
AWS Encryption SDK
Developer Guide

AWS Encryption SDK Developer Guide

AWS Encryption SDK Developer Guide

AWS Encryption SDK: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS Encryption SDK Developer Guide

Table of Contents
What Is the AWS Encryption SDK? ... 1

Encryption Concepts ... 1
Encryption Basics ... 2
Envelope Encryption .. 2

Architecture .. 3
Encryption .. 3
Decryption ... 4

Getting Started ... 5
(Optional) Create an AWS Account ... 5
Download the AWS Encryption SDK .. 5

Message Format ... 7
Header Structure .. 7
Body Structure .. 11

Non-Framed Data ... 11
Framed Data .. 12

Footer Structure .. 13
Example Code (Java) .. 15

Strings ... 15
Byte Streams .. 17
Byte Streams with Multiple Master Key Providers ... 19

Frequently Asked Questions ... 23

iv

AWS Encryption SDK Developer Guide
Encryption Concepts

What Is the AWS Encryption SDK?

The AWS Encryption SDK provides client-side encryption libraries you can use to protect your data and
the encryption keys used to encrypt that data. The SDK does the following things for you:

• Provides an API to define and use a master key provider, an interface for the top-level key or keys
under which your data is encrypted.

• Tracks and protects the data encryption keys (DEKs) used to encrypt your data.

• Performs the low-level cryptographic operations.

You determine the top-level master keys that protect your data, and the SDK does the rest. The SDK
helps you connect the low-level cryptography to the top-level master keys. For more information about
master keys, master key providers, data encryption keys, and other cryptography concepts related to
this SDK, see Encryption Concepts (p. 1) and Architecture (p. 3).

The SDK is similar to the Amazon DynamoDB Encryption Client for Java and the Amazon S3
Encryption Client, but unlike those clients the data encrypted by this SDK can be stored anywhere.

The SDK is provided for free under the Apache license and is available for the Java programming
language at https://github.com/awslabs/aws-encryption-sdk-java.

Topics

• Encryption Concepts (p. 1)

• Architecture (p. 3)

• Getting Started (p. 5)

Encryption Concepts
You can use the AWS Encryption SDK to protect your data and the encryption keys used to encrypt
that data.

Topics

• Encryption Basics (p. 2)

• Envelope Encryption (p. 2)

1

https://github.com/awslabs/aws-dynamodb-encryption-java
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://aws.amazon.com/apache-2-0/
https://github.com/awslabs/aws-encryption-sdk-java

AWS Encryption SDK Developer Guide
Encryption Basics

Encryption Basics
To encrypt data, you provide the raw data (plaintext) and a data key to an encryption algorithm. The
algorithm uses those inputs to produce encrypted data (ciphertext). To decrypt data, you provide the
encrypted data and the data key to a decryption algorithm that uses those inputs to return the original
data.

Some algorithms use the same data key to encrypt and decrypt data. This is called symmetric key
encryption. Other algorithms use a public key to encrypt data, and only a related private key can
decrypt that data. This is called public key encryption.

For both types of encryption, the security of your encrypted data depends on protecting the data key
that can decrypt it. One accepted best practice for protecting the data key is to encrypt it. To encrypt
the data key you need another encryption key called a key encryption key (KEK). This practice of using
KEKs to encrypt data keys is called envelope encryption.

Envelope Encryption
Envelope encryption is the practice of encrypting plaintext data with a unique data key, and then
encrypting the data key with a KEK. You might choose to encrypt the KEK with another KEK, and so
on, but eventually you must have a master key. The master key is an unencrypted (plaintext) key with
which you can decrypt one or more other keys.

Some of the benefits of envelope encryption include:

• Protecting data keys

When you encrypt a data key, you do not have to worry about where to store the encrypted data key,
because the security of that data key is inherently protected by encryption. You can safely store the
encrypted data key alongside the encrypted data. The AWS Encryption SDK takes care of this for
you by combining the encrypted data key and the encrypted data into a single encrypted message.

• Encrypting the same data under multiple master keys

Encryption operations can be time-consuming, particularly when the data being encrypted are large
objects. Instead of re-encrypting raw data multiple times with different keys, you can re-encrypt only
the data keys that protect the raw data.

• Combining the strengths of multiple algorithms

In general, symmetric key algorithms are faster and produce smaller ciphertexts than public
key algorithms, but public key algorithms provide inherent separation of roles and easier key
management. You might want to combine the strengths of each. For example, you might encrypt raw
data with symmetric key encryption, and then encrypt the data key with public key encryption.

2

AWS Encryption SDK Developer Guide
Architecture

The following image provides an overview of envelope encryption. In this scenario, the data key is
encrypted with a single KEK, which is the master key.

When you use envelope encryption, you must protect the master keys from unauthorized access. To
protect your master keys, you can use a hardware security module (HSM) (for example, those offered
by AWS CloudHSM), you can use the AWS Key Management Service (AWS KMS), or you can use
your existing key management tools.

The AWS Encryption SDK supports the use of AWS KMS to protect your master keys, or you can use
another master key provider, including a custom one. Even if you don't use AWS, you can still use this
SDK.

Architecture
The AWS Encryption SDK provides methods that operate on byte arrays, byte streams, and strings.
The following topics provide a high-level overview of how this SDK works.

For code samples in Java, see Example Code (Java) (p. 15).

Topics

• Encryption (p. 3)

• Decryption (p. 4)

Encryption
The following diagram shows how you can use the AWS Encryption SDK to encrypt data.

3

https://en.wikipedia.org/wiki/Hardware_security_module
http://aws.amazon.com/cloudhsm/
http://aws.amazon.com/kms/

AWS Encryption SDK Developer Guide
Decryption

1. Your application passes data to one of the encryption methods.

2. The encryption method uses a master key provider to determine which master key to use.

3. The master key generates a data key.

4. The master key creates two copies of the data key, one in plaintext and one encrypted by the
master key.

5. The encryption method uses the plaintext data key to encrypt the data, and then deletes the
plaintext data key.

6. The encryption method returns, in a single message, encrypted data that consists of the plaintext
data and the encrypted data key.

Decryption
The following diagram shows a high-level overview of how you can use the AWS Encryption SDK to
decrypt data.

1. Your application passes encrypted data to one of the decryption methods.

2. The decryption method extracts the encrypted data key from the encrypted data, and then sends the
encrypted data key to a master key provider for decryption.

4

AWS Encryption SDK Developer Guide
Getting Started

3. The master key provider decrypts the encrypted data key, and then returns the plaintext data key to
the decryption method.

4. The decryption method uses the plaintext data key to return the plaintext data, and then deletes the
plaintext data key.

Getting Started
To get started with the AWS Encryption SDK, follow the steps in the following topics.

Topics

• (Optional) Create an AWS Account (p. 5)

• Download the AWS Encryption SDK (p. 5)

(Optional) Create an AWS Account
To use some of the example Java code (p. 15) in this guide, you need to create an AWS account
and then create a customer master key (CMK) in AWS Key Management Service (AWS KMS). Some
of the sample code demonstrates how to use a CMK in AWS KMS to protect the data keys that encrypt
your data.

To create an AWS account

1. Go to the Sign In or Create an AWS Account page.

2. Type your email address or mobile phone number, and then choose I am a new user. Choose
Sign in using our secure server.

3. Follow the instructions on the website.

During the sign-up process, you receive a phone call and enter a PIN with the phone keypad. You must
also enter a valid credit card number during the sign-up process.

To create a customer master key (CMK) in AWS KMS

1. Open the Creating Keys page in the AWS Key Management Service Developer Guide.

2. Follow the instructions on that page.

Download the AWS Encryption SDK
The AWS Encryption SDK is currently available for the Java programming language. Before you
download the SDK, you must have the following:

• A Java 8 development environment

If you do not have one, go to Java SE Downloads on the Oracle website, then download and install
the Java SE Development Kit (JDK). Java 8 or higher is recommended.

Note
If you use the Oracle JDK, you must also download and install the Java Cryptography
Extension (JCE) Unlimited Strength Jurisdiction Policy Files.

• Bouncy Castle

Bouncy Castle provides a cryptography API for Java. If you do not have Bouncy Castle, go to https://
bouncycastle.org/latest_releases.html, and then download the provider file that corresponds to your
JDK.

5

https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
http://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://bouncycastle.org/latest_releases.html
https://bouncycastle.org/latest_releases.html

AWS Encryption SDK Developer Guide
Download the AWS Encryption SDK

• (Optional) AWS SDK for Java

Although you do not need the AWS SDK for Java to use the AWS Encryption SDK, you do need it
to use some of the example Java code (p. 15) in this guide. To download the AWS SDK for Java,
go to http://aws.amazon.com/sdk-for-java/. For more information about installing and configuring
the AWS SDK for Java, see Installing the AWS SDK for Java in the AWS SDK for Java Developer
Guide.

If you already have these prerequisites, or after you have downloaded and installed them, you can
download the AWS Encryption SDK at https://github.com/awslabs/aws-encryption-sdk-java.

If you use Apache Maven, you can specify the AWS Encryption SDK as a dependency in your project.
Add the following dependency to your application's pom.xml file:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-encryption-sdk-java</artifactId>
 <version>0.0.1-SNAPSHOT</version>
</dependency>

After you download the AWS Encryption SDK, see Example Code (Java) (p. 15) for examples that
demonstrate how to use it.

6

http://aws.amazon.com/sdk-for-java/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-install-sdk.html
https://github.com/awslabs/aws-encryption-sdk-java
https://maven.apache.org/

AWS Encryption SDK Developer Guide
Header Structure

Message Format

The encryption operations in the AWS Encryption SDK return a single data structure or message that
contains the encrypted data and the encrypted data key. To understand this data structure, or to build
libraries that read and write it, you need to understand the message format.

The message format consists of at least two parts: a header and a body. In some cases, the message
format consists of a third part called a footer. The message format defines an ordered sequence
of bytes in network byte order, also called big-endian format. The message format begins with the
header, followed by the body, followed by the footer (when applicable).

Note
The following information is provided for reference only. The message format should not be
modified.

Topics

• Header Structure (p. 7)

• Body Structure (p. 11)

• Footer Structure (p. 13)

Header Structure
The message header contains the encrypted data key and information about how the message body
is formed. The following table describes the fields that form the header. The bytes are appended in the
order shown.

Header Structure

Field Length, in bytes

Version 1

Type 1

Algorithm ID 2

Message ID 16

AAD Length 2

7

AWS Encryption SDK Developer Guide
Header Structure

Field Length, in bytes

AAD Variable. Equal to the value specified in the
previous 2 bytes (AAD Length).

Encrypted Data Key Count 2

Encrypted Data Key(s) Variable. Determined by the number of encrypted
data keys and the length of each.

Content Type 1

Reserved 4

IV Length 1

Frame Length 4

IV Variable. Equal to the value specified in the IV
Length byte.

Authentication Tag Variable. Determined by the algorithm used, as
specified in Algorithm ID.

Version
The version of this message format. The current version is 1.0, encoded as the byte 01 in
hexadecimal notation.

Type
The type of this message format. The type indicates the kind of structure with regard to the
AWS Key Management Service (AWS KMS). This message format is described as customer
authenticated encrypted data. Its type value is 128, encoded as byte 80 in hexadecimal notation.

Algorithm ID
An identifier for the algorithm used. It is a 2-byte value interpreted as a 16-bit unsigned integer.
The following table shows the supported algorithm IDs, in hexadecimal notation, and the algorithm
that corresponds to each ID.

For more information about these algorithms, see Which cryptographic algorithms are supported
by the AWS Encryption SDK, and which one is the default? (p. 24) on the Frequently Asked
Questions (p. 23) page.

Algorithms IDs

Algorithm ID, in 2-byte hex Corresponding algorithm

00 14 ALG_AES_128_GCM_IV12_TAG16_NO_KDF

00 46 ALG_AES_192_GCM_IV12_TAG16_NO_KDF

00 78 ALG_AES_256_GCM_IV12_TAG16_NO_KDF

01 14 ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256

01 46 ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256

01 78 ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256

02 14 ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256_ECDSA_P256

03 46 ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA384_ECDSA_P384

8

AWS Encryption SDK Developer Guide
Header Structure

Algorithm ID, in 2-byte hex Corresponding algorithm

03 78 ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA384_ECDSA_P384

Message ID
A randomly-generated 128-bit value that identifies the message. The Message ID:

• Uniquely identifies the encrypted message.

• Weakly binds the message header to the message body.

• Provides a mechanism to securely reuse an AWS KMS-encrypted data key with multiple
encrypted objects.

• Protects against accidental reuse of a data key or the wearing out of keys in the AWS
Encryption SDK.

AAD Length
The length of the additional authenticated data (AAD). It is a 2-byte value interpreted as a 16-bit
unsigned integer that specifies the number of bytes that contain the AAD.

AAD
The additional authenticated data. The AAD is an encoding of the encryption context, an array of
key-value pairs where each key and value is a string of UTF-8 encoded characters. The encryption
context is converted to a sequence of bytes and used for the AAD value.

When the signed algorithms (p. 24) are used, the encryption context must contain the key-
value pair {'aws-crypto-public-key', Qtxt} where Qtxt is the base64-encoded text of the
compressed elliptic curve point Q. The encryption context can contain additional values.

The following table describes the fields that form the AAD. Key-value pairs are sorted, by key, in
ascending order according to UTF-8 character code.

AAD Structure

Field Length, in bytes

Key-Value Pair Count 2

Key Length 2

Key Variable. Equal to the value specified in the
previous 2 bytes (Key Length).

Value Length 2

Value Variable. Equal to the value specified in the
previous 2 bytes (Value Length).

Key-Value Pair Count
The number of key-value pairs in the AAD. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of key-value pairs in the AAD.

Key Length
The length of the key for the key-value pair. It is a 2-byte value interpreted as a 16-bit
unsigned integer that specifies the number of bytes that contain the key.

Key
The key for the key-value pair. It is a sequence of UTF-8 encoded bytes.

Value Length
The length of the value for the key-value pair. It is a 2-byte value interpreted as a 16-bit
unsigned integer that specifies the number of bytes that contain the value.

9

http://docs.aws.amazon.com/kms/latest/developerguide/encryption-context.html

AWS Encryption SDK Developer Guide
Header Structure

Value
The value for the key-value pair. It is a sequence of UTF-8 encoded bytes.

Encrypted Data Key Count
The number of encrypted data keys. It is a 2-byte value interpreted as a 16-bit unsigned integer
that specifies the number of encrypted data keys.

Encrypted Data Key(s)
A sequence of encrypted data keys. The length of the sequence is determined by the number of
encrypted data keys and the length of each. The sequence contains at least one encrypted data
key.

The following table describes the fields that form each encrypted data key. The bytes are
appended in the order shown.

Encrypted Data Key Structure

Field Length, in bytes

Key Provider ID Length 2

Key Provider ID Variable. Equal to the value specified in the
previous 2 bytes (Key Provider ID Length).

Key Provider Information Length 2

Key Provider Information Variable. Equal to the value specified in the
previous 2 bytes (Key Provider Information
Length).

Encrypted Data Key Length 2

Encrypted Data Key Variable. Equal to the value specified in the
previous 2 bytes (Encrypted Data Key Length).

Key Provider ID Length
The length of the key provider identifier. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of bytes that contain the key provider ID.

Key Provider ID
The key provider identifier. It is used to indicate the provider of the encrypted data key and
intended to be extensible.

Key Provider Information Length
The length of the key provider information. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of bytes that contain the key provider information.

Key Provider Information
The key provider information. It is determined by the key provider. When AWS KMS is the key
provider, this value contains the Amazon Resource Name (ARN) of the AWS KMS customer
master key (CMK).

Encrypted Data Key Length
The length of the encrypted data key. It is a 2-byte value interpreted as a 16-bit unsigned
integer that specifies the number of bytes that contain the encrypted data key.

Encrypted Data Key
The encrypted data key. It is determined by the key provider, but should be the underlying
data encryption key encrypted by the key provider. For the AWS KMS provider, it is a binary
ciphertext blob as returned by the AWS KMS GenerateDataKey API operation.

Content Type
The type of encrypted content, either non-framed or framed. Non-framed content is not broken into
parts; it is a single encrypted blob. Framed content is broken into equal-length parts; each part is
encrypted separately.

10

AWS Encryption SDK Developer Guide
Body Structure

Non-framed content is type 1, encoded as the byte 01 in hexadecimal notation. Framed content is
type 2, encoded as the byte 02 in hexadecimal notation.

Reserved
A reserved sequence of 4 bytes. This value must be 0. It is encoded as the bytes 00 00 00 00 in
hexadecimal notation (that is, a 4-byte sequence of a 32-bit integer value equal to 0).

IV Length
The length of the initialization vector (IV). It is a 1-byte value interpreted as an 8-bit unsigned
integer that specifies the number of bytes that contain the IV. All of the algorithms supported by
the AWS Encryption SDK use a 12-byte (96-bit) IV, so the IV length is encoded as the byte 0C in
hexadecimal notation.

Frame Length
The length of each frame of framed content. It is a 4-byte value interpreted as a 32-bit unsigned
integer that specifies the number of bytes that form each frame. When the content is non-framed—
that is, when the value of the Content Type field is 1—this value must be 0.

IV
The initialization vector for the header authentication tag. It is used to generate the header
authentication tag over the header fields up to, but not including, the IV.

Authentication Tag
The authentication value for the header. It is used to authenticate the header fields up to, but not
including, the IV.

Body Structure
The message body contains the encrypted data. The structure of the body depends on the content
type (non-framed or framed). The following sections describe the format of the message body for each
content type.

Topics

• Non-Framed Data (p. 11)

• Framed Data (p. 12)

Non-Framed Data
Non-framed data is encrypted in a single blob. The following table describes the fields that form non-
framed data. The bytes are appended in the order shown.

Non-Framed Body Structure

Field Length in bytes

IV Variable. Equal to the value specified in the IV
Length byte of the header.

Encrypted Content Length 8

Encrypted Content Variable. Equal to the value specified in the
previous 8 bytes (Encrypted Content Length).

Authentication Tag Variable. Determined by the algorithm used, as
specified in the Algorithm ID field of the header.

11

AWS Encryption SDK Developer Guide
Framed Data

IV
The initialization vector. The IV for the implemented encryption mode, the Advanced Encryption
Standard (AES) algorithm in Galois/Counter Mode (GCM) known as AES-GCM, is a randomly-
generated 12-byte value.

Encrypted Content Length
The length of the encrypted content. It is an 8-byte value interpreted as a 64-bit unsigned integer
that specifies the number of bytes that contain the encrypted content.

The maximal allowed value is 2^63 - 1 or 8 exbibytes (8 EiB). However, for the implemented mode
of AES-GCM, the maximum value is 2^36 - 32 or 64 gibibytes (64 GiB), due to restrictions on the
use of AES-GCM. The Java implementation of this SDK further restricts this value to 2^31 - 1 or 2
gibibytes (2 GiB), due to restrictions in the implementation.

Encrypted Content
The encrypted content.

Authentication Tag
The authentication value for the body. It is used to authenticate the body fields up to, but not
including, the authentication tag.

Framed Data
Framed data is divided into equal-length parts, except for the last part. Each frame is encrypted
separately with a unique IV and AAD.

There are two kinds of frames: a regular frame and a final frame. A final frame is always used, even
when the content fits into a single regular frame. In this case, the final frame contains no data—that is,
a content length of 0.

The following tables describe the fields that form the frames. The bytes are appended in the order
shown.

Framed Body Structure, Regular Frame

Field Length (bytes)

Sequence Number 4

IV Variable. Equal to the value specified in the IV
Length byte of the header.

Encrypted Content Variable. Equal to the value specified in the
Frame Length of the header.

Authentication Tag Variable. Determined by the algorithm used, as
specified in the Algorithm ID of the header.

Sequence Number
The frame sequence number. It is an incremental counter number for the frame. Framed data must
start at sequence number 1, encoded as the 4 bytes 00 00 00 01, in hexadecimal notation. The
frames must be in order and must contain an increment of 1 of the previous frame. Otherwise, the
decryption process stops and reports an error.

IV
The initialization vector for the frame. The IV for the implemented encryption mode of AES-GCM is
a randomly-generated 12-byte value.

Encrypted Content
The encrypted content for the frame.

12

AWS Encryption SDK Developer Guide
Footer Structure

Authentication Tag
The authentication value for the frame. It is used to authenticate the frame fields up to, but not
including, the authentication tag.

Framed Body Structure, Final Frame

Field Length (bytes)

Sequence Number End 4

Sequence Number 4

IV Variable. Equal to the value specified in the IV
Length byte of the header.

Encrypted Content Length 4

Encrypted Content Variable. Equal to the value specified in the
previous 4 bytes (Encrypted Content Length).

Authentication Tag Variable. Determined by the algorithm used, as
specified in the Algorithm ID of the header.

Sequence Number End
An indicator for the final frame. The value is encoded as the 4 bytes FF FF FF FF, in
hexadecimal notation.

Sequence Number
The frame sequence number. It is an incremental counter number for the frame. Framed data must
start at sequence number 1, encoded as the 4 bytes 00 00 00 01, in hexadecimal notation. The
frames must be in order and must contain an increment of 1 of the previous frame. Otherwise, the
decryption process stops and reports an error.

IV
The initialization vector for the frame. The IV for the implemented encryption mode of AES-GCM is
a randomly-generated 12-byte value.

Encrypted Content Length
The length of the encrypted content for the frame. It is a 4-byte value interpreted as a 32-bit
unsigned integer that specifies the number of bytes that contain the encrypted content for the
frame.

Encrypted Content
The encrypted content for the frame.

Authentication Tag
The authentication value for the frame. It is used to authenticate the frame fields up to, but not
including, the authentication tag.

Footer Structure
When the signed algorithms (p. 24) are used, the message format contains a footer. The message
footer contains a signature that authenticates the message header and message body. The following
table describes the fields that form the footer. The bytes are appended in the order shown.

Footer Structure

Field Length in bytes

Signature Length 2

13

AWS Encryption SDK Developer Guide
Footer Structure

Field Length in bytes

Signature Variable. Equal to the value specified in the
previous 2 bytes (Signature Length).

Signature Length
The length of the signature. It is a 2-byte value interpreted as a 16-bit unsigned integer that
specifies the number of bytes that contain the signature.

Signature
The signature. It is used to authenticate the header and body of the message.

14

AWS Encryption SDK Developer Guide
Strings

Example Code (Java)

The following examples demonstrate how you can use the Java implementation of the AWS Encryption
SDK to encrypt and decrypt data.

Topics

• Strings (p. 15)

• Byte Streams (p. 17)

• Byte Streams with Multiple Master Key Providers (p. 19)

Encrypting and Decrypting Strings
The following example demonstrates how you can use the AWS Encryption SDK to encrypt and
decrypt strings. This example uses a customer master key (CMK) in AWS Key Management Service
(AWS KMS) as the master key.

/*
 * Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may
 not use this file except
 * in compliance with the License. A copy of the License is located at
 *
 * https://aws.amazon.com/apache-2-0/
 *
 * or in the "license" file accompanying this file. This file is distributed
 on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the
 * specific language governing permissions and limitations under the License.
 */

package com.amazonaws.crypto.examples;

import java.util.Collections;
import java.util.Map;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.kms.KmsMasterKey;
import com.amazonaws.encryptionsdk.kms.KmsMasterKeyProvider;

15

http://aws.amazon.com/kms/
http://aws.amazon.com/kms/

AWS Encryption SDK Developer Guide
Strings

/**
 * <p>
 * Encrypts and then decrypts a string under a KMS customer master key (CMK)
 *
 * <p>
 * Arguments:
 *
 * Amazon Resource Name (ARN) of the KMS CMK
 * String to encrypt
 *
 */
public class StringExample {
 private static String keyArn;
 private static String data;

 public static void main(final String[] args) {
 keyArn = args[0];
 data = args[1];

 // Instantiate the SDK
 final AwsCrypto crypto = new AwsCrypto();

 // Set up the KmsMasterKeyProvider backed by the default credentials
 final KmsMasterKeyProvider prov = new KmsMasterKeyProvider(keyArn);

 // Encrypt the data
 //
 // Most encrypted data should have associated encryption context to
 // protect integrity. For this example, just use a placeholder value.
 //
 // For more information about encryption context,
 // see https://amzn.to/1nSbe9X (blogs.aws.amazon.com)
 final Map<String, String> context =
 Collections.singletonMap("Example", "String");

 final String ciphertext = crypto.encryptString(prov, data,
 context).getResult();
 System.out.println("Ciphertext: " + ciphertext);

 // Decrypt the data
 final CryptoResult<String, KmsMasterKey> decryptResult =
 crypto.decryptString(prov, ciphertext);
 // Check the encryption context (and ideally the master key) to
 ensure
 // this was the expected ciphertext
 if (!decryptResult.getMasterKeyIds().get(0).equals(keyArn)) {
 throw new IllegalStateException("Wrong key id!");
 }

 // The SDK may add information to the encryption context, so check to
 ensure
 // that all of the values are present
 for (final Map.Entry<String, String> e : context.entrySet()) {
 if (!
e.getValue().equals(decryptResult.getEncryptionContext().get(e.getKey()))) {
 throw new IllegalStateException("Wrong Encryption Context!");
 }
 }

16

AWS Encryption SDK Developer Guide
Byte Streams

 // The data is correct, so output it.
 System.out.println("Decrypted: " + decryptResult.getResult());
 }
}

Encrypting and Decrypting Byte Streams
The following example demonstrates how you can use the AWS Encryption SDK to encrypt and
decrypt byte streams. This example does not use AWS. It uses the Java Cryptography Extension
(JCE) to protect the master key.

/*
 * Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may
 not use this file except
 * in compliance with the License. A copy of the License is located at
 *
 * https://aws.amazon.com/apache-2-0/
 *
 * or in the "license" file accompanying this file. This file is distributed
 on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the
 * specific language governing permissions and limitations under the License.
 */

package com.amazonaws.crypto.examples;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.SecureRandom;
import java.util.Collections;
import java.util.Map;

import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.MasterKey;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.util.IOUtils;

/**
 * <p>
 * Encrypts and then decrypts a file under a random key.
 *
 * <p>
 * Arguments:
 *
 * Name of the file to encrypt
 *
 *

17

AWS Encryption SDK Developer Guide
Byte Streams

 * <p>
 * This program demonstrates how to use a normal Java {@link SecretKey}
 object as a {@link MasterKey}
 * to encrypt and decrypt streaming data.
 */
public class FileStreamingExample {
 private static String srcFile;

 public static void main(String[] args) throws IOException {
 srcFile = args[0];

 // In a production implementation, load this master key from an
 existing store.
 // For this example, just generate a random one.
 SecretKey cryptoKey = retrieveEncryptionKey();

 // Convert the master key into a provider. This example uses AES-GCM
 because it is
 // a secure algorithm.
 JceMasterKey masterKey = JceMasterKey.getInstance(cryptoKey,
 "Example", "RandomKey", "AES/GCM/NoPadding");

 // Instantiate the SDK
 AwsCrypto crypto = new AwsCrypto();

 // Create the encryption context to identify this ciphertext
 // For more information about encryption context,
 // see https://amzn.to/1nSbe9X (blogs.aws.amazon.com)
 Map<String, String> context = Collections.singletonMap("Example",
 "FileStreaming");

 // The file might be really big, so don't load
 // it all into memory. Streaming is necessary.
 FileInputStream in = new FileInputStream(srcFile);
 CryptoInputStream<JceMasterKey> encryptingStream =
 crypto.createEncryptingStream(masterKey, in, context);

 FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
 IOUtils.copy(encryptingStream, out);
 encryptingStream.close();
 out.close();

 // Decrypt the file now, remembering to check the encryption context
 in = new FileInputStream(srcFile + ".encrypted");
 CryptoInputStream<JceMasterKey> decryptingStream =
 crypto.createDecryptingStream(masterKey, in);
 // Does it have the right encryption context?
 if
 (!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Example")))
 {
 throw new IllegalStateException("Bad encryption context");
 }

 // Finally, write out the data
 out = new FileOutputStream(srcFile + ".decrypted");
 IOUtils.copy(decryptingStream, out);
 decryptingStream.close();
 out.close();
 }

18

AWS Encryption SDK Developer Guide
Byte Streams with Multiple Master Key Providers

 /**
 * In a production implementation, this key needs to be persisted
 somewhere. For this demo,
 * just generate a new random one each time.
 */
 private static SecretKey retrieveEncryptionKey() {
 SecureRandom rnd = new SecureRandom();
 byte[] rawKey = new byte[16]; // 128 bits
 rnd.nextBytes(rawKey);
 return new SecretKeySpec(rawKey, "AES");
 }
}

Encrypting and Decrypting Byte Streams with
Multiple Master Key Providers

The following example demonstrates how you can use the AWS Encryption SDK with more than one
master key provider. Using more than one master key provider creates redundancy in case one master
key provider is unavailable for decryption. This example uses a CMK in AWS KMS and an RSA key
pair as the master keys.

/*
 * Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may
 not use this file except
 * in compliance with the License. A copy of the License is located at
 *
 * https://aws.amazon.com/apache-2-0/
 *
 * or in the "license" file accompanying this file. This file is distributed
 on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the
 * specific language governing permissions and limitations under the License.
 */

package com.amazonaws.crypto.examples;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.security.GeneralSecurityException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoOutputStream;
import com.amazonaws.encryptionsdk.MasterKeyProvider;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.encryptionsdk.kms.KmsMasterKeyProvider;
import com.amazonaws.encryptionsdk.multi.MultipleProviderFactory;
import com.amazonaws.util.IOUtils;

19

http://aws.amazon.com/kms/

AWS Encryption SDK Developer Guide
Byte Streams with Multiple Master Key Providers

/**
 * <p>
 * Encrypts a file with two master keys: a KMS CMK and an asymmetric key
 pair.
 *
 * <p>
 * Arguments:
 *
 * Amazon Resource Name (ARN) of the KMS CMK
 * Name of the file to encrypt
 *
 *
 * Some organizations want the ability to decrypt their data even if KMS is
 unavailable. This
 * program demonstrates one possible way of accomplishing this by generating
 an "escrow" RSA
 * key pair and using that, in addition to the KMS CMK, as the master key for
 encryption.
 * The organization should keep the RSA private key in a secure place (such
 as an offline HSM) and
 * distribute the public key to their developers. This way, normal use would
 use the KMS CMK
 * for decryption, but the organization maintains the ability to decrypt all
 ciphertexts in a
 * completely offline manner.
 */
public class EscrowedEncryptExample {
 private static PublicKey publicEscrowKey;
 private static PrivateKey privateEscrowKey;

 public static void main(final String[] args) throws Exception {
 // In a production implementation, the public key is distributed by
 the organization.
 // For this example, just generate a new random one each time.
 generateEscrowKeyPair();

 final String kmsArn = args[0];
 final String fileName = args[1];

 standardEncrypt(kmsArn, fileName);
 standardDecrypt(kmsArn, fileName);

 escrowDecrypt(fileName);
 }

 private static void standardEncrypt(final String kmsArn, final String
 fileName) throws Exception {
 // Standard user encrypting to both KMS and the escrow public key
 // 1. Instantiate the SDK
 final AwsCrypto crypto = new AwsCrypto();

 // 2. Instantiate the providers
 final KmsMasterKeyProvider kms = new KmsMasterKeyProvider(kmsArn);
 // Note that the standard user does not have access to the private
 escrow
 // key and so simply passes in "null"
 final JceMasterKey escrowPub =
 JceMasterKey.getInstance(publicEscrowKey, null, "Escrow", "Escrow",

20

AWS Encryption SDK Developer Guide
Byte Streams with Multiple Master Key Providers

 "RSA/ECB/OAEPWithSHA-512AndMGF1Padding");

 // 3. Combine the providers into a single one
 final MasterKeyProvider<?> provider =
 MultipleProviderFactory.buildMultiProvider(kms, escrowPub);

 // 4. Encrypt the file
 // To simplify the code, this example omits encryption context this
 time. Production code
 // should always use encryption context. See https://amzn.to/1nSbe9X
 (blogs.aws.amazon.com)
 // for more information.
 final FileInputStream in = new FileInputStream(fileName);
 final FileOutputStream out = new FileOutputStream(fileName +
 ".encrypted");
 final CryptoOutputStream<?> encryptingStream =
 crypto.createEncryptingStream(provider, out);

 IOUtils.copy(in, encryptingStream);
 in.close();
 encryptingStream.close();
 }

 private static void standardDecrypt(final String kmsArn, final String
 fileName) throws Exception {
 // A standard user decrypts the file. The user can use the same
 provider from before,
 // or can use a provider that refers to the KMS CMK. It doesn't
 matter.

 // 1. Instantiate the SDK
 final AwsCrypto crypto = new AwsCrypto();

 // 2. Instantiate the providers
 final KmsMasterKeyProvider kms = new KmsMasterKeyProvider(kmsArn);
 // Note that the standard user does not have access to the private
 escrow
 // key and so simply passes in "null"
 final JceMasterKey escrowPub =
 JceMasterKey.getInstance(publicEscrowKey, null, "Escrow", "Escrow",
 "RSA/ECB/OAEPWithSHA-512AndMGF1Padding");

 // 3. Combine the providers into a single one
 final MasterKeyProvider<?> provider =
 MultipleProviderFactory.buildMultiProvider(kms, escrowPub);

 // 4. Decrypt the file
 // To simplify the code, this example omits encryption context this
 time. Production code
 // should always use encryption context. See https://amzn.to/1nSbe9X
 (blogs.aws.amazon.com)
 // for more information.
 final FileInputStream in = new FileInputStream(fileName +
 ".encrypted");
 final FileOutputStream out = new FileOutputStream(fileName +
 ".decrypted");
 final CryptoOutputStream<?> decryptingStream =
 crypto.createDecryptingStream(provider, out);
 IOUtils.copy(in, decryptingStream);

21

AWS Encryption SDK Developer Guide
Byte Streams with Multiple Master Key Providers

 in.close();
 decryptingStream.close();
 }

 private static void escrowDecrypt(final String fileName) throws Exception
 {
 // The organization can decrypt using the private escrow key with no
 calls to AWS KMS

 // 1. Instantiate the SDK
 final AwsCrypto crypto = new AwsCrypto();

 // 2. Instantiate the provider
 // Note that the organization does have access to the private escrow
 key and can use it.
 final JceMasterKey escrowPriv =
 JceMasterKey.getInstance(publicEscrowKey, privateEscrowKey, "Escrow",
 "Escrow",
 "RSA/ECB/OAEPWithSHA-512AndMGF1Padding");

 // 3. Decrypt the file
 // To simplify the code, this example omits encryption context this
 time. Production code
 // should always use encryption context. See https://amzn.to/1nSbe9X
 (blogs.aws.amazon.com)
 // for more information.
 final FileInputStream in = new FileInputStream(fileName +
 ".encrypted");
 final FileOutputStream out = new FileOutputStream(fileName +
 ".deescrowed");
 final CryptoOutputStream<?> decryptingStream =
 crypto.createDecryptingStream(escrowPriv, out);
 IOUtils.copy(in, decryptingStream);
 in.close();
 decryptingStream.close();

 }

 private static void generateEscrowKeyPair() throws
 GeneralSecurityException {
 final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA");
 kg.initialize(4096); // Escrow keys should be very strong
 final KeyPair keyPair = kg.generateKeyPair();
 publicEscrowKey = keyPair.getPublic();
 privateEscrowKey = keyPair.getPrivate();

 }
}

22

AWS Encryption SDK Developer Guide

Frequently Asked Questions

• Which data types are supported by the AWS Encryption SDK? (p. 23)

• How is the AWS Encryption SDK different from the AWS SDKs? (p. 23)

• How is the AWS Encryption SDK different from the Amazon S3 encryption client in the AWS SDK for
Java, the AWS SDK for Ruby, and the AWS SDK for .NET? (p. 23)

• How does the AWS Encryption SDK encode each type of encrypted output? (p. 24)

• How does the AWS Encryption SDK encrypt and decrypt input/output streams? (p. 24)

• How do I keep track of the data keys used to encrypt my data? (p. 24)

• Can I add additional key encryption keys (KEKs) to the envelope encryption (p. 2)
scheme? (p. 24)

• What is the message format used by the AWS Encryption SDK? (p. 24)

• Which cryptographic algorithms are supported by the AWS Encryption SDK, and which one is the
default? (p. 24)

Which data types are supported by the AWS Encryption SDK?
The AWS Encryption SDK can encrypt raw bytes (byte arrays), I/O streams (byte streams), and
strings. For examples, see Example Code (Java) (p. 15).

How is the AWS Encryption SDK different from the AWS SDKs?
The AWS SDKs provide language-specific APIs for all of the Amazon Web Services (AWS). The
AWS Encryption SDK provides an API for client-side encryption and decryption that optionally
integrates with AWS. The AWS Encryption SDK supports the AWS Key Management Service
(AWS KMS) as a master key provider, which means the AWS Encryption SDK overlaps with the
AWS SDKs regarding some of the AWS KMS API. However, the implementations of the AWS
KMS API in the AWS SDKs do not manage data encryption keys for you. The AWS Encryption
SDK manages data keys for you by inserting them (in encrypted form) into the encrypted data
(ciphertexts) that are returned by the encryption methods. You can also use the AWS Encryption
SDK without using AWS.

How is the AWS Encryption SDK different from the Amazon S3 encryption client in the AWS
SDK for Java, the AWS SDK for Ruby, and the AWS SDK for .NET?

The Amazon S3 encryption client in the AWS SDK for Java, AWS SDK for Ruby, and AWS SDK
for .NET provides client-side encryption and decryption for data stored in Amazon Simple Storage
Service (Amazon S3). It is tightly coupled to Amazon S3 and is intended for use only with data
stored in Amazon S3. The AWS Encryption SDK provides client-side encryption and decryption for
data you can store anywhere. The encrypted data formats produced by the Amazon S3 encryption
client and the AWS Encryption SDK are not interoperable.

23

http://aws.amazon.com/tools/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3EncryptionClient.html
http://docs.aws.amazon.com/sdkforruby/api/Aws/S3/Encryption/Client.html
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html?page=S3/TS3EncryptionS3EncryptionClient.html
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html?page=S3/TS3EncryptionS3EncryptionClient.html

AWS Encryption SDK Developer Guide

How does the AWS Encryption SDK encode each type of encrypted output?
The AWS Encryption SDK does not add encoding to its output. The methods in the SDK that
operate on strings return strings; the methods that operate on bytes return bytes.

How does the AWS Encryption SDK encrypt and decrypt input/output streams?
The AWS Encryption SDK creates an encrypting or decrypting stream that wraps an underlying I/
O stream. The encrypting or decrypting stream performs a cryptographic operation on a read or
write call. For example, it can read plaintext data on the underlying stream and encrypt it before
returning the result, or read ciphertext from an underlying stream and decrypt it before returning
the result. For example code that uses encrypting and decrypting streams, see Encrypting and
Decrypting Byte Streams (p. 17).

How do I keep track of the data keys used to encrypt my data?
The AWS Encryption SDK does this for you. When you encrypt data, the AWS Encryption SDK
creates a unique symmetric data encryption key for each data object, and the object's data key is
encrypted and returned as part of the encrypted data. When you decrypt data, the AWS Encryption
SDK extracts the encrypted data key, decrypts it, and then uses it to decrypt the data.

Can I add additional key encryption keys (KEKs) to the envelope encryption (p. 2) scheme?
The AWS Encryption SDK encrypts the data you pass to the encryption methods with a unique
data encryption key (DEK), and then encrypts that DEK with a key encryption key (KEK) called a
master key. You can encrypt the DEK with additional master keys to add redundancy, in case one
of the master keys is unavailable. For a code sample (Java) that demonstrates how you can do
this, see Encrypting and Decrypting Byte Streams with Multiple Master Key Providers (p. 19).

What is the message format used by the AWS Encryption SDK?
The encryption operations in the AWS Encryption SDK return a single data structure, or message,
that contains the encrypted data and the encrypted data key. The message format consists of
at least two parts, a header and a body. In some cases the message format consists of a third
part called a footer. The message header contains the encrypted data key and information about
how the message body is formed. The message body contains the encrypted data. The message
footer contains a signature that authenticates the message header and message body. For more
information, see Message Format (p. 7).

Which cryptographic algorithms are supported by the AWS Encryption SDK, and which one is
the default?

The SDK uses the Advanced Encryption Standard (AES) algorithm in Galois/Counter Mode
(GCM), known as AES-GCM. The SDK supports encryption key lengths of 256 bits, 192 bits,
and 128 bits. In all cases, the length of the initialization vector (IV) is 12 bytes; the length of the
authentication tag is 16 bytes.

The AWS Encryption SDK supports the following encryption algorithms. By default, the SDK uses
the first algorithm in the list.

1. ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA384_ECDSA_P384

2. ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA384_ECDSA_P384

3. ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256_ECDSA_P256

4. ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256

5. ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256

6. ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256

7. ALG_AES_256_GCM_IV12_TAG16_NO_KDF

8. ALG_AES_192_GCM_IV12_TAG16_NO_KDF

9. ALG_AES_128_GCM_IV12_TAG16_NO_KDF

The algorithms belong to one of three categories, which are described in more detail in the
following list.

Signed algorithms
The algorithms numbered 1 through 3 in the preceding list are the signed algorithms. The
signed algorithms use the data encryption key as an input to the HMAC key derivation function
(HKDF) to derive the AES-GCM encryption key. These algorithms also add an Elliptic Curve

24

AWS Encryption SDK Developer Guide

Digital Signature Algorithm (ECDSA) signature. When the key length is 256 bits or 192 bits,
the HKDF uses SHA-384 and the ECDSA signature uses the secp384r1 curve. When the key
length is 128 bits, the HKDF uses SHA-256 and the ECDSA signature uses the secp256r1
curve.

These algorithms help protect against accidental reuse of a data encryption key, and the
ECDSA signature helps provide stronger authenticity and non-repudiation of the original data.
Use these algorithms when authorized users of a master key—that is, the users who encrypt
data and those who decrypt data—are not equally trusted. These algorithms help protect
against some users of the master key attempting to impersonate other users of the master
key.

Standard algorithms
The algorithms numbered 4 through 6 in the preceding list are the standard algorithms. The
standard algorithms are like the signed algorithms but without the ECDSA signature.

These algorithms help protect against accidental reuse of a data encryption key. These
algorithms are appropriate for standard use cases in which all authorized users of a master
key—that is, the users who encrypt data and those who decrypt data—are equally trusted.

Compatibility algorithms
The algorithms numbered 7 through 9 in the preceding list are the compatibility algorithms.
The compatibility algorithms do not use a key derivation function (KDF) to derive the
encryption key; they use the data encryption key as the AES-GCM encryption key.

The use of these algorithms is not recommended; the SDK provides them for compatibility
reasons only.

25

	AWS Encryption SDK
	Table of Contents
	What Is the AWS Encryption SDK?
	Encryption Concepts
	Encryption Basics
	Envelope Encryption

	Architecture
	Encryption
	Decryption

	Getting Started
	(Optional) Create an AWS Account
	Download the AWS Encryption SDK

	Message Format
	Header Structure
	Body Structure
	Non-Framed Data
	Framed Data

	Footer Structure

	Example Code (Java)
	Encrypting and Decrypting Strings
	Encrypting and Decrypting Byte Streams
	Encrypting and Decrypting Byte Streams with Multiple Master Key Providers

	Frequently Asked Questions

