
1

B reaking Audio CAPTCHAs

Jennifer Tam

Computer Science Department
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh 15217
jdtam@cs.cmu.edu

Sean Hyde

Electrical and Computer Engineering
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh 15217
sean.a.hyde@gmail.com

Jiri Simsa
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh 15217

jsimsa@cs.cmu.edu

Luis Von Ahn
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh 15217

biglou@cs.cmu.edu

Abstract

CAPTCHAs are computer-generated tests that humans can pass but current
computer systems cannot. CAPTCHAs provide a method for automatically
distinguishing a human from a computer program, and therefore can protect
Web services from abuse by so-called “bots.” Most CAPTCHAs consist of
distorted images, usually text, for which a user must provide some
description. Unfortunately, visual CAPTCHAs limit access to the millions
of visually impaired people using the Web. Audio CAPTCHAs were
created to solve this accessibility issue; however, the security of audio
CAPTCHAs was never formally tested. Some visual CAPTCHAs have
been broken using machine learning techniques, and we propose using
similar ideas to test the security of audio CAPTCHAs. Audio CAPTCHAs
are generally composed of a set of words to be identified, layered on top of
noise. We analyzed the security of current audio CAPTCHAs from popular
Web sites by using AdaBoost, SVM, and k-NN, and achieved correct
solutions for test samples with accuracy up to 71%. Such accuracy is
enough to consider these CAPTCHAs broken. Training several different
machine learning algorithms on different types of audio CAPTCHAs
allowed us to analyze the strengths and weaknesses of the algorithms so
that we could suggest a design for a more robust audio CAPTCHA.

1 Introduct ion
CAPTCHAs [1] are automated tests designed to tell computers and humans apart by
presenting users with a problem that humans can solve but current computer programs
cannot. Because CAPTCHAs can distinguish between humans and computers with high
probability, they are used for many different security applications: they prevent bots from
voting continuously in online polls, automatically registering for millions of spam email
accounts, automatically purchasing tickets to buy out an event, etc. Once a CAPTCHA is
broken (i.e., computer programs can successfully pass the test), bots can impersonate
humans and gain access to services that they should not. Therefore, it is important for
CAPTCHAs to be secure.

To pass the typical visual CAPTCHA, a user must correctly type the characters displayed in
an image of distorted text. Many visual CAPTCHAs have been broken with machine

2

learning techniques [2]-[3], though some remain secure against such attacks. Because
visually impaired users who surf the Web using screen-reading programs cannot see this type
of CAPTCHA, audio CAPTCHAs were created. Typical audio CAPTCHAs consist of one
or several speakers saying letters or digits at randomly spaced intervals. A user must
correctly identify the digits or characters spoken in the audio file to pass the CAPTCHA. To
make this test difficult for current computer systems, specifically automatic speech
recognition (ASR) programs, background noise is injected into the audio files.

Since no official evaluation of existing audio CAPTCHAs has been reported, we tested the
security of audio CAPTCHAs used by many popular Web sites by running machine learning
experiments designed to break them. In the next section, we provide an overview of the
literature related to our project. Section 3 describes our methods for creating training data,
and section 4 describes how we create classifiers that can recognize letters, digits, and noise.
In section 5, we discuss how we evaluated our methods on widely used audio CAPTCHAs
and we give our results. In particular, we show that the audio CAPTCHAs used by sites
such as Google and Digg are susceptible to machine learning attacks. Section 6 mentions the
proposed design of a new more secure audio CAPTCHA based on our findings.

2 Lit erature rev i ew
To break the audio CAPTCHAs, we derive features from the CAPTCHA audio and use
several machine learning techniques to perform ASR on segments of the CAPTCHA. There
are many popular techniques for extracting features from speech. The three techniques we use
are mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP), and
relative spectral transform-PLP (RAS TA-PLP). MFCC is one of the most popular speech
feature representations used. Similar to a fast Fourier transform (FFT), MFCC transforms an
audio file into frequency bands, but (unlike FFT) MFCC uses mel-frequency bands, which
are better for approximating the range of frequencies humans hear. PLP was designed to
extract speaker-independent features from speech [4]. Therefore, by using PLP and a variant
such as RAS TA-PLP, we were able to train our classifiers to recognize letters and digits
independently of who spoke them. Since many different people recorded the digits used in
one of the types of audio CAPTCHAs we tested, PLP and RAS TA-PLP were needed to
extract the features that were most useful for solving them.

In [4]-[5], the authors conducted experiments on recognizing isolated digits in the presence
of noise using both PLP and RAS TA-PLP. However, the noise used consisted of telephone
or microphone static caused by recording in different locations. The audio CAPTCHAs we
use contain this type of noise, as well as added vocal noise and/or music, which is supposed
to make the automated recognition process much harder.

The authors of [3] emphasize how many visual CAPTCHAs can be broken by successfully
splitting the task into two smaller tasks: segmentation and recognition. We follow a similar
approach in that we first automatically split the audio into segments, and then we classify
these segments as noise or words.

In early March 2008, concurrent to our work, the blog of Wintercore Labs [6] claimed to
have successfully broken the Google audio CAPTCHA. After reading their Web article and
viewing the video of how they solve the CAPTCHAs, we are unconvinced that the process
is entirely automatic, and it is unclear what their exact pass rate is. Because we are unable to
find any formal technical analysis of this program, we can neither be sure of its accuracy nor
the extent of its automation.

3 Creat ion of tra in i ng data
Since automated programs can attempt to pass a CAPTCHA repeatedly, a CAPTCHA is
essentially broken when a program can pass it more than a non-trivial fraction of the time;
e.g., a 5% pass rate is enough.

Our approach to breaking the audio CAPTCHAs began by first splitting the audio files into
segments of noise or words: for our experiments, the words were spoken letters or digits. We
used manual transcriptions of the audio CAPTCHAs to get information regarding the
location of each spoken word within the audio file. We were able to label our segments
accurately by using this information.

3

We gathered 1,000 audio CAPTCHAs from each of the following Web sites: google.com,
digg.com, and an older version of the audio CAPTCHA in recaptcha.net. Each of the
CAPTCHAs was annotated with the information regarding letter/digit locations provided by
the manual transcriptions. For each type of CAPTCHA, we randomly selected 900 samples
for training and used the remaining 100 for testing.

Using the digit/letter location information provided in the manual CAPTCHA
transcriptions, each training CAPTCHA is divided into segments of noise, the letters a-z, or
the digits 0-9, and labeled as such. We ignore the annotation information of the
CAPTCHAs we use for testing, and therefore we cannot identify the size of those segments.
Instead, each test CAPTCHA is divided into a number of fixed-size segments. The segments
with the highest energy peaks are then classified using machine learning techniques (Figure
1). Since the size of a feature vector extracted from a segment generally depends on the size
of the segment, using fixed-size segments allows each segment to be described with a feature
vector of the same length. We chose the window size by listening to a few training
segments and adjusted accordingly to ensure that the segment contained the entire
digit/letter. There is undoubtedly a more optimal way of selecting the window size,
however, we were still able to break the three CAPTCHAs we tested with our method.

Figure 1: A test audio CAPTCHA with the fixed-size segments containing the highest
energy peaks highlighted.

The information provided in the manual transcriptions of the audio CAPTCHAs contains a
list of the time intervals within which words are spoken. However, these intervals are of
variable size and the word might be spoken anywhere within this interval. To provide fixed-
size segments for training, we developed the following heuristic. First, divide each file into
variable-size segments using the time intervals provided and label each segment accordingly.
Then, within each segment, detect the highest energy peak and return its fixed-size
neighborhood labeled with the current segment’s label. This heuristic achieved nearly perfect
labeling accuracy for the training set. Rare mistakes occurred when the highest energy peak
of a digit or letter segment corresponded to noise rather than to a digit or letter.

To summarize this subsection, an audio file is transformed into a set of fixed-size segments
labeled as noise, a digit between 0 and 9, or a letter between a and z. These segments are
then used for training. Classifiers are trained for one type of CAPTCHA at a time.

4 C las s i f i er construct ion
From the training data we extracted five sets of features using twelve MFCCs and twelfth-

4

order spectral (SPEC) and cepstral (CEPS) coefficients from PLP and RAS TA-PLP. The
Matlab functions for extracting these features were provided online at [7] and as part of the
Voicebox package. We use AdaBoost, SVM, and k-NN algorithms to implement automated
digit and letter recognition. We detail our implementation of each algorithm in the
following subsections.

4 .1 A d a B o o s t

Using decision stumps as weak classifiers for AdaBoost, anywhere from 11 to 37 ensemble
classifiers are built. The number of classifiers built depends on which type of CAPTCHA we
are solving. Each classifier trains on all the segments associated with that type of
CAPTCHA, and for the purpose of building a single classifier, segments are labeled by
either -1 (negative example) or +1 (positive example). Using cross-validation, we choose to
use 50 iterations for our AdaBoost algorithm. A segment can then be classified as a
particular letter, digit, or noise according to the ensemble classifier that outputs the number
closest to 1.

4 .2 S u p p o rt v ecto r ma ch i n e

To conduct digit recognition with SVM, we used the C++ implementations of libSVM [8]
version 2.85 with C-SMV and RBF kernel. First, all feature values are scaled to the range of
-1 to 1 as suggested by [8]. The scale parameters are stored so that test samples can be
scaled accordingly. Then, a single multiclass classifier is created for each set of features
using all the segments for a particular type of CAPTCHA. We use cross-validation and grid
search to discover the optimal slack penalty (C=32) and kernel parameter (γ=0.011).

4 .3 k - n ea rest n e ig h b o r (k -NN)

We use k-NN as our final method for classifying digits. For each type of CAPTCHA, five
different classifiers are created by using all of the training data and the five sets of features
associated with that particular type of CAPTCHA. Again we use cross-validation to discover
the optimal parameter, in this case k=1. We use Euclidian distance as our distance metric.

5 Ass e s sm ent of current aud io CAPTCHAs
Our method for solving CAPTCHAs iteratively extracts an audio segment from a
CAPTCHA, inputs the segment to one of our digit or letter recognizers, and outputs the
label for that segment. We continue this process until the maximum solution size is reached
or there are no unlabeled segments left. Some of the CAPTCHAs we evaluated have
solutions that vary in length. Our method ensures that we get solutions of varying length
that are never longer than the maximum solution length. A segment to be classified is
identified by taking the neighborhood of the highest energy peak of an as yet unlabeled part
of the CAPTCHA.

Once a prediction of the solution to the CAPTCHA is computed, it is compared to the true
solution. Given that at least one of the audio CAPTCHAs allows users to make a mistake in
one of the digits (e.g., reCAPTCHA), we compute the pass rate for each of the different types
of CAPTCHAs with all of the following conditions:

• The prediction matches the true solution exactly.

• Inserting one digit into the prediction would make it match the solution exactly.

• Replacing one digit in the prediction would make it match the solution exactly.

• Removing one digit from the prediction would make it match the solution exactly.

However, since we are only sure that these conditions apply to reCAPTCHA audio
CAPTCHAs, we also calculate the percentage of exact solution matches in our results for
each type of audio CAPTCHA. These results are described in the following subsections.

5 .1 Go o g le

Google audio CAPTCHAs consist of one speaker saying random digits 0-9, the phrase
“once again,” followed by the exact same recorded sequence of digits originally presented.

5

The background noise consists of human voices speaking backwards at varying volumes. A
solution can range in length from five to eight words. We set our classifier to find the 12
loudest segments and classify these segments as digits or noise. Because the phrase “once
again” marks the halfway point of the CAPTCHA, we preprocessed the audio to only serve
this half of the CAPTCHA to our classifiers. It is important to note, however, that the
classifiers were always able to identify the segment containing “once again,” and these
segments were identified before all other segments. Therefore, if necessary, we could have
had our system cut the file in half after first labeling this segment.

For AdaBoost, we create 12 classifiers: one classifier for each digit, one for noise, and one
for the phrase “once again.” Our results (Table 1) show that at best we achieved a 90% pass
rate using the “one mistake” passing conditions and a 66% exact solution match rate. Using
SVM and the “one mistake” passing conditions, at best we achieve a 92% pass rate and a
67% exact solution match. For k-NN, the “one mistake” pass rate is 62% and the exact
solution match rate is 26%.

Table 1: Google audio CAPTCHA results: Maximum 67% accuracy was achieved by SVM.

Classifiers Used

AdaBoost SVM k-NN
One

mistake
exact
match

one
mistake

exact
match

one
mistake

exact
match

MFCC 88% 61% 92% 67% 30% 1%

PLP-
SPEC 90% 66% 90% 67% 60% 26%

PLP-
CEPS 90% 66% 92% 67% 62% 23%

RAS TA-
PLP-
SPEC

88% 48% 90% 61% 29% 1% Fe
at

ur
es

 U
se

d

RAS TA-
PLP-
CEPS

90% 63% 92% 67% 33% 2%

5 .2 D ig g

Digg CAPTCHAs also consist of one speaker, in this case saying a random combination of
letters and digits. The background noise consists of static or what sounds like trickling
water and is not continuous throughout the entire file. We noticed in our training data that
the following characters were never present in a solution: 0, 1, 2, 5, 7, 9, i, o, z. Since the
Digg audio CAPTCHA is also the verbal transcription of the visual CAPTCHA, we believe
that these characters are excluded to avoid confusion between digits and letters that are
similar in appearance. The solution length varies between three and six words. Using
AdaBoost, we create 28 classifiers: one classifier for each digit or letter that appears in our
training data and one classifier for noise. Perhaps because we had fewer segments to train
with and there was a far higher proportion of noise segments, AdaBoost failed to produce any
correct solutions. We believe that the overwhelming number of negative training examples
versus the small number of positive training samples used to create each decision stump
severely affected AdaBoost’s ability to classify audio segments correctly.

A histogram of the training samples is provided in Figure 2 to illustrate the amount of
training data available for each character. When using SVM, the best feature set passed with
96% using “one mistake” passing conditions and passed with 71% when matching the
solution exactly. For k-NN, the best feature set produced a 90% “one mistake” pass rate and
a 49% exact solution match. Full results can be found in Table 2.

6

Table 2: Digg audio CAPTCHA results: Maximum 71% accuracy was achieved by SVM.

Classifiers Used

AdaBoost SVM k-NN
one

mistake
exact
match

one
mistake

exact
match

one
mistake

exact
match

MFCC - - 96% 71% 89% 49%

PLP-
SPEC - - 94% 65% 90% 47%

PLP-
CEPS - - 96% 71% 64% 17%

RAS TA-
PLP-
SPEC

- - 17% 3% 67% 17% Fe
at

ur
es

 U
se

d

RAS TA-
PLP-
CEPS

- - 96% 71% 82% 34%

0

100

200

300

400

500

600

700

800

900

1000

n
o
is
e 3 4 6 8 a b c d e f g h j k l

m n p q r s t u v w x y

Segment Label

#
 o

f
S

e
g

m
e
n

ts

Figure 2: Digg CAPTCHA training data distribution.

5 .3 reC A PTC HA

The older version of reCAPTCHA’s audio CAPTCHAs we tested consist of several speakers
who speak random digits. The background noise consists of human voices speaking
backwards at varying volumes. The solution is always eight digits long. For AdaBoost, we
create 11 classifiers: one classifier for each digit and one classifier for noise. Because we

7

know that the reCAPTCHA passing conditions are the “one mistake” passing conditions,
SVM produces our best pass rate of 58%. Our best exact match rate is 45% (Table 3).

Table 3: reCAPTCHA audio CAPTCHA results: Maximum 45% accuracy was achieved by
SVM.

Classifiers Used

AdaBoost SVM k-NN
one

mistake
exact
match

one
mistake

exact
match

one
mistake

exact
match

MFCC 18% 6% 56% 43% 22% 11%

PLP-
SPEC 27% 10% 58% 39% 43% 25%

PLP-
CEPS 23% 10% 56% 45% 29% 14%

RAS TA-
PLP-
SPEC

9% 3% 36% 18% 24% 4%

Fe
at

ur
es

 U
se

d

RAS TA-
PLP-
CEPS

9% 3% 46% 30% 32% 12%

6 Propert i e s of weak versus strong CAPTCHAs
From our results, we note that the easiest CAPTCHAs to break were from Digg. Google
had the next strongest CAPTCHAs followed by the strongest from reCAPTCHA. Although
the Digg CAPTCHAs have the largest vocabulary, giving us less training data per label, the
same woman recorded them all. More importantly, the same type of noise is used
throughout the entire CAPTCHA. The noise sounds like running water and static which
sounds very different from the human voice and does not produce the same energy spikes
needed to locate segments, therefore making segmentation quite easy. The CAPTCHAs from
Google and reCAPTCHA used other human voices for background noise, making
segmentation much more difficult. Although Google used a smaller vocabulary than Digg
and also only used one speaker, Google’s background noise made the CAPTCHA more
difficult to solve. After listening to a few of Google’s CAPTCHAs, we noticed that
although the background noise consisted of human voices, the same background noise was
repeated. reCAPTCHA had similar noise to Google, but they had a larger selection of noise
thus making it harder to learn. reCAPTCHA also has the longest solution length making it
more difficult to get perfectly correct. Finally, reCAPTCHA used many different speakers
causing it to be the strongest CAPTCHA of the three we tested. In conclusion, an audio
CAPTCHA that consists of a finite vocabulary and background noise should have multiple
speakers and noise similar to the speakers.

7 Recomm endat ions for creat i ng stronge r audio
CAPTCHAs
Due to our success in solving audio CAPTCHAs, we have decided to start developing new
audio CAPTCHAs that our methods, and machine learning methods in general, will be less
likely to solve. From our experiments, we note that CAPTCHAs containing longer
solutions and multiple speakers tend to be more difficult to solve. Also, because our
methods depend on the amount of training data we have, having a large vocabulary would
make it more difficult to collect enough training data. Already since obtaining these results,
reCAPTCHA.net has updated their audio CAPTCHA to contain more distortions and a

8

larger vocabulary: the digits 0 through 99. In designing a new audio CAPTCHA we are also
concerned with the human pass rate. The current human pass rate for the reCAPTCHA audio
CAPTCHAs is only 70%. To develop an audio CAPTCHA with an improved human pass
rate, we plan to take advantage of the human mind’s ability to understand distorted audio
through context clues. By listening to a phrase instead of to random isolated words, humans
are better able to decipher distorted utterances because they are familiar with the phrase or
can use contextual clues to decipher the distorted audio. Using this idea, the audio for our
new audio CAPTCHA will be taken from old-time radio programs in which the poor quality
of the audio makes transcription by ASR systems difficult. Users will be presented with an
audio clip consisting of a 4-6 word phrase. Half of the CAPTCHA consists of words, which
validate a user to be human, while the other half of the words need to be transcribed. This is
the same idea behind the visual reCAPTCHA that is currently digitizing text on which OCR
fails. We expect that this new audio CAPTCHA will be more secure than the current version
and easier for humans to pass. Initial experiments using this idea show this to be true [9].

8 Conc lu s ion
We have succeeded in “breaking” three different types of widely used audio CAPTCHAs,
even though these were developed with the purpose of defeating attacks by machine learning
techniques. We believe our results can be improved by selecting optimal segment sizes, but
that is unnecessary given our already high success rate. For our experiments, segment sizes
were not chosen in a special way; occasionally yielding results in which a segment only
contained half of a word, causing our prediction to contain that particular word twice. We
also believe that the AdaBoost results can be improved, particularly for the Digg audio
CAPTCHAs, by ensuring that the number of negative training samples is closer to the
number of positive training samples. We have shown that our approach is successful and can
be used with many different audio CAPTCHAs that contain small finite vocabularies.

Ack n o w led g men t s

This work was partially supported by generous gifts from the Heinz Endowment, by an
equipment grant from Intel Corporation, and by the Army Research Office through grant
number DAAD19-02-1-0389 to CyLab at Carnegie Mellon University. Luis von Ahn was
partially supported by a Microsoft Research New Faculty Fellowship and a MacArthur
Fellowship. Jennifer Tam was partially supported by a Google Anita Borg Scholarship.

Ref eren ces

[1] L. von Ahn, M. Blum, and J. Langford. “Telling Humans and Computers Apart Automatically,”
Communications of the ACM, vol. 47, no. 2, pp. 57-60, Feb. 2004.

[2] G. Mori and J. Malik. “Recognizing Objects in Adversarial Clutter: Breaking a Visual
CAPTCHA,” In Computer Vision and Pattern Recognition CVPR'03, June 2003.

[3] K. Chellapilla, and P. Simard, “Using Machine Learning to Break Visual Human Interaction
Proofs (HIPs),” Advances in Neural Information Processing Systems 17, Neural Info rmation
Processing Systems (NIPS'2004), MIT Press.

[4] H. Hermansky, “Perceptual Linear Predictive (PLP) Analysis of Speech,” J. Acoust. Soc. Am.,
vol. 87, no. 4, pp. 1738-1752, Apr. 1990.

[5] H. Hermansky, N. Morgan, A. Bayya, and P. Kohn. “RASTA-PL P Speech Analysi s
Technique,” In Proc. IEEE Int’l Conf. Acoustics, Speech & Signal Processing, vol. 1, pp. 121-
124, San Francisco, 1992.

[6] R. Santamarta. “Breaking Gmail’s Audio Captcha,” http: //blog.wintercore.com/?p=11, 2008.

[7] D. Ell is. “PL P and RASTA (and MFCC, and inversion) in Matlab using melfcc.m and
invmelfcc.m,” http:/ /www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/, 2006.

[8] C. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001. Software available
at http: //ww w.csie.ntu.edu.tw/~cjlin/ l ibsvm

[9] A. Schlaikjer. “A Dual-Use Speech CAPTCHA: Aiding Visually Impaired Web Users while
Providing Transcriptions of Audio Streams,” Technical Report CMU-LTI-07-014, Carnegie
Mellon Universi ty. November 2007.

