
0O

message”: "Unauthorized

The response shows that APl Gateway returns a 401 Unauthorized response without authorizing
the call to access the HTTP endpoint.

4. Now, change the custom authorization token header value to f ai | . Choose Send.

GET w https://y .execute-api.us-west-2.amazonaws.com/test Params m

7,

;
Authorization Headers (1) Pre-request script Tests <) (D

@ Auth

Body fea Statug 500 Internal Server Error) Time 533ms

The response shows that APl Gateway returns a 500 Internal Server Error response without
authorizing the call to access the HTTP endpoint.

Use Amazon Cognito Your User Pool

In addition to using IAM roles and policies (p. 160) or custom authorizers (p. 174), you can also use

a user pool in Amazon Cognito to control who can access your APl in APl Gateway. A user pool serves
as your own identity provider to maintain a user directory. It supports user registration and sign-in, as
well as provisioning identity tokens for signed-in users.

A user pool is integrated with an APl as a method authorizer. When calling the methods with such an
authorizer enabled, an API client includes in the request headers the user's identity token provisioned
from the user pool. APl Gateway then validates the token to ensure it belongs to the configured user

pool and authenticates the caller before passing the request to the back end.

To integrate an API with the Amazon Cognito identity provider, you, as an API developer, create
and own a user pool, create an API Gateway authorizer connected to the user pool, and enable

182

http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
http://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

Amazon API Gateway Developer Guide
Create a User Pool

the authorizer on selected API methods. You must also distribute to your API client developers the
user pool ID, a client ID, and possibly the associated client secret that are provisioned from the user
pool. The client will need this information to register users with the user pool, to provide the sign-in
functionality, and to have the user's identity token provisioned from the user pool.

In this section, you will learn how to create a user pool, how to integrate an API Gateway API with the
user pool, and how to invoke an API integrated with the user pool.

Topics
e Create a User Pool (p. 183)

¢ Integrate an API with a User Pool (p. 183)
¢ Call an API Integrated with a User Pool (p. 186)

Create a User Pool

Before integrating your API with a user pool, you must create the user pool in Amazon Cognito. For
instructions on how to create a user pool, see Setting up User Pools in the Amazon Cognito Developer
Guide.

Note

Make a note of the user pool ID, client ID and the client secret, if selected. The client will
need to provide them to Amazon Cognito for the user to register with the user pool, to sign in
to the user pool, and to get an identity token to be included in requests to call APl methods
configured with the user pool. Also, you will need to specify the user pool name when you
configure the user pool as an authorizer in APl Gateway, as described next.

Integrate an API with a User Pool

To integrate your API with a user pool, you must create in APl Gateway a user pool authorizer
connected to the user pool. The following procedure walks you through the steps to do this using the
API Gateway console.

To create a user pool authorizer using the API Gateway console

Create a new API or select an existing APl in API Gateway.
From the main navigation pane, choose Authorizers under the specified API.
Under Authorizers, choose Create and then choose Cognito User Pool Authorizer.

P wDdPE

To configure this authorizer:

a. Choose aregion for Cognito region.
b. For Cognito User Pool, choose an available user pool.

c. The Authorizer name field will be automatically populated with the chosen user pool name.
However, you can customize it if you want to.

d. The Identity token source field will be set to met hod. r equest . header . Aut hori zat i on
by default. However, you can customize it if you want to. Using the default, Aut hori zat i on
will be the name of the incoming request header to contain an API caller's identity token.

e. Optionally, type a regular expression in the App client ID regex field to validate client IDs
associated with the user pool.

f. Choose Create to finish integrating the user pool with the API.

5. Having created the authorizer, you can, optionally, test it by supplying an identity token
provisioned from the user pool.

183

http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-cognito-user-identity-pools.html

Amazon API Gateway Developer Guide
Integrate an API with a User Pool

To enable a user pool authorizer on methods

No gk wbdhpR

Choose (or create) a method of your API.

Choose Method Request.

Under Authorization Settings, choose the edit icon by the Authorization field.

Choose one of the available Amazon Cognito User Pool authorizers from the drop-down list.
Choose the check-mark icon to save the settings.

Repeat these steps for other methods of your choosing.

If needed, choose Integration Request to add $cont ext . aut hori zer. cl ai ms[' property-
nane'] or $cont ext . aut hori zer. cl ai ns. property-nane expressions in a body-mapping
template to pass the specified identity claims property from the user pool to the back end. For
simple property names, such as sub or cust om sub, the two notations are identical. For complex
property names, such as cust om r ol e, the dot notation may not be used. For example, the
following mapping expressions pass the claim's standard fields of sub and enmi | to the back end:

{
"context" : {
"sub" : "$context.authorizer.clains.sub",
"emai | " : "$context.authorizer.clains.emil"
}
}

If you have declared a custom claim field when configuring your user pool, you can follow the
same pattern to access the custom fields. The following example gets a custom r ol e field of a
claim:

{
"context" : {
"role" : "$context.authorizer.clains.role"
}
}

If the custom claim field is declared as cust om r ol e, use the following example to get the claim's
property:

{
"context" : {
"role" : "$context.authorizer.clains['customrole']"
}
}

Instead of using the API Gateway console, you can also enable a Amazon Cognito user pool on a
method by configuring the settings in a Swagger definition file and import the API definition into API
Gateway.

To import a user pool authorizer with a Swagger definition file

1.
2.

Create (or export) a Swagger definition file for your API.
Add the user pool settings to the securi t yDefi ni ti ons:

"securityDefinitions": {
"MyUser Pool ": {
" t ype|| : " api Keyll ,

184

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon API Gateway Developer Guide
Integrate an API with a User Pool

"nanme": "Authorization",
"in": "header",
" X-amazon- api gat eway- aut ht ype": "cognito_user_pool s",
" X-amazon- api gat eway- aut hori zer": {
"type": "cognito_user_pool s",

"provider ARNs": [
"arn:aws: cognito-idp:{region}:{account _id}: userpool/
{user _pool _id}"
]
}
}

Enable the Cognito user pool (MyUser Pool) as an authorizer for a method, as shown in the
following GET method on the root resource.

"paths": {
"t
"get": {
"consumes": [
"application/json"
]

"produces”: [
"text/htm"
1.
"responses”: {
"200": {
"description": "200 response",
"headers": {
"Content - Type": {
"type": "string"

}
}
}
I
"security": [
{
"MyUser Pool ": []
}

1.
" X-amazon- api gat eway-i ntegration": {
"type": "nmock",
"responses”: {
"defaul t": {
"st at usCode": "200",
"responseParaneters": {
"met hod. response. header . Cont ent - Type": "'text/htm"'"

H
}
I
"request Tenpl ates": {
"application/json": "{\"statusCode\": 200}"
}

"passt hr oughBehavi or": "when_no_mnat ch"

185

Amazon API Gateway Developer Guide
Call an API Integrated with a User Pool

4. If needed, you can set other API configuration using appropriate Swagger definitions or
extensions. For more information, see Import and Export API (p. 141).

Call an API Integrated with a User Pool

To call a method with a user pool authorizer configured, the client must do the following:

¢ Enable the user to sign up with the user pool.
¢ Enable the user to sign in to the user pool.
¢ Obtain an identity token of the signed-in user from the user pool.

¢ Include the identity token in the Aut hor i zat i on header (or another header you specified when
creating the authorizer).

You can use one of the AWS SDKs to perform these tasks. For example:

* To use the Android SDK, see Setting up the AWS Mobile SDK for Android to Work with User Pools.
* To use the iOS SDK, see Setting Up the AWS Mobile SDK for iOS to Work with User Pools.

« To use JavaScript, see Setting up the AWS SDK for JavaScript in the Browser to Work with User
Pools.

The following procedure outlines the steps to perform these tasks. For more information, see the blog
posts on Using Android SDK with Amazon Cognito Your User Pools and Using Your Amazon Cognito
User Pool for iOS.

To call an APl integrated with a user pool

Sign up a first-time user to a specified user pool.
Sign in a user to the user pool.
Get the user's identity token.

P wbdPRE

Call API methods configured with a user pool authorizer, supplying the unexpired token in the
Aut hor i zat i on header or another header of your choosing.

5. When the token expires, repeat Step 2-4. Identity tokens provisioned by Amazon Cognito expire
within an hour.

For code examples, see an Android Java sample and an iOS Objective-C sample.

Use Client-Side SSL Certificates for
Authentication by the Back End

You can use API Gateway to generate an SSL certificate and use its public key in the back end to
verify that HTTP requests to your back-end system are from API Gateway. This allows your HTTP back
end to control and accept only requests originating from Amazon API Gateway, even if the back end is
publicly accessible.

The API Gateway-generated SSL certificates are self-signed and only the public key of a certificate is
visible in the API Gateway console or through the APIs.

Topics

186

https://aws.amazon.com/tools#SDK
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-android-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/walkthrough-using-the-ios-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-the-javascript-sdk.html
http://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-the-javascript-sdk.html
http://mobile.awsblog.com/post/TxNYVQQ3A2LT6Y/Using-Android-SDK-with-Amazon-Cognito-Your-User-Pools
http://mobile.awsblog.com/post/TxGNH1AUKDRZDH/Announcing-Your-User-Pools-in-Amazon-Cognito
http://mobile.awsblog.com/post/TxGNH1AUKDRZDH/Announcing-Your-User-Pools-in-Amazon-Cognito
https://github.com/awslabs/aws-sdk-android-samples/tree/master/AmazonCognitoYourUserPoolsDemo
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/CognitoYourUserPools-Sample/Objective-C

Amazon API Gateway Developer Guide
Generate a Client Certificate
Using the API Gateway Console

¢ Generate a Client Certificate Using the API Gateway Console (p. 187)
¢ Configure an API to Use SSL Certificates (p. 187)

e Test Invoke (p. 188)

» Configure Back End to Authenticate API (p. 189)

Generate a Client Certificate Using the API Gateway
Console

In the main navigation pane, choose Client Certificates.
From Client Certificates, choose Generate.

Optionally, For Description, enter a short descriptive title for the generated certificate. API
Gateway generates a new certificate and returns the new certificate GUID, along with the PEM-
encoded public key.

4. Choose the Save button to save the certificate to API Gateway.

}1: Amazon APl Gateway ~ Client Certificates > xmbigp Show all hints 0

APIs Client Certificate< IR UL L) *Mbigp - test-client-cert-2 Delete client certificate
‘ —
PetStore & xmbiqg Descriptiqp_ test-client-cert-2

APl Keys. Certificate -——BEGIN CERTIFICATE-——

Custom Domain Names MICEDCCAICgAWIBAgITCasKBe)

S+QwDQYJKoZIhveNAQELBQAWN | -

DELMAKGATUE 1

Settings BhMCVVMXEDAOBGNVBACTBINIY

XRObGUXEZARBgHVBAMTCkFwal
aANAGVIYXKwHNCN
MTUMAIMT gwME2WheNMTY XM
ASMTgWMJE2WJADMQswCQYDVQ
QGEWVUZEQMALG
ATUEBXMHUZVhdHRSZTETMBEGA
TUEAXMKQXBpR2FOZXdheTCCASI
wDQYJKoZIhveN
AQEBBQADIQEPADCCACOCOIER
AIBVWVRs5MM0z91Zukc QTrpesF 1P| -

QITKZjhWNgc
You are now ready to configure an API to use the certificate.

Configure an API to Use SSL Certificates

These instructions assume you have already completed Generate a Client Certificate Using the API
Gateway Console (p. 187).

1. Inthe API Gateway console, create or open an API for which you want to use the client certificate.
Make sure the API has been deployed to a stage.
Choose Stages under the selected API and then choose a stage.
In the Stage Editor panel, select a certificate under the Client Certificate section.
Choose the Save Changes button to save the settings.

187

Amazon API Gateway Developer Guide
Test Invoke

:1: Amazon AP| Gateway APls > PelSlore (On1anifwvf) > Stages > fest Show all hints o
APIs .| stages test Stage Editor Delete stage
PetStore
Resources

@ Invoke URL: hitps//0n1anifwyl exec ute-api us-east-1 amazonaws. comiest

Custom Authoriz
Models Settings Stage al SDK Export D History

Dashboard

Custom Authofiz Configure the metering and caching settings for the test stage.

Models Cache Settings
Dashboard
Enable API cache
API Keys

CloudWatch Settings
Custom Domain N

Client Certificates Enable Cloudwateh Logs [&
Settings Enable Cloudwatch Metrics || @
Throttiing Settings
Rate 500 o
BurstLimit 1000 |2
Client Certificate

Select the client certificate that AP| Gateway will use to call your integration endpoints in

this stage
None test.client-cent-2 (xmbigp) [+
¢« Save Changes

After a certificate is selected for the API and saved, API Gateway will use the certificate for all calls to
HTTP integrations in your API.

Test Invoke

1. Choose an API method. In Client, choose Test.
2. From Client Certificate, choose Test to invoke the method request.

188

Amazon API Gateway Developer Guide
Configure Back End to Authenticate API

Resources Actions~ @ & Method Execution /pets - GET - Method Test

T & Make a test call to your method with the provided input

Path
o No path parameters exist for this resource. You can define path parameters by
- & Ipets using the syntax {myPathParam} in a resource path

GET Query Strings
¥ type

S

page

Headers
No header parameters exist for this method. You can add them via Method
Request.

Stage Variables
Mo stage variables exist for this method.

Slient Certificate
test-client-cert-2 (xmbigp E‘

Request Body
Request Body is not supported for GET methods

API Gateway will present the chosen SSL certificate for the HTTP back end to authenticate the API.

Configure Back End to Authenticate API

These instructions assume you have already completed Generate a Client Certificate Using the API
Gateway Console (p. 187) and Configure an API to Use SSL Certificates (p. 187).

When receiving HTTPS requests from API Gateway, your back end can authenticate your API using
the PEM-encoded certificate generated by APl Gateway, provided that the back end is properly
configured. Most Web servers can be easily configured to do so.

For example, in Node.js you can use the HTTPS module to create an HTTPS back end and use the
client-certificate-auth modules to authenticate client requests with PEM-encoded certificates.
For more information, see HTTPS on the Nodejs.org website and see client-certificate-auth on the
https://www.npmjs.com/ website.

APl Gateway-Supported Certificate Authorities for
HTTP and HTTP Proxy Integrations

The following list shows the certificate authorities supported by API Gateway for HTTP and HTTP
Proxy integrations.

Alias nane: nozillacert8l. pem
MD5: D5: E9: 81:40: C5: 18: 69: FC. 46: 2C. 89: 75: 62: OF: AA: 78
SHALl: 07: EO: 32: EO: 20: B7: 2C: 3F: 19: 2F: 06: 28: A2: 59: 3A: 19: A7: OF: 06: 9E
SHA256:
5C. 58: 46: 8D: 55: F5: 8E: 49: 7E: 74: 39: 82: D2: B5: 00: 10: B6: D1: 65: 37: 4A: CF: 83: A7: D4: A3; 2D: B7: 68: C4: .

189

https://nodejs.org/api/https.html#https_https
https://www.npmjs.com/package/client-certificate-auth

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Alias nane: nozillacert99. pem
MD5: 2B: 70: 20: 56: 86: 82: A0: 18: C8: 07: 53: 12: 28: 70: 21: 72
SHALl: F1:7F: 6F: B6: 31: DC: 99: E3: A3: C8: 7F: FE: 1C: F1: 81: 10: 88: D9: 60: 33
SHA256:
97:. 8C. D9: 66: F2: FA: AO: 7B: A7: AA: 95: 00: D9: CO: 2E: 9D: 77: F2: CD: AD: A6: AD: 6B:
Al i as nane: sw sssignpl atinung2ca
MD5: (C9:98:27:77:28: 1E: 3D:. OE: 15: 3C. 84: 00: B8: 85: 03: E6
SHALl: 56: EO: FA: CO: 3B: 8F: 18: 23: 55: 18: E5: D3: 11: CA: E8: C2: 43: 31: AB: 66
SHA256:
3B: 22: 2E: 56: 67: 11: E9: 92: 30: OD: CO: B1: 5A: B9: 47: 3D: AF: DE: F8: C8: 4D: 0C: EF:
Al'i as nane: nozillacert 145. pem
MD5: 60:84: 7C. 5A: CE: DB: 0C. D4: CB: A7: E9: FE: 02: C6: A9: CO
SHALl: 10: 1D: FA: 3F: D5: OB: CB: BB: 9B: B5: 60: 0C: 19: 55: Ad4: 1A: F4: 73: 3A. 04
SHA256:
D4: 1D: 82: 9E: 8C: 16: 59: 82: 2A: F9: 3F: CE: 62: BF: FC. DE: 26: 4F: C8: 4E: 8B: 95: 0C.
Al'i as nane: nozillacert37. pem
MD5: AB: 57: A6: 5B: 7D: 42: 82: 19: B5: D8: 58: 26: 28: 5E: FD: FF
SHALl: B1l: 2E: 13: 63: 45: 86: A4: 6F: 1A: B2: 60: 68: 37: 58: 2D: C4: AC. FD: 94: 97
SHA256:
E3: B6: A2: DB: 2E: D7: CE: 48: 84: 2F: 7A: C5: 32: 41: C7: B7: 1D: 54: 14: 4B: FB: 40: C1.
Al'i as nane: nozillacert4. pem
MD5: 4F: EB: F1: FO: 70: C2: 80: 63: 5D: 58: 9F: DA: 12: 3C. A9: C4
SHALl: E3:92:51: 2F: OA: CF: F5: 05: DF: F6: DE: 06: 7F: 75: 37: E1: 65: EA: 57: 4B
SHA256:
0B: 5E: ED: 4E: 84: 64: 03: CF: 55: EO: 65: 84: 84: 40: ED. 2A: 82: 75: 8B: F5: B9: AA: 1F:
Al'i as nane: nozillacert70. pem
MD5: 5E: 80: 9E: 84: 5A: OE: 65: 0B: 17: 02: F3: 55: 18: 2A: 3E: D7
SHALl: 78:6A:74: AC. 76: AB: 14: 7F: 9C. 6A: 30: 50: BA: 9E: A8: 7E: FE: 9A: CE: 3C
SHA256:
06: 3E: 4A: FA: C4: 91: DF: D3: 32: F3: 08: 9B: 85: 42: E9: 46: 17: D8: 93: D7: FE: 94: 4E:
Alias nane: nozillacert88. pem
MD5: 73:9F: 4C. 4B: 73: 5B: 79: E9: FA: BA: 1C. EF: 6E: CB: D5: C9
SHALl: FE: 45: 65: 9B: 79: 03: 5B: 98: Al: 61: B5: 51: 2E: AC:. DA: 58: 09: 48: 22: 4D
SHA256:
BC. 10: 4F: 15: A4: 8B: E7: 09: DC. A5: 42: A7: E1: D4: B9: DF: 6F: 05: 45: 27: E8: 02: EA:
Al'i as nane: nozillacert134. pem
MD5: FC:. 11:B8: D8: 08:93: 30: 00: 6D: 23: F9: 7E: EB: 52: 1E: 02
SHAL1: 70:17:9B: 86:8C. 00: A4: FA: 60: 91: 52: 22: 3F: 9F: 3E: 32: BD: EO: 05: 62
SHA256:
69: FA: C9: BD: 55: FB: OA: C7: 8D: 53: BB: EE: 5C. F1: D5: 97: 98: 9F: DO: AA: AB: 20: A2:
Al'i as nane: nozill acert26. pem
MD5: DC. 32: C3: A7: 6D: 25: 57: C7: 68: 09: 9D: EA: 2D: A9: A2: D1
SHALl: 87:82: C6: C3:04: 35: 3B: CF: D2: 96: 92: D2: 59: 3E: 7D: 44: D9: 34: FF: 11
SHA256:
F1: Cl: B5: OA: E5: A2: OD: D8: 03: OE: C9: F6: BC: 24: 82: 3D: D3: 67: B5: 25: 57: 59: B4:
Al i as nane: buypasscl ass2ca
MD5: 46: A7: D2: FE: 45: FB: 64: 5A: A8: 59: 90: 9B: 78: 44: 9B: 29
SHALl: 49: 0A: 75: 74: DE: 87: 0A: 47: FE: 58: EE: F6: C7: 6B: EB: C6: 0B: 12: 40: 99
SHA256:
9A: 11: 40: 25: 19: 7C. 5B: B9: 5D: 94: E6: 3D: 55: CD: 43: 79: 08: 47: B6: 46: B2: 3C. DF:
Al i as nane: chunghwaepki r oot ca
MD5: 1B: 2E: 00: CA: 26: 06: 90: 3D: AD: FE: 6F: 15: 68: D3: 6B: B3
SHALl: 67:65:0D: F1: 7E: 8E: 7E: 5B: 82: 40: A4: F4: 56: 4B: CF: E2: 3D: 69: C6: FO
SHA256:
CO: A6: F4: DC. 63: A2: 4B: FD: CF: 54: EF: 2A: 6A: 08: 2A: OA: 72: DE: 35: 80: 3E: 2F: F5:
Alias nane: verisigncl ass2g2ca
MD5: 2D: BB: E5: 25: D3: D1: 65: 82: 3A: B7: OE: FA: E6: EB: E2: E1
SHALl: B3: EA: C4:47:76: C9: C8: 1C. EA: F2: 9D: 95: B6: CC: A0: 08: 1B: 67: EC. 9D

AT

7D: 33:

5F:

1F:

25:

10:

A9:

51:

E7:

11:

FF:

4A:

F2:

3F:

3D:

AT

2D:

51:

1B:

AD:

52:

F4.

17:

75:

1D;

46!

93:

59:

BD:

61:

TA

190

B9:

0B:

13:

7E:

54:

F1:

FC.

1 AO:

E5:

1C. 66:

. Cl:

1 52:

42:

E2:

44:

73:

E9:

OE:

82:

35:

F5:

. AO:

9D:

25:

3E:

F7:

FF:

172

59:

1D:

46:;

EE:

80:

96:

8A:

E7:

37:

15:

06:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHA256:
3A: 43: E2: 20: FE: 7F: 3E: A9: 65: 3D: 1E: 21: 74: 2E: AC. 2B: 75: C2: OF: D8: 98: 03: 05:
Al'i as nane: nozillacert77. pem
MD5: CD: 68: B6: A7: C7: C4: CE: 75: EO: 1D: 4F: 57: 44: 61: 92: 09
SHALl: 13:2D:. 0D: 45: 53: 4B: 69: 97: CD: B2: D5: C3: 39: E2: 55: 76: 60: 9B: 5C. C6
SHA256:
EB: 04: CF: 5E: B1: F3: 9A: FA: 76: 2F: 2B: B1: 20: F2: 96: CB: A5: 20: C1: B9: 7D: B1: 58:
Al'i as nane: nozillacert123. pem
MD5: Cl:62: 3E: 23: C5:82: 73: 9C. 03: 59: 4B: 2B: E9: 77: 49: 7F
SHALl: 2A: B6: 28:48: 5E: 78: FB: F3: AD: 9E: 79: 10: DD: 6B: DF: 99: 72: 2C: 96: E5
SHA256:
07:91: CA: 07:49: B2: 07: 82: AA: D3: C7: D7: BD: OC. DF: C9: 48: 58: 35: 84: 3E: B2: D7:
Al i as nane: utndatacorpsgcca
MD5: B3: A5: 3E: 77: 21: 6D: AC. 4A: CO: C9: FB: D5: 41: 3D: CA: 06
SHALl: 58:11:9F: OE: 12: 82: 87: EA: 50: FD: D9: 87: 45: 6F: 4F: 78: DC. FA: D6: D4
SHA256:
85: FB: 2F: 91: DD: 12: 27: 5A: 01: 45: B6: 36: 53: 4F: 84: 02: 4A: D6: 8B: 69: B8: EE: 88:
Al'i as nane: nozillacert15. pem
MD5: 88:2C. 8C. 52: B8: A2: 3C. F3: F7: BB: 03: EA: AE: AC. 42: 0B
SHALl: 74:20:74:41:72:9C. DD: 92: EC. 79: 31: D8: 23: 10: 8D: C2: 81: 92: E2: BB
SHA256:
OF: 99: 3C:. 8A: EF: 97: BA: AF: 56: 87: 14: OE: D5: 9A: D1: 82: 1B: B4: AF: AC. FO: AA: 9A:
Al ias nane: digicertgl obal rootca
MD5: 79: E4: A9: 84: 0D: 7D: 3A: 96: D7: CO: 4F: E2: 43: 4C. 89: 2E
SHALl: A8:98:5D: 3A: 65: E5: E5: C4: B2: D7: D6: 6D: 40: C6: DD: 2F: B1: 9C: 54: 36
SHA256:
43:48: AO: E9: 44: 4C; 78: CB: 26: 5E: 05: 8D: 5E: 89: 44: B4: D8: 4F: 96: 62: BD: 26: DB:
Alias nane: nozillacert66. pem
MD5: 3D: 41:29: CB: 1E: AA: 11: 74: CD: 5D: BO: 62: AF: BO: 43: 5B
SHALl: DD: El: D2: A9: 01: 80: 2E: 1D: 87: 5E: 84: B3: 80: 7E: 4B: B1: FD: 99: 41: 34
SHA256:
E6: 09: 07: 84: 65: A4: 19: 78: 0C. B6: AC. 4C. 1C. OB: FB: 46: 53: D9: D9: CC. 6E: B3: 94
Alias nane: nozillacert112. pem
MD5: 37:41:49:1B: 18: 56: 9A: 26: F5: AD: C2: 66: FB: 40: A5: 4C
SHALl: 43:13:BB: 96: F1: D5: 86: 9B: Cl1: 4E: 6A: 92: F6: CF: F6: 34: 69: 87: 82: 37
SHA256:
DD: 69: 36: FE: 21: F8: FO: 77: Cl1: 23: Al: A5: 21: Cl1: 22: 24: F7: 22: 55: B7: 3E: 03: A7:
Alias nane: utnuserfirstclientauthemilca
MD5: D7: 34: 3D: EF: 1D: 27: 09: 28: E1: 31: 02: 5B: 13: 2B: DD: F7
SHALl: B1:72:Bl1: A5: 6D: 95: F9: 1F: E5: 02: 87: E1: 4D: 37: EA: 6A: 44: 63: 76: 8A
SHA256:
43: F2:57:41: 2D: 44: 0D: 62: 74: 76: 97: 4F. 87: 7D:. A8: F1: FC:. 24: 44: 56: 5A: 36: 7A:
Al ias nane: verisignc2gl. pem
MD5: B3: 9C. 25: B1: C3: 2E: 32: 53: 80: 15: 30: 9D: 4D; 02: 77: 3E
SHALl: 67:82: AA: EO: ED: EE: E2: 1A: 58: 39: D3: CO: CD: 14: 68: 0A: 4F: 60: 14: 2A
SHA256:
BD: 46: 9F: F4: 5F: AA: E7: C5: 4C. CB: D6: 9D: 3F: 3B: 00: 22: 55: D9: BO: 6B: 10: B1: DO:
Alias nane: nozillacert55. pem
MD5: 74:9D: EA: 60: 24: CA: FD: 22: 53: 3E: CC:. 3A: 72: D9: 29: 4F
SHAL1: AA: DB: BC. 22: 23: 8F: C4: 01: Al: 27: BB: 38: DD: F4: 1D: DB: 08: 9E: FO: 12
SHA256:
A4: 31: 0D: 50: AF: 18: A6: 44: 71: 90: 37: 2A: 86: AF: AF: 8B: 95: 1F: FB: 43: 1D: 83: 7F:
Al'i as nane: nozillacert101. pem
MD5: DF: F2: 80: 73: CC. F1: E6: 61: 73: FC. F5: 42: E9: C5: 7C. EE
SHALl: 99: A6: 9B: E6: 1A: FE: 88: 6B: 4D: 2B: 82: 00: 7C. B8: 54: FC. 31: 7E: 15: 39
SHA256:
62: F2: 40: 27: 8C. 56: 4C. 4D: D8: BF: 7D: 9D: 4F: 6F: 36: 6E: A8: 94: D2: 2F: 5F: 34: DO:
Al'i as nane: nozillacert119. pem
MD5: 94:14:77:. 7E: 3E: 5E: FD: 8F: 30: BD: 41: BO: CF: E7: DO: 30

BC: 50:

95:

99:

68:

58:

25:

6E:

26:

E6:

FA:

1E:

89:

65:

60:

4F:

B5:

7F:

B7:

06:

OE:

38:

56:

A9:

2C

B8

09!

F7:

89:

F3:

93:

8B:

88:

83:

191

AF:

1C

11:

1TA:

34:

ES:

F9:

AC.

8C. 2D

B9:

1 43:

37:

33:

1 99:

CTA

6B:

. 59:

EC. 2F:

Al:

AB:

58:

8A:

1 43:

97:

1 4B:

41:

91:

71:

9B:

7B:

6C.

05:

3A:

BA:

OF: .

25:

8B:

ED:

FF:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHALl: 75: EO: AB: B6: 13: 85: 12: 27: 1C. 04: F8: 5F: DD: DE: 38: E4: B7: 24: 2E: FE
SHA256:
CA: 42: DD: 41: 74: 5F: DO: B8: 1E: B9: 02: 36: 2C. F9: D8: BF: 71: 9D: Al: BD: 1B: 1E: FC:
Alias nane: verisignc3gl. pem
MD5: EF: 5A: F1: 33: EF: F1: CD: BB: 51: 02: EE: 12: 14: 4B: 96: C4
SHALl: Al:DB: 63:93:91: 6F: 17: E4: 18: 55: 09: 40: 04: 15: C7: 02: 40: BO: AE: 6B
SHA256:
A4: B6: B3: 99: 6F: C2: F3: 06: B3: FD: 86: 81: BD: 63: 41: 3D: 8C. 50: 09: CC. 4F: A3: 29:
Al'i as nane: nozill acert44. pem
MD5: 72: E4:4A: 87: E3: 69: 40: 80: 77: EA: BC. E3: F4: FF: FO: E1
SHALl: 5F: 43: E5: Bl: BF: F8: 78: 8C. AC. 1C: C7: CA: 4A: 9A: C6: 22: 2B: CC: 34: Co6
SHA256:
96: 0A: DF: 00: 63: E9: 63: 56: 75: 0C. 29: 65: DD: OA: 08: 67: DA: 0B: 9C: BD: 6E: 77: 71:
Al'i as nane: nozillacert108. pem
MD5: 3E: 45:52:15:09:51:92: E1: B7: 5D: 37: 9F: B1: 87: 29: 8A
SHALl: B1: BC: 96: 8B: D4: F4: 9D: 62: 2A: A8: 9A: 81: F2: 15: 01: 52: A4: 1D: 82: 9C
SHA256:
EB: D4: 10: 40: E4: BB: 3E: C7: 42: C9: E3: 81: D3: 1E: F2: A4: 1A: 48: B6: 68: 5C. 96: E7:
Alias nane: nozillacert95. pem
MD5: 3D: 3B: 18: 9E: 2C. 64: 5A: E8: D5: 88: CE: OE: F9: 37: C2: EC
SHALl: DA: FA: F7: FA: 66: 84: EC. 06: 8F: 14: 50: BD: C7: C2: 81: A5: BC:. A9: 64: 57
SHA256:
ED: F7: EB: BC. A2: 7A: 2A: 38: 4D: 38: 7B: 7D: 40: 10: C6: 66: E2: ED: B4: 84: 3E: 4C. 29:
Al i as nane: keynectisrootca
MD5: CC. 4D: AE: FB: 30: 6B: D8: 38: FE: 50: EB: 86: 61: 4B: D2: 26
SHALl: 9C. 61: 5C. 4D: 4D: 85: 10: 3A: 53: 26: C2: 4D: BA: EA: E4: A2: D2: D5: CC. 97
SHA256:
42:10: F1: 99: 49: 9A: 9A: C3: 3C. 8D: EO: 2B: A6: DB: AA: 14: 40: 8B: DD: 8A: 6E: 32: 46:
Al'i as nane: nozillacert141. pem
MD5: A9: 23: 75: 9B: BA: 49: 36: 6E: 31: C2: DB: F2: E7: 66: BA: 87
SHAL1: 31:7A: 2A: DO: 7F: 2B: 33: 5E: F5: Al: C3: 4E: 4B: 57: E8: B7: D8: F1: FC. A6
SHA256:
58: D0: 17: 27: 9C. D4: DC: 63: AB: DD: B1: 96: A6: C9: 90: 6C: 30: C4: EO: 87: 83: EA: E8:
Al'i as nane: equifaxsecuregl obal ebusi nesscal
MD5: 51: FO: 2A: 33: F1: F5: 55: 39: 07: F2: 16: 7A: 47: C7: 5D. 63
SHALl: 3A: 74: CB: 7A: 47: DB: 70: DE: 89: 1F: 24: 35: 98: 64: B8: 2D: 82: BD: 1A: 36
SHA256:
86: AB: 5A: 65: 71: D3: 32: 9A: BC. D2: E4: E6: 37: 66: 8B: A8: 9C. 73: 1E: C2: 93: B6: CB:
Alias nanme: affirmrustprem unta
MD5: CA4:5D: OE: 48: B6: AC. 28: 30: 4E: OA: BC: F9: 38: 16: 87: 57
SHALl: D8: A6: 33: 2C. EO: 03: 6F: B1: 85: F6: 63: 4F: 7D: 6A: 06: 65: 26: 32: 28: 27
SHA256:
70: A7: 3F: 7F: 37: 6B: 60: 07: 42: 48: 90: 45: 34: B1: 14: 82: D5: BF: OE: 69: 8E: CC. 49:
Alias nane: baltinorecodesi gni ngca
MD5: 90: F5: 28:49: 56: D1: 5D; 2C. BO: 53: D4: 4B: EF: 6F: 90: 22
SHALl: 30:46: D8: C8: 88: FF: 69: 30: C3: 4A: FC. CD: 49: 27: 08: 7C. 60: 56: 7B: 0D
SHA256:
A9: 15: 45: DB: D2: E1: 9C. 4C. CD: F9: 09: AA: 71: 90: OD: 18: C7: 35: 1C:. 89: B3: 15: FO:
Alias nane: nozillacert33. pem
MD5: 22:2D: A6: 01: EA: 7C. OA: F7: FO: 6C. 56: 43: 3F: 77: 76: D3
SHALl: FE: B8: C4: 32: DC. F9: 76: 9A: CE: AE: 3D: D8: 90: 8F: FD: 28: 86: 65: 64: 7D
SHA256:
A2: 2D: BA: 68: 1E: 97: 37: 6E: 2D: 39: 7D: 72: 8A: AE: 3A: 9B: 62: 96: B9: FD: BA: 60: BC.
Al'i as nane: nozillacert0. pem
MD5: CA: 3D: D3: 68: F1: 03: 5C: DO: 32: FA: B8: 2B: 59: E8: 5A: DB
SHALl: 97:81:79:50:D8: 1C. 96: 70: CC. 34: D8: 09: CF: 79: 44: 31: 36: 7TE: F4: 74
SHA256:
A5: 31: 25:18:8D: 21: 10: AA: 96: 4B: 02: C7: B7: C6: DA: 32: 03: 17: 08: 94: E5: FB: 71:
Al'i as nane: nozill acert84. pem

94: 6F:

4A: EA:

89: Cl1:

Cl1: 60:

A6: OF:

8D: F5:

F1: 3D:

2E: 11:

FF: FB:

5B:

. FO!

FB:

. Cl:

. 1D

92:

99:

711

25:

05!

F6!

66:

192

4C.

E2:

23:

5B:

2D:

54:

63:

77

Cl:

47:

67:

99: F4.

FA:

49:

93:

06:

40:

EB:

3A:

F2:

1B:

AB:

. 6C D4

32:

97:

1 93:

AO:

F2:

8F:

. E6:

2C

14:

39:

33:

E6:

15: .

55:

91:

E9:

FB:

. 75:

81:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

MD5: 49:63: AE: 27: F4: D5: 95: 3D: D8: DB: 24: 86: B8: 9C. 07: 53
SHALl: D3: C0: 63: F2: 19: ED: 07: 3E: 34: AD: 5D: 75: 0B: 32: 76: 29: FF: D5: 9A: F2
SHA256:

79: 3C. BF: 45: 59: B9: FD: E3: 8A: B2: 2D: F1: 68: 69: F6: 98: 81: AE: 14: C4: BO: 13: 9A:

Alias nane: nozillacert130. pem
MD5: 65:58: AB: 15: AD: 57: 6C. 1E: A8: A7: B5: 69: AC. BF: FF: EB
SHALl: E5: DF: 74: 3C. B6: 01: C4: 9B: 98: 43: DC. AB: 8C. E8: 6A: 81: 10: 9F: E4: 8E
SHA256:

F4: Cl: 49:55: 1A: 30: 13: A3: 5B: C7: BF: FE: 17: A7: F3: 44: 9B: Cl1: AB: 5B: 5A: OA: E7:

Alias nane: nozillacert148. pem
MD5: 4C. 56:41: E5: OD: BB: 2B: E8: CA: A3: ED: 18: 08: AD: 43: 39
SHAL: 04: 83: ED: 33: 99: AC: 36: 08: 05: 87: 22: ED: BC. 5E: 46: 00: E3: BE: F9: D7
SHA256:

6E: A5: 47: 41: DO: 04: 66: 7E: ED: 1B: 48: 16: 63: 4A: A3: A7: 9E: 6E: 4B: 96: 95: OF: 82:

Al'i as nane: nozillacert22. pem
MD5: 02:26: C3:01: 5E: 08: 30: 37:43: A9: DO: 7D: CF: 37: E6: BF
SHALl: 32:3C:.11: 8E: 1B: F7: B8: B6: 52: 54: E2: E2: 10: OD: D6: 02: 90: 37: FO: 96
SHA256:

37:D5:10: 06: C5: 12: EA: AB: 62: 64: 21: F1: EC. 8C. 92: 01: 3F: C5: F8: 2A: E9: 8E: E5:

Alias nane: verisignclgl. pem
MD5: 97:60: E8: 57: 5F: D3: 50: 47: E5: 43: 0C: 94: 36: 8A: BO: 62
SHAL: 90: AE: A2: 69: 85: FF: 14: 80: 4C. 43: 49: 52: EC. E9: 60: 84: 77: AF: 55: 6F
SHA256:

D1: 7C. D8: EC. D5: 86: B7: 12: 23: 8A: 48: 2C. E4: 6F: A5: 29: 39: 70: 74: 2F: 27: 6D: 8A:

Al'i as nane: nozillacert7. pem
MD5: 32: 4A: 4B: BB: C8: 63: 69: 9B: BE: 74: 9A: C6: DD: 1D: 46: 24
SHALl: AD: 7E: 1C. 28: BO: 64: EF: 8F: 60: 03: 40: 20: 14: C3: DO: E3: 37: OE: B5: 8A
SHA256:

14: 65: FA: 20: 53: 97: B8: 76: FA: A6: FO: A9: 95: 8E: 55: 90: E4: OF: CC. 7F: AA: 4F: B7:

Al'i as nane: nozillacert73. pem
MD5: D6:39:81: C6:52: 7E: 96: 69: FC. FC. CA: 66: ED: 05: F2: 96
SHALl: B5: 1C. 06: 7C. EE: 2B: 0C:. 3D: F8: 55: AB: 2D: 92: F4: FE: 39: D4: E7: OF: OE
SHA256:

2C. E1: CB: OB: F9: D2: F9: E1: 02: 99: 3F: BE: 21: 51: 52: C3: B2: DD: 0C: AB: DE: 1C. 68:

Alias nane: nozillacert137. pem
MD5: D3: D9: BD: AE: 9F: AC. 67: 24: B3: C8: 1B: 52: E1: B9: A9: BD
SHALl: 4A: 65: D5: F4: 1D: EF: 39: B8: B8: 90: 4A: 4A: D3: 64: 81: 33: CF: C7: Al: D1
SHA256:

BD: 81: CE: 3B: 4F: 65: 91: D1: 1A: 67: B5: FC. 7A: 47: FD: EF: 25: 52: 1B: F9: AA: 4E: 18:

Alias nane: sw sssignsilverg2ca
MD5: EO: 06: Al: C9: 7D: CF: C9: FC. OD: C0: 56: 75: 96: D8: 62: 13
SHALl: 9B: AA: E5: 9F: 56: EE: 21: CB: 43: 5A: BE: 25: 93: DF: A7: FO: 40: D1: 1D: CB
SHA256:

BE: 6C. 4D: A2: BB: B9: BA: 59: B6: F3: 93: 97: 68: 37: 42: 46: C3: C0: 05: 99: 3F: A9: 8F:

Al'i as nane: nozillacert1l. pem
MD5: 87: CE: 0B: 7B: 2A: OE: 49: 00: E1: 58: 71: 9B: 37: A8: 93: 72
SHALl: 05:63:B8:63: 0D: 62: D7: 5A: BB: C8: AB: 1E: 4B: DF: B5: A8: 99: B2: 4D: 43
SHA256:

3E: 90: 99: B5: 01: 5E: 8F: 48: 6C. 00: BC: EA: 9D: 11: 1E: E7: 21: FA: BA: 35: 5A: 89: BC:

Alias nane: nozillacert29. pem
MD5: D3: F3: A6: 16: CO: FA: 6B: 1D: 59: B1: 2D: 96: 4D: OE: 11: 2E
SHALl: 74: F8: A3: C3: EF: E7: B3: 90: 06: 4B: 83: 90: 3C:. 21: 64: 60: 20: E5: DF: CE
SHA256:

15: FO: BA: 00: A3: AC. 7A: F3: AC. 88:4C. 07: 2B: 10: 11: AO: 77: BD: 77: C0O: 97: F4: 01:

Alias nane: nozillacert62. pem
MD5: EF: 5A: F1: 33: EF: F1: CD: BB: 51: 02: EE: 12: 14: 4B: 96: C4
SHALl: Al:DB: 63:93:91: 6F: 17: E4: 18: 55: 09: 40: 04: 15: C7: 02: 40: BO: AE: 6B
SHA256:

A4: B6: B3: 99: 6F: C2: F3: 06: B3: FD: 86: 81: BD: 63: 41: 3D: 8C. 50: 09: CC. 4F: A3: 29:

4B:

79:

33:

B6:

E5:

B9:

02:

F1:

64:

. 88:

06:

EB:

A9:

31:

E3:

0oD:

B2:

A7

FC:

46!

E4:

167!

9B:

1D;

1 69:

F8:

FO:

193

8A:

1 3B:

8D:

19:

6E:

75:

83:

1 2E:

ED:

56:

59:

E2:

1A:

90:

9B:

B8:

EO:

21:

91:

34:

BE:

1E:

8A:

FA:

FC.

00:

28:

FB:

54:

AT

3D:

BD:

1B:

CA: |

4C: |

. 81:

8F:

5F:

80:

: 8A:

83:

14:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Alias nane: nozillacert126. pem
MD5: 77:0D: 19: B1: 21: FD: 00: 42: 9C. 3E: OC:. A5: DD: 0B: 02: 8E
SHAL: 25:01:90: 19: CF: FB: D9: 99: 1C. B7: 68: 25: 74: 8D: 94: 5F: 30: 93: 95: 42
SHA256:

AF: 8B: 67: 62: Al: E5: 28: 22: 81: 61: A9: 5D: 5C. 55: 9E: E2: 66: 27: 8F: 75: D7: 9E: 83:

Al i as nane: securetrustca
MD5: DC. 32: C3: A7: 6D: 25: 57: C7: 68: 09: 9D: EA: 2D: A9: A2: D1
SHALl: 87:82: C6: C3:04: 35: 3B: CF: D2: 96: 92: D2: 59: 3E: 7D: 44: D9: 34: FF: 11
SHA256:

F1: Cl: B5: OA: E5: A2: OD: D8: 03: OE: C9: F6: BC: 24: 82: 3D: D3: 67: B5: 25: 57: 59: B4

Al i as nane: soneracl asslca
MD5: 33:B7:84: F5:5F: 27: D7: 68: 27: DE: 14: DE: 12: 2A: ED: 6F
SHALl: 07:47:22:01:99: CE: 74: B9: 7C. BO: 3D: 79: B2: 64: A2: C8: 55: E9: 33: FF
SHA256:

CD: 80: 82: 84: CF: 74: 6F: F2: FD: 6E: B5: 8A: Al: D5: 9C: 4A: D4: B3: CA: 56: FD: C6: 27:

Alias nane: nozillacert18. pem
MD5: F1: 6A: 22:18: C9: CD: DF: CE: 82: 1D: 1D: B7: 78: 5C. A9: A5
SHAL: 79:98: A3: 08: El1: 4D: 65: 85: E6: C2: 1E: 15: 3A: 71: 9F: BA: 5A: D3: 4A: D9
SHA256:

44:04: E3: 3B: 5E: 14: 0D: CF: 99: 80: 51: FD: FC. 80: 28: C7: C8: 16: 15: C5: EE: 73: 7B:

Alias nane: nozillacert51. pem
MD5: 18:98: C0: D6: E9: 3A: FC. F9: BO: F5: 0C. F7: 4B: 01: 44: 17
SHALl: FA: B7: EE: 36: 97: 26: 62: FB: 2D: BO: 2A: F6: BF: 03: FD: E8: 7C. 4B: 2F: 9B
SHA256:

EA: A9: 62: CA: FA: 4A: 6B: AF: EB: E4: 15: 19: 6D: 35: 1C. CD: 88: 8D: 4F: 53: F3: FA: 8A:

Alias nane: nozillacert69. pem
MD5: A6: BO: CD: 85: 80: DA: 5C: 50: 34: A3: 39: 90: 2F: 55: 67: 73
SHALl: 2F: 78: 3D: 25:52: 18: A7: 4A: 65: 39: 71: B5: 2C. A2: 9C. 45: 15: 6F: E9: 19
SHA256:

25:30: CC: 8E: 98: 32: 15: 02: BA: D9: 6F: 9B: 1F: BA: 1B: 09: 9E: 2D: 29: 9E: OF: 45: 48:

Alias nane: nozillacert115. pem
MD5: 2B: 9B: 9E: E4: 7B: 6C. 1F: 00: 72: 1A: CC. C1: 77: 79: DF: 6A
SHALl: 59:0D: 2D: 7D: 88: 4F: 40: 2E: 61: 7E: A5: 62: 32: 17: 65: CF: 17: D8: 94: E9
SHA256:

91: E2: F5: 78: 8D: 58: 10: EB: A7: BA: 58: 73: 7D: E1: 54: 8A: 8E: CA: CD: 01: 45: 98: BC:

Alias nane: verisigncl ass3g5ca
MD5: CB: 17: E4: 31:67: 3E: E2: 09: FE: 45: 57: 93: F3: OA: FA: 1C
SHALl: 4E: B6: D5: 78: 49: 9B: 1C. CF: 5F: 58: 1E: AD: 56: BE: 3D: 9B: 67: 44: A5: E5
SHA256:

9A: CF: AB: 7E: 43: C8: D8: 80: DO: 6B: 26: 2A: 94: DE: EE: E4: B4: 65: 99: 89: C3: DO: CA:

Al i as nane: utnuserfirsthardwareca
MD5: 4C. 56:41: E5: OD: BB: 2B: E8: CA: A3: ED: 18: 08: AD: 43: 39
SHALl: 04:83: ED: 33: 99: AC: 36: 08: 05: 87: 22: ED: BC: 5E: 46: 00: E3: BE: F9: D7
SHA256:

6E: A5: 47: 41: DO: 04: 66: 7E: ED: 1B: 48: 16: 63: 4A: A3: A7: 9E: 6E: 4B: 96: 95: OF: 82:

Alias nane: addtrustqualifiedca
MD5: 27: EC. 39: 47: CD: DA: 5A: AF: E2: 9A: 01: 65: 21: A9: 4C. BB
SHALl: 4D: 23: 78: EC. 91: 95: 39: B5: 00: 7F: 75: 8F: 03: 3B: 21: 1E: C5: 4D: 8B: CF
SHA256:

80: 95: 21: 08: 05: DB: 4B: BC. 35: 5E: 44: 28: D8: FD: 6E: C2: CD: E3: AB: 5F: B9: 7A: 99:

Al'i as nane: nozill acert40. pem
MD5: 56:5F: AA: 80: 61:12: 17: F6: 67: 21: E6: 2B: 6D: 61: 56: 8E
SHALl: 80: 25: EF: F4: 6E: 70: C8: D4: 72: 24: 65: 84: FE: 40: 3B: 8A: 8D: 6A: DB: F5
SHA256:

8D: AO: 84: FC. F9: 9C. EQ: 77: 22: F8: 9B: 32: 05: 93: 98: 06: FA: 5C. B8: 11: E1: C8: 13:

Alias nane: nozillacert58. pem
MD5: 01: 5E: D8: 6B: BD: 6F: 3D: 8E: Al: 31: F8: 12: EO: 98: 73: 6A
SHALl: 8D: 17:84:D5:37: F3:03: 7D: EC. 70: FE: 57: 8B: 51: 9A: 99: E6: 10: D7: BO

01:

E7:

4A:

11:

E6:

BB:

0B:

F1:

79:

42:

F6:

89:

1B:

89:

1B:

D7:

91:

14:

9B:

98:

Al:

A5

61:

26:

58:

4F;

3E:

AF;

FC:

8E:

08!

194

03:

FC.

AT

82:

1 66:

36:

04:

64:

8D:

B8:

C7:

50:

E9:

83:

33:

A9:

3B:

1B:

05:

9B:

F4:

B6A:

F7:

5F:

A9:

4E:

17:

E4:

. 36:

BD:

37:

32:

B5:

60: .

05:

1A:

. 81:

B3:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHA256:

5E: DB: 7A: C4: 3B: 82: AO: 6A: 87: 61: E8: D7: BE: 49: 79: EB: F2: 61: 1F: 7D: D7: 9B: F9:

Alias nane: verisigncl ass3g3ca
MD5: CD: 68: B6: A7: C7: C4: CE: 75: EO: 1D: 4F: 57: 44: 61: 92: 09
SHALl: 13:2D:. 0D: 45: 53: 4B: 69: 97: CD: B2: D5: C3: 39: E2: 55: 76: 60: 9B: 5C. C6
SHA256:

EB: 04: CF: 5E: B1: F3: 9A: FA: 76: 2F: 2B: B1: 20: F2: 96: CB: A5: 20: C1: B9: 7D: B1: 58:

Alias nane: nozillacert104. pem
MD5: 55:5D:63:00: 97: BD: 6A: 97: F5: 67: AB: 4B: FB: 6E: 63: 15
SHAL: 4F: 99: AA: 93: FB: 2B: D1: 37: 26: Al: 99: 4A: CE: 7F: FO: 05: F2: 93: 5D: 1E
SHA256:

1C. 01: C6: F4: DB: B2: FE: FC. 22: 55: 8B: 2B: CA: 32: 56: 3F: 49: 84: 4A: CF: C3: 2B: 7B:

Al'i as nane: nozillacert9l. pem
MD5: 30: C9: E7: 1E: 6B: E6: 14: EB: 65: B2: 16: 69: 20: 31: 67: 4D
SHAL: 3B: C0: 38: 0B: 33: C3: F6: A6: 0C. 86: 15: 22: 93: D9: DF: F5: 4B: 81: C0: 04
SHA256:

Cl: B4: 82: 99: AB: A5: 20: 8F: E9: 63: OA: CE: 55: CA: 68: A0: 3E: DA: 5A: 51: 9C. 88: 02:

Alias nane: thawtepersonal freemail ca
MD5: 53:4B: 1D: 17: 58: 58: 1A: 30: Al: 90: F8: 6E: 5C. F2: CF: 65
SHALl: EG6: 18: 83: AE: 84: CA: C1: Cl1: CD: 52: AD: E8: E9: 25: 2B: 45: A6: 4F: B7: E2
SHA256:

5B: 38: BD: 12: 9E: 83: D5: AO: CA: D2: 39: 21: 08: 94: 90: D5: 0D: 4A: AE: 37: 04: 28: F8:

Alias nane: certpluscl ass3pprimaryca
MD5: El: 4B: 52: 73: D7: 1B: DB: 93: 30: E5: BD: E4: 09: 6E: BE: FB
SHAL: 21:6B: 2A: 29: E6: 2A: 00: CE: 82: 01: 46: D8: 24: 41: 41: B9: 25: 11: B2: 79
SHA256:

CC. C8:94:89: 37: 1B: AD: 11: 1C. 90: 61: 9B: EA: 24: OA: 2E: 6D: AD: D9: 9F: 9F: 6E: 1D:

Al'i as nane: verisignc3g4. pem
MD5: 3A:52: El: E7: FD: 6F: 3A: E3: 6F: F3: 6F: 99: 1B: F9: 22: 41
SHALl: 22: D5:D8: DF: 8F: 02: 31: D1: 8D: F7: 9D: B7: CF: 8A: 2D: 64: C9: 3F: 6C. 3A
SHA256:

69: DD: D7: EA: 90: BB: 57: C9: 3E: 13: 5D: C8: 5E: A6: FC: D5: 48: 0B: 60: 32: 39: BD: 4:

Al i as nanme: sw sssigngol dg2ca
MD5: 24:77:D9: A8: 91: D1: 3B: FA: 88: 2D: C2: FF: F8: CD: 33: 93
SHALl: D8: C5: 38: 8A: B7: 30: 1B: 1B: 6E: D4: 7A: E6: 45: 25: 3A: 6F: 9F: 1A: 27: 61
SHA256:

62: DD: OB: E9: B9: F5: OA: 16: 3E: AO: F8: E7: 5C. 05: 3B: 1E: CA: 57: EA: 55: C8: 68: 8F:

Al'i as nane: nozillacert47. pem
MD5: ED: 41: F5: 8C. 50: C5: 2B: 9C. 73: E6: EE: 6C. EB: C2: A8: 26
SHALl: 1B: 4B: 39: 61: 26: 27: 6B: 64: 91: A2: 68: 6D: D7: 02: 43: 21: 2D: 1F: 1D: 96
SHA256:

E4: C7: 34: 30: D7: A5: B5: 09: 25: DF: 43: 37: 0A: OD: 21: 6E: 9A: 79: B9: D6: DB: 83: 73:

Alias nane: nozillacert80.pem
MD5: 64: B0: 09: 55: CF: B1: D5: 99: E2: BE: 13: AB: A6: 5D: EA: 4D
SHALl: BS8: 23:6B: 00: 2F: 1D: 16: 86: 53: 01: 55: 6C. 11: A4: 37: CA: EB: FF: C3: BB
SHA256:

BD: 71: FD: F6: DA: 97: E4: CF. 62: D1: 64: 7A: DD: 25: 81: BO: 7D: 79: AD: F8: 39: 7E: B4

Alias nane: nozillacert98. pem
MD5: 43:5E: 88: D4: 7D: 1A: 4A: 7E: FD: 84: 2E: 52: EB: 01: D4: 6F
SHAL1: C9: A8: B9: E7: 55: 80: 5E: 58: E3: 53: 77: A7: 25: EB: AF: C3: 7B: 27: CC. D7
SHA256:

3E: 84: BA: 43: 42:90: 85: 16: E7: 75: 73: C0: 99: 2F: 09: 79: CA: 08: 4E: 46: 85: 68: 1F:

Alias nane: nozillacert144. pem
MD5: A3: EC. 75: OF: 2E: 88: DF: FA: 48: 01: 4E: OB: 5C. 48: 6F: FB
SHALl: 37:F7:6D: E6: 07: 7C: 90: C5: B1: 3E: 93: 1A: B7: 41: 10: B4: F2: E4: 9A: 27
SHA256:

79:08: B4: 03: 14: Cl1: 38: 10: 0B: 51: 8D: 07: 35: 80: 7F: FB: FC. F8: 51: 8A: 00: 95: 33:

Alias nane: starfieldclass2ca
MD5: 32: 4A: 4B: BB: C8: 63: 69: 9B: BE: 74: 9A: C6: DD: 1D: 46: 24

1C 1C

95: 65:

E4: BO:

AO: D3:

DD: FF:

4D: 41:

54: FC.

64: 7C.

AO: C6:

EC. BA:

F1:95:

71: 05:

6B:

B8

FF:

A6

FF:

E5!

75:

68:

9E:

9C

BA:

195

56:

1C

59:

73:

FA:

8E:

8B:

81:

B1:

5E:

BA:

38:

6A: 21:

B9: Al:

9F: 9E:

BE: 8F:

4C: 15:

D6: DE:

2A:. 26:

F2: C8:

CC. 31:

84: 88:

8A: 22:

6B: 15:

9E:

7B:

8C.

8E:

64:

3D

35:

82:

9B:

3D

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHALl: AD: 7E: 1C. 28: BO: 64: EF: 8F: 60: 03: 40: 20: 14: C3: DO: E3: 37: OE: B5: 8A
SHA256:
14: 65: FA: 20: 53: 97: B8: 76: FA: A6: FO: A9: 95: 8E: 55: 90: E4: OF: CC. 7F: AA: 4F: B7:
Alias nane: nozillacert36. pem
MD5: FO: 96: B6: 2F: C5: 10: D5: 67: 8E: 83: 25: 32: E8: 5E: 2E: E5
SHALl: 23:88:C9:D3: 71: CC. 9E: 96: 3D: FF: 7D: 3C. A7: CE: FC. D6: 25: EC: 19: 0D
SHA256:
32: 7A: 3D: 76: 1A: BA: DE: AO: 34: EB: 99: 84: 06: 27: 5C. B1: A4: 77: 6E: FD: AE: 2F: DF:
Al'i as nane: nozillacert3. pem
MD5: 39:16: AA B9: 6A: 41: E1: 14: 69: DF: 9E: 6C. 3B: 72: DC. B6
SHALl: 87: 9F: 4B: EE: 05: DF: 98: 58: 3B: E3: 60: D6: 33: E7: OD: 3F: FE: 98: 71: AF
SHA256:
39: DF: 7B: 68: 2B: 7B: 93: 8F: 84: 71: 54: 81: CC. DE: 8D: 60: D8: F2: 2E: C5: 98: 87: 7D:
Al'i as nane: gl obal si gnr2ca
MD5: 94:14:77:. 7E: 3E: 5E: FD: 8F: 30: BD: 41: BO: CF: E7: DO: 30
SHALl: 75: EO: AB: B6: 13: 85: 12: 27: 1C. 04: F8: 5F: DD: DE: 38: E4: B7: 24: 2E: FE
SHA256:
CA: 42: DD: 41: 74: 5F: DO: B8: 1E: B9: 02: 36: 2C. F9: D8: BF: 71: 9D: Al: BD: 1B: 1E: FC:
Al'i as nane: nozillacert87. pem
MD5: 6C:. 39: 7D: A4: OE: 55: 59: B2: 3F: D6: 41: B1: 12: 50: DE: 43
SHALl: 5F: 3B: 8C. F2: F8: 10: B3: 7D: 78: B4: CE: EC: 19: 19: C3: 73: 34: B9: C7: 74
SHA256:
51: 3B: 2C. EC. B8: 10: D4: CD: E5: DD: 85: 39: 1A: DF: C6: C2: DD: 60: D8: 7B: B7: 36: D2:
Al'i as nane: nozillacert133. pem
MD5: D6: ED: 3C. CA: E2: 66: OF: AF: 10: 43: 0D: 77: 9B: 04: 09: BF
SHALl: 85:B5: FF: 67:9B: 0C:. 79: 96: 1F: C8: 6E: 44: 22: 00: 46: 13: DB: 17: 92: 84
SHA256:
7D: 3B: 46: 5A: 60: 14: E5: 26: CO: AF: FC. EE: 21: 27: D2: 31: 17: 27: AD: 81: 1C. 26: 84:
Al'i as nane: nozillacert25. pem
MD5: CB: 17: E4: 31:67: 3E: E2: 09: FE: 45: 57: 93: F3: 0A: FA: 1C
SHALl: 4E: B6: D5: 78: 49: 9B: 1C. CF: 5F: 58: 1E: AD: 56: BE: 3D: 9B: 67: 44: A5: E5
SHA256:
9A: CF: AB: 7E: 43: C8: D8: 80: DO: 6B: 26: 2A: 94: DE: EE: E4: B4: 65: 99: 89: C3: DO: CA:
Alias nane: verisigncl asslg2ca
MD5: DB: 23: 3D: F9: 69: FA: 4B: B9: 95: 80: 44: 73: 5E: 7D: 41: 83
SHALl: 27:3E: El: 24:57: FD: C4: F9: 0C: 55: E8: 2B: 56: 16: 7F: 62: F5: 32: E5: 47
SHA256:
34: 1D: E9: 8B: 13: 92: AB: F7: F4: AB: 90: A9: 60: CF: 25: D4: BD: 6E: C6: 5B: 9A: 51: CE:
Al'i as nane: nozillacert76. pem
MD5: 82:92: BA: 5B: EF: CD: 8A: 6F: A6: 3D: 55: F9: 84: F6: D6: B7
SHALl: F9: B5: B6: 32: 45: 5F: 9C. BE: EC. 57: 5F: 80: DC. E9: 6E: 2C. C7: B2: 78: B7
SHA256:
03: 76: AB: 1D: 54: C5: F9: 80: 3C. E4: B2: E2: 01: AO: EE: 7E: EF: 7B: 57: B6: 36: E8: A9:
Alias nane: nozillacert122. pem
MD5: 1D: 35: 54: 04: 85: 78: BO: 3F: 42: 42: 4D: BF: 20: 73: 0A: 3F
SHALl: 02: FA: F3: E2:91: 43: 54: 68: 60: 78: 57: 69: 4D: F5: E4: 5B: 68: 85: 18: 68
SHA256:
68: 7F: A4: 51: 38: 22: 78: FF: FO: C8: B1: 1F: 8D: 43: D5: 76: 67: 1C. 6E: B2: BC. EA: B4:
Al'i as nane: nozillacert14. pem
MD5: D4:74: DE: 57:5C. 39: B2: D3: 9C: 85: 83: C5: C0: 65: 49: 8A
SHALl: 5F: B7: EE: 06: 33: E2: 59: DB: AD: 0C: 4C. 9A: E6: D3: 8F: 1A: 61: C7: DC. 25
SHA256:
74:.31: E5: F4: C3: Cl1: CE: 46: 90: 77: 4F: OB: 61: EO: 54: 40: 88: 3B: A9: AO: 1E: DO: OB:
Al i as nane: equifaxsecureca
MD5: 67:CB: 9D CO: 13: 24: 8A: 82: 9B: B2: 17: 1E: D1: 1B: EC. D4
SHALl: D2:32:09: AD: 23: D3: 14: 23: 21: 74: E4: OD: 7F: 9D: 62: 13: 97: 86: 63: 3A
SHA256:
08:29: 7A: 40: 47: DB: A2: 36: 80: C7: 31: DB: 6E: 31: 76: 53: CA: 78: 48: E1: BE: BD: 3A:
Alias nane: nozillacert65. pem

C2: C8:

6D: 01:

0A: AA:

94: 6F:

B5: 21:

2D: 00:

F1: 9B:

6E: DO:

3C 9B:

13: FB:

A6: AB:

0B: 01:

67:

68:

Cl:

5B:

48!

6A:

AF;

67:

8D

83:

D7:

79:

196

75:

2B:

4C.

4A:

F3:

64:

48:

80:

AT

21:

59:

99:

73:

05:

: OE:

60:

. 65:

6E:

07:

FB:

: 1C. 4F:

18:

F4:

CTA

06:

E4:

C7:

F9:

5F:

55:

2B

2C

OE:

1A:

. 6F:

. 6D:

. B1:

2C

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

MD5: A2: 6F: 53: B7: EE: 40: DB: 4A: 68: E7: FA: 18: D9: 10: 4B: 72
SHALl: 69: BD: 8C. F4: 9C. D3: 00: FB: 59: 2E: 17: 93: CA: 55: 6A: F3: EC. AA: 35: FB
SHA256:

BC. 23: F9: 8A: 31: 3C. B9: 2D: E3: BB: FC. 3A: 5A: 9F: 44: 61: AC. 39: 49: 4C. 4A: E1: 5A: 9E: 9D: F1;

Alias nane: nozillacertl1ll. pem
MD5: F9:03: 7E: CF: E6: 9E: 3C: 73: 7A: 2A: 90: 07: 69: FF: 2B: 96
SHALl: 9C. BB: 48: 53: F6: A4: F6: D3: 52: A4: E8: 32: 52: 55: 60: 13: F5: AD: AF: 65
SHA256:

59: 76:90: 07: F7: 68: 5D: OF: CD: 50: 87: 2F: 9F: 95: D5: 75: 5A: 5B: 2B: 45: 7D: 81: F3:

Al i as nane: certuntrustednetworkca
MD5: D5: E9: 81: 40: C5: 18: 69: FC. 46: 2C. 89: 75: 62: OF: AA: 78
SHALl: 07: EO: 32: EO: 20: B7: 2C. 3F: 19: 2F: 06: 28: A2: 59: 3A: 19: A7: OF: 06: 9E
SHA256:

5C. 58: 46: 8D: 55: F5: 8E: 49: 7E: 74: 39: 82: D2: B5: 00: 10: B6: D1: 65: 37: 4A: CF: 83:

Alias nane: nozillacert129. pem
MD5: 92:65:58:8B: A2: 1A: 31: 72: 73: 68: 5C. B4: A5: 7A: 07: 48
SHALl: E6: 21: F3: 35:43: 79: 05: 9A: 4B: 68: 30: 9D: 8A: 2F: 74: 22: 15: 87: EC. 79
SHA256:

AO: 45: 9B: 9F: 63: B2: 25: 59: F5: FA: 5D: 4C. 6D: B3: F9: F7: 2F: F1: 93: 42: 03: 35: 78:

Alias nane: nozillacert54. pem
MD5: B5: E8: 34: 36: C9: 10: 44: 58: 48: 70: 6D: 2E: 83: D4: B8: 05
SHALl: 03: 9E: ED: B8: 0B: E7: AO: 3C. 69: 53: 89: 3B: 20: D2: D9: 32: 3A: 4C. 2A. FD
SHA256:

B4: 78: B8: 12: 25: OD: F8: 78: 63: 5C. 2A: A7: EC. 7D: 15: 5E: AA: 62: 5E: E8: 29: 16: E2:

Al'i as nane: nozillacert100. pem
MD5: CD: EO: 25: 69: 8D: 47: AC. 9C: 89: 35: 90: F7: FD: 51: 3D: 2F
SHA1: 58: E8: AB: BO: 36: 15: 33: FB: 80: F7: 9B: 1B: 6D: 29: D3: FF: 8D: 5F: 00: FO
SHA256:

49: E7: Ad4: 42: AC. FO: EA: 62: 87: 05: 00: 54: B5: 25: 64: B6: 50: E4: F4: 9E: 42: E3: 48:

Al'i as nane: nozillacert118. pem
MD5: 8F:5D: 77:06: 27: C4: 98: 3C. 5B: 93: 78: E7: D7: 7D: 9B: CC
SHALl: 7E: 78:4A: 10: 1C. 82: 65: CC. 2D: E1: F1: 6D: 47: B4: 40: CA: D9: OA: 19: 45
SHA256:

5F: 0B: 62: EA: B5: E3: 53: EA: 65: 21: 65: 16: 58: FB: B6: 53: 59: F4: 43: 28: 0A: 4A: FB:

Alias nane: gd-class2-root. pem
MD5: 91: DE: 06: 25: AB: DA: FD: 32: 17: 0C. BB: 25: 17: 2A: 84: 67
SHALl: 27:96: BA: E6: 3F: 18: 01: E2: 77: 26: 1B: A0: D7: 77: 70: 02: 8F: 20: EE: E4
SHA256:

C3:84:6B: F2: 4B: 9E: 93: CA: 64: 27: 4C. OE: C6: 7C. 1E: CC. 5E: 02: 4F: FC. AC. D2: D7:

Alias nane: nozillacert151. pem
MD5: 86: 38: 6D: 5E: 49: 63: 6C. 85: 5C. DB: 6D: DC. 94: B7: DO: F7
SHALl: AC. ED: 5F: 65: 53: FD: 25: CE: 01: 5F: 1F: 7A: 48: 3B: 6A: 74: 9F: 61: 78: C6
SHA256:

7F. 12: CD: 5F: 7E: 5E: 29: OE: C7: D8: 51: 79: D5: B7: 2C: 20: A5: BE: 75: 08: FF: DB: 5B:

Alias nane: thawteprimaryrootcag3
MD5: FB: 1B: 5D: 43: 8A: 94: CD: 44: C6: 76: F2: 43: 4B: 47: E7: 31
SHALl: F1:8B:53:8D: 1B: E9: 03: B6: A6: FO: 56: 43: 5B: 17: 15: 89: CA: F3: 6B: F2
SHA256:

4B: 03: F4:58: 07: AD: 70: F2: 1B: FC. 2C. AE: 71: C9: FD: E4: 60: 4C. 06: 4C. F5: FF: B6:

Al i as nanme: quovadi srootca
MD5: 27: DE: 36: FE: 72: B7: 00: 03: 00: 9D: F4: FO: 1E: 6C. 04: 24
SHALl: DE: 3F: 40: BD: 50: 93: D3: 9B: 6C: 60: F6: DA: BC:. 07: 62: 01: 00: 89: 76: C9
SHA256:

A4: 5E: DE: 3B: BB: FO: 9C. 8A: E1: 5C. 72: EF: C0: 72: 68: D6: 93: A2: 1C. 99: 6F: D5: 1E:

Al ias nane: thawteprimaryrootcag2
MD5: 74:9D: EA: 60: 24: CA: FD: 22: 53: 3E: CC:. 3A: 72: D9: 29: 4F
SHAL1: AA: DB: BC. 22: 23: 8F: C4: 01: Al: 27: BB: 38: DD: F4: 1D: DB: 08: 9E: FO: 12
SHA256:

A4: 31: 0D: 50: AF: 18: A6: 44: 71: 90: 37: 2A: 86: AF: AF: 8B: 95: 1F: FB: 43: 1D: 83: 7F:

69:

AT

FO:

CD: 29: 43;

D1:

40:

F8:

86:

67:

1E:

2B: 61

D4: A3

73: BF!

04: D7

19: 35

1A: B9

BA: E5!

56: 88!

197

31:

OA:

2D:

1D:

61:

1 EO:

7D:

OE:

68:

194:

E9:

98:

B7:

1B:

88:

39:

10:

81:

4A:

60:

. 59:

9B:

67:

68:

46:

6C:

E9:

F9:

FE:

7F:

. D7:

FD:

71:

73:

2F:

D1:

57:

FO:

54:

FD:

6D:

ED:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Al i as nane: deprecateditsecca
MD5: A5:96: 0C. F6: B5: AB: 27: E5: 01: C6: 00: 88: 9E: 60: 33: E5
SHALl: 12:12:0B:03: 0E: 15: 14: 54: F4: DD: B3: F5: DE: 13: 6E: 83: 5A: 29: 72: 9D
SHA256:
9A: 59: DA: 86: 24: 1A: FD: BA: A3: 39: FA: 9C. FD: 21: 6A: 0B: 06: 69: 4D: E3: 7E: 37: 52:
Alias nane: entrustrootcag2
MD5: 4B: E2: C9: 91: 96: 65: 0C. F4: OE: 5A: 93: 92: AO: OA: FE: B2
SHALl: 8C. F4: 27: FD: 79: 0C:. 3A: D1: 66: 06: 8D: E8: 1E: 57: EF: BB: 93: 22: 72: D4
SHA256:
43: DF: 57: 74: BO: 3E: 7F: EF: 5F: E4: OD: 93: 1A: 7B: ED: F1: BB: 2E: 6B: 42: 73: 8C. 4E:
Alias nane: nozillacert43. pem
MD5: 40:01: 25: 06: 8D: 21: 43: 6A: OE: 43: 00: 9C. E7: 43: F3: D5
SHALl: F9: CD:. OE: 2C. DA: 76: 24: C1: 8F: BD: FO: FO: AB: B6: 45: B8: F7: FE: D5: 7A
SHA256:
50:79:41: C7: 44: 60: AO: B4: 70: 86: 22: 0D: 4E: 99: 32: 57: 2A: B5: D1: B5: BB: CB: 89:
Alias nane: nozillacert107. pem
MD5: BE: EC. 11: 93: 9A: F5: 69: 21: BC. D7: C1: C0: 67: 89: CC. 2A
SHALl: 8E: 1C:. 74: F8: A6: 20: B9: E5: 8A: F4: 61: FA: EC. 2B: 47: 56: 51: 1A: 52: C6
SHA256:
F9: 6F: 23: F4: C3: E7: 9C. 07: 7A: 46: 98: 8D: 5A: F5: 90: 06: 76: AO: FO: 39: CB: 64: 5D:
Alias nane: trustcentercl ass4caili
MD5: 9D: FB: F9: AC. ED: 89: 33: 22: F4: 28: 48: 83: 25: 23: 5B: EO
SHALl: A6: 9A: 91: FD: 05: 7F: 13: 6A: 42: 63: 0B: B1: 76: OD: 2D: 51: 12: 0C: 16: 50
SHA256:
32:66:96: 7E: 59: CD: 68: 00: 8D: 9D: D3: 20: 81: 11: 85: C7: 04: 20: 5E: 8D: 95: FD: D8:
Alias nane: nozillacert94. pem
MD5: 46: A7: D2: FE: 45: FB: 64: 5A: A8: 59: 90: 9B: 78: 44: 9B: 29
SHALl: 49:0A: 75:74: DE: 87: 0A: 47: FE: 58: EE: F6: C7: 6B: EB: C6: 0B: 12: 40: 99
SHA256:
9A: 11: 40: 25: 19: 7C. 5B: B9: 5D: 94: E6: 3D: 55: CD: 43: 79: 08: 47: B6: 46: B2: 3C. DF:
Alias nane: nozillacert 140. pem
MD5: 5E: 39: 7B: DD: F8: BA: EC. 82: E9: AC. 62: BA: 0C. 54: 00: 2B
SHAL1: CA: 3A: FB: CF: 12: 40: 36: 4B: 44: B2: 16: 20: 88: 80: 48: 39: 19: 93: 7C. F7
SHA256:
85: A0: DD: 7D: D7: 20: AD: B7: FF: 05: F8: 3D: 54: 2B: 20: 9D: C7: FF: 45: 28: F7: D6: 77:
Alias nane: ttel esecgl obal rootcl ass3ca
MD5: CA: FB: 40: A8: 4E: 39: 92: 8A: 1D: FE: 8E: 2F: C4: 27: EA: EF
SHALl: 55: A6: 72: 3E: CB: F2: EC. CD: C3: 23: 74: 70: 19: 9D: 2A: BE: 11: E3: 81: D1
SHA256:
FD: 73: DA: D3: 1C. 64: 4F: F1: B4: 3B: EF: OC. CD: DA: 96: 71: 0B: 9C. D9: 87: 5E: CA: 7E:
Alias nane: aneninternal corpca
MD5: 7B: OE: 9D: 67: A9: 3A: 88: DD: BA: 81: 8D: A9: 3C. 74: AA: BB
SHALl: 43: E3: E6: 37: C5:88:05:67:91: 37: E3: 72: 4D: 01: 7F: F4: 1B: CE: 3A: 97
SHA256:
01: 29: 04: 6C. 60: EF: 5C: 51: 60: D3: 9F: A2: 3A: 1D: 0C: 52: OA: AF: DA: 4F: 17: 87: 95:
Alias nane: starfiel dservicesrootg2ca
MD5: 17:35:74: AF: 7B: 61: 1C. EB: F4: F9: 3C. E2: EE: 40: F9: A2
SHALl: 92:5A: 8F: 8D: 2C. 6D: 04: EO: 66: 5F: 59: 6A: FF: 22: D8: 63: E8: 25: 6F: 3F
SHA256:
56: 8D: 69: 05: A2: C8: 87: 08: A4: B3: 02: 51: 90: ED: CF: ED: B1: 97: 4A: 60: 6A: 13: C6:
Alias nane: nozillacert32. pem
MD5: OC. 7F: DD: 6A: F4: 2A: B9: C8: 9B: BD: 20: 7E: A9: DB: 5C. 37
SHALl: 60: D6: 89: 74: B5: C2: 65: 9E: 8A: OF: C1: 88: 7C. 88: D2: 46: 69: 1B: 18: 2C
SHA256:
B9: BE: A7: 86: 0A: 96: 2E: A3: 61: 1D: AB: 97: AB: 6D: A3: E2: 1C: 10: 68: B9: 7D: 55: 57:
Alias nane: nozillacert83. pem
MD5: 2C.8C. 17:5E: Bl1:54: AB: 93: 17: B5: 36: 5A: DB: D1: C6: F2
SHALl: AO0: 73: E5: C5: BD: 43: 61: 0D: 86: 4C: 21: 13: 0OA: 85: 58: 57: CC. 9C:. EA: 46

6B:

6D: 38:

80:

D1:

4F:

11:

B1:

31:

E5:

5E:

BE:

AB:

75:

1C

AD:

83:

70:

. 66:

29:

63:

41

1C

491

7B

89:

TA

82:

OF!

s E1:

198

10:

B1:

B2:

31:

1 AO:

FE:

F3:

01:

12:

3D: 3A:

76:

16:

1E:

OE:

A5:

E9:

9F:

s 2A:

79:

. BC: 83:

51:

67:

FF:

E5:

6D:

76:

E6:

Cl:

74:

AT

A8

124

04:

15:

52:

3E:

1C

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHA256:

8C. 4E: DF: DO: 43: 48: F3: 22: 96: 9E: 7E: 29: A4: CD: 4D. CA: 00: 46: 55: 06: 1C. 16: E1:

Al i as nane: verisignroot.pem
MD5: 8E: AD: B5: 01: AA: 4D: 81: E4: 8C. 1D: D1: E1: 14: 00: 95: 19
SHAL: 36:79: CA: 35: 66: 87: 72: 30: 4D: 30: A5: FB: 87: 3B: OF: A7: 7B: B7: OD: 54
SHA256:

23:99:56:11: 27: A5: 71: 25: DE: 8C. EF: EA: 61: OD: DF: 2F: AO: 78: B5: C8: 06: 7F: 4E:

Alias nane: nozillacert147. pem
MD5: B3: Ab: 3E: 77: 21: 6D: AC. 4A: C0: C9: FB: D5: 41: 3D: CA: 06
SHALl: 58:11:9F: OE: 12: 82: 87: EA: 50: FD: D9: 87: 45: 6F: 4F: 78: DC. FA: D6: D4
SHA256:

85: FB: 2F: 91: DD: 12: 27: 5A: 01: 45: B6: 36: 53: 4F: 84: 02: 4A: D6: 8B: 69: B8: EE: 88:

Al i as nane: canerfirmchanbersca
MD5: 5E: 80: 9E: 84: 5A: OE: 65: 0B: 17: 02: F3: 55: 18: 2A: 3E: D7
SHALl: 78:6A:74: AC. 76: AB: 14: 7F: 9C. 6A: 30: 50: BA: 9E: A8: 7E: FE: 9A: CE: 3C
SHA256:

06: 3E: 4A: FA: C4: 91: DF: D3: 32: F3: 08: 9B: 85: 42: E9: 46: 17: D8: 93: D7: FE: 94: 4E:

Al'i as nane: nozillacert2l. pem
MD5: EO: 06: Al: C9: 7D; CF: C9: FC. OD: C0: 56: 75: 96: D8: 62: 13
SHALl: 9B: AA: E5: 9F: 56: EE: 21: CB: 43: 5A: BE: 25: 93: DF: A7: FO: 40: D1: 1D: CB
SHA256:

BE: 6C. 4D: A2: BB: B9: BA: 59: B6: F3: 93: 97: 68: 37: 42: 46: C3: C0: 05: 99: 3F: A9: 8F:

Alias nane: nozillacert39. pem
MD5: CE: 78:33:5C. 59: 78: 01: 6E: 18: EA: B9: 36: AO: B9: 2E: 23
SHALl: AE: 50: 83: ED: 7C. F4: 5C. BC. 8F: 61: C6: 21: FE: 68: 5D: 79: 42: 21: 15: 6E
SHA256:

E6: B8: F8: 76: 64: 85: F8: 07: AE: 7F: 8D: AC. 16: 70: 46: 1F: 07: CO: Al: 3E: EF: 3A: 1F:

Alias nane: nozillacert6.pem
MD5: 91: DE: 06: 25: AB: DA: FD: 32: 17: 0C. BB: 25: 17: 2A: 84: 67
SHALl: 27:96: BA: E6: 3F: 18: 01: E2: 77: 26: 1B: A0: D7: 77: 70: 02: 8F: 20: EE: E4
SHA256:

C3:84:6B: F2: 4B: 9E: 93: CA: 64: 27: 4C. OE: C6: 7C. 1E: CC. 5E: 02: 4F: FC. AC. D2: D7:

Al ias nanme: veri signuniversalrootca
MD5: 8E: AD: B5: 01: AA: 4D: 81: E4: 8C. 1D: D1: E1: 14: 00: 95: 19
SHALl: 36: 79: CA: 35: 66: 87: 72: 30: 4D: 30: A5: FB: 87: 3B: OF: A7: 7B: B7: OD: 54
SHA256:

23:99:56:11: 27: A5: 71: 25: DE: 8C. EF: EA: 61: OD: DF: 2F: AO: 78: B5: C8: 06: 7F: 4E:

Alias nane: nozillacert72. pem
MD5: 80: 3A: BC: 22: Cl1: E6: FB: 8D: 9B: 3B: 27: 4A: 32: 1B: 9A: 01
SHALl: 47: BE: AB: C9: 22: EA: E8: OE: 78: 78: 34: 62: A7: 9F: 45: C2: 54: FD: E6: 8B
SHA256:

45:14: 0B: 32: 47: EB: 9C. C8: C5: B4: FO: D7: B5: 30: 91: F7: 32: 92: 08: 9E: 6E: 5A: 63:

Al i as nane: geotrustuniversalca
MD5: 92:65:58:8B: A2: 1A: 31: 72: 73: 68: 5C. B4: A5: 7A: 07: 48
SHALl: E6: 21: F3: 35:43: 79: 05: 9A: 4B: 68: 30: 9D: 8A: 2F: 74: 22: 15: 87: EC. 79
SHA256:

AO: 45: 9B: 9F: 63: B2: 25: 59: F5: FA: 5D: 4C. 6D: B3: F9: F7: 2F: F1: 93: 42: 03: 35: 78:

Al'i as nane: nozillacert136. pem
MD5: 49:79:04: B0: EB: 87: 19: AC. 47: BO: BC: 11: 51: 9B: 74: DO
SHALl: D1: EB: 23: A4: 6D: 17: D6: 8F: D9: 25: 64: C2: F1: F1: 60: 17: 64: D8: E3: 49
SHA256:

D7: A7: AO: FB: 5D: 7E: 27: 31: D7: 71: E9: 48: 4E: BC. DE: F7: 1D: 5F: OC:. 3E: 0A: 29: 48:

Alias nane: nozillacert10. pem
MD5: F8:38:7C. 77:88: DF: 2C. 16: 68: 2E: C2: E2: 52: 4B: B8: F9
SHALl: 5F: 3A: FC. OA: 8B: 64: F6: 86: 67: 34: 74: DF: 7E: A9: A2: FE: F9: FA: 7A: 51
SHA256:

21: DB: 20: 12: 36: 60: BB: 2E: D4: 18: 20: 5D: Al: 1E: E7: A8: 5A: 65: E2: BC. 6E: 55: B5:

Alias nane: nozillacert28. pem
MD5: 5C:. 48: DC. F7: 42: 72: EC. 56: 94: 6D: 1C:. CC: 71: 35: 80: 75

BO:

82:

68:

10:

02:

F7:

40:

82:

E2:

FO:

78:

AF:

76:

82:

4F:

AT

0oD:

17:

19:

82:

74.

73:

2B:

7E:

42

90:

F7:

93:

1D;

53:

35!

90:

oD

BF:

78:

199

2E:

BF:

11:

7E:

ED:

8D:

OE:

BF:

1D:

1 3E:

99:

F3:

B8:

37:

E2:

BE:

TA:

81:

B8:

1B:

EO:

C8:

42:

60:

58:

9D:

BA:

FE:

60:

: AC. A9:

46:

EA:

A2:

AD:

ES8:

05:

96:

: 8A:

54:

ES8:

19:

69:

66:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHALl: 66: 31: BF: 9E: F7: 4F: 9E: B6: C9: D5: A6: 0C. BA: 6A: BE: D1: F7: BD: EF: 7B
SHA256:
0C. 2C. D6: 3D: F7: 80: 6F: A3: 99: ED: E8: 09: 11: 6B: 57: 5B: F8: 79: 89: FO: 65: 18: F9:
Alias nanme: affirmrustnetworkingca
MD5: 42:65: CA: BE: 01: 9A: 9A: 4C: A9: 8C. 41: 49: CD: CO: D5: 7F
SHALl: 29:36:21:02:8B: 20: ED: 02: F5: 66: C5: 32: D1: D6: ED: 90: 9F: 45: 00: 2F
SHA256:
OA: 81: EC. 5A: 92: 97: 77: F1: 45: 90: 4A: F3: 8D: 5D: 50: 9F: 66: B5: E2: C5: 8F: CD: B5:
Al'i as nane: nozillacert6l. pem
MD5: 42:81: A0: E2: 1C. E3: 55: 10: DE: 55: 89: 42: 65: 96: 22: E6
SHALl: EO: B4: 32: 2E: B2: F6: A5: 68: B6: 54: 53: 84: 48: 18: 4A: 50: 36: 87: 43: 84
SHA256:
03: 95: OF: B4: 9A: 53: 1F: 3E: 19: 91: 94: 23: 98: DF: A9: EO: EA: 32: D7: BA: 1C. DD: 9B:
Al'i as nane: nozillacert79. pem
MD5: CA4:5D: OE: 48: B6: AC. 28: 30: 4E: OA: BC: F9: 38: 16: 87: 57
SHALl: D8: A6: 33: 2C. EO: 03: 6F: B1: 85: F6: 63: 4F: 7D: 6A: 06: 65: 26: 32: 28: 27
SHA256:
70: A7: 3F: 7F: 37: 6B: 60: 07: 42: 48: 90: 45: 34: B1: 14: 82: D5: BF: OE: 69: 8E: CC. 49:
Alias nane: affirntrustcomrercialca
MD5: 82:92: BA: 5B: EF: CD: 8A: 6F: A6: 3D: 55: F9: 84: F6: D6: B7
SHALl: F9: B5: B6: 32: 45: 5F: 9C. BE: EC. 57: 5F: 80: DC. E9: 6E: 2C. C7: B2: 78: B7
SHA256:
03: 76: AB: 1D: 54: C5: F9: 80: 3C. E4: B2: E2: 01: AO: EE: 7E: EF: 7B: 57: B6: 36: E8: A9:
Al'i as nane: nozillacert125. pem
MD5: D6: A5: C3: ED: 5D: DD: 3E: 00: C1: 3D: 87: 92: 1F: 1D: 3F: E4
SHALl: B3: 1E: Bl: B7: 40: E3: 6C. 84: 02: DA: DC. 37: D4: 4D: F5: D4: 67: 49: 52: F9
SHA256:
73: Cl: 76: 43: 4F:. 1B: C6: D5: AD: F4: 5B: OE: 76: E7: 27: 28: 7C. 8D: E5: 76: 16: Cl: E6:
Al'i as nane: nozillacert17. pem
MD5: 21:D8:4C. 82: 2B: 99: 09: 33: A2: EB: 14: 24: 8D: 8E: 5F: E8
SHALl: 40:54: DA: 6F: 1C. 3F: 40: 74: AC. ED: OF: EC. CD: DB: 79: D1: 53: FB: 90: 1D
SHA256:
76:.7C. 95: 5A: 76: 41: 2C. 89: AF: 68: 8E: 90: Al: C7: OF: 55: 6C. FD: 6B: 60: 25: DB: EA:
Alias nane: nozillacert50. pem
MD5: 2C:. 20: 26: 9D: CB: 1A: 4A: 00: 85: B5: B7: 5A: AE: C2: 01: 37
SHALl: 8C. 96: BA: EB: DD: 2B: 07: 07: 48: EE: 30: 32: 66: AO: F3: 98: 6E: 7C. AE: 58
SHA256:
35: AE: 5B: DD: D8: F7: AE: 63: 5C. FF: BA: 56: 82: A8: FO: OB: 95: F4: 84: 62: C7: 10: 8E:
Alias nane: nozillacert68. pem
MD5: 73: 3A: 74: 7A: EC. BB: A3: 96: A6: C2: E4: E2: C8: 9B: C0: C3
SHALl: AE: C5: FB: 3F: C8: E1: BF: C4: E5: 4F: 03: 07: 5A: 9A: E8: 00: B7: F7: B6: FA
SHA256:
04: 04: 80: 28: BF: 1F: 28: 64: D4: 8F: 9A: D4: D8: 32: 94: 36: 6A: 82: 88: 56: 55: 3F: 3B:
Alias nane: starfiel drootg2ca
MD5: D6: 39: 81: C6: 52: 7E: 96: 69: FC. FC. CA: 66: ED: 05: F2: 96
SHALl: B5: 1C. 06: 7C. EE: 2B: 0C:. 3D: F8: 55: AB: 2D: 92: F4: FE: 39: D4: E7: OF: OE
SHA256:
2C. E1: CB: OB: F9: D2: F9: E1: 02: 99: 3F: BE: 21: 51: 52: C3: B2: DD: OC: AB: DE: 1C. 68:
Al'i as nane: nozillacert114. pem
MD5: B8: Al: 03: 63: BO: BD: 21: 71: 70: 8A: 6F: 13: 3A: BB: 79: 49
SHALl: 51: C6: E7: 08: 49: 06: 6E: F3: 92: D4: 5C. AO: OD: 6D: A3: 62: 8F: C3: 52: 39
SHA256:
BO: BF: D5: 2B: BO: D7: D9: BD: 92: BF: 5D: 4D: Cl1: 3D: A2: 55: C0: 2C. 54: 2F: 37: 83: 65:
Al i as nane: buypasscl ass3ca
MD5: 3D: 3B: 18: 9E: 2C. 64: 5A: E8: D5: 88: CE: OE: F9: 37: C2: EC
SHALl: DA: FA: F7: FA: 66: 84: EC. 06: 8F: 14: 50: BD: C7: C2: 81: A5: BC:. A9: 64: 57
SHA256:
ED: F7: EB: BC. A2: 7A: 2A: 38: 4D: 38: 7B: 7D: 40: 10: C6: 66: E2: ED: B4: 84: 3E: 4C. 29:
Al'i as nane: nozillacert57. pem

80: 8C:

31: 05:

C8: 5D

8D: F5:

3C 9B:

E6: 14:

10: 41:

E9: AO:

14: 30:

E5: 31:

EA: 89:

B4: AE:

86!

8B:

B5:

25:

8D

1A

6D

E5!

3F:

9B:

39:

1D;

200

05:

OE:

7E:

77

48:

2B:

7E:

29:

90:

83:

11:

5B:

03:17:

17: F3:

D9: 40:

EB: F2:

60: CO:

2C. BC

B6: 83:

2B: 07:

14: 7F:

91: 54

F5: 5E:

93: 32:

8B: .

FO:

0B: .

E9:

6F:

7D

1F:

4A:

5D

55:

E6:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

MD5: A8:0D: 6F: 39: 78: B9: 43: 6D: 77: 42: 6D: 98: 5A: CC. 23: CA
SHALl: D6: DA: A8: 20: 8D: 09: D2: 15: 4D: 24: B5: 2F: CB: 34: 6E: B2: 58: B2: 8A: 58
SHA256:

F9: E6: 7D: 33: 6C. 51: 00: 2A: C0: 54: C6: 32: 02: 2D: 66: DD: A2: E7: E3: FF: F1: OA: DO: 61:

Al'i as nane: verisignc2g3. pem
MD5: F8: BE: C4: 63: 22: C9: A8: 46: 74: 8B: B8: 1D: 1E: 4A: 2B: F6
SHALl: 61: EF: 43: D7: 7F. CA: D4: 61: 51: BC: 98: EO: C3: 59: 12: AF: 9F: EB: 63: 11
SHA256:

92: A9: DO: 83: 3F: E1: 94: 4D: B3: 66: E8: BF: AE: 7A: 95: B6: 48: 0C. 2D: 6C. 6C. 2A: 1B: E6:

Alias nane: verisigncl ass2g3ca
MD5: F8: BE: C4: 63: 22: C9: A8: 46: 74: 8B: B8: 1D: 1E: 4A: 2B: F6
SHALl: 61: EF: 43: D7: 7F. CA: D4: 61: 51: BC: 98: EO: C3: 59: 12: AF: 9F: EB: 63: 11
SHA256:

92: A9: DO: 83: 3F: E1: 94: 4D: B3: 66: E8: BF: AE: 7A: 95: B6: 48: 0C. 2D: 6C. 6C. 2A: 1B: E6:

Alias nanme: nozillacert103. pem
MD5: E6: 24: E9: 12: 01: AE: OC. DE: 8E: 85: C4: CE: A3: 12: DD: EC
SHALl: 70: Cl:8D: 74: B4: 28: 81: 0A: E4: FD: A5: 75: D7: 01: 9F: 99: BO: 3D: 50: 74
SHA256:

3C. FC. 3C:. 14: D1: F6: 84: FF: 17: E3: 8C. 43: CA: 44: 0C. 00: B9: 67: EC: 93: 3E: 8B: FE: 06:

Alias nane: nozillacert90. pem
MD5: 69: Cl: 0D: 4F: 07: A3: 1B: C3: FE: 56: 3D: 04: BC. 11: F6: A6
SHALl: F3:73:B3:87:06:5A: 28: 84: 8A: F2: F3: 4A: CE: 19: 2B: DD: C7: 8E: 9C. AC
SHA256:

55:92: 60: 84: EC. 96: 3A: 64: B9: 6E: 2A: BE: 01: CE: OB: A8: 6A: 64: FB: FE: BC. C7: AA: B5:

Alias nane: verisignc3g3. pem
MD5: CD: 68: B6: A7: C7: C4: CE: 75: EO: 1D: 4F: 57: 44: 61: 92: 09
SHALl: 13:2D:. 0D: 45: 53: 4B: 69: 97: CD: B2: D5: C3: 39: E2: 55: 76: 60: 9B: 5C. C6
SHA256:

EB: 04: CF: 5E: B1: F3: 9A: FA: 76: 2F: 2B: B1: 20: F2: 96: CB: A5: 20: C1: B9: 7D: B1: 58: 95:

Alias nane: nozillacert46. pem
MD5: AA: 8E: 5D: D9: F8: DB: 0A: 58: B7: 8D: 26: 87: 6C. 82: 35: 55
SHALl: 40:9D: 4B: D9: 17: B5: 5C. 27: B6: 9B: 64: CB: 98: 22: 44: 0D: CD: 09: B8: 89
SHA256:

EC. C3: E9: C3: 40: 75: 03: BE: EO: 91: AA: 95: 2F: 41: 34: 8F: F8: 8B: AA: 86: 3B: 22: 64: BE:

Al i as nane: godaddycl ass2ca
MD5: 91: DE: 06: 25: AB: DA: FD: 32: 17: 0C. BB: 25: 17: 2A: 84: 67
SHALl: 27:96: BA: E6: 3F: 18: 01: E2: 77: 26: 1B: A0: D7: 77: 70: 02: 8F: 20: EE: E4
SHA256:

C3:84:6B: F2: 4B: 9E: 93: CA: 64: 27: 4C. OE: C6: 7C. 1E: CC. 5E: 02: 4F: FC. AC. D2: D7: 40:

Al'i as nane: verisignc4g3. pem
MD5: DB: C8: F2: 27: 2E: B1: EA: 6A: 29: 23: 5D: FE: 56: 3E: 33: DF
SHALl: C8: EC. 8C. 87:92: 69: CB: 4B: AB: 39: E9: 8D: 7E: 57: 67: F3: 14: 95: 73: 9D
SHA256:

E3: 89: 36: O0D: OF: DB: AE: B3: D2: 50: 58: 4B: 47: 30: 31: 4E: 22: 2F: 39: C1: 56: AO0: 20: 14:

Al'i as nane: nozillacert97. pem
MD5: A2:33:9B:4C. 74:78: 73: D4: 6C. E7: Cl1: F3: 8D: CB: 5C. E9
SHALl: 85:37:1C. A6: E5: 50: 14: 3D: CE: 28: 03: 47: 1B: DE: 3A: 09: E8: F8: 77: OF
SHA256:

83: CE: 3C:. 12: 29: 68: 8A: 59: 3D: 48: 5F: 81: 97: 3C. OF: 91: 95: 43: 1E: DA: 37: CC. 5E: 36:

Al'i as nane: nozillacert 143. pem
MD5: F1: BC. 63: 6A: 54: EO: B5: 27: F5: CD: E7: 1A: E3: 4D: 6E: 4A
SHALl: 36: Bl1: 2B: 49: F9: 81: 9E: D7: 4C:. 9E: BC. 38: OF: C6: 56: 8F: 5D: AC. B2: F7
SHA256:

E7: 5E: 72: ED: 9F: 56: OE: EC. 6E: B4: 80: 00: 73: A4: 3F: C3: AD: 19: 19: 5A: 39: 22: 82: 01.:

Alias nane: nozillacert35. pem
MD5: 3F: 45:96: 39: E2: 50: 87: F7: BB: FE: 98: 0C. 3C:. 20: 98: E6
SHALl: 2A: C8: D5:8B:57: CE: BF: 2F: 49: AF: F2: FC. 76: 8F: 51: 14: 62: 90: 7A: 41
SHA256:

92: BF: 51: 19: AB: EC. CA: DO: B1: 33: 2D: C4: E1: DO: 5F: BA: 75: B5: 67: 90: 44: EE: 0C. A2:

ED:

5D:

5D:

4C.

AF:

65:

FA:

19:

4E:

43:

78:

6E:

31:

42

42

Al;

Cl:

B8

C8:

35!

8D

OE!

95:

93:

201

36:

36:

D7:

55:

1C

07:

OE:

96:

79:

97:

1F:

: BB:

B6: 08:

B6: 08:

2C: 90:

B3:

B9:

90:

81:

05:

4A:

74:

B4:

7F:

Al:

15:

FE:

61:

. A8:

99:

4F:

10:

FC..

FC..

F2:.

D7:

7B:

74:

54:

79:

88:

02:

2F:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Al'i as nane: nozillacert2. pem
MD5: 3A:52: El: E7: FD: 6F: 3A: E3: 6F: F3: 6F: 99: 1B: F9: 22: 41
SHALl: 22: D5:D8: DF: 8F: 02: 31: D1: 8D: F7: 9D: B7: CF: 8A: 2D: 64: C9: 3F: 6C. 3A
SHA256:
69: DD: D7: EA: 90: BB: 57: C9: 3E: 13: 5D: C8: 5E: A6: FC: D5: 48: 0B: 60: 32: 39: BD: 4:
Alias nanme: utnuserfirstobjectca
MD5: A7: F2: E4:16: 06:41: 11: 50: 30: 6B: 9C: E3: B4: 9C. BO: C9
SHALl: El: 2D:. FB: 4B: 41: D7: D9: C3: 2B: 30: 51: 4B: AC. 1D: 81: D8: 38: 5E: 2D: 46
SHA256:
6F:. FF: 78: E4: 00: A7: 0C: 11: 01: 1C. D8: 59: 77: C4: 59: FB: 5A: F9: 6A: 3D: FO: 54: 08:
Alias nane: nozillacert86. pem
MD5: 10: FC. 63: 5D: F6: 26: 3E: OD: F3: 25: BE: 5F: 79: CD: 67: 67
SHALl: 74:2C:. 31:92: E6: 07: E4: 24: EB: 45: 49: 54: 2B: E1: BB: C5: 3E: 61: 74: E2
SHA256:
E7: 68: 56: 34: EF: AC. F6: 9A: CE: 93: 9A: 6B: 25: 5B: 7B: 4F: AB: EF: 42: 93: 5B: 50: A2:
Al'i as nane: nozillacert132. pem
MD5: 14: F1: 08: AD: 9D: FA: 64: E2: 89: E7: 1C. CF: A8: AD: 7D: 5E
SHA1: 39:21:Cl:15: Cl1:5D:. OE: CA: 5C. CB: 5B: C4: FO: 7D: 21: D8: 05: OB: 56: 6A
SHA256:
77:.40:73:12: C6: 3A: 15: 3D: 5B: CO: OB: 4E: 51: 75: 9C: DF: DA: C2: 37: DC. 2A: 33: B6:
Al i as nane: addtrustcl asslca
MD5: 1E: 42: 95: 02: 33: 92: 6B: B9: 5F: CO: 7F: DA: D6: B2: 4B: FC
SHALl: CC. AB: OE: AO: 4C. 23: 01: D6: 69: 7B: DD: 37: 9F: CD: 12: EB: 24: E3: 94: 9D
SHA256:
8C. 72: 09: 27: 9A: CO: 4E: 27: 5E: 16: DO: 7F: D3: B7: 75: E8: 01: 54: B5: 96: 80: 46: E3:
Al'i as nane: nozillacert24. pem
MD5: 7C. A5: OF: F8: 5B: 9A: 7D: 6D: 30: AE: 54: 5A: E3: 42: A2: 8A
SHALl: 59: AF: 82:79:91:86: C7: B4: 75: 07: CB: CF: 03: 57: 46: EB: 04: DD: B7: 16
SHA256:
66: 8C. 83: 94: 7D: A6: 3B: 72: 4B: EC. E1: 74: 3C. 31: AO: E6: AE: DO: DB: 8E: C5: B3: 1B:
Alias nane: verisignclg3. pem
MD5: Bl: 47: BC. 18: 57: D1: 18: AO: 78: 2D: EC. 71: E8: 2A: 95: 73
SHALl: 20:42:85:DC. F7: EB: 76: 41: 95: 57: 8E: 13: 6B: D4: B7: D1: E9: 8E: 46: A5
SHA256:
CB: B5: AF: 18: 5E: 94: 2A: 24: 02: F9: EA: CB: CO: ED: 5B: B8: 76: EE: A3: Cl1: 22: 36: 23:
Al'i as nane: nozillacert9. pem
MD5: 37:85:44:53: 32:45: 1F: 20: FO: F3: 95: E1: 25: C4: 43: 4E
SHALl: F4:8B: 11: BF: DE: AB: BE: 94: 54: 20: 71: E6: 41: DE: 6B: BE: 88: 2B: 40: B9
SHA256:
76:00: 29: 5E: EF: E8: 5B: 9E: 1F: D6: 24: DB: 76: 06: 2A: AA: AE: 59: 81: 8A: 54: D2: 77:
Ali as nane: aneninternal rootca
MD5: 08:09: 73: AC. EO: 78: 41: 7C. OA: 26: 33: 51: E8: CF: E6: 60
SHALl: A7:B7:F6:15: 8A: FF: 1E: C8: 85: 13: 38: BC. 93: EB: A2: AB: A4: 09: EF: 06
SHA256:
OE: DE: 63: C1: DC. 7A: 8E: 11: F1: AB: BC: 05: 4F: 59: EE: 49: 9D: 62: 9A: 2F: DE: 9C. A7:
Al'i as nane: nozillacert75. pem
MD5: 67:CB:9D: CO: 13: 24: 8A: 82: 9B: B2: 17: 1E: D1: 1B: EC. D4
SHALl: D2:32:09: AD: 23: D3: 14: 23: 21: 74: E4: OD: 7F: 9D: 62: 13: 97: 86: 63: 3A
SHA256:
08:29: 7A: 40: 47: DB: A2: 36: 80: C7: 31: DB: 6E: 31: 76: 53: CA: 78: 48: E1: BE: BD: 3A:
Alias nane: entrustevca
MD5: D6: A5: C3: ED: 5D: DD: 3E: 00: C1: 3D: 87: 92: 1F: 1D: 3F: E4
SHALl: B3: 1E: Bl: B7: 40: E3: 6C. 84: 02: DA: DC. 37: D4: 4D:. F5: D4: 67: 49: 52: F9
SHA256:
73: Cl:76: 43: 4F: 1B: C6: D5: AD: F4: 5B: OE: 76: E7: 27: 28: 7C. 8D: E5: 76: 16: Cl: E6:
Al i as nane: seconscrootca2
MD5: 6C:. 39: 7D: A4: OE: 55: 59: B2: 3F: D6: 41: B1: 12: 50: DE: 43
SHALl: 5F: 3B: 8C. F2: F8: 10: B3: 7D: 78: B4: CE: EC: 19: 19: C3: 73: 34: B9: C7: 74

54:

20:

65:

79:

1F:

E3:

4C. D4: Q0;

16:

0B: 01: 79;

E6:

FC. 75;

AC. B5;

46: E9;

52: DD

77 BB

1 04: 47

32: A2:

14: 1A

202

8B:

1 B8:

8E:

25:

78:

E4:

B2:

64:

AT

2B:

2A:

60:

. 60:

9B:

76:

4F:

F3:

29:

07:

2C. BC

26:

78:

27

FA:

63:

91:

BA:

11

3E:

F9:

75:

E4:

68:

24:

B6:

55:.

31:

8B:

2C

7D

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHA256:
51: 3B: 2C. EC. B8: 10: D4: CD: E5: DD: 85: 39: 1A: DF: C6: C2: DD: 60: D8: 7B: B7: 36: D2:
Al ias nane: canerfirmachanbersi gnca
MD5: 9E: 80: FF: 78: 01: 0C. 2E: C1: 36: BD: FE: 96: 90: 6E: 08: F3
SHALl: 4A: BD: EE: EC. 95: 0D: 35: 9C:. 89: AE: C7: 52: Al: 2C:. 5B: 29: F6: D6: AA: 0C
SHA256:
13: 63: 35:43: 93: 34: A7: 69: 80: 16: AO0: D3: 24: DE: 72: 28: 4E: 07: 9D: 7B: 52: 20: BB:
Al i as nane: seconscrootcal
MD5: F1: BC. 63: 6A: 54: EO: B5: 27: F5: CD: E7: 1A: E3: 4D: 6E: 4A
SHALl: 36: B1: 2B: 49: F9: 81: 9E: D7: 4C:. 9E: BC. 38: OF: C6: 56: 8F: 5D: AC. B2: F7
SHA256:
E7: 5E: 72: ED: 9F: 56: OE: EC. 6E: B4: 80: 00: 73: A4: 3F: C3: AD: 19: 19: 5A: 39: 22: 82:
Alias nanme: nozillacert12l. pem
MD5: 1E: 42: 95: 02: 33: 92: 6B: B9: 5F: CO: 7F: DA: D6: B2: 4B: FC
SHALl: CC. AB: OE: AO: 4C. 23: 01: D6: 69: 7B: DD: 37: 9F: CD: 12: EB: 24: E3: 94: 9D
SHA256:
8C. 72: 09: 27: 9A: CO: 4E: 27: 5E: 16: DO: 7F: D3: B7: 75: E8: 01: 54: B5: 96: 80: 46: E3:
Alias nane: nozillacert139. pem
MD5: 27: DE: 36: FE: 72: B7: 00: 03: 00: 9D: F4: FO: 1E: 6C. 04: 24
SHALl: DE: 3F: 40: BD: 50: 93: D3: 9B: 6C: 60: F6: DA: BC:. 07: 62: 01: 00: 89: 76: C9
SHA256:
A4: 5E: DE: 3B: BB: FO: 9C. 8A: E1: 5C. 72: EF: C0: 72: 68: D6: 93: A2: 1C. 99: 6F: D5: 1E:
Alias nane: nozillacert13. pem
MD5: C5: Al: B7: FF: 73: DD: D6: D7: 34: 32: 18: DF: FC. 3C. AD: 88
SHALl: 06:08: 3F: 59: 3F: 15: Al: 04: A0: 69: A4: 6B: A9: 03: DO: 06: B7: 97: 09: 91
SHA256:
6C. 61: DA: C3: A2: DE: FO: 31: 50: 6B: EQ: 36: D2: A6: FE: 40: 19: 94: FB: D1: 3D: F9: C8:
Alias nane: nozillacert64. pem
MD5: 06: 9F: 69: 79: 16: 66: 90: 02: 1B: 8C. 8C:. A2: C3: 07: 6F: 3A
SHALl: 62: 7F: 8D: 78: 27: 65: 63: 99: D2: 7D: 7F: 90: 44: C9: FE: B3: F3: 3E: FA: 9A
SHA256:
AB: 70: 36: 36: 5C. 71: 54: AA: 29: C2: C2: 9F: 5D: 41: 91: 16: 3B: 16: 2A: 22: 25: 01: 13:
Alias nane: nozillacert110. pem
MD5: DO: AO: 5A: EE: 05: B6: 09: 94: 21: Al: 7D: F1: B2: 29: 82: 02
SHALl: 93:05: 7A: 88: 15: C6: 4F: CE: 88: 2F: FA: 91: 16: 52: 28: 78: BC. 53: 64: 17
SHA256:
9A: 6E: CO: 12: E1: A7: DA: 9D: BE: 34: 19: 4D: 47: 8A: D7: C0: DB: 18: 22: FB: 07: 1D: F1:
Alias nane: nozillacert128. pem
MD5: OE: 40: A7: 6C. DE: 03: 5D: 8F: D1: OF: E4: D1: 8D: F9: 6C. A9
SHALl: A9: E9: 78: 08: 14: 37: 58: 88: F2: 05: 19: BO: 6D: 2B: 0D: 2B: 60: 16: 90: 7D
SHA256:
CA: 2D: 82: A0: 86: 77: 07: 2F: 8A: B6: 76: 4F: FO: 35: 67: 6C. FE: 3E: 5E: 32: 5E: 01: 21:
Al i as nane: entrust2048ca
MD5: EE: 29: 31: BC. 32: 7E: 9A: E6: E8: B5: F7: 51: B4: 34: 71: 90
SHAL1: 50:30: 06:09: 1D: 97: D4: F5: AE: 39: F7: CB: E7: 92: 7D: 7D: 65: 2D: 34: 31
SHA256:
6D:. C4: 71: 72: EO: 1C. BC: BO: BF: 62: 58: 0D: 89: 5F: E2: B8: AC. 9A: D4: F8: 73: 80: 1E:
Alias nane: nozillacert53. pem
MD5: 7E: 23: 4E: 5B: A7: A5: B4: 25: E9: 00: 07: 74: 11: 62: AE: D6
SHALl: 7F: 8A: BO: CF: DO: 51: 87: 6A: 66: F3: 36: OF: 47: C8: 8D: 8C. D3: 35: FC. 74
SHA256:
2D:. 47:43: 7D: E1: 79: 51: 21: 5A: 12: F3: C5: 8E: 51: C7: 29: A5: 80: 26: EF: 1F: CC. OA:
Alias nane: nozillacert117. pem
MD5: AC. B6:94: A5: 9C. 17: EO: D7: 91: 52: 9B: B1: 97: 06: A6: E4
SHALl: D4: DE: 20: DO: 5E: 66: FC. 53: FE: 1A: 50: 88: 2C. 78: DB: 28: 52: CA: E4: 74
SHA256:
16: AF: 57: A9: F6: 76: BO: AB: 12: 60: 95: AA: 5E: BA: DE: F2: 2A: B3: 11: 19: D6: 44: AC.
Alias nane: nozillacert150. pem
MD5: C5: E6: 7B: BF: 06: DO: 4F: 43: ED. C4: 7A: 65: 8A: FB: 6B: 19

B5:

8F:

01:

1F:

67:

57:

29:

72:

0C: 10:

5F:

95:

21:

BD:

78:

52:

1 66:

81:

B3:

CD:

48!

74

95:

. 07!

59:

. 6D:

491

: 3F

B9

4B

203

4A:

78:

97:

25:

94:

92:

07:

6E:

92:

93:

16:

4A:

76:

60:

74:

FF:

D1:

09:

. 37:

01:

CTA

EE:

99:

63:

FD:

AT

04:

6D:

2F:

: F3:

OE:

BE:

02:

24:

6D:

1 46:

BC.

38:.

B7:

c1E:

60:

F2:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHALl: 33:9B: 6B: 14: 50: 24: 9B: 55: 7A: 01: 87: 72: 84: D9: EO: 2F: C3: D2: D8: E9
SHA256:

EF: 3C. B4: 17: FC. 8E: BF: 6F: 97: 87: 6C. 9E: 4E: CE: 39: DE: 1E: A5: FE: 64: 91: 41: D1.:

Al i as nane: thaw eserverca
MD5: EE: FE: 61: 69: 65: 6E: F8: 9C. C6: 2A: F4: D7: 2B: 63: EF: A2
SHALl: 9F: AD: 91: A6: CE: 6A: C6: C5: 00: 47: C4: 4E: C9: D4: A5: 0D: 92: D8: 49: 79
SHA256:

87:. C6: 78: BF: B8: B2: 5F: 38: F7: E9: 7B: 33: 69: 56: BB: CF: 14: 4B: BA: CA: A5: 36: 47:

Al i as nane: seconvalicertclasslca
MD5: 65:58: AB: 15: AD: 57: 6C. 1E: A8: A7: B5: 69: AC. BF: FF: EB
SHALl: E5: DF: 74: 3C. B6: 01: C4: 9B: 98: 43: DC. AB: 8C:. E8: 6A: 81: 10: 9F: E4: 8E
SHA256:

F4: Cl: 49:55: 1A: 30: 13: A3: 5B: C7: BF: FE: 17: A7: F3: 44: 9B: Cl1: AB: 5B: 5A: OA: E7:

Alias nane: nozillacert42. pem
MD5: 74:01:4A:91:B1:08: C4: 58: CE: 47: CD: FO: DD: 11: 53: 08
SHALl: 85: A4:08: C0: 9C: 19: 3E: 5D: 51: 58: 7D: CD: D6: 13: 30: FD: 8C. DE: 37: BF
SHA256:

B6: 19: 1A: 50: DO: C3: 97: 7F: 7D: A9: 9B: CD: AA: C8: 6A: 22: 7D: AE: B9: 67: 9E: C7: OB:

Al ias nane: verisignc2g6. pem
MD5: 7D: 0B: 83: E5: FB: 7C. AD: 07: 4F: 20: A9: B5: DF: 63: ED: 79
SHALl: 40: B3: 31: AO: E9: BF: E8: 55: BC: 39: 93: CA: 70: 4F: 4E: C2: 51: D4: 1D: 8F
SHA256:

CB: 62: 7D: 18: B5: 8A: D5: 6D: DE: 33: 1A: 30: 45: 6B: C6: 5C. 60: 1A: 4E: 9B: 18: DE: DC:

Al i as nane: godaddyrootg2ca
MD5: 80: 3A: BC: 22: Cl1: E6: FB: 8D: 9B: 3B: 27: 4A: 32: 1B: 9A: 01
SHALl: 47: BE: AB: C9: 22: EA: E8: OE: 78: 78: 34: 62: A7: 9F: 45: C2: 54: FD: E6: 8B
SHA256:

45:14: 0B: 32: 47: EB: 9C. C8: C5: B4: FO: D7: B5: 30: 91: F7: 32: 92: 08: 9E: 6E: 5A: 63:

Al i as nane: gtecybertrustglobal ca
MD5: CA: 3D: D3: 68: F1: 03: 5C. DO: 32: FA: B8: 2B: 59: E8: 5A: DB
SHALl: 97:81:79:50: D8: 1C. 96: 70: CC. 34: D8: 09: CF: 79: 44: 31: 36: 7TE: F4: 74
SHA256:

A5: 31: 25:18:8D: 21: 10: AA: 96: 4B: 02: C7: B7: C6: DA: 32: 03: 17: 08: 94: E5: FB: 71:

Alias nane: nozillacert106. pem
MD5: 7B: 30: 34: 9F: DD: OA: 4B: 6B: 35: CA: 31: 51: 28: 5D: AE: EC
SHALl: E7: Al: 90: 29: D3: D5: 52: DC. OD: OF: C6: 92: D3: EA: 88: 0D: 15: 2E: 1A: 6B
SHA256:

DO: 5F: EA: 3C. A4: EE: DC. E7: 4C. D7: 6E: 75: FC. 6D: 1F: F6: 2C. 44: 1F: OF: A8: BC. 77:

Alias nane: equifaxsecureebusi nesscal
MD5: 14: CO: 08: E5: A3: 85: 03: A3: BE: 78: E9: 67: 4F: 27: CA: EE
SHALl: AE: E6: 3D: 70: E3: 76: FB: C7: 3A: EB: BO: Al: Cl1: D4: C4: 7A: A7: 40: B3: F4
SHA256:

2E: 3A: 2B: B5: 11: 25: 05: 83: 6C:. A8: 96: 8B: E2: CB: 37: 27: CE: 9B: 56: 84: 5C. 6E: E9:

Alias nane: nozillacert93. pem
MD5: 78:4B: FB: 9E: 64: 82: 0A: D3: B8: 4C. 62: F3: 64: F2: 90: 64
SHALl: 31: F1: FD: 68: 22: 63: 20: EE: C6: 3B: 3F: 9D: EA: 4A: 3E: 53: 7C. 7C: 39: 17
SHA256:

C7: BA: 65: 67: DE: 93: A7: 98: AE: 1F: AA: 79: 1E: 71: 2D: 37: 8F: AE: 1F: 93: C4: 39: 7F:

Alias nane: quovadi srootca3
MD5: 31:85:3C.62:94: 97: 63: B9: AA: FD: 89: 4E: AF: 6F: EO: CF
SHALl: 1F: 49:14: F7:D8: 74: 95: 1D: DD: AE: 02: CO: BE: FD: 3A: 2D: 82: 75: 51: 85
SHA256:

18: F1: FC. 7F: 20: 5D: F8: AD: DD: EB: 7F: EQ: 07: DD: 57: E3: AF: 37: 5A: 9C:. 4D: 8D: 73:

Alias nane: quovadi srootca2
MD5: 5E: 39: 7B: DD: F8: BA: EC. 82: E9: AC. 62: BA: 0C. 54: 00: 2B
SHAL1: CA: 3A: FB: CF: 12: 40: 36: 4B: 44: B2: 16: 20: 88: 80: 48: 39: 19: 93: 7C. F7
SHA256:

85: A0: DD: 7D: D7: 20: AD: B7: FF: 05: F8: 3D: 54: 2B: 20: 9D: C7: FF: 45: 28: F7: D6: 77:

Al i as nane: soneracl ass2ca

02:

E6:

4B:

A3:

E2:

FF:

FO:

8E:

54:

B1:

8B:

1A

06:

BO:

: 08:

74.

FB:

34:

91:

: 44

6B:

83:

7D;

23:

E7:

1)

66:

B1:

85!

1B:

F4:

89:

204

11:

25:

1 3B:

67:

9E:

10:

B7:

F1:

FE:

Q0: B2:

BC: 10:

90: 00:

12271

AA: 07:

: AC. A9:

D5: E6:

5D: B2:

4A: FB:

CB: E6:

FE: D1:

A5: E5:

29:

55:

4C: |

ClL:

81:

19:

81:

58:

9A:

FD:

El:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

MD5: A3: EC. 75: OF: 2E: 88: DF: FA: 48: 01: 4E: OB: 5C. 48: 6F: FB
SHALl: 37:F7:6D: E6: 07: 7C: 90: C5: B1: 3E: 93: 1A: B7: 41: 10: B4: F2: E4: 9A: 27
SHA256:
79:08:B4: 03:14: Cl1: 38: 10: 0B: 51: 8D: 07: 35: 80: 7F: FB: FC. F8: 51: 8A: 00: 95: 33:
Alias nane: nozillacert31. pem
MD5: 7C. 62: FF: 74: 9D: 31: 53: 5E: 68: 4A: D5: 78: AA: 1E: BF: 23
SHALl: 9F: 74: 4E: 9F: 2B: 4D: BA: EC. OF: 31: 2C. 50: B6: 56: 3B: 8E: 2D: 93: C3: 11
SHA256:
17:93:92: 7A: 06: 14: 54: 97: 89: AD: CE: 2F: 8F: 34: F7: FO: B6: 6D: OF: 3A: E3: A3: BS:
Alias nane: nozillacert49. pem
MD5: DF: 3C. 73:59: 81: E7: 39: 50: 81: 04: 4C. 34: A2: CB: B3: 7B
SHALl: 61:57:3A:11: DF: OE: D8: 7E: D5: 92: 65: 22: EA: DO: 56: D7: 44: B3: 23: 71
SHA256:
B7: B1: 2B: 17: 1F: 82: 1D: AA: 99: 0C: DO: FE: 50: 87: B1: 28: 44: 8B: A8: E5: 18: 4F: 84:
Alias nane: nozillacert82. pem
MD5: 7F: 30: 78: 8C. 03: E3: CA: C9: OA: E2: C9: EA: 1E: AA: 55: 1A
SHALl: 2E: 14: DA: EC. 28: FO: FA: 1E: 8E: 38: 9A: 4E: AB: EB: 26: CO: OA: D3: 83: C3
SHA256:
FC. BF: E2: 88: 62: 06: F7: 2B: 27: 59: 3C. 8B: 07: 02: 97: E1: 2D: 76: 9E: D1: OE: D7: 93:
Alias nane: nozillacert146. pem
MD5: 91: F4: 03: 55: 20: Al: F8: 63: 2C. 62: DE: AC. FB: 61: 1C. 8E
SHALl: 21: FC:. BD: 8E: 7F: 6C. AF: 05: 1B: D1: B3: 43: EC. A8: E7: 61: 47: F2: OF: 8A
SHA256:
48: 98: C6: 88: 8C. 0C. FF: BO: D3: E3: 1A: CA: 8A: 37: D4: E3: 51: 5F: F7: 46: DO: 26: 35:
Alias nane: baltinorecybertrustca
MD5: AC. B6:94: A5: 9C. 17: EO: D7: 91: 52: 9B: B1: 97: 06: A6: E4
SHALl: D4: DE: 20: DO: 5E: 66: FC. 53: FE: 1A: 50: 88: 2C. 78: DB: 28: 52: CA: E4: 74
SHA256:
16: AF: 57: A9: F6: 76: BO: AB: 12: 60: 95: AA: 5E: BA: DE: F2: 2A: B3: 11: 19: D6: 44: AC.
Alias nane: nozillacert20.pem
MD5: 24:77:D9: A8: 91: D1: 3B: FA: 88: 2D: C2: FF: F8: CD: 33: 93
SHALl: D8: C5: 38: 8A: B7: 30: 1B: 1B: 6E: D4: 7A: E6: 45: 25: 3A: 6F: 9F: 1A: 27: 61
SHA256:
62: DD: OB: E9: B9: F5: OA: 16: 3E: AO: F8: E7: 5C. 05: 3B: 1E: CA: 57: EA: 55: C8: 68: 8F:
Alias nane: nozillacert38. pem
MD5: 93: 2A: 3E: F6: FD: 23: 69: 0D: 71: 20: D4: 2B: 47: 99: 2B: A6
SHALl: CB: Al: C5: F8: BO: E3: 5E: B8: B9: 45: 12: D3: F9: 34: A2: E9: 06: 10: D3: 36
SHA256:
A6: C5: 1E: OD: A5: CA: OA: 93: 09: D2: E4: C0: E4: 0C: 2A: F9: 10: 7A: AE: 82: 03: 85: 7F:
Alias nane: nozillacert5. pem
MD5: Al: 0B: 44: B3: CA: 10: D8: 00: 6E: 9D: OF: D8: OF: 92: OA: D1
SHALl: BS8: 01: 86: D1: EB: 9C: 86: A5: 41: 04: CF: 30: 54: F3: 4C. 52: B7: E5: 58: C6
SHA256:
CE: CD: DC: 90: 50: 99: D8: DA: DF: C5: B1: D2: 09: B7: 37: CB: E2: C1: 8C: FB: 2C. 10: CO:
Alias nane: nozillacert71. pem
MD5: 9E: 80: FF: 78: 01: 0C: 2E: C1: 36: BD: FE: 96: 90: 6E: 08: F3
SHALl: 4A: BD: EE: EC. 95: 0D: 35: 9C:. 89: AE: C7: 52: Al: 2C. 5B: 29: F6: D6: AA: 0C
SHA256:
13: 63: 35:43: 93: 34: A7: 69: 80: 16: AO0: D3: 24: DE: 72: 28: 4E: 07: 9D: 7B: 52: 20: BB:
Al i as nane: verisigncl ass3g4ca
MD5: 3A:52: El: E7: FD: 6F: 3A: E3: 6F: F3: 6F: 99: 1B: F9: 22: 41
SHALl: 22:D5:D8: DF: 8F: 02: 31: D1: 8D: F7: 9D: B7: CF: 8A: 2D: 64: C9: 3F: 6C. 3A
SHA256:
69: DD: D7: EA: 90: BB: 57: C9: 3E: 13: 5D: C8: 5E: A6: FC: D5: 48: 0B: 60: 32: 39: BD: 4:
Alias nane: nozillacert89. pem
MD5: DB: C8: F2: 27: 2E: B1: EA: 6A: 29: 23: 5D: FE: 56: 3E: 33: DF
SHALl: C8: EC. 8C. 87:92: 69: CB: 4B: AB: 39: E9: 8D: 7E: 57: 67: F3: 14: 95: 73: 9D
SHA256:
E3: 89: 36: O0D: OF: DB: AE: B3: D2: 50: 58: 4B: 47: 30: 31: 4E: 22: 2F: 39: C1: 56: AO: 20:

71:

4D: 21:

07:

95:

64:

El:

FF:

8F:

54:

14:

05:

L 1E:

05:

1 66:

7C.

98:

0B:

BD:

FC.

4E:

BA:

EC:

02

A8

46!

4B

68:

E3:

74

75:

8D

205

38:

15:

B5:

09:

93:

81:

E7:

10D:

78:

8B:

96:

6B:

8E:

: AO:

F2:

69:

32:

16:

2A:

05:

15:

: BA:

. FB:

FF:

A3:

s F3:

E3:

86:

EE:

26:

61:

3D

4F:

96:

Cl:

18:

F2:

. 35:

43:

FC.

BE:

79:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Alias nane: nozillacert135. pem
MD5: 2C. 8F: 9F: 66: 1D: 18: 90: B1: 47: 26: 9D: 8E: 86: 82: 8C. A9
SHALl: 62:52:DC. 40: F7: 11: 43: A2: 2F: DE: 9E: F7: 34: 8E: 06: 42: 51: B1: 81: 18
SHA256:

D8: EO: FE: BC. 1D: B2: E3: 8D: 00: 94: OF: 37: D2: 7D: 41: 34: 4D: 99: 3E: 73: 4B: 99: D5:

Ali as nane: canerfirmchanberscomrerceca
MD5: BO: 01: EE: 14: D9: AF: 29: 18: 94: 76: 8E: F1: 69: 33: 2A: 84
SHALl: 6E: 3A: 55: A4: 19: 0C: 19: 5C. 93: 84: 3C. C0: DB: 72: 2E: 31: 30: 61: FO: B1
SHA256:

0C. 25: 8A: 12: A5: 67: 4A: EF: 25: F2: 8B: A7: DC. FA: EC. EE: A3: 48: E5: 41: E6: F5: CC:

Alias nane: nozillacert27. pem
MD5: CF:. F4:27:0D:. D4: ED: DC: 65: 16: 49: 6D: 3D: DA: BF: 6E: DE
SHALl: 3A:44:73:5A: E5: 81: 90: 1F: 24: 86: 61: 46: 1E: 3B: 9C. C4: 5F: F5: 3A: 1B
SHA256:

42:00: F5: 04: 3A: C8: 59: OE: BB: 52: 7D: 20: 9E: D1: 50: 30: 29: FB: CB: D4: 1C. Al: B5:

Al'i as nane: verisignclg6. pem
MD5: 2F: A8: B4: DA: F6: 64: 4B: 1E: 82: F9: 46: 3D: 54: 1A: 7C. BO
SHALl: 51:7F:61: 1E: 29: 91: 6B: 53: 82: FB: 72: E7: 44: D9: 8D: C3: CC. 53: 6D: 64
SHA256:

9D: 19: 0B: 2E: 31: 45: 66: 68: 5B: E8: A8: 89: E2: 7A: A8: C7: D7: AE: 1D: 8A: AD: DB: A3:

Alias nane: verisigncl ass3g2ca
MD5: A2:33:9B:4C. 74:78: 73: D4: 6C. E7: Cl1: F3: 8D: CB: 5C. E9
SHALl: 85:37:1C. A6: E5: 50: 14: 3D: CE: 28: 03: 47: 1B: DE: 3A: 09: E8: F8: 77: OF
SHA256:

83: CE: 3C:. 12: 29: 68: 8A: 59: 3D: 48: 5F: 81: 97: 3C. OF: 91: 95: 43: 1E: DA: 37: CC. 5E:

Alias nane: nozillacert60. pem
MD5: B7:52: 74: E2: 92: B4: 80: 93: F2: 75: E4: CC. D7: F2: EA: 26
SHALl: 3B: C4: 9F: 48: F8: F3: 73: A0: 9C: 1E: BD: F8: 5B: B1: C3: 65: C7: D8: 11: B3
SHA256:

BF: OF: EE: FB: 9E: 3A: 58: 1A: D5: F9: E9: DB: 75: 89: 98: 57: 43: D2: 61: 08: 5C:. 4D: 31.:

Alias nane: nozillacert78. pem
MD5: 42:65: CA: BE: 01: 9A: 9A: 4C: A9: 8C. 41: 49: CD: CO: D5: 7F
SHALl: 29:36:21:02:8B: 20: ED: 02: F5: 66: C5: 32: D1: D6: ED: 90: 9F: 45: 00: 2F
SHA256:

0A: 81: EC. 5A: 92: 97: 77: F1: 45: 90: 4A: F3: 8D: 5D: 50: 9F: 66: B5: E2: C5: 8F: CD: B5:

Al ias nane: gd_bundl e-g2. pem
MD5: 96: C2:50: 31: BC. OD: C3: 5C. FB: A7: 23: 73: 1E: 1B: 41: 40
SHALl: 27: AC. 93:69: FA: F2: 52: 07: BB: 26: 27: CE: FA: CC. BE: 4E: F9: C3: 19: B8
SHA256:

97: 3A: 41: 27: 6F:. FD: 01: EO: 27: A2: AA: D4: 9E: 34: C3: 78: 46: D3: E9: 76: FF: 6A: 62:

Alias nane: certunta
MD5: 2C. 8F: 9F: 66: 1D: 18: 90: B1: 47: 26: 9D: 8E: 86: 82: 8C. A9
SHALl: 62:52:DC. 40: F7: 11: 43: A2: 2F: DE: 9E: F7: 34: 8E: 06: 42: 51: B1: 81: 18
SHA256:

D8: EO: FE: BC. 1D: B2: E3: 8D: 00: 94: OF: 37: D2: 7D: 41: 34: 4D: 99: 3E: 73: 4B: 99: D5:

Al i as nane: deutschetel ekonr oot ca2
MD5: 74:01:4A:91:B1:08: C4: 58: CE: 47: CD: FO: DD: 11: 53: 08
SHALl: 85: A4:08: C0: 9C:. 19: 3E: 5D: 51: 58: 7D: CD: D6: 13: 30: FD: 8C:. DE: 37: BF
SHA256:

B6: 19: 1A: 50: DO: C3: 97: 7F: 7D: A9: 9B: CD: AA: C8: 6A: 22: 7D: AE: B9: 67: 9E: C7: 0OB:

Al'i as nane: nozillacert124. pem
MD5: 27: EC. 39: 47: CD: DA: 5A: AF: E2: 9A: 01: 65: 21: A9: 4C. BB
SHALl: 4D: 23: 78: EC. 91: 95: 39: B5: 00: 7F: 75: 8F: 03: 3B: 21: 1E: C5: 4D: 8B: CF
SHA256:

80: 95: 21: 08: 05: DB: 4B: BC. 35: 5E: 44: 28: D8: FD: 6E: C2: CD: E3: AB: 5F: B9: 7A: 99:

Alias nane: nozillacert16. pem
MD5: 41:03:52: DC. OF: F7: 50: 1B: 16: FO: 02: 8E: BA: 6F: 45: C5
SHAL1: DA: C9: 02: 4F: 54: D8: F6: DF: 94: 93: 5F: B1: 73: 26: 38: CA: 6A: D7: 7C. 13

65:

4E:

06:

ClL:

36:

4F:

31:

0B:

65:

A3:

42:

6D:

E6:

EC.

EC.

43:

6F:

05:

67:

6D:

BO:

98:

97:

3B:

271

F9:

OE!

5D

8B:

12;

97:

8E:

206

78:

71:

F1:

79:

72:

OE:

E3:

78:

B8:

B3:

5A:

1 48:

59:

17:

38:

122

F4:

61:

63:

. A8:

F3:

32:

71:

214

60:

7D

88:

142

FO:

04:

214

ClL:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHA256:

06:87: 26: 03: 31: A7: 24: 03: D9: 09: F1: 05: E6: 9B: CF: OD: 32: E1: BD: 24: 93: FF: C6:

Al i as nane: seconevrootcal
MD5: 22:2D: A6: 01: EA: 7C. OA: F7: FO: 6C. 56: 43: 3F: 77: 76: D3
SHALl: FE: B8: C4: 32: DC. F9: 76: 9A: CE: AE: 3D: D8: 90: 8F: FD: 28: 86: 65: 64: 7D
SHA256:

A2: 2D: BA: 68: 1E: 97: 37: 6E: 2D: 39: 7D: 72: 8A: AE: 3A: 9B: 62: 96: B9: FD: BA: 60: BC.

Alias nane: nozillacert67. pem
MD5: C5: DF: B8: 49: CA: 05: 13: 55: EE: 2D: BA: 1A: C3: 3E: BO: 28
SHALl: D6:9B: 56:11:48: F0: 1C. 77: C5: 45: 78: C1: 09: 26: DF: 5B: 85: 69: 76: AD
SHA256:

CB: B5: 22: D7: B7: F1: 27: AD: 6A: 01: 13: 86: 5B: DF: 1C. D4: 10: 2E: 7D: 07: 59: AF: 63:

Al i as nanme: gl obal si gnr3ca
MD5: C5: DF: B8: 49: CA: 05: 13: 55: EE: 2D: BA: 1A: C3: 3E: BO: 28
SHALl: D6:9B: 56:11:48: F0: 1C. 77: C5: 45: 78: C1: 09: 26: DF: 5B: 85: 69: 76: AD
SHA256:

CB: B5: 22: D7: B7: F1: 27: AD: 6A: 01: 13: 86: 5B: DF: 1C. D4: 10: 2E: 7D: 07: 59: AF: 63:

Alias nanme: nozillacert113. pem
MD5: EE: 29: 31: BC. 32: 7E: 9A: E6: E8: B5: F7: 51: B4: 34: 71: 90
SHA1: 50:30: 06: 09: 1D: 97: D4: F5: AE: 39: F7: CB: E7: 92: 7D: 7D: 65: 2D: 34: 31
SHA256:

6D: C4: 71: 72: EO: 1C. BC: BO: BF: 62: 58: 0D: 89: 5F: E2: B8: AC. 9A: D4: F8: 73: 80: 1E:

Al i as nane: gdroot-g2. pem
MD5: 80: 3A: BC: 22: Cl1: E6: FB: 8D: 9B: 3B: 27: 4A: 32: 1B: 9A: 01
SHALl: 47: BE: AB: C9: 22: EA: E8: OE: 78: 78: 34: 62: A7: 9F: 45: C2: 54: FD: E6: 8B
SHA256:

45:14: 0B: 32: 47: EB: 9C. C8: C5: B4: FO: D7: B5: 30: 91: F7: 32: 92: 08: 9E: 6E: 5A: 63:

Ali as nane: aol rootca2
MD5: D6: ED: 3C. CA: E2: 66: OF: AF: 10: 43: 0D: 77: 9B: 04: 09: BF
SHALl: 85:B5: FF: 67:9B: 0C:. 79: 96: 1F: C8: 6E: 44: 22: 00: 46: 13: DB: 17: 92: 84
SHA256:

7D: 3B: 46: 5A: 60: 14: E5: 26: CO: AF: FC. EE: 21: 27: D2: 31: 17: 27: AD: 81: 1C. 26: 84:

Al i as nane: trustcenteruniversal cai
MD5: 45: El: A5: 72: C5: A9: 36: 64: 40: 9E: F5: E4: 58: 84: 67: 8C
SHALl: 6B: 2F: 34: AD: 89: 58: BE: 62: FD: BO: 6B: 5C. CE: BB: 9D: D9: 4F: 4E: 39: F3
SHA256:

EB: F3: C0: 2A: 87:89: B1: FB: 7D: 51: 19: 95: D6: 63: B7: 29: 06: D9: 13: CE: OD: 5E: 10:

Alias nane: aolrootcal
MD5: 14: F1: 08: AD: 9D: FA: 64: E2: 89: E7: 1C. CF: A8: AD: 7D: 5E
SHA1: 39:21:Cl:15: Cl:5D: OE: CA: 5C. CB: 5B: C4: FO: 7D: 21: D8: 05: OB: 56: 6A
SHA256:

77.40:73:12: C6: 3A: 15: 3D: 5B: CO: OB: 4E: 51: 75: 9C: DF: DA: C2: 37: DC. 2A: 33: B6:

Al'i as nane: verisignc2g2. pem
MD5: 2D: BB: E5: 25: D3: D1: 65: 82: 3A: B7: OE: FA: E6: EB: E2: E1
SHALl: B3: EA: C4:47:76: C9: C8: 1C. EA: F2: 9D: 95: B6: CC: A0: 08: 1B: 67: EC. 9D
SHA256:

3A: 43: E2: 20: FE: 7F: 3E: A9: 65: 3D: 1E: 21: 74: 2E: AC: 2B: 75: C2: OF: D8: 98: 03: 05:

Alias nane: nozillacert56. pem
MD5: FB: 1B: 5D: 43: 8A: 94: CD: 44: C6: 76: F2: 43: 4B: 47: E7: 31
SHALl: F1:8B:53:8D: 1B: E9: 03: B6: A6: FO: 56: 43: 5B: 17: 15: 89: CA: F3: 6B: F2
SHA256:

4B: 03: F4:58: 07: AD: 70: F2: 1B: FC. 2C. AE: 71: C9: FD: E4: 60: 4C. 06: 4C. F5: FF: B6:

Alias nane: verisigncl asslg3ca
MD5: Bl: 47: BC. 18: 57: D1: 18: AO: 78: 2D: EC. 71: E8: 2A: 95: 73
SHALl: 20:42:85:DC. F7: EB: 76: 41: 95: 57: 8E: 13: 6B: D4: B7: D1: E9: 8E: 46: A5
SHA256:

CB: B5: AF: 18: 5E: 94: 2A: 24: 02: F9: EA: CB: C0: ED: 5B: B8: 76: EE: A3: Cl1: 22: 36: 23:

Alias nane: nozillacert102. pem
MD5: AA: C6:43: 2C. 5E: 2D: CD: C4: 34: C0O: 50: 4F: 11: 02: 4F: B6

D9: 20:

2E: 11:

5A: 7C.

5A: 7C.

0C: 10:

E2: 74

2D: 00:

56: 8A:

79: 46:

BC: 50:

86: BA:

DO: 04:

6D

F6!

F4.

F4:

B9

oD

6A:

8A:

E9:

2C

E5!

47

207

11:

47:

72:

72:

F3:

77

8E:

AF:

E4:

BC. D6:

F2: C6:

0D: C9:

0D: C9:

1 37: D2:

. AC. A9:

73: 06:

E2: 58:

9B: FA:

8C. 2D

: AA: D7:

F3: BA:

77

75:

63:

63:

1E:

19:

61:

68:

9B:

FD:

55:.

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHAL: 96: C9: 1B: 0B: 95: B4: 10: 98: 42: FA: DO: D8: 22: 79: FE: 60: FA: B9: 16: 83
SHA256:

EE: C5: 49: 6B: 98: 8C. E9: 86: 25: B9: 34: 09: 2E: EC: 29: 08: BE: DO: BO: F3: 16: C2: D4

Al i as nane: addtrustexternal ca
MD5: 1D: 35: 54: 04: 85: 78: BO: 3F: 42: 42: 4D: BF: 20: 73: OA: 3F
SHAL1: 02: FA: F3: E2:91: 43: 54: 68: 60: 78: 57: 69: 4D: F5: E4: 5B: 68: 85: 18: 68
SHA256:

68: 7F: A4: 51: 38: 22: 78: FF: FO: C8: B1: 1F: 8D: 43: D5: 76: 67: 1C. 6E: B2: BC. EA: B4:

Al'i as nane: verisignc3g2. pem
MD5: A2:33:9B:4C. 74: 78: 73: D4: 6C. E7: Cl1: F3: 8D: CB: 5C. E9
SHALl: 85:37:1C. A6: E5: 50: 14: 3D: CE: 28: 03: 47: 1B: DE: 3A: 09: E8: F8: 77: OF
SHA256:

83: CE: 3C: 12: 29: 68: 8A: 59: 3D: 48: 5F: 81: 97: 3C. OF: 91: 95: 43: 1E: DA: 37: CC. 5E:

Alias nane: verisigncl ass3ca
MD5: EF: 5A: F1: 33: EF: F1: CD: BB: 51: 02: EE: 12: 14: 4B: 96: C4
SHALl: Al:DB: 63:93:91: 6F: 17: E4: 18: 55: 09: 40: 04: 15: C7: 02: 40: BO: AE: 6B
SHA256:

A4: B6: B3: 99: 6F: C2: F3: 06: B3: FD: 86: 81: BD: 63: 41: 3D: 8C. 50: 09: CC. 4F: A3: 29:

Alias nane: nozillacert45. pem
MD5: 1B: 2E: 00: CA: 26: 06: 90: 3D: AD: FE: 6F: 15: 68: D3: 6B: B3
SHALl: 67:65:0D: F1: 7E: 8E: 7E: 5B: 82: 40: A4: F4: 56: 4B: CF: E2: 3D: 69: C6: FO
SHA256:

CO: A6: F4: DC. 63: A2: 4B: FD: CF: 54: EF: 2A: 6A: 08: 2A: OA: 72: DE: 35: 80: 3E: 2F: F5:

Al'i as nane: verisignc4g2. pem
MD5: 26: 6D: 2C. 19: 98: B6: 70: 68: 38: 50: 54: 19: EC: 90: 34: 60
SHALl: O0OB: 77: BE: BB: CB: 7A: A2: 47: 05: DE: CC. OF: BD: 6A: 02: FC. 7A: BD: 9B: 52
SHA256:

44:64: 0A: OA: OE: 4D: 00: OF: BD: 57: 4D: 2B: 8A: 07: BD: B4: D1: DF: ED: 3B: 45: BA: AB:

Alias nane: digicertassuredi drootca
MD5: 87: CE: 0B: 7B: 2A: OE: 49: 00: E1: 58: 71: 9B: 37: A8: 93: 72
SHALl: 05:63:B8:63: 0D: 62: D7: 5A: BB: C8: AB: 1E: 4B: DF: B5: A8: 99: B2: 4D: 43
SHA256:

3E: 90: 99: B5: 01: 5E: 8F: 48: 6C. 00: BC: EA: 9D: 11: 1E: E7: 21: FA: BA: 35: 5A: 89: BC:

Alias nane: verisignclasslca
MD5: 86: AC. DE: 2B: C5: 6D: C3: D9: 8C. 28: 88: D3: 8D: 16: 13: 1E
SHALl: CE: 6A: 64: A3: 09: E4: 2F: BB: D9: 85: 1C. 45: 3E: 64: 09: EA: E8: 7D: 60: F1
SHA256:

51:84: 7C. 8C. BD: 2E: 9A: 72: C9: 1E: 29: 2D: 2A: E2: 47: D7: DE: 1E: 3F: D2: 70: 54: 7A:

Alias nane: nozillacert109. pem
MD5: 26:01: FB: D8: 27: A7: 17: 9A: 45: 54: 38: 1A: 43: 01: 3B: 03
SHALl: B5: 61: EB: EA: A4: DE: E4: 25: 4B: 69: 1A: 98: A5: 57:47: C2: 34: C7: D9: 71
SHA256:

E2: 3D: 4A: 03: 6D: 7B: 70: E9: F5: 95: B1: 42: 20: 79: D2: B9: 1E: DF: BB: 1F: B6: 51: AO:

Al i as nane: thawtepreni unserverca
MD5: A6: 6B: 60: 90: 23: 9B: 3F: 2D: BB: 98: 6F: D6: A7: 19: 0D: 46
SHALl: EO: AB: 05: 94: 20: 72: 54: 93: 05: 60: 62: 02: 36: 70: F7: CD: 2E: FC: 66: 66
SHA256:

3F: 9F: 27: D5: 83: 20: 4B: 9E: 09: C8: A3: D2: 06: 6C. 4B: 57: D3: A2: 47: 9C. 36: 93: 65:

Alias nane: verisigntsaca
MD5: F2: 89: 95: 6E: 4D: 05: FO: F1: A7: 21: 55: 7D: 46: 11: BA: 47
SHALl: 20: CE: B1: FO: F5: 1C: OE: 19: A9: F3: 8D: B1: AA: 8E: 03: 8C. AA: 7A: C7: 01
SHA256:

CB: 6B: 05: D9: E8: E5: 7C. D8: 82: B1: OB: 4D: B7: OD: E4: BB: 1D: E4: 2B: A4: 8A: 7B: DO:

Alias nane: nozillacert96. pem
MD5: CA: FB: 40: A8: 4E: 39: 92: 8A: 1D: FE: 8E: 2F: C4: 27: EA: EF
SHALl: 55: A6: 72: 3E: CB: F2: EC. CD: C3: 23: 74: 70: 19: 9D: 2A: BE: 11: E3: 81: D1
SHA256:

FD: 73: DA: D3: 1C. 64: 4F: F1: B4: 3B: EF: OC. CD: DA: 96: 71: 0B: 9C. D9: 87: 5E: CA: 7E:

Alias nane: nozillacert142. pem

73:

13:

36:

FF:

AT

F1:

20:

63:

08:

31:

31:

(0] 04

FB:

43:

52:

6F:

EF:

3E:

80:

8B:

70:

84:

83:

OE!

FO:

TA

78:

1 69:

7D;

50:

63:

TA

208

79:

E2:

E5:

57:

56:

61:

! 8A:

56:

5B:

F3:

F1:

. 65:

FA:

78:

1E:

OF:

9D: C5:

98:

F6:

E9:

F3:

. A8:

1B:

172

C7:

3D:

38:

10:

E7:

6D:

. 6D:

88:

14:

06:

01:

BS8:

F8:

5D

78:

52:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

MD5: 31:85:3C.62:94:97: 63: B9: AA: FD: 89: 4E: AF: 6F: EO: CF
SHALl: 1F: 49:14: F7:D8: 74: 95: 1D: DD: AE: 02: CO: BE: FD: 3A: 2D: 82: 75: 51: 85
SHA256:

18: F1: FC. 7F: 20: 5D: F8: AD: DD: EB: 7F: EO: 07: DD: 57: E3: AF: 37: 5A: 9C:. 4D: 8D: 73:

Alias nane: thawteprimaryrootca
MD5: 8C. CA: DC. 0B: 22: CE: F5: BE: 72: AC. 41: 1A: 11: A8: D8: 12
SHALl: 91: C6: D6: EE: 3E: 8A: C8: 63: 84: E5: 48: C2: 99: 29: 5C. 75: 6C. 81: 7B: 81
SHA256:

8D: 72: 2F: 81: A9: C1: 13: C0: 79: 1D: F1: 36: A2: 96: 6D: B2: 6C. 95: 0A: 97: 1D: B4: 6B:

Alias nane: nozillacert34. pem
MD5: BC. 6C. 51: 33: A7: E9: D3: 66: 63: 54: 15: 72: 1B: 21: 92: 93
SHALl: 59:22: Al: E1: 5A: EA: 16: 35: 21: F8: 98: 39: 6A: 46: 46: BO: 44: 1B: OF: A9
SHA256:

41: C9: 23: 86: 6A: B4: CA: D6: B7: AD: 57: 80: 81: 58: 2E: 02: 07: 97: A6: CB: DF: 4F: FF:

Al'i as nane: nozillacertl. pem
MD5: C5:70: C4: A2: ED: 53: 78: 0C. C8: 10: 53: 81: 64: CB: DO: 1D
SHALl: 23: E5:94:94:51:95: F2: 41: 48: 03: B4: D5: 64: D2: A3: A3: F5: D8: 8B: 8C
SHA256:

B4:41: 0B: 73: E2: E6: EA: CA: 47: FB: C4: 2F: 8F: A4: 01: 8A: F4: 38: 1D: C5: 4C. FA: A8:

Al i as nane: xranpgl obal ca
MD5: Al: 0B: 44: B3: CA: 10: D8: 00: 6E: 9D: OF: D8: OF: 92: OA: D1
SHAL1: BS8: 01:86: D1: EB: 9C: 86: A5: 41: 04: CF: 30: 54: F3: 4C. 52: B7: E5: 58: C6
SHA256:

CE: CD: DC: 90: 50: 99: D8: DA: DF: C5: B1: D2: 09: B7: 37: CB: E2: C1: 8C: FB: 2C. 10: CO:

Alias nane: nozillacert85. pem
MD5: AA: 08: 8F: F6: F9: 7B: B7: F2: B1: A7: 1E: 9B: EA: EA: BD: 79
SHALl: CF: 9E: 87: 6D: D3: EB: FC. 42: 26: 97: A3: B5: A3: 7A: AO0: 76: A9: 06: 23: 48
SHA256:

BF: D8: 8F: E1: 10: 1C: 41: AE: 3E: 80: 1B: F8: BE: 56: 35: OE: E9: BA: D1: A6: B9: BD: 51.:

Alias nane: valicertclass2ca
MD5: A9: 23: 75: 9B: BA: 49: 36: 6E: 31: C2: DB: F2: E7: 66: BA: 87
SHALl: 31:7A: 2A: DO: 7F: 2B: 33: 5E: F5: Al: C3: 4E: 4B: 57: E8: B7: D8: F1: FC. A6
SHA256:

58: D0: 17: 27: 9C. D4: DC: 63: AB: DD: B1: 96: A6: C9: 90: 6C: 30: C4: EO: 87: 83: EA: E8:

Alias nane: nozillacert131. pem
MD5: 34: FC. B8: DO: 36: DB: 9E: 14: B3: C2: F2: DB: 8F: E4: 94: C7
SHAL: 37:9A:19: 7B: 41: 85: 45: 35: 0C:. A6: 03: 69: F3: 3C. 2E: AF: 47: 4F: 20: 79
SHA256:

AO: 23: 4F: 3B: C8: 52: 7C. A5: 62: 8E: EC. 81: AD: 5D: 69: 89: 5D: A5: 68: 0D: C9: 1D: 1C.

Alias nane: nozillacert149. pem
MD5: BO: 01: EE: 14: D9: AF: 29: 18: 94: 76: 8E: F1: 69: 33: 2A: 84
SHALl: 6E: 3A: 55: A4: 19: 0C: 19: 5C. 93: 84: 3C. C0O: DB: 72: 2E: 31: 30: 61: FO: B1
SHA256:

0C. 25: 8A: 12: A5: 67: 4A: EF: 25: F2: 8B: A7: DC. FA: EC. EE: A3: 48: E5: 41: E6: F5: CC:

Alias nanme: geotrustprinmaryca
MD5: 02:26:C3:01: 5E: 08: 30: 37:43: A9: DO: 7D: CF: 37: E6: BF
SHALl: 32:3C:.11: 8E: 1B: F7: B8: B6: 52: 54: E2: E2: 10: OD: D6: 02: 90: 37: FO: 96
SHA256:

37:D5:10: 06: C5: 12: EA: AB: 62: 64: 21: F1: EC. 8C. 92: 01: 3F: C5: F8: 2A: E9: 8E: E5:

Alias nane: nozillacert23. pem
MD5: 8C. CA: DC. 0B: 22: CE: F5: BE: 72: AC. 41: 1A: 11: A8: D8: 12
SHAL: 91: C6: D6: EE: 3E: 8A: C8: 63: 84: E5: 48: C2: 99: 29: 5C. 75: 6C. 81: 7B: 81
SHA256:

8D: 72: 2F: 81: A9: C1: 13: C0: 79: 1D: F1: 36: A2: 96: 6D: B2: 6C. 95: 0A: 97: 1D: B4: 6B:

Alias nane: verisignclg2. pem
MD5: DB: 23: 3D: F9: 69: FA: 4B: B9: 95: 80: 44: 73: 5E: 7D: 41: 83
SHALl: 27:3E: El: 24:57: FD: C4: F9: 0C: 55: E8: 2B: 56: 16: 7F: 62: F5: 32: E5: 47
SHA256:

34: 1D: E9: 8B: 13: 92: AB: F7: F4: AB: 90: A9: 60: CF: 25: D4: BD: 6E: C6: 5B: 9A: 51: CE:

54:

41

78:

44:

FF:

5E:

ClL:

B8:

4E:

33:

41

6E:

6B:

99:

50:

0B:

60:

47:

E6:

EB:

99:

F4:

F4:

. 83!

46!

. 5C;

99:

TF!

3B:

46!

F4:

167!

209

F1:

96:

1E:

10D:

6D:

54:

33:

71:

19:

FE:

: 54

B3:

ED: 09:

32:

5B:

F8:

B3:

B8:

: 54

: OE:

D1:

B7:

89:

86:

87:

1 93:

78:

61:

B7:

C7:

El:

8B:

37:

45: .

FC.

11:

55:

B9:

60:

8B:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

Al'i as nane: nozill acert8. pem
MD5: 22:4D: 8F: 8A: FC. F7: 35: C2: BB: 57: 34: 90: 7B: 8B: 22: 16
SHALl: 3E: 2B: F7: F2: 03: 1B: 96: F3: 8C. E6: C4: D8: A8: 5D: 3E: 2D: 58: 47: 6A: OF
SHA256:

C7:66: A9: BE: F2: D4: 07: 1C. 86: 3A: 31: AA: 49: 20: E8: 13: B2: D1: 98: 60: 8C. B7: B7:

Alias nane: nozillacert74. pem
MD5: 17:35:74: AF: 7B: 61: 1C. EB: F4: F9: 3C. E2: EE: 40: F9: A2
SHALl: 92:5A: 8F: 8D: 2C. 6D: 04: EO: 66: 5F: 59: 6A: FF: 22: D8: 63: E8: 25: 6F: 3F
SHA256:

56: 8D: 69: 05: A2: C8: 87: 08: A4: B3: 02: 51: 90: ED: CF: ED: B1: 97: 4A: 60: 6A: 13: C6:

Alias nane: nozillacert120. pem
MD5: 64:9C. EF: 2E: 44: FC. C6: 8F: 52: 07: DO: 51: 73: 8F: CB: 3D
SHAL1: DA: 40: 18: 8B: 91: 89: A3: ED: EE: AE: DA: 97: FE: 2F: 9D: F5: B7: D1: 8A: 41
SHA256:

CF:. 56: FF: 46: A4: Al: 86: 10: 9D: D9: 65: 84: B5: EE: B5: 8A: 51: 0C:. 42: 75: BO: E5: F9:

Al i as nane: geotrustgl obal ca
MD5: F7:75: AB: 29: FB: 51: 4E: B7: 77: 5E: FF: 05: 3C. 99: 8E. F5
SHALl: DE: 28: F4: A4: FF: E5: B9: 2F: A3: C5: 03: D1: A3: 49: A7: F9: 96: 2A: 82: 12
SHA256:

FF: 85: 6A: 2D: 25: 1D: CD: 88: D3: 66: 56: F4: 50: 12: 67: 98: CF: AB: AA: DE: 40: 79: 9C.

Alias nane: nozillacert138. pem
MD5: 91: 1B: 3F: 6E: CD: 9E: AB: EE: 07: FE: 1F: 71: D2: B3: 61: 27
SHALl: El: 9F: E3: OE: 8B: 84: 60: 9E: 80: 9B: 17: 0D: 72: A8: C5: BA: 6E: 14: 09: BD
SHA256:

3F: 06: E5: 56: 81: D4: 96: F5: BE: 16: 9E: B5: 38: 9F: 9F: 2B: 8F: F6: 1E: 17: 08: DF: 68:

Al'i as nane: nozillacert12. pem
MD5: 79: E4: A9: 84: 0D: 7D: 3A: 96: D7: CO: 4F: E2: 43: 4C. 89: 2E
SHALl: A8:98:5D: 3A: 65: E5: E5: C4: B2: D7: D6: 6D: 40: C6: DD: 2F: B1: 9C: 54: 36
SHA256:

43:48: AO: E9: 44: 4C; 78: CB: 26: 5E: 05: 8D: 5E: 89: 44: B4: D8: 4F: 96: 62: BD: 26: DB:

Al i as nane: conbdoaaaca
MD5: 49:79:04: B0: EB: 87: 19: AC. 47: BO: BC: 11: 51: 9B: 74: DO
SHALl: D1: EB: 23: A4: 6D: 17: D6: 8F: D9: 25: 64: C2: F1: F1: 60: 17: 64: D8: E3: 49
SHA256:

D7: A7: AO: FB: 5D: 7E: 27: 31: D7: 71: E9: 48: 4E: BC. DE: F7: 1D: 5F: OC:. 3E: 0OA: 29: 48:

Alias nane: nozillacert63. pem
MD5: F8:49: F4: 03: BC: 44: 2D: 83: BE: 48: 69: 7D: 29: 64: FC. B1
SHALl: 89: DF: 74: FE: 5C. F4: OF: 4A: 80: F9: E3: 37: 7D: 54: DA: 91: E1: 01: 31: 8E
SHA256:

3C. 5F: 81: FE: A5: FA: B8: 2C. 64: BF: A2: EA: EC. AF: CD: E8: EO: 77: FC: 86: 20: A7: CA:

Alias nanme: certpluscl ass2prinaryca
MD5: 88: 2C. 8C. 52: B8: A2: 3C. F3: F7: BB: 03: EA: AE: AC: 42: 0B
SHALl: 74:20:74:41:72:9C. DD: 92: EC. 79: 31: D8: 23: 10: 8D: C2: 81: 92: E2: BB
SHA256:

OF: 99: 3C:. 8A: EF: 97: BA: AF: 56: 87: 14: OE: D5: 9A: D1: 82: 1B: B4: AF: AC. FO: AA: 9A:

Alias nane: nozillacert127. pem
MD5: F7:75: AB: 29: FB: 51: 4E: B7: 77: 5E: FF: 05: 3C. 99: 8E. F5
SHALl: DE: 28: F4: A4: FF: E5: B9: 2F: A3: C5: 03: D1: A3: 49: A7: F9: 96: 2A: 82: 12
SHA256:

FF: 85: 6A: 2D: 25: 1D: CD: 88: D3: 66: 56: F4: 50: 12: 67: 98: CF: AB: AA: DE: 40: 79: 9C.

Alias nane: ttel esecgl obal rootcl ass2ca
MD5: 2B: 9B: 9E: E4: 7B: 6C. 1F: 00: 72: 1A: CC. C1: 77: 79: DF: 6A
SHALl: 59:0D: 2D: 7D: 88: 4F: 40: 2E: 61: 7E: A5: 62: 32: 17: 65: CF: 17: D8: 94: E9
SHA256:

91: E2: F5: 78: 8D: 58: 10: EB: A7: BA: 58: 73: 7D: E1: 54: 8A: 8E: CA: CD: 01: 45: 98: BC:

Alias nane: nozillacert19. pem
MD5: 37: A5: 6E: D4: B1: 25: 84: 97: B7: FD: 56: 15: 7A: F9: A2: 00
SHALl: B4:35:D4: E1: 11: 9D: 1C. 66: 90: A7: 49: EB: B3: 94: BD: 63: 7B: A7: 82: B7

E5:

4F:

72:

81:

25:

78:

E5:

58:

72:

0B:

cE2:

29:

40:

2D:

72:

7F:

2B:

37:

B5:

2D:

14:

11:

OF!

BB:

E4:

48!

89:

16

E4:

3E:

210

43:

AE:

49:

34:

1 3E:

3D:

1TA:

04:

B8: 36:

. 2A: E6:

86: 5E:

. B5: DB:

CD: 5D

EO: EA:

F3: 6E:

33: 8A:

. B5: DB:

1B: 17:

3E:

19:

36: .

27

69:

3A:

36: .

05:

Amazon API Gateway Developer Guide
Supported Certificate Authorities for
HTTP and HTTP Proxy Integration

SHA256:
C4:.70: CF: 54: 7E: 23: 02: B9: 77: FB: 29: DD: 71: A8: 9A: 7B: 6C. 1F: 60: 77: 7B: 03: 29:
Al i as nane: digicerthi ghassuranceevrootca
MD5: D4:74: DE: 57:5C. 39: B2: D3: 9C: 85: 83: C5: C0: 65: 49: 8A
SHALl: 5F: B7: EE: 06: 33: E2: 59: DB: AD: 0C: 4C. 9A: E6: D3: 8F: 1A: 61: C7: DC. 25
SHA256:
74:.31: E5: F4: C3: Cl: CE: 46: 90: 77: 4F: OB: 61: EO: 54: 40: 88: 3B: A9: AO: 1E: DO: OB:
Al i as nane: aneninternalinfoseccag3
MD5: E9: 34: 94: 02: BA: BB: 31: 6B: 22: E6: 2B: A9: C4: FO: 26: 04
SHALl: B9: Bl: CA: 38: F7: BF: 9C. D2: D4: 95: E7: B6: 5E: 75: 32: 9B: A8: 78: 2E: F6
SHA256:
81:03: 0B: C7: E2: 54: DA: 7B: F8: B7: 45: DB: DD: 41: 15: 89: B5: A3: 81: 86: FB: 4B: 29:
Al'i as nane: nozillacert52. pem
MD5: 21: BC. 82: AB: 49: C4: 13: 3B: 4B: B2: 2B: 5C. 6B: 90: 9C: 19
SHALl: 8B: AF: 4C. 9B: 1D: FO: 2A: 92: F7: DA: 12: 8E: B9: 1B: AC. F4: 98: 60: 4B: 6F
SHA256:
E2: 83:93: 77: 3D: A8: 45: A6: 79: F2: 08: 0C. C7: FB: 44: A3: B7: Al: C3: 79: 2C. B7: EB:
Al'i as nane: nozillacert116. pem
MD5: AE: B9: C4: 32: 4B: AC. 7F: 5D: 66: CC. 77: 94: BB: 2A: 77: 56
SHALl: 2B: Bl: F5: 3E: 55: 0C: 1D: C5: F1: D4: E6: B7: 6A: 46: 4B: 55: 06: 02: AC. 21
SHA256:
F3: 56: BE: A2: 44: B7: A9: 1E: B3: 5D: 53: CA: 9A: D7: 86: 4A: CE: 01: 8E: 2D: 35: D5: F8:
Al i as nane: gl obal signca
MD5: 3E: 45:52:15:09:51:92: E1: B7: 5D: 37: 9F: B1: 87: 29: 8A
SHALl: B1: BC: 96: 8B: D4: F4: 9D: 62: 2A: A8: 9A: 81: F2: 15: 01: 52: A4: 1D: 82: 9C
SHA256:
EB: D4: 10: 40: E4: BB: 3E: C7: 42: C9: E3: 81: D3: 1E: F2: A4: 1A: 48: B6: 68: 5C. 96: E7:
Al'i as nane: nozillacert4l. pem
MD5: 45: El: A5: 72: C5: A9: 36: 64: 40: 9E: F5: E4: 58: 84: 67: 8C
SHALl: 6B: 2F: 34: AD: 89: 58: BE: 62: FD: BO: 6B: 5C. CE: BB: 9D: D9: 4F: 4E: 39: F3
SHA256:
EB: F3: C0: 2A: 87:89: B1: FB: 7D: 51: 19: 95: D6: 63: B7: 29: 06: D9: 13: CE: OD: 5E: 10:
Alias nane: nozillacert59. pem
MD5: 8E: AD: B5: 01: AA: 4D: 81: E4: 8C. 1D: D1: E1: 14: 00: 95: 19
SHALl: 36: 79: CA: 35: 66: 87: 72: 30: 4D: 30: A5: FB: 87: 3B: OF: A7: 7B: B7: OD: 54
SHA256:
23:99:56:11: 27: A5: 71: 25: DE: 8C. EF: EA: 61: OD: DF: 2F: AO: 78: B5: C8: 06: 7F: 4E:
Al'i as nane: nozillacert 105. pem
MD5: 5B: 04: 69: EC. A5: 83: 94: 63: 18: A7: 86: DO: E4: F2: 6E. 19
SHALl: 77:47:4F: C6: 30: E4: OF: 4C. 47: 64: 3F: 84: BA: B8: C6: 95: 4A: 8A: 41: EC
SHA256:
FO: 9B: 12: 2C. 71: 14: F4: AO: 9B: D4: EA: 4F: 4A: 99: D5: 58: B4: 6E: 4C. 25: CD: 81: 14:
Alias nane: trustcenterclass2caili
MD5: CE: 78:33:5C. 59: 78: 01: 6E: 18: EA: B9: 36: AO: B9: 2E: 23
SHALl: AE: 50: 83: ED: 7C. F4: 5C. BC. 8F: 61: C6: 21: FE: 68: 5D: 79: 42: 21: 15: 6E
SHA256:
E6: B8: F8: 76: 64: 85: F8: 07: AE: 7F: 8D: AC. 16: 70: 46: 1F: 07: CO: Al: 3E: EF: 3A: 1F:
Al'i as nane: nozillacert92. pem
MD5: C9:3B:0D: 84: 41: FC. A4: 76: 79: 23: 08: 57: DE: 10: 19: 16
SHALl: A3: F1:33: 3F: E2: 42: BF: CF: C5: D1: 4E: 8F: 39: 42: 98: 40: 68: 10: D1: A0
SHA256:
El: 78: 90: EE: 09: A3: FB: F4: F4: 8B: 9C. 41: 4A: 17: D6: 37: B7: A5: 06: 47: E9: BC:. 75:
Al ias nane: verisignc3g5. pem
MD5: CB: 17: E4: 31:67: 3E: E2: 09: FE: 45: 57: 93: F3: 0A: FA: 1C
SHALl: 4E: B6: D5: 78: 49: 9B: 1C. CF: 5F: 58: 1E: AD: 56: BE: 3D: 9B: 67: 44: A5: E5
SHA256:
9A: CF: AB: 7E: 43: C8: D8: 80: DO: 6B: 26: 2A: 94: DE: EE: E4: B4: 65: 99: 89: C3: DO: CA:
Alias nanme: geotrustprinmarycag3
MD5: B5: E8: 34: 36: C9: 10: 44: 58: 48: 70: 6D: 2E: 83: D4: B8: 05

F5:

A6:

77:

77:

F9:

56:

82:

0D: 29:

F7:

23:

F1:

60:

AB:

1F:

29:

6D:

: F3:

8A:

82:

17:

22:

9B:

17:

D7:

84:

FD:

Cl:

8A:

90:

53:

721

AF;

211

F3:

80:

OA:

168:

77

BF:

1 56:

8D:

7F:

64:

28: BF:

6E: D3:

18: D9:

. 6A: 8D:

A6: F4:

E2: 58:

B8: 60:

13: 91:

7A: BA:

CC. 17:

05: E4:

4F:

B1:

67:

99:

1A

. 33:

61:

ES8:

4C:

D3:

42

1A:

Amazon API Gateway Developer Guide
Use API Gateway Usage Plans

SHALl: 03: 9E: ED: B8: 0B: E7: AO: 3C. 69: 53: 89: 3B: 20: D2: D9: 32: 3A: 4C. 2A. FD
SHA256:
B4: 78: B8: 12: 25: OD: F8: 78: 63: 5C. 2A: A7: EC. 7D: 15: 5E: AA: 62: 5E: E8: 29: 16: E2: CD: 29: 43 61: 88: 6C: D1:
Alias nanme: geotrustprinmarycag2
MD5: 01:5E: D8: 6B: BD: 6F: 3D: 8E: Al: 31: F8: 12: EO: 98: 73: 6A
SHALl: 8D: 17:84:D5:37: F3:03: 7D: EC. 70: FE: 57: 8B: 51: 9A: 99: E6: 10: D7: BO
SHA256:
5E: DB: 7A: C4: 3B: 82: AO: 6A: 87: 61: E8: D7: BE: 49: 79: EB: F2: 61: 1F: 7D: D7: 9B: F9: 1C. 1C. 6B 56: 6A: 21: 9E:
Alias nane: nozillacert30. pem
MD5: 15: AC. A5: C2: 92: 2D: 79: BC. E8: 7F: CB: 67: ED: 02: CF: 36
SHALl: E7: B4: F6:9D: 61: EC. 90: 69: DB: 7E: 90: A7: 40: 1A: 3C. F4: 7D: 4F: E8: EE
SHA256:
A7:12:72: AE: AA: A3: CF: E8: 72: 7F: 7F: B3: 9F: OF: B3: D1: E5: 42: 6E: 90: 60: BO: 6E: E6: F1: 3E; 9A: 3C. 58: 33:
Alias nanme: affirmrustprem uneccca
MD5: 64: B0: 09: 55: CF: B1: D5: 99: E2: BE: 13: AB: A6: 5D: EA: 4D
SHALl: BS8: 23:6B: 00: 2F: 1D: 16: 86: 53: 01: 55: 6C. 11: A4: 37: CA: EB: FF: C3: BB
SHA256:
BD: 71: FD: F6: DA: 97: E4: CF. 62: D1: 64: 7A: DD: 25: 81: BO: 7D: 79: AD: F8: 39: 7E: B4: EC. BA: 9C; 5E: 84: 88: 82:
Alias nane: nozillacert48. pem
MD5: B8: 08: 9A: FO: 03: CC: 1B: OD: C8: 6C. 0B: 76: Al: 75: 64: 23
SHAL1: AO0: Al: AB: 90: C9: FC: 84: 7B: 3B: 12: 61: E8: 97: 7D:. 5F: D3: 22: 61: D3: CC
SHA256:
OF: 4E: 9C. DD: 26: 4B: 02: 55: 50: D1: 70: 80: 63: 40: 21: 4F: E9: 44: 34: C9: BO: 2F: 69: 7E: C7: 10: FC. 5F: EA: FB:

Create and Use API| Gateway Usage Plans

After you create, test, and deploy your APIs, you can extend them as product offerings for your
customers. You can provide usage plans to allow specified customers to access selected APIs at
agreed-upon request rates and quotas that can meet their business requirements and budgetary
constraints.

What Is a Usage Plan?

A usage plan provides access to one or more deployed API stages with configurable throttling and
guota limits enforced on individual client API keys. API callers are identified by API keys that can be
generated by APl Gateway or imported from external sources. The throttling prescribes the request
rate limits applied to each API key. The quotas are the maximum number of requests with a given API
key submitted within a specified time interval. Individual APl methods can be configured to require API
key authorization based on usage plan configuration. An API stage is identified by an API identifier and
a stage name.

Note
Throttling and quota limits apply to requests for individual API keys that are aggregated across
all API stages within a usage plan.

How to Configure a Usage Plan?

The following steps outlines how you, as the APl owner, configure a usage plan for your customers.

To configure a usage plan

1. Create one or more APIs, configure the methods to require an API key, and deploy the APIs in
stages.

2. Generate API keys and distribute the keys to app developers (your customers) using your APIs.

212

Amazon API Gateway Developer Guide
Set Up API Keys Using the API Gateway Console

3. Create the usage plan with the desired throttle and quota limits.
4. Associate selected API stages and API keys to the usage plan.

Callers of the API must supply an assigned API key in the x- api - key header in requests to the API.

Note

To enforce authorization of the API key in requests to the API, individual APl methods must
be configured to require an API key (p. 213). Setting this configuration ensures the incoming
API key will be authorized according to the usage plan configuration.

The following sections provide detailed instructions for these tasks.

Topics
¢ Set Up API Keys Using the API Gateway Console (p. 213)
¢ Create and Configure Usage Plans with the APl Gateway Console (p. 216)
¢ Set Up API Keys Using the API Gateway REST API (p. 219)
¢ Create and Configure Usage Plans with the APl Gateway REST API (p. 220)
¢ API Gateway API Key File Format (p. 222)
¢ Use API Keys in API Gateway without Usage Plans Enabled (p. 223)

Set Up API Keys Using the APl Gateway Console

To set up API keys, do the following:

¢ Configure APl methods to require an API key.
¢ Create or import an API key for the APl in a region.

Before setting up API keys, you must have created an API and deployed it to a stage.

For instructions on how to create and deploy an API using the APl Gateway console, see Creating an
API (p. 70) and Deploying an API (p. 230), respectively.

Topics
¢ Require API Key on a Method (p. 213)
¢ Create an API Key (p. 214)
¢ Import API Keys (p. 215)

Require API Key on a Method

The following procedure describes how to configure an API method to require an API key.

To configure an APl method to require an API key

1. Signinto the AWS Management Console and open the API Gateway console at https://
console.aws.amazon.com/apigateway/.

In the API Gateway main navigation pane, choose Resources.

Under Resources, create a new method or choose an existing one.

Choose Method Request.

Under the Authorization Settings section, choose t r ue for API Key Required.

ook~ wDN

Select the check-mark icon to save the settings.

213

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/

Amazon API Gateway Developer Guide
Set Up API Keys Using the API Gateway Console

Resources Actions ~ € Method Execution / - GET - Method Request
v/ Provide information about this method's authorization settings and the parameters it c
GET
OPTIONS Authorization Settings
v /pets Authorization NONE +'@
GET
OPTIONS APl Key Required {e j@g
* /{petld}
GET .
k
- URL Query String Parameters

» HTTP Request Headers

» Request Models Create a Model

7. Deploy or redeploy the API for the requirement to take effect.

If the API Key Required option is set to f al se and you do not execute the steps above, any API key
associated with an API stage will not used for the method.

Create an API Key

If you have already created or imported API keys for use with usage plans, you can skip this and the
next procedure.

To create an API key

1. Signinto the AWS Management Console and open the API Gateway console at https://
console.aws.amazon.com/apigateway/.

2. Inthe API Gateway main navigation pane, choose API Keys.
From the Actions drop-down menu, choose Create API key.

:{2 Amazon AP| Gateway APl Keys

APls . APIKeys Actions ~ Select an API key
PetStore Y Searc Create AP key
Import AP| keys
Usage Plans @ 4 MyFirstKey
API Keys

Custom Domain Names
Client Certificates
Settings.

4. In Create API Key, do the following:

a. Type an API key name (e.g., MyFi r st Key) in the Name input field.

214

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/

Amazon API Gateway Developer Guide
Set Up API Keys Using the API Gateway Console

b. Choose Auto Generate to have API Gateway to generate the key value or choose Custom to

enter the key manually.
c. Choose Save.

Create APl Key
Name* MyFirstkey

APl key* @ Auto Generate Custem

Description |For the first customer

* Required m

5. Repeat the preceding steps to create more API keys, if needed.

Import API Keys
The following procedure describes how to import API keys to use with usage plans.

To import APl keys

In the main navigation pane, choose API Keys.
From the Actions drop-down menu, choose Import API keys.

To load a comma-separated key file, choose Select CSV File. You can also type the keys
manually. For information about the file format, see API Gateway API Key File Format (p. 222).

Import API Keys

Use the field below to upload your existing AP| Keys as comma separated values (CSV). AP| Keys will be created in AP|
Gateway and associated with a Usage Plan. Learn about the CSV format in the (ZAP| Gateway documentaticn

Select CSV File

1 name,Key,Description,enabled,usageplanlds
2 ImportedKey,(WaiyZjNC212f9P7hcxG17A=803jEdFuBpzfryqf,an imported key,true,abcdef

9 Fail on warnings Ignore warnings m

4. Choose Fail on warnings to stop import when there is an error, or choose Ignore warnings to
continue to import valid key entries when there is an error.

5. To start importing the selected API keys, choose Import.

215

Amazon API Gateway Developer Guide
Create and Configure Usage Plans
with the APl Gateway Console

Now that you have set up the API key, you can proceed to create and use a usage plan (p. 216).

Create and Configure Usage Plans with the API
Gateway Console

Before creating a usage plan, make sure you have set up the desired API keys. For more information,
see Set Up API Keys Using the API Gateway Console (p. 213).

This section describes steps needed to create and use a usage plan using the APl Gateway console.

Topics
« Migrate to Default Usage Plans (p. 216)
¢ Create Usage Plans (p. 216)
¢ Test a Usage Plan (p. 218)
¢ Maintain Plan Usage (p. 218)

Migrate to Default Usage Plans

If you start to use API Gateway after the Usage Plans feature was rolled out on August 11, 2016, you
will automatically have usage plans enabled for you in all supported regions.

If you started to use API Gateway before then, you will be prompted with the Enable Usage Plans
option before using Usage Plans for the first time in the selected region. By enabling this option, you
will have default usage plans created for every unique API stage associated with existing API keys. In
the default usage plan, no throttle and quota limits are set initially, existing API keys are converted to
a collection of UsagePlanKey resources, and existing API keys are converted to API stage Ids. The
API will behave the same as before. However, you must use the UsagePlan api St ages property to
associate specified API stage values (api | d and st age) with included API keys (via UsagePlanKey),
instead of using the ApiKey st ageKeys property.

If you choose to ignore the Enable Usage Plans option, you can continue to create and use API keys
as described in Use API Keys without Usage Plans Enabled (p. 223).

Create Usage Plans

The following procedure describes how to create a usage plan.

To create a usage plan

1. Inthe Amazon API Gateway main navigation pane, choose Usage Plans, and then choose
Create.

2. Under Create Usage Plan, do the following:

a. For Name, type a name for your plan (e.g., Pl an_A).

b. For Description, type a description for your plan.

c. Select Enable throttling and set Rate (e.g., 100) and Burst (e. g., 200).

d. Choose Enable quota and set its limit (e.g., 5000) for a selected time interval (e.g., Month).
e

Choose Save.

216

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan/
http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/api-key/

Amazon API Gateway Developer Guide
Create and Configure Usage Plans
with the API Gateway Console

ﬂi Amazon API Gateway UsagePlans > Creale Show all hints 9
APls . Usage Plans m Create Usage Plan
PetShop Usage Plans help you meter API usage. With Usage Plans, you can enlorce a throttling and quota limit
Pots on gach APl key. Throttling limits define the maximum number of requests per second available to each
tStore

key. Quota imits define the number of requests each API key is allowed to make over a penod
Usage Plans

Mame* Plan_A
APl Keys

Custom Domain Names Description First usage plan

Client Cerfificates Throttling
Settings
Enable throttling ¥ @
Rate 100 # requests per second @
Burst 200 # requests @
Quota
Enable quota V' @
5000 | requests per Month ~|o
* Required m

To add a stage to the plan, do the following in the Associated API Stages pane:

Choose Add API Stage.

Choose an API (e.g., Pet St or e) from the API drop-down list.
Choose a stage (e.g., St age_1) from the Stage drop-down list.
Choose the check-mark icon to save.

® a0 T p

Choose Next.

Associated API Stages
Associate AP stages to this usage plan. Subscribers will only be allowed to access the API stages that are

associated with the plan. Choose "Add Stage" below, then use the dropdown to select an API and stage to
enable for this usage plan.

API Stage

PetStore A testStage - (v %

Back Next

To add a key to the plan, do the following in the Usage Plan API Keys pane:

To use an existing key, choose Add API Key to Usage Plan.
For Name, type a name for the key you want to add (e.g., MyFi r st Key).
Choose the check-mark icon to save.

o o o p

If desired, repeat the preceding steps to add other existing API keys to this usage plan.

217

Amazon API Gateway Developer Guide
Create and Configure Usage Plans
with the API Gateway Console

Usage Plan API Keys

Subscribe an API key to this usage plan. Choose "Add API Key" below to search through your existing API keys.
Once a key is associated with a plan, AP| Gateway will meter all requests from the key and apply the plan's
throttling and quota limits.

Results per page 100 ~

Name
MyFirstKey (Hiorr...)
Page 1

Back Done

Note
To add a new API key to the usage plan, choose Create APl Key and add to Usage
Plan and follow the instructions.

To finish creating the usage plan, choose Done.

If you want to add more API stages to the usage plan, choose Add API Stage to repeat the
preceding steps.

Test a Usage Plan

To test the usage plan, you can use an AWS SDK, AWS CLI, or a REST API client like Postman. For
an example of using Postman to test the usage plan, see Test Usage Plans (p. 221)

Maintain Plan Usage

Maintaining a usage plan involves monitoring the used and remaining quotas over a given time period
and extending the remaining quotas by a specified amount. The following procedures describe how to
monitor and extend quotas.

To monitor used and remaining quotas

In the API Gateway main navigation pane, choose Usage Plans.

Choose a usage plan from the list of the usage plans in the secondary navigation pane in the
middle.

From within the specified plan, choose APl Keys.

Choose an API key. Then choose Usage to view Subscriber's Traffic from the plan you are
monitoring.

5. Optionally, choose Export, choose a From date and a To date, choose JSON or CSV for the
exported data format, and then choose Export.

The following example shows an exported file.

{
"thisPeriod": {
"px1KW6. . . qBazQIH": [
[

218

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Set Up API Keys Using the APl Gateway REST API

"startDate": "2016-08-01",
"endDate": "2016-08-03"

The usage data in the example shows the daily usage data for an API client, as identified by the
API key (px1KW6. . . gBaz QJH), between August 1, 2016, and August 3, 2016. Each daily usage
data shows used and remaining quotas. In this example, the subscriber has not yet used any
allotted quotas and the APl owner or administrator has reduced the remaining quota from 5000 to
10 on the third day.

To extend the remaining quotas

Repeat steps 1-3 of the previous procedure.
On the usage plan page, choose Extension from the usage plan window.
Type a number for the Remaining request quotas.

P e DR

Choose Save.

Set Up API Keys Using the APl Gateway REST API

To set up API keys, do the following:

« Configure APl methods to require an API key.
« Create or import an API key for the APl in a region.

Before setting up API keys, you must have created an API and deployed it to a stage.

For the REST API calls to create and deploy an API, see restapi:create and deployment:create,
respectively.

Topics
¢ Require an API Key on a Method (p. 219)
e Create or Import APl Keys (p. 220)

Require an APl Key on a Method

To require an API key on a method, do one of the following:

¢ Call method:put to create a method, setting api KeyRequi r ed to t r ue in the request payload.
¢ Call method:update to set api KeyRequi red totrue.

219

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/deployment-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-put/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-update/

Amazon API Gateway Developer Guide
Create and Configure Usage Plans
with the API Gateway REST API

Create or Import API Keys

To create or import an API key, do one of the following:

e Call apikey:create to create an API key.

¢ Call apikey:import to import an API key from a file. For the file format, see AP| Gateway API Key File
Format (p. 222).

With the API key created, you can now proceed to Create and Configure Usage Plans with the API
Gateway REST API (p. 220).

Create and Configure Usage Plans with the API
Gateway REST API

Before configuring a usage plan, you must have already set up methods of a selected API to require
API keys, deployed or redeployed the API to a stage, and the created or imported one or more API
keys. For more information, see Set Up API Keys Using the API Gateway REST API (p. 219).

To configure a usage plan using the API Gateway REST API, use the following instructions, assuming
you have already created the APIs to be added to the usage plan.

Topics
¢ Migrate to Default Usage Plans (p. 220)
¢ Create a Usage Plan (p. 220)
¢ Manage a Usage Plan (p. 221)
¢ Test Usage Plans (p. 221)

Migrate to Default Usage Plans

When creating a usage plan the first time, you can migrate existing API stages associated with
selected API keys to a usage plan by calling account:update with the following body:

{
"patchOperations" : [{
"op" : "add",
"path" : "/features",
"val ue" : "UsagePl ans"
bl
}

For more information about migrating API stages associated with API keys see Migrate to Default
Usage Plans in the API Gateway Console (p. 216).

Create a Usage Plan

The following procedure describes how to create a usage plan.
To create a usage plan with the REST API

1. Call usageplan:create to create a usage plan, specifying in the payload the name and description
of the plan, associated API stages, rate limits, and quotas.

Make note of the resultant usage plan identifier. You will need it in the next step.

220

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/account-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-create/

Amazon API Gateway Developer Guide
Create and Configure Usage Plans
with the API Gateway REST API

2. Do one of the following:

a. Call usageplankey:create to add an API key to the usage plan, specifying keyl d and
keyType in the payload.

To add more API keys to the usage plan, repeat the above call, one API key at a time.

b. Call apikey:import to add one or more API keys directly to the specified usage plan. The
request payload should contain API key values, the associated usage plan identifier, the
Boolean flags to indicate the keys are enabled for the usage plan, and, possibly, the API key
names and descriptions.

The following example of the api key: i mport request will add three API keys (as identified
by key, nane, and descri pti on) to one usage plan (as identified by usagepl anl ds):

POST / api keys?node=i nport & or mat =csv&f ai | onwar ni ngs=fase HTTP/ 1.1
Host: api gat eway. us- east-1. anazonaws. com

Cont ent - Type: text/csv

Aut hori zati on:

key, nane, description, enabl ed, usagepl anlds
abcdef 1234ghi j kl mop8901234567, inportedKey_1, firstone, tRuUE,

n371pt
abcdef 1234ghi j kl mop0123456789, i nportedKey_2, secondone, TRUE, n371pt
abcdef 1234ghi j kl mop9012345678, i nportedKey_3, , true, n371pt

As a result, three UsagePl anKey resources will be created and added to the UsageP! an.

You can also add API keys to more than one usage plan this way. To do this, change each
usagepl anl ds column value to a comma-separated string that contains the selected
usage plan identifiers and is enclosed within a pair of quotes ("n371pt, n282qs" or
'n371pt, n282qgs’).

Manage a Usage Plan

The following procedure describes how to manage a usage plan.

To manage a usage plan with the REST API

1. Call usageplan:by-id to get a usage plan of a given plan Id. To see the available usage plans, call
apigateway:usage-plans.

2. Call usageplan:update to add a new API stage to the plan, to replace an existing API stage in the
plan, to remove an API stage from the plan, or to modify the rate limits or quotas.

3. Call usage:get to query the usage data in a specified time interval.
4. Call usage:update to grant an extension to the current usage in a usage plan.

Test Usage Plans

As an example, let's use the PetStore API, created in Create an API Gateway API from an
Example (p. 7). Assume the API is configured to use an API key of Hi orr 45VR. . . c4GJc. The
following steps describe how to test a usage plan.

To test your usage plan

¢ Make a CET request on the Pets resource (/ pet s), with the ?t ype=. . . &age=. .. query
parameters, of the API (e.g., xbvxl pi j ch) in a usage plan:

221

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplankey-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-by-id/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/apigateway-usage-plans/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usage-get/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usage-update/

Amazon API Gateway Developer Guide
API Gateway API Key File Format

GET /test Stage/ pet s?type=dog&page=1 HTTP/ 1.1

X-api - key: Hiorr45VR .. c4Qc

Cont ent - Type: application/ x-ww-formurl encoded

Host: xbvxl pij ch. execut e-api . ap- sout heast - 1. amazonaws. com

X- Anez- Date: 20160803T001845Z

Aut hori zation: AWB4- HVAC- SHA256 Credenti al ={access_key_| D}/ 20160803/ ap-
sout heast - 1/ execut e- api / aws4_r equest, Si gnedHeader s=cont ent-type; host; x-
anz- dat e; x- api - key, Si gnature={si gv4_hash}

Note

You must submit this request to the execut e- api component of API Gateway and
provide the required API key (e.g., Hi or r 45VR. . . c4GJc) in the required x- api - key
header.

The successful response returns a 200 K status code and a payload containing the requested
results from the back end. If you forget to set the x- api - key header or set it with an incorrect key,
you will get a 403 For bi dden response. On the other hand, if you did not configure the method
to require an API key, you will likely to get a 200 OK response whether you set the x- api - key
header correctly or not and the throttle and quota limits of the usage plan are bypassed.

API Gateway API Key File Format

API Gateway can import API keys from external files of a comma-separated value (CSV) format and
associate the imported keys with one or more usage plans. The imported file must contain the Nane
and Key columns. The column header names are not case-sensitive and columns can be in any order,
as shown in the following example:

Key, nane
api keyl234abcdef ghi j 0123456789, MyFi r st Api Key

A Key value must be between 30 and 128 characters.

An API key file can also have the Descri pti on, Enabl ed, or UsagePl anl ds column, as shown in
the following example:

Nare, key, descri pti on, Enabl ed, usagepl anl ds
MyFi r st Api Key, api keyl234abcdef ghi j 0123456789, An i nported key, TRUE, c7y23b

When a key is associated with more than one usage plan, the UsagePl anl ds value is a comma-
separated string of the usage plan Ids enclosed with a pair of double or single quotes, as shown in the
following example:

Enabl ed, Nane, key, Usagepl anl ds
true, MyFi r st Api Key, api keyl234abcdef ghi j 0123456789, "c7y23b, gl vrsr"

Unrecognized columns are permitted, but will be ignored. The default value is an empty string or a
t r ue Boolean value.

The same API key can be imported multiple times with the most recent version overwriting the previous
one. Two API keys are identical if they have the same key value.

222

Amazon API Gateway Developer Guide
Use API Keys without Usage Plans Enabled

Use API Keys in APl Gateway without Usage Plans
Enabled

Since the API Gateway usage plans feature was launched on August 11, 2016, usage plans will be
enabled for you in a region where you start using APl Gateway the first time. In this case, you must use
a usage plan to associate an API key with an API stage and follow the instructions in Use AP| Gateway
Usage Plans (p. 212).

If, on the other hand, you created an APl Gateway API before then and have not enabled usage plans
in the region since then, you can follow the instructions given in this section to associate an API key
with an API stage to identify API callers, to restrict API access to those users with matching API keys,
and to curtail abusive uses with different API keys.

To use an API key without enabling usage plans, you need to perform the following tasks:

¢ Create an API key.

« Enabled it on specific API methods.

¢ Deploy the API to a stage.

¢ Associate the key with the API stage.

« Distribute the key to your customers and ask them to supply it in calls to the enabled APl methods.

API keys are not meant as a security mechanism for controlling access to an API. To enable secure
access control, use |IAM permissions (p. 160), custom authorizers (p. 174) or a Amazon Cognito
Your User Pool (p. 182).

Topics
¢ Prerequisites (p. 223)
¢ Use an API Key without Usage Plans (p. 223)

Prerequisites

1. You must not have APl Gateway usage plans enabled.
2. You must have an API available in API Gateway. Follow the instructions in Creating an API (p. 70).

3. You must have deployed the API in APl Gateway at least once. Follow the instructions in
Deploying an API (p. 230).

Use an API Key without Usage Plans

Note

The following instructions apply only if usage plans are enabled for you. To associate an API
key with an API stage in a usage plan, follow the instructions in Use AP| Gateway Usage
Plans (p. 212).

To use the API Gateway console to enable an API key without usage plans, follow these instructions:

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. Enable API key on an method:

a. Choose a method under a resource of your choosing.
Choose the Method Request box

c. If APl Key Required is set to false, choose the pencil icon next to it. Choose true from the
drop-down list and then choose the check-mark icon to save the setting.

223

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Use API Keys without Usage Plans Enabled

Resources Actions ~ € Method Execution / - GET - Method Request
v/ Provide information about this method's authorization settings and the parameters it c
GET
OPTIONS Authorization Settings
v /pets Authorization NONE #'©
GET
OPTIONS APl Key Required e j@g
* /{petid}
GET .
b
- URL Query String Parameters

¢ HTTP Request Headers

» Request Models Create a Model

Note that the steps above configure the APl Gateway to enforce using API key on the method.
Otherwise, the API key created following the instructions below will not be used for any of such
calls.

Deploy or redeploy the API for the requirement to take effect.
Create an API key:

In the API Gateway main navigation pane, choose API Keys.
Choose Create APl Key from the Actions drop-down menu.
For Name, type a name for the API key entry.

Choose either the Auto Generate option for APl Gateway to generate the key or the Custom
option for you specify the key value manually. A key value is an alphanumeric string of a size
between 30 and 128 characters long.

2 o o p

e. Optionally, type a description for the API key in the Description text box.

f. Choose Save. Make a note of the key displayed in APl key. Callers of the enabled method
must specify the key value in the x- api - key header.

224

Amazon API Gateway Developer Guide
Use API Keys without Usage Plans Enabled

We have introduced a new feature called EUSBQB Plans. With usage plans you can set throttling and reques
quota limits on a per-APl-key basis. There are no additional charges for enabling Usage Plans. Click "Enable

Usage Plans® to migrate your existing AP| keys to a usage plan.

Enable Usage Plans

APl Keys Actions~ | Create API Key

Y Search... Name* my-test-api-key

2, my-second-api-key
2, my_fist_api_key
2 myApiKey

APl key* © Auto Generate

Description my test api key

* Required

Choose Show next to API key to view the newly created API key. Your customers must
provide this key as the x- api - key header value when they call this method.
my-test-api-key
ID pmyg3c3aih
Name my-test-api-key
APl key Show
Description my test api key

Enabled Enabled &

The generated API key is enabled by default, allowing the API caller to access the API,
provided that the supplied API key matches the one configured. To prevent the apps with the

225

) Custom

Delete A

Amazon API Gateway Developer Guide
Use API Keys without Usage Plans Enabled

specified API key from accessing the API, choose Edit, deselect the Enabled option, and
then choose Save.

Associate an API key with an API stage (outside of a usage plan):

a. Under API Stage Association, choose the name of the API from the Select API drop-down
list.

Choose the name of a stage of the chosen API from the Select stage drop-down list.
c. Choose Add to save the setting.

AP Stage Association

Select APl PetStore - Stages Enabled
APl Stage
Select stage st :J
Mo associated stages
Acdd

Note: this step is available only when usage plans have not been enabled for your account and
region.

Distribute the API key to your customers and ask them to add the key as the x-

api - key header to call the key-required method. For example, if the API key of

hz YAVO9Sg98nsNh81MB4O2ky XVy 6K1xwHD8 is required on the GET / method in the t est stage
of an API (yd4f 8dz2vf), the caller must submit the following request to invoke the method.

CGET /test HITP/ 1.1

Host: yd4f 8dz2vf. execute-api.us-east-1. amazonaws. com
Cont ent - Type: application/json

X- api - key: hzYAVO9Sg98nsNh81MB4R2ky XVy 6K1xwHD8

226

Amazon API Gateway Developer Guide
View a List of APIs

Maintaining an APl in Amazon API
Gateway

Topics
¢ View a List of APIs in API Gateway (p. 227)
¢ Delete an APl in API Gateway (p. 227)
¢ Delete a Resource in APl Gateway (p. 228)
¢ View a Methods List in APl Gateway (p. 228)
¢ Delete a Method in API Gateway (p. 229)

View a List of APIs in API Gateway

Use the API Gateway console to view a list of APIs.

Topics
¢ Prerequisites (p. 227)
¢ View a List of APIs with the API Gateway Console (p. 227)

Prerequisites

¢ You must have an API available in APl Gateway. Follow the instructions in Creating an API (p. 70).

View a List of APIs with the APl Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. The list of APIs is displayed.

Delete an API in API Gateway

Use the API Gateway console to delete an API.

227

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Prerequisites

Warning
Deleting an API means that you can no longer call it. This action cannot be undone.

Topics
¢ Prerequisites (p. 228)
¢ Delete an API with the APl Gateway Console (p. 228)

Prerequisites

¢ You must have deployed the API at least once. Follow the instructions in Deploying an
API (p. 230).

Delete an API with the APl Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the APl you want to delete, choose Resources.
Choose Delete API.

When prompted to delete the API, choose Ok.

PwnNPE

Delete a Resource in APl Gateway

Use the APl Gateway console to delete a resource.

Warning

When you delete a resource, you also delete its child resources and methods. Deleting a
resource may cause part of the corresponding API to be unusable. Deleting a resource cannot
be undone.

Delete a Resource with the APl Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the box that contains the name of the API for the resource you want to delete, choose
Resources.

3. Inthe Resources pane, choose the resource, and then choose Delete Resource.
4. When prompted, choose Delete.

View a Methods List in APl Gateway

Use the API Gateway console to view a list of methods for a resource.

Topics
* Prerequisites (p. 228)
¢ View a Methods List with the APl Gateway Console (p. 229)

Prerequisites

¢ You must have methods available in APl Gateway. Follow the instructions in Build an API
Gateway API to Expose an HTTP Endpoint (p. 6).

228

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
View a Methods List with the APl Gateway Console

View a Methods List with the APl Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Inthe box that contains the name of the API, choose Resources.

3. The list of methods is displayed in the Resources pane.
Tip
You may need to choose the arrow next to one or more resources to display all of the
available methods.

Delete a Method in APl Gateway

Use the API Gateway console to delete a method.

Warning
Deleting a method may cause part of the corresponding API to become unusable. Deleting a
method cannot be undone.

Delete a Method with the API Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API for the method, choose Resources.

In the Resources pane, choose the arrow next to the resource for the method.
Choose the method, and then choose Delete Method.

When prompted, choose Delete.

oA~ eDdhdE

229

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Deploy an API with the API Gateway Console

Deploying an APl in Amazon API
Gateway

After an APl is created, you must deploy it to make it public callable. A deployment takes place in
stages. A stage corresponds to a version of the API in service. In each stage, you can configure stage-
level throttling settings, in addition to enabling or disabling API cache or CloudWatch logs for the API's
requests and responses. If the stage-level settings are enabled, you have options to override them for
individual methods. You can also define stage variables and use them to pass deployment-specific
environment data to the API integration at the run time.

Topics
¢ Deploy an API with the Amazon API Gateway Console (p. 230)
¢ Deploy an API in Stages in Amazon AP| Gateway (p. 232)
¢ Manage API Request Throttling (p. 236)
¢ Enable Amazon API Gateway Caching in a Stage to Enhance API Performance (p. 236)
* Manage API Gateway API Deployment with Stage Variables (p. 242)
¢ Generate and Use an SDK for an APl in API Gateway (p. 254)
¢ Use a Custom Domain Name in API Gateway (p. 280)

Deploy an API with the Amazon AP| Gateway
Console

Prerequisites

¢ You must specify settings for all of the methods in the API you want to deploy. Follow the
instructions in Set up Method and Integration (p. 71).

Deploy an API with the APl Gateway Console

Note
If you want to change a stage in APl Gateway to use a different deployment, see Change a
Stage to Use a Different Deployment with the APl Gateway Console (p. 231) instead.

230

Amazon API Gateway Developer Guide
Update deployment configuration
with the API Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the APl you want to deploy, choose Resources.

In the Resources pane, choose Deploy API.

P oD PR

For Deployment stage, do one of the following:

« To deploy the API to an existing stage, choose the name of the stage.
* To deploy the API to a new stage, choose New Stage. For Stage name, type the name of the
stage you want to use for the deployment.
Tip
The stage name should be meaningful, but short enough to be easy and fast to type.
Your users will specify this name as part of the URL they will use to invoke the API.
(Optional) For Stage description, type a description for the stage.
(Optional) For Deployment description, type a description for the deployment.

Choose Deploy.

Update deployment configuration with the API
Gateway Console

After an APl is deployed to a stage, you can, optionally, modify the deployment by updating the stage
settings or stage variables. After making any changes, you must redeploy the API. The following
procedure demonstrates how to accomplish with the APl Gateway Console.

1. If needed, choose the Settings tab in the Stage Editor pane of the APl Gateway Console.

You can then choose to use or not use API cache, to enable or disable CloudWatch logs, to
change throttling settings, or to select or deselect a client certificate.

2. If needed, choose the Stage Variables tab in the Stage Editor pane of the API Gateway Console.

You can then choose to update the values of selected stage variables.

3. If you made any change, choose the Save Changes button; go back to the Resources window;
and then choose Deploy API again.

Note

If the updated settings, such as enabling logging, requires a new IAM role, you can add the
required 1AM role without redeploying the API. However, it can take a few minutes before the
new IAM role takes effect. Before that happens, traces of your API calls will not be logged
even if you have enabled the logging option.

Change a Stage to Use a Different Deployment with
the APl Gateway Console

Once you have deployed an APl more than once, you can choose a specific deployment for a given
stage. The following procedure shows how to do this.

1. You must have deployed to the stage at least twice. Follow the instructions in Deploy an API with
the API Gateway Console (p. 230).
Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API with the stage you want to change, choose Stages.
Choose the stage you want to update the deployment.

231

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Deploy an API in Stages

5. Onthe Deployment History tab, choose the option button next to the deployment you want the
stage to use.

6. Choose Change Deployment.

Deploy an API in Stages in Amazon API Gateway

In API Gateway, a stage defines the path through which an API deployment is accessible.
Use the API Gateway console to deploy an API in stages.

¢ Create a Stage (p. 232)
¢ View a List of Stages (p. 232)
¢ Set Up a Stage (p. 233)
¢ Delete a Stage (p. 235)

Create a Stage in APl Gateway

Use the API Gateway console to create a stage for an API.

Topics
¢ Prerequisites (p. 232)
* Create a Stage with the AP Gateway Console (p. 232)

Prerequisites

1. You must have an API available in APl Gateway. Follow the instructions in Creating an API (p. 70).

2. You must have deployed the API at least once. Follow the instructions in Deploying an
API (p. 230).

Create a Stage with the API Gateway Console

Sign in to the AP| Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API, choose Stages.

Choose Create Stage.

For Stage name, type a name for the stage.

(Optional) For Stage description, type a description for the stage.

For Deployment, choose the date and time of the existing API deployment you want to associate
with this stage.

7. Choose Create.

oukrwdPE

View a List of Stages in APl Gateway

Use the API Gateway console to view a list of stages in AP Gateway.

Topics
¢ Prerequisites (p. 233)
« View a List of Stages with the API Gateway Console (p. 233)

232

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Up a Stage

Prerequisites

1. You must have an API available in APl Gateway. Follow the instructions in Creating an API (p. 70).

2. You must have deployed the API in APl Gateway at least once. Follow the instructions in
Deploying an API (p. 230).

View a List of Stages with the API Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.
2. Inthe box that contains the name of the API, choose Stages.

Set Up a Stage

This section walks you through the options to set up an API deployment stage in the APl Gateway
console.

Topics
¢ Prerequisites (p. 233)
¢ Set Up an API Deployment Stage with the APl Gateway Console (p. 233)

Prerequisites

¢ You must have a stage available in APl Gateway. Follow the instructions in Create a
Stage (p. 232).

Set Up an API Deployment Stage with the API Gateway
Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

In the box that contains the name of the API for the stage where you want to specify settings,
choose Stages.

In the Stages pane, choose the name of the stage.

To enable a cache for the API, on the Settings tab, in the Cache Settings area, select Enable
API cache. Then, for Cache capacity, choose a cache size. You can use the default for other
cache settings. For information on how to set up these, . Finally, choose Save Changes.

Important

By selecting this box, your AWS account may be charged for API caching.

Tip

To override enabled stage-level cache settings, expand the stage under the Stages
secondary navigation pane, choose a method. Then back in the stage editor, choose
Override for this method for Settings. In the ensuing Cache Settings area, clear
Enable Method Cache or customize any other desired options, before choosing Save
Changes. For more information about the method-level and other stage-level cache
settings, see Enable API Caching (p. 236).

5. To generate code to call the API from Android, iOS, or JavaScript, you use the SDK Generation
tab. For more information, see Generate and Use an SDK for an API (p. 254).

6. To enable Amazon CloudWatch Logs for all of the methods associated with this stage of this API
Gateway API, do the following:

233

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Up a Stage

1. Onthe Settings tab, in the CloudWatch Settings area, select Enable CloudWatch Logs.
Tip
To enable method-level CloudWatch settings, expand the stage under the Stages
secondary navigation pane, choose each method of interest, and, back in the stage
editor, choose Override for this method for Settings. In the ensuing CloudWatch

Settings area, make sure to select Log to CloudWatch Logs and any other desired
options, before choosing Save Changes.

Important
Your account will be charged for accessing method-level CloudWatch metrics, but
not the API- or stage- level metrics.

2. For Log level, choose ERROR to write only error-level entries to CloudWatch Logs, or
choose INFO to include all ERROR events as well as extra informational events. No sensitive
data will be logged unless the Log full requests/responses data option is selected.

3. To write entries to CloudWatch Logs that contain full API call request and response
information, select Log full requests/responses data.

4. Choose Save Changes. The new settings will take effect after a new deployment.

Important

Whether you enable CloudWatch Logs for all or only some of the methods, you must
also specify the ARN of an IAM role that enables API Gateway to write information
to CloudWatch Logs on behalf of your IAM user. To do this, in the secondary
navigation bar, in the first list next to the console home button, choose Settings.
Then type the ARN of the IAM role in the CloudWatch Logging role ARN box. For
common application scenarios, the 1AM role could attach the managed policy of
AmazonAPIGatewayPushToCloudWatchLogs, which contains the following access
policy statement:

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow',
"Action": [
"l ogs: Cr eat eLogG oup",
"l ogs: Creat eLogStreant,
"l ogs: Descri beLogG oups",
"l ogs: Descri beLogStreans",
"l ogs: Put LogEvent s",
"l ogs: Get LogEvent s",
"l ogs: FilterLogEvents"
1,

"Resource": "*"

The IAM role must also contain the following trust relationship statement:

"Version": "2012-10-17",
"Statenent": [
{
"Sidv:ott,
"Effect": "Allow',
"Principal": {

234

Amazon API Gateway Developer Guide
Delete a Stage

"Service": "api gateway. anazonaws. conf

}

ction": "sts:AssuneRol e"

To create the 1AM role, you can adapt the instructions in "To create the Lambda
invocation role and its policy" and "To create the Lambda execution role and its
policy" in the Create Lambda Functions (p. 44) section of the Build an API to Expose
a Lambda Function (p. 44).

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

7. To enable Amazon CloudWatch metrics for all of the methods associated with this APl in API
Gateway, in the Stage Editor pane, on the Settings tab, in the CloudWatch Settings area, select
Enable CloudWatch metrics, and then choose Save Changes. The new settings will take effect
after a new deployment.

Important

By selecting this box, your AWS account may be charged for using CloudWatch.

Tip

To enable CloudWatch metrics for only some methods, clear Enable CloudWatch
metrics. In the Stages pane, choose each of the methods for which you want to enable
CloudWatch metrics. For each method you choose, on the Settings tab for the method,

choose Override for this method, and in the CloudWatch Settings area, select Enable
CloudWatch metrics. Finally, choose Save Changes.

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

8. To set a default throttle limit for all of the methods associated with this APl in APl Gateway, in the
Stage Editor pane, on the Settings tab, in the Throttle Settings area, do the following, and then
choose Save Changes:

e For Burst Limit, type the absolute maximum number of times API Gateway will allow this
method to be called per second. (The value of Burst Limit must be equal to or greater than the
value of Rate.) The default setting is 1000 request per second.

« For Rate, type the number of times API Gateway will allow this method to be called per second
on average. (The value of Rate must be equal to or less than the value of Burst Limit.) The
default setting is 500 request per second.

Note
* When creating a stage, if not supplied, API Gateway will enforce the default values of
1000 for Burst Limit and 500 for Rate in the stage settings.

< In addition, API Gateway enforces overall account level throttling at the default values
of 1000 for Burst Limitand 500 for Rate. If your require a higher level of throttling on
your account, contact the AWS Support Center to request an increase.

< API Gateway uses the token bucket algorithm, including average rate and burst size,
for both account and method throttling.

9. To change the stage to use a different deployment, in the Stage Editor pane, on the Change
Deployment tab, choose the option button next to the deployment you want the stage to use, and
then choose Change Deployment.

Delete a Stage in API Gateway

Use the API Gateway console to delete a stage in APl Gateway.

235

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://console.aws.amazon.com/support/home#/
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket#Average_rate
https://en.wikipedia.org/wiki/Token_bucket#Burst_size

Amazon API Gateway Developer Guide
Manage API Request Throttling

Warning
Deleting a stage may cause part or all of the corresponding API to be unusable by API callers.
Deleting a stage cannot be undone.

Delete a Stage with the APl Gateway Console

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API for the stage, choose Stages.
In the Stages pane, choose the stage you want to delete, and then choose Delete Stage.

PO bdPR

When prompted, choose Delete.

Manage API Request Throttling

Topics
¢ Account-Level Throttling (p. 236)
¢ Stage-Level and Method-Level Throttling (p. 236)

Amazon API Gateway throttles API requests to your API using the token bucket algorithm. For more
information, see token bucket algorithm.

Account-Level Throttling

By default, APl Gateway limits the steady-state request rates to 1000 requests per second (rps)
and allows bursts of up to 2000 rps across all APls, stages, and methods within an AWS account. If
necessary, you can request an increase to your account-level limits. For more information, see API
Gateway Limits (p. 419).

You can view account-level throttling limits in the APl Gateway console. The console displays the

default account-level settings before these settings are overridden by any customization. You can also
read the account-level throttling limits by using the AP Gateway REST API (p. 418).

Stage-Level and Method-Level Throttling

As an APl owner, you can override the account-level request throttling limits for a specific stage or for
individual methods in an API. Actual stage-level and method-level throttling limits are bounded by the
account-level rate limits, even if you set the stage-level or method-level throttling limits greater than the
account-level limits.

You can set the stage-level or method-level throttling limits by using the APl Gateway console or
by calling the API Gateway REST API (p. 418). For instructions using the console, see Set Up a
Stage (p. 233).

Enable Amazon API Gateway Caching in a Stage
to Enhance API Performance

Topics

236

https://console.aws.amazon.com/apigateway
https://en.wikipedia.org/wiki/Token_bucket

Amazon API Gateway Developer Guide
API Caching Overview

¢ Amazon API| Gateway Caching Overview (p. 237)

¢ Enable Amazon API Gateway Caching (p. 237)

¢ Override API Gateway Stage-Level Caching for Method Caching (p. 238)

¢ Use Method or Integration Parameters as Cache Keys to Index Cached Responses (p. 239)
¢ Flush the API Stage Cache in API Gateway (p. 240)

¢ Invalidate an APl Gateway Cache Entry (p. 240)

Amazon API Gateway Caching Overview

You can enable API caching in Amazon APl Gateway to cache your endpoint’s response. With
caching, you can reduce the number of calls made to your endpoint and also improve the latency of
the requests to your API. When you enable caching for a stage, API Gateway caches responses from
your endpoint for a specified time-to-live (TTL) period, in seconds. APl Gateway then responds to

the request by looking up the endpoint response from the cache instead of making a request to your
endpoint. The default TTL value for API caching is 300 seconds. The maximum TTL value is 3600
seconds. TTL=0 means caching is disabled.

Note
Caching is charged by the hour and is not eligible for the AWS free tier.

Enable Amazon API Gateway Caching

In APl Gateway, you can enable caching for all methods for a specified stage. When you enable
caching, you must choose a cache capacity. In general, a larger capacity gives a better performance,
but also costs more.

API Gateway enables caching by creating a dedicated cache instance. This process can take up to 4
minutes.

API| Gateway changes caching capacity by removing the existing cache instance and recreating a new
one with a modified capacity. All existing cached data is deleted.

In the API Gateway console, you configure caching in the Settings tab of a named Stage Editor.

Go to the API Gateway console.
Navigate to the Stage Editor for the stage for which you want to enable caching.

1

2

3. Choose Settings.

4. Select Enable API cache.
5

Wait for the cache creation to complete.

Note

Creating or deleting a cache takes about 4 minutes for APl Gateway to complete. When
cache is created, the Cache status value changes from CREATE | N_PROGRESS to
AVAI LABLE. When cache deletion is completed, the Cache status value changes from
DELETE_I N_PROGRESS to an empty string.

When you enable caching within a stage's Cache Settings, you enable caching for all methods in that
stage.

237

Amazon API Gateway Developer Guide
Override Stage Caching for Method Caching

test Stage Editor Delete Stage

® Invoke URL: hitps:/iy » execute-api us-east-1. amazonaws co

Settings Stage Variables = SDK Generation = Export = Deployment History

Configure the metering and caching seftings for the test stage.

Cache Settings
Cache status CREATE_IN_PROGRESS

Enable APl cache

Enabling API cache increases cost and is not covered by the free tier. See pricing for more details

Cache capacity (5GH E|
Encrypt cache data 0
Cache time-to-live (TTL) 300 =

Per-key cache invalidation

Require authorization

Handle unauthorized requests |gnore cache control header; Add a waming in response header E|

If you would like to verify if caching is functioning as expected, you have two general options:

¢ Inspect the CloudWatch metrics of CacheHitCount and CacheMissCount for your API and stage.

¢ Put a timestamp in the response.

Note
You should not use the X-Cache header from the CloudFront response to determine if your
APl is being served from your APl Gateway cache instance.

Override API Gateway Stage-Level Caching for
Method Caching

If you want more granularity in your caching settings, you can override the stage-level caching for
individual methods . This includes disabling caching for a specific method, increasing or decreasing its
TTL period, and turning on or off encryption of the cached response. If you anticipate that a method will
receive sensitive data in its responses, in Cache Settings, choose Encrypt cache data.

238

Amazon API Gateway Developer Guide
Use Method/Integration Parameters as Cache Keys

test - GET - /streams

Inveke URL: hitps:/i r.execute-api.us-east-1.amazonaws co

Use this page to override the test stage settings for the GET to /streams method.
Settings ©) Inherit from stage

‘é" Override for this method

CloudWatch Settings
Enable CloudWatch Logs [| @
Enable CloudWatch Metrics DO

Throttling Settings

e

Rate 500

e

Burst Limit 1000

Cache Settings

Configure the cache for GET to /streams

Enable Method Cache
Encrypt cache data ||
Cache time-to-live (TTL) 300 4

Per-key cache invalidation

Require authorization

[

Uamdla timasdharizad rmmimeée

Use Method or Integration Parameters as Cache
Keys to Index Cached Responses

When a cached method or integration has parameters, which can take the form of custom headers,
URL paths, or query strings, you can use some or all of the parameters to form cache keys. API
Gateway can cache the method's responses, depending on the parameter values used.

For example, suppose you have a request of the following format:

GET /users?type=... HITP/ 1.1
host: exanpl e. com

In this request, t ype can take a value of admi n or r egul ar . If you include the t ype parameter as part
of the cache key, the responses from GET / user s?t ype=admi n will be cached separately from those
from GET / users?type=regul ar.

When a method or integration request takes more than one parameter, you can choose to include
some or all of the parameters to create the cache key. For example, you can include only the t ype
parameter in the cache key for the following request, made in the listed order within a TTL period:

GET /users?type=adni n&depart nent =A HTTP/ 1.1

239

Amazon API Gateway Developer Guide
Flush the API Stage Cache in API Gateway

host: exanpl e. com

The response from this request will be cached and will be used to serve the following request:

GET /users?type=adm n&depart nent=B HTTP/ 1.1
host: exanpl e. com

To include a method or integration request parameter as part of a cache key in the API Gateway
console, select Caching after you add the parameter.
€ Method Execution /Streams - GET - Method Request

Provide information about this method's authorization settings and the parameters it can receive.

Authorization Settings

Authorization NONE #€

APl Key Required false

~ URL Query String Parameters °

Name Caching

© Add query string
» HTTP Request Headers

» Request Models Create a Model ®

Flush the API Stage Cache in APl Gateway

When API caching is enabled, you can flush your API stage's entire cache to ensure your API's clients
get the most recent responses from your integration endpoints.

To flush the API stage cache, you can choose the Flush Cache button under the Stage tab in the API
Gateway console. Notice that flushing the cache will cause the responses to ensuing requests to be
serviced from the back end until the cache is build up again. During this period, the number of requests
sent to the integration endpoint may increase. That may affect the overall latency of your API.

Invalidate an APl Gateway Cache Entry

A client of your API can invalidate an existing cache entry and reloads it from the integration endpoint
for individual requests. The client must send a request that contains the Cache- Control : nax-
age=0 header. The client receives the response directly from the integration endpoint instead of the
cache, provided that the user is authorized to do so. This replaces the existing cache entry with the
new response, which is fetched from the integration endpoint.

To grant permission for a caller, attach a policy of the following format to an IAM execution role for the
user.

240

Amazon API Gateway Developer Guide
Invalidate an AP Gateway Cache Entry

"Version": "2012-10-17",
"Statenent": [

{
"Effect": "Allow',
"Action": [
"execut e-api: I nval i dat eCache"
1.

"Resource": |
"arn: aws: execut e-api : regi on: account-i d: api -i d/ st age- nane/ HTTP-
VERB/ r esour ce- pat h-speci fier"
]
}

This policy allows the APl Gateway execution service to invalidate cache for requests on the specified
resource (or resources). To specify a group of targeted resources, use a wildcard (*) character for
account -i d, api - i d, and other entries in the ARN value of Resour ce. For more information on how
to set permissions for the APl Gateway execution service, see Use IAM Permissions (p. 160)

If you do not impose an | nval i dat eCache policy, any client can invalidate the API cache. If all or
most of the clients invalidate the API cache, there could be significant latency impact on your API.

When the policy is in place, caching is enabled, and authorization is required, you can control how
unauthorized requests are handled by choosing an option from Handle unauthorized requests in the
API Gateway console.

test Stage Editor Delete Stage

@ Invoke URL: https://i b execute-api us-east-1 amazonaws com/est

Settings Stage Variables =~ SDK Generation = Export Deployment History

Configure the metering and caching settings for the test stage.

Cache Settings

Cache status AVAILABLE Flush entire cache

Enable APl cache [V

Enabling API cache increases cost and is not covered by the free tier. See pricing for more details

Cache capacity (568 F
Encrypt cache data V]
Cache time-to-live (TTL) 300 ~
Per-key cache invalidation

Require authorization |V

«<Handle unauthorized requests |gnore cache control header. Add a waming in response header [=0

CloudWatch Settings

Fail the request with 403 status code

Enable CloudWatch Logs | | @

The three options result in the following behaviors:

241

Amazon API Gateway Developer Guide
Manage API Deployment with Stage Variables

¢ Fail the request with 403 status code: returns a 403 Unauthorized response.

To set this option using the API, use FAI L_W TH_403.

¢ Ignore cache control header; Add a warning in response header: process the request and add a
warning header in the response.

To set this option using the API, use SUCCEED W TH_RESPONSE_HEADER.

« Ignore cache control header: process the request and do not add a warning header in the
response.

To set this option using the API, use SUCCEED_W THOUT_RESPONSE HEADER.

Manage API Gateway API Deployment with Stage
Variables

Stage variables are name-value pairs that you can define as configuration attributes associated with
a deployment stage of an API. They act like environment variables and can be used in your API setup
and mapping templates.

For example, you can define a stage variable in a stage configuration, and then set its value as
the URL string of an HTTP integration for a method in your API. Later, you can reference the URL
string using the associated stage variable name from the API setup. This way, you can use the
same API setup with a different endpoint at each stage by resetting the stage variable value to
the corresponding URLSs. You can also access stage variables in the mapping templates, or pass
configuration parameters to your AWS Lambda or HTTP back end.

For more information about mapping templates, see Request and Response Payload-Mapping
Reference (p. 134).

Use Cases

With deployment stages in APl Gateway, you can manage multiple release stages for each API,
such as alpha, beta, and production. Using stage variables you can configure an API deployment
stage to interact with different back-end endpoints. For example, your API can pass a GET request
as an HTTP proxy to the back-end web host (for example, ht t p: / / exanpl e. con. In this case, the
back-end web host is configured in a stage variable so that when developers call your production
endpoint, APl Gateway calls example.com. When you call your beta endpoint, APl Gateway uses the
value configured in the stage variable for the beta stage, and calls a different web host (for example,
bet a. exanpl e. con). Similarly, stage variables can be used to specify a different AWS Lambda
function name for each stage in your API.

You can also use stage variables to pass configuration parameters to a Lambda function through
your mapping templates. For example, you may want to re-use the same Lambda function for multiple
stages in your API, but the function should read data from a different Amazon DynamoDB table
depending on which stage is being called. In the mapping templates that generate the request for the
Lambda function, you can use stage variables to pass the table name to Lambda.

Examples

To use a stage variable to customize the HTTP integration endpoint, you must first configure a stage
variable of a specified name, e.g., ur |, and then assign it a value, e.g., exanpl e. com Next, from your
method configuration, set up an HTTP proxy integration, and instead of entering the endpoint's URL,

242

Amazon API Gateway Developer Guide
Set Stage Variables

you can tell APl Gateway to use the stage variable value, htt p: / / ${ st ageVari abl es. url }. This
value tells API Gateway to substitute your stage variable ${} at runtime, depending on which stage
your APl is running. You can reference stage variables in a similar way to specify a Lambda function
name, an AWS Service Proxy path, or an AWS role ARN in the credentials field.

When specifying a Lambda function name as a stage variable value, you must configure the
permissions on the Lambda function manually. You can use the AWS Command Line Interface to do
this.

aws | anbda add- perm ssion --function-name arn: aws: | ambda: XXXXXX: your -
| anbda- f uncti on-name --source-arn arn: aws: execut e-api : us-
east-1: YOUR_ACCOUNT_I D: api _i d/ */ HTTP_METHOD/ r esour ce --pri nci pal

api gat eway. anazonaws. com - - st atenent -i d api gat eway-access --action

| ambda: | nvokeFuncti on

The following example assigns API Gateway permission to invoke a Lambda function named
hel | oWor | d hosted in the US West (Oregon) region of an AWS account on behalf of the APl method.

arn arn: aws: execut e-api : us-west -2:123123123123: brmuvpt wze/ */ GET/ hel | o

Here is the same command using the AWS CLI.

aws | anbda add- perm ssion --function-name arn:aws: | anbda: us-
east-1:123123123123: function: hel | oWwrl d --source-arn arn: aws: execut e-
api : us-west-2:123123123123: bnmuvpt wze/ */ GET/ hel | o --pri nci pal

api gat eway. anmazonaws. com - - st at ement -i d api gat eway- access --action

| anmbda: | nvokeFuncti on

Set Stage Variables Using the Amazon API
Gateway Console

In this tutorial, you will learn how to set stage variables for two deployment stages of a sample API,
using the Amazon API Gateway console.

Prerequisites

You must have an API available in APl Gateway. Follow the instructions in Creating an API (p. 70).

You must have deployed the API at least once. Follow the instructions in Deploying an
API (p. 230).

3. You must have created the first stage for a deployed API. Follow the instructions in Create a
Stage (p. 232).

To Declare Stage Variables Using the APl Gateway Console

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

Create an API, create a GET method on the API's root resource, if you have not already done so.
Set the HTTP Endpoint URL value as "ht t p: / / ${ st ageVari abl es. url } ", and then choose
Save.

243

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Stage Variables

5.

Resources Actions~ ¢/ - GET - Setup
- &/

Choose the integration point for your new method. @
GET

® Integration type) Lambda Function
©@ HTTP Proxy
© Mock Integration

Show advanced

HTTP method GET B

Endpoint URL_ http:/${stageVariables url}

A

3.

Deploy API ®

Choose a stage where your AP| will be deployed. For example, a test version of your
API could be deployed to a stage named beta.

Deployment stage E

Stage description

Deployment description

cancel (LI

In the beta Stage Editor panel; choose the Stage Variables tab; and then choose Add Stage
Variable.

Stages Geta Stage Editor

Delete Stage
» & Dbeta

@ Invoke URL: hitps.//ij) % §¥a execute-api.us-east-1.amazonaws.com/beta

Settings {_ Stage Variables d SDK Generation Export Deployment History

‘You can add, remove, and edit stage variables and their values. You can use stage variables in your
API configuration to parametrize the integration of a request. Stage variables are also available in
the Scontext object of the mapping templates.

Name Value

Mo stage variables

©CAdd Stage Variable

Enter the "ur | " string in the Name field and the "ht t pbi n. or g/ get " in the Value field. Choose

the checkmark icon to save the setting for the stage variable.

244

Choose Deploy API. Choose New Stage and enter "bet a" for Stage name. Choose Deploy.

Amazon API Gateway Developer Guide
Set Stage Variables

beta Stage Editor Delete Stage

@ Invoke URL: hitps://i a execute-api us-east-1 amazonaws com/beta

Settings Stage Variables SDK Generation Export Deployment History

You can add, remove, and edit stage variables and their values. You can use stage variables in your
AP configuration to parametrize the integration of a request. Stage variables are also available in
the Scontext object of the mapping templates.

Name Value
@ Qttpoin orgige) \ D

Repeat the above step to add two more stage variables: ver si on and f unct i on. Set their values
as "v- bet a" and "Hel | oWor | d", respectively.

beta Stage Editor Delete Stage

@ Invoke URL: hitps://t 1 execule-api.us-east-1.amazonaws.com/beta

Settings = Stage Variables = SDK Generation = Export = Deployment History

“You can add. remove, and edit stage variables and their values. You can use stage variables in your
AP configuration to parametrize the integration of a request. Stage variables are also available in
the $context object of the mapping templates.

Name Value
url hitpbin_org/get

HelloWorld

© Add Stage Variable

Note

When setting a Lambda function as the value of a stage variable, use the function's
local name, possibly including its alias or version specification, as in Hel | oWor | d,
Hel | oWorl d: 1 or Hel | owor | d: al pha. Do not use the function's ARN (for example,
arn: aws: | anbda: us- east - 1: 123456789012: functi on: Hel | oWbr | d). The
API Gateway console assumes the stage variable value for a Lambda function as the
unqualified function name and will expand the given stage variable into an ARN.

From the Stages navigation pane, choose Create. For Stage name, type pr od. Select a recent
deployment from Deployment and then choose Create.

245

Amazon API Gateway Developer Guide
Use Stage Variables

Stages @ Create Stage

» & beta Create a stage where your APIS will be deployed. For example, a test version of your AP could be deployed 1o
astage named beta

Stage name*

Stage description

Deployment' (4152016 10383 [~

Deployment Description

&

8. As with the beta stage, set the same three stage variables (url, version, and function) to different

values ("pet st or e- denp- endpoi nt . execut e- api . cont pet st ore/ pets”, "v- prod", and
"Hel | oEver yone"), respectively.

prod Stage Editor Delete Stage

@ Invoke URL: hitps:/iu a.execute-api.us-east-1.amazonaws.com/prod

Settings | Stage Variables | SDK Generation Export = Deployment History

You can add, remove, and edit stage variables and their values. You can use stage variables in your
API configuration to parametrize the integration of a request. Stage variables are also available in
the $context object of the mapping templates.

Name Value
20
petstore-demo-endpoint.execute- 0
@ api.com/petstore/pets &
FelloEveryone 50

© Add Stage Variable

Use Amazon API Gateway Stage Variables

You can use API Gateway stage variables to access the HTTP and Lambda back ends for different
API deployment stages and to pass stage-specific configuration metadata into an HTTP back end as a
guery parameter and into a Lambda function as a payload generated in an input mapping template.

Prerequisites

You must create two stages with a ur | variable set to two different HTTP endpoints: a f uncti on
stage variable assigned to two different Lambda functions, and a ver si on stage variable containing
stage-specific metadata. Follow the instructions in Set Stage Variables Using the Amazon API
Gateway Console (p. 243).

Access an HTTP endpoint through an API with a stage variable

1. Inthe Stages navigation pane, choose beta. In beta Stage Editor, choose the Invoke URL link.
This starts the beta stage GET request on the root resource of the API.

246

Amazon API Gateway Developer Guide
Use Stage Variables

Note

The Invoke URL link points to the root resource of the APl in its beta stage. Navigating
to the URL by choosing the link calls the beta stage GET method on the root resource.

If methods are defined on child resources and not on the root resource itself, choosing
the Invoke URL link will return a { " nessage": "M ssi ng Aut henti cati on Token"}
error response. In this case, you must append the name of a specific child resource to the
Invoke URL link.

Stages beta Stage Editor Delete Stage
»
r & prod

® Invoke URL@I execute-api us-east-1 amam@

Settings | Stage Variables =~ SDK Generation Expert Deployment History

You can add, remove, and edit stage variables and their values. You can use stage variables in your
API configuration to parametrize the integration of a request. Stage variables are also available in
the Scontext object of the mapping templates

Name Value

version v-beta #0
url hitpbin.org/get ax)
function HelloWorid 50

© Add Stage Variable

2. The response you get from the beta stage GET request is shown next. You can also verify the
result by using a browser to navigate to http://httpbin.org/get. This value was assigned to the
ur | variable in the beta stage. The two responses are identical.

().execute-api.us-east-1l.amazonaws.com/betz c
{

"args": {1},
"headers™: {
"Accept": "application/json",
"Host": "httpbin.org",
"User-Agent”: "RmazonAPIGateway | b™
b
"origin™: "54.172.45.191",
"url™: "http://httpbin.org/get"
}

3. Inthe Stages navigation pane, choose the prod stage. From prod Stage Editor , choose the
Invoke URL link. This starts the prod stage GET request on the root resource of the API.

247

Amazon API Gateway Developer Guide
Use Stage Variables

Stages IE=8 vrod Stage Editor Delete stage
» & beta
» BT

i. ® Invoke U@Z P9 execute-api us-east-1 amamna-,@

settings Stage Variables ~ SDK Generation Export = Deployment History

You can add, remove, and edit stage variables and their values. You can use stage variables in your
API configuration to parametrize the integration of a request. Stage variables are also available in
the Scontext object of the mapping templates.

Name Value
version v-prod #O

petstore-demo-endpoint execute-

api.com/petstore/pets SO

url

function HelloEveryone #FO

© Add Stage Variable

4. The response you get from the prod stage GET request is shown next. You can verify the result by
using a browser to navigate to http://petstore-demo-endpoint-execute-api.com/petstore/pets.
This value was assigned to the ur | variable in the prod stage. The two responses are identical.

]

execute-apius-east-1.amazonaws.com/prod

nidv: 1,
"type": "dog",
"price": 249.99

id": 2,
“type": “cat®,
"price": 124.99

"id": 3,
"type": "fish",
"price": 0.99

Pass stage-specific metadata to an HTTP back end via a stage
variable in a query parameter expression

This procedure describes how to use a stage variable value in a query parameter expression to pass
stage-specific metadata into an HTTP back end. We will use the ver si on stage variable declared in
Set Stage Variables Using the Amazon API Gateway Console (p. 243).

1. Inthe Resource navigation pane, choose the GET method. To add a query string parameter
to the method's URL, in Method Execution, choose Method Request . Type version for the
parameter name.

248

Amazon API Gateway Developer Guide
Use Stage Variables

Resources Actions~ '@ &mMethod Execution /- GET - Method Request

v & Provide information about this method's authorization settings and the parameters it can receive

Authaorization Settings ®

Authorization NONE #@

APl Key Required false #

~ URL Query String Parameters °

Name Caching

°

© Add query string
» HTTP REqUSSl Headers

» Request Models Create a Model @

2. In Method Execution choose Integration Request. Edit the Endpoint URL value to append ?
ver si on=${ st ageVari abl es. ver si on} to the previously defined URL value, which, in this
case, is also expressed with the ur | stage variable. Choose Deploy API to deploy these changes.

Resources Actions~ | @ & mMethod Execution /- GET - Integration Request
= METHOD ACTIONS
v & Delete Method ¢ information about the target backend that this method will call and whether the incoming quUESE
' ould be modified
RESOURCE ACTIONS

Mi
Create Method ® Integration type ©) Lambda Function

Create Resource

L

Enable CORS HTTP Proxy

Mock Integration

AP1 ACTIONS
Deploy AP| Show advanced
Import AP
HTTP method GET #

Delete API

Endpoint URL htip.//${stageVariables.uriZversion=3{stageVariables.version,)#* A

» URL Path Parameters

URL Query String Parameters

» HTTP Headers

Body Mapping Templates

3. Inthe Stages navigation pane, choose the beta stage. From beta Stage Editor, verify that the
current stage is in the most recent deployment, and then choose the Invoke URL link.

Note

We use the beta stage here because the HTTP endpoint, as specified by the ur |
variable, "http://httpbin.org/get", accepts query parameter expressions and returns them
as the ar gs object in its response.

249

Amazon API Gateway Developer Guide
Use Stage Variables

Stages beta Stage Editor Delete stage
'

» & prod
@ Invoke URL: hitps:// ™™ execute-api us-east-1 a@

Settings Stage Variables SDK Generation Export | Deployment History |

Choose a deployment for the beta stage from the list below For example, you may want to roll back
10 an earlier deployment

Deployment date Current stage Description

10:38 04-15-20186 S

4. The response is shown next. Notice that v- bet a, assigned to the ver si on stage variable, is
passed in the back end as the ver si on argument.

{
"args": {
"version": "v-beta" |
Tr
"headers™: {

"Accept": "application/json",
"Host"™: "httpbin.org",
"User-Agent": "AmazonAPIGateway hd4ah70cvmb"

br
"origin": "52.91.42.97",
"url": "http://httpbin.org/get?version=v-beta"

Call Lambda function through API with a stage variable

This procedure describes how to use a stage variable to call a Lambda function as a back end of your
API. We will use the f unct i on stage variable declared earlier. For more information, see Set Stage
Variables Using the Amazon API Gateway Console (p. 243).

1. Inthe Resources pane, create a /lambdasv1 child resource under the root directory, and then
create a GET method on the child resource. Set the Integration type to Lambda Function, and in
Lambda Function, type ${ st ageVari abl es. f uncti on} . Choose Save.

Resources Actions~ | ¢ [lambdasv1 - GET - Setup

- & Choose the integration point for your new method. @

Ceer) ® Integration typd @ Lambda Function

HTTP Proxy
Mock Integration

Show advanced

Lambda Region s-east-1 El

Lambda Function{${stageVariables functi)

Tip
When prompted with Add Permision to Lambda Function, make a note of the AWS CLI
command before choosing OK. You must run the command on each Lambda function

250

Amazon API Gateway Developer Guide
Use Stage Variables

that is or will be assigned to the f unct i on stage variable for each of the newly created
APl methods. For example, if the $st ageVari abl es. f uncti on value is Hel | oWor| d
and you have not added permission to this function yet, you must run the following AWS
CLI command:

aws | anmbda add- perm ssion --function-nane arn:aws: | anbda: us-
east-1:account-id:function:HelloWwrld --source-arn arn: aws: execut e-
api : us-east-1:account-id:api-id/*/ GET/| anbdasvl --principal
api gat eway. anazonaws. com --statenment-id statenent-id-guid --action
| anbda: | nvokeFuncti on

Failing to do so results in a 500 I nternal Server Error response when invoking
the method. Make sure to replace ${ st ageVari abl es. f uncti on} with the Lambda
function name that is assigned to the stage variable.

Add Permission to Lambda Function

‘You defined your Lambda function as a stage variable; you must manually give permissions to all the functions yeu will usf /You can do
this by running the belew AWS CLI command for each function, replacing the stage variable in the function-name paran/éter with the

necessary function name.
§{stageVariables. function])

--Source-arn arn:aws:execute-api:us-east-1:738 0317 :h4ah7@cvmb/* /GET/lambdasvl --principal apigateway.amazonaws.com

aws lambda add-permission --function-name arn:aws:lambda:us-east-1:73 @317: function

statement-id a12836d5-4afe-dac5-b1f2-7fcldc7Secf3 --action lambda:InvokeFunction

o |

Deploy the API to available stages.

In the Stages navigation pane, choose the beta stage. Verify that your most recent deployment
is in beta Stage Editor. Copy the Invoke URL link, paste it into the address bar of your browser,
and append / | anbdasv1 to that URL. This calls the underlying Lambda function through the GET
method on the LambdaSv1 child resource of the API.

Note
Your Hel | oWor | d Lambda function implements the following code.

exports. handl er = function(event, context) {
if (event.version)
cont ext.succeed(' Hello, World! (' + event.version + ')');
el se
cont ext. succeed("Hell o, world! (v-unknown)");

This implementation results in the following response.

"Hel l o, world! (v-unknown)"

Pass stage-specific metadata to a Lambda function via a stage
variable

This procedure describes how to use a stage variable to pass stage-specific configuration metadata
into a Lambda function. We will use a PGST method and an input mapping template to generate
payload using the ver si on stage variable declared earlier.

251

Amazon API Gateway Developer Guide
Use Stage Variables

In the Resources pane, choose the /lambdasv1 child resource. Create a POST
method on the child resource, set the Integration type to Lambda Function, and type
${stageVari abl es. functi on} in Lambda Function. Choose Save.
Tip
This step is similar to the step we used to create the GET method. For more information,
see Call Lambda function through API with a stage variable (p. 250).

From the /Method Execution pane, choose Integration Request. In the Integration Request
pane, expand Mapping Templates, and then choose Add mapping template to add a template
for the appl i cat i on/ j son content-type, as shown in the following.

Resources Actions~ | & nMethod Execution

/lambdasv1 - POST - Integration Request

& Provide information about the target backend that this method will ¢all and whether the incoming

) request data should be modified
~ & fNambdasv

@ Integration type @ Lambda Function
HTTP Proxy

Mock Integration

Show advanced

Lambda Region

Lambda Function

Invoke with caller credentials

Credentials cache

v Body Mapping Templates e

Content-Type
application/json

© Add mapping template

us-east-1 4
$(stageVariables function} #
Li]

Do not add caller credentials to cache key

application/json

Generale template -

1 #set($inputRoot =
{
“version":

¥

$input('$'))

2~
3 “$stageVariables.version®
4

Note

In a mapping template, a stage variable must be referenced within quotes (as
in" $st ageVari abl es. versi on" or" ${ st ageVari abl es. versi on}"),
whereas elsewhere it must be referenced without quotes (as in

${stageVari abl es. function}).

Deploy the API to available stages.

In the Stages navigation pane, choose beta. In beta Stage Editor , verify that the current stage
has the most recent deployment. Copy the Invoke URL link, paste it into the URL input field of
a REST API client, append / | anbdasv1 to that URL, and then submit a POST request to the
underlying Lambda function.

Note
You will get the following response.

"Hell o, world! (v-beta)"

To summarize, we have demonstrated how to use API Gateway stage variables to target different
HTTP and Lambda back ends for different stages of API deployment. In addition, we also showed

how to use the stage variables to pass stage-specific configuration data into HTTP and Lambda back
ends. Together, these procedures demonstrate the versatility of the APl Gateway stage variables in

managing API development.

252

Amazon API Gateway Developer Guide
Stage Variables Reference

Amazon API Gateway Stage Variables Reference

You can use API Gateway stage variables in the following cases.

Parameter Mapping Expressions

A stage variable can be used in a parameter mapping expression for an API method's request or
response header parameter, without any partial substitution. In the following example, the stage
variable is referenced without the $ and the enclosing {. . . }.

e stageVari abl es. <vari abl e_nane>

Mapping Templates

A stage variable can be used anywhere in a mapping template, as shown in the following examples.

« { "name" : "$stageVari abl es. <vari abl e_nane>"}
e { "name" : "${stageVari abl es. <vari abl e_nane>}"}

HTTP Integration URIs

A stage variable can be used as part of an HTTP integration URL, as shown in the following examples.

¢ A full URI without protocol, e.g., htt p: / / ${ st ageVari abl es. <vari abl e_nane>}
e Afull domain: e.g., http: // ${ st ageVari abl es. <vari abl e_nanme>}/resour ce/ operation

¢ A subdomain: e.g., http: // ${ st ageVari abl es. <vari abl e_nane>}. exanpl e. com
resour ce/ operation

e Apath, e.g., http://exanpl e. com ${st ageVari abl es. <vari abl e_nanme>}/ bar
* A query string, e.g., htt p: / / exanpl e. conml f 00?q=%${ st ageVar i abl es. <vari abl e_nane>}

AWS Integration URIs

A stage variable can be used as part of AWS URI action or path components, as shown in the following
example.

e arn: aws: api gat eway: <r egi on>: <servi ce>: ${ st ageVari abl es. <vari abl e_nane>}

AWS Integration URIs (Lambda Functions)

A stage variable can be used in place of a Lambda function name, or version/alias, as shown in the
following examples.

e arn:aws: api gat eway: <r egi on>: | anbda: pat h/ 2015- 03- 31/
functions/arn: aws: | anbda: : <account _i d>: functi on:
${stageVari abl es. <functi on_vari abl e_nane>}/i nvocati ons

e arn: aws: api gat eway: <r egi on>: | anbda: pat h/ 2015- 03- 31/ f uncti ons/
arn: aws: | anbda: : <account _i d>: functi on: <functi on_namnme>:
${st ageVari abl es. <versi on_vari abl e_nanme>}/i nvocati ons

253

Amazon API Gateway Developer Guide
Generate and Use an SDK for an API

AWS Integration Credentials

A stage variable can be used as part of AWS user/role credential ARN, as shown in the following
example.

e arn:aws:iam : <account _i d>: ${st ageVari abl es. <vari abl e_nane>}

Generate and Use an SDK for an APl in AP
Gateway

To call your APl in a platform- and language-specific fashion, you must generate a platform- and
language-specific SDK for the API. Currently, APl Gateway supports generating SDK for an API,
deployed to a specific stage, in JavaScript, in Java for Android, and in Objective-C or Swift for iOS.

This section explains how to generate an SDK for an APl Gateway API and demonstrates how to use
the generated SDK in platform/language-specific apps.

To facilitate the discussions, we will reference this APl Gateway API (p. 257) that exposes this
Simple Calculator (p. 255) Lambda function.

Before proceeding further, make sure you have created or imported the API and deployed it at least
once in API Gateway. For the instructions, see Deploying an API (p. 230).

Topics
¢ Use the API Gateway Console to Generate the SDKs of an API (p. 254)
¢ Use an Android SDK generated by APl Gateway (p. 266)
¢ Use iOS SDK Generated by APl Gateway in Objective-C or Swift (p. 268)
¢ Use a JavaScript SDK Generated by API Gateway (p. 278)

Use the API Gateway Console to Generate the
SDKs of an API

To generate a platform/language-specific SDK of an API in API Gateway, you must have created the
API, tested it, and deployed it in a stage. If you update an API, the generated SDK does not include the
updates unless the API is redeployed.

To generate the SDKs of an APl in APl Gateway

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the API for the stage, choose Stages.

In the Stages pane, choose the name of the stage.

On the SDK Generation tab, for Platform, choose the platform.

P obdPE

a. For Android, specify the following:

» For Group ID, type the unique identifier for the corresponding project. This is used in the
pom xnl file (for example, com myconpany).

» For Invoker package, type the namespace for the generated client classes (for example,
com nyconpany. cl i ent sdk).

» For Artifact ID, type the name of the compiled .jar file without the version. This is used in
the pom xni file (for example, aws- api gat eway- api - sdk).

254

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

» For Artifact version, type the artifact version number for the generated client. This is used
in the pom xm file and should follow a naj or .m nor .pat ch pattern (for example, 1. 0. 0).

b. ForiOS (Objective-C) or iOS (Swift), type a unique prefix in the Prefix box. The effect of
prefix is as follows: if you assign, for example, SI MPLE_CALC as the prefix for the SDK of
the SimpleCalc (p. 257) API with | nput , Qut put , and Resul t models, the generated
SDK will contain the SI MPLE_CALCSi npl eCal cd i ent class that encapsulates the API,
including the method requests/responses. In addition, the generated SDK will contain the
S| MPLE_CALCI nput , SI MPLE_CALCQut put , and SI MPLE_CALCResul t classes to represent
the input, output, and results, respectively, to represent the request input and response
output. For more information, see Use iOS SDK Generated by API Gateway in Objective-C or
Swift (p. 268).

5. Choose Generate SDK, and then follow the on-screen directions to download the SDK generated
by API Gateway.

6. Do one of the following:

« If you chose Android for Platform, follow the instructions in Use an Android SDK generated by
API Gateway (p. 266).

« If you chose iOS for Platform, follow the instructions in Use iOS SDK Generated by API
Gateway in Objective-C or Swift (p. 268).

« If you chose JavaScript for Platform, follow the instructions in Use a JavaScript SDK
Generated by API Gateway (p. 278).

Next, we show how to use the generated SDK to call the underlying API. To put the discussions in
context, we will make reference the following example API and its SDKs.

Topics
e Simple Calculator Lambda Function (p. 255)
¢ Simple Calculator APl in API Gateway (p. 257)
e Simple Calculator APl Swagger Definition (p. 261)

Simple Calculator Lambda Function

As an illustration, we will use a Node.js Lambda function that performs the binary operations of
addition, subtraction, multiplication and division.

Topics
¢ Simple Calculator Lambda Function Input Format (p. 255)
¢ Simple Calculator Lambda Function Output Format (p. 255)
¢ Simple Calculator Lambda Function Implementation (p. 256)
¢ Create the Simple Calculator Lambda Function (p. 256)

Simple Calculator Lambda Function Input Format

This function takes an input of the following format:

{ "a": "Nunber", "b": "Nunmber", " op": "str i ng"}

where op canbe any of (+, -, *, /, add, sub, mul, div).
Simple Calculator Lambda Function Output Format

When an operation succeeds, it returns the result of the following format:

255

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

{ "a": "Nunber", "b": "Number", "op": "string", "c": "Nunber"}

where ¢ holds the result of the calculation.

Simple Calculator Lambda Function Implementation

The implementation of the Lambda function is as follows:

consol e. |l og(' Loading the Calc function');

exports. handl er = function(event, context) {
consol e. |l og(' Received event:', JSON. stringify(event, null, 2));
if (event.a === undefined || event.b === undefined || event.op ===
undefined) {
context.fail ("400 Invalid Input");

}

var res = {};

res.a = Nunber(event.a);
res.b = Nunber (event.hb);
res.op = event. op;

if (isNaN(event.a) || isNaN(event.b)) {
context.fail ("400 Invalid Operand");
}

swi tch(event. op)
{

case "+":

case "add":
res.c = res.a + res.b;
br eak;

case "-"

case "sub":
res.c = res.a - res.b;
br eak;

case "*":

case "nul ":
res.c =res.a * res.b;
br eak;

case "/"

case "div":
res.c = res.b===0 ? NaN : Nunber (event.a) / Nunber(event.h);
br eak;

defaul t:
context.fail ("400 Invalid Qperator");
br eak;

}

cont ext. succeed(res);

Create the Simple Calculator Lambda Function

You can use the AWS Lambda console at https://console.aws.amazon.com/lambda/ to create the
function, pasting the above code listing into the online code editor as follows.

256

https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

Lambda > Functions *> Calc

Qualifiers - Test Actions -

Code Configuration Triggers Monitoring

Code entry type Edit code inline -
1 console.leog('Loading the Calc function');
2
3- exports.handler = function{event, context) {
4 console.log("Received event:', JSON.stringify(event, null, 2));
5- if (event.a === undefined || event.b === undefined || event.op === undefined) {
6 context.fail{"48@ Invalid Input");
7 }
8
9 var res = {};
10 res.a = Number(event.a);
11 res.b = Number(event.b);
12 res.op = event.op;

-y

Simple Calculator API in API Gateway

Our simple calculator API exposes three methods (GET, POST, GET) to invoke the Simple Calculator
Lambda Function (p. 255) (Cal c¢). A graphical representation of this API is shown as follows:

J"‘\PIS Hesour‘ces Actions ~
4
SimpleCalc ./
I Resources GET
Stages POST
Authorizers v /&)
Models
v /{b}
Dashboard
Usage Plans ~ /op}
GET
APl Keys

Custom Domain Names
Client Certificates
Settings

These three methods show different ways to supply the input for the back-end Lambda function to
perform the same operation:

e The GET /?a=... &b=... &op=... method uses the query parameters to specify the input.

e The POST / ? method uses a JSON payload of {"a": " Nunber”, "b":"Nunber",
"op":"string"} to specify the input.

257

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

e The GET /{a}/{b}/{op} method uses the path parameters to specify the input.

Before showing how to call these methods using an SDK generated by API Gateway for this API, let's
recall briefly how to set them up. For detailed instructions, see Creating an API (p. 70). If you're new to
API Gateway, see Getting Started (p. 4) first.

Create Models for Input and Output

To specify strongly typed input in the SDK, we create an | nput model for the API:

:1: Amazon APl Gateway APls > SimpleCalc {t7dve i) » Models > Create Show all hints ‘

APis . Modeis X New Model

SimpleCalc Provide a name, content type, and a schema for your model. Models use T/ JSON schama.

Resources

St Maodel name* Input

Authorizers
| Madels Content type* applicationjson

Dashboird Model descripti
scription

SimplaProxy
Model schema”

SimpleProxySDE
StageDemo L~
F |'3schema™: “http://json-schema.org/droft-84/schemaf”,
| “type" ! "object™,
last &= “properties”: {
5 “a"r {“type":“nusber-},
Usage Plans 6 "b": {"type”:"nusber~},
7 : {"type”:"string™}
8 b
APl Keys 9 “title": "Input®
n)

Custom Domain Names
Client Certificates

Settings

* Required Cancol m

Similarly, to describe the response body data type, we create the following models in the APl Gateway:

{
"$schema": "http://json-schena. org/draft-04/schena#",
"type": "object",
"properties": {
"C": {"type": llnurmerll}
1,
"title": "Qutput"
}
and
{
"$schema": "http://json-schenn. org/draft-04/ schema#",
"type":"object",

258

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

"properties":{
"input":{
"$ref":"https://api gat eway. amazonaws. coni r est api s/t 7dve4zn36/
nodel s/ | nput "
},
"out put": {
"$ref":"https://apigateway. amazonaws. cont r est api s/t 7dve4zn36/
nodel s/ Qut put "
}
}

"title":"Result"

Set Up GET / Method Query Parameters

For the GET / ?a=. . &-=. . &op=. . method, the query parameters are declared in Method Request:

/ - GET - Method Execution

Method Request Integration Request

TEST
* Auth: NONE Type: LAMBDA
ARN: am:aws:execute- Region: us-west-2
api:us-
: “t7dved
Query Strings: op,a,b
—
c
Q
o

Method Response

HTTP Status: 200

Models: application/json ==
Result

Integration Response

HTTF status pattern: - B
Output passthrough: Yes

Set Up Data Model for the Payload as Input to the Back End

For the POST / method, we create the | nput model and add it to the method request to define the
shape of input data.

259

oleD epquien

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

€ Method Execution /- POST - Method Request

Provide information about this method's authorization settings and the parameters it can receive.

Authorization Settings

Authorization NOMNE #@

APl Key Required false #*

» URL Query String Parameters
» HTTP Request Headers

v Request Models Create a Model

Content type Model name
application/json
© Add model

With this model, your API customers can parse a successful output by reading properties of a Resul t
object. Without this model, customers would be required to create dictionary object to represent the
JSON output.

Set Up Data Model for the Result Output from the Back End

For all three methods, we create the Resul t model and add it to the method's Met hod Response to
define the shape of output returned by the Lambda function.

260

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

« Method Execution /{a}/{b}/{op} - GET - Method Response

Provide information about this method's response types, their headers and content types.

HTTP Status
v 200 o
Response Headers for 200 Response Models for 200
Create a model
Name

Content type Models

Mo headers
application/json SO

@ Add Header
& Add Response Model

© Add Response

With this model, your API customers can call the SDK to specify the input by instantiating an | nput
object. Without this model, your customers would be required to create dictionary object to represent
the JSON input to the Lambda function.

In addition, you can also create and set up the API following the Swagger API definitions (p. 261).

Simple Calculator API Swagger Definition

The following is the Swagger definition of the simple calculator API. You can import it into

your account. However, you need to reset the resource-based permissions on the Lambda

function (p. 255) after the import. To do so, re-select the Lambda function that you created in your
account from the Integration Request in the APl Gateway console. This will cause the API Gateway
console to reset the required permissions. Alternatively, you can use AWS Command Line Interface for
Lambda command of add-permission.

"swagger": "2.0",

"info": {
"version": "2016-09-29T20: 27: 302",
"title": "SinpleCalc"

H
"host": "t6dve4zn25. execut e-api . us-west - 2. anazonaws. cont',
"basePath": "/denmp",
"schenes": |

"https"
1,
"paths": {

"It {

"get": {

"consunes": |

261

http://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

"application/json"

]

roduces": [
"application/json"

I,
"paraneters": [

{

"nane": "op",
"in": "query",
"required": false,
"type": "string"

}s

{

"nanme": "a",
"in": "query",
"required": false,
"type": "string"
b,
{
"nane": "b",
"in": "query",
"required": false,
"type": "string"
}
I,
"responses": {

"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Result"
}
}
}s

"X-anezon- api gat eway-i ntegration": {
"request Tenpl ates": {
"application/json": "#set($inputRoot = $input.path('$'))\n{\n
\"a\" : S$input.parans('a'),\n \"b\" : S$input.parans('b'),\n \"op\" :
\"$i nput . parans(' op')\"\n}"

"uri": "arn:aws: api gat eway: us- west - 2: | anbda: pat h/ 2015- 03- 31/
functions/arn: aws: | anbda: us-west -2: 123456789012 functi on: Cal c/i nvocati ons",
"passt hr oughBehavi or": "when_no_t enpl at es”,

"httpMethod": "POST",
"responses": {
"default": {
"statusCode": "200",
"responseTenpl ates": ({
"application/json": "#set($inputRoot = $input.path('$'))\n{\n
\"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n
\"op\" : \"SinputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c
\n }\n}"
}
}
}

}

ype": "aws

}

ost": {
"consunes": |

262

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

"application/json"

]

roduces": [
"application/json"

I,
"paraneters": [
{
"in": "body",
"nane": "lnput",
"required": true,
"schema": {
"$ref": "#/definitions/Input”
}
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Result"
}
}
}s
"X-anezon- api gat eway-i ntegration": {
"uri": "arn:aws: api gat eway: us- west - 2: | anmbda: pat h/ 2015- 03- 31/
functions/arn: aws: | anbda: us-west - 2: 123456789012: functi on: Cal ¢c/i nvocati ons",
"passt hroughBehavi or": "when_no_nat ch",

"httpMethod": "POST",
"responses": {
"default": {
"statusCode": "200",
"responseTenpl ates": {
"application/json": "#set($inputRoot = $input.path('$'))\n{\n
\"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n
\"op\" : \"SinputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c
\n }\n}"

}
}
}s
"type": "aws"
}
}
}s
"I{a}": {

" X-anmazon- api gat eway- any- net hod": {
"consunes": |
"application/json"

]

roduces": [
"application/json"

I,
"paraneters": [
{
"nanme": "a",
"in": "path",
"required": true,
"type": "string"
}
I,

263

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

"responses": {
"404": {
"description": "404 response"
}
}s
"X-anezon- api gat eway-i ntegration": {
"request Tenpl ates": {
"application/json": "{\"statusCode\": 200}"
}s
"passt hroughBehavi or": "when_no_nat ch",
"responses": {
"default": {
"statusCode": "404",
"responseTenpl ates": ({
"application/json": "{ \"Message\" : \"Can't
$cont ext . htt pMet hod $cont ext.resourcePath\" }"
}
}
}

}

ypeu: " rTDCk"

}
1
"I{ap/{b}": {
" X-anmazon- api gat eway- any- net hod": {
"consunes": |
"application/json"

]

roduces": [
"application/json"

I,
"paraneters": [
{
"nanme": "a",
"in": "path",
"required": true,
"type": "string"
}s
{
"nane": "b",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {
"404": {
"description": "404 response"
}
}s

"Xx-anmazon- api gat eway-i ntegration": {
"request Tenpl ates": {
"application/json": "{\"statusCode\": 200}"
H
"passt hroughBehavi or": "when_no_nat ch",
"responses": {
"default": {
"statusCode": "404",
"responseTenpl ates": {

264

Amazon API Gateway Developer Guide
Use the API Gateway Console
to Generate the SDKs of an API

"application/json": "{ \"Message\" : \"Can't
$cont ext . htt pMet hod $cont ext.resourcePath\" }"

}
}
}s
"type": "nock"
}
}
}s
“I{a}/{b}/{op}": {
"get": {

"consunes": |
"application/json"

]

roduces": [
"application/json"

I,
"paraneters": [
{
"nanme": "a",
"in": "path",
"required": true,
"type": "string"
}s
{
"nane": "b",
"in": "path",
"required": true,
"type": "string"

}s

{

"nane": "op",
"in": "path",
"required": true,
"type": "string"

}

I,
"responses": {

"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Result"
}
}
}s

"X-anmazon- api gat eway-i ntegration": {
"request Tenpl ates": {
"application/json": "#set($inputRoot = $input.path('$'))\n{\n
\"a\" : S$input.parans('a'),\n \"b\" : S$input.parans('b'),\n \"op\"
\"$i nput . parans(' op')\"\n}"

"uri": "arn:aws: api gat eway: us- west - 2: | anbda: pat h/ 2015- 03- 31/
functions/arn: aws: | anbda: us-west - 2: 123456789012: functi on: Cal ¢/i nvocati ons"
"passt hr oughBehavi or": "when_no_t enpl at es"”,

"httpMethod": "POST",
"responses": {
"default": {
"statusCode": "200",
"responseTenpl ates": {

1

265

Amazon API Gateway Developer Guide
Use an Android SDK generated by APl Gateway

"application/json": "#set($i nputRoot

\"input\" : {\n \"a\" : $inputRoot.a,\n \"b\"

\"op\" : \"SinputRoot.op\"\n },\n \"output\" : {\n
\n }\n}"

}
}
’
}
}

ype": "aws

}
b,
"definitions": {

"l nput": {

"type": "object",
"properties": {
"a": {
"type": "nunber"
}s
" n: {

"type": "nunber"
}s
“op": {

"type": "string"

}

}

itle": "I nput"
H
"Qut put": {
"type": "object"
"properties": {
"' |
"type": "nunber"
}
H
"title": "Qutput"
H
"Result": {
"type": "object"
"properties": {
"input": {
"$ref": "#/definitions/Input”
H
"out put": {
"$ref": "#/definitions/Qutput"”
}
H
"title": "Result"

= $input.path('$))\n{\n
$i nput Root . b, \' n

\nc\ n

$i nput Root . ¢

Use an Android SDK generated by API Gateway

In this section, we will outline the steps to use an Android SDK generated by API Gateway of an
API. Before proceeding further, you must have already completed the steps in Use the AP| Gateway

Console to Generate the SDKs of an API (p. 254).

266

Amazon API Gateway Developer Guide
Use an Android SDK generated by AP Gateway

To install and use an Android SDK Generated by APl Gateway

gk wbdE

Extract the contents of the APl Gateway-generated .zip file that you downloaded earlier.
Download and install Apache Maven (preferably version 3.x).

Download and install the JDK (preferably version 1.7 or later).

Set the JAVA_HOVE environment variable.

Run the mvn install command to install the compiled artifact files to your local Maven repository.
This creates at ar get folder containing the compiled SDK library.

Copy the SDK file (the name of which is derived from the Artifact Id and Artifact Version you
specified when generating the SDK, e.g., si npl e- cal csdk- 1. 0. 0. j ar) from the t ar get folder,
along with all of the other libraries from the t ar get / | i b folder, into your project's | i b folder.

If you use Andriod Studio, create a | i bs folder under your client app module and copy the
required .jar file into this folder. Verify that the dependencies section in the module's gradle file
contains the following.

conpile fileTree(include: ['"*.jar'], dir: "libs")
conpile fileTree(include: ["*.jar'], dir: "app/libs')

Make sure no duplicated .jar files are declared.
Use the Api Cl i ent Fact ory class to initialize the API Gateway-generated SDK. For example:

Api CientFactory factory = new Api CientFactory();

/'l Create an instance of your SDK
final M/ApiClient client = factory. buil d(M/Api dient.class);

/1 1nvoke a nethod:

I If the APl exposes a 'CGET /?a=1&b=2&op=+" nethod, you can call the
foll owi ng SDK et hod:

{?{asul t output = client.rootGet("1", "2", "+");

/1 where Result is the SDK class of the |ike-named APl nodel .

;; If the APl exposes a 'CGET /{a}/{b}/{op}' nmethod, you can call the

followi ng SDK nethod to invoke the request,

Resul t.output = client.aBOpGet(a, b, c);

/1 where a, b, ¢ can be "1", "2", "add", respectively.

I You can call the follow ng SDK net hods i nvoke this POST APl met hod:
11 PCST /

/1 host :

I Cont ent - Type: application/json

11

11 { "a": 1, "b": 2, "op": "+" }

I nput body = new I nput();

i nput . a=1;

i nput . b=2;

i nput. op="+";
Resul t out put = client.rootPost(body);

/! Parse the result:

267

https://maven.apache.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

/1 If the 'Result' object is { "a": 1, "b": 2, "op": "add", "c":3"},

you retrieve the result 'c') as

String resul t=output.c;

To use an Amazon Cognito credentials provider to authorize calls to your API, use the

Api O i ent Fact ory class to pass a set of AWS credentials by using the SDK generated by API

Gateway, as shown in the following example.

/1 Use CognitoCachi ngCredential sProvider to provide AWS credentials
/1 for the ApidientFactory
AWECr edent i al sProvi der credenti al sProvider = new
Cogni t oCachi ngCr edent i al sProvi der (
cont ext, /] activity context
"identityPool1d", // Cognito identity pool id
Regi ons. US_EAST_1 // region of Cognito identity pool

I

Api CientFactory factory = new Api CientFactory()
.credenti al sProvi der (credenti al sProvider);

To set an API key by using the API Gateway- generated SDK, use code similar to the following.

Api CientFactory factory = new Api CientFactory()
. api Key(" YOUR_API _KEY");

Use iOS SDK Generated by API Gateway in
Objective-C or Swift

In this tutorial, we will show how to use an iOS SDK generated by API Gateway in an Objective-C
or Swift app to call the underlying API. We will use the SimpleCalc API (p. 257) as an example to

illustrate the following topics:

How to install the required AWS Mobile SDK components into your Xcode project

How to create the API client object before calling the API's methods

How to call the APl methods through the corresponding SDK methods on the API client object
How to prepare a method input and parse its result using the corresponding model classes of the

SDK

Topics

¢ Use an iOS SDK generated by APl Gateway in an Objective-C App (p. 269)
¢ Use an iOS SDK generated by API Gateway in a Swift App (p. 273)

268

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

Use an iOS SDK generated by APl Gateway in an Objective-C
App

Before beginning the following procedure, you must complete the steps in Use the APl Gateway
Console to Generate the SDKs of an API (p. 254) for iOS in Objective-C and download the .zip file of
the generated SDK.

Install the AWS Mobile SDK and an iOS SDK generated by APl Gateway in an
Objective-C Project

The following procedure describes how to install the SDK.

To install and use an iOS SDK generated by APl Gateway in Objective-C

1.

Extract the contents of the API Gateway-generated .zip file you downloaded earlier. Using the
SimpleCalc API (p. 257), you may want to rename the unzipped SDK folder to something like
sdk_obj c_si npl e_cal c. In this SDK folder there is a READVE. nd file and a Podf i | e file. The
README. nd file contains the instructions to install and use the SDK. This tutorial provides details
about these instructions. The installation leverages CocoaPods to import required API Gateway
libraries and other dependent AWS Mobile SDK components. You must update the Podfi | e

to import the SDKSs into your app's XCode project. The unarchived SDK folder also contains a
gener at ed- sr c folder that contains the source code of the generated SDK of your API.

Launch Xcode and create a new iOS Objective-C project. Make a note of the project's target. You
will need to set it in the Podfi | e.

i app_obic_simple_calc

¥ < app_objc_simple_calc [0 Genera Capabilities Resource Tags Infa Build Settings Build Phases
README.md
o PROJECT
» [app_objc_simple_calc ¥ Identity
= app_objc_simple_calc

| 3 Products PR_ahe.. ple.s

» Pods TARGETS Display Name

» BB Fromewarks < A, app_obje_simple_calc > - —

= Bundle Identifier com.haymuto.app-objc-simple-calc

> & Pods

Version 1.0

Build 1

¥ Signing

To import the AWS Mobile SDK for iOS into the Xcode project by using CocoaPods, do the
following:

1. Install CocoaPods by running the following command in a terminal window:

sudo geminstall cocoapods
pod setup

2. Copy the Podfi | e file from the extracted SDK folder into the same directory containing your
Xcode project file. Replace the following block:

target '<Your XCodeTar get >' do
pod ' AWGAPI Gat eway', '~> 2. 4.7
end

with your project's target name:

269

https://cocoapods.org

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

target 'app_objc_sinple_calc' do
pod ' AWSAPI Gat eway', '~> 2.4.7'
end

If your Xcode project already contains a file named Podf i | e, add the following line of code to
it:

pod ' AWGAPI Gat eway', '~> 2.4.7'

3. Open a terminal window and run the following command:

pod install

This installs the APl Gateway component and other dependent AWS Mobile SDK
components.

Close the Xcode project and then open the . xcwor kspace file to relaunch Xcode.

Add all of the . h and . mfiles from the extracted SDK's gener at ed- sr c directory into your
Xcode project.

B A m SIMPLE_CA...alcClient.m @implementation SIMPLE_CAL
v & app_objc_simple_calc 1 /= X . . .
Copyright 2818-2@146 Amazon.com, Inc. or its affiliates. All Rigf

README.md Reserved.
app_objc_simple_calc
SIMPLE_CALCInput.h
SIMPLE_CALCInput.m
SIMPLE_CALCOutput.h
m SIMPLE_CALCOutput.m
SIMPLE_CALCResult.h
SIMPLE_CALCResult.m
SIMPLE_CALCSimpleCalcClient.h
SIMPLE_CALCSimpleCalcClies

4 Licensed under the Apache License, Version 2.8 (the "License").
5 You may net use this file except in compliance with the License.
& A copy of the License 1s located at

http://aws.amazon.com/apache2.@

or in the "license® file accompanying this file. This file is di
on an "AS IS" BASIS, WITHOUT WARRAMTIES OR CONDITIONS OF ANY KII
12 express or implied. See the License for the specific language ge
permissions and limitations under the License.
wf

#import "SIMPLE_CALCSimpleCalcClient.h”
#import <AWSCore/AWSCore.h>

m AppDelegate.m 19 #import <AWSCore/AWSSignature.h>
1) ViewCantrollarh 20 #import <AWSCore/AWSSynchronizedMutableDictionary.h>
m ViewController.m 22 #import "SIMPLE_CALCResult.h"

Main.storyboard #import “SIMPLE_CALCInput.h®

W Assets.xcassels 2% @Einterface AWSAPIGatewayClient()
LaunchScreen.storyboard .
— 27 ff Networking
Info.plist 22 @property (nonatomic, strong) NSURLSession =session;
> Supporting Files 30 /f For requests
Products 31 @preperty (nonatomic, strong) NSURL =baseURL;

>
L Pods 33 // For responses
I Framewaorks 3¢ @property (nonatomic, strong) NSDictionary *HTTPHeaderFields;

- @property (nonatomic, assign) NSInteger HTTPStatusCode;
> & Pods

= [AWSTask s]invnkeHTTPﬂequgst:[NSSt :::Lng s]HTTPHa‘Fhad

e S Reame A

To import the AWS Mobile SDK for iOS Objective-C into your project by explicitly downloading
AWS Mobile SDK or using Carthage, follow the instructions in the README.md file. Be sure to
use only one of these options to import the AWS Mobile SDK.

270

https://github.com/Carthage/Carthage#installing-carthage

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

Call API Methods Using the iOS SDK generated by APl Gateway in an
Objective-C Project

When you generated the SDK with the prefix of SI MPLE_CALC for this SimpleCalc API (p. 257)

with two models for input (I nput) and output (Resul t) of the methods, in the SDK, the resulting API
client class becomes SI MPLE_CALCSi npl eCal cd i ent and the corresponding data classes are

SI MPLE_CALCI nput and SI MPLE_CALCResul t, respectively. The API requests and responses are
mapped to the SDK methods as follows:

¢ The API request of

GET /?a=...&b=...&0p=...

becomes the SDK method of

(AWSTask *)rootGet: (NSString *)op a: (NSString *)a b: (NSString *)b

The AWSTask. resul t property is of the SI MPLE_CALCResul t type if the Resul t model was
added to the method response. Otherwise, the property is of the NSDi ct i onary type.

e This API request of

POST /

{
"a": "Nunber",
"b": "Nunber",
"op": "String"

}

becomes the SDK method of

(AWSTask *)root Post: (S| MPLE_CALCI nput *) body

¢ The API request of

GET /{a}/{b}/{op}

becomes the SDK method of

(AWBTask *)aBOpGet: (NSString *)a b: (NSString *)b op: (NSString *)op

The following procedure describes how to call the APl methods in Objective-C app source code; for
example, as part of the vi ewDi dLoad delegate in a Vi enCont r ol | er . mfile.

To call the API through the iOS SDK generated by APl Gateway

1. Import the API client class header file to make the API client class callable in the app:

#i nport "SI MPLE_CALCSi npl eCal c. h"

The #i nport statement also imports SI MPLE_CALCI nput . h and SI MPLE_CALCResul t . h for
the two model classes.

271

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

Instantiate the API client class:

SI MPLE_CALCSI npl eCal cC i ent *apilnstance = [SI MPLE_CALCSi npl eCal cCl i ent
defaultdient];

To use Amazon Cognito with the API, set the def aul t Ser vi ceConf i gur ati on property
on the default AWSSer vi ceManager object, as shown in the following, before calling the
def aul t O i ent method to create the API client object (shown in the preceding example):

AWBCogni t oCredenti al sProvi der *creds = [[AWSCogni t oCr edenti al sProvi der
al l oc] initWthRegi onType: AWSRegi onUSEast 1
i dentityPool | d: your _cognito_pool _id];

AWSSer vi ceConfiguration *configuration = [[AWSServi ceConfiguration alloc]
i ni t WthRegi on: AWSRegi onUSEast 1 credenti al sProvi der: creds];

AWSSer vi ceManager . def aul t Ser vi ceManager . def aul t Servi ceConfiguration =
configuration;

Call the GET / ?a=1&b=2&op=+ method to perform 1+2:

[[api I nstance rootGet: @+" a:@1" b: @2"] continueWthBl ock: ~id
_Nul I abl e(AWsTask * _Nonnul |l task) {
_textFieldl.text = [self handl eApi Response:task];
return nil;

I

where the helper function handl eApi Response: t ask formats the result as a string to be
displayed in a text field (_t ext Fi el d1).

- (NSString *)handl eApi Response: (AWsTask *)task {
if (task.error !'=nil) {
return [NSString stringWthFormat: @Error: %@,
task.error. description];
} else if (task.result !=nil && [task.result isKindOfd ass:
[SI MPLE_CALCResult class]]) {
return [NSString stringWthFormat: @ % %@ %@ = %@
\n",task.result.input.a, task.result.input.op, task.result.input.b,
task.result.output.c];

}

return nil;

The resulting display is1 + 2 = 3.
Call the POST / with a payload to perform 1- 2:

SI MPLE_CALCI nput *input = [[SI MPLE_CALCI nput alloc] init];
input.a = [NSNunber nunberWthint:1];
input.b = [NSNunber nunberWthlnt: 2];
input.op = @-";
[[api | nstance root Post:input] continueWthBl ock:~id _Null abl e(AWsTask
* _Nonnul |l task) {
_textField2.text = [self handl eApi Response: task];
return nil;

I

The resulting display is1 - 2 = -1.

272

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

5.

Call the GET /{a}/{b}/{op} to perform 1/ 2:

[[api I nstance aBOpGet: @ 1" b: @2" op: @di v"'] continueWthBl ock: "id
_Nul I abl e(AWsTask * _Nonnull task) {
_textField3.text = [self handl eApi Response: task];
return nil;

s

The resulting display is 1 div 2 = 0. 5. Here, di v is used in place of / because the simple
Lambda function (p. 255) in the back end does not handle URL encoded path variables.

Use an iOS SDK generated by APl Gateway in a Swift App

Before beginning the following procedure, you must complete the steps in Use the APl Gateway
Console to Generate the SDKs of an API (p. 254) for iOS in Swift and download the .zip file of the
generated SDK.

Topics

¢ Install AWS Mobile SDK and API Gateway-Generated SDK in a Swift Project (p. 273)
¢ Call API methods through the iOS SDK generated by APl Gateway in a Swift Project (p. 276)

Install AWS Mobile SDK and API Gateway-Generated SDK in a Swift Project

The following procedure describes how to install the SDK.

To install and use an iOS SDK generated by APl Gateway in Swift

1.

Extract the contents of the API Gateway-generated .zip file you downloaded earlier. Using the
SimpleCalc API (p. 257), you may want to rename the unzipped SDK folder to something like
sdk_swi ft _si npl e_cal c. In this SDK folder there is a README. nd file and a Podf i | e file.
The README. nd file contains the instructions to install and use the SDK. This tutorial provides
details about these instructions. The installation leverages CocoaPods to import required AWS
Mobile SDK components. You must update the Podf i | e to import the SDKs into your Swift app's
XCode project. The unarchived SDK folder also contains a gener at ed- sr ¢ folder that contains
the source code of the generated SDK of your API.

Launch Xcode and create a new iOS Swift project. Make a note of the project's target. You will
need to set it in the Podfi | e.

273

https://cocoapods.org

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

=5 app_swilt_simple_calc

¥ 2 app_swift_simple_calc O General Capabilities Resource Tags Infe Build Settings Build Phases Bu
* app_swift_simple_calc PROJECT |
[Products o
~ Pods s it simple_calc
L3 Frameworks Architectures
» B Pods N app_swift_simple_calc iy
Additional S5DKs
Architectures Standard architectures (armv7, arm
Base SDK Latest iD5 (i0510.0) 2
¥ Build Active Architecture Only zMultiple values>
Debug Yes o
Release Mo o
Supported Platforms i0s o
Valid Architectures armE4 armv? armv7s

¥ Assets

3. To import the required AWS Mobile SDK components into the Xcode project by using CocoaPods,
do the following:

1. Ifitis notinstalled, install CocoaPods by running the following command in a terminal window:

sudo geminstall cocoapods
pod setup

2. Copy the Podfi | e file from the extracted SDK folder into the same directory containing your
Xcode project file. Replace the following block:

target '<Your XCodeTar get>' do
pod ' AWSAPI Gat eway', '~> 2. 4.7’
end

with your project's target name as shown:

target 'app_sw ft_sinple_calc' do
pod ' AWSAPI Gateway', '~> 2.4.7'
end

If your Xcode project already contains a Podf i | e with the correct target, you can simply add
the following line of code to the do ... end loop:

pod ' AWSAPI Gat eway', '~> 2.4.7'

3. Open a terminal window and run the following command in the app directory:

pod install

This installs the APl Gateway component and any dependent AWS Mobile SDK components
into the app's project.

4. Close the Xcode project and then open the *. xcwor kspace file to relaunch Xcode.

274

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

5.

Add all of the SDK's header files (. h) and Swift source code files (. swi f t) from the extracted
gener at ed- sr c directory to your Xcode project.

v & app_swift_simple_calc
b J apg swift simple
AWSApiGatewayBridge.h
Bridging_Header.h
s SIMPLE_CALCInput.swift

SIMPLE_CALCQutput. swift
SIMPLE_CALCResult.swift
PLE_CAL...alcClient.swif

* ViewController.swift
Main.storyboard

I Assets.xcassets
LaunchScreen.storyboard
Info.plist

Products

Pods

Framewaorks

Pods

EFErrvr

B8

1

i |
n

= app_swift_simple_calc a..

s SIMPLE_CALCSimpleCalcClient. swift

I
Copyright 2818-2816 Amazon.com, Inc.

Licensed under the Apache License, Version 2.8 (

] aBopGe

or its affiliates. All Rights Reserved.

the "License").

You may not use this file except in compliance with the License.

A& copy of the License is located at

http://aws.amazon.com/apache2. 8

or in the "license™ file accompanying this file.
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDI
express or implied. See the License for the spec
permissions and limitations under the License.
*/

import AWSCore

import AWSAPIGateway

public class SIMPLE_CALCSimpleCalcClient: AWSAFIG
private static let _serviceClients = AWSSynch
private static var token: dispatch_once_t = @

private static var _defaultClient:SIMPLE_CALC

e
Returns the singleton service client. If the

This file is distributed
TIONS OF ANY KIND, either
ific language governing

atewayClient {
ronizedMutableDictionary(]

SimpleCaleClient?

singleton object does not e

instantiates the default service client with ‘defaultServiceConfigur

"AWSServiceManager.defaultServiceManager
maintained by the SDK, and you do not ne

If you want to enable AWS Signature, set the

annliratianiannlicatian: HTAnnlicatinn

{)". The reference to this ol
ed to retain it manually.

default service configurati
A1 AEin1 ghl auncht noWi +hlind 1 on

To enable calling the Objective-C libraries of the AWS Mobile SDK from your Swift code
project, set the Bri dgi ng_Header . h file path on the Objective-C Bridging Header property
under the Swift Compiler - General setting of your Xcode project configuration:

v & app_swift_simple_calc
v app_swift_simple_calc
Iy AWSApiGatewayBridge.h
h Bridging_Header.h
= SIMPLE_CALCInput.swift
= SIMPLE_CALCOQutput.swift
» SIMPLE_CALCResult.swift

s SIMPLE_CAL...alcClient.swift

= AppDelegate.swift

= ViewController.swift
Main.storyboard

™ Assets.xcassets
LaunchScreen.storyboard

Info.plist

Tip

og
o0

D General

¥ Swift Compiler - General

» Objective-C Bridging Header

. app_swift_simpla_calc

Capabilities Resource Tags Info

Setting

You can type bri dgi ng in the search box of Xcode to locate the Objective-C

Bridging Header property.

sy app_swift

Build Settings Build Phase

bridging

simpie_caic

app_swift_simple_calc/Bridging_He:

Build the Xcode project to verify that it is properly configured before proceeding further. If your
Xcode uses a more recent version of Swift than the one supported for the AWS Mobile SDK,
you will get Swift compiler errors. In this case, set the Use Legacy Swift Language Version
property to Yes under the Swift Compiler - Version setting:

275

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

I.'—'= app_swift_simple_calc

o
¥) app_suitt simpla_colc [0 General Capabilities Resource Tags Infa Build Settings Build Phase
¥ app_swift_simpla_calc
h AWSApiGatewayBridge.h lagacy

* SIMPLE_CALCInput.swift ¥ Apple LLVM B.0 - Code Generation
= SIMPLE_CALCOutput.swift Sett

Bridging_Header.h

SIMPLE_CALCResult.swift Generate Legacy Test Coverage Files Mo 3
+ SIMPLE_CALCSimpleCalcClient.swift

= AppDelegate. swift
ViewController.swift

Swift Compiler - Version

RARE SOy KT * Use Legacy Swift Language Version
Assels.xcassels
LaunchScrean.storyboard

Info.plist

To import the AWS Mobile SDK for iOS in Swift into your project by explicitly downloading the
AWS Mobile SDK or using Carthage, follow the instructions in the READVE. nd file that comes with
the SDK package. Be sure to use only one of these options to import the AWS Mobile SDK.

Call API methods through the iOS SDK generated by API Gateway in a Swift
Project

When you generated the SDK with the prefix of SI MPLE_CALC for this SimpleCalc API (p. 257) with
two models to describe the input (I nput) and output (Resul t) of the API's requests and responses,
in the SDK, the resulting API client class becomes SI MPLE_CALCSi npl eCal cd i ent and the
corresponding data classes are S| MPLE_CALCI nput and SI MPLE_CALCResul t, respectively. The
API requests and responses are mapped to the SDK methods as follows:

¢ The API request of

GET /?a=...&b=...&0p=...

becomes the SDK method of

public func rootGet(op: String?, a: String?, b: String?) -> AWSTask

The AWSTask. resul t property is of the S| MPLE_CALCResul t type if the Resul t model was
added to the method response. Otherwise, it is of the NSDi ct i onary type.

¢ This API request of

POST /

{
"a": "Number",
"b": "Number",
"op": "String"

}

becomes the SDK method of

276

https://github.com/Carthage/Carthage#installing-carthage

Amazon API Gateway Developer Guide
Use iOS SDK Generated by API
Gateway in Objective-C or Swift

public func rootPost(body: SIMPLE CALCI nput) -> AWSTask

The API request of

GeT /{a}/{b}/{op}

becomes the SDK method of

public func aBOpGet(a: String, b: String, op: String) -> AWSTask

The following procedure describes how to call the APl methods in Swift app source code; for example,
as part of the vi ewDi dLoad() delegate in a Vi ewCont rol | er. mfile.

To call the API through the iOS SDK generated by APl Gateway

1. Instantiate the API client class:

let client = SI MPLE_CALCSi npl eCal cClient.defaultCient()

To use Amazon Cognito with the API, set a default AWS service configuration (shown following)
before getting the def aul t G i ent method (shown previously):

| et credential sProvider =
AWSCogni t oCr edent i al sProvi der (regi onType: AWSRegi onType. USEast 1,
identityPool I d: "ny_pool _id")

| et configuration = AWSServi ceConfiguration(regi on: AWSRegi onType. USWést 2,
credential sProvi der: credential sProvider)

AWSSer vi ceManager . def aul t Servi ceManager () . def aul t Servi ceConfiguration =
configuration

2. Callthe GET / ?a=1&b=2&op=+ method to perform 1+2:

client.rootGet("+", a: "1", b:"2").conti nueWthBlock {(task: AWsTask) ->
AnyChject? in
sel f. showResul t (t ask)
return nil

where the helper function sel f. showResul t (t ask) prints the result or error to the console; for
example:

func showResul t (task: AWSTask) {
if let error = task.error {
print("Error: \(error)")
} elseif let result = task.result {
if result is SIMPLE CALCResult ({
let res = result as! SIMPLE CALCResult
print(String(formt: "% %@ %@ = %@, res.input!.al,
res.input!.op!, res.input!.b!, res.output!.c!))
} else if result is NSDictionary {
let res = result as! NSDictionary
print("NSDictionary: \(res)")

277

Amazon API Gateway Developer Guide
Use a JavaScript SDK Generated by API Gateway

In a production app, you can display the result or error in a text field. The resulting display is 1 +
2 = 3.

3. Call the PGST / with a payload to perform 1- 2:

| et body = SI MPLE_CALCI nput ()

body. a=1

body. b=2

body. op="-"

client.rootPost (body). conti nueWthBl ock {(task: AWSTask) -> AnyQbject? in
sel f. showResul t (t ask)
return nil

The resultant display is1 - 2 = -1.
4. Callthe GET /{a}/{b}/{op} to perform 1/ 2:

client.aBOpGet ("1", b:"2", op:"div").continueWthBlock {(task: AWSTask) ->
AnyChject? in
sel f. showResul t (t ask)
return nil

The resulting display is 1 div 2 = 0. 5. Here, di v is used in place of / because the simple
Lambda function (p. 255) in the back end does not handle URL encoded path variables.

Use a JavaScript SDK Generated by APl Gateway

Note
These instructions assume you have already completed the instructions in Use the API
Gateway Console to Generate the SDKs of an API (p. 254).

Extract the contents of the APl Gateway-generated .zip file you downloaded earlier.

2. Enable cross-origin resource sharing (CORS) for all of the methods the SDK generated by API
Gateway will call. For instructions, see Enable CORS for a Resource (p. 170).

3. Inyour web page, include references to the following scripts.

<script type="text/javascript" src="Iib/axios/dist/axios.standal one.js"></
scri pt>

<script type="text/javascript" src="lib/CryptoldS/rollups/hnmac-

sha256. j s"></scri pt>

<script type="text/javascript" src="lib/CyptolS/rollups/sha256.js"></
scri pt>

<script type="text/javascript" src="lib/CryptolS/ conponents/hmac.js"></
scri pt>

<script type="text/javascript" src="lib/CryptoJS/ conponents/enc-

base64. | s"></script>

<script type="text/javascript" src="lib/url-tenplate/url-tenplate.js"></
scri pt>

<script type="text/javascript" src="lib/api Gat ewayCore/sigv4ad ient.js"></
scri pt>

278

Amazon API Gateway Developer Guide
Use a JavaScript SDK Generated by API Gateway

<script type="text/javascript" src="Iib/api Gat ewayCore/

api Gatewayd ient.js"></script>

<script type="text/javascript" src="Iib/api Gat ewayCore/
sinmpleHttpdient.js"></script>

<script type="text/javascript" src="lib/api GatewayCore/utils.js"></script>
<script type="text/javascript" src="apigdient.js"></script>

In your code, initialize the SDK generated by APl Gateway by using code similar to the following.

var apigdient = apigdientFactory.newdient();

Call the APl methods in APl Gateway by using code similar to the following. Each call returns a
promise with a success and failure callbacks.

var parans = {
/1 This is where any nodel ed request paranmeters shoul d be added.
/1 The key is the paraneter nanme, as it is defined in the APl in API
CGat eway.
paranD: '"',
paranmtl: "'
b

var body = {
/1 This is where you define the body of the request,

H

var additional Parans = {
/1 |f there are any unnodel ed query paraneters or headers that nust be
[/ sent with the request, add them here
headers: {
paranD: '"',
par an:
H
queryParans: {
paranD: "',
par an:
}
b

api gd i ent. met hodNane(par ans, body, additi onal Parans)
.then(function(result){
/1 Add success cal | back code here.
}).catch(function(result){
/1 Add error callback code here.

1)

Here, the net hodNane is constructed from the method request's resource path and the HTTP. For
example, for the GET / request, the net hodNan® is r oot Get . For the GET / a/ b/ op request, the
met hodNane will be aBOpGet .

To initialize the SDK generated by APl Gateway with AWS credentials, use code similar to the
following. If you use AWS credentials, all requests to the API will be signed. This means you must
set the appropriate CORS Accept headers for each request.

var apigCient = apigdientFactory. newd ient({
accessKey: ' ACCESS _KEY',
secret Key: ' SECRET_KEY',

279

Amazon API Gateway Developer Guide
Use a Custom Domain Name

IO

7. To use an API key with the SDK generated by API Gateway, you can pass the API key as a
parameter to the Fact or y object by using code similar to the following. If you use an API key, it is
specified as part of the x- api - key header and all requests to the API will be signed. This means
you must set the appropriate CORS Accept headers for each request.

var apigCient = apigdientFactory. newd ient({
api Key: ' APl _KEY'
s

Use a Custom Domain Name in AP|l Gateway

After deploying your API, you (and the client) can invoke the API using the default root URL of the
https://api-id.execute-api.region. amazonaws. comformat. To provide a simpler and
more intuitive URL for your API users, you can use API Gateway to set up a custom domain name
(e.g., api . exanpl e. con) and choose a base path (e.g., myser vi ce) to present an alternative URL
(e.g., https://api.exanpl e. com nyservi ce) for the API. You can also use an empty base
path for an API. In this case, the API's URL is the same as the custom domain (e.g., htt ps: //

api . exanpl e. com)

For every API you create, APl Gateway sets up an Amazon CloudFront distribution for the API.
Requests with the default APl URL are routed to the corresponding CloudFront distribution. Similarly,
every custom domain name is backed by a CloudFront distribution. An API request with the custom
domain name passes through the custom domain name's CloudFront distribution before reaching the
API's CloudFront distribution. APl Gateway supports custom domain names for APIs by leveraging
Server Name Indication (SNI) on the CloudFront distribution. For more information on using custom
domain names on a CloudFront distribution, including the required certificate format and the maximum
size of a certificate key length, see Using Alternate Domain Names and HTTPS in the Amazon
CloudFront Developer Guide.

Creating a custom domain name for your APIs involves deleting an existing CloudFront distribution and
creating a new one. The process may take approximately 30 minutes before the new custom domain
name becomes available. For more information, see Updating CloudFront Distributions.

To enable a custom domain name, you, as the APl owner, must provide a server-side SSL certificate to
verify the custom domain name targeted by the client requests. You do this when setting up the domain
name initially and then when renewing an expiring certificate subsequently. In addition, you must have
registered the custom domain name with a domain name registrar. After setting up a custom domain
name in API Gateway, you must create or update your domain name service (DNS) provider's resource
record to map the custom domain name to its CloudFront distribution domain name. For the SSL
certificate, you must also have obtained from a certificate authority the PEM-formatted SSL certificate
body, its private key, and the certificate chain for the custom domain name. This section describes how
to configure a domain name for an API, to set up the certificate for a custom domain name, to map a
base path to an API, and to upload a new certificate to replace an expiring one. We will also provide
general guidance, by way of examples, on how to obtain the server-side certificate and create a DNS
alias record.

Topics
¢ Prerequisites (p. 281)
¢ Set Up a Custom Domain Name for an API Gateway API (p. 281)
¢ Specify API Mappings for a Custom Domain Name (p. 284)
« Base Path Examples of APl Mappings for a Custom Domain Name (p. 284)
¢ Upload and Renew an Expiring Certificate (p. 285)
¢ Call Your API with Custom Domain Names (p. 286)

280

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html#CNAMEsAndHTTPS
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/HowToUpdateDistribution.html

Amazon API Gateway Developer Guide
Prerequisites

Prerequisites

Note
API Gateway, fronted by CloudFront, does not support self-signed SSL certificates.

The following steps describe how to prepare to use custom domain names in APl Gateway.

To prepare to use custom domain names in APl Gateway

Register your custom domain name. See the Accredited Registrar Directory at the ICANN website.

Get a PEM-encoded SSL certificate for your custom domain name from a certificate authority. For
a partial list, see Third-Party Certificate Authorities at the DMOZ website.

Here are the general steps to obtain an SSL certificate from your chosen certificate authority:

a. Generate a private key for the certificate and save output to a file, using the OpenSSL toolkit
at the OpenSSL website:

openssl genrsa -out private-key-file 2048

Note

Amazon API Gateway leverages Amazon CloudFront to support certificates for
custom domain names. As such, the requirements and constraints of a custom
domain name SSL certificate are dictated by CloudFront. For example, the maximum
size of the public key is 2048 and the private key size can be 1024, 2048 and 4096.
The public key size is determined by the CA you use. Inquire your CA to return keys
of a size different from the default length. For more information, see Secure access
to your objects and Create signed URLs and signed cookies.

b. Generate a certificate signing request (CSR) with the previously generated private key, using
OpenSSL:

openssl req -new -sha256 -key private-key-file -out CSR-file

c. Submit the CSR to the certificate authority and save the resulting certificate.
Download the certificate chain from the certificate authority.

Note

If you obtain the private key in another way and the key is encrypted, you can use the
following command to decrypt the key before submitting it to API Gateway for setting up a
custom domain name.

openssl pkcs8 -topk8 -informpem-in MyEncryptedKey. pem -outform
pem - nocrypt -out MyDecryptedKey. pem

Set Up a Custom Domain Name for an API Gateway
API

The following procedure describes how to set up a custom domain name.

To set up a custom domain name for an APl Gateway API

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

281

http://www.internic.net/regist.html
https://www.dmoz.org/Computers/Security/Public_Key_Infrastructure/PKIX/Tools_and_Services/Third_Party_Certificate_Authorities/
http://www.openssl.org
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Set Up a Custom Domain Name for an AP| Gateway API

Choose Custom Domain Names from the main navigation pane.

Choose Create in the secondary navigation pane.

In Create Custom Domain Name, specify the following:

a.
b.

For Domain name, type your domain name (for example, api . exanpl e. con).

For Certificate name, type a name for future reference (for example, ny- exanpl e-
certificate).

For Certificate body, type or paste the body of the PEM-formatted server certificate from
your certificate authority. The following shows an abbreviated example of such a certificate.

----- BEG N CERTI FI CATE- - - - -
EXAVPLECA+KgAW BAgl QI 1XxJ8PI ++gOf Qt j 01 BogDANBgkghki GOWOBAQUFADBB

az8Cglai cxLBQ7EaW hhgEXAMPLE
----- END CERTI FI CATE- - - - -

For Certificate private key, type or paste your PEM-formatted certificate's private key. The
following shows an abbreviated example of such a key.

----- BEG N RSA PRI VATE KEY-----
EXAMPLEBAAKCAQEA2 Qb3LDHD7 St Y7W 6U2/ opV6Xu37qUCCke DWwpZMYJ9/ nETO

1gGvJ3u04vdnzaYNsSWoyN5LFckr | A71+CszD1CGSgbVDWEXAMPLE
----- END RSA PRI VATE KEY-----

For Certificate chain, type or paste the PEM-formatted intermediate certificates and,
optionally, the root certificate, one after the other without any blank lines. If you include the
root certificate, your certificate chain must start with intermediate certificates and end with
the root certificate. Use the intermediate certificates provided by your certificate authority. Do
not include any intermediaries that are not in the chain of trust path. The following shows an
abbreviated example.

----- BEG N CERTI FI CATE- - - - -
EXAVPLECA4ugAW BAgl QW Ydr B5NogYUx 1U9Pany 3DANBgk ghki GOWOBAQUFADCB

8/ f Bl | K3se2e4/ hEf cEej X/ ar xbx1BJCHBvI EPNnsdw8EXAMPLE
----- END CERTI FI CATE- - - - -

Here is another example.

----- BEG N CERTI FI CATE- - - - -
Internedi ate certificate 2
----- END CERTI FI CATE- - - - -
----- BEG N CERTI FI CATE- - - - -
Internediate certificate 1
----- END CERTI FI CATE- - - - -
----- BEG N CERTI FI CATE- - - - -
Optional: Root certificate
----- END CERTI FI CATE- - - - -

Choose Save.

While the new custom domain name is being created, the console displays the following
information to have an alias resource record created in your DNS provider to map your
custom domain name (api . exanpl e. com) to the API's CloudFront distribution domain name
(di stribution-id.cloudfront. net).

282

Amazon API Gateway Developer Guide
Set Up a Custom Domain Name for an API Gateway API

api.example.com Delete Custom Domain Name

Create an Alias resource record with your DNS provider to map api.example.com to d3boq9ikothtgw.cloudfront.net

Certificate name my-example-cert

Distribution domain name d3bog9ikothigw cloudfront.net

The custom domain name is being created. This process can take up to 40 minutes.

API| Mappings

Base path API Stage

No API mappings

© Create APl mapping

Make note of the CloudFront distribution's domain name shown in the output. You will need it to
set the custom domain's CNAME or alias record in your DNS.

In this step, we will use Amazon Route 53 as an example DNS provider to show how to set up
the alias record to map the custom domain to its CloudFront distribution. The instructions can be
adapted to other DNS providers.

Go to the Amazon Route 53 console.

If necessary, register a custom domain name.

Create a hosted zone.

Create a record set (e.g., api . exanpl e. com)

® a0 op

Choose Yes for Alias, type the CloudFront domain name (e.g.,
d3boq9i kot ht gw. cl oudf ront. net) in Alias Target, and then choose Create.

Create Record Set

Type: A-IPv4 address v|

Alias O No
Alias Target: (g3boq9ikothtgw.cloudfront.ne !

Alias Hosted Zone ID: Z2FDTNDATAQYW2

Routing Policy: simple v

Route 53 responds to queries based only on the values in this record. Leam
More

Evaluate Target Health: Yes (@ No &

{ Create)

For most DNS providers, including Amazon Route 53, your custom domain name is added to
the hosted zone as a CNAME resource record set. The CNAME record name specifies the
custom domain name you typed earlier for Domain Name (for example, api . exanpl e. con).
The CNAME record value specifies the domain name for the CloudFront distribution. However,
use of a CNAME record will not work if your custom domain is a zone apex (i.e., exanpl e. com

283

Amazon API Gateway Developer Guide
Specify APl Mappings for a Custom Domain Name

instead of api . exanpl e. con). A zone apex is also commonly known as the root domain of your
organization.

With Amazon Route 53 you can also create an alias resource record set for your custom domain
name and specify the CloudFront distribution as the alias target. This means that Amazon

Route 53 can route your custom domain name even if it is a zone apex. For more information, see
Choosing Between Alias and Non-Alias Resource Record Sets in the Amazon Route 53 Developer
Guide.

Specify APl Mappings for a Custom Domain Name

After you have set up a custom domain name, you must configure how individual APIs are invoked
with the custom domain name. This amounts to specifying an API's URL with the given domain name.
For example, if you have created an API named Pet St or e and another APl named Pet Shop and
set up a custom domain name of api . exanpl e. comin AP| Gateway, you can set the Pet St or e
API's URL as ht t ps: // api . exanpl e. comor htt ps: // api . exanpl e. com nyPet St or e. This
involves setting up the API's base path. The first example uses an empty base path and the second
example uses myPet St or e as the base path of the API, relative to the domain name. Similarly, you
can use htt ps: // api . exanpl e. conl your Pet St or e as the Pet Shop API's URL. The base path
is your Pet Shop. Thus, base paths can be used to host multiple APIs behind a single custom domain
name.

Complete the steps in Set Up a Custom Domain Name for an APl Gateway API (p. 281) before
setting the base path for API mappings.

To set the base path for APl mappings

1. For each URL variation you want to enable, choose Create APl mapping.

2. (Optional) For Base path, type the base path name that API callers must provide as part of the
URL. This value must be unique for all of the mappings across a single API. Leave this blank if you
do not want callers to specify a base path name after the domain name.

3. For API, choose the name of an available API from the selected region in your AWS account.

4. (Optional) For Stage, choose the name of the API's stage you want to use for this mapping. Leave
this blank if you want callers to explicitly specify the stage name after any base path name.

5. Choose Save.

Note
To delete a mapping after you create it, next to the mapping that you want to delete, choose
Remove.

Base Path Examples of APl Mappings for a Custom
Domain Name

The following examples use a custom domain name of api . exanpl e. com

« Leave Base Path blank, specify an APl of MyDenpAPI , and specify a Stage value of pr od to
enable calls to ht t ps: // api . exanpl e. comto be forwarded to ht t ps: // my- api - i d. execut e-
api . regi on-i d. amazonaws. coni prod (where ny- api - i d is the identifier APl Gateway assigns
to the API named MyDenpAPI).

« Leave Base Path blank, specify an APl of MyDenpAPI , and leave Stage blank to enable calls
tohttps://api.exanpl e. com prod to be forwarded to htt ps:// ny-api -i d. execut e-
api . regi on-id. amazonaws. cont pr od (where ny- api - i d is the identifier API Gateway assigns
to the APl named MyDenpAPI).

284

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html

Amazon API Gateway Developer Guide
Upload and Renew an Expiring Certificate

¢ Specify a Base Path value of bi I | i ng, specify an APl of MyDenpAPI , and leave Stage blank to
enable callsto htt ps: // api . exanpl e. conl bi | | i ng/ bet a to be forwarded to ht t ps: // ny-
api -i d. execut e-api . regi on-i d. amazonaws. conl bet a (where ny- api - i d is the identifier
API Gateway assigns to the APl named MyDenpAPI).

« Specify a Base Path value of schedul i ng, specify an APl of MyDenpAPI , and specify a Stage
value of gama to enable calls to ht t ps: // api . exanpl e. com schedul i ng to be forwarded to
https://ny-api-id. execute-api.region-id.amazonaws. conl gamma (where ny-api -i dis
the identifier APl Gateway assigns to the APl named MyDenpAPI).

Upload and Renew an Expiring Certificate

The following steps describe how to upload and renew an expiring certificate for a custom domain
name using the APl Gateway console. You cannot rotate custom domain name certificates
programmatically.

To upload a new certificate for a custom domain name

1. Choose Custom Domain Names from the APl Gateway console main navigation pane.
2. Select a custom name under the Domain Names pane.
3. Choose Upload
Note
The upload feature will not be available when the certificate is being initialized or rotated

for the selected custom domain name. However, upload for a different domain name is
still available because the upload feature is independent for each custom domain name.

4. In Upload Backup Certificate for a- domai n- nane specify the following:

¢ Type a name for the new certificate in Certificate name. The name should be different from the
name of the expiring certificate.

¢ Type or paste the PEM-formatted new certificate body in Certificate body.
* Type or paste the PEM-formatted new certificate key in Certificate private key
e Type or paste the PEM-formatted new certificate chain in Certificate chain.

Then, choose Save.
5. Choose Rotate to start replacing the old certificate by the new certificate.

Note
The certificate rotation takes up to 40 minutes to finish. The custom domain name is
available during the rotation.

api.example.com Delete Custom Domain Name

Create an Alias resource record with your DNS provider o map api.example.com to d3boq9ikothtgw.cloudfront.net

Certificate name my-example-certificate-2
Distribution domain name d3begikothigw cloudfront.net

Backup Certificate my-example-certificate-3 Rotate Upload

API Mappings
Base path API Stage
petstore PetStore test

© Create APl mapping

285

Amazon API Gateway Developer Guide
Call Your APl with Custom Domain Names

Call Your API with Custom Domain Names

Calling an API with a custom domain name is the same as calling the API with its default domain
name, provided that the correct URL is used.

API Gateway supports custom domain names for an API by using Server Name Indication (SNI). After
a custom domain name is configured with the API, you can call the API with the custom domain name

by using a browser or a client library that supports SNI.

API Gateway enforces SNI on the CloudFront distribution. For information on how CloudFront uses
custom domain names, see Amazon CloudFront Custom SSL.

286

https://en.wikipedia.org/wiki/Server_Name_Indication
http://aws.amazon.com/cloudfront/custom-ssl-domains/

Amazon API Gateway Developer Guide
Representation of APl Documentation in API Gateway

Documenting an APl Gateway APl

To help customers understand and use your API, you should document the API. To help you document
your API, API Gateway lets you add and update the help content for individual API entities as an
integral part of your API development process. APl Gateway stores the source content and enables
you to archive different versions of the documentation. You can associate a documentation version
with an API stage, export a stage-specific documentation snapshot to an external Swagger file, and
distribute the file as a publication of the documentation.

To document your API, you can call the APl Gateway REST API, use one of the AWS SDKs or AWS
CLIs for API Gateway, or use the API Gateway console. In addition, you can import or export the
documentation parts defined in an external Swagger file. Before explaining how to document your API,
we'll show how APl documentation is represented in APl Gateway.

Topics
¢ Representation of APl Documentation in APl Gateway (p. 287)
¢ Document an API Using the API Gateway Console (p. 294)
¢ Document an API Using the API Gateway REST API (p. 302)
¢ Publish APl Documentation (p. 319)
¢ Import API Documentation (p. 325)
¢ Control Access to API Documentation (p. 327)

Representation of APl Documentation in API
Gateway

API Gateway API documentation consists of individual documentation parts associated with specific
API entities that include API, resource, method, request, response, message parameters (i.e., path,
query, header), as well as authorizers and models.

In API Gateway, a documentation part is represented by a DocumentationPart resource. The API
documentation as a whole is represented by the DocumentationParts collection.

Documenting an API involves creating Docunent at i onPar t instances, adding them to the
Docunent at i onPar t s collection, and maintaining versions of the documentation parts as your API
evolves.

Topics
¢ Documentation Parts (p. 288)
¢ Documentation Versions (p. 294)

287

http://docs.aws.amazon.com/apigateway/api-reference/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/cli/latest/reference/apigateway/
http://docs.aws.amazon.com/cli/latest/reference/apigateway/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-parts

Amazon API Gateway Developer Guide
Documentation Parts

Documentation Parts

A DocumentationPart resource is a JSON object that stores the documentation content applicable to
an individual API entity. Its pr oper ti es field contains the documentation content as a map of key-
value pairs. Its | ocat i on property identifies the associated API entity.

The shape of a content map is determined by you, the API developer. The value of a key-value pair
can be a string, number, boolean, object, or array. The shape of the | ocat i on object depends on the
targeted entity type.

The Docunent at i onPart resource supports content inheritance: the documentation content of
an API entity is applicable to children of that API entity. For more information about the definition
of child entities and content inheritance, see Inherit Content from an API Entity of More General

Specification (p. 289).

Location of a Documentation Part

The location property of a DocumentationPart instance identifies an API entity to which the associated
content applies. The API entity can be an API Gateway REST API resource, such as RestApi,
Resource, Method, MethodResponse, Authorizer, or Model. The entity can also be a message
parameter, such as a URL path parameter, a query string parameter, a request or response header
parameter, a request or response body, or response status code.

To specify an API entity, set the type attribute of the | ocat i on object to be one of APl , AUTHORI ZER,
MODEL, RESOURCE, METHOD, PATH_PARAMETER, QUERY_PARAVMETER, REQUEST _HEADER,
REQUEST_BODY, RESPONSE, RESPONSE _HEADER, or RESPONSE_BQODY.

Depending on the t ype of an API entity, you might specify other | ocat i on attributes, including
method, name, path, and statusCode. Not all of these attributes are valid for a given API entity. For
example, t ype, pat h, nane, and st at usCode are valid attributes of the RESPONSE entity; only t ype
and pat h are valid location attributes of the RESOURCE entity. It is an error to include an invalid field in
the |l ocati on of a Docunent ati onPart for a given API entity.

Not all valid | ocat i on fields are required. For example, t ype is both the valid and required | ocat i on
field of all API entities. However, et hod, pat h, and st at usCode are valid but not required attributes
for the RESPONSE entity. When not explicitly specified, a valid | ocat i on field assumes its default
value. The default pat h value is / , i.e., the root resource of an API. The default value of et hod, or

st at usCode is *, meaning any method, or status code values, respectively.

Content of a Documentation Part

The properti es value is encoded as a JSON string. The pr oper ti es value contains any
information you choose to meet your documentation requirements. For example, the following is a valid
content map:

{
"info": {
"description": "My first APl with Amazon APl Gateway."
I
"x-custominfo" : "My custominfo, recognized by Swagger.",
"my-info" : "My custominfo not recognized by Swagger."
}

To set it as a value of pr oper ti es using the APl Gateway REST API, encode this object as a JSON
string:

"{An\t\"info\": {\n\t\t\"description\": \"My first APl with Amazon API
Gateway.\"\n\t}, ..\n}"

288

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#location
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method-response/
http://docs.aws.amazon.com/apigateway/api-reference/resource/authorizer/
http://docs.aws.amazon.com/apigateway/api-reference/resource/model
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#type
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#method
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#name
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#path
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/#statusCode

Amazon API Gateway Developer Guide
Documentation Parts

Although API Gateway accepts any valid JSON string as the content map, the content attributes
are treated as two categories: those that can be recognized by Swagger and those that cannot. In
the preceding example, i nf o, descri pti on, and x- cust om i nf o are recognized by Swagger
as a standard Swagger object, property, or extension. In contrast, ny- i nf o is not compliant with
the Swagger specification. APl Gateway propagates Swagger-compliant content attributes into the
API entity definitions from the associated Docunent at i onPar t instances. APl Gateway does not
propagate the non-compliant content attributes into the API entity definitions.

As another example, here is Docunent at i onPar t targeted for a Resour ce entity:

{
"l ocation" : {
"type" : "RESOURCE",
"path": "/pets"
8
"properties” : {
"summary" : "The /pets resource represents a collection of pets in
Pet Store. ",
"description": " a child resource under the root...",
}
}

Here, both t ype and pat h are valid fields to identify the target of the RESOURCE type. For the root
resource (/), you can omit the pat h field.

{
"location" : {
"type" : "RESOURCE"
1
"properties" : {
"description" : "The root resource with the default path
specification."
}
}

This is the same as the following Docunent at i onPart instance:

{
"l ocation" : {
"type" : "RESOURCE",
“path": "/"
3
"properties" : {
"description" : "The root resource with an explicit path
speci fication"
}
}

Inherit Content from an API Entity of More General
Specifications

The default value of an optional | ocat i on field provides a patterned description of an API entity.
Using the default value in the | ocat i on object, you can add a general description in the pr operti es
map to a Docunent at i onPar t instance with this type of | ocat i on pattern. API Gateway extracts the
applicable Swagger documentation attributes from the Docunent at i onPart of the generic API entity

289

Amazon API Gateway Developer Guide
Documentation Parts

and injects them into a specific API entity with the | ocat i on fields matching the general | ocat i on
pattern, or matching the exact value, unless the specific entity already has a Docunent at i onPar t
instance associated with it. This behavior is also known as content inheritance from an API entity of
more general specifications.

Content inheritance does not apply to API entities of the APl , AUTHORI ZER, MODEL, or RESOURCE type.

When an API entity matches more than one Docunent at i onPar t 's location pattern, the entity will
inherit the documentation part with the location fields of the highest precedence and specificities.

The order of precedence is pat h > net hod > st at usCode. For matching with the pat h field, API
Gateway chooses the entity with the most specific path value. The following table shows this with a few
examples.

Case path met hod | statusCode nane Remarks

1 / pets * * id Documentation associated with this location
pattern will be inherited by entities matching
the location pattern.

2 / pets * 200 id Documentation associated with this location
pattern will be inherited by entities matching
the location pattern when both Case 1 and
Case 2 are matched, because Case 2 is more
specific than Case 1.

3 / pets GET * id Documentation associated with this location
pattern will be inherited by entities matching
the location pattern when Cases 1, 2, and 3
are matched, because Case 3 has a higher
precedence than Case 2 and is more specific
than Case 1.

4 / pets GET 200 id Documentation associated with this location
pattern will be inherited by entities matching
the location pattern when Cases 1, 2, 3 and 4
are matched, because Case 4 is more specific
than Case 1, 2 or 3.

5 / pet s/ * * id Documentation associated with this location
petld pattern will be inherited when Cases 1, 2, 3,
4 and 5 are matched, because Case 5 has a
more specific pat h field and pat h takes the
highest precedence.

Here is another example to contrast a more generic Docunent at i onPar t instance to a more specific
one. The following general error message of "I nval i d request error" isinjected into the
Swagger definitions of the 400 error responses, unless overridden.

{
"l ocation" : {
"type" : "RESPONSE",
"statusCode": "400"
b
"properties" : {
"description" : "lnvalid request error."
}e
}

290

Amazon API Gateway Developer Guide
Documentation Parts

With the following overwrite, the 400 responses to any methods on the / pet s resource has a
description of "I nval i d petld specified" instead.

{
"l ocation" : {
"type" : "RESPONSE",
"path": "/pets",
"statusCode": "400"
},
"properties" : "{
"description" : "lInvalid petld specified."
pe
}

Valid Location Fields of bocunent ati onpart

The following table shows the valid and required fields as well as applicable default values of a
DocumentationPart resource that is associated with a given type of API entities.

API Valid location fields Required Default field Inheritable
entity location fields | values Content
API { type N/A No
"location": {
"type": "API"
H
}
Resource { type The default value No
"location": { of pathis /.
"type":
" RESOURCE",
"path":
"resource_pat h"
I
}
Method type The default values | Yes, matching
{ . tion" of pat h and pat h by
chlt ! 02.. : { met hod are/ and | prefix and
" VETHOD" yper: * respectively. matching
" ’pat B met hod of
"resource_path", any values.
"met hod":
"http_verb"
I
}
Query type The default values | Yes, matching
parameter { " tion" of pat h and pat h by
ocation”: { net hod are/ and | prefix and
* respectively. matching

201

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method/

Amazon API Gateway Developer Guide
Documentation Parts

API
entity

Request
body

Request
header
parameter

Request
path
parameter

Valid location fields

"type":
" QUERY_PARAMETER',

"path":
"resource_path",

"nmet hod" :
"HTTP_verb",

"nane":
"query_paramnet er _nane"

}
"l ocation": {
"type":
" REQUEST",
"path":
"resource_path",
"met hod":
"http_verb"
}
}
"l ocation": {
"type":
" REQUEST_HEADER',
"pat h":
"resource_path",
"nmet hod" :
"HTTP_verb",
"nane":
"header _nane"
}
}
{
"l ocation": {
"type":
" PATH_PARAMETER",
"path":
"resource/
{pat h_par anet er _nane}",
"met hod":
"HTTP_verb",
"nanme" :

"pat h_par anet er _nang"

b

Required Default field
location fields | values

The default values
of pat h, and

nmet hod are / and
* respectively.

type

The default values
of pat h and

nmet hod are/ and
* respectively.

t ype, nanme

The default values
of pat h and

net hod are/ and
* | respectively.

t ype, nane

Inheritable
Content

nmet hod by
exact values.

Yes, matching
pat h by
prefix, and
matching

nmet hod by
exact values.

Yes, matching
pat h by
prefix and
matching

nmet hod by
exact values.

Yes, matching
pat h by
prefix and
matching

nmet hod by
exact values.

Amazon API Gateway Developer Guide

Documentation Parts

API
entity

Response

Response
header

Response
body

Valid location fields

{
"l ocation": {
"type":
" RESPONSE" ,
"path":
"resource_pat h",
"met hod":
"http_verb",
"st at usCode":
"status_code"
H
}
{
"l ocation": {
"type":
" RESPONSE_HEADER' ,
"pat h":
"resource_path",
"met hod":
"http_verb",
"st at usCode":
"status_code",
"nane":
"header _nane"
b
}
{
"location": {
"type":
" RESPONSE_BODY",
"path":
"resource_path",
"met hod":
"http_verb",
"st at usCode":
"status_code"
H
}

Required
location fields

type

type, name

type

Default field
values

The default values
of pat h, met hod,
and st at usCode
are/,* and *,
respectively.

The default values
of pat h, net hod
and st at usCode
are/,* and*,
respectively.

The default values
of pat h, met hod
and st at usCode
are/,* and *,
respectively.

Inheritable
Content

Yes, matching
pat h by
prefix and
matching

net hod and
st at usCode
by exact
values.

Yes, matching
pat h by
prefix and
matching

net hod, and
st at usCode
by exact
values.

Yes, matching
pat h by
prefix and
matching

net hod, and
st at usCode
by exact
values.

293

Amazon API Gateway Developer Guide
Documentation Versions

API Valid location fields Required Default field Inheritable
entity location fields | values Content
Authorizer (type N/A No
"l ocation": {
"type":
" AUTHORI ZER" ,
"nanme":
"aut hori zer _nane"
b,
}
Model { type N/A No
"location": {
"type": "MODEL",
"name" :
"nodel _nane"
I
}

Documentation Versions

A documentation version is a snapshot of the DocumentationParts collection of an API and is tagged
with a version identifier. Publishing the documentation of an API involves creating a documentation
version, associating it with an API stage, and exporting that stage-specific version of the API
documentation to an external Swagger file. In APl Gateway, a documentation snapshot is represented
as a DocumentationVersion resource.

As you update an API, you create new versions of the API. In API Gateway, you maintain all the
documentation versions using the DocumentationVersions collection.

Document an API Using the APl Gateway
Console

In this section, we describe how to create and maintain documentation parts of an API using the API
Gateway console.

A prerequisite for creating and editing the documentation of an API is that you must have already
created the API. In this section, we use the PetStore API as an example. To create an API using the
API Gateway console, follow the instructions in Create an AP| Gateway API from an Example (p. 7).
Topics

¢ Document the API Entity (p. 295)

¢ Document a RESOURCE Entity (p. 297)

¢ Document a METHOD Entity (p. 297)

e Document a QUERY_PARAMETER Entity (p. 298)

¢ Document a PATH_PARAMETER Entity (p. 299)

294

http://docs.aws.amazon.com/apigateway/api-reference/resource/authorizer/
http://docs.aws.amazon.com/apigateway/api-reference/resource/model/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-parts/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-versions
http://petstore-demo-endpoint.execute-api.amazonaws.com/petstore/pets

Amazon API Gateway Developer Guide
Document the APl Entity

¢ Document a REQUEST_HEADER Entity (p. 300)
¢ Document a REQUEST_BODY Entity (p. 300)

¢ Document a RESPONSE Entity (p. 300)

¢ Document a RESPONSE_HEADER Entity (p. 301)
¢ Document a RESPONSE_BODY Entity (p. 301)

¢ Document a MODEL Entity (p. 301)

¢ Document an AUTHORIZER Entity (p. 302)

Document the 1 Entity

To add a documentation part for the APl entity, choose Resources from the PetStore API. Choose
the Actions _, Edit APl Documentation menu item.

—

APls > PetStore (4wk1k4onj3)

D / Methods
-/

> Resources > /(f1d6g09twf)

RAESOURCE ACTIONS

s eros o
GET
v Jpets Create Resource
GET Enable CORS
OPTIONS Edit Resource Documentation ~ Mone
POST Mot required
- j{petlc AP ACTIONS
GET Deploy API
OPTIC Impr.)rt API
Edit APl Documentation
Delete API

If a documentation part was not created for the API , you get the documentation part's pr operti es
map editor. Type the following pr operti es map in the text editor and then choose Save to create the
documentation part.

{
"info": {
"description": "Your first APl Gateway API.",
"contact": {
"name": "John Doe",
"enmi |l ": "john.doe@pi.cont,
}
}
}
Note

You do not encode the pr operti es map into a JSON string, as you must do when using the
API Gateway REST API. The API Gateway console stringifies the JSON object for you.

295

Amazon API Gateway Developer Guide
Document the APl Entity

Documentation

Provide your APl documentation in JSON format in the form below.

Type API
1 i
2 "info": {
3 "description” @ "Your first API Gateway API.",
4 "contact": {
5 "name”: "lohn Doe™,
6 "email”: "john.doe®api.com”
7 }
& 1
9

If a documentation part has already been created, you first get the pr oper ti es map viewer, as shown
in the following.

296

Amazon API Gateway Developer Guide
Document a RESOURCE Entity

Documentation

Specify your documentation part in JSON format in the form below. For more
information, see the Documentation Parts Documentation.

Type API
{
“info": {
"description": "Your first API Gateway API.",
"contact": {
"name": "John Doe",
"email": "“john.doe@api.com"
}
}
+

—

Choosing Edit brings up the pr operti es map editor as shown previously.

Document a resarce ENtity

To add or edit the documentation part for the API's root resource, choose / under the Resource tree,
and then choose the Actions _ Edit Resource Documentation menu item.

If no documentation part was created for this entity, you get the Documentation window. Type a valid
properties map in the editor. Then choose Save and Close.

"description": "The PetStore's root resource."

If a documentation part has already been defined for the RESOURCE entity, you get the documentation
viewer. Choose Edit to open the Documentation editor. Modify the existing pr oper ti es map.
Choose Save and then choose Close.

If necessary, repeat these steps to add a documentation part to other RESOURCE entities.

Document a w0 Entity

To add or edit documentation for a MEHTOD entity, using the GET method on the root resource
as an example, choose GET under the / resource and the choose the Actions _ Edit Method
Documentation menu item.

For the new documentation part, type the following pr oper ti es map in the Documentation editor in
the Documentation window. Then choose Save and Close.

297

Amazon API Gateway Developer Guide
Document a QUERY_PARAMETER Entity

{
"tags" : ["pets"],
"description" : "PetStore HTML web page contai ning APl usage information"

}

For the existing documentation, choose Edit from the Documentation viewer. Edit the documentation
content in the Documentation editor and choose Save. Choose Close.

From the Documentation viewer, you can also delete the documentation part.

If necessary, repeat these steps to add a documentation part to other methods.

Document a aerv paraveter Entity

To add or edit a documentation part for a request query parameter, using the GET / pet s?
type=. .. &page=. .. method as an example, choose GET under /pets from the Resources

tree. Choose Method Request in the Method Execution window. Expand the URL Query String
Parameters section. Choose the page query parameter, for example, and choose the book icon to
open the Documentation viewer or editor.

€ Method Execution /pets - GET - Method Request

Provide information about this method's authorization settings and the parameters it can receive.
Authorization Settings
Authorization NONE + @

API Key Required true +

+» LURL Query String Parameters

Name Caching

type
© Add query string
Alternatively, you can choose Documentation under the PetStore API from the main navigation

pane. Then choose Query Par anet er for Type. For the PetStore example API, this shows the
documentation parts for the page and t ype query parameters.

298

Amazon API Gateway Developer Guide
Document a PATH_PARAMETER Entity

Documentation Create Documentation Part Import Documentation Publish Docume

Add documentation to help developers understand how to interact with your APl. Documentation parts can be shared across multiple resources and m
by specifying a wildcard value (*) for method or status code, eg. documentation for a 200 response can be used in multiple locations. You can also imp
documentation by supplying a Swagger definition file, and publish documentation to a stage. For more information, reference the documentation,

Typel Query Parameter j Path Method All j Name

Type Query Parameter Type Query Parameter
Path /pets Path /pets
Method GET Method GET
Name | page Name
{ {
"description”: "Page number of results to return.” "description": "The type of pet to retrieve"
¥ }
Edit Clone Edit 1

For an APl with query parameters defined for other methods, you can filter your selection by specifying
the pat h of the affected resource for Path, choosing the desired HTTP method from Method, or typing
the query parameter name in Name.

For example, choose the page query parameter. Choose Edit to modify the existing documentation.
Choose Save to save the change.

To add a new documentation part for a QUERY_PARAMETER entity, choose Create Documentation
Part. Choose Query Par anet er for Type. Type a resource path (e.g., / pet s) in Path. Choose an
HTTP verb (e.g., GET) for Method. Type a pr oper ti es description in the text editor. Then choose
Save.

If necessary, repeat these steps to add a documentation part to other request query parameters.

Document a earn_paraverer ENtity

To add or edit documentation for a path parameter, go to Method Request of the method on the
resource specified by the path parameter. Expand the Request Paths section. Choose the book icon
for the path parameter to open the Documentation viewer or editor. Add or modify the properties of
the documentation part.

Alternatively, choose Documentation under the PetStore API from the main navigation pane. Choose
Pat h Par anet er for Type. Choose Edit on a path parameter from the list. Modify the content and
then choose Save.

To add documentation for a path parameter not listed, choose Create Documentation Part. Choose
Path Parameter for Type. Set a resource path in Path, choose a method from Method, and set a path
parameter name in Name. Add the documentation's properties and choose Save.

If required, repeat these steps to add or edit a documentation part to other path parameters.

299

Amazon API Gateway Developer Guide
Document a REQUEST_HEADER Entity

Document a request Heaoer Entity

To add or edit documentation for a request header, go to Method Request of the method with the
header parameter. Expand the HTTP Request Headers section. Choose the book icon for the header
to open the Documentation viewer or editor. Add or modify the properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Request Header for Type. Choose Edit on a listed request header to change the documentation.
To add documentation for an unlisted request header, choose Create Documentation Part. Choose
Request Header for Type. Specify a resource path in Path. Choose a method for Method. Type a
header name in Name. Then add and save a properti es map.

If required, repeat these steps to add or edit a documentation part to other request headers.

Document a request_soov Entity

To add or edit documentation for a request body, go to Method Request for a method. Choose the
book icon for Request Body to open the Documentation viewer and then editor. Add or modify the
properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Request Body for Type. Choose Edit on a listed request body to change the documentation. To add
documentation for an unlisted request body, choose Create Documentation Part. Choose Request
Body for Type. Set a resource path in Path. Choose an HTTP verb for Method. Then add and save a
properties map.

If required, repeat these steps to add or edit a documentation part to other request bodies.

Document a response Entity

To add or edit documentation for a response body, go to Method Response of a method. Choose the
book icon for Method Response to open the Documentation viewer and then editor. Add or modify
the properties of the documentation part.

€ Method Execution / - POST -(Method Response

Provide information about this method's response types, their headers and content types.

HTTP Status

200
© Add Response

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Response (status code) for Type. Choose Edit on a listed response of a specified HTTP status
code to change the documentation. To add documentation for an unlisted response body, choose
Create Documentation Part. Choose Response (status code) for Type. Set a resource path in Path.
Choose an HTTP verb for Method. Type an HTTP status code in Status Code. Then add and save the
documentation part properties.

If required, repeat these steps to add or edit a documentation part to other responses.

300

Amazon API Gateway Developer Guide
Document a RESPONSE_HEADER Entity

Document a response Heaoer Entity

To add or edit documentation for a response header, go to Method Response of a method. Expand
a response section of a given HTTP status. Choose the book icon for a response header under
Response Headers for St at usCode to open the Documentation viewer and then editor. Add or
modify the properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Response Header for Type. Choose Edit on a listed response header to change the documentation.
To add documentation for an unlisted response header, choose Create Documentation Part. Choose
Response Header for Type. Set a resource path in Path. Choose an HTTP verb for Method. Type an
HTTP status code in Status Code. Type the response header name in Name. Then add and save the
documentation part properties.

If required, repeat these steps to add or edit a documentation part to other response headers.

Document a response sooy Entity

To add or edit documentation for a response body, go to Method Response of a method. Expand the
response section of a given HTTP status. Choose the book icon for Response Body for St at usCode
to open the Documentation viewer and then editor. Add or modify the properties of the documentation
part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Response Body for Type. Choose Edit on a listed response body to change the documentation.
To add documentation for an unlisted response body, choose Create Documentation Part. Choose
Response Body for Type. Set a resource path in Path. Choose an HTTP verb for Method. Type an
HTTP status code in Status Code. Then add and save the documentation part properties.

If required, repeat these steps to add or edit a documentation part to other response bodies.

Document a voe. Entity

Documenting a MODEL entity involves creating and managing Docunent Par t instances for the model
and each of the model's pr oper ti es'. For example, for the Er r or model that comes with every API
by default has the following schema definition,

{
"$schemn" : "http://json-schema. org/draft-04/ schema#",
“title" : "Error Schema",
"type" : "object",
"properties" : {
"message" : { "type" : "string" }
}
}

and requires two Docurnent at i onPar t instances, one for the Model and the other for its message
property:

{
"l ocation": {
"type": "MODEL",
"name": "Error"
b,
"properties": {
"title": "Error Schema",

301

Amazon API Gateway Developer Guide
Document an AUTHORI ZER Entity

"description": "A description of the Error nodel"
}
}
and
{
"l ocation": {
"type": "MODEL",
"name": "Error.nmessage"
}s
"properties": {
"description": "An error nmessage."
}
}

When the API is exported, the Docunent at i onPar t 's properties will override the values in the original
schema.

To add or edit documentation for a model, go to Models of the API in the main navigation pane.
Choose the book icon for the name of a listed model to open the Documentation viewer and then
editor. Add or modify the properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose
Model for Type. Choose Edit on a listed model to change the documentation. To add documentation
for an unlisted model, choose Create Documentation Part. Choose Model for Type. Give a nhame to
the model in Name. Then add and save the documentation part properties.

If required, repeat these steps to add or edit a documentation part to other models.

Document an aurror zer Entity

To add or edit documentation for an authorizer, go to Authorizers for the API in the main navigation
pane. Choose the book icon for the listed authorizer to open the Documentation viewer and then
editor. Add or modify the properties of the documentation part.

Alternatively, choose Documentation under the API from the main navigation pane. Then choose

Aut hori zer for Type. Choose Edit on a listed authorizer to change the documentation. To add
documentation for an unlisted authorizer, choose Create Documentation Part. Choose Authorizer for
Type. Give a hame to the authorizer in Name. Then add and save the documentation part properties.

If required, repeat these steps to add or edit a documentation part to other authorizers.

To add a documentation part for an authorizer, choose Create Documentation Part. Choose
Authorizer for Type. Specify a value for the valid | ocat i on field of Name for the authorizer.

Add and save the documentation content in the pr operti es map editor.

If required, repeat these steps to add a documentation part to another authorizer.

Document an APl Using the API Gateway REST
API

In this section, we describe how to create and maintain documentation parts of an APl using the API
Gateway REST API.

302

Amazon API Gateway Developer Guide
Document the APl Entity

Before creating and editing the documentation of an API, first create the API. In this section, we
use the PetStore APl as an example. To create an API using the APl Gateway console, follow the
instructions in Create an API Gateway API from an Example (p. 7).
Topics

¢ Document the API Entity (p. 303)

¢ Document a RESOURCE Entity (p. 304)

¢ Document a METHOD Entity (p. 307)

¢ Document a QUERY_PARAMETER Entity (p. 309)

¢ Document a PATH_PARAMETER Entity (p. 311)

¢ Document a REQUEST_BODY Entity (p. 312)

¢ Document a REQUEST_HEADER Entity (p. 313)

¢ Document a RESPONSE Entity (p. 314)

+ Document a RESPONSE_HEADER Entity (p. 314)

e Document an AUTHORIZER Entity (p. 315)

e Document a MODEL Entity (p. 317)

¢ Update Documentation Parts (p. 318)

¢ List Documentation Parts (p. 319)

Document the 1 Entity

To add documentation for an API, add a DocumentationPart resource for the API entity:

POST /restapis/restapi _id/docunentation/parts HTTP/ 1.1

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X-Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4_secret

{
"location" : {
"type" @ "API"
b,
"properties": "{\n\t\"info\": {\n\t\t\"description\" : \"Your first API

with Amazon APl Gateway.\"\n\t}\n}"
}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

"id": "s2ebxf",

"l ocation": {
"path": null,
"met hod": null,
"nane": null,
"statusCode": null,

303

http://petstore-demo-endpoint.execute-api.amazonaws.com/petstore/pets
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a RESOURCE Entity

"type": "API"
}s

"properties": "{\n\t\"info\": {\n\t\t\"description\" : \"Your first API
with Amazon APl Gateway.\"\n\t}\n}"

}

If the documentation part has already been added, a 409 Confl i ct response returns, containing the
error message of Docunent ati on part already exists for the specified |ocation:
type ' API'." In this case, you must call the documentationpart:update operation.

PATCH /rest api s/ 4wk1lk4onj 3/ docunment ati on/ parts/part_id HITP/ 1.1

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zation: AWS4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

{
"patchOperations” : [{
"op" : "replace",
"path" : "/properties",
"value" : "{\n\t\"info\": {\n\t\t\"description\" : \"Your first APl with
Amazon APl Gateway.\"\n\t}\n}"
bl
}

The successful response returns a 200 OK status code with the payload containing the updated
Docunent at i onPar t instance in the payload.

Document a resauree Entity

To add documentation for the root resource of an API, add a DocumentationPart resource targeted for
the corresponding Resource resource:

POST /restapis/restapi _id/docunentation/parts HITP/ 1.1

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access_key i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4_secret

{
"l ocation" : {
"type" : "RESOURCE',
b
"properties” : "{\n\t\"description\" : \"The PetStore root resource.
\"\n}"
}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{

304

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/documentationpart-update/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/

Amazon API Gateway Developer Guide
Document a RESOURCE Entity

"_links": {
"curies": {
"href": "http://docs. aws. amazon. conl api gat eway/ | at est/ devel oper gui de/
rest api -docunentationpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
1
"sel f": {
"href": "/restapis/4wklk4onj 3/ docunentati on/ parts/p76vqo"
}

ocurment ati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/p76vqo"
}

ocument ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/p76vqo"
}

id': "p76vqo",
"l ocation": {
"path": "/",
"met hod": null,
"nane": null,
"statusCode": null,
"type": "RESOURCE"
b,

"properties": "{\n\t\"description\" : \"The PetStore root resource.\"\n}"

When the resource path is not specified, the resource is assumed to be the root resource. You can add
"path": "/" toproperties to make the specification explicit.

To create documentation for a child resource of an API, add a DocumentationPart resource targeted
for the corresponding Resource resource:

POST /restapis/restapi _id/docunentation/parts HITP/ 1.1

Host: api gateway. regi on. amazonaws. com

Content - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4_secret

{
"location" : {
"type" : "RESOURCE",
"path" : "/pets"”
}s
"properties": "{\n\t\"description\" : \"A child resource under the root

of PetStore.\"\n}"
}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{

_links": {
"curies": {

305

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/

Amazon API Gateway Developer Guide
Document a RESOURCE Entity

"href": "http://docs. aws. amazon. conl api gat eway/ | at est/ devel oper gui de/
rest api -docunentati onpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
H
"sel f": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/qcht 86"
}

ocurment ati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/qcht 86"
}

ocument ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/qcht 86"
}

"id": "qgcht86",
"l ocation": {
"path": "/pets",
"met hod": null,
"nane": null,
"statusCode": null,
"type": "RESOURCE"
},
"properties": "{\n\t\"description\" : \"A child resource under the root of
Pet Store.\"\n}"

}

To add documentation for a child resource specified by a path parameter, add a DocumentationPart
resource targeted for the Resource resource:

POST /restapis/restapi _id/docunmentation/parts HITP/ 1.1

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

{
"l ocation" : {
"type" : "RESOURCE',
"path" : "/pets/{petld}"
I
"properties”: "{\n\t\"description\" : \"A child resource specified by the

petld path paranmeter.\"\n}"
}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{
"_links": {
"curies": {
"href": "http://docs. aws. amazon. con api gat eway/ | at est/ devel oper gui de/
rest api - docunentati onpart-{rel}.htm",
"name": "docunentationpart”,

"tenpl ated": true

306

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/resource/

Amazon API Gateway Developer Guide
Document a METHCD Entity

b,
"sel f": {

"href": "/restapis/4wklk4onj 3/ docunent ati on/ part s/ k6f pwb"
}

ocurment ati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ part s/ k6f pwb"
}

ocument ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ part s/ k6f pwb"
}

"id": "k6fpwh",

"l ocation": {
"path": "/pets/{petld}",
"met hod": null,
"nane": null,
"statusCode": null,
"type": "RESOURCE"

}
"properties": "{\n\t\"description\" : \"A child resource specified by the
petld path paraneter.\"\n}"
}
Note
The DocumentationPart instance of a RESOURCE entity cannot be inherited by any of its child
resources.

Document a w0 Entity

To add documentation for a method of an API, add a DocumentationPart resource targeted for the
corresponding Method resource:

POST /restapis/restapi _id/docunentation/parts HITP/ 1.1

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeader s=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

{
"l ocation" : {
"type" : "METHOD',
"path" : "/pets",
"met hod" : "GET"
I
"properties”: "{\n\t\"sunmary\" : \"List all pets.\"\n}"
}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

"_links": {
"curies": {
"href": "http://docs. aws. amazon. conl api gat eway/ | at est/ devel oper gui de/
rest api -docunentati onpart-{rel}.htm",

307

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method/

Amazon API Gateway Developer Guide
Document a METHOD Entity

"name": "docunentationpart”,

"tenpl ated": true
H
"sel f": {

"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/o064jbj"
}

ocurment ati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/o064jbj"

}

ocument ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/o064jbj"

}

"id": "o064jbj",

"l ocation": {
"path": "/pets",
"met hod": "GET",
"nane": null,
"statusCode": null,
"type": "METHOD'

b,

"properties": "{\n\t\"sunmary\" : \"List all pets.\"\n}"

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

"_links": {
"curies": {
"href": "http://docs. aws. amazon. conl api gat eway/ | at est/ devel oper gui de/
rest api -docunentati onpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
},
"sel f": {

"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/o064jbj"
},
"docunent ati onpart:delete": {

"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/o064jbj"
},
"docunent ati onpart: update": {

"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/o064jbj"

}

},
"id": "o064jbj",
"l ocation": {

"path": "/pets",

"met hod": "GET",

"name": null,

"statusCode": null,

"type": "METHOD'

},
"properties": "{\n\t\"sunmary\" : \"List all pets.\"\n}"

}

If the | ocat i on. met hod field is not specified in the preceding request, it is assumed to be ANY
method that is represented by a wild card * character.

308

Amazon API Gateway Developer Guide
Document a QUERY_PARAMETER Entity

To update the documentation content of a METHCOD entity, call the documentationpart:update operation,
supplying a new pr operti es map:

PATCH / r est api s/ 4wk1k4onj 3/ docunment ati on/ parts/part_id HITP/ 1.1

Host: api gateway. regi on. amazonaws. com

Content - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength; content-type;host; x-
anz-date, Signature=sigv4_secret

{
"patchOperations" : [{
"op" : "replace",
"path" : "/properties",
"value" : "{\n\t\"tags\" : [\"pets\"], \n\t\"sunmary\" : \"List all
pets.\"\n}"
bl
}

The successful response returns a 200 OK status code with the payload containing the updated
Docunent at i onPar t instance in the payload. For example:

{
"_links": {
"curies": {
"href": "http://docs. aws. amazon. con api gat eway/ | at est/ devel oper gui de/
rest api - docunentati onpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
},
"sel f": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/o064jbj"
H
"docunent ati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/o064jbj"
H
"docunent ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/o064jbj"
}
H
"id": "o064jbj",
"l ocation": {
"path": "/pets",
"met hod": "GET",
"name": null,
"statusCode": null,
"type": "METHOD'
H
"properties": "{\n\t\"tags\" : [\"pets\"], \n\t\"sunmary\" : \"List all
pets.\"\n}"
}

Document a aerv paraveter Entity

To add documentation for a request query parameter, add a DocumentationPart resource targeted for
the QUERY_PARAMETER type, with the valid fields of pat h and nane.

309

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/documentationpart-update/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a QUERY_PARAMETER Entity

PCOST /restapis/restapi _id/docunentation/parts HTTP/ 1.1

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X- Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4_secret

{
"l ocation" : {
“type" : "QUERY_PARAMETER',
"path" : "/pets",
"met hod" : "GET",
"name" : "page"
H
"properties": "{\n\t\"description\" : \"Page nunber of results to return.
\"\n}"
}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{
"_links": {
"curies": {
"href": "http://docs. aws. amazon. con api gat eway/ | at est/ devel oper gui de/
rest api -docunentationpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
H
"sel f": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/h9ht 5w
}

ocurment ati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/h9ht 5w
}

ocument ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/h9ht 5w
}

d": "hoht5w',

ocation": {

"path": "/pets",

"met hod": "GET",

"name": "page",
"statusCode": null,
"type": "QUERY_PARAMETER'

}s

"properties": "{\n\t\"description\" : \"Page nunber of results to return.
\"\n}"
}

The documentation part's pr oper ti es map of a QUERY_PARAMETER entity can be inherited by
one of its child QUERY_PARAMETER entities. For example, if you add a t r eat s resource after /
pet s/ { pet | d}, enable the GET method on/ pet s/ {petld}/treats, and expose the page
query parameter, this child query parameter inherits the Docunent at i onPart's properti es
map from the like-named query parameter of the GET / pet s method, unless you explicitly add a

310

Amazon API Gateway Developer Guide
Document a PATH_PARAMETER Entity

Docunent at i onPart resource to the page query parameter of the GET / pets/{petld}/treats
method.

Document a eatu paraveTer Entity

To add documentation for a path parameter, add a DocumentationPart resource for the
PATH_PARAMETER entity.

POST /restapis/restapi _id/docunentation/parts HITP/ 1.1

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X- Anz-Date: YYYYMVDDTttttttZ

Aut hori zation: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength;content-type;host; x-
anz-date, Signature=sigv4_secret

{
"l ocation" : {
"type" : "PATH_PARAMETER',
"path" : "/pets/{petld}",
"nmet hod" : "*",
"name" : "petld"
H
"properties": "{\n\t\"description\" : \"The id of the pet to retrieve.
\"\n}"
}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPart instance in the payload. For example:

{
"_links": {
"curies": {
"href": "http://docs. aws. amazon. con api gat eway/ | at est/ devel oper gui de/
rest api -docunentati onpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
H
"sel f": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/ckpgog"
}

ocurment ati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/ckpgog"
}

ocument ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/ckpgog"
}

id": "ckpgog",
"l ocation": {
"path": "/pets/{petld}",
"met hod": "*",
"name": "petld",
"statusCode": null,
"type": "PATH PARAMVETER'
b,

"properties": "{\n \"description\" : \"The id of the pet to retrieve\"\n}"

311

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a REQUEST_BQODY Entity

‘ }

Document a reaest ooy Entity

To add documentation for a request body, add a DocumentationPart resource for the request body.

POST /restapis/restapi _id/docunentation/parts HITP/ 1.1

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X- Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD! r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength;content-type;host; x-
anz-date, Signature=sigv4 secret

{
"l ocation" : {
"type" : "REQUEST BODY",
"path" : "/pets",
“met hod" : " POST"
1
"properties": "{\n\t\"description\" : \"A Pet object to be added to

Pet Store.\"\n}"
}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{
"_links": {
"curies": {
"href": "http://docs. aws. amazon. com api gat eway/ | at est/ devel oper gui de/
rest api - docunentati onpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
H
"sel f": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/kgnfr1"
}

ocurment ati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunentati on/ parts/kgnfr1"
}

ocument ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunentati on/ parts/kgnfr1"
}

"id": "kgnfri",
"l ocation": {
"path": "/pets",
"met hod": "POST",
"nane": null,
"statusCode": null,
"type": "REQUEST_BODY"
}s
"properties": "{\n\t\"description\" : \"A Pet object to be added to
Pet Store.\"\n}"

}

312

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a REQUEST_HEADER Entity

Document a request Heaoer Entity

To add documentation for a request header, add a DocumentationPart resource for the request
header.

POST /restapis/restapi _id/docunmentation/parts HITP/ 1.1

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access_key i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4_secret

{

"l ocation" : {
"type" : "REQUEST_HEADER',
"path" : "/pets",
"met hod" : "CGET",
"name" " X-my-token"

1

"properties”: "{\n\t\"description\" : \"A customtoken used to

aut hori zati on the nmethod invocation.\"\n}"

}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{

"_links": {
"curies": {
"href": "http://docs. aws. amazon. com api gat eway/ | at est/ devel oper gui de/
rest api - docunentati onpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
H
"sel f": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/hOnBuf"
}

ocurment ati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/hOnBuf"
}

ocument ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/hOnBuf"
}

"id": "hOnBuf",
"l ocation": {
"path": "/pets",
"met hod": "GET",
"name": "x-my-token",
"statusCode": null,
"type": "REQUEST_HEADER'
H
"properties": "{\n\t\"description\" : \"A customtoken used to
aut hori zation the nethod invocation.\"\n}"

}

313

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a RESPONSE Entity

Document a response Entity

To add documentation for a response of a status code, add a DocumentationPart resource targeted for
the corresponding MethodResponse resource.

POST /restapis/restapi _id/docunmentation/parts HITP/ 1.1

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zation: AWS4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

{
"l ocation": {
"path": "/",
"met hod": "*",
"nane": null,
"st at usCode": "200",
"type": " RESPONSE"
1
"properties”: "{\n \"description\" : \"Successful operation.\"\n}"
}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{
"_links": {
"self": {
"href": "/restapis/4wklk4onj 3/ docunentation/parts/|attew
1
"docunent ationpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunentation/parts/|attew
1
"docunent ati onpart:update”: {
"href": "/restapis/4wklk4onj 3/ docunentation/parts/|attew
}
1
"id": "lattew',
"l ocation": {
"path": "/",
"method": "*",
"nane": null,
"st at usCode": "200",
"type": " RESPONSE"
1
"properties”: "{\n \"description\" : \"Successful operation.\"\n}"
}

Document a response_ Heaner ENtity

To add documentation for a response header, add a DocumentationPart resource for the response
header.

‘ POST /restapis/restapi _id/docunentation/parts HITP/ 1.1

314

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/method-response/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document an AUTHORI ZER Entity

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X-Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

"l ocation": {
"path": "/",
"nmet hod": "GET",
"nane": "Content-Type",
"statusCode": "200",
"type": "RESPONSE_HEADER'
},
"properties": "{\n \"description\" : \"Media type of request\"\n}"

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{

"_links": {
"curies": {
"href": "http://docs. aws. amazon. com api gat eway/ | at est/ devel oper gui de/
restapi -docunentationpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
1
"self": {
"href": "/restapis/4wklk4onj 3/ docunentation/ parts/fev7j7"
}
"docunentati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunentation/ parts/fev7j7"
}
"docunent ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunentation/ parts/fev7j7"

}

1
"id": "fev7j 7",
"location": {
"path": "/",
"met hod": "GET",
"name": "Content-Type",
"statusCode": "200",
"type": "RESPONSE_HEADER'
1
"properties": "{\n \"description\" : \"Media type of request\"\n}"

The documentation of this Cont ent - Type response header is the default documentation for the
Cont ent - Type headers of any responses of the API.

Document an aurror zer Entity

To add documentation for an API authorizer, add a DocumentationPart resource targeted for the
specified authorizer.

‘ POST /restapis/restapi _id/docunentation/parts HITP/ 1.1

315

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document an AUTHORI ZER Entity

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X-Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

{
"l ocation" : {
"type" : "AUTHORI ZER',
"nane" : "nyAuthorizer"
}s
"properties": "{\n\t\"description\" : \"Authorizes invocations of

configured nethods.\"\n}"

}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{
" links": {
"curies": {
"href": "http://docs. aws. amazon. cont api gat eway/ | at est/ devel oper gui de/
rest api - docunentati onpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
},
"sel f": {
"href": "/restapi s/ 4wklk4onj 3/ docunent ati on/ parts/ pw3gw3d"
}

"docunent ati onpart:delete": {

"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/ pw3qw3d"
}s
"docunent ati onpart: update": {

"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/ pw3qw3d"

}

},

"id": "pw3gws3",

"l ocation": {
"path": null,
"met hod": null,
"name": "nyAuthorizer",
"statusCode": null,
"type": "AUTHORI ZER'

H

"properties": "{\n\t\"description\" : \"Authorizes invocations of

configured nethods.\"\n}"

}

Note
The DocumentationPart instance of an AUTHORI ZER entity cannot be inherited by any of its
child resources.

316

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Document a MODEL Entity

Document a voee Entity

Documenting a MODEL entity involves creating and managing Docunent Par t instances for the model
and each of the model's pr operti es'. For example, for the Er r or model that comes with every API
by default has the following schema definition,

{
"$schemn" : "http://json-schems. org/draft-04/schema#",
"title" : "Error Schema",
"type" : "object",
"properties" : {
"message" : { "type" : "string" }
}
}

and requires two Docunent at i onPar t instances, one for the Model and the other for its nessage
property:

{
"l ocation": {
"type": "MODEL",
"nanme": "Error"
b,
"properties": {
"title": "BError Schema",
"description": "A description of the Error nodel”
}
}
and
{
"l ocation": {
"type": "MODEL",
"nanme": "Error.nmessage"
b,
"properties": {
"description": "An error nmessage."
}
}

When the API is exported, the Docunent at i onPar t 's properties will override the values in the original
schema.

To add documentation for an APl model, add a DocumentationPart resource targeted for the specified
model.

POST /restapis/restapi _id/docunentation/parts HITP/ 1.1

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X-Anz-Date: YYYYMVDDTttttttZ

Aut hori zation: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

{

317

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
Update Documentation Parts

"l ocation" : {
"type" : "MODEL",
"name" : " Pet"
}s
"properties": "{\n\t\"description\" : \"Data structure of a Pet object.
\ll\n}ll

}

If successful, the operation returns a 201 Cr eat ed response containing the newly created
Docunent at i onPar t instance in the payload. For example:

{

"_links": {
"curies": {
"href": "http://docs. aws. amazon. com api gat eway/ | at est/ devel oper gui de/
restapi -docunentati onpart-{rel}.htm",
"name": "docunentationpart”,
"tenpl ated": true
H
"sel f": {
"href": "/restapis/4wklk4onj 3/ docunentati on/ parts/|kn4uq"
H
"docunentati onpart:delete": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/| kn4uq"
H
"docunent ati onpart: update": {
"href": "/restapis/4wklk4onj 3/ docunent ati on/ parts/|kn4uq"

}

d": "lknduq",
ocation": {

"path": null,

"met hod": null,
"name": "Pet",
"statusCode": null,
"type": "MODEL"

}s

"properties": "{\n\t\"description\" : \"Data structure of a Pet object.
\"\n}"
}

Repeat the same step to create a DocumentationPart instance for any of the model's properties.

Note
The DocumentationPart instance of a MODEL entity cannot be inherited by any of its child
resources.

Update Documentation Parts

To update the documentation parts of any type of API entities, submit a PATCH request on a
DocumentationPart instance of a specified part identifier to replace the existing pr operti es map with
a new one.

PATCH /rest api s/ 4wk1lk4onj 3/ docunentati on/ parts/part_id HITP/ 1.1
Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X-Anz-Date: YYYYMVDDTttttttZ

318

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/

Amazon API Gateway Developer Guide
List Documentation Parts

Aut hori zation: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

"patchOperations" : [{

"op" : "replace",
"path" : "RESOURCE_PATH",
"val ue" : "NEW.properties_VALUE _AS_JSON_STRI NG'

H
}

The successful response returns a 200 K status code with the payload containing the updated
Docunent at i onPart instance in the payload.

You can update multiple documentation parts in a single PATCH request.

List Documentation Parts

To list the documentation parts of any type of API entities, submit a GET request on a
DocumentationParts collection.

GET /restapis/restapi _id/docunentation/parts HTTP/ 1.1

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X- Ane-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength;content-type;host; x-
ane-date, Signature=sigv4_secret

The successful response returns a 200 CK status code with the payload containing the available
Docunent at i onPart instances in the payload.

Publish APl Documentation

To publish the documentation for an API, create, update, or get a documentation snapshot, and then
associate the documentation snapshot with an API stage. When creating a documentation snapshot,
you can also associate it with an API stage at the same time.

Topics
¢ Create a Documentation Snapshot and Associate it with an API Stage (p. 319)
¢ Create a Documentation Snapshot (p. 320)
¢ Update a Documentation Snapshot (p. 320)
¢ Get a Documentation Snapshot (p. 321)
¢ Associate a Documentation Snapshot with an API Stage (p. 321)
* Download a Documentation Snapshot Associated with a Stage (p. 322)

Create a Documentation Snapshot and Associate it
with an API Stage

To create a snapshot of an API's documentation parts and associate it with an API stage at the same
time, submit the following POST request:

319

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-parts/

Amazon API Gateway Developer Guide
Create a Documentation Snapshot

POST /restapis/restapi _id/docunentation/versions HTTP/ 1.1

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X-Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4_secret

{

"docunent ati onVersion" : "1.0.0",

"stageNane": "prod",

"description" : "My APl Docunentation v1.0.0"
}

If successful, the operation returns a 200 OK response, containing the newly created
Docunent at i onVer si on instance as the payload.

Alternatively, you can create a documentation snapshot without associating it with an API stage first
and then call restapi:update to associate the snapshot with a specified API stage. You can also update
or query an existing documentation snapshot and then update its stage association. We show the
steps in the next four sections.

Create a Documentation Snapshot

To create a snapshot of an API's documentation parts, create a new DocumentationVersion resource
and add it to the DocumentationVersions collection of the API:

POST /restapis/restapi _id/ docunentation/versions HITP/ 1.1

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X- Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength;content-type;host; x-
anz-date, Signature=sigv4 _secret

{

"docunent ati onVersion" : "1.0.0",
"description" : "My APl Docunentation v1.0.0"

If successful, the operation returns a 200 OK response, containing the newly created
Docunent at i onVer si on instance as the payload.

Update a Documentation Snapshot

You can only update a documentation snapshot by modifying the descr i pti on property of the
corresponding DocumentationVersion resource. The following example shows how to update the
description of the documentation snapshot as identified by its version identifier, ver si on, e.g., 1. 0. 0.

PATCH /restapi s/restapi _i d/ docunentati on/versions/version HITP/ 1.1

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X-Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4 _secret

320

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-update/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-versions/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version/

Amazon API Gateway Developer Guide
Get a Documentation Snapshot

{
"patchOperations": [{
"op": "replace",
"path": "/description",
"value": "My APl for testing purposes.”
}H
}

If successful, the operation returns a 200 OK response, containing the updated
Docunent at i onVer si on instance as the payload.

Get a Documentation Snapshot

To get a documentation snapshot, submit a GET request against the specified DocumentationVersion
resource. The following example shows how to get a documentation snapshot of a given version
identifier, 1.0.0.

GET /restapi s/ <restapi _i d> docunentation/versions/1.0.0 HTTP/ 1.1

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zation: AWS4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

Associate a Documentation Snapshot with an API
Stage

To publish the APl documentation, associate a documentation snapshot with an API stage. You must
have already created an API stage before associating the documentation version with the stage.

To associate a documentation snapshot with an API stage using the API Gateway REST
API, call the stage:update operation to set the desired documentation version on the
st age. docunent at i onVer si on property:

PATCH /restapi s/ RESTAPI _| DJ st ages/ STAGE_NAMVE

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X- Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-I|ength;content-type;host; x-
anz-date, Signature=sigv4 secret

{
"patchOperations": [{
"op": "replace",
"path": "/documentationVersion",
"val ue": "VERSI ON_| DENTI FI ER"
}H
}

The following procedure describes how to publish a documentation version.

321

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/

Amazon API Gateway Developer Guide
Download a Documentation
Snapshot Associated with a Stage

To publish a documentation version using the APl Gateway console

Choose Documentation for the API from the main navigation pane in the APl Gateway console.
Choose Publish Documentation in the Documentation pane.
Set up the publication:

a. Choose an available name for Stage.

b. Type a version identifier, e.g., 1. 0. 0, in Version.

c. Optionally, provide a description about the publication in Description.
4. Choose Publish.

You can now proceed to download the published documentation by exporting the documentation to an
external Swagger file.

Download a Documentation Snapshot Associated
with a Stage

After a version of the documentation parts is associated with a stage, you can export the
documentation parts together with the API entity definitions, to an external file, using the APl Gateway
console, the APl Gateway REST API, one of its SDKs, or the AWS CLI for APl Gateway. The process
is the same as for exporting the API. The exported file format can be JSON or YAML.

Using the API Gateway REST API, you can also explicitly set the

ext ensi on=docunent ati on, i ntegrati ons, aut hori zers query parameter to include the API
documentation parts, API integrations and authorizers in an API export. By default, documentation
parts are included, but integrations and authorizers are excluded, when you export an API. The default
output from an API export is suited for distribution of the documentation.

To export the APl documentation in an external JSON Swagger file using the APl Gateway REST API,
submit the following GET request:

GET /restapis/restapi _id/stages/stage_namne/ exports/swagger?

ext ensi ons=docunentation HTTP/ 1.1

Accept: application/json

Host: api gat eway. r egi on. amazonaws. com

Cont ent - Type: application/json

X-Anez-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access_key i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4_secret

Here, the x- amazon- api gat eway- docunent at i on object contains the documentation parts

and the API entity definitions contains the documentation properties supported by Swagger. The
output does not include details of integration or custom authorizers. To include both details, set

ext ensi ons=i nt egr ati ons, aut hori zers, docunent at i on. To include details of integrations but
not of authorizers, set ext ensi ons=i nt egr ati ons, docunent ati on.

You must set the Accept : appl i cati on/j son header in the request to output the result in a JSON
file. To produce the YAML output, change the request header to Accept : appl i cati on/ yamn .

As an example, we will look at an API that exposes a simple GET method on the root resource (/).
This API has four API entities defined in a Swagger definition file, one for each of the API , MODEL,
METHOD, and RESPONSE types. A documentation part has been added to each of the APl , METHOD,
and RESPONSE entities. Calling the preceding documentation-exporting command, we get the following

322

Amazon API Gateway Developer Guide
Download a Documentation
Snapshot Associated with a Stage

output, with the documentation parts listed within the x- amazon- api gat eway- docunent at i on
object as an extension to a standard Swagger file.

{
"swagger" : "2.0",
"info" : {
"description" : "api info description",
"version" : "2016-11-22T22:39: 142",
"title" : "doc",
"x-bar" : "api info x-bar"
},
"host" "rznaap68yi . execut e- api . ap- sout heast - 1. anazonaws. cont',
"basePath" : "/test",
"schenes" : ["https"],
"pat hs" : {
"It |
"get" : {
"description" : "Method description.",
"produces" : ["application/json"],
"responses” : {
"200" : {
"description" : "200 response",
"schema" : {
"$ref" : "#/definitions/Enpty"
}
}
H
"x- exanpl e" "x- Method exanpl e"
H
"x-bar" : "resource x-bar"
}
},
"definitions" : {
"Enmpty" : {
"type" : "object",
"title" : "Enpty Schema"
}
},
"x-anmazon- api gat eway-docunent ati on" : {
"version" : "1.0.0",
"createdDate" : "2016-11-22T22:41:40Z",
"docunentationParts" : [{
"l ocation" : {
"type" : "API"
H
"properties" : {
"description" : "api description”,
"foo" : "api foo",
"x-bar" : "api x-bar",
"info" : {
"description" : "api info description",
"version" : "api info version",
"foo" : "api info foo",
"x-bar" : "api info x-bar"
}
}
oA
"l ocation" : {
"type" : "METHOD',

323

Amazon API Gateway Developer Guide
Download a Documentation
Snapshot Associated with a Stage

"met hod" : " CET"
}s
"properties" : {
"description" : "Method description.",
"x- exanpl e" "x- Method exanpl e",
"foo" : "Method foo",
"info" : {
"version" : "method info version",
"description" : "method info description”,
"foo" : "method info foo"
}
}
oA
"l ocation" : {
"type" : "RESOURCE"
}s
"properties" : {
"description" : "resource description",
"foo" : "resource foo",
"x-bar" : "resource x-bar",
"info" : {
"description" : "resource info description",
"version" : "resource info version",
"foo" : "resource info foo",
"x-bar" : "resource info x-bar"
}
}
Pl
b,
"x-bar" "api Xx-bar"

For a Swagger-compliant attribute defined in the pr oper ti es map of a documentation part, API
Gateway inserts the attribute into the associated API entity definition. An attribute of x- sonet hi ng
is a standard Swagger extension. This extension gets propagated into the API entity definition. For
example, see the x- exanpl e attribute for the GET method. An attribute like f 0o is not part of the
Swagger specification and is not injected into its associated API entity definitions.

If a documentation-rendering tool (e.g., Swagger Ul) parses the API entity definitions to

extract documentation attributes, any non Swagger-compliant pr operti es attributes of a

Docunent at i onPar t ' instance are not available for the tool. However, if a documentation-rendering
tool parses the x- amazon- api gat eway- docunent at i on object to get content, or if the tool calls
restapi:documentation-parts and documenationpart:by-id to retrieve documentation parts from API
Gateway, all the documentation attributes are available for the tool to display.

To export the documentation with API entity definitions containing integration details to a JSON
Swagger file, submit the following GET request:

GET /restapis/restapi _id/stages/stage_nane/ exports/swagger?

ext ensi ons=i ntegrati ons, docunentation HTTP/ 1.1

Accept: application/json

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X- Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4 secret

324

http://swagger.io/swagger-ui/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-documentation-parts/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/documentationpart-by-id/

Amazon API Gateway Developer Guide
Import APl Documentation

To export the documentation with API entity definitions containing details of integrations and
authorizers to a YAML Swagger file, submit the following GET request:

GET /restapis/restapi _id/stages/stage_nane/ exports/swagger?

ext ensi ons=i ntegrations, aut hori zers, docunentati on HTTP/ 1.1

Accept: application/yam

Host: api gat eway. r egi on. anazonaws. com

Cont ent - Type: application/json

X- Anz-Date: YYYYMVDDTttttttZ

Aut hori zati on: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_request, Si gnedHeaders=content-1|ength; content-type; host; x-
anz-date, Signature=sigv4_secret

To use the API Gateway console to export and download the published documentation of an API,
follow the instructions in Export API Using the API Gateway Console (p. 147).

Import APl Documentation

As with importing API entity definitions, you can import documentation parts from an external Swagger
file into an API in APl Gateway. You specify the to-be-imported documentation parts within the x-
amazon-apigateway-documentation Object (p. 151) extension in a valid Swagger 2.0 definition file.
Importing documentation does not alter the existing API entity definitions.

You have an option to merge the newly specified documentation parts into existing documentation
parts in APl Gateway or to overwrite the existing documentation parts. In the MERGE mode, a new
documentation part defined in the Swagger file is added to the Docunent at i onPar t s collection

of the API. If an imported Docunent at i onPart already exists, an imported attribute replaces the
existing one if the two are different. Other existing documentation attributes remain unaffected. In the
OVERVWRI TE mode, the entire Docunment at i onPar t s collection is replaced according to the imported
Swagger definition file.

Importing Documentation Parts Using the API
Gateway REST API

To import APl documentation using the API Gateway REST API, call the documentationpart:import
operation. The following example shows how to overwrite existing documentation parts of an APl with a
single GET / method, returning a 200 OK response when successful.

PUT /restapi s/ <restapi _i d> docunentati on/

part s&ode=overw it e&f ai | onwar ni ngs=true

Host: api gat eway. regi on. anazonaws. com

Cont ent - Type: application/json

X- Anz-Date: YYYYMVDDTttttttZ

Aut hori zation: AWB4- HVAC- SHA256 Credenti al =access_key_i d/ YYYYMVDD/ r egi on/
api gat eway/ aws4_r equest, Si gnedHeaders=content-1|ength; content-type; host; x-
ane-date, Signature=sigv4_secret

{

"swagger": "2.0",

"info": {
"description": "description",
"version": "1",
"title": "doc"

b,

"host": "",

325

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/documentationpart-import/

Amazon API Gateway Developer Guide
Importing Documentation Parts
Using the API Gateway REST API

"basePath": "/",

"schenes": |
"https"

]

"paths": {
A
"get": {
"description": "Method description.",
"produces": |
"application/json"
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"

}

efinitions": {
"Enpty": {
"type": "object",
"title": "Enpty Schema"
}
1
" X-anmazon- api gat eway-docunent ati on": {
"version": "1.0.3",
"docunentati onParts": [
{
"location": {
"type": "API"
1
"properties": {
"description":
"info": {
"description": "api info description 4",
"version": "api info version 3"

api description",

"l ocation": {
"type": "METHOD',
"met hod": "CET"
}s
"properties": {
"description": "Method description."

}

"l ocation": {
"fype": "MODEL",
"name”: " Enpty"

}s

"properties": {
"title": "Enpty Schenmmn"

326

Amazon API Gateway Developer Guide
Importing Documentation Parts
Using the API Gateway Console

}
3
{
"l ocation": {
"type": "RESPONSE',
"met hod": "CET",
"statusCode": "200"
H
"properties": {
"description": "200 response"
}
}
]
}
}

When successful, this request returns a 200 OK response containing the imported
Docunent at i onPart | d in the payload.

{

"ids": |
"kg3nt h",
"796rtf",
"zhek4p",
"5uknBs"

]

}

In addition, you can also call restapi:import or restapi:put, supplying the documentation parts in the x-

anmazon- api gat eway- docunent at i on object as part of the input Swagger file of the API definition.

To exclude the documentation parts from the API import, seti gnor e=docunent at i on in the request
query parameters.

Importing Documentation Parts Using the API
Gateway Console

The following instructions describe how to import documentation parts.
To use the console to import documentation parts of an APl from an external file

1. Choose Documentation for the API from the main navigation pane on the console.
2. Choose Import Documentation in the Documentation pane.

3. Choose Select Swagger File to load a file from a drive, or copy and paste a file contents into the
file view. For an example, see the payload of the example request in Importing Documentation
Parts Using the APl Gateway REST API (p. 325).

4. Optionally, choose Fail on warnings or Ignore warnings, and choose Mer ge or Over wr i t e from
Import mode.

5. Choose Import.

Control Access to APl Documentation

If you have a dedicated documentation team to write and edit your API documentation, you can
configure separate access permissions for your developers (for API development) and for your writers

327

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference//link-relation/restapi-put/

Amazon API Gateway Developer Guide
Control Access to API Documentation

or editors (for content development). This is especially appropriate when a third-party vendor is
involved in creating the documentation for you.

To grant your documentation team the access to create, update, and publish your API documentation,
you can assign the documentation team an IAM role with the following IAM policy, where account _i d
is the AWS account ID of your documentation team.

{
"Version": "2012-10-17",

"Statenent": [

{
"Sid": "Stm DocPart sAddEdit Vi ewDel ete",

"Effect": "Alow',
"Action": [
"api gat eway: GET",
"api gat enway: PUT",
"api gat eway: POST",
"api gat eway: PATCH",
"api gat eway: DELETE"
]

Resource": [
"arn: aws: api gat eway: : account _i d: /rest api s/ */docunment ati on/ *"
]
}
]
}

For information on setting permissions to access API Gateway resources, see Control Access to API
Gateway with IAM Policies (p. 160).

328

Amazon API Gateway Developer Guide
Prerequisites

Calling a Deployed APl In Amazon
APl Gateway

Calling a deployed API involves submitting requests to the execut e- api component of API Gateway.
The request URL is the Invoke URL generated by API Gateway when the API is successfully
deployed. You can obtain this invocation URL from the API Gateway console or you can construct it
yourself according to the following format:

https://{restapi _id}.execute-api.{region}.anmazonaws. conl {st age_nane}/

If your API permits anonymous access, you can use any web browser to invoke any GET-method calls
by pasting the Invoke URL to the browser's address bar. For other methods or any authentication-
required calls, the invocation will be more involved because you must specify a payload or sign the
requests. You can handle these in a script behind an HTML page or in a client app using one of the
AWS SDKs.

For testing, you can use the APl Gateway console to call an API using the API Gateway's Testlnvoke
feature, which bypasses the Invoke URL and allows API testing before the API is deployed.
Alternatively, you can use the Postman Chrome extension to test a successfully deployed API, without
writing a script or a client.

Topics
¢ Prerequisites (p. 329)
¢ Obtain an API's Invoke URL in the APl Gateway Console (p. 330)
¢ Test a Method Using the API Gateway Console (p. 330)
¢ Use Postman to Test an API (p. 331)

Prerequisites

¢ You must have already deployed the APl in API Gateway. Follow the instructions in Deploying an
API (p. 230).

329

http://www.getpostman.com/

Amazon API Gateway Developer Guide
Obtain an API's Invoke URL in the API Gateway Console

Obtain an API's Invoke URL in the APIl Gateway
Console

Test

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
In the box that contains the name of the APl you want to call, choose Stages.
In the Stages pane, choose the name of the stage.

The URL displayed next to Invoke URL should look something like this, where ny- api - i d is the
identifier APl Gateway assigns to your API, r egi on-i d is the AWS region identifier (for example,
us- east - 1) where you deployed your API, and st age- nane is the name of the stage for the API
you want to call:

PN PE

https://ny-api-id. execute-api.region-id. amazonaws. com st age- nane/
{resour cePat h}

Depending on the method type you want to call and the tool you want to use, copy this URL to your
clipboard, and then paste and modify it to call the API from a web browser, a web debugging proxy tool
or the cURL command-line tool, or from your own API.

If you are not familiar with which method to call or the format you must use to call it, browse the list of
available methods by following the instructions in View a Methods List (p. 228).

To call the method directly from the API Gateway console, see Test a Method Using the
Console (p. 330).

For more options, contact the APl owner.

a Method Using the API Gateway Console

Use the API Gateway console to test a method.

Topics
¢ Prerequisites (p. 330)
¢ Test a Method with the API Gateway Console (p. 330)

Prerequisites

¢ You must specify the settings for the methods you want to test. Follow the instructions in Set up
Method and Integration (p. 71).

Test a Method with the APl Gateway Console

Important

Testing methods with the API Gateway console may result in changes to resources that
cannot be undone. Testing a method with the API Gateway console is the same as calling
the method outside of the API Gateway console. For example, if you use the APl Gateway
console to call a method that deletes an API's resources, if the method call is successful, the
API's resources will be deleted.

1. Signin to the API Gateway console at https://console.aws.amazon.com/apigateway.

330

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Use Postman to Test an API

In the box that contains the name of the API for the method, choose Resources.
In the Resources pane, choose the method you want to test.

In the Method Execution pane, in the Client box, choose TEST. Type values in any of the
displayed boxes (such as Query Strings, Headers, and Request Body).

For additional options you may need to specify, contact the APl owner.
Choose Test. The following information will be displayed:

¢ Request is the resource's path that was called for the method.
e Status is the response's HTTP status code.
¢ Latency is the time between the receipt of the request from the caller and the returned
response.
* Response Body is the HTTP response body.
* Response Headers are the HTTP response headers.
Tip
Depending on the mapping, the HTTP status code, response body, and response

headers may be different from those sent from the Lambda function, HTTP proxy, or
AWS service proxy.

* Logs are the simulated Amazon CloudWatch Logs entries that would have been written if this
method were called outside of the API Gateway console.

Note
Although the CloudWatch Logs entries are simulated, the results of the method call are
real.

Use Postman to Test an API

Use the Postman Chrome extension is a convenient tool to test an APl in API Gateway.

1.
2.

Launch Postman.

Enter the endpoint URL of a request in the address bar and choose the appropriate HTTP method
from the drop-down list to the left of the address bar.

If required, choose the Authorization tab. Choose AWS Signature for the authorization Type.
Enter your AWS IAM user's access key ID in the AccessKey input field. Enter your IAM user
secret key in SecretKey. Specify an appropriate AWS region that matches the region specified in
the invocation URL. Enter execut e- api in Service Name.

Choose the Headers tab. Optionally, delete any existing headers. This can clear any stale settings
that may cause errors. Add any required custom headers. For example, if API keys are enabled,
you can set the x- api - key: { api _key} name/value pair here.

Choose Send to submit the request and receive a response.

For an example of using Postman, see Call an AP| with Custom authorization (p. 180).

331

http://www.getpostman.com

Amazon API Gateway Developer Guide
Log APl Management Calls with CloudTrail

Monitoring and Troubleshooting in
API| Gateway

Topics
¢ Log APl management calls to Amazon API Gateway Using AWS CloudTrail (p. 332)
« Monitor API execution with Amazon CloudWatch (p. 334)

For API execution, APl Gateway automatically reports to Amazon CloudWatch your API's execution
metrics on the API- and stage-levels. The metrics include statistics about caching, latency and
detected errors. You can also opt in for APl Gateway to send to CloudWatch method-level metrics,
using the API Gateway console (p. 233) or calling the API Gateway REST API or one of its SDKSs.
Based on these metrics, you can set CloudWatch custom alarms for troubleshooting any performance
issues of your APIs. For more information about CloudWatch, see the Amazon CloudWatch User
Guide.

For APl management using APl Gateway REST API, you can create AWS CloudTrail trails to log
events involved in the API Gateway REST API calls. You can use the logs to troubleshoot API creation,
deployment and updates. You can also use Amazon CloudWatch to monitor the CloudTrail logs. To
learn more about CloudTrail, see the AWS CloudTrail User Guide.

Note

CloudTrail logs API Gateway REST API calls an API developer or owner made against the

api gat eway component, whereas CloudWatch logs API calls an API customer or client made
against the execut e- api component of API Gateway.

Log APl management calls to Amazon API
Gateway Using AWS CloudTrall

You can use AWS CloudTrail to capture APl Gateway REST API calls in your AWS account and
deliver the log files to an Amazon S3 bucket you specify. Examples of these API calls include creating
a new API, resource, or method in APl Gateway. CloudTrail captures such API calls from the API
Gateway console or from the API Gateway APIs directly. Using the information collected by CloudTrall,
you can determine which request was made to AP| Gateway, the source IP address from which

the request was made, who made the request, when it was made, and so on. To learn more about
CloudTrail, including how to configure and enable it, see the AWS CloudTrail User Guide.

332

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon API Gateway Developer Guide
API Gateway Information in CloudTrail

API Gateway Information in CloudTralil

When CloudTrail logging is enabled in your AWS account, API calls made to APl Gateway actions are
tracked in log files. API Gateway records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

All of the API Gateway actions are logged and documented in the API Gateway REST API (p. 418).
For example, calls to create a new API, resource, or method in APl Gateway generate entries in
CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userldentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon
S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by
using Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
S0 you can take action quickly. For more information, see Configuring Amazon SNS Notifications.

You can also aggregate API Gateway log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a
Single Amazon S3 Bucket.

Understanding APl Gateway Log File Entries

CloudTrail log files can contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the
public API calls.

The following example shows a CloudTrail log entry that demonstrates the APl Gateway get resource
action:

Records: [
{
event Version: "1.03",
userldentity: {
type: "Root",
principalld: "AKI Al 44QH8DHBEXAMPLE" ,
arn: "arn:aws:iam:123456789012: r oot ",
account | d: "123456789012",
accessKeyl d: " AKI Al OSFODNN7EXAMPLE" ,
sessionContext: {
attributes: {
nf aAut henticated: "false",
creationDate: "2015-06-16T23: 37: 582"

}
},
event Ti me: "2015-06-17T00: 47: 282",
event Source: "api gateway. amazonaws. cont',
event Nanme: " CGet Resource",

333

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

Amazon API Gateway Developer Guide
Monitor API execution with Amazon CloudWatch

awsRegi on: "us-east-1",
sour cel PAddress: "203.0.113. 11",
user Agent: "exanpl e-user-agent-string",
request Paraneters: {
rest Api I d: " 3r bEXAMPLE",
resourcel d: "5tfEXAMPLE",
tenpl ate: false
H
responseEl enents: null,
request | D "6d9c4bf c- 148a- 11e5- 81b6- 7577cEXAMPLE",
event| D: "4d293154- al5b- 4c33-9e0a- f f 5eeEXAMPLE",
readOnly: true,
event Type: "AwsApi Cal | ",
reci pi ent Accountld: "123456789012"

addi tional entries ...

Monitor APl execution with Amazon CloudWatch

You can monitor API execution using CloudWatch, which collects and processes raw data from

API Gateway into readable, near real-time metrics. These statistics are recorded for a period of

two weeks, so that you can access historical information and gain a better perspective on how your
web application or service is performing. By default, APl Gateway metric data is automatically sent

to CloudWatch in one-minute periods. For more information, see What Are Amazon CloudWatch,
Amazon CloudWatch Events, and Amazon CloudWatch Logs? in the Amazon CloudWatch User Guide.

The metrics reported by API Gateway provide information that you can analyze in different ways. The
list below shows some common uses for the metrics. These are suggestions to get you started, not a
comprehensive list.

« Monitor the IntegrationLatency metrics to measure the responsiveness of the back end.
* Monitor the Latency metrics to measure the overall responsiveness of your API calls.

* Monitor the CacheHitCount and CacheMissCount metrics to optimize cache capacities to achieve
a desired performance.

Topics
¢« Amazon API Gateway Dimensions and Metrics (p. 334)
¢ View CloudWatch Metrics with the APl Dashboard in API Gateway (p. 336)
¢ View API Gateway Metrics in the CloudWatch Console (p. 336)
¢ Monitoring Tools in AWS (p. 337)

Amazon AP| Gateway Dimensions and Metrics

The metrics and dimensions that API Gateway sends to Amazon CloudWatch are listed below. For
more information, see Monitor API Execution with Amazon CloudWatch in the Amazon API Gateway
Developer Guide.

API| Gateway Metrics

Amazon API Gateway sends metric data to CloudWatch every minute.

334

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/monitoring-cloudwatch.html

Amazon API Gateway Developer Guide
Amazon API Gateway Dimensions and Metrics

The AWS/ Api Gat eway namespace includes the following metrics.

Metric Description

AXXError The number of client-side errors captured
Unit: count

5XXError The number of server-side errors captured.
Unit: count

CacheHitCount The number of requests served from the API cache.
Unit: count

CacheMissCount The number of requests served from the back end

when API caching is enabled.

Unit: count
Count The number of calls to API methods.
Unit: count
IntegrationLatency The time between when AP| Gateway relays a request

to the back end and when it receives a response from
the back end.

Unit: millisecond

Latency The time between when AP| Gateway receives a
request from a client and when it returns a response to
the client.

Unit: millisecond

Dimensions for Metrics

You can use the dimensions in the following table to filter APl Gateway metrics.

Dimension Description

ApiName Filters APl Gateway metrics for an API of the specified
API name.

ApiName, Method, Resource, Stage Filters APl Gateway metrics for an APl method of the

specified API, stage, resource, and method.

API Gateway will not send such metrics unless

you have explicitly enabled detailed CloudWatch
metrics. You can do this in the console by selecting
Enable CloudWatch Metrics under a stage Settings
tab. Alternatively, you can call the stage:update
action of the AP| Gateway REST API to update the
metri csEnabl ed property to t r ue.

Enabling such metrics will incur additional charges to
your account. For pricing information, see Amazon
CloudWatch Pricing.

335

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/stage-update/
http://aws.amazon.com/cloudwatch/pricing/
http://aws.amazon.com/cloudwatch/pricing/

Amazon API Gateway Developer Guide
View Metrics with the APl Dashboard

Dimension Description

ApiName, Stage Filters APl Gateway metrics for an API stage of the
specified API and stage.

View CloudWatch Metrics with the APl Dashboard in
APl Gateway

You can use the API dashboard in the APl Gateway Console to display the CloudWatch metrics of your
deployed API in API Gateway. These are shown as a summary of API activity over time.

Topics
¢ Prerequisites (p. 336)
« Examine API activities in the Dashboard (p. 336)

Prerequisites

1. You must have an API created in APl Gateway. Follow the instructions in Creating an API (p. 70).

2. You must have the API deployed at least once. Follow the instructions in Deploying an
API (p. 230).

3. To get CloudWatch metrics for individual methods, you must have CloudWatch Logs enabled
for those methods in a given stage. The process is prescribed in Set Up a Stage (p. 233). Your
account will be charged for accessing method-level logs, but not for accessing API- or stage-level
logs.

Examine API activities in the Dashboard

Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.
Choose the name of the API.

Under the selected API, choose Dashboard.

To display a summary of API activity over time, for Stage, choose the desired stage.
Use From and To to enter the date range.

Refresh, if needed, and view individual metrics displayed in separate graphs titled API
Calls, Integration Latency, Latency, 4xx Error and 5xx Error. The CacheHitCount and
CacheMissCount graphs will be displayed only if API caching has been enabled.
Tip
To examine method-level CloudWatch metrics, make sure that you have enabled
CloudWatch Logs on a method level. For more information about how to set up
method-level logging, see Set Up an API Deployment Stage with the APl Gateway
Console (p. 233).

o0k wbdRE

View API| Gateway Metrics in the CloudWatch
Console

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations
within each namespace.

336

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide
Monitoring Tools in AWS

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the region. From the navigation bar, select the region where your AWS
resources reside. For more information, see Regions and Endpoints.

3. Inthe navigation pane, choose Metrics.

4. Inthe CloudWatch Metrics by Category pane, under the metrics category for API Gateway,
select a metrics category, and then in the upper pane, scroll down to view the full list of metrics.

To view metrics using the AWS CLI

¢ Atacommand prompt, use the following command:

aws cloudwatch list-nmetrics --nanmespace "AWS Api Gat eway"

Monitoring Tools in AWS

AWS provides various tools that you can use to monitor APl Gateway. You can configure some of
these tools to do the monitoring for you automatically, while other tools require manual intervention. We
recommend that you automate monitoring tasks as much as possible.

Automated Monitoring Tools in AWS

You can use the following automated monitoring tools to watch APl Gateway and report when
something is wrong:

¢« Amazon CloudWatch Alarms — Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over a
number of time periods. The action is a naotification sent to an Amazon Simple Notification Service
(Amazon SNS) topic or Auto Scaling policy. CloudWatch alarms do not invoke actions simply
because they are in a particular state; the state must have changed and been maintained for
a specified number of periods. For more information, see Monitor APl execution with Amazon
CloudWatch (p. 334).

¢« Amazon CloudWatch Logs — Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Monitoring Log Files in the Amazon CloudWatch User
Guide.

« Amazon CloudWatch Events — Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see Using Events in the Amazon CloudWatch User Guide.

¢« AWS CloudTrail Log Monitoring — Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information, see
Working with CloudTralil Log Files in the AWS CloudTrail User Guide.

Manual Monitoring Tools

Another important part of monitoring APl Gateway involves manually monitoring those items that the
CloudWatch alarms don't cover. The APl Gateway, CloudWatch, and other AWS console dashboards
provide an at-a-glance view of the state of your AWS environment. We recommend that you also check
the log files on API execution.

« API Gateway dashboard shows the following statistics for a given API stage during a specified period
of time:

* API Calls

337

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

Amazon API Gateway Developer Guide
Monitoring Tools in AWS

» Cache Hit, only when API caching is enabled.
» Cache Miss, only when API caching is enabled.
* Latency
* Integration Latency
* 4XX Error
e 5XX Error
¢ The CloudWatch home page shows:
 Current alarms and status
» Graphs of alarms and resources
 Service health status

In addition, you can use CloudWatch to do the following:

 Create customized dashboards to monitor the services you care about
» Graph metric data to troubleshoot issues and discover trends

» Search and browse all your AWS resource metrics

» Create and edit alarms to be notified of problems

Creating CloudWatch Alarms to Monitor APl Gateway

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period you specify, and performs one or more
actions based on the value of the metric relative to a given threshold over a number of time periods.
The action is a notification sent to an Amazon SNS topic or Auto Scaling policy. Alarms invoke actions
for sustained state changes only. CloudWatch alarms do not invoke actions simply because they are in
a particular state; the state must have changed and been maintained for a specified number of periods.

338

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon API Gateway Developer Guide
Initialize AWS Marketplace Integration with APl Gateway

Selling an AP| Gateway API through
AWS Marketplace

After you build, test, and deploy your API, you can package it in an APl Gateway usage plan and sell
the plan as a Software as a Service (SaaS) product through AWS Marketplace. API buyers subscribing
to your product offering are billed by AWS Marketplace based on the number of requests made to the
usage plan (p. 212).

To sell your APl on AWS Marketplace, you must set up the sales channel to integrate AWS
Marketplace with APl Gateway. Generally speaking, this involves listing your product on AWS
Marketplace, setting up an IAM role with appropriate policies to allow API Gateway to send usage
metrics to AWS Marketplace, associating an AWS Marketplace product with an API Gateway usage
plan, and associating an AWS Marketplace buyer with an APl Gateway API key. Details are discussed
in the following sections.

To enable your customers to buy your product on AWS Marketplace, you must register your developer
portal (an external application) with AWS Marketplace. The developer portal must handle the
subscription requests that are redirected from the AWS Marketplace console.

For more information about selling your API as a SaaS product on AWS Marketplace, see AWS
Marketplace SaaS Subscriptions - Seller Integration Guide.

Topics
« Initialize AWS Marketplace Integration with APl Gateway (p. 339)
¢ Handle Customer Subscription to Usage Plans (p. 341)

Initialize AWS Marketplace Integration with API
Gateway

The following tasks are for one-time initialization of AWS Marketplace integration with APl Gateway,
which enables you to sell your API as a SaaS product.

List a Product on AWS Marketplace

To list your usage plan as a SaaS product, submit a product load form through AWS Marketplace. The
product must contain a dimension named api gat eway of the r equest s type. This dimension defines
the price-per-request and is used by API Gateway to meter requests to your API.

339

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan/
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
http://aws.amazon.com/marketplace/management/tour/

Amazon API Gateway Developer Guide
Create the Metering Role

Create the Metering Role

Create an IAM role named Api Gat eway Mar ket pl aceMet er i ngRol e with the following execution
policy and trust policy. This role allows APl Gateway to send usage metrics to AWS Marketplace on
your behalf.

Execution Policy of the Metering Role

{
"Version": "2012-10-17",
"Statenment": [
{
"Action": [
"aws- mar ket pl ace: Bat chMet er Usage",
"aws- mar ket pl ace: Resol veCust oner "
I
"Resource": "*",
"Effect": "Al ow'
}
]
}

Trusted Relationship Policy of the Metering Role

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Allow',
"Principal": {
"Service": "api gateway. anazonaws. conf
}s
"Action": "sts:AssuneRol e"
}
]
}

Associate Usage Plan with AWS Marketplace
Product

When you list a product on AWS Marketplace, you receive an AWS Marketplace product code. To
integrate API Gateway with AWS Marketplace, associate your usage plan with the AWS Marketplace
product code. You enable the association by setting the API Gateway UsagePl an's productCode field
to your AWS Marketplace product code, using the API Gateway console, the API Gateway REST API,
the AWS CLI for API Gateway, or AWS SDK for API Gateway. The following code example uses the
API Gateway REST API:

PATCH / usagepl ans/ USAGE_PLAN_I D
Host: api gat eway. r egi on. anazonaws. com
Aut hori zati on:

{
"patchOperations" : [{

340

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan/#productCode

Amazon API Gateway Developer Guide
Handle Customer Subscription to Usage Plans

"path" : "/product Code",
"val ue" : "MARKETPLACE PRODUCT_CODE",
" 0F)II " r epl a.(::ell

}

Handle Customer Subscription to Usage Plans

The following tasks are handled by your developer portal application.

When a customer subscribes to your product through AWS Marketplace, AWS Marketplace forwards
a POST request to the SaaS subscriptions URL that you registered when listing your product on AWS
Marketplace. The POST request comes with an x- anzn- mar ket pl ace-t oken header parameter
containing buyer information. Follow the instructions in the Register Application section of the SaaS
Seller Integration Guide to handle this redirect in your developer portal application.

Responding to a customer's subscribing request, AWS Marketplace sends a subscri be- success
notification to an Amazon SNS topic that you can subscribe to (See Step 6.4 of the SaaS Seller
Integration Guide). To accept the customer subscription request, you handle the subscri be-
success notification by creating or retrieving an API Gateway API key for the customer, associating
the customer's AWS Marketplace-provisioned cust oner | d with the API keys, and then adding the API
key to your usage plan.

When the customer's subscription request completes, the developer portal application should present
the customer with the associated API key and inform the customer that the APl key must be included in
the x- api - key header in requests to the API.

When a customer cancels a subscription to a usage plan, AWS Marketplace sends an unsubscri be-
success notification to the SNS topic. To complete the process of unsubscribing the customer, you
handle the unsubscri be- success notification by removing the customer's API keys from the usage
plan.

Authorize a Customer to Access a Usage Plan

To authorize access to your usage plan for a given customer, use the APl Gateway API to fetch or
create an API key for the customer and add the API key to the usage plan.

The following example shows how to call the API Gateway REST API to create a new API key with a
specific AWS Marketplace cust oner | d value (MARKETPLACE _CUSTOVER | D).

POST api keys HTTP/ 1.1
Host: api gat eway. regi on. anazonaws. com
Aut hori zati on:
{
"name" : "nmy_api_key",
"description" : "My APl key",
"enabl ed" : "false",
"stageKeys" : [{
"restApi I d" : "uycll 6xg9a",
"stageName" : "prod"
P
"custonerld" : "MARKETPLACE CUSTOVER | D'
}

341

https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf

Amazon API Gateway Developer Guide
Associate a Customer with an API Key

The following example shows how to get an API key with a specific AWS Marketplace cust oner 1 d
value (VARKETPLACE_CUSTOVER | D).

GET api keys?cust oner | d=MARKETPLACE_CUSTOVER | D HTTP/ 1.1
Host: api gat eway. r egi on. amazonaws. com
Aut hori zati on:

To add an API key to a usage plan, create a UsagePlanKey with the API key for the relevant usage
plan. The following example shows how to accomplish this using the API Gateway REST API, where
n371pt is the usage plan ID and q5ugs7qj j h is an example APl keyl d returned from the preceding
examples.

POST /usagepl ans/ n371pt/ keys HITP/ 1.1
Host: api gat eway. r egi on. amazonaws. com
Aut hori zati on:

{
"keyld": "qgb5ugs7qjjh",
"keyType": "API _KEY"

Associate a Customer with an API Key

You must update the ApiKey's cust oner | d field to the AWS Marketplace customer ID of the
customer. This associates the API key with the AWS Marketplace customer, which enables metering
and billing for the buyer. The following code example calls the APl Gateway REST API to do that.

PATCH / api keys/ q5ugs7qjjh
Host: api gat eway. regi on. anazonaws. com
Aut hori zati on:

{
"patchOperations" : [{
"path" : "/custonerld",
"val ue" : "MARKETPLACE CUSTOMER | D',
"op" "repl ace"
}H
}

342

http://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
http://docs.aws.amazon.com/apigateway/api-reference/resource/api-key/

Amazon API Gateway Developer Guide
Create an API as a Lambda Proxy

Tutorials for Using Amazon API
Gateway

The following tutorials provide hands-on exercises to help you learn about API Gateway.

Topics
¢ Create an API Gateway API as an AWS Lambda Proxy (p. 343)
¢ Create an API as an Amazon S3 Proxy (p. 359)
¢ Create an API Gateway API as an Amazon Kinesis Proxy (p. 388)

Create an APl Gateway APl as an AWS Lambda
Proxy

Note

To integrate your APl Gateway API with Lambda, you must choose a region where both the
API Gateway and Lambda services are available. For region availability, see Regions and
Endpoints.

If your API makes only synchronous calls to Lambda functions in the back end, you should use
the Lambda Function integration type. For instructions, see Build an API to Expose a Lambda
Function (p. 44).

If your API makes asynchronous calls to Lambda functions, you must use the AWS Service Proxy
integration type described in this section. The instructions apply to requests for synchronous Lambda
function invocations as well. For the asynchronous invocation, you must explicitly add the X- Anz-

I nvocat i on- Type: Event header to the integration request. For the synchronous invocation, you can
add the X- Anez- | nvocat i on- Type: Request Response header to the integration request or leave it
unspecified. The following example shows the integration request of an asynchronous Lambda function
invocation:

343

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide
Create an APl as a Lambda Proxy

POST /2015-03-31/functions/ FunctionArn/invocations?Qualifier=Qualifier
HTTP/ 1.1
X- Anez- | nvocati on- Type: Event

Aut hori zati on:
Cont ent - Type: application/json
Cont ent - Lengt h: Payl oadSi ze

Payl oad

In this example, Funct i onAr n is the ARN of the Lambda function to be invoked. The
Aut hori zat i on header is required by secure invocation of Lambda functions over HTTPS. For more
information, see the | nvoke action in the AWS Lambda Developer Guide.

To illustrate how to create and configure an APl as an AWS service proxy for Lambda, we will create

a Lambda function (Cal c) that performs addition (+), subtraction (-), multiplication (*), and division (/).
When a client submits a method request to perform any of these operations, APl Gateway will post the
corresponding integration request to call the specified Lambda function, passing the required input (two
operands and one operator) as a JSON payload. A synchronous call will return the result, if any, as the
JSON payload. An asynchronous call will return no data.

The API can expose a GET or POST method on the / cal ¢ resource to invoke the Lambda function.
With the GET method, a client supplies the input to the back-end Lambda function through three
query string parameters (oper andl, oper and2, and oper at or). These are mapped to the JSON
payload of the integration request. With the POST method, a client provides the input to the Lambda
function as a JSON payload of the method request, which is then passed through to the integration
request. Alternatively, the API can expose a GET method on the / cal ¢/ { oper and1}/ { oper and2}/
{ oper at or } resource. With this method, the client specifies the Lambda function input as the values
of the path parameters. Parameter mappings and mapping templates are used to translate the method
request data into the Lambda function input and to translate the output from the integration responses
to the method response.

This section provides more detailed discussions for the following tasks:
¢ Create the Cal ¢ Lambda function to implement the arithmetic operations, accepting and returning
JSON-formatted input and output.

« Expose GET on the / cal ¢ resource to invoke the Lambda function, supplying the input as query
strings.

¢ Expose POST on the / cal ¢ resource to invoke the Lambda function, supplying the input in the
payload.

¢ Expose GET onthe/ cal c/ { operandl}/{operand2}/ { oper at or} resource to invoke the
Lambda function, specifying the input in the path parameters.

You can import the sample API as a Lambda proxy from the Swagger Definitions of a Sample API as
Lambda Proxy (p. 356). To do so, copy the Swagger definition, paste it into a file, and use the API
Gateway Swagger Importer. For more information, see Getting Started with the API Gateway Swagger
Importer.

To use the API Gateway console to create the API, you must first sign up for an AWS account.

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.

344

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://github.com/awslabs/aws-apigateway-importer
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://aws.amazon.com/

Amazon API Gateway Developer Guide
Set Up an IAM Role and Policy for
an API to Invoke Lambda Functions

2. Follow the online instructions.

To allow the API to invoke Lambda functions, you must have an IAM role that has appropriate IAM
policies attached to it. The next section describes how to verify and to create, if necessary, the required
IAM role and policies.
Topics

¢ Set Up an IAM Role and Policy for an API to Invoke Lambda Functions (p. 345)

¢ Create a Lambda Function in the Back End (p. 346)

* Create API Resources for the Lambda Function (p. 347)

¢ Create a GET Method with Query Strings to Call the Lambda Function (p. 347)

e Create a POST Method with a JSON Payload to Call the Lambda Function (p. 350)

¢ Create a GET Method with Path Parameters to Call the Lambda Function (p. 352)

¢ A Sample API as a Lambda Proxy in Swagger with APl Gateway Extensions (p. 356)

Set Up an IAM Role and Policy for an API to Invoke
Lambda Functions

The API will use the InvokeFunction action to call a Lambda function. At minimum, you must attach the
following IAM policy to an IAM role for APl Gateway to assume the policy.

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "Alow',
"Action": "l anbda: | nvokeFunction",
"Resource": "*"
}
]
}

If you do not enact this policy, the API caller will receive a 500 Internal Server Error response. The
response contains the "Invalid permissions on Lambda function" error message. For a complete list of
error messages returned by Lambda, see the Invoke topic.

An API Gateway assumable role is an 1AM role with the following trusted relationship:

{
"Version": "2012-10-17",

"Statenent": [

{
"Sidv:ott,
"Effect": "Alow',
"Principal": {
"Service": "apigateway. amazonaws. cont
1
"Action": "sts:AssuneRol e"

345

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide
Create a Lambda Function in the Back End

Create a Lambda Function in the Back End

Copy the following Lambda function and paste it into the code editor in the Lambda console.

exports. handl er = function(event, context) ({
/Il consol e. |l og(' Received event:', JSON.stringify(event, null, 2));
var res = {};
res.a = event. a;
res.b event . b;
res.op = event.op;

swi tch(event. op)
{
case "+":
res.c = Nunber(event.a) + Number(event.b);
br eak;
case "-":
res.c = Nunber(event.a) - Number(event.b);
br eak;
case "*":
res.c = Nunber(event.a) * Number(event.b);
br eak;
case "/":
res.c = Nunber(event.b)===0 ? NaN : Nunber(event.a) /
Nunber (event . b) ;
br eak;
defaul t:
res.c = "lnvalid op";
}

cont ext . succeed(res);

}s

This function requires two operands (a and b) and an operator (op) from the event input parameter.
The input is a JSON object of the following format:

{
"a": "Number" | "String",
" b": " Nunbern | " St I’I ngu’
" 0F)II : " St r i r.1gll

}

This function returns the calculated result (c) and the input. For an invalid input, the function returns
either the null value or the "Invalid op" string as the result. The output is of the following JSON format:

346

Amazon API Gateway Developer Guide
Create API Resources for the Lambda Function

"a": "Nunber",

"b": "Nunber",

"op": "String",

"“c": "Number" | "String"

You should test the function in the Lambda console before integrating it with the API, which is created
next.

Create APl Resources for the Lambda Function

The following procedure describes how to create API resources for the Lambda function.

To create APl resources for Lambda functions

1.

In the API Gateway console, create an APl named LambdaGate. You can create child resources
to represent different Lambda functions; in the following, you will create a single child resource of
the API root.

For the simple calculator function you created, create the /calc resource off the API's root. You
will expose the GET and POST methods on this resource for the client to invoke the back-end
Lambda function, supplying the required input as query string parameters (to be declared as ?
operandl=. .. &perand2=. .. &oper at or =. . .) in the GET request and as a JSON payload in
the POST request, respectively.

You will also create the /calc/{operand1}/{operand2}/{operator} to expose the GET method
to invoke the Lambda function and to supply the required input as the three path parameters
(operandl, operand2, and operator).

We will show how to apply APl Gateway request and response data mapping to normalize the
input to the back end Lambda function.

Resources Actions~ | o / Methods

Create a GET Method with Query Strings to Call the
Lambda Function

Use the following steps to expose a GET method with query strings to call a Lambda function.

To set up the GET method with query strings to invoke the Lambda function

1.

Choose Create Method in the APl Gateway console to create a GET method for the API's /calc
resource.

In the method's Set up pane, configure the method with the following settings.

347

Amazon API Gateway Developer Guide
Create a GET Method with Query
Strings to Call the Lambda Function

€ Method Execution [calc - GET - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be modified

Integration type Lambda Function
HTTP Proxy
Mock Integration
@ AWS Service Proxy
AWS Region us-west-2 #

AWS Service Lambda &

AWS Subdomain

HTTP method POST #
Path override /2015-03-31/functions/arn:aws:lambda:us-west-2: :function:Calc/invocations #
Execution role am:aws:iam::’ "role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters
» HTTP Headers

~ Mapping Templates

You must use the POST method for the integration request when calling a Lambda function,
although you can use any other HTTP verbs for the method request.

The Path override value must the URL path of the Lambda Invoke action. The path is of the
following format:

/ 2015-03- 31/ functi ons/ Funct i onNane/ i nvocati ons?Qual i fi er=version

where Funct i onNane is the ARN of the Lambda function to be invoked. The optional Qual i fi er
query string can be used to select a version of the function. If it not specified, the $LATEST version
will be used.

You can also add the X- Anz- | nvocati on- Type: Event | RequestReponse | DryRun
header to have the action invoked asynchronously, as request and response, or as a test run,
respectively. If the header is not specified, the action will be invoked as request and response. For
the example shown here, this header has the default value.

We will come back to setting up Mapping Templates after setting up the query string parameters
to hold the input data for the Lambda function.

In Method Request for the GET method on /calc, expand the URL Query String Parameters
section. Choose Add query string to add the operandl, operand2, and operator query string
parameters.

348

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide
Create a GET Method with Query
Strings to Call the Lambda Function

€ Method Execution /calc - GET - Method Request

Provide information about this method's authorization settings and the parameters it can receive.
Authorization Settings
Authorization NONE #6

API Key Required false #*

* URL Query String Parameters

Caching
>}
operator [x]
gperand1 [x)

© Add query string
» HTTP Request Headers

» Request Models Create a Model

3. Go back to Integration Request. Expand the Mapping Templates section. If necessary, in
Content-Type, under application/json, choose Add mapping template. Type the following in the
Mapping template editor:

{
"a": "&input.parans(' operandl')",
"b": "&input.parans(' operand2')",
"op": "&input.parans(' operator')"
}

349

Amazon API Gateway Developer Guide
Create a POST Method with a JSON
Payload to Call the Lambda Function

AWS Region us-west-2 #
AWS Service Lambda #
AWS Subdomain
HTTP method POST &
Path override /2015-03-31/functions/arn:aws:lambda:us-west-2: "Il F-function:Calc/invocations #
Execution role arn:awsiam:’ tm. mo o rolefapigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

-

URL Path Parameters
» URL Query String Parameters
» HTTP Headers

~ Mapping Templates

Content-Type application/json Mapping template #"

(-] Template

© Add mapping template

“$input.params(‘operandl’)"”,
“$input.params(‘operand2’)”,
"$input.params(’ operator')”

This template maps the three query string parameters declared in Method Request into
designated property values of the JSON object as the input to the back-end Lambda function. The
transformed JSON object will be included as the integration request payload.

4. You can now choose Test to verify that the GET method on the /calc resource has been properly
set up to invoke the Lambda function.

Create a POST Method with a JSON Payload to Call
the Lambda Function

The following steps describe how to expose a POST method with a JSON payload.

To set up the POST method with a JSON payload to invoke a Lambda function

1. Choose Create Method in the API Gateway console to create a POST method for the
LambdaGate API's /calc resource.

In the method's Set Up panel, configure the POST method with the following settings.

350

Amazon API Gateway Developer Guide
Create a POST Method with a JSON
Payload to Call the Lambda Function

€ Method Execution /calc - POST - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type Lambda Function
HTTP Proxy
Mock Integration

@ AWS Service Proxy

AWS Region us-west-2 #
AWS Service Lambda #
AWS Subdomain &
HTTP method POST #
Path override /2015-03-31/functions/arn:aws:lambda:us-west-2:7 function:Calc/invocations #
Execution role am:aws:iam:: | “rolefapigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters
» HTTP Headers

» Mapping Templates

Using a POST request with a JSON payload is the simplest way to invoke a Lambda function,
because no mappings are needed.

2. You can now choose Test to verify the POST method works as expected. The following input:

{
"a': 1,
"b": 2,
"op": "+"
}

{
"a": 1,
"b": 2,
"op": "+",
nere 3

}

If you would like to implement POST as an asynchronous call, you can add an

I nvocat i onType: Event header in the method request and map it to the X- Ane-

I nvocat i on- Type header in the integration request, using the header mapping expression

of met hod. r equest . header. | nvocat i onType. You must inform the clients to include the

I nvocat i onType: Event header in the method request. Alternatively, you can set the X- Anz-

351

Amazon API Gateway Developer Guide
Create a GET Method with Path
Parameters to Call the Lambda Function

I nvocat i on- Type header with the ' Event ' string literal in the integration request, without requiring
the client to include the header. The asynchronous call will return an empty response, instead.

Create a GET Method with Path Parameters to Call
the Lambda Function

The following steps describe how to set up the GET method with path parameters to call the Lambda
function.

To set up the GET method with URL path parameters to invoke the Lambda function

1. Choose Create Method in the API Gateway console to create a GET method for the API's /calc/
{operand1}/{operand2}/{operator} resource.

In the method's Set up pane, configure this GET method with the following settings.

€ Method Execution /calc/{operand1}/{operand2}/{operator} - GET - Integration ...

Provide information about the target backend that this method will call and whether the incoming request data should be modified,

Integration type Lambda Function
HTTP Proxy
Mock Integration
@ AWS Service Proxy
AWS Region us-west-2 #
AWS Service Lambda #
AWS Subdomain #
HTTP method POST &
Path override /2015-03-31/functions/am:aws:lambda:us-west-2: " function:Calc/invecations #
Execution role arn:aws:iam:: - T:role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters

-

URL Query String Parameters
» HTTP Headers

+~ Mapping Templates

Content-Type

Next, we will set up Mapping Templates to translate the URL path parameters into the integration
request JSON payload as the input to the Lambda function.

2. In Method Request for the GET method on /calc/{operand1}/{operand2}/{operator}, expand the
Request Paths section to verify that the path parameters are there.

352

Amazon API Gateway Developer Guide
Create a GET Method with Path
Parameters to Call the Lambda Function

€ Method Execution /calc/{operand1}/{operand2}/{operator} - GET - Method Re...
Provide information about this method's authorization settings and the parameters it can receive
Authorization Settings
Authorization NONE #€

API Key Required false #

~ Request Paths

Name Caching

» URL Query String Parameters

» HTTP Request Headers

Go back to Integration Request. Expand the Mapping Templates section. If necessary, in

3.
Content-Type, under application/json, choose Add mapping template.

Integration type Lambda Function
HTTP Proxy
Mock Integration

@ AWS Service Proxy
AWS Region us-west-2 #

AWS Service Lambda #

AWS Subdomain #

HTTP method POST #

Path override /2015-03-31/functions/arn:aws:lambdaius-west-2: = ‘function:Calcfinvocations
Irole/apigAwsProxyRole #

Execution role arm:aws:iam::

Credentials cache Do not add caller credentials to cache key #

* URL Path Parameters
» URL Query String Parameters
» HTTP Headers

~ Mapping Templates

Content-Type application/json Mapping template ~ OO
Template «* Select a model to generate a template ~

1= [
2

": “$input.params(‘operandl’)”,
: "Sinput.params(‘operand2‘)",
"op": #if($input.params(’operator’)=="%2F")"/"#{else}"$input

Bw

Qarans ("operator’) "Hend

w

Type the following in the Mapping Template editor:

"a": "$input.parans(' operandl')",

353

Amazon API Gateway Developer Guide
Create a GET Method with Path
Parameters to Call the Lambda Function

"b": "$input.parans(' operand2')",
"op":
#i f ($i nput. parans(' operator')=="9%2F)"/"#{el se}"$i nput. parans(' operator')"#end

This template maps the three URL path parameters, declared when the /calc/{operand1}/
{operand2}/{operator} resource was created, into designated property values of the JISON
object. Because URL paths must be URL-encoded, the division operator must be specified as %2F
instead of / . This template maps these translations as well. The transformed JSON object will be
included as the integration request payload.

As another exercise, we demonstrate how to translate the JSON returned from the Lambda
function to show the output as a plain text string to the caller. This involves resetting the method
request's Content-Type header to "text/plain" and providing a mapping template to translate the
JSON output into a plain string.

First, make sure that Content-Type header is included in the Response Headers for 200 section
in Method Response.

& Method Execution /calc/{operand1}/{operand2}/{operator} - GET - Method Re...

Provide information about this method's response types, their headers and content types

HTTP Status

v 200
Response Headers for 200 Response Models for 200 Create a model
Name Content type Models
applicationjson Empty
© Add Header © Add Response Model

© Add Response

In Integration Response, expand the 200 method response entry. Expand the Header Mappings
section. In Mapping value for Content-Type, type ' t ext / pl ai n' . This header mapping
expression overrides the Content-Type header with a literal string, which must be enclosed within
a pair of single quotes.

354

Amazon API Gateway Developer Guide
Create a GET Method with Path
Parameters to Call the Lambda Function

€ Method Execution /calc/{operand1}/{operand2}/{operator} - GET - Integration ...

First, declare response types using Method Response. Then, map the possible responses from the backend to this method's response types.
HTTP status regex Method response status Output model Default mapping
v - 200 Yes. (2]

Map the output from your HTTP endpoint te the headers and output model of the 200 method respense.

HTTP status regex default i

Method response status200

el m

@ Header Mappings

Response header Mapping value @
Content-Type #
@ Mapping Templates
Content-Type application/json Mapping templat
° Template 2%

1 ¢ Sinput.path(‘$.a’) $input.path('$.op’) S$input.path("$.b")
. dgput.path(‘$.c’)
© Add mapping template

Next, expand the Mapping Templates section, highlight the application/json entry under the
Content-Type header (of integration response), open the Mapping template editor, enter and
save the following mapping script:

$input.path('$.a') $input.path('$.0op') $input.path('$.b'") =
$i nput. path('$.¢')

Choose Test to verify the GET method on the /calc/{operand1}/{operand2}/{operator} works as
expected. The following request URL:

/cal c/ 1/ 2] YRF

should produce the following plain text output:

Note
As part of a URL, the division operator (/) is URL-encoded (%2F).

After testing the API using the Test Invoke in the APl Gateway console, you must deploy the API
to make it public available. If you update the API, such as adding, modifying or deleting a resource
or method, updating any data mapping, you must redeploy the API to make the new features or
updates available.

355

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as Lambda Proxy

A Sample API as a Lambda Proxy in Swagger with
API Gateway Extensions

{
"swagger": "2.0",
"info": {
"version": "2016-02-23T05: 35: 542"
"title": "LanbdaGate"
b,
"host": "al23456789. execut e-api . us-east - 1. anazonaws. cont',
"basePath": "/test",
"schenes": |
"https"
I,
"paths": {
"/calc": {
"get": {

"produces": |
"application/json"

I,
"paraneters": [
{
"name": "operand2",
"in": "query",
"required": false
"type": "string"
}s
{
"nane": "operator",
"in": "query",
"required": false
"type": "string"
}s
{
"name": "operandl",
"in": "query",
"required": false
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Enmpty"
}

eaders": {

"operand_1": {
"type": "string"

}

perand_2": {
"type": "string"
}

perator": {
"type": "string"
}

356

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as Lambda Proxy

}
}
1
"X-anazon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200",
"responseParaneters": {
"met hod. r esponse. header . operator":
"integration.response. body. op",
"met hod. r esponse. header . oper and_2":
"integration.response. body. b",
"met hod. r esponse. header . oper and_1"
"integration.response. body. a"
1
"responseTenpl ates": ({
"application/json": "#set($res= $input.path('$))\n{\n
\"result\": \"$res.a, $res.b, $res.op => $res.c\"\n}"

}
}
H
"request Tenpl ates": {
"application/json": "{\n \"a\":
\ " 3$i nput . parans(' operandl')\",\n \"b\": \"S$input.parans(' operand2')\"
\n \"op\": \"Sinput.parans(' operator')\" \n}"
H
"uri": "arn:aws: api gat eway: us- west - 2: | anbda: pat h//2015- 03- 31/

functions/arn: aws: | anbda: us-west - 2: 123456789012: functi on: Cal c/i nvocati ons",
"httpMet hod": "PQOST",
"type": "aws

}

}

"post": {

"produces": |
"application/json"

1.

"paraneters": [],

"responses": {

"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Enpty"
)
}
H
"X-anezon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200",
"responseTenpl ates": ({
"application/json": "__passthrough__

}

'eaders": {}

}
b,
"uri": "arn:aws: api gat eway: us- west - 2: | anbda: pat h//2015- 03- 31/
functions/arn: aws: | anbda: us-west - 2: 123456789012: functi on: Cal ¢c/i nvocati ons",

357

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample APl as Lambda Proxy

"httpMethod": "POST",
"type": "aws
}
}

}

cal c/{operandl}/{operand2}/{operator}": {
" get " : {
"produces": |
"application/json"

I,
"paraneters": [

{

"name": "operand2",
"in": "path",
"required": true,
"type": "string"

}s

{

"nane": "operator",
"in": "path",
"required": true,
"type": "string"

}s

{

"name": "operandl",
"in": "path",
"required": true,
"type": "string"

}

I,
"responses": {

"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Enpty"
}s
"headers": {
"Cont ent - Type": {
"type": "string"
}
}
}
}s

"X-anezon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200",
"responseParaneters": {
"met hod. response. header . Cont ent - Type":
H
"responseTenpl ates": ({
"application/json": "\"$input.path('$.a') $input.path('$.op')
$i nput.path('$.b') = $Sinput.path('$.c')\""
}

}

text/plain

}

equest Tenpl ates": {

358

Amazon API Gateway Developer Guide
Create an API as an Amazon S3 Proxy

"application/json": "\n{\n \"a\":
\ " $i nput . parans(' operandl')\",\n \"b\": \"&i nput. parans(' operand2')\",

\n \"op\": #if($input.parans(' operator')=="9%F)\"/
\"#{el se}\"$i nput. parans(' operator')\"#end\n \n}"

H

"uri": "arn:aws: api gat eway: us- west - 2: | anmbda: pat h//2015- 03- 31/
functions/arn: aws: | anbda: us-west - 2: 123456789012: f uncti on: Cal c/i nvocati ons",

"httpMethod": "POST",

"type": "aws

}

}
}
}

efinitions": {
"Enpty": {

"type": "object"
}

}
}

Create an APl as an Amazon S3 Proxy

As an example to showcase using an APl in APl Gateway to proxy Amazon S3, this section describes
how to create and configure an API to expose the following Amazon S3 operations:

* Expose GET on the API's root resource to list all of the Amazon S3 buckets of a caller.

* Expose GET on a Folder resource to view a list of all of the objects in an Amazon S3 bucket.

* Expose PUT on a Folder resource to add a bucket to Amazon S3.

¢ Expose DELETE on a Folder resource to remove a bucket from Amazon S3.

* Expose GET on a Folder/ltem resource to view or download an object from an Amazon S3 bucket.
« Expose PUT on a Folder/ltem resource to upload an object to an Amazon S3 bucket.

« Expose HEAD on a Folder/ltem resource to get object metadata in an Amazon S3 bucket.

¢ Expose DELETE on a Folder/ltem resource to remove an object from an Amazon S3 bucket.

Note

To integrate your APl Gateway API with Amazon S3, you must choose a region where both
the API Gateway and Amazon S3 services are available. For region availability, see Regions
and Endpoints.

You may want to import the sample APl as an Amazon S3 proxy, as shown in Swagger Definitions of
the Sample APl as an Amazon S3 Proxy (p. 378). For instructions on how to import an API using the
Swagger definition, see Import an API (p. 142).

To use the API Gateway console to create the API, you must first sign up for an AWS account.
If you do not have an AWS account, use the following procedure to create one.
To sign up for AWS

1. Open http://aws.amazon.com/ and choose Create an AWS Account.
2. Follow the online instructions.

Topics

359

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region
http://aws.amazon.com/

Amazon API Gateway Developer Guide
Set Up IAM Permissions for the
API to Invoke Amazon S3 Actions

¢ Set Up IAM Permissions for the API to Invoke Amazon S3 Actions (p. 360)
¢ Create API Resources to Represent Amazon S3 Resources (p. 361)

¢ Expose an APl Method to List the Caller's Amazon S3 Buckets (p. 362)

¢ Expose APl Methods to Access an Amazon S3 Bucket (p. 369)

¢ Expose APl Methods to Access an Amazon S3 Object in a Bucket (p. 372)
¢ Call the API Using a REST API Client (p. 374)

¢ Swagger Definitions of the Sample APl as an Amazon S3 Proxy (p. 378)

Set Up IAM Permissions for the API to Invoke
Amazon S3 Actions

To allow the API to invoke required Amazon S3 actions, you must have appropriate IAM policies
attached to an IAM role. The next section describes how to verify and to create, if necessary, the
required IAM role and policies.

For your API to view or list Amazon S3 buckets and objects, you can use the IAM-
provided AmazonS3ReadOnlyAccess policy in the IAM role. The ARN of this policy is
arn:aws: i am:aws: pol i cy/ AmazonS3ReadOnl yAccess, which is as shown as follows:

{
"Version": "2012-10-17",
"Statenent": [
"Effect": "Al ow',
"Action": [
"s3: Get*",
"s3: List*"
I,
"Resource": "*"
}
]
}

This policy document states that any of the Amazon S3 Get * and Li st * actions can be invoked on
any of the Amazon S3 resources.

For your API to update Amazon S3 buckets and objects , you can use a custom policy for any of the
Amazon S3 Put * actions as shown as follows:

{
"Version": "2012-10-17",
"Statenment": [
"Effect": "Alow',
"Action": "s3:Put*",
"Resource": "*"
}
]
}

For your API to work with Amazon S3 Get *, Li st * and Put * actions, you can add the above read-
only and put-only policies to the IAM role.

360

Amazon API Gateway Developer Guide
Create API Resources to
Represent Amazon S3 Resources

For your API to invoke the Amazon S3 Post * actions, you must use an Allow policy for the s3: Post *
actions in the IAM role. For a complete list of Amazon S3 actions, see Specifying Amazon S3
Permissions in a Policy.

For your API to create, view, update, and delete buckets and objects in Amazon S3,
you can use the IAM -provided AmazonS3FullAccess policy in the IAM role. The ARN is
arn: aws: i am : aws: pol i cy/ AmazonS3Ful | Access.

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Alow',
"Action": s3:%,
"Resource": "*"
}
]
}

Having chosen the desired IAM policies to use, create an IAM role and attach to it the policies. The
resulting IAM role must contain the following trust policy for APl Gateway to assume this role at
runtime.

"Version": "2012-10-17",
"Statenment": [
{
"Sidt:ott,
"Effect": "Allow',
"Principal": {
"Service": "apigateway. anazonaws. conf

}

"Action": "sts:AssuneRol e"

When using the IAM console to create the role, choose the Amazon API Gateway role type to ensure
that this trust policy is automatically included.

Create APl Resources to Represent Amazon S3
Resources

We will use the API's root (/ resource as the container of an authenticated caller's Amazon S3 buckets.
We will also create a Fol der and | t emresources to represent a particular Amazon S3 bucket and a
particular Amazon S3 object, respectively. The folder name and object key will be specified, in the form
of path parameters as part of a request URL, by the caller.

To create an APl resource that exposes the Amazon S3 service features

1. Inthe API Gateway console, create an APl named MyS3. This API's root resource (/) represents
the Amazon S3 service.

2. Under the API's root resource, create a child resource named Folder and set the required
Resource Path as /{folder}.

361

http://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html

Amazon API Gateway Developer Guide
Expose an API Method to List
the Caller's Amazon S3 Buckets

Hitem}.

Reaouitas Actions- | New Child Resource

For the API's Folder resource, create an Item child resource. Set the required Resource Path as

v [Use this page to create a new child resource for your resource.

Hfolder} Configure as proxy resource

Resource Name™

Resource Path*

Enable APl Gateway CORS

* Required

)
Item

Hfolderl/ {item}

You can add path parameters using brackets. For exar
resource path {username} represents a path paramete
'username'. Configuring /folder}/{proxy+} as a proxy r
catches all requests to its sub-resources. For example,
for a GET request to /[folder}/foo. To handle requests t
add a new ANY method on the f{folder} resource.

i)

Cancel Create F

Expose an API Method to List the Caller's Amazon

S3 Buckets

Getting the list of Amazon S3 buckets of the caller involves invoking the GET Service action on
Amazon S3. On the API's root resource, (/), create the GET method. Configure the GET method to

integrate with the Amazon S3, as follows.

To create and initialize the API's GET / method

1. Choose Create method on the root node (/) from the Actions drop-down menu at the top-right

corner of the Resources panel.

2. Choose the GET from the drop-down list of HTTP verbs, and choose the check-mark icon to start

creating the method.

362

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html

Amazon API Gateway Developer Guide
Expose an API Method to List
the Caller's Amazon S3 Buckets

Resources Actions - / Methods

M No methods defined for the resource.
GET S0
- f{folder}
flitem}

In the / - GET - Setup pane, choose AWS Service Proxy for the Integration type.
From the list, choose an AWS Region.

From AWS Service, choose S3.

From HTTP method, choose GET.

For Action Type, choose Use path override.

(Optional) In Path override type /.

Copy the previously created IAM role's ARN (from the IAM console) and paste it into Execution
role.

©® N A

Choose the integration point for your new method. @

Integration type Lambda Function
HTTP Proxy

Mock Integration

@ AWS Service Proxy 1

— 2 &
AWS Service 3 =

AWS Subdomain

e o (DD

Action Type Use action name

@ Use path override 5

Path override {optionaI@o

Execution role @m:aws:iam CTRRETRTE Trole/apigAwsProxyRole [i]

8 Save

10. Choose Save to finish setting up this method.

This setup integrates the front-end GET htt ps://your-api - host/ st age/ request with the back-
end GET https://your-s3-host/.

Note
After the initial setup, you can modify these settings in the Integration Request page of the
method.

363

Amazon API Gateway Developer Guide
Expose an API Method to List
the Caller's Amazon S3 Buckets

To control who can call this method of our API, we turn on the method authorization flag and set it to
AWS | AM

To enable IAM to control access to the GET / method

From the Method Execution, choose Method Request.
Choose the pencil icon next to Authorization

Choose AVS_| AMfrom the drop-down list.

Choose the check-mark icon to save the setting.

PN PR

€ Method Execution / - GET - Method Request

Provide information about this method's authorization settings and the parameters it can receive.

Autheorization Settings

Authorization aws (1AM j i}

APl Key Required false

» URL Query String Parameters
» HTTP Request Headers

» Request Models Create a Model

For our API to return successful responses and exceptions properly to the caller, let us declare the
200, 400 and 500 responses in Method Response. We use the default mapping for 200 responses
so that back-end responses of the status code not declared here will be returned to the caller as 200
ones.

To declare response types for the GET / method

1. From the Method Execution pane, choose the Method Response box. The APl Gateway
declares the 200 response by default.

2. Choose Add response, enter 400 in the input text box, and choose the check-mark to finish the
declaration.

3. Repeat the above step to declare the 500 response type. The final setting is shown as follows:

364

Amazon API Gateway Developer Guide
Expose an API Method to List
the Caller's Amazon S3 Buckets

€ Method Execution / - GET - Method Response

Provide information about this method's response types, their headers and content types.

HTTP Status
» 200
b 400
b 500

© Add Response

Because the successful integration response from Amazon S3 returns the bucket list as an XML
payload and the default method response from API Gateway returns a JSON payload, we must map
the back-end Content-Type header parameter value to the front-end counterpart. Otherwise, the client
will receive appl i cati on/j son for the content type when the response body is actually an XML
string. The following procedure shows how to set this up. In addition, we also want to display to the
client other header parameters, such as Date and Content-Length.

To set up response header mappings for the GET / method

1. Inthe API Gateway console, choose Method Response. Add the Content-Type header for the
200 response type.

365

Amazon API Gateway Developer Guide
Expose an API Method to List
the Caller's Amazon S3 Buckets

€ Method Execution /- GET - Method Response

Provide information about this method's response types, their headers and content types.

HTTP Status

v 200 >

Response Headers for 200 Response Models for 200 Create a mode
Mame Content type Models

Timestamp #Q application/json Empty o %]

Content-Length 50 & Add Response Model

Content-Type F

O Add Header

3 400 €

3 500 €

© Add Response

In Integration Response, for Content-Type, type i nt egr ati on. r esponse. header . Cont ent -
Type for the method response.

366

Amazon API Gateway Developer Guide
Expose an API Method to List
the Caller's Amazon S3 Buckets

€ Method Execution / - GET - Integration Response

First, declare response types using Method Response. Then, map the possible responses from the backend to this method's
response types.

HTTP status regex Method response status Dutput model Default mapping
- - 200 Yes 0
Map the output from your HTTP endpoint to the headers and output model of the 200 method response.

HTTP status regex default Li]

Method response status200

~ Header Mappings

Response header Mapping value &

Timestamp integration.response.header.Date

Content-Length integration.response.header.Content-Length

Content-Type integration.response.header.Content-Type

» Body Mapping Templates

With the above header mappings, APl Gateway will translate the Dat e header from the back end
to the Ti nest anp header for the client.

Still in Integration Response, choose Add integration response, type an appropriate regular
expression in the HTTP status regex text box for a remaining method response status. Repeat
until all the method response status are covered.

367

Amazon API Gateway Developer Guide
Expose an API Method to List
the Caller's Amazon S3 Buckets

€ Method Execution / - GET - Integration Response

First, declare response types using Method Response. Then, map the possible responses from the backend to this method's
response types.

HTTP status regex Method response status Output model Default mapping
» - 200 Yes Q
3 A\d{2} 400 Mo Q
v 5\d2) 500 No)

Map the output from your HT TP endpoint to the headers and output model of the 500 method response.

TTP status regex 5'd{2) [i]

Method response status500

~ Header Mappings

Response header Mapping value ©

Mo method response headers.

» Body Mapping Templates

0‘ Add integration response ’

As a good practice, let us test our API we have configured so far.

Test the GET method on the API root resource

1. Go back to Method Execution, choose Test from the Client box.
2. Choose Test in the GET / - Method Test pane. An example result is shown as follows.

368

Amazon API Gateway Developer Guide
Expose API Methods to Access an Amazon S3 Bucket

€ Method Execution [- GET - Method Test

Make a test call to your method with the provided input

Path

No path parameters exist for this resource. You can define
path parameters by using the syntax {myPathParam} in a
resource path

Query Strings
No query S|I'|Hg parameters exist for this method. You can
add them via Method Request

Headers
Mo header parameters exist for this method. You can add
them via Method Request.

Stage Variables
No stage varables exist for this method.

Client Certificate
None ~

Request Body
Request Body is not supported for GET methods.

p

Request: /
Status: 200
Latency: 746 ms
Response Body

~
«?xml version="1.8" encoding="UTF-8"23>

<ListAllMyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/ <
Owner><1D>06etinifminlfokl i = h 50 it~ Al 77 %%k S Skl S nleled 1 2 ¢
2¢/1D><DisplayName> widtnig< /DisplayName></Owner >l
pig-demo</Name><CreationDate>2816-02-12T22:05:55.0087</Creat ionDatex</Buc
ket><Bucket> <Name>apig-demol</Name> <CreationDate)2016-82-15T23:38: 35,0002
</CreationDate></Bucket>Bucket> cName>aws-devdoc-test-kd< /Name > <Crea nD
ate>2015-10-27722:59:29.000Z</CreationDater</Bucket> <Bucket> <Name>awslab-
lasbda-fileproc-test-kd-eventarchive- TUEIIIIBI17 < /Name> <Creat ionDate>201
5-10-21722:39:57.880Z¢/CreationDate></Bucket><Bucket ><Name>aws lab=lanbda-
fileproc-test-kd-eventarchive-.or. Fomuos/-out</Name><CreationDate>2015-1
©-217T23:14:14. 0002 < /CreationDatex</Bucket><Bucket > <Name>aws1ab-triggers-k
d</Name><CreationDate>2015-10-22723:48:01.0002</CreationDate»</Bucket><Bu
cket><Name>cf-templates - 1BUNIDPPIYYio-us-east-1¢/Name><Creat ionDate>2815 -
10-21720:59:45.0802</CreationDate></Bucket ><Bucket<Name>elast icbeanstalk
-us-east-1- B80T < /Mame><CreationDate>2015-19- 16T23:13:15.000Zc/Cre
ationDater</Bucket><Bucket>cName>jaws . dev. umaaas? |
tlunDat::EDlS—12—811]9:50:56‘9%26r‘Cr‘:atiunDet:;(/EucketnBu:ket?(Nane)je
ws .dev.useastl.myapp-eyol lwv. comc/Name><CreationDate>2015-12-017120: 22147 .

20 . come [Name><Crea

000Z</CreationDates</Bucket><Bucket><Namesmy-pictures-02-16-2016</Name><C
reationDate>2016-02-15T08:14:40,809Z¢/CreationDate></Bucket> cBucket> Name
>myev-contentdelivery-mobilehub-1161765284< /Name > <CreationDate >2015-10-26
Te5:87:51.8002</CreationDater</Bucket><Bucket »<Name>my: erfiles-mobile
hub-1161765204¢ /Name> (CreationDate>2015-10-26T05:09: 30. 8002 ¢ /CreationDate
>¢/Bucket><Bucket>cName>node - sdk-sample-33358871-858C-40Fd-8790-9bdeebdSs
eeec/Name><CreationDate>2015-10-21T23:49:15,800Z¢ /CreationDates </Bucket>
_</Buckets></ListallMyBucketsResult>

Response Headers

({"Timuunp':"rr‘i., 19 Feb 2016 03:09:52 E"W","(enl:n[—T;,-pe":"apgluatinD
xml"}

Logs

Execution log for request test-request
Fri Feb 19 93:09:5¢ UTC 2016 : Starting execution for request: test-invok

Note

To use the API Gateway console to test the APl as an Amazon S3 proxy, make sure that the
targeted S3 bucket is from a different region from the API's region. Otherwise, you may get a
500 Internal Server Error response. This limitation does not apply to any deployed API.

Expose API Methods to Access an Amazon S3
Bucket

To work with an Amazon S3 bucket, we expose the GET, PUT, and DELETE methods on the /
{folder} resource to list objects in a bucket, create a new bucket, and delete an existing bucket. The
instructions are similar to those prescribed in Expose an API Method to List the Caller's Amazon S3
Buckets (p. 362). In the following discussions, we outline the general tasks and highlight relevant
differences.

To expose GET, PUT and DELETE methods on a folder resource

1. Onthe [{folder} node from the Resources tree, create the DELETE, GET and PUT methods, one
at atime.

2. Set up the initial integration of each created method with its corresponding Amazon S3 endpoints.
The following screen shot illustrates this setting for the PUT / {f ol der} method. For the
DELETE /{fol der} and GET /{f ol der} method, replace the PUT value of HTTP method by
DELETE and GET, respectively.

369

Amazon API Gateway Developer Guide
Expose API Methods to Access an Amazon S3 Bucket

Resources | Actions- | | fffgolder} - PUT - Setup

I
M Choose the integration point for your new method.
GET

= ffolder)
DELETE Integration type Lambda Function €@
f-; HTTP ©
Hitem} Mock ©

© AWS Service @

AWS H&giﬂl‘l us-west-2

AWS Subdomain

HTTP method pyT =

Action Type © Use action name

© Use path override

Path override (optional) [bucket}

Execution role arn:aws:iam:: "role/apigAwsProxyRole

Notice that we used the { bucket } path parameter in the Amazon S3 endpoint URLSs to specify
the bucket. We will need to map the {f ol der} path parameter of the method requests to the
{bucket } path parameter of the integration requests.

To map {f ol der} to {bucket}:

Choose Method Execution and then Integration Request.
b. Expand URL Path Parameters and choose Add path

c. Type bucket in the Name column and net hod. r equest . pat h. f ol der in the Mapped
from column. Choose the check-mark icon to save the mapping.

- URL Path Parameters

Name Mapped from © Caching

method.request. path.folder @3

In Method Request, add the Cont ent - Type to the HTTP Request Headers section.

370

Amazon API Gateway Developer Guide
Expose API Methods to Access an Amazon S3 Bucket

» HTTP Request Headers

Mame Caching

Content-Type]
© L Add header

This is mostly needed for testing, when using the API Gateway console, when you must specify
appl i cation/ xm for an XML payload.

In Integration Request, set up the following header mappings, following the instructions
described in Expose an APl Method to List the Caller's Amazon S3 Buckets (p. 362).

~ HTTP Headers

Name Mapped from Caching
x-amz-acl 'authenticated-read’ »
Expect "100-continue’]
Content-Type method.request.header.Content-Type C

© Add header

The x- anz- acl header is for specifying access control on the folder (or the corresponding
Amazon S3 bucket). For more information, see Amazon S3 PUT Bucket Request. The
Expect: ' 100- conti nue' header ensures that a request payload is submitted only when the
request parameters are validated.

To test the PUT method, choose Test in the Client box from Method Execution, and enter the
following as input to the testing:

a. Infolder, type a bucket name,

b. Forthe Content-Type header, type appl i cati on/ xm .

c. In Request Body, provide the bucket region as the location constraint, declared in an XML
fragment as the request payload. For example,

<Cr eat eBucket Confi gurati on xm ns="http://s3. amazonaws. con!
doc/ 2006- 03- 01/ ">

<Locat i onConstrai nt >us- west - 2</ Locat i onConst r ai nt >
</ Cr eat eBucket Confi gur ati on>

371

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html#RESTBucketPUT-requests

Amazon API Gateway Developer Guide
Expose API Methods to Access
an Amazon S3 Object in a Bucket

+Method Execution /{folder} - PUT - Method Test

Make atest call i your method with the provided input

Path
folder

Request: /my-pictures-02-16-2016
Status: 200

Latency: 984 ms

Response Body

Query Strings

Mo query siring paramefers exist for this method. You can add them via o data

Method Request

Response Headers

Headers
Content-Type

Stage Variables
No stage variables exist for this method,

Client Certificate

equest Body
B!
;

7. Repeat the preceding steps to create and configure the GET and DELETE method on the API's /
{folder} resource.

az0nAF IGateway g

The above examples illustrate how to create a new bucket in the specified region, to view the list of
objects in the bucket, and to delete the bucket. Other Amazon S3 bucket operations allow you work
with the metadata or properties of the bucket. For example, you can set up your API to call the Amazon
S3's PUT /?notification action to set up notifications on the bucket, to call PUT /?acl to set an access
control list on the bucket, etc. The API set up is similar, except for that you must append appropriate
guery parameters to the Amazon S3 endpoint URLS. At run time, you must provide the appropriate
XML payload to the method request. The same can be said about supporting the other GET and
DELETE operations on a Amazon S3 bucket. For more information on possible &S3; actions on a
bucket, see Amazon S3 Operations on Buckets.

Expose API Methods to Access an Amazon S3
Object in a Bucket

Amazon S3 supports GET, DELETE, HEAD, OPTIONS, POST and PUT actions to access and
manage objects in a given bucket. For the complete list of supported actions, see Amazon S3
Operations on Objects.

In this tutorial, we expose the PUT Object operation, the GET Object operation, HEAD Object
operation, and the DELETE Object operation through the APl methods of PUT /{f ol der}/
{iten},GET /{folder}/{iten}, HEAD /{fol der}/{itent and DELETE /{fol der}/{itent,
respectively.

The API setups for the PUT, GET and DELETE methods on/ {f ol der}/{i ten} are the

similar to those on / {f ol der}, as prescribed in Expose API Methods to Access an Amazon S3
Bucket (p. 369). One major difference is that the additional path parameter of { obj ect } is appended
to the method request URL and this path parameter is mapped to the Amazon S3 endpoint URL path
parameter of {i t en} in the back end.

372

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html#RESTBucketPUTnotification-requests
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html#RESTBucketPUTacl-requests
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketOps.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectOps.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectOps.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html

Amazon API Gateway Developer Guide
Expose API Methods to Access
an Amazon S3 Object in a Bucket

€ Method Execution /{folder}/{item} - PUT - Integration Request

Provide information about the target backend that this method will call and whether the incoming request
data should be modified.

Integration type Lambda Function €
HTTP &
Mock @&
O AWS Service 6
AWS Region us-west-2 &
AWS Service 534

AWS Subdomain

HTTP methed PUT #

Path override {bucket}/{object} #

Execution role arn:aws:iam:i___.__.___"role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key &

+ URL Path Parameters

Name Mapped from @ Caching
bucket method.request.path.folder - F0
© Add path

The same is true for the GET and DELETE methods.

As an illustration, the following screen shot shows the output when testing the GET method on a
{fol der}/{iten} resource using the APl Gateway console. The request correctly returns the plain
text of ("Welcome to README.txt") as the content of the specified file (README.txt) in the given
Amazon S3 bucket (apig-demo).

373

Amazon API Gateway Developer Guide
Call the API Using a REST API Client

€ Method Execution /{folder}/{item} - GET - Method Test

Make a test call to your method with the provided input

Path
older
apig-demo
item

README.t

Query Strings
No query string parameters exist for this method.
You can add them via Method Request

Headers
No header parameters exist for this method. You
can add them via Method Request

Stage Variables
No stage variables exist for this method.

Client Certificate

MNone ~

Request Body
Request Body is not supported for GET
methods.

Request: /apig-demo/README.txt

Status: 200
Latency: 486 ms

Response Body
Welcome to README.txt

Response Headers

{"Content-Type": “"text/plain™}

Logs

Execution log for request test-request

Fri Feb 19 ©3:35:20 UTC 2016 :

st: test-invoke-request

Fri Feb 19 ©3:35:20 UTC 2016 :
Fri Feb 19 ©3:35:28 UTC 2016 :

EADME.txt, folder=apig-demo}

Fri Feb 19 ©3:35:20 UTC 2016 :

g {}

Fri Feb 19 ©3:35:20 UTC 2016 :
Fri Feb 19 ©3:35:2@ UTC 2016 :

ransformations: null

Fri Feb 19 ©3:35:20 UTC 2016 :
s://s3-us-west-2.amazonaws.com/apig-demo/README . txt

Fri Feb 19 @3:

Starting execution for reque

API Key: test-invoke-api-key
Method request path: {item=R

Method request query strin

Method request headers: {}
Method request body before t

Endpoint request URI: http

s

...... sasne

TEARS RSN S 200006, X-Amz

Call the API Using a REST API Client

To provide an end-to-end tutorial, we now show how to call the API using Postman, which supports the
AWS IAM authorization.

To call our Amazon S3 proxy APl using Postman

1. Deploy or redeploy the API. Make a note of the base URL of the API that is displayed next to
Invoke URL at the top of the Stage Editor.

Launch Postman.

Choose Authorization and then choose AWS Si gnat ur e. Type your IAM user's Access Key ID
and Secret Access Key into the AccessKey and SecretKeyinput fields, respectively. Type the
AWS region to which your API is deployed in the AWS Region text box. Type execut e- api in
the Service Name input field.

374

https://www.getpostman.com/

Amazon API Gateway Developer Guide
Call the API Using a REST API Client

4.

PUT https.//9gn28ca0B6.execute-api.us-east-1.amazonaws.com/S3/myDir

Type AWS Signature

AccessKey

Secretkey Zx]

AWS Region us-east-1
Service Name execute-api

Session Token

Save helper data to request

Clear

You can create a pair of the keys from the Security Credentials tab from your IAM user account

in the IAM Management Console.

To add a bucket named api g- deno- 5 to your Amazon S3 account in the us- west - 2 region:

Note
Be sure that the bucket name must be globally unique.

a. Choose PUT from the drop-down method list and type the method URL (ht t ps: // api -

i d. execut e- api . aws-r egi on. amazonaws. coni st age/ f ol der - nane

https://9gn28calB6.execute-api.us-east-1.amazonaws.com/S3/myDir Params “
Authorization @ aders (1) quest Script

Body @ e

b. Setthe Cont ent - Type header value as appl i cati on/ xm . You may need to delete any

existing headers before setting the content type.

375

Amazon API Gateway Developer Guide
Call the API Using a REST API Client

PUT https://9gn28cal86.execute-api.us-east-1.amazonaws.com/53/myDir Params

] Headers (1)]
o Content-Type application/xml Bulk E

c. Choose Body menu item and type the following XML fragment as the request body:

<Cr eat eBucket Confi gurati on>
<Locat i onConst r ai nt >us-west - 2</ Locat i onConst r ai nt >
</ Cr eat eBucket Confi gur ati on>

PUT https:/f9gn28cali6.execute-api.us-east-1.amazonaws.com/53/myDir Params
. M

form-data x-www-form-urlencoded '@ raw binary

= | <CreateBucketConfiguration>
<LocationConstraint>us-west-2</LocationConstraint>
</CreateBucketConfigurations]

d. Choose Send to submit the request. If successful, you should receive a 200 OK response
with an empty payload.

To add a text file to a bucket, follow the instructions above. If you specify a bucket name of api g-
deno- 5 for { f ol der} and a file name of Readne. t xt for{iten} inthe URL and provide a text
string of Hel | o, Wérl d! as the request payload, the request becomes

PUT / S3/ api g- denp-5/ Readne. t xt HTTP/ 1.1
Host: 9gn28cal86. execut e- api . us-east- 1. amazonaws. com
Cont ent - Type: application/xm
X- Anz-Date: 20161015T062647Z
Aut hori zati on: AWs4- HVAC- SHA256 Credenti al =access-
key-id/ 20161015/ us- east - 1/ execut e- api / aws4_r equest,
Si gnedHeader s=cont ent - | engt h; cont ent -t ype; host ; x- anz- dat e,
Si gnat ur e=ccadh877bdb0d395ca38cc47e18a0d76bb5eaf 17007d11e40bf 6f b63d28c705b
Cache-Control : no-cache
Post man- Token: 6135d315-9cc4- 8af 8-1757-90871d00847e

Hel | o, Worl d!

If everything goes well, you should receive a 200 OK response with an empty payload.

To get the content of the Readne. t xt file we just added to the api g- denp- 5 bucket, do a GET
request like the following one:

376

Amazon API Gateway Developer Guide
Call the API Using a REST API Client

GET / S3/ api g- denp-5/ Readne. txt HTTP/ 1.1
Host: 9gn28ca086. execut e- api . us- east-1. amazonaws. com
Cont ent - Type: application/xm
X- Anz- Date: 20161015T063759Z
Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access-
key-id/ 20161015/ us- east - 1/ execut e- api / aws4_r equest
Si gnedHeader s=cont ent -t ype; host ; x- anez- dat e,
Si gnat ur e=ba09b72b585acf 0e578e6ad02555c00e24b420b59025bc7bb8d3f 7aed1471339
Cache-Control: no-cache
Post man- Token: d60f cb59- d335-52f 7- 0025- 5bd96928098a

If successful, you should receive a 200 OK response with the Hel | o, Wér |l d! text string as the
payload.

To list items in the api g- denp- 5 bucket, submit the following request:

GET / S3/ api g-denpo-5 HITP/ 1.1
Host: 9gn28ca086. execut e- api . us- east-1. amazonaws. com
Cont ent - Type: applicati on/ xm
X- Anz-Date: 20161015T064324Z
Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =access-
key-id/ 20161015/ us- east - 1/ execut e- api / aws4_r equest ,
Si gnedHeader s=cont ent - t ype; host ; x- anz- dat e,
Si gnat ur e=4ac9bd4574a14e01568134f d16814534d9951649d3a22b3b0db9f 1f 5cd4ddOac
Cache-Control: no-cache
Post man- Token: 9c43020a- 966f - 61el- 81af - 4c49ad8d1392

If successful, you should receive a 200 OK response with an XML payload showing a single item
in the specified bucket, unless you added more files to the bucket before submitting this request.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Li st Bucket Result xm ns="http://s3. amazonaws. com doc/ 2006- 03- 01/ " >
<Name>api g- deno- 5</ Name>
<Prefix></Prefix>
<Mar ker ></ Mar ker >
<MaxKeys>1000</ MaxKeys>
<I sTruncat ed>f al se</ | sTruncat ed>
<Cont ent s>
<Key>Readne. t xt </ Key>
<Last Modi fi ed>2016- 10- 15T06: 26: 48. 000Z</ Last Modi f i ed>
<ETag>"65a8e27d8879283831b664bd8b7f 0ad4" </ ETag>
<Si ze>13</ Si ze>
<Omner >
<| D>06e4b09e9d. . . 603addd12ee</ | D>
<Di spl ayNane>user - nane</ Di spl ayNane>
</ Omner >
<St or aged ass>STANDARD</ St or ageCl ass>
</ Cont ent s>
</ Li st Bucket Resul t >

377

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

Swagger Definitions of the Sample API as an
Amazon S3 Proxy

The following Swagger definitions describe the sample API , referenced in this tutorial, as an Amazon
S3 proxy.

{
"swagger": "2.0"
"info": {
"version": "2016-10-13T23: 04: 432"
"title": "MS3"
},
"host": "9gn28ca086. execut e- api . us-east - 1. anazonaws. cont',
"basePath": "/S3",
"schenes": |
"https"
1,
"paths": {
"It
"get": {

"produces": |
"application/json"

1,
"responses”: {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
"headers": {
"Content-Length": {
"type": "string"
1
"Ti mestamp": {
"type": "string"
1
"Cont ent - Type": {
"type": "string"
}
}
1
"400": {
"description": "400 response"
1
"500": {
"description": "500 response"
}
1
"security": [
"sigvad": []
}
1,
"X-anazon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:<repl aceabl e>123456789012</

repl aceabl e>: rol e/ api gAwsPr oxyRol e",
"responses": {

378

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

"A\Nd{2}": {
"statusCode": "400"

b

"default": {

"statusCode": "200",
"responseParaneters": {
"met hod. response. header . Cont ent - Type"
"integration.response. header. Cont ent - Type",
"met hod. response. header. Cont ent - Lengt h":
"integration.response. header. Cont ent - Lengt h",
"met hod. r esponse. header . Ti nest anp" :
"integration.response. header. Dat e"

}
H
"5\\d{2}": {
"statusCode": "500"
}
H
"uri": "arn:aws: api gat eway: us-west-2:s3:path//",
"passt hroughBehavi or": "when_no_nat ch",
"httpMet hod": "GET"
"type": "aws"
}
}
H
"I{folder}": {
"get": {

"produces": |
"application/json"

1.

"paraneters": [

{

nane": "fol der",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"

}

eaders": {
"Content-Length": {

"type": "string"
H
"Date": {

"type": "string"
H
"Cont ent - Type": {

"type": "string"

}

}
H
"400": {

"description": "400 response"

b

379

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

"500": {
"description": "500 response"
}
1
"security": [
"sigvad": []
}
1.
"X-anmazon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:<repl aceabl e>123456789012</

repl aceabl e>: rol e/ api gAwsPr oxyRol e",
"responses": {
"AN\Nd{2}": {
"statusCode": "400"
H
"default": {
"statusCode": "200",
"responseParaneters": {
"met hod. response. header . Cont ent - Type"
"integration.response. header. Cont ent - Type",
"met hod. response. header. Dat e":
"integration.response. header. Date",
"met hod. response. header . Cont ent - Lengt h":
"integration.response. header. content-1| ength"
}
H
"s5\\d{2}": {
"statusCode": "500"
}
H
"request Paraneters": {
"integration.request.path. bucket": "nethod.request. path.fol der"
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket } ",
"passt hroughBehavi or": "when_no_nat ch",
"httpMet hod": "GET"
"type": "aws"
}
H
"put": {
"produces": |
"application/json"
1,
"paraneters": [
{
"nane": "Content-Type",
"in": "header",
"required": false
"type": "string"

"nanme": "folder",
I|i nll: " pat hll,
"required": true,
"type": "string"
}
1,

"responses": {

380

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
1
"headers": {
"Content-Length": {
"type": "string"
1
"Cont ent - Type": {
"type": "string"
}
}
1
"400": {
"description": "400 response"
1
"500": {
"description": "500 response"
}
1
"security": [
"sigvad": []
}
1,
"X-anezon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:<repl aceabl e>123456789012</

repl aceabl e>: rol e/ api gAwsPr oxyRol e",
"responses": {
"AN\Nd{2}": {
"statusCode": "400"
H
"default": {
"statusCode": "200",
"responseParaneters": {
"met hod. response. header . Cont ent - Type"
"integration.response. header. Cont ent - Type",
"met hod. response. header. Cont ent - Lengt h":
"integration.response. header. Cont ent - Lengt h"

}
1
"5\\d{2}": {
"statusCode": "500"
}
1
"request Paraneters": {
"integration.request. header. x-ane-acl": "'authenticated-read "
"integration.request. header. Expect": "'100-continue'"
"integration.request.path. bucket": "nethod.request. path.folder",

"integration.request. header. Content-Type":
"met hod. request . header . Cont ent - Type"

1

"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket } ",
"passt hroughBehavi or": "when_no_nat ch",

"httpMethod": "PUT",

"type": "aws"

381

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

"delete": {
"produces": |
"application/json"

1,
"paraneters": [
{
"name": "fol der",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
H
"headers": {
"Date": {
"type": "string"
H
"Cont ent - Type": {
"type": "string"
}
}
H
"400": {
"description": "400 response"
H
"500": {
"description": "500 response"
}
H
"security": [
"sigvad": []
}
1,
"X-anmazon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:<repl aceabl e>123456789012</

repl aceabl e>: rol e/ api gAwsPr oxyRol e",
"responses": {
"A\Nd{2}": {
"statusCode": "400"
H
"default": {
"statusCode": "200",
"responseParaneters": {
"met hod. response. header . Cont ent - Type"
"integration.response. header. Cont ent - Type",
"met hod. response. header. Dat e":
"integration.response. header. Dat e"
}
H
"s5\\d{2}": {
"statusCode": "500"

382

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

"request Paraneters": {

"integration.request.path. bucket": "nethod.request. path.fol der"
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket } ",
"passt hroughBehavi or": "when_no_nat ch",
"httpMethod": "DELETE",
"type": "aws"
}
}
H
"/{folder}/{item": {
"get": {
"produces": |
"application/json"
1,
"paraneters": [
{
"nanme": "itent,
"in": "path",
"required": true,
"type": "string"
3
{
"name": "folder",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
H
"headers": {
"content-type": {
"type": "string"
H
"Cont ent - Type": {
"type": "string"
}
}
H
"400": {
"description": "400 response"
H
"500": {
"description": "500 response"
}
H
"security": [
"sigvad": []
}
1,
"X-anmzon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:<repl aceabl e>123456789012</

repl aceabl e>: rol e/ api gAwsPr oxyRol e",

383

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

"responses": {
"AN\Nd{2}": {
"statusCode": "400"
}s
"default": {
"stat usCode": "200",
"responseParaneters": {
"met hod. response. header . content-type":
"integration.response. header. content-type",
"met hod. response. header . Cont ent - Type":
"integration.response. header. Cont ent - Type"
}
b,
"s5\\d{2}": {
"statusCode": "500"
}
}s
"request Paraneters": {
"integration.request.path.object”: "nethod.request.path.itent,
"integration.request.path. bucket": "nethod.request. path.fol der"
}s
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket}/{object}",
"passt hroughBehavi or": "when_no_nat ch",
"httpMet hod": "GET",
"type": "aws"
}
}s
"head": {
"produces": |
"application/json"
I,
"paraneters": [
{
"nanme": "itent,
"in": "path",
"required": true,
"type": "string"

"nane": "folder",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}s
"headers": {
"Content-Length": {
"type": "string"
}s
"Cont ent - Type": {
"type": "string"
}
}

384

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

}s
"400": {
"description": "400 response"
}s
"500": {
"description": "500 response"
}
}s
"security": [
"sigvad": []
}
1.
"Xx-anmazon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:<repl aceabl e>123456789012</

repl aceabl e>: rol e/ api gAwsPr oxyRol e",
"responses": {
"AN\Nd{2}": {
"statusCode": "400"
}s
"default": {
"stat usCode": "200",
"responseParaneters": {
"met hod. response. header . Cont ent - Type"
"integration.response. header. Cont ent - Type",
"met hod. response. header . Cont ent - Lengt h":
"integration.response. header. Cont ent - Lengt h"
}
}s
"5\\d{2}": {
"statusCode": "500"
}
}

"request Paraneters": {
"integration.request.path.object": "nethod.request.path.itent
"integration.request.path. bucket": "nethod.request. path.fol der"
H
"uri": "arn:aws: api gat eway: us-west - 2: s3: pat h/ { bucket}/{object}",
"passt hroughBehavi or": "when_no_nat ch",
"httpMethod": "HEAD',
"type": "aws
}
H
"put": {
"produces": [
"application/json"
1,
"paraneters": [

{

"nane": "Content-Type",
"in": "header",
"required": false
"type": "string"

"nanme": "itent,
I|i nll: " pat hll’
"required": true,
"type": "string"

385

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

3
{
"name": "folder",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses”: {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
H
"headers": {
"Content-Length": {
"type": "string"
H
"Cont ent - Type": {
"type": "string"
}
}
H
"400": {
"description": "400 response"
H
"500": {
"description": "500 response"
}
H
"security": [
"sigvad": []
}
1,
"X-anmazon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:<repl aceabl e>123456789012</

repl aceabl e>: rol e/ api gAwsPr oxyRol e",
"responses": {
"AN\Nd{2}": {
"statusCode": "400"
H
"default": {
"statusCode": "200",
"responseParaneters": {
"met hod. response. header . Cont ent - Type"
"integration.response. header. Cont ent - Type",
"met hod. response. header. Cont ent - Lengt h":
"integration.response. header. Cont ent - Lengt h"

}
1
"5\\d{2}": {
"statusCode": "500"
}
1
"request Paraneters": {
"integration.request.path.object": "nethod.request.path.itent
"integration.request. header. x-ane-acl": "'authenticated-read "
"integration.request. header. Expect": "'100-continue'"

386

Amazon API Gateway Developer Guide
Swagger Definitions of a Sample
APl as an Amazon S3 Proxy

"integration.request.path. bucket": "nethod.request. path.folder",
"integration.request. header. Content-Type":
"met hod. request . header . Cont ent - Type"

1
"uri": "arn:aws: api gat eway: us-west - 2: s3: pat h/ { bucket}/{object}",
"passt hroughBehavi or": "when_no_nat ch",
"httpMethod": "PUT",
"type": "aws"
}
1
"delete": {

"produces": |
"application/json"

1.

"paraneters": [

{

"nanme": "itent,
I|i nll: " pat hll’
"required": true,
"type": "string"

nane": "folder",
"in": "path",
"required": true,
"type": "string"
}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}

eaders": {
"Content-Length": {

"type": "string"
H
"Cont ent - Type": {
"type": "string"

}

}
H
"400": {

"description": "400 response"
}

"500": {
"description": "500 response"
}

H

"security": [

"sigvad": []
}
1,
"Xx-amazon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:<repl aceabl e>123456789012</
repl aceabl e>: rol e/ api gAwsPr oxyRol e",
"responses": {

387

Amazon API Gateway Developer Guide
Create an API as an Amazon Kinesis Proxy

"A\Nd{2}": {
"statusCode": "400"
H
"default": {
"statusCode": "200"
H
"s5\\d{2}": {
"statusCode": "500"
}
H
"request Paraneters": {
"integration.request.path.object”: "nethod.request.path.itent,
"integration.request.path. bucket": "nethod.request. path.fol der"
H
"uri": "arn:aws: api gat eway: us- west - 2: s3: pat h/ { bucket}/{object}",
"passt hroughBehavi or": "when_no_nat ch",
"httpMethod": "DELETE",
"type": "aws"
}
}
}
},
"securitybDefinitions": {
"sigv4d": {
"type": "api Key",
"nane": "Authorization",
"in": "header",
"Xx-amazon- api gat eway- aut htype": "awsSi gv4"

}
}

efinitions": {

" Errpt yll : {
"type": "object",
“"title": "Enpty Schenmmn"

Create an AP| Gateway APl as an Amazon
Kinesis Proxy

This section describes how to create and configure an APl Gateway APl as an AWS proxy to access
Amazon Kinesis.

Note

To integrate your APl Gateway API with Amazon Kinesis, you must choose a region where
both the API Gateway and Amazon Kinesis services are available. For region availability, see
Regions and Endpoints.

For the purpose of illustration, we will create an example API to enable a client to do the following:

1. List the user's available streams in Amazon Kinesis
2. Create, describe, or delete a specified stream

3. Read data records from or write data records into the specified stream

388

http://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide
Create an APl as an Amazon Kinesis Proxy

To accomplish the preceding tasks, the API exposes methods on various resources to invoke the
following, respectively:

1.
2.
3.

The Li st St r eans action in Amazon Kinesis
The Cr eat eSt r eam Descri beSt r eam or Del et eSt r eamaction

The Get Recor ds or Put Recor ds (including Put Recor d) action in Amazon Kinesis

Specifically, we will build the API as follows:

Expose an HTTP GET method on the API's / st r eans resource and integrate the method with the
ListStreams action in Amazon Kinesis to list the streams in the caller's account.

Expose an HTTP POST method on the API's / st r eans/ { st r eam nane} resource and integrate
the method with the CreateStream action in Amazon Kinesis to create a hamed stream in the caller's
account.

Expose an HTTP GET method on the API's / st r eans/ { st r eam nane} resource and integrate
the method with the DescribeStream action in Amazon Kinesis to describe a named stream in the
caller's account.

Expose an HTTP DELETE method on the API's / st r eans/ { st r eam nane} resource and integrate
the method with the DeleteStream action in Amazon Kinesis to delete a stream in the caller's
account.

Expose an HTTP PUT method on the API's / st r eans/ { st r eam nane}/ r ecor d resource and
integrate the method with the PutRecord action in Amazon Kinesis. This enables the client to add a
single data record to the named stream.

Expose an HTTP PUT method on the API's / st r eans/ { st r eam nane}/ r ecor ds resource and
integrate the method with the PutRecords action in Amazon Kinesis. This enables the client to add a
list of data records to the named stream.

Expose an HTTP GET method on the API's / st r eans/ { st r eam nane}/ r ecor ds resource and
integrate the method with the GetRecords action in Amazon Kinesis. This enables the client to list
data records in the named stream, with a specified shard iterator. A shard iterator specifies the shard
position from which to start reading data records sequentially.

Expose an HTTP GET method on the API's / st r eans/ { st r eam nane}/ shardi t er at or
resource and integrate the method with the GetShardlterator action in Amazon Kinesis. This helper
method must be supplied to the Li st St r eans action in Amazon Kinesis.

You can apply the instructions presented here to other Amazon Kinesis actions. For the complete list of
the Amazon Kinesis actions, see Amazon Kinesis API Reference.

Instead of using the API Gateway console to create the sample API, you can import the sample API
into APl Gateway, using either the APl Gateway Import API or the API Gateway Swagger Importer. For
information on how to use the Import API, see Import an API (p. 142). For information on how to use
the API Gateway Swagger Importer, see Getting Started with the APl Gateway Swagger Importer.

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS

1.
2.

Open http://aws.amazon.com/ and choose Create an AWS Account.
Follow the online instructions.

389

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeleteStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
https://github.com/awslabs/aws-apigateway-importer
http://swagger.io/getting-started-with-the-amazon-swagger-importer/
http://aws.amazon.com/

Amazon API Gateway Developer Guide
Create an IAM Role and Policy for
the API to Access Amazon Kinesis

Create an IAM Role and Policy for the API to Access
Amazon Kinesis

To allow the API to invoke Amazon Kinesis actions, you must have appropriate IAM policies attached
to an IAM role. This section explains how to verify and to create, if necessary, the required IAM role
and policies.

To enable read-only access to Amazon Kinesis, you can use the AmazonKinesisReadOnlyAccess
policy that allows the Get *, Li st *, and Descr i be* actions in Amazon Kinesis to be invoked.

{
"Version": "2012-10-17",
"Statenment": [
{
"Effect": "All ow',
"Action": [
"ki nesi s: Get*",
"ki nesi s: List*",
"ki nesi s: Descri be*"
I,
"Resource": "*"
}
]
}

This policy is available from the IAM console and its ARN is ar n: aws: i am : aws: pol i cy/
AmazonKi nesi sReadOnl yAccess.

To enable read-write actions in Amazon Kinesis, you can use the AmazonKinesisFullAccess policy.

{
"Version": "2012-10-17",
"Statenent": [
{
"Effect": "Allow',
"Action": "kinesis:*",
"Resource": "*"
}
]
}

This policy is also available from the IAM console. Its ARN is ar n: aws: i am : aws: pol i cy/
AmazonKi nesi sFul | Access.

After you decide which IAM policy to use, attach it to a new or existing IAM role. Make sure that the API
Gateway control service (api gat eway. amazonaws. conj is a trusted entity of the role and is allowed
to assume the execution role (st s: AssuneRol e).

{
"Version": "2012-10-17",

"Statenent": [

390

Amazon API Gateway Developer Guide
Start to Create an APl as an Amazon Kinesis Proxy

{
"Sidt:o"t,
"Effect": "Alow',
"Principal": {
"Service": "apigateway. anazonaws. conf
H
"Action": "sts:AssuneRol e"
}

If you create the execution role in the IAM console and choose the Amazon API Gateway role type,
this trust policy is automatically attached.

Note the ARN of the execution role. You will need it when creating an APl method and setting up its
integration request.

Start to Create an APl as an Amazon Kinesis Proxy

Use the following steps to create the API in the APl Gateway console.
To create an APl as an AWS service proxy for Amazon Kinesis

In the API Gateway console, choose Create API.

In APl name, type Ki nesi sProxy. Leave the default values in the other fields.
For Clone from API, choose Do not clone from existing API.

Type a description in Description.

Choose Create API.

ok wbdRE

After the APl is created, the APl Gateway console displays the Resources page, which contains only
the API's root (/) resource.

List Streams in Amazon Kinesis

To list streams in Amazon Kinesis, add a / st r eans resource to the API's root, expose a GET method
on the resource, and integrate the method to the Li st St r eans action of Amazon Kinesis.

The following procedure describes how to list Amazon Kinesis streams by using the API Gateway
console.

To list Amazon Kinesis streams by using the APl Gateway console
1. Select the API root resource. In Actions, choose Create Resource.

In Resource Name, type St r eans, leave Resource Path as the default, and choose Create
Resource.

2. Selectthe / St r eans resource. From Actions, choose Create Method, choose GET from the list,
and then choose the checkmark icon to finish creating the method.

Note
You can choose any of the available HTTP verbs for a method request. We use GET here,
because listing streams is a READ operation.

3. Inthe method's Setup pane, choose Show Advanced and then choose AWS Service Proxy.

a. For AWS Region, choose a region (e.g., us-east-1).

391

Amazon API Gateway Developer Guide
List Streams in Amazon Kinesis

b. For AWS Service, choose Kinesis.
c. For HTTP method, choose POST.

Note

For the integration request with Amazon Kinesis, you must choose the POST HTTP
verb to invoke the action, although you can use any of the available HTTP verbs for
the API's method request.

d. For Action Type, choose Use action name.

e. For Action, type Li st Str eans.

f. For Execution role, type the ARN for your execution role.
g. Choose Save to finish the initial setup of the method.

€ Method Execution /streams - GET - | ntegration Request
Provide information about the target backend that this method will call and whether the incoming request data should be medified.

Integration type Lambda Function
HTTP Proxy
Mock Integration
@ AWS Service Proxy
AWS Region us-east-1
AWS Service Kinesis
AWS Subdomain
HTTP method POST
Action ListStreams .
Execution role arn:aws:iam: :role/apigAwsProxyRole

Credentials cache Do not add caller credentials to cache key

The initial setup of the integration request will suffice if there is no need to map data between

the method and integration requests and/or between the method and integration responses.
Examples discussed in this topic require data mapping, which is covered in the second half of the
Integration Request pane.

4. Inthe Integration Request pane, expand the HTTP Headers section:

a. Choose Add header.
b. Inthe Name column, type Cont ent - Type.
c. Inthe Mapped from column, type ' appl i cati on/ x-ane-j son-1.1'".
d. Choose the checkmark icon to save the setting.
5. Expand the Body Mapping Templates section:

Choose Add mapping template.

For Content-Type, type appl i cati on/j son.

Choose the checkmark icon to save the setting.

Choose the pencil icon to the right of Mapping template.

Choose Mapping template from the drop-down list to open the Template editor.

-~ ® 2 o0 T p

Type {} in the template editor.
Choose the checkmark icon to save the mapping template.

g.

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html#API_ListStreams_RequestSyntax

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

"ExclusiveStart StreanNanme": "string",
"Limt": nunber

However, the properties are optional. To use the default values, we opted for an empty JSON
payload here.

» URL Path Parameters
» URL Query String Parameters

v HTTP Headers
Name Mapped from & Caching
Content-Type ‘application/x-amz-json-1.1' #0

© Add header

+~ Body Mapping Templates
Content-Type application/json Mapping template &

application/json e Template ™

1 {
© Add mapping template 2

6. Testthe GET method on the Streams resource to invoke the Li st St r eans action in Amazon
Kinesis:

From the APl Gateway console, select the /streams/GET entry from the Resources pane, choose
the Test invocation option, and then choose Test.

If you have already created two streams named "myStream” and "yourStream" in Amazon Kinesis,
the successful test will return a 200 OK response containing the following payload:

{
"HasMbr eStreans": false,
"StreamNanes": |
"nyStreant,
"your St r eant
]
}

Create, Describe, and Delete a Stream in Amazon
Kinesis

393

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

Creating, describing, and deleting a stream in Amazon Kinesis involves making the following Amazon
Kinesis REST API requests, respectively:

POST / ?Acti on=CreateStream HTTP/ 1.1
Host: Kkinesis.region.donain

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Shar dCount ": nunber,

"StreanNane": "string"

POST / ?Acti on=Descri beStream HTTP/ 1.1
Host: Kinesis.region. domain

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Excl usiveStart Shardld": "string",
"Limt": nunber,
"StreanNane": "string"

}

POST /?Acti on=Del et eStream HTTP/ 1.1
Host: Kinesis.region.donain

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
}

"StreanNanme": "string"

We can build our API to accept the required input as a JSON payload of the method request and pass
the payload through to the integration request. However, to provide more examples of data mapping
between method and integration requests, and method and integration responses, we will create our
API slightly differently.

We will expose the GET, POST, and Del et e HTTP methods on a to-be-named St r eamresource. We
will use the { st r eam nane} path variable to hold the to-be-named stream resource and integrate
these API methods with the Amazon Kinesis' Descr i beSt r eam Cr eat eSt r eam and Del et eSt r eam
actions, respectively. We require that the client pass other input data as headers, query parameters,

or the payload of a method request, and we provide mapping templates to transform the data to the
required integration request payload.

After the methods are created on a to-be-named stream resource, the structure of the API looks like
the following:

394

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

Resources Actions ~

- &

~ & Jstreams

+ & [{stream-name}

To configure and test the GET method on a stream resource
1. Setupthe GET method to describe a named stream in Amazon Kinesis, as shown in the following.

€ Method Execution
/streams/{stream-name} - GET - Integration Request

Provide information about the target backend that this method will call and whether the incoming request
data should be modified.

Integration type Lambda Function
HTTP Proxy
Mock Integration
@ AWS Service Proxy
AWS Region us-east-1 4
AWS Service Kinesis &
AWS Subdomain ¢
HTTP method POST #
Action DescribeStream
Execution role arm:aws:iam::7. = T role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

2. Map data from the GET method request to the integration request, as shown in the following:

395

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

HTTP method POST #
Action DescribeStream
Execution role arn:aws:iam:: 7Hl= "=n ":role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #*

» URL Path Parameters
» URL Query String Parameters
» HTTP Headers

~ Body Mapping Templates

Content-Type application/json Mapping template #
application/json -] Template
i {
0 Add mapping template 23’ - “StreamName”: "$input.params(’stream-name’)"

Test the GET method to invoke the Descr i beSt r eamaction in Amazon Kinesis:

From the API Gateway console, select /streams/{stream-name}/GET in the Resources pane,
choose Test to start testing, type the name of an existing Amazon Kinesis stream in the Path field

for st r eam nane, and choose Test. If the test is successful, a 200 OK response is returned with a
payload similar to the following:

" St reanmDescription”: {
"HasMor eShards": fal se,
"Ret enti onPeri odHours": 24,
"Shards": [

"HashKeyRange": {
"Endi ngHashKey": "68056473384187692692674921486353642290",
"StartingHashkKey": "0"
8
" SequenceNunber Range": {
"StartingSequenceNunber™:
"49559266461454070523309915164834022007924120923395850242"
}

har dl d": "shardl d- 000000000000"
}

{
"HashKeyRange": {
"Endi ngHashKey": "340282366920938463463374607431768211455",

"StartingHashKey": "272225893536750770770699685945414569164"
I
" SequenceNunber Range": {
" StartingSequenceNunber™:
"49559266461543273504104037657400164881014714369419771970"

b

396

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

"Shardl d": "shardl d-000000000004"
}
I,
"StreamARN': "arn:aws: ki nesi s: us-east-1:12345678901: streani nyStreant',

"StreamNane": "nyStreant,
"Streanttatus": "ACTI VE"

After you deploy the API, you can make a REST request against this APl method:

CET https://your-api-id.execute-api.regi on.amazonaws. conl st age/
streans/ nyStream HTTP/ 1. 1

Host: your-api-id. execute-api.regi on.amazonaws. com

Cont ent - Type: application/json

Aut hori zati on:

X- Anz- Dat e: 20160323T1944517

To configure and test the POST method on a stream resource

1. Setup the POST method on a stream resource to create the stream in Amazon Kinesis, as shown
in the following:

€ Method Execution
/streams/{stream-name} - POST - Integration Request

Provide information about the target backend that this method will call and whether the incoming request
data should be modified.

Integration type Lambda Function
HTTP Proxy
Mock Integration
@ AWS Service Proxy
AWS Region us-east-1 4

AWS Service Kinesis #

AWS Subdomain ¢

HTTP method POST #
Action CreateStream #
Execution role arn:aws:iam::7! 7.role/apigAwsProxyRole

Credentials cache Do not add caller credentials to cache key #

2. Map data from the POST method request to the integration request, as shown in the following:

397

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

HTTP method POST .
Action CreateStream #
Execution role arn:aws:iam ":role/apigAwsProxyRole
Credentials cache Do not add caller credentials to cache key &

» URL Path Parameters
» URL Query String Parameters
» HTTP Headers

~ Body Mapping Templates

Content-Type application/json

application/json e Generate template -
1~y
© Add mapping template - =ShardCount™: #if($input.path(‘s.ShardCount’) == **)
5
Helse
$input.path('$.ShardCount")
#end,

SO W R W
“

"StresmName™: “$input.psrams(’stream-name’)"

g)

In this example, we use the following mapping template to set Shar dCount to a fixed value of 5 if
the client does not specify a value in the method request payload. Otherwise, we pass the client-
supplied value to the back end.

{
"ShardCount": #if($input.path('$.ShardCount') == "") 5 #el se
$i nput . pat h(* $. ShardCount')",
"StreanName": "$input. parans(’' streamnanme')"
}
The precedingif ($input.path('$. ShardCount') == "') ... Boolean expression

tests if the method request's JSON payload does not have the Shar dCount property declared or if
the property value is empty.

Test the POST method to create a named stream in Amazon Kinesis:

From the API Gateway console, select /streams/{stream-name}/POST in the Resources pane,
choose Test to start testing, type the name of an existing Amazon Kinesis stream in Path for

st r eam nane, and choose Test. If the test is successful, a 200 OK response is returned with no
data.

After you deploy the API, you can also make a REST API request against the POST method on a
Stream resource to invoke the Cr eat eSt r eamaction in Amazon Kinesis:

POST https://your-api-id.execute-api.region.amzonaws. com st age/
streans/your Stream HTTP/ 1. 1

Host: your-api-id. execut e-api.regi on. amazonaws. com

Cont ent - Type: application/json

Aut hori zati on:

X- Anez- Date: 20160323T194451Z

{
"ShardCount": 5

398

Amazon API Gateway Developer Guide
Create, Describe, and Delete a Stream in Amazon Kinesis

Configure and test the DELETE method on a stream resource

1. Setup the DELETE method to invoke the Del et eSt r eamaction in Amazon Kinesis, as shown in
the following.

€ Method Execution
/streams/{stream-name} - DELETE - Integration Request

Provide information about the target backend that this method will call and whether the incoming request data
should be modified.

Integration type Lambda Function
HTTP Proxy
Mock Integration

9 AWS Service Proxy
AWS Region us-east-1 4
AWS Service Kinesis #

AWS Subdomain &
HTTP method POST #
Action DeleteStream #

Execution role arn:aws:iam:: 75 == 7:role/apigAwsProxyRole

Credentials cache Do not add caller credentials to cache key #

2. Map data from the DELETE method request to the integration request, as shown in the following:

399

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

HTTP method POST &
Action DeleteStream +
Execution role arn:aws:iam::738575810317:role/apigAwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters

» URL Query String Parameters

» HTTP Headers

Name Mapped from & Caching
Content-Type ‘application/x-amz-json-1.1' #O

© Add header

~ Body Mapping Templates

Content-Type application/json Mapping template #
application/json) Template »*
e {
0 Add mapping 1emplate g) StreamName”: "$input.params(’'stream-name’)

3. Testthe DELETE method to delete a named stream in Amazon Kinesis:

From the API Gateway console, select the /streams/{stream-name}/DELETE method node in

the Resources pane, choose Test to start testing, type the name of an existing Amazon Kinesis
stream in Path for st r eam name, and choose Test. If the test is successful, a 200 OK response is
returned with no data.

After you deploy the API, you can also make the following REST API request against the DELETE

method on the Stream resource to call the Del et eSt r eamaction in Amazon Kinesis:

DELETE https://your-api-id. execute-api.regi on.amazonaws. com st age/
streans/ your Stream HTTP/ 1. 1

Host: your-api-id. execute-api.regi on.amazonaws. com

Cont ent - Type: application/json

Aut hori zati on:

X- Anz- Dat e: 20160323T1944517

{1

Get Records from and Add Records to a Stream in
Amazon Kinesis

After you create a stream in Amazon Kinesis, you can add data records to the stream and read the
data from the stream. Adding data records involves calling the PutRecords or PutRecord action in

400

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html#API_PutRecords_Examples
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html#API_PutRecord_Examples

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

Amazon Kinesis. The former adds multiple records whereas the latter adds a single record to the
stream.

POST / ?Acti on=Put Records HITP/ 1.1
Host: Ki nesis.region.donain
Aut hori zation: AWS4- HVAC- SHA256 Credential =. ..,

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Records": [
{
"Data": bl ob,
"ExplicitHashKey": "string",
"PartitionKey": "string"
}
I,
"StreanNane": "string"
}
or

POST / ?Acti on=Put Record HTTP/ 1.1
Host: ki nesis.region.donain
Aut hori zati on: AWB4- HVAC- SHA256 Credential =. ..,

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Data": bl ob,
"ExplicitHashKey": "string",
"PartitionKey": "string",
" SequenceNunber For Ordering": "string",
"StreanNane": "string"

}

Here, St r eanNane identifies the target stream to add records. St r eanNarne, Dat a, and
Partiti onKey are required input data. In our example, we use the default values for all of the
optional input data and will not explicitly specify values for them in the input to the method request.

Reading data in Amazon Kinesis amounts to calling the GetRecords action:

POST / ?Acti on=Get Records HTTP/ 1.1
Host: Kinesis.region.donain
Aut hori zati on: AWS4- HVAC- SHA256 Credential =.. .,

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{

"Shardlterator": "string",

401

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html#API_GetRecords_Examples

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

"Limt": nunber

Here, the source stream from which we are getting records is specified in the required
Shar dl t er at or value, as is shown in the following Amazon Kinesis action to obtain a shard iterator:

POST / ?Action=Cet Shardlterator HTTP/ 1.1
Host: Kkinesis.region. domain
Aut hori zati on: AWS54- HVAC- SHA256 Credential =. ..,

Cont ent - Type: application/x-ane-json-1.1
Cont ent - Lengt h: Payl oadSi zeByt es

{
"Shardld": "string",
"ShardlteratorType": "string",
"StartingSequenceNunber": "string",
"StreanNane": "string"

}

For the Get Recor ds and Put Recor ds actions, we expose the GET and PUT methods, respectively, on
a/records resource that is appended to a named stream resource (/ { st r eam nane}). Similarly, we
expose the Put Recor d action as a PUT method on a/ r ecor d resource.

Because the Get Recor ds action takes as input a Shar dl t er at or value, which is obtained by calling
the Get Shar dl t er at or helper action, we expose a GET helper method on a Shar dl t er at or
resource (/ shardi t erat or).

The following figure shows the API structure of resources after the methods are created:

Resources Actions ~

- &

v & [streams

v & [[stream-name}

DEIETE

& Irecords
PUT
~ & frecord
PUT
~ & /sharditerator

The following four procedures describe how to set up each of the methods, how to map data from the
method requests to the integration requests, and how to test the methods.

To configure and test the PUT method on the record resource in the APl to invoke the
PutRecord action in Amazon Kinesis:

1. Setup the PUT method, as shown in the following:

402

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

€ Methed Execution /Streams/{stream-name}/record - PUT - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be modified

Integration type Lambda Function
HTTP Proxy

Mock Integration
@ AWS Service Proxy

AWS Region us-east-1.#

AWS Service (Kinesis +

AWS Subdomain &

HTTP method{ POST +#
Actio

Execution role arn:aws:iam::7 n T:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #
Configure data mapping for the PUT-on-Record method, as shown in the following:
Action GRecord 7
Execution role arn:awsiiam:: 7B T:role/apighwsProxyRole +#

Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters

+» HTTP Headers

Name Mapped from & Caching

Content-Type ‘application/x-amz-json-1.1' #0

© Add header

~ Body Mapping Templates

Content-Type application/json Mapping template #*
application/json -] Template ™
ot
. 2 "Streamiame™: "$input.params(’stream-name’)"
© Add mapping template 3 “Data™: "Sutil.basebaEncode($input.path(’$.Data’))",
4 “Partitionkey”: “$input.path("$.PartitionKey')"
5 1

The preceding mapping template assumes that the method request payload is of the following
format:

"Data": "sone data",
"PartitionKey": "sone key"

This data can be modeled by the following JSON schema:

403

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

"$schemn": "http://json-schema. org/draft-04/ schema#",
"title": "PutRecord proxy single-record payl oad",
"type": "object"”,
"properties": {

"Data": { "type": "string" },

"PartitionKey": { "type": "string" }

You can create a model to include this schema and use the model to facilitate generating the
mapping template. However, you can generate a mapping template without using any model.

To test the PUT method, set the st r eam nane path variable to an existing stream, supply a
payload of the preceding format, and then submit the method request. The successful result is a
200 OK response with a payload of the following format:

{
" SequenceNunber ":

"49559409944537880850133345460169886593573102115167928386",
"Shardl d": "shardl d-000000000004"

To configure and test the PUT method on the records resource in the API to invoke the
PutRecords action in Amazon Kinesis

1. Setup the PUT method, as shown in the following:

€ Method Execution /Streams/{stream-name}/records - PUT - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type Lambda Function
HTTP Proxy

Mock Integration
© AWS Service Proxy

AWS Region us-east-1.4

AWS Ser\rice

AWS Subdomain

HTTP method(FOST #)
Actionl PutRecords .

Execution role arn:awsiam:7. T:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

2. Configure data mapping for the PUT method, as shown in the following:

404

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

Action PutRecords #
Execution role am:aws:iam::7/8™ 7:role/apigAwsProxyRole #'

Credentials cache Do not add caller credentials to cache key +*

» URL Path Parameters

» URL Query String Parameters
» HTTP Headers

+ Body Mapping Templates

Content-Type application/json Mapping template #*

application/json e Template
gl

“StreanName”: “$input.params(’stream-name’)”,
“Records™: [

#foreach($elem in $input.path('$.records’))
{

© Add mapping template

"Data": "$util.basebdEncode($elem.data)"”,
"PartitionKey”: "$elem.partition-key”
J#if($foreach.hasNext),#end
#end

1

¥

The preceding mapping template assumes the method request payload can be modeled by
following JSON schema:

{
"$schema": "http://json-schema. org/draft-04/schema#",
"title": "PutRecords proxy payl oad data",
"type": "object”,
"properties”: {
"records": {
"type": "array",
"items": {
"type": "object"”,
"properties”: {
"data": { "type": "string" },
"partition-key": { "type": "string" }
}
}
}
}
}

To test the PUT method, set the st r eam nane path variable to an existing stream, supply a

payload as previously shown, and submit the method request. The successful result is a 200 OK
response with a payload of the following format:

"records": |
{
"data": "sone data",
"partition-key": "sone key"

405

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

},
{
"data": "sone other data",
"partition-key": "some key"
}

The response payload will be similar to the following output:

{
"Fai | edRecordCount": O,

"Records": |

{

" SequenceNunber " :
"49559409944537880850133345460167468741933742152373764162",

"Shardld": "shardl d- 000000000004"

b

{
" SequenceNunber " :

" 49559409944537880850133345460168677667753356781548470338",
"Shardld": "shardl d- 000000000004"

}
]
}

To configure and test the GET method on the Shardlterator resource in the APl to
invoke the GetShardlterator action in Amazon Kinesis

The GET-on-Shardlterator method is a helper method to acquire a required shard iterator before calling
the GET-on-Records method.

Set up the GET-on-Shardlterator method, as shown in the following:

€ Method Execution /streams/{stream-name}/sharditerator - GET - Integration R...

Provide information about the target backend that this method will call and whether the incoming request data should be medified.

Integration type Lambda Function
HTTP Proxy

Mock Integration

9 AWS Service Proxy

AWS Region us-east-1 #

AWS Service

AWS Subdomain &

HTTP method
Action (GetSharditerator #*

Execution role am:aws:iam:.7 7.role/apigAwsProxyRole +#

Credentials cache Do not add caller credentials to cache key #

406

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

The Get Shar dl t er at or action requires an input of a Shardld value. To pass a client-supplied
Shar dlI d value, we add a shar d- i d query parameter to the method request, as shown in the

following:
€ Method Execution /streams/{stream-name)/sharditerator - GET - Method Req...

Provide information about this method's authorization settings and the parameters it can receive.

Authorization Settings

Authorization NONE #@

APl Key Required false #
~ Request Paths

Name Caching

stream-name
* URL Query String Parameters

Name Caching

°

© Add query string
» HTTP Request Headers
» Request Models Create a Model
In the following mapping template, we add the translation of the shar d- i d query parameter

value to the Shar dl d property value of the JSON payload for the Get Shar dl t er at or action in
Amazon Kinesis.

Configure data mapping for the GET-on-Shardlterator method:

Action GetSharditerator #
Execution role arn:aws:iam:7. - T'role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters

v HTTP Headers

Name Mapped from € Caching

Content-Type ‘application/x-amz-json-1.1'] #S0

© Add header

+* Body Mapping Templates

Content-Type application/json Mapping template &'
application/json -] Template
1+ {
i 2 “ShardId": “$input.params(’shard-id’)",
© Add mapping template 3 “ShardIteratorType™: “TRIM_HORIZON",
4 “Streanllame”: "$input.params(’stream-name’)"
5)

407

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

Using the Test option in the APl Gateway console, enter an existing stream name as the st r eam
nane Path variable value, set the shar d- i d Query string to an existing Shar dl d value (e.g.,
shar d- 000000000004), and choose Test.

The successful response payload will be similar to the following output:

{
}

"Shardlterator": "AAAAAAAAAAFYVN3VI Fy. . ."

Make note of the Shar dl t er at or value. You will need it to get records from a stream.

To configure and test the GET Method on the records resource in the API to invoke the
GetRecords action in Amazon Kinesis

1. Setup the GET method, as shown in the following:

€ Method Execution /streams/{stream-name}/records - GET - Integration Request
Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type Lambda Function
HTTP Proxy
Mock Integration

@ AWS Service Proxy

AWS Region us-sast-1 4

AW Service (inesis #)

AWS Subdomain &

HTTP methnd
Action{ GetRecords #

Execution role am:aws:iam::7 7:role/apigAwsProxyRole #

Credentials cache Do not add caller credentials to cache key

The Get Recor ds action requires an input of a Shar dl t er at or value. To pass a client-supplied
Shar dl t er at or value, we add a Shar d- | t er at or header parameter to the method request, as

shown in the following:

408

Amazon API Gateway Developer Guide
Get Records from and Add Records
to a Stream in Amazon Kinesis

€ Method Execution /Streams/{stream-name}/records - GET - Method Request

Provide information about this methed's authorization settings and the parameters it can receive

Authorization Settings

Authorization NONE #@

API Key Required false #
~ Request Paths

Name Caching

stream-name
» URL Query String Parameters

~ HTTP Request Headers

Name Caching

Shard-lterator (x]

© Add header

» Request Models Create a Model

In the following mapping template, we add the mapping from the Shar d- | t er at or header
value to the Shar dl t er at or property value of the JSON payload for the Get Recor ds action in
Amazon Kinesis.

Configure data mapping for the GET-on-Records method:

Action GetRecords #
Execution role am:aws:iam::7 T.role/apighwsProxyRole #
Credentials cache Do not add caller credentials to cache key #

» URL Path Parameters
» URL Query String Parameters

» HTTP Headers

Name Mapped from @ Caching
Content-Type ‘application/x-amz-json-1.1" #O
© Add header
+ Body Mapping Templates
Content-Type application/json Mapping template #*

application/fjson e Template ,*

1=
© Add mapping template G , ShardIterator™: "$input.params(’Shard u.-r..:.wD

Using the Test option in the APl Gateway console, type an existing stream name as the st r eam
nane Path variable value, set the Shar d- | t er at or Header to the Shardl t er at or value
obtained from the test run of the GET-on-Shardlterator method (above), and choose Test.

The successful response payload will be similar to the following output:

"M IIlisBehindLatest": O,

409

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

"Next Shardlterator": "AAAAAAAAAAF, . . "
"Records": [...]

}

Swagger Definitions of a Sample APl as an Amazon
Kinesis Proxy

{
"swagger": "2.0"
"info": {
"version": "2016-03-31T18: 25: 322",
"title": "KinesisProxy"
H
"host": "wd4zcl robb. execut e- api . us- east - 1. anazonaws. cont',
"basePath": "/test",
"schenes": |
"https"
1,
"paths": {
"/streanms": {
"get": {
"consunes": |
"application/json"
1,
"produces": |
"application/json"
1,
"responses”: {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}
H
"X-anmzon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200"
}
H
"request Tenpl ates": {
"application/json": "{\n}"
H
"uri": "arn:aws: api gateway: us- east-1: ki nesi s: action/ListStreans",
"httpMethod": "POST",
"request Paraneters": {
"integration.request. header. Content-Type": "'application/x-ane-
json-1.1""
H
"type": "aws"

410

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

"/ streans/{streamnane}": {
" get " : {
"consunes": |
"application/json"

]

roduces": [
"application/json"

I,
"paraneters": [
{
"nanme": "stream nane",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}
}s

"X-anezon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: r ol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200"

}
}

equest Tenpl ates": {
"application/json": "{\n \"StreamNane\ ":
\"8$i nput . parans(' stream nane')\ "\ n}"
H
"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/
Descri beStreant',
"httpMethod": "POST",
"type": "aws

}

}

"post": {
"consunes": |
"application/json"

]

roduces": [
"application/json"

I,
"paraneters": [
{
"name": "stream nane",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",

411

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

"schema": {
"$ref": "#/ definitions/Enpty"
}

}
1
"X-anezon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: r ol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200"
}
}

equest Tenpl ates": {

"application/json": "{\n \"ShardCount\": 5,\n
\": \"S$i nput. parans(' stream name')\"\n}"

}s

"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/ Creat eStreant
"httpMethod": "POST"

"request Paraneters": {

"integration.request. header. Content-Type": "

\" St reanNane

application/ x-ane-
json-1.1""

}

}
1
"delete": {
"consunes": |
"application/json"
]

ype": "aws"

roduces": [
"application/json"

I,
"paraneters": [
{
"nanme": "stream nane",
"in": "path",
"required": true,
"type": "string"
}
I,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
"headers": {
"Cont ent - Type": {
"type": "string"
}
}
}
"400": {
"description": "400 response",
"headers": {
"Cont ent - Type": {
"type": "string"
}
}

412

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

}s
"500": {
"description": "500 response",
"headers": {
"Content - Type": {
"type": "string"
}
}
}

H
"X-anmazon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses”: {
"AN\Nd{2}": {
"statusCode": "400",
"responseParaneters": {
"met hod. response. header . Cont ent - Type"
"integration.response. header. Cont ent - Type"

}
}
"default": {
"stat usCode": "200",
"responseParaneters": {
"met hod. response. header . Cont ent - Type"
"integration.response. header. Cont ent - Type"
}
}
"s5\\d{2}": {
"stat usCode": "500",
"responseParaneters": {
"met hod. response. header . Cont ent - Type"
"integration.response. header. Cont ent - Type"
}
}
}
"request Tenpl ates": {
"application/json": "{\n \ " St reamNane\ "
\ "8$i nput . parans(' streamnane')\ "\ n}"
}
"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/ Del et eStreant,
"httpMethod": "POST"
"request Paraneters": {
"integration.request. header. Content-Type":

application/ x-ane-

json-1.1""
}s
"type": "aws"
}
}
}s
"/ streans/ {stream nane}/record": {
"out": {

"consunes": |
"application/json"

1.

"produces": |
"application/json"

1.

"paraneters": [

{

413

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

nane": "stream nane",
Ili nll: " pat hll,
"required": true,
"type": "string"

}
1,
"responses": {
"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}
H

"X-anezon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: r ol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200"

}
}

equest Tenpl ates": {
"application/json": "{\n \ " St r eamNane
\": \"S$input.parans('streamnane')\",\n \"Data\":
\"$util.base64Encode($i nput.path('$.Data'))\",\n \"PartitionKey\":
\"$input.path('$.PartitionKey')\"\n}"
1
"uri": "arn:aws:api gat eway: us-east-1: ki nesi s: acti on/ Put Record",
"httpMethod": "POST",
"request Paraneters": {
"integration.request. header. Content-Type":

application/ x-ane-
json-1.1""
}

}

'ype": aws
}
}

streans/ {stream nane}/records": {
" get " : {
"consunes": |
"application/json"

]

roduces": [
"application/json"

I,
"paraneters": [
{
"name": "stream nane",
"in": "path",
"required": true,
"type": "string"
b,
{
"nane": "Shard-Ilterator",
"in": "header",
"required": false,
"type": "string"
}
I,

414

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

"responses": {

"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Enpty"
}
}
H
"X-anazon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses”: {
"default": {
"statusCode": "200"

}
1
"request Tenpl ates": {
"application/json": "{\n \"Shardlterator\":
\"S$i nput . parans(' Shard-Iterator')\"\n}"
1
"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/ Get Records",

"httpMethod": "POST",
"request Paraneters": {
"integration.request. header. Content-Type":

application/ x-ane-
json-1.1""

}

}
H
"put": {

"consunes": |

"application/json",
"application/x-anz-json-1.1"

ype": "aws

]

roduces": [
"application/json"

1,
"paraneters": [
{
"nane": "Content-Type",
"in": "header",
"required": false,
"type": "string"
3
{
"nane": "stream name",
"in": "path",
"required": true,
"type": "string"
3
{
"in": "body",
"name": "Put RecordsMet hodRequest Payl oad",
"required": true,
"schema": {
"$ref": "#/ definitions/PutRecordsMet hodRequest Payl oad"
}
}
1,

"responses": {

415

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

"200": {
"description": "200 response",
"schema": {
"$ref": "#/definitions/Enpty"
}
}

}s

"X-amazon- api gat eway-i ntegration": {
"credentials": "arn:aws:iam:123456789012: rol e/ api gAwsPr oxyRol e",
"responses": {

"default": {
"statusCode": "200"
}
H
"request Tenpl ates": {
"application/json": "{\n \"StreamNane\ ":
\"S$i nput . parans(' streamnane')\",\n \"Records\": [\n #f or each($el em
in $input.path('$.records'))\n {\n \"Data\":
\"$util.base64Encode($el emdata)\",\n \"PartitionKey\":
\"$el em partition-key\"\n }#i f ($f oreach. hasNext), #end\ n #end
\'n 1\n}",

"application/x-ane-json-1.1": "#set ($i nput Root =
$input.path('$))\n{\n \"StreamNanme\": \"S$i nput. paranms(' streamnanme')\",\n

\"records\" : [\n #f oreach($el emin $i nput Root.records)\n {\n
\"Data\" : \"$elemdata\",\n \"partition-key\" : \"$elempartition-
key\"\'n }#i f ($f oreach. hasNext), #end\ n #end\n]\n}"
}s
"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/ Put Records",

"httpMethod": "POST",
"request Paraneters": {
"integration.request. header. Content-Type":

application/ x-ane-
json-1.1""
}
}
}

ype": "aws

}

streans/ {stream nane}/sharditerator": {
"get": {
"consunes": |
"application/json"

]

roduces": [
"application/json"

I,
"paraneters": [
{
"name": "stream nane",
"in": "path",
"required": true,
"type": "string"
b,
{
"nanme": "shard-id",
"in": "query",
"required": false,
"type": "string"
}
I,

416

Amazon API Gateway Developer Guide
Swagger Definitions of an API as a Kinesis Proxy

"responses": {

"200": {
"description": "200 response",
"schema": {

"$ref": "#/definitions/Enpty"

}
}
1
"X-anazon- api gat eway-i ntegration": {
"credential s": "arn:aws:iam:123456789012: r ol e/ api gAwsPr oxyRol e",
"responses": {
"default": {
"statusCode": "200"

}
}

equest Tenpl ates": {
"application/json": "{\n \"Shardld\": \"$input.params(' shard-
id)\",\n \"ShardlteratorType\": \"TRIM HORI ZONM\",\n \"StreamNane\":
\"8$i nput . parans(' stream nane')\ "\ n}"
H
"uri": "arn:aws: api gat eway: us- east - 1: ki nesi s: acti on/
Get Shardl terator",
"httpMethod": "POST",
"request Paraneters": {
"integration.request. header. Content-Type":

application/ x-ane-
json-1.1""
}

}

'ype": aws
}
}
}

"definitions": {
" Put Recor dsMet hodRequest Payl oad": {
"type": "object",
"properties": {
"records": {
"type": "array",
"items": {
"type": "object",
"properties": {
"data": {
"type": "string"
H
"partition-key": {
"type": "string"

b,

"Enpty": {

"type": "object"
}

}

}

417

Amazon API Gateway Developer Guide

Amazon API Gateway REST API

When you use the Amazon API Gateway console to create, configure, update, and deploy an API, the
console calls the APl Gateway REST API behind the scenes to make things happen.

When you use AWS Command Line Interface to create, configure, update, and deploy an API, the
AWS CLI tool calls the API Gateway REST API as well. For an example, see Create an API using API
Gateway and Test It in the AWS Lambda Developer Guide . For more information, see AWS Command
Line Interface User Guide.

When you use an AWS SDK to create, configure, update, and deploy an API, the SDK calls the API
Gateway REST API behind the scenes.

Instead, you can call the API Gateway REST API directly to create, configure, update, and deploy an
APl in API Gateway.

For more information on how to use the APl Gateway REST API, see Amazon API Gateway REST API
Reference.

418

http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https-example-configure-event-source.html
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/apigateway/api-reference/
http://docs.aws.amazon.com/apigateway/api-reference/

Amazon API Gateway Developer Guide
API| Gateway Limits

Amazon API| Gateway Limits and
Pricing

Topics
¢ API Gateway Limits (p. 419)
¢ API Gateway Pricing (p. 421)
¢ Known Issues (p. 421)

APl Gateway Limits

Unless noted otherwise, the limits can be increased upon request. To request a limit increase, contact
the AWS Support Center.

APl Gateway Limits for Configuring and Running an
API

The following limits apply to configuring and running an APl in Amazon API Gateway.

Resource or Default Limit Can Be
Operation Increased
Throttle limits per 1000 request per second (rps) with a burst limit of 2000 rps. Yes
account

APIs per account 60 Yes

API keys per 500 Yes
account

Client certificates 60 Yes

per account

Custom authorizers | 10 Yes
per API

419

https://console.aws.amazon.com/support/home#/

Amazon API Gateway Developer Guide
API Gateway Limits for Creating,
Deploying and Managing an API

Resource or Default Limit Can Be
Operation Increased
Documentation 2000 Yes

parts per account

Resources per APl | 300 Yes
Stages per API 10 Yes
Usage plans per 300 Yes
account

API caching TTL 300 seconds by default and configurable between 0 and 3600 by | Not for
an APl owner. the upper

bound

(3600)

Integration timeout | 30 seconds for all integration types, including Lambda, Lambda No
proxy, HTTP, HTTP proxy, and AWS integrations.

Payload size 10 MB No
Number of iterations = 1000 No
ina#foreach ...

#end loop in

mapping templates

ARN length of 1600 bytes No
a method with
authorization

When authorization is enabled on a method, the maximum length of the method's ARN (e.qg.,

arn: aws: execut e-api : {region-id}:{account-id}: {api-id}/{stage-id}/{nethod}/
{resource}/ {pat h})is 1600 bytes. The path parameter values, the size of which are determined at
run time, can cause the ARN length to exceed the limit. When this happens, the API client will receive
a414 Request URI too | ong response.

API Gateway Limits for Creating, Deploying and
Managing an API

The following fixed limits apply to creating, deploying, and managing an API in API Gateway, using the
AWS CLI, the API Gateway console, or the APl Gateway REST API and its SDKs. These limits cannot
be increased.

Action Default Limit Can Be Increased
CreateRestApi 2 requests per minute (rpm) per | No
account.
ImportRestApi 2 requests per minute per No
account
PutRestApi 60 requests per minutes per No
account
DeleteRestApi 2 requests per minutes per No
account

420

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-put/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-delete/

Amazon API Gateway Developer Guide
API Gateway Pricing

Action Default Limit Can Be Increased

CreateDeployment 3 requests per minutes per No
account

UpdateAccount 3 requests per minutes per No
account

GetResources 150 requests per minutes per No
account

CreateResource 300 requests per minutes per No
account

DeleteResource 300 requests per minutes per No
account

CreateDomainName 2 requests per minutes per No
account

UpdateUsagePlan 3 requests per minutes per No
account

Other operations No limit up to the total account | No
limit.

Total operations 10 request per second (rps) No

with a burst limit of 40 rps.

API Gateway Pricing

For API Gateway region-specific pricing information, see Amazon API Gateway Pricing.

Note
API caching in Amazon API Gateway is not eligible for the AWS Free Tier.

Known Issues

¢ Cross-account authentication is not currently supported in APl Gateway. An API caller must be an
IAM user of the same AWS account of the APl owner.

¢ When using the APl Gateway console to test an API, you may get an "unknown endpoint errors"
response if a self-signed certificate is presented to the back end, the intermediate certificate is
missing from the certificate chain, or any other unrecognizable certificate-related exceptions thrown
by the back end.

« API Gateway enacts the following restrictions and limitations when handling methods with either
Lambda proxy integration or HTTP proxy integration.

» Duplicated query string parameters are not supported.
* Duplicated headers are not supported.
e The Host header will not be forwarded to HTTP endpoints.

» The following headers may be remapped to x- anzn- Remapped- HEADER when sent to your
integration endpoint or sent back by your integration endpoint:

* Accept
¢ Accept - Char set

421

http://docs.aws.amazon.com/apigateway/api-reference/link-relation/deployment-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/account-update/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-resources/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/resource-delete/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/domainname-create/
http://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-update/
http://aws.amazon.com/api-gateway/pricing/

Amazon API Gateway Developer Guide
Known Issues

Accept - Encodi ng
Age

Aut hori zation
Connecti on

Cont ent - Encodi ng
Cont ent - Lengt h
Cont ent - MD5

Cont ent - Type

Dat e

Expect

Host

Max- For war ds

Pr agma

Proxy- Aut henti cat e
Range

Ref erer

Server

TE

Trailer

Tr ansf er - Encodi ng
Upgr ade

User - Agent

Vi a

VAr n

422

Amazon API Gateway Developer Guide

Document History

The following table describes the important changes to the documentation since the last release of the
API Gateway Developer Guide.

¢ Latest documentation update: December 1, 2016

Change Description Date
Changed

Integrating with AWS | Sell your APl in a usage plan as a SaaS product through December 1,

Marketplace AWS Marketplace. Use AWS Marketplace to extend the 2016

reach of your API. Rely on AWS Marketplace for customer
billing on your behalf. Let APl Gateway handle user
authorization and usage metering. For more information, see
Selling an APl as SaasS (p. 339).

Enabling Add documentation for API entities in DocumentationPart December 1,
Documentation resources in API Gateway. Associate a snapshot of the 2016
Support for your APl | collection Docunment at i onPar t instances with an API

stage to create a DocumentationVersion. Publish API

documentation by exporting a documentation version to an

external file, such as a Swagger file. For more information,

see Documenting an API (p. 287).

Updated custom A customer authorizer Lambda function now returns the December 1,
authorizer caller's principal identifier. The function also can return other | 2016
information as key-value pairs of the cont ext map and
an IAM policy. For more information, see Output from an
Amazon API Gateway Custom Authorizer (p. 177).

Supporting binary Set binaryMediaTypes on your API to support November 17,
payloads binary payloads of a request or response. Set the 2016

cont ent Handl i ng property on an Integration or

IntegrationResponse to specify whether to handle a binary

payload as the native binary blob, as a Base64-enocded

string, or as a passthrough without modifications. For more

information, see Enable Support for Binary Payloads in API

Gateway (p. 78).

423

http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-part/
http://docs.aws.amazon.com/apigateway/api-reference/resource/documentation-version/
http://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/#binaryMediaTypes
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
http://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/

Amazon API Gateway Developer Guide

Change Description Date

Changed
Enabling a proxy Create a proxy resource with a greedy path parameter of the | September
integration with an form { pr oxy+} and the catch-all ANY method. The proxy 20, 2016
HTTP or Lambda resource is integrated with an HTTP or Lambda back end

back end through a using the HTTP or Lambda proxy integration, respectively.
proxy resource of an | For more information, see Configure Proxy Integration for a
API. Proxy Resource (p. 97).

Extending selected Create a usage plan in APl Gateway to enable selected August 11,
APIs in API Gateway | API clients to access specified API stages at agreed-upon 2016

as product offerings | request rates and quotas. For more information, see Use

for your customers API Gateway Usage Plans (p. 212).

by providing one or

more usage plans.

Enabling method- Create a user pool in Amazon Cognito and use it as your July 28, 2016
level authorization own identity provider. You can configure the user pool as a

with a user pool in method-level authorizer to grant access for users who are

Amazon Cognito registered with the user pool. For more information, see Use

Amazon Cognito Your User Pool (p. 182).

Enabling Amazon The API Gateway metrics are now standardized under the July 28, 2016
CloudWatch metrics | CloudWatch namespace of AWS/ApiGateway. You can view

and dimensions them in both the APl Gateway console and the Amazon

under the AWS/ CloudWatch console. For more information, see Amazon

ApiGateway API Gateway Dimensions and Metrics (p. 334).

namespace.

Enabling certificate Certificate rotation allows you to upload and renew April 27, 2016
rotation for a custom | an expiring certificate for a custom domain name. For

domain name more information, see Upload and Renew an Expiring

Certificate (p. 285).

Documenting Learn how to create and set up an API using the updated April 5, 2016
changes for the API Gateway console. For more information, see Create an

updated Amazon APl | API Gateway API from an Example (p. 7) and Build an API

Gateway console. Gateway API to Expose an HTTP Endpoint (p. 6).

Enabling the Import | With the Import API features, you can create a new API April 5, 2016
API feature to create | or update an existing one by uploading an external API

a new or update definition expressed in Swagger 2.0 with the APl Gateway

an existing API extensions. For more information about the Import API, see

from external API Import an API (p. 142).

definitions.

Exposing the For more information about $i nput . body and April 5, 2016
$i nput . body $util . parsedson(), see Request and Response

variable to access Payload-Mapping Reference (p. 134).

the raw payload

as string and the
$util . parsedson()
function to turn a
JSON string into a
JSON object in a
mapping template.

424

Amazon API Gateway Developer Guide

Change

Enabling client
requests with
method-level
cache invalidation,
and improving
request throttling
management.

Enabling and calling
API Gateway API
using custom
authorization

Importing and
exporting API
Gateway API using
a Swagger definition
file and extensions

Mapping request or
response body or
body's JSON fields to
request or response
parameters.

Working with Stage
Variables in Amazon
API Gateway

How to: Enable
CORS for a Method

How to: Use
Client Side SSL
Authentication

Mock integration of
methods

Amazon Cognito
Identity support

Description

Flush API stage-level cache and invalidate individual cache
entry. For more information, see Flush the API Stage Cache
in API Gateway (p. 240) and Invalidate an AP| Gateway
Cache Entry (p. 240). Improve the console experience for
managing API request throttling. For more information, see
Manage API Request Throttling (p. 236).

Create and configure an AWS Lambda function to
implement custom authorization. The function returns
an IAM policy document that grants the Allow or Deny
permissions to client requests of an API Gateway API.
For more information, see Use API Gateway Custom
Authorizers (p. 174).

Create and update your API Gateway API using the
Swagger specification with the API Gateway extensions.
Import the Swagger definitions using the APl Gateway
Importer. Export an APl Gateway API to a Swagger
definition file using the API Gateway console or API
Gateway Export API. For more information, see Import and
Export API (p. 141).

Map method request body or its JSON fields into integration
request's path, query string, or headers. Map integration
response body or its JSON fields into request response's
headers. For more information, see Request and Response
Parameter-Mapping Reference (p. 131).

Learn how to associate configuration attributes with a
deployment stage of an APl in Amazon API Gateway.
For more information, see Manage AP| Gateway API
Deployment with Stage Variables (p. 242).

It is now easier to enable cross-origin resource sharing
(CORS) for methods in Amazon API Gateway. For more
information, see Enable CORS for a Resource (p. 170).

Use Amazon API| Gateway to generate SSL certificates
that you can use to authenticate calls to your HTTP
backend. For more information, see Use Client-Side SSL
Certificates (p. 186).

Learn how to mock-integrate an APl with Amazon API
Gateway (p. 94). This feature enables developers to
generate API responses from API Gateway directly without
the need for a final integration back end beforehand.

Amazon API Gateway has expanded the scope of the
$cont ext variable so that it now returns information
about Amazon Cognito Identity when requests are signed
with Amazon Cognito credentials. In addition, we have
added a $ut i | variable for escaping characters in
JavaScript and encoding URLs and strings. For more
information, see Request and Response Payload-Mapping
Reference (p. 134).

Date
Changed

March 25,
2016

February 11,
2016

December 18,
2015

December 18,
2015

November 5,
2015

November 3,
2015

September
22,2015

September 1,
2015

August 28,
2015

425

Amazon API Gateway Developer Guide

Change

Swagger integration

Mapping Template
Reference

Initial public release

Description

Use the Swagger import tool on GitHub to import Swagger
API definitions into Amazon API Gateway. Learn more
about Import and Export API (p. 141) to create and deploy
APIs and methods using the import tool. With the Swagger
importer tool you can also update existing APIs.

Read about the $i nput parameter and its functions
in the Request and Response Payload-Mapping
Reference (p. 134).

This is the initial public release of the Amazon API Gateway
Developer Guide.

Date
Changed

July 21, 2015

July 18, 2015

July 9, 2015

426

https://github.com/awslabs/aws-apigateway-swagger-importer

Amazon API Gateway Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

427

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon API Gateway
	Table of Contents
	What Is Amazon API Gateway?
	Amazon API Gateway Concepts

	Getting Started with Amazon API Gateway
	Get Ready to Use Amazon API Gateway
	Sign Up for AWS
	Create an IAM User, Group or Role in Your AWS Account
	Grant IAM Users Permissions to Access API Gateway Control and Execution Services
	Next Step

	Build an API Gateway API to Expose an HTTP Endpoint
	Create an API Gateway API from an Example
	See Also

	Build the API Step By Step
	Map Request Parameters for an API Gateway API
	Prerequisites
	Step 1: Create Resources
	Step 2: Create GET and POST Methods
	Step 3: Set Up and Test the Methods
	Step 4: Deploy the API
	Step 5: Test the API
	Next Steps

	Map Response Payload
	Prerequisites
	Step 1: Create Models
	Step 2: Create Resources
	Step 3: Create GET Methods
	Step 4: Create a Lambda Function
	Step 5: Set Up and Test the Methods
	Step 6: Deploy the API
	Step 7: Test the API
	Step 8: Clean Up
	Next Steps

	Build an API to Expose a Lambda Function
	Step 1: Prerequisites
	Step 2: Create an API
	Step 3: Create a Resource
	Step 4: Create Lambda Functions
	Step 5: Create and Test a GET Method
	Step 6: Create and Test a POST Method
	Step 7: Deploy the API
	Step 8: Test the API
	Step 9: Clean Up
	Next Steps
	Create Lambda Invocation and Execution Roles

	Build an API Gateway API Using Proxy Integration and a Proxy Resource
	Create and Test an API with HTTP Proxy Integration through a Proxy Resource
	Create an API with HTTP Proxy Integration through a Proxy Resource
	Test an API with HTTP Proxy Integration through Proxy Resource

	Create an API with Lambda Proxy Integration through a Proxy Resource
	Lambda Function for Proxy Integration
	Create a Back End for Lambda Proxy Integration
	Create API with Lambda Proxy Integration
	Test API with Lambda Proxy Integration

	Create an AWS Service Proxy for Amazon SNS
	Prerequisites
	Step 1: Create the Resource
	Step 2: Create the GET Method
	Step 3: Create the AWS Service Proxy Execution Role
	Step 4: Specify Method Settings and Test the Method
	Step 5: Deploy the API
	Step 6: Test the API
	Step 7: Clean Up

	Creating an API in Amazon API Gateway
	Create an API in API Gateway
	Create an API Using the API Gateway Console
	Create an API Using the API Gateway Control Service API
	Create an API Using the AWS SDK for API Gateway
	Create an API Using the AWS CLI

	Set up API Gateway API Method and Integration
	Before Setting Up Methods and Integration
	Configure How API Gateway Integrates the Method with a Back End
	Configure How an API User Calls an API Method in Amazon API Gateway
	Configure How Data Is Mapped between a Method and its Integration in Amazon API Gateway
	Enable Support for Binary Payloads in API Gateway
	Content Type Conversions in API Gateway
	Enable Binary Support Using the API Gateway Console
	Enable Binary Support Using API Gateway REST API
	Add and Update Supported Binary Media Types to an API
	Configure Request Payload Conversions
	Configure Response Payload Conversions
	Convert Binary Data to Text Data
	Convert Text Data to a Binary Payload
	Pass through a Binary Payload

	Import and Export Content Encodings
	Examples of Binary Support
	Access Binary Files in Amazon S3 through an API Gateway API
	Swagger File of a Sample API to Access Images in Amazon S3
	Download an Image from Amazon S3
	Upload an Image to Amazon S3

	Access Binary Files in Lambda Using an API Gateway API
	Swagger File of a Sample API to Access Images in Lambda
	Download an Image from Lambda
	Upload an Image to Lambda

	Configure Mock Integration for a Method in API Gateway
	Prerequisites
	Enable Mock Integration on a Method
	Example Request Templates
	Example Response Templates

	Configure Proxy Integration for a Proxy Resource
	API Gateway Proxy Resource
	API Gateway Proxy Integration Types
	Set Up a Proxy Resource with the HTTP Proxy Integration
	Set Up a Proxy Resource with the Lambda Proxy Integration
	Input Format of a Lambda Function for Proxy Integration
	Output Format of a Lambda Function for Proxy Integration

	After Setting Up Methods and Integration

	Set Up Amazon API Gateway API Request and Response Payload Mappings
	Models
	Mapping Templates
	Tasks for Models and Mapping Templates
	Create a Model in API Gateway
	Prerequisites
	Create a Model With the API Gateway Console

	View a List of Models in API Gateway
	Prerequisites
	View a List of Models with the API Gateway Console

	Delete a Model in API Gateway
	Delete a Model with the API Gateway Console

	Photos Example (API Gateway Models and Mapping Templates)
	Original Data (Photos Example)
	Input Model (Photos Example)
	Input Mapping Template (Photos Example)
	Transformed Data (Photos Example)
	Output Model (Photos Example)
	Output Mapping Template (Photos Example)

	News Article Example (API Gateway Models and Mapping Templates)
	Original Data (News Article Example)
	Input Model (News Article Example)
	Input Mapping Template (News Article Example)
	Transformed Data (News Article Example)
	Output Model (News Article Example)
	Output Mapping Template (News Article Example)

	Sales Invoice Example (API Gateway Models and Mapping Templates)
	Original Data (Sales Invoice Example)
	Input Model (Sales Invoice Example)
	Input Mapping Template (Sales Invoice Example)
	Transformed Data (Sales Invoice Example)
	Output Model (Sales Invoice Example)
	Output Mapping Template (Sales Invoice Example)

	Employee Record Example (API Gateway Models and Mapping Templates)
	Original Data (Employee Record Example)
	Input Model (Employee Record Example)
	Input Mapping Template (Employee Record Example)
	Transformed Data (Employee Record Example)
	Output Model (Employee Record Example)
	Output Mapping Template (Employee Record Example)

	Amazon API Gateway API Request and Response Parameter-Mapping Reference
	Map Data to Integration Request Parameters
	Map Data to Method Response Headers
	Transform Request and Response Bodies
	Select Mapping Templates

	API Gateway API Request and Response Payload-Mapping Template Reference
	Accessing the $context Variable
	Example
	Context Variables Template Example

	Accessing the $input Variable
	Examples
	Example JSON Mapping Template
	Example Inputs Mapping Template
	Param Mapping Template Example
	Example Request and Response

	Accessing the $stageVariables Variable
	Accessing the $util Variable
	Integration Passthrough Behaviors

	Import and Export API Gateway API with Swagger Definition Files
	Import an API into API Gateway
	Use the Import API to Create a New API
	Use the Import API to Update an Existing API
	Swagger basePath
	ignore
	prepend
	split

	Errors during Import
	Warnings during Import

	Export an API from API Gateway
	Request to Export an API
	Download API Swagger Definition in JSON
	Download API Swagger Definition in YAML
	Download API Swagger Definition with Postman Extensions in JSON
	Download API Swagger Definition with API Gateway Integration in YAML
	Export API Using the API Gateway Console

	API Gateway Extensions to Swagger
	x-amazon-apigateway-any-method Object
	x-amazon-apigateway-any-method Example

	x-amazon-apigateway-authorizer Object
	x-amazon-apigateway-authorizer Example

	x-amazon-apigateway-authtype Property
	x-amazon-apigateway-authtype Example

	x-amazon-apigateway-binary-media-types Property
	x-amazon-apigateway-binary-media-types Example

	x-amazon-apigateway-documentation Object
	x-amazon-apigateway-documentation Example

	x-amazon-apigateway-integration Object
	x-amazon-apigateway-integration Example

	x-amazon-apigateway-integration.requestTemplates Object
	x-amazon-apigateway-integration.requestTemplates Example

	x-amazon-apigateway-integration.requestParameters Object
	x-amazon-apigateway-integration.requestParameters Example

	x-amazon-apigateway-integration.responses Object
	x-amazon-apigateway-integration.responses Example

	x-amazon-apigateway-integration.response Object
	x-amazon-apigateway-integration.response Example

	x-amazon-apigateway-integration.responseTemplates Object
	x-amazon-apigateway-integration.responseTemplate Example

	x-amazon-apigateway-integration.responseParameters Object
	x-amazon-apigateway-integration.responseParameters Example

	Controlling Access in API Gateway
	Use IAM Permissions to Access API Gateway API
	Control Access to API Gateway with IAM Policies
	Create and Attach a Policy to an IAM User
	Statement Reference of IAM Policies for Managing API in API Gateway
	Action Format of Permissions for Managing API in API Gateway
	Resource Format of Permissions for Managing API in API Gateway

	Statement Reference of IAM Policies for Executing API in API Gateway
	Action Format of Permissions for Executing API in API Gateway
	Resource Format of Permissions for Executing API in API Gateway

	IAM Policy Examples for API Gateway APIs
	Simple Read Permissions
	Read-Only Permissions on any APIs
	Full Access Permissions for any API Gateway Resources
	Full-Access Permissions for Managing API Stages
	Block Specified Users from Deleting any API Resources

	IAM Policy Examples for API Execution Permissions

	Enable CORS for an API Gateway Resource
	Prerequisites
	Enable CORS on a Resource Using the API Gateway Console
	Enable CORS for a Resource Using the API Gateway Import API

	Use Amazon API Gateway Custom Authorizers
	Amazon API Gateway Custom Authorizers
	Create the API Gateway Custom Authorizer Lambda Function
	Input to an Amazon API Gateway Custom Authorizer
	Output from an Amazon API Gateway Custom Authorizer
	Configure Custom Authorizer Using the API Gateway Console
	Call an API Using API Gateway Custom Authorization

	Use Amazon Cognito Your User Pool
	Create a User Pool
	Integrate an API with a User Pool
	Call an API Integrated with a User Pool

	Use Client-Side SSL Certificates for Authentication by the Back End
	Generate a Client Certificate Using the API Gateway Console
	Configure an API to Use SSL Certificates
	Test Invoke
	Configure Back End to Authenticate API

	API Gateway-Supported Certificate Authorities for HTTP and HTTP Proxy Integrations
	Create and Use API Gateway Usage Plans
	What Is a Usage Plan?
	How to Configure a Usage Plan?
	Set Up API Keys Using the API Gateway Console
	Require API Key on a Method
	Create an API Key
	Import API Keys

	Create and Configure Usage Plans with the API Gateway Console
	Migrate to Default Usage Plans
	Create Usage Plans
	Test a Usage Plan
	Maintain Plan Usage

	Set Up API Keys Using the API Gateway REST API
	Require an API Key on a Method
	Create or Import API Keys

	Create and Configure Usage Plans with the API Gateway REST API
	Migrate to Default Usage Plans
	Create a Usage Plan
	Manage a Usage Plan
	Test Usage Plans

	API Gateway API Key File Format
	Use API Keys in API Gateway without Usage Plans Enabled
	Prerequisites
	Use an API Key without Usage Plans

	Maintaining an API in Amazon API Gateway
	View a List of APIs in API Gateway
	Prerequisites
	View a List of APIs with the API Gateway Console

	Delete an API in API Gateway
	Prerequisites
	Delete an API with the API Gateway Console

	Delete a Resource in API Gateway
	Delete a Resource with the API Gateway Console

	View a Methods List in API Gateway
	Prerequisites
	View a Methods List with the API Gateway Console

	Delete a Method in API Gateway
	Delete a Method with the API Gateway Console

	Deploying an API in Amazon API Gateway
	Deploy an API with the Amazon API Gateway Console
	Prerequisites
	Deploy an API with the API Gateway Console
	Update deployment configuration with the API Gateway Console
	Change a Stage to Use a Different Deployment with the API Gateway Console

	Deploy an API in Stages in Amazon API Gateway
	Create a Stage in API Gateway
	Prerequisites
	Create a Stage with the API Gateway Console

	View a List of Stages in API Gateway
	Prerequisites
	View a List of Stages with the API Gateway Console

	Set Up a Stage
	Prerequisites
	Set Up an API Deployment Stage with the API Gateway Console

	Delete a Stage in API Gateway
	Delete a Stage with the API Gateway Console

	Manage API Request Throttling
	Account-Level Throttling
	Stage-Level and Method-Level Throttling

	Enable Amazon API Gateway Caching in a Stage to Enhance API Performance
	Amazon API Gateway Caching Overview
	Enable Amazon API Gateway Caching
	Override API Gateway Stage-Level Caching for Method Caching
	Use Method or Integration Parameters as Cache Keys to Index Cached Responses
	Flush the API Stage Cache in API Gateway
	Invalidate an API Gateway Cache Entry

	Manage API Gateway API Deployment with Stage Variables
	Use Cases
	Examples
	Set Stage Variables Using the Amazon API Gateway Console
	Prerequisites

	Use Amazon API Gateway Stage Variables
	Prerequisites
	Access an HTTP endpoint through an API with a stage variable
	Pass stage-specific metadata to an HTTP back end via a stage variable in a query parameter expression
	Call Lambda function through API with a stage variable
	Pass stage-specific metadata to a Lambda function via a stage variable

	Amazon API Gateway Stage Variables Reference
	Parameter Mapping Expressions
	Mapping Templates
	HTTP Integration URIs
	AWS Integration URIs
	AWS Integration URIs (Lambda Functions)
	AWS Integration Credentials

	Generate and Use an SDK for an API in API Gateway
	Use the API Gateway Console to Generate the SDKs of an API
	Simple Calculator Lambda Function
	Simple Calculator Lambda Function Input Format
	Simple Calculator Lambda Function Output Format
	Simple Calculator Lambda Function Implementation
	Create the Simple Calculator Lambda Function

	Simple Calculator API in API Gateway
	Create Models for Input and Output
	Set Up GET / Method Query Parameters
	Set Up Data Model for the Payload as Input to the Back End
	Set Up Data Model for the Result Output from the Back End

	Simple Calculator API Swagger Definition

	Use an Android SDK generated by API Gateway
	Use iOS SDK Generated by API Gateway in Objective-C or Swift
	Use an iOS SDK generated by API Gateway in an Objective-C App
	Install the AWS Mobile SDK and an iOS SDK generated by API Gateway in an Objective-C Project
	Call API Methods Using the iOS SDK generated by API Gateway in an Objective-C Project

	Use an iOS SDK generated by API Gateway in a Swift App
	Install AWS Mobile SDK and API Gateway-Generated SDK in a Swift Project
	Call API methods through the iOS SDK generated by API Gateway in a Swift Project

	Use a JavaScript SDK Generated by API Gateway

	Use a Custom Domain Name in API Gateway
	Prerequisites
	Set Up a Custom Domain Name for an API Gateway API
	Specify API Mappings for a Custom Domain Name
	Base Path Examples of API Mappings for a Custom Domain Name
	Upload and Renew an Expiring Certificate
	Call Your API with Custom Domain Names

	Documenting an API Gateway API
	Representation of API Documentation in API Gateway
	Documentation Parts
	Location of a Documentation Part
	Content of a Documentation Part
	Inherit Content from an API Entity of More General Specifications
	Valid Location Fields of DocumentationPart

	Documentation Versions

	Document an API Using the API Gateway Console
	Document the API Entity
	Document a RESOURCE Entity
	Document a METHOD Entity
	Document a QUERY_PARAMETER Entity
	Document a PATH_PARAMETER Entity
	Document a REQUEST_HEADER Entity
	Document a REQUEST_BODY Entity
	Document a RESPONSE Entity
	Document a RESPONSE_HEADER Entity
	Document a RESPONSE_BODY Entity
	Document a MODEL Entity
	Document an AUTHORIZER Entity

	Document an API Using the API Gateway REST API
	Document the API Entity
	Document a RESOURCE Entity
	Document a METHOD Entity
	Document a QUERY_PARAMETER Entity
	Document a PATH_PARAMETER Entity
	Document a REQUEST_BODY Entity
	Document a REQUEST_HEADER Entity
	Document a RESPONSE Entity
	Document a RESPONSE_HEADER Entity
	Document an AUTHORIZER Entity
	Document a MODEL Entity
	Update Documentation Parts
	List Documentation Parts

	Publish API Documentation
	Create a Documentation Snapshot and Associate it with an API Stage
	Create a Documentation Snapshot
	Update a Documentation Snapshot
	Get a Documentation Snapshot
	Associate a Documentation Snapshot with an API Stage
	Download a Documentation Snapshot Associated with a Stage

	Import API Documentation
	Importing Documentation Parts Using the API Gateway REST API
	Importing Documentation Parts Using the API Gateway Console

	Control Access to API Documentation

	Calling a Deployed API in Amazon API Gateway
	Prerequisites
	Obtain an API's Invoke URL in the API Gateway Console
	Test a Method Using the API Gateway Console
	Prerequisites
	Test a Method with the API Gateway Console

	Use Postman to Test an API

	Monitoring and Troubleshooting in API Gateway
	Log API management calls to Amazon API Gateway Using AWS CloudTrail
	API Gateway Information in CloudTrail
	Understanding API Gateway Log File Entries

	Monitor API execution with Amazon CloudWatch
	Amazon API Gateway Dimensions and Metrics
	API Gateway Metrics
	Dimensions for Metrics

	View CloudWatch Metrics with the API Dashboard in API Gateway
	Prerequisites
	Examine API activities in the Dashboard

	View API Gateway Metrics in the CloudWatch Console
	Monitoring Tools in AWS
	Automated Monitoring Tools in AWS
	Manual Monitoring Tools
	Creating CloudWatch Alarms to Monitor API Gateway

	Selling an API Gateway API through AWS Marketplace
	Initialize AWS Marketplace Integration with API Gateway
	List a Product on AWS Marketplace
	Create the Metering Role
	Execution Policy of the Metering Role
	Trusted Relationship Policy of the Metering Role

	Associate Usage Plan with AWS Marketplace Product

	Handle Customer Subscription to Usage Plans
	Authorize a Customer to Access a Usage Plan
	Associate a Customer with an API Key

	Tutorials for Using Amazon API Gateway
	Create an API Gateway API as an AWS Lambda Proxy
	Set Up an IAM Role and Policy for an API to Invoke Lambda Functions
	Create a Lambda Function in the Back End
	Create API Resources for the Lambda Function
	Create a GET Method with Query Strings to Call the Lambda Function
	Create a POST Method with a JSON Payload to Call the Lambda Function
	Create a GET Method with Path Parameters to Call the Lambda Function
	A Sample API as a Lambda Proxy in Swagger with API Gateway Extensions

	Create an API as an Amazon S3 Proxy
	Set Up IAM Permissions for the API to Invoke Amazon S3 Actions
	Create API Resources to Represent Amazon S3 Resources
	Expose an API Method to List the Caller's Amazon S3 Buckets
	Expose API Methods to Access an Amazon S3 Bucket
	Expose API Methods to Access an Amazon S3 Object in a Bucket
	Call the API Using a REST API Client
	Swagger Definitions of the Sample API as an Amazon S3 Proxy

	Create an API Gateway API as an Amazon Kinesis Proxy
	Create an IAM Role and Policy for the API to Access Amazon Kinesis
	Start to Create an API as an Amazon Kinesis Proxy
	List Streams in Amazon Kinesis
	Create, Describe, and Delete a Stream in Amazon Kinesis
	Get Records from and Add Records to a Stream in Amazon Kinesis
	Swagger Definitions of a Sample API as an Amazon Kinesis Proxy

	Amazon API Gateway REST API
	Amazon API Gateway Limits and Pricing
	API Gateway Limits
	API Gateway Limits for Configuring and Running an API
	API Gateway Limits for Creating, Deploying and Managing an API

	API Gateway Pricing
	Known Issues

	Document History
	AWS Glossary

