

Reliability Pillar
AWS Well-Architected Framework

April 2019

Notices

Customers are responsible for making their own independent assessment of

the information in this document. This document: (a) is for informational

purposes only, (b) represents current AWS product offerings and practices,

which are subject to change without notice, and (c) does not create any

commitments or assurances from AWS and its affiliates, suppliers or licensors.

AWS products or services are provided “as is” without warranties,

representations, or conditions of any kind, whether express or implied. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any

agreement between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Reliability ... 1

Design Principles .. 2

Definition ... 3

Foundation – Limit Management ... 5

Foundation - Networking.. 7

Application Design for High Availability ... 13

Understanding Availability Needs .. 19

Application Design for Availability .. 20

Operational Considerations for Availability .. 28

Example Implementations for Availability Goals ... 35

Dependency Selection.. 36

Single Region Scenarios .. 36

Multi-Region Scenarios .. 44

Conclusion.. 51

Contributors .. 53

Document Revisions .. 53

Appendix A: Designed-For Availability for Select AWS Services 54

Abstract

The focus of this paper is the reliability pillar of the AWS Well-Architected

Framework. It provides guidance to help you apply best practices in the design,

delivery, and maintenance of Amazon Web Services (AWS) environments.

https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/architecture/well-architected/

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 1

Introduction

The AWS Well-Architected Framework helps you understand the pros and cons

of decisions you make while building systems on AWS. By using the

Framework you will learn architectural best practices for designing and

operating reliable, secure, efficient, and cost-effective systems in the cloud. It

provides a way to consistently measure your architectures against best

practices and identify areas for improvement. We believe that having well-

architected systems greatly increases the likelihood of business success.

The AWS Well-Architected Framework is based on five pillars:

• Operational Excellence

• Security

• Reliability

• Performance Efficiency

• Cost Optimization

This paper focuses on the reliability pillar and how to apply it to your solutions.

Achieving reliability can be challenging in traditional on-premises environments

due to single points of failure, lack of automation, and lack of elasticity. By

adopting the practices in this paper you will build architectures that have strong

foundations, consistent change management, and proven failure recovery

processes.

This paper is intended for those in technology roles, such as chief technology

officers (CTOs), architects, developers, and operations team members. After

reading this paper, you will understand AWS best practices and strategies to

use when designing cloud architectures for reliability. This paper includes high-

level implementation details and architectural patterns, as well as references to

additional resources.

Reliability

The reliability pillar encompasses the ability of a system to recover from

infrastructure or service disruptions, dynamically acquire computing resources

to meet demand, and mitigate disruptions such as misconfigurations or

https://aws.amazon.com/architecture/well-architected/

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 2

transient network issues. This paper provides in-depth, best-practice guidance

for architecting reliable systems on AWS.

Design Principles

In the cloud, there are a number of principles that can help you increase

reliability:

• Test recovery procedures: In an on-premises environment, testing is
often conducted to prove the system works in a particular scenario;
testing is not typically used to validate recovery strategies. In the cloud,
you can test how your system fails, and you can validate your recovery
procedures. You can use automation to simulate different failures or to
recreate scenarios that led to failures before. This exposes failure
pathways that you can test and fix before a real failure scenario,
reducing the risk of components that have not been tested before failing.

• Automatically recover from failure: By monitoring a system for key
performance indicators (KPIs), you can trigger automation when a
threshold is breached. These KPIs should be a measure of business
value, not of the technical aspects of the operation of the service. This
allows for automatic notification and tracking of failures, and for
automated recovery processes that work around or repair the failure.
With more sophisticated automation, it is possible to anticipate and
remediate failures before they occur.

• Scale horizontally to increase aggregate system availability:
Replace one large resource with multiple small resources to reduce the
impact of a single failure on the overall system. Distribute requests
across multiple, smaller resources to ensure that they don’t share a
common point of failure.

• Stop guessing capacity: A common cause of failure in on-premises
systems is resource saturation, when the demands placed on a system
exceed the capacity of that system (this is often the objective of denial of
service attacks). In the cloud, you can monitor demand and system
utilization, and automate the addition or removal of resources to maintain
the optimal level to satisfy demand without over- or under-provisioning.
There are still limits, but some limits can be controlled and others can be
managed (See Foundation-Limit Management).

• Manage change in automation: Changes to your infrastructure should
be via automation. The changes that need to be managed are changes
to the automation.

We will discuss all these design principals when illustrating scenarios.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 3

Definition

Service availability is commonly defined as the percentage of time that an

application is operating normally. That is, it’s the percentage of time that it’s

correctly performing the operations expected of it. This percentage is calculated

over periods of time, such as a month, year, or trailing 3 years. Applying the

strictest possible interpretation, availability is reduced any time the application

isn’t operating normally, including both scheduled and unscheduled

interruptions. We define availability using the following criteria:

• Availability = Normal Operation Time / Total Time

• A percentage of uptime (such as 99.9%) over a period of time

(commonly a year)

• Common short-hand refers only to the “number of 9’s”; for example, “five

nines” translates to 99.999% available

• Some customers choose to exclude scheduled service downtime (for

example, planned maintenance) from the Total Time in the formula in the

first bullet. However, this is often a false choice because customers

might actually want to use your service during these times.

Here is a table of common application availability design goals and the possible

length of interruptions that can occur within a year while still meeting the goal.

The table contains examples of the types of applications we commonly see at

each availability tier. In this document, we will refer to these values.

Availability

Max Disruption

(per year) Application Categories

99% 3 days 15 hours Batch processing, data extraction, transfer,

and load jobs

99.9% 8 hours 45 minutes Internal tools like knowledge management,

project tracking

99.95% 4 hours 22 minutes Online commerce, point of sale

99.99% 52 minutes Video delivery, broadcast systems

99.999% 5 minutes ATM transactions, telecommunications

systems

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 4

Calculating availability with hard dependencies. Many systems have hard

dependencies on other systems, where an interruption in a dependent system

directly translates to an interruption of the invoking system. This is opposed to a

soft dependency, where a failure of the dependent system is compensated for

in the application. Where such hard dependencies occur, the invoking system

availability is the product of the dependent systems’ availabilities. For example,

if you have a system designed for 99.99% availability that has a hard

dependency on two other independent systems that each are designed for

99.99% availability, the system can theoretically achieve 99.97% availability:

invoking system * dependent 1 * dependent 2 =

99.99% * 99.99% * 99.99% = 99.97%

It’s therefore important to understand your dependencies and their availability

design goals as you calculate your own.

Calculating availability with redundant components. When a system

involves the use of independent, redundant components (for example,

redundant Availability Zones), the theoretical availability is computed as 100%

minus the product of the component failure rates (100% minus availability.) For

example, if a system makes use of two independent components, each with an

availability of 99.9%, the resulting system availability is >99.999%:

maximum availability - ((downtime of dependent 1) * (downtime of dependent

2)) =

100% - (0.1% * 0.1%) = 99.9999%

But what if I don’t know the availability of a dependency?

Calculating dependency availability. Some dependencies provide guidance

on their availability, including availability design goals for many AWS services

(see Appendix A: Designed-For Availability for Select AWS Services). But in

cases where this isn’t available (for example, a component where the

manufacturer does not publish availability information), one simple way to

estimate is to determine the Mean Time Between Failure (MTBF) and Mean

Time to Recover (MTTR). An availability estimate can be established by:

Availability Estimate = MTBF / (MTBF + MTTR)

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 5

For example, if the MTBF is 150 days and the MTTR is 1 hour, the availability

estimate is 99.97%.

For additional details: This document can help you calculate your availability.

Costs for availability. Designing applications for higher levels of availability

typically comes with increased costs, so it’s appropriate to identify the true

availability needs before embarking on application design. High levels of

availability impose stricter requirements for testing and validation under

exhaustive failure scenarios. They require automation for recovery from all

manner of failures, and require that all aspects of system operations be similarly

built and tested to the same standards. For example, the addition or removal of

capacity, the deployment or rollback of updated software or configuration

changes, or the migration of system data must be conducted to the desired

availability goal. Compounding the costs for software development, at very high

levels of availability, innovation suffers because of the need to move more

slowly in deploying systems. The guidance, therefore, is to be thorough in

applying the standards and considering the appropriate availability target for the

entire lifecycle of operating the system.

Another way that costs escalate in systems that operate with higher availability

design goals is in the selection of dependencies. At these higher goals, the set

of software or services that can be chosen as dependencies will diminish based

on which of these services have had the deep investments we previously

described. As the availability design goal increases, it’s typical to find fewer

multi-purpose services (such as a relational database) and more purpose-built

services. This is because the latter are easier to evaluate, test, and automate,

and have a reduced potential for surprise interactions with included but unused

functionality.

Foundation – Limit Management

When architecting systems there are physical limits and resource constraints

that need to be taken into account. A common source of failure, and a reason

for a lack of availability, is resource constraint. For example, the rate that you

can push bits down a fiber optic cable, or the amount of storage on a physical

disk. Understanding physical constraints is the first part of designing reliable

systems. Second, with service-based architecture, there are often service limits

that act to protect the service from breaching Service Level Agreements (rate

http://www.delaat.net/rp/2013-2014/p17/report.pdf

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 6

limits) or design constraints (hard limits). The final piece of limit management is

alerting and reporting, which enable you to know when you hit a limit or are

about to hit a limit, and then you can react accordingly.

The default limits for cloud resources created by AWS services are documented

for each service. These limits are tracked per account, so if you use multiple

accounts, you need to know what the limits are in each account. Other limits

may be based on your configuration. Examples of these limits are number of

instances in an Auto Scaling group, provisioned IOPS, RDS storage allocated,

EBS volume allocations, network IO, available IP addresses in a subnet or

VPC, etc.

Limits are enforced per AWS Region and per AWS account. If you are planning

to deploy into multiple regions or AWS accounts, then you should ensure that

you increase limits in the regions and accounts that you using. Additionally,

ensure you have sufficient buffer accounted for, such that an Availability Zone

event will not cause you to exceed your limits when requesting additional

resources while the unhealthy resources are being terminated.

AWS provides a list of some service limits via AWS Trusted Advisor, and others

are available from the AWS Management Console. The default service limits

that are provided are available in the Service Limits documentation; you can

contact AWS Support to provide your current limits for the services you are

using if you have not tracked your limit increase requests. For rate limits on

throttled APIs, the SDKs provide mechanisms (retry, exponential back off) to

handle throttled responses. You should evaluate your use cases to decide

which scheme works better for you. If you have a use case where the throttling

limits impact your application’s performance, then contact AWS Support to see

if there are mitigations or if the limit can be increased.

Ideally, limit tracking is automated. You can store what your current service

limits are in a persistent data store like Amazon DynamoDB. If you integrate

your Configuration Management Database (CMDB) or ticketing system with

AWS Support APIs, you can automate the tracking of limit increase requests

and current limits. If you integrate with a CMDB, then it is likely that you can

store the service limits within that system.

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 7

Key AWS Services

The key AWS feature that supports a way to identify what service limits

currently are is AWS Trusted Advisor which provides a list of what limits it

returns. The following services and features are also important:

• Amazon CloudWatch: You can set alarms to indicate when you are

getting close to limits in Network IO, Provisioned IOPS, EBS and

ephemeral volume capacity (through custom metrics), etc. You can also

set alarms for when you are approaching maximum capacity of auto

scaling groups.

• Amazon CloudWatch–Logs: Metric filters can be used to search and

extract patterns in a log event. Log entries are converted to numeric

metrics, and alarms can be applied.

Resources

Refer to the following resources to learn more about AWS best practices for

identifying limits and managing limits, and see AWS Answers for an example of

automated limit monitoring:

Video

• How do I manage my AWS service limits?

Documentation

• AWS Service Limits

• Service Limit Reports Blog Post

• Trusted Advisor FAQs

• AWS Limit Monitor on AWS Answers

Foundation - Networking

When architecting systems using IP-address-based networks you need to plan

network topology and addressing in anticipation of future growth and integration

with other systems and their networks. You might find that your infrastructure is

https://aws.amazon.com/premiumsupport/knowledge-center/manage-service-limits/
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://aws.amazon.com/about-aws/whats-new/2014/06/19/amazon-ec2-service-limits-report-now-available/
https://aws.amazon.com/premiumsupport/ta-faqs
https://aws.amazon.com/answers/account-management/limit-monitor/

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 8

limited if you don’t plan for growth, or you might have difficulties integrating

incompatible addressing structures.

Amazon Virtual Private Cloud (Amazon VPC) lets you provision a private,

isolated section of the AWS Cloud where you can launch AWS resources in a

virtual network.

When you plan your network topology, the first step is to define the IP address

space itself. Following RFC 1918 guidelines, Classless Inter-Domain Routing

(CIDR) blocks should be allocated for each VPC. Consider doing the following

things as part of this process:

• Allow IP address space for more than one VPC per Region.

• Consider cross-account connections. For example, each line of business

might have a unique account and VPCs. These accounts should be able

to connect back to shared services.

• Within a VPC, allow space for multiple subnets that span multiple

Availability Zones.

• Always leave unused CIDR block space within a VPC.

The second step in planning your network topology is to ensure the resiliency of

connectivity:

• How are you going to be resilient to failures in your topology?

• What happens if you misconfigure something and remove connectivity?

• Will you be able to handle an unexpected increase in traffic/use of your

services?

• Will you be able to absorb an attempted Denial of Service (DoS) attack?

AWS has many features that will influence your design. How many VPCs do

you plan to use? Will you use Amazon VPC peering between your VPCs? Will

you connect virtual private networks (VPNs) to any of these VPCs? Are you

going to use AWS Direct Connect or the internet?

A best practice is to always use private address ranges as identified by RFC

1918 for your VPC CIDR blocks. The range you pick should not overlap your

existing use or anything that you plan to share address space with using VPC

peering or VPN. In general, you need to make sure your allocated range

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 9

includes sufficient address space for the number of subnets you need to deploy,

the potential size of Elastic Load Balancing (ELB) load balancers, the number of

concurrent Lambda invocations within your VPC, and your servers (including

machine learning servers) and containers deployed within your subnets. In

general, you should plan on deploying large VPC CIDR blocks. Note that VPC

CIDR blocks can be changed after they are deployed, but if you allocate large

CIDR ranges for your VPC, it will be easier to manage in the long term. Subnet

CIDRs cannot be changed. Keep in mind that deploying the largest VPC

possible results in over 65,000 IP addresses. The base 10.x.x.x address space

means that you can use over 16,000,000 IP addresses. You should err on the

side of too large instead of too small for all these decisions.

The connectivity from a VPC is governed through route table entries. An

internet gateway, NAT Gateway, virtual private gateway, or VPC peering

connection are all exposed to a subnet through an entry in its route table. When

you plan your network. Consider the virtual private gateway and VPC peering

that you want.

An additional option for inter VPC connectivity is VPC Endpoint Services. This

enables you to use a Network Load Balancer as a private entry point from

another VPC.

Another option for setting up networking between VPCs is to use VPN

appliances. Commonly used appliances are available on the AWS Marketplace.

You should consider the resiliency and bandwidth requirements that you need

when you select the vendor and instance size on which you need to run the

appliance. If you use a VPN appliance that is not resilient in its implementation,

then you should have a redundant connection through a second appliance. For

all these scenarios, you need to define acceptable time to recovery (TTR) and

test to ensure you can meet those requirements.

If you choose to connect your VPC to your data center via an AWS Direct

Connect connection and you need this connection to be highly available, have a

redundant connection fallback through a second AWS Direct Connect

connection from another location. If you have multiple data centers, then ensure

the connections terminate at different locations.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 10

For maximum resiliency, you should have redundant Direct Connect

connections from each data center.

If you choose to fail over to VPN over the internet using AWS Managed VPN, it

is important to understand that it supports up to 1.25 Gbps throughput per VPN

tunnel, but does not support Equal Cost Multi Path (ECMP) for egress in the

case of multiple AWS Managed VPN tunnels terminating on the same VGW.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 11

We do not recommend customers use AWS Managed VPN as a backup for

AWS Direct Connect connections with speeds greater than 1 Gbps. Indeed,

even with multiple Direct Connect connections, you need to ensure that the

failure of one network connection does not overwhelm and degrade the

redundant connections.

You should use existing standards for protecting your resources within this

private address space. A subnet or set of subnets (one per Availability Zone)

should be used as a barrier between the internet and your applications. In an

on-premises environment, you often have firewalls with features to deflect

common web attacks, and you often have load balancers or edge routers to

deflect DoS attacks, such as SYN floods. AWS provides many services that can

provide this functionality, such as AWS Shield and AWS Shield Advanced, an

integrated web application firewall (AWS WAF) deployed on Amazon

CloudFront and on ELB, ELB itself, and features of AWS virtual networking like

VPC security groups and network access control lists (ACLs). You can augment

these features with virtual appliances from AWS Partners and the AWS

Marketplace to meet your needs.

Key AWS Services for Network Topology

The key AWS service that supports your network planning is Amazon Virtual

Private Cloud (Amazon VPC), which allows you to allocate private IP address

ranges to either provide non-internet-accessible resources or to extend your

data center. The following services and features are also important:

• AWS Direct Connect: Can be used to give a private dedicated

connection to AWS for possible lower latency and consistent

performance to and from AWS.

• Amazon EC2: If you choose to implement VPNs between your networks,

this is the service on which you run VPN appliances.

• Amazon Route 53: A Domain Name System (DNS) service that is

integrated directly with ELB and can help provide a layer of defense in

the event of a DoS attack.

• AWS Global Accelerator: This is a network layer service that you can

use to create accelerators that direct traffic to optimal endpoints over the

AWS global network.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 12

• Elastic Load Balancing: Provides load balancing across Availability

Zones, performs Layer 7 routing, integrates with AWS WAF, and

integrates with Auto Scaling to help create a self-healing infrastructure

and absorb increases in traffic while releasing resources when traffic

decreases.

• AWS Shield: Provides automatic protection against Distributed Denial of

Service (DDoS) attacks at no extra cost. Additional protection within your

provisioned infrastructure is available as AWS Shield Advanced and will

protect Elastic Load Balancing load balancers, Amazon CloudFront

distributions, and Amazon Route 53-hosted zones.

Resources for Network Topology

Refer to the following resources to learn more about AWS best practices for

network planning.

Videos

• Advanced VPC Design and New Capabilities for Amazon VPC (NET303)

• AWS Transit Gateway and Transit VPCs (NET402)

Documentation

• Amazon Virtual Private Cloud Product Page

• Amazon Virtual Private Cloud Documentation

• Announcement on Amazon VPC allowing customers to expand their

VPCs

• VPC Endpoint Services (AWS PrivateLink)

• Transit Gateways

• AWS Global Accelerator

• Amazon EC2 Instance Types Product Page

• Amazon EC2 Instance Types Documentation

• AWS Marketplace for Network Infrastructure

• AWS Shield Documentation

https://www.youtube.com/watch?v=fnxXNZdf6ew
https://www.youtube.com/watch?v=ar6sLmJ45xs
https://aws.amazon.com/vpc/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://aws.amazon.com/about-aws/whats-new/2017/08/amazon-virtual-private-cloud-vpc-now-allows-customers-to-expand-their-existing-vpcs/
https://aws.amazon.com/about-aws/whats-new/2017/08/amazon-virtual-private-cloud-vpc-now-allows-customers-to-expand-their-existing-vpcs/
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/endpoint-service.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/what-is-global-accelerator.html
https://aws.amazon.com/ec2/instance-types/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://aws.amazon.com/marketplace/b/2649366011/ref=gtw_navlft_node_2649366011
http://docs.aws.amazon.com/waf/latest/developerguide/shield-chapter.html

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 13

• AWS Best Practices for DDoS Resiliency Whitepaper

• Single Region Multi-VPC Connectivity on AWS Answers

• Amazon VPC Connectivity Options Whitepaper

Application Design for High Availability

The purpose of this section is to help you think through building and operating

applications on AWS with the right level of availability to meet your business

needs. Availability goals can vary from those applicable to internal tools (for

example, 99% availability) to those for mission critical workloads (for example,

99.999% or even higher.) Based on the necessary availability, the level of effort

that’s required of engineering and operations, and the services that are

appropriate to use to deliver the application will vary. Costs can be considerable

to achieve the highest levels of availability. We’ll share several practical

techniques for applying AWS services to achieve the availability your workloads

require.

Note: If the topic of Reliability is new to you, or if you’re new to AWS, check out

the Automate Deployments to Eliminate Impact (Change Management) and

Recovery Oriented Computing (Failure Management) sections later in this

whitepaper. These sections will cover some concepts that will be helpful as you

read this section.

When designing a new application, it’s common to assume that it must be “five

nines” (99.999%) available without appreciating the true cost to build and

operate applications at that level of availability. Doing so requires that every

piece of networking and infrastructure from end customers to the service

application, data stores, and all other components must be built and operated to

achieve 99.999%. As just one example, most internet service providers aren’t

built to achieve five nines of availability. Therefore, multiple service providers

(with no common point of failure) are required for the application to be 99.999%

available to a specific end customer.

In addition, the application and all of its dependencies needs to be built and

tested to this level of availability, also avoiding single points of failure. This will

require extensive custom development, because many software libraries and

https://d0.awsstatic.com/whitepapers/Security/DDoS_White_Paper.pdf
https://aws.amazon.com/answers/networking/aws-single-region-multi-vpc-connectivity/
https://d0.awsstatic.com/whitepapers/aws-amazon-vpc-connectivity-options.pdf

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 14

systems are not built to five nines availability. The whole system will require

exhaustive testing for failure triggers. Because 99.999% availability provides for

less than 5 minutes of downtime per year, every operation performed to the

system in production will need to be automated and tested with the same level

of care. With a 5 minute per year budget, human judgment and action is

completely off the table for failure recovery. The system must automatically

recover under every situation. Therefore, the production environment will by

necessity be slow-moving, with each change tested in a full-scale replica pre-

production environment (itself adding significant cost.)

Applications that truly require 99.999% availability can be built on AWS, as the

following example illustrates.

99.999% available application. Let's create an ATM network to dispense cash

to customers. It consists of custom external devices (ATMs), connected via a

network to the host processor operated by the merchant bank that owns the

ATM. The merchant bank maintains a cash account for the balance of the

machine called a host processor account. The host processor has redundant

connectivity to all the banks and banking networks that are to be provided.

The devices themselves are not available all of the time, nor is the network

connectivity of any single device, so you deploy a large number of them to

enable a customer to easily use a different device if one is down or lacks

connectivity. In “availability-speak”, they are redundant and fail independently.

The host processor is actually at least two computers and storage that are

deployed across independent AWS Regions, with synchronous replication

between the Regions. The host processors have redundant connections to the

merchant bank and banking networks, and the host processors have standby

copies in an independent location. When cash is required, the host processor

requests an Electronic Funds Transfer to take the money from the customer’s

account and put it in the host processor account. After it has the funds

transferred, it will send a signal to the ATM to dispense the money. It then

initiates an Automated Clearing House (ACH) transfer of those funds to the

merchant bank’s account over the redundant connectivity to the merchant bank.

This will reimburse the merchant bank for the funds dispensed. If a problem

happens to the connectivity between the ATM and the host processor or the

ATM machine itself after the funds have been transferred to the host processor,

it can’t tell the ATM to dispense the cash. It will transfer the funds back to the

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 15

customer’s account. The ATM will timeout the transaction and then mark itself

out of service.

Multiple AWS Direct Connect connections will be established from the host

processors on AWS to the merchant bank. The connectivity from the ATM

machines will also be run through redundant Direct Connect providers to the

host processor. If the redundant connectivity to the merchant back is severed

from both host processors, they will durably store the request for the ACH

transfer until the connection is restored, while marking the ATMs that it operates

out of service.

This application can be built and operated on AWS. However as discussed

earlier, the costs will be considerable. For most applications, we recommend

starting by posing a few simple questions:

• What problems are you trying to solve?

• What specific aspects of the application require specific levels of

availability?

• What amount of cumulative downtime can this workload realistically

accumulate in a year?

• In essence, what’s the real impact of the system being unavailable?

Let’s explore an example where you might initially assume the application

needs to be 99.999% available, but in reality it can be successful despite a

lower availability design goal.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 16

Let’s create a smart home heating product. It consists of a mobile application,

and a wireless thermostat that is electrically connected to the heating system.

The thermostat has a connection to your control endpoint on the internet. Your

app uses your API on the internet to send actions to the thermostat. Of course,

your users will expect that turning the heating on will always work. They need

five nines of availability. How might we deliver that availability? Consider the

required architecture for that level of availability:

What if their internet service provider (ISP) has an interruption? To really be

available to your customers, you would need a redundant internet connection

over mobile. This increases the cost of your thermostat, production costs,

running costs, and the complexity of the code that runs on it. You will also have

to test that this redundancy switches correctly. And then you need to look at

other points of failure in this design. What happens when you need to update

the operating system that the “Service” runs on? Or if you need to deploy a new

version? What if you need to reconfigure your datacenter network? Or if you

need to add more storage? Alternatively, you could have a physical override

button on the thermostat for when the internet connection is down.

This is an example where expressing a reliability requirement without

considering scope and costs and calculating your return on investment (ROI)

could lead you down the wrong path. For example, the thermostat needs five-

nines of availability, not the whole architecture. In your analysis, you should be

asking questions about unspoken assumptions. Do you have customers at all

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 17

hours that will not come back to conduct business at another time if you have

an interruption? Could you use a lower level of availability with a fallback

mechanism to handle failures?

In most applications, there are numerous potential sources of interruption that

need to be considered. At higher levels of availability, the detection and

response to these interruptions must be fully automated.

The following table list common sources of interruption:

Category Description

Hardware failure Failure of any hardware component in the system,

including in hosts, storage, network, or elsewhere.

Deployment failure Failure caused directly as a result of a software,

hardware, network, or configuration deployment. This

includes both automated and manual changes. The

rest of the buckets specifically do not meet this

definition.

Load induced Load related failures can be triggered by a change in

behavior, either of a specific caller or in the aggregate,

or by the service reaching a tipping point. Load failures

can occur in the network.

Data induced An input or entry is accepted by the system that it can’t

process (“poison pill”)

Credential expiration Failure caused by the expiration of a certificate or

credential.

Dependency Failure of a dependent service results in failure of the

monitored service.

Infrastructure Power supply or environmental condition failure has an

impact on hardware availability.

Identifier exhaustion Exceeding available capacity, a throttling limit was hit,

an ID ran out, or a resource that is vended to

customers is no longer available

Achieving 99.999% availability means mastering all of the sources of

interruption listed here and automating all human intervention out of operational

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 18

processes. It means testing literally every aspect of your application including

anticipating ways that your customers will use it that most people could hardly

dream of. It means deploying and maintaining canaries that constantly test your

application, and frequently doing automated fail-over testing to ensure that each

part of your network performs properly under these conditions. It means both

unit-level and workflow/transaction monitoring of both success and failure, and

it means alarming and log analysis, auto-rollback, and automatic system

recovery capabilities that include every dependent service, network connection,

and piece of infrastructure between you and your customers.

Upon deep analysis, the work involved in achieving and maintaining high

availability applications seems daunting. That often leads to a more refined

definition and prioritization of requirements:

• What are the most valuable transactions to your customers and to your

business?

• Can you predict when certain geographies have the greatest demand?

• What times of day, week, month, quarter, or year are your peak times?

The good news is that AWS provides numerous services that abstract the work

required to do many of these things, provided the right services are chosen to

meet your availability design goals. Defining the right design goal for availability

will start you down the path of how to implement your application and identify

what the additional costs are to achieve that availability. The remainder of this

whitepaper will help you think about selecting the right design goal, and then

choosing AWS services, building software, and constructing operational

practices that meet your goals.

The remainder of this section is presented in four parts:

• Understanding Availability Needs

• Application Design for Availability

• Operational Considerations for Availability

• Example Implementations for Availability Goals

We’ll explore how availability needs influence your architecture in

“Understanding availability needs.” In “Application design for availability” we

look at common techniques we apply to improve availability. We talk about

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 19

methods of updating your application that can minimize availability impacts in

“Operational Considerations for Availability.” Finally, in “Example

Implementations for Availability Goals” we illustrate how using different methods

can improve your availability.

Understanding Availability Needs

It’s common to initially think of an application’s availability as a single target for

the application as a whole. However, upon closer inspection we frequently find

that certain aspects of an application or service have different availability

requirements. For example, some systems might prioritize the ability to receive

and store new data ahead of retrieving existing data. Other systems prioritize

real-time operations over operations that change a system’s configuration or

environment. Services might have very high availability requirements during

certain hours of the day, but can tolerate much longer periods of disruption

outside of these hours. These are a few of the ways that you can decompose a

single application into constituent parts, and evaluate the availability

requirements for each. The benefit of doing so is to focus efforts (and expense)

on availability according to specific needs, rather than engineering the whole

system to the strictest requirement.

Recommendation

Critically evaluate the unique aspects to your applications and, where

appropriate, differentiate the availability design goals to reflect the needs of

your business.

Within AWS, we commonly divide services into the “data plane” and the “control

plane.” The data plane is responsible for delivering real time service while

control planes are used to configure the environment. For example, Amazon

EC2 instances, Amazon RDS databases, and Amazon DynamoDB table

read/write operations are all data plane operations. In contrast, launching new

EC2 instances or RDS databases, or adding or changing table meta-data in

DynamoDB are all considered control plane operations. While high levels of

availability are important for all of these capabilities, the data planes typically

have higher availability design goals than the control planes.

Many of our customers take a similar approach to critically evaluating their

applications and identifying sub-components with different availability needs.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 20

With this information in hand, availability design goals are then tailored to the

sub-component, and work is done to meet the specific design goal of each sub-

component. Naturally, components that have higher availability design goals will

necessitate deeper investment in the engineering, testing, and operations

automation.

Availability design goals are then tailored to the different aspects, and the

appropriate work efforts are executed to engineer the system. AWS has

significant experience engineering applications with a range of availability

design goals, including services with 99.999% or greater availability. AWS

Solution Architects (SAs) can help you design appropriately for your availability

goals. Involving AWS early in your design process improves our ability to help

you meet your availability goals. Planning for availability is not only done before

your workload launches. It is done continuously to refine your design as you

gain operational experience, learn from real world events, and endure failures

of different types. You can then apply the appropriate work effort to improve

upon your implementation.

Application Design for Availability

In the years that we’ve operated Amazon.com and AWS, we’ve gathered deep

experience in designing applications for availability. While there are many

lessons to be learned, the five most common practices we apply to improve

availability are following:

• Fault Isolation Zones

• Redundant components

• Micro-service architecture

• Recovery Oriented Computing

• Distributed systems best practices

The following sections dive deep on each practice.

Fault Isolation Zones

As described above, one of the most well-known and widely used techniques

for increasing a system’s availability beyond the availability of individual

components is to make use of multiple independent components in parallel. (A

common example is the use of multiple AWS Availability Zones.) When building

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 21

a system that relies on redundant components, it’s important to ensure the

components operate independently, and in the case of AWS Regions,

autonomously. Theoretical availability calculations are only valid if this holds

true.

AWS has multiple constructs that provide different levels of independent,

redundant components. Starting at the lowest levels, to strengthen data plane

availability, AWS partitions resources and requests via some dimension, such

as a resource ID. These partitions (which we refer to as “cells” but others may

call “shards” or “stripes”) are designed to be independent and further contain

faults to within a single cell. To do so, it’s important to identify the proper

partition key to minimize cross-cell interactions and avoid the need to involve

complex mapping services in each request. Services that require complex

mapping end up merely shifting the problem to the mapping services, while

services that require cross-cell interactions reduce the independence of cells

(and thus the assumed availability improvements of doing so). As one example,

Amazon Route53 uses the concept of shuffle sharding to isolate customer

requests into cells.

AWS also employs the fault isolation construct of Availability Zones (AZs). AWS

Regions are composed of two or more Availability Zones that are designed to

be independent. Each Availability Zone is separated by a large physical

distance from other zones to avoid correlated failure scenarios due to

environmental hazards like fires, floods, and tornadoes. Each Availability Zone

has independent physical infrastructure: dedicated connections to utility power,

standalone backup power sources, independent mechanical services, and

independent network connectivity within and beyond the Availability Zone.

Despite being geographically separated, Availability Zones are located in the

same regional area. This enables synchronous data replication (for example,

between databases) without undue impact on application latency. This allows

customers to use Availability Zones in an active/active or active/standby

configuration. Availability Zones are independent, and therefore application

availability is increased when multiple AZs are used. Some AWS services

(including the EC2 instance data plane) are deployed as strictly zonal services

where they have shared fate with the Availability Zone as a whole. These

services are used to independently operate resources (instances, databases,

and other infrastructure) within the specific Availability Zone. AWS has long

offered multiple Availability Zones in our Regions.

https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 22

While AWS control planes typically provide the ability to manage resources

within the entire Region (multiple Availability Zones), certain control planes

(including Amazon EC2 and Amazon EBS) have the ability to filter results to a

single Availability Zone. When this is done, the request is processed only in the

specified Availability Zone, reducing exposure to disruption in other Availability

Zones.

Recommendation

When your application relies on the availability of control plane APIs during

a disruption of one Availability Zone, use API filters to request results for a

single Availability Zone with each API request (for example, with

DescribeInstances.)

The most pervasive fault isolation construct is that of the AWS Region. Regions

are designed to be autonomous, with dedicated copies of services deployed in

each Region. Regional AWS services internally use multiple Availability Zones

in an active/active configuration to achieve the availability design goals we

establish.

While we provide customers capability to operate services cross-Region (for

example, cross-Region replication for Amazon Simple Storage Service

(Amazon S3) and the ability to copy various snapshots and Amazon Machine

Images (AMIs) to other Regions), we do so in ways that preserves the Region’s

autonomy. There are very few exceptions to this approach, including our

services that provide global edge delivery (such as Amazon CloudFront and

Amazon Route53), along with the control plane for the AWS Identity and

Access Management (IAM) service. The vast majority of services operate

entirely within a single Region. Appendix A provides a table of design goals for

availability of selected services, in both single Availability Zone and Multi-AZ

configurations. You can use this information to guide your design goals for your

applications.

Redundant Components

One of the bedrock principles for service design in AWS is the avoidance of

single points of failure in underlying physical infrastructure. This motivates us to

build software and systems that use multiple Availability Zones and are resilient

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 23

to failure of a single zone. Similarly, systems are built to be resilient to failure of

a single compute node, single storage volume, or single instance of a database.

Micro-Service Architecture

At AWS, we have built our systems using a concept called micro-services.

While micro-services have several attractive qualities, the most important

benefit for availability is that micro-services are smaller and simpler. They allow

you to differentiate the availability required of different services, and thereby

focus investments more specifically to the micro-services that have the greatest

availability needs. For example, to deliver product information pages on

Amazon.com (“detail pages”), hundreds of micro-services are invoked to build

discrete portions of the page. While there are a few services that must be

available to provide the price and the product details, the vast majority of

content on the page can simply be excluded if the service isn’t available. Even

such things as photos and reviews are actually not required to provide an

experience where a customer can buy a product.

Microservices take the concept of service-oriented architecture to a point of

creating services that have a minimal set of functionality. Each service

publishes an API and design goals, limits, and other considerations for using

the service. This establishes a “contract” with calling applications. This

accomplishes three main benefits:

• The service has a concise business problem to be served and a small

team that owns the business problem. This allows for better

organizational scaling.

• The team can deploy at any time as long as they meet their API and

other “contract” requirements

• The team can use any technology stack they want to as long as they

meet their API and other “contract” requirements.

Recommendation

Isolate discrete functionality into services with a “contract” (API and

performance expectations).

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 24

There are effects to consider when deploying a micro-service architecture. One

is that you now have a distributed compute architecture that can make it harder

to achieve end-user latency requirements and there is additional complexity in

debugging and tracing of user interactions. The AWS X-Ray service can be

used to assist you in solving this problem. Another effect to consider is

increased operational complexity as you proliferate the number of applications

you are managing.

Recovery-Oriented Computing

Complementing the AWS focus on building fault isolation zones and avoiding

single points of failure, we also work to minimize the disruption time when

failures do occur. Since impact duration is a primary input to calculating

availability, reducing recovery time has a direct impact on improving availability.

Recovery-Oriented Computing (ROC) is the term applied to systematic

approaches to improving recovery.

ROC identifies the characteristics in systems that enhance recovery. These

characteristics are: isolation and redundancy, system wide ability to roll back

changes, ability to monitor and determine health, ability to provide diagnostics,

automated recovery, modular design, and ability to restart. We have addressed

isolation and redundancy and modular design in the previous sections. In the

“Operational Considerations for Availability” section, we will talk about the ability

to roll back changes, monitoring, and diagnostics. In this section, we discuss

monitoring for health, automated recovery and the ability to restart.

ROC acknowledges that many different types of failures occur in systems.

Failures can occur in hardware, software, communications, and operations.

Rather than constructing novel mechanisms to trap, identify, and correct each

of the different types of failures, ROC suggests focusing on having the right

mechanisms to detect failures (such as Elastic Load Balancing or Route53

health checks). After a failure occurs ROC would apply one of a small number

of well-tested recovery paths.

In systems that apply a recovery-oriented approach, many different categories

of failures are mapped to the same recovery strategy. For example, applying

ROC, we would apply the same recovery approach to both a network timeout

and a dependency failure where the dependency returns an error. Both events

have a similar effect on the system, so rather than attempting to make either

https://martinfowler.com/articles/microservice-trade-offs.html
https://en.wikipedia.org/wiki/Recovery-oriented_computing

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 25

event a “special case”, ROC would apply a similar strategy of retrying with

exponential back-off. Another example is the use of Auto Scaling with Amazon

Elastic Compute Cloud (Amazon EC2) to manage fleet capacity. An instance

may fail due to hardware failure, operating system bug, memory leak, or other

causes. Rather than building custom remediation for each, treat any as an

instance failure, terminate the instance, and allow Auto Scaling to replace the

instance.

A pattern to avoid is developing recovery paths that are rarely executed. For

example, you might have a secondary data store that is used for read-only

queries. When you write to a data store and the primary fails, you might want to

fail over to the secondary data store. If you don’t frequently test this failover,

you might find that your assumptions about the capabilities of the secondary are

incorrect. The capacity of the secondary data store, which might have been

sufficient when you last tested, may be no longer be able to tolerate the load

under this scenario. Our experience has shown that the only error recovery that

works is the path you test frequently. This is why having a small number of

recovery paths is best. You can establish recovery patterns and regularly test

them. If you have a complex or critical recovery path, you still need to regularly

execute that failure in production to convince yourself that the recovery path

works. In the example we just discussed, you should failover to the standby

regularly, regardless of need.

AWS approaches the design of our services with fault recovery in mind. We

design services to minimize the time to recover from failures and impact on

data. Our services primarily use data stores that acknowledge requests only

after they are durably stored across multiple replicas. These services and

resources include Amazon Aurora, Amazon Relational Database Service

(Amazon RDS) Multi-AZ DB instances, Amazon S3, Amazon DynamoDB,

Amazon Simple Queue Service (Amazon SQS), and Amazon Elastic File

System (Amazon EFS). They are constructed to use cell based isolation and

use the independence of Availability Zones. We use automation extensively in

our operational procedures. We also optimize our replace-and-restart

functionality to recover quickly from interruptions.

Distributed Systems Best Practices

As we apply the approaches we have discussed in these sections, including

micro-service architecture and the use of fault isolation zones, we recognize

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 26

that many systems built today are distributed systems. They rely on

communications networks to interconnect components. Particularly when

traversing longer distances or intermediary networks, these systems can have

high latency or loss. Individual services may see spikes of requests that

temporarily overwhelm their ability to respond. There are a number of best

practices that can be applied to allow these services to continue to operate

normally in the presence of these “normal” issues.

These best-practice patterns include the following:

Throttling: This is a defensive pattern to respond to an unexpected increase in

demand, typically on a web service. Some requests will be honored, but the

rejected requests will return a message indicating they have been throttled, with

the expectation they will try again at a slower rate. Your services should be

designed to a known capacity of requests that each node or cell can process.

This can be established through load testing. You then need to track the arrival

rate of requests and if the temporary arrival rate exceeds this limit, the

appropriate response is to signal that the request has been throttled. This

allows the user to retry, potentially to a different node/cell that might have

available capacity. Amazon API Gateway provides methods for throttling

requests.

Retry with exponential fallback: This is the invoking side of the throttling

pattern we just discussed. AWS SDKs implement this by default, and can be

configured. The pattern is to pause and then retry at a later time. If it fails again,

pause longer and retry. This increase in pause time is often called “backing off.”

After a configured number of attempts or elapsed time, it will quit retrying and

return failure.

Fail fast: Simply return an error as soon as possible. This will allow releasing of

resources associated with requests and can often allow a service to recover if it

is running out of resources. It’s preferable to fail fast rather than allowing

requests to be queued. Queues can be created at multiple levels of a system,

and can seriously impede an ability to quickly recover. Be very mindful of places

where queues exist (they often hide in workflows or in work that’s recorded to a

database).

Use of idempotency tokens: In a distributed system, it’s easy to perform an

action at most once, or at least once. But it’s hard to guarantee an action is

performed exactly once. A common approach to do so is the use of

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 27

idempotency tokens in APIs. In doing so, services can receive a mutating

request one or more times without creating duplicate records or side effects.

Callers issue API requests with an idempotency token; the same token is used

whenever the request is repeated (for example, due to a timeout and retry.)

When receiving a request that has already been processed, an idempotent API

uses the token to determine the work has already been completed, and then

returns a response identical to the response that’s returned when the work is

completed for the first time. It is more resilient to build systems with

idempotency than to build systems that assume an action must occur exactly

once.

Constant work: Systems can fail when there are rapid changes in load. If you

know your service needs to process 100 units of work done per second at peak,

then you should design and tune your system for 100 units of work. If there is

work to be done, it takes one of the slots. But if not, you put “filler” work in the

slot just so you know you’re always doing 100 units per second. An example is

a video player that plays data in a buffer. If you have no work to perform

because no new data has come in, you may be able to process the same data

you last received again and effectively render the same video frame, performing

the same work.

Circuit breaker: In certain situations, a service has a need to make remote

requests on a best effort basis, but does not want to take a hard dependency,

which would include the dependency’s availability in the computation of the

invoking service’s availability design goal. In these cases, one solution is to use

a monitoring loop and circuit breaker for each remote request. When requests

are being processed normally, the circuit breaker is closed and requests flow

through. When the remote system begins returning errors or exhibits high

latency, the circuit breaker opens to avoid further latency impact or availability

impact. When open, the dependency is ignored or results are replaced with

locally-available data (which might simply be a response cache.) Periodically,

the system attempts to call the dependency to determine if it has recovered.

When that occurs, the circuit breaker is closed.

Bi-modal behavior and static stability: Distributed systems can be impacted

by negative feedback loops that are triggered by one failure. For example, a

network timeout could cause a system to attempt to refresh the configuration

state of the entire system. This would add unexpected load to another

component, which might then cause it to fail, triggering other unexpected

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 28

consequences. We refer to this as “bi-modal” behavior, because the system has

different behavior under normal and failure modes. To counteract, this behavior,

we prefer building systems that are statically stable and operate in only one

mode. They maintain enough internal state to continue operating as they were

before the failure without adding additional load to the system. These systems

may end up performing less work during certain failures (which is desirable).

Another example of this type of system is one that uses Amazon EC2 for

instance capacity. Systems often assume that if an instance or Availability Zone

fails, they will respond by simply launching new instances. However, this

approach means that during failure, the system will be doing much different

work from usual. Instead, we recommend using Elastic Load Balancing or

Amazon Route53 health checks to shift load away from failed instances, and

use Auto Scaling to asynchronously replace them.

Operational Considerations for Availability

Experience and data from many IT workloads highlights the importance of

operations and human processes on application availability. Despite all of the

investments in software and hardware, an erroneous configuration or misstep in

a process can frequently undo these efforts. When designing software to meet

availability design goals, it’s important to plan the automated or human

processes used in the full lifecycle of the application. This includes deployment

of new versions, operation of the service, refreshing the underlying

infrastructure, and replacing failed infrastructure.

Testing is an important part of the delivery pipeline. Aside from common unit

tests and functional tests that are performed at component levels, it is important

to perform sustained load testing. Load tests should discover the breaking point

of your workload, test performance, and perform fault injection testing. In

addition, your monitoring service must be able to add or remove monitoring of

capabilities that are added or deprecated. AWS finds it useful to perform

operational readiness reviews that evaluate the completeness of the testing,

ability to monitor, and importantly, the ability to audit the applications

performance to its SLAs and provide data in the event of an interruption or other

operational anomaly.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 29

Automate Deployments to Eliminate Impact

Making changes to production systems is one of the largest risk areas for many

organizations. We consider deployments a first-class problem to be solved

alongside the business problems our software addresses. Today, this means

the use of automation wherever practical in operations, including testing and

deploying changes, adding or removing capacity, and migrating data.

Recommendation

Although conventional wisdom suggests that you keep humans in the loop

for the most difficult operational procedures, we suggest that you automate

the most difficult procedures for that very reason.

These are deployment patterns that minimize risk:

• Canary deployment

• Blue-Green deployment

• Feature toggles

• Failure isolation zone deployments

Canary deployment is the practice of directing a small number of your

customers to the new version and scrutinizing deeply any behavior changes or

errors that are generated. You can remove traffic from the canary if you have

critical problems and send the users to the previous version. If the deployment

is successful, you can continue to deploy at a desired velocity, while monitoring

for the same changes and errors, until you are fully deployed. AWS Code

Deploy can be configured with a deployment configuration that will enable a

canary deployment.

Blue-Green deployments are similar to the canary deployment except that a full

fleet of the application is deployed in parallel. You alternate your deployments

across the two stacks (blue and green). Once again, you can send traffic to the

new version, and fail back to the old version if you see problems with the

deployment. You can also use fractions of your traffic to each version to dial up

the adoption of the new version. AWS Code Deploy can be configured with a

deployment configuration that will enable a blue-green deployment.

Feature toggles are configuration options on an application. You can deploy the

software with a feature turned off, so that customers don’t see the feature. You

https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/articles/feature-toggles.html

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 30

can then turn the feature on, as you’d do for a canary deployment, or you can

set the change pace to 100% to see the effect. If the deployment has problems,

you can simply turn the feature back off without rolling back.

One of the most important rules AWS has established for its own deployments

is to avoid touching multiple Availability Zones within a Region at the same

time. This is critical to ensuring that Availability Zones are independent for

purposes of our availability calculations. We recommend that you use similar

considerations in your deployments.

Testing

The testing effort should be commensurate with your availability goals. Your

application’s resiliency to transient failures of dependencies should be tested for

durations that may last from less than a second to hours. Testing to ensure that

you can meet your availability goals is the only way you can have confidence

that you will meet those goals. Our experience is that canary testing that can

run constantly and simulate customer behavior is among the most important

testing processes. You should unit test, load test, performance test, and

simulate your failure modes while under these tests. Don’t forget to test for

external dependency unavailability, and deployment failures. Achieving very

high availability requires implementing fault tolerant software patterns, and

testing that they are effective.

Other modes of degradation may cause reduced functionality and slow

responses, often resulting in a brown out of your services. Common sources of

this degradation are increased latency on critical services and unreliable

network communication (dropped packets). You might want to use the ability to

inject random failures into your system, including component failures,

networking effects such as latency and dropped messages, and DNS failures

such as being unable to resolve a name or not being able to establish

connections to dependent services.

Netflix has provided some example open source software that can be a basis

for this type of testing. You can use their software or develop your own for

simulating failure modes. For simulating conditions that might produce

brownouts, you can use extensions to common proxies to introduce latency,

dropped messages, etc., or you can create your own.

https://github.com/Netflix/SimianArmy/wiki

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 31

Monitoring and Alarming

Monitoring is critical to ensure that you are meeting your availability

requirements. Your monitoring needs to effectively detect failures. The worst

failure mode is the “silent” failure, where the functionality is no longer working,

but there is no way to detect it except indirectly. Your customer knows before

you do. Alerting when you have problems is one of the primary reasons you

monitor. Your alerting should be decoupled from your systems as much as

possible. If your service interruption removes your ability to alert, you will have a

longer period of interruption.

At AWS we instrument our applications at multiple levels. We record latency,

error rates, and availability for each request, for all dependencies, and for key

operations within the process. We record metrics of successful operation as

well. This allows us to see impending problems before they happen. We also

look for outlying data points because this can be another indication of

impending problems. This is commonly known as percentile monitoring. If your

average is acceptable, but one in 100 of your requests causes extreme latency,

when your traffic grows it will eventually become a problem.

In addition, monitor all of your external endpoints from remote locations to

ensure that they are independent of your base implementation. We have seen

improvement in time to detection of problems with use of “user canary”

applications, which execute some number of common tasks performed by

consumers of the application. They can be implemented in both graphic user

interfaces and web services. They all must complete within a very short time,

with a target of 1 second. These must be carefully selected so that they don’t

overload the application during testing. The reason to have only short duration

tasks is so you can run them once per minute, which enables you to detect a

problem before it is visible to users.

While monitoring from within an operating system is well understood, monitoring

in the cloud offers new opportunities. Instead of using old de-facto standard

methods like SNMP, cloud providers have developed customizable hooks and

insights into everything from instance performance to network layers, down to

request APIs themselves.

Monitoring at AWS consists of five distinct phases:

1. Generation

http://bravenewgeek.com/everything-you-know-about-latency-is-wrong/

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 32

2. Aggregation

3. Real-time processing and alarming

4. Storage

5. Analytics

Generation

First, determine which services and/or applications require monitoring, define

important metrics and how to extract them from log entries if necessary, and

finally create thresholds and corresponding alarm events. AWS makes an

abundance of monitoring and log information available for consumption, which

can be used to define change-in-demand processes. The following is just a

partial list of services and features that generate log and metric data.

• Amazon ECS, Amazon EC2, Classic Load Balancers, Application Load

Balancers, Auto Scaling, and Amazon EMR publish metrics for CPU,

network I/O, and disk I/O averages.

• Amazon CloudWatch Logs can be enabled for Amazon Simple Storage

Service (Amazon S3), Classic Load Balancers, and Application Load

Balancers.

• VPC Flow Logs can be enabled on any or all elastic network interfaces

(ENIs) within a VPC.

• AWS CloudTrail logs all API events on an account-by-account basis.

• Amazon CloudWatch Events delivers a real-time stream of system

events that describes changes in AWS services.

• AWS provides tooling to collect operating system-level logs and stream

them into CloudWatch Logs.

• Custom Amazon CloudWatch metrics can be used for metrics of any

dimension.

• Amazon ECS and AWS Lambda stream log data to CloudWatch Logs.

• Amazon Machine Learning (Amazon ML), Amazon Rekognition, Amazon

Lex, and Amazon Polly provide metrics for successful and unsuccessful

requests.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 33

• AWS IoT provides metrics for number of rule executions as well as

specific success and failure metrics around the rules.

• Amazon API Gateway provides metrics for number of requests,

erroneous requests, and latency for your APIs.

Aggregation

Amazon CloudWatch and Amazon S3 serve as the primary aggregation and

storage layers. For some services, like Auto Scaling and ELB, default metrics

are provided “out the box” for CPU load or average request latency across a

cluster or instance. For streaming services, like VPC Flow Logs or AWS

CloudTrail, event data is forwarded to CloudWatch Logs and you need to define

and apply filters to extract metrics from the event data. This gives you time

series data, and you can define an array of CloudWatch alarms to trigger alerts.

Real-Time Processing and Alarming

Alerts can trigger Auto Scaling events, so that clusters react to changes in

demand. Alerts can also be sent to Amazon Simple Notification Service

(Amazon SNS) topics, and then pushed to any number of subscribers. For

example, Amazon SNS can forward alerts to an email alias so that technical

staff can respond. Alerts can be sent to Amazon Simple Queue Service

(Amazon SQS), which can serve as an integration point for third-party ticket

systems. Finally, AWS Lambda can also subscribe to alerts, providing users an

asynchronous serverless model that reacts to change dynamically.

Storage and Analytics

Amazon CloudWatch Logs also supports subscriptions that allow data to flow

seamlessly to Amazon S3. As CloudWatch logs and other access logs arrive in

Amazon S3, you should consider using Amazon EMR to gain further insight and

value from the data itself. If your data is written in a supported manner, Amazon

S3 Select or Amazon Athena can be used to query the data. Amazon S3 Select

supports Comma-Separated Values (CSV) or JavaScript Object Notation

(JSON) documents with or without GZIP compression. Amazon Athena

supports a large array of formats. For more information, see Supported SerDes

and Data Formats in the Amazon Athena User Guide.

There are a number of tools provided by partners and third parties that allow for

aggregation, processing, storage, and analytics. Some of these tools are New

https://docs.aws.amazon.com/athena/latest/ug/supported-format.html
https://docs.aws.amazon.com/athena/latest/ug/supported-format.html

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 34

Relic, Splunk, Loggly, Logstash, CloudHealth, and Nagios. However,

generation outside of system and application logs is unique to each cloud

provider, and often unique to each service.

An often-overlooked part of the monitoring process is data management. You

need to determine retention requirements for monitoring data, and then apply

lifecycle polices accordingly. Amazon S3 supports lifecycle management at the

S3 bucket level. This lifecycle management can be applied differently to

different paths in the bucket. Toward the end of the lifecycle you can transition

data to Amazon Glacier for long-term storage, and then expiration, after the end

of the retention period is reached.

Key AWS Services

The key AWS service that supports monitoring is Amazon CloudWatch, which

allows for easy creation of alarms that trigger scaling actions. In addition, AWS

X-Ray can be integrated with your applications to provide visibility into the

distributed interaction of requests with your applications.

 The following services and features are also important:

• Amazon S3: Acts as the storage layer, and allows for lifecycle policies

and data management.

• Amazon EMR: Use this service to gain further insight into log and metric

data.

• Amazon Athena: Use this service to gain further insight into data that is

in support formats.

Operational Readiness Reviews

Operational Readiness Reviews (ORRs) are an important exercise to confirm

applications are ready for production operations. Teams often start with an

ORR checklist during early stages of application development. This enables

them to keep in mind the requirements of their operational environment prior to

asking for a production deployment. A formal ORR is conducted prior to initial

production deployment. AWS will repeat ORRs periodically (once per year, or

before critical performance periods) to ensure that there has not been “drift”

from operational expectations. An ORRs for one application should incorporate

lessons learned and best practices from other applications.

https://docs.aws.amazon.com/athena/latest/ug/supported-format.html

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 35

Recommendation

Conduct an Operational Readiness Review (ORR) for applications prior to

initial production use, and periodically thereafter.

Auditing

Auditing your monitoring will ensure that you know when an application is

meeting its availability goals. Root Cause Analyses require the ability to

discover what happened when failures occur. AWS provides services that allow

you to track the state of your services during an incident:

• Amazon CloudWatch Logs: You can store your logs in this service and

inspect their contents.

• AWS Config: You can see what AWS infrastructure were used at points

in time.

• AWS CloudTrail: You can see which AWS APIs were invoked at what

time and by what principal.

At AWS we conduct a weekly meeting to review operational performance and to

share learnings between teams. Establishing a regular cadence for operational

performance reviews and knowledge sharing will enhance your ability to

achieve higher performance from your operational teams.

Example Implementations for Availability

Goals

In this section, we’ll review system designs using the deployment of a typical

web application that consists of a reverse proxy, static content on Amazon S3,

an application server, and a SQL database for persistent storage of data. For

each availability target, we will provide an example implementation. These can

be deployed using containers or virtual machines, but the approaches are the

same. In this section, we will address the remaining topics of the reliability pillar.

Specifically, in each scenario, we will demonstrate how to:

• Adapt to changes in demand

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 36

• Use monitoring

• Deploy changes

• Back up data

• Implement resiliency

• Test resiliency

• Recover from disaster

Dependency Selection

We have chosen to use Amazon EC2 for our applications. We will show how

using Amazon RDS and multiple Availability Zones improves the availability of

our applications. We will use Amazon Route 53 for DNS. When we use multiple

Availability Zones, we will use Elastic Load Balancing. Amazon S3 is used for

backups and static content. As we design for higher reliability, we can only

adopt services with higher availability themselves. See the Appendix for the

design goals for the respective services.

Single Region Scenarios

2 9s (99%) Scenario

We will start our availability and reliability examples with applications that are

helpful to the business, but it is only an inconvenience if the applications are

unavailable. This type of application can vary from internal tooling systems,

internal knowledge management systems, and project tracking systems, to

actual customer-facing features that are served from an experimental service,

with a feature toggle that can hide the service if needed.

These applications can be deployed with one Region and one Availability Zone.

We will deploy the software, including the database, to a single instance. We

will use a vendor or purpose built backup solution to send encrypted backup

data to Amazon S3 using a runbook. We will test that the backups work by

restoring and ensuring the ability to use them on a regular basis using a

runbook. We will configure versioning on our Amazon S3 objects and remove

permissions for deletion of the backups. We will use an Amazon S3 bucket

lifecycle policy to archive or permanently delete according to our requirements.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 37

We will use AWS CloudFormation to define our infrastructure as code, and

specifically to speed up reconstruction in the event of a failure. During failures

we will wait for the failure to finish, optionally routing requests to a static website

using DNS modification via a runbook. The recovery time for this will be

determined by the speed at which the infrastructure can be deployed and the

database can be restored to the most recent backup. This deployment can

either be into the same Availability Zone, or into a different Availability Zone in

the event of an Availability Zone failure using a runbook. The deployment

pipeline of new software is scheduled, with some unit testing, but mostly white-

box/black-box testing of the assembled system. Software updates will be

manually performed using a runbook, with downtime required for the installation

and re-start of the service. If a problem happens during deployment, the

runbook describes how to roll back to the previous version. We will have

playbooks for common hardware failures, urgent software updates, and other

disruptive changes. We will have simple monitoring, indicating whether the

service home page is returning an HTTP 200 OK status. When problems occur,

our playbook will indicate that logging from the instance will be used to establish

root cause. The correction of the error will be done using analysis by the

operations and development teams, and the correction of the error will be

deployed when the fix is prioritized and completed.

Let’s see what the implications on availability of recovery time are. We take 30

minutes to understand and decide to execute recovery, deploy the whole stack

in AWS CloudFormation in 10 minutes, assume that we deploy to a new

Availability Zone, and assume the database can be restored in 30 minutes. This

implies that it takes about 70 minutes to recover from a failure. Assuming one

failure per quarter, our estimated impact time for the year is 280 minutes, or

four hours and 40 minutes.

This means the upper limit on availability is 99.9%. The actual availability will

also depend on the real rate of failure, duration of failure and how quickly each

factor actually recovers. For this architecture we require the application to be

offline for updates (estimating 24 hours per year: four hours per change, six

times per year), plus actual events. So referring to the table on application

availability earlier in the whitepaper we see that our availability design goal is

99%.

Here is how we addressed the remaining reliability pillar topics:

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 38

Topic Implementation

Adapting to changes in demand Vertical scaling via re-deployment.

Monitoring Site health check only; no alerting.

Deploying changes Runbook for deploy and rollback.

Backups Runbook for taking and restoring.

Implementing resiliency Complete rebuild; restore to backup.

Testing resiliency Complete rebuild; restore to backup.

Disaster recovery Encrypted backups, restore to

different Availability Zone if needed.

3 9s (99.9%) Scenario

The next availability goal is for applications for which it is important to be highly

available, but they can tolerate short periods of unavailability. This type of

application is typically used for internal operational systems that have an effect

on employees when they are down. This type of application can also be used

for customer-facing systems that are not high revenue for the business and can

tolerate a longer recovery time or recovery point. Such applications include an

administrative system for account or information management.

We can improve availability for applications by using two Availability Zones for

our deployment and by separating the applications to separate tiers. We will

use services that work across multiple Availability Zones, such as Elastic Load

Balancing, Auto Scaling and Amazon RDS Multi-AZ with encrypted storage via

AWS Key Management Service. This will ensure tolerance to failures on the

resource level and on the Availability Zone level. Backup and restore can be

done using Amazon RDS. It will be executed regularly using a runbook to

ensure that we can meet recovery requirements.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 39

The infrastructure deployment technologies remain the same. The load

balancer will only route traffic to healthy application instances. The health check

needs to be at the data plane/application layer indicating the capability of the

application on the instance. This check should not be against the control plane.

A health check URL for the web application will be present and configured for

use by the load balancer and Auto Scaling, so that instances that fail are

removed and replaced. Amazon RDS will manage the active database engine

to be available in the second Availability Zone if the instance fails in the primary

Availability Zone, then repair to restore to the same resiliency.

After we have separated the tiers, we can use software/application resiliency

patterns to increase the reliability of the application so that it can still be

available even when the database is temporarily unavailable during an

Availability Zone failover. Software updates will be automated, not using canary

or blue/green deployment patterns, but rather, using the replace in place. The

decision to rollback will be made using the runbook.

Delivery of new software is on a fixed schedule of every two to four weeks.

Monitoring will be expanded to alert on the availability of the web site over all by

checking for an HTTP 200 OK status on the home page. In addition, there will

be alerting on every replacement of a web server and when the database fails

over. We will also monitor the static content on Amazon S3 for availability and

alert if it becomes unavailable. Logging will be aggregated for ease of

management and to help in root cause analysis.

Runbooks exist for total system recovery and common reporting. We will have

playbooks for common database problems, security-related incidents, failed

deployments, and establishing root cause of problems. After the root cause has

been identified, the correction for the error will be identified by a combination of

the operations and development teams. The correction will be deployed when

the fix is developed.

Let’s see what the implications on availability of recovery time are. We assume

that at least some failures will require a manual decision to execute recovery.

However with greater automation in this scenario we assume only two events

per year will require this decision. We take 30 minutes to decide to execute

recovery, and assume recovery is completed within 30 minutes. This implies 60

minutes to recover from failure. Assuming two incidents per year, our estimated

impact time for the year is 120 minutes.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 40

This means the upper limit on availability is 99.95%. The actual availability will

also depend on the real rate of failure, duration of failure and how quickly each

factor actually recovers. For this architecture we require the application to be

briefly offline for updates, but these updates are automated. We estimate 150

minutes per year for this: 15 minutes per change, 10 times per year. This adds

up to 270 minutes per year when the service is not available, so our availability

design goal is 99.9%.

Here is how we addressed reliability pillar topics:

Topic Implementation

Adapting to changes in demand ELB for web and auto scaling

application tier; resizing Multi-AZ

RDS.

Monitoring Site health check only; alerts sent

when down.

Deploying changes Automated deploy in place and

runbook for rollback.

Backups Automated backups via RDS to meet

RPO and runbook for restoring.

Implementing resiliency Auto scaling to provide self-healing

web and application tier; RDS is

Multi-AZ.

Testing resiliency ELB and application are self-healing;

RDS is Multi-AZ; no explicit testing.

Disaster recovery Encrypted backups via RDS to same

AWS Region.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 41

4 9s (99.99%) Scenario

This availability goal for applications requires the application to be highly

available and tolerant to component failures. The application must to be able to

absorb failures without needing to procure additional resources. This availability

goal is for mission critical applications that are main or significant revenue

drivers for a corporation, such as an e-commerce site, a business to business

web service, or a high traffic content/media site.

We can improve availability further by using an architecture that will be statically

stable within the Region. This availability goal doesn’t require a control plane

change in behavior of our workload to tolerate failure. For example, there

should be enough capacity to withstand the loss of one Availability Zone. We

should not require updates to Amazon Route53 DNS. We should not need to

create any new infrastructure, whether it is creating/modifying an S3 bucket,

creating new IAM policies (or modifications of policies), or modifying Amazon

ECS task configurations.

We recommend three Availability Zones for this approach. Using a three

Availability Zone deployment, each Availability Zone has static capacity of 50%

of peak. Two AZs could be used, but the cost of the statically stable capacity

would be more because both Availability Zones would have to have 100% of

peak capacity. We will add Amazon CloudFront to provide geographic caching,

as well as request reduction on our application’s data plane.

The application will be built using the software/application resiliency patterns in

all layers. For these applications, engineering for read availability over write

availability of primary content is also a key architecture decision. The

application is also implemented in deployment fault isolation zones. The

deployment pipeline will have a full test suite, including performance, load, and

failure injection testing. We will deploy updates using canary or blue/green

deployments into each isolation zone singularly. The deployments are fully

automated, including a roll back if KPIs indicate a problem. Monitoring will

include success metrics as well as alerting when problems occur. In addition,

there will be alerting on every replacement of a failed web server, when the

database fails over, and when an AZ fails.

Runbooks will exist for rigorous reporting requirements and performance

tracking. If successful operations are trending toward failure to meet

performance or availability goals, a playbook will be used to establish what is

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 42

causing the trend. Playbooks will exist for undiscovered failure modes and

security incidents. Playbooks will also exist for establishing the root cause of

failures. We will practice our failure recovery procedures constantly through

game days, using runbooks to ensure that we can perform the tasks and not

deviate from the procedures. The team that builds the website also operates the

website. That team will identify the correction of error of any unexpected failure

and prioritize the fix to be deployed after it is implemented. We will also engage

with AWS Support for Infrastructure Event Management offering.

Let’s see what the implications on availability of recovery time are. We assume

that at least some failures will require a manual decision to execute recovery,

however with greater automation in this scenario we assume only two events

per year will require this decision and the recovery actions will be rapid. We

take 10 minutes to decide to execute recovery, and assume recovery is

completed within five minutes. This implies 15 minutes to recover from failure.

Assuming two per year, our estimated impact time for the year is 30 minutes.

This means the upper limit on availability is 99.99%. The actual availability will

also depend on the real rate of failure, duration of failure and how quickly each

factor actually recovers. For this architecture we assume the application is

online continuously through updates. Based on this, our availability design

goal is 99.99%.

Here is how we addressed reliability pillar topics:

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 43

Topic Implementation

Adapting to changes in demand ELB for web and auto scaling

application tier; resizing Multi-AZ

RDS.

Monitoring Health checks at all layers and on

KPIs; alerts sent when configured

alarms are tripped; alerting on all

failures. Operational meetings are

rigorous to detect trends and

manage to design goals.

Deploying changes Automated deploy via canary or

blue/green and automated rollback

when KPIs or alerts indicate

undetected problems in application.

Deployments are made by isolation

zone.

Backups Automated backups via RDS to meet

RPO and automated restoration that

is practiced regularly in a game day.

Implementing resiliency Implemented fault isolation zones for

the application; auto scaling to

provide self-healing web and

application tier; RDS is Multi-AZ.

Testing resiliency Component and isolation zone fault

testing is in pipeline and practiced

with operational staff regularly in a

game day; playbooks exist for

diagnosing unknown problems; and

a Root Cause Analysis process

exists.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 44

Disaster recovery Encrypted backups via RDS to same

AWS Region that is practiced in a

game day.

Multi-Region Scenarios

Implementing our application in multiple AWS Regions will increase the cost of

operation, partly because we isolate regions to maintain their independence. It

should be a very thoughtful decision to pursue this path. That said, regions

provide a very strong isolation boundary and we take great pains to avoid

correlated failures across regions. Using multiple regions will give you greater

control over your recovery time in the event of a hard dependency failure on a

regional AWS service. In this section, we’ll discuss various implementation

patterns and their typical availability.

3 ½ 9s (99.95%) with a Recovery Time between 1 and 30
Minutes

This availability goal for applications requires extremely short downtime and

very little data loss for specific times. Applications with this availability goal

include applications in the areas of: banking, investing, emergency services,

and data capture. These applications have very short recovery times and

recovery points.

We can improve recovery time further by using a “Hot Standby” approach

across two AWS Regions. We will deploy the workload to both Regions, with

our passive site scaled (and kept eventually consistent) to receive same traffic

load as our active site. Both Regions will be statically stable. The applications

should be built using the software/application resiliency patterns. We’ll need to

create a lightweight routing component that monitors both our application health

and any regional hard dependencies we have. This component will also handle

automation of failover, and stop replication from the former active Region.

During failover, we will route requests to a static website using DNS failover

until recovery in the second Region. The failover will use a health check of the

web site over all by checking for an HTTP 200 OK status on the home page.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 45

Software updates will be automated using canary or blue/green deployment

patterns.

Delivery of new software is on a fixed schedule of every two to four weeks. In

addition, there will be alerting on every replacement of a web server, when the

database fails over, and when the Region fails over. We will also monitor the

static content on Amazon S3 for availability and alert if it becomes unavailable.

Logging will be aggregated for ease of management and to help in root cause

analysis in each Region. Runbooks exist for when Region failover occurs, for

common customer issues that occur during those events, and for common

reporting. We will have playbooks for common database problems, security-

related incidents, failed deployments, unexpected customer issues on Region

failover, and establishing root cause of problems. After the root cause has been

identified, the correction of error will be identified by a combination of the

operations and development teams and deployed when the fix is developed.

We will validate the architecture through game days using runbooks. We will

also engage with AWS Support for Infrastructure Event Management.

Let’s see what the implications on availability of recovery time are. We assume

that at least some failures will require a manual decision to execute recovery,

however with good automation in this scenario we assume only 2 events per

year will require this decision. We take 20 minutes to decide to execute

recovery, and assume recovery is completed within 10 minutes. This implies 30

minutes to recover from failure. Assuming 2 per year, our estimated impact time

for the year is 60 minutes.

This means the upper limit on availability is 99.95%. The actual availability will

also depend on the real rate of failure, duration of failure and how quickly each

factor actually recovers. For this architecture we assume the application is

online continuously through updates. Based on this, our availability design

goal is 99.95%.

Here is how we addressed reliability pillar topics:

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 46

Topic Implementation

Adapting to changes in demand ELB for web and auto scaling

application tier; resizing Multi-AZ

RDS; this is synchronized between

AWS Regions for static stability.

Monitoring Health checks at all layers, including

DNS health at AWS Region level,

and on KPIs; alerts sent when

configured alarms are tripped;

alerting on all failures. Operational

meetings are rigorous to detect

trends and manage to design goals.

Deploying changes Automated deploy via canary or

blue/green and automated rollback

when KPIs or alerts indicate

undetected problems in application,

deployments are made to one

isolation zone in one AWS Region at

a time.

Backups Automated backups in each AWS

Region via RDS to meet RPO and

automated restoration that is

practiced regularly in a game day.

Implementing resiliency Auto scaling to provide self-healing

web and application tier; RDS is

Multi-AZ; regional failover is

managed manually with static site

presented while failing over.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 47

Testing resiliency Component and isolation zone fault

testing is in pipeline and practiced

with operational staff regularly in a

game day; playbooks exist for

diagnosing unknown problems; and

a Root Cause Analysis process

exists, with communication paths for

what the problem was, and how it

was corrected or prevented.

Disaster recovery Encrypted backups via RDS, with

replication between two AWS

Regions. Restoration is to the current

active AWS Region, is practiced in a

game day, and is coordinated with

AWS.

5 9s (99.999%) or Higher Scenario

This availability goal for applications requires almost no downtime or data loss

for specific times. Applications that could have this availability goal include, for

example certain banking, investing, finance, government, and critical business

applications that are the core business of an extremely large-revenue

generating business. The desire is to have almost strongly consistent data

stores and complete redundancy at all layers. We have selected a SQL-based

data store. However, in some scenarios, we will find it difficult to achieve a very

small RPO. If you can partition your data it is possible to have no data loss. This

might require you to add application logic and latency to ensure you have

consistent data between geographic locations, as well as the capability to move

or copy data between partitions. Performing this partitioning may be easier if

you use a NoSQL database.

We can improve availability further by using an “Active/Active” or “Multi-master”

approach across multiple AWS Regions. The workload will be deployed in all

desired Regions that are statically stable with the routing layer directing traffic to

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 48

geographic locations that are healthy and automatically changing the

destination when a location is unhealthy, as well as temporarily stopping the

data replication layers. Amazon Route53 offers 10 second interval health

checks and also offers TTL on your record sets as low as one second.

The applications should be built using the software/application resiliency

patterns. It is possible that many other routing layers may be required to

implement the needed availability. The complexity of this additional

implementation should not be underestimated. The application will be

implemented in deployment fault isolation zones, and partitioned and deployed

such that even a Region wide-event will not affect all customers.

The deployment pipeline will have a full test suite, including performance, load,

and failure injection testing. We will deploy updates using canary or blue/green

deployments to one isolation zone at a time, in one Region before starting at

the other. During the deployment, the old versions will still be kept running

instances to facilitate a faster rollback. These are fully automated, including a

rollback if KPIs indicate a problem. Monitoring will include success metrics as

well as alerting when problems occur.

Runbooks will exist for rigorous reporting requirements and performance

tracking. If successful operations are trending towards failure to meet

performance or availability goals, a playbook will be used to establish what is

causing the trend. Playbooks will exist for undiscovered failure modes and

security incidents. Playbooks will also exist for establishing root cause of

failures. Data stores must be replicated between the Regions in a manner

which can resolve potential conflicts. Tools and automated processes will need

to be created to copy or move data between the partitions for latency reasons

and to balance requests or amounts of data in each partition. Remediation of

the data conflict resolution will also require additional operational runbooks. We

will validate the architecture through game days using runbooks to ensure that

we can perform the tasks and not deviate from the procedures. The team that

builds the website also operates the website. That team will identify the

correction of error of any unexpected failure and prioritize the fix to be deployed

after it is implemented. We will also engage with AWS Support for Infrastructure

Event Management.

Let’s see what the implications on availability of recovery time are. We assume

that heavy investments are made to automate all recovery, and that recovery

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 49

can be completed within one minute. We assume no manually-triggered

recoveries, but up to one automated recovery action per quarter. This implies

four minutes per year to recover. We assume that the application is online

continuously through updates. Based on this, our availability design goal is

99.999%.

Here is how we addressed reliability pillar topics:

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 50

Topic Implementation

Adapting to changes in demand ELB for web and auto scaling

application tier; resizing Multi-AZ

RDS; this is synchronized between

AWS Regions for static stability.

Monitoring Health checks at all layers, including

DNS health at AWS Region level,

and on KPIs; alerts sent when

configured alarms are tripped;

alerting on all failures. Operational

meetings are rigorous to detect

trends and manage to design goals.

Deploying changes Automated deploy via canary or

blue/green and automated rollback

when KPIs or alerts indicate

undetected problems in application,

deployments are made to one

isolation zone in one AWS Region at

a time.

Backups Automated backups in each AWS

Region via RDS to meet RPO and

automated restoration that is

practiced regularly in a game day.

Implementing resiliency Implemented fault isolation zones for

the application; auto scaling to

provide self-healing web and

application tier; RDS is Multi-AZ;

regional failover automated.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 51

Testing resiliency Component and isolation zone fault

testing is in pipeline and practiced

with operational staff regularly in a

game day; playbooks exist for

diagnosing unknown problems; and

a Root Cause Analysis process

exists with communication paths for

what the problem was, and how it

was corrected or prevented. RCA

correction is prioritized above feature

releases for immediate

implementation and deployment.

Disaster recovery Encrypted backups via RDS, with

replication between two AWS

Regions. Restoration is to the current

active AWS Region, is practiced in a

game day, and is coordinated with

AWS.

Conclusion

Whether you are new to the topics of availability and reliability or a seasoned

veteran seeking insights to maximize your mission critical service’s availability,

we hope this section has triggered your thinking, offered a new idea, or

introduced a new line of questioning. We hope this leads to a deeper

understanding of the right level of availability based on the needs of your

business. We encourage you to take advantage of the design, operational, and

recovery-oriented recommendations offered here as well as the knowledge and

experience of our AWS Solution Architects. We’d love to hear from you –

especially about your success stories achieving high levels of availability on

AWS. Contact your account team or use Contact Us via our website.

Resources

Refer to the following resources to learn more about AWS best practices in this

area.

https://aws.amazon.com/contact-us/

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 52

Documentation:

• DynamoDB: Global Tables

• DynamoDB: On-Demand Backup and Restore

• DynamoDB: Point-in-Time Recovery

• RDS: Replicating a Read Replica Across Regions

• S3: Cross-Region Replication

• Route 53: Configuring DNS Failover

• Amazon EBS Snapshot Copies

• Automating the Amazon EBS Snapshot Lifecycle

• AMI Copies

• Amazon RDS: Cross-region backup copy

• Using AWS for Disaster Recovery

• AWS Architecture Center

• AWS X-Ray Documentation

• Using API Gateway to Throttle Requests

• What is AWS Systems Manager?

• Working with Deployment Groups (CodeDeploy)

• Blue/Green Deployments on AWS

• Canary Blue/Green Deployment on ECS

• Blue/Green Deployment on ECS

• Shuffle Sharding: Massive and Magical Fault Isolation

• Add Scaling to Services You Build on AWS

Books and External Links:

• Michael Nygard “Release It! Design and Deploy Production-Ready

Software”

• Robert S. Hammer “Patterns for Fault Tolerant Software”

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.XRgn
http://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-configuring.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-copy-snapshot.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/CopyingAMIs.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf
https://aws.amazon.com/architecture/
http://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html
http://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups.html
https://d0.awsstatic.com/whitepapers/AWS_Blue_Green_Deployments.pdf
https://github.com/awslabs/ecs-canary-blue-green-deployment
https://github.com/awslabs/ecs-blue-green-deployment
https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/
https://aws.amazon.com/about-aws/whats-new/2018/07/add-scaling-to-services-you-build-on-aws/
https://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers-ebook/dp/B00A32NXZO/
https://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers-ebook/dp/B00A32NXZO/
https://www.amazon.com/Patterns-Fault-Tolerant-Software-Wiley-ebook/dp/B00DXK33SK/

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 53

• Andrew Tanenbaum and Marten van Steen “Distributed Systems:

Principles and Paradigms”

• Adaptive Queuing Pattern: Fail at Scale

• Blue Green Deployment

• Canary Release

• Feature Toggles

• Microservice Trade-Offs

• Recovery Oriented Computing

• Calculating Total System Availability

• Netflix Simian Army

• Percentile Monitoring (An example on latency monitoring)

Contributors

The following individuals and organizations contributed to this document:

• Philip Fitzsimons, Sr Manager Well-Architected, Amazon Web Services

• Rodney Lester, Reliability Lead, Well Architected Amazon Web Services

• Michael Wallman, Sr. Professional Services Consultant, Amazon Web

Services

• Kevin Miller, Director Software Development, Amazon Web Services

• Shannon Richards, Sr. Technical Program Manager, Amazon Web

Services

Document Revisions

Date Description

October 2019 Fixed broken link

April 2019 Appendix A updated

https://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/
https://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/
http://queue.acm.org/detail.cfm?id=2839461
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://en.wikipedia.org/wiki/Recovery-oriented_computing
http://www.delaat.net/rp/2013-2014/p17/report.pdf
https://github.com/Netflix/SimianArmy/wiki
http://bravenewgeek.com/everything-you-know-about-latency-is-wrong/

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 54

Date Description

September 2018 Added specific Direct Connect networking recommendations

and additional service design goals

June 2018 Added Design Principles and Limit Management sections.

Updated links, removed ambiguity of upstream/downstream

terminology, and added explicit references to the remaining

Reliability Pillar topics in the availability scenarios.

March 2018 Changed DynamoDB Cross Region solution to DynamoDB

Global Tables

Added service design goals
December 2017 Minor correction to availability calculation to include application

availability

November 2017 Updated to provide guidance on high availability designs,

including concepts, best-practices and example

implementations.
November 2016 First publication

Appendix A: Designed-For Availability for

Select AWS Services

Below, we provide the availability that select AWS services were designed to

achieve. These values do not represent a Service Level Agreement or

guarantee, but rather provide insight to the design goals of each service. In

certain cases, we differentiate portions of the service where there’s a

meaningful difference in the availability design goal. This list is not

comprehensive for all AWS services, and we expect to periodically update with

information about additional services. Amazon CloudFront, Amazon Route53,

and the Identity & Access Management Control Plane provide global service,

and the component availability goal is stated accordingly. Other services

provide services within an AWS Region and the availability goal is stated

accordingly. Many services provide independence between Availability Zones

(AZs); in these cases we provide the availability design goal for a single AZ,

and when any two (or more) AZs are used.

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 55

NOTE: The numbers in the table below do not refer to durability (long term

retention of data); they are availability numbers (access to data or functions.)

Service Component

Availability

Design Goal

Amazon API Gateway Control Plane 99.950%

 Data Plane 99.990%

Amazon Aurora Control Plane 99.950%

Single AZ Data Plane 99.950%

Multi AZ Data Plane 99.990%

AWS CloudFormation Service 99.950%

Amazon CloudFront Control Plane 99.900%

Data Plane (content delivery) 99.990%

Amazon CloudSearch Control Plane 99.950%

Data Plane 99.950%

Amazon CloudWatch CW Metrics (service) 99.990%

CW Events (service) 99.990%

CW Logs (service) 99.950%

AWS Database Migration

Service

Control Plane 99.900%

Data Plane 99.950%

AWS Data Pipeline Service 99.990%

Amazon DynamoDB Service (standard) 99.990%

Service (Global Tables) 99.999%

Amazon EC2 Control Plane 99.950%

Single AZ Data Plane 99.950%

Multi AZ Data Plane 99.990%

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 56

Service Component

Availability

Design Goal

Amazon ElastiCache Service 99.990%

Amazon Elastic Block

Store

Control Plane 99.950%

Data Plane (volume

availability)

99.999%

Amazon Elasticsearch Control Plane 99.950%

Data Plane 99.950%

Amazon EMR Control Plane 99.950%

Amazon S3 Glacier Service 99.900%

AWS Glue Service 99.990%

Amazon Kinesis Data

Streams

Service 99.990%

Amazon Kinesis Data

Firehose

Service 99.900%

Amazon Kinesis Video

Streams

Service 99.900%

Amazon Neptune Service 99.900%

Amazon RDS Control Plane 99.950%

Single AZ Data Plane 99.950%

Multi AZ Data Plane 99.990%

Amazon Rekognition Service 99.980%

Amazon Redshift Control Plane 99.950%

Data Plane 99.950%

Amazon Route53 Control Plane 99.950%

Data Plane (query resolution) 100.000%

Amazon SageMaker Data Plane (Model Hosting) 99.990%

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 57

Service Component

Availability

Design Goal

Control Plane 99.950%

Amazon S3 Service (Standard) 99.990%

AWS Auto Scaling Control Plane 99.900%

Data Plane 99.990%

AWS Batch Control Plane 99.900%

Data Plane 99.950%

AWS CloudHSM Control Plane 99.900%

Single AZ Data Plane 99.900%

Multi AZ Data Plane 99.990%

AWS CloudTrail Control Plane (config) 99.900%

Data Plane (data events) 99.990%

Data Plane (management

events)

99.999%

AWS Config Service 99.950%

AWS Direct Connect Control Plane 99.900%

Single Location Data Plane 99.900%

Multi Location Data Plane 99.990%

Amazon Elastic File

System

Control Plane 99.950%

Data Plane 99.990%

AWS Identity & Access

Management

Control Plane 99.900%

Data Plane (authentication) 99.995%

AWS IoT Core Service 99.900%

AWS IoT Device

Management

Service 99.900%

Amazon Web Services Reliability Pillar AWS Well-Architected Framework

Page 58

Service Component

Availability

Design Goal

AWS IoT Greengrass Service 99.900%

AWS Lambda Function Invocation 99.950%

AWS Secrets Manager Service 99.900%

AWS Shield Control Plane 99.500%

Data Plane (detection) 99.000%

Data Plane (mitigation) 99.900%

AWS Storage Gateway Control Plane 99.950%

Data Plane 99.950%

AWS X-Ray Control Plane (console) 99.900%

Data Plane 99.950%

EC2 Container Service Control Plane 99.900%

EC2 Container Registry 99.990%

EC2 Container Service 99.990%

Amazon Elastic Load

Balancing

Control Plane 99.950%

Data Plane 99.990%

Key Management System

(KMS)

Control Plane 99.990%

Data Plane 99.995%

	Introduction
	Reliability
	Design Principles
	Definition

	Foundation – Limit Management
	Key AWS Services
	Resources

	Foundation - Networking
	Key AWS Services for Network Topology
	Resources for Network Topology

	Application Design for High Availability
	Understanding Availability Needs
	Application Design for Availability
	Fault Isolation Zones
	Redundant Components
	Micro-Service Architecture
	Recovery-Oriented Computing
	Distributed Systems Best Practices

	Operational Considerations for Availability
	Automate Deployments to Eliminate Impact
	Testing
	Monitoring and Alarming
	Generation
	Aggregation
	Real-Time Processing and Alarming
	Storage and Analytics
	Key AWS Services

	Operational Readiness Reviews
	Auditing

	Example Implementations for Availability Goals
	Dependency Selection
	Single Region Scenarios
	2 9s (99%) Scenario
	3 9s (99.9%) Scenario
	4 9s (99.99%) Scenario

	Multi-Region Scenarios
	3 ½ 9s (99.95%) with a Recovery Time between 1 and 30 Minutes
	5 9s (99.999%) or Higher Scenario

	Conclusion
	Resources
	Documentation:
	Books and External Links:

	Contributors
	Document Revisions
	Appendix A: Designed-For Availability for Select AWS Services

