
Amazon CloudWatch Events
User Guide

Amazon CloudWatch Events User Guide

Amazon CloudWatch Events: User Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon CloudWatch Events User Guide

Table of Contents
What is Amazon CloudWatch Events? ... 1

Concepts ... 1
Related AWS Services .. 1
Limits .. 2

Setting Up ... 4
Sign Up for Amazon Web Services (AWS) ... 4
Sign in to the Amazon CloudWatch Console ... 4
Account Credentials .. 5
Set Up the Command Line Interface ... 6
Regional Endpoints ... 6

Getting Started ... 7
Tutorial: Relay Events to Amazon EC2 Run Command ... 8
Tutorial: Log EC2 Instance States ... 9

Step 1: Create a Lambda Function ... 9
Step 2: Create a Rule ... 10
Step 3: Test the Rule .. 10

Tutorial: Log Auto Scaling Group States ... 11
Step 1: Create a Lambda Function .. 11
Step 2: Create a Rule ... 12
Step 3: Test the Rule .. 12

Tutorial: Log S3 Object Level Operations ... 13
Step 1: Create an Event Selector .. 13
Step 2: Create a Lambda Function .. 14
Step 3: Create a Rule ... 14
Step 4: Test the Rule .. 15

Tutorial: Log AWS API Calls .. 16
Prerequisite .. 16
Step 1: Create a Lambda Function .. 16
Step 2: Create a Rule ... 17
Step 3: Test the Rule .. 17

Tutorial: Schedule EBS Snapshots .. 18
Step 1: Create a Rule ... 18
Step 2: Test the Rule .. 19

Tutorial: Schedule Lambda Functions .. 19
Step 1: Create a Lambda Function .. 19
Step 2: Create a Rule ... 20
Step 3: Test the Rule .. 21

Tutorial: Relay Events to a Stream .. 22
Prerequisite .. 22
Step 1: Create an Amazon Kinesis Stream ... 22
Step 2: Create a Rule ... 22
Step 3: Test the Rule .. 23
Step 4: Verify that the Event is Relayed ... 23

Schedule Expressions for Rules .. 24
Cron Expressions .. 24
Rate Expressions .. 26

Events and Event Patterns ... 28
Event Patterns .. 29

Adding Events with PutEvents .. 31
Handling Failures When Using PutEvents ... 31
Sending Events Using the AWS CLI .. 33
Calculating PutEvents Event Entry Sizes .. 33

Event Types ... 35
Amazon EBS Events ... 35

iii

Amazon CloudWatch Events User Guide

Amazon EC2 Events ... 36
Amazon EC2 System Manager Events ... 37
Amazon EC2 Maintenance Window Events ... 38
Amazon ECS Events ... 40
Amazon EMR Events .. 41
Auto Scaling Events .. 43
AWS API Call Events .. 46
AWS CodeDeploy Events .. 49
AWS Console Sign-in Events ... 50
AWS Health Events .. 50
AWS KMS Events ... 52
Scheduled Events ... 53
Trusted Advisor Events .. 53

Authentication and Access Control .. 56
Authentication ... 56
Access Control ... 57
Overview of Managing Access .. 58

Resources and Operations ... 58
Understanding Resource Ownership .. 59
Managing Access to Resources .. 59
Specifying Policy Elements: Actions, Effects, and Principals .. 60
Specifying Conditions in a Policy ... 61

Using Identity-Based Policies (IAM Policies) .. 61
Permissions Required to Use the CloudWatch Console .. 62
AWS Managed (Predefined) Policies for CloudWatch Events ... 63
Permissions Required for CloudWatch Events to Access Certain Targets 64
Customer Managed Policy Examples ... 65

Using Resource-Based Policies ... 68
AWS Lambda Permissions ... 68
Amazon SNS Permissions ... 69
Amazon SQS Permissions ... 70

CloudWatch Events Permissions Reference .. 71
Using Conditions ... 73

Example 1: Limit Access to a Specific Source ... 74
Example 2: Define Multiple Sources That Can Be Used in an Event Pattern Individually 76
Example 3: Define a Source and a DetailType That Can Be Used in an Event Pattern 77
Example 4: Ensure That the Source Is Defined in the Event Pattern .. 78
Example 5: Define a List of Allowed Sources in an Event Pattern with Multiple Sources 79
Example 6: Ensure That AWS CloudTrail Events for API Calls from a Certain PrincipalId Are
Consumed ... 80
Example 7: Limiting Access to Targets ... 81

Logging API Calls ... 82
CloudWatch Events Information in CloudTrail .. 82
Understanding Log File Entries ... 83

Troubleshooting .. 85
My rule was triggered but my Lambda function was not invoked ... 85
I have just created/modified a rule but it did not match a test event ... 86
My rule did not self-trigger at the time specified in the ScheduleExpression .. 87
My rule did not trigger at the time that I expected .. 87
My rule matches IAM API calls but my rule was not triggered .. 87
My rule is not working because the IAM role associated with the rule is ignored when the rule is
triggered .. 87
I created a rule with an EventPattern that is supposed to match a resource, but I don't see any events
that match the rule .. 88
My event's delivery to the target experienced a delay ... 88
My rule was triggered more than once in response two identical events. What guarantee does
CloudWatch Events offer for triggering rules or delivering events to the targets? 88

iv

Amazon CloudWatch Events User Guide

My rule is being triggered but I don't see any messages published into my Amazon SNS topic 88
My Amazon SNS topic still has permissions for CloudWatch Events even after I deleted the rule
associated with the Amazon SNS topic .. 90
Which IAM condition keys can I use with CloudWatch Events .. 90
How can I tell when CloudWatch Events rules are broken ... 90

Document History ... 91
AWS Glossary .. 93

v

Amazon CloudWatch Events User Guide
Concepts

What is Amazon CloudWatch
Events?

Amazon CloudWatch Events delivers a near real-time stream of system events that describe changes in
Amazon Web Services (AWS) resources to Amazon EC2 instances, AWS Lambda functions, Amazon
Kinesis streams, Amazon ECS tasks, Step Functions state machines, Amazon SNS topics, Amazon SQS
queues, or built-in targets. Using simple rules that you can quickly set up, you can match events and
route them to one or more target functions or streams. CloudWatch Events becomes aware of operational
changes as they occur. CloudWatch Events responds to these operational changes and takes corrective
action as necessary, by sending messages to respond to the environment, activating functions, making
changes, and capturing state information.

Concepts
Before you begin using CloudWatch Events, you should understand the following concepts:

• Events—An event indicates a change in your AWS environment. AWS resources can generate events
when their state changes. For example, Amazon EC2 generates an event when the state of an EC2
instance changes from pending to running, and Auto Scaling generates events when it launches or
terminates instances. AWS CloudTrail publishes events when you make API calls. You can generate
custom application-level events and publish them to CloudWatch Events. You can also set up scheduled
events that are generated on a periodic basis. For a list of services that generate events, and sample
events from each service, see Event Types for CloudWatch Events (p. 35).

• Targets—A target processes events. Targets can include Amazon EC2 instances, AWS Lambda
functions, Amazon Kinesis streams, Amazon ECS tasks, Step Functions state machines, Amazon SNS
topics, Amazon SQS queues, and built-in targets. A target receives events in JSON format.

• Rules—A rule matches incoming events and routes them to targets for processing. A single rule can
route to multiple targets, all of which are processed in parallel. Rules are not processed in a particular
order. This enables different parts of an organization to look for and process the events that are of
interest to them. A rule can customize the JSON sent to the target, by passing only certain parts or by
overwriting it with a constant.

Related AWS Services
The following services are used in conjunction with CloudWatch Events:

1

Amazon CloudWatch Events User Guide
Limits

• AWS CloudTrail enables you to monitor the calls made to the CloudWatch Events API for your account,
including calls made by the AWS Management Console, the AWS CLI and other services. When
CloudTrail logging is turned on, CloudWatch Events writes log files to an S3 bucket. Each log file
contains one or more records, depending on how many actions are performed to satisfy a request. For
more information, see Logging Amazon CloudWatch Events API Calls in AWS CloudTrail (p. 82).

• AWS CloudFormation enables you to model and set up your AWS resources. You create a template
that describes the AWS resources you want, and AWS CloudFormation takes care of provisioning and
configuring those resources for you. You can use CloudWatch Events rules in your AWS CloudFormation
templates. For more information, see AWS::Events::Rule in the AWS CloudFormation User Guide.

• AWS Config enables you to create rules that check the configuration of your AWS resources. These
rules are primarily used to check for compliance with your organization's policies. When an AWS Config
rule is triggered, it generates an event which can be captured by CloudWatch Events.

• AWS Identity and Access Management (IAM) helps you securely control access to AWS resources
for your users. Use IAM to control who can use your AWS resources (authentication), what resources
they can use, and how they can use them (authorization). For more information, see Authentication and
Access Control for Amazon CloudWatch Events (p. 56).

• Amazon Kinesis Streams enables rapid and continuous data intake and aggregation. The type of
data used includes IT infrastructure log data, application logs, social media, market data feeds, and
web clickstream data. Because the response time for the data intake and processing is in real time,
processing is typically lightweight. For more information, see the Amazon Kinesis Streams Developer
Guide.

• AWS Lambda enables you to build applications that respond quickly to new information. Upload
your application code as Lambda functions and Lambda runs your code on high-availability compute
infrastructure. Lambda performs all the administration of the compute resources, including server and
operating system maintenance, capacity provisioning, automatic scaling, code and security patch
deployment, and code monitoring and logging. For more information, see the AWS Lambda Developer
Guide.

CloudWatch Events Limits
CloudWatch Events has the following limits:

Resource Default Limit

API requests Up to 5 requests per second for all CloudWatch Events API
operations except PutEvents. PutEvents is limited to 10
requests per second.

Event pattern 2048 characters maximum.

Invocations 20/second (after 20 invocations, the invocations are throttled;
that is, they still happen but they are delayed). If the
invocation of a target fails due to a problem with the target
service, account throttling, etc., new attempts are made for up
to 24 hours for a specific invocation.

ListRuleNamesByTarget Up to 100 results per page for requests.

ListRules Up to 100 results per page for requests.

ListTargetsByRule Up to 100 results/page for requests.

PutEvents 10 entries/request and 10 requests/second. Each request can
be up to 256 KB in size.

PutTargets 10 entries/request.

2

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html
http://docs.aws.amazon.com/streams/latest/dev/
http://docs.aws.amazon.com/streams/latest/dev/
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_ListRuleNamesByTarget.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_ListRules.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_ListTargetsByRule.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html

Amazon CloudWatch Events User Guide
Limits

Resource Default Limit

RemoveTargets 10 entries/request.

Rules 50 per region per account. You can request a limit increase.
For instructions, see AWS Service Limits.

Before requesting a limit increase, examine your rules. You
may have multiple rules each matching to very specific
events. Consider broadening their scope by using fewer
identifiers in your Events and Event Patterns (p. 28).
In addition, a rule can invoke several targets each time it
matches an event. Consider adding more targets to your
rules.

Targets 5/rule.

3

http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_RemoveTargets.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudwatch-events
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon CloudWatch Events User Guide
Sign Up for Amazon Web Services (AWS)

Setting Up Amazon CloudWatch
Events

To use Amazon CloudWatch Events you need an AWS account. Your AWS account allows you to use
services (for example, Amazon EC2) to generate events that you can view in the CloudWatch console, a
web-based interface. In addition, you can install and configure the AWS Command Line Interface (AWS
CLI) to use a command-line interface.

Sign Up for Amazon Web Services (AWS)
When you create an AWS account, we automatically sign up your account for all AWS services. You pay
only for the services that you use.

If you have an AWS account already, skip to the next step. If you don't have an AWS account, use the
following procedure to create one.

To sign up for an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Sign in to the Amazon CloudWatch Console
To sign in to the Amazon CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. If necessary, change the region. From the navigation bar, choose the region where you have your
AWS resources.

4

https://aws.amazon.com/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide
Account Credentials

3. In the navigation pane, choose Events.

Account Credentials
Although you can use your root account credentials to access CloudWatch Events, we recommend that
you use an AWS Identity and Access Management (IAM) account. If you're using an IAM account to access
CloudWatch, you must have the following permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "events:*",
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For more information, see Authentication (p. 56).

5

Amazon CloudWatch Events User Guide
Set Up the Command Line Interface

Set Up the Command Line Interface
You can use the AWS CLI to perform CloudWatch Events operations.

For information about how to install and configure the AWS CLI, see Getting Set Up with the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

Regional Endpoints
You must enable regional endpoints (the default) in order to use CloudWatch Events. For more information,
see Activating and Deactivating AWS STS in an AWS Region in the IAM User Guide.

6

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon CloudWatch Events User Guide

Getting Started with Amazon
CloudWatch Events

You can set up simple rules that match events and route them to one or more of the following:

• Amazon EC2 instances

• AWS Lambda functions

• Streams in Amazon Kinesis Streams

• Amazon ECS tasks

• AWS Step Functions state machines

• Amazon SNS topics or Amazon SQS queues

• Built-in targets

These tutorials walk you sample usage scenarios for CloudWatch Events.

Limits

• Some target types might not be available in every region. For more information, see Regions and
Endpoints in the Amazon Web Services General Reference.

• Amazon SQS FIFO (first-in-first-out) queues are not supported.

• Creating rules with built-in targets is supported only in the AWS Management Console.

Tutorials

• Tutorial: Use Amazon CloudWatch Events and Amazon EC2 Run Command to Configure Instances
Launched in an Auto Scaling Group (p. 8)

• Tutorial: Log the State of an EC2 Instance Using CloudWatch Events (p. 9)

• Tutorial: Log the State of an Auto Scaling Group Using CloudWatch Events (p. 11)

• Tutorial: Log S3 Object Level Operations Using CloudWatch Events (p. 13)

• Tutorial: Log AWS API Calls Using CloudWatch Events (p. 16)

• Tutorial: Schedule EBS Snapshots Using CloudWatch Events (p. 18)

• Tutorial: Schedule Lambda Functions Using CloudWatch Events (p. 19)

• Tutorial: Relay Events to a Stream Using CloudWatch Events (p. 22)

7

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon CloudWatch Events User Guide
Tutorial: Relay Events to Amazon EC2 Run Command

Tutorial: Use Amazon CloudWatch Events
and Amazon EC2 Run Command to Configure
Instances Launched in an Auto Scaling Group

You can use Amazon CloudWatch Events to invoke Amazon EC2 Systems Manager Run Command
and perform actions on Amazon EC2 instances when certain events happen. In this tutorial, set up
Run Command to run shell commands and configure each new instance that is launched in an Auto
Scaling group. This tutorial assumes that you have already assigned a tag to the Auto Scaling group, with
environment as the key and production as the value.

To create the CloudWatch Events rule

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Events, Create rule.

3. For Event source, do the following:

a. Choose Event Pattern, Build event pattern to match events by service.

b. For Service Name, choose Auto Scaling. For Event Type, choose Instance Launch and
Terminate.

c. Choose Specific instance event(s), EC2 Instance-launch Lifecycle Action.

d. By default, the rule matches any Auto Scaling group in the region. To make the rule match a
specific group, choose Specific group name(s) and then select one or more groups.

4. For Targets, choose Add Target, SSM Run Command.

5. For Document, choose AWS-RunShellScript (Linux). (Note that there are many other Document
options which cover both Linux and Windows instances.) For Target key, type tag:environment. For
Target value(s), type production and choose Add.

6. Under Configure parameter(s), choose Constant.

7. For Commands, type a shell command and choose Add. Repeat this step for all commands to run
when an instance launches.

8. If necessary, type the appropriate information in WorkingDirectory and ExecutionTimeout.

9. CloudWatch Events can create the IAM role needed for your event to run:

• To create an IAM role automatically, choose Create a new role for this specific resource.

• To use an IAM role that you created before, choose Use existing role.

8

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide
Tutorial: Log EC2 Instance States

10. Choose Configure details. For Rule definition, type a name and description for the rule.

11. Choose Create rule.

Tutorial: Log the State of an EC2 Instance Using
CloudWatch Events

You can create a simple AWS Lambda function that logs the changes in state for an Amazon EC2 instance.
You can choose to create a rule that runs the function whenever there is a state transition or a transition to
one or more states that are of interest. In this tutorial, you log the launch of any new instance.

Step 1: Create a Lambda Function
Create a Lambda function to log the state change events. You'll specify this function when you create your
rule.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. If you are new to Lambda, you see a welcome page; choose Get Started Now; otherwise, choose
Create a Lambda function.

3. On the Select blueprint page, type hello for the filter, and then choose the hello-world blueprint.

4. On the Configure triggers page, choose Next.

5. On the Configure function page, do the following:

a. Type a name and description for the Lambda function. (For example, name the function
"LogEC2InstanceStateChange").

b. Edit the sample code for the Lambda function. For example:

'use strict';

9

https://console.aws.amazon.com/lambda/

Amazon CloudWatch Events User Guide
Step 2: Create a Rule

exports.handler = (event, context, callback) => {
 console.log('LogEC2InstanceStateChange');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');
};

c. For Role, choose Choose an existing role and then choose your basic execution role from
Existing role. Otherwise, create a new basic execution role.

d. Choose Next.

6. On the Review page, choose Create function.

Step 2: Create a Rule
Create a rule to run your Lambda function whenever you launch an Amazon EC2 instance.

To create a CloudWatch Events rule

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Events.

3. Choose Create rule.

4. For Event source, do the following:

a. Choose Event Pattern.

b. Choose Build event pattern to match events by service.

c. Choose EC2 and then choose EC2 Instance State-change Notification.

d. Choose Specific state(s) and then choose Running.

e. By default, the rule matches any instance in the region. To make the rule match a specific
instance, choose Specific instance(s) and then choose one or more instances.

5. For Targets, choose Add target and then choose Lambda function.

6. For Function, select the Lambda function that you created.

7. Choose Configure details.

8. For Rule definition, type a name and description for the rule.

9. Choose Create rule.

Step 3: Test the Rule
To test your rule, launch an Amazon EC2 instance. After waiting a few minutes for the instance to launch
and initialize, you can verify that your Lambda function was invoked.

To test your rule by launching an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Launch an instance. For more information, see Launch Your Instance in the Amazon EC2 User Guide
for Linux Instances.

3. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

4. To view metrics for the event, do the following:

a. In the navigation pane, choose Events, Rules.

10

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide
Tutorial: Log Auto Scaling Group States

b. Choose the name of the rule you created.

c. Choose Show metrics for the rule.

5. To view the output from your Lambda function, do the following:

a. In the navigation pane, choose Logs.

b. Choose the name of the log group for your Lambda function (/aws/lambda/function-name).

c. Choose the name of log stream to view the data provided by the function for the instance you
launched.

6. (Optional) When you are finished, you can open the Amazon EC2 console and stop or terminate the
instance you launched. For more information, see Terminate Your Instance in the Amazon EC2 User
Guide for Linux Instances.

Tutorial: Log the State of an Auto Scaling Group
Using CloudWatch Events

You can run an AWS Lambda function that logs an event whenever an Auto Scaling group launches or
terminates an Amazon EC2 instance and whether the launch or terminate event was successful.

For additional CloudWatch Events scenarios using Auto Scaling events, see Getting CloudWatch Events
When Your Auto Scaling Group Scales in the Auto Scaling User Guide.

Step 1: Create a Lambda Function
Create a Lambda function to log the scale out and scale in events for your Auto Scaling group. You'll
specify this function when you create your rule.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. If you are new to Lambda, you see a welcome page; choose Get Started Now; otherwise, choose
Create a Lambda function.

3. On the Select blueprint page, type hello for the filter, and then choose the hello-world blueprint.

4. On the Configure triggers page, choose Next.

5. On the Configure function page, do the following:

a. Type a name and description for the Lambda function. (For example, name the function
"LogAutoScalingEvent").

b. Edit the sample code for the Lambda function. For example:

'use strict';

exports.handler = (event, context, callback) => {
 console.log('LogAutoScalingEvent');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');
};

c. For Role, choose Choose an existing role and then choose your basic execution role from
Existing role. Otherwise, create a new basic execution role.

d. Choose Next.

6. Choose Create function.

11

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/cloud-watch-events.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/cloud-watch-events.html
https://console.aws.amazon.com/lambda/

Amazon CloudWatch Events User Guide
Step 2: Create a Rule

Step 2: Create a Rule
Create a rule to run your Lambda function whenever your Auto Scaling group launches or terminates an
instance.

To create a rule

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Events.

3. Choose Create rule.

4. For Event source, do the following:

a. Choose Event Pattern.

b. Choose Build event pattern to match events by service.

c. Choose Auto Scaling and then choose Instance Launch and Terminate.

d. Choose Any instance event to capture all successful and unsuccessful instance launch and
terminate events.

5. By default, the rule matches any Auto Scaling group in the region. To make the rule match a specific
Auto Scaling group, choose Specific group name(s) and then choose one or more Auto Scaling
groups.

6. For Targets, choose Add target and then choose Lambda function.

7. For Function, select the Lambda function that you created.

8. Choose Configure details.

9. For Rule definition, type a name and description for the rule. (For example, describe the rule as "Log
whenever an Auto Scaling group scales out or in".)

10. Choose Create rule.

Step 3: Test the Rule
You can test your rule by manually scaling an Auto Scaling group so that it launches an instance. After
waiting a few minutes for the scale out event to occur, you can verify that your Lambda function was
invoked.

12

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide
Tutorial: Log S3 Object Level Operations

To test your rule using an Auto Scaling group

1. To increase the size of your Auto Scaling group, do the following:

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. On the navigation pane, choose Auto Scaling, Auto Scaling Groups.

c. Select the checkbox for your Auto Scaling group.

d. On the Details tab, choose Edit. For Desired, increase the desired capacity by one. For example,
if the current value is 2, type 3. The desired capacity must be less than or equal to the maximum
size of the group. Therefore, you must update Max if your new value for Desired is greater than
Max. When you are finished, choose Save.

2. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

3. To view metrics for the event, do the following:

a. In the navigation pane, choose Events, Rules.

b. Choose the name of the rule you created.

c. Choose Show metrics for the rule.

4. To view the output from your Lambda function, do the following:

a. In the navigation pane, choose Logs.

b. Choose the name of the log group for your Lambda function (/aws/lambda/function-name).

c. Choose the name of log stream to view the data provided by the function for the instance you
launched.

5. (Optional) When you are finished, you can decrease the desired capacity by one so that the Auto
Scaling group returns to its previous size.

Tutorial: Log S3 Object Level Operations Using
CloudWatch Events

You can log the object level API operations on your Amazon S3 buckets. Before Amazon CloudWatch
Events can match these events, you must use AWS CloudTrail to set up a trail configured to receive these
events.

Step 1: Create an Event Selector
To log data events for an S3 bucket to CloudTrail and CloudWatch Events, configure an event selector.
You can add an event selector to an existing trail, or you can create a trail and then add a selector. For
more information, see Data Events in the AWS CloudTrail User Guide.

To create a trail

1. Open the CloudTrail console at https://console.aws.amazon.com/cloudtrail/.

2. In the navigation pane, choose Trails.

3. (Optional) If you do not have a trail, you can create one.

a. Choose Add new trail.

b. For Trail name, type a name for the trail.

c. For S3 bucket, type the name for the new bucket where CloudTrail will deliver logs.

d. Choose Create.

4. Choose the name of the trail.

13

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/create-event-selectors-for-a-trail.html#data-events-resources
https://console.aws.amazon.com/cloudtrail/

Amazon CloudWatch Events User Guide
Step 2: Create a Lambda Function

5. Choose the pencil icon next to Event selectors (Optional).

6. For Data events, select one or more S3 buckets to monitor. To log only the data events for the
buckets, choose No for Management events.

7. Choose Save.

Step 2: Create a Lambda Function
Create a Lambda function to log data events for your S3 buckets. You'll specify this function when you
create your rule.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. If you are new to Lambda, you see a welcome page; choose Get Started Now; otherwise, choose
Create a Lambda function.

3. On the Select blueprint page, type hello for the filter, and then choose the hello-world blueprint.

4. On the Configure triggers page, choose Next.

5. On the Configure function page, do the following:

a. Type a name and description for the Lambda function. (For example, name the function
"LogS3DataEvents".)

b. Edit the code for the Lambda function. For example:

'use strict';

exports.handler = (event, context, callback) => {
 console.log('LogS3DataEvents');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');
};

c. For Role, choose Choose an existing role and then choose your basic execution role from
Existing role. Otherwise, create a new basic execution role.

d. Choose Next.

6. On the Review page, choose Create function.

Step 3: Create a Rule
Create a rule to run your Lambda function in response to an S3 data event.

To create a rule

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Events.

3. Choose Create rule.

4. For Event source, do the following:

a. Choose Event Pattern.

b. Choose Build event pattern to match events by service.

c. Choose Simple Storage Service (S3) and then choose Object Level Operations.

d. Choose Specific operation(s) and then choose PutObject.

14

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide
Step 4: Test the Rule

e. By default, the rule matches data events for all buckets in the region. To match data events for
specific buckets, choose Specify bucket(s) by name and then specify one or more buckets.

5. For Targets, choose Add target, and then choose Lambda function.

6. For Function, select the Lambda function that you created.

7. Choose Configure details.

8. For Rule definition, type a name and description for the rule.

9. Choose Create rule.

Step 4: Test the Rule
To test the rule, put an object in your S3 bucket. You can verify that your Lambda function was invoked.

To view the logs for your Lambda function

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs.

3. Choose the name of the log group for your Lambda function (/aws/lambda/function-name).

4. Choose the name of log stream to view the data provided by the function for the instance you
launched.

You can also check the contents of your CloudTrail logs in the S3 bucket that you specified for your trail.
For more information, see Getting and Viewing Your CloudTrail Log Files in the AWS CloudTrail User
Guide.

15

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/get-and-view-cloudtrail-log-files.html

Amazon CloudWatch Events User Guide
Tutorial: Log AWS API Calls

Tutorial: Log AWS API Calls Using CloudWatch
Events

You can use a simple AWS Lambda function that logs each AWS API call. For example, you can create a
rule to log any operation within Amazon EC2, or you can limit this rule to log only a specific API call. In this
tutorial, you log every time an Amazon EC2 instance is stopped.

Prerequisite
Before you can match these events, you must use AWS CloudTrail to set up a trail. If you do not have a
trail, complete the following procedure.

To create a trail

1. Open the CloudTrail console at https://console.aws.amazon.com/cloudtrail/.

2. Choose Add new trail.

3. For Trail name, type a name for the trail.

4. For S3 bucket, type the name for the new bucket where CloudTrail will deliver logs.

5. Choose Create.

Step 1: Create a Lambda Function
Create a Lambda function to log the API call events. You'll specify this function when you create your rule.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. If you are new to Lambda, you see a welcome page; choose Get Started Now; otherwise, choose
Create a Lambda function.

3. On the Select blueprint page, type hello for the filter, and then choose the hello-world blueprint.

4. On the Configure triggers page, choose Next.

5. On the Configure function page, do the following:

a. Type a name and description for the Lambda function. (For example, name the function
"LogEC2StopInstance".)

b. Edit the sample code for the Lambda function. For example:

'use strict';

exports.handler = (event, context, callback) => {
 console.log('LogEC2StopInstance');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');
};

c. For Role, choose Choose an existing role and then choose your basic execution role from
Existing role. Otherwise, create a new basic execution role.

d. Choose Next.

6. On the Review page, choose Create function.

16

https://console.aws.amazon.com/cloudtrail/
https://console.aws.amazon.com/lambda/

Amazon CloudWatch Events User Guide
Step 2: Create a Rule

Step 2: Create a Rule
Create a rule to run your Lambda function whenever you stop an Amazon EC2 instance.

To create a rule

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Events.

3. Choose Create rule.

4. For Event source, do the following:

a. Choose Event Pattern.

b. Choose Build event pattern to match events by service.

c. Choose EC2 and then choose AWS API Call via CloudTrail.

d. Choose Specific operation(s) and then choose StopInstances.

5. For Targets, choose Add target and then choose Lambda function.

6. For Function, select the Lambda function that you created.

7. Choose Configure details.

8. For Rule definition, type a name and description for the rule.

9. Choose Create rule.

Step 3: Test the Rule
You can test your rule by stopping an Amazon EC2 instance using the Amazon EC2 console. After waiting
a few minutes for the instance to stop, check your AWS Lambda metrics in the CloudWatch console to
verify that your function was invoked.

To test your rule by stopping an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Launch an instance. For more information, see Launch Your Instance in the Amazon EC2 User Guide
for Linux Instances.

3. Stop the instance. For more information, see Stop and Start Your Instance in the Amazon EC2 User
Guide for Linux Instances.

4. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

17

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide
Tutorial: Schedule EBS Snapshots

5. To view metrics for the event, do the following:

a. In the navigation pane, choose Events.

b. Choose the name of the rule you created.

c. Choose Show metrics for the rule.

6. To view the output from your Lambda function, do the following:

a. In the navigation pane, choose Logs.

b. Choose the name of the log group for your Lambda function (/aws/lambda/function-name).

c. Choose the name of log stream to view the data provided by the function for the instance you
stopped.

7. (Optional) When you are finished, you can terminate the stopped instance. For more information, see
Terminate Your Instance in the Amazon EC2 User Guide for Linux Instances.

Tutorial: Schedule EBS Snapshots Using
CloudWatch Events

You can run CloudWatch Events rules according to a schedule. In this tutorial, you create a snapshot of an
existing Amazon Elastic Block Store (Amazon EBS) volume on a schedule. You can choose a fixed rate to
create a snapshot every few minutes or use a Cron expression to specify that the snapshot is made at a
specific time of day.

Important
Creating rules with built-in targets is supported only in the AWS Management Console.

Step 1: Create a Rule
Create a rule that takes snapshots on a schedule. You can use a rate expression or a Cron expression to
specify the schedule. For more information, see Schedule Expressions for Rules (p. 24).

To create a rule

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Events.

3. Choose Create rule.

4. For Event Source, do the following:

a. Choose Schedule.

b. Choose Fixed rate of and specify the schedule interval (for example, 5 minutes). Alternatively,
choose Cron expression and specify a Cron expression (for example, every 15 minutes Monday
through Friday, starting at the current time).

5. For Targets, choose Add target and then choose Built-in target.

6. For Action, choose Create a snapshot of an EBS volume.

7. For Volume ID, choose an EBS volume.

8. Choose Configure details.

9. For Rule definition, type a name and description for the rule.

10. For AWS permissions, choose the option to create a new role. This opens the IAM console in a new
tab. The new role grants the built-in target permission to access resources on your behalf. Choose
Allow. The tab with the IAM window closes.

18

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide
Step 2: Test the Rule

11. Choose Create rule.

Step 2: Test the Rule
You can verify your rule by viewing your first snapshot after it is taken.

To test your rule

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Elastic Block Store, Snapshots.

3. Verify that the first snapshot appears in the list.

4. (Optional) When you are finished, you can disable the rule to prevent additional snapshots from being
taken.

a. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

b. In the navigation pane, choose Events, Rules.

c. Select the rule and then choose Actions, Disable.

d. When prompted for confirmation, choose Disable.

Tutorial: Schedule Lambda Functions Using
CloudWatch Events

You can set up a rule to run an AWS Lambda function on a schedule. This tutorial shows how to use the
AWS Management Console or the AWS CLI to create the rule. If you would like to use the AWS CLI but
have not installed it, see the AWS Command Line Interface User Guide.

CloudWatch Events does not provide second-level precision in schedule expressions. The finest resolution
using a Cron expression is a minute. Due to the distributed nature of the CloudWatch Events and the target
services, the delay between the time the scheduled rule is triggered and the time the target service honors
the execution of the target resource might be several seconds. Your scheduled rule will be triggered within
that minute but not on the precise 0th second.

Step 1: Create a Lambda Function
Create a Lambda function to log the scheduled events. You'll specify this function when you create your
rule.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. If you are new to Lambda, you see a welcome page; choose Get Started Now; otherwise, choose
Create a Lambda function.

3. On the Select blueprint page, type hello for the filter, and then choose the hello-world blueprint.

4. On the Configure triggers page, choose Next.

5. On the Configure function page, do the following:

a. Type a name and description for the Lambda function. (For example, name the function
"LogScheduledEvent".)

b. Edit the sample code for the Lambda function. For example:

19

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/cli/latest/userguide/
https://console.aws.amazon.com/lambda/

Amazon CloudWatch Events User Guide
Step 2: Create a Rule

'use strict';

exports.handler = (event, context, callback) => {
 console.log('LogScheduledEvent');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');
};

c. For Role, choose Choose an existing role and then choose your basic execution role from
Existing role. Otherwise, create a new basic execution role.

d. Choose Next.

6. On the Review page, choose Create function.

Step 2: Create a Rule
Create a rule to run your Lambda function on a schedule.

To create a rule using the console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Events.

3. Choose Create rule.

4. For Event Source, do the following:

a. Choose Schedule.

b. Choose Fixed rate of and specify the schedule interval (for example, 5 minutes).

5. For Targets, choose Add target and then choose Lambda function.

6. For Function, select the Lambda function that you created.

7. Choose Configure details.

8. For Rule definition, type a name and description for the rule.

9. Choose Create rule.

If you prefer, you can create the rule using the AWS CLI. First, you must grant the rule permission to invoke
your Lambda function. Then you can create the rule and add the Lambda function as a target.

To create a rule using the AWS CLI

1. Use the following put-rule command to create a rule that triggers itself on a schedule:

aws events put-rule \
--name my-scheduled-rule \
--schedule-expression 'rate(5 minutes)'

When this rule triggers, it generates an event that serves as input to the targets of this rule. The
following is an example event:

{
 "version": "0",
 "id": "53dc4d37-cffa-4f76-80c9-8b7d4a4d2eaa",
 "detail-type": "Scheduled Event",
 "source": "aws.events",
 "account": "123456789012",

20

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/cli/latest/reference/events/put-rule.html

Amazon CloudWatch Events User Guide
Step 3: Test the Rule

 "time": "2015-10-08T16:53:06Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:events:us-east-1:123456789012:rule/my-scheduled-rule"
],
 "detail": {}
}

2. Use the following add-permission command to trust the CloudWatch Events service principal
(events.amazonaws.com) and scope permissions to the rule with the specified Amazon Resource
Name (ARN):

aws lambda add-permission \
--function-name LogScheduledEvent \
--statement-id my-scheduled-event \
--action 'lambda:InvokeFunction' \
--principal events.amazonaws.com \
--source-arn arn:aws:events:us-east-1:123456789012:rule/my-scheduled-rule

3. Use the following put-targets command to add the Lambda function you created to this rule so that it
runs every 5 minutes:

aws events put-targets --rule my-scheduled-rule --targets file://targets.json

Create the file targets.json with the following contents:

[
 {
 "Id": "1",
 "Arn": "arn:aws:lambda:us-east-1:123456789012:function:LogScheduledEvent"
 }
]

Step 3: Test the Rule
You can verify that your Lambda function was invoked.

To test your rule

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. To view metrics for the event, do the following:

a. In the navigation pane, choose Events, Rules.

b. Choose the name of the rule you created.

c. Choose Show metrics for the rule.

3. To view the output from your Lambda function, do the following:

a. In the navigation pane, choose Logs.

b. Choose the name of the log group for your Lambda function (/aws/lambda/function-name).

c. Choose the name of log stream to view the data provided by the function for the instance you
launched.

4. (Optional) When you are finished, you can disable the rule.

a. In the navigation pane, choose Events, Rules.

b. Select the rule and then choose Actions, Disable.

21

http://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html
http://docs.aws.amazon.com/cli/latest/reference/events/put-targets.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide
Tutorial: Relay Events to a Stream

c. When prompted for confirmation, choose Disable.

Tutorial: Relay Events to a Stream Using
CloudWatch Events

You can relay AWS API call events in CloudWatch Events to a stream in Amazon Kinesis.

Prerequisite
Install the AWS CLI. For more information, see the AWS Command Line Interface User Guide.

Step 1: Create an Amazon Kinesis Stream
Use the following create-stream command to create a stream.

aws kinesis create-stream --stream-name test --shard-count 1

When the stream status is ACTIVE, the stream is ready. Use the following describe-stream command to
check the stream status:

aws kinesis describe-stream --stream-name test

Step 2: Create a Rule
As an example, create a rule to send events to your stream when you stop an Amazon EC2 instance.

To create a rule

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Events.

3. Choose Create rule.

4. For Event source, do the following:

a. Choose Event Pattern.

b. Choose Build event pattern to match events by service.

c. Choose EC2 and then choose Instance State-change Notification.

d. Choose Specific state(s) and then choose Running.

5. For Targets, choose Add target, and then choose Kinesis stream.

6. For Stream, select the stream that you created.

7. Choose Configure details.

8. For Rule definition, type a name and description for the rule.

9. For AWS permissions, choose the option to create a new role. This opens the IAM console in a new
tab. The new role grants CloudWatch Events permission to write records to your streams. Choose
Allow. The tab with the IAM window closes.

10. Choose Create rule.

22

http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/reference/kinesis/create-stream.html
http://docs.aws.amazon.com/cli/latest/reference/kinesis/describe-stream.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide
Step 3: Test the Rule

Step 3: Test the Rule
To test your rule, stop an Amazon EC2 instance. After waiting a few minutes for the instance to stop, check
your CloudWatch metrics to verify that your function was invoked.

To test your rule by stopping an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Launch an instance. For more information, see Launch Your Instance in the Amazon EC2 User Guide
for Linux Instances.

3. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

4. To view metrics for the event, do the following:

a. In the navigation pane, choose Events, Rules.

b. Choose the name of the rule you created.

c. Choose Show metrics for the rule.

5. (Optional) When you are finished, you can terminate the instance. For more information, see Terminate
Your Instance in the Amazon EC2 User Guide for Linux Instances.

Step 4: Verify that the Event is Relayed
You can get the record from the stream to verify that the event was relayed.

To get the record

1. Use the following get-shard-iterator command to start reading from your Amazon Kinesis stream:

aws kinesis get-shard-iterator --shard-id shardId-000000000000 --shard-iterator-type
 TRIM_HORIZON --stream-name test

The following is example output:

{
 "ShardIterator": "AAAAAAAAAAHSywljv0zEgPX4NyKdZ5wryMzP9yALs8NeKbUjp1IxtZs1Sp
+KEd9I6AJ9ZG4lNR1EMi+9Md/nHvtLyxpfhEzYvkTZ4D9DQVz/mBYWRO6OTZRKnW9gd
+efGN2aHFdkH1rJl4BL9Wyrk+ghYG22D2T1Da2EyNSH1+LAbK33gQweTJADBdyMwlo5r6PqcP2dzhg="
}

2. Use the following get-records command to get the record. The shard iterator is the one you got in the
previous step:

aws kinesis get-records --shard-
iterator AAAAAAAAAAHSywljv0zEgPX4NyKdZ5wryMzP9yALs8NeKbUjp1IxtZs1Sp+KEd9I6AJ9ZG4lNR1EMi
+9Md/nHvtLyxpfhEzYvkTZ4D9DQVz/mBYWRO6OTZRKnW9gd+efGN2aHFdkH1rJl4BL9Wyrk
+ghYG22D2T1Da2EyNSH1+LAbK33gQweTJADBdyMwlo5r6PqcP2dzhg=

If the command is successful, it requests records from your stream for the specified shard. You can
receive zero or more records. Any records returned might not represents all records in your stream. If
you don't receive the data you expect, keep calling get-records.

Records in Amazon Kinesis are Base64 encoded. However, the streams support in the AWS CLI does
not provide Base64 decoding. If you use a Base64 decoder to manually decode the data, you will see
that it is the event relayed to the stream in JSON form.

23

https://console.aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
http://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html

Amazon CloudWatch Events User Guide
Cron Expressions

Schedule Expressions for Rules

You can create rules that self-trigger on schedule in CloudWatch Events using Cron or rate expressions. All
scheduled events use UTC time zone and the minimum precision for schedules is 1 minute.

CloudWatch Events does not provide second-level precision in schedule expressions. The finest resolution
using a Cron expression is a minute. Due to the distributed nature of the CloudWatch Events and the target
services, the delay between the time the scheduled rule is triggered and the time the target service honors
the execution of the target resource might be several seconds. Your scheduled rule is triggered within that
minute, but not on the precise 0th second.

CloudWatch Events supports the following formats for schedule expressions.

Formats

• Cron Expressions (p. 24)

• Rate Expressions (p. 26)

Cron Expressions
Cron expressions have six required fields. Fields are separated by white space.

Syntax

cron(fields)

Field Values Wildcards

Minutes 0-59 , - * /

Hours 0-23 , - * /

Day-of-month 1-31 , - * ? / L W

Month 1-12 or JAN-DEC , - * /

Day-of-week 1-7 or SUN-SAT , - * ? / L

Year 1970-2199 , - * /

24

Amazon CloudWatch Events User Guide
Cron Expressions

Wildcards

• The , (comma) wildcard includes additional values. In the Month field, JAN,FEB,MAR would include
January, February, and March.

• The - (dash) wildcard specifies ranges. In the Day field, 1-15 would include days 1 through 15 of the
specified month.

• The * (asterisk) wildcard includes all values in the field. In the Hours field, * would include every hour.

• The / (forward slash) wildcard specifies increments. In the Minutes field, you could enter 1/10 to specify
every tenth minute, starting from the first minute of the hour (for example, the 11th, 21st, and 31st
minute, and so on).

• The ? (question mark) wildcard specifies one or another. In the Day-of-month field you could enter 7 and
if you didn't care what day of the week the 7th was, you could enter ? in the Day-of-week field.

• The L wildcard in the Day-of-month or Day-of-week fields specifies the last day of the month or week.

• The W wildcard in the Day-of-month field specifies a weekday. In the Day-of-month field, 3W specifies
the day closest to the third weekday of the month.

Limits

• You can't specify the Day-of-month and Day-of-week fields in the same Cron expression. If you specify a
value in one of the fields, you must use a ? (question mark) in the other.

• Cron expressions that lead to rates faster than 1 minute are not supported. Support for specifying both a
day-of-week and a day-of-month value is not complete (you must currently use the '?' character in one of
these fields).

Examples

You can use the following sample cron strings when creating a rule with schedule.

Minutes Hours Day of
month

Month Day of week Year Meaning

0 10 * * ? * Run at 10:00
am (UTC)
every day

15 12 * * ? * Run at 12:15
pm (UTC)
every day

0 18 ? * MON-FRI * Run at
6:00 pm
(UTC) every
Monday
through
Friday

0 8 1 * ? * Run at 8:00
am (UTC)
every 1st
day of the
month

0/15 * * * ? * Run every
15 minutes

25

Amazon CloudWatch Events User Guide
Rate Expressions

Minutes Hours Day of
month

Month Day of week Year Meaning

0/10 * ? * MON-FRI * Run every
10 minutes
Monday
through
Friday

0/5 8-17 ? * MON-FRI * Run every
5 minutes
Monday
through
Friday
between
8:00 am
and 5:55 pm
(UTC)

The following examples show how to use Cron expressions with the AWS CLI put-rule command.

aws events put-rule --schedule-expression 'cron(0 12 * * ? *)' --name MyRule1

aws events put-rule --schedule-expression 'cron(15 10 ? * 6L 2002-2005)' --name MyRule2

Rate Expressions
A rate expression starts when you create the scheduled event rule, and then runs on its defined schedule.

Rate expressions have two required fields. Fields are separated by white space.

Syntax

rate(value unit)

value

A positive number.

unit

The unit of time.

Valid values: minute | minutes | hour | hours | day | days

Limits

If the value is equal to 1, then the unit must be singular. Similarly, for values greater than 1, the unit must
be plural. For example, rate(1 hours) and rate(5 hour) are not valid, but rate(1 hour) and rate(5 hours) are
valid.

Examples

The following examples show how to use rate expressions with the AWS CLI put-rule command.

26

http://docs.aws.amazon.com/cli/latest/reference/events/put-rule.html
http://docs.aws.amazon.com/cli/latest/reference/events/put-rule.html

Amazon CloudWatch Events User Guide
Rate Expressions

aws events put-rule --schedule-expression 'rate(5 minutes)' --name MyRule3

aws events put-rule --schedule-expression 'rate(1 hour)' --name MyRule4

aws events put-rule --schedule-expression 'rate(1 day)' --name MyRule5

27

Amazon CloudWatch Events User Guide

Events and Event Patterns

Events in Amazon CloudWatch Events are represented as JSON objects. For more information about
JSON objects, see RFC 7159. The following is an example event:

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "EC2 Instance State-change Notification",
 "source": "aws.ec2",
 "account": "111122223333",
 "time": "2015-12-22T18:43:48Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:ec2:us-east-1:123456789012:instance/i-12345678"
],
 "detail": {
 "instance-id": "i-12345678",
 "state": "terminated"
 }
}

It is important to remember the following details about an event:

• They all have the same top-level fields – the ones appearing in the example above – which are never
absent.

• The contents of the detail top-level field will be different depending on which service generated the event
and what the event is.

• The combination of the top-level source field and detail-type fields serve to identify the fields and values
found in the detail field.

Each event field is described below.

version

By default, this is set to 0 (zero) in all events.

id

A unique value is generated for every event. This can be helpful in tracing events as they move
through rules to targets, and are processed.

28

http://www.rfc-editor.org/rfc/rfc7159.txt

Amazon CloudWatch Events User Guide
Event Patterns

detail-type

Identifies, in combination with the source field, the fields and values that will appear in the detail field.

source

Identifies the service that sourced the event. All events sourced from within AWS will begin with "aws."
Customer-generated events can have any value here as long as it doesn't begin with "aws." We
recommend the use of java package-name style reverse domain-name strings.

account

The 12-digit number identifying an AWS account.

time

The event timestamp, which can be specified by the service originating the event. If the event spans a
time interval, the service might choose to report the start time, so this value can be noticeably before
the time the event is actually received.

region

Identifies the AWS region where the event originated.

resources

This JSON array contains ARNs that identify resources that are involved in the event. Inclusion of
these ARNs is at the discretion of the service. For example, Amazon EC2 instance state-changes
include Amazon EC2 instance ARNs, Auto Scaling events include ARNs for both instances and Auto
Scaling groups, but API calls with AWS CloudTrail do not include resource ARNs.

detail

A JSON object, whose content is at the discretion of the service originating the event. The detail
content in the example above is very simple, just two fields. AWS API call events have detail objects
with around 50 fields nested several levels deep.

Event Patterns
Rules use event patterns to select events and route them to targets. A pattern either matches an event or it
doesn't. Event patterns are represented as JSON objects with a structure that is similar to that of events, for
example:

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2 Instance State-change Notification"],
 "detail": {
 "state": ["running"]
 }
}

It is important to remember the following things about event pattern matching:

• For a pattern to match an event, the event must contain all the field names listed in the pattern. The field
names must appear in the event with the same nesting structure.

• Other fields of the event not mentioned in the pattern are ignored; effectively, there is a "*": "*" wildcard
for fields not mentioned.

• The value of each field in the pattern is an array containing one or more values, and the pattern matches
if any of the values in the array match the value in the event.

• If the value in the event is an array, then the pattern matches if the intersection of the pattern array and
the event array is non-empty.

29

Amazon CloudWatch Events User Guide
Event Patterns

• The matching is exact (character-by-character), without case-folding or any other string normalization.

• The values being matched follow JSON rules: Strings enclosed in quotes, numbers, and the unquoted
keywords true, false, and null.

• Number matching is at the string representation level. For example, 300, 300.0, and 3.0e2 are not
considered equal.

The following event patterns would match the event at the top of this page. The first pattern matches
because one of the instance values specified in the pattern matches the event (and the pattern does not
specify any additional fields not contained in the event). The second one matches because the "terminated"
state is contained in the event.

{
 "resources": [
 "arn:aws:ec2:us-east-1:123456789012:instance/i-12345678",
 "arn:aws:ec2:us-east-1:123456789012:instance/i-abcdefgh"
]
}

{
 "detail": {
 "state": ["terminated"]
 }
}

These event patterns do not match the event at the top of this page. The first pattern does not match
because the pattern specifies a "pending" value for state, and this value does not appear in the event. The
second pattern does not match because the resource value specified in the pattern does not appear in the
event.

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2 Instance State-change Notification"],
 "detail": {
 "state": ["pending"]
 }
}

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2 Instance State-change Notification"],
 "resources": ["arn:aws:ec2:us-east-1::image/ami-12345678"]
}

30

Amazon CloudWatch Events User Guide
Handling Failures When Using PutEvents

Adding Events with PutEvents

The PutEvents action sends multiple events to CloudWatch Events in a single request. Each PutEvents
request can support a limited number of entries. For more information, see CloudWatch Events
Limits (p. 2). The PutEvents operation attempts to process all entries in the natural order of the request.
Each event has a unique id that is assigned by CloudWatch Events after you call PutEvents.

The following example Java code sends two identical events to CloudWatch Events:

PutEventsRequestEntry requestEntry = new PutEventsRequestEntry()
 .withTime(new Date())
 .withSource("com.mycompany.myapp")
 .withDetailType("myDetailType")
 .withResources("resource1", "resource2")
 .withDetail("{ \"key1\": \"value1\", \"key2\": \"value2\" }");

PutEventsRequest request = new PutEventsRequest()
 .withEntries(requestEntry, requestEntry);

PutEventsResult result = awsEventsClient.putEvents(request);

for (PutEventsResultEntry resultEntry : result.getEntries()) {
 if (resultEntry.getEventId() != null) {
 System.out.println("Event Id: " + resultEntry.getEventId());
 } else {
 System.out.println("Injection failed with Error Code: " +
 resultEntry.getErrorCode());
 }
}

The PutEvents result includes an array of response entries. Each entry in the response array directly
correlates with an entry in the request array using natural ordering, from the top to the bottom of the request
and response. The response Entries array always includes the same number of entries as the request
array.

Handling Failures When Using PutEvents
By default, failure of individual entries within a request does not stop the processing of subsequent entries
in the request. This means that a response Entries array includes both successfully and unsuccessfully

31

Amazon CloudWatch Events User Guide
Handling Failures When Using PutEvents

processed entries. You must detect unsuccessfully processed entries and include them in a subsequent
call.

Successful result entries include Id value, and unsuccessful result entries include ErrorCode and
ErrorMessage values. The ErrorCode parameter reflects the type of error. ErrorMessage provides more
detailed information about the error. The example below has three result entries for a PutEvents request.
The second entry has failed and is reflected in the response.

Example: PutEvents Response Syntax

{
 "FailedEntryCount": 1,
 "Entries": [
 {
 "EventId": "11710aed-b79e-4468-a20b-bb3c0c3b4860"
 },
 { "ErrorCode": "InternalFailure",
 "ErrorMessage": "Internal Service Failure"
 },
 "EventId": "d804d26a-88db-4b66-9eaf-9a11c708ae82"
 }
]
}

Entries that were unsuccessfully processed can be included in subsequent PutEvents requests. First,
check the FailedRecordCount parameter in the PutEventsResult to confirm if there are failed records
in the request. If so, each Entry that has an ErrorCode that is not null should be added to a subsequent
request. For an example of this type of handler, refer to the following code.

Example: PutEvents failure handler

PutEventsRequestEntry requestEntry = new PutEventsRequestEntry()
 .withTime(new Date())
 .withSource("com.mycompany.myapp")
 .withDetailType("myDetailType")
 .withResources("resource1", "resource2")
 .withDetail("{ \"key1\": \"value1\", \"key2\": \"value2\" }");

List<PutEventsRequestEntry> putEventsRequestEntryList = new ArrayList<>();
for (int i = 0; i < 3; i++) {
 putEventsRequestEntryList.add(requestEntry);
}

PutEventsRequest putEventsRequest = new PutEventsRequest();
putEventsRequest.withEntries(putEventsRequestEntryList);
PutEventsResult putEventsResult = awsEventsClient.putEvents(putEventsRequest);

while (putEventsResult.getFailedEntryCount() > 0) {
 final List<PutEventsRequestEntry> failedEntriesList = new ArrayList<>();
 final List<PutEventsResultEntry> PutEventsResultEntryList =
 putEventsResult.getEntries();
 for (int i = 0; i < PutEventsResultEntryList.size(); i++) {
 final PutEventsRequestEntry putEventsRequestEntry =
 putEventsRequestEntryList.get(i);
 final PutEventsResultEntry putEventsResultEntry = PutEventsResultEntryList.get(i);
 if (putEventsResultEntry.getErrorCode() != null) {
 failedEntriesList.add(putEventsRequestEntry);
 }
 }
 putEventsRequestEntryList = failedEntriesList;
 putEventsRequest.setEntries(putEventsRequestEntryList);
 putEventsResult = awsEventsClient.putEvents(putEventsRequest);

32

Amazon CloudWatch Events User Guide
Sending Events Using the AWS CLI

 }

Sending Events Using the AWS CLI
You can use the AWS CLI to send custom events. The following example puts one custom event into
CloudWatch Events:

aws events put-events \
--entries '[{"Time": "2016-01-14T01:02:03Z", "Source": "com.mycompany.myapp", "Resources":
 ["resource1", "resource2"], "DetailType": "myDetailType", "Detail": "{ \"key1\":
 \"value1\", \"key2\": \"value2\" }"}]'

You can also create a file for example, entries.json like the following:

[
 {
 "Time": "2016-01-14T01:02:03Z",
 "Source": "com.mycompany.myapp",
 "Resources": [
 "resource1",
 "resource2"
],
 "DetailType": "myDetailType",
 "Detail": "{ \"key1\": \"value1\", \"key2\": \"value2\" }"
 }
]

You can use the AWS CLI to read the entries from this file and send events. At a command prompt, type:

aws events put-events --entries file://entries.json

Calculating PutEvents Event Entry Sizes
You can inject custom events into CloudWatch Events using the PutEvents action. You can inject multiple
events using the PutEvents action as long as the total entry size is less than 256KB. You can calculate the
event entry size beforehand by following the steps below. You can then batch multiple even entries into one
request for efficiency.

Note
The size limit is imposed on the entry. Even if the entry is less than the size limit, it does not mean
that the event in CloudWatch Events will also be less than this size. On the contrary, the event size
will always be larger than the entry size due to the necessary characters and keys of the JSON
representation of the event. For more information, see Events and Event Patterns (p. 28).

The PutEventsRequestEntry size is calculated as follows:

• If the Time parameter is specified, it is measured as 14 bytes.

• The Source and DetailType parameters are measured as the number of bytes for their UTF-8 encoded
forms.

• If the Detail parameter is specified, it is measured as the number of bytes for its UTF-8 encoded form.

• If the Resources parameter is specified, each entry is measured as the number of bytes for their UTF-8
encoded forms.

33

Amazon CloudWatch Events User Guide
Calculating PutEvents Event Entry Sizes

The following example Java code calculates the size of a given PutEventsRequestEntry object:

int getSize(PutEventsRequestEntry entry) {
 int size = 0;
 if (entry.getTime() != null) {
 size += 14;
 }
 size += entry.getSource().getBytes(StandardCharsets.UTF_8).length;
 size += entry.getDetailType().getBytes(StandardCharsets.UTF_8).length;
 if (entry.getDetail() != null) {
 size += entry.getDetail().getBytes(StandardCharsets.UTF_8).length;
 }
 if (entry.getResources() != null) {
 for (String resource : entry.getResources()) {
 if (resource != null) {
 size += resource.getBytes(StandardCharsets.UTF_8).length;
 }
 }
 }
 return size;
}

34

Amazon CloudWatch Events User Guide
Amazon EBS Events

Event Types for CloudWatch Events

Amazon CloudWatch Events supports the following events:

Event Types

• Amazon EBS Events (p. 35)

• Amazon EC2 Events (p. 36)

• Amazon EC2 System Manager Events (p. 37)

• Amazon EC2 Maintenance Window Events (p. 38)

• Amazon ECS Events (p. 40)

• Amazon EMR Events (p. 41)

• Auto Scaling Events (p. 43)

• AWS API Call Events (p. 46)

• AWS CodeDeploy Events (p. 49)

• AWS Console Sign-in Events (p. 50)

• AWS Health Events (p. 50)

• AWS KMS Events (p. 52)

• Scheduled Events (p. 53)

• Trusted Advisor Events (p. 53)

Amazon EBS Events
The following are examples of the events for Amazon Elastic Block Store (Amazon EBS). For more
information, see Amazon CloudWatch Events for Amazon EBS in the Amazon EC2 User Guide for Linux
Instances.

EBS Snapshot Notification

Amazon EBS created a snapshot (createSnapshot), copied a snapshot (copySnapshot), or shared a
snapshot (shareSnapshot). Note that the source field within the detail field does not include the account-
id as part of the Volume Arn.

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",

35

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html

Amazon CloudWatch Events User Guide
Amazon EC2 Events

 "detail-type": "EBS Snapshot Notification",
 "source": "aws.ec2",
 "account": "123456789012",
 "time": "2016-11-14T01:30:00Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:ec2::us-west-2:snapshot/snap-01234567"
],
 "detail": {
 "event": "createSnapshot",
 "result": "succeeded",
 "cause": "",
 "request-id": "",
 "snapshot_id": "arn:aws:ec2::us-west-2:snapshot/snap-01234567",
 "source": "arn:aws:ec2::us-west-2:volume/vol-01234567",
 "StartTime": "2016-11-14T00:00:00Z",
 "EndTime": "2016-11-ddT01:30:00Z"
 }
}

EBS Volume Notification

When a volume is successfully created or deleted, no events are generated. Events are generated when
Amazon EBS fails to create a volume (createVolume), fails to attach a volume (attachVolume), or fails to
reattach a volume (reattachVolume). The following example shows a failed attempt to create a volume.

{
 "version": "0",
 "id": "01234567-0123-0123-0123-0123456789ab",
 "detail-type": "EBS Volume Notification",
 "source": "aws.ec2",
 "account": "012345678901",
 "time": "2016-11-14T00:30:07Z",
 "region": "sa-east-1",
 "resources": [
 "arn:aws:ec2:sa-east-1:0123456789ab:volume/vol-01234567",
],
 "detail": {
 "event": "createVolume",
 "result": "failed",
 "cause": "arn:aws:kms:sa-east-1:0123456789ab:key/01234567-0123-0123-0123-0123456789ab
 is disabled.",
 "request-id": "01234567-0123-0123-0123-0123456789ab",

}

Amazon EC2 Events
The following is an example of an EC2 Instance State-change Notification event, with an instance in the
pending state:

{
 "id":"7bf73129-1428-4cd3-a780-95db273d1602",
 "detail-type":"EC2 Instance State-change Notification",
 "source":"aws.ec2",
 "account":"123456789012",
 "time":"2015-11-11T21:29:54Z",
 "region":"us-east-1",
 "resources":[

36

Amazon CloudWatch Events User Guide
Amazon EC2 System Manager Events

 "arn:aws:ec2:us-east-1:123456789012:instance/i-abcd1111"
],
 "detail":{
 "instance-id":"i-abcd1111",
 "state":"pending"
 }
}

Amazon EC2 System Manager Events
The following are examples of the events for Amazon EC2 Systems Manager (Systems Manager). For
more information, see Log Command Execution Status Changes for Run Command in the Amazon EC2
User Guide for Linux Instances.

EC2 Command Status-change Notification

{
 "version": "0",
 "id": "51c0891d-0e34-45b1-83d6-95db273d1602",
 "detail-type": "EC2 Command Status-change Notification",
 "source": "aws.ssm",
 "account": "123456789012",
 "time": "2016-07-10T21:51:32Z",
 "region": "us-east-1",
 "resources": ["arn:aws:ec2:us-east-1:123456789012:instance/i-abcd1111"],
 "detail": {
 "command-id": "e8d3c0e4-71f7-4491-898f-c9b35bee5f3b",
 "document-name": "AWS-RunPowerShellScript",
 "expire-after": "2016-07-14T22:01:30.049Z",
 "parameters": {
 "executionTimeout": ["3600"],
 "commands": ["date"]
 },
 "requested-date-time": "2016-07-10T21:51:30.049Z",
 "status": "Success"
 }
}

EC2 Command Invocation Status-change Notification

{
 "version": "0",
 "id": "4780e1b8-f56b-4de5-95f2-95db273d1602",
 "detail-type": "EC2 Command Invocation Status-change Notification",
 "source": "aws.ssm",
 "account": "123456789012",
 "time": "2016-07-10T21:51:32Z",
 "region": "us-east-1",
 "resources": ["arn:aws:ec2:us-east-1:123456789012:instance/i-abcd1111"],
 "detail": {
 "command-id": "e8d3c0e4-71f7-4491-898f-c9b35bee5f3b",
 "document-name": "AWS-RunPowerShellScript",
 "instance-id": "i-9bb89e2b",
 "requested-date-time": "2016-07-10T21:51:30.049Z",
 "status": "Success"
 }
}

EC2 Automation Step Status-change Notification

37

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rc-cwe.html

Amazon CloudWatch Events User Guide
Amazon EC2 Maintenance Window Events

{
 "version": "0",
 "id": "eeca120b-a321-433e-9635-dab369006a6b",
 "detail-type": "EC2 Automation Step Status-change Notification",
 "source": "aws.ssm",
 "account": "123456789012",
 "time": "2016-11-29T19:43:35Z",
 "region": "us-east-1",
 "resources": ["arn:aws:ssm:us-east-1:123456789012:automation-
execution/333ba70b-2333-48db-b17e-a5e69c6f4d1c",
 "arn:aws:ssm:us-east-1:123456789012:automation-definition/runcommand1:1"],
 "detail": {
 "ExecutionId": "333ba70b-2333-48db-b17e-a5e69c6f4d1c",
 "Definition": "runcommand1",
 "DefinitionVersion": 1.0,
 "Status": "Success",
 "EndTime": "Nov 29, 2016 7:43:25 PM",
 "StartTime": "Nov 29, 2016 7:43:23 PM",
 "Time": 2630.0,
 "StepName": "runFixedCmds",
 "Action": "aws:runCommand"
 }
}

EC2 Automation Execution Status-change Notification

{
 "version": "0",
 "id": "d290ece9-1088-4383-9df6-cd5b4ac42b99",
 "detail-type": "EC2 Automation Execution Status-change Notification",
 "source": "aws.ssm",
 "account": "123456789012",
 "time": "2016-11-29T19:43:35Z",
 "region": "us-east-1",
 "resources": ["arn:aws:ssm:us-east-1:123456789012:automation-
execution/333ba70b-2333-48db-b17e-a5e69c6f4d1c",
 "arn:aws:ssm:us-east-1:123456789012:automation-definition/runcommand1:1"],
 "detail": {
 "ExecutionId": "333ba70b-2333-48db-b17e-a5e69c6f4d1c",
 "Definition": "runcommand1",
 "DefinitionVersion": 1.0,
 "Status": "Success",
 "StartTime": "Nov 29, 2016 7:43:20 PM",
 "EndTime": "Nov 29, 2016 7:43:26 PM",
 "Time": 5753.0,
 "ExecutedBy": "arn:aws:iam::123456789012:user/userName"
 }
}

Amazon EC2 Maintenance Window Events
The following are examples of the events for Amazon EC2 Maintenance Window.

Register a Target

The status could also be DEREGISTERED.

{
 "version":"0",
 "id":"01234567-0123-0123-0123-0123456789ab",

38

Amazon CloudWatch Events User Guide
Amazon EC2 Maintenance Window Events

 "detail-type":"Maintenance Window Target Registration Notification",
 "source":"aws.ssm",
 "account":"012345678901",
 "time":"2016-11-16T00:58:37Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:ssm:us-west-2:001312665065:maintenancewindow/mw-0ed7251d3fcf6e0c2",
 "arn:aws:ssm:us-west-2:001312665065:windowtarget/
e7265f13-3cc5-4f2f-97a9-7d3ca86c32a6"
],
 "detail":{
 "window-target-id":"e7265f13-3cc5-4f2f-97a9-7d3ca86c32a6",
 "window-id":"mw-0ed7251d3fcf6e0c2",
 "status":"REGISTERED"
 }
}

Window Execution Type

The other possibilities for status are PENDING, IN_PROGRESS, SUCCESS, FAILED, TIMED_OUT, and
SKIPPED_OVERLAPPING.

{
 "version":"0",
 "id":"01234567-0123-0123-0123-0123456789ab",
 "detail-type":"Maintenance Window Execution State-change Notification",
 "source":"aws.ssm",
 "account":"012345678901",
 "time":"2016-11-16T01:00:57Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:ssm:us-west-2:0123456789ab:maintenancewindow/mw-123456789012345678"
],
 "detail":{
 "start-time":"2016-11-16T01:00:56.427Z",
 "end-time":"2016-11-16T01:00:57.070Z",
 "window-id":"mw-0ed7251d3fcf6e0c2",
 "window-execution-id":"b60fb56e-776c-4e5c-84ee-123456789012",
 "status":"TIMED_OUT"
 }
}

Task Execution Type

The other possibilities for status are IN_PROGRESS, SUCCESS, FAILED, and TIMED_OUT.

{
 "version":"0",
 "id":"01234567-0123-0123-0123-0123456789ab",
 "detail-type":"Maintenance Window Task Execution State-change Notification",
 "source":"aws.ssm",
 "account":"012345678901",
 "time":"2016-11-16T01:00:56Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:ssm:us-west-2:0123456789ab:maintenancewindow/mw-123456789012345678"
],
 "detail":{
 "start-time":"2016-11-16T01:00:56.759Z",
 "task-execution-id":"6417e808-7f35-4d1a-843f-123456789012",
 "end-time":"2016-11-16T01:00:56.847Z",
 "window-id":"mw-0ed7251d3fcf6e0c2",
 "window-execution-id":"b60fb56e-776c-4e5c-84ee-123456789012",

39

Amazon CloudWatch Events User Guide
Amazon ECS Events

 "status":"TIMED_OUT"
 }
}

Task Target Processed

The other possibilities for status are IN_PROGRESS, SUCCESS, FAILED, and TIMED_OUT.

{
 "version":"0",
 "id":"01234567-0123-0123-0123-0123456789ab",
 "detail-type":"Maintenance Window Task Target Invocation State-change Notification",
 "source":"aws.ssm",
 "account":"012345678901",
 "time":"2016-11-16T01:00:57Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:ssm:us-west-2:0123456789ab:maintenancewindow/mw-123456789012345678"
],
 "detail":{
 "start-time":"2016-11-16T01:00:56.427Z",
 "end-time":"2016-11-16T01:00:57.070Z",
 "window-id":"mw-0ed7251d3fcf6e0c2",
 "window-execution-id":"b60fb56e-776c-4e5c-84ee-123456789012",
 "task-execution-id":"6417e808-7f35-4d1a-843f-123456789012",
 "window-target-id":"e7265f13-3cc5-4f2f-97a9-123456789012",
 "status":"TIMED_OUT",
 "owner-information":"Owner"
 }
}

Window State Change

The possibilities for status are ENABLED and DISABLED.

{
 "version":"0",
 "id":"01234567-0123-0123-0123-0123456789ab",
 "detail-type":"Maintenance Window State-change Notification",
 "source":"aws.ssm",
 "account":"012345678901",
 "time":"2016-11-16T00:58:37Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:ssm:us-west-2:0123456789ab:maintenancewindow/mw-123456789012345678"
],
 "detail":{
 "window-id":"mw-123456789012",
 "status":"DISABLED"
 }
}

Amazon ECS Events
The following are examples of the events for Amazon EC2 Container Service (Amazon ECS). For more
information, see Amazon ECS Event Stream for CloudWatch Events in the Amazon EC2 Container Service
Developer Guide.

ECS Container Instance State Change

40

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch_event_stream.html

Amazon CloudWatch Events User Guide
Amazon EMR Events

Note that the contents of the detail section are not shown here. They resemble the contents of the
ContainerInstance object.

{
 "version": "0",
 "id": "01234567-0123-0123-0123-0123456789ab",
 "detail-type": "ECS Container Instance State Change",
 "source": "aws.ecs",
 "account": "123456789012",
 "time": "2016-11-18T22:15:15Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:123456789012:container-instance/a48e7e5a-4709-47b3-
a698-819dab95c16f"
],
 "detail": {
 ...
 }
}

ECS Task State Change

Note that the contents of the detail section are not shown here. They resemble the contents of the Task
object.

{
 "version": "0",
 "id": "2d882db5-3d34-4d75-b299-5a6af9d2a59c",
 "detail-type": "ECS Task State Change",
 "source": "aws.ecs",
 "account": "123456789012",
 "time": "2016-11-18T22:48:57Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:123456789012:task/9dd06983-dfd7-437c-8bb1-0dc78d90da91"
],
 "detail": {
 ...
 }
}

Amazon EMR Events
The following are examples of events for Amazon EMR.

Amazon EMR AutoScaling Policy State Change

{
 "version":"0",
 "id":"2f8147ab-8c48-47c6-b0b6-3ee23ec8d300",
 "detail-type":"EMR Auto Scaling Policy State Change",
 "source":"aws.emr",
 "account":"123456789012",
 "time":"2016-12-16T20:42:44Z",
 "region":"us-east-1",
 "resources":[],
 "detail":{
 "resourceId":"ig-X2LBMHTGPCBU",
 "clusterId":"j-1YONHTCP3YZKC",

41

http://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerInstance.html
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Task.html

Amazon CloudWatch Events User Guide
Amazon EMR Events

 "state":"PENDING",
 "message":"AutoScaling policy modified by user request",
 "scalingResourceType":"INSTANCE_GROUP"
 }
}

Amazon EMR Cluster State Change - Starting

{
 "version": "0",
 "id": "999cccaa-eaaa-0000-1111-123456789012",
 "detail-type": "EMR Cluster State Change",
 "source": "aws.emr",
 "account": "123456789012",
 "time": "2016-12-16T20:43:05Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "severity": "INFO",
 "stateChangeReason": "{\"code\":\"\"}",
 "name": "Development Cluster",
 "clusterId": "j-123456789ABCD",
 "state": "STARTING",
 "message": "Amazon EMR cluster j-123456789ABCD (Development Cluster) was requested at
 2016-12-16 20:42 UTC and is being created."
 }
}

Amazon EMR Cluster State Change - Terminated

{
 "version": "0",
 "id": "1234abb0-f87e-1234-b7b6-000000123456",
 "detail-type": "EMR Cluster State Change",
 "source": "aws.emr",
 "account": "123456789012",
 "time": "2016-12-16T21:00:23Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "severity": "INFO",
 "stateChangeReason": "{\"code\":\"USER_REQUEST\",\"message\":\"Terminated by user
 request\"}",
 "name": "Development Cluster",
 "clusterId": "j-123456789ABCD",
 "state": "TERMINATED",
 "message": "Amazon EMR Cluster jj-123456789ABCD (Development Cluster) has terminated at
 2016-12-16 21:00 UTC with a reason of USER_REQUEST."
 }
}

Amazon EMR Instance Group State Change

{
 "version": "0",
 "id": "999cccaa-eaaa-0000-1111-123456789012",
 "detail-type": "EMR Instance Group State Change",
 "source": "aws.emr",

42

Amazon CloudWatch Events User Guide
Auto Scaling Events

 "account": "123456789012",
 "time": "2016-12-16T20:57:47Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "market": "ON_DEMAND",
 "severity": "INFO",
 "requestedInstanceCount": "2",
 "instanceType": "m3.xlarge",
 "instanceGroupType": "CORE",
 "instanceGroupId": "ig-ABCDEFGHIJKL",
 "clusterId": "j-123456789ABCD",
 "runningInstanceCount": "2",
 "state": "RUNNING",
 "message": "The resizing operation for instance group ig-ABCDEFGHIJKL in Amazon EMR
 cluster j-123456789ABCD (Development Cluster) is complete. It now has an instance count of
 2. The resize started at 2016-12-16 20:57 UTC and took 0 minutes to complete."
 }
}

Amazon EMR Step Status Change

{
 "version": "0",
 "id": "999cccaa-eaaa-0000-1111-123456789012",
 "detail-type": "EMR Step Status Change",
 "source": "aws.emr",
 "account": "123456789012",
 "time": "2016-12-16T20:53:09Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "severity": "ERROR",
 "actionOnFailure": "CONTINUE",
 "stepId": "s-ZYXWVUTSRQPON",
 "name": "CustomJAR",
 "clusterId": "j-123456789ABCD",
 "state": "FAILED",
 "message": "Step s-ZYXWVUTSRQPON (CustomJAR) in Amazon EMR cluster j-123456789ABCD
 (Development Cluster) failed at 2016-12-16 20:53 UTC."
 }
}

Auto Scaling Events
The following are examples of the events for Auto Scaling. For more information, see Getting CloudWatch
Events When Your Auto Scaling Group Scales in the Auto Scaling User Guide.

EC2 Instance-launch Lifecycle Action

Auto Scaling moved an instance to a Pending:Wait state due to a lifecycle hook.

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "EC2 Instance-launch Lifecycle Action",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2015-12-22T18:43:48Z",

43

http://docs.aws.amazon.com/autoscaling/latest/userguide/cloud-watch-events.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/cloud-watch-events.html

Amazon CloudWatch Events User Guide
Auto Scaling Events

 "region": "us-east-1",
 "resources": [
 "arn:aws:autoscaling:us-east-1:123456789012:autoScalingGroup:59fcbb81-
bd02-485d-80ce-563ef5b237bf:autoScalingGroupName/sampleASG"
],
 "detail": {
 "LifecycleActionToken": "c613620e-07e2-4ed2-a9e2-ef8258911ade",
 "AutoScalingGroupName": "sampleASG",
 "LifecycleHookName": "SampleLifecycleHook-12345",
 "EC2InstanceId": "i-12345678",
 "LifecycleTransition": "autoscaling:EC2_INSTANCE_LAUNCHING"
 }
}

EC2 Instance Launch Successful

Auto Scaling successfully launched an instance.

{
 "id": "3e3c153a-8339-4e30-8c35-687ebef853fe",
 "detail-type": "EC2 Instance Launch Successful",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2015-11-11T21:31:47Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:autoscaling:us-east-1:123456789012:autoScalingGroup:eb56d16b-bbf0-401d-b893-
d5978ed4a025:autoScalingGroupName/ASGLaunchSuccess",
 "arn:aws:ec2:us-east-1:123456789012:instance/i-b188560f"
],
 "detail": {
 "StatusCode": "InProgress",
 "AutoScalingGroupName": "ASGLaunchSuccess",
 "ActivityId": "9cabb81f-42de-417d-8aa7-ce16bf026590",
 "Details": {
 "Availability Zone": "us-east-1b",
 "Subnet ID": "subnet-95bfcebe"
 },
 "RequestId": "9cabb81f-42de-417d-8aa7-ce16bf026590",
 "EndTime": "2015-11-11T21:31:47.208Z",
 "EC2InstanceId": "i-b188560f",
 "StartTime": "2015-11-11T21:31:13.671Z",
 "Cause": "At 2015-11-11T21:31:10Z a user request created an Auto Scaling group
 changing the desired capacity from 0 to 1. At 2015-11-11T21:31:11Z an instance was started
 in response to a difference between desired and actual capacity, increasing the capacity
 from 0 to 1."
 }
}

EC2 Instance Launch Unsuccessful

Auto Scaling failed to launch an instance.

{
 "id": "1681ab87-4a09-459f-95a2-7fa09403c4b7",
 "detail-type": "EC2 Instance Launch Unsuccessful",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2015-11-11T21:42:36Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:autoscaling:us-east-1:123456789012:autoScalingGroup:528ffce5-
ef9f-4c1d-8d18-5d005b4a438c:autoScalingGroupName/brokenASG",

44

Amazon CloudWatch Events User Guide
Auto Scaling Events

 "arn:aws:ec2:us-east-1:123456789012:instance/"
],
 "detail": {
 "StatusCode": "Failed",
 "AutoScalingGroupName": "brokenASG",
 "ActivityId": "06076c51-4874-487d-b15b-7895a713ab55",
 "Details": {
 "Availability Zone": "us-east-1e",
 "Subnet ID": "subnet-16c5df2c"
 },
 "RequestId": "06076c51-4874-487d-b15b-7895a713ab55",
 "EndTime": "2015-11-11T21:42:36.000Z",
 "EC2InstanceId": "",
 "StartTime": "2015-11-11T21:42:36.698Z",
 "Cause": "At 2015-11-11T21:42:09Z a user request update of Auto Scaling group
 constraints to min: 0, max: 10, desired: 2 changing the desired capacity from 0 to 2. At
 2015-11-11T21:42:35Z an instance was started in response to a difference between desired
 and actual capacity, increasing the capacity from 0 to 2."
 }
 }

EC2 Instance-terminate Lifecycle Action

Auto Scaling moved an instance to a Terminating:Wait state due to a lifecycle hook.

{
 "version": "0",
 "id": "468fe059-f4b7-445f-bb22-2a271b94974d",
 "detail-type": "EC2 Instance-terminate Lifecycle Action",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2015-12-22T18:43:48Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:autoscaling:us-east-1:123456789012:autoScalingGroup:59fcbb81-
bd02-485d-80ce-563ef5b237bf:autoScalingGroupName/sampleASG"
],
 "detail": {
 "LifecycleActionToken": "630aa23f-48eb-45e7-aba6-799ea6093a0f",
 "AutoScalingGroupName": "sampleASG",
 "LifecycleHookName": "SampleLifecycleHook-6789",
 "EC2InstanceId": "i-12345678",
 "LifecycleTransition": "autoscaling:EC2_INSTANCE_TERMINATING"
 }
}

EC2 Instance Terminate Successful

Auto Scaling successfully terminated an instance.

{
 "id": "156d01c9-a6c3-4d7e-b883-5758266b95af",
 "detail-type": "EC2 Instance Terminate Successful",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2015-11-11T21:36:57Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:autoscaling:us-east-1:123456789012:autoScalingGroup:eb56d16b-bbf0-401d-b893-
d5978ed4a025:autoScalingGroupName/ASGTerminate",
 "arn:aws:ec2:us-east-1:123456789012:instance/i-b188560f"
],
 "detail": {

45

Amazon CloudWatch Events User Guide
AWS API Call Events

 "StatusCode": "InProgress",
 "AutoScalingGroupName": "ASGTerminate",
 "ActivityId": "56472e79-538a-4ba7-b3cc-768d889194b0",
 "Details": {
 "Availability Zone": "us-east-1b",
 "Subnet ID": "subnet-95bfcebe"
 },
 "RequestId": "56472e79-538a-4ba7-b3cc-768d889194b0",
 "EndTime": "2015-11-11T21:36:57.498Z",
 "EC2InstanceId": "i-b188560f",
 "StartTime": "2015-11-11T21:36:12.649Z",
 "Cause": "At 2015-11-11T21:36:03Z a user request update of Auto Scaling group
 constraints to min: 0, max: 1, desired: 0 changing the desired capacity from 1 to
 0. At 2015-11-11T21:36:12Z an instance was taken out of service in response to a
 difference between desired and actual capacity, shrinking the capacity from 1 to 0. At
 2015-11-11T21:36:12Z instance i-b188560f was selected for termination."
 }
}

EC2 Instance Terminate Unsuccessful

Auto Scaling failed to terminate an instance.

{
 "id": "5e3df53a-0239-4e31-7d15-087ebef903ce",
 "detail-type": "EC2 Instance Terminate Unsuccessful",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2015-12-01T23:34:57Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:autoscaling:us-east-1:123456789012:autoScalingGroup:cf5ebd9c-8e2a-4197-
abe2-2fb94e8d1f87:autoScalingGroupName/ASGTermFail",
 "arn:aws:ec2:us-east-1:123456789012:instance/i-b188560f"
],
 "detail": {
 "StatusCode": "InProgress",
 "Description": "Terminating EC2 instance: i-b188560f",
 "AutoScalingGroupName": "ASGTermFail",
 "ActivityId": "c1a8f6ce-82e8-4517-96ba-67d1999ceee4",
 "Details": {
 "Availability Zone": "us-east-1e",
 "Subnet ID": "subnet-915643ba"
 },
 "RequestId": "c1a8f6ce-82e8-4517-96ba-67d1999ceee4",
 "StatusMessage": "",
 "EndTime": "2015-12-01T23:34:57.721Z",
 "EC2InstanceId": "i-b188560f",
 "StartTime": "2015-12-01T23:33:48.489Z",
 "Cause": "At 2015-12-01T23:33:41Z a user request explicitly set group desired
 capacity changing the desired capacity from 2 to 0. At 2015-12-01T23:33:47Z an instance
 was taken out of service in response to a difference between desired and actual capacity,
 shrinking the capacity from 2 to 0. At 2015-12-01T23:33:47Z instance i-0867b4292c0cff474
 was selected for termination. At 2015-12-01T23:33:48Z instance i-b188560f was selected for
 termination."
 }
}

AWS API Call Events
The following is an example of an AWS API call event to Amazon S3 to create a bucket:

46

Amazon CloudWatch Events User Guide
AWS API Call Events

{
 "version": "0",
 "id": "36eb8523-97d0-4518-b33d-ee3579ff19f0",
 "detail-type": "AWS API Call via CloudTrail",
 "source": "aws.s3",
 "account": "123456789012",
 "time": "2016-02-20T01:09:13Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "Root",
 "principalId": "123456789012",
 "arn": "arn:aws:iam::123456789012:root",
 "accountId": "123456789012",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2016-02-20T01:05:59Z"
 }
 }
 },
 "eventTime": "2016-02-20T01:09:13Z",
 "eventSource": "s3.amazonaws.com",
 "eventName": "CreateBucket",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "100.100.100.100",
 "userAgent": "[S3Console/0.4]",
 "requestParameters": {
 "bucketName": "bucket-test-iad"
 },
 "responseElements": null,
 "requestID": "9D767BCC3B4E7487",
 "eventID": "24ba271e-d595-4e66-a7fd-9c16cbf8abae",
 "eventType": "AwsApiCall"
 }
}

Only the read/write events from the following services are supported. Read-only APIs, such as those that
begin with List, Get, or Describe aren't supported. In addition, AWS API call events that are larger than
256KB in size are not supported.

• Auto Scaling

• AWS Certificate Manager

• AWS CloudFormation

• Amazon CloudFront

• AWS CloudHSM

• Amazon CloudSearch

• AWS CloudTrail

• Amazon CloudWatch

• Amazon CloudWatch Events

• Amazon CloudWatch Logs

• AWS CodeDeploy

• AWS CodePipeline

• Amazon Cognito Identity

• Amazon Cognito Sync

47

Amazon CloudWatch Events User Guide
AWS API Call Events

• AWS Config

• AWS Data Pipeline

• AWS Device Farm

• AWS Direct Connect

• AWS Directory Service

• AWS Database Migration Service

• Amazon DynamoDB

• Amazon EC2 Container Registry

• Amazon EC2 Container Service

• Amazon EC2 Systems Manager

• Amazon ElastiCache

• AWS Elastic Beanstalk

• Amazon Elastic Compute Cloud

• Amazon Elastic File System

• Elastic Load Balancing

• Amazon EMR

• Amazon Elastic Transcoder

• Amazon Elasticsearch Service

• Amazon GameLift

• Amazon Glacier

• AWS Identity and Access Management [US East (N. Virginia) only]

• Amazon Inspector

• AWS IoT

• AWS Key Management Service

• Amazon Kinesis

• Amazon Kinesis Firehose

• AWS Lambda

• Amazon Machine Learning

• AWS OpsWorks

• Amazon Polly

• Amazon Redshift

• Amazon Relational Database Service

• Amazon Route 53

• AWS Security Token Service

• Amazon Simple Email Service

• Amazon Simple Notification Service

• Amazon Simple Queue Service

• Amazon Simple Storage Service

• Amazon Simple Workflow Service

• AWS Step Functions

• AWS Storage Gateway

• AWS Support

• AWS WAF

48

Amazon CloudWatch Events User Guide
AWS CodeDeploy Events

• Amazon WorkDocs

• Amazon WorkSpaces

AWS CodeDeploy Events
The following are examples of the events for AWS CodeDeploy. For more information, see Monitoring
Deployments with CloudWatch Events in the AWS CodeDeploy User Guide.

CodeDeploy Deployment State-change Notification

There was a change in the state of a deployment.

{
 "account": "123456789012",
 "region": "us-east-1",
 "detail-type": "CodeDeploy Deployment State-change Notification",
 "source": "aws.codedeploy",
 "version": "0",
 "time": "2016-06-30T22:06:31Z",
 "id": "c071bfbf-83c4-49ca-a6ff-3df053957145",
 "resources": [
 "arn:aws:codedeploy:us-east-1:123456789012:application:myApplication",
 "arn:aws:codedeploy:us-east-1:123456789012:deploymentgroup:myApplication/
myDeploymentGroup"
],
 "detail": {
 "instanceGroupId": "9fd2fbef-2157-40d8-91e7-6845af69e2d2",
 "region": "us-east-1",
 "application": "myApplication",
 "deploymentId": "d-123456789",
 "state": "SUCCESS",
 "deploymentGroup": "myDeploymentGroup"
 }
}

CodeDeploy Instance State-change Notification

There was a change in the state of an instance that belongs to a deployment group.

{
 "account": "123456789012",
 "region": "us-east-1",
 "detail-type": "CodeDeploy Instance State-change Notification",
 "source": "aws.codedeploy",
 "version": "0",
 "time": "2016-06-30T23:18:50Z",
 "id": "fb1d3015-c091-4bf9-95e2-d98521ab2ecb",
 "resources": [
 "arn:aws:ec2:us-east-1:123456789012:instance/i-0000000aaaaaaaaaa",
 "arn:aws:codedeploy:us-east-1:123456789012:deploymentgroup:myApplication/
myDeploymentGroup",
 "arn:aws:codedeploy:us-east-1:123456789012:application:myApplication"
],
 "detail": {
 "instanceId": "i-0000000aaaaaaaaaa",
 "region": "us-east-1",
 "state": "SUCCESS",
 "application": "myApplication",
 "deploymentId": "d-123456789",
 "instanceGroupId": "8cd3bfa8-9e72-4cbe-a1e5-da4efc7efd49",

49

http://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring-cloudwatch-events.html
http://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring-cloudwatch-events.html

Amazon CloudWatch Events User Guide
AWS Console Sign-in Events

 "deploymentGroup": "myDeploymentGroup"
 }
}

AWS Console Sign-in Events
AWS console sign-in events are supported only in the US East (N. Virginia) region. The following is an
example of an AWS console sign-in event:

{
 "id": "6f87d04b-9f74-4f04-a780-7acf4b0a9b38",
 "detail-type": "AWS Console Sign In via CloudTrail",
 "source": "aws.signin",
 "account": "123456789012",
 "time": "2016-01-05T18:21:27Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "Root",
 "principalId": "123456789012",
 "arn": "arn:aws:iam::123456789012:root",
 "accountId": "123456789012"
 },
 "eventTime": "2016-01-05T18:21:27Z",
 "eventSource": "signin.amazonaws.com",
 "eventName": "ConsoleLogin",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "0.0.0.0",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36",
 "requestParameters": null,
 "responseElements": {
 "ConsoleLogin": "Success"
 },
 "additionalEventData": {
 "LoginTo": "https://console.aws.amazon.com/console/home?state=hashArgs
%23&isauthcode=true",
 "MobileVersion": "No",
 "MFAUsed": "No" },
 "eventID": "324731c0-64b3-4421-b552-dfc3c27df4f6",
 "eventType": "AwsConsoleSignIn"
 }
}

AWS Health Events
The following is the format for the AWS Personal Health Dashboard (AWS Health) events. For more
information, see Managing AWS Health Events with Amazon CloudWatch Events in the AWS Health User
Guide.

AWS Health Event Format

{
 "version": "0",
 "id": "7bf73129-1428-4cd3-a780-95db273d1602",

50

http://docs.aws.amazon.com/health/latest/ug/cloudwatch-events-health.html

Amazon CloudWatch Events User Guide
AWS Health Events

 "detail-type": "AWS Health Event",
 "source": "aws.health",
 "account": "123456789012",
 "time": "2016-06-05T06:27:57Z",
 "region": "region",
 "resources": [],
 "detail": {
 "eventArn": "arn:aws:health:region::event/id",
 "service": "service",
 "eventTypeCode": "AWS_service_code",
 "eventTypeCategory": "category",
 "startTime": "Sun, 05 Jun 2016 05:01:10 GMT",
 "endTime": "Sun, 05 Jun 2016 05:30:57 GMT",
 "eventDescription": [{
 "language": "lang-code",
 "latestDescription": "description"
 }]
 ...
 }
}

category

The category code of the event. The possible values are issue, accountNotification, and
scheduledChange.

code

The unique identifier for the event type.

id

The unique identifier for the event.

service

The AWS service affected by the event. For example, EC2, S3, REDSHIFT, and RDS.

Elastic Load Balancing API Issue

{
 "version": "0",
 "id": "121345678-1234-1234-1234-123456789012",
 "detail-type": "AWS Health Event",
 "source": "aws.health",
 "account": "123456789012",
 "time": "2016-06-05T06:27:57Z",
 "region": "ap-southeast-2",
 "resources": [],
 "detail": {
 "eventArn": "arn:aws:health:ap-southeast-2::event/
AWS_ELASTICLOADBALANCING_API_ISSUE_90353408594353980",
 "service": "ELASTICLOADBALANCING",
 "eventTypeCode": "AWS_ELASTICLOADBALANCING_API_ISSUE",
 "eventTypeCategory": "issue",
 "startTime": "Sat, 11 Jun 2016 05:01:10 GMT",
 "endTime": "Sat, 11 Jun 2016 05:30:57 GMT",
 "eventDescription": [{
 "language": "en_US",
 "latestDescription": "A description of the event will be provided here"
 }
}

Amazon EC2 Instance Store Drive Performance Degraded

51

Amazon CloudWatch Events User Guide
AWS KMS Events

{
 "version": "0",
 "id": "121345678-1234-1234-1234-123456789012",
 "detail-type": "AWS Health Event",
 "source": "aws.health",
 "account": "123456789012",
 "time": "2016-06-05T06:27:57Z",
 "region": "us-west-2",
 "resources": [
 "i-abcd1111"
],
 "detail": {
 "eventArn": "arn:aws:health:us-west-2::event/
AWS_EC2_INSTANCE_STORE_DRIVE_PERFORMANCE_DEGRADED_90353408594353980",
 "service": "EC2",
 "eventTypeCode": "AWS_EC2_INSTANCE_STORE_DRIVE_PERFORMANCE_DEGRADED",
 "eventTypeCategory": "issue",
 "startTime": "Sat, 05 Jun 2016 15:10:09 GMT",
 "eventDescription": [{
 "language": "en_US",
 "latestDescription": "A description of the event will be provided here"
 }],
 "affectedEntities": [{
 "entityValue": "i-abcd1111",
 "tags": {
 "stage": "prod",
 "app": "my-app"
 }
}

AWS KMS Events
The following are examples of the AWS Key Management Service (AWS KMS) events. For more
information, see AWS KMS Events in the AWS Key Management Service Developer Guide.

KMS CMK Rotation

AWS KMS automatically rotated a CMK's key material.

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "KMS CMK Rotation",
 "source": "aws.kms",
 "account": "111122223333",
 "time": "2016-08-25T21:05:33Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
],
 "detail": {
 "key-id": "1234abcd-12ab-34cd-56ef-1234567890ab"
 }
}

KMS Imported Key Material Expiration

AWS KMS deleted a CMK's expired key material.

{

52

http://docs.aws.amazon.com/kms/latest/developerguide/monitoring-cloudwatch.html#kms-events

Amazon CloudWatch Events User Guide
Scheduled Events

 "version": "0",
 "id": "9da9af57-9253-4406-87cb-7cc400e43465",
 "detail-type": "KMS Imported Key Material Expiration",
 "source": "aws.kms",
 "account": "111122223333",
 "time": "2016-08-22T20:12:19Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
],
 "detail": {
 "key-id": "1234abcd-12ab-34cd-56ef-1234567890ab"
 }
}

KMS CMK Deletion

AWS KMS completed a scheduled CMK deletion.

{
 "version": "0",
 "id": "e9ce3425-7d22-412a-a699-e7a5fc3fbc9a",
 "detail-type": "KMS CMK Deletion",
 "source": "aws.kms",
 "account": "111122223333",
 "time": "2016-08-19T03:23:45Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
],
 "detail": {
 "key-id": "1234abcd-12ab-34cd-56ef-1234567890ab"
 }
}

Scheduled Events
The following is an example of a scheduled event:

{
 "id": "53dc4d37-cffa-4f76-80c9-8b7d4a4d2eaa",
 "detail-type": "Scheduled Event",
 "source": "aws.events",
 "account": "123456789012",
 "time": "2015-10-08T16:53:06Z",
 "region": "us-east-1",
 "resources": ["arn:aws:events:us-east-1:123456789012:rule/MyScheduledRule"],
 "detail": {}
}

Trusted Advisor Events
The following are examples of the events for AWS Trusted Advisor. For more information, see Monitoring
Trusted Advisor Check Results with Amazon CloudWatch Events in the AWS Support User Guide.

Low Utilization Amazon EC2 Instances

53

http://docs.aws.amazon.com/awssupport/latest/user/cloudwatch-events-ta.html
http://docs.aws.amazon.com/awssupport/latest/user/cloudwatch-events-ta.html

Amazon CloudWatch Events User Guide
Trusted Advisor Events

{
 "check-name": "Low Utilization Amazon EC2 Instances",
 "check-item-detail": {
 "Day 1": "0.0% 0.00MB",
 "Day 2": "0.0% 0.00MB",
 "Day 3": "0.0% 0.00MB",
 "Region/AZ": "eu-central-1a",
 "Estimated Monthly Savings": "$10.80",
 "14-Day Average CPU Utilization": "0.0%",
 "Day 14": "0.0% 0.00MB",
 "Day 13": "0.0% 0.00MB",
 "Day 12": "0.0% 0.00MB",
 "Day 11": "0.0% 0.00MB",
 "Day 10": "0.0% 0.00MB",
 "14-Day Average Network I/O": "0.00MB",
 "Number of Days Low Utilization": "14 days",
 "Instance Type": "t2.micro",
 "Instance ID": "i-1a2b3e4f",
 "Day 8": "0.0% 0.00MB",
 "Instance Name": null,
 "Day 9": "0.0% 0.00MB",
 "Day 4": "0.0% 0.00MB",
 "Day 5": "0.0% 0.00MB",
 "Day 6": "0.0% 0.00MB",
 "Day 7": "0.0% 0.00MB"
 },
 "status": "WARN",
 "resource_id": "arn:aws:ec2:eu-central-1:111122223333:instance/i-1a2b3e4f",
 "uuid": "6ba6d96a-d3dd-4fca-8020-350b2e54719c"
}

Load Balancer Optimization

{
 "check-name": "Load Balancer Optimization",
 "check-item-detail": {
 "Instances in Zone a": "0",
 "Status": "Yellow",
 "Instances in Zone b": null,
 "# of Zones": "1",
 "Region": "ap-northeast-2",
 "Load Balancer Name": "xyz-elb-test",
 "Instances in Zone e": null,
 "Instances in Zone c": null,
 "Reason": "No active instances",
 "Instances in Zone d": null
 },
 "status": "WARN",
 "resource_id": "arn:aws:elasticloadbalancing:ap-northeast-2:444455556666:loadbalancer/
xyz-elb-test",
 "uuid": "a1bc339a-59c8-4b5f-b248-44c437b68b83"
}

Exposed Access Keys

{
 "check-name": "Exposed Access Keys",
 "check-item-detail": {
 "Case ID": "02648f3b-e18f-4019-8d68-ce25efe080ff",
 "Usage (USD per Day)": "0",
 "User Name (IAM or Root)": "jane-roe-test",
 "Deadline": "1440453299248",
 "Access Key ID": "AKIAIOSFODNN7EXAMPLE",

54

Amazon CloudWatch Events User Guide
Trusted Advisor Events

 "Time Updated": "1440021299248",
 "Fraud Type": "Exposed",
 "Location": "www.github.com"
 },
 "status": "ERROR",
 "resource_id": "",
 "uuid": "cce6d28f-e44b-4e61-aba1-5b4af96a0f59"
}

55

Amazon CloudWatch Events User Guide
Authentication

Authentication and Access Control for
Amazon CloudWatch Events

Access to Amazon CloudWatch Events requires credentials that AWS can use to authenticate your
requests. Those credentials must have permissions to access AWS resources, such as retrieving event
data from other AWS resources. The following sections provide details on how you can use AWS Identity
and Access Management (IAM) and CloudWatch Events to help secure your resources by controlling who
can access them:

• Authentication (p. 56)

• Access Control (p. 57)

Authentication
You can access AWS as any of the following types of identities:

• AWS account root user – When you sign up for AWS, you provide an email address and password that
is associated with your AWS account. These are your root credentials and they provide complete access
to all of your AWS resources.

Important
For security reasons, we recommend that you use the root credentials only to create an
administrator user, which is an IAM user with full permissions to your AWS account. Then, you
can use this administrator user to create other IAM users and roles with limited permissions. For
more information, see IAM Best Practices and Creating an Admin User and Group in the IAM
User Guide.

• IAM user – An IAM user is simply an identity within your AWS account that has specific custom
permissions (for example, permissions to send event data to a target in CloudWatch Events). You can
use an IAM user name and password to sign in to secure AWS webpages like the AWS Management
Console, AWS Discussion Forums, or the AWS Support Center.

In addition to a user name and password, you can also generate access keys for each user. You can use
these keys when you access AWS services programmatically, either through one of the several SDKs or

56

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/tools/

Amazon CloudWatch Events User Guide
Access Control

by using the AWS Command Line Interface (AWS CLI). The SDK and CLI tools use the access keys to
cryptographically sign your request. If you don’t use the AWS tools, you must sign the request yourself.
CloudWatch Events supports Signature Version 4, a protocol for authenticating inbound API requests.
For more information about authenticating requests, see Signature Version 4 Signing Process in the
AWS General Reference.

• IAM role – An IAM role is another IAM identity you can create in your account that has specific
permissions. It is similar to an IAM user, but it is not associated with a specific person. An IAM role
enables you to obtain temporary access keys that can be used to access AWS services and resources.
IAM roles with temporary credentials are useful in the following situations:

• Federated user access – Instead of creating an IAM user, you can use preexisting user identities from
AWS Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated Users and Roles in the IAM User
Guide.

• Cross-account access – You can use an IAM role in your account to grant another AWS account
permissions to access your account’s resources. For an example, see Tutorial: Delegate Access
Across AWS Accounts Using IAM Roles in the IAM User Guide.

• AWS service access – You can use an IAM role in your account to grant an AWS service permissions
to access your account’s resources. For example, you can create a role that allows Amazon Redshift
to access an Amazon S3 bucket on your behalf and then load data stored in the bucket into an
Amazon Redshift cluster. For more information, see Creating a Role to Delegate Permissions to an
AWS Service in the IAM User Guide.

• Applications running on Amazon EC2 – Instead of storing access keys within the EC2 instance for
use by applications running on the instance and making AWS API requests, you can use an IAM role
to manage temporary credentials for these applications. To assign an AWS role to an EC2 instance
and make it available to all of its applications, you can create an instance profile that is attached to the
instance. An instance profile contains the role and enables programs running on the EC2 instance to
get temporary credentials. For more information, see Using Roles for Applications on Amazon EC2 in
the IAM User Guide.

Access Control
You can have valid credentials to authenticate your requests, but unless you have permissions you cannot
create or access CloudWatch Events resources. For example, you must have permissions to invoke
AWS Lambda, Amazon Simple Notification Service (Amazon SNS), and Amazon Simple Queue Service
(Amazon SQS) targets associated with your CloudWatch Events rules.

The following sections describe how to manage permissions for CloudWatch Events. We recommend that
you read the overview first.

• Overview of Managing Access Permissions to Your CloudWatch Events Resources (p. 58)

• Using Identity-Based Policies (IAM Policies) for CloudWatch Events (p. 61)

• Using Resource-Based Policies for CloudWatch Events (p. 68)

• CloudWatch Events Permissions Reference (p. 71)

57

https://aws.amazon.com/cli/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon CloudWatch Events User Guide
Overview of Managing Access

Overview of Managing Access Permissions to Your
CloudWatch Events Resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource
are governed by permissions policies. An account administrator can attach permissions policies to IAM
identities (that is, users, groups, and roles), and some services (such as AWS Lambda) also support
attaching permissions policies to resources.

Note
An account administrator (or administrator user) is a user with administrator privileges. For more
information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you decide who is getting the permissions, the resources they get permissions
for, and the specific actions that you want to allow on those resources.

Topics

• CloudWatch Events Resources and Operations (p. 58)

• Understanding Resource Ownership (p. 59)

• Managing Access to Resources (p. 59)

• Specifying Policy Elements: Actions, Effects, and Principals (p. 60)

• Specifying Conditions in a Policy (p. 61)

CloudWatch Events Resources and Operations
In CloudWatch Events, the primary resource is a rule. CloudWatch Events supports other resources that
can be used with the primary resource, such as events. These are referred to as subresources. These
resources and subresources have unique Amazon Resource Names (ARNs) associated with them. For
more information about ARNs, see Amazon Resource Names (ARN) and AWS Service Namespaces in the
Amazon Web Services General Reference.

Resource Type ARN Format

Rule arn:aws:events:region:account:rule/rule-name

All CloudWatch Events
resources

arn:aws:events:*

All CloudWatch Events
resources owned by the
specified account in the
specified region

arn:aws:events:region:account:*

Note
Most services in AWS treat a colon (:) or a forward slash (/) as the same character in ARNs.
However, CloudWatch Events uses an exact match in event patterns and rules. Be sure to use the
correct ARN characters when creating event patterns so that they match the ARN syntax in the
event you want to match.

For example, you can indicate a specific rule (myRule) in your statement using its ARN as follows:

"Resource": "arn:aws:events:us-east-1:123456789012:rule/myRule"

You can also specify all rules that belong to a specific account by using the asterisk (*) wildcard as follows:

58

http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon CloudWatch Events User Guide
Understanding Resource Ownership

"Resource": "arn:aws:events:us-east-1:123456789012:rule/*"

To specify all resources, or if a specific API action does not support ARNs, use the asterisk (*) wildcard in
the Resource element as follows:

"Resource": "*"

Some CloudWatch Events API actions accept multiple resources (that is, PutTargets). To specify multiple
resources in a single statement, separate their ARNs with commas, as follows:

"Resource": ["arn1", "arn2"]

CloudWatch Events provides a set of operations to work with the CloudWatch Events resources. For a list
of available operations, see CloudWatch Events Permissions Reference (p. 71).

Understanding Resource Ownership
The AWS account owns the resources that are created in the account, regardless of who created the
resources. Specifically, the resource owner is the AWS account of the principal entity (that is, the root
account, an IAM user, or an IAM role) that authenticates the resource creation request. The following
examples illustrate how this works:

• If you use the root account credentials of your AWS account to create a rule, your AWS account is the
owner of the CloudWatch Events resource.

• If you create an IAM user in your AWS account and grant permissions to create CloudWatch Events
resources to that user, the user can create CloudWatch Events resources. However, your AWS account,
to which the user belongs, owns the CloudWatch Events resources.

• If you create an IAM role in your AWS account with permissions to create CloudWatch Events resources,
anyone who can assume the role can create CloudWatch Events resources. Your AWS account, to which
the role belongs, owns the CloudWatch Events resources.

Managing Access to Resources
A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note
This section discusses using IAM in the context of CloudWatch Events. It doesn't provide detailed
information about the IAM service. For complete IAM documentation, see What Is IAM? in the
IAM User Guide. For information about IAM policy syntax and descriptions, see AWS IAM Policy
Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and policies
attached to a resource are referred to as resource-based policies. CloudWatch Events supports both
identity-based (IAM policies) and resource-based policies.

Topics

• Identity-Based Policies (IAM Policies) (p. 59)

• Resource-Based Policies (p. 60)

Identity-Based Policies (IAM Policies)
You can attach policies to IAM identities. For example, you can do the following:

59

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon CloudWatch Events User Guide
Specifying Policy Elements: Actions, Effects, and Principals

• Attach a permissions policy to a user or a group in your account – To grant a user permissions to
view rules in the CloudWatch console, you can attach a permissions policy to a user or group that the
user belongs to.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach an
identity-based permissions policy to an IAM role to grant cross-account permissions. For example, the
administrator in Account A can create a role to grant cross-account permissions to another AWS account
(for example, Account B) or an AWS service as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that grants
permissions on resources in Account A.

2. Account A administrator attaches a trust policy to the role identifying Account B as the principal who
can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in Account B.
Doing this allows users in Account B to create or access resources in Account A. The principal in the
trust policy can also be an AWS service principal to grant an AWS service permissions to assume the
role.

For more information about using IAM to delegate permissions, see Access Management in the IAM User
Guide.

You can create specific IAM policies to restrict the calls and resources that users in your account have
access to, and then attach those policies to IAM users. For more information about how to create IAM roles
and to explore example IAM policy statements for CloudWatch Events, see Overview of Managing Access
Permissions to Your CloudWatch Events Resources (p. 58).

Resource-Based Policies

When a rule is triggered in CloudWatch Events, all the targets associated with the rule are invoked.
Invocation means invoking the AWS Lambda functions, publishing to the Amazon SNS topics, and relaying
the event to the Amazon Kinesis streams. In order to be able to make API calls against the resources you
own, CloudWatch Events needs the appropriate permissions. For Lambda, Amazon SNS, and Amazon
SQS resources, CloudWatch Events relies on resource-based policies. For Amazon Kinesis streams,
CloudWatch Events relies on IAM roles.

For more information about how to create IAM roles and to explore example resource-based policy
statements for CloudWatch Events, see Using Resource-Based Policies for CloudWatch Events (p. 68).

Specifying Policy Elements: Actions, Effects, and
Principals
For each CloudWatch Events resource, the service defines a set of API operations. To grant permissions
for these API operations, CloudWatch Events defines a set of actions that you can specify in a policy. Some
API operations can require permissions for more than one action in order to perform the API operation.
For more information about resources and API operations, see CloudWatch Events Resources and
Operations (p. 58) and CloudWatch Events Permissions Reference (p. 71).

The following are the basic policy elements:

• Resource – You use an Amazon Resource Name (ARN) to identify the resource that the policy applies
to. For more information, see CloudWatch Events Resources and Operations (p. 58).

• Action – You use action keywords to identify resource operations that you want to allow or deny.
For example, the events:Describe permission allows the user permissions to perform the Describe
operation.

• Effect – You specify the effect, either allow or deny, when the user requests the specific action. If you
don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also explicitly deny

60

http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon CloudWatch Events User Guide
Specifying Conditions in a Policy

access to a resource, which you might do to make sure that a user cannot access it, even if a different
policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the implicit
principal. For resource-based policies, you specify the user, account, service, or other entity that you
want to receive permissions (applies to resource-based policies only).

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM User
Guide.

For a table showing all of the CloudWatch Events API actions and the resources that they apply to, see
CloudWatch Events Permissions Reference (p. 71).

Specifying Conditions in a Policy
When you grant permissions, you can use the access policy language to specify the conditions when a
policy should take effect. For example, you might want a policy to be applied only after a specific date. For
more information about specifying conditions in a policy language, see Condition in the IAM User Guide.

To express conditions, you use predefined condition keys. There are AWS-wide condition keys and
CloudWatch Events–specific keys that you can use as appropriate. For a complete list of AWS-wide keys,
see Available Keys for Conditions in the IAM User Guide. For a complete list of CloudWatch Events–
specific keys, see Using IAM Policy Conditions for Fine-Grained Access Control (p. 73).

Using Identity-Based Policies (IAM Policies) for
CloudWatch Events

This topic provides examples of identity-based policies in which an account administrator can attach
permissions policies to IAM identities (that is, users, groups, and roles).

The following shows an example of a permissions policy that allows a user to put event data into Amazon
Kinesis.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchEventsInvocationAccess",
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord"
],
 "Resource": "*"
 }
]
}

The sections in this topic cover the following:

Topics

• Permissions Required to Use the CloudWatch Console (p. 62)

• AWS Managed (Predefined) Policies for CloudWatch Events (p. 63)

• Permissions Required for CloudWatch Events to Access Certain Targets (p. 64)

61

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon CloudWatch Events User Guide
Permissions Required to Use the CloudWatch Console

• Customer Managed Policy Examples (p. 65)

Permissions Required to Use the CloudWatch Console
For a user to work with CloudWatch Events in the CloudWatch console, that user must have a minimum set
of permissions that allows the user to describe other AWS resources for their AWS account. In order to use
CloudWatch Events in the CloudWatch console, you must have permissions from the following services:

• Automation

• Auto Scaling

• CloudTrail

• CloudWatch

• CloudWatch Events

• IAM

• Amazon Kinesis

• Lambda

• Amazon SNS

• Amazon SWF

If you create an IAM policy that is more restrictive than the minimum required permissions, the console
won't function as intended for users with that IAM policy. To ensure that those users can still use the
CloudWatch console, also attach the CloudWatchEventsReadOnlyAccess managed policy to the user, as
described in AWS Managed (Predefined) Policies for CloudWatch Events (p. 63).

You don't need to allow minimum console permissions for users that are making calls only to the AWS CLI
or the CloudWatch API.

The full set of permissions required to work with the CloudWatch console are listed below:

• automation:CreateAction

• automation:DescribeAction

• automation:UpdateAction

• autoscaling:DescribeAutoScalingGroups

• cloudtrail:DescribeTrails

• ec2:DescribeInstances

• ec2:DescribeVolumes

• events:DeleteRule

• events:DescribeRule

• events:DisableRule

• events:EnableRule

• events:ListRuleNamesByTarget

• events:ListRules

• events:ListTargetsByRule

• events:PutEvents

• events:PutRule

• events:PutTargets

• events:RemoveTargets

62

Amazon CloudWatch Events User Guide
AWS Managed (Predefined) Policies for CloudWatch Events

• events:TestEventPattern

• iam:ListRoles

• kinesis:ListStreams

• lambda:AddPermission

• lambda:ListFunctions

• lambda:RemovePermission

• sns:GetTopicAttributes

• sns:ListTopics

• sns:SetTopicAttributes

• swf:DescribeAction

• swf:ReferenceAction

• swf:RegisterAction

• swf:RegisterDomain

• swf:UpdateAction

AWS Managed (Predefined) Policies for CloudWatch
Events
AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. Managed policies grant necessary permissions for common use cases so you
can avoid having to investigate what permissions are needed. For more information, see AWS Managed
Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
CloudWatch Events:

• CloudWatchEventsFullAccess – Grants full access to CloudWatch Events.

• CloudWatchEventsInvocationAccess – Allows CloudWatch Events to relay events to the streams in
Amazon Kinesis Streams in your account.

• CloudWatchEventsReadOnlyAccess – Grants read-only access to CloudWatch Events.

• CloudWatchEventsBuiltInTargetExecutionAccess – Allows built-in targets in CloudWatch Events to
perform Amazon EC2 actions on your behalf.

IAM Roles for Sending Events

In order for CloudWatch Events to relay events to your Amazon Kinesis stream targets, you must create an
IAM role.

To create an IAM role for sending CloudWatch Events

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide
to create an IAM role. As you follow the steps to create a role, do the following:

• In Role Name, use a name that is unique within your AWS account (for example,
CloudWatchEventsSending).

• In Select Role Type, choose AWS Service Roles, and then choose Amazon CloudWatch Events.
This grants CloudWatch Events permissions to assume the role.

63

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon CloudWatch Events User Guide
Permissions Required for CloudWatch

Events to Access Certain Targets

• In Attach Policy, choose CloudWatchEventsInvocationAccess.

You can also create your own custom IAM policies to allow permissions for CloudWatch Events actions and
resources. You can attach these custom policies to the IAM users or groups that require those permissions.
For more information about IAM policies, see Overview of IAM Policies in the IAM User Guide. For more
information about managing and creating custom IAM policies, see Managing IAM Policies in the IAM User
Guide.

Permissions Required for CloudWatch Events to
Access Certain Targets
For CloudWatch Events to access certain targets, you must specify an IAM role for accessing that target,
and that role must have a certain policy attached.

If the target is an Amazon Kinesis stream, the role used to send event data to that target must include the
following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord"
],
 "Resource": "*"
 }
]
}

If the target is Amazon EC2 Run Command and you are specifying one or more InstanceIds values for the
command, the role that you specify must include the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ssm:SendCommand",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:ec2:{{region}}:{{accountId}}:instance/[[instanceIds]]",
 "arn:aws:ssm:{{region}}:*:document/{{documentName}}"
]
 }
]
}

If the target is Amazon EC2 Run Command and you are specifying one or more tags for the command, the
role that you specify must include the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ssm:SendCommand",
 "Effect": "Allow",
 "Resource": [

64

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

Amazon CloudWatch Events User Guide
Customer Managed Policy Examples

 "arn:aws:ec2:{{region}}:{{accountId}}:instance/*"
],
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/*": [
 "[[tagValues]]"
]
 }
 }
 },
 {
 "Action": "ssm:SendCommand",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:ssm:{{region}}:*:document/{{documentName}}"
]
 }
]
}

If the target is an Step Functions state machine, the role that you specify must include the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["states:StartExecution"],
 "Resource": ["arn:aws:states:*:*:stateMachine:*"]
 }
]
}

If the target is an ECS task, the role that you specify must include the following policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask"
],
 "Resource": [
 "arn:aws:ecs:*:{{account-id}}:task-definition/{{task-definition-name}}"
],
 "Condition": {
 "ArnLike": {
 "ecs:cluster": "arn:aws:ecs:*:{{account-id}}:cluster/{{cluster-name}}"
 }
 }
 }]
}

Customer Managed Policy Examples
In this section, you can find example user policies that grant permissions for various CloudWatch Events
actions. These policies work when you are using the CloudWatch Events API, AWS SDKs, or the AWS CLI.

Note
All examples use the US West (Oregon) Region (us-west-2) and contain fictitious account IDs.

65

Amazon CloudWatch Events User Guide
Customer Managed Policy Examples

You can use the following sample IAM policies listed to limit the CloudWatch Events access for your IAM
users and roles.

Examples

• Example 1: CloudWatchEventsBuiltInTargetExecutionAccess (p. 66)

• Example 2: CloudWatchEventsInvocationAccess (p. 66)

• Example 3: CloudWatchEventsConsoleAccess (p. 66)

• Example 4: CloudWatchEventsFullAccess (p. 67)

• Example 5: CloudWatchEventsReadOnlyAccess (p. 68)

Example 1: CloudWatchEventsBuiltInTargetExecutionAccess
The following policy allows built-in targets in CloudWatch Events to perform Amazon EC2 actions on your
behalf.

Important
Creating rules with built-in targets is supported only in the AWS Management Console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchEventsBuiltInTargetExecutionAccess",
 "Effect": "Allow",
 "Action": [
 "ec2:Describe*",
 "ec2:RebootInstances",
 "ec2:StopInstances",
 "ec2:TerminateInstances",
 "ec2:CreateSnapshot"
],
 "Resource": "*"
 }
]
}

Example 2: CloudWatchEventsInvocationAccess
The following policy allows CloudWatch Events to relay events to the streams in Amazon Kinesis streams
in your account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchEventsInvocationAccess",
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord"
],
 "Resource": "*"
 }
]
}

Example 3: CloudWatchEventsConsoleAccess
The following policy ensures that IAM users can use the CloudWatch Events console.

66

Amazon CloudWatch Events User Guide
Customer Managed Policy Examples

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchEventsConsoleAccess",
 "Effect": "Allow",
 "Action": [
 "automation:CreateAction",
 "automation:DescribeAction",
 "automation:UpdateAction",
 "autoscaling:DescribeAutoScalingGroups",
 "cloudtrail:DescribeTrails",
 "ec2:DescribeInstances",
 "ec2:DescribeVolumes",
 "events:*",
 "iam:ListRoles",
 "kinesis:ListStreams",
 "lambda:AddPermission",
 "lambda:ListFunctions",
 "lambda:RemovePermission",
 "sns:GetTopicAttributes",
 "sns:ListTopics",
 "sns:SetTopicAttributes",
 "swf:DescribeAction",
 "swf:ReferenceAction",
 "swf:RegisterAction",
 "swf:RegisterDomain",
 "swf:UpdateAction"
],
 "Resource": "*"
 },
 {
 "Sid": "IAMPassRoleForCloudWatchEvents",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "arn:aws:iam::*:role/AWS_Events_Invoke_Targets",
 "arn:aws:iam::*:role/AWS_Events_Actions_Execution"
]
 }
]
}

Example 4: CloudWatchEventsFullAccess

The following policy allows performing actions against CloudWatch Events through the AWS CLI and SDK.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchEventsFullAccess",
 "Effect": "Allow",
 "Action": "events:*",
 "Resource": "*"
 },
 {
 "Sid": "IAMPassRoleForCloudWatchEvents",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/AWS_Events_Invoke_Targets"
 }
]

67

Amazon CloudWatch Events User Guide
Using Resource-Based Policies

}

Example 5: CloudWatchEventsReadOnlyAccess

The following policy provides read-only access to CloudWatch Events.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchEventsReadOnlyAccess",
 "Effect": "Allow",
 "Action": [
 "events:Describe*",
 "events:List*",
 "events:TestEventPattern"
],
 "Resource": "*"
 }
]
}

Using Resource-Based Policies for CloudWatch
Events

When a rule is triggered in CloudWatch Events, all the targets associated with the rule are invoked.
Invocation means invoking the AWS Lambda functions, publishing to the Amazon SNS topics, and relaying
the event to the Amazon Kinesis streams. In order to be able to make API calls against the resources you
own, CloudWatch Events needs the appropriate permissions. For Lambda, Amazon SNS, and Amazon
SQS resources, CloudWatch Events relies on resource-based policies. For Amazon Kinesis streams,
CloudWatch Events relies on IAM roles.

You can use the following permissions to invoke the targets associated with your CloudWatch Events rules.
The procedures below use the AWS CLI to add permissions to your targets. For information about how to
install and configure the AWS CLI, see Getting Set Up with the AWS Command Line Interface in the AWS
Command Line Interface User Guide.

Topics

• AWS Lambda Permissions (p. 68)

• Amazon SNS Permissions (p. 69)

• Amazon SQS Permissions (p. 70)

AWS Lambda Permissions
To invoke your AWS Lambda function using a CloudWatch Events rule, add the following permission to the
policy of your Lambda function.

{
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:region:account-id:function:function-name",
 "Principal": {
 "Service": "events.amazonaws.com"

68

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html

Amazon CloudWatch Events User Guide
Amazon SNS Permissions

 },
 "Condition": {
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:events:region:account-id:rule/rule-name"
 }
 },
 "Sid": "TrustCWEToInvokeMyLambdaFunction"
}

To add permissions that enable CloudWatch Events to invoke Lambda functions

• At a command prompt, enter the following command:

aws lambda add-permission --statement-id "TrustCWEToInvokeMyLambdaFunction" \
--action "lambda:InvokeFunction" \
--principal "events.amazonaws.com" \
--function-name "arn:aws:lambda:region:account-id:function:function-name" \
--source-arn "arn:aws:events:region:account-id:rule/rule-name"

For more information about setting permissions that enable CloudWatch Events to invoke Lambda
functions, see AddPermission and Using Lambda with Scheduled Events in the AWS Lambda Developer
Guide.

Amazon SNS Permissions
To allow CloudWatch Events to publish an Amazon SNS topic, use the aws sns get-topic-attributes
and the aws sns set-topic-attributes commands.

To add permissions that enable CloudWatch Events to publish SNS topics

1. First, list SNS topic attributes. At a command prompt, type the following:

aws sns get-topic-attributes --topic-arn "arn:aws:sns:region:account-id:topic-name"

The command returns all attributes of the SNS topic. The following example shows the result of a
newly created SNS topic.

{
 "Attributes": {
 "SubscriptionsConfirmed": "0",
 "DisplayName": "",
 "SubscriptionsDeleted": "0",
 "EffectiveDeliveryPolicy": "{\"http\":{\"defaultHealthyRetryPolicy\":
{\"minDelayTarget\":20,\"maxDelayTarget\":20,\"numRetries\":3,\"numMaxDelayRetries
\":0,\"numNoDelayRetries\":0,\"numMinDelayRetries\":0,\"backoffFunction\":\"linear\"},
\"disableSubscriptionOverrides\":false}}",
 "Owner": "account-id",
 "Policy": "{\"Version\":\"2012-10-17\",\"Id\":\"__default_policy_ID\",
\"Statement\":[{\"Sid\":\"__default_statement_ID\",\"Effect\":\"Allow\",\"Principal
\":{\"AWS\":\"*\"},\"Action\":[\"SNS:GetTopicAttributes\",\"SNS:SetTopicAttributes
\",\"SNS:AddPermission\",\"SNS:RemovePermission\",\"SNS:DeleteTopic\",\"SNS:Subscribe
\",\"SNS:ListSubscriptionsByTopic\",\"SNS:Publish\",\"SNS:Receive\"],\"Resource
\":\"arn:aws:sns:region:account-id:topic-name\",\"Condition\":{\"StringEquals\":
{\"AWS:SourceOwner\":\"account-id\"}}}]}",
 "TopicArn": "arn:aws:sns:region:account-id:topic-name",
 "SubscriptionsPending": "0"
 }
}

69

http://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html
http://docs.aws.amazon.com/lambda/latest/dg/with-scheduled-events.html

Amazon CloudWatch Events User Guide
Amazon SQS Permissions

2. Next, convert the following statement to a string and add it to the "Statement" collection inside the
"Policy" attribute.

{
 "Sid": "TrustCWEToPublishEventsToMyTopic",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:region:account-id:topic-name"
}

After you convert the statement to a string, it should look like the following:

{\"Sid\":\"TrustCWEToPublishEventsToMyTopic\",\"Effect\":\"Allow\",\"Principal\":
{\"Service\":\"events.amazonaws.com\"},\"Action\":\"sns:Publish\",\"Resource\":
\"arn:aws:sns:region:account-id:topic-name\"}

3. After you've added the statement string to the statement collection, use the aws sns set-topic-
attributes command to set the new policy.

aws sns set-topic-attributes --topic-arn "arn:aws:sns:region:account-id:topic-name" \
--attribute-name Policy \
--attribute-value "{\"Version\":\"2012-10-17\",\"Id\":\"__default_policy_ID\",
\"Statement\":[{\"Sid\":\"__default_statement_ID\",\"Effect\":\"Allow\",\"Principal
\":{\"AWS\":\"*\"},\"Action\":[\"SNS:GetTopicAttributes\",\"SNS:SetTopicAttributes
\",\"SNS:AddPermission\",\"SNS:RemovePermission\",\"SNS:DeleteTopic\",\"SNS:Subscribe
\",\"SNS:ListSubscriptionsByTopic\",\"SNS:Publish\",\"SNS:Receive\"],\"Resource
\":\"arn:aws:sns:region:account-id:topic-name\",\"Condition\":{\"StringEquals\":
{\"AWS:SourceOwner\":\"account-id\"}}}, {\"Sid\":\"TrustCWEToPublishEventsToMyTopic\",
\"Effect\":\"Allow\",\"Principal\":{\"Service\":\"events.amazonaws.com\"},\"Action\":
\"sns:Publish\",\"Resource\":\"arn:aws:sns:region:account-id:topic-name\"}]}"

For more information, see the SetTopicAttributes action in the Amazon Simple Notification Service API
Reference.

Amazon SQS Permissions
To allow a CloudWatch Events rule to invoke an Amazon SQS queue, use the aws sqs get-queue-
attributes and the aws sqs set-queue-attributes commands.

To add permissions that enable CloudWatch Events rules to invoke an SQS queue

1. First, list SQS queue attributes. At a command prompt, type the following:

aws sqs get-queue-attributes \
--queue-url https://sqs.region.amazonaws.com/account-id/queue-name \
--attribute-names Policy

For a newly created SQS queue, its policy is empty by default. In addition to adding a statement, you
also need to create a policy that contains this statement.

2. The following statement enables CloudWatch Events to send messages to an SQS queue:

{
 "Sid": "TrustCWEToSendEventsToMyQueue",
 "Effect": "Allow",

70

http://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html

Amazon CloudWatch Events User Guide
CloudWatch Events Permissions Reference

 "Principal": {
 "AWS": "*"
 },
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:region:account-id:queue-name",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:events:region:account-id:rule/rule-name"
 }
 }
}

3. Next, convert the statement above into a string. After you convert the policy to a string, it should look
like the following:

{\"Sid\": \"TrustCWEToSendEventsToMyQueue\", \"Effect\": \"Allow\", \"Principal
\": {\"AWS\": \"*\"}, \"Action\": \"sqs:SendMessage\", \"Resource\":
 \"arn:aws:sqs:region:account-id:queue-name\", \"Condition\": {\"ArnEquals\":
 {\"aws:SourceArn\": \"arn:aws:events:region:account-id:rule/rule-name\"}}

4. Create a file called set-queue-attributes.json with the following content:

{
 "Policy": "{\"Version\":\"2012-10-17\",\"Id\":\"arn:aws:sqs:region:account-
id:queue-name/SQSDefaultPolicy\",\"Statement\":[{\"Sid\":
 \"TrustCWEToSendEventsToMyQueue\", \"Effect\": \"Allow\", \"Principal\": {\"AWS\":
 \"*\"}, \"Action\": \"sqs:SendMessage\", \"Resource\": \"arn:aws:sqs:region:account-
id:queue-name\", \"Condition\": {\"ArnEquals\": {\"aws:SourceArn\":
 \"arn:aws:events:region:account-id:rule/rule-name\"}}}]}"
}

5. Set the policy attribute using the set-queue-attributes.json file as the input. At a command prompt,
type:

aws sqs set-queue-attributes \
--queue-url https://sqs.region.amazonaws.com/account-id/queue-name \
--attributes file://set-queue-attributes.json

If the SQS queue already has a policy, you need to copy the original policy and combine it with a new
statement in the set-queue-attributes.json file and run the above command to update the policy.

For more information, see Amazon SQS Policy Examples in the Amazon Simple Queue Service Developer
Guide.

CloudWatch Events Permissions Reference
When you are setting up Access Control (p. 57) and writing permissions policies that you can attach to
an IAM identity (identity-based policies), you can use the following table as a reference. The table lists each
CloudWatch Events API operation and the corresponding actions for which you can grant permissions to
perform the action. You specify the actions in the policy's Action field, and you specify a wildcard character
(*) as the resource value in the policy's Resource field.

You can use AWS-wide condition keys in your CloudWatch Events policies to express conditions. For a
complete list of AWS-wide keys, see Available Keys in the IAM User Guide.

Note
To specify an action, use the events: prefix followed by the API operation name. For example:
events:PutRule, events:EnableRule, or events:* (for all CloudWatch Events actions).

71

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSExamples.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon CloudWatch Events User Guide
CloudWatch Events Permissions Reference

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": ["events:action1", "events:action2"]

You can also specify multiple actions using wildcards. For example, you can specify all actions whose
name begins with the word "Put" as follows:

"Action": "events:Put*"

To specify all CloudWatch Events API actions, use the * wildcard as follows:

"Action": "events:*"

The actions you can specify in an IAM policy for use with CloudWatch Events are listed below.

CloudWatch Events API Operations and Required Permissions for Actions

CloudWatch Events API Operations Required Permissions (API Actions)

DeleteRule events:DeleteRule

Required to delete a rule.

DescribeRule events:DescribeRule

Required to list the details about a rule.

DisableRule events:DisableRule

Required to disable a rule.

EnableRule events:EnableRule

Required to enable a rule.

ListRuleNamesByTarget events:ListRuleNamesByTarget

Required to list rules associated with a target.

ListRules events:ListRules

Required to list all rules in your account.

ListTargetsByRule events:ListTargetsByRule

Required to list all targets associated with a rule.

PutEvents events:PutEvents

Required to add custom events that can be
matched to rules.

PutRule events:PutRule

Required to create or update a rule.

PutTargets events:PutTargets

Required to add targets to a rule.

72

http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_DeleteRule.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_DescribeRule.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_DisableRule.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_EnableRule.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_ListRuleNamesByTarget.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_ListRules.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_ListTargetsByRule.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutRule.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html

Amazon CloudWatch Events User Guide
Using Conditions

CloudWatch Events API Operations Required Permissions (API Actions)

RemoveTargets events:RemoveTargets

Required to remove a target from a rule.

TestEventPattern events:TestEventPattern

Required to test an event pattern against a given
event.

Using IAM Policy Conditions for Fine-Grained
Access Control

When you grant permissions, you can use the access policy language to specify the conditions when a
policy should take effect. In a policy statement, you can optionally specify conditions that control when it is
in effect. Each condition contains one or more key-value pairs. Condition keys are not case-sensitive. For
example, you might want a policy to be applied only after a specific date.

If you specify multiple conditions, or multiple keys in a single condition, they are evaluated using a logical
AND operation. If you specify a single condition with multiple values for one key, they are evaluated using a
logical OR operation. For permission to be granted, all conditions must be met.

You can also use placeholders when you specify conditions. For more information, see Policy Variables in
the IAM User Guide. For more information about specifying conditions in an access policy language, see
Condition in the IAM User Guide.

By default, IAM users and roles can't access the events in your account. To consume events, a user must
be authorized for the PutRule API action. If you allow an IAM user or role for the events:PutRule action in
their policy, then they will be able to create a rule that matches certain events. You must add a target to a
rule, otherwise, a rule without a target does nothing except publish a CloudWatch metric when it matches
an incoming event. Your IAM user or role must have permissions for the events:PutTargets action.

It is possible to limit access to the events by scoping the authorization to specific sources and types of
events (using the events:source and events:detail-type condition keys). You can provide a condition
in the policy statement of the IAM user or role that allows them to create a rule that only matches a specific
set of sources and detail types. For a list showing all of condition key values and the CloudWatch Events
actions and resources that they apply to, see Using IAM Policy Conditions for Fine-Grained Access
Control (p. 73).

Similarly, through setting conditions in your policy statements, you can decide which specific resources in
your accounts can be added to a rule by an IAM user or role (using the events:TargetArn condition key).
For example, if you turn on CloudTrail in your account and you have a CloudTrail stream, CloudTrail events
are also available to the users in your account through CloudWatch Events. If you want your users to use
CloudWatch Events and access all the events but the CloudTrail events, you can add a deny statement
on the PutRule API action with a condition that any rule created by that user or role cannot match the
CloudTrail event type.

For CloudTrail events, you can limit the access to a specific principal that the original API call was
originated from (using the events:detail.userIdentity.principalId condition key). For example, you
can allow a user to see all the CloudTrail events, except the ones that are made by a specific IAM role in
your account that you use for auditing or forensics.

Condition Key Key/Value Pair Evaluation Types

events:source "events:source":"source " Source, Null

73

http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_RemoveTargets.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_TestEventPattern.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/policyvariables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition

Amazon CloudWatch Events User Guide
Example 1: Limit Access to a Specific Source

Condition Key Key/Value Pair Evaluation Types

Where source is the literal string for
the source field of the event such as
"aws.ec2" and "aws.s3".

events:detail-type "events:detail-type":"detail-

type "

Where detail-type is the literal
string for the detail-type field of
the event such as "AWS API Call
via CloudTrail" and "EC2 Instance
State-change Notification".

Detail Type, Null

events:

detail.userIdentity.principalId

"events:

detail.userIdentity.principalId":"principal-

id"

Where principal-id is
the literal string for the
detail.userIdentity.principalId field
of the event with detail-type "AWS
API Call via CloudTrail" such as
"AROAIDPPEZS35WEXAMPLE:AssumedRoleSessionName.".

Principal Id, Null

events:TargetArn "events:TargetArn":"target-arn

"

Where target-arn is the
ARN of the target that can
be put to a rule such as
"arn:aws:lambda:*:*:function:*".

ARN, Null

For example policy statements for CloudWatch Events, see Overview of Managing Access Permissions to
Your CloudWatch Events Resources (p. 58).

Topics

• Example 1: Limit Access to a Specific Source (p. 74)

• Example 2: Define Multiple Sources That Can Be Used in an Event Pattern Individually (p. 76)

• Example 3: Define a Source and a DetailType That Can Be Used in an Event Pattern (p. 77)

• Example 4: Ensure That the Source Is Defined in the Event Pattern (p. 78)

• Example 5: Define a List of Allowed Sources in an Event Pattern with Multiple Sources (p. 79)

• Example 6: Ensure That AWS CloudTrail Events for API Calls from a Certain PrincipalId Are
Consumed (p. 80)

• Example 7: Limiting Access to Targets (p. 81)

Example 1: Limit Access to a Specific Source
The following example policies can be attached to an IAM user. Policy A allows the PutRule API action
for all events, whereas Policy B allows PutRule only if the event pattern of the rule being created matches
Amazon EC2 events.

Policy A:—allow any events

74

Amazon CloudWatch Events User Guide
Example 1: Limit Access to a Specific Source

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleForAllEvents",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*"
 }
]
 }

Policy B:—allow events only from Amazon EC2

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleForAllEC2Events",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:source": "aws.ec2"
 }
 }
 }
]
}

EventPattern is a mandatory argument to PutRule. Hence, if the user with Policy B calls PutRule with an
event pattern like the following:

{
 "source": ["aws.ec2"]
}

The rule would be created because the policy allows for this specific source, that is, "aws.ec2". However, if
the user with Policy B calls PutRulewith an event pattern like the following:

{
 "source": ["aws.s3"]
}

The rule creation would be denied because the policy does not allow for this specific source, that is,
"aws.s3". Essentially, the user with Policy B is only allowed to create a rule that would match the events
originating from Amazon EC2; hence, they are only allowed access to the events from Amazon EC2.

See the following table for a comparison of Policy A and Policy B:

Event Pattern Allowed by Policy A Allowed by Policy B

{
 "source":
 ["aws.ec2"]
}

Yes Yes

{
Yes No (Source aws.s3 is not allowed)

75

Amazon CloudWatch Events User Guide
Example 2: Define Multiple Sources That

Can Be Used in an Event Pattern Individually

Event Pattern Allowed by Policy A Allowed by Policy B

 "source":
 ["aws.ec2",
 "aws.s3"]
}

{
 "source":
 ["aws.ec2"],
 "detail-type":
 ["EC2 Instance State-
change Notification"]
}

Yes Yes

{
 "detail-type":
 ["EC2 Instance State-
change Notification"]
}

Yes No (Source must be specified)

Example 2: Define Multiple Sources That Can Be
Used in an Event Pattern Individually
The following policy allows events from Amazon EC2 or CloudWatch Events. In other words, it allows an
IAM user or role to create a rule where the source in the EventPattern is specified as either "aws.ec2" or
"aws.ecs". Not defining the source results in a "deny".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleIfSourceIsEC2OrECS",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:source": ["aws.ec2", "aws.ecs"]
 }
 }
 }
]
}

See the following table for examples of event patterns that would be allowed or denied by this policy:

Event Pattern Allowed by the Policy

{
 "source": ["aws.ec2"]
}

Yes

{
 "source": ["aws.ecs"]

Yes

76

Amazon CloudWatch Events User Guide
Example 3: Define a Source and a DetailType

That Can Be Used in an Event Pattern

Event Pattern Allowed by the Policy

}

{
 "source": ["aws.s3"]
}

No

{
 "source": ["aws.ec2",
 "aws.ecs"]
}

No

{
 "detail-type": ["AWS API Call
 via CloudTrail"]
}

No

Example 3: Define a Source and a DetailType That
Can Be Used in an Event Pattern
The following policy allows events only from the aws.ec2 source with DetailType equal to EC2 instance
state change notification.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid":
 "AllowPutRuleIfSourceIsEC2AndDetailTypeIsInstanceStateChangeNotification",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:source": "aws.ec2",
 "events:detail-type": "EC2 Instance State-change Notification"
 }
 }
 }
]
}

See the following table for examples of event patterns that would be allowed or denied by this policy:

Event Pattern Allowed by the Policy

{
 "source": ["aws.ec2"]
}

No

{
 "source": ["aws.ecs"]

No

77

Amazon CloudWatch Events User Guide
Example 4: Ensure That the Source

Is Defined in the Event Pattern

Event Pattern Allowed by the Policy

}

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2 Instance
 State-change Notification"]
}

Yes

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2 Instance
 Health Failed"]
}

No

{
 "detail-type": ["EC2 Instance
 State-change Notification"]
}

No

Example 4: Ensure That the Source Is Defined in the
Event Pattern
The following policy allows creating rules with EventPatterns that must have the source field. In other
words, an IAM user or role can't create a rule with an EventPattern that does not provide a specific source.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleIfSourceIsSpecified",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "Null": {
 "events:source": "false"
 }
 }
 }
]
}

See the following table for examples of event patterns that would be allowed or denied by this policy:

Event Pattern Allowed by the Policy

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2 Instance
 State-change Notification"]
}

Yes

78

Amazon CloudWatch Events User Guide
Example 5: Define a List of Allowed Sources

in an Event Pattern with Multiple Sources

Event Pattern Allowed by the Policy

{
 "source": ["aws.ecs",
 "aws.ec2"]
}

Yes

{
 "detail-type": ["EC2 Instance
 State-change Notification"]
}

No

Example 5: Define a List of Allowed Sources in an
Event Pattern with Multiple Sources
The following policy allows creating rules with EventPatterns that can have multiple sources in them. Each
source listed in the event pattern must be a member of the list provided in the condition. When using the
ForAllValues condition, make sure that at least one of the items in the condition list is defined.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleIfSourceIsSpecifiedAndIsEitherS3OrEC2OrBoth",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "events:source": ["aws.ec2", "aws.s3"]
 },
 "Null": {
 "events:source": "false"
 }
 }
 }
]
}

See the following table for examples of event patterns that would be allowed or denied by this policy:

Event Pattern Allowed by the Policy

{
 "source": ["aws.ec2"]
}

Yes

{
 "source": ["aws.ec2", "aws.s3"]
}

Yes

{
 "source": ["aws.ec2",
 "aws.autoscaling"]

No

79

Amazon CloudWatch Events User Guide
Example 6: Ensure That AWS CloudTrail Events for
API Calls from a Certain PrincipalId Are Consumed

Event Pattern Allowed by the Policy

}

{
 "detail-type": ["EC2 Instance
 State-change Notification"]
}

No

Example 6: Ensure That AWS CloudTrail Events for
API Calls from a Certain PrincipalId Are Consumed
All AWS CloudTrail events have the ID of the user who made the API call (PrincipalId)
in the detail.userIdentity.principalId path of an event. With the help of the
events:detail.userIdentity.principalId condition key, you can limit the access of IAM users or roles
to the CloudTrail events for only those coming from a specific account.

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleOnlyForCloudTrailEventsWhereUserIsASpecificIAMUser",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:detail-type": ["AWS API Call via CloudTrail"],
 "events:detail.userIdentity.principalId": ["AIDAJ45Q7YFFAREXAMPLE"]
 }
 }
 }
]
}

See the following table for examples of event patterns that would be allowed or denied by this policy:

Event Pattern Allowed by the Policy

{
 "detail-type": ["AWS API Call
 via CloudTrail"]
}

No

{
 "detail-type": ["AWS API Call
 via CloudTrail"],

 "detail.userIdentity.principalId":
 ["AIDAJ45Q7YFFAREXAMPLE"]
}

Yes

{
 "detail-type": ["AWS API Call
 via CloudTrail"],

No

80

Amazon CloudWatch Events User Guide
Example 7: Limiting Access to Targets

Event Pattern Allowed by the Policy

 "detail.userIdentity.principalId":
 ["AROAIDPPEZS35WEXAMPLE:AssumedRoleSessionName"]
}

Example 7: Limiting Access to Targets
If an IAM user or role has events:PutTargets permission, they can add any target under the same account
to the rules that they are allowed to access. For example, the following policy limits adding targets to only a
specific rule (MyRule under account 123456789012).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutTargetsOnASpecificRule",
 "Effect": "Allow",
 "Action": "events:PutTargets",
 "Resource": "arn:aws:events:us-east-1:123456789012:rule/MyRule"
 }
]
}

To limit what target can be added to the rule, use the events:TargetArn condition key. For example, you
can limit targets to only Lambda functions, as in the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutTargetsOnASpecificRuleAndOnlyLambdaFunctions",
 "Effect": "Allow",
 "Action": "events:PutTargets",
 "Resource": "arn:aws:events:us-east-1:123456789012:rule/MyRule",
 "Condition": {
 "ArnLike": {
 "events:TargetArn": "arn:aws:lambda:*:*:function:*"
 }
 }
 }
]
}

81

Amazon CloudWatch Events User Guide
CloudWatch Events Information in CloudTrail

Logging Amazon CloudWatch Events
API Calls in AWS CloudTrail

AWS CloudTrail is a service that captures API calls made by or on behalf of your AWS account. This
information is collected and written to log files that are stored in an Amazon S3 bucket that you specify. API
calls are logged whenever you use the API, the console, or the AWS CLI. Using the information collected
by CloudTrail, you can determine what request was made, the source IP address the request was made
from, who made the request, when it was made, and so on.

To learn more about CloudTrail, including how to configure and enable it, see the What is AWS CloudTrail
in the AWS CloudTrail User Guide.

Topics

• CloudWatch Events Information in CloudTrail (p. 82)

• Understanding Log File Entries (p. 83)

CloudWatch Events Information in CloudTrail
If CloudTrail logging is turned on, calls made to API actions are captured in log files. Every log file entry
contains information about who generated the request. For example, if a request is made to create a
CloudWatch Events rule (PutRule), CloudTrail logs the user identity of the person or service that made the
request.

The user identity information in the log entry helps you determine the following:

• Whether the request was made with root or IAM user credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another AWS service

For more information, see the CloudTrail userIdentity Element in the AWS CloudTrail User Guide.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

82

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/what_is_cloud_trail_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon CloudWatch Events User Guide
Understanding Log File Entries

If you want to be notified upon log file delivery, you can configure CloudTrail to publish Amazon SNS
notifications when new log files are delivered. For more information, see Configuring Amazon SNS
Notifications for CloudTrail in the AWS CloudTrail User Guide.

You can also aggregate Amazon CloudWatch Logs log files from multiple AWS regions and multiple AWS
accounts into a single Amazon S3 bucket. For more information, see Receiving CloudTrail Log Files from
Multiple Regions and Receiving CloudTrail Log Files from Multiple Accounts in the AWS CloudTrail User
Guide.

When logging is turned on, the following API actions are written to CloudTrail:

• DeleteRule

• DescribeRule

• DisableRule

• EnableRule

• ListRuleNamesByTarget

• ListRules

• ListTargetsByRule

• PutRule

• PutTargets

• RemoveTargets

• TestEventPattern

For more information about these actions, see the Amazon CloudWatch Events API Reference.

Understanding Log File Entries
CloudTrail log files contain one or more log entries. Each entry lists multiple JSON-formatted events. A log
entry represents a single request from any source and includes information about the requested action, the
date and time of the action, request parameters, and so on. The log entries are not an ordered stack trace
of the public API calls, so they do not appear in any specific order. Log file entries for all API actions are
similar to the examples below.

The following log file entry shows that a user called the CloudWatch Events PutRule action.

{
 "eventVersion":"1.03",
 "userIdentity":{
 "type":"Root",
 "principalId":"123456789012",
 "arn":"arn:aws:iam::123456789012:root",
 "accountId":"123456789012",
 "accessKeyId":"AKIAIOSFODNN7EXAMPLE",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"2015-11-17T23:56:15Z"
 }
 }
 },
 "eventTime":"2015-11-18T00:11:28Z",
 "eventSource":"events.amazonaws.com",
 "eventName":"PutRule",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"AWS Internal",

83

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/

Amazon CloudWatch Events User Guide
Understanding Log File Entries

 "userAgent":"AWS CloudWatch Console",
 "requestParameters":{
 "description":"",
 "name":"cttest2",
 "state":"ENABLED",
 "eventPattern":"{\"source\":[\"aws.ec2\"],\"detail-type\":[\"EC2 Instance
 State-change Notification\"]}",
 "scheduleExpression":""
 },
 "responseElements":{
 "ruleArn":"arn:aws:events:us-east-1:123456789012:rule/cttest2"
 },
 "requestID":"e9caf887-8d88-11e5-a331-3332aa445952",
 "eventID":"49d14f36-6450-44a5-a501-b0fdcdfaeb98",
 "eventType":"AwsApiCall",
 "apiVersion":"2015-10-07",
 "recipientAccountId":"123456789012"
}

84

Amazon CloudWatch Events User Guide
My rule was triggered but my

Lambda function was not invoked

Troubleshooting CloudWatch Events

You can use the steps in this section to troubleshoot CloudWatch Events.

Topics

• My rule was triggered but my Lambda function was not invoked (p. 85)

• I have just created/modified a rule but it did not match a test event (p. 86)

• My rule did not self-trigger at the time specified in the ScheduleExpression (p. 87)

• My rule did not trigger at the time that I expected (p. 87)

• My rule matches IAM API calls but my rule was not triggered (p. 87)

• My rule is not working because the IAM role associated with the rule is ignored when the rule is
triggered (p. 87)

• I created a rule with an EventPattern that is supposed to match a resource, but I don't see any events
that match the rule (p. 88)

• My event's delivery to the target experienced a delay (p. 88)

• My rule was triggered more than once in response two identical events. What guarantee does
CloudWatch Events offer for triggering rules or delivering events to the targets? (p. 88)

• My rule is being triggered but I don't see any messages published into my Amazon SNS topic (p. 88)

• My Amazon SNS topic still has permissions for CloudWatch Events even after I deleted the rule
associated with the Amazon SNS topic (p. 90)

• Which IAM condition keys can I use with CloudWatch Events (p. 90)

• How can I tell when CloudWatch Events rules are broken (p. 90)

My rule was triggered but my Lambda function was
not invoked

Make sure you have the right permissions set for your Lambda function. Run the following command using
AWS CLI (replace the function name with your function and use the AWS region your function is in):

aws lambda get-policy --function-name MyFunction --region us-east-1

You should see an output similar to the following:

85

Amazon CloudWatch Events User Guide
I have just created/modified a rule
but it did not match a test event

{
 "Policy": "{\"Version\":\"2012-10-17\",
 \"Statement\":[
 {\"Condition\":{\"ArnLike\":{\"AWS:SourceArn\":\"arn:aws:events:us-
east-1:123456789012:rule/MyRule\"}},
 \"Action\":\"lambda:InvokeFunction\",
 \"Resource\":\"arn:aws:lambda:us-east-1:123456789012:function:MyFunction\",
 \"Effect\":\"Allow\",
 \"Principal\":{\"Service\":\"events.amazonaws.com\"},
 \"Sid\":\"MyId\"}
],
 \"Id\":\"default\"}"
}

If you see the following:

A client error (ResourceNotFoundException) occurred when calling the GetPolicy operation:
 The resource you requested does not exist.

Or, you see the output but you can't locate events.amazonaws.com as a trusted entity in the policy, run the
following command:

aws lambda add-permission \
--function-name MyFunction \
--statement-id MyId \
--action 'lambda:InvokeFunction' \
--principal events.amazonaws.com \
--source-arn arn:aws:events:us-east-1:123456789012:rule/MyRule

Note
If the policy is incorrect, you can also edit the rule in the CloudWatch Events console by
removing and then adding it back to the rule. The CloudWatch Events console will set the correct
permissions on the target.
If you're using a specific Lambda alias or version, you must add the --qualifier parameter in the
aws lambda get-policy and aws lambda add-permission commands.

aws lambda add-permission \
--function-name MyFunction \
--statement-id MyId \
--action 'lambda:InvokeFunction' \
--principal events.amazonaws.com \
--source-arn arn:aws:events:us-east-1:123456789012:rule/MyRule
--qualifier alias or version

I have just created/modified a rule but it did not
match a test event

When you make a change to a rule or to its targets, incoming events might not immediately start or stop
matching to new or updated rules. Please allow a short period of time for changes to take effect. If, after
this short period, events still do not match, you can also check several Events metrics for your rule in
CloudWatch such as TriggeredRules, Invocations, and FailedInvocations for further debugging.

You can also use the TestEventPattern action to test the event pattern of your rule with a test event to
make sure the event pattern of your rule is correctly set. For more information, see TestEventPattern in the
Amazon CloudWatch Events API Reference.

86

http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_TestEventPattern.html

Amazon CloudWatch Events User Guide
My rule did not self-trigger at the time
specified in the ScheduleExpression

My rule did not self-trigger at the time specified in
the ScheduleExpression

ScheduleExpressions are in UTC. Make sure you have set the schedule for rule to self-trigger in the UTC
timezone. If the ScheduleExpression is correct, then follow the steps under I have just created/modified a
rule but it did not match a test event (p. 86).

My rule did not trigger at the time that I expected
CloudWatch Events doesn't support setting an exact start time when you create a rule to run every time
period. The count down to run time begins as soon as you create the rule.

You can use a cron expression to invoke targets at a specified time. For example, you can use a cron
expression to create a rule that is triggered every 4 hours exactly on 0 minute. In the CloudWatch console,
you'd use the cron expression 0 0/4 * * ? *, and with the AWS CLI you'd use the cron expression cron(0
0/4 * * ? *). For example, to create a rule named TestRule that is triggered every 4 hours using the AWS
CLI, you would type the following at a command prompt:

aws events put-rule --name TestRule --schedule-expression 'cron(0 0/4 * * ? *)'

You can use the 0/5 * * * ? * cron expression to trigger a rule every 5 minutes. For example:

aws events put-rule --name TestRule --schedule-expression 'cron(0/5 * * * ? *)'

CloudWatch Events does not provide second-level precision in schedule expressions. The finest resolution
using a cron expression is a minute. Due to the distributed nature of the CloudWatch Events and the target
services, the delay between the time the scheduled rule is triggered and the time the target service honors
the execution of the target resource might be several seconds. Your scheduled rule will be triggered within
that minute but not on the precise 0th second.

My rule matches IAM API calls but my rule was not
triggered

The IAM service is only available in the US East (N. Virginia) Region, so any AWS API call events from IAM
are only available in that region. For more information, see Event Types for CloudWatch Events (p. 35).

My rule is not working because the IAM role
associated with the rule is ignored when the rule is
triggered

IAM roles for rules are only used for relating events to Amazon Kinesis streams. For Lambda functions and
Amazon SNS topics, you need to provide resource-based permissions.

Make sure your regional AWS STS endpoints are enabled. CloudWatch Events talks to the regional AWS
STS endpoints when assuming the IAM role you provided. For more information, see Activating and
Deactivating AWS STS in an AWS Region in the IAM User Guide.

87

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon CloudWatch Events User Guide
I created a rule with an EventPattern that

is supposed to match a resource, but I
don't see any events that match the rule

I created a rule with an EventPattern that is
supposed to match a resource, but I don't see any
events that match the rule

Most services in AWS treat : or / as the same character in Amazon Resource Names (ARNs). However,
CloudWatch Events uses an exact match in event patterns and rules. Be sure to use the correct ARN
characters when creating event patterns so that they match the ARN syntax in the event you want to match.

Moreover, not every event has the resources field populated (e.g. AWS API Call events from CloudTrail).

My event's delivery to the target experienced a
delay

Amazon CloudWatch Events tries to deliver an event to a target for up to 24 hours. The first attempt is
made as soon as the event arrives in the event stream. However, if the target service is having problems
or your account is being throttled, CloudWatch Events automatically reschedules another delivery in
the future. If 24 hours has passed since the arrival of event, no more attempts are scheduled and the
FailedInvocations metric is published in Amazon CloudWatch.

My rule was triggered more than once in response
two identical events. What guarantee does
CloudWatch Events offer for triggering rules or
delivering events to the targets?

Amazon CloudWatch Events guarantees triggering a rule at least once in response to an event. In rare
cases, the same rule can be triggered more than once for a given event, or the same target can be invoked
more than once for a given triggered rule.

My rule is being triggered but I don't see any
messages published into my Amazon SNS topic

Make sure you have the right permission set for your Amazon SNS topic. Run the following command using
AWS CLI (replace the topic ARN with your topic and use the AWS region your topic is in):

aws sns get-topic-attributes --region us-east-1 --topic-arn "arn:aws:sns:us-
east-1:123456789012:MyTopic"

You should see policy attribute similar to the following:

"{\"Version\":\"2012-10-17\",
\"Id\":\"__default_policy_ID\",

88

Amazon CloudWatch Events User Guide
My rule is being triggered but I don't see any

messages published into my Amazon SNS topic

\"Statement\":[{\"Sid\":\"__default_statement_ID\",
\"Effect\":\"Allow\",
\"Principal\":{\"AWS\":\"*\"},
\"Action\":[\"SNS:Subscribe\",
\"SNS:ListSubscriptionsByTopic\",
\"SNS:DeleteTopic\",
\"SNS:GetTopicAttributes\",
\"SNS:Publish\",
\"SNS:RemovePermission\",
\"SNS:AddPermission\",
\"SNS:Receive\",
\"SNS:SetTopicAttributes\"],
\"Resource\":\"arn:aws:sns:us-east-1:123456789012:MyTopic\",
\"Condition\":{\"StringEquals\":{\"AWS:SourceOwner\":\"123456789012\"}}},{\"Sid\":
\"Allow_Publish_Events\",
\"Effect\":\"Allow\",
\"Principal\":{\"Service\":\"events.amazonaws.com\"},
\"Action\":\"sns:Publish\",
\"Resource\":\"arn:aws:sns:us-east-1:123456789012:MyTopic\"}]}"

If you see a policy similar to the following, you have only the default policy set:

"{\"Version\":\"2008-10-17\",
\"Id\":\"__default_policy_ID\",
\"Statement\":[{\"Sid\":\"__default_statement_ID\",
\"Effect\":\"Allow\",
\"Principal\":{\"AWS\":\"*\"},
\"Action\":[\"SNS:Subscribe\",
\"SNS:ListSubscriptionsByTopic\",
\"SNS:DeleteTopic\",
\"SNS:GetTopicAttributes\",
\"SNS:Publish\",
\"SNS:RemovePermission\",
\"SNS:AddPermission\",
\"SNS:Receive\",
\"SNS:SetTopicAttributes\"],
\"Resource\":\"arn:aws:sns:us-east-1:123456789012:MyTopic\",
\"Condition\":{\"StringEquals\":{\"AWS:SourceOwner\":\"123456789012\"}}}]}"

If you don't see events.amazonaws.com with Publish permission in your policy, use AWS CLI to set topic
policy attribute.

Copy current policy and add statement below to list of statements:

{\"Sid\":\"Allow_Publish_Events\",
\"Effect\":\"Allow\",\"Principal\":{\"Service\":\"events.amazonaws.com\"},
\"Action\":\"sns:Publish\",
\"Resource\":\"arn:aws:sns:us-east-1:123456789012:MyTopic\"}

The new policy should look like the one described above.

Set topic attributes with the AWS CLI:

aws sns set-topic-attributes --region us-east-1 --topic-arn "arn:aws:sns:us-
east-1:123456789012:MyTopic" --attribute-name Policy --attribute-value NEW_POLICY_STRING

Note
If the policy is incorrect, you can also edit the rule in the CloudWatch Events console by
removing and then adding it back to the rule. The CloudWatch Events console will set the correct
permissions on the target.

89

Amazon CloudWatch Events User Guide
My Amazon SNS topic still has permissions for

CloudWatch Events even after I deleted the
rule associated with the Amazon SNS topic

My Amazon SNS topic still has permissions for
CloudWatch Events even after I deleted the rule
associated with the Amazon SNS topic

When you create a rule with Amazon SNS as the target, CloudWatch Events adds the permission to your
Amazon SNS topic on your behalf. If you delete the rule shortly after you create it, CloudWatch Events
might be unable to remove the permission from your Amazon SNS topic. If this happens, you can remove
the permission from the topic using the aws sns set-topic-attributes command. For more information about
resource-based permissions for sending events, see Using Resource-Based Policies for CloudWatch
Events (p. 68).

Which IAM condition keys can I use with
CloudWatch Events

Amazon CloudWatch Events supports the AWS-wide condition keys (see Available Keys in the IAM User
Guide), plus the following service-specific condition keys. For more information, see Using IAM Policy
Conditions for Fine-Grained Access Control (p. 73).

How can I tell when CloudWatch Events rules are
broken

You can use the following alarm to notify you when your CloudWatch Events rules are broken.

To create an alarm to alert when rules are broken

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Click Create Alarm, and then in the CloudWatch Metrics by Category pane, select Events Metrics.

3. On the Create Alarm dialog box, in the list of metrics, select the FailedInvocations check box.

4. Above the graph, select Sum from the Statistic drop-down list.

5. Select a period from the Period drop-down list, for example: 5 minutes.

6. Click Next, and then under Alarm Threshold, in the Name field, enter a unique name for the alarm, for
example: myFailedRules.

7. In the Description field, enter a description of the alarm, for example: Rules are not delivering
events to targets.

8. In the is drop-down list, select >=.

9. In the field next to the is drop-down list, enter 1 and in the for field, enter 10.

10. Under Actions, in the Whenever this alarm drop-down list, select State is ALARM.

11. In the Send notification to drop-down list, select an existing Amazon SNS topic or create a new one.

12. To create a new Amazon SNS topic, select New list.

13. In the Send notification to field, enter a name for the new Amazon SNS topic for example:
myFailedRules, and in the Email list field, enter a comma-separated list of email addresses to be
notified when the alarm changes to the ALARM state.

14. In the navigation pane, choose Create Alarm to complete the alarm creation process.

90

http://docs.aws.amazon.com/cli/latest/reference/sns/set-topic-attributes.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/AvailableKeys.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Events User Guide

Document History

The following table describes the important changes to the Amazon CloudWatch Events User Guide.

Change Description Release Date

Additional targets
supported

You can now set two additional AWS services as
targets for event actions: Amazon EC2 instances (via
Run Command), and Step Functions state machines.
For more information, see Getting Started with Amazon
CloudWatch Events (p. 7).

7 March 2017

Amazon EMR
events

Added support for events for Amazon EMR. For more
information, see Amazon EMR Events (p. 41).

7 March 2017

AWS Health
events

Added support for events for AWS Health. For more
information, see AWS Health Events (p. 50).

1 December 2016

Amazon EC2
Container Service
events

Added support for events for Amazon ECS. For more
information, see Amazon ECS Events (p. 40).

21 November 2016

AWS Trusted
Advisor events

Added support for events for Trusted Advisor. For
more information, see Trusted Advisor Events (p. 53).

18 November 2016

Amazon Elastic
Block Store events

Added support for events for Amazon EBS. For more
information, see Amazon EBS Events (p. 35).

14 November 2016

AWS CodeDeploy
events

Added support for events for AWS CodeDeploy.
For more information, see AWS CodeDeploy
Events (p. 49).

9 September 2016

Scheduled events
with 1 minute
granularity

Added support for scheduled events with 1 minute
granularity. For more information, see Cron
Expressions (p. 24) and Rate Expressions (p. 26).

19 April 2016

Amazon Simple
Queue Service
queues as targets

Added support for Amazon SQS queues as
targets. For more information, see What is Amazon
CloudWatch Events? (p. 1).

30 March 2016

Auto Scaling
events

Added support for events for Auto Scaling lifecycle
hooks. For more information, see Auto Scaling
Events (p. 43).

24 February 2016

91

Amazon CloudWatch Events User Guide

Change Description Release Date

New service Initial release of CloudWatch Events. 14 January 2016

92

Amazon CloudWatch Events User Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

93

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon CloudWatch Events
	Table of Contents
	What is Amazon CloudWatch Events?
	Concepts
	Related AWS Services
	CloudWatch Events Limits

	Setting Up Amazon CloudWatch Events
	Sign Up for Amazon Web Services (AWS)
	Sign in to the Amazon CloudWatch Console
	Account Credentials
	Set Up the Command Line Interface
	Regional Endpoints

	Getting Started with Amazon CloudWatch Events
	Tutorial: Use Amazon CloudWatch Events and Amazon EC2 Run Command to Configure Instances Launched in an Auto Scaling Group
	Tutorial: Log the State of an EC2 Instance Using CloudWatch Events
	Step 1: Create a Lambda Function
	Step 2: Create a Rule
	Step 3: Test the Rule

	Tutorial: Log the State of an Auto Scaling Group Using CloudWatch Events
	Step 1: Create a Lambda Function
	Step 2: Create a Rule
	Step 3: Test the Rule

	Tutorial: Log S3 Object Level Operations Using CloudWatch Events
	Step 1: Create an Event Selector
	Step 2: Create a Lambda Function
	Step 3: Create a Rule
	Step 4: Test the Rule

	Tutorial: Log AWS API Calls Using CloudWatch Events
	Prerequisite
	Step 1: Create a Lambda Function
	Step 2: Create a Rule
	Step 3: Test the Rule

	Tutorial: Schedule EBS Snapshots Using CloudWatch Events
	Step 1: Create a Rule
	Step 2: Test the Rule

	Tutorial: Schedule Lambda Functions Using CloudWatch Events
	Step 1: Create a Lambda Function
	Step 2: Create a Rule
	Step 3: Test the Rule

	Tutorial: Relay Events to a Stream Using CloudWatch Events
	Prerequisite
	Step 1: Create an Amazon Kinesis Stream
	Step 2: Create a Rule
	Step 3: Test the Rule
	Step 4: Verify that the Event is Relayed

	Schedule Expressions for Rules
	Cron Expressions
	Rate Expressions

	Events and Event Patterns
	Event Patterns

	Adding Events with PutEvents
	Handling Failures When Using PutEvents
	Sending Events Using the AWS CLI
	Calculating PutEvents Event Entry Sizes

	Event Types for CloudWatch Events
	Amazon EBS Events
	Amazon EC2 Events
	Amazon EC2 System Manager Events
	Amazon EC2 Maintenance Window Events
	Amazon ECS Events
	Amazon EMR Events
	Auto Scaling Events
	AWS API Call Events
	AWS CodeDeploy Events
	AWS Console Sign-in Events
	AWS Health Events
	AWS KMS Events
	Scheduled Events
	Trusted Advisor Events

	Authentication and Access Control for Amazon CloudWatch Events
	Authentication
	Access Control
	Overview of Managing Access Permissions to Your CloudWatch Events Resources
	CloudWatch Events Resources and Operations
	Understanding Resource Ownership
	Managing Access to Resources
	Identity-Based Policies (IAM Policies)
	Resource-Based Policies

	Specifying Policy Elements: Actions, Effects, and Principals
	Specifying Conditions in a Policy

	Using Identity-Based Policies (IAM Policies) for CloudWatch Events
	Permissions Required to Use the CloudWatch Console
	AWS Managed (Predefined) Policies for CloudWatch Events
	IAM Roles for Sending Events

	Permissions Required for CloudWatch Events to Access Certain Targets
	Customer Managed Policy Examples
	Example 1: CloudWatchEventsBuiltInTargetExecutionAccess
	Example 2: CloudWatchEventsInvocationAccess
	Example 3: CloudWatchEventsConsoleAccess
	Example 4: CloudWatchEventsFullAccess
	Example 5: CloudWatchEventsReadOnlyAccess

	Using Resource-Based Policies for CloudWatch Events
	AWS Lambda Permissions
	Amazon SNS Permissions
	Amazon SQS Permissions

	CloudWatch Events Permissions Reference
	Using IAM Policy Conditions for Fine-Grained Access Control
	Example 1: Limit Access to a Specific Source
	Example 2: Define Multiple Sources That Can Be Used in an Event Pattern Individually
	Example 3: Define a Source and a DetailType That Can Be Used in an Event Pattern
	Example 4: Ensure That the Source Is Defined in the Event Pattern
	Example 5: Define a List of Allowed Sources in an Event Pattern with Multiple Sources
	Example 6: Ensure That AWS CloudTrail Events for API Calls from a Certain PrincipalId Are Consumed
	Example 7: Limiting Access to Targets

	Logging Amazon CloudWatch Events API Calls in AWS CloudTrail
	CloudWatch Events Information in CloudTrail
	Understanding Log File Entries

	Troubleshooting CloudWatch Events
	My rule was triggered but my Lambda function was not invoked
	I have just created/modified a rule but it did not match a test event
	My rule did not self-trigger at the time specified in the ScheduleExpression
	My rule did not trigger at the time that I expected
	My rule matches IAM API calls but my rule was not triggered
	My rule is not working because the IAM role associated with the rule is ignored when the rule is triggered
	I created a rule with an EventPattern that is supposed to match a resource, but I don't see any events that match the rule
	My event's delivery to the target experienced a delay
	My rule was triggered more than once in response two identical events. What guarantee does CloudWatch Events offer for triggering rules or delivering events to the targets?
	My rule is being triggered but I don't see any messages published into my Amazon SNS topic
	My Amazon SNS topic still has permissions for CloudWatch Events even after I deleted the rule associated with the Amazon SNS topic
	Which IAM condition keys can I use with CloudWatch Events
	How can I tell when CloudWatch Events rules are broken

	Document History
	AWS Glossary

