
AWS X-Ray
Developer Guide

AWS X-Ray Developer Guide

AWS X-Ray Developer Guide

AWS X-Ray: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS X-Ray Developer Guide

Table of Contents
What is AWS X-Ray? .. 1
Using X-Ray .. 2

Supported Languages and Frameworks ... 2
Supported AWS Services ... 3
Code and Configuration Changes .. 4

Getting Started with AWS X-Ray ... 5
Prerequisites .. 6
Deploy to Elastic Beanstalk and Generate Trace Data .. 6
View the Service Graph in the X-Ray Console .. 7
Explore the Sample Application ... 8
Clean Up ... 12
Next Steps ... 12

Concepts ... 13
Segments ... 13
Subsegments .. 14
Service Graph .. 14
Traces ... 14
Sampling .. 14
Tracing Header ... 14
Filter Expressions .. 15

The AWS X-Ray Console ... 16
Viewing the Service Map .. 16
Using Filter Expressions ... 18
Deep Linking .. 19

The AWS X-Ray API ... 21
Using the AWS X-Ray API with the AWS CLI .. 21

Prerequisites .. 22
Generate Trace Data ... 22
Use the X-Ray API .. 22
Cleanup ... 25

Uploading Segment Documents ... 26
Sending Segment Documents to the X-Ray Daemon .. 27
Segment Documents ... 27

Segment Fields ... 28
Subsegments .. 30
HTTP Request Data .. 33
Annotations .. 35
Metadata .. 36
AWS Resource Data ... 37
Errors and Exceptions .. 39
SQL Queries .. 40

Working with Java ... 42
Requirements ... 43
Dependency Management .. 43
Configuration .. 45

Service Plugins ... 45
Sampling Rules ... 46
Logging ... 48

Sample Application .. 48
Manually Instrumenting AWS SDK Clients ... 51
Creating Additional Subsegments .. 51
Instrumenting Outgoing HTTP Calls ... 51
Instrumenting Calls to a PostgreSQL Database .. 52

Incoming Requests .. 54
Adding a Tracing Filter to your Application .. 55

iv

AWS X-Ray Developer Guide

Configuring a Segment Naming Strategy .. 56
AWS SDK Clients ... 57
Outgoing HTTP Calls ... 58
SQL Queries .. 60
Custom Subsegments .. 62

Working with Node.js ... 64
Requirements ... 64
Dependency Management .. 65
Configuration .. 65

Service Plugins ... 66
Sampling Rules ... 66

Incoming Requests .. 67
AWS SDK Clients ... 68
Outgoing HTTP Calls ... 69
SQL Queries .. 70
Custom Subsegments .. 70

Working with .NET ... 73
Requirements ... 73
Adding the X-Ray SDK for .NET to Your Application ... 74
Configuration .. 74

Plugins .. 74
Sampling Rules ... 74

Incoming Requests .. 75
AWS SDK Clients ... 77
Outgoing HTTP Calls ... 78
SQL Queries .. 79
Custom Subsegments .. 80

The X-Ray Daemon ... 82
Giving the Daemon Permission to Send Data to X-Ray ... 83
X-Ray Daemon Logs ... 84
Configuring the Daemon ... 84
Run the Daemon Locally .. 85

Running the X-Ray Daemon on Linux .. 86
Running the X-Ray Daemon on Windows ... 86

On Elastic Beanstalk ... 87
Using Elastic Beanstalk's X-Ray Integration to Run the X-Ray Daemon 87
Downloading and Running the X-Ray Daemon Manually (Advanced) 88

On Amazon EC2 ... 90
On Amazon ECS .. 91

Integrating AWS X-Ray with AWS Services ... 93
Elastic Load Balancing ... 93
Amazon API Gateway .. 93
Amazon Elastic Compute Cloud .. 94
AWS Elastic Beanstalk ... 94

v

AWS X-Ray Developer Guide

What is AWS X-Ray?

AWS X-Ray is a service that collects data about requests that your application serves, and provides
tools you can use to view, filter, and gain insights into that data to identify issues and opportunities for
optimization. For any traced client request to your application, you can see detailed information not
only about the request and response, but also about calls that your application makes to downstream
AWS services and HTTP web APIs.

Note
This is prerelease documentation for a service in preview release. It is subject to change. Sign
up for the preview here.

X-Ray uses data from the AWS resources that power your cloud applications to generate a detailed
service graph that shows the client, your front-end service, and back-end services that your front-
end service calls to process requests and persist data. You can use the service graph to identify
bottlenecks, latency spikes, and other issues that you can solve to improve the performance of your
applications.

The X-Ray SDKs provide interceptors that you can add to your code to trace incoming HTTP
requests, client handlers to instrument AWS SDK clients that your application uses to call other AWS
services, and an HTTP client that you can use to instrument calls to other internal and external HTTP
web services. Some of the SDKs also support instrumenting calls to SQL databases, automatic AWS
SDK client instrumentation, and other features.

Instead of sending trace data directly to X-Ray, the SDKs send JSON segment documents to a
daemon process listening for UDP traffic. The X-Ray daemon (p. 82) buffers segments in a
queue and uploads them to X-Ray in batches. The daemon is available for Linux and Windows and is
included on AWS Elastic Beanstalk platforms.

Use the getting started tutorial (p. 5) to start using X-Ray in just a few minutes with an
instrumented sample application, or keep reading (p. 2) to learn about the languages, frameworks
and services that work with X-Ray.

1

https://aws.amazon.com/x-ray/

AWS X-Ray Developer Guide
Supported Languages and Frameworks

Using AWS X-Ray

Use the X-Ray SDK and AWS service integration to instrument requests to your applications running
on Amazon EC2, Elastic Beanstalk, or Amazon ECS.

To instrument your application code, you can use the X-Ray SDK. The SDK records data about
incoming and outgoing requests and sends it to the X-Ray daemon, which relays the data in batches
to X-Ray. For example, when your application calls DynamoDB to retrieve user information from a
DynamoDB table, the X-Ray SDK records data both the client request and the downstream call to
DynamoDB.

Other AWS services make it easier to instrument your application's components by integrating with X-
Ray. Service integration can include adding tracing headers to incoming requests, sending trace data
to X-Ray, or running the X-Ray daemon. For example, Elastic Beanstalk platforms include the X-Ray
daemon and run it for you.

Many instrumentation scenarios require only configuration changes. For example, you can instrument
all incoming HTTP requests and downstream calls to AWS services that your Java application makes
by adding the X-Ray SDK for Java's filter to your servlet configuration, and taking the AWS SDK
Instrumentor submodule as a build dependency. For advanced instrumentation, you can modify your
application code to customize and annotate the data that the SDK sends to X-Ray.

Sections

• Supported Languages and Frameworks (p. 2)

• Supported AWS Services (p. 3)

• Code and Configuration Changes (p. 4)

Supported Languages and Frameworks
AWS X-Ray provides tools and integration to support a variety of languages, frameworks and
platforms.

Java

In any Java application, you can use the X-Ray SDK for Java classes to instrument incoming requests,
AWS SDK clients, and outgoing HTTP calls. Automatic request instrumentation is available for
frameworks that support Java servlets. Automatic SDK instrumentation is avialable through the AWS
SDK Instrumentor submodule.

See The AWS X-Ray SDK for Java (p. 42) for more information.

2

AWS X-Ray Developer Guide
Supported AWS Services

• Tomcat – Add a servlet filter to your deployment descriptor (web.xml) to instrument incoming
requests.

• Spring Boot – Add a servlet filter to your WebConfig class to instrument incoming requests.

• Other frameworks – Add a servlet filter if your framework supports servlets, or manually create
segments and make sampling decisions on incoming requests if it doesn't.

Node.js

In any Node.js application, you can use the X-Ray SDK for Node.js classes to instrument incoming
requests, AWS SDK clients, and outgoing HTTP calls. Automatic request instrumentation is available
for applications that use the Express framework.

See The X-Ray SDK for Node.js (p. 64) for more information.

• Express – Use the X-Ray SDK for Node.js Express middleware to instrument incoming requests.

• Other frameworks – Manually create segments and make sampling decisions on incoming
requests.

C#

On Windows Server editions other than Windows Server Core, you can use the X-Ray SDK for .NET to
instrument incoming requests, AWS SDK clients, and outgoing HTTP calls.

See The AWS X-Ray SDK for .NET (p. 73) for more information.

• .NET on Windows Server – Add a message handler to your HTTP configuration to instrument
incoming requests.

If the X-Ray SDK is not available for your language or platform, you can generate trace data manually
and send it to the X-Ray daemon, or directly to the X-Ray API (p. 21).

Supported AWS Services
Several AWS services provide X-Ray integration. Integrated services (p. 93) offer varying levels
of integration that can include sampling and adding headers to incoming requests, running the X-Ray
daemon, and automatically sending trace data to X-Ray.

• Active instrumentation – Samples and instruments incoming requests.

• Passive instrumentation – Instruments requests that have been sampled by another service.

• Request tracing – Adds a tracing header to all incoming requests and propagates it downstream.

• Tooling – Runs the AWS X-Ray daemon to receive segments from the X-Ray SDK.

Services with X-Ray integration include:

• Amazon API Gateway – Request tracing. API Gateway passes the trace ID to AWS Lambda and
adds it to the request header for other downstream services.

• Elastic Load Balancing – Request tracing on application load balancers. The application load
balancer adds the trace ID to the request header before sending it to a target group.

• AWS Elastic Beanstalk – Tooling. Elastic Beanstalk includes the X-Ray daemon on the following
platforms:

• Java SE – 2.3.0 and newer configurations

• Tomcat – 2.4.0 and newer configurations

3

AWS X-Ray Developer Guide
Code and Configuration Changes

• Node.js – 3.2.0 and newer configurations

• Windows Server – All configurations other than Windows Server Core released since December
9th, 2016.

You can tell Elastic Beanstalk to run the daemon on the above platforms in the Elastic Beanstalk
console, or by with the XRayEnabled option in the aws:elasticbeanstalk:xray namespace.

Code and Configuration Changes
A large amount of tracing data can be generated without any functional changes to your code. Detailed
tracing of frontend and downstream calls require only minimal changes to build and deploy-time
configuration.

Examples of Code and Configuration Changes

• AWS resource configuration – Run the X-Ray daemon on the instances in your Elastic Beanstalk
environment by changing an option setting.

• Build configuration – Take X-Ray SDK for Java submodules as a compile-time dependency to
instrument all downstream requests to AWS Services and resources such as Amazon DynamoDB
tables, Amazon SQS queues, and Amazon S3 buckets.

• Application configuration – To instrument incoming HTTP requests, add a servlet filter to your
Java application, or use the X-Ray SDK for Node.js as middleware on your Express application.
Change sampling rules and enable plugins to instrument the Amazon EC2, Amazon ECS, and AWS
Elastic Beanstalk resources that run your application.

• Class or object configuration – Import the X-Ray SDK for Java version of HttpClientBuilder
instead of the Apache.org version to instrument outgoing HTTP calls in Java.

• Functional changes – Add a request handler to an AWS SDK client to instrument calls that it
makes to AWS services. Create subsegments to group downstream calls, add debug information to
segments with annotations and metadata.

4

AWS X-Ray Developer Guide

Getting Started with AWS X-Ray

To get started with AWS X-Ray, launch a sample app in Elastic Beanstalk that is already
instrumented (p. 42) to generate trace data. In a few minutes, you can launch the sample
app, generate traffic, send segments to X-Ray, and view a service graph and traces in the AWS
Management Console.

This tutorial uses a sample Java application (p. 48) to generate segments and send them to X-
Ray. The application uses the Spring framework to implement a JSON web API and the AWS SDK for
Java to persist data to Amazon DynamoDB. A servlet filter in the application instruments all incoming
requests served by the application, and a request handler on the AWS SDK client instruments
downstream calls to DynamoDB.

You use the X-Ray console to view the connections among client, server, and DynamoDB in a service
map. The service map is a visual representation of the services that make up your web application,
generated from the trace data that it generates by serving requests.

With the X-Ray SDK for Java, you can trace all of your application's primary and downstream AWS
resources by making two configuration changes:

• Add the X-Ray SDK for Java's tracing filter to your servlet configuration in a WebConfig class or
web.xml file.

• Take the X-Ray SDK for Java's submodules as build dependencies in your Maven or Gradle build
configuration.

You can also access the raw service map and trace data by using the AWS CLI to call the X-Ray
API. The service map and trace data are JSON that you can query to ensure that your application is
sending data, or to check specific fields as part of your test automation.

Sections

• Prerequisites (p. 6)

• Deploy to Elastic Beanstalk and Generate Trace Data (p. 6)

• View the Service Graph in the X-Ray Console (p. 7)

• Explore the Sample Application (p. 8)

• Clean Up (p. 12)

• Next Steps (p. 12)

5

AWS X-Ray Developer Guide
Prerequisites

Prerequisites
This tutorial uses Elastic Beanstalk to create and configure the resources that run the sample
application and X-Ray daemon. If you use an IAM user with limited permissions, add the Elastic
Beanstalk managed user policy to grant your IAM user permission to use Elastic Beanstalk, and one of
the X-Ray managed policies for permission to read the service map and traces in the X-Ray console.

Create an Elastic Beanstalk environment for the sample application. If you haven't used Elastic
Beanstalk before, this will also create a service role and instance profile for your application.

To create an Elastic Beanstalk environment

1. Open the Elastic Beanstalk Management Console with this preconfigured
link: https://console.aws.amazon.com/elasticbeanstalk/#/newApplication?
applicationName=scorekeep&solutionStackName=Java

2. Choose Create application to create an application with an environment running the Java 8 SE
platform.

3. When your environment is ready, the console redirects you to the environment Dashboard.

4. Click the URL at the top of the page to open the site.

The instances in your environment need permission to send data to the AWS X-Ray service.
Additionally, the sample application uses Amazon S3 and DynamoDB. Modify the default Elastic
Beanstalk instance profile to include permissions to use these services.

1. Open the Elastic Beanstalk instance profile in the IAM console: aws-elasticbeanstalk-ec2-role.

2. Choose Attach Policy.

3. Attach AWSXrayFullAccess, AmazonS3FullAccess, and AmazonDynamoDBFullAccess to
the role.

Deploy to Elastic Beanstalk and Generate Trace
Data

Deploy the sample application to your Elastic Beanstalk environment. The sample application uses
Elastic Beanstalk configuration files to configure the environment for use with X-Ray and create the
DynamoDB that it uses automatically.

To deploy the source code

1. Download the sample app: eb-java-scorekeep-xray-gettingstarted-v1.1.zip

2. Open the Elastic Beanstalk console.

3. Navigate to the management console for your environment.

4. Choose Upload and Deploy.

5. Upload eb-java-scorekeep-xray-gettingstarted-v1.1.zip, and then choose Deploy.

The sample application includes a front-end web app. Use the web app to generate traffic to the API
and send trace data to X-Ray.

To generate trace data

1. In the environment Dashboard, click the URL to open the web app.

6

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.iam.managed-policies.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.iam.managed-policies.html
https://console.aws.amazon.com/elasticbeanstalk/#/newApplication?applicationName=scorekeep&solutionStackName=Java
https://console.aws.amazon.com/elasticbeanstalk/#/newApplication?applicationName=scorekeep&solutionStackName=Java
https://console.aws.amazon.com/iam/home#roles/aws-elasticbeanstalk-ec2-role
https://github.com/awslabs/eb-java-scorekeep/releases/download/xray-gs-v1.1/eb-java-scorekeep-xray-gettingstarted-v1.1.zip
https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide
View the Service Graph in the X-Ray Console

2. Choose Create to create a user and session.

3. Type a game name, set the Rules to Tic Tac Toe, and then choose Create to create a game.

4. Choose Play to start the game.

5. Choose a tile to make a move and change the game state.

Each of these steps generates HTTP requests to the API, and downstream calls to DynamoDB to read
and write user, session, game, move, and state data.

View the Service Graph in the X-Ray Console
You can see the service graph and traces generated by the sample application in the X-Ray console.

To use the X-Ray console

1. Open the X-Ray console.

2. The console shows a representation of the service graph that X-Ray generates from the trace data
sent by the application.

The service map shows the web app client, the API running in Elastic Beanstalk, the DynamoDB
service, and each DynamoDB table that the application uses. Every request to the application, up to a
configurable maximum number of requests per second, is traced as it hits the API, generates requests
to downstream services, and completes.

7

https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide
Explore the Sample Application

Choose any node in the service graph to view traces for requests that generated traffic to that node.
The X-Ray SDK for Java generates the trace data and sends it to the X-Ray daemon running on the
same instance, which uploads trace data in batches to X-Ray.

For more insight into how each component works, you can use the Elastic Beanstalk console to view
logs from the sample app and X-Ray daemon.

To view logs in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Choose Logs.

4. Choose Request Logs, and then choose Last 100 Lines.

5. When the logs appear, choose Download.

Locate the entry for /var/log/xray-daemon.log. This is the log for the X-Ray daemon that
aggregates traces and uploads them to X-Ray. If there is an error posting traces, details appear here.

Example /var/log/xray-daemon.log

2016-12-03T00:09:02Z [Info] Initializing AWS X-Ray daemon 1.0.1
2016-12-03T00:09:02Z [Info] Using memory limit of 49 MB
2016-12-03T00:09:02Z [Info] 313 segment buffers allocated
2016-12-03T00:10:08Z [Info] Successfully sent batch of 1 segments (0.024
 seconds)
2016-12-03T00:10:09Z [Info] Successfully sent batch of 2 segments (0.042
 seconds)
2016-12-03T00:10:10Z [Info] Successfully sent batch of 7 segments (0.007
 seconds)

Explore the Sample Application
The sample application is an HTTP web API in Java that is configured to use the X-Ray SDK for Java.
When you deploy the application to Elastic Beanstalk, it creates the DynamoDB tables, compiles the
API with Gradle, and configures the nginx proxy server to serve the web app statically at the root path.
At the same time, Elastic Beanstalk routes requests to paths starting with /api to the API.

To instrument incoming HTTP requests, the application adds the TracingFilter provided by the
SDK.

Example src/main/java/scorekeep/WebConfig.java - Servlet Filter

import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
...

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter("Scorekeep");
 }
...

8

https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide
Explore the Sample Application

This filter sends trace data about all incoming requests that the application serves, including request
URL, method, response status, start time, and end time.

The application also makes downstream calls to DynamoDB using the AWS SDK for Java.
To instrument these calls, the application simply takes the AWS SDK-related submodules as
dependencies, and the X-Ray SDK for Java automatically instruments all AWS SDK clients.

The application uses a Buildfile file to build the source code on-instance with Gradle and a
Procfile file to run the executable JAR that Gradle generates. Buildfile and Procfile support is
a feature of the Elastic Beanstalk Java SE platform.

Example Buildfile

build: gradle build

Example Procfile

web: java -Dserver.port=5000 -jar build/libs/scorekeep-api-1.0.0.jar

The build.gradle file downloads the SDK submodules from Maven during compilation by declaring
them as dependencies.

9

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/java-se-platform.html

AWS X-Ray Developer Guide
Explore the Sample Application

Example build.gradle -- Dependencies

...
dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile('org.springframework.boot:spring-boot-starter-test')
 compile('com.amazonaws:aws-java-sdk-dynamodb')
 compile("com.amazonaws:aws-xray-recorder-sdk-core")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk-instrumentor")
 ...
}
dependencyManagement {
 imports {
 mavenBom("com.amazonaws:aws-java-sdk-bom:1.11.67")
 mavenBom("com.amazonaws:aws-xray-recorder-sdk-bom:1.0.4-beta")
 }
}

The core, AWS SDK, and AWS SDK Instrumentor submodules are all that's required to automatically
instrument any downstream calls made with the AWS SDK.

To run the X-Ray daemon, the application uses another feature of Elastic Beanstalk, configuration files.
The configuration file tells Elastic Beanstalk to run the daemon and send its log on demand.

Example .ebextensions/xray.config

option_settings:
 aws:elasticbeanstalk:xray:
 XRayEnabled: true

files:
 "/opt/elasticbeanstalk/tasks/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 /var/log/xray/xray.log

The X-Ray SDK for Java provides a class named AWSXRay that provides the global recorder, a
TracingHandler that you can use to instrument your code. You can configure the global recorder to
customize the AWSXRayServletFilter that creates segments for incoming HTTP calls. The sample
includes a static block in the WebConfig class that configures the global recorder with plugins and
sampling rules.

10

AWS X-Ray Developer Guide
Explore the Sample Application

Example src/main/java/scorekeep/WebConfig.java - Recorder

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.DefaultSamplingStrategy;

@Configuration
public class WebConfig {
...
 static {
 AWSXRayRecorderBuilder builder =
 AWSXRayRecorderBuilder.standard().withPlugin(new EC2Plugin()).withPlugin(new
 ElasticBeanstalkPlugin());

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.yml");
 builder.withSamplingStrategy(new DefaultSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 }
}

This example uses the builder to load sampling rules from a file named sampling-rules.json

Example src/main/java/resources/sampling-rules.json

{
 "rules": {
 "user": {
 "id": 1,
 "service_name": "*",
 "http_method": "POST",
 "url_path": "/api/user",
 "fixed_target": 10,
 "rate": 1.0
 },
 "move": {
 "id": 2,
 "service_name": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 1,
 "rate": 0.05
 },
 "base": {
 "id": 3,
 "service_name": "*",
 "http_method": "*",
 "url_path": "*",
 "fixed_target": 10,
 "rate": 0.25
 }
 }
}

This example defines two path based rules and overrides the default rule. The first rule applies a 100%
sampling rate to new user creations with POST requests to /api/user. The second rule traces the

11

AWS X-Ray Developer Guide
Clean Up

first move request received each second, and then applies a 5% sampling rate to additional moves.
The final rule overrides the default sampling rule with a rule that traces the first 10 requests each
second and 25 percent of additional requests.

The sample application also shows how to use advanced features such as manual SDK client
instrumentation, creating additional subsegments, and outgoing HTTP calls. For more information, see
X-Ray SDK for Java Sample Application (p. 48).

Clean Up
Terminate your Elastic Beanstalk environment to shut down the Amazon EC2 instances, DynamoDB
tables, and other resources.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Choose Actions.

4. Choose Terminate Environment.

5. Choose Terminate.

Trace data is automatically deleted from X-Ray after 30 days.

Next Steps
Learn more about X-Ray in the next chapter, AWS X-Ray Concepts (p. 13).

To instrument your own app, learn more about the X-Ray SDK for Java or one of the other X-Ray
SDKs:

• X-Ray SDK for Java – The AWS X-Ray SDK for Java (p. 42)

• X-Ray SDK for Node.js – The X-Ray SDK for Node.js (p. 64)

• X-Ray SDK for .NET – The AWS X-Ray SDK for .NET (p. 73)

To run the X-Ray daemon locally or on AWS, see The AWS X-Ray Daemon (p. 82).

To contribute to the sample application on GitHub, see eb-java-scorekeep.

12

https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray

AWS X-Ray Developer Guide
Segments

AWS X-Ray Concepts

AWS X-Ray receives data from services in the form of segments, groups segments with a common
request into traces, and processes traces to generate a service graph and provide a visual
representation of your application.

Concepts

• Segments (p. 13)

• Subsegments (p. 14)

• Service Graph (p. 14)

• Traces (p. 14)

• Sampling (p. 14)

• Tracing Header (p. 14)

• Filter Expressions (p. 15)

Segments
The compute resources running your application logic send data about the work that they do in the
form of segments. A segment provides the name of the resource, details about the request, and
details about the work done. For example, when an HTTP request reaches your application, it can
record data about:

• The host – host name, alias or IP address

• The request – method, client address, path, user agent

• The response – status, content

• The work done – start and end times, subsegments

The X-Ray SDK gathers information from request and response headers, the code in your application,
and metadata about the AWS resources on which it runs. You choose which data is collected by
adding modifying your application configuration or code to instrument incoming requests, downstream
requests, and AWS SDK clients.

Forwarded Requests
If a request is forwarded to your application by a load balancer or other intermediary, The
client IP in the segment is taken from the X-Forwarded-For header in the request instead of
the source IP in the IP packet. The client IP recorded for a forwarded request can be forged
so should not be trusted.

13

AWS X-Ray Developer Guide
Subsegments

Subsegments
Data about the work done can be broken down into subsegments, which provide more granular timing
information and details about downstream calls that your application made to fulfill the original request.
A subsegment can contain additional details about a call to an AWS service, an external HTTP API, or
an SQL database. You can even define arbitrary subsegments to instrument specific functions or lines
of code in your application.

Service Graph
X-Ray uses the data that your application sends to generate a service graph. Each AWS resource
that sends data to X-Ray appears as a service, with edges connecting the services that work together
to serve requests.

Service Names
A segment's name should match the domain name or logical name of the service generates
the segment, but this is not enforced. Any application with permission to PutTraceSegments
can send segments with any name.

For example, your application could use an application load balancer to distribute traffic to Amazon
EC2 instances, which use the AWS SDK to contact DynamoDB to store data, and make HTTP calls
to external web APIs. In the X-Ray service graph, the instances, DynamoDB tables, and downstream
HTTP APIs all appear as separate services connected by edges.

Traces
The path of a request through your application is tracked with a trace ID. A trace collects all of the
segments generated by a single request, typically an HTTP GET or POST request that travels through
a load balancer, hits your application code, and generates downstream calls to other AWS services or
external web APIs. A trace ID header is added to each HTTP request by the first supported service that
it interacts with, and propagates downstream to track the latency, disposition, and other request data.

Sampling
To ensure that tracing is efficient, while still providing a representative sample of the requests that your
application serves, the first service that a request hits applies a sampling algorithm to determine which
requests get traced. You can modify the default sampling rules and configure different sampling rates
for different routes that your application serves with the X-Ray SDK.

Tracing Header
All requests are traced up to a configurable minimum, after which a percentage of requests are traced
to avoid unnecessary cost. The sampling decision and trace ID, are added to HTTP requests in tracing
headers named X-Amzn-Trace-Id. The tracing header is added to the request by the first X-Ray-
integrated service that it hits, read by the X-Ray SDK, and included in the response.

Example Tracing header with root trace ID and sampling decision

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793; Sampled=1

14

http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide
Filter Expressions

Tracing Header Security
A tracing header can originate from the X-Ray SDK, an AWS service, or the client request.
Your application can remove X-Amzn-Trace-Id from incoming requests to avoid issues
caused by users adding trace IDs or sampling decisions to their requests.

The tracing header can also contain a parent segment ID if the request originated from an
instrumented application. For example, if your application calls a downstream HTTP web API with an
instrumented HTTP client, the X-Ray SDK adds the ID of the segment for the original request to the
tracing header of the downstream request. An instrumented application that serves the downstream
request can record the parent segment ID to connect the two requests.

Example Tracing header with root trace ID, parent segment ID and sampling decision

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793;
 Parent=53995c3f42cd8ad8; Sampled=1

Filter Expressions
Even with sampling, a complex application generates a lot of data. The AWS X-Ray console provides
an easy-to-navigate view of the service graph. It shows health and performance information that helps
you identify issues and opportunities for optimization in your application. For advanced tracing, you can
drill down to traces for individual requests, or use filter expressions to find traces related to specific
paths or users.

15

AWS X-Ray Developer Guide
Viewing the Service Map

The AWS X-Ray Console

The AWS X-Ray console lets you view service maps and traces for requests that your applications
serve.

The console's service map is a visual representation of the JSON service graph that X-Ray generates
from the trace data generated by your applications. The map consists of service nodes for each
application in your account that serves requests, upstream client nodes that represent the origins of
the requests, and downstream service nodes that represent web services and resources used by an
application while processing a request.

You can use filters to view a service map or traces for a specific request, a service, a connection
between two services (an edge), or requests that satisfy a condition. X-Ray provides a filter expression
language for filtering requests, services, and edgdes based on data in request headers, response
status, and indexed fields on the original segments.

Viewing the Service Map
View the service map in the X-Ray console to identify services where errors are occurring, connections
with high latency, or traces for requests that were unsuccessful.

To view the service map

1. Open the service map page of the X-Ray console.

16

https://console.aws.amazon.com/xray/home#/service-map

AWS X-Ray Developer Guide
Viewing the Service Map

This service map shows a web API and five DynamoDB tables that it calls.

2. Choose a service node to view traces for that node, or an edge between two nodes to view traces
for requests that travelled that connection.

The service map indicates the health of each node by coloring it based on the ratio of successful calls
to errors and faults.

• Green for successful calls.

• Red for server faults (500 series errors).

• Yellow for client errors (400 series errors).

• Purple for throttling errors (429 Too Many Requests).

17

AWS X-Ray Developer Guide
Using Filter Expressions

This service map shows a web API with 7% of requests returning 400 series errors.

Using Filter Expressions
Use filter expressions to view a service map or traces for requests that have performance issues or
relate to specific requests.

Requests where response time was more than 5 seconds:

responsetime > 5

Request where the total duration was 5 to 8 seconds:

duration >= 5 AND duration <= 8

Requests that included a call to "api.example.com" with a fault (500 series error) or latency above 2.5
seconds, and one or more segments has an annotation named "account" with value "12345".

service("api.example.com") { fault = true OR responsetime > 2.5 } AND
 annotation.account = "12345"

Request where the service "api.example.com" made a call to "backend.example.com" that failed with a
fault.

edge("api.example.com", "backend.example.com") { fault = true }

Request where the URL begins with "http://api.example.com/" and contains "/v2/" but does not reach a
service named "api.example.com".

http.url BEGINSWITH "http://api.example.com/" AND http.url CONTAINS "/v2/"
 AND !service("api.example.com")

18

http://api.example.com/

AWS X-Ray Developer Guide
Deep Linking

Requests that completed successfully in under 3 seconds, including all downstream calls.

ok !partial duration <3

Boolean Keywords

• ok – Response status code was 2XX Success.

• error – Response status code was 4XX Client Error.

• fault – Response status code was 5XX Server Error.

• partial – Request has incomplete segments.

Number Keywords

• responsetime – Time that the server took to send a response.

• duration – Total request duration including all downstream calls.

• http.status – Response status code.

String Keywords

• http.url – Request URL.

• http.method – Request method.

• http.useragent – Request user agent string.

• http.clientip – Requestor's IP address.

• user – Value of user field on any segment in the trace.

• annotation.key – Value of annotation with field key.

Complex Keywords

• service(name) {filter} – Service with name name. Optional curly braces can contain a filter
expression that applies to segments created by the service.

• edge(name) {filter} – Connection between services source and destination. Optional curly
braces can contain a filter expression that applies to segments on this connection.

Deep Linking
You can use routes and queries to deep link into specific traces, or filtered views of traces and the
service map.

Console Pages

• Welcome Page: xray/home#/welcome

• Getting Started: xray/home#/getting-started

• Service Map: xray/home#/service-map

• Traces: xray/home#/traces

Traces

• Single trace - timeline: xray/home#/traces/trace-id

• Single trace - raw JSON: xray/home#/traces/trace-id/raw

19

https://console.aws.amazon.com/xray/home#/welcome
https://console.aws.amazon.com/xray/home#/getting-started
https://console.aws.amazon.com/xray/home#/service-map
https://console.aws.amazon.com/xray/home#/traces

AWS X-Ray Developer Guide
Deep Linking

Example: xray/home#/traces/1-57f5498f-d91047849216d0f2ea3b6442/raw

• Single trace - map: xray/home#/traces/trace-id/map

Filter Expressions

• Filtered home view: xray/home#filter=filter-expression

• Filtered traces view: xray/home#/traces?filter=filter-expression

Example: xray/home#/traces?filter=service("api.amazon.com") { fault = true OR
responsetime > 2.5 } AND annotation.foo = "bar"

Example (URL encoded): xray/home#/traces?filter=service(%22api.amazon.com
%22)%20%7B%20fault%20%3D%20true%20OR%20responsetime%20%3E%202.5%20%7D%20AND
%20annotation.foo%20%3D%20%22bar%22

Time Range

Specify a length of time or start and end time in ISO8601 format.

• Length of time: xray/home#time-range=range-in-minutes

Example - last minute: xray/home#time-range=PT1M

• Start and end time: xray/home#time-range=start~end

Example: xray/home#time-range=2016-11-06T01:05:00~2016-11-08T13:46:31

Example: xray/home#time-range=2016-11-06T01:05~2016-11-08T13:46

Combined

• Example: xray/home#/traces?time-range=PT15M&filter=duration%20%3E%3D
%205%20AND%20duration%20%3C%3D%208

• Output:

• View: Traces Section

• Time Range: Last 15 Minutes

• Filter: duration >= 5 AND duration <= 8

20

AWS X-Ray Developer Guide
Using the AWS X-Ray API with the AWS CLI

The AWS X-Ray API

The X-Ray API provides access to all X-Ray functionality through the AWS SDK, AWS Command Line
Interface, or directly over HTTPS. The X-Ray API Reference documents input parameters each API
action, and the fields and data types that they return.

You can use the AWS SDK to develop programs that use the X-Ray API. The X-Ray console and X-
Ray daemon both use the AWS SDK to communicate with X-Ray. The AWS SDK for each language
has a reference document for classes and methods that map to X-Ray API actions and types.

AWS SDK References

• Java – AWS SDK for Java

• JavaScript – AWS SDK for JavaScript

• .NET – AWS SDK for .NET

• Ruby – AWS SDK for Ruby

• Go – AWS SDK for Go

• PHP – AWS SDK for PHP

• Python – AWS SDK for Python (Boto)

The AWS Command Line Interface is a command line tool that uses the SDK for Python to call AWS
APIs. When you are first learning an AWS API, the AWS CLI provides an easy way to explore the
available parameters and view the service output in JSON or text form.

See the AWS CLI Command Reference for details on aws xray subcommands.

Sections

• Using the AWS X-Ray API with the AWS CLI (p. 21)

• Uploading Segment Documents (p. 26)

• Sending Segment Documents to the X-Ray Daemon (p. 27)

• AWS X-Ray Segment Documents (p. 27)

Using the AWS X-Ray API with the AWS CLI
The AWS CLI lets your access the X-Ray service directly and use the same APIs that the X-Ray
console uses to retrieve the service graph and raw traces data. The sample application includes scripts
that show how to use these APIs with the AWS CLI.

21

http://docs.aws.amazon.com//xray/latest/api/Welcome.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/xray/package-summary.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/XRay.html
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/XRay/NXRay.html
http://docs.aws.amazon.com/sdkforruby/api/Aws/XRay.html
http://docs.aws.amazon.com/sdk-for-go/api/service/xray/
http://docs.aws.amazon.com/aws-sdk-php/v3/api/namespace-Aws.XRay.html
http://boto3.readthedocs.org/en/latest/reference/services/xray.html
http://docs.aws.amazon.com/cli/latest/reference//xray

AWS X-Ray Developer Guide
Prerequisites

Prerequisites
This tutorial uses the Scorekeep sample application and included scripts to generate tracing data and a
service map. Follow the instructions in the getting started tutorial (p. 5) to launch the application.

This tutorial uses the AWS CLI to show basic use of the X-Ray API. The AWS CLI, available for
Windows, Linux, and OS-X, provides command line access to the public APIs for all AWS services.

Scripts included to test the sample application uses cURL to send traffic to the API and jq to parse the
output. You can download the jq executable from stedolan.github.io, and the curl executable from
https://curl.haxx.se/download.html. Most Linux and OS X installations include cURL.

Generate Trace Data
The web app continues to generate traffic to the API every few seconds while the game is in-progress,
but only generates one type of request. Use the test-api.sh script to run end to end scenarios and
generate more diverse trace data while you test the API.

To use the test-api.sh script

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Copy the environment URL from the page header.

4. Open bin/test-api.sh and replace the value for API with your environment's URL.

#!/bin/bash
API=scorekeep.9hbtbm23t2.us-east-1.elasticbeanstalk.com

5. Run the script to generate traffic to the API.

~/debugger-tutorial$./bin/test-api.sh
Creating users,
session,
game,
configuring game,
playing game,
ending game,
game complete.
{"id":"MTBP8BAS","session":"HUF6IT64","name":"tic-tac-toe-test","users":
["QFF3HBGM","KL6JR98D"],"rules":"102","startTime":1476314241,"endTime":1476314245,"states":
["JQVLEOM2","D67QLPIC","VF9BM9NC","OEAA6GK9","2A705O73","1U2LFTLJ","HUKIDD70","BAN1C8FI","G3UDJTUF","AB70HVEV"],"moves":
["BS8F8LQ","4MTTSPKP","463OETES","SVEBCL3N","N7CQ1GHP","O84ONEPD","EG4BPROQ","V4BLIDJ3","9RL3NPMV"]}

Use the X-Ray API
The AWS CLI provides commands for all of the API actions that X-Ray provides, including
GetServiceGraph and GetTraceSummaries. See the AWS X-Ray API Reference for more
information on all of the supported actions and the data types that they use.

22

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://stedolan.github.io/jq/
https://curl.haxx.se/download.html
https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html
http://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html
http://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
http://docs.aws.amazon.com/xray/latest/api/Welcome.html

AWS X-Ray Developer Guide
Use the X-Ray API

Example bin/service-graph.sh

EPOCH=$(date +%s)
aws xray get-service-graph --start-time $(($EPOCH-600)) --end-time $EPOCH

The script retrieves a service graph for the last 10 minutes.

~/eb-java-scorekeep$./bin/service-graph.sh | less
{
 "StartTime": 1479068648.0,
 "Services": [
 {
 "StartTime": 1479068648.0,
 "ReferenceId": 0,
 "State": "unknown",
 "EndTime": 1479068651.0,
 "Type": "client",
 "Edges": [
 {
 "StartTime": 1479068648.0,
 "ReferenceId": 1,
 "SummaryStatistics": {
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "TotalCount": 0,
 "OtherCount": 0
 },
 "FaultStatistics": {
 "TotalCount": 0,
 "OtherCount": 0
 },
 "TotalCount": 2,
 "OkCount": 2,
 "TotalResponseTime": 0.054000139236450195
 },
 "EndTime": 1479068651.0,
 "Aliases": []
 }
]
 },
 {
 "StartTime": 1479068648.0,
 "Names": [
 "scorekeep.example.us-west-2.elasticbeanstalk.com"
],
 "ReferenceId": 1,
 "State": "active",
 "EndTime": 1479068651.0,
 "Root": true,
 "Name": "scorekeep.example.us-west-2.elasticbeanstalk.com",
...

23

AWS X-Ray Developer Guide
Use the X-Ray API

Example bin/trace-urls.sh

EPOCH=$(date +%s)
aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time
 $(($EPOCH-60)) --query 'TraceSummaries[*].Http.HttpURL'

The script retrieves the URLs of traces generated between one and two minutes ago.

~/eb-java-scorekeep$./bin/trace-urls.sh
[
 "http://scorekeep.example.us-west-2.elasticbeanstalk.com/api/
game/6Q0UE1DG/5FGLM9U3/endtime/1479069438",
 "http://scorekeep.example.us-west-2.elasticbeanstalk.com/api/session/
KH4341QH",
 "http://scorekeep.example.us-west-2.elasticbeanstalk.com/api/game/
GLQBJ3K5/153AHDIA",
 "http://scorekeep.example.us-west-2.elasticbeanstalk.com/api/game/
VPDL672J/G2V41HM6/endtime/1479069466"
]

24

AWS X-Ray Developer Guide
Cleanup

Example bin/full-traces.sh

EPOCH=$(date +%s)
TRACEIDS=$(aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-
time $(($EPOCH-60)) --query 'TraceSummaries[*].Id' --output text)
aws xray batch-get-traces --trace-ids $TRACEIDS --query 'Traces[*]'

The script retrieves full traces generated between one and two minutes ago.

~/eb-java-scorekeep$./bin/full-traces.sh | less
[
 {
 "Segments": [
 {
 "Id": "3f212bc237bafd5d",
 "Document": "{\"id\":\"3f212bc237bafd5d\",\"name\":
\"DynamoDB\",\"trace_id\":\"1-5828d9f2-a90669393f4343211bc1cf75\",
\"start_time\":1.479072242459E9,\"end_time\":1.479072242477E9,\"parent_id\":
\"72a08dcf87991ca9\",\"http\":{\"response\":{\"content_length\":60,\"status
\":200}},\"inferred\":true,\"aws\":{\"consistent_read\":false,\"table_name
\":\"scorekeep-session-xray\",\"operation\":\"GetItem\",\"request_id\":
\"QAKE0S8DD0LJM245KAOPMA746BVV4KQNSO5AEMVJF66Q9ASUAAJG\",\"resource_names\":
[\"scorekeep-session-xray\"]},\"origin\":\"AWS::DynamoDB::Table\"}"
 },
 {
 "Id": "309e355f1148347f",
 "Document": "{\"id\":\"309e355f1148347f\",\"name\":
\"DynamoDB\",\"trace_id\":\"1-5828d9f2-a90669393f4343211bc1cf75\",
\"start_time\":1.479072242477E9,\"end_time\":1.479072242494E9,\"parent_id
\":\"37f14ef837f00022\",\"http\":{\"response\":{\"content_length
\":606,\"status\":200}},\"inferred\":true,\"aws\":{\"table_name\":
\"scorekeep-game-xray\",\"operation\":\"UpdateItem\",\"request_id\":
\"388GEROC4PCA6D59ED3CTI5EEJVV4KQNSO5AEMVJF66Q9ASUAAJG\",\"resource_names\":
[\"scorekeep-game-xray\"]},\"origin\":\"AWS::DynamoDB::Table\"}"
 }
],
 "Id": "1-5828d9f2-a90669393f4343211bc1cf75",
 "Duration": 0.05099987983703613
 }
...

Cleanup
Terminate your Elastic Beanstalk environment to shut down the Amazon EC2 instances, DynamoDB
tables and other resources.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Choose Actions.

4. Choose Terminate Environment.

5. Choose Terminate.

Trace data is automatically deleted from X-Ray after 30 days.

25

https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide
Uploading Segment Documents

Uploading Segment Documents
You can upload segments and subsegments with the PutTraceSegments API.

Required Segment Document Fields

• name – The name of the service that handled the request.

• id – A 64-bit identifier for the segment, unique among segments in the same trace, in 16
hexadecimal digits.

Trace ID Security
Trace IDs are visible in response headers (p. 14). Generate trace IDs with a secure random
algorithm to ensure that attackers cannot calculate future trace IDs and send requests with
those IDs to your application.

• trace_id – A unique identifier that connects all segments and subsegments originating from a
single client request.

Trace ID Format

A trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, that is, 1.

• The time of the original request, in Unix epoch time, in 8 hexadecimal digits.

For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or
58406520 in hexadecimal.

• A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

• start_time – Time the segment or subsegment was created, in floating point seconds in epoch
time, accurate to milliseconds. For example, 1480615200.010 or 1.480615200010E9

• end_time – Time the segment or subsegment was closed. For example, 1480615200.090 or
1.480615200090E9. Specify either an end_time or in_progress.

• in_progress – Set to true instead of specifying an end_time to record that a segment has been
started, but is not complete. Send an in progress segment when your application receives a request
that will take a long time to serve, to trace the fact that the request was received. When the response
is sent, send the complete segment to overwrite the in-progress segment.

Service Names
A segment's name should match the domain name or logical name of the service generates
the segment, but this is not enforced. Any application with permission to PutTraceSegments
can send segments with any name.

Example Minimal complete segment

{
 "name" : "example.com",
 "id" : "70de5b6f19ff9a0a",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 "end_time" : 1.478293361449E9
}

26

http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide
Sending Segment Documents to the X-Ray Daemon

Example In-progress segment

{
 "name" : "example.com",
 "id" : "70de5b6f19ff9a0b",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 “in_progress”: true
}

A subsegment records a downstream call from the point of view of the service that calls it. X-Ray uses
subsegments to identify downstream services that don't send segments and create entries for them on
the service graph.

A subsegment can be embedded in a full segment document, or sent separately. Send subsegments
separately to asynchronously trace downstream calls for long-running requests, or to avoid exceeding
the maximum segment document size (64 kB).

Example Subsegment

A subsegment has a type of subsegment and a parent_id that identifies the parent segment.

{
 "name" : "www2.example.com",
 "id" : "70de5b6f19ff9a0c",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979"
 “end_time” : 1.478293361449E9,
 “type” : “subsegment”,
 “parent_id” : “70de5b6f19ff9a0b”
}

For more information on the fields and values that you can include in segments and subsegments, see
AWS X-Ray Segment Documents (p. 27).

Sending Segment Documents to the X-Ray
Daemon

You can send segments and subsegments to the X-Ray daemon, which will buffer them and upload to
the X-Ray API in batches.

Send the segment in JSON over UDP port 2000, prepended by the daemon's header, {“format”:
”json”, “version”: 1}\n

{“format”: ”json”, “version”: 1}\n{"trace_id": "1-5759e988-
bd862e3fe1be46a994272793", "id": "defdfd9912dc5a56", "start_time":
 1461096053.37518, "end_time": 1461096053.4042, "name":
 "hello-1.mbfzqxzcpe.us-east-1.elasticbeanstalk.com"}

AWS X-Ray Segment Documents
A trace segment is a JSON representation of a request that your application serves. A trace segment
records information about the original request, information about the work that your application does

27

AWS X-Ray Developer Guide
Segment Fields

locally, and subsegments with information about downstream calls that your application makes to
AWS resources, HTTP APIs, and SQL databases.

A segment document conveys information about a segment to X-Ray. A segment document can be
up to 64 kB and contain a whole segment with subsegments, a fragment of a segment that indicates
that a request is in progress, or a single subsegment that is sent separately. You can send segment
documents directly to X-Ray by using the PutTraceSegments API.

X-Ray compiles and processes segment documents to generate queryable trace summaries and
full traces that you can access by using the GetTraceSummaries and BatchGetTraces APIs,
respectively. In addition to the segments and subsegments that you send to X-Ray, the service uses
information in subsegments to generate inferred segments and adds them to the full trace. Inferred
segments represent downstream services and resources in the service map.

X-Ray provides a JSON schema for segment documents. You can download the schema here: xray-
segmentdocument-schema-v1.0.0-beta.zip. The fields and objects listed in the schema are described
in more detail in the following sections.

A subset of segment fields are indexed by X-Ray for use with filter expressions. For example, if you
set the user field on a segment to a unique identifier, you can search for segments associated with
specific users in the X-Ray console or by using the GetTraceSummaries API. For more information,
see Using Filter Expressions (p. 18).

When you instrument your application with the X-Ray SDK, the SDK generates segment documents
for you. Instead of sending segment documents directly to X-Ray, the SDK transmits them over a local
UDP port to the X-Ray daemon (p. 82). For more information, see Sending Segment Documents to
the X-Ray Daemon (p. 27).

Sections

• Segment Fields (p. 28)

• Subsegments (p. 30)

• HTTP Request Data (p. 33)

• Annotations (p. 35)

• Metadata (p. 36)

• AWS Resource Data (p. 37)

• Errors and Exceptions (p. 39)

• SQL Queries (p. 40)

Segment Fields
A segment records tracing information about a request that your application serves. At a minimum, a
segment records the name, ID, start time, trace ID, and end time of the request.

Example Minimal Complete Segment

{
 "name" : "example.com",
 "id" : "70de5b6f19ff9a0a",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 "end_time" : 1.478293361449E9
}

The following fields are required, or conditionally required, for segments.

Note
Values must be strings (up to 250 characters) unless noted otherwise.

28

http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
http://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
http://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
samples/xray-segmentdocument-schema-v1.0.0-beta.zip
samples/xray-segmentdocument-schema-v1.0.0-beta.zip

AWS X-Ray Developer Guide
Segment Fields

Required Segment Fields

• name – The logical name of the service that handled the request, up to 200 characters. For
example, your application's name or domain name. Names can contain alphanumeric characters and
the following symbols: _, ., :, /, %, &, #, =, +, \, -, @,], *,), $

• id – A 64-bit identifier for the segment, unique among segments in the same trace, in 16
hexadecimal digits.

• trace_id – A unique identifier that connects all segments and subsegments originating from a
single client request.

Trace ID Format

A trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, that is, 1.

• The time of the original request, in Unix epoch time, in 8 hexadecimal digits.

For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or
58406520 in hexadecimal.

• A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

Trace ID Security
Trace IDs are visible in response headers (p. 14). Generate trace IDs with a secure random
algorithm to ensure that attackers cannot calculate future trace IDs and send requests with
those IDs to your application.

• start_time – number that is the time the segment was created, in floating point seconds in epoch
time. For example, 1480615200.010 or 1.480615200010E9. Use as many decimal places as you
need. Microsecond resolution is recommended when available.

• end_time – number that is the time the segment was closed. For example, 1480615200.090 or
1.480615200090E9. Specify either an end_time or in_progress.

• in_progress – boolean, set to true instead of specifying an end_time to record that a segment
is started, but is not complete. Send an in-progress segment when your application receives a
request that will take a long time to serve, to trace the request receipt. When the response is sent,
send the complete segment to overwrite the in-progress segment. Only send one complete segment,
and one or zero in-progress segments, per request.

Service Names
A segment's name should match the domain name or logical name of the service generates
the segment, but this is not enforced. Any application with permission to PutTraceSegments
can send segments with any name.

The following fields are optional for subsegments.

Optional Segment Fields

• service – An object with information about your application.

• version – A string that identifies the version of your application that served the request.

• user – A string that identifies the user who sent the request.

• parent_id – A subsegment ID you specify if the request originated from an instrumented
application. The X-Ray SDK adds the parent subsegment ID to the tracing header (p. 14) for
downstream HTTP calls.

• http – http (p. 33) objects with information about the original HTTP request.

• aws – aws (p. 37) object with information about the AWS resource on which your application
served the request.

29

http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide
Subsegments

• error, throttle, fault, and cause – error (p. 39) fields that indicate an error occurred and
that include information about the exception that caused the error.

• annotations – annotations (p. 35) object with key-value pairs that you want X-Ray to index
for search.

• metadata – metadata (p. 36) object with any additional data that you want to store in the
segment.

• subsegments – array of subsegment (p. 30) objects.

Subsegments
You can create subsegments to record calls to AWS services and resources that you make with the
AWS SDK, calls to internal or external HTTP web APIs, or SQL database queries. You can also create
subsegments to debug or annotate blocks of code in your application. Subsegments can contain other
subsegments, so a custom subsegment that records metadata about an internal function call can
contain other custom subsegments and subsegments for downstream calls.

A subsegment records a downstream call from the point of view of the service that calls it. X-Ray uses
subsegments to identify downstream services that don't send segments and create entries for them on
the service graph.

A subsegment can be embedded in a full segment document or sent independently. Send
subsegments separately to asynchronously trace downstream calls for long-running requests, or to
avoid exceeding the maximum segment document size.

30

AWS X-Ray Developer Guide
Subsegments

Example Segment with Embedded Subsegment

An independent subsegment has a type of subsegment and a parent_id that identifies the parent
segment.

{
 "trace_id" : "1-5759e988-bd862e3fe1be46a994272793",
 "id" : "defdfd9912dc5a56",
 "start_time" : 1461096053.37518,
 "end_time" : 1461096053.4042,
 "name" : "www.example.com",
 "http" : {
 "request" : {
 "url" : "https://www.example.com/health",
 "method" : "GET",
 "user_agent" : "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6)
 AppleWebKit/601.7.7",
 "client_ip" : "11.0.3.111"
 },
 "response" : {
 "status" : 200,
 "content_length" : 86
 }
 },
 "subsegments" : [
 {
 "id" : "53995c3f42cd8ad8",
 "name" : "api.example.com",
 "start_time" : 1461096053.37769,
 "end_time" : 1461096053.40379,
 "namespace" : "remote",
 "http" : {
 "request" : {
 "url" : "https://api.example.com/health",
 "method" : "POST",
 "traced" : true
 },
 "response" : {
 "status" : 200,
 "content_length" : 861
 }
 }
 }
]
}

For long-running requests, you can send an in-progress segment to notify X-Ray that the request was
received, and then send subsegments separately to trace them before completing the original request.

Example In-Progress Segment

{
 "name" : "example.com",
 "id" : "70de5b6f19ff9a0b",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 “in_progress”: true
}

31

AWS X-Ray Developer Guide
Subsegments

Example Independent Subsegment

An independent subsegment has a type of subsegment, a trace_id, and a parent_id that
identifies the parent segment.

{
 "name" : "api.example.com",
 "id" : "53995c3f42cd8ad8",
 "start_time" : 1.478293361271E9,
 “end_time” : 1.478293361449E9,
 "type" : "subsegment",
 "trace_id" : "1-581cf771-a006649127e371903a2de979"
 "parent_id" : "defdfd9912dc5a56",
 "namespace" : "remote",
 "http" : {
 "request" : {
 "url" : "https://api.example.com/health",
 "method" : "POST",
 "traced" : true
 },
 "response" : {
 "status" : 200,
 "content_length" : 861
 }
 }
}

When the request is complete, close the segment by resending it with an end_time. The complete
segment overwrites the in-progress segment.

You can also send subsegments separately for completed requests that triggered asynchronous
workflows. For example, a web API may return a OK 200 response immediately prior to starting
the work that the user requested. You can send a full segment to X-Ray as soon as the response
is sent, followed by subsegments for work completed later. As with segments, you can also send
a subsegment fragment to record that the subsegment has started, and then overwrite it with a full
subsegment once the downstream call is complete.

The following fields are required, or are conditionally required, for subsegments.

Note
Values are strings up to 250 characters unless noted otherwise.

Required Subsegment Fields

• id – A 64-bit identifier for the subsegment, unique among segments in the same trace, in 16
hexadecimal digits.

• name – The logical name of the subsegment. For downstream calls, name the subsegment after the
resource or service called. For custom subsegments, name the subsegment after the code that it
instruments (e.g., a function name).

• start_time – number that is the time the subsegment was created, in floating point seconds in
epoch time, accurate to milliseconds. For example, 1480615200.010 or 1.480615200010E9.

• end_time – number that is the time the subsegment was closed. For example, 1480615200.090
or 1.480615200090E9. Specify an end_time or in_progress.

• in_progress – boolean that is set to true instead of specifying an end_time to record that a
subsegment is started, but is not complete. Only send one complete subsegment, and one or zero
in-progress subsegments, per downstream request.

• trace_id – Trace ID of the subsegment's parent segment. Required only if sending a subsegment
separately.

32

AWS X-Ray Developer Guide
HTTP Request Data

Trace ID Format

A trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, that is, 1.

• The time of the original request, in Unix epoch time, in 8 hexadecimal digits.

For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or
58406520 in hexadecimal.

• A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

• parent_id – Segment ID of the subsegment's parent segment. Required only if sending a
subsegment separately.

• type – subsegment. Required only if sending a subsegment separately.

The following fields are optional for subsegments.

Optional Subsegment Fields

• namespace – aws for AWS SDK calls; remote for other downstream calls.

• http – http (p. 33) object with information about an outgoing HTTP call.

• aws – aws (p. 37) object with information about the downstream AWS resource that your
application called.

• error, throttle, fault, and cause – error (p. 39) fields that indicate an error occurred and
that include information about the exception that caused the error.

• annotations – annotations (p. 35) object with key-value pairs that you want X-Ray to index
for search.

• metadata – metadata (p. 36) object with any additional data that you want to store in the
segment.

• subsegments – array of subsegment (p. 30) objects.

• precursor_ids – array of subsegment IDs that identifies subsegments with the same parent that
completed prior to this subsegment.

HTTP Request Data
Use an HTTP block to record details about an HTTP request that your application served (in a
segment) or that your application made to a downstream HTTP API (in a subsegment). Most of the
fields in this object map to information found in an HTTP request and response.

http

All fields are optional.

• request – Information about a request.

• method – The request method. For example, GET.

• url – The full URL of the request, compiled from the protocol, hostname, and path of the request.

• user_agent – The user agent string from the requestor's client.

• client_ip – The IP address of the requestor. Can be retrieved from the IP packet's Source
Address or, for forwarded requests, from an X-Forwarded-For header.

• x_forwarded_for – (segments only) boolean indicating that the client_ip was read from an
X-Forwarded-For header and is not reliable as it could have been forged.

33

AWS X-Ray Developer Guide
HTTP Request Data

• traced – (subsegments only) boolean indicating that the downstream call is to another traced
service. If this field is set to true, X-Ray considers the trace to be broken until the downstream
service uploads a segment with a parent_id that matches the id of the subsegment that
contains this block.

• response – Information about a response.

• status – number indicating the HTTP status of the response.

• content_length – number indicating the length of the response body in bytes.

When you instrument a call to a downstream web api, record a subsegment with information about
the HTTP request and response. X-Ray uses the subsegment to generate an inferred segment for the
remote API.

Example Segment for HTTP Call Served by an Application Running on Amazon EC2

{
 "id": "6b55dcc497934f1a",
 "start_time": 1484789387.126,
 "end_time": 1484789387.535,
 "trace_id": "1-5880168b-fd5158284b67678a3bb5a78c",
 "name": "www.example.com",
 "origin": "AWS::EC2::Instance",
 "aws": {
 "ec2": {
 "availability_zone": "us-west-2c",
 "instance_id": "i-0b5a4678fc325bg98"
 }
 },
 "http": {
 "request": {
 "method": "POST",
 "client_ip": "78.255.233.48",
 "url": "http://www.example.com/api/user",
 "user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0)
 Gecko/20100101 Firefox/45.0",
 "x_forwarded_for": true
 },
 "response": {
 "status": 200
 }
 }

34

AWS X-Ray Developer Guide
Annotations

Example Subsegment for a Downstream HTTP Call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred Segment for a Downstream HTTP Call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-5880168b-fd5153bb58284b67678aa78c",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Annotations
Segments and subsegments can include an annotations object containing one or more fields that
X-Ray indexes for use with filter expressions. Fields can have string, number, or Boolean values (no
objects or arrays).

35

AWS X-Ray Developer Guide
Metadata

Example Segment for HTTP Call with Annotations

{
 "id": "6b55dcc497932f1a",
 "start_time": 1484789187.126,
 "end_time": 1484789187.535,
 "trace_id": "1-5880168b-fd515828bs07678a3bb5a78c",
 "name": "www.example.com",
 "origin": "AWS::EC2::Instance",
 "annotations": {
 "customer_category" : 124,
 "zip_code" : 98101,
 "country" : "United States",
 "internal" : false
 },
 "http": {
 "request": {
 "method": "POST",
 "client_ip": "78.255.233.48",
 "url": "http://www.example.com/api/user",
 "user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0)
 Gecko/20100101 Firefox/45.0",
 "x_forwarded_for": true
 },
 "response": {
 "status": 200
 }
 }

Metadata
Segments and subsegments can include a metadata object containing one or more fields with values
of any type, including objects and arrays. X-Ray does not index metadata, and values can be any
size, as long as the segment document doesn't exceed the maximum size (64 kB). You can view
metadata in the full segment document returned by the BatchGetTraces API. Field keys (debug in
the following example) starting with AWS. are reserved for use by AWS-provided SDKs and clients.

36

http://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html

AWS X-Ray Developer Guide
AWS Resource Data

Example Custom Subsegment with Metadata

{
 "id": "0e58d2918e9038e8",
 "start_time": 1484789387.502,
 "end_time": 1484789387.534,
 "name": "## UserModel.saveUser",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },
 "subsegments": [
 {
 "id": "0f910026178b71eb",
 "start_time": 1484789387.502,
 "end_time": 1484789387.534,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 58,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "3AIENM5J4ELQ3SPODHKBIRVIC3VV4KQNSO5AEMVJF66Q9ASUAAJG",
 "resource_names": [
 "scorekeep-user"
]
 }
 }
]
}

AWS Resource Data
For segments, the aws object contains information about the resource on which your application
is running. Multiple fields can apply to a single resource. For example, an application running in a
multicontainer Docker environment on Elastic Beanstalk could have information about the Amazon
EC2 instance, the Amazon ECS container running on the instance, and the Elastic Beanstalk
environment itself.

aws (Segments)

All fields are optional.

37

AWS X-Ray Developer Guide
AWS Resource Data

Example AWS Block with Plugins

"aws": {
 "elastic_beanstalk": {
 "version_label": "app-5a56-170119_190650-stage-170119_190650",
 "deployment_id": 32,
 "environment_name": "scorekeep"
 },
 "ec2": {
 "availability_zone": "us-west-2c",
 "instance_id": "i-075ad396f12bc325a"
 },
 "xray": {
 "sdk": "1.0.4-beta for Java"
 }
}

• account_id – If your application sends segments to a different AWS account, record the ID of the
account running your application.

• ecs – Information about an Amazon ECS container.

• container – The container ID of the container running your application.

• ec2 – Information about an EC2 instance.

• instance_id – The instance ID of the EC2 instance.

• availability_zone – The Availability Zone in which the instance is running.

• elastic_beanstalk – Information about an Elastic Beanstalk environment. You can find this
information in a file named /var/elasticbeanstalk/xray/environment.conf on the latest
Elastic Beanstalk platforms.

• environment_name – The name of the environment.

• version_label – The name of the application version that is currently deployed to the instance
that served the request.

• deployment_id – number indicating the ID of the last successful deployment to the instance that
served the request.

For subsegments, record information about the AWS services and resources that your application
accesses. X-Ray uses this information to create inferred segments that represent the downstream
services in your service map.

aws (Subsegments)

All fields are optional.

• operation – The name of the API action invoked against an AWS service or resource.

• account_id – If your application accesses resources in a different account, or sends segments to
a different account, record the ID of the account that owns the AWS resource that your application
accessed.

• region – If the resource is in a region different from your application, record the region. For
example, us-west-2.

• request_id – Unique identifier for the request.

• queue_url – For operations on an Amazon SQS queue, the queue's URL.

• table_name – For operations on a DynamoDB table, the name of the table.

38

AWS X-Ray Developer Guide
Errors and Exceptions

Example Subsegment for a Call to DynamoDB to Save an Item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

Errors and Exceptions
When an error occurs, you can record details about the error and exceptions that it generated. Record
errors in segments when your application returns an error to the user, and in subsegments when a
downstream call returns an error.

error types

Set one or more of the following fields to true to indicate that an error occurred. Multiple types can
apply if errors compound. For example, a 429 Too Many Requests error from a downstream call
may cause your application to return 500 Internal Server Error, in which case all three types
would apply.

• error – boolean indicating that a client error occurred (400 series error).

• throttle – boolean indicating that a request was throttled (429 error).

• fault – boolean indicating that a server error occurred (500 series error).

Indicate the cause of the error by including a cause object in the segment or subsegment.

cause

A cause can be either a 16 character exception ID or an object with the following fields:

• working_directory – The full path of the working directory when the exception occurred.

• paths – The array of paths to libraries or modules in use when the exception occurred.

• exceptions – The array of exception objects.

Include detailed information about the error in one or more exception objects.

exception

All fields are optional except id.

• id – A 64-bit identifier for the exception, unique among segments in the same trace, in 16
hexadecimal digits.

39

AWS X-Ray Developer Guide
SQL Queries

• message – The exception message.

• type – The exception type.

• remote – boolean indicating that the exception was caused by an error returned by a downstream
service.

• truncated – integer indicating the number of stack frames that are omitted from the stack.

• skipped – integer indicating the number of exceptions that were skipped between this exception
and its child, that is, the exception that it caused.

• cause – Exception ID of the exception's parent, that is, the exception that caused this exception.

• stack – array of stackFrame objects.

If available, record information about the call stack in stackFrame objects.

stackFrame

All fields are optional.

• path – The relative path to the file.

• line – The line in the file.

• label – The function or method name.

SQL Queries
You can create subsegments for queries that your application makes to an SQL database.

sql

All fields are optional.

• connection_string – For SQL Server or other database connections that don't use URL
connection strings, record the connection string, excluding passwords.

• url – For a database connection that uses a URL connection string, record the URL, excluding
passwords.

• sanitized_query – The database query, with any user provided values removed or replaced by a
placeholder.

• database_type – The name of the database engine.

• database_version – The version number of the database engine.

• driver_version – The name and version number of the database engine driver that your
application uses.

• user – The database username.

• preparation – call if the query used a PreparedCall; statement if the query used a
PreparedStatement.

40

AWS X-Ray Developer Guide
SQL Queries

Example Subsegment with an SQL Query

{
 "id": "3fd8634e78ca9560",
 "start_time": 1484872218.696,
 "end_time": 1484872218.697,
 "name": "ebdb@aawijb5u25wdoy.cpamxznpdoq8.us-west-2.rds.amazonaws.com",
 "namespace": "remote",
 "sql" : {
 "url": "jdbc:postgresql://aawijb5u25wdoy.cpamxznpdoq8.us-
west-2.rds.amazonaws.com:5432/ebdb",
 "preparation": "statement",
 "database_type": "PostgreSQL",
 "database_version": "9.5.4",
 "driver_version": "PostgreSQL 9.4.1211.jre7",
 "user" : "dbuser",
 "sanitized_query" : "SELECT * FROM customers WHERE customer_id=?;"
 }
}

41

AWS X-Ray Developer Guide

The AWS X-Ray SDK for Java

The X-Ray SDK for Java is a set of libraries for Java web applications that provide classes and
methods for generating and sending trace data to the X-Ray daemon. Trace data includes information
about incoming HTTP requests served by the application, and calls that the application makes to
downstream services using the AWS SDK, HTTP clients, or an SQL database connector. You can also
create segments manually and add debug information in annotations and metadata.

Annotations and Metadata
Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed but can be
viewed in the raw segment with the X-Ray console or API. Anyone that you grant read access
to X-Ray can view this data.

Start by adding AWSXRayServletFilter as a servlet filter (p. 54) to trace incoming requests. A
servlet filter creates a segment to record information about each traced request that your application
serves, and completes the segment when the response is sent. Within this segment you can create
subsegments to trace downstream calls to other AWS services, HTTP web APIs, and SQL databases.

Next, use the X-Ray SDK for Java to instrument your SDK for Java clients (p. 77). Whenever you
make a call to a downstream AWS service or resource with an instrumented client, the SDK records
information about the call in a subsegment. AWS services and the resources that you access within
the services appear as downstream nodes on the service map to help you identify errors and throttling
issues on individual connections.

When you include the SDK Instrumentor submodule (p. 43) in your build configuration, the X-Ray
SDK for Java instruments all AWS SDK for Java clients automatically. Any call to an AWS service
made with an instrumented client adds a subsegment to the request trace with information about the
service, the resource in the service that was changed (if any), the response, and latency.

If you don't want to instrument all downstream calls to AWS services, you can leave out the
Instrumentor submodule and choose which clients to instrument. Instrument individual clients by
adding a TracingHandler (p. 57) to an AWS SDK service client.

Other X-Ray SDK for Java submodules provide instrumentation for downstream calls to HTTP web
APIs and SQL databases. You can use the X-Ray SDK for Java's versions of HTTPClient and
HTTPClientBuilder (p. 58) in the Apache HTTP submodule to instrument Apache HTTP clients.
To instrument SQL queries, add the SDK's interceptor to your data source (p. 60).

42

AWS X-Ray Developer Guide
Requirements

The X-Ray SDK for Java is split into submodules for each type of trace data. The submodules and bill
of materials are available from Maven:

• aws-xray-recorder-sdk-core (required) – Basic functionality for creating segments and
transmitting segments. Includes AWSXRayServletFilter for instrumenting incoming requests.

• aws-xray-recorder-sdk-aws-sdk – Instruments calls to AWS services made with AWS SDK for
Java clients by adding a tracing client as a request handler.

• aws-xray-recorder-sdk-aws-sdk-instrumentor – With aws-xray-recorder-sdk-aws-
sdk, instruments all AWS SDK for Java clients automatically.

• aws-xray-recorder-sdk-apache-http – Instruments outbound HTTP calls made with Apache
HTTP clients.

• aws-xray-recorder-sdk-sql-postgres – Instruments outbound calls to a PostgreSQL
database made with JDBC.

• aws-xray-recorder-sdk-sql-mysql – Instruments outbound calls to a MySQL database made
with JDBC.

• aws-xray-recorder-sdk-bom – Provides a bill of materials that you can use to specify the
version to use for all submodules.

For reference documentation for of the SDK's classes and methods, see AWS X-Ray SDK for Java API
Reference.

Requirements
The X-Ray SDK for Java requires Java 8 or later, Servlet API 3, the AWS SDK, and Jackson.

The SDK depends on the following libraries at compile and runtime:

• AWS SDK for Java version 1.11.42 or later

• Servlet API 3.0

• Jackson Core, Databind and Annotations 2.8

• Commons Validator 1.5.1

These dependencies are declared in the SDK's pom.xml file and are included automatically if you build
using Maven or Gradle.

If you use a library that is included in the X-Ray SDK for Java, you must use the included version.
For example, if you already depend on Jackson at runtime and include JARs in your deployment for
that dependency, you must remove those JARs because the SDK JAR includes its own versions of
Jackson libraries.

Dependency Management
The X-Ray SDK for Java is available from Maven:

• Group – com.amazonaws

• Bill of Materials – aws-xray-recorder-sdk-bom

• Version – 1.0.4-beta

If you use Maven to build your application, add the SDK as a dependency in your pom.xml file.

43

https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-core
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk-instrumentor
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-apache-http
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-sql-postgres
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-sql-mysql
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-bom
http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc
http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc

AWS X-Ray Developer Guide
Dependency Management

Example pom.xml - dependencies

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-bom</artifactId>
 <version>1.0.2-beta</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-core</artifactId>
</dependency>
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-apache-http</artifactId>
</dependency>
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-aws-sdk</artifactId>
</dependency>
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-aws-sdk-instrumentor</artifactId>
</dependency>
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-sql-postgres</artifactId>
</dependency>
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-sql-mysql</artifactId>
</dependency>

For Gradle, add the SDK as a compile-time dependency in your build.gradle file.

44

AWS X-Ray Developer Guide
Configuration

Example build.gradle - dependencies

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")
 compile("com.amazonaws:aws-java-sdk-dynamodb")
 compile("com.amazonaws:aws-xray-recorder-sdk-core")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk-instrumentor")
 compile("com.amazonaws:aws-xray-recorder-sdk-apache-http")
 compile("com.amazonaws:aws-xray-recorder-sdk-sql-postgres")
 compile("com.amazonaws:aws-xray-recorder-sdk-sql-mysql")
 testCompile("junit:junit:4.11")
}
dependencyManagement {
 imports {
 mavenBom('com.amazonaws:aws-java-sdk-bom:1.11.39')
 mavenBom('com.amazonaws:aws-xray-recorder-sdk-bom:1.0.4-beta')
 }
}

If you use Elastic Beanstalk to deploy your application, you can use Maven or Gradle to build on-
instance each time you deploy, instead of building and uploading a large archive that includes all of
your dependencies. See the sample application (p. 48) for an example that uses Gradle.

Configuring the X-Ray SDK for Java
The X-Ray SDK for Java provides a class named AWSXRay that provides the global recorder, a
TracingHandler that you can use to instrument your code. You can configure the global recorder to
customize the AWSXRayServletFilter that creates segments for incoming HTTP calls.

Sections

• Service Plugins (p. 45)

• Sampling Rules (p. 46)

• Logging (p. 48)

Service Plugins
Use plugins to add trace data about the service hosting your application.

• Amazon EC2 – Adds the instance ID.

• Elastic Beanstalk – Adds the environment ID.

• Amazon ECS – Adds the cluster ID.

To use a plugin, call withPlugin on your AWSXRayRecorderBuilder:

45

AWS X-Ray Developer Guide
Sampling Rules

Example src/main/java/scorekeep/WebConfig.java - Recorder

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.DefaultSamplingStrategy;

@Configuration
public class WebConfig {
...
 static {
 AWSXRayRecorderBuilder builder =
 AWSXRayRecorderBuilder.standard().withPlugin(new EC2Plugin()).withPlugin(new
 ElasticBeanstalkPlugin());

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.yml");
 builder.withSamplingStrategy(new DefaultSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 }
}

Sampling Rules
The SDK has a default sampling strategy that determines which requests get traced. By default, the
SDK traces the first request each second, and 5 percent of any additional requests. You can customize
the SDK's sampling behavior by applying rules defined in a local file.

Example sampling-rules.json

{
 "rules": {
 "move": {
 "id": 1,
 "service_name": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 },
 "base": {
 "id": 2,
 "service_name": "*",
 "http_method": "*",
 "url_path": "*",
 "fixed_target": 1,
 "rate": 0.1
 }
 }
}

This example defines two rules. The first rule applies a five-percent sampling rate with no minimum
number of requests to trace to requests with paths under /api/move/. The second overrides the
default sampling rule with a rule that traces the first request each second and 10 percent of additional
requests.

For Spring, configure the global recorder in a configuration class.

46

AWS X-Ray Developer Guide
Sampling Rules

Example src/main/java/myapp/WebConfig.java - Recorder Configuration

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.DefaultSamplingStrategy;

@Configuration
public class WebConfig {

 static {
 AWSXRayRecorderBuilder builder =
 AWSXRayRecorderBuilder.standard().withPlugin(new EC2Plugin());

 URL ruleFile = WebConfig.class.getResource("file://sampling-rules.json");
 builder.withSamplingStrategy(new DefaultSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
}

For Tomcat, add a listener that extends ServletContextListener.

Example src/com/myapp/web/Startup.java

package com.myapp.web;

import java.net.URL;

import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.DefaultSamplingStrategy;

public class Startup implements ServletContextListener {

 @Override
 public void contextInitialized(ServletContextEvent event) {
 AWSXRayRecorderBuilder builder =
 AWSXRayRecorderBuilder.standard().withPlugin(new EC2Plugin());

 URL ruleFile = Context.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new DefaultSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 }

 @Override
 public void contextDestroyed(ServletContextEvent event) { }
}

Register the listener in the deployment descriptor.

47

AWS X-Ray Developer Guide
Logging

Example WEB-INF/web.xml

...
 <listener>
 <listener-class>com.myapp.web.Startup</listener-class>
 </listener>

Logging
By default, the SDK outputs SEVERE and ERROR level messages to your application logs. You can
enable debug-level logging on the SDK to output more detailed logs to your application log file.

Example application.properties

Set the logging level with the logging.level.com.amazonaws.xray property.

logging.level.com.amazonaws.xray = DEBUG

Use debug logs to identify issues such as unclosed subsegments when you generate subsegments
manually (p. 62).

X-Ray SDK for Java Sample Application
A sample application that shows the use of the SDK to instrument incoming HTTP calls, DynamoDB
SDK clients, and HTTP clients is available on GitHub. The app, eb-java-scorekeep, uses AWS Elastic
Beanstalk features to create DynamoDB tables, compile Java code on-instance, and run the X-Ray
daemon without any additional configuration.

48

https://github.com/awslabs/eb-java-scorekeep/tree/xray

AWS X-Ray Developer Guide
Sample Application

The sample is an instrumented version of the Scorekeep project on AWSLabs. It includes a front-
end web app, the API that it calls, and the DynamoDB tables that it uses to store data. All of the
components are hosted in an AWS Elastic Beanstalk environment for portability and ease of
deployment.

The xray branch of the application shows the use of filters (p. 54), plugins (p. 45),
instrumented AWS SDK clients (p. 57), HTTPClient (p. 58), SQL queries (p. 60), and custom
subsegments (p. 62).

49

https://github.com/awslabs/eb-java-scorekeep

AWS X-Ray Developer Guide
Sample Application

The sample application shows basic instrumentation in these files:

• HTTP request filter – WebConfig.java

• AWS SDK client instrumentation – build.gradle

For instructions on using the sample application with X-Ray, see the getting started tutorial (p. 5). In
addition to the basic use of the X-Ray SDK for Java discussed in the tutorial, the sample also shows
how to use the following features.

Advanced Features

• Manually Instrumenting AWS SDK Clients (p. 51)

• Creating Additional Subsegments (p. 51)

• Instrumenting Outgoing HTTP Calls (p. 51)

• Instrumenting Calls to a PostgreSQL Database (p. 52)

50

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/WebConfig.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/build.gradle

AWS X-Ray Developer Guide
Manually Instrumenting AWS SDK Clients

Manually Instrumenting AWS SDK Clients
Sample – Manual AWS SDK Client Instrumentation – SessionModel.java

The X-Ray SDK for Java automatically instruments all AWS SDK clients when you include the AWS
SDK Instrumentor submodule in your build dependencies (p. 43).

You can disable automatic client instrumentation by removing the Instrumentor submodule, which
enables you to instrument some clients manually while ignoring others, or use different tracing handlers
on different clients.

To illustrate support for instrumenting specific AWS SDK clients, the application passes a tracing
handler to AmazonDynamoDBClientBuilder as a request handler in the user, game, and session
model. This code change tells the SDK to instrument all calls to DynamoDB using those clients.

Example src/main/java/scorekeep/SessionModel.java

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.handlers.TracingHandler;

public class SessionModel {
 private AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Constants.REGION)
 .withRequestHandlers(new TracingHandler(AWSXRay.getGlobalRecorder()))
 .build();
 private DynamoDBMapper mapper = new DynamoDBMapper(client);

If you remove the AWS SDK Instrumentor submodule from project dependencies, only the manually
instrumented AWS SDK clients appear in the service map.

Creating Additional Subsegments
Sample – Manual segment creation and annotation – UserModel.java

In the user model class, the application manually creates subsegments to group all downstream calls
made within the saveUser function and adds metadata.

Example src/main/java/scorekeep/UserModel.java - saveUser

 public void saveUser(User user) {
 // wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("## UserModel.saveUser");
 try {
 mapper.save(user);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 subsegment.putMetadata("debug", "test", "Metadata string from
 UserModel.saveUser");
 AWSXRay.endSubsegment();
 }
 }

Instrumenting Outgoing HTTP Calls
Sample – HTTPClient instrumentation – UserFactory.java

51

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/SessionModel.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserModel.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserFactory.java

AWS X-Ray Developer Guide
Instrumenting Calls to a PostgreSQL Database

The user factory class shows how the application uses the X-Ray SDK for Java's version of
HTTPClientBuilder to instrument outgoing HTTP calls.

Example src/main/java/scorekeep/UserFactory.java

import com.amazonaws.xray.proxies.apache.http.HttpClientBuilder;

 public String randomName() throws IOException {
 CloseableHttpClient httpclient = HttpClientBuilder.create().build();
 HttpGet httpGet = new HttpGet("http://uinames.com/api/");
 CloseableHttpResponse response = httpclient.execute(httpGet);
 try {
 HttpEntity entity = response.getEntity();
 InputStream inputStream = entity.getContent();
 ObjectMapper mapper = new ObjectMapper();
 Map<String, String> jsonMap = mapper.readValue(inputStream, Map.class);
 String name = jsonMap.get("name");
 EntityUtils.consume(entity);
 return name;
 } finally {
 response.close();
 }
 }

If you currently use org.apache.http.impl.client.HttpClientBuilder,
you can simply swap out the import statement for that class with one for
com.amazonaws.xray.proxies.apache.http.HttpClientBuilder.

Instrumenting Calls to a PostgreSQL Database
Sample – PostgreSQL Database Instrumentation – application-pgsql.properties

The application-pgsql.properties file adds the X-Ray PostgreSQL tracing interceptor to the
data source created in RdsWebConfig.java.

Note
See Configuring Databases with Elastic Beanstalk in the AWS Elastic Beanstalk Developer
Guide for details on how to add a PostgreSQL database to the application environment.

The X-Ray demo page in the xray branch includes a demo that uses the instrumented data source
to generate traces that show information about the SQL queries that it generates. Navigate to the /#/
xray path in the running application or choose Powered by AWS X-Ray in the navigation bar to see
the demo page.

52

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/resources/application-pgsql.properties
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/RdsWebConfig.java
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.db.html

AWS X-Ray Developer Guide
Instrumenting Calls to a PostgreSQL Database

53

AWS X-Ray Developer Guide
Incoming Requests

Choose Trace SQL queries to simulate game sessions and store the results in the attached database.
Then, choose View traces in AWS X-Ray to see a filtered list of traces that hit the API's /api/
history route.

Choose one of the traces from the list to see the timeline, including the SQL query.

Tracing Incoming Requests with the X-Ray SDK
for Java

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

Use a Filter to instrument incoming HTTP requests. When you add the X-Ray servlet filter to your
application, the X-Ray SDK for Java creates a segment for each sampled request. Any segments
created by additional instrumentation become subsegments of the request-level segment that provides
information about the HTTP request and response, including timing, method, and disposition of the
request.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header in the
incoming request. Dynamic naming lets you group traces based on the domain name in the request,
and apply a default name if the name doesn't match an expected pattern (for example, if the host
header is forged).

Forwarded Requests
If a request is forwarded to your application by a load balancer or other intermediary, The
client IP in the segment is taken from the X-Forwarded-For header in the request instead of
the source IP in the IP packet. The client IP recorded for a forwarded request can be forged
so should not be trusted.

When a request is forwarded, the X-Ray SDK for Java sets an additional field in the segment to
indicate this. If the segment contains the field x_forwarded_for set to true, the client IP is taken
from the X-Forwarded-For header in the HTTP request.

Sections

54

AWS X-Ray Developer Guide
Adding a Tracing Filter to your Application

• Adding a Tracing Filter to your Application (p. 55)

• Configuring a Segment Naming Strategy (p. 56)

Adding a Tracing Filter to your Application
For Tomcat, add a <filter> to your project's web.xml file. Use the fixedName parameter to specify
a service name (p. 56) to apply to segments created for incoming requests.

Example WEB-INF/web.xml - Tomcat

<filter>
 <filter-name>AWSXRayServletFilter</filter-name>
 <filter-class>com.amazonaws.xray.javax.servlet.AWSXRayServletFilter</
filter-class>
 <init-param>
 <param-name>fixedName</param-name>
 <param-value>MyApp</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>AWSXRayServletFilter</filter-name>
 <url-pattern>*</url-pattern>
</filter-mapping>

For Spring, add a Filter to your WebConfig class. Pass the segment name to the
AWSXRayServletFilter constructor as a string.

Example src/main/java/myapp/WebConfig.java - Spring

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;
import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter("Scorekeep");
 }
}

The servlet filter creates a segment for each incoming request with an http block that contains the
following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

55

http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html

AWS X-Ray Developer Guide
Configuring a Segment Naming Strategy

Configuring a Segment Naming Strategy
The X-Ray SDK can name segments after the host name in the HTTP request header, but this header
can be forged, which could result in unexpected nodes in your service map. To prevent the SDK from
naming segments incorrectly due to requests with forged host headers, you must specify a name to
use for all segments, or configure a dynamic naming strategy. A dynamic naming strategy allows the
SDK to use the host name for names that match an expected pattern, and apply a default name to
names that don't.

To use the same name for all request segments, specify the name of your application when you
initialize the servlet filter, as shown in the previous section (p. 55). This has the same effect as
creating a FixedSegmentNamingStrategy and passing it to AWSXRayServletFilter constructor.

A dynamic naming strategy defines a pattern that host names should match, and a default name to use
if the host name in the HTTP request does not match the pattern. To name segments dynamically in
Tomcat, use the dynamicNamingRecognizedHosts and dynamicNamingFallbackName to define
the pattern and default name, respectively.

Example WEB-INF/web.xml - Servlet Filter with Dynamic Naming

<filter>
 <filter-name>AWSXRayServletFilter</filter-name>
 <filter-class>com.amazonaws.xray.javax.servlet.AWSXRayServletFilter</
filter-class>
 <init-param>
 <param-name>dynamicNamingRecognizedHosts</param-name>
 <param-value>*.example.com</param-value>
 </init-param>
 <init-param>
 <param-name>dynamicNamingFallbackName</param-name>
 <param-value>MyApp</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>AWSXRayServletFilter</filter-name>
 <url-pattern>*</url-pattern>
</filter-mapping>

For Spring, create a DynamicSegmentNamingStrategy and pass it to the AWSXRayServletFilter
constructor.

56

http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/FixedSegmentNamingStrategy.html
http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/DynamicSegmentNamingStrategy.html

AWS X-Ray Developer Guide
AWS SDK Clients

Example src/main/java/myapp/WebConfig.java - Servlet Filter with Dynamic Naming

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;
import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.strategy.DynamicSegmentNamingStrategy;

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter(new DynamicSegmentNamingStrategy("MyApp",
 "*.example.com"));
 }
}

Tracing AWS SDK Calls with the X-Ray SDK for
Java

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Java tracks the calls downstream in subsegments (p. 62). Traced
AWS services and resources that you access within those services (for example, an Amazon S3
bucket or Amazon SQS queue), appear as downstream nodes on the service map in the X-Ray
console.

The X-Ray SDK for Java automatically instruments all AWS SDK clients when you include the aws-
sdk and aws-sdk-instrumentor submodules (p. 43) in your build. If you don't include the
Instrumentor submodule, you can choose to instrument some clients while excluding others.

To instrument individual clients, remove the aws-sdk-instrumentor submodule from your build and
add an XRayClient as a TracingHandler on your AWS SDK client using the service's client builder.

For example, to instrument an AmazonDynamoDB client, pass a tracing handler to
AmazonDynamoDBClientBuilder.

Example MyModel.java

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.handlers.TracingHandler;

...
public class MyModel {
 private AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.fromName(System.getenv("AWS_REGION")))
 .withRequestHandlers(new TracingHandler(AWSXRay.getGlobalRecorder()))
 .build();
...

You can wrap any AWS SDK client to trace calls made using that client. For all services, you will
see the name of the API called in the X-Ray console. For a subset of services, the X-Ray SDK adds
information to the segment to provide more granularity in the service map.

57

AWS X-Ray Developer Guide
Outgoing HTTP Calls

For example, when you instrument a DynamoDB client, the SDK adds the table name to the segment
for calls that target a table. In the console, each table appears as a separate node in the service map,
along with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a Call to DynamoDB to Save an Item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

Calls to the following services create additional nodes in the service map when you access named
resources.

• Amazon DynamoDB – table name

• Amazon Simple Storage Service – bucket and key name

• Amazon Simple Queue Service – queue name

Calls to these services that don't target specific resources create a generic node for the service.

Tracing Calls to Downstream HTTP Web Services
with the X-Ray SDK for Java

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Java's version of HttpClient to instrument those calls and add the API to the service graph as a
downstream service.

The X-Ray SDK for Java includes DefaultHttpClient and HttpClientBuilder classes that can
be used in place of the Apache HttpComponents equivalents to instrument outgoing HTTP calls.

• com.amazonaws.xray.proxies.apache.http.DefaultHttpClient -
org.apache.http.impl.client.DefaultHttpClient

• com.amazonaws.xray.proxies.apache.http.HttpClientBuilder -
org.apache.http.impl.client.HttpClientBuilder

You can replace your existing import statements with the X-Ray equivalent to instrument all clients, or
use the fully qualified name when you initialize a client to instrument specific clients.

58

AWS X-Ray Developer Guide
Outgoing HTTP Calls

Example HttpClientBuilder

import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.http.HttpEntity;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.util.EntityUtils;
import com.amazonaws.xray.proxies.apache.http.HttpClientBuilder;
...
 public String randomName() throws IOException {
 CloseableHttpClient httpclient = HttpClientBuilder.create().build();
 HttpGet httpGet = new HttpGet("http://names.example.com/api/");
 CloseableHttpResponse response = httpclient.execute(httpGet);
 try {
 HttpEntity entity = response.getEntity();
 InputStream inputStream = entity.getContent();
 ObjectMapper mapper = new ObjectMapper();
 Map<String, String> jsonMap = mapper.readValue(inputStream, Map.class);
 String name = jsonMap.get("name");
 EntityUtils.consume(entity);
 return name;
 } finally {
 response.close();
 }
 }

When you instrument a call to a downstream web api, the X-Ray SDK for Java records a subsegment
with information about the HTTP request and response. X-Ray uses the subsegment to generate an
inferred segment for the remote API.

Example Subsegment for a Downstream HTTP Call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

59

AWS X-Ray Developer Guide
SQL Queries

Example Inferred Segment for a Downstream HTTP Call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-5880168b-fd5153bb58284b67678aa78c",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Tracing SQL Queries with the X-Ray SDK for
Java

Instrument SQL database queries by adding the X-Ray SDK for Java JDBC interceptor to your data
source configuration.

• PostgreSQL – com.amazonaws.xray.sql.postgres.TracingInterceptor

• MySQL – com.amazonaws.xray.sql.mysql.TracingInterceptor

For Spring, add the interceptor in a properties file and build the data source with Spring Boot's
DataSourceBuilder.

Example src/main/java/resources/application.properties - PostgreSQL JDBC
Interceptor

spring.datasource.continue-on-error=true
spring.jpa.show-sql=false
spring.jpa.hibernate.ddl-auto=create-drop
spring.datasource.jdbc-
interceptors=com.amazonaws.xray.sql.postgres.TracingInterceptor
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQL94Dialect

60

AWS X-Ray Developer Guide
SQL Queries

Example src/main/java/myapp/WebConfig.java - Data Source

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.boot.autoconfigure.jdbc.DataSourceBuilder;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

import javax.servlet.Filter;
import javax.sql.DataSource;
import java.net.URL;

@Configuration
@EnableAutoConfiguration
@EnableJpaRepositories("myapp")
public class RdsWebConfig {

 @Bean
 @ConfigurationProperties(prefix = "spring.datasource")
 public DataSource dataSource() {
 logger.info("Initializing PostgreSQL datasource");
 return DataSourceBuilder.create()
 .driverClassName("org.postgresql.Driver")
 .url("jdbc:postgresql://" + System.getenv("RDS_HOSTNAME") + ":"
 + System.getenv("RDS_PORT") + "/ebdb")
 .username(System.getenv("RDS_USERNAME"))
 .password(System.getenv("RDS_PASSWORD"))
 .build();
 }
...
}

For Tomcat, call setJdbcInterceptors on the JDBC data source with a reference to the X-Ray SDK
for Java class.

Example src/main/myapp/model.java - Data Source

import org.apache.tomcat.jdbc.pool.DataSource;
...
DataSource source = new DataSource();
source.setUrl(url);
source.setUsername(user);
source.setPassword(password);
source.setDriverClassName("com.mysql.jdbc.Driver");
source.setJdbcInterceptors("com.amazonaws.xray.sql.mysql.TracingInterceptor;");

You can declare the Tomcat JDBC Data Source library as a provided dependency to document that
you use it.

61

AWS X-Ray Developer Guide
Custom Subsegments

Example pom.xml - JDBC Data Source

<dependency>
 <groupId>org.apache.tomcat</groupId>
 <artifactId>tomcat-jdbc</artifactId>
 <version>8.0.36</version>
 <scope>provided</scope>
</dependency>

Generating Custom Subsegments with the X-Ray
SDK for Java

A segment is a JSON document that records the work that your application does to serve a single
request. The AWSXRayServletFilter (p. 54) creates segments for HTTP requests and adds details
about the request and response, including information from headers in the request, the time that the
request was received, and the time that the response was sent.

Further instrumentation generates subsegments. Instrumented AWS SDK clients, HTTP clients, and
JDBC clients add subsegments to the segment document with details of downstream calls made by the
servlet or any functions that the servlet calls.

You can create subsegments manually to organize downstream calls into groups. For example, you
can create a custom subsegment for a function that makes several calls to DynamoDB.

Example src/main/java/scorekeep/GameModel.java

import com.amazonaws.xray.AWSXRay;
...
 public void saveGame(Game game) throws SessionNotFoundException {
 // wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("Save Game");
 try {
 // check session
 String sessionId = game.getSession();
 if (sessionModel.loadSession(sessionId) == null) {
 throw new SessionNotFoundException(sessionId);
 }
 mapper.save(game);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

In this example, the code within the subsegment loads the game's session from DynamoDB with a
method on the session model, and uses the AWS SDK for Java's DynamoDB mapper to save the
game. Wrapping this code in a subsegment makes the calls DynamoDB children of the Save Game
subsegment in the trace view in the console.

If the code in your subsegment throws checked exceptions, wrap it in a try block and call
AWSXRay.endSubsegment() in a finally block to ensure that the subsegment is always closed. If a
subsegment is not closed, the parent segment cannot be completed and won't be sent to X-Ray.

62

AWS X-Ray Developer Guide
Custom Subsegments

For code that doesn't throw checked exceptions, you can pass the code to
AWSXRay.CreateSubsegment as a lambda function.

Example

import com.amazonaws.xray.AWSXRay;

AWSXRay.createSubsegment("getMovies" (subsegment) -> {
 // function code
});

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for Java
generates an ID for it and records the start time and end time.

Example Subsegment with Metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

63

AWS X-Ray Developer Guide
Requirements

The X-Ray SDK for Node.js

The X-Ray SDK for Node.js is a library for Express framework Node.js web applications that provides
classes and methods for generating and sending trace data to the X-Ray daemon. Trace data includes
information about incoming HTTP requests served by the application, and calls that the application
makes to downstream services using the AWS SDK or HTTP clients.

If you use Express, start by adding the SDK as middleware (p. 67) on your application server to
trace incoming requests. The middleware creates a segment for each traced request, and completes
the segment when the response is sent. While the segment is open you can use the SDK client's
methods to add information to the segment and create subsegments to trace downstream calls. The
middleware also automatically captures exceptions that your application throws while the segment is
open.

The middleware applies sampling rules to incoming requests to determine which requests to trace.
You can configure the X-Ray SDK for Node.js (p. 65) to adjust the sampling behavior or to record
information about the AWS compute resources on which your application runs.

Next, use the X-Ray SDK for Node.js to instrument your AWS SDK for JavaScript in Node.js
clients (p. 68). Whenever you make a call to a downstream AWS service or resource with an
instrumented client, the SDK records information about the call in a subsegment. AWS services and
the resources that you access within the services appear as downstream nodes on the service map to
help you identify errors and throttling issues on individual connections.

The X-Ray SDK for Node.js also provides instrumentation for downstream calls to HTTP web APIs
and SQL queries. Wrap your HTTP client in the SDK's capture method (p. 69) to record information
about outgoing HTTP calls. For SQL clients, use the capture method for your database type (p. 70).

While a segment is open, you can also create subsegments (p. 70) for any function in your
application, and add debug information to segments and subsegments in annotations and metadata. X-
Ray indexes annotations for use with expression filters (p. 18).

Annotations and Metadata
Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed but can be
viewed in the raw segment with the X-Ray console or API. Anyone that you grant read access
to X-Ray can view this data.

For reference documentation about the SDK's classes and methods, see the AWS X-Ray SDK for
Node.js API Reference.

Requirements
The X-Ray SDK for Node.js requires Node.js and the following libraries:

64

http://docs.aws.amazon.com//xray-sdk-for-nodejs/latest/reference
http://docs.aws.amazon.com//xray-sdk-for-nodejs/latest/reference

AWS X-Ray Developer Guide
Dependency Management

• cls – 0.1.5

• continuation-local-storage – 3.2.0

• pkginfo – 0.4.0

• underscore – 1.8.3

The SDK pulls these libraries in when you install it with NPM.

To trace AWS SDK clients, the X-Ray SDK for Node.js requires a minimum version of the AWS SDK
for JavaScript in Node.js.
<listitem>
aws-sdk – 2.7.15
</listitem>

Dependency Management
The X-Ray SDK for Node.js is available from NPM.

• Package – aws-xray-sdk

For local development, install the SDK in your project directory with npm.

~/nodejs-xray$ npm install aws-xray-sdk
nodejs-xray@0.0.0 ~/nodejs-xray
aws-xray-sdk@1.0.4-beta
 ### continuation-local-storage@3.2.0
 # ### async-listener@0.6.3
 # # ### shimmer@1.0.0
 # ### emitter-listener@1.0.1
 ### moment@2.17.1
 ### pkginfo@0.4.0
 ### semver@5.3.0
 ### underscore@1.8.3
 ### winston@2.3.1
 ### async@1.0.0
 ### colors@1.0.3
 ### cycle@1.0.3
 ### eyes@0.1.8
 ### isstream@0.1.2
 ### stack-trace@0.0.9

Use the --save option to save the SDK as a dependency in your application's package.json.

~/nodejs-xray$ npm install aws-xray-sdk --save
nodejs-xray@0.0.0 ~/nodejs-xray
aws-xray-sdk@1.0.4-beta

Configuring the X-Ray SDK for Node.js
You can configure the X-Ray SDK for Node.js with plugins to include information about the service
that your application runs on, modify the default sampling behavior, or add sampling rules that apply to
requests to specific paths.

65

https://www.npmjs.com/package/aws-xray-sdk

AWS X-Ray Developer Guide
Service Plugins

Sections

• Service Plugins (p. 66)

• Sampling Rules (p. 66)

Service Plugins
Use the plugins parameter to use a plugin that adds data about the service hosting your application.

Plugins

• EC2 – Adds the instance ID.

• ECS – Adds the cluster ID.

• ElasticBeanstalk – Adds the environment ID.

To use a plugin, configure the X-Ray SDK for Node.js client by using the config method.

Example app.js

var AWSXRay = require('aws-xray-sdk');
AWSXRay.config([AWSXRay.plugins.EC2]);

Sampling Rules
The SDK has a default sampling strategy that determines which requests get traced. By default, the
SDK traces the first request each second, and 5 percent of any additional requests. You can customize
the SDK's sampling behavior by applying rules defined in a local file.

Example sampling-rules.json

{
 "rules": {
 "move": {
 "id": 1,
 "service_name": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 },
 "base": {
 "id": 2,
 "service_name": "*",
 "http_method": "*",
 "url_path": "*",
 "fixed_target": 1,
 "rate": 0.1
 }
 }
}

This example defines two rules. The first rule applies a five-percent sampling rate with no minimum
number of requests to trace to requests with paths under /api/move/. The second overrides the

66

AWS X-Ray Developer Guide
Incoming Requests

default sampling rule with a rule that traces the first request each second and 10 percent of additional
requests.

Tell the X-Ray SDK for Node.js to load sampling rules from a file with setSamplingRules.

Example app.js - sampling rules

var AWSXRay = require('aws-xray-sdk');
AWSXRay.setSamplingRules('sampling-rules.json');

Tracing Incoming Requests with the X-Ray SDK
for Node.js

You can use the X-Ray SDK for Node.js to trace incoming HTTP requests that your Express
application serves on an EC2 instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

The X-Ray SDK for Node.js provides middleware for applications that use the Express framework.
When you add the X-Ray middleware to your application, the X-Ray SDK for Node.js creates a
segment for each sampled request. Any segments created by additional instrumentation become
subsegments of the request-level segment. The request-level segment provides information about the
HTTP request and response including timing, method, and disposition of the request.

Forwarded Requests
If a request is forwarded to your application by a load balancer or other intermediary, The
client IP in the segment is taken from the X-Forwarded-For header in the request instead of
the source IP in the IP packet. The client IP recorded for a forwarded request can be forged
so should not be trusted.

To use the middleware, initialize the SDK client and use the middleware returned by the
express.openSegment function before you define your routes.

Example app.js

var app = express();

var AWSXRay = require('aws-xray-sdk');
app.use(AWSXRay.express.openSegment('MyApp'));

app.get('/', function (req, res) {
 res.render('index');
});

app.use(AWSXRay.express.closeSegment());

After you define your routes, use the output of express.closeSegment as shown to handle any
errors returned by the X-Ray SDK for Node.js.

Segments generated by the middleware include the following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

67

AWS X-Ray Developer Guide
AWS SDK Clients

• Timing – The start time (when the request was received) and end time (when the response was
sent).

Tracing AWS SDK Calls with the X-Ray SDK for
Node.js

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Node.js tracks the calls downstream in subsegments (p. 70).
Traced AWS services, and resources that you access within those services (for example, an Amazon
S3 bucket or Amazon SQS queue), appear as downstream nodes on the service map in the X-Ray
console.

You can instrument all AWS SDK clients by wrapping your aws-sdk require statement in a call to
AWSXRay.captureAWS.

var AWS = AWSXRay.captureAWS(require('aws-sdk'));

To instrument individual clients, wrap your AWS SDK client in a call to AWSXRay.captureAWSClient.
For example, to instrument an AmazonDynamoDB client:

Example app.js

 var AWSXRay = require('aws-xray-sdk');
...
 var ddb = AWSXRay.captureAWSClient(new AWS.DynamoDB());

You can wrap any AWS SDK client to trace calls made using that client. For all services, you will
see the name of the API called in the X-Ray console. For a subset of services, the X-Ray SDK adds
information to the segment to provide more granularity in the service map.

For example, when you instrument a DynamoDB client, the SDK adds the table name to the segment
for calls that target a table. In the console, each table appears as a separate node in the service map,
along with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a Call to DynamoDB to Save an Item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

68

AWS X-Ray Developer Guide
Outgoing HTTP Calls

Calls to the following services create additional nodes in the service map when you access named
resources.

• Amazon DynamoDB – table name

• Amazon Simple Storage Service – bucket and key name

• Amazon Simple Queue Service – queue name

Calls to these services that don't target specific resources create a generic node for the service.

Tracing Calls to Downstream HTTP Web Services
with the X-Ray SDK for Node.js

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Node.js client to instrument those calls and add the API to the service graph as a downstream
service.

Pass your http or https client to the X-Ray SDK for Node.js's captureHTTPs method to trace
outgoing calls.

Example

var AWSXRay = require('aws-xray-sdk');
var http = require('http');

AWSXRay.captureHTTPs(http);

When you instrument a call to a downstream web api, the X-Ray SDK for Node.js records a
subsegment with information about the HTTP request and response. X-Ray uses the subsegment to
generate an inferred segment for the remote API.

Example Subsegment for a Downstream HTTP Call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

69

AWS X-Ray Developer Guide
SQL Queries

Example Inferred Segment for a Downstream HTTP Call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-5880168b-fd5153bb58284b67678aa78c",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Tracing SQL Queries with the X-Ray SDK for
Node.js

Instrument SQL database queries by wrapping your SQL client in the corresponding X-Ray SDK for
Node.js client method.

• PostgreSQL – AWSXRay.capturePostgres()

var AWSXRay = require('aws-xray-sdk');
var pg = AWSXRay.capturePostgres(require('pg'));
var client = new pg.Client();

• MySQL – AWSXRay.captureMySQL()

var AWSXRay = require('aws-xray-sdk');
var pg = AWSXRay.captureMySQL(require('mysql'));
...
var connection = mysql.createConnection(config);

When you use an instrumented client to make SQL queries, the X-Ray SDK for Node.js records
information about the connection and query in a subsegment.

Generating Custom Subsegments with the X-Ray
SDK for Node.js

A segment is a JSON document that records the work that your application does to serve a single
request. The X-Ray SDK for Node.js middleware creates segments for HTTP requests and adds

70

AWS X-Ray Developer Guide
Custom Subsegments

details about the request and response, including information from headers in the request, the time that
the request was received, and the time that the response was sent.

Further instrumentation generates subsegments. Instrumented AWS SDK clients and HTTP clients add
subsegments to the segment document with details of downstream calls made by the application.

You can create subsegments manually to instrument functions and organize other subsegments
into groups. For example, you can create a custom subsegment for a function that makes calls to
downstream services with the captureAsync function.

Example app.js

var AWSXRay = require('aws-xray-sdk');

app.use(AWSXRay.express.openSegment('MyApp'));

app.get('/', function (req, res) {
 var host = 'api.example.com';

 AWSXRay.captureAsync('send', function(subsegment) {
 sendRequest(host, function() {
 console.log('rendering!');
 res.render('index');
 subsegment.close();
 });
 });
});

app.use(AWSXRay.express.closeSegment());

function sendRequest(host, cb) {
 var options = {
 host: host,
 path: '/',
 };

 var callback = function(response) {
 var str = '';

 response.on('data', function (chunk) {
 str += chunk;
 });

 response.on('end', function () {
 cb();
 });
 }

 http.request(options, callback).end();
};

In this example, the application creates a custom subsegment named send for calls to the
sendRequest function. captureAsync passes a subsegment that you must close within the callback
function when the asynchronous calls that it makes are complete.

For synchronous functions, you can use the capture function, which closes the subsegment
automatically as soon as the function block finishes executing.

71

AWS X-Ray Developer Guide
Custom Subsegments

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for Node.js
generates an ID for it and records the start time and end time.

Example Subsegment with Metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

72

AWS X-Ray Developer Guide
Requirements

The AWS X-Ray SDK for .NET

The X-Ray SDK for .NET is a library for C# .NET web applications that provides classes and methods
for generating and sending trace data to the X-Ray daemon. Trace data includes information about
incoming HTTP requests served by the application, and calls that the application makes to downstream
AWS services, HTTP web APIs, and SQL databases. You can also create segments manually and add
debug information in annotations and metadata.

Annotations and Metadata
Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed but can be
viewed in the raw segment with the X-Ray console or API. Anyone that you grant read access
to X-Ray can view this data.

Download the X-Ray SDK for .NET from NuGet: nuget.org/packages/AWSXRayRecorder/

Start by adding a TracingMessageHandler to your web configuration (p. 75) to trace incoming
requests. The message handler creates a segment to record information about each traced request
that your application serves, and completes the segment when the response is sent. Within this
segment you can create subsegments to trace downstream calls to other AWS services, HTTP web
APIs, and SQL databases.

Next, use the X-Ray SDK for .NET to instrument your AWS SDK for .NET clients (p. 77). Whenever
you make a call to a downstream AWS service or resource with an instrumented client, the SDK
records information about the call in a subsegment. AWS services and the resources that you access
within the services appear as downstream nodes on the service map to help you identify errors and
throttling issues on individual connections.

The X-Ray SDK for .NET also provides instrumentation for downstream calls to HTTP web
APIs (p. 78) and SQL databases (p. 79). The GetResponseTraced extension method for
System.Net.HttpWebRequest traces outgoing HTTP calls. You can use the X-Ray SDK for .NET's
version of SqlCommand to instrument SQL queries.

For reference documentation about the SDK's classes and methods, see the AWS X-Ray SDK
for .NET API Reference.

Requirements
The X-Ray SDK for .NET requires the .NET framework and AWS SDK for .NET.

73

https://www.nuget.org/packages/AWSXRayRecorder/
http://docs.aws.amazon.com//xray-sdk-for-dotnet/latest/reference
http://docs.aws.amazon.com//xray-sdk-for-dotnet/latest/reference

AWS X-Ray Developer Guide
Adding the X-Ray SDK for .NET to Your Application

Adding the X-Ray SDK for .NET to Your
Application

Use NuGet to add the X-Ray SDK for .NET to your application.

To install the X-Ray SDK for .NET with NuGet Package Manager in Visual Studio

1. Choose Tools, choose NuGet Package Manager, and then choose Manage NuGet Packages
for Solution.

2. Search for AWSXRayRecorder.

3. Choose the package and then choose Install.

Configuring the X-Ray SDK for .NET
You can configure the X-Ray SDK for .NET with plugins to include information about the service that
your application runs on, modify the default sampling behavior, or add sampling rules that apply to
requests to specific paths.

Sections

• Plugins (p. 74)

• Sampling Rules (p. 74)

Plugins
Use plugins to add data about the service hosting your application.

Plugins

• EC2 – Adds the instance ID.

To use a plugin, configure the X-Ray SDK for .NET client by adding the AWSXRayPlugins setting.

Example Web.config - plugins

<configuration>
 <appSettings>
 <add key="AWSXRayPlugins" value="EC2Plugin"/>
 </appSettings>
</configuration>

Sampling Rules
The SDK has a default sampling strategy that determines which requests get traced. By default, the
SDK traces the first request each second, and 5 percent of any additional requests. You can customize
the SDK's sampling behavior by applying rules defined in a local file.

74

AWS X-Ray Developer Guide
Incoming Requests

Example sampling-rules.json

{
 "rules": {
 "move": {
 "id": 1,
 "service_name": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 },
 "base": {
 "id": 2,
 "service_name": "*",
 "http_method": "*",
 "url_path": "*",
 "fixed_target": 1,
 "rate": 0.1
 }
 }
}

This example defines two rules. The first rule applies a five-percent sampling rate with no minimum
number of requests to trace to requests with paths under /api/move/. The second overrides the
default sampling rule with a rule that traces the first request each second and 10 percent of additional
requests.

Tell the X-Ray SDK for .NET to load sampling rules from a file with the SamplingRuleManifest
setting.

Example Web.config - sampling rules

<configuration>
 <appSettings>
 <add key="SamplingRuleManifest" value="sampling-rules.json"/>
 </appSettings>
</configuration>

Instrumenting Incoming HTTP Requests with the
X-Ray SDK for .NET

To instrument requests served by your application, add a TracingMessageHandler to the
HttpConfiguration.MessageHandlers collection in your web configuration.

75

AWS X-Ray Developer Guide
Incoming Requests

Example WebApiConfig - Message handler

using System.Web.Http;
using Amazon.XRay.Recorder.Handler.Http;
using SampleEBWebApplication.Controllers;

namespace SampleEBWebApplication
{
 public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config)
 {
 // Add the message handler to HttpCofiguration
 config.MessageHandlers.Add(new TracingMessageHandler());
 // Web API routes
 config.MapHttpAttributeRoutes();
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

When you add the X-Ray message handler to your application, the X-Ray SDK for .NET creates a
segment for each sampled request. Any segments created by additional instrumentation become
subsegments of the request-level segment that provides information about the HTTP request and
response, including timing, method, and disposition of the request.

Forwarded Requests
If a request is forwarded to your application by a load balancer or other intermediary, The
client IP in the segment is taken from the X-Forwarded-For header in the request instead of
the source IP in the IP packet. The client IP recorded for a forwarded request can be forged
so should not be trusted.

Alternatively, you can also add the tracing handler to a global.asax file.

Example global.asax - Message handler

using System.Web.Http;

namespace SampleEBWebApplication
{
 public class WebApiApplication : System.Web.HttpApplication
 {
 protected void Application_Start()
 {
 GlobalConfiguration.Configure(WebApiConfig.Register);
 GlobalConfiguration.Configuration.MessageHandlers.Add(new
 TracingMessageHandler());
 }
 }
}

76

AWS X-Ray Developer Guide
AWS SDK Clients

Instrumenting Downstream Calls to AWS Services
You can instrument your AWS SDK for .NET clients by adding an event handler with
AWSXRayRecorder.Instance.AddEventHandler.

Example SampleController.cs - DynamoDB Client Instrumentation

Initialize a DynamoDB client with the AWS SDK for Java, and then add the event handler with the
default AWSXRayRecorder's AddEventHandler method.

using Amazon;
using Amazon.Util;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DocumentModel;
using Amazon.XRay.Recorder.Core;

namespace SampleEBWebApplication.Controllers
{
 public class SampleController : ApiController
 {
 private static readonly Lazy<AmazonDynamoDBClient> LazyDdbClient = new
 Lazy<AmazonDynamoDBClient>(() =>
 {
 var client = new AmazonDynamoDBClient(EC2InstanceMetadata.Region ??
 RegionEndpoint.USEast1);
 AWSXRayRecorder.Instance.AddEventHandler(client);
 return client;
 });

You can wrap any AWS SDK client to trace calls made using that client. For all services, you will
see the name of the API called in the X-Ray console. For a subset of services, the X-Ray SDK adds
information to the segment to provide more granularity in the service map.

For example, when you instrument a DynamoDB client, the SDK adds the table name to the segment
for calls that target a table. In the console, each table appears as a separate node in the service map,
along with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a Call to DynamoDB to Save an Item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

77

AWS X-Ray Developer Guide
Outgoing HTTP Calls

Calls to the following services create additional nodes in the service map when you access named
resources.

• Amazon DynamoDB – table name

• Amazon Simple Storage Service – bucket and key name

• Amazon Simple Queue Service – queue name

Calls to these services that don't target specific resources create a generic node for the service.

Tracing Calls to Downstream HTTP Web Services
with the X-Ray SDK for .NET

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for .NET's GetResponseTraced extension method for System.Net.HttpWebRequest to instrument
those calls and add the API to the service graph as a downstream service.

Example HttpClient

using System.Net;
using Amazon;
using Amazon.Util;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handler.Http;

private void MakeHttpRequest()
{
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create("http://
names.example.com/api");
 request.GetResponseTraced();
}

When you instrument a call to a downstream web api, the X-Ray SDK for .NET records a subsegment
with information about the HTTP request and response. X-Ray uses the subsegment to generate an
inferred segment for the remote API.

78

AWS X-Ray Developer Guide
SQL Queries

Example Subsegment for a Downstream HTTP Call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred Segment for a Downstream HTTP Call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-5880168b-fd5153bb58284b67678aa78c",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Tracing SQL Queries with the X-Ray SDK
for .NET

The SDK provides a wrapper class for System.Data.SqlClient.SqlCommand named
TraceableSqlCommand that you can use in place of SqlCommand.

79

AWS X-Ray Developer Guide
Custom Subsegments

Example Controller.cs - SQL Client Instrumentation

Initialize an SQL command with the X-Ray SDK for .NET's TraceableSqlCommand class.

using Amazon;
using Amazon.Util;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handler.Sql;
 private void QuerySql(int id)
 {
 var connectionString =
 ConfigurationManager.AppSettings["RDS_CONNECTION_STRING"];
 using (var sqlConnection = new SqlConnection(connectionString))
 using (var sqlCommand = new TraceableSqlCommand("SELECT " + id,
 sqlConnection))
 {
 sqlCommand.Connection.Open();
 sqlCommand.ExecuteNonQuery();
 }
 }

Creating Additional Subsegments
You can add subsegments to request segments with BeginSubsegment and EndSubsegment.
Perform any work in the subsegment in a try block and use AddException to trace exceptions. Call
EndSubsegment in a finally block to ensure that the subsegment is closed.

AWSXRayRecorder.Instance.BeginSubsegment("custom method");
try
{
 DoWork();
}
catch (Exception e)
{
 AWSXRayRecorder.Instance.AddException(e);
}
finally
{
 AWSXRayRecorder.Instance.EndSubsegment();
}

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for .NET
generates an ID for it and records the start time and end time.

80

AWS X-Ray Developer Guide
Custom Subsegments

Example Subsegment with Metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

81

AWS X-Ray Developer Guide

The AWS X-Ray Daemon

The AWS X-Ray daemon is a software application that listens for traffic on UDP port 2000, gathers raw
segment data, and relays it to the AWS X-Ray API. The daemon works in conjunction with the AWS X-
Ray SDKs and must be running so that data sent by the SDKs can reach the X-Ray service.

You can download the daemon from Amazon S3.

• Linux (executable) – aws-xray-daemon-linux-1.x.zip

• Linux (RPM installer) – aws-xray-daemon-1.x.rpm

• Linux (DEB installer) – aws-xray-daemon-1.x.deb

• Windows (executable) – aws-xray-daemon-windows-process-1.x.zip

• Windows (service) – aws-xray-daemon-windows-service-1.x.zip

Run the daemon from a command line.

~/Downloads$./xray

For detailed platform-specific instructions, see the following:

• Linux (local) – Running the X-Ray Daemon on Linux (p. 86)

• Windows (local) – Running the X-Ray Daemon on Windows (p. 86)

• Elastic Beanstalk – Running the X-Ray Daemon on AWS Elastic Beanstalk (p. 87)

• Amazon EC2 – Running the X-Ray Daemon on Amazon EC2 (p. 90)

• Amazon ECS – Running the X-Ray Daemon on Amazon ECS (p. 91)

Sections

• Giving the Daemon Permission to Send Data to X-Ray (p. 83)

• X-Ray Daemon Logs (p. 84)

• Configuring the Daemon (p. 84)

82

https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-linux-1.x.zip
https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-1.x.rpm
https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-1.x.deb
https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-windows-process-1.x.zip
https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-windows-service-1.x.zip

AWS X-Ray Developer Guide
Giving the Daemon Permission to Send Data to X-Ray

• Running the X-Ray Daemon Locally (p. 85)

• Running the X-Ray Daemon on AWS Elastic Beanstalk (p. 87)

• Running the X-Ray Daemon on Amazon EC2 (p. 90)

• Running the X-Ray Daemon on Amazon ECS (p. 91)

Giving the Daemon Permission to Send Data to
X-Ray

The X-Ray daemon uses the AWS SDK to upload trace data to X-Ray, and it needs AWS credentials
with permission to do that.

On Amazon EC2, the daemon uses the instance's instance profile role automatically. Locally, save
your access keys to a file named credentials in your user directory under a folder named .aws.

Example ~/.aws/credentials

[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

For more information about providing credentials to an SDK, see Specifying Credentials in the AWS
SDK for Go Developer Guide.

The IAM role or user that the daemon's credentials belong to must have permission to write data to the
service on your behalf.

• To use the daemon on Amazon EC2, create a new instance profile role or add the managed policy to
an existing one.

• To use the daemon on Elastic Beanstalk, add the managed policy to the Elastic Beanstalk default
instance profile role.

• To run the daemon locally, create an IAM user and save its access keys on your computer.

To create an instance profile for use with X-Ray on Amazon EC2

1. Open the IAM console.

2. Choose Roles.

3. Choose Create New Role.

4. For Role Name, type xray-instance-profile. Choose Next Step.

5. For Role Type, choose Amazon EC2.

6. Attach managed policies to give your application access to AWS services.

• AWSXrayWriteOnlyAccess – Gives the X-Ray daemon permission to upload trace data.

• AmazonS3ReadOnlyAccess – Gives the instance permission to download the X-Ray daemon
from Amazon S3.

If your application uses the AWS SDK to access other services, add policies that grant access to
those services.

7. Choose Next Step.

83

http://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://console.aws.amazon.com/iam/home

AWS X-Ray Developer Guide
X-Ray Daemon Logs

8. Choose Create Role.

To add X-Ray write permissions to an IAM user, group, or role

1. Open the IAM console.

2. Open the role associated with your instance profile, your IAM user, or your IAM user's group.

3. Under Permissions, add the following managed policies.

• AWSXrayWriteOnlyAccess – Gives the X-Ray daemon permission to upload trace data.

• AmazonS3ReadOnlyAccess – Gives the instance or IAM user permission to download the X-
Ray daemon from Amazon S3.

X-Ray Daemon Logs
The daemon outputs information about its current configuration and segments that it sends to AWS X-
Ray.

2016-11-24T06:07:06Z [Info] Initializing AWS X-Ray daemon 1.0.0
2016-11-24T06:07:06Z [Info] Using memory limit of 49 MB
2016-11-24T06:07:06Z [Info] 313 segment buffers allocated
2016-11-24T06:07:08Z [Info] Successfully sent batch of 1 segments (0.123
 seconds)
2016-11-24T06:07:09Z [Info] Successfully sent batch of 1 segments (0.006
 seconds)

Configuring the Daemon
You can use command line options to customize the daemon's behavior.

Command line options

• -b, --bind – Bind the daemon to a different port.

--bind "127.0.0.1:3000"

Default – 2000.

• -c, --config – Load a configuration file from the specified path.

--config "/home/ec2-user/xray-daemon.yaml"

• -f, --log-file – Output logs to the specified file path.

--log-file "/var/log/xray-daemon.log"

• -l, --log-level – Log level, from most verbose to least: dev, debug, info, warn, error, prod.

--log-level warn

Default – prod

• -m, --memory-limit – Change the amount of memory (in MiB) that the daemon can use.

84

AWS X-Ray Developer Guide
Run the Daemon Locally

--memory-limit 150

Default – 5% of available memory.

• -o, --local-mode – Don't check for EC2 instance metadata.

• -r, --role-arn – Assume the specified IAM role to upload segments to a different account.

--role-arn "arn:aws:iam::123456789012:role/xray-cross-account"

• -v, --version – Show AWS X-Ray daemon version.

• -h, --help – Show the help screen.

You can load a YAML format configuration file with the --config option.

Configuration file options

• LocalMode – Set to true to skip checking for EC2 instance metadata.

• Logging – Configure logging behavior.

• LogLevel – Change the log level, from most verbose to least: dev, debug, info, warn, error,
prod (default).

• LogPath – Output logs to the specified file path.

• Processor – Configure the daemon process.

• Region – Specify a region to send trace data to that region instead of the current region.

• RoleARN – Assume the specified IAM role to upload segments to a different account.

• Socket – Configure the daemon's binding.

• UDPAddress – Change the port on which the daemon listens.

Example xray-daemon.yaml

Socket:
 UDPAddress: "127.0.0.1:3000"
Processor:
 Region: "us-east-2"
Logging:
 LogLevel: "warn"
 LogPath: "/var/log/xray-daemon.log"
LocalMode: true
RoleARN: "arn:aws:iam::123456789012:role/xray-cross-account"

Pass the configuration file to the daemon by using the -c option.

~$./xray -c ~/xray-daemon.yaml

Running the X-Ray Daemon Locally
You can run the daemon locally for development and testing.

When running locally, the daemon can read credentials from an AWS SDK credentials file (.aws/
credentials in your user directory) or from environment variables. For more information, see Giving
the Daemon Permission to Send Data to X-Ray (p. 83).

85

AWS X-Ray Developer Guide
Running the X-Ray Daemon on Linux

The daemon listens for UDP data on port 2000. You can change the port and other options by
using a configuration file and command line options. For more information, see Configuring the
Daemon (p. 84).

Running the X-Ray Daemon on Linux
You can run the daemon executable from the command line, as follows.

~/xray-daemon$./xray

To run the daemon in the background, use &.

~/xray-daemon$./xray &

Terminate a daemon process running in the background with pkill.

~$ pkill xray

Running the X-Ray Daemon on Windows
You can run the daemon executable from the command line.

> .\xray_windows.exe

Use a PowerShell script to create and run a service for the daemon.

Example PowerShell Script - Windows

if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue){
 sc.exe stop AWSXRayDaemon
 sc.exe delete AWSXRayDaemon
}
if (Get-Item -path aws-xray-daemon -ErrorAction SilentlyContinue) {
 Remove-Item -Recurse -Force aws-xray-daemon
}

$currentLocation = Get-Location
$zipFileName = "aws-xray-daemon-windows-service-1.x.zip"
$zipPath = "$currentLocation\$zipFileName"
$destPath = "$currentLocation\aws-xray-daemon"
$daemonPath = "$destPath\xray.exe"
$daemonLogPath = "C:\inetpub\wwwroot\xray-daemon.log"
$url = "https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-
xray-daemon-windows-service-1.x.zip"

Invoke-WebRequest -Uri $url -OutFile $zipPath
Add-Type -Assembly "System.IO.Compression.Filesystem"
[io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

sc.exe create AWSXRayDaemon binPath= "$daemonPath -f $daemonLogPath"
sc.exe start AWSXRayDaemon

86

AWS X-Ray Developer Guide
On Elastic Beanstalk

Running the X-Ray Daemon on AWS Elastic
Beanstalk

You can run the X-Ray daemon on your Elastic Beanstalk environment's EC2 instances to relay trace
data from your application to AWS X-Ray.

The daemon uses your environment's instance profile for permissions. For instructions about adding
permissions to the Elastic Beanstalk instance profile, see Giving the Daemon Permission to Send Data
to X-Ray (p. 83).

AWS Elastic Beanstalk platforms provide a configuration option that you can set to run the daemon
automatically. You can enable the daemon in a configuration file in your source code or by checking an
option in the Elastic Beanstalk console.

The daemon is installed on the instance and runs as a service when you enable the configuration
option.

The version included on Elastic Beanstalk platforms may not be the latest version. See the Elastic
Beanstalk release notes to find out the version of the daemon that is available for the platform
configuration that you use.

Using Elastic Beanstalk's X-Ray Integration to Run
the X-Ray Daemon
Use the console to turn on X-Ray integration, or configure it in your application source code with a
configuration file.

To enable the X-Ray daemon in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Choose Configuration.

4. Choose Software Settings.

5. For X-Ray daemon, choose Enabled.

6. Choose Apply.

You can include a configuration file in your source code to make your configuration portable between
environments.

Example .ebextensions/xray-daemon.config

option_settings:
 aws:elasticbeanstalk:xray:
 XRayEnabled: true

Elastic Beanstalk passes a configuration file to the daemon and outputs logs to a standard location.

On Windows Server Platforms

• Configuration file – C:\Progam Files\Amazon\XRay\cfg.yaml

87

https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide
Downloading and Running the X-
Ray Daemon Manually (Advanced)

• Logs – c:\Progam Files\Amazon\XRay\logs\xray-service.log

On Linux Platforms

• Configuration file – /etc/amazon/xray/cfg.yaml

• Logs – /var/log/xray/xray.log

You can tell Elastic Beanstalk to pull the daemon logs on demand by adding a file to the log tasks
directory with a configuration file.

Example .ebextensions/xray-logs.config - Linux

files:
 "/opt/elasticbeanstalk/tasks/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 /var/log/xray/xray.log

Example .ebextensions/xray-logs.config - Windows Server

files:
 "c:/Program Files/Amazon/ElasticBeanstalk/config/taillogs.d/xray-
daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 c:\Progam Files\Amazon\XRay\logs\xray-service.log

See Advanced Environment Customization with Configuration Files (.ebextensions) in the AWS Elastic
Beanstalk Developer Guide for more information.

Downloading and Running the X-Ray Daemon
Manually (Advanced)
If the X-Ray daemon isn't available for your platform configuration, you can download it from Amazon
S3 and run it with a configuration file.

Use an Elastic Beanstalk configuration file to download and run the daemon.

88

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html

AWS X-Ray Developer Guide
Downloading and Running the X-
Ray Daemon Manually (Advanced)

Example .ebextensions/xray.config - Linux

commands:
 01-stop-tracing:
 command: yum remove -y xray
 ignoreErrors: true
 02-copy-tracing:
 command: curl https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-
daemon/aws-xray-daemon-1.x.rpm -o /home/ec2-user/xray.rpm
 03-start-tracing:
 command: yum install -y /home/ec2-user/xray.rpm

files:
 "/opt/elasticbeanstalk/tasks/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 /var/log/xray/xray.log
 "/etc/amazon/xray/cfg.yaml" :
 mode: "000644"
 owner: root
 group: root
 content: |
 Logging:
 LogLevel: "debug"

89

AWS X-Ray Developer Guide
On Amazon EC2

Example .ebextensions/xray.config - Windows Server

container_commands:
 01-execute-config-scirpt:
 command: Powershell.exe -ExecutionPolicy Bypass -File c:\\temp\
\installDaemon.ps1
 waitAfterCompletion: 0

files:
 "c:/temp/installDaemon.ps1":
 content: |
 if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue) {
 sc.exe stop AWSXRayDaemon
 sc.exe delete AWSXRayDaemon
 }

 $targetLocation = "C:\Program Files\Amazon\XRay"
 if ((Test-Path $targetLocation) -eq 0) {
 mkdir $targetLocation
 }

 $zipFileName = "aws-xray-daemon-windows-service-1.x.zip"
 $zipPath = "$targetLocation\$zipFileName"
 $destPath = "$targetLocation\aws-xray-daemon"
 if ((Test-Path $destPath) -eq 1) {
 Remove-Item -Recurse -Force $destPath
 }

 $daemonPath = "$destPath\xray.exe"
 $daemonLogPath = "$targetLocation\xray-daemon.log"
 $url = "https://s3.dualstack.us-east-1.amazonaws.com/aws-xray-
assets.us-east-1/xray-daemon/aws-xray-daemon-windows-service-1.x.zip"

 Invoke-WebRequest -Uri $url -OutFile $zipPath
 Add-Type -Assembly "System.IO.Compression.Filesystem"
 [io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

 New-Service -Name "AWSXRayDaemon" -StartupType Automatic -
BinaryPathName "`"$daemonPath`" -f `"$daemonLogPath`""
 sc.exe start AWSXRayDaemon
 encoding: plain
 "c:/Program Files/Amazon/ElasticBeanstalk/config/taillogs.d/xray-
daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 C:\Program Files\Amazon\XRay\xray-daemon.log

These examples also adds the daemon's log file to Elastic Beanstalk's tail logs task, to include it when
you request logs with the console or Elastic Beanstalk Command Line Interface (EB CLI).

Running the X-Ray Daemon on Amazon EC2
You can run the X-Ray daemon on the following operating systems on Amazon EC2:

• Amazon Linux

90

AWS X-Ray Developer Guide
On Amazon ECS

• Ubuntu

• Windows Server (2012 R2 and newer)

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the Daemon Permission to Send Data to X-Ray (p. 83).

Use a user data script to run the daemon automatically when you launch the instance.

Example User Data Script - Linux

#!/bin/bash
curl https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-
daemon-1.x.rpm -o /home/ec2-user/xray.rpm
yum install -y /home/ec2-user/xray.rpm

Example User Data Script - Windows Server

<powershell>
if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue) {
 sc.exe stop AWSXRayDaemon
 sc.exe delete AWSXRayDaemon
}

$targetLocation = "C:\Program Files\Amazon\XRay"
if ((Test-Path $targetLocation) -eq 0) {
 mkdir $targetLocation
}

$zipFileName = "aws-xray-daemon-windows-service-1.x.zip"
$zipPath = "$targetLocation\$zipFileName"
$destPath = "$targetLocation\aws-xray-daemon"
if ((Test-Path $destPath) -eq 1) {
 Remove-Item -Recurse -Force $destPath
}

$daemonPath = "$destPath\xray.exe"
$daemonLogPath = "$targetLocation\xray-daemon.log"
$url = "https://s3.dualstack.us-east-1.amazonaws.com/aws-xray-assets.us-
east-1/xray-daemon/aws-xray-daemon-windows-service-1.x.zip"

Invoke-WebRequest -Uri $url -OutFile $zipPath
Add-Type -Assembly "System.IO.Compression.Filesystem"
[io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

New-Service -Name "AWSXRayDaemon" -StartupType Automatic -BinaryPathName
 "`"$daemonPath`" -f `"$daemonLogPath`""
sc.exe start AWSXRayDaemon
</powershell>

Running the X-Ray Daemon on Amazon ECS
On Amazon ECS, create a Docker image that runs the daemon, upload it to a Docker image repository,
and then deploy it to your Amazon ECS cluster.

91

AWS X-Ray Developer Guide
On Amazon ECS

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the Daemon Permission to Send Data to X-Ray (p. 83).

Use a Dockerfile file to create a Docker image that runs the daemon.

Example Dockerfile

FROM ubuntu:12.04
COPY xray /usr/bin/xray
CMD xray --log-file /var/log/xray-daemon.log &

Download the X-Ray daemon (p. 82) Linux executable into the same folder as your Dockerfile and
build it to create an image.

92

AWS X-Ray Developer Guide
Elastic Load Balancing

Integrating AWS X-Ray with AWS
Services

Other AWS services provide integration with AWS X-Ray by adding trace IDs to requests, making
sampling decisions, or uploading trace data to X-Ray.

Note
The X-Ray SDKs include plugins for additional integration with AWS services. For example,
you can use the X-Ray SDK for Java's Elastic Beanstalk plugin to add information about the
Elastic Beanstalk environment that runs your application including the environment name and
ID.

Elastic Load Balancing
Elastic Load Balancing application load balancers add a trace ID to incoming HTTP requests in a
header named X-Amzn-Trace-Id.

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793

Trace ID Format

A trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, that is, 1.

• The time of the original request, in Unix epoch time, in 8 hexadecimal digits.

For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or
58406520 in hexadecimal.

• A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

Amazon API Gateway
Amazon API Gateway gateways add a trace ID to incoming HTTP requests in a header named X-
Amzn-Trace-Id.

93

AWS X-Ray Developer Guide
Amazon Elastic Compute Cloud

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793

Trace ID Format

A trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, that is, 1.

• The time of the original request, in Unix epoch time, in 8 hexadecimal digits.

For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or
58406520 in hexadecimal.

• A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

API Gateway does not propagate X-Ray trace ID and sampling headers. If your gateway is
downstream of other services in your application, traces will terminate at the gateway. If the gateway
chooses to sample the request, it will continue with a different trace ID.

Amazon Elastic Compute Cloud
You can install and run the X-Ray daemon on an Amazon EC2 instance with a user data script. See
Running the X-Ray Daemon on Amazon EC2 (p. 90) for instructions.

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the Daemon Permission to Send Data to X-Ray (p. 83).

AWS Elastic Beanstalk
AWS Elastic Beanstalk platforms include the X-Ray daemon. You can run the daemon (p. 87) by
setting an option in the Elastic Beanstalk console or with a configuration file.

On the Java SE platform, you can use a Buildfile file to build your application with Maven or Gradle
on-instance. The X-Ray SDK for Java and AWS SDK for Java are available from Maven, so you can
deploy only your application code and build on-instance to avoid bundling and uploading all of your
dependencies.

For more information, see Configuring AWS X-Ray Debugging in the AWS Elastic Beanstalk Developer
Guide.

94

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-configuration-debugging.html

	AWS X-Ray
	Table of Contents
	What is AWS X-Ray?
	Using AWS X-Ray
	Supported Languages and Frameworks
	Supported AWS Services
	Code and Configuration Changes

	Getting Started with AWS X-Ray
	Prerequisites
	Deploy to Elastic Beanstalk and Generate Trace Data
	View the Service Graph in the X-Ray Console
	Explore the Sample Application
	Clean Up
	Next Steps

	AWS X-Ray Concepts
	Segments
	Subsegments
	Service Graph
	Traces
	Sampling
	Tracing Header
	Filter Expressions

	The AWS X-Ray Console
	Viewing the Service Map
	Using Filter Expressions
	Deep Linking

	The AWS X-Ray API
	Using the AWS X-Ray API with the AWS CLI
	Prerequisites
	Generate Trace Data
	Use the X-Ray API
	Cleanup

	Uploading Segment Documents
	Sending Segment Documents to the X-Ray Daemon
	AWS X-Ray Segment Documents
	Segment Fields
	Subsegments
	HTTP Request Data
	Annotations
	Metadata
	AWS Resource Data
	Errors and Exceptions
	SQL Queries

	The AWS X-Ray SDK for Java
	Requirements
	Dependency Management
	Configuring the X-Ray SDK for Java
	Service Plugins
	Sampling Rules
	Logging

	X-Ray SDK for Java Sample Application
	Manually Instrumenting AWS SDK Clients
	Creating Additional Subsegments
	Instrumenting Outgoing HTTP Calls
	Instrumenting Calls to a PostgreSQL Database

	Tracing Incoming Requests with the X-Ray SDK for Java
	Adding a Tracing Filter to your Application
	Configuring a Segment Naming Strategy

	Tracing AWS SDK Calls with the X-Ray SDK for Java
	Tracing Calls to Downstream HTTP Web Services with the X-Ray SDK for Java
	Tracing SQL Queries with the X-Ray SDK for Java
	Generating Custom Subsegments with the X-Ray SDK for Java

	The X-Ray SDK for Node.js
	Requirements
	Dependency Management
	Configuring the X-Ray SDK for Node.js
	Service Plugins
	Sampling Rules

	Tracing Incoming Requests with the X-Ray SDK for Node.js
	Tracing AWS SDK Calls with the X-Ray SDK for Node.js
	Tracing Calls to Downstream HTTP Web Services with the X-Ray SDK for Node.js
	Tracing SQL Queries with the X-Ray SDK for Node.js
	Generating Custom Subsegments with the X-Ray SDK for Node.js

	The AWS X-Ray SDK for .NET
	Requirements
	Adding the X-Ray SDK for .NET to Your Application
	Configuring the X-Ray SDK for .NET
	Plugins
	Sampling Rules

	Instrumenting Incoming HTTP Requests with the X-Ray SDK for .NET
	Instrumenting Downstream Calls to AWS Services
	Tracing Calls to Downstream HTTP Web Services with the X-Ray SDK for .NET
	Tracing SQL Queries with the X-Ray SDK for .NET
	Creating Additional Subsegments

	The AWS X-Ray Daemon
	Giving the Daemon Permission to Send Data to X-Ray
	X-Ray Daemon Logs
	Configuring the Daemon
	Running the X-Ray Daemon Locally
	Running the X-Ray Daemon on Linux
	Running the X-Ray Daemon on Windows

	Running the X-Ray Daemon on AWS Elastic Beanstalk
	Using Elastic Beanstalk's X-Ray Integration to Run the X-Ray Daemon
	Downloading and Running the X-Ray Daemon Manually (Advanced)

	Running the X-Ray Daemon on Amazon EC2
	Running the X-Ray Daemon on Amazon ECS

	Integrating AWS X-Ray with AWS Services
	Elastic Load Balancing
	Amazon API Gateway
	Amazon Elastic Compute Cloud
	AWS Elastic Beanstalk

