
Amazon Rekognition
Developer Guide

Amazon Rekognition Developer Guide

Amazon Rekognition Developer Guide

Amazon Rekognition: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon Rekognition Developer Guide

Table of Contents
What Is Amazon Rekognition? .. 1

Are You a First-Time Amazon Rekognition User? .. 2
How It Works ... 3

Non-Storage API Operations .. 3
Detecting Labels and Faces ... 5
Comparing Faces .. 11

Storage-Based API Operations .. 12
Managing Face Collections ... 13
Storing Faces ... 13
Searching Faces ... 15

Getting Started ... 18
Step 1: Set Up an Account ... 18

Sign up for AWS ... 18
Create an IAM User .. 19
Next Step ... 19

Step 2: Set Up the AWS CLI .. 19
Next Step ... 20

Step 3: Getting Started Using the Console .. 20
Exercise 1: Detect Objects and Scenes (Console) .. 21
Exercise 2: Analyze Faces (Console) ... 24
Exercise 3: Compare Faces (Console) ... 25

Step 4: Getting Started Using API .. 26
Exercise 1: Detect Labels (API) ... 27
Exercise 2: Detect Faces (API) ... 28
Exercise 3: Compare Faces (API) .. 30

Limits .. 33
Examples ... 34

Example 1: Managing Collections .. 34
Creating, Listing, and Deleting Collections: Using the AWS CLI .. 34
Creating, Listing, and Deleting Face Collections: Using the AWS SDK for Java 36

Example 2: Storing Faces .. 37
Storing Faces: Using the AWS CLI .. 38
Storing Faces: Using the AWS SDK for Java ... 43

Example 3: Searching Faces .. 45
Searching Faces: Using the AWS CLI .. 45
Searching Faces: Using the AWS SDK for Java ... 48

API Reference .. 51
Actions .. 51

CompareFaces ... 52
CreateCollection .. 55
DeleteCollection .. 57
DeleteFaces ... 59
DetectFaces ... 61
DetectLabels .. 65
IndexFaces ... 68
ListCollections ... 72
ListFaces ... 74
SearchFaces .. 76
SearchFacesByImage .. 79

Data Types .. 81
Beard .. 83
BoundingBox .. 84
ComparedFace ... 85
ComparedSourceImageFace ... 86
CompareFacesMatch ... 87

iv

Amazon Rekognition Developer Guide

Emotion ... 88
Eyeglasses ... 89
EyeOpen .. 90
Face .. 91
FaceDetail .. 92
FaceMatch ... 94
FaceRecord .. 95
Gender .. 96
Image .. 97
ImageQuality .. 98
Label ... 99
Landmark ... 100
MouthOpen ... 101
Mustache ... 102
Pose .. 103
S3Object .. 104
Smile ... 105
Sunglasses ... 106

Authentication and Access Control ... 107
Authentication ... 107
Access Control .. 108
Overview of Managing Access ... 109

Amazon Rekognition Resources and Operations .. 109
Understanding Resource Ownership ... 109
Managing Access to Resources ... 110
Specifying Policy Elements: Actions, Effects, and Principals ... 111
Specifying Conditions in a Policy ... 112

Using Identity-Based Policies (IAM Policies) .. 112
Permissions Required to Use the Amazon Rekognition Console .. 113
AWS Managed (Predefined) Policies for Amazon Rekognition ... 113
Customer Managed Policy Examples .. 113

Amazon Rekognition API Permissions Reference ... 115
Document History .. 117
AWS Glossary .. 118

v

Amazon Rekognition Developer Guide

What Is Amazon Rekognition?

Amazon Rekognition is a service that enables you to add image analysis to your applications. With
Rekognition, you can detect objects, scenes, and faces in images. You can also search and compare
faces. The Rekognition API enables you to quickly add sophisticated deep learning-based visual
search and image classification to your applications. Rekognition is built to analyze images at scale
and integrates seamlessly with Amazon S3, AWS Lambda, and other AWS services.

Common use cases for using Amazon Rekognition include the following:

• Searchable image library – Amazon Rekognition makes images searchable so you can discover
objects and scenes that appear within them. You can create an AWS Lambda function that
automatically adds newly detected image labels directly into an Amazon Elasticsearch Service
search index when a new image is uploaded into Amazon S3.

• Face-based user verification – Amazon Rekognition can enable your applications to confirm user
identities by comparing their live image with a reference image.

• Sentiment and demographic analysis – Amazon Rekognition detect emotions such as happy, sad,
or surprise, and demographic information such as age and gender from facial images. Rekognition
can analyze live images, and send the emotion and demographic attributes to Amazon Redshift for
periodic reporting on trends to location such store locations.

• Facial recognition – With Amazon Rekognition, you can search your image collection for similar
faces by storing faces, using the IndexFaces API operation. You can then use the SearchFaces
operation to return high-confidence matches. A face collection is an index of faces that you own and
manage. Identifying people based on their faces requires two major steps in Amazon Rekognition:

1. Index the faces.

2. Search the faces.

Some of the benefits of using Amazon Rekognition include:

• Integrate powerful image recognition into your apps – Amazon Rekognition removes the
complexity of building image recognition capabilities into your applications by making powerful
and accurate image analysis available with a simple API. You don’t need computer vision or deep
learning expertise to take advantage of Rekognition’s reliable image analysis. With Rekognition’s

1

Amazon Rekognition Developer Guide
Are You a First-Time Amazon Rekognition User?

API, you can easily and quickly build image analysis into any web, mobile or connected device
application.

• Deep learning-based image analysis – Rekognition uses deep learning technology to accurately
analyze images, find and compare faces, and detect objects and scenes within your images.

• Scalable image analysis – Amazon Rekognition enables you to analyze millions of images so you
can curate and organize massive amounts of visual data.

• Integrated with other AWS services – Amazon Rekognition is designed to work seamlessly with
other AWS services like Amazon S3 and AWS Lambda. Rekognition’s API can be called directly
from Lambda in response to Amazon S3 events. Since Amazon S3 and Lambda scale automatically
in response to your application’s demand, you can build scalable, affordable, and reliable image
analysis applications. For example, each time a person arrives at your residence, your door camera
can upload a photo of the visitor to Amazon S3, triggering a Lambda function that uses Rekognition
API operations to identify your guest. You can run analysis directly on images stored in Amazon S3
without having to load or move the data. Support for AWS Identity and Access Management (IAM)
makes it easy to securely control access to Rekognition API operations. Using IAM, you can create
and manage AWS users and groups to grant the appropriate access to your developers and end
users.

• Low cost – With Amazon Rekognition, you only pay for the number of images you analyze and the
face metadata that you store. There are no minimum fees or upfront commitments. Get started for
free, and save more as you grow with Rekognition's tiered pricing model.

Are You a First-Time Amazon Rekognition User?
If you are a first-time user of Amazon Rekognition, we recommend that you read the following sections
in order:

1. Amazon Rekognition: How It Works (p. 3) – This section introduces various Amazon
Rekognition components that you work with to create an end-to-end experience.

2. Getting Started with Amazon Rekognition (p. 18) – In this section you set your account and
test the Amazon Rekognition API.

3. Additional Amazon Rekognition Examples (p. 34) – This section provides additional examples
that you can use to explore Amazon Rekognition.

2

Amazon Rekognition Developer Guide
Non-Storage API Operations

Amazon Rekognition: How It Works

The computer vision API operations that Amazon Rekognition provides can be grouped in the following
categories:

• Non-storage API operations – The API operations in this group do not persist any information on
the server. You provide input images, the API performs the analysis, and returns results, but nothing
is saved on the server. The API can be used for operations such as the following:

• Detect labels or faces in an image. A label refers to any of the following: objects (for example,
flower, tree, or table), events (for example, a wedding, graduation, or birthday party), or concepts
(for example, a landscape, evening, and nature). The input image you provide to these API
operations can be in JPEG or PNG image format.

• Compare faces in two images and return faces in the target image that match a face in the source
image.

• Storage-based API operations – Amazon Rekognition provides an API operation that detects
faces in the input image and persists facial feature vectors in a database on the server. Amazon
Rekognition provides additional API operations you can use to search the persisted face vectors for
face matches.

Topics

• Non-Storage API Operations: Detecting Faces and Labels, and Comparing Faces (p. 3)

• Storage-Based API Operations: Storing Faces and Searching Face Matches (p. 12)

Non-Storage API Operations: Detecting Faces
and Labels, and Comparing Faces

Amazon Rekognition provides the following non-storage API operations:

• DetectLabels to detect labels. This includes objects (for example, a flower, tree, or table), events
(for example, a wedding, graduation, or debate), and concepts (for example, a landscape, adventure,
or musical).

• DetectFaces to detect faces.

• CompareFaces to compare faces in images.

3

Amazon Rekognition Developer Guide
Non-Storage API Operations

These are referred to as non-storage API operations because when you make the API call, Amazon
Rekognition does not persist the input image or any image data.

The following example scenarios show where you might integrate non-storage API operations in your
application. These scenarios assume you have a local repository of images.

Example 1: An application that finds images in your local repository that contain
specific labels

First, you detect labels using the Amazon Rekognition DetectLabels operation in each of the images
in your repository and build a client-side index, as shown following:

Label ImageID

tree image-1
flower image-1
mountain image-1
tulip image-2
flower image-2
apple image-3

Then, your application can search this index to find images in your local repository that contain a
specific label. For example, display images that contain a tree.

Each label that Amazon Rekognition detects has a confidence value associated. It indicates the level
of confidence that the input image contains that label. You can use this confidence value to optionally
perform additional client-side filtering on labels depending on your application requirements about the
level of confidence in the detection. For example, if you require extremely precise labels, you might
filter and choose only the labels with higher confidence (such as 95% or higher). If you application
does not require higher confidence value, you might choose to filter labels with lower confidence value
(closer to 50%).

Example 2: An application to display enhanced face images

First, you can detect faces in each of the images in your local repository using the Amazon Rekognition
DetectFaces operation and build a client-side index. For each face, the operation returns metadata
that include a bounding box, facial landmarks (for example, position of mouth and ear), and facial
attributes (for example, gender). You can store this metadata in a client-side local index, as shown
following:

ImageID FaceID FaceMetaData

image-1 face-1 <boundingbox>, etc.
image-1 face-2 <boundingbox>, etc.
image-1 face-3 <boundingbox>, etc.
...

In this index, the primary key is a combination of both the ImageID and FaceID.

Then, you can use the information in the index to enhance the images when your application displays
them from your local repository. For example you might add a bounding box around the face or
highlight facial features.

Related Topics

• Detecting Labels and Faces (p. 5)

4

Amazon Rekognition Developer Guide
Detecting Labels and Faces

• Comparing Faces (p. 11)

Detecting Labels and Faces
Amazon Rekognition provides non-storage API operations for detecting labels and faces in an image.
A label or a tag is an object, scene or concept found in an image based on its contents. For example, a
photo of people on a tropical beach may contain labels such as Person, Water, Sand, Palm Tree, and
Swimwear (objects), Beach (scene) and Outdoors (concept).

These are referred to as the non-storage API operations because when you make the API call,
Amazon Rekognition does not persist the input image or any image data. The API operations do the
necessary analysis and return the results. The sections in this topic describe these operations.

Topics

• Detecting Labels (p. 5)

• Detecting Faces (p. 6)

Detecting Labels

You can use the DetectLabels (p. 65) API operation to detect labels in an image. For each label,
Amazon Rekognition returns a name and a confidence value in the analysis. The following is an
example response of the DetectLabels API call.

{
 "Labels": [
 {
 "Confidence": 98.4629,
 "Name": "beacon"
 },
 {
 "Confidence": 98.4629,
 "Name": "building"
 },
 {
 "Confidence": 98.4629,
 "Name": "lighthouse"
 },
 {
 "Confidence": 87.7924,
 "Name": "rock"
 },
 {
 "Confidence": 68.1049,
 "Name": "sea"
 }
]
}

The response shows that the API detected five labels (that is, beacon, building, lighthouse, rock,
and sea). Each label has an associated level of confidence. For example, the detection algorithm is
98.4629% confident that the image contains a building.

If the input image you provide contains a person, the DetectLabels operation detects labels such as
person, clothing, suit, and selfie, as shown in the following example response:

5

Amazon Rekognition Developer Guide
Detecting Labels and Faces

{
 "Labels": [
 {
 "Confidence": 99.2786,
 "Name": "person"
 },
 {
 "Confidence": 90.6659,
 "Name": "clothing"
 },
 {
 "Confidence": 90.6659,
 "Name": "suit"
 },
 {
 "Confidence": 70.0364,
 "Name": "selfie"
 }
]
}

Note
If you want facial features describing the faces in an image, use the DetectFaces operation
instead.

Detecting Faces
Amazon Rekognition provides the DetectFaces (p. 61) operation that looks for key facial features
such as eyes, nose, and mouth to detect faces in an input image. The response returns the following
information for each detected face:

• Bounding box – Coordinates of the bounding box surrounding the face.

• Confidence – Level of confidence that the bounding box contains a face.

• Facial landmarks – An array of facial landmarks. For each landmark, such as the left eye, right eye,
and mouth, the response provides the x, y coordinates.

• Facial attributes – A set of facial attributes, including gender, or whether the face has a beard.
For each such attribute, the response provides a value. The value can be of different types such as
a Boolean (whether or not person is wearing sunglasses), a string (whether the person is male or
female), etc. In addition, for most attributes the response also provides a confidence in the detected
value for the attribute.

• Quality – Describes the brightness and the sharpness of the face.

• Pose – Describes the rotation of the face inside the image.

• Emotions – A set of emotions with confidence in the analysis.

The following is an example response of a DetectFaces API call.

{
 "FaceDetails": [
 {
 "Confidence": 99.99968719482422,
 "Eyeglasses": {
 "Confidence": 99.94019317626953,
 "Value": false
 },

6

Amazon Rekognition Developer Guide
Detecting Labels and Faces

 "Sunglasses": {
 "Confidence": 99.62261199951172,
 "Value": false
 },
 "Gender": {
 "Confidence": 99.92701721191406,
 "Value": "Male"
 },
 "Pose": {
 "Yaw": 1.8526556491851807,
 "Roll": 3.623055934906006,
 "Pitch": -10.605680465698242
 },
 "Emotions": [
 {
 "Confidence": 99.38518524169922,
 "Type": "HAPPY"
 },
 {
 "Confidence": 1.1799871921539307,
 "Type": "ANGRY"
 },
 {
 "Confidence": 1.0325908660888672,
 "Type": "CONFUSED"
 }
],
 "EyesOpen": {
 "Confidence": 54.15227508544922,
 "Value": false
 },
 "Quality": {
 "Sharpness": 130.0,
 "Brightness": 49.129302978515625
 },
 "BoundingBox": {
 "Width": 0.6154,
 "Top": 0.2442,
 "Left": 0.1765,
 "Height": 0.4692
 },
 "Smile": {
 "Confidence": 99.8236083984375,
 "Value": true
 },
 "MouthOpen": {
 "Confidence": 88.39942169189453,
 "Value": true
 },
 "Landmarks": [
 {
 "Y": 0.41730427742004395,
 "X": 0.36835095286369324,
 "Type": "eyeLeft"
 },
 {
 "Y": 0.4281611740589142,
 "X": 0.5960656404495239,
 "Type": "eyeRight"

7

Amazon Rekognition Developer Guide
Detecting Labels and Faces

 },
 {
 "Y": 0.5349795818328857,
 "X": 0.47817257046699524,
 "Type": "nose"
 },
 {
 "Y": 0.5721957683563232,
 "X": 0.352621465921402,
 "Type": "mouthLeft"
 },
 {
 "Y": 0.5792245864868164,
 "X": 0.5936088562011719,
 "Type": "mouthRight"
 },
 {
 "Y": 0.4163532555103302,
 "X": 0.3697868585586548,
 "Type": "leftPupil"
 },
 {
 "Y": 0.42626339197158813,
 "X": 0.6037314534187317,
 "Type": "rightPupil"
 },
 {
 "Y": 0.38954615592956543,
 "X": 0.27343833446502686,
 "Type": "leftEyeBrowLeft"
 },
 {
 "Y": 0.3775958716869354,
 "X": 0.35098740458488464,
 "Type": "leftEyeBrowRight"
 },
 {
 "Y": 0.39108505845069885,
 "X": 0.433648943901062,
 "Type": "leftEyeBrowUp"
 },
 {
 "Y": 0.3952394127845764,
 "X": 0.5416828989982605,
 "Type": "rightEyeBrowLeft"
 },
 {
 "Y": 0.38667190074920654,
 "X": 0.6171167492866516,
 "Type": "rightEyeBrowRight"
 },
 {
 "Y": 0.40419116616249084,
 "X": 0.6827319264411926,
 "Type": "rightEyeBrowUp"
 },
 {
 "Y": 0.41925403475761414,
 "X": 0.32195475697517395,

8

Amazon Rekognition Developer Guide
Detecting Labels and Faces

 "Type": "leftEyeLeft"
 },
 {
 "Y": 0.4225293695926666,
 "X": 0.41227561235427856,
 "Type": "leftEyeRight"
 },
 {
 "Y": 0.4096950888633728,
 "X": 0.3705553412437439,
 "Type": "leftEyeUp"
 },
 {
 "Y": 0.4213259816169739,
 "X": 0.36738231778144836,
 "Type": "leftEyeDown"
 },
 {
 "Y": 0.4294262230396271,
 "X": 0.5498995184898376,
 "Type": "rightEyeLeft"
 },
 {
 "Y": 0.4327501356601715,
 "X": 0.6390777826309204,
 "Type": "rightEyeRight"
 },
 {
 "Y": 0.42076829075813293,
 "X": 0.5977370738983154,
 "Type": "rightEyeUp"
 },
 {
 "Y": 0.4326271116733551,
 "X": 0.5959710478782654,
 "Type": "rightEyeDown"
 },
 {
 "Y": 0.5411174893379211,
 "X": 0.4253743588924408,
 "Type": "noseLeft"
 },
 {
 "Y": 0.5450678467750549,
 "X": 0.5309309959411621,
 "Type": "noseRight"
 },
 {
 "Y": 0.5795656442642212,
 "X": 0.47389525175094604,
 "Type": "mouthUp"
 },
 {
 "Y": 0.6466911435127258,
 "X": 0.47393468022346497,
 "Type": "mouthDown"
 }
],
 "Mustache": {

9

Amazon Rekognition Developer Guide
Detecting Labels and Faces

 "Confidence": 99.75302124023438,
 "Value": false
 },
 "Beard": {
 "Confidence": 89.82911682128906,
 "Value": false
 }
 }
]
}

Note the following:

• The Pose data describes the rotation of the face detected. You can use the combination of the
BoundingBox and Pose data to draw the bounding box around faces that your application displays.

• The Quality describes the brightness and the sharpness of the face. You might find this useful to
compare faces across images and find the best face.

• The DetectFaces operation first detects orientation of the input image, before detecting facial
features. The OrientationCorrection in the response returns the degrees of rotation detected
(clockwise direction). Your application can use this value to correct the image orientation when
displaying the image.

• The preceding response shows all facial landmarks the service can detect, all facial attributes and
emotions. To get all of these in the response, you must specify the attributes parameter with
value ALL. By default, the DetectFaces API returns only the following five facial landmarks, Pose,
and Quality.

...
 "Landmarks": [
 {
 "Y": 0.41730427742004395,
 "X": 0.36835095286369324,
 "Type": "eyeLeft"
 },
 {
 "Y": 0.4281611740589142,
 "X": 0.5960656404495239,
 "Type": "eyeRight"
 },
 {
 "Y": 0.5349795818328857,
 "X": 0.47817257046699524,
 "Type": "nose"
 },
 {
 "Y": 0.5721957683563232,
 "X": 0.352621465921402,
 "Type": "mouthLeft"
 },
 {
 "Y": 0.5792245864868164,
 "X": 0.5936088562011719,
 "Type": "mouthRight"
 }

10

Amazon Rekognition Developer Guide
Comparing Faces

]
...

• The following illustration shows the relative location of the facial landmarks on the face returned by
the DetectFaces API operation.

Comparing Faces
Amazon Rekognition provides the CompareFaces (p. 52) operation to compare a face in the source
image with each face in the target image.

Note
If the source image contains more than one face, the service detects the largest face and
uses it for comparison.

The API returns an array of face matches as shown in the following example response.

{
 "FaceMatches": [
 {
 "Face": {
 "BoundingBox": {
 "Width": 0.495,
 "Top": 0.2211,
 "Left": 0.3069,

11

Amazon Rekognition Developer Guide
Storage-Based API Operations

 "Height": 0.3333
 },
 "Confidence": 99.99949645996094
 },
 "Similarity": 92.0
 }
],
 "SourceImageFace": {
 "BoundingBox": {
 "Width": 0.6154,
 "Top": 0.2442,
 "Left": 0.1765,
 "Height": 0.4692
 },
 "Confidence": 99.99968719482422
 }
}

In the response, note the following:

• Face match information – The example shows one face match found in the target image. For that
face match, it provides a bounding box and a confidence value (level of confidence that the bounding
box contains a face). The similarity score of 94.0 indicates how similar the faces are.

The similarityThreshold in the request, determines the minimum level of confidence in the
match that you want returned in the response. For more information, see CompareFaces (p. 52).

If multiple face matches are found, the faceMatches (an array) returns all of the face matches.

• Source face information – The response also includes information (the bounding box and the
confidence) about the face from the source that was used for comparison.

Storage-Based API Operations: Storing Faces
and Searching Face Matches

Amazon Rekognition supports the IndexFaces (p. 68) operation, which you can use to detect faces
in an image and persist information about facial features detected in a database on the server. This is
an example of a storage-based API operation because the service persists information on the server.

To store facial information you must first create a face collection in one of AWS Regions in your
account. You specify this face collection when you call the IndexFaces operation. After you create a
face collection and store facial feature information for all faces, you can search the collection for face
matches.

Note
The service does not persist actual image bytes. Instead, the underlying detection algorithm
first detects the faces in the input image, extracts facial features into a feature vector for each
face, and then stores it in the database. Amazon Rekognition uses these feature vectors when
performing face matches.

For example, you might create a face collection to store scanned badge images using the
IndexFaces operation, which extracts faces and stores them as searchable image vectors. When
an employee enters the building, an image of the employee's face is captured and sent to the

12

Amazon Rekognition Developer Guide
Managing Face Collections

SearchFacesByImage operation. If the face match produces a sufficiently high similarity score (say
99%), you can authenticate the employee.

Managing Face Collections
A collection is a container for persisting faces detected by the IndexFaces API. You might choose
to create one container to store all faces or create multiple containers to store faces in groups as you
choose. Consider the following examples:

• You might create a collection to store scanned badge images using the IndexFaces operation,
which extracts faces and stores them as searchable image vectors. When an employee enters the
building, an image of their face is captured and sent to the SearchFacesByImage operation. If the
face match produces a sufficiently high similarity score, the employee is immediately verified.

As a developer of identity verification system, you can use a sufficiently high (99%) similarity score

• You might create multiple collections, one per application user so that their uploaded faces are
grouped independently. In this scenario, when a user performs a search, the search is scoped to the
user's face collection (the search faces operations require a collection ID as input).

You might also choose to create one face collection for each of your application users so that their
uploaded faces are grouped independently. In this scenario, when a user performs a search, the
search is scoped to the user's face collection (the search faces operations require a collection ID as
input).

The face collection is the primary Amazon Rekognition resource, each face collection you create has a
unique Amazon Resource Name (ARN). You create each face collection in a specific AWS Region in
your account.

Amazon Rekognition provides the following operations for you to manage collections:

• CreateCollection (p. 55)

• DeleteCollection (p. 57)

• ListCollections (p. 72)

For information about storing faces, see Storing Faces In a Face Collection: The IndexFaces
Operation (p. 13). For information about searching faces, see Searching Faces In a Face
Collection (p. 15).

Storing Faces In a Face Collection: The IndexFaces
Operation
After you create a face collection, you can store faces in it. Amazon Rekognition provides the
IndexFaces operation that can detect faces in the input image (JPEG or PNG) and adds them
to the specified face collection. For more information about collections, see Managing Face
Collections (p. 13). After you persist faces, you can search the face collection for face matches.

Important
Amazon Rekognition does not save the actual faces detected. Instead, the underlying
detection algorithm first detects the faces in the input image, extracts facial features for each

13

Amazon Rekognition Developer Guide
Storing Faces

face, and then stores the feature information in a database. Then, Amazon Rekognition uses
this information in subsequent operations such as searching a face collection for matching
faces.

For each face, the IndexFaces operation persists the following information:

• Multidimensional facial features – IndexFaces uses facial analysis to extract multidimensional
information about the facial features and stores the information in the face collection. You cannot
access this information directly. However, Amazon Rekognition uses this information when searching
a face collection for face matches.

• Metadata – The metadata for each face includes a bounding box, confidence level (that the
bounding box contains a face), IDs assigned by Amazon Rekognition (face ID and image ID), and an
external image ID (if you provided it) in the request. This information is returned to you in response to
the IndexFaces API call. For an example, see the face element in the following example response.

The service returns this metadata in response to the following API calls:

• ListFaces

• Search faces operations – The responses for SearchFaces and SearchFacesByImage return
the confidence in the match for each matching face, along with this metadata of the matched face.

In addition to the preceding information that the API persists in the face collection, the API also returns
face details that are not persisted in the collection (see the faceDetail element in the following
example response).

Note
This is the same information that DetectFaces returns, so you don't need to call both
DetectFaces and IndexFaces for the same image.

{
 "FaceRecords": [
 {
 "FaceDetail": {
 "BoundingBox": {
 "Width": 0.6154,
 "Top": 0.2442,
 "Left": 0.1765,
 "Height": 0.4692
 },
 "Landmarks": [
 {
 "Y": 0.41730427742004395,
 "X": 0.36835095286369324,
 "Type": "eyeLeft"
 },
 {
 "Y": 0.4281611740589142,
 "X": 0.5960656404495239,
 "Type": "eyeRight"
 },
 {
 "Y": 0.5349795818328857,
 "X": 0.47817257046699524,
 "Type": "nose"

14

Amazon Rekognition Developer Guide
Searching Faces

 },
 {
 "Y": 0.5721957683563232,
 "X": 0.352621465921402,
 "Type": "mouthLeft"
 },
 {
 "Y": 0.5792245864868164,
 "X": 0.5936088562011719,
 "Type": "mouthRight"
 }
],
 "Pose": {
 "Yaw": 1.8526556491851807,
 "Roll": 3.623055934906006,
 "Pitch": -10.605680465698242
 },
 "Quality": {
 "Sharpness": 130.0,
 "Brightness": 49.129302978515625
 },
 "Confidence": 99.99968719482422
 },
 "Face": {
 "BoundingBox": {
 "Width": 0.6154,
 "Top": 0.2442,
 "Left": 0.1765,
 "Height": 0.4692
 },
 "FaceId": "84de1c86-5059-53f2-a432-34ebb704615d",
 "Confidence": 99.9997,
 "ImageId": "d38ebf91-1a11-58fc-ba42-f978b3f32f60"
 }
 }
],
 "OrientationCorrection": "ROTATE_0"
}

Searching Faces In a Face Collection
After you create a face collection and store faces, you can search a face collection for face matches.
For more information about storing faces in a face collection, see Managing Face Collections (p. 13)
and Storing Faces In a Face Collection: The IndexFaces Operation (p. 13). With Amazon
Rekognition, you can do the following:

• Search a face collection given an image (SearchFacesByImage (p. 79)) – For a given input
image (JPEG or PNG), the operation first detects the face in the input image, and then searches the
specified face collection for similar faces.

Note
If the service detects multiple faces in the input image, it uses the largest face detected for
searching the face collection.

The operation returns an array of face matches found, and information about the input face (such
as the bounding box, along with the confidence value that indicates the level of confidence that the
bounding box contains a face).

15

Amazon Rekognition Developer Guide
Searching Faces

{
 "SearchedFaceBoundingBox": {
 "Width": 0.6154,
 "Top": 0.2442,
 "Left": 0.1765,
 "Height": 0.4692
 },
 "SearchedFaceConfidence": 99.9997,
 "FaceMatches": [list of face matches found]
}

• Search a face collection given a face ID (SearchFaces (p. 76)) – Given a face ID (each face
stored in the face collection has a face ID), SearchFaces searches the specified face collection for
the similar faces. The response doesn't include the face you are searching for, it includes only similar
faces.

The operation returns an array of face matches found and the face ID you provided as input.

{
 "SearchedFaceId": "7ecf8c19-5274-5917-9c91-1db9ae0449e2",
 "FaceMatches": [list of face matches found]
}

For example, the SearchFacesByImage API performs a search using the largest face in the input
image. If you want to search for other faces in the input image, you might first index all faces using
the IndexFaces API. You get a face ID in response. You can then use SearchFaces API to search
for faces using the face IDs.

By default, both of these API operations return faces where the algorithm detects similarity of greater
than 80%. The similarity indicates how closely the face matches with the input face. Optionally, you
can use FaceMatchThreshold to specify a different value. For each face match found, the response
includes similarity and face metadata as shown in the following example response:

{
 ...
 "FaceMatches": [
 {
 "Similarity": 100.0,
 "Face": {
 "BoundingBox": {
 "Width": 0.6154,
 "Top": 0.2442,
 "Left": 0.1765,
 "Height": 0.4692
 },
 "FaceId": "84de1c86-5059-53f2-a432-34ebb704615d",
 "Confidence": 99.9997,
 "ImageId": "d38ebf91-1a11-58fc-ba42-f978b3f32f60"
 }
 },
 {
 "Similarity": 84.6859,
 "Face": {

16

Amazon Rekognition Developer Guide
Searching Faces

 "BoundingBox": {
 "Width": 0.2044,
 "Top": 0.2254,
 "Left": 0.4622,
 "Height": 0.3119
 },
 "FaceId": "6fc892c7-5739-50da-a0d7-80cc92c0ba54",
 "Confidence": 99.9981,
 "ImageId": "5d913eaf-cf7f-5e09-8c8f-cb1bdea8e6aa"
 }
 }
]
}

Note that the CompareFaces operation and the two search faces API operations differ as follows:

• The CompareFaces operation compares a face in a source image with faces in the target image.
The scope of this comparison is limited to the faces detected in the target image. For more
information, see Comparing Faces (p. 11).

• SearchFaces and SearchFacesByImage compare a face (identified either by a FaceId or an
input image) with all faces in a given face collection. Therefore, the scope of this search is much
larger. Also, because the facial feature information is persisted for faces already stored in the face
collection, you can search for matching faces multiple times.

17

Amazon Rekognition Developer Guide
Step 1: Set Up an Account

Getting Started with Amazon
Rekognition

This section provides topics to get you started using Amazon Rekognition. If you are new to Amazon
Rekognition, we recommend that you first review the concepts and terminology presented in Amazon
Rekognition: How It Works (p. 3).

Topics

• Step 1: Set Up an AWS Account and Create an Administrator User (p. 18)

• Step 2: Set Up the AWS Command Line Interface (AWS CLI) (p. 19)

• Getting Started Using the Amazon Rekognition Console (p. 20)

• Step 4: Getting Started Using API (p. 26)

Step 1: Set Up an AWS Account and Create an
Administrator User

Before you use Amazon Rekognition for the first time, complete the following tasks:

1. Sign up for AWS (p. 18)

2. Create an IAM User (p. 19)

Sign up for AWS
When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all services in AWS, including Amazon Rekognition. You are charged only for the services that you
use.

With Amazon Rekognition, you pay only for the resources you use. If you are a new AWS customer,
you can get started with Amazon Rekognition for free. For more information, see AWS Free Usage
Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account, perform
the steps in the following procedure to create one.

To create an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

18

https://aws.amazon.com//free/
https://aws.amazon.com//free/
https://aws.amazon.com/

Amazon Rekognition Developer Guide
Create an IAM User

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Note your AWS account ID because you'll need it for the next task.

Create an IAM User
Services in AWS, such as Amazon Rekognition, require that you provide credentials when you access
them so that the service can determine whether you have permissions to access the resources
owned by that service. The console requires your password. You can create access keys for your
AWS account to access the AWS CLI or API. However, we don't recommend that you access AWS
using the credentials for your AWS account. Instead, we recommend that you use AWS Identity and
Access Management (IAM). Create an IAM user, add the user to an IAM group with administrative
permissions, and then grant administrative permissions to the IAM user that you created. You can then
access AWS using a special URL and that IAM user's credentials.

If you signed up for AWS, but you haven't created an IAM user for yourself, you can create one using
the IAM console.

The Getting Started exercises in this guide assume that you have a user (adminuser) with
administrator privileges. Follow the procedure to create adminuser in your account.

To create an administrator user and sign in to the console

1. Create an administrator user called adminuser in your AWS account. For instructions, see
Creating Your First IAM User and Administrators Group in the IAM User Guide.

2. A user can sign in to the AWS Management Console using a special URL. For more information,
How Users Sign In to Your Account in the IAM User Guide.

For more information about IAM, see the following:

• Identity and Access Management (IAM)

• Getting Started

• IAM User Guide

Next Step
Step 2: Set Up the AWS Command Line Interface (AWS CLI) (p. 19)

Step 2: Set Up the AWS Command Line Interface
(AWS CLI)

Follow the steps to download and configure the AWS Command Line Interface (AWS CLI).

Important
You don't need the AWS CLI to perform the steps in the Getting Started exercise. However,
some of the exercises in this guide use the AWS CLI. You can skip this step and go to Step 4:
Getting Started Using API (p. 26), and then set up the AWS CLI later when you need it.

19

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Rekognition Developer Guide
Next Step

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Getting Set Up with the AWS Command Line Interface

• Configuring the AWS Command Line Interface

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see Named
Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

3. Verify the setup by entering the following help command at the command prompt:

aws help

Next Step
Step 4: Getting Started Using API (p. 26)

Getting Started Using the Amazon Rekognition
Console

This section shows you how to use a subset of Amazon Rekognition's capabilities such as object and
scene detection, facial analysis, and face comparison in a set of images. For more information, see
Amazon Rekognition: How It Works (p. 3). You can also use the Amazon Rekognition API or AWS CLI
to detect objects and scenes, faces, and compare and search faces. For more information, see Step 4:
Getting Started Using API (p. 26).

Topics

• Exercise 1: Detect Objects and Scenes in an Image (Console) (p. 21)

• Exercise 2: Analyze Faces in an Image (Console) (p. 24)

• Exercise 3: Compare Faces in Images (Console) (p. 25)

20

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Rekognition Developer Guide
Exercise 1: Detect Objects and Scenes (Console)

Exercise 1: Detect Objects and Scenes in an Image
(Console)
This section shows how, at a very high level, Amazon Rekognition's objects and scenes detection
capability works. When you specify an image as input, the service detects the objects and scenes in
the image and returns them along with a percent confidence score for each object and scene.

For example, Amazon Rekognition detects the following objects and scenes in the sample image:
skateboard, sport, person, auto, car and vehicle. To see all the confidence scores shown in this
response, choose Show more in the Labels | Confidence pane.

Amazon Rekognition also returns a confidence score for each object detected in the sample image, as
shown in the following sample response.

You can also look at the request to the API and the response from the API as a reference.

Request

{
 "method": "POST",
 "path": "/",
 "region": "us-east-1",
 "headers": {
 "Content-Type": "application/x-amz-json-1.1",
 "X-Amz-Date": "Fri, 18 Nov 2016 21:14:23 GMT",

21

Amazon Rekognition Developer Guide
Exercise 1: Detect Objects and Scenes (Console)

 "X-Amz-Target":
 "com.amazonaws.rekognitionservice.RekognitionService.DetectLabels"
 },
 "contentString": {
 "Attributes": [
 "ALL"
],
 "Image": {
 "S3Object": {
 "Bucket": "console-assets",
 "Name": "images/skateboard.jpg"
 }
 }
 }
}

Response

{
 "Labels": [
 {
 "Confidence": 99.25342,
 "Name": "skateboard"
 },
 {
 "Confidence": 99.25342,
 "Name": "sport"
 },
 {
 "Confidence": 99.24723,
 "Name": "person"
 },
 {
 "Confidence": 91.53313,
 "Name": "auto"
 },
 {
 "Confidence": 91.53313,
 "Name": "car"
 },
 {
 "Confidence": 91.53313,
 "Name": "vehicle"
 },
 {
 "Confidence": 76.85095,
 "Name": "intersection"
 },
 {
 "Confidence": 76.85095,
 "Name": "road"
 },
 {
 "Confidence": 76.21494,
 "Name": "path"
 },
 {
 "Confidence": 66.715416,

22

Amazon Rekognition Developer Guide
Exercise 1: Detect Objects and Scenes (Console)

 "Name": "building"
 },
 {
 "Confidence": 62.04722,
 "Name": "sports_car"
 },
 {
 "Confidence": 61.988914,
 "Name": "city"
 },
 {
 "Confidence": 61.988914,
 "Name": "urban"
 },
 {
 "Confidence": 60.978107,
 "Name": "town"
 },
 {
 "Confidence": 57.33275,
 "Name": "district"
 },
 {
 "Confidence": 56.48067,
 "Name": "street"
 },
 {
 "Confidence": 54.235493,
 "Name": "housing"
 },
 {
 "Confidence": 51.260765,
 "Name": "high_rise"
 },
 {
 "Confidence": 50.595474,
 "Name": "freeway"
 }
]
}

For more information, see Amazon Rekognition: How It Works (p. 3).

Detect Objects and Scenes in an Image You Provide

You can upload an image that you own or provide the URL to an image as input in the Amazon
Rekognition console. Amazon Rekognition returns the object and scenes, confidence scores for each
object, and scene it detects in the image you provide.

Note
The image must be less than 5MB in size and must be of JPEG or PNG format.

To detect objects and scenes in an image you provide

1. Open the Amazon Rekognition console.

2. Choose Object and scene detection.

3. Do one of the following:

23

Amazon Rekognition Developer Guide
Exercise 2: Analyze Faces (Console)

• Upload an image – Choose Upload, go to the location where you stored your image, and then
select the image.

• Use a URL – Type the URL in the text box, and then choose Go.

4. View the confidence score of each label detected in the Labels | Confidence pane.

Exercise 2: Analyze Faces in an Image (Console)
This section shows you how to use the Amazon Rekognition console to detect faces and analyze facial
attributes in an image. When you provide an image that contains a face as input, the service detects
the face in the image, analyzes the facial attributes of the face, and then returns a percent confidence
score for the face and the facial attributes detected in the image. For more information, see Amazon
Rekognition: How It Works (p. 3).

For example, if you choose the following sample image as input, Amazon Rekognition detects it as a
face and returns confidence scores for the face and the facial attributes detected.

The following shows the sample response.

If there are multiple faces in the input image, Rekognition detects up to 15 faces in the image. Each
face detected is marked with a square. When you click the area marked with a square on a face,
Rekognition displays the confidence score of that face and its attributes detected in the Faces |
Confidence pane.

Analyze Faces in an Image You Provide

You can upload your own image or provide the URL to the image in the Amazon Rekognition console.

Note
The image must be less than 5MB in size and must be of JPEG or PNG format.

24

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (Console)

To analyze a face in an image you provide

1. Open to the Amazon Rekognition console.

2. Choose Facial analysis.

3. Do one of the following:

• Upload an image – Choose Upload, go to the location where you stored your image, and then
select the image.

• Use a URL – Type the URL in the text box, and then choose Go.

4. View the confidence score of one the faces detected and its facial attributes in the Faces |
Confidence pane.

5. If there are multiple faces in the image, choose one of the other faces to see its attributes and
scores.

Exercise 3: Compare Faces in Images (Console)
This section shows you how to use the Amazon Rekognition console to compare faces within a set of
images with multiple faces in them. When you specify a Reference face (source) and a Comparison
faces (target) image, Rekognition compares the largest face in the source image (that is, the reference
face) with up to 15 faces detected in the target image (that is, the comparison faces), and then finds
how closely the face in the source matches the faces in the target image. The similarity score for each
comparison is displayed in the Results pane.

If the target image contains multiple faces, Rekognition matches the face in the source image with up
to 15 faces detected in target image, and then assigns a similarity score to each match.

If the source image contains multiple faces, the service detects the largest face in the source image
and uses it to compare with each face detected in the target image.

For more information, see Comparing Faces (p. 11).

For example, with the sample image shown on the left as a source image and the sample image on the
right as a target image, Rekognition compares the face in the source image, matches it with each face
in the target image, displays a similarity score for each face it detects.

The following shows the faces detected in the target image and the similarity score for each face.

25

Amazon Rekognition Developer Guide
Step 4: Getting Started Using API

Compare Faces in an Image You Provide
You can upload your own source and target images for Rekognition to compare the faces in the
images or you can specify a URL for the location of the images.

Note
The image must be less than 5MB in size and must be of JPEG or PNG format.

To compare faces in your images

1. Open to the Amazon Rekognition console.

2. Choose Face comparison.

3. For your source image, do one of the following:

• Upload an image – Choose Upload on the left, go to the location where you stored your source
image, and then select the image.

• Use a URL – Type the URL of your source image in the text box, and then choose Go.

4. For your target image, do one of the following:

• Upload an image – Choose Upload on the right, go to the location where you stored your
source image, and then select the image.

• Use a URL – Type the URL of your source image in the text box, and then choose Go.

5. Rekognition matches the largest face in your source image with up to 15 faces in the target image
and then displays the similarity score for each pair in the Results pane.

Step 4: Getting Started Using API
In this section you use the Amazon Rekognition API operations to detect labels and faces in an image.
You also explore the compare faces API. These are the non-storage API operations where Amazon
Rekognition doesn't persist the input images or any image data. The service only detects labels and
faces and returns information in response. For more information, see Amazon Rekognition: How It
Works (p. 3).

You need sample images (JPEG or PNG) that you can provide as input to these operations.

Note
These examples use the us-east-1 endpoint.

26

Amazon Rekognition Developer Guide
Exercise 1: Detect Labels (API)

Topics

• Exercise 1: Detect Labels in an Image (API) (p. 27)

• Exercise 2: Detect Faces (API) (p. 28)

• Exercise 3: Compare Faces (API) (p. 30)

Exercise 1: Detect Labels in an Image (API)
In this exercise you use the DetectLabels (p. 65) API to detect objects, concepts, and scenes in
an image (JPEG or PNG) that you provide as input. You can provide the input image as a image byte
array (Base64-encoded image bytes) or specify an S3 object. In this exercise you upload a JPEG
image to your Amazon S3 bucket and specify the object key name.

You can test the operation using the AWS CLI or programmatically using the AWS SDK for Java.

1. Upload an image (containing one or more objects, such as trees, houses, and boat etc.) to your S3
bucket. The exercise assumes a .jpg image. If you use .png, update the code accordingly.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

2. Use either the Java example code or the AWS CLI to test the DetectLabels operation.

• Using the AWS CLI

Note
The command specifies the adminuser profile that you set up in Step 2: Set Up the
AWS Command Line Interface (AWS CLI) (p. 19). Then, the AWS CLI command
uses the credentials associated with the adminuser profile to sign and authenticate the
request. If you don't provide this profile, the default profile is assumed.

aws rekognition detect-labels \
--image '{"S3Object":{"Bucket":"bucketname","Name":"object.jpg"}}' \
--region us-east-1 \
--profile adminuser

• Using the AWS SDK for Java.

import com.amazonaws.services.rekognition.AmazonRekognitionClient;
import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import
 com.amazonaws.services.rekognition.model.AmazonRekognitionException;
import com.amazonaws.services.rekognition.model.DetectLabelsRequest;
import com.amazonaws.services.rekognition.model.DetectLabelsResult;
import com.amazonaws.services.rekognition.model.Image;
import com.amazonaws.services.rekognition.model.S3Object;
import com.fasterxml.jackson.databind.ObjectMapper;

public class DetectLabelsExample {
 public static void main(String[] args) throws Exception {

 AWSCredentials credentials;
 try {

27

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html

Amazon Rekognition Developer Guide
Exercise 2: Detect Faces (API)

 credentials = new
 ProfileCredentialsProvider("adminuser").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load the credentials
 from the credential profiles file. "
 + "Please make sure that your credentials file is at
 the correct "
 + "location (/Users/<userid>/.aws/credentials), and
 is in a valid format.", e);
 }

 DetectLabelsRequest request = new DetectLabelsRequest()
 .withImage(new Image()
 .withS3Object(new S3Object()
 .withName("s3objectkey")
 .withBucket("bucket-name")))
 .withMaxLabels(10)
 .withMinConfidence(77F);

 AmazonRekognitionClient rekognitionClient = new
 AmazonRekognitionClient(credentials)
 .withEndpoint("service endpoint");
 rekognitionClient.setSignerRegionOverride("us-east-1");
 try {
 DetectLabelsResult result =
 rekognitionClient.detectLabels(request);
 ObjectMapper objectMapper = new ObjectMapper();
 System.out.println("Result = " +
 objectMapper.writeValueAsString(result));
 } catch (AmazonRekognitionException e) {
 e.printStackTrace();
 }

 }
}

You should get up to 10 labels with at least 75F confidence.

Next Exercise

Exercise 2: Detect Faces (API) (p. 28)

Exercise 2: Detect Faces (API)
In this step, you use the DetectFaces (p. 61) operation to detect faces in an image (JPEG or PNG)
that you provide as input. You can provide the input image as an image byte array (Base64-encoded
image bytes) or specify an S3 object. In this exercise, you upload an image (JPEG or PNG) to your S3
bucket and specify the object key name.

You can test the operation using the AWS CLI or programmatically using the AWS SDK for Java.

For more information, see Detecting Faces (p. 6).

1. Upload an image (containing one or more faces) to your S3 bucket.

28

Amazon Rekognition Developer Guide
Exercise 2: Detect Faces (API)

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

2. Either use the Java example code or the AWS CLI to test the DetectFaces operation.

• Using he AWS CLI

aws rekognition detect-faces \
--image '{"S3Object":{"Bucket":"Bucketname","Name":"s3ObjectKey"}}' \
--attributes "ALL" \
--region us-east-1 \
--profile adminuser

• Using the AWS SDK for Java

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.rekognition.AmazonRekognitionClient;
import
 com.amazonaws.services.rekognition.model.AmazonRekognitionException;
import com.amazonaws.services.rekognition.model.Attribute;
import com.amazonaws.services.rekognition.model.DetectFacesRequest;
import com.amazonaws.services.rekognition.model.DetectFacesResult;
import com.amazonaws.services.rekognition.model.Image;
import com.amazonaws.services.rekognition.model.S3Object;
import com.fasterxml.jackson.databind.ObjectMapper;

public class DetectFacesExample {
 public static void main(String[] args) throws Exception {

 AWSCredentials credentials;
 try {
 credentials = new
 ProfileCredentialsProvider("adminuser").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load the credentials
 from the credential profiles file. "
 + "Please make sure that your credentials file is at
 the correct "
 + "location (/Users/<userid>/.aws/credentials), and
 is in a valid format.", e);
 }

 DetectFacesRequest request = new DetectFacesRequest()
 .withImage(new Image()
 .withS3Object(new S3Object()
 .withName("s3ObjectKey")
 .withBucket("bucketname")))
 .withAttributes(Attribute.ALL);

 AmazonRekognitionClient rekognitionClient = new
 AmazonRekognitionClient(credentials)
 .withEndpoint("service endpoint");
 rekognitionClient.setSignerRegionOverride("us-east-1");
 try {
 DetectFacesResult result =
 rekognitionClient.detectFaces(request);

29

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (API)

 ObjectMapper objectMapper = new ObjectMapper();
 System.out.println("Result = " +
 objectMapper.writeValueAsString(result));
 } catch (AmazonRekognitionException e) {
 e.printStackTrace();
 }
 }
}

Next Exercise

Exercise 3: Compare Faces (API) (p. 30)

Exercise 3: Compare Faces (API)
In this step, you use the CompareFaces (p. 52) operation to compare a face in the source image
with each face detected in the target image.

If you provide a source image containing multiple faces, the service detects the largest face and uses it
to compare with each face detected in the target image.

In the response you get an array of face matches. For each matching face in the target image, the
response provides information including a bounding box of the matching face and similarity score (how
similar the face is to the source face).

You can provide the source and target images as a image byte array (Base64-encoded image bytes)
or specify S3 objects. In this exercise, you upload two JPEG images to your Amazon S3 bucket and
specify the object key name.

You can test the operation using the AWS CLI or programmatically using the AWS SDK for Java.

1. Upload two images (source.jpg and target.jpg) containing faces to your S3 bucket. The exercise
assume a .jpg image. If you use .png, update the AWS CLI command accordingly.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

2. Either use the Java example code or the AWS CLI to test the CompareFaces operation.

• Using AWS CLI

aws rekognition compare-faces \
--source-image '{"S3Object":{"Bucket":"bucket-
name","Name":"source.jpg"}}' \
--target-image '{"S3Object":{"Bucket":"bucket-
name","Name":"target.jpg"}}' \
--region us-east-1 \
--profile adminuser

• Using the AWS SDK for Java

You need to update the code by providing your bucket name.

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.rekognition.AmazonRekognition;

30

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (API)

import com.amazonaws.services.rekognition.AmazonRekognitionClient;
import
 com.amazonaws.services.rekognition.model.AmazonRekognitionException;
import com.amazonaws.services.rekognition.model.CompareFacesRequest;
import com.amazonaws.services.rekognition.model.CompareFacesResult;
import com.amazonaws.services.rekognition.model.Image;
import com.amazonaws.services.rekognition.model.S3Object;
import com.fasterxml.jackson.databind.ObjectMapper;

public class CompareFacesExample {
 public static final String S3_BUCKET = "bucket-name";
 public static void main(String[] args) throws Exception {

 AWSCredentials credentials;
 try {
 credentials = new
 ProfileCredentialsProvider("adminuser").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load the credentials
 from the credential profiles file. "
 + "Please make sure that your credentials file is at
 the correct "
 + "location (/Users/<userid>/.aws/credentials), and
 is in valid format.", e);
 }

 AmazonRekognitionClient rekognitionClient = new
 AmazonRekognitionClient(credentials)
 .withEndpoint("service-endpoint");
 rekognitionClient.setSignerRegionOverride("us-east-1");
 ObjectMapper objectMapper = new ObjectMapper();

 Image source = getImageUtil(S3_BUCKET, "source-Image.jpg");
 Image target = getImageUtil(S3_BUCKET, "target-Image.jpg");
 Float similarityThreshold = 70F;
 CompareFacesResult compareFacesResult = callCompareFaces(source,
 target, similarityThreshold, rekognitionClient);

 System.out.println(objectMapper.writeValueAsString(compareFacesResult));
 }

 private static CompareFacesResult callCompareFaces(Image
 sourceImage, Image targetImage,
 Float
 similarityThreshold, AmazonRekognition amazonRekognition) {
 CompareFacesRequest compareFacesRequest = new
 CompareFacesRequest()
 .withSourceImage(sourceImage)
 .withTargetImage(targetImage)
 .withSimilarityThreshold(similarityThreshold);
 return amazonRekognition.compareFaces(compareFacesRequest);
 }

 private static Image getImageUtil(String bucket, String key) {
 return new Image()
 .withS3Object(new S3Object()
 .withBucket(bucket)
 .withName(key));

31

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (API)

 }
}

What's Next?

You can explore additional Additional Amazon Rekognition Examples (p. 34) of how to use other
Amazon Rekognition API operations (storage-based API operations) that describe how to create a face
collection, add faces to the collection, and search the collection for face matches.

32

Amazon Rekognition Developer Guide

Limits in Amazon Rekognition

The following is a list of limits in Amazon Rekognition:

• Maximum image size stored as an Amazon S3 object is limited to 15 MB. The minimum pixel
resolution for height and width is 80 pixels.

• Maximum images size as raw bytes passed in as parameter to an API is 5 MB.

• Amazon Rekognition supports the PNG and JPEG image formats. That is, the images you provide
as input to various API operations, such as DetectLabels and IndexFaces must be in one of the
supported formats.

• Maximum number of faces you can store in a single face collection is 1 million.

• The maximum matching faces the search API returns is 4096.

33

Amazon Rekognition Developer Guide
Example 1: Managing Collections

Additional Amazon Rekognition
Examples

This section provides additional examples of working with Amazon Rekognition. Examples using AWS
SDK for Java and the AWS CLI are provided. We recommend that you first review the following topics:

• Amazon Rekognition: How It Works (p. 3)

• Getting Started with Amazon Rekognition (p. 18)

Topics

• Example 1: Managing Collections (p. 34)

• Example 2: Storing Faces (p. 37)

• Example 3: Searching Faces (p. 45)

Example 1: Managing Collections
This section provides working examples of creating, listing, and deleting collections. Examples using
both the AWS CLI and the AWS SDK for Java are provided.

For information about managing collections and related API operations, see Storage-Based API
Operations: Storing Faces and Searching Face Matches (p. 12).

Topics

• Creating, Listing, and Deleting Collections: Using the AWS CLI (p. 34)

• Creating, Listing, and Deleting Face Collections: Using the AWS SDK for Java (p. 36)

Creating, Listing, and Deleting Collections: Using
the AWS CLI
The following are example AWS CLI commands that you can use to create and delete collections. An
example AWS CLI command that lists collections is also provided.

34

Amazon Rekognition Developer Guide
Creating, Listing, and Deleting

Collections: Using the AWS CLI

• Create a face collection – The following create-collection AWS CLI command creates a face
collection (examplecollection) in the us-east-1 region.

Note
The command specifies the adminuser profile that you set up in Step 2: Set Up the AWS
Command Line Interface (AWS CLI) (p. 19). The AWS CLI command uses the credentials
associated with the adminuser profile to sign and authenticate the request. If you don't
provide this profile, the default profile is assumed.

aws rekognition create-collection \
--collection-id "examplecollection" \
--region us-east-1 \
--profile adminuser

Amazon Rekognition creates the collection in the specified region, and returns the Amazon
Resource Name (ARN) of the newly created collection. An example response is shown following:

{
 "CollectionArn": "aws:rekognition:us-east-1:acct-id:collection/
examplecollection",
 "StatusCode": 200
}

• List Collections – The following list-collections AWS CLI command returns a list of
collections in the us-east-1 region.

aws rekognition list-collections \
--region us-east-1 \
--profile adminuser

The following is an example response:

{
 "CollectionIds": [
 "examplecollection1",
 "examplecollection2",
 "examplecollection3"
]
}

• Delete a face collection – The following delete-collection AWS CLI command deletes a face
collection.

aws rekognition delete-collection \
--collection-id "examplecollection" \
--region us-east-1 \
--profile adminuser

35

Amazon Rekognition Developer Guide
Creating, Listing, and Deleting Face

Collections: Using the AWS SDK for Java

Creating, Listing, and Deleting Face Collections:
Using the AWS SDK for Java
The following Java example code uses the AWS SDK for Java to create and delete a collection
(examplecollection) in the us-east-1 region. The code example also lists collections in the
region.

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.rekognition.AmazonRekognition;
import com.amazonaws.services.rekognition.AmazonRekognitionClient;
import com.amazonaws.services.rekognition.model.CreateCollectionRequest;
import com.amazonaws.services.rekognition.model.CreateCollectionResult;
import com.amazonaws.services.rekognition.model.DeleteCollectionRequest;
import com.amazonaws.services.rekognition.model.DeleteCollectionResult;
import com.amazonaws.services.rekognition.model.ListCollectionsRequest;
import com.amazonaws.services.rekognition.model.ListCollectionsResult;
import com.fasterxml.jackson.databind.ObjectMapper;

public class CollectionExample {
 public static void main(String[] args) throws Exception {
 AWSCredentials credentials;
 try {
 credentials = new
 ProfileCredentialsProvider("adminuser").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load the credentials from
 the credential profiles file. "
 + "Please make sure that your credentials file is at the
 correct "
 + "location (/Users/<userid>/.aws/credentials), and is in
 valid format.", e);
 }

 AmazonRekognitionClient amazonRekognition = new
 AmazonRekognitionClient(credentials)
 .withEndpoint("service-endpoint");
 amazonRekognition.setSignerRegionOverride("us-east-1");
 ObjectMapper objectMapper = new ObjectMapper();

 // 1. CreateCollection 1
 String collectionId = "exampleCollection";
 CreateCollectionResult createCollectionResult =
 callCreateCollection(collectionId, amazonRekognition);

 System.out.println(objectMapper.writeValueAsString(createCollectionResult));

 // 2. CreateCollection 2
 callCreateCollection("exampleCollection2", amazonRekognition);

 // 3. Page through collections with ListCollections
 int limit = 1;
 ListCollectionsResult listCollectionsResult = null;

36

Amazon Rekognition Developer Guide
Example 2: Storing Faces

 String paginationToken = null;
 do {
 if (listCollectionsResult != null) {
 paginationToken = listCollectionsResult.getNextToken();
 }
 listCollectionsResult = callListCollections(paginationToken,
 limit, amazonRekognition);

 System.out.println(objectMapper.writeValueAsString(listCollectionsResult));
 } while (listCollectionsResult != null &&
 listCollectionsResult.getNextToken() != null);

 // 4. Clean up collection 1 with DeleteCollection
 DeleteCollectionResult deleteCollectionResult =
 callDeleteCollection(collectionId, amazonRekognition);

 System.out.println(objectMapper.writeValueAsString(deleteCollectionResult));
 }

 private static CreateCollectionResult callCreateCollection(String
 collectionId, AmazonRekognition amazonRekognition) {
 CreateCollectionRequest request = new CreateCollectionRequest()
 .withCollectionId(collectionId);
 return amazonRekognition.createCollection(request);
 }

 private static DeleteCollectionResult callDeleteCollection(String
 collectionId, AmazonRekognition amazonRekognition) {
 DeleteCollectionRequest request = new DeleteCollectionRequest()
 .withCollectionId(collectionId);
 return amazonRekognition.deleteCollection(request);
 }

 private static ListCollectionsResult callListCollections(String
 paginationToken, int limit, AmazonRekognition amazonRekognition) {
 ListCollectionsRequest listCollectionsRequest = new
 ListCollectionsRequest()
 .withMaxResults(limit)
 .withNextToken(paginationToken);
 return amazonRekognition.listCollections(listCollectionsRequest);
 }
}

Example 2: Storing Faces
This section provides working examples of storing faces in a collection. Examples using both the AWS
CLI and the AWS SDK for Java are provided.

For information about the collections and storing faces API operations, see Storage-Based API
Operations: Storing Faces and Searching Face Matches (p. 12).

Topics

• Storing Faces: Using the AWS CLI (p. 38)

• Storing Faces: Using the AWS SDK for Java (p. 43)

37

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS CLI

Storing Faces: Using the AWS CLI
The following index-faces AWS CLI command detects faces in the input images, and for each face
extracts facial features and store the feature information in a database. In addition, the command
stores metadata for each face detected in the specified face collection.

aws rekognition index-faces \
--image '{"S3Object":{"Bucket":"bucket","Name":"S3ObjectKey"}}' \
--collection-id "collection-id" \
--region us-east-1 \
--profile adminuser

For, more information, see Storing Faces In a Face Collection: The IndexFaces Operation (p. 13)

In the following example response, note the following:

• Information in the faceDetail element is not persisted on the server. It is only returned as part of
this response. The faceDetail includes five facial landmarks (see landmark element), pose, and
quality.

• Information in the face element is the face metadata that is persisted on the server. This is the
same information the ListFaces (p. 74) API returns in response.

{
 "FaceRecords": [
 {
 "FaceDetail": {
 "BoundingBox": {
 "Width": 0.6154,
 "Top": 0.2442,
 "Left": 0.1765,
 "Height": 0.4692
 },
 "Landmarks": [
 {
 "Y": 0.41730427742004395,
 "X": 0.36835095286369324,
 "Type": "eyeLeft"
 },
 {
 "Y": 0.4281611740589142,
 "X": 0.5960656404495239,
 "Type": "eyeRight"
 },
 {
 "Y": 0.5349795818328857,
 "X": 0.47817257046699524,
 "Type": "nose"
 },
 {
 "Y": 0.5721957683563232,
 "X": 0.352621465921402,
 "Type": "mouthLeft"
 },
 {
 "Y": 0.5792245864868164,
 "X": 0.5936088562011719,

38

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS CLI

 "Type": "mouthRight"
 }
],
 "Pose": {
 "Yaw": 1.8526556491851807,
 "Roll": 3.623055934906006,
 "Pitch": -10.605680465698242
 },
 "Quality": {
 "Sharpness": 130.0,
 "Brightness": 49.129302978515625
 },
 "Confidence": 99.99968719482422
 },
 "Face": {
 "BoundingBox": {
 "Width": 0.6154,
 "Top": 0.2442,
 "Left": 0.1765,
 "Height": 0.4692
 },
 "FaceId": "84de1c86-5059-53f2-a432-34ebb704615d",
 "Confidence": 99.9997,
 "ImageId": "d38ebf91-1a11-58fc-ba42-f978b3f32f60"
 }
 }
],
 "OrientationCorrection": "ROTATE_0"
}

The following index-faces command specifies two optional parameters:

• --detection-attribute parameter to request all facial attributes in the response.

• --external-image-id parameter to specify an ID to be associated with all faces in this image.
You might use this information on the client side, for example, you might maintain a client-side index
of images and faces in the images.

aws rekognition index-faces \
--image '{"S3Object":{"Bucket":"bucketname","Name":"object-key"}}' \
--collection-id "collection-id" \
--detection-attributes "ALL" \
--external-image-id "example-image.jpg" \
--region us-east-1 \
--profile adminuser

In the following example response, note the additional information in the faceDetail element, which
is not persisted on the server:

• 25 facial landmarks (compared to only five in the preceding example)

• Nine facial attributes (eyeglasses, beard, etc)

• Emotions (see the emotion element)

The face element provides metadata that is persisted on the server.

{

39

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS CLI

 "FaceRecords": [
 {
 "FaceDetail": {
 "Confidence": 99.99968719482422,
 "Eyeglasses": {
 "Confidence": 99.94019317626953,
 "Value": false
 },
 "Sunglasses": {
 "Confidence": 99.62261199951172,
 "Value": false
 },
 "Gender": {
 "Confidence": 99.92701721191406,
 "Value": "Male"
 },
 "Pose": {
 "Yaw": 1.8526556491851807,
 "Roll": 3.623055934906006,
 "Pitch": -10.605680465698242
 },
 "Emotions": [
 {
 "Confidence": 99.38518524169922,
 "Type": "HAPPY"
 },
 {
 "Confidence": 1.1799871921539307,
 "Type": "ANGRY"
 },
 {
 "Confidence": 1.0325908660888672,
 "Type": "CONFUSED"
 }
],
 "EyesOpen": {
 "Confidence": 54.15227508544922,
 "Value": false
 },
 "Quality": {
 "Sharpness": 130.0,
 "Brightness": 49.129302978515625
 },
 "BoundingBox": {
 "Width": 0.6153846383094788,
 "Top": 0.24423076212406158,
 "Left": 0.17654477059841156,
 "Height": 0.4692307710647583
 },
 "Smile": {
 "Confidence": 99.8236083984375,
 "Value": true
 },
 "MouthOpen": {
 "Confidence": 88.39942169189453,
 "Value": true
 },
 "Landmarks": [
 {

40

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS CLI

 "Y": 0.41730427742004395,
 "X": 0.36835095286369324,
 "Type": "eyeLeft"
 },
 {
 "Y": 0.4281611740589142,
 "X": 0.5960656404495239,
 "Type": "eyeRight"
 },
 {
 "Y": 0.5349795818328857,
 "X": 0.47817257046699524,
 "Type": "nose"
 },
 {
 "Y": 0.5721957683563232,
 "X": 0.352621465921402,
 "Type": "mouthLeft"
 },
 {
 "Y": 0.5792245864868164,
 "X": 0.5936088562011719,
 "Type": "mouthRight"
 },
 {
 "Y": 0.4163532555103302,
 "X": 0.3697868585586548,
 "Type": "leftPupil"
 },
 {
 "Y": 0.42626339197158813,
 "X": 0.6037314534187317,
 "Type": "rightPupil"
 },
 {
 "Y": 0.38954615592956543,
 "X": 0.27343833446502686,
 "Type": "leftEyeBrowLeft"
 },
 {
 "Y": 0.3775958716869354,
 "X": 0.35098740458488464,
 "Type": "leftEyeBrowRight"
 },
 {
 "Y": 0.39108505845069885,
 "X": 0.433648943901062,
 "Type": "leftEyeBrowUp"
 },
 {
 "Y": 0.3952394127845764,
 "X": 0.5416828989982605,
 "Type": "rightEyeBrowLeft"
 },
 {
 "Y": 0.38667190074920654,
 "X": 0.6171167492866516,
 "Type": "rightEyeBrowRight"
 },

41

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS CLI

 {
 "Y": 0.40419116616249084,
 "X": 0.6827319264411926,
 "Type": "rightEyeBrowUp"
 },
 {
 "Y": 0.41925403475761414,
 "X": 0.32195475697517395,
 "Type": "leftEyeLeft"
 },
 {
 "Y": 0.4225293695926666,
 "X": 0.41227561235427856,
 "Type": "leftEyeRight"
 },
 {
 "Y": 0.4096950888633728,
 "X": 0.3705553412437439,
 "Type": "leftEyeUp"
 },
 {
 "Y": 0.4213259816169739,
 "X": 0.36738231778144836,
 "Type": "leftEyeDown"
 },
 {
 "Y": 0.4294262230396271,
 "X": 0.5498995184898376,
 "Type": "rightEyeLeft"
 },
 {
 "Y": 0.4327501356601715,
 "X": 0.6390777826309204,
 "Type": "rightEyeRight"
 },
 {
 "Y": 0.42076829075813293,
 "X": 0.5977370738983154,
 "Type": "rightEyeUp"
 },
 {
 "Y": 0.4326271116733551,
 "X": 0.5959710478782654,
 "Type": "rightEyeDown"
 },
 {
 "Y": 0.5411174893379211,
 "X": 0.4253743588924408,
 "Type": "noseLeft"
 },
 {
 "Y": 0.5450678467750549,
 "X": 0.5309309959411621,
 "Type": "noseRight"
 },
 {
 "Y": 0.5795656442642212,
 "X": 0.47389525175094604,
 "Type": "mouthUp"

42

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS SDK for Java

 },
 {
 "Y": 0.6466911435127258,
 "X": 0.47393468022346497,
 "Type": "mouthDown"
 }
],
 "Mustache": {
 "Confidence": 99.75302124023438,
 "Value": false
 },
 "Beard": {
 "Confidence": 89.82911682128906,
 "Value": false
 }
 },
 "Face": {
 "BoundingBox": {
 "Width": 0.6153846383094788,
 "Top": 0.24423076212406158,
 "Left": 0.17654477059841156,
 "Height": 0.4692307710647583
 },
 "FaceId": "407b95a5-f8f7-50c7-bf86-27c9ba5c6931",
 "ExternalImageId": "example-image.jpg",
 "Confidence": 99.99968719482422,
 "ImageId": "af554b0d-fcb2-56e8-9658-69aec6c901be"
 }
 }
],
 "OrientationCorrection": "ROTATE_0"
}

You can use the list-faces command to get a list of faces in a collection:

aws rekognition list-faces \
--collection-id "collection-id" \
--region us-east-1
--profile adminuser

The command returns faces in the collection along with a NextToken in the response. You can use
this in your subsequent request (by adding the --next-token parameter in the AWS CLI command)
to fetch next set of faces.

Storing Faces: Using the AWS SDK for Java
The following example AWS SDK for Java code stores two faces to a collection in the us-east-1 region.
You need to update the code by providing an S3 bucket name, two object keys (.jpg objects), and an
Amazon Rekognition face collection name.

import java.util.List;
import java.util.stream.Collectors;

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.rekognition.AmazonRekognition;

43

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS SDK for Java

import com.amazonaws.services.rekognition.AmazonRekognitionClient;
import com.amazonaws.services.rekognition.model.DeleteFacesRequest;
import com.amazonaws.services.rekognition.model.DeleteFacesResult;
import com.amazonaws.services.rekognition.model.Image;
import com.amazonaws.services.rekognition.model.IndexFacesRequest;
import com.amazonaws.services.rekognition.model.IndexFacesResult;
import com.amazonaws.services.rekognition.model.ListFacesRequest;
import com.amazonaws.services.rekognition.model.ListFacesResult;
import com.amazonaws.services.rekognition.model.S3Object;
import com.fasterxml.jackson.databind.ObjectMapper;

public class IndexAndListFacesExample {
 public static final String COLLECTION_ID = "collection-id";
 public static final String S3_BUCKET = "bucket";

 public static void main(String[] args) throws Exception {
 AWSCredentials credentials;
 try {
 credentials = new
 ProfileCredentialsProvider("adminuser").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load the credentials from
 the credential profiles file. "
 + "Please make sure that your credentials file is at the
 correct "
 + "location (/Users/<userid>/.aws/credentials), and is in
 valid format.", e);
 }

 AmazonRekognitionClient amazonRekognition = new
 AmazonRekognitionClient(credentials)
 .withEndpoint("service-endpoint");
 amazonRekognition.setSignerRegionOverride("us-east-1");
 ObjectMapper objectMapper = new ObjectMapper();

 // 1. Index face 1
 Image image = getImageUtil(S3_BUCKET, "image1.jpeg");
 String externalImageId = "external.jpg";
 IndexFacesResult indexFacesResult = callIndexFaces(COLLECTION_ID,
 externalImageId, "ALL", image, amazonRekognition);

 System.out.println(objectMapper.writeValueAsString(indexFacesResult));

 // 2. Index face 2
 Image image2 = getImageUtil(S3_BUCKET, "image2.jpeg");
 String externalImageId2 = "external2.jpg";
 callIndexFaces(COLLECTION_ID, externalImageId2, "ALL", image2,
 amazonRekognition);

 // 3. Page through the faces with ListFaces
 ListFacesResult listFacesResult = null;
 String paginationToken = null;
 do {
 if (listFacesResult != null) {
 paginationToken = listFacesResult.getNextToken();
 }
 listFacesResult = callListFaces(COLLECTION_ID, 1,
 paginationToken, amazonRekognition);

44

Amazon Rekognition Developer Guide
Example 3: Searching Faces

 System.out.println(objectMapper.writeValueAsString(listFacesResult));

 } while(listFacesResult != null && listFacesResult.getNextToken() !=
 null);
 }

 private static IndexFacesResult callIndexFaces(String collectionId,
 String externalImageId, String attributes, Image image, AmazonRekognition
 amazonRekognition) {
 IndexFacesRequest indexFacesRequest = new IndexFacesRequest()
 .withImage(image)
 .withCollectionId(collectionId)
 .withExternalImageId(externalImageId)
 .withDetectionAttributes(attributes);
 return amazonRekognition.indexFaces(indexFacesRequest);

 }

 private static ListFacesResult callListFaces(String collectionId, int
 limit, String paginationToken, AmazonRekognition amazonRekognition) {
 ListFacesRequest listFacesRequest = new ListFacesRequest()
 .withCollectionId(collectionId)
 .withMaxResults(limit)
 .withNextToken(paginationToken);
 return amazonRekognition.listFaces(listFacesRequest);
 }

 private static Image getImageUtil(String bucket, String key) {
 return new Image()
 .withS3Object(new S3Object()
 .withBucket(bucket)
 .withName(key));
 }
}

Example 3: Searching Faces
This section provides working examples of API operations that you can use to search a face collection
for face matches. Examples using both AWS CLI and AWS SDK for Java are provided.

For information about collections and search faces API operations, see Storage-Based API Operations:
Storing Faces and Searching Face Matches (p. 12).

Topics

• Searching Faces: Using the AWS CLI (p. 45)

• Searching Faces: Using the AWS SDK for Java (p. 48)

Searching Faces: Using the AWS CLI
You can search a face collection for face matches using the search-faces (see
SearchFaces (p. 76)) and search-faces-by-image (see SearchFacesByImage (p. 79))
commands:

45

Amazon Rekognition Developer Guide
Searching Faces: Using the AWS CLI

• Search faces by face ID – You can use the search-faces command to search a face collection
for face matches by providing a face ID (that is, one of the face IDs that exists in the face collection).
Then, the command searches the collection for similar faces.

For this exercise, if you don't know a face ID value, you can use the list-faces command:

aws rekognition list-faces \
--collection-id "collection-id" \
--region us-east-1 \
--profile adminuser

Specify the search-faces command, as shown following:

aws rekognition search-faces \
--face-id face-id \
--collection-id "collection-id" \
--region us-east-1 \
--profile adminuser

The following is the example response that includes the search face ID you provided as input and
three face matches. For more information about the response, see Searching Faces In a Face
Collection (p. 15).

{
 "SearchedFaceId": "e0182208-f475-55b4-8d88-cf162509718d",
 "FaceMatches": [
 {
 "Face": {
 "BoundingBox": {
 "Width": 0.49505001306533813,
 "Top": 0.221110999584198,
 "Left": 0.3069309890270233,
 "Height": 0.33333298563957214
 },
 "FaceId": "9b01ac35-61be-55b0-bc95-54b6421e4950",
 "ExternalImageId": "example-image.jpg",
 "Confidence": 99.99949645996094,
 "ImageId": "fba488d7-9c3a-537f-a30a-b8a1ee326b6c"
 },
 "Similarity": 0.9172449111938477
 },
 {
 "Face": {
 "BoundingBox": {
 "Width": 0.2044440060853958,
 "Top": 0.22542400658130646,
 "Left": 0.46222200989723206,
 "Height": 0.3118639886379242
 },
 "FaceId": "98fd3f10-a078-5b35-83c5-5d5c8423a8fc",
 "ExternalImageId": "example-image.jpg",
 "Confidence": 99.99810028076172,
 "ImageId": "b5d3f633-1b8c-560a-adfb-08891b6536a0"
 },
 "Similarity": 0.9123537540435791
 },
 {

46

Amazon Rekognition Developer Guide
Searching Faces: Using the AWS CLI

 "Face": {
 "BoundingBox": {
 "Width": 0.6153849959373474,
 "Top": 0.24423100054264069,
 "Left": 0.17654499411582947,
 "Height": 0.4692310094833374
 },
 "FaceId": "407b95a5-f8f7-50c7-bf86-27c9ba5c6931",
 "ExternalImageId": "example-image.jpg",
 "Confidence": 99.99970245361328,
 "ImageId": "af554b0d-fcb2-56e8-9658-69aec6c901be"
 },
 "Similarity": 0.6758826971054077
 }
]
}

• Search faces by providing an image as input – In this case, Amazon Rekognition first detects the
face in the input image, and then searches the collection for matching faces. The following search-
faces-by-image command specifies an S3 object as input image.

aws rekognition search-faces-by-image \
--image '{"S3Object":{"Bucket":"bucket-name","Name":"Example.jpg"}}' \
--collection-id "collection-id" \
--region us-east-1 \
--profile adminuser

The following is an example response that includes the bounding box of the face in the input image,
and a list of face matches. For more information about the response, see Searching Faces In a Face
Collection (p. 15).

{
 "SearchedFaceBoundingBox": {
 "Width": 0.10111111402511597,
 "Top": 0.32203391194343567,
 "Left": 0.23999999463558197,
 "Height": 0.1542372852563858
 },
 "SearchedFaceConfidence": 98.51010131835938,
 "FaceMatches": [
 {
 "Face": {
 "BoundingBox": {
 "Width": 0.10111100226640701,
 "Top": 0.32203400135040283,
 "Left": 0.23999999463558197,
 "Height": 0.15423700213432312
 },
 "FaceId": "e0182208-f475-55b4-8d88-cf162509718d",
 "ExternalImageId": "example-image.jpg",
 "Confidence": 98.51010131835938,
 "ImageId": "b5d3f633-1b8c-560a-adfb-08891b6536a0"
 },
 "Similarity": 99.9808578491211
 }
]

47

Amazon Rekognition Developer Guide
Searching Faces: Using the AWS SDK for Java

}

Searching Faces: Using the AWS SDK for Java
The following AWS SDK for Java code example stores three faces to an Amazon Rekognition face
collection in the us-east-1 region. Then, it searches the face collection for face matches. It shows
usage of both SearchFaces and SearchFacesByImage API operations. The code example specifies
both the FaceMatchThreshold and MaxFaces parameters to limit the results returned in the
response.

import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.rekognition.AmazonRekognition;
import com.amazonaws.services.rekognition.AmazonRekognitionClient;
import com.amazonaws.services.rekognition.model.Image;
import com.amazonaws.services.rekognition.model.IndexFacesRequest;
import com.amazonaws.services.rekognition.model.IndexFacesResult;
import com.amazonaws.services.rekognition.model.S3Object;
import com.amazonaws.services.rekognition.model.SearchFacesByImageRequest;
import com.amazonaws.services.rekognition.model.SearchFacesByImageResult;
import com.amazonaws.services.rekognition.model.SearchFacesRequest;
import com.amazonaws.services.rekognition.model.SearchFacesResult;
import com.fasterxml.jackson.databind.ObjectMapper;

public class SearchFacesExample {

 public static final String COLLECTION_ID = "collection-id";
 public static final String S3_BUCKET = "bucket-name";

 public static void main(String[] args) throws Exception {
 AWSCredentials credentials;
 try {
 credentials = new
 ProfileCredentialsProvider("adminuser").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load the credentials from
 the credential profiles file. "
 + "Please make sure that your credentials file is at the
 correct "
 + "location (/Users/<userid>/.aws/credentials), and is in
 valid format.", e);
 }

 AmazonRekognitionClient amazonRekognition = new
 AmazonRekognitionClient(credentials)
 .withEndpoint("service-endpoint");
 amazonRekognition.setSignerRegionOverride("us-east-1");
 ObjectMapper objectMapper = new ObjectMapper();

 //1. Add three faces to the collection.
 IndexFacesResult indexFacesResult = callIndexFaces(COLLECTION_ID,
 amazonRekognition, "image1.jpg");
 callIndexFaces(COLLECTION_ID, amazonRekognition, "image2.jpg");
 callIndexFaces(COLLECTION_ID, amazonRekognition, "image3.jpg");

48

Amazon Rekognition Developer Guide
Searching Faces: Using the AWS SDK for Java

 Float threshold = 70F;
 int maxFaces = 2;

 //2. Retrieve face ID of the 1st face added.
 String faceId = indexFacesResult.getFaceRecords().stream()
 .map(f -> f.getFace().getFaceId())
 .findAny().orElseThrow(() -> new IllegalArgumentException("No
 face found"));

 //3. Search similar faces for a give face (identified by face ID).
 SearchFacesResult searchFacesResult = callSearchFaces(COLLECTION_ID,
 faceId, threshold, maxFaces, amazonRekognition);

 System.out.println(objectMapper.writeValueAsString(searchFacesResult));

 //4. Get an image object in S3 bucket.
 Image image = getImageUtil(S3_BUCKET, "imagex.jpg");

 //5. Search collection for faces similar to the largest face in the
 image.
 SearchFacesByImageResult searchFacesByImageResult =
 callSearchFacesByImage(COLLECTION_ID, image, threshold, maxFaces,
 amazonRekognition);

 System.out.println(objectMapper.writeValueAsString(searchFacesByImageResult));
 }

 private static IndexFacesResult callIndexFaces(
 String collectionId, AmazonRekognitionClient amazonRekognition,
 String name) {
 IndexFacesRequest req = new IndexFacesRequest()
 .withImage(getImageUtil(S3_BUCKET, name))
 .withCollectionId(collectionId)
 .withExternalImageId("externalId");

 return amazonRekognition.indexFaces(req);
 }

 private static SearchFacesResult callSearchFaces(String collectionId,
 String faceId, Float threshold, int maxFaces, AmazonRekognition
 amazonRekognition) {
 SearchFacesRequest searchFacesRequest = new SearchFacesRequest()
 .withCollectionId(collectionId)
 .withFaceId(faceId)
 .withFaceMatchThreshold(threshold)
 .withMaxFaces(maxFaces);
 return amazonRekognition.searchFaces(searchFacesRequest);
 }

 private static SearchFacesByImageResult callSearchFacesByImage(String
 collectionId, Image image, Float threshold, int maxFaces, AmazonRekognition
 amazonRekognition) {
 SearchFacesByImageRequest searchFacesByImageRequest = new
 SearchFacesByImageRequest()
 .withCollectionId(collectionId)
 .withImage(image)
 .withFaceMatchThreshold(threshold)
 .withMaxFaces(maxFaces);

49

Amazon Rekognition Developer Guide
Searching Faces: Using the AWS SDK for Java

 return
 amazonRekognition.searchFacesByImage(searchFacesByImageRequest);
 }

 private static Image getImageUtil(String bucket, String key) {
 return new Image()
 .withS3Object(new S3Object()
 .withBucket(bucket)
 .withName(key));
 }
}

50

Amazon Rekognition Developer Guide
Actions

API Reference

This section provides documentation for the Amazon Rekognition API operations.

Topics

• Actions (p. 51)

• Data Types (p. 81)

Actions
The following actions are supported:

• CompareFaces (p. 52)

• CreateCollection (p. 55)

• DeleteCollection (p. 57)

• DeleteFaces (p. 59)

• DetectFaces (p. 61)

• DetectLabels (p. 65)

• IndexFaces (p. 68)

• ListCollections (p. 72)

• ListFaces (p. 74)

• SearchFaces (p. 76)

• SearchFacesByImage (p. 79)

51

Amazon Rekognition Developer Guide
CompareFaces

CompareFaces
Compares a face in the source input image with each face detected in the target input image.

Note
If the source image contains multiple faces, the service detects the largest face and uses it to
compare with each face detected in the target image.

In response, the operation returns an array of face matches ordered by similarity score with the highest
similarity scores first. For each face match, the response provides a bounding box of the face and
confidence value (indicating the level of confidence that the bounding box contains a face). The
response also provides a similarity score, which indicates how closely the faces match.

Note
By default, only faces with the similarity score of greater than or equal to 80% are returned in
the response. You can change this value.

In addition to the face matches, the response returns information about the face in the source image,
including the bounding box of the face and confidence value.

Note
This is a stateless API operation. That is, the operation does not persist any data.

For an example, see Exercise 3: Compare Faces (API) (p. 30)

This operation requires permissions to perform the rekognition:CompareFaces action.

Request Syntax

{
 "SimilarityThreshold": number,
 "SourceImage": {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 },
 "TargetImage": {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 }
}

Request Parameters

The request accepts the following data in JSON format.

SimilarityThreshold (p. 52)
The minimum level of confidence in the match you want included in the result.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

SourceImage (p. 52)
Source image either as bytes or an S3 object

52

Amazon Rekognition Developer Guide
CompareFaces

Type: Image (p. 97) object

Required: Yes

TargetImage (p. 52)
Target image either as bytes or an S3 object

Type: Image (p. 97) object

Required: Yes

Response Syntax

{
 "FaceMatches": [
 {
 "Face": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Confidence": number
 },
 "Similarity": number
 }
],
 "SourceImageFace": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Confidence": number
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

FaceMatches (p. 53)
Provides an array of CompareFacesMatch objects. Each object provides the bounding box,
confidence that the bounding box contains a face, and the similarity between the face in the
bounding box and the face in the source image.

Type: array of CompareFacesMatch (p. 87) objects

SourceImageFace (p. 53)
The face from the source image that was used for comparison.

Type: ComparedSourceImageFace (p. 86) object

Errors

AccessDeniedException
You are not authorized to perform the action.

53

Amazon Rekognition Developer Guide
CompareFaces

HTTP Status Code: 400

ImageTooLargeException
The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 33).

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidImageFormatException
The provided image format is not supported.

HTTP Status Code: 400

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

InvalidS3ObjectException
Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

54

Amazon Rekognition Developer Guide
CreateCollection

CreateCollection
Creates a collection in an AWS Region. You can add faces to the collection using the
IndexFaces (p. 68) operation.

For example, you might create collections, one for each of your application users. A user can then
index faces using the IndexFaces operation and persist results in a specific collection. Then, a user
can search the collection for faces in the user-specific container.

For an example, see Example 1: Managing Collections (p. 34).

This operation requires permissions to perform the rekognition:CreateCollection action.

Request Syntax

{
 "CollectionId": "string"
}

Request Parameters
The request accepts the following data in JSON format.

CollectionId (p. 55)
ID for the collection that you are creating.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-]+

Required: Yes

Response Syntax

{
 "CollectionArn": "string",
 "StatusCode": number
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CollectionArn (p. 55)
Amazon Resource Name (ARN) of the collection. You can use this to manage permissions on your
resources.

Type: String

StatusCode (p. 55)
HTTP status code indicating the result of the operation.

Type: Integer

Valid Range: Minimum value of 0.

Errors

AccessDeniedException
You are not authorized to perform the action.

55

Amazon Rekognition Developer Guide
CreateCollection

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ResourceAlreadyExistsException
A collection with the specified ID already exists.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

56

Amazon Rekognition Developer Guide
DeleteCollection

DeleteCollection
Deletes the specified collection. Note that this operation removes all faces in the collection. For an
example, see Example 1: Managing Collections (p. 34).

This operation requires permissions to perform the rekognition:DeleteCollection action.

Request Syntax

{
 "CollectionId": "string"
}

Request Parameters

The request accepts the following data in JSON format.

CollectionId (p. 57)
ID of the collection to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-]+

Required: Yes

Response Syntax

{
 "StatusCode": number
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

StatusCode (p. 57)
HTTP status code that indicates the result of the operation.

Type: Integer

Valid Range: Minimum value of 0.

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

57

Amazon Rekognition Developer Guide
DeleteCollection

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ResourceNotFoundException
Collection specified in the request is not found.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

58

Amazon Rekognition Developer Guide
DeleteFaces

DeleteFaces
Deletes faces from a collection. You specify a collection ID and an array of face IDs to remove from the
collection.

This operation requires permissions to perform the rekognition:DeleteFaces action.

Request Syntax

{
 "CollectionId": "string",
 "FaceIds": ["string"]
}

Request Parameters

The request accepts the following data in JSON format.

CollectionId (p. 59)
Collection from which to remove the specific faces.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-]+

Required: Yes

FaceIds (p. 59)
An array of face IDs to delete.

Type: array of Strings

Array Members: Minimum number of 1 item. Maximum number of 4096 items.

Pattern: [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Required: Yes

Response Syntax

{
 "DeletedFaces": ["string"]
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

DeletedFaces (p. 59)
An array of strings (face IDs) of the faces that were deleted.

Type: array of Strings

Array Members: Minimum number of 1 item. Maximum number of 4096 items.

Pattern: [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Errors

AccessDeniedException
You are not authorized to perform the action.

59

Amazon Rekognition Developer Guide
DeleteFaces

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ResourceNotFoundException
Collection specified in the request is not found.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

60

Amazon Rekognition Developer Guide
DetectFaces

DetectFaces
Detects faces within an image (JPEG or PNG) that is provided as input.

For each face detected, the operation returns face details including a bounding box of the face, a
confidence value (that the bounding box contains a face), and a fixed set of attributes such as facial
landmarks (for example, coordinates of eye and mouth), gender, presence of beard, sunglasses, etc.

The face-detection algorithm is most effective on frontal faces. For non-frontal or obscured faces, the
algorithm may not detect the faces or might detect faces with lower confidence.

Note
This is a stateless API operation. That is, the operation does not persist any data.

For an example, see Exercise 2: Detect Faces (API) (p. 28).

This operation requires permissions to perform the rekognition:DetectFaces action.

Request Syntax

{
 "Attributes": ["string"],
 "Image": {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 }
}

Request Parameters
The request accepts the following data in JSON format.

Attributes (p. 61)
A list of facial attributes you would like to be returned. By default, the API returns subset of facial
attributes.

For example, you can specify the value as, ["ALL"] or ["DEFAULT"]. If you provide both, ["ALL",
"DEFAULT"], the service uses a logical AND operator to determine which attributes to return (in
this case, it is all attributes). If you specify all attributes, Amazon Rekognition performs additional
detection.

Type: array of Strings

Valid Values: DEFAULT | ALL

Required: No

Image (p. 61)
The image in which you want to detect faces. You can specify a blob or an S3 object.

Type: Image (p. 97) object

Required: Yes

Response Syntax

{
 "FaceDetails": [
 {
 "Beard": {
 "Confidence": number,

61

Amazon Rekognition Developer Guide
DetectFaces

 "Value": boolean
 },
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Confidence": number,
 "Emotions": [
 {
 "Confidence": number,
 "Type": "string"
 }
],
 "Eyeglasses": {
 "Confidence": number,
 "Value": boolean
 },
 "EyesOpen": {
 "Confidence": number,
 "Value": boolean
 },
 "Gender": {
 "Confidence": number,
 "Value": "string"
 },
 "Landmarks": [
 {
 "Type": "string",
 "X": number,
 "Y": number
 }
],
 "MouthOpen": {
 "Confidence": number,
 "Value": boolean
 },
 "Mustache": {
 "Confidence": number,
 "Value": boolean
 },
 "Pose": {
 "Pitch": number,
 "Roll": number,
 "Yaw": number
 },
 "Quality": {
 "Brightness": number,
 "Sharpness": number
 },
 "Smile": {
 "Confidence": number,
 "Value": boolean
 },
 "Sunglasses": {
 "Confidence": number,
 "Value": boolean
 }

62

Amazon Rekognition Developer Guide
DetectFaces

 }
],
 "OrientationCorrection": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

FaceDetails (p. 61)
Details of each face found in the image.

Type: array of FaceDetail (p. 92) objects

OrientationCorrection (p. 61)
The algorithm detects the image orientation. If it detects that the image was rotated, it returns the
degrees of rotation. If your application is displaying the image, you can use this value to adjust the
orientation.

For example, if the service detects that the input image was rotated by 90 degrees, it corrects
orientation, performs face detection, and then returns the faces. That is, the bounding box
coordinates in the response are based on the corrected orientation.

Type: String

Valid Values: ROTATE_0 | ROTATE_90 | ROTATE_180 | ROTATE_270

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400

ImageTooLargeException
The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 33).

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidImageFormatException
The provided image format is not supported.

HTTP Status Code: 400

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

InvalidS3ObjectException
Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

63

Amazon Rekognition Developer Guide
DetectFaces

64

Amazon Rekognition Developer Guide
DetectLabels

DetectLabels
Detects instances of real-world labels within an image (JPEG or PNG) provided as input. This includes
objects like flower, tree, and table; events like wedding, graduation, and birthday party; and concepts
like landscape, evening, and nature. For an example, see Exercise 1: Detect Labels in an Image
(API) (p. 27).

For each object, scene, and concept the API returns one or more labels. Each label provides the object
name, and the level of confidence that the image contains the object. For example, suppose the input
image has a lighthouse, the sea, and a rock. The response will include all three labels, one for each
object.

{Name: lighthouse, Confidence: 98.4629}

{Name: rock,Confidence: 79.2097}

{Name: sea,Confidence: 75.061}

In the preceding example, the operation returns one label for each of the three objects. The operation
can also return multiple labels for the same object in the image. For example, if the input image shows
a flower (for example, a tulip), the operation might return the following three labels.

{Name: flower,Confidence: 99.0562}

{Name: plant,Confidence: 99.0562}

{Name: tulip,Confidence: 99.0562}

In this example, the detection algorithm more precisely identifies the flower as a tulip.

You can provide the input image as an S3 object or as base64-encoded bytes. In response, the API
returns an array of labels. In addition, the response also includes the orientation correction. Optionally,
you can specify MinConfidence to control the confidence threshold for the labels returned. The
default is 50%. You can also add the MaxLabels parameter to limit the number of labels returned.

Note
If the object detected is a person, the operation doesn't provide the same facial details that the
DetectFaces (p. 61) operation provides.

This is a stateless API operation. That is, the operation does not persist any data.

This operation requires permissions to perform the rekognition:DetectLabels action.

Request Syntax

{
 "Image": {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 },
 "MaxLabels": number,
 "MinConfidence": number
}

Request Parameters

The request accepts the following data in JSON format.

Image (p. 65)
The input image. You can provide a blob of image bytes or an S3 object.

Type: Image (p. 97) object

Required: Yes

65

Amazon Rekognition Developer Guide
DetectLabels

MaxLabels (p. 65)
Maximum number of labels you want the service to return in the response. The service returns the
specified number of highest confidence labels.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

MinConfidence (p. 65)
Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return
any labels with confidence lower than this specified value.

If minConfidence is not specified, the operation returns labels with a confidence values greater
than or equal to 50 percent.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Response Syntax

{
 "Labels": [
 {
 "Confidence": number,
 "Name": "string"
 }
],
 "OrientationCorrection": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Labels (p. 66)
An array of labels for the real-world objects detected.

Type: array of Label (p. 99) objects

OrientationCorrection (p. 66)
Amazon Rekognition returns the orientation of the input image that was detected (clockwise
direction). If your application displays the image, you can use this value to correct the orientation. If
Amazon Rekognition detects that the input image was rotated (for example, by 90 degrees), it first
corrects the orientation before detecting the labels.

Type: String

Valid Values: ROTATE_0 | ROTATE_90 | ROTATE_180 | ROTATE_270

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400

ImageTooLargeException
The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 33).

HTTP Status Code: 400

66

Amazon Rekognition Developer Guide
DetectLabels

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidImageFormatException
The provided image format is not supported.

HTTP Status Code: 400

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

InvalidS3ObjectException
Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

67

Amazon Rekognition Developer Guide
IndexFaces

IndexFaces
Detects faces in the input image and adds them to the specified collection.

Amazon Rekognition does not save the actual faces detected. Instead, the underlying detection
algorithm first detects the faces in the input image, and for each face extracts facial features
into a feature vector, and stores it in the back-end database. Amazon Rekognition uses feature
vectors when performing face match and search operations using the SearchFaces (p. 76) and
SearchFacesByImage (p. 79) operations.

If you provide the optional externalImageID for the input image you provided, Amazon Rekognition
associates this ID with all faces that it detects. When you call the ListFaces (p. 74) operation, the
response returns the external ID. You can use this external image ID to create a client-side index to
associate the faces with each image. You can then use the index to find all faces in an image.

In response, the operation returns an array of metadata for all detected faces. This includes, the
bounding box of the detected face, confidence value (indicating the bounding box contains a face), a
face ID assigned by the service for each face that is detected and stored, and an image ID assigned
by the service for the input image If you request all facial attributes (using the detectionAttributes
parameter, Amazon Rekognition returns detailed facial attributes such as facial landmarks (for
example, location of eye and mount) and other facial attributes such gender. If you provide the same
image, specify the same collection, and use the same external ID in the IndexFaces operation,
Amazon Rekognition doesn't save duplicate face metadata.

For an example, see Example 2: Storing Faces (p. 37).

This operation requires permissions to perform the rekognition:IndexFaces action.

Request Syntax

{
 "CollectionId": "string",
 "DetectionAttributes": ["string"],
 "ExternalImageId": "string",
 "Image": {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 }
}

Request Parameters
The request accepts the following data in JSON format.

CollectionId (p. 68)
ID of an existing collection to which you want to add the faces that are detected in the input
images.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-]+

Required: Yes

DetectionAttributes (p. 68)
(Optional) Returns detailed attributes of indexed faces. By default, the operation returns a subset
of the facial attributes.

For example, you can specify the value as, ["ALL"] or ["DEFAULT"]. If you provide both, ["ALL",
"DEFAULT"], Amazon Rekognition uses the logical AND operator to determine which attributes to

68

Amazon Rekognition Developer Guide
IndexFaces

return (in this case, it is all attributes). If you specify all attributes, the service performs additional
detection, in addition to the default.

Type: array of Strings

Valid Values: DEFAULT | ALL

Required: No

ExternalImageId (p. 68)
ID you want to assign to all the faces detected in the image.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-:]+

Required: No

Image (p. 68)
Provides the source image either as bytes or an S3 object.

For Amazon Rekognition to process an S3 object, the user must have permission to access the S3
object. For more information, see Resource-Based Policies (p. 111).

Type: Image (p. 97) object

Required: Yes

Response Syntax

{
 "FaceRecords": [
 {
 "Face": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Confidence": number,
 "ExternalImageId": "string",
 "FaceId": "string",
 "ImageId": "string"
 },
 "FaceDetail": {
 "Beard": {
 "Confidence": number,
 "Value": boolean
 },
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Confidence": number,
 "Emotions": [
 {
 "Confidence": number,
 "Type": "string"
 }
],
 "Eyeglasses": {

69

Amazon Rekognition Developer Guide
IndexFaces

 "Confidence": number,
 "Value": boolean
 },
 "EyesOpen": {
 "Confidence": number,
 "Value": boolean
 },
 "Gender": {
 "Confidence": number,
 "Value": "string"
 },
 "Landmarks": [
 {
 "Type": "string",
 "X": number,
 "Y": number
 }
],
 "MouthOpen": {
 "Confidence": number,
 "Value": boolean
 },
 "Mustache": {
 "Confidence": number,
 "Value": boolean
 },
 "Pose": {
 "Pitch": number,
 "Roll": number,
 "Yaw": number
 },
 "Quality": {
 "Brightness": number,
 "Sharpness": number
 },
 "Smile": {
 "Confidence": number,
 "Value": boolean
 },
 "Sunglasses": {
 "Confidence": number,
 "Value": boolean
 }
 }
 }
],
 "OrientationCorrection": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

FaceRecords (p. 69)
An array of faces detected and added to the collection. For more information, see Storing Faces In
a Face Collection: The IndexFaces Operation (p. 13).

Type: array of FaceRecord (p. 95) objects

70

Amazon Rekognition Developer Guide
IndexFaces

OrientationCorrection (p. 69)
The algorithm detects the image orientation. If it detects that the image was rotated, it returns the
degree of rotation. You can use this value to correct the orientation and also appropriately analyze
the bounding box coordinates that are returned.

Type: String

Valid Values: ROTATE_0 | ROTATE_90 | ROTATE_180 | ROTATE_270

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400

ImageTooLargeException
The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 33).

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidImageFormatException
The provided image format is not supported.

HTTP Status Code: 400

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

InvalidS3ObjectException
Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ResourceNotFoundException
Collection specified in the request is not found.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

71

Amazon Rekognition Developer Guide
ListCollections

ListCollections
Returns list of collection IDs in your account. If the result is truncated, the response also provides a
NextToken that you can use in the subsequent request to fetch the next set of collection IDs.

For an example, see Example 1: Managing Collections (p. 34).

This operation requires permissions to perform the rekognition:ListCollections action.

Request Syntax

{
 "MaxResults": number,
 "NextToken": "string"
}

Request Parameters

The request accepts the following data in JSON format.

MaxResults (p. 72)
Maximum number of collection IDs to return.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 4096.

Required: No

NextToken (p. 72)
Pagination token from the previous response.

Type: String

Length Constraints: Maximum length of 255.

Required: No

Response Syntax

{
 "CollectionIds": ["string"],
 "NextToken": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CollectionIds (p. 72)
An array of collection IDs.

Type: array of Strings

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-]+

NextToken (p. 72)
If the result is truncated, the response provides a NextToken that you can use in the subsequent
request to fetch the next set of collection IDs.

Type: String

Length Constraints: Maximum length of 255.

72

Amazon Rekognition Developer Guide
ListCollections

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidPaginationTokenException
Pagination token in the request is not valid.

HTTP Status Code: 400

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ResourceNotFoundException
Collection specified in the request is not found.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

73

Amazon Rekognition Developer Guide
ListFaces

ListFaces
Returns metadata for faces in the specified collection. This metadata includes information such as the
bounding box coordinates, the confidence (that the bounding box contains a face), and face ID. For an
example, see Example 3: Searching Faces (p. 45).

This operation requires permissions to perform the rekognition:ListFaces action.

Request Syntax

{
 "CollectionId": "string",
 "MaxResults": number,
 "NextToken": "string"
}

Request Parameters

The request accepts the following data in JSON format.

CollectionId (p. 74)
ID of the collection from which to list the faces.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-]+

Required: Yes

MaxResults (p. 74)
Maximum number of faces to return.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 4096.

Required: No

NextToken (p. 74)
If the previous response was incomplete (because there is more data to retrieve), Amazon
Rekognition returns a pagination token in the response. You can use this pagination token to
retrieve the next set of faces.

Type: String

Length Constraints: Maximum length of 255.

Required: No

Response Syntax

{
 "Faces": [
 {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Confidence": number,
 "ExternalImageId": "string",
 "FaceId": "string",

74

Amazon Rekognition Developer Guide
ListFaces

 "ImageId": "string"
 }
],
 "NextToken": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Faces (p. 74)
An array of Face objects.

Type: array of Face (p. 91) objects

NextToken (p. 74)
If the response is truncated, Amazon Rekognition returns this token that you can use in the
subsequent request to retrieve the next set of faces.

Type: String

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidPaginationTokenException
Pagination token in the request is not valid.

HTTP Status Code: 400

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ResourceNotFoundException
Collection specified in the request is not found.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

75

Amazon Rekognition Developer Guide
SearchFaces

SearchFaces
For a given input face ID, searches the specified collection for matching faces. You get a face ID when
you add a face to the collection using the IndexFaces (p. 68) operation. The operation compares the
features of the input face with faces in the specified collection.

Note
You can also search faces without indexing faces by using the SearchFacesByImage
operation.

The operation response returns an array of faces that match, ordered by similarity score with the
highest similarity first. More specifically, it is an array of metadata for each face match that is found.
Along with the metadata, the response also includes a confidence value for each face match,
indicating the confidence that the specific face matches the input face.

For an example, see Example 3: Searching Faces (p. 45).

This operation requires permissions to perform the rekognition:SearchFaces action.

Request Syntax

{
 "CollectionId": "string",
 "FaceId": "string",
 "FaceMatchThreshold": number,
 "MaxFaces": number
}

Request Parameters

The request accepts the following data in JSON format.

CollectionId (p. 76)
ID of the collection to search.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-]+

Required: Yes

FaceId (p. 76)
ID of a face to find matches for in the collection.

Type: String

Pattern: [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Required: Yes

FaceMatchThreshold (p. 76)
Optional value specifying the minimum confidence in the face match to return. For example, don't
return any matches where confidence in matches is less than 70%.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

MaxFaces (p. 76)
Maximum number of faces to return. The operation returns the maximum number of faces with the
highest confidence in the match.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 4096.

Required: No

76

Amazon Rekognition Developer Guide
SearchFaces

Response Syntax

{
 "FaceMatches": [
 {
 "Face": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Confidence": number,
 "ExternalImageId": "string",
 "FaceId": "string",
 "ImageId": "string"
 },
 "Similarity": number
 }
],
 "SearchedFaceId": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

FaceMatches (p. 77)
An array of faces that matched the input face, along with the confidence in the match.

Type: array of FaceMatch (p. 94) objects

SearchedFaceId (p. 77)
ID of the face that was searched for matches in a collection.

Type: String

Pattern: [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

77

Amazon Rekognition Developer Guide
SearchFaces

ResourceNotFoundException
Collection specified in the request is not found.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

78

Amazon Rekognition Developer Guide
SearchFacesByImage

SearchFacesByImage
For a given input image, first detects the largest face in the image, and then searches the specified
collection for matching faces. The operation compares the features of the input face with faces in the
specified collection.

Note
To search for all faces in an input image, you might first call the IndexFaces (p. 68) operation,
and then use the face IDs returned in subsequent calls to the SearchFaces (p. 76) operation.
You can also call the DetectFaces operation and use the bounding boxes in the response to
make face crops, which then you can pass in to the SearchFacesByImage operation.

The response returns an array of faces that match, ordered by similarity score with the highest
similarity first. More specifically, it is an array of metadata for each face match found. Along with the
metadata, the response also includes a similarity indicating how similar the face is to the input
face. In the response, the operation also returns the bounding box (and a confidence level that the
bounding box contains a face) of the face that Amazon Rekognition used for the input image.

For an example, see Example 3: Searching Faces (p. 45).

This operation requires permissions to perform the rekognition:SearchFacesByImage action.

Request Syntax

{
 "CollectionId": "string",
 "FaceMatchThreshold": number,
 "Image": {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 },
 "MaxFaces": number
}

Request Parameters
The request accepts the following data in JSON format.

CollectionId (p. 79)
ID of the collection to search.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-]+

Required: Yes

FaceMatchThreshold (p. 79)
(Optional) Specifies the minimum confidence in the face match to return. For example, don't return
any matches where confidence in matches is less than 70%.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Image (p. 79)
Provides the source image either as bytes or an S3 object.

For Amazon Rekognition to process an S3 object, the user must have permission to access the S3
object. For more information, see Resource-Based Policies (p. 111).

79

Amazon Rekognition Developer Guide
SearchFacesByImage

Type: Image (p. 97) object

Required: Yes

MaxFaces (p. 79)
Maximum number of faces to return. The operation returns the maximum number of faces with the
highest confidence in the match.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 4096.

Required: No

Response Syntax

{
 "FaceMatches": [
 {
 "Face": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Confidence": number,
 "ExternalImageId": "string",
 "FaceId": "string",
 "ImageId": "string"
 },
 "Similarity": number
 }
],
 "SearchedFaceBoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "SearchedFaceConfidence": number
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

FaceMatches (p. 80)
An array of faces that match the input face, along with the confidence in the match.

Type: array of FaceMatch (p. 94) objects

SearchedFaceBoundingBox (p. 80)
The bounding box around the face in the input image that Amazon Rekognition used for the
search.

Type: BoundingBox (p. 84) object

SearchedFaceConfidence (p. 80)
The level of confidence that the searchedFaceBoundingBox, contains a face.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

80

Amazon Rekognition Developer Guide
Data Types

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400

ImageTooLargeException
The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 33).

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500

InvalidImageFormatException
The provided image format is not supported.

HTTP Status Code: 400

InvalidParameterException
Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

InvalidS3ObjectException
Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400

ProvisionedThroughputExceededException
The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

ResourceNotFoundException
Collection specified in the request is not found.

HTTP Status Code: 400

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Data Types
The following data types are supported:

• Beard (p. 83)

• BoundingBox (p. 84)

• ComparedFace (p. 85)

• ComparedSourceImageFace (p. 86)

• CompareFacesMatch (p. 87)

• Emotion (p. 88)

• Eyeglasses (p. 89)

• EyeOpen (p. 90)

• Face (p. 91)

• FaceDetail (p. 92)

• FaceMatch (p. 94)

• FaceRecord (p. 95)

81

Amazon Rekognition Developer Guide
Data Types

• Gender (p. 96)

• Image (p. 97)

• ImageQuality (p. 98)

• Label (p. 99)

• Landmark (p. 100)

• MouthOpen (p. 101)

• Mustache (p. 102)

• Pose (p. 103)

• S3Object (p. 104)

• Smile (p. 105)

• Sunglasses (p. 106)

82

Amazon Rekognition Developer Guide
Beard

Beard
Indicates whether or not the face has a beard, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Value
Boolean value that indicates whether the face has beard or not.

Type: Boolean

Required: No

83

Amazon Rekognition Developer Guide
BoundingBox

BoundingBox
Identifies the bounding box around the object or face. The left (x-coordinate) and top (y-coordinate)
are coordinates representing the top and left sides of the bounding box. Note that the upper-left corner
of the image is the origin (0,0).

The top and left values returned are ratios of the overall image size. For example, if the input image
is 700x200 pixels, and the top-left coordinate of the bounding box is 350x50 pixels, the API returns a
left value of 0.5 (350/700) and a top value of 0.25 (50/200).

The width and height values represent the dimensions of the bounding box as a ratio of the overall
image dimension. For example, if the input image is 700x200 pixels, and the bounding box width is 70
pixels, the width returned is 0.1.

Note
The bounding box coordinates can have negative values. For example, if Amazon Rekognition
is able to detect a face that is at the image edge and is only partially visible, the service can
return coordinates that are outside the image bounds and, depending on the image edge, you
might get negative values or values greater than 1 for the left or top values.

Contents

Height
Height of the bounding box as a ratio of the overall image height.

Type: Float

Required: No

Left
Left coordinate of the bounding box as a ratio of overall image width.

Type: Float

Required: No

Top
Top coordinate of the bounding box as a ratio of overall image height.

Type: Float

Required: No

Width
Width of the bounding box as a ratio of the overall image width.

Type: Float

Required: No

84

Amazon Rekognition Developer Guide
ComparedFace

ComparedFace
Provides face metadata (bounding box and confidence that the bounding box actually contains a face).

Contents

BoundingBox
Identifies the bounding box around the object or face. The left (x-coordinate) and top (y-
coordinate) are coordinates representing the top and left sides of the bounding box. Note that the
upper-left corner of the image is the origin (0,0).

The top and left values returned are ratios of the overall image size. For example, if the input
image is 700x200 pixels, and the top-left coordinate of the bounding box is 350x50 pixels, the API
returns a left value of 0.5 (350/700) and a top value of 0.25 (50/200).

The width and height values represent the dimensions of the bounding box as a ratio of the
overall image dimension. For example, if the input image is 700x200 pixels, and the bounding box
width is 70 pixels, the width returned is 0.1.

Note
The bounding box coordinates can have negative values. For example, if Amazon
Rekognition is able to detect a face that is at the image edge and is only partially visible,
the service can return coordinates that are outside the image bounds and, depending on
the image edge, you might get negative values or values greater than 1 for the left or
top values.

Type: BoundingBox (p. 84) object

Required: No

Confidence
Level of confidence that what the bounding box contains is a face.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

85

Amazon Rekognition Developer Guide
ComparedSourceImageFace

ComparedSourceImageFace
Type that describes the face Amazon Rekognition chose to compare with the faces in the target. This
contains a bounding box for the selected face and confidence level that the bounding box contains a
face. Note that Amazon Rekognition selects the largest face in the source image for this comparison.

Contents

BoundingBox
Identifies the bounding box around the object or face. The left (x-coordinate) and top (y-
coordinate) are coordinates representing the top and left sides of the bounding box. Note that the
upper-left corner of the image is the origin (0,0).

The top and left values returned are ratios of the overall image size. For example, if the input
image is 700x200 pixels, and the top-left coordinate of the bounding box is 350x50 pixels, the API
returns a left value of 0.5 (350/700) and a top value of 0.25 (50/200).

The width and height values represent the dimensions of the bounding box as a ratio of the
overall image dimension. For example, if the input image is 700x200 pixels, and the bounding box
width is 70 pixels, the width returned is 0.1.

Note
The bounding box coordinates can have negative values. For example, if Amazon
Rekognition is able to detect a face that is at the image edge and is only partially visible,
the service can return coordinates that are outside the image bounds and, depending on
the image edge, you might get negative values or values greater than 1 for the left or
top values.

Type: BoundingBox (p. 84) object

Required: No

Confidence
Confidence level that the selected bounding box contains a face.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

86

Amazon Rekognition Developer Guide
CompareFacesMatch

CompareFacesMatch
For the provided the bounding box, confidence level that the bounding box actually contains a face,
and the similarity between the face in the bounding box and the face in the source image.

Contents

Face
Provides face metadata (bounding box and confidence that the bounding box actually contains a
face).

Type: ComparedFace (p. 85) object

Required: No

Similarity
Level of confidence that the faces match.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

87

Amazon Rekognition Developer Guide
Emotion

Emotion
The emotions detected on the face, and the confidence level in the determination. For example,
HAPPY, SAD, and ANGRY.

Contents

Confidence
Level of confidence in the determination.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Type
Type of emotion detected.

Type: String

Valid Values: HAPPY | SAD | ANGRY | CONFUSED | DISGUSTED | SURPRISED | CALM |
UNKNOWN

Required: No

88

Amazon Rekognition Developer Guide
Eyeglasses

Eyeglasses
Indicates whether or not the face is wearing eye glasses, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Value
Boolean value that indicates whether the face is wearing eye glasses or not.

Type: Boolean

Required: No

89

Amazon Rekognition Developer Guide
EyeOpen

EyeOpen
Indicates whether or not the eyes on the face are open, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Value
Boolean value that indicates whether the eyes on the face are open.

Type: Boolean

Required: No

90

Amazon Rekognition Developer Guide
Face

Face
Describes the face properties such as the bounding box, face ID, image ID of the source image, and
external image ID that you assigned.

Contents

BoundingBox
Identifies the bounding box around the object or face. The left (x-coordinate) and top (y-
coordinate) are coordinates representing the top and left sides of the bounding box. Note that the
upper-left corner of the image is the origin (0,0).

The top and left values returned are ratios of the overall image size. For example, if the input
image is 700x200 pixels, and the top-left coordinate of the bounding box is 350x50 pixels, the API
returns a left value of 0.5 (350/700) and a top value of 0.25 (50/200).

The width and height values represent the dimensions of the bounding box as a ratio of the
overall image dimension. For example, if the input image is 700x200 pixels, and the bounding box
width is 70 pixels, the width returned is 0.1.

Note
The bounding box coordinates can have negative values. For example, if Amazon
Rekognition is able to detect a face that is at the image edge and is only partially visible,
the service can return coordinates that are outside the image bounds and, depending on
the image edge, you might get negative values or values greater than 1 for the left or
top values.

Type: BoundingBox (p. 84) object

Required: No

Confidence
Confidence level that the bounding box contains a face (and not a different object such as a tree).

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

ExternalImageId
Identifier that you assign to all the faces in the input image.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-:]+

Required: No

FaceId
Unique identifier that Amazon Rekognition assigns to the face.

Type: String

Pattern: [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Required: No

ImageId
Unique identifier that Amazon Rekognition assigns to the source image.

Type: String

Pattern: [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Required: No

91

Amazon Rekognition Developer Guide
FaceDetail

FaceDetail
Structure containing attributes of the face that the algorithm detected.

Contents

Beard
Indicates whether or not the face has a beard, and the confidence level in the determination.

Type: Beard (p. 83) object

Required: No

BoundingBox
Bounding box of the face.

Type: BoundingBox (p. 84) object

Required: No

Confidence
Confidence level that the bounding box contains a face (and not a different object such as a tree).

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Emotions
The emotions detected on the face, and the confidence level in the determination. For example,
HAPPY, SAD, and ANGRY.

Type: array of Emotion (p. 88) objects

Required: No

Eyeglasses
Indicates whether or not the face is wearing eye glasses, and the confidence level in the
determination.

Type: Eyeglasses (p. 89) object

Required: No

EyesOpen
Indicates whether or not the eyes on the face are open, and the confidence level in the
determination.

Type: EyeOpen (p. 90) object

Required: No

Gender
Gender of the face and the confidence level in the determination.

Type: Gender (p. 96) object

Required: No

Landmarks
Indicates the location of the landmark on the face.

Type: array of Landmark (p. 100) objects

Required: No

MouthOpen
Indicates whether or not the mouth on the face is open, and the confidence level in the
determination.

Type: MouthOpen (p. 101) object

Required: No

Mustache
Indicates whether or not the face has a mustache, and the confidence level in the determination.

Type: Mustache (p. 102) object

92

Amazon Rekognition Developer Guide
FaceDetail

Required: No

Pose
Indicates the pose of the face as determined by pitch, roll, and the yaw.

Type: Pose (p. 103) object

Required: No

Quality
Identifies image brightness and sharpness.

Type: ImageQuality (p. 98) object

Required: No

Smile
Indicates whether or not the face is smiling, and the confidence level in the determination.

Type: Smile (p. 105) object

Required: No

Sunglasses
Indicates whether or not the face is wearing sunglasses, and the confidence level in the
determination.

Type: Sunglasses (p. 106) object

Required: No

93

Amazon Rekognition Developer Guide
FaceMatch

FaceMatch
Provides face metadata. In addition, it also provides the confidence in the match of this face with the
input face.

Contents

Face
Describes the face properties such as the bounding box, face ID, image ID of the source image,
and external image ID that you assigned.

Type: Face (p. 91) object

Required: No

Similarity
Confidence in the match of this face with the input face.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

94

Amazon Rekognition Developer Guide
FaceRecord

FaceRecord
Object containing both the face metadata (stored in the back-end database) and facial attributes that
are detected but aren't stored in the database.

Contents

Face
Describes the face properties such as the bounding box, face ID, image ID of the source image,
and external image ID that you assigned.

Type: Face (p. 91) object

Required: No

FaceDetail
Structure containing attributes of the face that the algorithm detected.

Type: FaceDetail (p. 92) object

Required: No

95

Amazon Rekognition Developer Guide
Gender

Gender
Gender of the face and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Value
Gender of the face.

Type: String

Valid Values: MALE | FEMALE

Required: No

96

Amazon Rekognition Developer Guide
Image

Image
Provides the source image either as bytes or an S3 object.

For Amazon Rekognition to process an S3 object, the user must have permission to access the S3
object. For more information, see Resource-Based Policies (p. 111).

Contents

Bytes
Blob of image bytes up to 5 MBs.

Type: Base64-encoded binary data

Length Constraints: Minimum length of 1. Maximum length of 5242880.

Required: No

S3Object
Identifies an S3 object as the image source.

Type: S3Object (p. 104) object

Required: No

97

Amazon Rekognition Developer Guide
ImageQuality

ImageQuality
Identifies image brightness and sharpness.

Contents

Brightness
Value representing brightness of the face. The service returns a value between 0 and 1 (inclusive).

Type: Float

Required: No

Sharpness
Value representing sharpness of the face.

Type: Float

Required: No

98

Amazon Rekognition Developer Guide
Label

Label
Structure containing details about the detected label, including bounding box, name, and level of
confidence.

Contents

Confidence
Level of confidence.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Name
The name (label) of the object.

Type: String

Required: No

99

Amazon Rekognition Developer Guide
Landmark

Landmark
Indicates the location of the landmark on the face.

Contents

Type
Type of the landmark.

Type: String

Valid Values: EYE_LEFT | EYE_RIGHT | NOSE | MOUTH_LEFT | MOUTH_RIGHT
| LEFT_EYEBROW_LEFT | LEFT_EYEBROW_RIGHT | LEFT_EYEBROW_UP |
RIGHT_EYEBROW_LEFT | RIGHT_EYEBROW_RIGHT | RIGHT_EYEBROW_UP |
LEFT_EYE_LEFT | LEFT_EYE_RIGHT | LEFT_EYE_UP | LEFT_EYE_DOWN |
RIGHT_EYE_LEFT | RIGHT_EYE_RIGHT | RIGHT_EYE_UP | RIGHT_EYE_DOWN |
NOSE_LEFT | NOSE_RIGHT | MOUTH_UP | MOUTH_DOWN | LEFT_PUPIL | RIGHT_PUPIL

Required: No

X
x-coordinate from the top left of the landmark expressed as the ration of the width of the image.
For example, if the images is 700x200 and the x-coordinate of the landmark is at 350 pixels, this
value is 0.5.

Type: Float

Required: No

Y
y-coordinate from the top left of the landmark expressed as the ration of the height of the image.
For example, if the images is 700x200 and the y-coordinate of the landmark is at 100 pixels, this
value is 0.5.

Type: Float

Required: No

100

Amazon Rekognition Developer Guide
MouthOpen

MouthOpen
Indicates whether or not the mouth on the face is open, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Value
Boolean value that indicates whether the mouth on the face is open or not.

Type: Boolean

Required: No

101

Amazon Rekognition Developer Guide
Mustache

Mustache
Indicates whether or not the face has a mustache, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Value
Boolean value that indicates whether the face has mustache or not.

Type: Boolean

Required: No

102

Amazon Rekognition Developer Guide
Pose

Pose
Indicates the pose of the face as determined by pitch, roll, and the yaw.

Contents

Pitch
Value representing the face rotation on the pitch axis.

Type: Float

Valid Range: Minimum value of -180. Maximum value of 180.

Required: No

Roll
Value representing the face rotation on the roll axis.

Type: Float

Valid Range: Minimum value of -180. Maximum value of 180.

Required: No

Yaw
Value representing the face rotation on the yaw axis.

Type: Float

Valid Range: Minimum value of -180. Maximum value of 180.

Required: No

103

Amazon Rekognition Developer Guide
S3Object

S3Object
Provides the S3 bucket name and object name.

For Amazon Rekognition to process an S3 object, the user must have permission to access the S3
object. For more information, see Resource-Based Policies (p. 111).

Contents

Bucket
Name of the S3 bucket.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 255.

Pattern: [0-9A-Za-z\.\-_]*

Required: No

Name
S3 object key name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No

Version
If the bucket is versioning enabled, you can specify the object version.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No

104

Amazon Rekognition Developer Guide
Smile

Smile
Indicates whether or not the face is smiling, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Value
Boolean value that indicates whether the face is smiling or not.

Type: Boolean

Required: No

105

Amazon Rekognition Developer Guide
Sunglasses

Sunglasses
Indicates whether or not the face is wearing sunglasses, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Value
Boolean value that indicates whether the face is wearing sunglasses or not.

Type: Boolean

Required: No

106

Amazon Rekognition Developer Guide
Authentication

Authentication and Access Control
for Amazon Rekognition

Access to Amazon Rekognition requires credentials. Those credentials must have permissions to
access AWS resources, such as an Amazon Rekognition collection. The following sections provide
details on how you can use AWS Identity and Access Management (IAM) and Amazon Rekognition to
help secure access to your resources.

• Authentication (p. 107)

• Access Control (p. 108)

Authentication
You can access AWS as any of the following types of identities:

• AWS account root user – When you sign up for AWS, you provide an email address and password
that is associated with your AWS account. These are your root credentials and they provide
complete access to all of your AWS resources.

Important
For security reasons, we recommend that you use the root credentials only to create
an administrator user, which is an IAM user with full permissions to your AWS account.
Then, you can use this administrator user to create other IAM users and roles with limited
permissions. For more information, see IAM Best Practices and Creating an Admin User
and Group in the IAM User Guide.

• IAM user – An IAM user is simply an identity within your AWS account that has specific custom
permissions (for example, permissions to create a collection in Amazon Rekognition). You can use
an IAM user name and password to sign in to secure AWS webpages like the AWS Management
Console, AWS Discussion Forums, or the AWS Support Center.

In addition to a user name and password, you can also generate access keys for each user. You
can use these keys when you access AWS services programmatically, either through one of the

107

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/tools/

Amazon Rekognition Developer Guide
Access Control

several SDKs or by using the AWS Command Line Interface (CLI). The SDK and CLI tools use the
access keys to cryptographically sign your request. If you don’t use the AWS tools, you must sign the
request yourself. Amazon Rekognition supports Signature Version 4, a protocol for authenticating
inbound API requests. For more information about authenticating requests, see Signature Version 4
Signing Process in the AWS General Reference.

• IAM role – An IAM role is another IAM identity you can create in your account that has specific
permissions. It is similar to an IAM user, but it is not associated with a specific person. An IAM
role enables you to obtain temporary access keys that can be used to access AWS services and
resources. IAM roles with temporary credentials are useful in the following situations:

• Federated user access – Instead of creating an IAM user, you can use preexisting user identities
from AWS Directory Service, your enterprise user directory, or a web identity provider. These are
known as federated users. AWS assigns a role to a federated user when access is requested
through an identity provider. For more information about federated users, see Federated Users
and Roles in the IAM User Guide.

• Cross-account access – You can use an IAM role in your account to grant another AWS account
permissions to access your account’s resources. For an example, see Tutorial: Delegate Access
Across AWS Accounts Using IAM Roles in the IAM User Guide.

• AWS service access – You can use an IAM role in your account to grant an AWS service
permissions to access your account’s resources. For example, you can create a role that allows
Amazon Redshift to access an Amazon S3 bucket on your behalf and then load data stored in the
bucket into an Amazon Redshift cluster. For more information, see Creating a Role to Delegate
Permissions to an AWS Service in the IAM User Guide.

• Applications running on Amazon EC2 – Instead of storing access keys within the EC2 instance
for use by applications running on the instance and making AWS API requests, you can use an
IAM role to manage temporary credentials for these applications. To assign an AWS role to an
EC2 instance and make it available to all of its applications, you can create an instance profile that
is attached to the instance. An instance profile contains the role and enables programs running
on the EC2 instance to get temporary credentials. For more information, see Using Roles for
Applications on Amazon EC2 in the IAM User Guide.

Access Control
You can have valid credentials to authenticate your requests, but unless you have permissions you
cannot create or access Amazon Rekognition resources. For example, you must have permissions to
create an Amazon Rekognition collection.

The following sections describe how to manage permissions for Amazon Rekognition. We recommend
that you read the overview first.

• Overview of Managing Access Permissions to Your Amazon Rekognition Resources (p. 109)

• Using Identity-Based Policies (IAM Policies) for Amazon Rekognition (p. 112)

• Amazon Rekognition API Permissions: Actions, Permissions, and Resources Reference (p. 115)

108

https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon Rekognition Developer Guide
Overview of Managing Access

Overview of Managing Access Permissions to
Your Amazon Rekognition Resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource
are governed by permissions policies. An account administrator can attach permissions policies to IAM
identities (that is, users, groups, and roles), and some services (such as AWS Lambda) also support
attaching permissions policies to resources.

Note
An account administrator (or administrator user) is a user with administrator privileges. For
more information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you decide who is getting the permissions, the resources they get
permissions for, and the specific actions that you want to allow on those resources.

Topics

• Amazon Rekognition Resources and Operations (p. 109)

• Understanding Resource Ownership (p. 109)

• Managing Access to Resources (p. 110)

• Specifying Policy Elements: Actions, Effects, and Principals (p. 111)

• Specifying Conditions in a Policy (p. 112)

Amazon Rekognition Resources and Operations
In Amazon Rekognition, the primary resource is a collection. In a policy, you use an Amazon Resource
Name (ARN) to identify the resource that the policy applies to.

These resources have unique Amazon Resource Names (ARNs) associated with them, as shown in
the following table.

Resource Type ARN Format

Collection ARN arn:aws:rekognition:region:account-id:collection/
collection-id

Amazon Rekognition provides a set of operations to work with Amazon Rekognition resources. For a
list of available operations, see Amazon Rekognition Amazon Rekognition API Permissions: Actions,
Permissions, and Resources Reference (p. 115).

Understanding Resource Ownership
The AWS account owns the resources that are created in the account, regardless of who created the
resources. Specifically, the resource owner is the AWS account of the principal entity (that is, the root
account or an IAM user) that authenticates the resource creation request. The following examples
illustrate how this works:

• If you use the root account credentials of your AWS account to create a collection, your AWS
account is the owner of the resource (in Amazon Rekognition, the resource is a collection).

• If you create an IAM user in your AWS account and grant permissions to create a collection to that
user, the user can create a collection. However, your AWS account, to which the user belongs, owns
the collection resource.

109

http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

Amazon Rekognition Developer Guide
Managing Access to Resources

Managing Access to Resources
A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note
This section discusses using IAM in the context of Amazon Rekognition. It doesn't provide
detailed information about the IAM service. For complete IAM documentation, see What Is
IAM? in the IAM User Guide. For information about IAM policy syntax and descriptions, see
AWS IAM Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and policies
attached to a resource are referred to as resource-based policies. Amazon Rekognition supports
identity-based policies.

Topics

• Identity-Based Policies (IAM Policies) (p. 110)

• Resource-Based Policies (p. 111)

Identity-Based Policies (IAM Policies)

You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – To grant a user permissions
to create an Amazon Rekognition resource, such as a collection, you can attach a permissions policy
to a user or group that the user belongs to.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach an
identity-based permissions policy to an IAM role to grant cross-account permissions. For example,
the administrator in account A can create a role to grant cross-account permissions to another AWS
account (for example, account B) or an AWS service as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in account A.

2. Account A administrator attaches a trust policy to the role identifying account B as the principal
who can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in
account B. Doing this allows users in account B to create or access resources in account A. The
principal in the trust policy can also be an AWS service principal if you want to grant an AWS
service permissions to assume the role.

For more information about using IAM to delegate permissions, see Access Management in the IAM
User Guide.

The following is an example policy that lists all collections.

"Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowsListCollectionAction",
 "Effect": "Allow",
 "Action": [
 "rekognition:ListCollections"
],
 "Resource": "*"
 }
]

110

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon Rekognition Developer Guide
Specifying Policy Elements:

Actions, Effects, and Principals

}

For more information about using identity-based policies with Amazon Rekognition, see Using Identity-
Based Policies (IAM Policies) for Amazon Rekognition (p. 112). For more information about users,
groups, roles, and permissions, see Identities (Users, Groups, and Roles) in the IAM User Guide.

Resource-Based Policies

Other services, such as Amazon S3, also support resource-based permissions policies. For example,
you can attach a policy to an S3 bucket to manage access permissions to that bucket. Amazon
Rekognition doesn't support resource-based policies.

To access images stored in an Amazon S3 bucket, you must have permission to access object in the
S3 bucket. With this permission, Amazon Rekognition can download images from the S3 bucket. The
following example policy allows the user to perform the s3:GetObject action on the S3 bucket named
Tests3bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": [
 "arn:aws:s3:::Tests3bucket"
]
 }
]
}

Specifying Policy Elements: Actions, Effects, and
Principals
For each Amazon Rekognition resource, the service defines a set of API operations. To grant
permissions for these API operations, Amazon Rekognition defines a set of actions that you can
specify in a policy. Some API operations can require permissions for more than one action in order to
perform the API operation. For more information about resources and API operations, see Amazon
Rekognition Resources and Operations (p. 109) and Amazon Rekognition Amazon Rekognition API
Permissions: Actions, Permissions, and Resources Reference (p. 115).

The following are the most basic policy elements:

• Resource – You use an Amazon Resource Name (ARN) to identify the resource that the policy
applies to. For more information, see Amazon Rekognition Resources and Operations (p. 109).

• Action – You use action keywords to identify resource operations that you want to allow or deny. For
example, you can use ListCollections to list collections.

• Effect – You specify the effect, either allow or deny, when the user requests the specific action.
If you don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also
explicitly deny access to a resource, which you might do to make sure that a user cannot access it,
even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other entity

111

http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

Amazon Rekognition Developer Guide
Specifying Conditions in a Policy

that you want to receive permissions (applies to resource-based policies only). Amazon Rekognition
doesn't support resource-based policies.

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM
User Guide.

For a list showing all of the Amazon Rekognition API operations and the resources that they apply to,
see Amazon Rekognition API Permissions: Actions, Permissions, and Resources Reference (p. 115).

Specifying Conditions in a Policy
When you grant permissions, you can use the access policy language to specify the conditions when a
policy should take effect. For example, you might want a policy to be applied only after a specific date.
For more information about specifying conditions in a policy language, see Condition in the IAM User
Guide.

To express conditions, you use predefined condition keys. There are no condition keys specific to
Amazon Rekognition. However, there are AWS-wide condition keys that you can use as appropriate.
For a complete list of AWS-wide keys, see Available Keys for Conditions in the IAM User Guide.

Using Identity-Based Policies (IAM Policies) for
Amazon Rekognition

This topic provides examples of identity-based policies that demonstrate how an account administrator
can attach permissions policies to IAM identities (that is, users, groups, and roles) and thereby grant
permissions to perform operations on Amazon Rekognition resources.

Important
We recommend that you first review the introductory topics that explain the basic concepts
and options available to manage access to your Amazon Rekognition resources. For more
information, see Overview of Managing Access Permissions to Your Amazon Rekognition
Resources (p. 109).

Topics

• Permissions Required to Use the Amazon Rekognition Console (p. 113)

• AWS Managed (Predefined) Policies for Amazon Rekognition (p. 113)

• Customer Managed Policy Examples (p. 113)

The following shows an example of a permissions policy.

"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rekognition:CompareFaces",
 "rekognition:DetectFaces",
 "rekognition:DetectLabels",
 "rekognition:ListCollections",
 "rekognition:ListFaces",
 "rekognition:SearchFaces",

112

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Rekognition Developer Guide
Permissions Required to Use the

Amazon Rekognition Console

 "rekognition:SearchFacesByImage"
],
 "Resource": "*"
 }
]

This policy example grants read-only access to a user. That is, the user can't list perform write actions
in your account.

For a table showing all of the Amazon Rekognition API operations and the resources that they apply to,
see Amazon Rekognition API Permissions: Actions, Permissions, and Resources Reference (p. 115).

Permissions Required to Use the Amazon
Rekognition Console
Amazon Rekognition does not require any additional permissions when working with the Amazon
Rekognition console.

AWS Managed (Predefined) Policies for Amazon
Rekognition
AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. These AWS managed policies grant necessary permissions for common use
cases so that you can avoid having to investigate what permissions are needed. For more information,
see AWS Managed Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
Amazon Rekognition:

• AmazonRekognitionFullAccess – Grants full access to Amazon Rekognition resources including
creating and deleting collections.

• AmazonRekognitionReadWriteAcces – Grants read and write access to Amazon Rekognition
resources except creating and deleting collections.

• AmazonRekognitionReadOnlyAccess – Grants read-only access to Amazon Rekognition
resources.

Note
You can review these permissions policies by signing in to the IAM console and searching for
specific policies there.
These policies work when you are using AWS SDKs or the AWS CLI.

You can also create your own custom IAM policies to allow permissions for Amazon Rekognition
actions and resources. You can attach these custom policies to the IAM users or groups that require
those permissions.

Customer Managed Policy Examples
In this section, you can find example user policies that grant permissions for various Amazon
Rekognition actions. These policies work when you are using AWS SDKs or the AWS CLI. When
you are using the console, you need to grant additional permissions specific to the console, which is
discussed in Permissions Required to Use the Amazon Rekognition Console (p. 113).

113

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Rekognition Developer Guide
Customer Managed Policy Examples

Note
All examples use the us-west-2 region and contain fictitious account IDs.

Examples

• Example 1: Allow a User Read-Only Access to Resources (p. 114)

• Example 2: Allow a User Full Access to Resources (p. 114)

Example 1: Allow a User Read-Only Access to Resources

The following example grants read-only access to Amazon Rekognition resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rekognition:CompareFaces",
 "rekognition:DetectFaces",
 "rekognition:DetectLabels",
 "rekognition:ListCollections",
 "rekognition:ListFaces",
 "rekognition:SearchFaces",
 "rekognition:SearchFacesByImage"
],
 "Resource": "*"
 }
]
}

Example 2: Allow a User Full Access to Resources

The following example grants full access to Amazon Rekognition resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rekognition:CompareFaces",
 "rekognition:CreateCollection,
 "rekognition:DeleteCollection",
 "rekognition:DeleteFaces",
 "rekognition:DetectFaces",
 "rekognition:DetectLabels",
 "rekognition:IndexFaces",
 "rekognition:ListCollections",
 "rekognition:ListFaces",
 "rekognition:SearchFaces",
 "rekognition:SearchFacesByImage"
],
 "Resource": "*"
 }
]

114

Amazon Rekognition Developer Guide
Amazon Rekognition API Permissions Reference

}

Amazon Rekognition API Permissions: Actions,
Permissions, and Resources Reference

When you are setting up Access Control (p. 108) and writing a permissions policy that you can
attach to an IAM identity (identity-based policies), you can use the following list as a reference. The list
includes each Amazon Rekognition API operation, the corresponding actions for which you can grant
permissions to perform the action, and the AWS resource for which you can grant the permissions.
You specify the actions in the policy's Action field, and you specify the resource value in the policy's
Resource field.

You can use AWS-wide condition keys in your Amazon Rekognition policies to express conditions. For
a complete list of AWS-wide keys, see Available Keys in the IAM User Guide.

Note
To specify an action, use the rekognition prefix followed by the API operation name (for
example, rekognition:DeleteCollection).

Amazon Rekognition API and Required Permissions for Actions

API Operation: CompareFaces
Required Permissions (API Action): rekognition:CompareFaces

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

API Operation: CreateCollection
Required Permissions (API Action): rekognition:CreateCollection

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

API Operation: DeleteCollection
Required Permissions (API Action): rekognition:DeleteCollection

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

API Operation: DeleteFaces
Required Permissions (API Action): rekognition:DeleteFaces

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

API Operation: DetectFaces
Required Permissions (API Action): rekognition:DetectFaces

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

API Operation: IndexFaces
Required Permissions (API Action): rekognition:IndexFaces

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

API Operation: ListCollections
Required Permissions (API Action): rekognition:ListCollections

Resources: arn:aws:rekognition:region:account-id:*

API Operation: ListFaces
Required Permissions (API Action): rekognition:ListFaces

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

115

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Rekognition Developer Guide
Amazon Rekognition API Permissions Reference

API Operation: SearchFaces
Required Permissions (API Action): rekognition:SearchFaces

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

API Operation: SearchFacesByImage
Required Permissions (API Action): rekognition:SearchFacesByImage

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

116

Amazon Rekognition Developer Guide

Document History for Amazon
Rekognition

The following table describes the documentation for this release of Amazon Rekognition.

• API version: 2016-06-27

• Latest documentation update: November 30, 2016

Change Description Date

New service and guide This is the initial release of
the image analysis service,
Amazon Rekognition, and the
Amazon Rekognition Developer
Guide.

November 30, 2016

117

Amazon Rekognition Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

118

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Rekognition
	Table of Contents
	What Is Amazon Rekognition?
	Are You a First-Time Amazon Rekognition User?

	Amazon Rekognition: How It Works
	Non-Storage API Operations: Detecting Faces and Labels, and Comparing Faces
	Detecting Labels and Faces
	Detecting Labels
	Detecting Faces

	Comparing Faces

	Storage-Based API Operations: Storing Faces and Searching Face Matches
	Managing Face Collections
	Storing Faces In a Face Collection: The IndexFaces Operation
	Searching Faces In a Face Collection

	Getting Started with Amazon Rekognition
	Step 1: Set Up an AWS Account and Create an Administrator User
	Sign up for AWS
	Create an IAM User
	Next Step

	Step 2: Set Up the AWS Command Line Interface (AWS CLI)
	Next Step

	Getting Started Using the Amazon Rekognition Console
	Exercise 1: Detect Objects and Scenes in an Image (Console)
	Detect Objects and Scenes in an Image You Provide

	Exercise 2: Analyze Faces in an Image (Console)
	Analyze Faces in an Image You Provide

	Exercise 3: Compare Faces in Images (Console)
	Compare Faces in an Image You Provide

	Step 4: Getting Started Using API
	Exercise 1: Detect Labels in an Image (API)
	Exercise 2: Detect Faces (API)
	Exercise 3: Compare Faces (API)

	Limits in Amazon Rekognition
	Additional Amazon Rekognition Examples
	Example 1: Managing Collections
	Creating, Listing, and Deleting Collections: Using the AWS CLI
	Creating, Listing, and Deleting Face Collections: Using the AWS SDK for Java

	Example 2: Storing Faces
	Storing Faces: Using the AWS CLI
	Storing Faces: Using the AWS SDK for Java

	Example 3: Searching Faces
	Searching Faces: Using the AWS CLI
	Searching Faces: Using the AWS SDK for Java

	API Reference
	Actions
	CompareFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	CreateCollection
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	DeleteCollection
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	DeleteFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	DetectFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	DetectLabels
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	IndexFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	ListCollections
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	ListFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	SearchFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	SearchFacesByImage
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors

	Data Types
	Beard
	Contents

	BoundingBox
	Contents

	ComparedFace
	Contents

	ComparedSourceImageFace
	Contents

	CompareFacesMatch
	Contents

	Emotion
	Contents

	Eyeglasses
	Contents

	EyeOpen
	Contents

	Face
	Contents

	FaceDetail
	Contents

	FaceMatch
	Contents

	FaceRecord
	Contents

	Gender
	Contents

	Image
	Contents

	ImageQuality
	Contents

	Label
	Contents

	Landmark
	Contents

	MouthOpen
	Contents

	Mustache
	Contents

	Pose
	Contents

	S3Object
	Contents

	Smile
	Contents

	Sunglasses
	Contents

	Authentication and Access Control for Amazon Rekognition
	Authentication
	Access Control
	Overview of Managing Access Permissions to Your Amazon Rekognition Resources
	Amazon Rekognition Resources and Operations
	Understanding Resource Ownership
	Managing Access to Resources
	Identity-Based Policies (IAM Policies)
	Resource-Based Policies

	Specifying Policy Elements: Actions, Effects, and Principals
	Specifying Conditions in a Policy

	Using Identity-Based Policies (IAM Policies) for Amazon Rekognition
	Permissions Required to Use the Amazon Rekognition Console
	AWS Managed (Predefined) Policies for Amazon Rekognition
	Customer Managed Policy Examples
	Example 1: Allow a User Read-Only Access to Resources
	Example 2: Allow a User Full Access to Resources

	Amazon Rekognition API Permissions: Actions, Permissions, and Resources Reference

	Document History for Amazon Rekognition
	AWS Glossary

