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ABSTRACT
While it is relatively easy to start an online advertising campaign,
proper allocation of the marketing budget is far from trivial. A
major challenge faced by the marketers attempting to optimize
their campaigns is in the sheer number of variables involved, the
many individual decisions they make in fixing or changing these
variables, and the nontrivial short and long-term interplay among
these variables and decisions.

In this paper, we study interactions among individual adver-
tising decisions using a Markov model of user behavior. We
formulate the budget allocation task of an advertiser as a con-
strained optimal control problem for a Markov Decision Process
(MDP). Using the theory of constrained MDPs, a simple LP
algorithm yields the optimal solution. Our main result is that, un-
der a reasonable assumption that online advertising has positive
carryover effects on the propensity and the form of user inter-
actions with the same advertiser in the future, there is a simple
greedy algorithm for the budget allocation with the worst-case
running time cubic in the number of model states (potential ad-
vertising keywords) and an efficient parallel implementation in a
distributed computing framework like MapReduce. Using real-
world anonymized datasets from sponsored search advertising
campaigns of several advertisers, we evaluate performance of the
proposed budget allocation algorithm, and show that the greedy
algorithm performs well compared to the optimal LP solution on
these datasets and that both show consistent 5-10% improvement
in the expected revenue against the optimal baseline algorithm
ignoring carryover effects.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; H.4.m [Information
Systems]: Miscellaneous; J.4 [Social and Behavioral Sciences]:
Economics

General Terms
Algorithms, Measurement, Economics
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1. INTRODUCTION
The Internet has become a major advertising medium, with

billions of dollars at stake [26]. It has made it relatively easy
even for small advertisers to quickly set up campaigns, track
expenses, monitor effectiveness of the campaigns, and tinker
with campaign parameters. Nonetheless, proper allocation of the
marketing budget is far from trivial. A major challenge faced
by the marketers attempting to optimize their campaigns is in
the sheer number of variables they can possibly change. Even
within a single advertising channel such as sponsored search
ads on a particular search engine, the advertiser can optimize
by reallocating the budget across different keywords, choosing
a particular bidding strategy to use within a single ad auction,
deciding on the daily advertising budget or what demographics of
users to target. Each of these tasks can be solved reasonably well
when considered as a standalone optimization problem, yet one
can only wonder what fraction of social surplus (and advertising
revenues) is lost by ignoring sophisticated dependencies and
interaction patterns between individual optimization tasks, such
as long-term effects of ads interacting with other ads.

In this paper, we study interactions among individual adver-
tising decisions using a Markov model of user behavior, and
develop optimization algorithms for budget allocation in this con-
text. In particular, we focus on a potential positive carryover
effect that online advertising has on the propensity and the form
of user interactions with an advertiser in the future, and develop
improved algorithms for the problem in this setting. We clarify
these ideas on a simple scenario from the sponsored search area.

EXAMPLE 1. A number of competing retailers are selling a
single good with a certain brand name online. Every retailer has
a choice of advertising only on the retailer specific keywords like
the retailer’s name or advertising on both the retailer specific
keywords and the brand name of the good they sell. In this sce-
nario, most of the users potentially interested in buying the good
are initially uninformed about individual retailers’ existence and
therefore search directly with the brand name of the good. As
the good is relatively expensive, they do not buy it from the first
retailer found, instead clicking on multiple ads and comparing
numerous offers. Once decided on the best offer, they often search
with the retailer’s name directly, proceed to the retailer’s website
and convert, i.e., make a purchase. Furthermore, a fraction of



the converted users may become loyal customers that in the fu-
ture skip the comparison shopping phase and go to the retailer’s
website directly without performing any brand related searches.
Important property of this example is that analyzing profitability
of retailer-specific keywords and brand-specific keywords sepa-
rately improperly captures the influence of both on the retailer’s
revenue. Indeed, individual analysis in our example would sug-
gest that brand-specific keywords provide significantly worse
return-on-investment (ROI) than retailer-specific keywords due to
both high CPC 1 values (heavy competition with other retailers)
and low conversion rates (a lot of users clicking on multiple ads
before converting). 2 Yet it would not be wise (and many advertis-
ers know that) for the retailer to significantly cut spending on the
brand-specific keywords as it is likely to reduce inflow of users to
the retailer-specific keywords as well. One can say that there is a
carryover from advertising on the brand-specific keywords to the
ROI of advertising on the retailer-specific keywords.

The above was only an example scenario and we emphasize
that the model of carryover that we present in this paper is not
restricted to only capture interactions between brand-specific
and retailer-specific keywords, nor is it restricted to the domain
of the sponsored search. Motivated by Markov models of user
browsing behavior [25, 6], in particular our previous study on
mining advertiser-specific user behavior in sponsored search auc-
tions [3], we model users using a Markov chain and advertising
as not only affecting the current user action but also the future
actions (through changing the state transition probabilities). Our
contributions are as follows:

• (Problem) In the Markovian user model, we formulate the
budget allocation task of an advertiser as a constrained
optimal control problem for a Markov Decision Process
(MDP).

• (Algorithm) Using well-developed theory of constrained
MDPs [2], we show that a simple LP algorithm yields the
optimal policy. As the main contribution, we show that, un-
der a reasonable assumption on the structure of carryover
effects (see Section 5), there is a faster greedy algorithm
for the optimal solution of the problem with the worst-
case running time cubic in the number of model states
(potential advertising keywords). This greedy algorithm is
inspired by the Lagrangian relaxation of the optimization
problem which is solvable using a combinatorial greedy
algorithm in the presence of positive carryover effects. A
major advantage of this algorithm is that it can be imple-
mented efficiently in parallel using a distributed computing
framework like MapReduce.

• (Empirical Study) Using real-world anonymized datasets
from sponsored search advertising campaigns of several
advertisers, we show that our greedy algorithm performs as
well as the optimal LP solution, thus justifying our carry-
over assumption under which we can prove the optimality
of our greedy algorithm. Furthermore, our budget allo-
cation algorithm shows 5-10% improvement in revenues

1cost per click
2This is only a hypothetical scenario and its conclusions might
not generalize to all settings. There are empirical findings
that suggest that the presence of retailer-specific information
in the keyword increases click-through rates, and the presence of
brand-specific information in the keyword increases conversion
rates [15].

against the baseline, consistent across a wide range of dif-
ferent settings and budget constraints.

While budget optimization problems have been studied previously
in sponsored search, even in the setting of possible externalities,
our paper is the first to consider the long term impacts of different
ad instances on each other.

2. RELATED WORK
Advertising carryover in marketing refers to the well-known

phenomenon that advertising messages affect consumers long
after the initial exposure. Carryover effects have been exten-
sively studied in marketing literature [8, 5], including online
settings [28]. The exact mechanism by which carryover works is
often unspecified and the effect itself is usually modeled simply
by assuming that a certain fraction of the advertising effects in
the current period is retained in the next period. In our paper, we
model carryover at the level of individual advertising decisions
within the campaign. For instance, hypothetically, the decision
of JetBlue to advertise on “cheap tickets” keyword may have
carryover effect on the number of users that issue search queries
with the airline’s brand name in the future.

Carryover effects in our model can be thought of as a type of
positive externality. There has been some work on externalities in
the sponsored search literature. Ghosh and Sayedi [17] consider
negative externalities that online ads impose on each other if
shown together. The negative externality in their model comes
not only from the fact that displaying multiple ads decreases
the amount of attention a single ad gets from a user, but also
from associated reduction in conversion rates: if a user notices or
clicks on an ad, he may not convert on it, but instead convert on
a competing advertisement (similar to the comparsion shopping
behavior from Example 1). They find that because the value per
click of an advertiser is no longer one-dimensional and depends
on what other ads are displayed on the same page, the GSP
mechanism is not adequately expressive anymore. Similar models
of negative externalities were considered in [21, 4, 1]. Gomes, et
al. [18] use impression and click data from Microsoft Live to show
that such externalities are indeed statistically and economically
significant. Another potential source of negative externalities
is the “broad match” functionality which allows for imprecise
match between the keyword the advertiser is bidding on and
the user query; because bids on multiple keywords may match
the same query, the advertiser may, under some circumstances,
compete with oneself [13].

In contrast to the prior stream of research that studied nega-
tive externalities that competing ads impose on each other, this
paper instead focuses on positive externalities in which ads of
an advertiser on multiple keywords reinforce each other. Certain
empirical support for the presence of positive externalities in
sponsored search can be found in [22]: a randomized controlled
experiment, performed in cooperation between Yahoo! and a
major retailer, found that the online advertising campaign had
substantial positive impact not only on the users who clicked on
the ads but also on those who merely viewed them. In another
study, comScore [9] reported an incremental lift of 27% in the
online sales after the initial exposure to an online ad, as well
as lift in other important online behaviors, such as the brand
site visitation and the trademark searches. Ghose and Yang [16]
report positive interdependcy between paid and organic search
results: the presence of organic listings is associated with a higher
probability of click-throughs on paid ads, and vice-versa.

Our approach is based on a Markov model of users in which



they follow a Markov random walk that can be influenced by
the advertising activities. Markov models of user behavior on
the Web are not novel and can be traced as far as the original
PageRank paper [25]. Charikar, et al. [7] pushed this idea one step
further by suggesting that online advertising can be thought of
as a problem of choosing the optimal control policy for targeting
heterogeneous population of users with behaviors described by
Markov chains. Our model differs essentially from [7] on several
fundamental assumptions. [7] assumed that properly targeted
user always converts and concentrated purely on the problem of
optimally targeting the heterogeneous flow of users. We instead
focus on a homogeneous population but allow the advertising
effect to be non-deterministic. In contrast with [7], we provide
evaluation of our model on real world advertising data. Additional
empirical evidence that Markov models provide useful abstraction
of user behavior from the advertiser’s perspective can also be
found in [3].

In the world populated by Markov users, we consider the stan-
dard budgeted campaign optimization problem [14, 24, 11]: find
an optimal bidding policy to maximize the number of user conver-
sions subject to the budget constraint for the expected advertising
cost. Our approach allows us to apply machinery from the fa-
miliar field of constrained MDPs, in particular reduce the budget
optimization problem to a regular LP (an excellent review of con-
strained MDPs can be found in [2]). As the main contribution
of the paper, under assumption of positive carryover effects we
provide a simple, fast greedy algorithm for this problem based
on the ideas of Lagrangian relaxation. While Lagrangian relax-
ation of LP formulations has been used to design approximation
algorithms for various combinatorial optimization problems like
the k-median and the facility location [20, 19], to the best of our
knowledge, our result does not follow from any of these and relies
on the special structural properties of the budget optimization
problem.

3. OUR MODEL AND PROBLEM
The notation below is chosen to be consistent with [2], except

that we consider the problem of maximizing the long-term total
reward (conversion probability) while [2] considered the problem
of minimizing the long-term total cost.

Let X be a finite state space representing possible user states.
In one interpretation, the state can capture the last query issued by
the user. For any x ∈ X , let A(x) represents the finite set of pos-
sible actions (advertising levels) in state x. For instance, A(x)
can be {advertise, do not advertise} but one can also consider
more sophisticated possibilities with different levels of advertis-
ing, for instance, one can think of different slots on the search
results page as possible advertising levels. Without loss of gener-
ality, we can always assume a common set of advertising levels
A(x) ≡ A available in all states. The user randomly “jumps”
between states with transition probabilities depending on the level
of the advertising the user is exposed to. Let Pxay be the proba-
bility of moving from state x to state y if advertising level a ∈ A
is chosen. Next, let d(x, a) ≥ 0 be the immediate monetary cost
of advertising at level a in state x. This cost will relate to the
budget constraint (V ) for our optimization problem.

We define three special states in the system: xc ∈ X represent-
ing the conversion state, xn ∈ X representing the non-conversion
state, and xf representing the final state. The final state xf is
absorbing. All transitions from the non-conversion state xn and
the conversion state xc lead to the final state xf . The initial flow
of users to the system is given by measure β(x) and the advertis-
ers’ optimization problem is to maximize the expected number of
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Figure 1: Sample Markov model of user behavior. The first
value on the edge represents the transition probability if the

“do not advertise" action is chosen; the second value on the
edge represents the transition probability if the “advertise”
action is chosen.

converted users subject to the budget constraint. Without loss of
generality, we can assume that β is normalized to 1 and therefore
represents a probability measure. In such normalization, V will
represent a per-user budget constraint.

EXAMPLE 2. In a simple scenario of Example 1, we can think
of users as following a Markov model with two major states: x1

representing a search on a brand keyword and x2 representing a
search on a retailer keyword. As users are initially uninformed
about retailer’s existence, they always start in state x1. The
retailer can choose to advertise (a1) or not to advertise (a0) to
a user based on the current user’s state. We will always assume
that not advertising is costless; in the scope of this example
only, the advertising cost in both states will be taken to be 1.0.
A hypothetical Markov process for this scenario is shown in
Figure 1. Note that, in our example, if the retailer chooses not to
advertise to users searching for the brand name (state x1), then
users will have zero probability of transiting to the state x2 as
they will never learn about retailer’s existence. Thus, although
conversion rate in state x2 is four times higher than in state x1

(0.4 against 0.1), advertising in the second state has no value,
unless one advertises in the first state as well.

We can recast the optimization problem as a particular case of
constrained MDPs by defining the reward function that we are
trying to maximize as r(x, a) ≡ C when x = xc and r(x, a) ≡
0 otherwise (i.e., we get a reward of C in the conversion state
and zero everywhere else). We assume that the Markov process
is absorbing, i.e, sooner or later we will end up in the final
state in which we accumulate no reward and pay no cost, thus
the optimization problem is well-defined. We formalize this as
follows.

For t = 1, . . . ,∞, let Ht be the set of all possible user his-
tories of length t. Every element ht ∈ Ht is a history of states
and chosen actions until time t, i.e. ht = (x1, a1, x2, a2, ..., xt)
(note that the advertising exposure at time t is not included). A
general policy u is a collection of functions

ut : Ht →4(A),

where4(A) represents the set of probability distributions over
A (policies can be randomized). Note that the general policy
allows for the targeted advertising, i.e., choosing the advertising
level for the user based on the complete history of the prior user
searches and ads the user was exposed to.



DEFINITION 1. For every distribution over initial states β
and a policy u, there is a unique measure on the space of trajec-
tories H∞. We can use Puβ to denote this measure. Moreover,
define

puβ(t;x, a) = Puβ (xt = x, at = a),

i.e., puβ(t;x, a) is the probability of observing the state x and the
advertising level a at the step t of the process when following the
policy u. Next, define the expected total reward and the expected
total cost for a policy u as

R(β, u) =

∞X
t=1

X
X,A

puβ(t;x, a)r(x, a)

and

D(β, u) =

∞X
t=1

X
X,A

puβ(t;x, a)d(x, a).

respectively.

Note that both are well-defined as we assume that the MDP is
absorbing.

The budget optimization problem we face (for a single user) is
simply

max
u∈U

R(β, u) [P1]

s.t. D(β, u) ≤ V

where U is the set of policies of interest.
Special Classes of Policies. There are three classes of policies
of our interest:

• In Markov policies, ut depends only on xt, that is, we
target users based only on their current state and the amount
of time they spent in the system.

• In the special case of stationary policies, ut does not de-
pend on t, that is, we target users based on their current
state only.

• Further special are stationary deterministic policies, for
which the advertising level is chosen in each state deter-
ministically. That is, we target users based on their current
state only and all users in the same state are exposed to the
same advertising level.

4. CLASSIC RESULTS FOR CONSTRAINED
MARKOV DECISION PROCESSES

Below is a summary of well-known results for constrained
MDPs that apply to our model. The proofs are in [2].
Fact 1. It is sufficient to restrict consideration to Markov policies
only (see Theorem 2.1 of [2]) as for any general policy u, there ex-
ists some other Markov policy v such that puβ(t; ·, ·) ≡ pvβ(t; ·, ·).
Fact 2. Let X ′ = X \ {xf}. An occupation measure is a
“visit count” measure over the set of states and advertising levels
(µ ∈M(X ′ ×A)) achievable by some Markov policy u:

µ(x, a) =

∞X
t=1

puβ(t;x, a).

Let L(β) be the set of all occupation measures, L(β)S be the set
of all occupation measures achievable with a stationary policy
and L(β)D be the set of all occupation measures achievable with
a stationary deterministic policy. Theorem 3.2 from [2] gives

characterization of the set of all occupation measures. It says
that L(β) = L(β)S = coL(β)D (convex hull). Moreover, it is
equal to Q(β), where Q(β) is the set of all non-negative finite
measures ρ on X ′ ×A such that

∀x ∈ X ′
X
y∈X′

X
a∈A

ρ(y, a)(δx(y)− Pyax) = β(x) (1)

Note that Equation 1 is the basic “conservation of flow” statement,
thus the result can be interpreted as “any measure satisfying the
set of conservation of flow constraints is achievable with some
stationary policy” (the reverse is obviously true as well).
Fact 3. The previous result means that we can only look for
stationary policies or, even better, we can look for the solution
in form of an occupation measure. Theorem 3.5 from [2] shows
that there is one to one equivalence between feasible (and opti-
mal) solutions of P1 and feasible (and optimal) solutions of the
following linear program:

max
ρ

X
x∈X′

X
a∈A

r(x, a)ρ(x, a) [P2]

s.t.
X
x∈X′

X
a∈A

d(x, a)ρ(x, a) ≤ V

X
y∈X′

X
a∈A

ρ(y, a)(δx(y)− Pyax) = β(x) ∀x ∈ X ′

ρ(x, a) ≥ 0 ∀x ∈ X ′, a ∈ A.

In particular, if ρ∗ is the optimal solution of P2, then the station-
ary policy u∗ choosing the advertising level a with probability of
ρ∗(x,a)P
b ρ
∗(x,b) is the optimal randomized stationary policy (one can

choose any advertising level if the denominator is zero).
Note that the linear program P2 has |X ′|+ 1 constraints (the

budget constraint and |X ′| consistency constraints) in addition
to the non-negativity constraints. Thus, one can always find the
optimal solution in which at most |X ′| + 1 ρ(y, a) values are
positive. That implies that there is always an optimal advertising
strategy with randomization in at most one state.

EXAMPLE 3. For the Markov process shown in Figure 1 (Ex-
ample 2), the optimization problem [P2] can be reduced to 3

max
ρ

C(ρ(xc, a0) + ρ(xc, a1))

s.t. ρ(x1, a1) + ρ(x2, a1) ≤ V
0.9(ρ(x1, a0) + ρ(x1, a1)) = 1.0

0.8(ρ(x2, a0) + ρ(x2, a1)) = 0.2ρ(x1, a1)

(ρ(xc, a0) + ρ(xc, a1)) = 0.1ρ(x1, a1) + 0.4ρ(x2, a1)

ρ(x, a) ≥ 0.

For a particular value of the budget constraint, this program
can be solved to obtain the occupation measure for the opti-
mal policy. For example, if V = 1.0, the optimal solution of
[P2] is ρ(x1, a0) = 14

45
, ρ(x1, a1) = 0.8, ρ(x2, a0) = 0 and

ρ(x2, a1) = 0.2. It follows that the optimal policy will always
advertise to users in state x2 and advertise to users in state x1

with probability of 0.72 4.

3Obviously, we are always indifferent whether to advertise or
not to advertise once the user has already converted. Thus, sum
of ρ(xc, a0) and ρ(xc, a1) can always be collapsed to a single
variable (probability of conversion). For consistency of notation
only, we keep these two variables separately.
4 0.8

0.8+ 14
45



Fact 4. In the following, it will also be useful to consider the
dual program of P2:

min
π,λ

X
x∈X′

β(x)π(x) + λV [P3]

s.t. λ ≥ 0

π(x) ≥ r(x, a)− λd(x, a) +
X
y∈X′

Pxay π(y)

∀x ∈ X ′, a ∈ A

Here λ is the Lagrange multiplier for the budget constraint and,
for any fixed value of λ, π(x) can be thought of as the optimal
value function in the Markov model Mλ with adjusted rewards
rλ(x) = r(x, a) − λd(x, a). This intuition is captured by the
following LP for a fixed λ:

min
πλ

X
x∈X′

β(x)π(x) [P3(λ)]

s.t. πλ(x) ≥ rλ(x, a) +
X
y∈X′

Pxay πλ(y)

∀x ∈ X ′, a ∈ A

Because the value of λ is fixed, [P3(λ)] is a classic infinite-
horizon DP problem on a graph Mλ with rewards rλ(x, a), there-
fore it has a uniformly optimal stationary dual policy, which in
every state x chooses the advertising level a(x) deterministically
and does not depend on the distribution of initial states β.

5. BUDGET OPTIMIZATION WITH POS-
ITIVE CARRYOVER EFFECTS

The previous section shows that the budget optimization prob-
lem in Markovian world can be cast a simple linear program P2
with |X ′| × |A| variables and |X ′|+ 1 constraints. In real world
online advertising settings, in particular, in sponsored search,
|X ′| represents the number of feasible keywords to advertise
on and therefore can be as large as tens of thousands for a sin-
gle advertiser. Number of advertising levels can be in the order
of ten (different slots) or more. Considering the fact that the
constraint matrix is not sparse, the direct LP approach presents
significant practical computational challenges. In this section,
we identify the structure in the problem and use that to design
a simpler greedy algorithm which proceeds under assumption
that the advertising carryover effects are positive, which is realis-
tic. The algorithm is guaranteed to find the optimal solution of
P2 with the worst-case running time of |X ′|3 × |A|2 under this
assumption. As the experimental section shows, the suggested
algorithm performs very well in the real world settings even if
the underlying assumptions are violated.

First, we impose that the set of advertising levels A is totally
ordered a1 � a2 � ... � ak, with interpretation that if ai ≺
aj then aj represents a more intense level of advertising than
ai. Next, we assume that the Markov user model satisfies the
following conditions which are realistic (our empirical study will
not make such assumptions):

• More advertising never hurts (Postive Carryover):

∀x ∈ X ′, y ∈ X ′ \ {xn}, a � b Pxay ≤ Pxby

• More advertisting is more expensive: 5

∀x ∈ X ′, a � b d(x, a) ≤ d(x, b)
5This assumption is not essential and can be relaxed. Indeed,
if there are two advertising levels a and b such that a � b but

• Not advertising costs nothing: d(x, a1) ≡ 0, i.e., we as-
sume that the advertiser can always opt out of advertising
in any state at no extra cost.

Now, for any fixed λ ≥ 0 consider the optimization problem
P3(λ): and its dual P4(λ):

min
ρ

X
x∈X′

X
a∈A

(r(x, a)− λd(x, a))ρ(x, a) [P4(λ)]

s.t ∀x ∈ X ′
X
y∈X′

X
a∈A

ρ(y, a)(δx(y)− Pyax) = β(x)

∀x ∈ X ′, a ∈ A ρ(x, a) ≥ 0.

We emphasize that because P3(λ) is a classic infinite-horizon DP
problem on a graph, it has a uniformly optimal stationary policy.
In case of λ = 0, this policy has a particularly simple structure
due to positive externalities.

LEMMA 1 (SOLUTION OF UNCONSTRAINED PROBLEM).
For λ = 0 there is a uniformly optimal policy of P3(λ) in which
we advertise with the highest possible intensity (ak) in every state.

PROOF. Consider a policy u which chooses ak in every state.
Let ρ(x, a) be the occupation measure induced by u and π be
the value function induced by u. Obviously, ρ represents a fea-
sible solution of the primal optimization problem. Moreover, π
represents a feasible solution of the dual optimization problem,
because if

π(x) = r(x, ak) +
X
y∈X′

Pxaky π(y),

then

∀i π(x) ≥ r(x, ai) +
X
y∈X′

Pxaiy π(y).

Finally, both solutions give the same value thus both are opti-
mal.

LEMMA 2 (MONOTONICITY OF DUAL VALUE FUNCTION).
Let 0 ≤ λ1 < λ2, u1, u2 be the corresponding uniformly opti-
mal stationary policies and π1, π2 be the corresponding value
functions for P3(λ). Then, ∀x ∈ X ′ π1(x) ≥ π2(x).

PROOF. Assume not and there exists x s.t. π1(x) < π2(x).
Because u1 and u2 are uniformly optimal policies, they are also
optimal for the initial distribution β̂ = δx. Now, π1 is feasible
for P3(λ1), therefore (straightforward to check) it is also feasible
for P3(λ2). Because π2 is optimal for P3(λ2), it must be thatX

y∈X′
β̂(y)π1(y) ≤

X
y∈X′

β̂(y)π2(y),

i.e., π1(x) ≤ π2(x). This is a contradiction.

LEMMA 3 (CONTINUITY OF DUAL VALUE FUNCTION).
Let fβ(λ) be the value of the optimization problem P3(λ) 6. fβ(λ)
is a continuous function of λ. In particular, taking β ≡ δx, we
obtain that π∗λ(x) is a continuous function of λ.

PROOF. Just look at the dual P4(λ).

d(x, a) > d(x, b) then the advertiser can safely drop level a from
consideration (using b instead is always a better choice).
6subscript β is used to indicate the dependence on the initial
distribution β



DEFINITION 2. For any λ ≥ 0 and x ∈ X ′, define the set of
active advertising levels A(λ, x) as

a ∈ A s. t.
∃π∗ uniformly optimal for P3(λ) and

π∗(x) = rλ(x, a) +
P
y∈X′ Pxay π

∗(y)

ff
Note that A(λ, x) is always non-empty.

DEFINITION 3. For any λ ≥ 0 and x ∈ X ′, define the lowest
active advertising level aL(λ, x) and the highest active advertis-
ing level aH(λ, x) as

aL(λ, x) = minA(λ, x),

aH(λ, x) = maxA(λ, x).

LEMMA 4 (MONOTONE SELECTION).
For any x ∈ X and 0 ≤ λ1 < λ2, we have aL(λ1, x) �
aL(λ2, x) and aH(λ1, x) � aH(λ2, x).

PROOF. Proof for aH (proof for aL uses similar argument in
the reverse direction). Assume otherwise, i.e., ∃a1 = aH(λ1, x),
a2 = aH(λ2, x) such that a1 ≺ a2. Let π1, π2 be the corre-
sponding value functions.
Consider a possible value function gain in state x from choosing
advertising level a1 instead of a2 in both cases (we consider one
time deviation only, i.e., assuming that we follow the old policies
afterwards). For π1 and λ1 the gain is

G1 = λ1(d(x, a2)− d(x, a1))−
X
y

(Pxa2y −Pxa1y)π1(y).

For π2 and λ2 the gain is

G2 = λ2(d(x, a2)− d(x, a1))−
X
y

(Pxa2y −Pxa1y)π2(y).

Because a2 � a1, we have d(x, a2) ≥ d(x, a1) and Pxa2y ≥
Pxa1y . Moreover, π1(y) ≥ π2(y), thus the second gain G2 is
at least as large as G1. But G2 is non-positive because a2 ∈
A(λ2, x). It must be that G1 is also non-positive, i.e., a2 ∈
A(λ1, x). This is a contradiction because a1 is the “largest” such
advertising level.

Note. Proof of Lemma 4 looks like a standard single-crossing
argument that can be used to prove monotone selection theorems
for supermodular and quasisupermodular functions. While the
primal optimization problem can indeed be written as a super-
modular function, the Lagrangian relaxation of the dual is not
supermodular, nor quasisupermodular (we omit the counterexam-
ples due to space limitation), therefore Lemma 4 doesn’t seem
to be a corollary of Topkis’s theorem [27] or monotone selection
theorems for quasisupermodular functions [23].

LEMMA 5 (STRUCTURE OF DUAL VALUE FUNCTION).
fβ(λ) is a piecewise linear continuous function. Moreover, the
slope of fβ at any particular λ is equal to −βT (I − Pλ)−1dλ,
where β is the column vector of β(x), dλ is the column vector of
d(x, aH(λ, x)) and Pλ is the matrix of PxaH (λ,x)y . 7

PROOF. To show that f is piecewise linear, note that there is
only finite number of possible sets Aλ = {(x, aH(λ, x))|x ∈
X ′}. Moreover, for any λ1 < λ2, if Aλ1 = Aλ2 , then Aλ ≡ Aλ
for any λ ∈ [λ1, λ2] (immediately follows from Lemma 4). Thus
7Note that there is an equivalent representation in which dλ =
d(x, aL(λ, x)) and Pλ = PxaL(λ,x)y .

the real line can be split into a finite number of intervals on which
Aλ does not change.
Next, we can show left-continuity of Aλ. Take an increasing
sequence {λn} converging to a certain value λ. By observation
6.3, it must be that Aλn � Aλ. Moreover, sequence Aλn is
nonincreasing (w.r.t. ordering �) thus it must converge to some
A � Aλ. To show the actual equality, assume otherwise, i.e, there
is some x ∈ X ′ such that aH(λ, x) = a1, however aH(λn, x) ≡
a2 � a1 for any sufficiently large n. It must be that

π∗λn(x) = rλn(x, a) +
X
y∈X′

Pxa2y π
∗
λn(y).

By going to the limit

π∗λ(x) = rλ(x, a) +
X
y∈X′

Pxa2y π
∗
λ(y).

That means that a2 ∈ A(λ, x) and thus we have a contradiction.
Now, we know that Aλ is continuous on intervals of the form
(λ0 = 0, λ1], (λ1, λ2], (λ2, λ3] ...
Finally, take any such interval (λi, λi+1]. Note that Pλ and dλ
are constant within this interval. Moreover, by definition of Aλ
we have that

π∗λ = Const− λdλ + Pλ π∗λ
or

π∗λ = (I − Pλ)−1 (Const− λdλ) ,

i.e. π∗λ is linear on (λi, λi+1] and

d

dλ
π∗λ = −(I − Pλ)−1dλ.

5.1 Greedy BO Algorithm
Lemma 5 suggests a simple greedy algorithm for determin-

ing all breakpoint values λi for the dual value function fβ(λ).
Algorithm 2 keeps the the current set of highest active adver-
tising levels Aλi as a part of its state. Aλi is stored as a sim-
ple set of numbers m(x) for every state x, representing that
Aλi = {(x, am(x))|x ∈ X ′}. At every step of the algorithm we
choose one candidate node x∗. One way to define this node is to
imagine that we freeze the current set of active advertising levels
Aλi and start gradually increasing the value of λ. The first node,
for which it will be locally optimal to decrease the advertising
level m(x), is the node x∗, the new value λi+1 at which that
happens is given by λi+1 = λi + δ∗ and the new advertising
level at x∗ will be m∗.

THEOREM 1 (GREEDY BO ALGORITHM). Algorithm 2 cor-
rectly constructs the dual value function fβ(λ).

PROOF. Obviously, Algorithm 2 will finish (the vector m al-
ways decreases by at least 1 in one of the components). The
correctness of the algorithm can be proved by induction. At
λ0 = 0, the result is correct by Lemma 1. Assume now that the
claim holds up to and including λi. From Lemma 5, we know
that fβ(λ) is a piecewise linear continuous function. Let λ̂i+1 be
its next breakpoint.
Observation 1: λ̂i+1 is at least as large as λi+1. Assume not
and λ̂i+1 < λi+1. The proof of Lemma 5 shows that there must
be some x and advertising level b such that b = aH(λ, x) for
λ ∈ (λi, λ̂i+1]. If am(x) � b, then, by continuity and monotonic-
ity it must be possible to decrease am(x) to b without changing
the value function π. If that is the case, then the Candidate



Selection() method should return δ∗ = 0 at the step i and there-
fore λi+1 = λi. That is a contradiction with assumption that
λ̂i+1 < λi+1, so we can assume that am(x) = b. If so, then

π∗λ(x) = rλ(x, am(x)) +
X
y∈X′

Pxam(x)y π
∗
λ(y)

on [λi, λ̂i+1]. Consider λ̄ = λ̂i+1 + ε. By construction am(x) 6=
aH(λ̄, x) and therefore am(x) � aH(λ̄, x) = at. By continuity,

rλ̂i+1
(x, am(x)) +

X
y∈X′

Pxam(x)y π
∗
λ̂i+1

(y)

must be equal to

rλ̂i+1
(x, at) +

X
y∈X′

Pxaty π
∗
λ̂i+1

(y).

Easy to check that if this is the case then the triple (x, λ̂i+1−λi, t)
should have been returned by the CandidateSelection() method.
That didn’t happen and so we have a contradiction and Observa-
tion 1 is proved.
Observation 2: On interval [λi, λi+1], the value function π grows
linearly as πi + (λ− λi)dπi.
This observation follows immediately from Lemma 5 and the
fact that λ̂i+1 ≥ λi+1. Thus, on interval [λi, λi+1], Algorithm 2
properly reconstructs the function fβ(λ). The proof is complete.

We note that there is an alternative version of Algorithm 2, in
which the optimization starts λ0 = +∞ and active advertising
level equal to a0 in every node and we reconstruct the value
function fβ(λ) by gradually decreasing λ.

Algorithm 1 Candidate node selection for BO algorithm.
Candidate Selection():
δ∗ ⇐ +∞
m∗ ⇐ +∞
for every x ∈ X ′ such that m(x) > 1 do

for every m ∈ [1,m(x)− 1] do
4⇐ d(x, am(x))− d(x, am)

δ ⇐ −
P
y∈X′ (Pxam(x)y −Pxamy)πi(y)−λi4P
y∈X′ (Pxam(x)y −Pxamy)dπi(y)−4

if δ < δ∗ then
δ∗ ⇐ δ
m∗ ⇐ m
x∗ ⇐ x

end if
end for

end for
Returns (x∗, δ∗,m∗)

5.2 Improved Greedy BO Algorithm
Number of iterations of Algorithm 2 is bounded by |X| × |A|.

The most expensive operation inside a single iteration is solv-
ing a linear system with |X| unknowns and |X| variables. This
can be done in O(|X|3) operations in practice or in O(|X|2.376)
asymptotically [10]. Fortunately, we can significantly improve
the performance of the algorithm by noting that it proceeds one
variable at a time, always adjusting advertising level in a sin-
gle state only. Thus, we do not really need to solve the system
dπi+1 ⇐ −(I − Pi+1)−1di+1 from the scratch each time. In-
stead, the algorithm can keep an LU decomposition of the matrix
I − Pi, updating it in every step. Because only a single row is

Algorithm 2 Greedy algorithm for BO with positive carryover
effects.
Initialization:
i⇐ 0 (state number)
λ0 ⇐ 0 (initial breakpoint)
∀ x ∈ X ′ m(x) ⇐ k (set current advertising level to the
highest possible)
P0 ⇐ P0 (set transition probabilities according to the current
advertising levels)
d0 ⇐ d(·, a(k)) (set advertising costs according to the current
advertising levels)
π0 ⇐ (I − P0)−1r (find the optimal value function for the
initial advertising levels; this is equivalent to solving a linear
system of equations)
dπ0 ⇐ d

dλ
π∗0(y) = −(I − P0)−1d0 (find the derivative of

the optimal value function; this is equivalent to solving a linear
system of equations)

Main Loop():
while ∃x ∈ X ′ m(x) > 1 do

(x∗, δ∗,m∗)⇐ Candidate Selection()
m(x∗)⇐ m∗

Pi+1 ⇐ Pi with row for x∗ replaced by Px∗am∗y
di+1 ⇐ di with value for x∗ replaced by d(x∗, am∗)
πi+1 ⇐ πi + δ∗dπi
dπi+1 ⇐ −(I − Pi+1)−1di+1

λi+1 ⇐ λi + δ∗

i⇐ i+ 1
end while

replaced in the matrix, updating the LU decomposition can be
trivially done in a quadratic time by solving a system of equations
with a triangular matrix. That results in the O(|X|2×|A|) worst-
case performance of the inner loop and O(|X|3 × |A|2) worst-
case performance of the whole algorithm assuming a sequential
processing model. The improved version of the algorithm is given
by Algorithm 3.

5.3 Parallel Implementation of Greedy BO
Algorithm

The most interesting property of Algorithm 3 is that it supports
an efficient parallel implementation using a distributed program-
ming framework like MapReduce [12]. This might be an impor-
tant advantage for solving large-scale advertising campaigns with
several thousands of keywords. This is in contrast to the original
LP program P2, which is not a packing-covering linear program
and, therefore, we are not aware of any distributed or parallel
algorithm to solve it. Below, we give a brief description of the
idea behind this parallel implementation.

The Candidate Selection() function can be parallelized to run
on |X| machines simply by distributing every iteration of the
outer loop (for every x ∈ X ′) to a separate machine and aggre-
gating the results afterwards. Similarly, solution of a system of
linear inequalities with a triangular matrix can be done in |X|
time on |X|machines. Thus, we state that in a parallel processing
framework with |X| machines, Algorithm 3 worst-case perfor-
mance is O(|X|2 × |A|2) plus the time needed to perform LU
decomposition of the matrix I − P0 in the initialization step.
Details of the implementation are beyond the scope of this paper.



Algorithm 3 Improved Greedy algorithm for BO with positive
carryover effects.
Initialization:
i⇐ 0
λ0 ⇐ 0
∀ x ∈ X ′ m(x)⇐ k
P0 ⇐ P0

d0 ⇐ d(·, a(k))
(L0, U)⇐ LU decomposition of (I − P0)
πi ⇐ U−1L−1

0 r
dπi ⇐ d

dλ
π∗i (y) = −U−1L−1

0 di

Main Loop:
while ∃x ∈ X ′ m(x) > 1 do

(x∗, δ∗,m∗)⇐ Candidate Selection()
m(x∗)⇐ m∗

Pi+1 ⇐ Pi with row for x∗ replaced by Px∗am∗y
Li+1 ⇐ Li with row for x∗ replaced by U−1z′ where z is
the row for x∗ from I − Pi+1

di+1 ⇐ di with value for x∗ replaced by d(x∗, am∗)
πi+1 ⇐ πi + δ∗dπi
dπi+1 ⇐ −U−1L−1

i+1di+1

λi+1 ⇐ λi + δ∗

i⇐ i+ 1
end while

6. EVALUATION
We performed evaluation of our budget optimization algo-

rithms on nine real world datasets containing data from nine dif-
ferent sponsored search campaigns. All datasets were advertiser-
specific and included only user activities (such as ad clicks) re-
lated to a single search campaign of a single advertiser. The
dataset was collected at user level and contained information on a
random sample of users who converted with the advertiser within
a period of two weeks in December 2009. For every anonymous
user, the dataset recorded ad clicks of this user before the con-
version. Every ad click event had associated timestamp and the
keyword the user query was matched with. In this data set, we
do not observe the events in which the users did not click on the
ad. Moreover, since we focus on advertiser-specific information,
user searches for which the advertiser’s ad was not shown, such
as searches with irrelevant search queries, keywords on which
the advertiser bid too low, or keywords for which the advertiser
was excluded from the auction due to a daily budget constraint,
are not included in our dataset. While such extra data might
be available in some form to the search engine, due to several
privacy and competition issues, it would not be reported to the
advertisers, therefore we intentionally focus on the restricted
advertiser-specific data described above.

In addition to the above datasets, we compiled cost information
for all keywords from our sample. To simplify the experiments,
we used average CPC (cost per click) values, computed as the
average cost of the clicks that the advertiser got for a particu-
lar keyword in a similar time period of two weeks. Summary
statistics for the average CPC per keyword and the number of
keywords per campaign are given in Table 1.

To represent user behavior by a Markov chain, we follow the
approach of [3]. [3] suggests that from advertisers’ perspective,
user behavior can be reasonably approximated by a first order
Markov chain. In such Markov Chain, state represents the last ob-
served event for the user (for example, user searching for “Prada
shirt”) and transition probabilities between states are directly es-

timated from the data. Following [3], we model user state by the
keyword that the last user search was matched with. In contrast
with [3], we only include clicked ads as model states because
pure impression information was missing from our sample.

Next, we add four special states: the begin state (xb) rep-
resenting a new user entering the system, the conversion state
representing the user conversion event (xc), the non-conversion
state representing the user leaving the system without converting
(xn) 8 and the final state (xf ). The final state is absorbing and, by
construction, conversion and non-conversion states always lead
to the final state. The begin state has no incoming edges.

Due to the nature of our data, we only consider two possible
advertising levels for every keyword, “advertise” and “do not
advertise”, and restrict consideration to the top 250 keywords in
each campaign 9. “Do not advertise” decisions cost nothing and
“advertise” decisions cost the average CPC of the corresponding
keyword. Consistent with our theoretical model, transition proba-
bilities between states depend on whether the user was exposed
to the advertisement or not. The challenge here is that we do
not have any observations on the behavior of users not exposed
to the advertisement. We suggest a simple workaround for this
problem: assume that if the time gap between two consecutive
user states (consecutive searches) is large enough (at least one
day), the transition between states was not due to influence of
the online ad and therefore would have happened even if the ad
was not shown to the user. We acknowledge that this is a strong
assumption and that transition probability estimates constructed
in such way might be biased, however, as our goal is only to eval-
uate performance of the budget optimization algorithm across
multiple campaigns and wide range of parameters, such bias can
be tolerated. The summary of graph construction steps is given
by Algorithm 4. The algorithm has two configuration parameters
that can be tuned. The first parameter α represents the probability
that a user can leave the system at any moment of time. We fol-
low a conservative approach and assume that this probability is
unaffected by whether the user was exposed to the advertisement
in the last step or not. The second parameter C represents the
advertiser’s value for a single converted user. As both parameters
were unknown in our dataset, we have validated the model across
a wide range of them. In the paper, we present results assuming
α = 0.5 and C = $5.

In the following, we compare performance of three budget
optimization algorithms. The baseline algorithm is a simple
greedy solution of the fractional knapsack, in which the advertiser
sorts all keywords by the immediate ROI value

Pxa1y −Pxa0y
CPC

(ignoring the potential carryover effects to other keywords) and
picks the keywords to advertise on in sequence starting from the
keyword with the highest ROI. The process stops once we reach
the expected allowed budget of the advertising campaign. As
the expected campaign budget depends on the assumed model
of user behavior, we still have to assume Markovian world when
estimating the expected budget in the baseline algorithm. To
8We never really know whether the user has dropped out or he
is going to come back later and convert. As only small number
of users converts, it is always reasonable to assume that the user,
who hasn’t converted so far, is not going to.
9The main reasons for limiting the number of keywords to only
250 are slow performance of the LP algorithm with large number
of variables (the greedy BO algorithm works fine) and presence
of significant noise in transition probability estimates for infre-
quently used keywords.



Min Max Median Mean
CPC 1.43¢ $1.34 5.49¢ 25.46¢

Keywords 285 998 933 782.33

Table 1: Summary Statistics for CPC and number of key-
words per campaign

reconcile this fact with the assumption that the advertiser is opti-
mizing myopically, we assume that, in the baseline algorithm, we
advertise to every user only the first time the user enters into the
system. We compare the performance of the baseline algorithm
with performance of the two alternative budget optimization al-
gorithms:

• the direct approach which is based on solving the linear
program P2 and therefore is guaranteed to construct the
optimal solution,

• the greedy budget optimization technique of Algorithm 3. 10

We perform comparison across a range of possible budget values
starting from zero budget (in which case the only feasible solution
is not to advertise) up to the value Vmax which represents the
budget value for which the budget constraint does not bind the
optimal solution anymore. Results of the three algorithms on
all nine advertising campaigns are shown in Figure 2. As can
be seen from the plot, there was no significant difference in
performance of the LP algorithm and the greedy BO algorithm,
confirming the positive carryover assumptions and the overall
validity of our approach. Both algorithms consistently performed
better than the baseline (the fractional knapsack) algorithm. If
we measure the algorithm performance by AUC (area under the
curve) in Figure 2, then the median gain in AUC was 5.79%
and the mean gain in AUC was 9.14%. The largest observed
difference in AUC was a gain of 27.14% and the smallest one
was a gain of 1.77%. Furthermore, the difference in performance
was particularly significant for medium values of the budget
constraint, that are neither too small nor too large.

7. CONCLUSIONS
The Internet has become a major advertising medium. While it

is relatively easy to start an online advertising campaign, proper
allocation of the marketing budget is far from trivial. A major
challenge faced by the marketers attempting to optimize their
campaigns is in the sheer number of variables they can possibly
change and nontrivial interactions between them. In this paper,
we consider the important interaction effect between individual
advertising decisions: a potential carryover effect that online ad-
vertising has on the propensity and the form of user interactions
with an advertiser in the future. We adopt the Markov model of
user browsing behavior and formulate the budget allocation task
of an advertiser as a constrained optimal control problem for a
Markov Decision Process (MDP). Using well-developed theory
of constrained MDPs, we show that a simple LP algorithm yields
the optimal policy. Furthermore, we show that, under reason-
able assumptions on the structure of carryover effects, there is a
simple greedy algorithm for the optimal solution of the problem
that is faster and has an efficient implementation in a parallel
processing framework. Using real-world anonymized datasets

10In fact, we use the alternative version of Algorithm 3, in which
we start from λ = +∞ and reconstruct fβ(λ) by gradually
decreasing λ.

Algorithm 4 Graph Construction Algorithm.
Configurable Parameters:
α⇐ 0.5 (“death” probability)
C ⇐ $5 (value per conversion)

Define Actions:
{a0, a1} ⇐ {do not advertise, advertise}

Define States:
X ⇐ set of keywords
X ⇐ X ∪ {xb, xc, xn, xf}

Define Costs:
∀ x ∈ X ′ d(x, a0)⇐ 0
∀ x ∈ X ′ \ {xb, xc, xn} d(x, a1)⇐ CPC(keyword(x))
∀ x ∈ {xb, xc, xn} d(x, a1)⇐ 0

Define Rewards:
∀ a ∈ A, x ∈ X ′ \ {xc} r(x, a)⇐ 0
∀ a ∈ A r(xc, a)⇐ C

Define Transitions:
∀ a ∈ A, x ∈ {xc, xn, xf}Pxaxf = 1
∀ a ∈ A, x ∈ {xc, xn, xf}, y 6= xf Pxay = 0
∀ a ∈ A, y ∈ X ′ \ {xc, xn, xb}Pxbay = fraction of times
the first user search was matched with keyword(y)
∀ a ∈ A, y ∈ {xc, xn, xb, xf},Pxbay = 0
∀ x, y ∈ X ′\{xc, xn, xb}Pxa0y = (1−α) times the fraction
of times the user search was matched with keyword(y) assum-
ing the user’s previous search was matched with keyword(x)
and the time gap between events was more than one day
∀ x, y ∈ X ′\{xc, xn, xb}Pxa1y = (1−α) times the fraction
of times the user search was matched with keyword(y) assum-
ing the user’s previous search was matched with keyword(x)
and the time gap between events was less than one day
∀ x ∈ X ′ \ {xc, xn, xb}Pxa0xc = (1−α) times the fraction
of times the user converted assuming the user’s previous search
was matched with keyword(x) and the time gap between
events was more than one day
∀ x ∈ X ′ \ {xc, xn, xb}Pxa1xc = (1−α) times the fraction
of times the user converted assuming the user’s previous search
was matched with keyword(x) and the time gap between
events was less than one day
∀ x ∈ X ′ \ {xc, xn, xb}Pxa0xn = α
∀ x ∈ X ′ \ {xc, xn, xb}Pxa1xn = α
∀ a ∈ A, x ∈ X ′ \ {xc, xn}Pxaxf = 0

Define Inflow of Users:
β(xb)⇐ 1.0
∀x 6= xb β(x)⇐ 0.0



Figure 2: Performance of budget optimization techniques: LP-based (red), greedy BO (blue) and baseline assuming no carry-
over (green). Horizontal axis: budget per user in cents. Vertical axis: expected value per user in cents.

from sponsored search advertising campaigns of some large ad-
vertisers, we evaluate applicability of our model and performance
of the proposed budget allocation algorithm. Our budget alloca-
tion algorithm shows 5-10% improvement in revenues against the
optimal baseline algorithm ignoring carryover effects, consistent
across a wide range of different settings and budget constraints.
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