Measles

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Measles
Synonyms morbilli, rubeola, red measles
RougeoleDP.jpg
A child showing a 4-day measles rash.
Classification and external resources
Specialty Infectious disease
ICD-10 B05
ICD-9-CM 055
DiseasesDB 7890
MedlinePlus 001569
eMedicine derm/259 emerg/389 ped/1388
Patient UK Measles
MeSH D008457

Measles is a highly contagious infection caused by the measles virus.[1][2] Initial signs and symptoms typically include fever, often greater than 40 °C (104.0 °F), cough, runny nose, and inflamed eyes.[1][3] Two or three days after the start of symptoms, small white spots may form inside the mouth, known as Koplik's spots. A red, flat rash which usually starts on the face and then spreads to the rest of the body typically begins three to five days after the start of symptoms.[3] Symptoms usually develop 10–12 days after exposure to an infected person and last 7–10 days.[4][5] Complications occur in about 30% and may include diarrhea, blindness, inflammation of the brain, and pneumonia among others.[4][6] Rubella (German measles) and roseola are different diseases.[7]

Measles is an airborne disease which spreads easily through the coughs and sneezes of those infected. It may also be spread through contact with saliva or nasal secretions.[4] Nine out of ten people who are not immune and share living space with an infected person will catch it. People are infectious to others from four days before to four days after the start of the rash.[6] People usually do not get the disease more than once.[4] Testing for the virus in suspected cases is important for public health efforts.[6]

The measles vaccine is effective at preventing the disease. Vaccination has resulted in a 75% decrease in deaths from measles between 2000 and 2013 with about 85% of children globally being currently vaccinated. No specific treatment is available. Supportive care may improve outcomes.[4] This may include giving oral rehydration solution (slightly sweet and salty fluids), healthy food, and medications to control the fever.[4][5] Antibiotics may be used if a secondary bacterial infection such as pneumonia occurs. Vitamin A supplementation is also recommended in the developing world.[4]

Measles affects about 20 million people a year,[1] primarily in the developing areas of Africa and Asia.[4] It causes the most vaccine-preventable deaths of any disease.[8] It resulted in about 96,000 deaths in 2013, down from 545,000 deaths in 1990.[9] In 1980, the disease was estimated to have caused 2.6 million deaths per year.[4] Most of those who are infected and who die are less than five years old.[4] The risk of death among those infected is usually 0.2%,[6] but may be up to 10% in those who have malnutrition.[4] It is not believed to affect other animals.[4] Before immunization in the United States, between three and four million cases occurred each year.[6] As a result of widespread vaccination, the disease was eliminated from the Americas by 2016.[10]

Video explanation

Signs and symptoms[edit]

Skin of a person after 3 days of measles infection
“Koplik's spots” on the third pre-eruptive day

The classic signs and symptoms of measles include four-day fevers (the 4 D's) and the three C's — cough, coryza (head cold, fever, sneezing), and conjunctivitis (red eyes) — along with fever and rashes.[11] Fever is common and typically lasts for about one week; the fever seen with measles is often as high as 40 °C (104 °F).[12] Koplik's spots seen inside the mouth are pathognomonic (diagnostic) for measles, but are temporary and therefore rarely seen.[11] Recognizing these spots before a person reaches their maximum infectiousness can help physicians reduce the spread of the disease.[13]

The characteristic measles rash is classically described as a generalized red maculopapular rash that begins several days after the fever starts. It starts on the back of the ears and, after a few hours, spreads to the head and neck before spreading to cover most of the body, often causing itching. The measles rash appears two to four days after the initial symptoms and lasts for up to eight days. The rash is said to "stain", changing color from red to dark brown, before disappearing.[14] Overall, the disease from infection with the measles virus usually resolves after about three weeks.[12]

by chernet
A child with measles

Complications[edit]

Complications with measles are relatively common, ranging from mild complications such as diarrhea to serious complications such as pneumonia (either direct viral pneumonia or secondary bacterial pneumonia), bronchitis (either direct viral bronchitis or secondary bacterial bronchitis), otitis media,[15] acute brain inflammation[16] (and very rarely SSPE — subacute sclerosing panencephalitis),[17] and corneal ulceration (leading to corneal scarring).[18] Complications are usually more severe in adults who catch the virus.[19] The death rate in the 1920s was around 30% for measles pneumonia.[20] People that are at high risk for complications are: Infants and children aged <5 years, adults aged >20 years, pregnant women, and people with compromised immune systems, such as from leukemia and HIV infection.[21]

Between 1987 and 2000, the case fatality rate across the United States was three measles-attributable deaths per 1000 cases, or 0.3%.[22] In underdeveloped nations with high rates of malnutrition and poor healthcare, fatality rates have been as high as 28%.[22] In immunocompromised persons (e.g., people with AIDS) the fatality rate is approximately 30%.[23] Risk factors for severe measles and its complications include malnutrition,[24] underlying immunodeficiency,[24] pregnancy,[24] and vitamin A deficiency.[24][25] Even in previously healthy children, measles can cause serious illness requiring hospitalization.[26] One out of every 1,000 measles cases will develop acute encephalitis, which often results in permanent brain damage.[26] One or two out of every 1,000 children who become infected with measles will die from respiratory and neurologic complications.[21]

Cause[edit]

An electron micrograph of the measles virus.

Measles is caused by the measles virus, a single-stranded, negative-sense, enveloped RNA virus of the genus Morbillivirus within the family Paramyxoviridae.[27] The virus was first isolated in 1954 by Nobel Laureate John F. Enders and Thomas Peebles, who were careful to point out that the isolations were made from patients who had Koplik's spots.[28] Humans are the only natural hosts of the virus, and no other animal reservoirs are known to exist. This highly contagious virus is spread by coughing and sneezing via close personal contact or direct contact with secretions. Risk factors for measles virus infection include immunodeficiency caused by HIV or AIDS,[29] immunosuppression following receipt of an organ or a stem cell transplant,[30] alkylating agents, or corticosteroid therapy, regardless of immunization status;[24] travel to areas where measles is endemic or contact with travelers to endemic areas;[24] and the loss of passive, inherited antibodies before the age of routine immunization.[31]

Diagnosis[edit]

Clinical diagnosis of measles requires a history of fever of at least three days, with at least one of the three C's (cough, coryza, conjunctivitis). Observation of Koplik's spots is also diagnostic of measles.[13][32][33]

Laboratory testing[edit]

Alternatively, laboratory diagnosis of measles can be done with confirmation of positive measles IgM antibodies or isolation of measles virus RNA from respiratory specimens.[34] For people unable to have their blood drawn, saliva can be collected for salivary measles-specific IgA testing.[35] Positive contact with other patients known to have measles adds strong epidemiological evidence to the diagnosis. Any contact with an infected person, including semen through sex, saliva, or mucus, can cause infection.[33]

Prevention[edit]

Rates of measles vaccination worldwide

In developed countries, children are immunized against measles at 12 months, generally as part of a three-part MMR vaccine (measles, mumps, and rubella). The vaccination is generally not given before this age because such infants respond inadequately to the vaccine due to an immature immune system.[31] Anti-measles antibodies are transferred from mothers who have been vaccinated against measles or have been previously infected with measles to their newborn children.[31] However, such antibodies are transferred in low amounts and usually last six months or less.[31] Infants under one year of age whose maternal anti-measles antibodies have disappeared become susceptible to infection with the measles virus.[31] A second dose of the vaccine is usually given to children between the ages of four and five, to increase rates of immunity. Vaccination rates have been high enough to make measles relatively uncommon. Adverse reactions to vaccination are rare, with fever and pain at the injection site being the most common. Life-threatening adverse reactions occur in less than one per million vaccinations (<0.0001%).[36]

In developing countries where measles is highly endemic, WHO doctors recommend two doses of vaccine be given at six and nine months of age. The vaccine should be given whether the child is HIV-infected or not.[37] The vaccine is less effective in HIV-infected infants than in the general population, but early treatment with antiretroviral drugs can increase its effectiveness.[38] Measles vaccination programs are often used to deliver other child health interventions, as well, such as bed nets to protect against malaria, antiparasite medicine and vitamin A supplements, and so contribute to the reduction of child deaths from other causes.[39]

Treatment[edit]

There is no specific treatment for measles. Most people with uncomplicated measles will recover with rest and supportive treatment.

Patients who become sicker may be developing medical complications. Some people will develop pneumonia as a consequence of infection with the measles virus. Other complications include ear infections, bronchitis (either viral bronchitis or secondary bacterial bronchitis), and brain inflammation.[40] Brain inflammation from measles has a mortality rate of 15%. While there is no specific treatment for brain inflammation from measles, antibiotics are required for bacterial pneumonia, sinusitis, and bronchitis that can follow measles.

All other treatment addresses symptoms, with ibuprofen or paracetamol to reduce fever and pain and, if required, a fast-acting medication to dilate the airways for cough. As for aspirin, some research has suggested a correlation between children who take aspirin and the development of Reye syndrome.[41] Some research has shown aspirin may not be the only medication associated with Reye, and even antiemetics have been implicated.[42] The link between aspirin use in children and Reye syndrome development is weak at best, if not actually nonexistent.[43] Nevertheless, most health authorities still caution against the use of aspirin for any fevers in children under 16.[44][45][46][47]

The use of vitamin A during treatment is recommended by the World Health Organization to decrease the risk of blindness.[48] A systematic review of trials into its use found no significant reduction in overall mortality, but it did reduce mortality in children aged under two years.[49][50][needs update][51]

It is unclear if zinc supplementation in children with measles affects outcomes.[52]

Prognosis[edit]

The majority of people survive measles, though in some cases, complications may occur. Possible consequences of measles virus infection include bronchitis, sensorineural hearing loss,[27] and — in about 1 in 10,000 to 1 in 300,000 cases[53]panencephalitis, which is usually fatal.[54] Acute measles encephalitis is another serious risk of measles virus infection. It typically occurs two days to one week after the breakout of the measles rash and begins with very high fever, severe headache, convulsions and altered mentation. A person with measles encephalitis may become comatose, and death or brain injury may occur.[55]

Epidemiology[edit]

Deaths from measles per million persons in 2012
  0-0
  1-8
  9-26
  27-38
  39-73
  74-850
Disability-adjusted life year for measles per 100,000 inhabitants in 2004.
  no data
  ≤ 10
  10–25
  25–50
  50–75
  75–100
  100–250
  250–500
  500–750
  750–1000
  1000–1500
  1500–2000
  ≥ 2000

Measles is extremely infectious and its continued circulation in a community depends on the generation of susceptible hosts by birth of children. In communities which generate insufficient new hosts the disease will die out. This concept was first recognized in measles by Bartlett in 1957, who referred to the minimum number supporting measles as the critical community size (CCS).[56] Analysis of outbreaks in island communities suggested that the CCS for measles is around 250,000.[57] To achieve herd immunity, more than 95% of the community must be vaccinated due to the ease with which measles is transmitted from person to person.[12] The disease was eliminated from the Americas in 2016.[10]

In 2011, the WHO estimated that 158,000 deaths were caused by measles. This is down from 630,000 deaths in 1990.[58] As of 2013, measles remains the leading cause of vaccine-preventable deaths in the world.[8] In developed countries, death occurs in 1 to 2 cases out of every 1,000 (0.1% - 0.2%).[59] In populations with high levels of malnutrition and a lack of adequate healthcare, mortality can be as high as 10%. In cases with complications, the rate may rise to 20–30%.[60] In 2012, the number of deaths due to measles was 78% lower than in 2000 due to increased rates of immunization among UN member states.[12]

Reported cases[61][62][63][64][65][66]
WHO-Region 1980 1990 2000 2005 2014
African Region 1,240,993 481,204 520,102 316,224 71,574
Region of the Americas 257,790 218,579 1,755 66 19,898
Eastern Mediterranean Region 341,624 59,058 38,592 15,069 28,031
European Region 851,849 234,827 37,421 37,332 16,899
South-East Asia Region 199,535 224,925 61,975 83,627 112,418
Western Pacific Region 1,319,640 155,490 176,493 128,016 213,366
Worldwide 4,211,431 1,374,083 836,338 580,287 462,186

Even in countries where vaccination has been introduced, rates may remain high. Measles is a leading cause of vaccine-preventable childhood mortality. Worldwide, the fatality rate has been significantly reduced by a vaccination campaign led by partners in the Measles Initiative: the American Red Cross, the United States' Centers for Disease Control and Prevention (CDC), the United Nations Foundation, UNICEF and the WHO. Globally, measles fell 60% from an estimated 873,000 deaths in 1999 to 345,000 in 2005.[67] Estimates for 2008 indicate deaths fell further to 164,000 globally, with 77% of the remaining measles deaths in 2008 occurring within the Southeast Asian region.[68]

In 2013–14 there were almost 10,000 cases in 30 European countries. Most cases occurred in unvaccinated individuals and over 90% of cases occurred in the five European nations: Germany, Italy, the Netherlands, Romania, and the United Kingdom.[12] In the Vietnamese measles epidemic in spring of 2014, an estimated 8,500 measles cases were reported as of April 19, with 114 fatalities;[69] as of May 30, 21,639 suspected measles cases had been reported, with 142 measles-related fatalities.[70]

Five out of six WHO regions have set goals to eliminate measles, and at the 63rd World Health Assembly in May 2010, delegates agreed on a global target of a 95% reduction in measles mortality by 2015 from the level seen in 2000, as well as to move towards eventual eradication. However, no specific global target date for eradication has yet been agreed to as of May 2010.[71][72]

In 2014, a review by the Centers for Disease Control reported a total of 911 cases of measles from 2001 to 2011, with an annual median number of 61 cases and concluded that "the elimination of endemic measles, rubella, and CRS has been sustained in the United States."[73] However, in 2015, a measles outbreak occurred in the U.S. and spread rather farther than it should have, because misguided ideas about anti-vaccination and vaccination delaying have decreased the community immunity afforded by proper public health programs. In 2015, a U.S. woman died of pneumonia, as a result of measles. She was the first fatality in the USA from measles since 2003.[74] The woman had been vaccinated for measles and was taking immune suppression drugs for another condition. The drugs suppressed the measles immunity, the woman became infected with measles, did not develop a rash, and contracted pneumonia which caused her death.[75]

Between October 2014 and March 2015, a measles outbreak in the German capital of Berlin resulted in at least 782 cases.[76]

From January 4 to April 2, 2015, there were 159 reported cases of measles to the CDC. Of those 159 cases, 111 (70%) were determined to have come from an earlier exposure in late December 2014. This outbreak was believed to have originated from the Disney theme parks in California. The initial exposure to the virus was never found. There have been cases associated with this outbreak in seven states, Mexico, and Canada. Of the cases 48% were unvaccinated and 38% were unsure of their vaccination status.[77]

In the Naga Self-Administered Zone in a remote northern region of Myanmar, at least 40 children died during a measles outbreak in August 2016 that was probably caused by lack of vaccination in an area of poor health infrastructure.[78][79]

History[edit]

16th-century Aztec drawing of someone with measles

Estimates based on modern molecular biology place the emergence of measles as a human disease sometime after 500 AD[80] (the former speculation that the Antonine Plague of 165–180 AD was caused by measles is now discounted). The first systematic description of measles, and its distinction from smallpox and chickenpox, is credited to the Persian physician Rhazes (860–932), who published The Book of Smallpox and Measles.[81] Given what is now known about the evolution of measles, Rhazes' account is remarkably timely, as recent work that examined the mutation rate of the virus indicates the measles virus emerged from rinderpest (cattle plague) as a zoonotic disease between 1100 and 1200 AD, a period that may have been preceded by limited outbreaks involving a virus not yet fully acclimated to humans.[80] This agrees with the observation that measles requires a susceptible population of >500,000 to sustain an epidemic, a situation that occurred in historic times following the growth of medieval European cities.[82]

Maurice Hilleman's measles vaccine is estimated to prevent 1 million deaths per year.[83]

Measles is an endemic disease, meaning it has been continually present in a community, and many people develop resistance. In populations not exposed to measles, exposure to the new disease can be devastating. In 1529, a measles outbreak in Cuba killed two-thirds of those natives who had previously survived smallpox. Two years later, measles was responsible for the deaths of half the population of Honduras, and it had ravaged Mexico, Central America, and the Inca civilization.[84]

Between roughly 1855 and 2005, measles has been estimated to have killed about 200 million people worldwide.[85] Measles killed 20 percent of Hawaii's population in the 1850s.[86] In 1875, measles killed over 40,000 Fijians, approximately one-third of the population.[87] In the 19th century, the disease killed 50% of the Andamanese population.[88] Seven to eight million children are thought to have died from measles each year before the vaccine was introduced.[12]

In 1954, the virus causing the disease was isolated from a 13-year-old boy from the United States, David Edmonston, and adapted and propagated on chick embryo tissue culture.[89] To date, 21 strains of the measles virus have been identified.[90] While at Merck, Maurice Hilleman developed the first successful vaccine.[91] Licensed vaccines to prevent the disease became available in 1963.[92] An improved measles vaccine became available in 1968.[93] Measles as an endemic disease was eliminated from the United States in 2000, but continues to be reintroduced by international travelers.

Society and culture[edit]

German anti-vaccination campaigner and HIV/AIDS denialist[94] Stefan Lanka posed a challenge on his website in 2011, offering a sum of €100,000 for anyone who could scientifically prove that measles is caused by a virus and determine the diameter of the virus.[95] He posits that the illness is psychosomatic and that the measles virus does not exist. When provided with overwhelming scientific evidence from various medical studies by German physician David Barden, Lanka did not accept the findings, forcing Barden to appeal in court. The legal case ended with the ruling that Lanka was to pay the prize.[76][96] The case received wide international coverage that prompted many to comment on it, including clinical neurologist, well-known skeptic and science-based medicine advocate Dr. Steven Novella, who called Lanka "a crank".[97]

Research[edit]

In May 2015, the journal Science, published a report in which researchers found that the measles infection can leave a population at increased risk for mortality from other diseases for 2 to 3 years.[98][99]

A specific drug treatment for measles ERDRP-0519 has shown promising results in animal studies, but has not yet been tested in humans.[100][101][102]

References[edit]

  1. ^ a b c Caserta, MT, ed. (September 2013). "Measles". Merck Manual Professional. Merck Sharp & Dohme Corp. Retrieved 23 March 2014. 
  2. ^ "Measles (Red Measles, Rubeola)". Dept of Health, Saskatchewan. Retrieved 10 February 2015. 
  3. ^ a b "Measles (Rubeola) Signs and Symptoms". cdc.gov. November 3, 2014. Retrieved 5 February 2015. 
  4. ^ a b c d e f g h i j k l "Measles Fact sheet N°286". who.int. November 2014. Retrieved 4 February 2015. 
  5. ^ a b Conn's Current Therapy 2015: Expert Consult - Online. Elsevier Health Sciences. 2014. p. 153. ISBN 9780323319560. 
  6. ^ a b c d e Atkinson, William (2011). Epidemiology and Prevention of Vaccine-Preventable Diseases (12 ed.). Public Health Foundation. pp. 301–323. ISBN 9780983263135. Retrieved 5 February 2015. 
  7. ^ Marx, John A. (2010). Rosen's emergency medicine : concepts and clinical practice (7th ed.). Philadelphia: Mosby/Elsevier. p. 1541. ISBN 9780323054720. 
  8. ^ a b Kabra, SK; Lodhra, R (14 August 2013). "Antibiotics for preventing complications in children with measles". Cochrane Database of Systematic Reviews. 8: CD001477. doi:10.1002/14651858.CD001477.pub4. PMID 23943263. 
  9. ^ GBD 2013 Mortality and Causes of Death, Collaborators (17 December 2014). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.". Lancet. 385: 117–171. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604Freely accessible. PMID 25530442. 
  10. ^ a b "Region of the Americas is declared free of measles". PAHO. 29 September 2016. Retrieved 30 September 2016. 
  11. ^ a b Biesbroeck L, Sidbury R (November 2013). "Viral exanthems: an update". Dermatologic therapy. 26 (6): 433–8. doi:10.1111/dth.12107. PMID 24552405. 
  12. ^ a b c d e f Ludlow M, McQuaid S, Milner D, de Swart RL, Duprex WP (January 2015). "Pathological consequences of systemic measles virus infection". The Journal of pathology. 235 (2): 253–65. doi:10.1002/path.4457. PMID 25294240. 
  13. ^ a b Baxby D (1997). "Classic Paper: Henry Koplik. The diagnosis of the invasion of measles from a study of the exanthema as it appears on the buccal membrane". Reviews in Medical Virology. 7 (2): 71–4. doi:10.1002/(SICI)1099-1654(199707)7:2<71::AID-RMV185>3.0.CO;2-S. PMID 10398471. 
  14. ^ NHS UK: Symptoms of measles. Last reviewed: 26/01/2010.
  15. ^ Gardiner, W. T. (2007). "Otitis Media in Measles". The Journal of Laryngology & Otology. 39 (11): 614–617. doi:10.1017/S0022215100026712. 
  16. ^ Fisher DL, Defres S, Solomon T (2014). "Measles-induced encephalitis". QJM. 108: 177–182. doi:10.1093/qjmed/hcu113. PMID 24865261. 
  17. ^ Anlar B (2013). "Subacute sclerosing panencephalitis and chronic viral encephalitis". Handbook of Clinical Neurology. 112: 1183–1189. doi:10.1016/B978-0-444-52910-7.00039-8. PMID 23622327. 
  18. ^ Semba RD, Bloem MW (March 2004). "Measles blindness". Survey of Ophthalmology. 49 (2): 243–55. doi:10.1016/j.survophthal.2003.12.005. PMID 14998696. 
  19. ^ Sabella C (2010). "Measles: Not just a childhood rash". Cleveland Clinic Journal of Medicine. 77 (3): 207–213. doi:10.3949/ccjm.77a.09123. PMID 20200172. 
  20. ^ Ellison, J.B (1931). "Pneumonia in Measles". 1931 Archives of Disease in Childhood. 6 (31): 37–52. doi:10.1136/adc.6.31.37. PMC 1975146Freely accessible. PMID 21031836. 
  21. ^ a b "Measles | For Healthcare Professionals | CDC". www.cdc.gov. Retrieved 22 October 2016. 
  22. ^ a b Perry RT, Halsey NA (May 1, 2004). "The Clinical Significance of Measles: A Review". The Journal of Infectious Diseases. 189 (S1): S4–16. doi:10.1086/377712. PMID 15106083. 
  23. ^ Sension MG, Quinn TC, Markowitz LE, Linnan MJ, Jones TS, Francis HL, Nzilambi N, Duma MN, Ryder RW (1988). "Measles in hospitalized African children with human immunodeficiency virus". American Journal of Diseases of Children (1960). 142 (12): 1271–2. doi:10.1001/archpedi.1988.02150120025021. PMID 3195521. 
  24. ^ a b c d e f Chen S.S.P. (October 3, 2011). Measles (Report). Medscape. 
  25. ^ National Institutes of Health Office of Dietary Supplements (2013). "Vitamin A". U.S. Department of Health & Human Services. Retrieved 11 March 2015. 
  26. ^ a b "Measles | For Healthcare Professionals | CDC". www.cdc.gov. 
  27. ^ a b Cohen BE, Durstenfeld A, Roehm PC (July 2014). "Viral causes of hearing loss: a review for hearing health professionals". Trends in Hearing. 18: 2331216514541361. doi:10.1177/2331216514541361. PMC 4222184Freely accessible. PMID 25080364. 
  28. ^ Enders JF, Peebles TC (1954). "Propagation in tissue culture of cytopathogenic agents from patients with measles". Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 86 (2): 277–86. doi:10.3181/00379727-86-21073. PMID 13177653. 
  29. ^ Gowda VK, Sukanya V (2012). "Acquired Immunodeficiency Syndrome with Subacute Sclerosing Panencephalitis". Pediatric Neurology. 47 (5): 379–381. doi:10.1016/j.pediatrneurol.2012.06.020. PMID 23044024. 
  30. ^ Waggoner JJ, Soda EA, Deresinski S (October 2013). "Rare and emerging viral infections in transplant recipients". Clinical Infectious Diseases. 57 (8): 1182–8. doi:10.1093/cid/cit456. PMID 23839998. 
  31. ^ a b c d e Leuridan E, Sabbe M, Van Damme P (September 2012). "Measles outbreak in Europe: susceptibility of infants too young to be immunized". Vaccine. 30 (41): 5905–13. doi:10.1016/j.vaccine.2012.07.035. PMID 22841972. 
  32. ^ "Bug of the Month—Measles". Banner Gateway Medical Center. April 2012. Retrieved May 3, 2013. 
  33. ^ a b Total Health (May 5, 2010). "Actual Confirmed Measles Cases in UK". totalhealth. Retrieved May 4, 2013. 
  34. ^ Durrheim DN, Kelly H, Ferson MJ, Featherstone D (August 2007). "Remaining measles challenges in Australia". The Medical journal of Australia. 187 (3): 181–4. PMID 17680748. 
  35. ^ Friedman M, Hadari I, Goldstein V, Sarov I (1983). "Virus-specific secretory IgA antibodies as a means of rapid diagnosis of measles and mumps infection". Israel Journal of Medical Sciences. 19 (10): 881–884. PMID 6662670. 
  36. ^ Galindo BM, Concepción D, Galindo MA, Pérez A, Saiz J (2012). "Vaccine-related adverse events in Cuban children, 1999–2008". MEDICC Review. 14 (1): 38–43. PMID 22334111. 
  37. ^ Helfand RF, Witte D, Fowlkes A, Garcia P, Yang C, Fudzulani R, Walls L, Bae S, Strebel P, Broadhead R, Bellini WJ, Cutts F (2008). "Evaluation of the immune response to a 2-dose measles vaccination schedule administered at 6 and 9 months of age to HIV-infected and HIV-uninfected children in Malawi". The Journal of Infectious Diseases. 198 (10): 1457–65. doi:10.1086/592756. PMID 18828743. 
  38. ^ Ołdakowska A, Marczyńska M (2008). "Measles vaccination in HIV-infected children". Medycyna Wieku Rozwojowego. 12 (2 Pt 2): 675–680. PMID 19418943. 
  39. ^ UNICEF (2007). "Global goal to reduce measles deaths in children surpassed". Joint press release. Retrieved 11 March 2015. 
  40. ^ "Complications of Measles". Centers for Disease Control and Prevention (CDC). 
  41. ^ Starko KM, Ray CG, Dominguez LB, Stromberg WL, Woodall DF (6 Dec 1980). "Reye's Syndrome and Salicylate Use". Pediatrics. 66 (6): 859–64. PMID 7454476. Retrieved 2011-03-17. It is postulated that salicylate [taken by school-age children], operating in a dose-dependent manner, possibly potentiated by fever, represents a primary causative agent of Reye's syndrome. 
  42. ^ Casteels-Van Daele M, Van Geet C, Wouters C, Eggermont E (April 2000). "Reye syndrome revisited: a descriptive term covering a group of heterogeneous disorders". European Journal of Pediatrics. 159 (9): 641–8. doi:10.1007/PL00008399. PMID 11014461. Retrieved 2011-03-17. Reye syndrome is a non-specific descriptive term covering a group of heterogeneous disorders. Moreover, not only the use of acetylsalicylic acid but also of antiemetics is statistically significant in Reye syndrome cases. Both facts weaken the validity of the epidemiological surveys suggesting a link with acetylsalicylic acid. 
  43. ^ Schrör K (2007). "Aspirin and Reye Syndrome: A Review of the Evidence". Paediatric Drugs. 9 (3): 195–204. doi:10.2165/00148581-200709030-00008. PMID 17523700. Retrieved 2011-03-17. The suggestion of a defined cause-effect relationship between aspirin intake and Reye syndrome in children is not supported by sufficient facts. Clearly, no drug treatment is without side effects. Thus, a balanced view of whether treatment with a certain drug is justified in terms of the benefit/risk ratio is always necessary. Aspirin is no exception. 
  44. ^ Macdonald S (2002). "Aspirin use to be banned in under 16 year olds". BMJ (Clinical Research Ed.). 325 (7371): 988. doi:10.1136/bmj.325.7371.988/c. PMC 1169585Freely accessible. PMID 12411346. Professor Alasdair Breckenridge, said, "There are plenty of analgesic products containing paracetamol and ibuprofen for this age group not associated with Reye's syndrome. There is simply no need to expose those under 16 to the risk—however small." 
  45. ^ "Aspirin and Reye's Syndrome". MHRA. October 2003. Retrieved 2011-03-17. 
  46. ^ "Surgeon General's advisory on the use of salicylates and Reye syndrome". MMWR. Morbidity and Mortality Weekly Report. 31 (22): 289–90. June 1982. PMID 6810083. 
  47. ^ Reye's Syndrome at NINDS "Epidemiologic evidence indicates that aspirin (salicylate) is the major preventable risk factor for Reye's syndrome. The mechanism by which aspirin and other salicylates trigger Reye's syndrome is not completely understood."
  48. ^ "Measles vaccines: WHO position paper." (PDF). Weekly epidemiological record. 84 (35): 349–60. 28 August 2009. PMID 19714924. 
  49. ^ Huiming Y, Chaomin W, Meng M (2005). Yang H, ed. "Vitamin A for treating measles in children". The Cochrane Database of Systematic Reviews (4): CD001479. doi:10.1002/14651858.CD001479.pub3. PMID 16235283. 
  50. ^ D'Souza RM, D'Souza R (2002). "Vitamin A for treating measles in children". The Cochrane Database of Systematic Reviews (1): CD001479. doi:10.1002/14651858.CD001479. PMID 11869601. 
  51. ^ D'Souza RM, D'Souza R (April 2002). "Vitamin A for preventing secondary infections in children with measles—a systematic review". Journal of Tropical Pediatrics. 48 (2): 72–7. doi:10.1093/tropej/48.2.72. PMID 12022432. 
  52. ^ Awotiwon, AA; Oduwole, O; Sinha, A; Okwundu, CI (20 March 2015). "Zinc supplementation for the treatment of measles in children.". The Cochrane database of systematic reviews. 3: CD011177. doi:10.1002/14651858.CD011177.pub2. PMID 25794053. 
  53. ^ Noyce RS, Richardson CD (September 2012). "Nectin 4 is the epithelial cell receptor for measles virus". Trends in Microbiology. 20 (9): 429–39. doi:10.1016/j.tim.2012.05.006. PMID 22721863. 
  54. ^ [1] "NINDS Subacute Sclerosing Panencephalitis Information Page"
  55. ^ 14-193b. at Merck Manual of Diagnosis and Therapy Professional Edition
  56. ^ Bartlett, M.S. (1957). "Measles periodicity and community size". J. Roy. Stat. Soc. Ser. A (120): 48–70. 
  57. ^ Black FL (1966). "Measles endemicity in insular populations; critical community size and its evolutionary implications". Journal of Theoretical Biology. 11 (2): 207–11. doi:10.1016/0022-5193(66)90161-5. PMID 5965486. 
  58. ^ Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et al. (Dec 15, 2012). "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2095–128. doi:10.1016/S0140-6736(12)61728-0. PMID 23245604. 
  59. ^ "Complications of measles". CDC. November 3, 2014. Retrieved November 7, 2014. 
  60. ^ Measles, World Health Organization Fact sheet N°286. Retrieved June 28, 2012. Updated February 2014
  61. ^ WHO: Global summary on measles, 2006
  62. ^ Measles Surveillance Data after WHO, last updated 2014-3-6
  63. ^ Measles reported cases by WHO in 2014
  64. ^ Số người chết và mắc bệnh theo quốc gia, last update 2014-4-7 by WHO
  65. ^ "Measles---United States, 2005". Centers for Disease Control and Prevention. December 22, 2006. Retrieved 30 March 2015. 
  66. ^ Reported Measles Cases by WHO region 2014, 2015, as of 07 July 201, WHO
  67. ^ UNICEF Joint Press Release
  68. ^ WHO Weekly Epidemiology Record, 4th December 2009 WHO.int
  69. ^ "Vietnam minister calls for calm in face of 8,500 measles cases, 114 fatalities | Health | Thanh Nien Daily". Thanhniennews.com. Retrieved 2014-04-19. 
  70. ^ "Bộ Y tế: "VN đã phản ứng rất nhanh đối với dịch sởi"". Archived from the original on 2014-05-31. 
  71. ^ "Sixty-third World Health Assembly Agenda provisional agenda item 11.15 Global eradication of measles" (PDF). Retrieved 2 June 2010. 
  72. ^ "Sixty-third World Health Assembly notes from day four". Retrieved 2 June 2010. 
  73. ^ Papania, Mark (Feb 2014). "Elimination of Endemic Measles, Rubella, and Congenital Rubella Syndrome From the Western Hemisphere The US Experience". JAMA Pediatrics. 
  74. ^ "Measles kills first patient in 12 years". USA Today. 2 July 2015. Retrieved 2 July 2015. 
  75. ^ "First Measles Death in US Since 2003 Highlights the Unknown Vulnerables – Phenomena: Germination". Retrieved 2015-07-03. 
  76. ^ a b Elizabeth Whitman (2015-03-13). "Who Is Stefan Lanka? Court Orders German Measles Denier To Pay 100,000 Euros". International Business Times. Retrieved 2015-03-31. 
  77. ^ Clemmons, Nakia. "Measles - United States, January 4 - April 2, 2015". cdc.gov. 
  78. ^ "WHO doctors in Myanmar's Naga areas identify 'mystery disease' – Eastern Mirror". www.easternmirrornagaland.com. Retrieved 8 August 2016. 
  79. ^ "Myanmar (02): (SA) fatal, measles conf". www.promedmail.org (Archive Number: 20160806.4398118). International Society for Infectious Diseases. Retrieved 8 August 2016. 
  80. ^ a b Furuse, Yuki; Akira Suzuki; Hitoshi Oshitani (2010-03-04). "Origin of measles virus: divergence from rinderpest virus between the 11th and 12th centuries". Virology Journal. 7: 52. doi:10.1186/1743-422X-7-52. ISSN 1743-422X. PMC 2838858Freely accessible. PMID 20202190. 
  81. ^ Cohen SG (February 2008). "Measles and immunomodulation". The Journal of allergy and clinical immunology. 121 (2): 543–4. doi:10.1016/j.jaci.2007.12.1152. PMID 18269930. 
  82. ^ Black, Francis L. (July 1966). "Measles endemicity in insular populations: Critical community size and its evolutionary implication". Journal of Theoretical Biology. 11 (2): 207–211. doi:10.1016/0022-5193(66)90161-5. ISSN 0022-5193. PMID 5965486. Retrieved 2014-10-15. 
  83. ^ "Maurice R. Hilleman Dies; Created Vaccines". The Washington Post. April 13, 2005.
  84. ^ Byrne, Joseph Patrick (2008). Encyclopedia of Pestilence, Pandemics, and Plagues: A–M. ABC-CLIO. p. 413. ISBN 0-313-34102-8. 
  85. ^ Torrey EF and Yolken RH. 2005. Their bugs are worse than their bite. Washington Post, April 3, p. B01.
  86. ^ Migration and Disease. Digital History.
  87. ^ Fiji School of Medicine
  88. ^ Measles hits rare Andaman tribe. BBC News. May 16, 2006.
  89. ^ "Live attenuated measles vaccine". EPI Newsletter / C Expanded Program on Immunization in the Americas. 2 (1): 6. 1980. PMID 12314356. 
  90. ^ Rima BK, Earle JA, Yeo RP, Herlihy L, Baczko K, ter Meulen V, Carabaña J, Caballero M, Celma ML, Fernandez-Muñoz R (1995). "Temporal and geographical distribution of measles virus genotypes". The Journal of General Virology. 76 (5): 1173–80. doi:10.1099/0022-1317-76-5-1173. PMID 7730801. 
  91. ^ Offit PA (2007). Vaccinated: One Man's Quest to Defeat the World's Deadliest Diseases. Washington, DC: Smithsonian. ISBN 0-06-122796-X. 
  92. ^ "Measles Prevention: Recommendations of the Immunization Practices Advisory Committee (ACIP)". Centers for Disease Control and Prevention (CDC).
  93. ^ Measles: Questions and Answers, Immunization Action Coalition.
  94. ^ Stefan Lanka (April 1995). "HIV; Reality or artefact?". Virusmyth.com. Retrieved 2015-03-31. 
  95. ^ "Das Masern-Virus 100.000 € Belohnung! WANTeD Der Durchmesser" (PDF) (in German). 2011-11-24. Retrieved 2015-03-31. 
  96. ^ "Germany court orders measles sceptic to pay 100,000 euros". BBC News Online. 2015-03-12. Retrieved 2015-03-31. 
  97. ^ Steven Novella (2015-03-13). "Yes, Dr. Lanka, Measles is Real". NeuroLogica Blog. Retrieved 2015-03-31. 
  98. ^ Bakalar, Nicholas. "Measles May Increase Susceptibility to Other Infections". The New York Times. The New York Times Company. Retrieved 7 June 2015. 
  99. ^ Mina; et al. (8 May 2015). "Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality". Science. 348 (6235): 694–699. doi:10.1126/science.aaa3662. Retrieved 7 June 2015. 
  100. ^ White LK, Yoon JJ, Lee JK, Sun A, Du Y, Fu H, Snyder JP, Plemper RK (2007). "Nonnucleoside Inhibitor of Measles Virus RNA-Dependent RNA Polymerase Complex Activity". Antimicrobial Agents and Chemotherapy. 51 (7): 2293–303. doi:10.1128/AAC.00289-07. PMC 1913224Freely accessible. PMID 17470652. 
  101. ^ Krumm SA, Yan D, Hovingh ES, Evers TJ, Enkirch T, Reddy GP, Sun A, Saindane MT, Arrendale RF, Painter G, Liotta DC, Natchus MG, von Messling V, Plemper RK (2014). "An Orally Available, Small-Molecule Polymerase Inhibitor Shows Efficacy Against a Lethal Morbillivirus Infection in a Large Animal Model". Science Translational Medicine. 6 (232): 232ra52. doi:10.1126/scitranslmed.3008517. PMID 24739760. 
  102. ^ Will an anti-viral drug put paid to measles? New Scientist 16 April 2014

External links[edit]