Amazon Lex

Developer Guide

amazon
webservices™

Amazon Lex Developer Guide

Amazon Lex Developer Guide

Amazon Lex: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon Lex Developer Guide

Table of Contents

Yo LR AN 1 - Vo B = PP 1
Are You a First-time User of AMAZON LEX?cuiuiiiiiiiiii e 2

HOW Tt VWOTKS oottt ettt e e et e et e et ens 3
Programming MOGEIouiui i 5
RUNIME APT OPEIAtiONSeuiiieeie e e e e e e e e et e e es 5

Lambda Functions as Code HOOKScuiiriiiiiii e 6

Managing Messages (Prompts and StatemMENTS)c.oiuiieiieiiiiiii e 7
TYPES OF IMESSAGES ... cvnitiiitiii ittt et ettt 8

Contexts for ConfiguING MESSAGESucuuiuiiiiiii e aees 9

Supported MESSAGE FOIMALSiiiiiiit e e e e e es 12

RESPONSE CAIUS ..uetiiiiii ettt e e 12

Managing ConVersation CONEEXEc.uieiiiie et e e e e ae e 14

S T=T IS (o] o T T4 0 T= oL | PP 14
Cross-Intent INformation SNArNGcouiiniiiii e 15

(D227 o] [0V 4= oA @] o] i o] o LS PPV 15
Built-in INteNtS @nd SIOt TYPES ...euiiiitiiii e 15
BUIIE-IN INEENES .ot e e e e e e e e 16

BUIIE-IN SIOTS vttt 16

(1ol 1110 To JRS3 F= Ty o [PPSR PP 17
Exercise 1: Create a Bot Using @ BIUEPIINTouiiiiiii e 17
Amazon Lex Bot: BIUEPIINT OVEIVIEWiuuiiiiiiii et aeaas 18

AWS Lambda Function: BIUEPriNt SUMMANYc.oiuiiiiiiiii e 18

Y =T o o (=7 o - 1= PP 19

Step 2: Create an Amazon LEX BOtvuiiiiiiii e 21

Step 3 (Optional): Review the Details of Information FIOWccoooiiiiiiiiiiiins 22

Step 4: Create a Lambda FUNCHON ... 27

Step 5: Update Intent Configuration: Add the Lambda Function as Code Hook 27

Step 6 (Optional): Review the Details of Information FIOWcccoiiiiiiiiiiiiiins 29

Exercise 2: Create @ CUSIOM BOLcuuiiiiiiee et 39

=T o o (=7 o T 1= PP 39

SteP 2: Create @ BOtviiiiiiii e 42

StEP 3: Create SIOt TYPES ...ttt et 43

Step 4: Create an INTENT ... e 44

Step 5: Configure Error HANAIINGoeieiei e 46

Step 6: BUild @and TeSt the BOtc.uieniiiiiie e e 47

Exercise 3: Publish a Version and Create an AlIaSc.ovuiiiiiiiiiiiir e 48
VErsioNiNg NG AlIBSESouuiniii e 50
V=151] a1 o o TP 50
Creating an Amazon Lex Bot (the SLATEST VEISION)ocuvieiieiiiiiiiiini e 50

Publishing an Amazon LexX BOt VEISIONoiuiiuiiuiiiiiii et 51

Updating an Amazon LEX RESOUICEcuiuiiiiitiiiiie ettt 51

Deleting an Amazon Lex Resource and a Specific VEISIONcoovviiviiiiiiiiiiiiiiiieneas 52

AlIBISES .ttt 52
UsSiNg Lambda FUNCHONS ...t e ettt et e e e e e e 54
Lambda Function Input Event and ReSPONSE FOMMALc.ovuiiiiiiiiiiiiiii e 54
INPUE EVENT FOIMAL ...t ees 54

RESPONSE FOMMALottt e e 57

Amazon Lex and AWS Lambda BIUEPIINTSiuiiuieiiiiiiiii e 59
[D2=T o] [0}/ TaTo T =T] £ S PP IPUPIPR 61
Deploying an Amazon Lex Bot on a Messaging Platform ... 61
Integrating With FacebOOoK ... 61

Deploying an Amazon Lex Bot in Mobile AppliCatiIoNSoeuviiiiiiii e 65

B Ot EXBIMIDIES ..ttt e aaas 66
Example Bot: SChedule APPOINIMENT i 66
Overview of the Bot Blueprint (ScheduleAppointment)o.oiviiiiiiii e 67

Amazon Lex Developer Guide

Overview of the Lambda Function Blueprint (lex-make-appointment)ccocovvviiinennn.. 68

Y =] oI Rl o (=T o= PR 68

Step 2: Create an AmMAzon LeX BOtc.ouiuiiiiii e 69

Step 3: Create a Lambda fUNCLON ... e 71

Step 4: Update the Intent: Configure a Code HOOKcoiuiiiiiiiii e 71

=T a0 o] (T =To) ol = Yo o] 1 I] o 72

Step 1: BIUEPIINE REVIEW ...t e et ene e 73

S 2. Pl DA s 75

Step 3: Create an AmMAzon LeX BOtc.ouiuiiiiiii e 75

Step 4: Create a Lambda fUNCLON ... e 78

Step 5: Add the Lambda Function as a Code HOOKccoiuiiiiiiiiiiiii e 78

Details of INformation FlOWoouiinii e 81

Example: UsSiNg @ RESPONSE CaArdcuiuiinieiiiie e e e e e 96
GUIdENINES AN LIMILSee ettt ettt ettt et et e e e e e e e e e 99
General GUIdEIINESt 99

[0] € TP PRSPPI 101

APL REIBIBINCE ...ttt et 105
AT OIS ettt 105
POSTCONIENT ..ttt 106

PO T XL .ttt 113

(D 1= B Y/ 01T TP PP 117
BUI O et e 119
GENEICAIACHMENT ...ttt 120
] 00 YT = 1 o P 121

[0 o0] 0 =Y oLl T3 (] Y/ 122
AWS GlOSSAIY ...ttt e et e et eaaas 123

Amazon Lex Developer Guide

What Is Amazon Lex?

This is prerelease documentation for a service in preview release. It is subject to change.

Amazon Lex is an AWS service for building conversational interfaces for any applications using
voice and text. With Amazon Lex, the same conversational engine that powers Amazon Alexa is now
available to any developer, enabling you to build sophisticated, natural language chatbots into your
new and existing applications. Amazon Lex provides the deep functionality and flexibility of natural
language understanding (NLU) and automatic speech recognition (ASR) to enable you to build highly
engaging user experiences with lifelike, conversational interactions and create new categories of
products.

Amazon Lex enables any developer to build conversational chatbots quickly. With Amazon Lex, no
deep learning expertise is necessary—you just specify the basic conversation flow in the Amazon Lex
console to create a bot. Amazon Lex manages the dialogue and dynamically adjusts the responses

in the conversation. Using the console, you can build, test, and publish your text or voice chatbot.
You can then add the conversational interfaces to bots on mobile devices, web applications, and chat
platforms (for example, Facebook Messenger).

Amazon Lex provides pre-built integration with AWS Lambda, and you can easily integrate with

many other services on the AWS platform including Amazon Cognito, AWS Mobile Hub, Amazon
CloudWatch, and Amazon DynamoDB. Integration with AWS Lambda provides bots access to pre-built
serverless enterprise connectors, to link to data in SaaS applications, such as Salesforce, HubSpot or
Marketo.

Some of the benefits of using Amazon Lex include:

« Simplicity — Amazon Lex provides a simple to use console to guide you through creating your own
chatbot in minutes. You supply just a few example phrases and Amazon Lex builds a complete
natural language model through which the bot can interact using voice and text to ask questions, get
answers, and complete sophisticated tasks.

* Democratized Deep Learning Technologies — Powered by the same technology as Alexa,
Amazon Lex provides ASR and NLU technologies to create a Speech Language Understanding
(SLU) system. Through SLU, Amazon Lex takes natural language speech and text input,
understands the intent behind the input, and fulfills the user intent by invoking the appropriate
business function.

Amazon Lex Developer Guide
Are You a First-time User of Amazon Lex?

Speech recognition and natural language understanding are some of the most challenging problems
to solve in computer science, requiring sophisticated deep learning algorithms to be trained on
massive amounts of data and infrastructure. Amazon Lex puts deep learning technologies within
reach of all developers, powered by the same technology as Alexa. Amazon Lex chatbots convert
incoming speech to text and understand the user intent to generate an intelligent response, so you
can focus on building your bots with differentiated value-add for your customers, to define entirely
new categories of products made possible through conversational interfaces.

« Seamlessly deploy and scale — With Amazon Lex, you can build, test, and deploy your chatbots
directly from the Amazon Lex console. Amazon Lex enables you to easily publish your voice or
text chatbots for use on mobile devices, web apps, and chat services (for example, Facebook
Messenger). Amazon Lex scales automatically so you don’t need to worry about provisioning
hardware and managing infrastructure to power your bot experience.

¢ Built-in integration with the AWS platform — Amazon Lex has native interoperability with other
AWS services such as Amazon Cognito, AWS Lambda, Amazon CloudWatch, and AWS Mobile
Hub. You can take advantage of the power of the AWS platform for security, monitoring, user
authentication, business logic, storage and mobile app development.

« Cost-effective — With Amazon Lex, there are no upfront costs or minimum fees. You are only
charged for the text or speech requests that are made. The pay-as-you-go pricing and low cost per
request make the service a cost-effective way to build conversational interfaces. With the Amazon
Lex free tier, you can easily try Amazon Lex without any initial investment.

Are You a First-time User of Amazon Lex?

If you are a first-time user of Amazon Lex, we recommend that you read the following sections in order:

1. Getting Started (p. 17) — In this section you set your account and test Amazon Lex.

2. APl Reference (p. 105) — This section provides additional examples that you can use to explore
Amazon Lex.

Amazon Lex Developer Guide

Amazon Lex: How It Works

This is prerelease documentation for a service in preview release. It is subject to change.

Amazon Lex enables you to build applications using a speech or text interface powered by the same
technology that powers Amazon Alexa. Following are the typical steps you perform when working with
Amazon Lex:

1. Create a bot and configure it with one or more intents that you want to support. You add the
configuration so that the bot is able to understand the user's goal (intent), engage in conversation
with the user to elicit information, and, after the user provides the necessary data, fulfill the user's
intent.

2. Test the bot. You can use the test window client provided by the Amazon Lex console.

3. Publish a version and create an alias.

4. Deploy the bot. You can deploy the bot on platforms such as mobile applications or messaging
platforms such as Facebook Messenger.

Before you get started, familiarize yourself with the following Amazon Lex core concepts and
terminology:

« Bot — A bot performs automated tasks such as ordering a pizza, booking a hotel, ordering flowers,
and so on. An Amazon Lex bot is powered by Automatic Speech Recognition (ASR) and Natural
Language Understanding (NLU) capabilities. This is the same technology that powers Amazon
Alexa.

Amazon Lex bots can understand user input via text or speech and converse in natural language.
You can create Lambda functions and add them as code hook in your intent configuration to perform
user data validation and perform fulfillment tasks.

Amazon Lex Developer Guide

* Intent — An intent represents an action that the user wants to perform. You create a bot to support
one or more related intents. For example, you might create a bot that performs ordering pizza and
drinks. For each intent, you provide the following required information:

* Intent name— A descriptive name for the intent. For example, Or der Pi zza.

» Sample utterances — How a user might convey the intent. For example, a user might say "Can |
order a pizza please" or "l want to order a pizza".

* How to fulfill the intent — How you want to fulfill the intent after the user provides the necessary
information (for example, place order with a local pizza shop). You can create a Lambda function
(recommended) to fulfill the intent. The Lambda function is also referred to as a code hook.

Optionally, you can configure the intent to simply return the information back to the client
application to do the necessary fulfillment.

In addition to custom intents such as the one to order pizza, Amazon Lex also provides
built-in intents to quickly set up your bot. For more information, see Built-in Intents and Slot
Types (p. 15).

» Slot — An intent can require zero or more slots (that is, parameters). You add slots as part of the
intent configuration. At runtime, Amazon Lex prompts users for specific slot values. Users must
provide values for all required slots before Amazon Lex can fulfill the intent.

For example, the OrderPizza intent requires slots such as pizza size, crust type, and number

of pizzas. In the intent configuration, you add these slots. For each slot you add to the intent
configuration, you provide slot type and a prompt for Amazon Lex to send to the client to elicit data
from the user. A user can reply with a slot value that includes additional words, such as "large pizza
please” or "lets stick with small,” and Amazon Lex can still understand the intended slot value.

¢ Slot type — Each slot has a type. You can create your custom slot types or use built-in slot types.
For example, you might create and use the following slot types for the OrderPizza intent:

 Size — With enumeration values Snal | , Medi um and Lar ge.
* Crust — With enumeration values Thi ck and Thi n.

Amazon Lex also provides built-in slot types. For example, AMVAZON. NUMBER is a built-in slot type
that you might use with the number of pizzas ordered. For more information, see Built-in Intents and
Slot Types (p. 15).

The following topics provide additional information. We recommend that you review them in order and
then explore the Getting Started (p. 17) exercises.

Topics

Amazon Lex Developer Guide
Programming Model

¢ Programming Model (p. 5)

¢ Managing Messages (Prompts and Statements) (p. 7)
¢ Managing Conversation Context (p. 14)

¢ Bot Deployment Options (p. 15)

¢ Built-in Intents and Slot Types (p. 15)

Programming Model

A bot is the primary resource type in Amazon Lex. In addition, the other resource types in Amazon Lex
are intent, slot type, alias, and bot channel association. You create and manage these resource using
the Amazon Lex console.

Note
Currently, the build-time API that the Amazon Lex console uses to create and manage
resources is not publicly available.

After you create a bot you can deploy it on one of the supported platforms. At runtime (when a user
interacts with the bot), these application clients can send requests to Amazon Lex using the runtime
API provided by Amazon Lex. For example, when a user says "l want to order pizza", your client can
send a request to Amazon Lex using one of the runtime API operations and include user input in the
request. Note that users can provide both speech and text input.

You can also create Lambda functions and add them as code hooks in your intent configuration
to perform runtime activities such as initialization/validation of user data and intent fulfillment. The
following sections provide additional information.

Topics
¢ Runtime API Operations (p. 5)
¢ Lambda Functions as Code Hooks (p. 6)

Runtime API Operations

Client applications use the following runtime API operations to communicate with Amazon Lex at
runtime:

¢ Post Cont ent — Takes speech or text input and returns current intent information and a message to
convey to the user, which can be text or speech. Currently, Amazon Lex supports the following audio
formats:

Input audio formats — LPCM and Opus

Output audio formats — MPEG, OGG, and PCM

* Post Text — Takes text as input and returns the current intent information and a message to convey
to the user as text.

For example, the test window client in the Amazon Lex console uses Post Text API to send requests
to Amazon Lex. You use this test window in the Getting Started (p. 17) exercises.

Your client application uses the runtime API against a specific Amazon Lex bot to understand user
utterances (that is, user input text or voice). For example, suppose a user says "l want pizza." The

http://docs.aws.amazon.com/lex/latest/dg/chatbot-service.html

Amazon Lex Developer Guide
Lambda Functions as Code Hooks

client sends this user input to Amazon Lex using one of the runtime API operations. From the user
input, Amazon Lex recognizes that the user request is for the OrderPizza intent (one of the intents
defined in the bot). Amazon Lex follows up and engages the user in conversation to elicit the required
information (such as pizza size, toppings, and number of pizzas). After the user provides all of the
necessary slot data, Amazon Lex invokes the code hook to fulfill the intent or returns the intent data to
the client (according to the intent configuration).

Lambda Functions as Code Hooks

You can configure your Amazon Lex bot to invoke your Lambda function as a code hook. The code
hook can serve multiple purposes:

¢ Customize user interaction based on prior knowledge about the user — For example, when Joe asks
for the available pizza toppings, you can use prior knowledge of Joe's dietary preferences (assuming
you have a back-end database) to display a subset of toppings.

« Validate the user's input — Suppose Jen wants to pick up flowers after hours. You can validate the
time that Jen input and send an appropriate response.

< Fulfill the user's intent — After Joe provides all of the information for his pizza order, you can
configure Amazon Lex to invoke a Lambda function that can place the order with a local pizzeria.

When you configure an intent, you can specify Lambda functions as code hooks in the following
places:

« Dialog code hook (initialization/validation) — This Lambda function is invoked on each user input
(assuming Amazon Lex understood the user intent correctly).

¢ Fulfillment code hook — This Lambda function is invoked after the user provides all of the slot data
required to fulfill the intent.

In the Amazon Lex console, you choose the intent and set these code hooks, as shown in the following
example screen shot:

Amazon Lex Developer Guide
Managing Messages (Prompts and Statements)

< OrderFlowers v Build m

Editor Settings Channels Menitering

4] OrderFlowers = =

Remove Save

| orderflowers Sample utterances

Slot types o would ke to pick up Nowers

AppaintmentType would Bke 1o order some Nowers

CarTypeValues

Crusts

FlowerTypes Slots

Pizzakind 4
FlowerTy| Flo... = 1= What type of flowe

RoomTypeValues

Sizes 2 PickupDa AM - Buiff-in - What day do you

Error Handling 3 PickupTin AM - Buitt-in At what time do yo

Options

Initiahzation and valdaton code hook

OrderFlower -

Confirmation prompt
Confirm
QOkay, your {FlowerType] will be ready for pickup by {Pi
Cancel (if the user says "no™)

Okay, | 'will not place your order

Fulfillment

AWS Lambda function Return parameters to client

OrderFlower... w

Goodbye message Follow-up message

You can also have one Lambda function do both. The event data that the Lambda function receives
has a field that identifies the source of invocation (that is, a dialog or fulfillment code hook). You can
use it to execute the appropriate portion of your code.

For more information, see Using Lambda Functions (p. 54).

Managing Messages (Prompts and Statements)

Topics
¢ Types of Messages (p. 8)
¢ Contexts for Configuring Messages (p. 9)
e Supported Message Formats (p. 12)
¢ Response Cards (p. 12)

When you create a bot, you can configure messages that you want the bot to send in the relevant
context. Consider the following examples:

« You might configure your bot with the following clarification prompt:

Amazon Lex Developer Guide
Types of Messages

| didn't understand, what would you like to do?

Then, Amazon Lex can send this message to the client if it doesn't understand the user's intent.

¢ Suppose you create a bot to support an intent called OrderPizza. For a pizza order, you want users
to provide information such as pizza size, toppings, and crust type. For example, you can configure
prompts such as the following:

What size pizza you want?
What toppings you want on the pizza?
Do you want thick or thin crust?

After Amazon Lex determines the user's intent to order pizza, it sends these messages to the client
to elicit data from the user.

This section explains designing user interactions in your bot configuration.

Types of Messages

You can classify the messages as follows:

¢ Prompt — A prompt expects a user response (typically in the form of a question).
» Statement — A statement does not expect any response.

The messages you configure can have dynamic components:

¢ Messages can use the following syntax to refer to slot values of the intent that Amazon Lex is
currently aware of:

{ Sl ot Nane}

Messages can use the following syntax to refer to session attributes:

[Attri but eNane]

You can also have messages that include both slots and session attributes.

At runtime, Amazon Lex substitutes these references with actual values. For example, suppose you
configure the following message in the OrderPizza intent of your bot:

"Hey [FirstNane], your {PizzaTopping} pizza will arrive in [DeliveryTi ne]
m nut es"

This message refers to both slot (Pi zzaToppi ng) and session attributes (Fi r st Narre and
Del i ver yTi ne). At runtime, Amazon Lex replaces these placeholders with values and returns the
following message to the client :

"Hey John, your cheese pizza will arrive in 30 m nutes"

Amazon Lex Developer Guide
Contexts for Configuring Messages

For information about session attributes, see the runtime API operations (PostText (p. 113), and
PostContent (p. 106)). For an example, see Example Bot: BookTrip (p. 72).

If you add code hooks using Lambda functions in your intent configuration, you can create messages
dynamically. Lambda functions can generate messages and return them to Amazon Lex to send to the
user. By providing the messages while configuring your bot, you can eliminate the need to construct a
prompt in code hooks.

Contexts for Configuring Messages

In your bot configuration, you can add messages in the following contexts. You can use the Amazon
Lex console to configure your bot:

« Bot-level messages — You can configure your bot with clarification prompts and hang-up messages.
At runtime, Amazon Lex uses the clarification prompts if it does not understand the user's intent. You
can also configure the number of times that Amazon Lex requests clarification before hanging up
with a hang-up message. You configure these bot-level messages in the Error Handling section in
the Amazon Lex console, as shown in the following screen shot:

¢ OrderFlowers Build m

Editor Settings Channels Maonitoring

[+] Error handling
OrderFlowers Clarification prompts

o [+
Appointment Typel

: didn'l understand you, whal would you like lod =

CarTypevalues
Crusis Maximum number of retries
FlowerTypes .
PizzaKind
RoomTypealles
Slzes o
|Error Handling Sorry, I'm nat able 1o assist at this time []

Note

« If you have a code hook (that is, a Lambda function) configured for an intent, the Lambda
function might return a response directing Amazon Lex to elicit user intent. If the Lambda
function does not provide a message to convey to the user, then Amazon Lex uses the
clarification prompt you configured.

* Amazon Lex uses the hang-up statement whenever the user does not respond with an
appropriate answer for a prompt (including intent elicitation, slot elicitation, follow-up
prompt, intent confirmation, etc.) after the maximum permissible attempts. You configure
the maximum permissible attempts in the Error Handling section in the console.

¢ Intent-level messages — You can configure the intent-level messages such as confirmation prompts,
cancel statements, goodbye messages (conclusion statements), and prompts (that Amazon Lex can
use to elicit slot values), as shown in the following screen shot:

Amazon Lex Developer Guide
Contexts for Configuring Messages

¢ OrderFlowers Build m

Editor Settings Channels Monitoring
4] OrderFlowers Riemove Savi
Orderflowers Sample utterances
L+]
/a

Crusts

FlowerTypes Slots

PizzakGind

Error Handling

Options

Initialization and validation code hook

AWS Lambda function Retum parameters ta client

Goodbye message Follow-up message

» Confirmation prompts and cancel statements — After a user provides all of the required data,
Amazon Lex asks the user for confirmation using the specified message before fulfilling the intent.
If the user replies with a "No" to a confirmation prompt, Amazon Lex returns the cancel statement
to the client.

» Goodbye message (conclusion statement) or follow-up prompts — If you add a code hook (that
is, a Lambda function) to fulfill the intent, you can configure one of these messages as backup
messages. If the Lambda function succeeds but does not provide a message to send to the user,
Amazon Lex sends the message that you configured.

¢ The following is an example of a conclusion statement (the example assumes that the
application maintains the Del i ver yTi me session attribute):

"l have placed your order for pizza. It will arrive in [DeliveryTine]
m nutes. "

e The following is an example of a follow up prompt:

"l have placed your order for pizza. Do you want ne to do anything
el se?".

10

Amazon Lex Developer Guide
Contexts for Configuring Messages

If you configure a follow-up prompt, you must also configure a cancel (rejection) statement. If
the user's reply to a follow-up prompt is a "Yes," Amazon Lex recognizes the user's confirmation
and also recognizes the user's intent (OrderDrink), and then follows up accordingly. For
example:

"Yes, | also want to order a drink."

If the user says "No," Amazon Lex sends the cancel statement. For example:

"Alright. Ping ne if you need anything else."

« Prompts to elicit value slot values — You must specify at least one prompt message for each of
the required slots in an intent. At runtime, Amazon Lex uses one of these messages to prompt
the user to provide value for this slot. For example, for a ci t yNane slot, the following is a valid
prompt:

"Which city would you like to fly to?"

Note
In your Lambda function that you create as code hook for an intent, you can override any of
the messages that you configured at build-time.

You can configure more than one message for a specific context. At runtime, Amazon Lex picks the
message with the maximum possible substitutions. For example, to elicit a value for crust type in
OrderPizza intent, you can configure multiple messages, as shown following:

Hey [FirstName], what topping would you |like for your {PizzaSize} pizza?
Hey [FirstNanme], what topping would you |like for your pizza?

VWhat t oppi ng woul d you |ike?

Tell ne the topping you would |ike on your pizza

Then, Amazon Lex uses the following order of selection:

If both the session attribute (Fi r st Narme) and slot value (Pi zzaSi ze) are available, Amazon Lex
uses the first prompt.

If the session attribute (Fi r st Nane) is available but the user doesn't provide a slot value
(Pi zzaSi ze) that's available, Amazon Lex uses the second prompt.

If both the session attribute and the slot value are not available, Amazon Lex uses either the third or
fourth prompt (random selection).

At runtime, Amazon Lex disregards messages with references to unresolved slot values. If

all of the messages for a given context have unresolved references, Amazon Lex throws a
BadRequest Except i on error. Therefore, we recommend that you have at least one message without
references.

11

Amazon Lex Developer Guide
Supported Message Formats

Supported Message Formats

Amazon Lex supports messages in the following formats: plain text and Speech Synthesis Markup
Language (SSML).

If the output mode is text (that is, a client sends requests using the Post Text API operation or the
Post Cont ent API operation with Accept HTTP header settot ext/ pl ai n; charset=utf-8),
Amazon Lex selects only plain text messages and SSML messages are disregarded.

Note

 If you configure your bot with only SSML messages and a text client tries to communicate
with your bot, Amazon Lex returns a BadRequest Except i on error. We recommend that
you give at least one Pl ai nText message for each context.

 If out put Di al ogMbde in the incoming event is text, you must return a Pl ai nText
message from your AWS Lambda function. For more information, see Lambda Function
Input Event and Response Format (p. 54).

Amazon Lex also supports synthesizing audio from SSML. For more information, see Using SSML.

Response Cards

For each interaction context, you can also configure a response card. There can be many messages
for a given context, but there can only be one response card.

You can use response cards with text-based clients, including messaging platforms such as Facebook
Messenger.

When you configure a response card, Amazon Lex can include the response card (along with the
corresponding message) in its response to the client. The client can then show the message and also
display the response card. The user just chooses an option in the response card.

Each option in a response card has a value that you can configure to match the training data. For
example, while building a taxi application, you can configure an option to read "Home" on the response
card and set the value to an address "111 Maple Street, Seattle 98101". When the user selects this
option, Amazon Lex receives the entire address as the input text. Thus, response cards simplify
interaction for your users and increase your bot accuracy by reducing typographical errors.

You can define response cards statically (that is, at build-time) or dynamically (that is, at runtime) in a
Lambda function. If both static and dynamic definition of response card exists dynamic response card
definition takes precedence over static definitions.

Amazon Lex understands these response cards and sends responses in a format understandable to
client applications. For example, Amazon Lex transforms the response card to a generic template if the
client is Facebook Messenger. For more information, see Generic Template on the Facebook website.

Defining Response Cards Statically

You can define response cards at the bot build-time. You can use the Amazon Lex console to define
the response card. Suppose you are creating a bot with some intent. Suppose one of the slots for this
intent is color. When defining the color slot, you specify prompts, as shown in the following example
screen shot:

12

http://docs.aws.amazon.com/polly/latest/dg/ssml.html
https://developers.facebook.com/docs/messenger-platform/send-api-reference/generic-template

Amazon Lex Developer Guide
Response Cards

Slots
Reguired Name Slot type Prompt
+ [+]
L4 Colar Color PR What color + o
Size See A 4w Vinat siza? * =]
o Destination Cities hiw What Is your destination? + o
Options
Inftizization and valldation £ose hook
Confirmation prompd
Fulfillmant
AWS Lambda function @ Return parameters fo chent

In describing prompts you can optionally associate a response card and define details in the Amazon
Lex console, as shown in the following example screen shot:

Color Prompts. x

Card titie Card subtitie

o |

Now suppose you integrate your bot with Facebook Messenger, you see the following. User can then
click the buttons to choose a color as shown in the following illustration:

‘ Ice Tea User

Get me an ice tea please

Ice Tea Bot

What Color

Green

Blue

You can refer to session attributes in response cards. At runtime, Amazon Lex substitutes these
references with appropriate values from the session attributes.

Defining Response Cards Dynamically

You can use a code hook (that is, a Lambda function) to generate response cards dynamically in
response to user input and return the details as part of the di al ogActi on in the response. For more
information, see Response Format (p. 57).

13

Amazon Lex Developer Guide
Managing Conversation Context

The following is an example Lambda function with a partial response showing the r esponseCard
element that can generate a user experience similar to the one shown in the preceding section.

responseCard: {
"version": 1,

"cont ent Type": "application/vnd. amazonaws. card. generic",
"genericAttachments": [
{
"title": "What Col or",
"subtitle": "What color do you want",
"imageUrl: "https://s3.anmazonaws. coni | ex- box/i ce-tea.|peg",
"attachment Li nkUrl: "https://s3. amazonaws. com | ex-box/ice-tea. htm ",
"buttons": [
{
"text": "Red",
"val ue": "red"
}
{
"text": "G een",
"val ue": "green"
}
{
"text": "Blue",
"val ue": "blue"
}

Managing Conversation Context

This is prerelease documentation for a service in preview release. It is subject to change.

This section explains the following:

¢ Session timeout — How long Amazon Lex maintains context information of an in-progress intent
activity.
¢ Cross-intent information sharing — How you can share context information across intents.

Session Timeout

For each Amazon Lex bot, you configure session timeout. Amazon Lex maintains context information
of each in-progress intent activity for the duration of the session.

Suppose you create a bot (OrderShoes) that supports intents such as OrderShoeslintent and
GetStatusintent. When Amazon Lex detects that the user's intent is to order shoes, it asks the user for

14

Amazon Lex Developer Guide
Cross-Intent Information Sharing

slot data (for example, shoe size, color, brand, etc.). Suppose the user provides some of the slot data,
but does not complete the shoe purchase. Amazon Lex remembers all of the prior intent information for
the duration of the session (by default, session duration is five minutes). If the user returns within the
session duration, the user can continue the conversation where it was left off, provide remaining slot
data, and complete the purchase.

Cross-Intent Information Sharing

Amazon Lex supports cross-intent information sharing. For example, suppose a user of the
OrderShoes bot starts with ordering shoes. Amazon Lex engages in conversation with the user, elicits
information (slot data such as shoe size, color, and brand), and the user successfully places a shoe
order.

Then, the user switches the intent. Now the user wants to know the order status
(GetOrderStatusintent). Amazon Lex can ask the user for order information (slot data such as order
number, order date, etc.). However, if the user switched the intent soon after ordering shoes, within
the same session, you might design your bot to return the status of the latest order. That is, instead
of asking the user for order information again, you can use session attributes to share cross-intent
information (in this case, the order number) and fulfill the intent (that is, return the status of the last
order the user placed).

You can use session attributes in this cross-intent information sharing scenario. Your application
can save any information (such as order number in the preceding example). Every request that the
client sends using Post Text or Post Cont ent runtime API includes the sessi onAttri but es
field. Amazon Lex passes these session attributes to the code hook configured for the intent. If your
application maintains the order number as a session attribute, it can be shared across intents.

For an example of cross-intent information sharing, see Example Bot: BookTrip (p. 72).

Note

Amazon Lex does not store or log session attributes anywhere. Amazon Lex passes them
between the client and code hook configured for the intent. If a message refers to a session
attribute (using [At t r i but eNane] notation), Amazon Lex substitutes the corresponding
value while building the message. For more information, see Managing Messages (Prompts
and Statements) (p. 7).

Bot Deployment Options

Currently, Amazon Lex provides the following bot deployment options:

¢ AWS Mobile SDK — You can build mobile applications that communicate with Amazon Lex using the
AWS Mobile SDKs.

« Facebook Messenger — You can integrate your Facebook Messenger page with your Amazon Lex
bot so that end users on Facebook can communicate with the bot. In the current implementation, this
integration supports only text input messages.

For examples, see Deploying Amazon Lex Bots on Various Platforms (p. 61).

Built-in Intents and Slot Types

Topics

15

https://aws.amazon.com/mobile/sdk/

Amazon Lex Developer Guide
Built-in Intents

¢ Built-in Intents (p. 16)
¢ Built-in Slots (p. 16)

Built-in Intents

Amazon Lex has a large built-in intent library. To create an intent from a built-in intent, select one of the
existing built-in intents in the console, and add a custom name.

Then all the base intent configuration (such as sample utterances and slots) are available to the intent
you are creating.

For a list of built-in intents, see Built-in Intent Library in the Alexa Skills Kit.
Note

¢ Amazon Lex doesn't support AVAZON. Yesl nt ent and AMAZON. Nol nt ent .

¢ In the current implementation, you can't add or remove sample utterances or slots from the
base intent. Also, you cannot configure slots for build-in intents.

Built-in Slots

Amazon Lex also has several built-in slot types (from the Alexa Skills Kit). You can create slots of
these types in your intents. They eliminate the need to create enumeration values for commonly used
slot data such as date, time and location. The built-in slot-types do not have versions. For a list of
available built-in slot types, see Slot Type Reference in the Alexa Skills Kit.

Note
Amazon Lex doesn't support AVAZON. LI TERAL built-in slot type (it's deprecated in the Alexa
Skills Kit).

16

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/built-in-intent-library
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference

Amazon Lex Developer Guide
Exercise 1: Create a Bot Using a Blueprint

Getting Started

This is prerelease documentation for a service in preview release. It is subject to change.

This getting started section provides the following introductory exercises:

« Exercise 1 — Create an Amazon Lex bot using a blueprint. The bot blueprint provides all the
necessary bot configuration. You only do minimum work to test the end-to-end setup.

In addition, you use the Lambda function blueprint provided by AWS Lambda to create a Lambda
function (that is, a code hook), with predefined code that is compatible with your bot.

« Exercise 2 — Create a custom bot where you manually create and configure the bot. You also create
a Lambda function as a code hook. Sample code is provided.

« Exercise 3 — Publish a bot and create a new version. As part of this exercise, you create an alias
pointing to the bot version.

Topics
¢ Exercise 1: Create an Amazon Lex Bot Using a Blueprint (p. 17)
« Exercise 2: Create a Custom Amazon Lex Bot (p. 39)
¢ Exercise 3: Publish a Version and Create an Alias (p. 48)

Exercise 1. Create an Amazon Lex Bot Using a
Blueprint

This is prerelease documentation for a service in preview release. It is subject to change.

In this exercise, you do the following:

17

Amazon Lex Developer Guide
Amazon Lex Bot: Blueprint Overview

» Create your first Amazon Lex bot and test it in the Amazon Lex console.

For this exercise, you use the OrderFlowers blueprint. For information about blueprints, see
Amazon Lex and AWS Lambda Blueprints (p. 59).

¢ Create an AWS Lambda function and test it in the Lambda console. This Lambda function is the
code hook for your bot. For this exercise, you use a Lambda blueprint (lex-order-flowers-python)
provided in the AWS Lambda console to create your Lambda function. The blueprint code illustrates
how you can use the same Lambda function to perform both initialization/validation and also fulfill the
OrderFlowers intent.

» Update the bot to add the Lambda function as the code hook to fulfill the intent. Test the end-to-end
experience.

The following sections explain the blueprints. You can review these settings now, and then revisit them
after you have created and tested the end-to-end experience.

Amazon Lex Bot: Blueprint Overview

You use the OrderFlowers blueprint to create an Amazon Lex bot. The bot is preconfigured as follows:

* Intent — OrderFlowers

¢ Slot types — One custom slot type called FlI ower Types with enumeration values: r oses, li |l i es,
andtulips.

» Slots — The intent requires the following information (that is, slots) before the bot can fulfill the intent.

e Pi ckupTi ne (AMAZON.TIME built-in type)
* Fl ower Type (FlowerTypes custom type)
* Pi ckupDat e (AMAZON.DATE built-in type)
¢ Utterance — The following sample utterances indicate the user's intent:

"l would like to pick up flowers."
» "l would like to order some flowers."
* Prompts — After the bot identifies the intent, it uses the following prompts to fill the slots:

» Prompt for the FI ower Type slot — "What type of flowers would you like to order?"
» Prompt for the Pi ckupDat e slot — "What day do you want the {FlowerType} to be picked up?"
» Prompt for the Pi ckupTi ne slot — "At what time do you want the {FlowerType} to be picked up?"

» Confirmation statement — "Okay, your {FlowerType} will be ready for pickup by {PickupTime} on
{PickupDate}. Does this sound okay?"

AWS Lambda Function: Blueprint Summary

The Lambda function in this exercise performs both initialization/validation and fulfillment tasks.
Therefore, after creating the Lambda function, you then update the intent configuration by specifying
the same Lambda function as a code hook to handle both the initialization/validation and fulfillment
tasks.

» As an initialization and validation code hook, the Lambda function performs a basic validation. For
example, if the user provides a time for pickup that is outside of normal business hours, the Lambda
function directs Amazon Lex to re-prompt the user for the time again.

18

Amazon Lex Developer Guide
Step 1: Prepare

¢ As part of fulfillment code hook, the Lambda function returns a summary message indicating that the
flower order has been placed (that is, the intent is fulfilled).

Next Step

Step 1: Prepare (p. 19)

Step 1: Prepare

In this section, you create two IAM roles:

« |IAM role that Amazon Lex can assume. You grant this role necessary permissions so that Amazon
Lex can invoke your Lambda function on your behalf.

¢ |AM role that AWS Lambda can assume. You grant this role necessary permissions for the
CloudWatch actions so that AWS Lambda can write any logs that your Lambda function generates.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedures to create the IAM roles.

To create the first IAM role (lex-exec-role)
You create this role for Amazon Lex to assume.

1. Signin to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

¢ In Role Name, use a name that is unique within your AWS account (for example, lex-exec-
role).

¢ In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda.
Note
In the current implementation, Amazon Lex service role is not available. Therefore, you
first create a role using the AWS Lambda as the AWS service role. After you create

the role, you update the trust policy and specify Amazon Lex as the service principal to
assume the role.

e In Attach Policy, choose Next Step (that is, you create a role without any permissions). Create
the role.

¢ Choose the role you created and update policies as follows:

¢ In the Permissions tab, choose Inline Policies, and then attach the following custom policy.

"Version": "2012-10-17",
"Statenment": [
{
"Action": [
"l anbda: | nvokeFuncti on",
"pol I y: Synt hesi zeSpeech"
I,
"Effect": "Alow',
"Resource": "*"

19

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Lex Developer Guide
Step 1: Prepare

In this exercise you use a text-based client. Therefore, Amazon Lex does not require
permission for the pol | y: Synt hesi zeSpeech action, but we include this so that you can
use the same IAM role with a speech-based client that uses the Post Cont ent runtime API
operation.

¢ Inthe Trust Relationships tab, choose Edit Trust Relationship, and specify the Amazon
Lex service principal ("1 ex. amazonaws. coni'). The updated policy should look as shown:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow',
"Principal": {
"Service": "lex.amzonaws. cont
b,
"Action": "sts:AssunmeRol e"
}
]
}

To create the second IAM role (lambda-exec-role-for-lex-get-started)

You create this role for AWS Lambda to assume.

1. Signin to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

¢ In Role Name, use a name that is unique within your AWS account (for example, lambda-exec-
role-for-lex-get-started).

¢ In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

¢ In Attach Policy, choose Next Step (that is, you create a role without any permissions). Create
the role.

¢ Choose the role you created. In the Permissions tab, choose Inline Policies, and then attach
the following custom policy, which allows AWS Lambda permissions to write CloudWatch logs
when it assumes the role.

"Version": "2012-10-17",
"Statenment”: [
{
"Effect": "All ow',
"Action": [
"l ogs: Creat eLogG oup”,
"l ogs: Creat eLogSt r eant,
"1 ogs: Put LogEvent s"

1

20

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Lex Developer Guide
Step 2: Create an Amazon Lex Bot

"Resource": |

nwgn

]

Next Step

Step 2: Create an Amazon Lex Bot (p. 21)

Step 2: Create an Amazon Lex Bot

In this section, you create an Amazon Lex bot (OrderFlowersBot).

1.

Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

On the Bots page, choose Create.
On the Create your Lex bot page, provide the following information and then choose Create.

e Choose OrderFlowers blueprint.
¢ Leave the default bot name (OrderFlowers).
¢ Choose the IAM role (lex-exec-role)

The console makes the necessary requests to Amazon Lex to save the configuration and build the
bot. The console then displays the Test Bot window.

Test the bot.

Use the following example text to engage in conversation with the bot to order flowers:

o Test App v

| would like to order some flowers
What type of flowers would you like to order?
roses
What day do you want the roses to be picked up?
tomorrow
Deliver the roses at what time on 2016-11-267
6pm

Okay, your roses will be ready for pickup by 18:00 on
2016-11-26. Does this sound okay?

yes

FlowerType:roses PickupDate:2016-11-26 PickupTime:18:00

21

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Step 3 (Optional): Review the Details of Information Flow

From this input, the bot infers the OrderFlowers intent and prompts for slot data. When you
provide all the required slot data, the bot fulfills the intent (OrderFlowers) by simply returning all the
information back to the client application (in this case, the console). The console simply shows the
information in the test windows.

Note the following:

« In the statement "What day do you want the roses to be picked up?", the term "roses" appears
because the prompt for the pi ckupDat e slot is configured using substitutions, {FlowerType}.
You can verify this in the console.

» The "Okay, your roses will be ready..." statement is what you configured as the confirmation
prompt.

« The last statement ("FlowerType:roses...") is simply the slot data that is returned to the client, in
this case the test window. In the next exercise, you use a Lambda function to fulfill the intent, in
which case you get a message indicating the order is fulfilled.

Next Step

Step 3 (Optional): Review the Details of Information Flow (p. 22)

Step 3 (Optional): Review the Details of Information
Flow

This section explains the flow of information between the client and Amazon Lex for each user input.
The client in the Amazon Lex console makes the PostText (p. 113) runtime API requests to Amazon
Lex. The API topic describes details of the requests/responses shown in the following steps.

1. User: | would like to order some flowers

a. The client (console) sends the following PostText (p. 113) request to Amazon Lex:

POST / bot/ O der Fl ower s/ al i as/ $LATEST/
user/ 409wwdhx6nl hef er h6a73f uj d3118f 5w/ t ext
"Cont ent - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{

"input Text": "I would like to order sone flowers",
"sessionAttributes": {}

Note that both the request URI and the body provide information to Amazon Lex:

* Request URI — Provides bot name (OrderFlowers), bot alias (SLATEST), and user name
(a random string identifying the user). The trailing t ext indicates that it is a Post Text API
request (and not Post Cont ent).

22

Amazon Lex Developer Guide
Step 3 (Optional): Review the Details of Information Flow

» Request body — Includes the user input (i nput Text) and empty sessi onAttri but es.
When the client makes the first request, there are no session attributes. The Lambda
function initiates them later.

From the inputText, Amazon Lex detects the intent (OrderFlowers). This intent does not have
any code hooks (that is, the Lambda functions) for initialization/validation of user input or
fulfillment.

Amazon Lex chooses one of the intent's slots (FI ower Type) to elicit the value. It also selects
one of the value elicitation prompts for the slot (all part of the intent configuration) and then
sends the following response back to the client. The client (that is, the console) displays the
message in the response to the user.

Headers Cookies Params

Filter propertics

dialogState: "ElicitSlot”
intentMame: "OrderFlowers"

message: "What type of flowers would you like to order?”
responseCard: null
sessionfttributes: Object
slotToElicit: "FlowerType”
slots: Object
FlowerType: null
PickupDate: null
PickupTime: null

The client displays the message in the response.

2. User: roses

a.

The client (console) sends the following PostText (p. 113) request to Amazon Lex:

POST / bot/ Order Fl ower s/ al i as/ $LATEST/
user/ 409wwdhx6nl hef er h6a73f uj d3118f 5w/ t ext
"Content - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{

"input Text": "roses",
"sessionAttributes": {}

Note that the i nput Text in the request body provides user input. The sessi onAttri butes
remains empty.

Amazon Lex first interprets the i nput Text in the context of the current intent (the service
remembers that it had asked the specific user for information about FI ower Type slot).
Amazon Lex first updates the slot value for the current intent and chooses another slot

(Pi ckupDat e) along with one of its prompt messages (What day do you want the roses to be
picked up?) for the slot.

Then, Amazon Lex returns the following response:

23

Amazon Lex Developer Guide
Step 3 (Optional): Review the Details of Information Flow

3.

S
Headers Cookies Params

Filter properties
JSON

dialogState: "ElicitSlot”
intentMName: "OrderFlowers”
messages "What day do you want the roses to be picked up?”
responseCard: null
sessionAttributes: Object
slotToklicit: "PickupDate”
slots: Object
FlowerType: "roses”
PickupDate: null
PickupTime: null

The client displays the message in the response.

User: tomorrow

a.

The client (console) sends the following PostText (p. 113) request to Amazon Lex:

POST / bot/ Order Fl ower s/ al i as/ $LATEST/
user/ 409wwdhx6nl hef er h6a73f uj d3118f 5w/ t ext
"Content - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{

"input Text": "tonorrow',
"sessionAttributes": {}

Note that the i nput Text in the request body provides user input. The sessi onAttri butes
remains empty.

Amazon Lex first interprets the i nput Text in the context of the current intent (the service
remembers that it had asked the specific user for information about Pi ckupDat e slot).
Amazon Lex updates the slot (Pi ckupDat e) value for the current intent. It chooses another
slot to elicit value for (Pi ckupTi ne). It returns one of the value elicitation prompts (Deliver the
roses at what time on 2017-01-017?) to the client.

Amazon Lex then returns the following response:

Headers Cookies Params

Filter properties

JSON

dialogState: "ElicitSlot”
intentMName: "OrderFlowers”
messages "Deliver the roses at what time on 2017-01-017"
responseCard: null
sessionAttributes: Object
slotTeklicit: "PickupTime"
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-01"
PickupTime: null

24

Amazon Lex Developer Guide
Step 3 (Optional): Review the Details of Information Flow

The client displays the message in the response.

4. User: 6 pm

a. The client (console) sends the following PostText (p. 113) request to Amazon Lex:
POST / bot/ Order Fl ower s/ al i as/ $LATEST/
user/ 409wwdhx6nl hef er h6a73f uj d3118f 5w/ t ext
"Cont ent - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"
{
"input Text": "6 pni,
"sessionAttributes": {}
}
Note that the i nput Text in the request body provides user input. The sessi onAttri butes
remains empty.

b. Amazon Lex first interprets the i nput Text in the context of the current intent (the service
remembers that it had asked the specific user for information about Pi ckupTi e slot).
Amazon Lex first updates the slot value for the current intent. Now Amazon Lex detects that it
has information for all the slots.

The OrderFlowers intent is configured with a confirmation message. Therefore, Amazon Lex
needs an explicit confirmation from the user before it can proceed to fulfill the intent. Amazon
Lex sends the following message to the client requesting confirmation before ordering the
flowers:
S —
Headers Cookies Params Response Timings Security
JSON
dialogState: "ConfirmIntent”
intentMame: "OrderFlowers”
message: "Okay, your roses will be ready for pickup by 18:00 on 2017-01-01. Does this sound okay?
responseCard: null
sessionAttributes: Object
slotToElicit: null
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-01"
PickupTime: "18:00"
The client displays the message in the response.
5. User: Yes
a. The client (console) sends the following PostText (p. 113) request to Amazon Lex:

PGST / bot/ Or der Fl ower s/ al i as/ SLATEST/
user/ 409wwdhx6nl hef er h6a73f uj d3118f 5w/ t ext
"Cont ent - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{

25

Amazon Lex Developer Guide
Step 3 (Optional): Review the Details of Information Flow

"input Text": "Yes",
"sessionAttributes": {}

Note that the i nput Text in the request body provides user input. The sessi onAttri butes
remains empty.

b. Amazon Lex interprets the inputText in the context of confirming the current intent. It
understands that the user want to proceed with the order. OrderFlowers intent is configured
with Ret ur nl nt ent as the fulfillment activity (there is no code hook, a Lambda function to
fulfill the intent). Therefore, Amazon Lex returns the slot data back to the client.

Headers Cookies Params Response

Eilter nroperties

JSON

dialogState: "ReadyForFulfillment”
intentName: "OrderFlowers”
message: null
responseCard: null
sessionAttributes: Object
slotToElicit: null
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-01"
PickupTime: "18:00"

Note that Amazon Lex set the di al ogSt at e to ReadyFor Ful fi | | ment . The client can then
fulfill the intent.

6. Now you need to test the bot again. To do that, you must choose the Clear link in the console to
establish a new (user) context. Now as you provide data for the order flowers intent, try to provide
invalid data. For example:

« Jasmine as the flower type (it is not one of the supported flower types).
« Yesterday as the day when you want to pick up the flowers.

Notice that the bot accepts these values because you don't have any code to initialize/validate
user data. In the next section, you add a Lambda function to do this. Note the following about the
Lambda function:

e The Lambda function validates slot data after every user input. It fulfills the intent at the
end (that is, the bot processes the flowers order and returns a message to the user instead
of simply returning slot data back to the client). For more information, see Using Lambda
Functions (p. 54).

* The Lambda function also sets the session attributes. For more information about session
attributes, see PostText (p. 113).

After you complete the Getting Started section, you can do the additional exercises (Additional
Examples: Creating Amazon Lex Bots (p. 66)). Example Bot: BookTrip (p. 72) uses

session attributes to share cross-intent information to engage in a dynamic conversation with the
user.

Next Step

26

Amazon Lex Developer Guide
Step 4: Create a Lambda Function

Step 4: Create a Lambda Function (p. 27)

Step 4: Create a Lambda Function

In this section, you create a Lambda function (using the lex-order-flowers-python blueprint) and
perform test invocation using sample event data in the AWS Lambda console. This Lambda function is
written in Node.js.

In the next section you go back to the Amazon Lex console and add the Lambda function as the code
hook to fulfill the OrderFlowers intent (in your OrderFlowersBot you created in the preceding section).

1. Signinto the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.

3. On Select blueprint, type | ex to find the blueprint, choose the | ex- or der - f | ower s- pyt hon
blueprint.

Lambda function blueprints are provided in both Node.js and Python. For this exercise, you use
the Python-based blueprint.

4. Choose Next on the Configure Triggers page.
5. Onthe Configure function page, do the following, and then choose Next.

e Type a Lambda function name (O der FI ower sCodeHook).

« For the IAM role, choose the Choose an existing role and then select | anbda- exec-r ol e-
for-Iex-get-started from the Existing role list.

¢ Leave other default values.
6. Onthe Review page, choose Create function.
7. Test the Lambda function.

a. Choose Actions, Configure test event.

b. Choose Lex-Order Flowers (preview) from the Sample event template list. This
sample event matches the Amazon Lex request/response model (see Using Lambda
Functions (p. 54)).

c. Choose Save and test.

d. Verify that the Lambda function successfully executed. The response in this case matches the
Amazon Lex response model.

Next Step

Step 5: Update Intent Configuration: Add the Lambda Function as Code Hook (p. 27)

Step 5: Update Intent Configuration: Add the
Lambda Function as Code Hook

In this section, you update the configuration of the OrderFlowers intent to use the Lambda function as
follows:

¢ First use the Lambda function as a code hook to perform fulfillment of the OrderFlowers intent. You
test the bot and verify that you received a fulfilment message from the Lambda function. Amazon
Lex invokes the Lambda function only after you provide data for all the required slots for ordering
flowers.

27

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Step 5: Update Intent Configuration: Add
the Lambda Function as Code Hook

¢ Configure the same Lambda function as a code hook to perform initialization and validation. You test
and verify that the Lambda function performs validation (as you provide slot data).

1. Inthe Amazon Lex console, select the OrderFlowers bot. The console shows the OrderFlowers
intent. Make sure that the intent version is set to SLATEST because this is the only version that we
can modify.

2. Add the Lambda function as the fulfilment code hook and test it.

a. Inthe Editor, choose AWS Lambda function as Fulfillment, and select the Lambda function
that you created in the preceding step (OrderFlowersCodeHook).

Note that you are configuring this Lambda function as a code hook to fulfill the intent. Amazon
Lex invokes this function only after it has all the necessary slot data from the user to fulfill the
intent.

b. Specify a Goodbye message.
Choose Save and then choose Build.
Test the bot using the same previous conversation.

Note that the last statement "Thanks, your order for roses...." is a response from the Lambda
function that you configured as a code hook. In the preceding section, there was no Lambda
function. Now you are using a Lambda function to actually fulfill the OrderFlowers intent.

3. Add the Lambda function as an initialization and validation code hook, and test.

The sample Lambda function code that you are using can do both (perform user input validation
and fulfilment). The input event the Lambda function receives has a field (i nvocat i onSour ce)
that the code uses to determine what portion of the code to execute. For more information, see
Lambda Function Input Event and Response Format (p. 54).

a. Make sure the intent (OrderFlowers) version SLATEST because that is the only version you
can update.

In the Editor, choose Initialization and validation in Options.
Again, select the same Lambda function.

Choose Save and then choose Build.

Test the bot.

® a0 o

You completed the setup. You are now ready to converse with Amazon Lex as follows. To test
the validation portion, choose time 6 PM, and your Lambda function returns a response ("Our
business hours are from ten AM to five PM."), and prompts you again. After you provide all the
valid slot data, the Lambda function fulfills the order.

28

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

0 Test App v

What type of flowers would you like to order?

roses
What day do you want the roses to be picked up?
tomorrow
Deliver the roses at what time on 2016-11-267
6pm
Our business hours are from ten a m. to five p m. Can you
specify a time during this range?
4pm

Okay, your roses will be ready for pickup by 16:00 on
2016-11-26, and will cost 25 dollars. Does this sound okay?

yes

Thanks, your order for roses has been placed and will be
ready for pickup by 16:00 on 2016-11-26

pe or speak to your application .

Next Step

Step 6 (Optional): Review the Details of Information Flow (p. 29)

Step 6 (Optional): Review the Detalls of Information
Flow

This section explains the flow of information between the client and Amazon Lex for each user input.
The client in the Amazon Lex console uses the PostText (p. 113) runtime API to send requests to
Amazon Lex. The API topic describes details of the requests/responses shown in the following steps:

1. User: | would like to order some flowers

a. The client (console) sends the following PostText (p. 113) request to Amazon Lex:

POST / bot/ O der Fl ower s/ al i as/ $LATEST/
user/i gnw84y6seypr edx!| y5ri mopuri 2xwnd/ t ext
"Content - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{

"inputText": "I would like to order sone flowers",
"sessionAttributes": {}

Note that both the request URI and the body provides information to Amazon Lex:

29

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

* Request URI — Provides bot name (OrderFlowers), bot alias (SLATEST), and user name
(a random string identifying the user). The trailing t ext indicates that it is a Post Text API
request (and not Post Cont ent).

* Request body — Includes the user input (i nput Text) and empty sessi onAttri but es.
When the client makes the first request, there are no session attributes. Lambda function
initiates them later.

From the i nput Text , Amazon Lex detects the intent (OrderFlowers). This intent is
configured with a Lambda function as code hook for user data initialization/validation.
Therefore, Amazon Lex invokes that Lambda function by passing the following information as
event data:

{
"messageVersion": "1.0",
"invocati onSource": "D al ogCodeHook",
"userld": "ignwidy6seypredxl| y5rinopuri2xwnd",
"sessionAttributes": {},
"bot": {
"name": "OrderFl owers",
"alias": null,
"version": "$LATEST"
3
"out put Di al ogvbde": "Text",
"currentlintent": {
"name": "OrderFl owers",
"slots": {
"Pi ckupTime": null,
"Fl ower Type": nul |,
"Pi ckupDate": null
3
"confirmationStatus": "None"
}
}

For more information, see Input Event Format (p. 54).

Note that, in addition to the information client sent, Amazon Lex also includes the following
additional data.
* messageVer si on — Currently Amazon Lex supports only the 1.0 version.

e i nvocati onSour ce — Indicates the purpose of Lambda function invocation. In this case, it
is to perform user data initialization and validation (at this time Amazon Lex knows that the
user has not provided all the slot data to fulfill the intent).

e currentl nt ent information, which has all the slot values set to null.

At this time, all the slot values are null. There is nothing for the Lambda function to validate.
The Lambda function returns the following response to Amazon Lex:

"sessionAttributes": {},
"di al ogAction": {
"type": "Del egate",
"slots": {
"Pi ckupTine": null,
"Fl ower Type": nul |,

30

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

"Pi ckupDate": null

For information about the response format, see Response Format (p. 57).

Note the following:

» di al ogActi on. t ype — By setting this value to Del egat e, Lambda function delegates the
responsibility of deciding the next course of action to Amazon Lex.

Note
If Lambda function detects anything in the user data validation, it instructs Amazon
Lex what to do next, as shown in the next few steps.

According to the di al ogActi on. t ype, Amazon Lex decides the next course of action.
Because none of the slots are filled, it decides to elicit the value for the Fl ower Type slot. It
selects one of the value elicitation prompts ("What type of flowers would you like to order?")
for this slot, as per the intent configuration, and sends the following response back to the
client:

Headers Cookies Params

Filter properties

dialogState: "ElicitSlot”
intentMame: "OrderFlowers"

message "What type of flowers would you like to order?”
responseCard: null
sessiondttributes: Object
slotToElicit: "FlowerType"
slots: Object
FlowerType: null
PickupDate: null
PickupTime: null

The client displays the message in the response.

2. User: roses

a.

The client (console) sends the following PostText (p. 113) request to Amazon Lex:

PCGST / bot/ Or der Fl ower s/ al i as/ $LATEST/
user/i gnwd4y6seypr edx!| y5ri mopuri 2xwnd/ t ext
"Cont ent - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{

"input Text": "roses",
"sessionAttributes": {}

Note that, in the request body the i nput Text provides user input. The sessi onAttri butes
remains empty.

31

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

Amazon Lex first interprets the i nput Text in the context of the current intent (the service
remembers that it had asked the specific user for information about FI ower Type slot). It
updates the slot value in the current intent and invokes the Lambda function with the following
event data:

{
"messageVersion": "1.0",
"invocati onSource": "D al ogCodeHook",
"userld": "ignwidy6seypredxl| y5rinopuri2xwnd",
"sessionAttributes": {},
"bot": {
"name": "OrderFl owers",
"alias": null,
"version": "$LATEST"
3
"out put Di al ogvbde": "Text",
"currentlintent": {
"name": "OrderFl owers",
"slots": {
"Pi ckupTime": null,
"Fl ower Type": "roses",
"Pi ckupDate": null
3
"confirmationStatus": "None"
}
}

Note the following:

e invocati onSour ce — continues to be Di al ogCodeHook (we are simply validating user
data).

e currentlntent. sl ot s — Amazon Lex has updated the Fl ower Type slot to roses.

According to the i nvocat i onSour ce value of Di al ogCodeHook, the Lambda function
performs user data validation. It recognizes r oses as a valid slot value (and sets Pri ce as a
session attribute) and returns the following response to Amazon Lex.

"sessionAttributes": {
"Price": 25
}

i al ogAction": ({
"type": "Del egate",
"slots": {
"Pi ckupTine": null,
"Fl ower Type": "roses",
" Pi ckupbDat e": null

Note the following:

* sessi onAttri but es — Lambda function has added Pr i ce (of the roses) as a session
attribute.

32

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

« di al ogAction. type —is setto Del egat e. The user data was valid so the Lambda
function directs Amazon Lex to choose the next course of action.

According to the di al ogActi on. t ype, Amazon Lex chooses the next course of action.
Amazon Lex knows it needs more slot data so it picks the next unfilled slot (Pi ckupDat e)
with the highest priority according to the intent configuration. Amazon Lex selects one of the
value elicitation prompt messages ("What day do you want the roses to be picked up?") for
this slot according to the intent configuration and then sends the following response back to
the client:

Headers Cookies Params Response

Filter properties

J50N
dialog5State: "ElicitSlot”
intentName: "OrderFlowers”
message: "What day do you want the roses to be picked up?”
responseCard: null
sessionAttributes: Object
slotToklicit: "PickupDate”
slots: Object
FlowerType: "roses”
PickupDate: null
PickupTime: null

The client simply displays the message in the response — "What day do you want the roses to
be picked up?"

3. User: tomorrow

a.

The client (console) sends the following PostText (p. 113) request to Amazon Lex:

PGST / bot/ O der Fl ower s/ al i as/ SLATEST/
user/i gnwd4y6seypr edx!| y5ri nopuri 2xwnd/ t ext
"Cont ent - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{
"i nput Text": "tonorrow',
"sessionAttributes": {
"Price": "25"
}
}

Note that the i nput Text in the request body provides user input and the client passes the
session attributes back to the service.

Amazon Lex remembers the context—that it was eliciting data for the Pi ckupDat e slot. In
this context, it knows the i nput Text value is for the Pi ckupDat e slot. Amazon Lex then
invokes the Lambda function by sending the following event:

"messageVersion": "1.0",
"invocationSource": "D al ogCodeHook",

33

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

"userld": "ignwidy6seypredxl y5rinopuri2xwnd",
"sessionAttributes": {
"Price": "25"
I
"hot": {

"name": "OrderFl ower sCust omW t hRespCar d”,

"alias": null,

"version": "$LATEST"
}s
"out put Di al ogvbde": "Text",
“currentlintent": {

"nanme": "OrderFl owers",
"slots": {

"Pi ckupTime": null,

"Fl ower Type": "roses",

"Pi ckupDate": "2017-01-05"
}
"confirmationStatus": "None"

Note that Amazon Lex has updated the current | nt ent . sl ot s by setting the Pi ckupDat e
value. Also note that the services passes the sessi onAttri but es as itis to the Lambda
function.

As peri nvocat i onSour ce value of Di al ogCodeHook, the Lambda function performs
user data validation. It recognizes Pi ckupDat e slot value is valid and returns the following
response to Amazon Lex:

"sessionAttributes": {
"Price": 25
}

"di al ogAction": {
"type": "Del egate”,
"slots": {
"Pi ckupTime": null,
"Fl ower Type": "roses",
"Pi ckupDate": "2017-01-05"

Note the following:

* sessi onAttri butes —No change.

» di al ogAction. type —is setto Del egat e. The user data was valid, and the Lambda
function directs Amazon Lex to choose the next course of action.

According to the di al ogActi on. t ype, Amazon Lex chooses the next course of action.
Amazon Lex knows it needs more slot data so it picks the next unfilled slot (Pi ckupTi e)
with the highest priority according to the intent configuration. Amazon Lex selects one of the
prompt messages ("Deliver the roses at what time on 2017-01-01?") for this slot according to
the intent configuration and sends the following response back to the client:

34

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

Headers Cookies Pararns Response

Cilter properties

J50N
dialog5tate: "ElicitSlot”
intentMame: "OrderFlowers”
message: "Deliver the roses at what time on 2017-01-017"
responseCard: null
sessionAttributes: Object
slotToklicit: "PickupTime"
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-01"
PickupTime: null

The client displays the message in the response — "Deliver the roses at what time on
2017-01-01?"

4. User:4 pm

a.

The client (console) sends the following PostText (p. 113) request to Amazon Lex:

POST / bot/ O der Fl ower s/ al i as/ $LATEST/
user/i gnwd4y6seypr edx!| y5ri mopuri 2xwnd/ t ext
"Cont ent - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{
"input Text": "4 pnt,
"sessionAttributes": {
"Price": "25"
}
}

Note that the i nput Text in the request body provides user input. The client passes the
sessi onAttri but es in the request.

Amazon Lex knows context, that it was eliciting data for the Pi ckupTi nme slot. In this context,
it knows that the i nput Text value is for the Pi ckupTi e slot. Amazon Lex then invokes the
Lambda function by sending the following event:

{
"messageVersion": "1.0",
"invocationSource": "D al ogCodeHook",
"userld": "ignwB4y6seypredxl| y5ri mopuri 2xwnd",
"sessionAttributes": {
"Price": "25"
b
"bot": {
"name": " OrderFl ower sCust omN t hRespCar d”,
"alias": null,
"version": "$LATEST"
}

ut put Di al oghbde": "Text",
"currentintent": {
"nane": "OrderFl oners",
"slots": {

35

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

"Pi ckupTi me": "16: 00",
"Fl oner Type": "roses",
"Pi ckupDate": "2017-01-05"

}

onfirmationStatus": "None"

Note that Amazon Lex has updated the current | nt ent . sl ot s by setting the Pi ckupTi ne
value.

According to the i nvocat i onSour ce value of Di al ogCodeHook, the Lambda function
performs user data validation. It recognizes Pi ckupDat e slot value is valid and returns the
following response to Amazon Lex.

"sessionAttributes": {
"Price": 25
}

"di al ogAction": {
"type": "Del egate”,
"slots": {
" Pi ckupTi ne": "16: 00",
"Fl ower Type": "roses",
"Pi ckupDate": "2017-01-05"

Note the following:

* sessi onAttri but es — No change in session attribute.

« di al ogAction. type —is setto Del egat e. The user data was valid so the Lambda
function directs Amazon Lex to choose the next course of action.

At this time Amazon Lex knows it has all the slot data. This intent is configured with a
confirmation prompt. Therefore, Amazon Lex sends the following response to the user asking
for confirmation before fulfilling the intent:

Headers Cookies Params Timings

Filter properties
JS0OM

dialogState: "ConfirmIntent”
intentName: "OrderFlowers”
message: "Okay, your roses will be ready for pickup by 16:00 on 2017-01-05, and will cost 25 dollars. Does this sound okay?"
responselCard: null
sessionfttributes: Object
Prices "25"
slotToeElicit: null
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-05"
| PickupTime: "16:00"

36

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

The client simply displays the message in the response and waits for the user response.

5. User: Yes

a. The client (console) sends the following PostText (p. 113) request to Amazon Lex:

PCST / bot/ O der Fl ower s/ al i as/ $LATEST/
user/i gnw84y6seypr edx!| y5ri mopuri 2xwnd/ t ext
"Cont ent - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{
"input Text": "yes",
"sessionAttributes": {
"Price": "25"
}
}

b. Amazon Lex interprets the i nput Text in the context of confirming the current intent. Amazon
Lex understands that the user wants to proceed with the order. This time Amazon Lex
invokes the Lambda function to fulfill the intent by sending the following event, which sets
the i nvocati onSour ce to Ful fi | | ment CodeHook in the event it sends to the Lambda
function. Amazon Lex also sets the conf i r nmat i onSt at us to Confi r ned.

{
"messageVersion": "1.0",
"invocationSource": "Fulfill ment CodeHook",
"userld": "ignwB4y6seypredxl| y5ri mopuri 2xwnd",
"sessionAttributes": {
"Price": "25"
}s
"bot": {
"name": "Order Fl ower sCust omN t hRespCar d”,
"alias": null,
"version": "$LATEST"
}s
"out put Di al ogvbde": "Text",
"currentlintent": {
"nanme": "OrderFl owers",
"slots": {
"Pi ckupTi me": "16: 00",
"Fl ower Type": "roses",
"Pi ckupDate": "2017-01-05"
}s
"confirmationStatus": "Confirned"
}
}

Note the following:

* i nvocati onSour ce — This time Amazon Lex set this value to Ful fi | | ment CodeHook,
directing the Lambda function to fulfill the intent.

» confirmationSt at us —is set to Confi r ned.

c. This time, the Lambda function fulfills the OrderFlowers intent, and returns the following
response:

37

Amazon Lex Developer Guide
Step 6 (Optional): Review the Details of Information Flow

"sessionAttributes": {
"Price": "25"
3
"di al ogAction": {
"type": "d ose",
"fulfillmentState": "Fulfilled",
"message": {
"content Type": "PlainText",
"content": "Thanks, your order for roses has been pl aced
and will be ready for pickup by 16:00 on 2017-01- 05"
}
}

Note the following:

« Sets the di al ogActi on. t ype — The Lambda function sets this value to d ose, directing
Amazon Lex to not expect a user response.

e dial ogAction. ful fillmentState —is setto Fulfilled and includes an appropriate
nessage to convey to the user.

d. Amazon Lex reviews the ful fi | | nent St at e and sends the following response back to the
client.

Amazon Lex then returns the following to the client:

Headers Cookies Params Timings

Filter properties
JSON

dialogState: "Fulfilled”
intentMName: "OrderFlowers”
messages "Thanks, your order for roses has been placed and will be ready for pickup by 16:00 on 2017-01-05"
responseCard: null
sessionAttributes: Object
Price: "25"
slotToElicit: null
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-05"
PickupTime: "16:00"

Note that,

» di al ogSt at e — Amazon Lex sets this value to ful fi |l | ed.
* nessage — is the same message that the Lambda function provided.

The client displays the message.

6. Now test the bot again. You must choose the Clear link in the test window to establish a new
(user) context. Now try to provide invalid slot data for the OrderFlowers intent. This time the
Lambda function performs the data validation, resets invalid slot data value to null, and asks
Amazon Lex to prompt the user for valid data. For example, try the following:

38

Amazon Lex Developer Guide
Exercise 2: Create a Custom Bot

< Jasmine as the flower type (it is not one of the supported flower types).
¢ Yesterday as the day when you want to pick up the flowers.

 After placing your order, choose to enter flower type instead of replying "yes" to confirm the
order. In response, the Lambda function updates the Pri ce in the session attribute, keeping a
running total of flower orders.

The Lambda function also performs the fulfillment activity.

Exercise 2: Create a Custom Amazon Lex Bot

In this exercise, you create a custom bot (OrderPizzaBot). You do all the necessary configuration
including adding a custom intent (OrderPizza), defining custom slot types, and defining the slots
required to fulfill a pizza order (pizza crust, size, and so on). For more information about slot types and
slots, see Amazon Lex: How It Works (p. 3).

First, you create a bot and test it in the Amazon Lex console without any code hook. Then, you
configure the intent by adding a code hook, which is a Lambda function to fulfill the intent. Lambda
function code is provided for this exercise.

Topics
e Step 1: Prepare (p. 39)
e Step 2: Create an Amazon Lex Bot (p. 42)
e Step 3: Create Slot Types (p. 43)
e Step 4: Create an Intent (p. 44)
¢ Step 5: Configure Error Handling (p. 46)
¢ Step 6: Build and Test the Bot (p. 47)

Step 1: Prepare

Follow the sections to first create two IAM roles and a Lambda function.

Topics
¢ Step 1.1: Create IAM Roles (p. 39)
¢ Step 1.2: Create a Lambda Function (p. 39)

Step 1.1: Create IAM Roles

You can use the IAM roles that you created for Getting Started Exercise 1 for this exercise. If you
created these roles already, go to the next section. For instructions to create these roles, see Step 1:
Prepare (p. 19).

Step 1.2: Create a Lambda Function

In this section you create a Lambda function. You specify this Lambda function in your Amazon Lex
bot, which you create in the next section, to fulfill a pizza order.

39

Amazon Lex Developer Guide
Step 1: Prepare

Create a Lambda Function

In this section you create a Lambda function.

1.

Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

Choose the US East (N. Virginia) Region (us-east-1).
Choose Create a Lambda function.
On the Select blueprint page, choose Blank function.

You are creating a Lambda function using custom code provided to you in this exercise, therefore
you choose the blank function option.

On the Configure triggers page, choose Next.
On the Configure function page, do the following:

Type name (Pi zzaOr der Processor) and choose the Node.js.4.3 as the runtime.

b. Inthe Lambda function code section, choose Edit code inline, and then copy the following
Lambda function code and paste it in the window.

'use strict';

/1l Cose dialog with the custoner, reporting fulfillnentState of
Failed or Fulfilled ("Thanks, your pizza will arrive in 20 m nutes")
function close(sessionAttributes, fulfillnentState, nessage) {
return {
sessi onAttri butes,
di al ogAction: {
type: 'dose',
ful fillmentState,
nmessage,

I R Events ---------------oooooon

function di spatch(intentRequest, callback) {
consol e. | og(' request received for userld=${i ntent Request. userld},
i nt ent Name=%${i nt ent Request. currentlntent.intentNane}');
const sessionAttributes = intent Request. sessionAttri butes;
const slots i ntent Request.currentlntent. sl ots;
const crust sl ots. crust;
const size = slots.size;
const pizzaKind = slots. pizzakKi nd;

cal | back(cl ose(sessionAttributes, 'Fulfilled',
{' content Type': 'PlainText', 'content': “~Ckay, | have ordered your
${si ze} ${pizzaKind} pizza on ${crust} crust’}));

A Main handler -----------cmomm-n

/! Route the incom ng request based on intent.

40

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Step 1: Prepare

/1l The JSON body of the request is provided in the event slot.
exports. handl er = (event, context, callback) => {
try {
di spatch(event,
(response) => {
cal |l back(null, response);
1)
} catch (err) {
cal | back(err);
}

b

c. Inthe Lambda function handler and role section, choose Choose an existing role for the
Role, and then select the IAM role | anbda- exec-rol e-for-1 ex-get-started that you
created in the preceding section.

d. Choose Next .

On the Review page, choose Create function.

Test the Lambda Function in the Lambda Console Using Sample Event Data

You can test the Lambda function in the console by using sample event data to manually invoke the
function. Follow the steps to test the Lambda function:

1.

Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

On the Lambda function page, choose Actions, and then choose Configure test event.
Choose the Lambda function.
On the Input test event page, copy the following Amazon Lex event into the window.

"messageVersion": "1.0",
"invocationSource": "Fulfill nment CodeHook",
"userld": "user-1",
"sessionAttributes": {},
"bot": {
"nane": "PizzaOrderingApp",
"alias": "$LATEST",
"version": "$LATEST"
b
"out put Di al ogvbde": "Text",
"currentlntent": {
"nanme": "OrderPizza",
"slots": {
"size": "large",
"pizzaKi nd": "nmeat",
"crust": "thin"

}

onfirmtionStatus": "None"

Choose Save and test.

41

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Step 2: Create a Bot

AWS Lambda executes your Lambda function. The following output appears in the Execution result
pane.

"sessionAttributes": {},
"di al ogAction": {
"type": "d ose",
"fulfillmentState": "Fulfilled",
"message": {
"content Type": "PlainText",
"content": "Okay, | have ordered your |arge nmeat pizza on thin crust"”

Step 2: Create an Amazon Lex Bot

In this section, you create an Amazon Lex bot with minimum required information (name, output voice,
and the 1AM role that Amazon Lex can assume invoke your Lambda function). In the next section, you
add intents to the bot.

In this section, you will create an Amazon Lex bot with minimum required information: name, output
voice, and the IAM role that Amazon Lex can assume invoke your Lambda function. In the next
section, you wil add intents to the bot.

1. Signinto the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Create a bot

a. If you are creating your first bot, choose Get Started. Otherwise, on the Bots tab, choose
Create.

b. On the Create your Lex bot page, choose Custom bot and provide the following information:

» App name : PizzaOrderingBot

e Output voice : Salli

» Session timeout : 5 minutes.

* IAMrole : Choose the | ex- exec-r ol e from the list.
c. Choose Create.

The console sends Amazon Lex a request to create a new bot. Amazon Lex sets the bot
version to $LATEST. After the bot is created, console shows the bot editor tab as shown:

|
< F'uaUldenngHmal:l (7]

Edite Settings Channels Maonitoring
[+] Gelling started with your bot
Walcome to your bot aditor. You can start right away by adding an intent using the

@ buttan in the Intents section of the left navigation

& + Create Intent
.

Note

* Next to the bot name in the console is the bot version, Latest. New Amazon Lex
resources have $LATEST as version. For more information, see Versioning and
Aliases (p. 50).

42

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Step 3: Create Slot Types

» There are no Intents or Slot types created at this time.

» The Build and Publish are bot level activities. After you configure the entire bot,
you'll learn more about these activities.

In the next section, you add an intent (OrderPizza) to the bot you created in this section.

Next Step

Step 3: Create Slot Types (p. 43)

Step 3: Create Slot Types

In this section you create slot types (Cr ust s, Si zes, and Pi zzaKi nd) with specified enumeration
values:

You use these types in the next section where you create the PizzaOrder intent.

1. Choose the plus sign (+) next to Slot types.
2. Inthe Add slot type wizard, type a slot type name (Crusts), and then choose Add.

Add slot type x

Aslot type is used to fulfill an intent, You can creale your own of choose from Amazon's 275 pre-built slol types

Slot type name Crusts

The console sends the request to Amazon Lex to create the slot type.

Note

Slot type is an resource in Amazon Lex and it is similar to other Amazon Lex resources.
Amazon Lex assigns $LATEST as the version for the newly created parameter type. For
more information about versioning, see Versioning and Aliases (p. 50).

3. Repeat the preceding step and add the following slot types:

e Sjzes
¢ Pi zzaKi nd

4. Assign enumeration values to the slot types:

e Crust s slot type with the enumeration values t hi ck and t hi n.
¢ Si zes slot type with the enumeration values snal | , medi um and | ar ge.
* Pi zzaKi nd slot type with the enumeration values cheese and veg.

a. Select a slot type.

43

Amazon Lex Developer Guide
Step 4: Create an Intent

b. Add enumeration values. Choose the plus sign (+) next to the Value box and type a value.
Press Enter or choose the plus sign (+) to add the next value.

< PizzaOrderingBot = m
Editer semings Channels
[+ Crusts Delete | Save
value
L+

Pizzaking
Sizes

ihin
Crusts

FlowerTypes thick

c. After you've added the enumeration values, choose Save.

The console sends a request to Amazon Lex to update the slot type.
d. Repeat the step to assign enumeration values to all of the slot types.

Next step

Step 4: Create an Intent (p. 44)

Step 4: Create an Intent

In this section, you create an intent. You only specify a name (OrderPizza) when you create the intent.
You then update the intent by adding the necessary configuration information.

1. Inthe Amazon Lex console, choose the plus sign (+) next to Intents.
2. Onthe Add intent wizard, type the intent name (OrderPizza) and then choose Add.

Create intent x

Choose from existing Intents or create your own

Viewing 1 intents

OrderFlowers
& Create my own intent

Intent name

QrderPizza

cvee (20

The console sends a request (Cr eat el nt ent) to Amazon Lex to create the OrderPizza intent.
3. The Editor tab shows the OrderPizza configuration page. Configure the intent as follows:

44

Amazon Lex Developer Guide
Step 4: Create an Intent

e Sample utterances — Type the following strings. Note that the curly braces {} provide slot
names.

» | want to order pizza please

¢ | want to order a pizza

| want to order a {pizzaKind} pizza

| want to order a {size} {pizzaKind} pizza

| want a {size} {crust} crust {pizzaKind} pizza
e Can | get a pizza please
» Can | get a {pizzaKind} pizza
¢ Can | get a {size} {pizzaKind} pizza

» Slots — Add the following slots:

* Name: pizzaKind

» Slot Type: PizzaKind
e Prompt: Do you want a cheese or veg pizza?
« Name: size

e Slot Type: Sizes
* Prompt: What size pizza?
* Name: crust

» Slot Type: Crusts
e Prompt: Thick or thin crust?

¢ Options — Leave the check boxes unselected.
¢ Fulfillment: Leave the check boxes unselected.

An example screen shot is shown :

45

Amazon Lex Developer Guide
Step 5: Configure Error Handling

¢ PizzaOrderingBol - f— Publish
Editor Settings Channels Monitoring
o OrderPizza R move Save
OrderPizza Sample utterances
o [+]
AppontmentType\aue
CarType'iaiies want to order pizza please (=}
Crusss
want i order a pzza =]
wank i order a {pizzakind) pizze o
Sizes der 8 {size] {pizzaKing pizze o
rror Handing want & [size] {crest) (pEzakng] pizza o
Can | gel a pizza please (=]
Can | g8t & {pizzakind) pizza o
Canigeta size} {pzzakind} pera [=]
Slots
Prirhy Required Hams Skt typ Prompt
- o L+]
o - - .
£ pizzaKing Pirzakind - - Do you wanl a cheess or veg pizza? | & (=]
L aie Sizes - v What size pizza? o o
2 - - &
= crust Crusts - hick or thin crust? o o
Options
hitisization and vabdation code hook
Confrmation prompt
Fuifillment
& AWSE Lambda funciion Retsn parameters to chent
L M gE Follow-up messags
u. Your {size} {crust} {pizzakind) pizza order is placed

Verify that you have selected the Required check box for all slots.
Choose Save.

The console sends Amazon Lex a request to update the OrderPizza intent.

Note
Updates are always made to the SLATEST version.

Next Step

Step 5: Configure Error Handling (p. 46)

Step 5: Configure Error Handling

In this section you configure error handling information for the bot.

1. Onthe Editor tab of your Pi zzaOr der i ngBot bot, choose Error Handling.

46

Amazon Lex Developer Guide
Step 6: Build and Test the Bot

€ PizzaOrderingBot

Build

Editor Settings Channels

[+] Error handling

OrderPizza Clarification prompts

Pizzakind Sarry, can you pleass repeat that?

Maximum number of retries

Hang.up phrase

| Error Handling

Samy. | could not understand. Goodbya

Publish

2. The Editor tab displays information you can configure for bot error handling.

Note that the Ul elements map to the bot configuration as follows:

« Information you provide in Clarification Prompts, maps to the bot's cl ari fi cati onPr onpt

configuration.

When Amazon Lex can't determine the user intent, the service returns response with this

message

 Information you provide in the Hang-up phrase, maps to the bot's abor t St at enent

configuration.

Amazon Lex returns response with this message if the service can't determine the user's intent

after a set number of consecutive requests.

Leave the defaults.

Next Step

Step 6: Build and Test the Bot (p. 47)

Step 6: Build and Test the Bot

In this section, you build the bot and test it. During the build process, Amazon Lex creates a new

version of each new resource (intents and slot types).

1. Choose Build to build the Pi zzaOr der i ngBot bot.

When you choose Build, the console sends the following requests to Amazon Lex:

* Request to create a new version (from the $LATEST version) of the slot types.

* Request to create a version of the intent (from the $LATEST version). In some cases, the
console sends a request for the update API operation before creating a new version.

» Update the $LATEST version of the bot.

47

Amazon Lex Developer Guide
Exercise 3: Publish a Version and Create an Alias

At this time, Amazon Lex builds a machine learning model for the bot. When you test the bot
in the console, the console uses the runtime API to send the user input back to Amazon Lex,
which then uses the machine learning model to interpret the user input.

Note that it can take some time to complete the build.

2. Testthe bot in the Amazon Lex console. In the test window, start communicating with your
Amazon Lex bot.

* An example is shown:

Q‘ Test Bot A

Build: Latest | Status: READY

cheese o
What size pizza?
large

Thick or thin crust?

m

thin

Okay, | have ordered your large cheeze pizza on thin
crust o

Clear

» The PizzaOrder intent is configured with sample utterances that allow you to specify all all
intent data in a single utterance. For example, the following is one of the sample utterance you
configured for the PizzaOrder intent

I want a {size} {crust} crust {pizzaKind} pizza

So you specify the following utterance:

I want a large thin crust cheese pizza

Note

* When you type "l want to order a pizza", Amazon Lex detects the intent (OrderPizza).
Then, Amazon Lex engages with the user get information for the slots.

 After the user provides all of the slot information, Amazon Lex invokes the code hook
(that is, the Lambda function you configured for the intent).

¢ The Lambda function returns a message ("Okay, | have ordered your") to Amazon
Lex, which Amazon Lex returns to the client.

Exercise 3: Publish a Version and Create an Alias

In Getting Started Exercises 1 and 2, you created a bot (BLATEST version) and tested it. In this
exercise, you do the following:

48

Amazon Lex Developer Guide
Exercise 3: Publish a Version and Create an Alias

¢ Publish a new version of the bot. Amazon Lex takes a snapshot copy of the $LATEST version to
publish a new version.

¢ Create an alias (BETA) that points to it.

For more information about versioning and aliases, see Versioning and Aliases (p. 50).
Do the following to publish a version of a bot you created for this exercise:
1. Inthe Amazon Lex console, choose one of the bots you created.

Verify that the consoles shows the $LATEST as the bot version next to the bot name.
2. Choose Publish.
3. Onthe Publish bot nane wizard, specify an alias (BETA), and then choose Publish.
4. Verify that the Amazon Lex console shows the new version next to the bot name.

Pubhsh PizzaOrderingBat ®

Vhat to do next?
€ SOME FES0UrCes to help you progress ance your

Haow b act to your moile app
Learn haw to connect ta your bat to your mabile app
Bot Hame PizzaOrdenngSot Download connection Info
Bot Varsion 1
Alias BETA Haw ta deploy v

Caboo

acab
Go to channels

Cancel

Now that you have a working bot with published version and an alias, you can deploy the bot (in your
mobile application or integrate the bot with Facebook Messenger). For an example, see Integrating an
Amazon Lex Bot with Facebook Messenger (p. 61).

49

Amazon Lex Developer Guide
Versioning

Versioning and Aliases

This is prerelease documentation for a service in preview release. It is subject to change.

Versioning enables you to manage your Amazon Lex production resources without breaking existing
client applications. Amazon Lex supports publishing versions of bots, intents, and slot types. You can
work with different variations of these resources in your development workflow, such as development,
beta, and production. After you publish a version, it is immutable (that is, it can't be changed).

Amazon Lex bot can also have aliases. With aliases, deploying (or rolling back) your Amazon Lex bot
is just one click away. Most importantly, the client applications do not have to upgrade. Conceptually,
an alias is a pointer to a specific Amazon Lex bot version. Each bot alias points to a specific bot
version (note that an alias can only point to a bot version, not to another alias).

Topics
¢ Versioning (p. 50)
¢ Aliases (p. 52)

Versioning

This section explains versioning. The examples use bot to create versions, but note that Amazon Lex
supports versioning for bots, intents, and slot types.

Creating an Amazon Lex Bot (the SLATEST version)

When you create an Amazon Lex bot, there is only one version. It is the $LATEST version.

Amazon Lex bot
Version $LATEST

50

Amazon Lex Developer Guide
Publishing an Amazon Lex Bot Version

You can only update the $SLATEST version. Unless you choose to publish versions, the $LATEST
version is the only bot version you have.

Publishing an Amazon Lex Bot Version

When you publish a version, Amazon Lex makes a snapshot copy of the Amazon Lex bot (with all its
configuration) in the $LATEST version. A published version is immutable. That is, you can't change the
configuration. The new version has a version nhumber:

Amazon Lex bot Amazon Lex bot
Version $SLATEST Version 1

You can publish versions using the console.

You can publish multiple versions. Each time you publish a version, Amazon Lex copies $LATEST
version to create a new version. When you publish additional versions, Amazon Lex assigns a strictly
increasing sequence number for versioning, even if the resource was deleted and re-created. Version
numbers are never reused. Suppose you delete the last published version, version 10, of a resource
and then you publish a new version—the new version is 11.

Amazon Lex bot Amazon Lex bot Amazon Lex bot
Version $LATEST Version 2 Version 1
Note

Version numbers are never reused.

Amazon Lex only publishes a new version if the last published version is different from the
$LATEST version (that is, you updated the SLATEST version after you published the last
version). If you try to publish a version without any modifications to the $LATEST, the last
version is returned.

Updating an Amazon Lex Resource

You can update only the $LATEST version of the Amazon Lex resources (bot, intent, and slot types).
Published versions are immutable. You cannot update any configuration information associated with a
published version. You can publish a version anytime after you update a resource.

51

Amazon Lex Developer Guide
Deleting an Amazon Lex Resource and a Specific Version

Deleting an Amazon Lex Resource and a Specific
Version

In the current implementation, Amazon Lex does not support deleting resources.

Aliases

You can create aliases for your Amazon Lex bot. An Amazon Lex alias is like a pointer to a specific
Amazon Lex bot version. By using aliases, you can access the Amazon Lex bot it is pointing to without
the caller having to know the specific version the alias is pointing to.

The following example shows two versions of an Amazon Lex bot (version $LATEST, and version 1).
Each of these bot versions has an alias (DEV and PROD) pointing to it.

Amazon Lex bot Amazon Lex bot
Version SLATEST Version 1
A A
cg fg
S "mmrize:
"zodea”, "zt a
==L H=TE "CodmitaIN T
" Ejmcewizes "Smawizex
Arzocaz«imd Az ocaz=immi
s friatoadls cxfriatond e
SN SN
Amazon Lex bot Amazon Lex bot
DEV alias PROD alias

Bot aliases enable the following:

« Easier support for promotion of new versions of Amazon Lex bots and roll back when needed
— For example, after initially creating an Amazon Lex bot (the $LATEST version) you first publish a
version 1 of it. You create an alias (hamed PROD) that points to version 1 of the bot. You can then
use the PROD alias to refer to the version 1 of the bot.

For example, mobile clients send runtime API requests to a specific bot alias. Similarly, you specify
an alias in bot channel association to deploy a specific version of your bot on Facebook Messenger.
For more information, see Bot Deployment Options (p. 15).

Now, you can continue to update the bot (you can only update the SLATEST version) with all of
your improvements, and then publish another stable and improved version (version 2). You can
promote version 2 to production by remapping the PROD alias so that it points to version 2. If you
find something wrong, you can easily roll back the production version to version 1 by remapping the
PROD alias so that it points to version 1.

52

Amazon Lex Developer Guide
Aliases

Note
In this context, the terms promotion and roll back refer to the remapping of aliases to

different bot versions.
« Simplify management of bot channel association — Because you use an alias in the bot channel
association you ensure that you don't need to update your event source mappings when you
promote a new version or roll back to a previous version.

Note
When you create a bot, you can test the SLATEST version of the bot in the console. However,

when integrating the bot with your client applications, we recommend that you first publish
a version and create an alias. You then use the specific bot alias in the integration with your
client application for reasons explained in this section. If you update an alias, it might take a
few minutes for the alias propagation to complete.

53

Amazon Lex Developer Guide
Lambda Function Input Event and Response Format

Using Lambda Functions

This is prerelease documentation for a service in preview release. It is subject to change.

You can create AWS Lambda functions for use as a code hook with your Amazon Lex bot. In
your intent configuration, you can identify your Lambda function to perform initialization/validation,
fulfillment, or both.

We recommend that you use a Lambda function as a code hook for your bot. Without a Lambda
function, you configure your bot to simply return the intent information to the client application for
fulfilling the intent.

The following sections provide additional information:

Topics
¢ Lambda Function Input Event and Response Format (p. 54)
¢« Amazon Lex and AWS Lambda Blueprints (p. 59)

Lambda Function Input Event and Response
Format

This section describes the structure of event data that Amazon Lex provides to a Lambda function. You
can use this information to parse the input in your Lambda code. The section also explains the format
of the response that Amazon Lex expects your Lambda function to return.

Topics
¢ Input Event Format (p. 54)
¢ Response Format (p. 57)

Input Event Format

The following is the general format of an Amazon Lex event passed to a Lambda function. When you
write your Lambda function code, you can use this information to parse the incoming event.

I

54

Amazon Lex Developer Guide
Input Event Format

"messageVersion": "1.0",
"invocationSource": "Ful fill nmentCodeHook or Di al ogCodeHook",
"userld": "user-id specified in the POST request to Amazon Lex.",

"sessionAttributes": {
"keyl": "val uel",
"key2": "val ue2",

b,

"bot": {
"nane": "bot-nanme",
"alias": "bot-alias",
"version": "bot-version"

}

ut put Di al ogMbde": "Text or Voice, based on Content Type request header in
runtime APl request”,
"currentlntent": {

"nane": "intent-nane",
"slots": {
"sl ot -nane": "val ue",
"sl ot -nane": "val ue",
"sl ot-nanme": "val ue"
}s
"confirmati onStatus": "None, Confirned, or Denied (intent confirnation,

if configured)"

Note the following additional information about the event fields:

¢ messageVersion — The version identifying the format of the event data going into the Lambda
function and expected format of the response from a Lambda function.

Note

You configure this value when defining an intent. In the current implementation, only
message version 1.0 is supported. Therefore, the console doesn't show the message
version and it assumes the default value of 1.0.

¢ invocationSource — Amazon Lex sets this to one of the following values to indicate why it is
invoking the Lambda function.

» Di al ogCodeHook — Amazon Lex sets this value to direct the Lambda function to perform
initialization/validation of the user's data input.

If the intent is configured to invoke a Lambda function as an initialization/validation code hook,
Amazon Lex invokes the specified Lambda function on each user input (utterance) after Amazon
Lex is aware of the intent.

Note
If the intent was not clear, Amazon Lex can't invoke the Lambda function.

* Ful fill ment CodeHook — Amazon Lex sets this value to direct the Lambda function to fulfill an
intent.

If the intent is configured to invoke a Lambda function as fulfillment code hook, Amazon Lex sets
the i nvocat i onSour ce to this value only after it has all the slot data to fulfill the intent.

55

Amazon Lex Developer Guide
Input Event Format

In your intent configuration, you can have two separate Lambda functions for the initialization/
validation of user data and to fulfill the intent. You can also use one Lambda function to do both, in
which case your Lambda function can use the i nvocat i onSour ce value to follow the proper code
path.

userld — This value is provided by the client application. Amazon Lex passes it to the Lambda
function.

outputDialogMode — For each user input, the client sends the request to Amazon Lex using one
of the runtime API operations, PostContent (p. 106) or PostText (p. 113). From the API request
parameters, Amazon Lex determines whether the response to the client (user) is text or voice, and
sets this field accordingly.

Lambda function can use this information to generate an appropriate message. For example, if the
client expects a voice response, your Lambda function could return SSML (instead of text).

sessionAttributes — Application-specific session attributes that client sent in the request. Your
Lambda function should send these back to Amazon Lex in response, if you want Amazon Lex to
include them in the response to the client. For more information, see the runtime API operations,
PostContent (p. 106) and PostText (p. 113).

currentintent — Provides the intent nane, sl ot s, and confi r mat i onSt at us fields.

Sl ot s provide list of slots configured for the intent and values, recognized by Amazon Lex in the
user conversation from the beginning (otherwise, the values are null).

Is a map of slot names (configured for the intent) to slot values, recognized by Amazon Lex in the
user conversation. Note that a slot value remains null until the user provides a value.

confirmationSt at us provides the user response to a confirmation prompt, if any. For example, if
Amazon Lex asks "Do you want to order a large cheese pizza?", depending on the user response,
this field value can be Confi r ned or Deni ed. Otherwise, this field value is None.

If the user confirms the intent, Amazon Lex sets this field to Conf i r med. If the user denies the intent,
Amazon Lex sets this value to Deni ed.

In the confirmation response, a user utterance might provide slot updates. For example, the

user might say "yes, change size to medium." In this case, the subsequent Lambda event

has the updated slot value (Pi zzaSi ze set to medi um. In this case Amazon Lex sets the
confirmationSt at us to None, because the user modified some slot data, requiring the Lambda
function to perform the user data validation.

56

Amazon Lex Developer Guide
Response Format

Response Format

Amazon Lex expects a response from a Lambda function in the following format:

{
"sessionAttributes": {
"keyl": "val uel",
"key2": "val ue2"
H
"di al ogAction": {
"type": "Elicitlntent, ElicitSl ot, Confirmntent, Delegate, or C ose",
"fulfillmentState": "Fulfilled or Failed",
"message": {
"content Type": "PlainText or SSM.",
"content": "nessage to convey to the user"
3
"intentName": "intent-nane",
"slots": {
"sl ot-nanme": "val ue",
"sl ot-nanme": "val ue",
"sl ot-nane": "val ue"
}
"slotToElicit" : "slot-nanme",
"responseCard": {
"version": integer-val ue,
"content Type": "application/vnd. amazonaws. card. generic",
"generi cAttachments": [
{
"title":"card-title",
"subTitle":"card-sub-title",
"imageUr!l":"URL of the image to be shown",
"attachnmentLinkUrl":"URL of the attachnent to be associated with
the card",
"buttons": [
{
"text":"button-text",
"val ue":"val ue sent to server on button click"
}
]
}
]
}
}
}

Note the following additional information about the fields in your Lambda function response:
¢ sessionAttributes — Application-specific session attributes.

This is option field. If you include, it can be an empty. If you want Amazon Lex to include any session
attributes in its response to the client, your Lambda function must return them in this field. For more
information, see the runtime API operations, PostContent (p. 106) and PostText (p. 113).

¢ dialogAction — Your Lambda function must return this field in the response. Only the
di al ogActi on. t ype field is required. The value of the di al ogActi on. t ype directs Amazon Lex

57

Amazon Lex Developer Guide
Response Format

to the next course of action, and what to expect from user after Amazon Lex returns a response to
the client.

This value also determines what other fields the Lambda function needs to provide as part of the
di al ogActi on value. The di al ogActi on. t ype value also determines what other di al ogActi on
fields are required.

Note

With each of these di al ogAct i on types, except the Del egat e type, you include a
message. If you don't provide a message, Amazon Lex picks an appropriate message from
the bot configuration. If the bot also is not configured with a message that Amazon Lex can
use, Amazon Lex returns an exception to the client.

The di al ogActi on. t ype values can be one of the following:

e Elicitlntent —Informs Amazon Lex that the user is expected to respond with an utterance
that includes an intent. For example, "l want a large pizza" (which indicates OrderPizzalntent) as
opposed to just the utterance "large" (which is not sufficient for Amazon Lex to infer the intent).

The message and r esponsecCar d fields are optional for this type. If you don't provide a message,
Amazon Lex uses one of the bot's clarification prompts (see the Error Handling section in the
console).

e Confirm ntent —Informs Amazon Lex that the user is expected to give a Yes or No answer to
confirm or deny the current intent.

i nt ent Nane is required for this di al ogActi on. t ype. sl ot s must include all of the slots
configured for the intent. If the value of a slot is unknown, it must be explicitly set to null (similar to
Lambda function request).

The message and r esponseCar d fields are optional. If you don't provide a message, Amazon
Lex uses the intent's confirmation prompt.

« Del egat e — Directs Amazon Lex to choose the next course of action based on the bot
configuration. sl ot s must include all of the slots configured for the intent. If the value of a slot is
unknown, it must be explicitly set to null (similar to the Lambda function request). All other fields
are ignored.

* O ose — Informs Amazon Lex to not expect a response from the user. For example, the Lambda
function might want to convey to the user "Your pizza order has been placed." For this message,
you don't expect a user response.

The ful fill ment St at e field is required for this type. Amazon Lex uses this value to set the
di al ogSt at e in its response to the client.

58

Amazon Lex Developer Guide
Amazon Lex and AWS Lambda Blueprints

The sl ot s, sl ot sToEl i ci t, and i nt ent Nane fields should not be included. The nessage and
r esponseCar d fields are optional. If you don't provide a message, Amazon Lex uses the goodbye
message or the follow-up message that is configured for the intent.

e ElicitSl ot —Informs Amazon Lex that the user is expected to provide a slot value in response.
For example, a value for the pi zzaSi ze or pi zzaKi nd slots.

The i nt ent Nane and sl ot ToEl i ci t fields are required for this di al ogActi on. type.slots
must include all of the slots configured for the intent. If the value of a slot is unknown, it must be
explicitly set to null (like in the Lambda function request).

The message and responseCard fields are optional. If you don't provide a message, Amazon Lex
uses one of the slot value elicitation prompts configured for the slot.

Note

« Amessage or aresponseCar d generated in a Lambda function cannot have
substitutions. For more information, see Managing Messages (Prompts and
Statements) (p. 7).

« If you do not provide a message for any di al ogActi on, Amazon Lex looks for a suitable
message in the bot configuration.

* You can fill some of the slot values in your Lambda function. For example, if you
determine that the current user is named Joe (from session attributes), you might
automatically populate some of the slots based on what you know about Joe's
preferences (assuming you have a back-end database that contains information about
users and what they like or dislike). For an example that showcases using session
attributes for cross-intent data sharing, see Example Bot: BookTrip (p. 72).

» Depending on the capabilities, a client application can use response card to draw an
interactive Ul to establish a rich conversational engagement. You can use a Lambda
function to generate response cards dynamically. For more information, see Response
Cards (p. 12).

Amazon Lex and AWS Lambda Blueprints

The Amazon Lex console provides example bots (called bot blueprints) that are preconfigured so you
can quickly create and test a bot in the console. For each of these bot blueprints, Lambda function
blueprints are also available. These blueprints provide sample code that works with the specific bots.
With these blueprints, you can quickly create a bot that is configured with a Lambda function as a code
hook, and test the end-to-end setup without having to write any code.

The following is a list of Amazon Lex bot blueprints and corresponding AWS Lambda function
blueprints that you can use as a code hook for bots.

¢ Amazon Lex blueprint — Or der Fl ower s

e AWS Lambda blueprint — | ex- or der - f | ower s (Node.js code), and | ex- or der - f | ower s-
pyt hon

¢ Amazon Lex blueprint — Schedul eAppoi nt nent

e AWS Lambda blueprint — | ex- nake- appoi nt nent (Node.js code) and | ex- nake-
appoi nt ment - pyt hon

59

Amazon Lex Developer Guide
Amazon Lex and AWS Lambda Blueprints

¢ Amazon Lex blueprint — BookTri p
e AWS Lambda blueprint — | ex- book-tri p (Node.js code) and | ex- book-tri p- pyt hon
To create a bot using a blueprint and configure it to use a Lambda function as a code hook, see

Exercise 1: Create an Amazon Lex Bot Using a Blueprint (p. 17). For example of using other blueprints,
see Additional Examples: Creating Amazon Lex Bots (p. 66).

60

Amazon Lex Developer Guide
Deploying an Amazon Lex Bot on a Messaging Platform

Deploying Amazon Lex Bots on
Various Platforms

This is prerelease documentation for a service in preview release. It is subject to change.

This section provides examples of deploying your Amazon Lex bot on various platforms.

Topics
¢ Deploying an Amazon Lex Bot on a Messaging Platform (p. 61)
¢ Deploying an Amazon Lex Bot in Mobile Applications (p. 65)

Deploying an Amazon Lex Bot on a Messaging
Platform

The following exercise provides instructions on how to associate your Amazon Lex bot with Facebook
Messenger.

Topics
¢ Integrating an Amazon Lex Bot with Facebook Messenger (p. 61)

Integrating an Amazon Lex Bot with Facebook
Messenger

This is prerelease documentation for a service in preview release. It is subject to change.

Topics
e Step 1: Create an Amazon Lex bot (p. 62)
¢ Step 2: Create an IAM Role (p. 62)

61

Amazon Lex Developer Guide
Integrating with Facebook

¢ Step 3: Create a Facebook Application (p. 63)
e Step 4: Integrate Facebook Messenger With Amazon Lex Bot (p. 63)
e Step 5: Test the integration (p. 64)

This exercise shows how to integrate Facebook Messenger with your Amazon Lex bot. You perform
the following steps:

¢ Create an Amazon Lex bot.

¢ Create an IAM role that the Amazon Lex integration service can assume to invoke the Amazon Lex
runtime service.

¢ Integrate Facebook Messenger with your Amazon Lex bot.

Step 1: Create an Amazon Lex bot

In this section, you create an Amazon Lex bot.

1. Create an Amazon Lex bot. For instructions, see Getting Started (p. 17).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and Create
an Alias (p. 48).

Step 2: Create an IAM Role

Create an IAM role (say LexChannel Execut i onRol e) that the Amazon Lex channel service can
assume. This role will need permissions to invoke Amazon Lex runtime service.

To create an IAM role 1 (LexChannelExecutionRole)

1. Signin to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

¢ In Role Name, use a name that is unique within your AWS account (for example,
LexChannelExecutionRole).

¢ In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda.
Note
In the current implementation, Amazon Lex service role is not available. Therefore, you
first create a role using the AWS Lambda as the AWS service role. After you create the

role, you update the trust policy and specify Amazon Lex runtime service as the service
principal to assume the role.

¢ In Attach Policy, choose Next Step (that is, you create a role without any permissions). Create
the role.

¢ Choose the role you created and update policies as follows:

¢ In the Permissions tab, choose Inline Policies, and then attach the following custom policy.

"Version": "2012-10-17",
"Statenment": [
{
"Action": [
"l ex: Post Text"

62

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Lex Developer Guide
Integrating with Facebook

}
]
}

|
"Effect": "Allow',

"Resource": "*"

« In the Trust Relationships tab, choose Edit Trust Relationship, and specify the Amazon Lex
service principal ("channels.lex.amazonaws.com”). The updated policy should look as shown:

{

"Version": "2012-10-17",
"Statement": [

"Effect": "Allow',
"Principal": {
"Service": "channel s. | ex.amazonaws. cont

b

"Action": "sts:AssumeRol e"

Step 3: Create a Facebook Application

On the Facebook developer portal, create a Facebook application and a Facebook page. For
instructions, see Quick Start in the Facebook Messenger platform documentation. Write down the
following:

« App Secret for the Facebook App.

¢ Page Access Token for the Facebook page.

Step 4: Integrate Facebook Messenger With Amazon Lex Bot

In this section, you integrate Facebook Messenger with your Amazon Lex bot.

1. Open the Amazon Lex console, and then associate Facebook Messenger with your Amazon Lex
bot.

After you complete this step, the console provides a callback URL. Write down this URL.

a
b.
c
d

Choose your Amazon Lex bot.

Choose the Channels tab.

Choose Facebook under For Chatbots. The console displays the Facebook integration page.

On the Facebook integration page, provide the following information:

* Type a name: Bot FacebookAssoci ati on

» Choose the IAM role you created in the preceding section.

» Choose the bot alias from the drop-down.

» Type the verify token. This can be any string you choose (for example, Exanpl eToken).
You use this same token in the Facebook developer portal in the Webhook setup step.

« Type the page access token and the app secret key you obtained from Facebook in the
preceding step.

63

https://developers.facebook.com/docs/messenger-platform/guides/quick-start

Amazon Lex Developer Guide
Integrating with Facebook

< PizzaOrderingBot Build m

Editor Settings Channels

Facebook

Facebook 8 callback URL o use with Facebook. You can generate multiple callback URLs

Slack
Learn more

Hame @ BotFacebookAssociatsn a

Dascription i

1AM Role LexChannelExecutsonRole M

Alias = BETA * @

Verify token TestTokan L]

Page access ioken *ABnD%Sc05 1z kwpiBpg CEHEpY EgIDID | 6
App secrel key a

Calback URLs

e. Choose Activate.

The console creates the bot channel association and returns a callback URL. Write down this
URL.

2. On the Facebook developer portal, choose your app. Then, select the Messenger product and
choose Setup webhooks in the Webhooks section of the page.

For instructions, see Quick Start in the Facebook Messenger platform documentation.

On the webhook page subscription wizard, do the following:
e For Callback URL, type the callback URL provided in the Amazon Lex console in the preceding
section.
e For Verify Token, type the same token that you used in Amazon Lex.
« Choose Subscription Fields (messages, messaging_postbacks, and messaging_options).
* Choose Verify and Save. This results in a handshake between Facebook and Amazon Lex.
3. Enable Webhooks integration. Choose the page you created, and then choose subscribe.

Note
If you update or recreate a webhook, you must unsubscribe and then subscribe to the
page again.

Step 5: Test the integration

You can now start conversation from Facebook Messenger with your Amazon Lex bot.

1. Open your Facebook page and choose, Message.

2. In the Messenger window that opens, use the same test utterances provided in getting started with
your Amazon Lex bot.

64

https://developers.facebook.com/docs/messenger-platform/guides/quick-start

Amazon Lex Developer Guide
Deploying an Amazon Lex Bot in Mobile Applications

Deploying an Amazon Lex Bot in Mobile
Applications

Using AWS SDKs, you can integrate your Amazon Lex bot with your mobile applications. For more
information, see the following topics:

¢ Android SDK — Getting Started with Amazon Lex Android SDK
¢ iOS SDK — Getting Started with Amazon Lex iOS SDK

65

http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/getting-started-understand-natural-language-lex.html
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/getting-started-understand-natural-language-lex.html

Amazon Lex Developer Guide
Example Bot: ScheduleAppointment

Additional Examples: Creating
Amazon Lex Bots

This is prerelease documentation for a service in preview release. It is subject to change.

The following sections provide additional Amazon Lex exercises with step-by-step instructions.

Topics
¢ Example Bot: ScheduleAppointment (p. 66)
¢ Example Bot: BookTrip (p. 72)
¢ Example: Using a Response Card (p. 96)

Example Bot: ScheduleAppointment

This is prerelease documentation for a service in preview release. It is subject to change.

The example bot in this exercise schedules appointments for a dentist's office. After creating the bot,
you test it using the client provied in the console.

In this exercise you do the following:

¢ Create and test a bot (using the ScheduleAppointment blueprint). For this exercise, you use bot
blueprint to quickly setup and test the bot. For a list of available blueprints, see Amazon Lex and
AWS Lambda Blueprints (p. 59).This bot is preconfigured with one intent (MakeAppointment).

« Create and test an AWS Lambda function (using the lex-make-appointment-python blueprint
provided by AWS Lambda). You configure the MakeAppointment intent to use this Lambda function
as code hook to perform both initialization/validation and fulfillment tasks.

66

Amazon Lex Developer Guide
Overview of the Bot Blueprint (ScheduleAppointment)

Note

The example Lambda function provided showcases dynamic conversation based upon
mocked availability of a dentist appointment. In a real application, you might use a real
calendar to set an appointment.

Update the MakeAppointment intent configuration to use the Lambda function as code hook. Then,
you test the end-to-end experience.

The following sections provide summary information about the blueprints you use in this exercise.

Topics

¢ Overview of the Bot Blueprint (ScheduleAppointment) (p. 67)

¢ Overview of the Lambda Function Blueprint (lex-make-appointment) (p. 68)
e Step 1: Prepare (p. 68)

e Step 2: Create an Amazon Lex Bot (p. 69)

¢ Step 3: Create a Lambda function (p. 71)

¢ Step 4: Update the Intent: Configure a Code Hook (p. 71)

Overview of the Bot Blueprint
(ScheduleAppointment)

The ScheduleAppointment blueprint that you use to create a bot for this exercise provides the
following preconfiguration:

Slot types — One custom slot type called Appoi nt ment TypeVal ue with the enumeration values
root canal, cl eani ng, and whi t eni ng.

Intent — The bot supports one intent (MakeAppoi nt nent). It is preconfigured as follows:
» Slots — The intent is configured with the following slots:

» Slot Appoi nt nent Type, of the Appoi nt ment Types custom type.
* Slot Dat e, of the AMAZON. DATE built-in type.
e Slot Ti ne, of the AMAZON. TI ME built-in type.
« Utterances — The intent is pre-configured with the following utterances:

¢ "l would like to book an appointment"”
« "Book an appointment"
* "Book a {AppointmentType}"

If user utters any of these, Amazon Lex determines MakeAppointment is the intent and then uses
the prompts to elicit slot data.

e Prompts — The intent is preconfigured with the following prompts:
« Prompt for the Appoi nt nent Type slot — "What type of appointment would you like to
schedule?"
¢ Prompt for the Dat e slot — "When should | schedule your {AppointmentType}?"
e Prompt for the Ti me slot — "At what time do you want to schedule the {AppointmentType}?" and

"At what time on {Date}?"
¢ Confirmation prompt — "{Time} is available, should | go ahead and book your appointment?"
» Cancel message— "Okay, | will not schedule an appointment."”

67

Amazon Lex Developer Guide
Overview of the Lambda Function
Blueprint (lex-make-appointment)

Overview of the Lambda Function Blueprint (Iex-
make-appointment)

The Lambda function blueprint (lex-make-appointment-python) is specifically provided for use as a
code hook for bots you creates using the ScheduleAppointment bot blueprint.

This Lambda function blueprint code can perform both the initialization/validation and fulfillment tasks.

¢ The Lambda function code showcases a dynamic conversation that is based on example availability
for a dentist appointment (in real applications you might use a calendar). For the day or date that the
user specifies, the code is configured as follows:

« If there are no appointments available, the Lambda function returns a response directing Amazon
Lex to prompt user for another day or date (by setting dialogAction type to El i ci t Sl ot) . For
more information, see Response Format (p. 57).

« If there is only one appointment available, the Lambda function suggests the available time in the
response and directs Amazon Lex to obtain user confirmation by setting the di al ogActi on in
the response to Conf i r nl nt ent . This illustrates how you can improve the user experience, by
proactively suggesting the available time for an appointment.

« If there are multiple appointments available, the Lambda function returns list of available times in
the response to Amazon Lex. Amazon Lex returns response back to the client with message from
the Lambda function.

¢ As the fulfillment code hook, the Lambda function returns a summary message indicating that an
appointment is scheduled (that is, the intent is fulfilled).

Note

In this example, we show use of response card. That is, the Lambda function also constructs
and returns a response card to Amazon Lex. The response card shows a list of available days
and times as buttons to choose from. But you cannot see the response card when testing the
bot using the client provided by the Amazon Lex console. To see the response card, you must
integrate the bot with messaging platforms such as Facebook messenger. For instructions,
see Integrating an Amazon Lex Bot with Facebook Messenger (p. 61). For more information
about response cards, see Managing Messages (Prompts and Statements) (p. 7).

When Amazon Lex invokes the Lambda function, it passes event data as input. One of the event fields
isi nvocati onSour ce, which the Lambda function uses to choose between an input validation and
fulfillment activity. For more information, see Input Event Format (p. 54).

Next Step

Step 1: Prepare (p. 68)

Step 1: Prepare

In this section, you create two IAM roles:

* IAM role that Amazon Lex can assume to invoke your Lambda function on your behalf.

¢ |IAM role that AWS Lambda can assume. This role has permissions for the CloudWatch actions to
write any logs that your Lambda function generates.

You can use the 1AM roles that you created for the Getting Started Exercise 1 for this exercise. If you
created these roles already, go to the next section. For instructions to create these roles, see Step 1:
Prepare (p. 19).

68

Amazon Lex Developer Guide
Step 2: Create an Amazon Lex Bot

Next Step

Step 2: Create an Amazon Lex Bot (p. 69)

Step 2: Create an Amazon Lex Bot

In this section, you create an Amazon Lex bot using the blueprint (ScheduleAppointment) provided in
by Amazon Lex console.

1.

Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

On the Bots page, choose Create.
On the Create your Lex bot page, do the following:

¢ Choose ScheduleAppointment blueprint.
¢ Leave the default bot name (ScheduleAppointment).

« Choose the IAM role (lex-exec-role), role you created in the preceding section for Amazon Lex
to assume.

Choose Create.

This step saves and builds the bot. The console sends the following requests to Amazon Lex as
part of the build process:

» Create a new version of the slot types (from the SLATEST version). For information
about slot types defined in this bot blueprint, see Overview of the Bot Blueprint
(ScheduleAppointment) (p. 67).

« Create a version of the MakeAppointment intent (from the $SLATEST version). In some cases,
the console sends a request for the update API operation before creating a new version.

» Update the $LATEST version of the bot.

At this time, Amazon Lex builds a machine learning model for the bot. When you test the bot in
the console, the console uses the runtime API to send user input back to Amazon Lex, which
then uses the machine learning model to interpret user input.

The console shows the ScheduleAppointment bot. On the Editor tab, review the preconfigured
intent (MakeAppointment) details.

Test the bot in the test window. Use the following to engage in a test conversation with your bot:

69

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Step 2: Create an Amazon Lex Bot

o) Test Bot v

Build: Latest | Status: READY

Book an appeintment

What type of appointment would you like to schedule?
Root canal

When should | schedule your root canal?

December 18

At what time do you want to schedule the root canal?
4 pm

16:00 is available, =hould | go ahead and bock your
appeointment?

AppointmentType:root canal Date:2017-12-18 Time: 16:00

Clear

Note the following:

* From the initial user input ("Book an appointment"), the bot infers the intent (MakeAppointment).
¢ The bot then uses the configured prompts to get slot data from the user.

* Note that in the bot blueprint has the MakeAppointment intent configured with the following
confirmation prompt:

{Time} is available, should | go ahead and book your appoi ntnent?

Therefore, after user provides all slot data, Amazon Lex returns a response to the client with
confirmation prompt as the message. The client displays the message for the user:

16: 00 is avail able, should I go ahead and book your appointnent?

Notice that the bot accepts any appointment date and time values because you don't have any
code to initialize/validate user data. In the next section, you add a Lambda function to do this.

Next Step

Step 3: Create a Lambda function (p. 71)

70

Amazon Lex Developer Guide
Step 3: Create a Lambda function

Step 3: Create a Lambda function

In this section, you create a Lambda function using a blueprint (lex-make-appointment-python)

provided in the AWS Lambda console. You also test the Lambda function by invoking it using a sample

Amazon Lex event data provided by the console.

1. Signin to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.

3. On Select blueprint, type | ex to find the blueprint, choose the | ex- nake- appoi nt nent -
pyt hon blueprint.

4. Configure the Lambda function as follows and then choose Create Function.

¢ Type a Lambda function name (MakeAppoi nt nent CodeHook).

» For the IAM role, choose the Choose an existing role and then select | anbda- exec-rol e-

for-1ex-get-started from the Existing role list.
* Leave other default values.
5. Test the Lambda function.

Choose Actions, Configure test event.

b. Choose Lex-Make Appointment (preview) from the Sample event template list. This
sample event matches the Amazon Lex request/response model (see Using Lambda
Functions (p. 54)).

This sample event matches the Lex request/response model (see Using Lambda
Functions (p. 54)), with values set to match a request from your Lex bot.

c. Choose Save and test.

d. Verify that the Lambda function successfully executed. The response in this case matches the

Amazon Lex response model.

Next Step

Step 4: Update the Intent: Configure a Code Hook (p. 71)

Step 4: Update the Intent: Configure a Code Hook

In this section, you update the configuration of the MakeAppointment intent configuration to use the

Lambda function as a code hook for the validation and fulfillment activities.

1. Inthe Amazon Lex console, select the ScheduleAppointment bot. The console shows the
MakeAppointment intent. Modify the intent configuration as follows:

Note

You can update only the SLATEST versions of any of the Amazon Lex resources
including the intents. Make sure that the intent version is set to $LATEST. You have not
published a version of your bot yet. It should still be $LATEST in the console.

a. Choose Initialization and validation code hook in the Options section, and choose the
Lambda function from the list.

b. Choose AWS Lambda function in the Fulfillment section, and choose the Lambda function

from the list.
c. Choose Goodbye message and type a message.

71

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Example Bot: BookTrip

2. Choose Save and then Build.
3. Test the bot.

Q.l Test Bot R

Build: Latest | Status: READY
Book appointment
What type of appointment would you like to schedule?
root canal
When would you like to schedule your root canal?
Tuesday

We do not have any availability on that date, is there
another day which works for you?

Wednesday

What time on 2017-01-18 works for you? 4:00 p.m. is our
only availability, does that work for you?

Okay, | have booked your appointment. We will see you at
4:00 p.m. on 2017-01-18

Clear

Example Bot: BookTrip

This is prerelease documentation for a service in preview release. It is subject to change.

This example illustrates creating a bot that is configured to support multiple intents. The example also
illustrates how you can use session attributes for cross-intent information sharing. After creating the
bot, you use a test client in the Amazon Lex console to test the bot (BookTrip). Note that the client uses
the PostText (p. 113) runtime API operation to send requests to Amazon Lex for each user input.

The BookTrip bot in this example is configured with two intents (BookHotel and BookCar). For
example, suppose a user first books a hotel. During the interaction, the user provides information
such as check-in dates, location, and humber of nights. After the intent is fulfilled, the client can
persist this information using session attributes. For more information about session attributes, see
PostText (p. 113).

Now suppose the user continues to book a car. Using information that the user provided in the previous
BookHotel intent (that is, destination city, check-in and check-out dates), the code hook (Lambda
function) you configured to initialize/validate the BookCar intent, initializes slot data for the BookCar
intent (that is, destination, pick-up city, pick-up date, and return date). This illustrates how the cross-
intent information sharing enables you to build bots that can engage in dynamic conversation with the
user.

72

Amazon Lex Developer Guide
Step 1: Blueprint Review

In this example, we use the following session attributes. Note that only the client and the Lambda
function can set and update session attributes. Amazon Lex only passes these between the client and
the Lambda function. Amazon Lex doesn't maintain or modify any session attributes.:

e current Reservati on — Contains slot data for an in-progress reservation and other relevant
information. For example, the following is a sample request from the client to Amazon Lex. It shows
the cur r ent Reser vat i on session attribute in the request body.

POST / bot/ BookTri p/ al i as/ $LATEST/ user / wch89kj qcpkds8seny7dl y5x3ot q68j 3/t ext
"Content - Type": "application/json"
" Cont ent - Encodi ng": "ane- 1. 0"
{
"i nput Text": " Chi cago",
"sessionAttributes": {
"current Reservation":"{\"ReservationType\":\"Hotel\",
\"Location\":\"Mscowm",
\ " Roonilype\ ": nul | ,
\ " Checkl nDate\": nul |,
\"Nights\":null}"
}
}

e | ast ConfirmedReser vat i on — Contains similar information for a previous intent, if any. For
example, if the user booked a hotel and then is in process of booking a car, this session attribute
stores slot data for the previous BookHotel intent.

e confirmati onCont ext — The Lambda function sets this to Aut oPopul at e when it prepopulates
some of the slot data based on slot data from the previous reservation (if there is one). This enables
cross-intent information sharing. For example, if the user previously booked a hotel and now wants
to book a car, Amazon Lex can prompt the user to confirm (or deny) that the car is being booked for
the same city and dates as their hotel reservation

In this exercise you use blueprints to create an Amazon Lex bot and a Lambda function. For more
information about blueprints, see Amazon Lex and AWS Lambda Blueprints (p. 59).

Next Step

Step 1: Review the Blueprints Used in this Exercise (p. 73)

Step 1: Review the Blueprints Used in this Exercise

Topics
¢ Overview of the Bot Blueprint (BookTrip) (p. 73)
¢ Overview of the Lambda Function Blueprint (lex-book-trip-python) (p. 75)

Overview of the Bot Blueprint (BookTrip)

The blueprint (BookTrip) you use to create a bot provides the following preconfiguration:

73

Amazon Lex Developer Guide
Step 1: Blueprint Review

» Slot types — Two custom slot types:

* Roonilypes with enumeration values: ki ng, queen, and del uxe, for use in the BookHot el
intent.

e Car Types with enumeration values: econony, st andar d, m dsi ze, ful | si ze, | uxury, and
m ni van, for use in the Car Types intent.

¢ Intent 1 (BookHotel) — It is preconfigured as follows:
* Preconfigured slots

* Roonilype, of the Roonilypes custom slot type
e Locati on, of the AMAZON. US_CI TY built-in slot type
* Checkl nDat e, of the AMAZON. DATE built-in slot type
¢ Ni ght's, of the AMAZON. NUMBER built-in slot type

» Preconfigured utterances

« "Book a hotel"
« "l want to make hotel reservations"
« "Book a {Nights} stay in {Location}"
If the user utters any of these, Amazon Lex determines that BookHot el is the intent and then
prompts the user for slot data.
* Preconfigured prompts

« Prompt for the Locat i on slot — "What city will you be staying in?"

» Prompt for the Checkl nDat e slot — "What day do you want to check in?"

e Prompt for the Ni ght s slot — "How many nights will you be staying?"

« Prompt for the Roonilype slot — "What type of room would you like, queen, king, or deluxe?"

« Confirmation statement — "Okay, | have you down for a {Nights} night stay in {Location} starting
{CheckInDate}. Shall | book the reservation?"

¢ Denial — "Okay, | have cancelled your reservation in progress."

¢ Intent 2 (BookCar) — It is preconfgured as follows:
« Preconfigured slots

e Pi ckUpGi ty, of the AMAZON. US_CI TY built-in type
e Pi ckUpDat e4, of the AMAZON. DATE built-in type
¢ Ret ur nDat e, of the AMAZON. DATE built-in type
e Driver Age, of the AVAZON. NUMBER built-in type
e Car Type, of the Car Types custom type
» Preconfigured utterances

* "Book a car"
* "Reserve a car"
* "Make a car reservation"

If the user utters any of these, Amazon Lex determines BookCar is the intent and then prompts the
user for slot data.

« Preconfigured prompts

e Prompt for the Pi ckUpGi t y slot — "In what city do you need to rent a car?"

74

Amazon Lex Developer Guide
Step 2: Prepare

« Prompt for the Pi ckUpDat e slot — "What day do you want to start your rental?""
e Prompt for the Ret ur nDat e slot — "What day do you want to return this car?"
« Prompt for the Dri ver Age slot — "How old is the driver for this rental?"

« Prompt for the Car Type slot — "What type of car would you like to rent? Our most popular
options are economy, midsize, and luxury"

« Confirmation statement — "Okay, | have you down for a {CarType} rental in {PickUpCity} from
{PickUpDate} to {ReturnDate}. Should | book the reservation?"

* Denial — "Okay, | have cancelled your reservation in progress."

Overview of the Lambda Function Blueprint (lex-book-trip-
python)

In addition to the bot blueprint, AWS Lambda provides a blueprint (lex-book-trip-python) that you
can use as a code hook with the bot blueprint. For a list of bot blueprints and corresponding Lambda
function blueprints, see Amazon Lex and AWS Lambda Blueprints (p. 59).

When you create a bot using the BookTrip blueprint, you update configuration of both the intents

(BookCar and BookHotel) by adding this Lambda function as a code hook for both initialization/
validation of user data input and fulfillment of the intents.

This Lambda function code provided showcases dynamic conversation using previously known
information (persisted in session attributes) about a user to initialize slot values for an intent. For more
information, see Managing Conversation Context (p. 14).

Next Step

Step 2: Prepare (p. 75)

Step 2: Prepare

In this section, you create two IAM roles:

* |AM role that Amazon Lex can assume to invoke your Lambda function on your behalf.

¢ |AM role that AWS Lambda can assume. This role has permissions for the CloudWatch actions to
write any logs that your Lambda function generates.

You can use the IAM roles that you created for the Getting Started Exercise 1 for this exercise. If you
created these roles already, go to the next section. For instructions to create these roles, see Step 1:
Prepare (p. 19).

Next Step

Step 3: Create an Amazon Lex Bot (p. 75)

Step 3: Create an Amazon Lex Bot

In this section, you create an Amazon Lex bot (BookTrip).

1. Signinto the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

75

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex Developer Guide
Step 3: Create an Amazon Lex Bot

On the Bots page, choose Create.
On the Create your Lex bot page,

* Choose BookTrip blueprint.
 Leave the default bot name (BookTrip).
* Choose the IAM role (lex-exec-role), one of the two roles you created in the preceding section.

Choose Create. The console sends a series of requests to Amazon Lex to create the bot. Note the
following:

The console shows the BookTrip bot. On the Editor tab, review the details of the preconfgured
intents (BookCar and BookHotel).

Test the bot in the test window. Use the following to engage in a test conversation with your bot:

QJ' Test Bot v

Book a hotel
What city will you be staying in?
Chicago
What day do you want to check in?
December 18th

How many nights will you be staying?

4
What type of room would you like, queen, king or deluxe?
Queen
QOkay, | have you down for a 4 night stay in Chicago starting 2016-12-18.
Shall | book the reservation?
Yes

ChecklnDate:2016-12-18 Location:Chicago Nights:4 RoomType:gueen

Clear

From the initial user input ("Book a hotel"), Amazon Lex infers the intent (BookHotel). The bot then
uses the prompts preconfigured in this intent to elicit slot data from the user. After user provide all
of the slot data, Amazon Lex returns a response back to the client with a message that includes all
the user input as a message. The client displays the message in the response as shown.

Checkl nDat e: 2016- 12- 18 Locati on: Chi cago Ni ghts: 4 Roonilype: queen

Now you continue the conversation and try to book a car.

76

Amazon Lex Developer Guide
Step 3: Create an Amazon Lex Bot

Q} Test Bot v o

Also book a car
In what city do you need to rent a car?
Chicago
What day do you want to start your rental?
December 18th
What day do you want to return the car?
December 22nd
How old is the driver for this rental?
35

What type of car would you like to rent? Our most popular
options are economy, midsize, and luxury

m

economy

The price of this economy rental in Chicago from 2016-12-18 to
2016-12-22 iz 556 dollars. Shall | book the reservation?

Yes

CarType:economy DriverAge:35 PickUpCity:Chicago
PickUpDate:2016-12-18 ReturnDate:2016-12-22

Clear

Note that,

e There is no user data validation at this time. For example, you can provide any city to book a
hotel.

« You are providing some of the same information again (destination, pick-up city, pick-up date,
and return date) to book a car. In a dynamic conversation, your bot should initialize some of this
information based on prior input user provided for booking hotel.

In this next section, you create a Lambda function to do some of the user data validation, and
initialization using cross-intent information sharing via session attributes. Then you update the
intent configuration by adding the Lambda function as code hook to perform initialization/validation
of user input and fulfill intent.

Next Step

Step 4: Create a Lambda function (p. 78)

77

Amazon Lex Developer Guide
Step 4: Create a Lambda function

Step 4: Create a Lambda function

In this section you create a Lambda function using a blueprint (lex-book-trip-python) provided in
the Amazon Lex console. You also test the Lambda function by invoking it using sample event data
provided by the console.

This Lambda function is written in Node.js.

1. Signinto the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.

3. On Select blueprint, type | ex to find the blueprint, choose the | ex- book-tri p- pyt hon
blueprint.

4. Configure the Lambda function as follows and then choose Create Function.

¢ Type a Lambda function name (BookTr i pCodeHook).

« For the IAM role, choose the Choose an existing role and then select | anbda- exec-r ol e-
for-1ex-get-started fromthe Existing role list.

* Leave other default values.

5. Test the Lambda function. You invoke the Lambda function twice, using sample data for both
booking a car and booking a hotel.

a. Choose Actions, Configure test event.
b. Choose Lex-Book Hotel (preview) from the Sample event template list.

This sample event matches the Amazon Lex request/response model. For more information,
see Using Lambda Functions (p. 54).

c. Choose Save and test.

d. Verify that the Lambda function successfully executed. The response in this case matches the
Amazon Lex response model.

e. Repeat the step. This time you choose the Lex-Book Car (preview) from the Sample event
template list. The Lambda function processes the car reservation.

Next Step

Step 5: Add the Lambda Function as a Code Hook (p. 78)

Step 5: Add the Lambda Function as a Code Hook

In this section, you update the configurations of both the BookCar and BookHotel intents by adding

the Lambda function as a code hook for initialization/validation and fulfillment activities. Make sure you
choose the SLATEST version of the intents because you can only update the $SLATEST version of your
Amazon Lex resources.

1. Inthe Amazon Lex console, choose the BookTrip bot.
2. On the Editor tab, choose the BookHotel intent. Update the intent configuration as follows:

a. Make sure the intent version (next to the intent name) is $LATEST.
b. Add the Lambda function as an initialization and validation code hook as follows:

* In Options, choose Initialization and validation code hook.
» Choose your Lambda function from the list.

78

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex Developer Guide
Step 5: Add the Lambda Function as a Code Hook

c. Add the Lambda function as a fulfillment code hook as follows:

* In Fulfillment, choose AWS Lambda function.

» Choose your Lambda function from the list.

» Choose Goodbye message and type a message.
d. Choose Save.

On the Editor tab, choose the BookCar intent. Follow the preceding step to add your Lambda
function as validation and fulfillment code hook.

Choose Build. The console sends a series of requests to Amazon Lex to save the configurations.

Test the bot. Now that you a have a Lambda function performing the initialization, user data
validation and fulfillment, you can see the difference in the user interaction.

Q.f Test Bot v

book a hotel
What city will you be staying in?
MOoSsCow

We currently do not support Moscow as a valid destination. Can
you try a different city?

chicago
What day do you want to check in?
december 18th

How many nights will you be staying?

5
s
What type of room would you like, queen, king or deluxe?
queen
Okay. | have you down for a 5 night stay in Chicago starting
2016-12-18. Shall | book the reservation?
yes
Thanks, | have placed your resemrvation. Please let me know if you
would like to book a car rental, or another hotel.
i Clear

For more information about the data flow from the client (console) to Amazon Lex, and from
Amazon Lex to the Lambda function, see Data Flow: Book Hotel Intent (p. 81).

Continue the conversation and book a car as shown following:

79

Amazon Lex Developer Guide

Step 5: Add the Lambda Function as a Code Hook

Test Bot

betaiit Phae rmoneantiapblag

hugntii 3 Vomeaw jhim: @l aebiil menartopllib e Yiparar ixt Ha it

oy weti il Bk 94 Jepepid 3 T IE (AL TR ET T T IR

also book a car

Is this car rental for your 5 night stay in Chicago on 2016-12-187

yes
How old is the driver of this car rental?
35
c
What type of car would you like to rent? Our most popular
options are economy, midsize, and luxury
economy
The price of this economy rental in Chicago from 2016-12-18 to
2016-12-23 is 695 dollars. Shall | book the reservation?
L yes
Thanks, | have placed your reservation.
4 Clear

m

=

When you choose to book a car, the client (console) sends a request to Amazon Lex that includes
the session attributes (from the previous conversation, BookHotel). Amazon Lex passes this
information to the Lambda function, which then initializes (that is, it prepopulates) some of the
BookCar slot data (that is, PickUpDate, ReturnDate, and PickUpCity).

Note

This illustrates how session attributes can be used to maintain context across intents. The
console client provides the Clear link in the test window that a user can use to clear any

prior session attributes.

For more information about the data flow from the client (console) to Amazon Lex, and from
Amazon Lex to the Lambda function, see Data Flow: Book Car Intent (p. 91).

80

Amazon Lex Developer Guide
Details of Information Flow

Details of Information Flow

In this exercise, you engaged in conversation with the Amazon Lex BookTrip bot using the client
provided in the Amazon Lex console test window. For each user input, several things happen. This
section explains the information flow in detail including:

1. The requests that the client sends to Amazon Lex

2. How Amazon Lex invokes the Lambda function

¢ What information Amazon Lex provides as the event parameter

« What the Lambda function does with the incoming event and what it returns in response back to
Amazon Lex

3. What Amazon Lex does with the response it receives from the Lambda function and what it returns
back to the client.

In this example, both the bot intents (BookHotel and BookCar) are configured to invoke a Lambda
function, as a code hook, for user data initialization/validation and fulfillment activities. Therefore,
Amazon Lex invokes the Lambda function for each user input. In addition, Amazon Lex also invokes
the Lambda function to fulfill the intent after the user provides all of the slot data for the intent.

Before you go into the details, note the following:

¢ The test window client provided in the console uses the PostText (p. 113) runtime API to
communicate with Amazon Lex. This API describes request/response format of information
exchange between the client and Amazon Lex.

¢ Lambda Function Input Event and Response Format (p. 54) describes the format of information
exchange between Amazon Lex and the Lambda function.

Topics
¢ Data Flow: Book Hotel Intent (p. 81)
e Data Flow: Book Car Intent (p. 91)

Data Flow: Book Hotel Intent

This section explains details of what happens after each user input.
1. User: "book a hotel"

a. The client (console) sends the following PostText (p. 113) request to Amazon Lex:

POST / bot/ BookTri p/ al i as/ $LATEST/

user/ wch89kj qcpkds8seny7dl y5x3ot q68j 3/t ext
"Cont ent - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{

"input Text":"book a hotel",
"sessionAttributes": {}

Both the request URI and the body provides information to Amazon Lex:

81

Amazon Lex Developer Guide
Details of Information Flow

* Request URI — Provides bot name (BookTrip), bot alias (SLATEST) and the user
name (???). The trailing t ext indicates that it is a Post Text API request (and not
Post Cont ent).

* Request body — Includes the user input (i nput Text) and empty sessi onAttri but es.
Initially, this is an empty object and the Lambda function first sets the session attributes.

From the i nput Text , Amazon Lex detects the intent (BookHotel). This intent is configured
with a Lambda function as a code hook for user data initialization/validation. Therefore,
Amazon Lex invokes that Lambda function by passing the following information as the event
parameter (see Input Event Format (p. 54)):

"messageVersion":"1.0",
"invocationSource": "D al ogCodeHook",
"userld": "wch89kj gcpkds8seny7dl y5x3ot q68j 3",
"sessionAttributes": {
}
"bot": {
"name": " BookTri p",
"alias":null,
"version":"$LATEST"
}
"out put Di al ogMbde": " Text ",
"currentlntent":{
"nane": " BookHot el ",
"slots":{
"RoonType": nul |,
" Checkl nDate": nul |,
"Ni ghts":null,
"Location": null
3

"confirmationStatus":"None"

In addition to the information sent by the client, Amazon Lex also includes the following
additional data:

* messageVer si on — Currently Amazon Lex supports only the 1.0 version.

e i nvocati onSour ce — Indicates the purpose of Lambda function invocation. In this case, it
is to perform user data initialization and validation (at this time Amazon Lex knows that the
user has not provided all the slot data to fulfill the intent).

* currentlntent — All of the slot values are set to null.

At this time, all the slot values are null. There is nothing for the Lambda function to validate.
The Lambda function returns the following response to Amazon Lex. For information about
response format, see Response Format (p. 57).

"sessionAttributes": {
"current Reservation":"{\"ReservationType\":\"Hotel\",\"Location
\":null,\"Roonlype\": null,\"ChecklnDate\":nul |l ,\"N ghts\":null}"
b
"di al ogAction":{
"type":"Del egate",

82

Amazon Lex Developer Guide
Details of Information Flow

2.

"slots":{
"RoonmType": nul |,
" Checkl nDat e": nul |,
"Ni ghts":null,
"Location":null
}
}
}
Note

e current Reservati on — The Lambda function includes this session attribute. Its
value is a copy of the current slot information and the reservation type.

Only the Lambda function and the client can update these session attributes.
Amazon Lex simply passes these values.

« di al ogActi on. t ype — By setting this value to Del egat e, the Lambda function
delegates the responsibility for the next course of action to Amazon Lex.

If the Lambda function detected anything in the user data validation, it instructs
Amazon Lex what to do next.

As per the di al ogActi on. t ype, Amazon Lex decides the next course of action—elicit data
from the user for the Locat i on slot. It selects one of the prompt messages ("What city will
you be staying in?") for this slot, according to the intent configuration, and then sends the
following response to the user:

Headers Cookies Params m Tirmings

Filter properties

dialogState: "ElicitSlot”
intentName: "BookHotel"
message: "What city will you be staying in?"
responselCard: null
sessionAttributes: Object

currentReservation: "{"ReservationType™":"Hotel","Location ":null,"RoomType":null,"CheckInDate":null,"Nights":null}"
slotToElicit: "Location”
slots: Object
CheckInDate: null
Location: null
Mights: null
RoomType: null

The session attributes are passed to the client.

The client reads the response and then displays the message: "What city will you be staying
in?"

User: "Moscow"

a.

The client sends the following Post Text request to Amazon Lex (line breaks added for
readability):

POST / bot / BookTri p/ al i as/ $LATEST/
user/ wch89kj qcpkds8seny7dl y5x3ot 68j 3/t ext
"Cont ent - Type": "application/json"

83

Amazon Lex Developer Guide
Details of Information Flow

C.

" Cont ent - Encodi ng": "ane- 1. 0"

{
"i nput Text": " Moscow',
"sessionAttributes": {
"current Reservation":"{\"ReservationType\":\"Hotel \",
\"Location\":null,
\ " Roonilype\": nul |,
\ " Checkl nDate\": nul |,
\"Nights\":null}"
}
}

In addition to the i nput Text , the client includes the same cur r ent Reser vat i on session
attributes it received.

Amazon Lex first interprets the i nput Text in the context of the current intent (the service
remembers that it had asked the specific user for information about Locat i on slot). It
updates the slot value for the current intent and invokes the Lambda function using the
following event:

"nmessageVersion": "1.0",

"invocationSource": "Di al ogCodeHook",
"userld": "wch89kj qcpkds8seny7dl y5x3ot q68j 3",
"sessionAttributes": {

"current Reservation": "{\"ReservationType\":\"Hotel\",
\"Location\":null,\"RoonType\": null,\"ChecklnDate\": null,\"Nights
\":null}"

},
"bot": {

"nane": "BookTrip",

"alias": null,

"version": "S$LATEST"
3
"out put Di al ogvbde": "Text",
"currentlintent": {

"nane": "BookHotel",

"slots": {

"RoonType": null,

"Checkl nDate": null,

"N ghts": null,

"Location": "Mscow'

3

"confirmati onStatus": "None"

Note

* invocati onSour ce continues to be Di al ogCodeHook. In this step, we are just
validating user data.

* Amazon Lex is just passing the session attribute to the Lambda function.

e Forcurrentlntent. sl ots, Amazon Lex has updated the Locat i on slot to
Moscow.

The Lambda function performs the user data validation and determines that Moscowis an
invalid location.

84

Amazon Lex Developer Guide
Details of Information Flow

Note

The Lambda function in this exercise has a simple list of valid cities and Mbscowis
not on the list. In a production application, you might use a back-end database to get
this information.

It resets the slot value back to null and directs Amazon Lex to prompt the user again for
another value by sending the following response:

{
"sessionAttributes": {

"current Reservation": "{\"ReservationType\":\"Hotel\",
\"Location\":\"Mscowm",\"RoonType\": nul | ,\"Checkl nDate\": nul |,
\"Nights\":null}"

b
"di al ogAction": {

"type": "ElicitSlot",

"intent Name": "BookHotel",

"slots": {

"RoonTType": null,
"Checkl nDate": null,
"Ni ghts": null,
"Location": null

b

"slotToElicit": "Location",

"message": {

"content Type": "PlainText",
"content": "We currently do not support Mdscow as a valid
destination. Can you try a different city?"

}

}
}
Note

e currentlntent.slots. Locati on isresetto null.

e di al ogAction.typeissettoElicitSlot, which directs Amazon Lex to prompt
the user again by providing the following:
e di al ogAction. sl ot ToEl i ci t — slot for which to elicit data from the user.
« di al ogActi on. message — a message to convey to the user.

d. Amazon Lex notices the di al ogActi on. t ype and passes the information to the client in the
following response:

85

Amazon Lex Developer Guide
Details of Information Flow

. - . i
Headers Cookies Params m Timings Security

Filter properties

dialogState: "ElicitSlot”
intentMame: "BookHotel”
message: "We currently do not support Moscow as a valid destination. Can you try a different city?"
responselCard: null
sessionAttributes: Object

currentReservation: "{"ReservationType™:"Hotel","Location™: "Moscow”,"RoomType":null," CheckInDate":null, "Mights":null}"
slotToklicit: "Location”
slots: Object

CheckInDate: null

Lecation: null
Mights: null
RoomType: null

The client simply displays the message: "We currently do not support Moscow as a valid
destination. Can you try a different city?"

3. User: "Chicago"

a. The client sends the following Post Text request to Amazon Lex:

POST / bot/ BookTri p/ al i as/ SLATEST/
user/wch89kj gcpkds8seny7dl y5x3ot q68j 3/t ext
"Cont ent - Type": "application/json"
" Cont ent - Encodi ng": "ane- 1. 0"
{
"i nput Text": " Chi cago",
"sessionAttributes": {
"current Reservation":"{\"ReservationType\":\"Hotel\",
\"Location\":\"Mscowm",
\ " Roonilype\": nul |,
\ " Checkl nDate\": nul |,
\"Ni ghts\":null}"
}
}

b. Amazon Lex knows the context, that it was eliciting data for the Locat i on slot. In this
context, it knows the i nput Text value is for the Locat i on slot. It then invokes the Lambda
function by sending the following event:

{
"messageVersion": "1.0",
"invocationSource": "Di al ogCodeHook",
"userld": "wch89kj qcpkds8seny7dl y5x3ot q68j 3",
"sessionAttributes": {

"current Reservation": "{\"ReservationType\":\"Hotel\",
\"Location\": Moscow, \ "Roonilype\ ": nul | ,\ " Checkl nDate\": null,\"Ni ghts
\":null}"

}i

"bot": {
"nane": "BookTrip",
"alias": null,

86

Amazon Lex Developer Guide
Details of Information Flow

"version": "$LATEST"
3
"out put Di al ogvbde": "Text",
“currentlintent": {
"nane": "BookHotel",
"slots": {
"RoonTType": nul |,
"Checkl nbate": null,

"Ni ghts": null,
"Location": "Chicago"

b,

"confirmationStatus": "None"

Amazon Lex updated the current I nt ent. sl ot s by setting the Locat i on slot to Chi cago.

According to the i nvocat i onSour ce value of Di al ogCodeHook, the Lambda function
performs user data validation. It recognizes Chi cago as a valid slot value, updates the
session attribute accordingly, and then returns the following response to Amazon Lex.

"sessionAttributes": {
"current Reservation": "{\"ReservationType\":\"Hotel\",
\"Location\":\"Chicago\",\"RoonType\": null,\"Checkl nDate\": nul |,
\"Nights\":null}"

b
"di al ogAction": {
"type": "Del egate”,
"slots": {
"RoonType": null,
"Checkl nDate": null,
"N ghts": null,
"Location": "Chicago"
}
}
}
Note

e current Reservati on — The Lambda function updates this session attribute by
setting the Locat i on to Chi cago.

» di al ogAction. type —Is set to Del egat e. User data was valid, and the Lambda
function directs Amazon Lex to choose the next course of action.

According to di al ogActi on. t ype, Amazon Lex chooses the next course of action. Amazon
Lex knows that it needs more slot data and picks the next unfilled slot (Checkl nDat e)

with the highest priority according to the intent configuration. It selects one of the prompt
messages ("What day do you want to check in?") for this slot according to the intent
configuration and then sends the following response back to the client:

87

Amazon Lex Developer Guide
Details of Information Flow

Headers Cookies Pararns Tirmings Security

Filter properties

dialeg5tate: "ElicitSlot”
intentMame: "BookHotel”

message: "What day do you want to check in?"
responseCard: null

sessionAttributes: Object
currentReservation: "{"ReservationType"i"Hotel”,"Location™: " Chicage”, "RoemType"inull,"CheckInDate":null,"Mights":null}"
slotTeklicit: "CheckInDate”
slots: Object
CheckInDate: null
Location: "Chicago”
Mights: null
RoeomType: null

The client displays the message: "What day do you want to check in?"

4. The user interaction continues—the user provides data, the Lambda function validates data, and
then delegates the next course of action to Amazon Lex. Eventually the user provides all of the
slot data, the Lambda function validates all of the user input, and then Amazon Lex recognizes it
has all the slot data.

Note

In this exercise, after the user provides all of the slot data, the Lambda function
computes the price of the hotel reservation and returns it as another session attribute
(current ReservationPri ce).

At this point, the intent is ready to be fulfilled, but the BookHotel intent is configured with a
confirmation prompt requiring user confirmation before Amazon Lex can fulfill the intent. Therefore,
Amazon Lex sends the following message to the client requesting confirmation before booking the
hotel:

Headers Cookies Params Timings

Filter properties

dialeg5tate: "Confirmlntent”
intentMame: "BookHotel"
message: "Okay, I have you down for a 5 night stay in Chicago starting 2016-12-18. ShallI book the reservation?”
responseCard: null
sessionAttributes: Object
currentReservation: "{"ReservationType"i"Hotel","Location™:"Chicage”, "RoemType": "queen”,"ChecknDate":"2016-12-18", "Nights":"5"}"
currentReservationPrice: "1195"
slotToElicit: null
slots: Object
CheckInDate: "2016-12-18"
Location: "Chicage”
Mights: "5"
RoomType: "queen”

The client display the message: "Okay, | have you down for a 5 night in Chicago starting
2016-12-18. Shall I book the reservation?"

5. User: "yes"

88

Amazon Lex Developer Guide
Details of Information Flow

The client sends the following Post Text request to Amazon Lex:

PQOST / bot/ BookTri p/ al i as/ $LATEST/
user/wch89kj gcpkds8seny7dl y5x3ot q68j 3/t ext
"Cont ent - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

{
"i nput Text":"Yes",
"sessionAttributes": {
"current Reservation":"{\"ReservationType\":\"Hotel \",
\"Location\":\"Chi cago\",
\ " Roonilype\ ":\"queen\",
\ " Checkl nDate\":\"2016-12-18\",
\"Ni ghts\":\"5\"}",
"current ReservationPrice":"1195"
}
}

Amazon Lex interprets the i nput Text in the context of confirming the current intent. Amazon
Lex understands that the user wants to proceed with the reservation. This time Amazon Lex
invokes the Lambda function to fulfill the intent by sending the following event. By setting

the i nvocati onSour ce to Ful fi | | ment CodeHook in the event, it sends to the Lambda
function. Amazon Lex also sets the confi r mati onSt at us to Confi r med.

"messageVersion": "1.0",
"invocationSource": "Fulfill ment CodeHook",
"userld": "wch89kj gcpkds8seny7dl y5x3ot q68j 3",
"sessionAttributes": {
"current Reservation”: "{\"ReservationType\":\"Hotel\",
\"Location\":\"Chi cago\", \"RooniType\ ":\"queen\",\" Checkl nDat e\ ":
\"2016-12-18\",\"Ni ghts\":\"4\"}",

"current ReservationPrice": "956"
b
"bot": {

"name": "BookTrip",

"alias": null,

"version": "$LATEST"
}

"out put Di al oghbde": "Text",
"currentintent": {
"nane": "BookHotel",
"slots": {
"Roonmlype": "queen",
"Checkl nDate": "2016-12-18",

"N ghts": "4",
"Location": "Chicago"
b,
"confirmationStatus": "Confirmed"
}
}
Note

* i nvocati onSour ce — This time, Amazon Lex set this value to
Ful fill nent CodeHook, directing the Lambda function to fulfill the intent.

89

Amazon Lex Developer Guide
Details of Information Flow

e confirmationStatus —Is setto Confirned.

This time, the Lambda function fulfills the BookHotel intent, Amazon Lex completes the
reservation, and then it returns the following response:

"sessionAttributes": {

"l ast ConfirnedReservation": "{\"ReservationType\":\"Hotel
\",\"Location\":\"Chicago\", \"Roonilype\ ":\"queen\",\" Checkl nDat e\ ":
\"2016-12-18\",\"Ni ghts\":\"4\"}"

b
"di al ogAction": {

"type": "d ose",

"fulfillmentState": "Fulfilled",

"message": {

"content Type": "PlainText",
"content": "Thanks, | have placed your reservation.

Pl ease et me know if you would like to book a car rental, or another
hotel . "

}
}

Note

» | ast ConfirnedReser vati on — Is a new session attribute that
the Lambda function added (instead of the cur r ent Reser vat i on,
current ReservationPrice).

» di al ogActi on. t ype — The Lambda function sets this value to G ose, indicating
that Amazon Lex to not expect a user response.

e dialogAction.fulfillmentState—IssettoFul fill ed and includes an
appropriate message to convey to the user.

Amazon Lex reviews the ful fi | | ment St at e and sends the following response to the client:

Headers Cookies Params m Timings

Filter properties

dialogState: "Fulfilled”
intentName: "BookHotel
message: "Thanks, I have placed your reservation. Please let me know if you would like to book a car rental, or another hotel.”
responseCard: null
sessionfttributes: Object

lastConfirmedReservation: "{"ReservationType":"Hotel","Location”:"Chicage”,"Room Type":"queen”," CheckInDate: " 2016-12-18", "Mights":"5"}"
slotToElicit: null
slots: Object
CheckInDate: "2016-12-18"
Location: "Chicageo”
Nights: "5"
RoomType: "queen”

Note

 di al ogSt at e — Amazon Lex sets this value to Ful fi | | ed.

90

Amazon Lex Developer Guide
Details of Information Flow

* nessage — Is the same message that the Lambda function provided.

The client displays the message.

Data Flow: Book Car Intent

The BookTrip bot in this exercise supports two intents (BookHotel and BookCar). After booking a
hotel, the user can continue the conversation to book a car. As long as the session hasn't timed out,
in each subsequent request the client continues to send the session attributes (in this example, the

| ast Confi r mredReser vat i on). The Lambda function can use this information to initialize slot data
for the BookCar intent. This is an example of how you can use session attributes in cross-intent data
sharing.

More specifically, when the user chooses the BookCar intent, the Lambda function uses relevant
information in the session attribute to prepopulate slots (PickUpDate, ReturnDate, and PickUpCity) for
the BookCar intent.

Note
The Amazon Lex console provides the Clear link that you can use to clear any prior session
attributes.

Follow the steps in this procedure to continue the conversation.
1. User: "also book a car"

a. The client sends the following Post Text request to Amazon Lex.

POST / bot/ BookTri p/ al i as/ $LATEST/
user/wch89kj gcpkds8seny7dl y5x3ot q68j 3/t ext
"Cont ent - Type": "application/json"
" Cont ent - Encodi ng": "ane- 1. 0"
{
"input Text":"al so book a car",
"sessionAttributes": {
"| ast Confi rmedReservation":""{\"ReservationType\":\"Hotel\",
\"Location\":\"Chicago\",
\ " Roonilype\ ":\"queen\",
\ " Checkl nDate\":\"2016-12-18\",
\"Ni ghts\":\"5\"}"
}
}

The client includes the | ast Conf i r redReser vat i on session attribute.

b. Amazon Lex detects the intent (BookCar) from the i nput Text . This intent is also configured
to invoke the Lambda function to perform the initialization and validation of the user data.
Amazon Lex invokes the Lambda function with the following event:

"messageVersion": "1.0",
"invocati onSource": "D al ogCodeHook",
"userld": "wch89kj qcpkds8seny7dl y5x3ot q68j 3",
"sessionAttributes": {
"l ast ConfirnmedReservation": "{\"ReservationType\":\"Hot el
\",\"Location\":\"Chicago\", \"RoonType\":\"queen\",\" Checkl nDat e\ ":
\"2016-12-18\",\"Ni ghts\":\"4\"}"

91

Amazon Lex Developer Guide
Details of Information Flow

b

"bot": {
"name": "BookTrip",
"alias": null,
"version": "$LATEST"

}

"out put Di al ogvbde": "Text",
“currentlintent": {
"nane": "BookCar",
"slots": {
"Pi ckUpDate": null,
"ReturnbDate": null,
"DriverAge": null,
"Car Type": null,
"PickUpCity": null
}

"confirmtionStatus": "None"

Note

* messageVer si on — Currently Amazon Lex supports the 1.0 version only.

e i nvocati onSour ce — Indicates the purpose of invocation is to perform
initialization and user data validation.

e currentl nt ent —Itincludes the intent name and the slots. At this time, all slot
values are null.

The Lambda function notices all null slot values with nothing to validate. However, it uses
session attributes to initialize some of the slot values (Pi ckUpDat e, Ret ur nDat e, and
Pi ckUpGi ty), and then returns the following response:

"sessionAttributes": {
"l ast ConfirmedReservation": "{\"ReservationType\":\"Hot el
\",\"Location\":\"Chicago\", \"Roonilype\":\"queen\",\" Checkl nDate\":
\"2016-12-18\",\"Ni ghts\":\"4\"}",

"current Reservation": "{\"ReservationType\":\"Car\",
\"Pi ckUpCity\":nul | ,\"Pi ckUpDate\": null ,\"ReturnDate\": null,\"CarType
\":null}",
"confirmationContext": "AutoPopul ate"
}

"di al ogAction": {

"type": "Confirmntent",

"i nt ent Name": " BookCar",

"slots": {
"PickUpCity": "Chicago",
"Pi ckUpDate": "2016-12-18",
"ReturnDate": "2016-12-22",
"Car Type": null,
"DriverAge": null

I
"message": {
"content Type": "PlainText",
"content": "Is this car rental for your 4 night stay in

Chi cago on 2016-12-18?"

92

Amazon Lex Developer Guide
Details of Information Flow

d.

a.

Note

* |In addition to the | ast Conf i r mnedReser vat i on, the Lambda function includes
more session attributes (cur r ent Reser vati on and confi r mati onCont ext).

» di al ogAction. type is setto Confirm nt ent, which informs Amazon Lex
that a yes, no reply is expected from the user (the confirmationContext set to
AutoPopopulate, the Lambda function knows that the yes/no user reply is to
obtain user confirmation of the initialization the Lambda function performed (auto
populated slot data).

The Lambda function also includes in the response an informative message in the
di al ogActi on. nessage for Amazon Lex to return to the client.

Note

The term Confi r m nt ent (value of the di al ogActi on. t ype) is not
related to any bot intent. In the example, Lambda function uses this term
to direct Amazon Lex to get a yes/no reply from the user.

According to the di al ogActi on. t ype, Amazon Lex returns the following response to the
client:

Headers Cookies Params m Timings

Filter properties

dialogState: "ConfirmIntent”
intentName: "BookCar”
message: "Is this car rental for your 5 night stay in Chicage on 2016-12-187"
responselCard: null
sessionAttributes: Object
confirmationContext: "AutoPopulate”
currentReservation: "{"ReservationType":" Car","PickUpCity":null,"PickUpDate”:null,"ReturnDate":null,"CarType":null}"
lastConfirmedReservation: "{"ReservationType":"Hotel","Location™"Chicage”,"RoomType":"queen”,"ChecknDate":" 2016-12-18", "Mights":"5"}"
slotTeElicit: null
slots: Object
CarType: null
Driverfge: null
PickUpCity: "Chicago”
PickUpDate: "2016-12-18"
ReturnDate: "2016-12-23"

The client displays the message: "Is this car rental for your 5 night stay in Chicago on
2016-12-18?"

User: "yes"

The client sends the following Post Text request to Amazon Lex.

POST / bot/ BookTri p/ al i as/ SLATEST/
user/wch89kj gcpkds8seny7dl y5x3ot q68j 3/t ext
"Content - Type": "application/json"

" Cont ent - Encodi ng": "ane- 1. 0"

93

Amazon Lex Developer Guide
Details of Information Flow

{
"i nput Text": "yes",
"sessionAttributes": {
"confirnmati onContext":"AutoPopul ate",
"current Reservation":"{\"ReservationType\":\"Car\",
\"PickUpCity\":null,
\"Pi ckUpDate\": nul I,
\"ReturnDate\": nul |,
\"CarType\":null}",
"l ast ConfirnmedReservation":"{\"Reservati onType\":\"Hotel\",
\"Location\":\"Chicago\",
\ " Roonilype\ ":\"queen\",
\ " Checkl nDate\":\"2016-12-18\",
\"Ni ghts\":\"5\"}"
}
}

Amazon Lex reads the i nput Text and it knows the context (asked the user to confirm the
auto population). Amazon Lex invokes the Lambda function by sending the following event:

"nmessageVersion": "1.0",

"invocationSource": "Di al ogCodeHook",
"userld": "wch89kj qcpkds8seny7dl y5x3ot q68j 3",
"sessionAttributes": {

"confirmati onContext": "AutoPopul ate",

"current Reservation": "{\"ReservationType\":\"Car\",
\"PickUpGity\":null ,\"Pi ckUpDate\": nul | ,\"ReturnDate\": null,\"CarType
\":null}",

"l ast ConfirnedReservation": "{\"ReservationType\":\"Hotel
\",\"Location\":\"Chicago\",\"RoonType\":\"queen\",\" Checkl nDate\":
\"2016-12-18\",\"Ni ghts\":\"4\"}"

},

"bot": {
"nane": "BookTrip",
"alias": null,
"version": "$LATEST"

}

"out put Di al ogvbde": "Text",
"currentlintent": {
"nane": "BookCar",
"slots": {
"Pi ckUpDate": "2016-12-18",
"ReturnDate": "2016-12-22",
"DriverAge": null,
"Car Type": null,
"Pi ckUpCity": "Chicago"
}

"confirmationStatus": "Confirned"

Because the user replied Yes, Amazon Lex sets the confi rmat i onSt at us to Confi r med.

From the confi r mat i onSt at us, the Lambda function knows that the prepopulated values
are correct. The Lambda function does the following:

» Updates the cur r ent Reser vat i on session attribute to slot value it had prepopulated.

94

Amazon Lex Developer Guide
Details of Information Flow

» Setsthe di al ogAction.typetoElicitSlot
» Setsthe sl ot ToElicit valueto Dri ver Age.

The following response is sent:

"sessionAttributes": {

"current Reservation": "{\"ReservationType\":\"Car\",

\"Pi ckUpCity\":\" Chi cago\",\"Pi ckUpDate\":\"2016-12-18\",\ " Ret urnDat e
\":\"2016-12-22\",\"Car Type\":nul I } ",

"l ast ConfirnmedReservation": "{\"ReservationType\":\"Hot el
\",\"Location\":\"Chicago\", \"Roonilype\":\"queen\",\" Checkl nDate\":
\"2016-12-18\",\"Ni ghts\":\"4\"}"

}

i al ogAction": ({
"type": "ElicitSlot",
"intent Nane": "BookCar",
"slots": {
"Pi ckUpDate": "2016-12-18",
"ReturnDate": "2016-12-22",
"DriverAge": null,
"Car Type": null,
"Pi ckUpCity": "Chicago"
b
"slotToElicit": "DriverAge",
"message": {
"content Type": "PlainText",
"content": "How old is the driver of this car rental ?"

}

d. Amazon Lex returns following response:

Headers Cookies Params Timings Se

Filter properties

dialogState: "ElicitSlot”
intentMame: "BookCar”

message "How old is the driver of this car rental?”
respoenseCard: null
sessiondttributes: Object
currentReservation: "{"ReservationType":"Car","PickUpCity":"Chicago”,"PickUpDate":"2016-12-18", "ReturnDate";"2016-12-23","CarType":inull}"
lastConfirmedReservation: "{ "ReservationType":"Hotel”,"Location”:"Chicage”,"RoomType": "queen”," CheckInDate: " 2016-12-18", "Mights":"5" }"
slotTeklicit: "DriverAge”
slots: Object
CarType: null
DriverAge: null
PickUpCity: "Chicago”
PickUpDate: "2016-12-18"
ReturnDate: "2016-12-23"

RSt St o P AR e e R R s Ry e n Gt L e R S T N

The client displays the message "How old is the driver of this car rental?" and the
conversation continues.

95

Amazon Lex Developer Guide
Example: Using a Response Card

Example: Using a Response Card

This is prerelease documentation for a service in preview release. It is subject to change.

In this exercise, you extend the Getting Started Exercise 1 by adding a response card. You create a
bot that supports the OrderFlowers intent and then update the intent by adding a response card for the
FI ower Type slot. In addition to the following prompt for the FI ower Type slot, the user can choose the
type of flowers from the response card:

What type of flowers would you like to order?

The response card is shown following:

I would like to order flowers

What type of flowers would you like to
order?

Flowers

tulips
lilies

roses

The bot user can either type the text or choose from the list of flower types. This response card is
configured with an image, which appears in the client as shown. For more information about response
cards, see Response Cards (p. 12).

Note

At this time, response cards are supported only with the Facebook Messenger platform.
Therefore, you need to deploy your bot on the Facebook Messenger platform to use this
feature. You test the bot on the Facebook message to see the response card.

Do the following to create and test a bot with a response card:

1. Follow the Getting Started Exercise 1 to create and test an OrderFlowers bot. You must complete
steps 1, 2, and 3. You don't need to add a Lambda function to test the response card. For
instructions, see Exercise 1: Create an Amazon Lex Bot Using a Blueprint (p. 17).

2. Update the bot by adding the response card and then publish a version. When you publish a
version, specify an alias (BETA) pointing to it.

a. Inthe Amazon Lex console, choose your bot.

96

Amazon Lex Developer Guide
Example: Using a Response Card

Choose the Or der Fl ower s intent.

c. Choose the settings gear icon next to the "What type of flowers" Prompt to configure a
response card for the Fl ower Type.

£ OrderFlowersWithRC - Build m
Editor Sattings Channels Monitaring
[+] OrderFlowers v Remove Save
Orderflowers Sample utlerances
[+] <]
App ypelalue
CaTypsVales would lika to pick up fowers o
¥ 2
Cru:
would like fo ordes some flowers
Fila
Pizzakind
RoomType\ial .
samTypeVales Siols
Sires
Priority Required Name St type Framgt
Errar Handling - o]
v FlowsType Flower.. = - Wit type of flowss EI
2 oaw v PickupDate AMAZ . w v What day do you w
1 Ea PickupTime AMAZ - - At what time do yo &

d. Configure three buttons as shown in the following screen shot. You can optionally add an
image to the response card, provided you have an image URL.

FlowerType Prompts -
Prompts

o

Whiat typs of flowsers would you fike ta crdar? [}

Corresponding utterances

L+
would ke to oeder (Flowe Typs) o
Prompl response carnds
L+
o
Card imags Card tith Card sultitla Praviaw I
Facebook -
Butlen valus Button fitle Tulps
s - Tulips
Wies - ies =
nses - Roses

Delete card

Verify the button values in the Preview and then choose Save.
On the Editor tab, choose Save to save the intent configuration.
Choose Build to build the bot.

Choose Publish to publish a bot version. Specify BETA as an alias that points to the bot
version. For information about versioning, see Versioning and Aliases (p. 50).

Sae ~ o

3. Deploy the bot on the Facebook Messenger platform and test the integration. For instructions, see
Integrating an Amazon Lex Bot with Facebook Messenger (p. 61).

97

Amazon Lex Developer Guide
Example: Using a Response Card

When you order flowers, the message window shows the response card for you to choose a flower
type.

98

Amazon Lex Developer Guide
General Guidelines

Guidelines and Limits in Amazon
Lex

This is prerelease documentation for a service in preview release. It is subject to change.

The following sections provide guidelines and limits when using Amazon Lex.

Topics
¢ General Guidelines (p. 99)
e Limits (p. 101)

General Guidelines

This section describes general guidelines when using Amazon Lex.

¢ Signing requests — All Amazon Lex model-building and runtime API operations in the API
Reference (p. 105) use signature V4 for authenticating requests. For more information about
authenticating requests, see Signature Version 4 Signing Process in the Amazon Web Services
General Reference. The only difference is in the signing of the Post Cont ent runtime API. Because
this API starts processing speech or text sent by the client as it is being streamed, you cannot
include the HTTP request body in the signature calculation, and it is therefore not required for
signing.

« Note the following about how Amazon Lex captures slot values from user utterances:

Amazon Lex uses the enumeration values you provide in a slot type definition to train its machine
learning models. Suppose you define an intent called Get Pr edi ct i onl nt ent with the following
sample utterance:

"Tell me the prediction for {Sign}"

Where {Sign} is a slot of custom type Zodi acSi gn. Zodi acSi gn has 12 enumeration values
(Ari es through Pi sces). From the user utterance "Tell me the prediction for ..." Amazon Lex
understands that what follows is a zodiac sign.

99

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Lex Developer Guide
General Guidelines

If the user says "Tell me the prediction for earth", Amazon Lex infers that "earth" is possibly another
Zodi acSi gn and passes it to your fulfillment activity. Therefore, your fulfillment activity must validate
the slot values.

Amazon Lex ignores non-alphanumeric characters (punctuation marks such as question mark,
period, and hyphen) in slot values. For examples, when a users types "US-EAST-1", your Lambda
function might recognize "us east 1" as the slot value.

Amazon Lex does not support AMAZON.LITERAL built-in slot type that Alexa Skills Kit supports.
However, Amazon Lex supports creating custom slot types that you can use to implement this
functionality. As mentioned in the previous bullet, you can capture values outside the custom slot
type definition. You can add more and diverse enumeration values to boost the automatic speech
recognition (ASR) and natural language understanding (NLU) accuracy.

Amazon Lex does not support the built-in intents AMAZON. Yes| nt ent and AMAZON. Nol nt ent that
Alexa Skills Kit supports. However, Amazon Lex supports the Conf i r m nt ent dialog action in the
code hook interface. Using this, you can implement the same functionality.

Providing confusable training data in your bot reduces Amazon Lex's ability to understand user input.
Consider these examples:

Suppose you have two intents (OrderPizza and OrderDrink) in your bot and both are configured with

an "l want to order" utterance. This utterance does not map to a specific intent that Amazon Lex can

learn from while building the language model for the bot at build time. As a result, when a user inputs
this utterance at runtime, Amazon Lex can't pick an intent with a high degree of confidence.

Consider another example where you define a custom intent for getting a confirmation from the user
(for example, MyCust onConf i r mat i onl nt ent) and configure the intent with the utterances Yes
and No. Note that Amazon Lex also has a language model for understanding user confirmations.
This can create conflicting situation. When the user responds with a Yes, does this mean that this

is a confirmation for the ongoing intent or that the user is requesting the custom intent that you
created?

In general, the sample utterances you provide should map to a specific intent and, optionally, to
specific slot values.

The runtime API operations PostContent (p. 106) and PostText (p. 113) take a user ID as the
required parameter. Developers can set this to any value that meets the constraints described in the
API. We recommend you don't use this parameter to send any confidential information such as user
logins, emails, or social security numbers. This ID is primarily used to uniquely identify conversation
with a bot (there can be multiple users ordering pizza).

If your client application uses Amazon Cognito for authentication, you might use the Amazon Cognito
user ID as Amazon Lex user ID. Note that the Lambda function (code hook configured for your bot)
must have its own authentication mechanism to identify the user on whose behalf Amazon Lex is
invoking the Lambda function.

100

Amazon Lex Developer Guide
Limits

« We encourage you to define an intent that captures a user's intention to discontinue the
conversation. For example, you can define an intent (NothingIntent) with sample utterances ("l don't

want anything", "exit", "bye bye"), no slots, and no Lambda function configured as a code hook. This
would let users gracefully close a conversation.

* Note the following about this preview release:

* The Amazon Lex model building API is not available for public consumption. You can use the
console to create and manage bots.

This section describes current limits in Amazon Lex. These limits are grouped by categories.

¢ Amazon Lex general limits

« Currently, Amazon Lex supports US English language. That is, Amazon Lex trains your bots to
understand only US English.

» Currently, Amazon Lex is available in us- east - 1 region.

* Amazon Lex runtime service limits - In addition to the limits described in the API reference, note the
following:

* API

 Input speech in the PostContent (p. 106) can be up to 15 seconds long.

* In both the runtime API operations PostContent (p. 106) and PostText (p. 113), the input text
size can be up to 1024 Unicode characters.

¢ The total size of the session attributes in a Post Cont ent request and response can be up to 12
KB.

e Currently, Amazon Lex is available in us- east - 1 region.

Region Region Endpoint Protocol
Name

US East (N. | us-east-1 runtime.lex.us-east-1.amazonaws.com HTTPS
Virginia)

¢ Model building limits

101

Amazon Lex Developer Guide
Limits

Model building refers to creating and managing bots. This includes, for example, creating/managing
bots, intents, and slot types, slots, and bot channel associations. Currently, Amazon Lex supports
creating and managing bots via the Amazon Lex console.

You configure prompts and statements throughout the model building API. Each of these prompts
or statements can have up to five messages and each message can contain from 1 to 1000 UTF-8
characters.

¢ Bots

* Bot, alias, and bot channel association names are case insensitive at the time of creation. That

is, if you create PizzaBot and then again try to create another pizzaBot, you will get an error.
However, when accessing a resource, the resource names are case sensitive (that is, you must
specify PizzaBot and not pizzaBot).

These names must be between 2 and 50 ASCII characters.

Maximum number of versions you can publish, Amazon Lex resource types, is 100. Note that,
there is no versioning for aliases.

Within a bot, intent names and slot names must be unique (that is, you can't have an intent and
a slot by the same name).

You can create a bot that is configured to support multiple intents. If two intents have a slot by
the same name, then the corresponding slot type must be the same.

For example, suppose you create a bot to support two intents (OrderPizza and OrderDrink). If
both these intents have the si ze slot, then the slot type must be the same in both places.

In addition, sample utterances you provide for a slot (in one of the intents), applies to the same
name slot in other intents.

At the time of creating a bot, you specify a session timeout. Session timeout can be between
one minute and one day. Five minutes is the default.

This timeout determines how long the bot can retain the context, such as current user intent and
slot data.

In addition, note that after a user starts the conversation with your bot and until the session
expires, Amazon Lex uses the same bot version (even if you update the bot alias to point to
another version).

When you update the $LATEST version of the bot, Amazon Lex terminates any in-progress user
conversations with the bot (if your client application is using the SLATEST version of the bot).

102

Amazon Lex Developer Guide
Limits

Generally, you should not use the $LATEST version of a bot in production because $LATEST
version can be updated. You should publish a version and use it instead.

You can create up to five aliases for a bot.

You can create up to 100 bots per AWS account.

In a bot, you cannot create multiple intents that extend from the same built-in intent.

* Intents related limits

Intent and slot names are case insensitive at the time of creation. That is, if you create
OrderPizza intent and then again try to create another orderPizza intent, you will get an error.
However, when accessing these resources, the resource names are case sensitive (you must
specify OrderPizza and not orderPizza).

These names must be between 1 and 100 ASCII characters.

An intent can have up to 1,000 sample utterances (a minimum of one sample utterance is
required). Each sample utterance you configure for an intent can be up to 200 UTF-8 characters
long. A sample utterance:

¢ Can refer to zero or more slot names.

» Can refer to a slot name only once.

For example:

I want a pizza
I want a {pizzaSi ze} pizza
I want a {pizzaSi ze} {pizzaToppi ng} pizza

Note
pizzaSize and pizzaTopping refer to slot names (not slot types).

Each slot can have up to 10 sample utterances. Each sample utterance must refer to the slot
name exactly once. For example:

{pi zzaSi ze} pl ease

You cannot provide utterances for intents that extend from built-in intents. For all other intents
you must provide at least one sample utterance. Intents contain slots, but the slot level sample
utterances are optional.

You must publish a version of an intent before you can use it in a bot.

Built-in intents 103

Amazon Lex Developer Guide
Limits

» Currently, Amazon Lex does not support slot elicitation for built-in intents. You cannot create
Lambda functions to return the El i ci t Sl ot directive in the response with an intent that is
derived from built-in intents. For more information, see Response Format (p. 57).

¢ The service does not support adding sample utterances to built-in intents. Similarly, you
cannot add or remove slots to built-in intents.

« You can create up to 1,000 intents per AWS account. You can create up to 100 slots in an
intent.

 Slot type related limits

« Slot type names are case insensitive at the time of creation. That is, if you create Pi zzaSi ze
slot type and then again try to create another pi zzaSi ze slot type, you will get an error.
However, when accessing these resources, the resource names are case sensitive (you must
specify Pi zzaSi ze and not pi zzaSi ze).

These names must be between 1 and 100 ASCII characters.

« Resource (bot, intent, alias, slot, slot type) names are case insensitive.

A custom slot type you create can have a maximum of 10,000 enumeration values, and each
enumeration value can be up to 140 UTF-8 characters long. The enumeration values cannot
contain duplicates.

* You must first publish a version of a slot type before you can use it in intent.

« For a slot type value, where appropriate, specify both upper and lower case. For example, for a
slot type called Procedure, if value is MRI, specify both MRI and mir as values.

 Built-in slot types — Currently, Amazon Lex doesn't support adding enumeration values for the
built-in slot types.

104

Amazon Lex Developer Guide
Actions

API| Reference

This is prerelease documentation for a service in preview release. It is subject to change.

This section provides documentation for the Amazon Lex API operations. Currently, Amazon Lex is
available in the following AWS region.

Region Region Endpoint Protocol
Name
US East (N. | us-east-1 runtime.lex.us-east-1.amazonaws.com HTTPS
Virginia)

Topics

¢ Actions (p. 105)
e Data Types (p. 117)

Actions

The following actions are supported:

¢ PostContent (p. 106)
e PostText (p. 113)

105

Amazon Lex Developer Guide
PostContent

PostContent

Sends user input (text or speech) to Amazon Lex. Clients use this API to send requests to Amazon Lex
at runtime. Amazon Lex interprets the user input using the machine learning model that it built for the
bot.

In response, Amazon Lex returns the next message to convey to the user. Consider the following
example messages:

¢ For a user input "l would like a pizza," Amazon Lex might return a response with a message eliciting
slot data (for example, Pi zzaSi ze): "What size pizza would you like?".

¢ After the user provides all of the pizza order information, Amazon Lex might return a response with a
message to get user confirmation: "Order the pizza?".

¢ After the user replies "Yes" to the confirmation prompt, Amazon Lex might return a conclusion
statement: "Thank you, your cheese pizza has been ordered.".

Not all Amazon Lex messages require a response from the user. For example, conclusion statements
do not require a response. Some messages require only a yes or no response. In addition to the
nmessage, Amazon Lex provides additional context about the message in the response that you can
use to enhance client behavior, such as displaying the appropriate client user interface. Consider the
following examples:

« If the message is to elicit slot data, Amazon Lex returns the following context information:
» x-ane-| ex-di al og- st at e header setto El i ci t Sl ot
e x-anz-| ex-i nt ent - nane header set to the intent name in the current context

* x-ane-| ex-slot-to-elicit header set to the slot name for which the nessage is eliciting
information

e X-anz-| ex- sl ot s header set to a map of slots configured for the intent with their current values

« If the message is a confirmation prompt, the x- ane- | ex- di al og- st at e header is set to
Confirmati on and the x- anz-| ex- sl ot-to-elicit headeris omitted.

¢ If the message is a clarification prompt configured for the intent, indicating that the user intent is not
understood, the x- anz- di al og- st at e header is setto El i ci t | nt ent and the x- anz- sl ot -t o-
el i ci t header is omitted.

In addition, Amazon Lex also returns your application-specific sessi onAtt ri but es. For more
information, see Managing Conversation Context.

Request Syntax

POST / bot/ bot Nane/ al i as/ bot Al i as/ user/ userld/content HTTP/ 1.1
X-ane-| ex-session-attributes: sessionAttributes

Cont ent - Type: content Type

Accept: accept

i nput Stream

URI Request Parameters

The request requires the following URI parameters.

accept (p. 106)
You pass this value as the Accept HTTP header.

The message Amazon Lex returns in the response can be either text or speech based on the
Accept HTTP header value in the request.

106

http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html

Amazon Lex Developer Guide
PostContent

If the value ist ext/ pl ai n; charset =utf -8, Amazon Lex returns text in the response.

If the value begins with audi o/ , Amazon Lex returns speech in the response. Amazon Lex
uses Amazon Polly to generate the speech (using the configuration you specified in the Accept
header). For example, if you specify audi o/ npeg as the value, Amazon Lex returns speech in
the MPEG format.

The following are the accepted values:
 audio/mpeg

 audio/ogg

e audio/pcm

* text/plain; charset=utf-8

 audio/* (defaults to mpeg)

botAlias (p. 106)
Alias of the Amazon Lex bot.

botName (p. 106)
Name of the Amazon Lex bot.

contentType (p. 106)
You pass this values as the Cont ent - Type HTTP header.
Indicates the audio format or text. The header value must start with one of the following prefixes:

audio/l16; rate=16000; channels=1

audio/x-116; sample-rate=16000; channel-count=1

text/plain; charset=utf-8

audio/x-cbr-opus-with-preamble; preamble-size=0; bit-rate=1; frame-size-milliseconds=1.1

sessionAttributes (p. 106)
You pass this value in the x- anez- | ex- sessi on-at tri but es HTTP header. The value must be
map (keys and values must be strings) that is JSON serialized and then base64 encoded.

A session represents dialog between a user and Amazon Lex. At runtime, a client application can
pass contextual information, in the request to Amazon Lex. For example,

You might use session attributes to track the requestID of user requests.

In Getting Started Exercise 1, the example application uses the price session attribute to
maintain the price of flowers ordered (for example, "price":25). The code hook (Lambda function)
sets this attribute based on the type of flowers ordered. For more information, see Review the
Details of Information Flow.

In the BookTrip bot exercise, the application uses the cur r ent Reser vat i on session attribute
to maintains the slot data during the in-progress conversation to book a hotel or book a car. For
more information, see Details of Information Flow.

Amazon Lex passes these session attributes to the Lambda functions configured for the intent In
the your Lambda function, you can use the session attributes for initialization and customization
(prompts). Some examples are:

Initialization - In a pizza ordering application, if you pass user location (for example,

"Location : 111 Maple Street"), then your Lambda function might use this information
to determine the closest pizzeria to place the order (and perhaps set the storeAddress slot value
as well).

Personalized prompts - For example, you can configure prompts to refer to the user by name
(for example, "Hey [firstName], what toppings would you like?"). You can pass the user's name
as a session attribute ("firstName™: "Joe") so that Amazon Lex can substitute the placeholder to
provide a personalized prompt to the user ("Hey Joe, what toppings would you like?").

Note

Amazon Lex does not persist session attributes.

If you configured a code hook for the intent, Amazon Lex passes the incoming session
attributes to the Lambda function. The Lambda function must return these session
attributes if you want Amazon Lex to return them to the client.

107

http://docs.aws.amazon.com/lex/latest/dg/gs-bp-details-after-lambda.html
http://docs.aws.amazon.com/lex/latest/dg/gs-bp-details-after-lambda.html
http://docs.aws.amazon.com/lex/latest/dg/book-trip-detail-flow.html

Amazon Lex Developer Guide
PostContent

If there is no code hook configured for the intent Amazon Lex simply returns the session
attributes to the client application.
userld (p. 106)
ID of the client application user. Typically, each of your application users should have a unique ID.
The application developer decides the user IDs. At runtime, each request must include the user ID.
Note the following considerations:

« If you want a user to start conversation on one device and continue the conversation on another
device, you might choose a user-specific identifier, such as the user's login, or Amazon Cognito
user ID (assuming your application is using Amazon Cognito).

¢ If you want the same user to be able to have two independent conversations on two different
devices, you might choose device-specific identifier, such as device ID, or some globally unique
identifier.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: [0-9a-zA-Z. _: -]+

Request Body

The request accepts the following data in JSON format.

inputStream (p. 106)
User input, in the format as described in the Cont ent - Type HTTP header.

Type: Binary data object
Required: Yes

Response Syntax

HTTP/ 1.1 200

Cont ent - Type: content Type

X-ane-| ex-i ntent-nanme: intentNanme

x-ane-| ex-slots: slots

X-ane-| ex-session-attributes: sessionAttributes
X-anz-| ex- nessage: nessage

x-ane-1 ex-di al og-state: dialogState
x-ane-lex-slot-to-elicit: slotToElicit

audi oSt ream

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The response returns the following HTTP headers.

contentType (p. 108)
Content type as specified in the Accept HTTP header in the request.

dialogState (p. 108)
Identifies the current state of the user interaction. Amazon Lex returns one of the following values
as di al ogSt at e. The client can optionally use this information to customize the user interface.

e Elicitlntent —Amazon Lex wants to elicit the user's intent. Consider the following examples:

For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer
the user intent from this utterance, it will return this dialog state.

e Confirm ntent — Amazon Lex is expecting a "yes" or "no" response.

For example, Amazon Lex wants user confirmation before fulfilling an intent. Instead of a simple
"yes" or "no" response, a user might respond with additional information. For example, "yes,

108

Amazon Lex Developer Guide
PostContent

but make it a thick crust pizza" or "no, | want to order a drink." Amazon Lex can process such
additional information (in these examples, update the crust type slot or change the intent from
OrderPizza to OrderDrink).

e ElicitSl ot —Amazon Lex is expecting the value of a slot for the current intent.
For example, suppose that in the response Amazon Lex sends this message: "What size pizza
would you like?". A user might reply with the slot value (e.g., "medium"). The user might also
provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex
can process such additional information appropriately.

e Ful fill ed— Conveys that the Lambda function has successfully fulfilled the intent.

e ReadyFor Ful fil | ment — Conveys that the client has to fullfill the request.

¢ Fai | ed — Conveys that the conversation with the user failed.
This can happen for various reasons, including that the user does not provide an appropriate
response to prompts from the service (you can configure how many times Amazon Lex can
prompt a user for specific information), or if the Lambda function fails to fulfill the intent.

Valid Values: Elicitintent | Confirmintent | ElicitSlot | Fulfilled |

ReadyFor Ful fill ment | Fail ed

intentName (p. 108)
Current user intent that Amazon Lex is aware of.

message (p. 108)
Message to convey to the user. It can come from the bot's configuration or a code hook (Lambda
function). If the current intent is not configured with a code hook or if the code hook returned
Del egat e as the di al ogActi on. t ype in its response, then Amazon Lex decides the next
course of action and selects an appropriate message from the bot configuration based on the
current user interaction context. For example, if Amazon Lex is not able to understand the user
input, it uses a clarification prompt message (For more information, see the Error Handling section
in the Amazon Lex console). Another example: if the intent requires confirmation before fulfillment,
then Amazon Lex uses the confirmation prompt message in the intent configuration. If the code
hook returns a message, Amazon Lex passes it as-is in its response to the client.

Length Constraints: Minimum length of 1. Maximum length of 1024.

sessionAttributes (p. 108)
Map of key/value pairs representing the session-specific context information.

slots (p. 108)
Map of zero or more intent slots (name/value pairs) Amazon Lex detected from the user input
during the conversation.

slotToElicit (p. 108)

If the di al ogSt at e value is El i ci t Sl ot , returns the name of the slot for which Amazon Lex is
eliciting a value.

The response returns the following as the HTTP body.

<varlistentry> audioStream (p. 108)

The prompt (or statement) to convey to the user. This is based on the application configuration

and context. For example, if Amazon Lex did not understand the user intent, it sends the
clarificationPronpt configured for the application. If the intent requires confirmation before taking
the fulfillment action, it sends the confi r mat i onPr onpt . Another example: Suppose that the Lambda
function successfully fulfilled the intent, and sent a message to convey to the user. Then Amazon Lex
sends that message in the response.

</varlistentry>

Errors

BadGatewayException
Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly, AWS
Lambda) failed with an internal service error.

109

Amazon Lex Developer Guide
PostContent

HTTP Status Code: 502
BadRequestException
Request validation failed, there is no usable message in the context, or the bot build failed.
HTTP Status Code: 400
ConflictException
Two clients are using the same AWS account, Amazon Lex bot, and user ID.
HTTP Status Code: 409
DependencyFailedException
One of the downstream dependencies, such as AWS Lambda or Amazon Polly, threw an

exception. For example, if Amazon Lex does not have sufficient permissions to call a Lambda
function, it results in Lambda throwing an exception.

HTTP Status Code: 424
InternalFailureException
Internal service error. Retry the call.
HTTP Status Code: 500
LimitExceededException
HTTP Status Code: 429
LoopDetectedException
Lambda fulfilment function returned Del egat eDi al ogAct i on to Amazon Lex without changing
any slot values.
HTTP Status Code: 508
NotAcceptableException
The accept header in the request does not have a valid value.
HTTP Status Code: 406
NotFoundException
The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.
HTTP Status Code: 404
RequestTimeoutException
The input speech is too long.
HTTP Status Code: 408
UnsupportedMediaTypeException
The Content-Type header (Post Cont ent API) has an invalid value.
HTTP Status Code: 415

Example

Example 1

In this request, the URI identifies a bot (Traffic), bot version (SLATEST), and end user name
(someuser). The Cont ent - Type header identifies the format of the audio in the body. Amazon Lex
also supports other formats. To convert audio from one format to another, if necessary, you can use
SoX open source software. You specify the format in which you want to get the response by adding the
Accept HTTP header.

In the response, the x- anez- | ex- message header shows the response that Amazon Lex returned.
The client can then send this response to the user. The same message is sent in audio/MPEG format
through chunked encoding (as requested).

Sample Request

"PCST /bot/ Traffic/alias/ $LATEST/ user/someuser/content HTTP/ 1. 1[\r][\n]"
"Xx-anez-|ex-session-attributes: eyJlc2WTnFt ZSI 61 kIvYi J9[\r][\n]"
"Cont ent - Type: audi o/ x-116; channel -count=1; sanpl e-rate=16000f[\r][\n]"

110

Amazon Lex Developer Guide
PostContent

"Accept: audio/ mpeg[\r][\n]"
"Host: runtine.|ex.us-east-1.amazonaws. conf\r][\n]"
"Aut hori zati on: AWS4- HVAC- SHA256 Credenti al =BLANKED _OUT/ 20161230/ us- east - 1/
| ex/ aws4_r equest,
Si gnedHeader s=accept ; cont ent -t ype; host ; x- anz- cont ent -
sha256; x- anz- dat e; x- anez- | ex- sessi on-attri butes,
Si gnat ur e=78cab5b54ea3f 64al7f f 7522de02cd90a9acd2365b45a9ce9h96eal05bblc7ec2[\ r]
[\n]"
"X- Anz- Date: 20161230T181426Z[\r][\n]"
" X- Anz- Cont ent - Sha256:
e3b0c44298f clc149af bf 4c8996f b92427ae41e4649b934ca495991b7852b855[\r] [\ n] "
"Transfer-Encodi ng: chunked[\r][\n]"
"Connection: Keep-Alive[\r][\n]"
"User-Agent: Apache-HitpCOient/4.5 x (Java/1.8.0_112)[\r][\n]"
"Accept - Encodi ng: gzip,deflate[\r][\n]"
"[\r][\n]”
"1000[\r][\n]"
"[0x7][0x0] [0x7][0Ox0] [\ n]"
"[0x0] [0x7][Ox0] [Oxfc][Oxff][\n]"
"[0x0][\n]"

Sample Response

"HTTP/ 1.1 200 OK[\r][\n]"

"x-anmen- Request 1 d: cc8b34af - cebb-11e6- a35c- 55f 3a992f 28d[\r][\n] "

"Xx-ane-| ex-nmessage: Sorry, can you repeat that?[\r][\n]"
"x-ane-1ex-dialog-state: Elicitintent[\r][\n]"
"x-ane-|ex-session-attributes: eyJlc2WTnFt ZSI 61 kJvYi J9[\r][\n]"

"Cont ent - Type: audi o/ npeg[\r][\n]"

"Transfer-Encodi ng: chunked[\r][\n]"

"Date: Fri, 30 Dec 2016 18:14:28 GMI[\r][\n]"

“[\r][\n]"

"2000[\r][\n]"

"1 D3[0x4] [0x0] [0x0] [0x0] [0x0] [0x0] #TSSE[0x0] [0x0] [0x0] [Oxf] [0x0] [0x0]

[0x3] Lavf57. 41. 100[0x0] [Ox0] [0x0] [Ox0] [0x0] [0x0] [Ox0] [0x0] [Ox0] [0xO]

[OxO] [Oxff][Oxf3] [0xc4][0x0][0x1b]{[0x8d][0Oxe8][O0x1] [0x18][0x1]

[0x0] J[Oxe0] " b[Oxdd] [Oxd1] [Oxb] [Oxf d] [Ox11] [Oxdf][Oxfe]"; [Oxbb] [Oxbb] [Ox9f]
[Oxee] [Oxee] [Oxee] [Oxee] | DDD/ [Oxf f] [Oxf f] [Oxff] [Oxff]www?D[Oxf 7] w*?[Oxf f]

[Oxf a] h[0x88] [0x85] [Oxf e] [0x88] [0x88] [0x88] [[Oxa2] ' [Oxff] [Oxfa] " {[Ox9f] [Oxe8]
[0x88]] D] Oxeb] [Oxbb] [Oxbb] [Oxa2] ! u[Oxf d] [Oxdd] [Oxdf] [Ox88] [0x94] [0x0] F[Oxef]
[Oxal] 8[0x0] [0x82] w{ 0x88] N[0x0] [0x0] [0x9b] [Oxbb] [Oxe8] [Oxe

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the
following:

¢ AWS Command Line Interface
e AWS SDK for .NET

¢ AWS SDK for C++

¢ AWS SDK for Go

¢ AWS SDK for Java

111

http://docs.aws.amazon.com/goto/aws-cli/AWSDeepSenseRunTimeService-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/DotNetSDKV3/AWSDeepSenseRunTimeService-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForCpp/AWSDeepSenseRunTimeService-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForGoV1/AWSDeepSenseRunTimeService-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForJava/AWSDeepSenseRunTimeService-2016-11-28/PostContent

Amazon Lex Developer Guide
PostContent

AWS SDK for JavaScript
AWS SDK for PHP V3
AWS SDK for Python
AWS SDK for Ruby V2

112

http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/AWSDeepSenseRunTimeService-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForPHPV3/AWSDeepSenseRunTimeService-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/boto3/AWSDeepSenseRunTimeService-2016-11-28/PostContent
http://docs.aws.amazon.com/goto/SdkForRubyV2/AWSDeepSenseRunTimeService-2016-11-28/PostContent

Amazon Lex Developer Guide
PostText

PostText

Sends user input (text-only) to Amazon Lex. Clients can use this API to send requests to Amazon Lex
at runtime. Amazon Lex then interprets the user input using the machine learning model it built for the
bot.

In response, Amazon Lex returns the next nessage to convey to the user an optional r esponseCard
to display. Consider the following example messages:

« For a user input "I would like a pizza", Amazon Lex might return a response with a message eliciting
slot data (for example, PizzaSize): "What size pizza would you like?"

« After the user provides all of the pizza order information, Amazon Lex might return a response with a
message to obtain user confirmation "Proceed with the pizza order?".

« After the user replies to a confirmation prompt with a "yes", Amazon Lex might return a conclusion
statement: "Thank you, your cheese pizza has been ordered.".

Not all Amazon Lex messages require a user response. For example, a conclusion statement does
not require a response. Some messages require only a "yes" or "no" user response. In addition to the
message, Amazon Lex provides additional context about the message in the response that you might
use to enhance client behavior, for example, to display the appropriate client user interface. These are
the sl ot ToEl i ci t, di al ogSt at e, i nt ent Nane, and sl ot s fields in the response. Consider the
following examples:
« If the message is to elicit slot data, Amazon Lex returns the following context information:

« di al ogSt at e set to ElicitSlot

* i nt ent Nane set to the intent name in the current context

» sl ot ToEl i cit setto the slot name for which the nessage is eliciting information

» sl ot s set to a map of slots, configured for the intent, with currently known values

¢ If the message is a confirmation prompt, the di al ogSt at e is set to Confirmintent and
Sl ot ToEl i ci t is set to null.

« If the message is a clarification prompt (configured for the intent) that indicates that user intent is not
understood, the di al ogSt at e is set to Elicitintent and sl ot ToEl i ci t is set to null.

In addition, Amazon Lex also returns your application-specific sessi onAt t ri but es. For more
information, see Managing Conversation Context.

Request Syntax

POST / bot/ bot Nane/ al i as/ bot Al i as/user/userld/text HTTP/ 1.1
Content -type: application/json

{
"input Text": "string",
"sessionAttributes": {
"“string" : "string"
}
}

URI Request Parameters

The request requires the following URI parameters.

botAlias (p. 113)
The alias of the Amazon Lex bot.

113

http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html

Amazon Lex Developer Guide
PostText

botName (p. 113)
The name of the Amazon Lex bot.

userld (p. 113)
The ID of the client application user. The application developer decides the user IDs. At runtime,
each request must include the user ID. Typically, each of your application users should have a
unique ID. Note the following considerations:

« If you want a user to start a conversation on one device and continue the conversation on
another device, you might choose a user-specific identifier, such as a login or Amazon Cognito
user ID (assuming your application is using Amazon Cognito).

¢ If you want the same user to be able to have two independent conversations on two different
devices, you might choose a device-specific identifier, such as device ID, or some globally
unique identifier.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: [0-9a-zA-Z. _:-]+

Request Body

The request accepts the following data in JSON format.

inputText (p. 113)
The text that the user entered (Amazon Lex interprets this text).

Type: String
Length Constraints: Minimum length of 1. Maximum length of 1024.
Required: Yes

sessionAttributes (p. 113)
By using session attributes, a client application can pass contextual information in the request to
Amazon Lex For example,
¢ In Getting Started Exercise 1, the example application uses the pri ce session attribute to
maintain the price of the flowers ordered (for example, "Price":25). The code hook (the Lambda
function) sets this attribute based on the type of flowers ordered. For more information, see
Review the Details of Information Flow.

< In the BookTrip bot exercise, the application uses the cur r ent Reser vat i on session attribute
to maintain slot data during the in-progress conversation to book a hotel or book a car. For more
information, see Details of Information Flow.

¢ You might use the session attributes (key, value pairs) to track the requestID of user requests.
Amazon Lex simply passes these session attributes to the Lambda functions configured for the
intent.

In your Lambda function, you can also use the session attributes for initialization and
customization (prompts and response cards). Some examples are:

« Initialization - In a pizza ordering application, if you can pass the user location as a session
attribute (for example, " Location" : "111 Mapl e street"), then your Lambda function
might use this information to determine the closest pizzeria to place the order (perhaps to set the
storeAddress slot value).

¢ Personalize prompts - For example, you can configure prompts to refer to the user name. (For
example, "Hey [FirstName], what toppings would you like?"). You can pass the user name as a

session attribute (" Fi r st Nane" : "Joe") so that Amazon Lex can substitute the placeholder
to provide a personalize prompt to the user ("Hey Joe, what toppings would you like?").
Note

Amazon Lex does not persist session attributes.

If you configure a code hook for the intent, Amazon Lex passes the incoming session
attributes to the Lambda function. If you want Amazon Lex to return these session
attributes back to the client, the Lambda function must return them.

If there is no code hook configured for the intent, Amazon Lex simply returns the session
attributes back to the client application.

114

http://docs.aws.amazon.com/lex/latest/dg/gs-bp-details-after-lambda.html
http://docs.aws.amazon.com/lex/latest/dg/book-trip-detail-flow.html

Amazon Lex Developer Guide
PostText

Type: String to String map
Required: No

Response Syntax

HTTP/ 1.1 200
Content -type: application/json

{

"dial ogState": "string",
"intent Nane": "string",
"message": "string",
"responseCard": {
"content Type": "string",
"generi cAttachments": [
{
"attachment Li nkUrl": "string",
"buttons": [
{
"text": "string",
"val ue": "string"
}
1.
"imageUr|": "string",
"subTitle": "string",
"title": "string"

}
1,

"version": "string"
H
"sessionAttributes": {
"string" : "string"
H
"slots": {
"string" : "string"
H

"slotToElicit": "string"

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

dialogState (p. 115)

Identifies the current state of the user interaction. Amazon Lex returns one of the following values

as di al ogSt at e. The client can optionally use this information to customize the user interface.

e Elicitlntent — Amazon Lex wants to elicit user intent.
For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer
the user intent from this utterance, it will return this dialogState.

e Confirm ntent — Amazon Lex is expecting a "yes" or "no" response.
For example, Amazon Lex wants user confirmation before fulfilling an intent.

Instead of a simple "yes" or "no," a user might respond with additional information. For example,
"yes, but make it thick crust pizza" or "no, | want to order a drink". Amazon Lex can process

115

Amazon Lex Developer Guide
PostText

such additional information (in these examples, update the crust type slot value, or change intent
from OrderPizza to OrderDrink).
e ElicitSl ot —Amazon Lex is expecting a slot value for the current intent.

For example, suppose that in the response Amazon Lex sends this message: "What size pizza
would you like?". A user might reply with the slot value (e.g., "medium"). The user might also
provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex
can process such additional information appropriately.

e Ful fill ed— Conveys that the Lambda function configured for the intent has successfully
fulfilled the intent.

¢ ReadyFor Ful fil | ment — Conveys that the client has to fulfill the intent.

¢ Fai | ed — Conveys that the conversation with the user failed.
This can happen for various reasons including that the user did not provide an appropriate
response to prompts from the service (you can configure how many times Amazon Lex can
prompt a user for specific information), or the Lambda function failed to fulfill the intent.
Type: String
Valid Values: Elicitintent | Confirmintent | ElicitSlot | Fulfilled |
ReadyFor Ful fillment | Failed
intentName (p. 115)
The current user intent that Amazon Lex is aware of.
Type: String
message (p. 115)

A message to convey to the user. It can come from the bot's configuration or a code hook
(Lambda function). If the current intent is not configured with a code hook or the code hook
returned Del egat e as the di al ogActi on. t ype in its response, then Amazon Lex decides the
next course of action and selects an appropriate message from the bot configuration based on the
current user interaction context. For example, if Amazon Lex is not able to understand the user
input, it uses a clarification prompt message (for more information, see the Error Handling section
in the Amazon Lex console). Another example: if the intent requires confirmation before fulfillment,
then Amazon Lex uses the confirmation prompt message in the intent configuration. If the code
hook returns a message, Amazon Lex passes it as-is in its response to the client.

Type: String
Length Constraints: Minimum length of 1. Maximum length of 1024.
responseCard (p. 115)

Represents the options that the user has to respond to the current prompt. Response Card can
come from the bot configuration (in the Amazon Lex console, choose the settings button next to a
slot) or from a code hook (Lambda function).

Type: ResponseCard (p. 121) object

sessionAttributes (p. 115)
A map of key-value pairs representing the session-specific context information.
Type: String to String map

slots (p. 115)

The intent slots (name/value pairs) that Amazon Lex detected so far from the user input in the
conversation.

Type: String to String map
slotToElicit (p. 115)

If the di al ogSt at e value is El i ci t Sl ot returns the name of the slot for which Amazon Lex is
eliciting a value.

Type: String

Errors

116

Amazon Lex Developer Guide
Data Types

BadGatewayException
Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly, AWS
Lambda) failed with an internal service error.

HTTP Status Code: 502

BadRequestException
Request validation failed, there is no usable message in the context, or the bot build failed.

HTTP Status Code: 400

ConflictException
Two clients are using the same AWS account, Amazon Lex bot, and user ID.

HTTP Status Code: 409

DependencyFailedException
One of the downstream dependencies, such as AWS Lambda or Amazon Polly, threw an
exception. For example, if Amazon Lex does not have sufficient permissions to call a Lambda
function, it results in Lambda throwing an exception.

HTTP Status Code: 424

InternalFailureException
Internal service error. Retry the call.

HTTP Status Code: 500

LimitExceededException
HTTP Status Code: 429

LoopDetectedException
Lambda fulfilment function returned Del egat eDi al ogAct i on to Amazon Lex without changing
any slot values.

HTTP Status Code: 508

NotFoundException
The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.

HTTP Status Code: 404

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the
following:

¢ AWS Command Line Interface
¢ AWS SDK for .NET

e AWS SDK for C++

¢ AWS SDK for Go

e AWS SDK for Java

¢ AWS SDK for JavaScript

¢ AWS SDK for PHP V3

¢ AWS SDK for Python

¢ AWS SDK for Ruby V2

Data Types

The following data types are supported:

¢ Button (p. 119)
¢ GenericAttachment (p. 120)
¢ ResponseCard (p. 121)

117

http://docs.aws.amazon.com/goto/aws-cli/AWSDeepSenseRunTimeService-2016-11-28/PostText
http://docs.aws.amazon.com/goto/DotNetSDKV3/AWSDeepSenseRunTimeService-2016-11-28/PostText
http://docs.aws.amazon.com/goto/SdkForCpp/AWSDeepSenseRunTimeService-2016-11-28/PostText
http://docs.aws.amazon.com/goto/SdkForGoV1/AWSDeepSenseRunTimeService-2016-11-28/PostText
http://docs.aws.amazon.com/goto/SdkForJava/AWSDeepSenseRunTimeService-2016-11-28/PostText
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/AWSDeepSenseRunTimeService-2016-11-28/PostText
http://docs.aws.amazon.com/goto/SdkForPHPV3/AWSDeepSenseRunTimeService-2016-11-28/PostText
http://docs.aws.amazon.com/goto/boto3/AWSDeepSenseRunTimeService-2016-11-28/PostText
http://docs.aws.amazon.com/goto/SdkForRubyV2/AWSDeepSenseRunTimeService-2016-11-28/PostText

Amazon Lex Developer Guide
Data Types

118

Amazon Lex Developer Guide
Button

Button

Represents an option to be shown on the client platform (Facebook, Slack, etc.)

Contents

text
Text that is visible to the user on the button.

Type: String
Length Constraints: Minimum length of 1. Maximum length of 15.
Required: Yes

value
The value sent to Amazon Lex when a user chooses the button. For example, consider button text
"NYC." When the user chooses the button, the value sent can be "New York City."

Type: String
Length Constraints: Minimum length of 1. Maximum length of 1000.
Required: Yes

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the
following:

e AWS SDK for C++

¢« AWS SDK for Go

¢ AWS SDK for Java

¢ AWS SDK for Ruby V2

119

http://docs.aws.amazon.com/goto/SdkForCpp/AWSDeepSenseRunTimeService-2016-11-28/Button
http://docs.aws.amazon.com/goto/SdkForGoV1/AWSDeepSenseRunTimeService-2016-11-28/Button
http://docs.aws.amazon.com/goto/SdkForJava/AWSDeepSenseRunTimeService-2016-11-28/Button
http://docs.aws.amazon.com/goto/SdkForRubyV2/AWSDeepSenseRunTimeService-2016-11-28/Button

Amazon Lex Developer Guide
GenericAttachment

GenericAttachment

Represents an option rendered to the user when a prompt is shown. It could be an image, a button, a
link, or text.

Contents

attachmentLinkUrl
Type: String
Length Constraints: Minimum length of 1. Maximum length of 2048.
Required: No

buttons
The list of options to show to the user.

Type: array of Button (p. 119) objects
Array Members: Minimum number of 0 items. Maximum number of 5 items.
Required: No

imageUr|
The URL of an image that is displayed to the user.

Type: String
Length Constraints: Minimum length of 1. Maximum length of 2048.
Required: No

subTitle
The subtitle shown below the title.

Type: String
Length Constraints: Minimum length of 1. Maximum length of 80.
Required: No
title
The title of the option.
Type: String
Length Constraints: Minimum length of 1. Maximum length of 80.
Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the
following:

e AWS SDK for C++

¢ AWS SDK for Go

e AWS SDK for Java
AWS SDK for Ruby V2

120

http://docs.aws.amazon.com/goto/SdkForCpp/AWSDeepSenseRunTimeService-2016-11-28/GenericAttachment
http://docs.aws.amazon.com/goto/SdkForGoV1/AWSDeepSenseRunTimeService-2016-11-28/GenericAttachment
http://docs.aws.amazon.com/goto/SdkForJava/AWSDeepSenseRunTimeService-2016-11-28/GenericAttachment
http://docs.aws.amazon.com/goto/SdkForRubyV2/AWSDeepSenseRunTimeService-2016-11-28/GenericAttachment

Amazon Lex Developer Guide
ResponseCard

ResponseCard

If you configure a response card when creating your bots, Amazon Lex substitutes the session
attributes and slot values that are available, and then returns it. The response card can also come from
a Lambda function (di al ogCodeHook and ful fi |l ment Acti vity on an intent).

Contents

contentType
The content type of the response.

Type: String
Valid Values: appl i cati on/vnd. amazonaws. car d. generi c
Required: No

genericAttachments
An array of attachment objects representing options.

Type: array of GenericAttachment (p. 120) objects
Array Members: Minimum number of 0 items. Maximum number of 10 items.
Required: No
version
The version of the response card format.
Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

¢ AWS SDK for C++

e AWS SDK for Go

¢ AWS SDK for Java

¢ AWS SDK for Ruby V2

121

http://docs.aws.amazon.com/goto/SdkForCpp/AWSDeepSenseRunTimeService-2016-11-28/ResponseCard
http://docs.aws.amazon.com/goto/SdkForGoV1/AWSDeepSenseRunTimeService-2016-11-28/ResponseCard
http://docs.aws.amazon.com/goto/SdkForJava/AWSDeepSenseRunTimeService-2016-11-28/ResponseCard
http://docs.aws.amazon.com/goto/SdkForRubyV2/AWSDeepSenseRunTimeService-2016-11-28/ResponseCard

Amazon Lex Developer Guide

Document History for Amazon Lex

This is prerelease documentation for a service in preview release. It is subject to change.

The following table describes the documentation for this release of Amazon Lex.

¢ Latest documentation update: November 30, 2016

Change Description Date

Preview release Preview release of the Amazon @ November 30, 2016
Lex Developer Guide.

122

Amazon Lex Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

123

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Lex
	Table of Contents
	What Is Amazon Lex?
	Are You a First-time User of Amazon Lex?

	Amazon Lex: How It Works
	Programming Model
	Runtime API Operations
	Lambda Functions as Code Hooks

	Managing Messages (Prompts and Statements)
	Types of Messages
	Contexts for Configuring Messages
	Supported Message Formats
	Response Cards
	Defining Response Cards Statically
	Defining Response Cards Dynamically

	Managing Conversation Context
	Session Timeout
	Cross-Intent Information Sharing

	Bot Deployment Options
	Built-in Intents and Slot Types
	Built-in Intents
	Built-in Slots

	Getting Started
	Exercise 1: Create an Amazon Lex Bot Using a Blueprint
	Amazon Lex Bot: Blueprint Overview
	AWS Lambda Function: Blueprint Summary
	Step 1: Prepare
	Step 2: Create an Amazon Lex Bot
	Step 3 (Optional): Review the Details of Information Flow
	Step 4: Create a Lambda Function
	Step 5: Update Intent Configuration: Add the Lambda Function as Code Hook
	Step 6 (Optional): Review the Details of Information Flow

	Exercise 2: Create a Custom Amazon Lex Bot
	Step 1: Prepare
	Step 1.1: Create IAM Roles
	Step 1.2: Create a Lambda Function
	Create a Lambda Function
	Test the Lambda Function in the Lambda Console Using Sample Event Data

	Step 2: Create an Amazon Lex Bot
	Step 3: Create Slot Types
	Step 4: Create an Intent
	Step 5: Configure Error Handling
	Step 6: Build and Test the Bot

	Exercise 3: Publish a Version and Create an Alias

	Versioning and Aliases
	Versioning
	Creating an Amazon Lex Bot (the $LATEST version)
	Publishing an Amazon Lex Bot Version
	Updating an Amazon Lex Resource
	Deleting an Amazon Lex Resource and a Specific Version

	Aliases

	Using Lambda Functions
	Lambda Function Input Event and Response Format
	Input Event Format
	Response Format

	Amazon Lex and AWS Lambda Blueprints

	Deploying Amazon Lex Bots on Various Platforms
	Deploying an Amazon Lex Bot on a Messaging Platform
	Integrating an Amazon Lex Bot with Facebook Messenger
	Step 1: Create an Amazon Lex bot
	Step 2: Create an IAM Role
	Step 3: Create a Facebook Application
	Step 4: Integrate Facebook Messenger With Amazon Lex Bot
	Step 5: Test the integration

	Deploying an Amazon Lex Bot in Mobile Applications

	Additional Examples: Creating Amazon Lex Bots
	Example Bot: ScheduleAppointment
	Overview of the Bot Blueprint (ScheduleAppointment)
	Overview of the Lambda Function Blueprint (lex-make-appointment)
	Step 1: Prepare
	Step 2: Create an Amazon Lex Bot
	Step 3: Create a Lambda function
	Step 4: Update the Intent: Configure a Code Hook

	Example Bot: BookTrip
	Step 1: Review the Blueprints Used in this Exercise
	Overview of the Bot Blueprint (BookTrip)
	Overview of the Lambda Function Blueprint (lex-book-trip-python)

	Step 2: Prepare
	Step 3: Create an Amazon Lex Bot
	Step 4: Create a Lambda function
	Step 5: Add the Lambda Function as a Code Hook
	Details of Information Flow
	Data Flow: Book Hotel Intent
	Data Flow: Book Car Intent

	Example: Using a Response Card

	Guidelines and Limits in Amazon Lex
	General Guidelines
	Limits

	API Reference
	Actions
	PostContent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	Example
	Example 1
	Sample Request
	Sample Response

	See Also

	PostText
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	Data Types
	Button
	Contents
	See Also

	GenericAttachment
	Contents
	See Also

	ResponseCard
	Contents
	See Also

	Document History for Amazon Lex
	AWS Glossary

