RTI-121

From Wikipedia, the free encyclopedia
Jump to: navigation, search
RTI-121
RTI-121.png
Legal status
Legal status
  • Legal
Identifiers
CAS Number 146145-21-3
PubChem (CID) 122190
ChemSpider 21106374 YesY
Chemical and physical data
Formula C18H24INO2
Molar mass 413.29 g/mol
3D model (Jmol) Interactive image
  (verify)

(–)-2β-Carboisopropoxy-3β-(4-iodophenyl)tropane (RTI-4229-121, IPCIT) is a stimulant drug used in scientific research, which was developed in the early 1990s.[1] RTI-121 is a phenyltropane based, highly selective dopamine reuptake inhibitor[2] and is derived from methylecgonidine. RTI-121 is a potent and long-lasting stimulant, producing stimulant effects for more than 10 hours after a single dose in mice[3] which would limit its potential uses in humans, as it might have significant abuse potential if used outside of a medical setting. However RTI-121 occupies the dopamine transporter more slowly than cocaine, and so might have lower abuse potential than cocaine itself.[4]

Uses[edit]

RTI-121 is mainly used in scientific research into the dopamine reuptake transporter. It is more selective for the dopamine transporter than other DAT radioligands such as β-CIT, and so has less nonspecific binding and produces "cleaner" images.[5][6] Various radiolabelled forms of RTI-121 (with different radioactive isotopes of iodine used depending on the application) are used in both humans and animals to map the distribution of dopamine transporters in the brain.[7][8]

Legal Status[edit]

RTI-121 is legal in all countries throughout the world as of 2007. Some jurisdictions such as the United States, Australia and New Zealand might however consider RTI-121 to be a controlled substance analogue of cocaine on the grounds of its related chemical structure.

See also[edit]

References[edit]

  1. ^ Scheffel U, Dannals RF, Wong DF, Yokoi F, Carroll FI, Kuhar MJ. Dopamine transporter imaging with novel, selective cocaine analogs. Neuroreport. 1992 Nov;3(11):969-72.
  2. ^ Boja JW, Cadet JL, Kopajtic TA, Lever J, Seltzman HH, Wyrick CD, Lewin AH, Abraham P, Carroll FI. Selective labeling of the dopamine transporter by the high affinity ligand 3 beta-(4-[125I]iodophenyl)tropane-2 beta-carboxylic acid isopropyl ester. Molecular Pharmacology. 1995 Apr;47(4):779-86.
  3. ^ Fleckenstein AE, Kopajtic TA, Boja JW, Carroll FI, Kuhar MJ. Highly potent cocaine analogs cause long-lasting increases in locomotor activity. European Journal of Pharmacology. 1996 Sep 12;311(2-3):109-14.
  4. ^ Stathis M, Scheffel U, Lever SZ, Boja JW, Carroll FI, Kuhar MJ. Rate of binding of various inhibitors at the dopamine transporter in vivo. Psychopharmacology (Berlin). 1995 Jun;119(4):376-84.
  5. ^ Scanley BE, al-Tikriti MS, Gandelman MS, Laruelle M, Zea-Ponce Y, Baldwin RM, Zoghbi SS, Hoffer PB, Charney DS, Wang S, et al. Comparison of [123I]beta-CIT and [123I]IPCIT as single-photon emission tomography radiotracers for the dopamine transporter in nonhuman primates. European Journal of Nuclear Medicine. 1995 Jan;22(1):4-11.
  6. ^ Scanley BE, Gandelman MS, Laruelle M, Al-Tikriti MS, Baldwin RM, Zoghbi SS, Hoffer PB, Wang S, Neumeyer JL, Innis RB. [123I]IPCIT and [123I]beta-CIT as SPECT tracers for the dopamine transporter: a comparative analysis in nonhuman primates. Nuclear Medicine and Biology. 2000 Jan;27(1):13-21.
  7. ^ Chen NH, Ding JH, Wang YL. Characterization of [125I]RTI-121 binding to dopamine transporter in vitro. Zhongguo Yao Li Xue Bao. 1997 Mar;18(2):115-20.
  8. ^ Lever JR, Scheffel U, Stathis M, Seltzman HH, Wyrick CD, Abraham P, Parham K, Thomas BF, Boja JW, Kuhar MJ, Carroll FI. Synthesis and in vivo studies of a selective ligand for the dopamine transporter: 3 beta-(4-[125I]iodophenyl) tropan-2 beta-carboxylic acid isopropyl ester ([125I]RTI-121). Nuclear Medicine and Biology. 1996 Apr;23(3):277-84.