AWS X-Ray

Developer Guide

amazon
webservices™

AWS X-Ray Developer Guide

AWS X-Ray Developer Guide

AWS X-Ray: Developer Guide

Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS X-Ray Developer Guide

Table of Contents

WAL IS AWS XoRAY 2 ettt ettt ettt e et e e et e e et e et et et a et et et et et e e e aannas 1
(U] (a0 I T - | TP 2
Supported Languages and FramMeWOIKSc.iiuiiuiiiii e 2
SUPPOIEA AWS SEIVICES ...euiiiiiiteii ettt et et e et et ettt et e e e et e e e eneenns 3
Code and Configuration CRANGEScuuiinii e e e e e e e e 4
Getting Started With AWS X-RAYouuiiiiiiiii et e e 5
P I EIEQUISITES ..ttt et e 6
Deploy to Elastic Beanstalk and Generate Trace Dataceueuveeeriiniiiiieiieeneeraeeeneeneneaens 6
View the Service Graph in the X-Ray CONSOIEc.oiuiiiiiiiiiiii e 7
Explore the Sample APPICALION ... 8
LA U ittt 12

N[] (= S PP 12
(070] o o7] £ J PPN 13
Y=o [14T 1 T PRSPPI 13
SUDSEOMENES ..ttt e e e 14
SEIVICE GraPN ..t 14

LI 1= TR 14

ST 1o 1] o] 1o HR PP 14
TrAaCING HEAUET ... et ettt et e 14
FIE T EXPIESSIONS ...ttt ettt e et ettt e et ettt et 15

The AWS X-RAY CONSOIE ...t e e et e et e e e e e e 16
VIEWING the SEIVICE IMAPD ...ttt et 16
USING FIltEr EXPIESSIONSiuiitiiii ittt ettt ettt e it en e ees 18
DEEP LINKING ettt et 19

TRE AWS X RAY AP .ttt et ettt et e e 21
Using the AWS X-Ray APl with the AWS CLI ... 21
PrEIEQUISITES ...ttt et 22

GENEIALE TrACE DAL . .uiveiieitie et ettt et 22

USE the X-RAY AP ..ot 22

ClBAIMUD .t e 25

Uploading Segment DOCUMENTScuuiuniiiteee et e e e e e e e et e et e e et e e e aaeeannas 26
Sending Segment Documents to the X-Ray DaEmONocuiiuiiiiiiiiiiiiie e 27
SEOMENT DOCUIMENES ...ttt ettt et et e et et et et ettt e e e et e e e e e e e ens 27
SEOMENT FIRIUS ..ot 28
SUDSEOMENES ..ttt 30

HTTP REQUESTE DALAeeieititi e e ettt e s 33

YY1 aTo] e= Vi o] o IS PP PR UPT PPN 35

=1 To o v PP 36

AWS RESOUICE DATA ... vueniiiiti ettt et ettt e e nenes 37

Errors @nd EXCEPLIONSeuiiiii et 39

1@ 11 =T 41T 40

WOTKING WITR JAVA ...ttt ettt e e e e 42
R0 [T (=T 1 =T o€ TPV 43
DependencCy MaNAGEMEINTt ittt ettt et et et ea et e et aas 43

(001 01iTo [V] = 11o] o PP 45
SEIVICE PIUGINS .. eniiii et ettt 45

SAMPING RUIES ..o e 46

(o T 110 o [P TP 48

Sample APPHCALION ... ot 48
Manually Instrumenting AWS SDK CHENESuiuiiuiiiiiiir e 51

Creating Additional SUDSEgMENLSiuiiiiiii e 51
Instrumenting OutgoiNng HTTP CallSouiiiiiiii e 51
Instrumenting Calls to a PostgreSQL Databasec.ocuviuiiiiiiiiiiiii e 52

INCOMING REQUESTES ..ottt ettt et e et ettt ettt ettt e et e a et e n e e ees 54
Adding a Tracing Filter to your APPIICAtIONot 55

AWS X-Ray Developer Guide

Configuring a Segment Naming Strat@gyc.oeiuieiriii e 56
AWS SDK ClIBINTS .ottt et ettt e 57
L@ 101 o] 1T T o 8 I I S 58
Y@] @ U= 4 =PRI 60
(O101S] (] 0 IS YU o 1T =T o [4= 1 £ 62

WOTKING WIth NOGE.JS ..o e et ettt e e e e e 64
=0 (U] 1T o 0= o1 £ 64
Dependency ManagEMENTttt e 65
(@] 10 18 = U1 T o 65

SBIVICE PlUGINS ..t e e 66

SAMPIING RUIES .o e e 66
LYot 4T To Tl L= T8 1= 2] £ 67
AWS SDK ClIBINTS ..ttt ettt e e 68
L@ 11 o] 1T T o 8 I I S 69
Y@] @ U= 4 =PRI 70
(G103 (] 0 ST U] 1T =T o [4= 1 £ 70

R VAY S o 0 T 73
=0 (U] 1T o 0= o1 £ 73
Adding the X-Ray SDK for .NET to Your APPliCatiONccouviiiuiiiiiiiei e 74
(@20] 110 18 = U1 T o 74

P UGN S e e 74

SAMPIING RUIES .o e e e 74
LYot 4T o Tl L= T8 1=] £ 75
AWS SDK ClIBINTS ..ttt et e 77
L@ 10 o o1 To T o 8 I I S 78
Y@] @ U= 4 =PRI 79
(O10S] (] 0 ST U] 1T =T o [4= 1 £ 80

QLI TSI G = 1Y = V=T 4T) o 82
Giving the Daemon Permission to Send Data to X-RaAYouviiiiiiiiiiiei e 83
X-RAY DABMON LOGS .. ettt e e e ettt ettt et aes 84
Configuring the DAEIMON ...t e e e et et e et e e ee e 84
RUN the DaemOon LOCAIYooi e e e 85

Running the X-Ray Daemon 0N LINUXooiieiiiie e 86

Running the X-Ray Daemon 0N WINAOWS ...t 86
ON EIAStiC BEANSTAIKieieiiie e 87

Using Elastic Beanstalk's X-Ray Integration to Run the X-Ray Daemoncccocoveviinnnen. 87

Downloading and Running the X-Ray Daemon Manually (Advanced)ccocoevviiieninnnen. 88
ON AMAZON EC2 ... e 90
ON AMAZON ECS ..o 91

Integrating AWS X-Ray With AWS SEIVICESiuiuiuiiiiiii et e e aaenas 93
] oy ol I = o = T = g T T T 93
AMAZON APL GAIEWAYiiiiititi ettt ettt 93
Amazon Elastic COMPULE ClOUouiiiiii e e e ens 94
AWS EIASHC BEANSTAIK ... ettt 94

AWS X-Ray Developer Guide

What is AWS X-Ray?

AWS X-Ray is a service that collects data about requests that your application serves, and provides
tools you can use to view, filter, and gain insights into that data to identify issues and opportunities for
optimization. For any traced client request to your application, you can see detailed information not
only about the request and response, but also about calls that your application makes to downstream
AWS services and HTTP web APIs.

Note
This is prerelease documentation for a service in preview release. It is subject to change. Sign
up for the preview here.

X-Ray uses data from the AWS resources that power your cloud applications to generate a detailed
service graph that shows the client, your front-end service, and back-end services that your front-
end service calls to process requests and persist data. You can use the service graph to identify
bottlenecks, latency spikes, and other issues that you can solve to improve the performance of your
applications.

The X-Ray SDKs provide interceptors that you can add to your code to trace incoming HTTP
requests, client handlers to instrument AWS SDK clients that your application uses to call other AWS
services, and an HTTP client that you can use to instrument calls to other internal and external HTTP
web services. Some of the SDKs also support instrumenting calls to SQL databases, automatic AWS
SDK client instrumentation, and other features.

Instead of sending trace data directly to X-Ray, the SDKs send JSON segment documents to a
daemon process listening for UDP traffic. The X-Ray daemon (p. 82) buffers segments in a

gueue and uploads them to X-Ray in batches. The daemon is available for Linux and Windows and is
included on AWS Elastic Beanstalk platforms.

Use the getting started tutorial (p. 5) to start using X-Ray in just a few minutes with an
instrumented sample application, or keep reading (p. 2) to learn about the languages, frameworks
and services that work with X-Ray.

https://aws.amazon.com/x-ray/

AWS X-Ray Developer Guide
Supported Languages and Frameworks

Using AWS X-Ray

Use the X-Ray SDK and AWS service integration to instrument requests to your applications running
on Amazon EC2, Elastic Beanstalk, or Amazon ECS.

To instrument your application code, you can use the X-Ray SDK. The SDK records data about
incoming and outgoing requests and sends it to the X-Ray daemon, which relays the data in batches
to X-Ray. For example, when your application calls DynamoDB to retrieve user information from a
DynamoDB table, the X-Ray SDK records data both the client request and the downstream call to
DynamoDB.

Other AWS services make it easier to instrument your application's components by integrating with X-
Ray. Service integration can include adding tracing headers to incoming requests, sending trace data
to X-Ray, or running the X-Ray daemon. For example, Elastic Beanstalk platforms include the X-Ray
daemon and run it for you.

Many instrumentation scenarios require only configuration changes. For example, you can instrument
all incoming HTTP requests and downstream calls to AWS services that your Java application makes
by adding the X-Ray SDK for Java's filter to your servlet configuration, and taking the AWS SDK
Instrumentor submodule as a build dependency. For advanced instrumentation, you can modify your
application code to customize and annotate the data that the SDK sends to X-Ray.

Sections
¢ Supported Languages and Frameworks (p. 2)
e Supported AWS Services (p. 3)
¢ Code and Configuration Changes (p. 4)

Supported Languages and Frameworks

AWS X-Ray provides tools and integration to support a variety of languages, frameworks and
platforms.

Java

In any Java application, you can use the X-Ray SDK for Java classes to instrument incoming requests,
AWS SDK clients, and outgoing HTTP calls. Automatic request instrumentation is available for
frameworks that support Java servlets. Automatic SDK instrumentation is avialable through the AWS
SDK Instrumentor submodule.

See The AWS X-Ray SDK for Java (p. 42) for more information.

AWS X-Ray Developer Guide
Supported AWS Services

¢ Tomcat — Add a servlet filter to your deployment descriptor (web. xm) to instrument incoming
requests.

e Spring Boot — Add a servlet filter to your WebConf i g class to instrument incoming requests.

¢ Other frameworks — Add a servlet filter if your framework supports servlets, or manually create
segments and make sampling decisions on incoming requests if it doesn't.

Node.js

In any Node.js application, you can use the X-Ray SDK for Node.js classes to instrument incoming
requests, AWS SDK clients, and outgoing HTTP calls. Automatic request instrumentation is available
for applications that use the Express framework.

See The X-Ray SDK for Node.js (p. 64) for more information.

¢ Express — Use the X-Ray SDK for Node.js Express middleware to instrument incoming requests.

¢ Other frameworks — Manually create segments and make sampling decisions on incoming
requests.

C#

On Windows Server editions other than Windows Server Core, you can use the X-Ray SDK for .NET to
instrument incoming requests, AWS SDK clients, and outgoing HTTP calls.

See The AWS X-Ray SDK for .NET (p. 73) for more information.

¢« .NET on Windows Server — Add a message handler to your HTTP configuration to instrument
incoming requests.

If the X-Ray SDK is not available for your language or platform, you can generate trace data manually
and send it to the X-Ray daemon, or directly to the X-Ray API (p. 21).

Supported AWS Services

Several AWS services provide X-Ray integration. Integrated services (p. 93) offer varying levels
of integration that can include sampling and adding headers to incoming requests, running the X-Ray
daemon, and automatically sending trace data to X-Ray.

¢ Active instrumentation — Samples and instruments incoming requests.

¢ Passive instrumentation — Instruments requests that have been sampled by another service.

* Request tracing — Adds a tracing header to all incoming requests and propagates it downstream.
¢ Tooling — Runs the AWS X-Ray daemon to receive segments from the X-Ray SDK.

Services with X-Ray integration include:

< Amazon APl Gateway — Request tracing. APl Gateway passes the trace ID to AWS Lambda and
adds it to the request header for other downstream services.

¢ Elastic Load Balancing — Request tracing on application load balancers. The application load
balancer adds the trace ID to the request header before sending it to a target group.

*« AWS Elastic Beanstalk — Tooling. Elastic Beanstalk includes the X-Ray daemon on the following
platforms:

» Java SE - 2.3.0 and newer configurations
e Tomcat — 2.4.0 and newer configurations

AWS X-Ray Developer Guide
Code and Configuration Changes

Code

* Node.js — 3.2.0 and newer configurations

» Windows Server — All configurations other than Windows Server Core released since December
9th, 2016.

You can tell Elastic Beanstalk to run the daemon on the above platforms in the Elastic Beanstalk
console, or by with the XRayEnabl ed option in the aws: el asti cbeanst al k: xr ay hamespace.

and Configuration Changes

A large amount of tracing data can be generated without any functional changes to your code. Detailed
tracing of frontend and downstream calls require only minimal changes to build and deploy-time
configuration.

Examples of Code and Configuration Changes

AWS resource configuration — Run the X-Ray daemon on the instances in your Elastic Beanstalk
environment by changing an option setting.

Build configuration — Take X-Ray SDK for Java submodules as a compile-time dependency to
instrument all downstream requests to AWS Services and resources such as Amazon DynamoDB
tables, Amazon SQS queues, and Amazon S3 buckets.

Application configuration — To instrument incoming HTTP requests, add a servlet filter to your
Java application, or use the X-Ray SDK for Node.js as middleware on your Express application.
Change sampling rules and enable plugins to instrument the Amazon EC2, Amazon ECS, and AWS
Elastic Beanstalk resources that run your application.

Class or object configuration — Import the X-Ray SDK for Java version of Ht t pCl i ent Bui | der
instead of the Apache.org version to instrument outgoing HTTP calls in Java.

Functional changes — Add a request handler to an AWS SDK client to instrument calls that it
makes to AWS services. Create subsegments to group downstream calls, add debug information to
segments with annotations and metadata.

AWS X-Ray Developer Guide

Getting Started with AWS X-Ray

To get started with AWS X-Ray, launch a sample app in Elastic Beanstalk that is already
instrumented (p. 42) to generate trace data. In a few minutes, you can launch the sample

app, generate traffic, send segments to X-Ray, and view a service graph and traces in the AWS
Management Console.

This tutorial uses a sample Java application (p. 48) to generate segments and send them to X-

Ray. The application uses the Spring framework to implement a JSON web API and the AWS SDK for
Java to persist data to Amazon DynamoDB. A servlet filter in the application instruments all incoming
requests served by the application, and a request handler on the AWS SDK client instruments
downstream calls to DynamoDB.

You use the X-Ray console to view the connections among client, server, and DynamoDB in a service
map. The service map is a visual representation of the services that make up your web application,
generated from the trace data that it generates by serving requests.

With the X-Ray SDK for Java, you can trace all of your application's primary and downstream AWS
resources by making two configuration changes:

« Add the X-Ray SDK for Java's tracing filter to your servlet configuration in a WebConf i g class or
web. xm file.

¢ Take the X-Ray SDK for Java's submodules as build dependencies in your Maven or Gradle build
configuration.

You can also access the raw service map and trace data by using the AWS CLI to call the X-Ray
API. The service map and trace data are JSON that you can query to ensure that your application is
sending data, or to check specific fields as part of your test automation.

Sections
¢ Prerequisites (p. 6)
¢ Deploy to Elastic Beanstalk and Generate Trace Data (p. 6)
¢ View the Service Graph in the X-Ray Console (p. 7)
¢ Explore the Sample Application (p. 8)
e Clean Up (p. 12)
¢ Next Steps (p. 12)

AWS X-Ray Developer Guide
Prerequisites

Prerequisites

This tutorial uses Elastic Beanstalk to create and configure the resources that run the sample
application and X-Ray daemon. If you use an IAM user with limited permissions, add the Elastic
Beanstalk managed user policy to grant your IAM user permission to use Elastic Beanstalk, and one of
the X-Ray managed policies for permission to read the service map and traces in the X-Ray console.

Create an Elastic Beanstalk environment for the sample application. If you haven't used Elastic
Beanstalk before, this will also create a service role and instance profile for your application.

To create an Elastic Beanstalk environment

1. Open the Elastic Beanstalk Management Console with this preconfigured
link: https://console.aws.amazon.com/elasticbeanstalk/#/newApplication?
applicationName=scorekeep&solutionStackName=Java

2. Choose Create application to create an application with an environment running the Java 8 SE
platform.

3. When your environment is ready, the console redirects you to the environment Dashboard.
4. Click the URL at the top of the page to open the site.

The instances in your environment need permission to send data to the AWS X-Ray service.
Additionally, the sample application uses Amazon S3 and DynamoDB. Modify the default Elastic
Beanstalk instance profile to include permissions to use these services.

Open the Elastic Beanstalk instance profile in the IAM console: aws-elasticbeanstalk-ec2-role.
2. Choose Attach Palicy.

3. Attach AWSXrayFullAccess, AmazonS3FullAccess, and AmazonDynamoDBFullAccess to
the role.

Deploy to Elastic Beanstalk and Generate Trace
Data

Deploy the sample application to your Elastic Beanstalk environment. The sample application uses
Elastic Beanstalk configuration files to configure the environment for use with X-Ray and create the
DynamoDB that it uses automatically.

To deploy the source code

Download the sample app: eb-java-scorekeep-xray-gettingstarted-v1.1.zip

Open the Elastic Beanstalk console.

Navigate to the management console for your environment.

Choose Upload and Deploy.

Upload eb-java-scorekeep-xray-gettingstarted-v1.1.zip, and then choose Deploy.

gk wbnPRE

The sample application includes a front-end web app. Use the web app to generate traffic to the API
and send trace data to X-Ray.

To generate trace data

1. Inthe environment Dashboard, click the URL to open the web app.

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.iam.managed-policies.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.iam.managed-policies.html
https://console.aws.amazon.com/elasticbeanstalk/#/newApplication?applicationName=scorekeep&solutionStackName=Java
https://console.aws.amazon.com/elasticbeanstalk/#/newApplication?applicationName=scorekeep&solutionStackName=Java
https://console.aws.amazon.com/iam/home#roles/aws-elasticbeanstalk-ec2-role
https://github.com/awslabs/eb-java-scorekeep/releases/download/xray-gs-v1.1/eb-java-scorekeep-xray-gettingstarted-v1.1.zip
https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide
View the Service Graph in the X-Ray Console

Choose Create to create a user and session.
Type a game name, set the Rules to Tic Tac Toe, and then choose Create to create a game.
Choose Play to start the game.

A A

Choose a tile to make a move and change the game state.

Each of these steps generates HTTP requests to the API, and downstream calls to DynamoDB to read
and write user, session, game, move, and state data.

View the Service Graph in the X-Ray Console

You can see the service graph and traces generated by the sample application in the X-Ray console.

To use the X-Ray console

Open the X-Ray console.

The console shows a representation of the service graph that X-Ray generates from the trace data
sent by the application.

Service map
avg. 0.15s
0 t/min
v
scorekeep-user
AWSE:DynamoDB.Tab
6 » avg. 0.36s N avg. 0128
S t/min 10 tmin
Clients
scorekeep scorekeep-game
AWSE ECZ:instance AWS::DynamoDB::Tabl

avg. 0.22s
10 t/min

scorekeep-session
AWS::DynamoDB::Table

The service map shows the web app client, the API running in Elastic Beanstalk, the DynamoDB
service, and each DynamoDB table that the application uses. Every request to the application, up to a
configurable maximum number of requests per second, is traced as it hits the API, generates requests
to downstream services, and completes.

https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide
Explore the Sample Application

Choose any node in the service graph to view traces for requests that generated traffic to that node.
The X-Ray SDK for Java generates the trace data and sends it to the X-Ray daemon running on the
same instance, which uploads trace data in batches to X-Ray.

For more insight into how each component works, you can use the Elastic Beanstalk console to view
logs from the sample app and X-Ray daemon.

To view logs in the Elastic Beanstalk console

Open the Elastic Beanstalk console.

Navigate to the management console for your environment.
Choose Logs.

Choose Request Logs, and then choose Last 100 Lines.
When the logs appear, choose Download.

gk wbdPE

Locate the entry for / var / | og/ xr ay- daenon. | og. This is the log for the X-Ray daemon that
aggregates traces and uploads them to X-Ray. If there is an error posting traces, details appear here.

Example /var/log/xray-daemon.log

2016-12- 03T00: 09: 02Z [Info] Initializing AWS X-Ray daenon 1.0.1

2016- 12- 03T00: 09: 02Z [Info] Using nmemory limt of 49 MB

2016- 12- 03T00: 09: 02Z [I nfo] 313 segnent buffers all ocated

2016- 12- 03T00: 10: 08Z [I nfo] Successfully sent batch of 1 segnents (0.024

seconds)
2016- 12- 03T00: 10: 09Z [I nfo] Successfully sent batch of 2 segnments (0.042
seconds)
2016- 12- 03T00: 10: 10Z [I nfo] Successfully sent batch of 7 segnments (0.007
seconds)

Explore the Sample Application

The sample application is an HTTP web APl in Java that is configured to use the X-Ray SDK for Java.
When you deploy the application to Elastic Beanstalk, it creates the DynamoDB tables, compiles the
API with Gradle, and configures the nginx proxy server to serve the web app statically at the root path.
At the same time, Elastic Beanstalk routes requests to paths starting with / api to the API.

To instrument incoming HTTP requests, the application adds the Tr aci ngFi | t er provided by the
SDK.

Example src/main/java/scorekeep/WebConfig.java - Servlet Filter

import javax.servlet.Filter;
i mport com amazonaws. xray.j avax. servl et. AWGXRayServl etFilter;

@onfiguration
public class WbConfig {

@Bean
public Filter TracingFilter() {
return new AWsXRayServl et Fi |l ter (" Scorekeep");

}

https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide
Explore the Sample Application

This filter sends trace data about all incoming requests that the application serves, including request
URL, method, response status, start time, and end time.

& avg. 0.38s
5 t/min

Clients

scorekeep
AWEEC2:Instance

The application also makes downstream calls to DynamoDB using the AWS SDK for Java.
To instrument these calls, the application simply takes the AWS SDK-related submodules as
dependencies, and the X-Ray SDK for Java automatically instruments all AWS SDK clients.

The application uses a Bui | df i | e file to build the source code on-instance with Gradle and a

Procfi | e file to run the executable JAR that Gradle generates. Bui | df i | e and Procfi | e support is
a feature of the Elastic Beanstalk Java SE platform.

Example Buildfile

build: gradle build

Example Procfile

web: java -Dserver.port=5000 -jar build/libs/scorekeep-api-1.0.0.jar

The bui | d. gr adl e file downloads the SDK submodules from Maven during compilation by declaring
them as dependencies.

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/java-se-platform.html

AWS X-Ray Developer Guide
Explore the Sample Application

Example build.gradle -- Dependencies

dependenci es {
conpi | e("org. springframework. boot : spri ng- boot -starter-web")
t est Conpi |l e(' org. spri ngfranework. boot : spring-boot-starter-test')
conpi |l e(' com amazonaws: aws- j ava- sdk- dynanodb')
conpi | e("com amazonaws: aws- xr ay- r ecor der - sdk- core")
conpi | e("com amazonaws: aws- xr ay-r ecor der - sdk- aws- sdk")
conpi | e("com amazonaws: aws- xr ay- r ecor der - sdk- aws- sdk- i nstrunment or ")

}
dependencyManagenent {
imports {
mavenBon(" com amazonaws: aws- j ava- sdk- bom 1. 11. 67")
mavenBon(" com amazonaws: aws- xr ay- r ecor der - sdk- bom 1. 0. 4- bet a")
}
}

The core, AWS SDK, and AWS SDK Instrumentor submodules are all that's required to automatically
instrument any downstream calls made with the AWS SDK.

To run the X-Ray daemon, the application uses another feature of Elastic Beanstalk, configuration files.
The configuration file tells Elastic Beanstalk to run the daemon and send its log on demand.

Example .ebextensions/xray.config

option_settings:
aws: el asti cheanst al k: xr ay:
XRayEnabl ed: true

files:
"/ opt/el asti cbeanstal k/tasks/taill ogs. d/ xray-daenon. conf"
node: "000644"
owner: root
group: root
content: |
/var/l ogl/ xray/ xray. | og

The X-Ray SDK for Java provides a class named AWSXRay that provides the global recorder, a

Tr aci ngHandl er that you can use to instrument your code. You can configure the global recorder to
customize the AWSXRay Ser vl et Fi | t er that creates segments for incoming HTTP calls. The sample
includes a static block in the WebConf i g class that configures the global recorder with plugins and
sampling rules.

10

AWS X-Ray Developer Guide
Explore the Sample Application

Example src/main/java/scorekeep/WebConfig.java - Recorder

i mport com amazonaws. xr ay. AWSXRay;

i mport com amazonaws. xr ay. AWSXRayRecor der Bui | der ;

i mport com amazonaws. xr ay. pl ugi ns. EC2PI ugi n;

i mport com amazonaws. xray. strat egy. sanpl i ng. Def aul t Sanpl i ngSt r at egy;

@Configuration
public class WebConfig {

static {
AWEXRayRecor der Bui | der buil der =
AWEXRayRecor der Bui | der. st andard() . w t hPl ugi n(new EC2PI ugi n()).w t hPl ugi n(new
El asti cBeanst al kPl ugi n());

URL rul eFile = WebConfi g.cl ass. get Resource("/sanpling-rules.ym");
bui | der. wi t hSanpl i ngSt r at egy(new Def aul t Sanpl i ngStrategy(rul eFile));

AWEXRay. set A obal Recor der (bui I der. buil d());

}
}

This example uses the builder to load sampling rules from a file named sanpl i ng-rul es. j son

Example src/main/java/resources/sampling-rules.json

{

"rules": {

"user": {
"id' 1,
"service_nanme": "*",
"http_nethod": "POST",
“url _path": "/api/user",
"fixed_target": 10,
"rate": 1.0

}s

"move": {
"id": 2,
"service_nane": "*",
"http_nethod": "*",
“url _path": "/api/mnmove/*",
"fixed_target": 1,
"rate": 0.05

s

"base": {
"id": 3,
"service_nanme": "*",
"http_nethod": "*",
“url _path": "*",
"fixed_target": 10,
"rate": 0.25

This example defines two path based rules and overrides the default rule. The first rule applies a 100%
sampling rate to new user creations with POST requests to / api / user . The second rule traces the

11

AWS X-Ray Developer Guide
Clean Up

first move request received each second, and then applies a 5% sampling rate to additional moves.
The final rule overrides the default sampling rule with a rule that traces the first 10 requests each
second and 25 percent of additional requests.

The sample application also shows how to use advanced features such as manual SDK client
instrumentation, creating additional subsegments, and outgoing HTTP calls. For more information, see
X-Ray SDK for Java Sample Application (p. 48).

Clean Up

Terminate your Elastic Beanstalk environment to shut down the Amazon EC2 instances, DynamoDB
tables, and other resources.

To terminate your Elastic Beanstalk environment

Open the Elastic Beanstalk console.

Navigate to the management console for your environment.
Choose Actions.

Choose Terminate Environment.

Choose Terminate.

oA~ eDdhdE

Trace data is automatically deleted from X-Ray after 30 days.

Next Steps

Learn more about X-Ray in the next chapter, AWS X-Ray Concepts (p. 13).

To instrument your own app, learn more about the X-Ray SDK for Java or one of the other X-Ray
SDKs:

* X-Ray SDK for Java — The AWS X-Ray SDK for Java (p. 42)
¢ X-Ray SDK for Node.js — The X-Ray SDK for Node.js (p. 64)
e X-Ray SDK for .NET — The AWS X-Ray SDK for .NET (p. 73)

To run the X-Ray daemon locally or on AWS, see The AWS X-Ray Daemon (p. 82).

To contribute to the sample application on GitHub, see eb-java-scorekeep.

12

https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray

AWS X-Ray Developer Guide
Segments

AWS X-Ray Concepts

AWS X-Ray receives data from services in the form of segments, groups segments with a common
request into traces, and processes traces to generate a service graph and provide a visual
representation of your application.

Concepts
¢ Segments (p. 13)
¢ Subsegments (p. 14)
¢ Service Graph (p. 14)
e Traces (p. 14)
e Sampling (p. 14)
¢ Tracing Header (p. 14)
¢ Filter Expressions (p. 15)

Segments

The compute resources running your application logic send data about the work that they do in the
form of segments. A segment provides the name of the resource, details about the request, and
details about the work done. For example, when an HTTP request reaches your application, it can
record data about:

*« The host — host name, alias or IP address

¢ The request — method, client address, path, user agent
* The response — status, content

e The work done — start and end times, subsegments

The X-Ray SDK gathers information from request and response headers, the code in your application,
and metadata about the AWS resources on which it runs. You choose which data is collected by
adding modifying your application configuration or code to instrument incoming requests, downstream
requests, and AWS SDK clients.

Forwarded Requests

If a request is forwarded to your application by a load balancer or other intermediary, The
client IP in the segment is taken from the X- For war ded- For header in the request instead of
the source IP in the IP packet. The client IP recorded for a forwarded request can be forged
so should not be trusted.

13

AWS X-Ray Developer Guide
Subsegments

Subsegments

Data about the work done can be broken down into subsegments, which provide more granular timing
information and details about downstream calls that your application made to fulfill the original request.
A subsegment can contain additional details about a call to an AWS service, an external HTTP API, or
an SQL database. You can even define arbitrary subsegments to instrument specific functions or lines
of code in your application.

Service Graph

X-Ray uses the data that your application sends to generate a service graph. Each AWS resource
that sends data to X-Ray appears as a service, with edges connecting the services that work together
to serve requests.

Service Names
A segment's nanme should match the domain name or logical name of the service generates

the segment, but this is not enforced. Any application with permission to Put Tr aceSegnent s
can send segments with any name.

For example, your application could use an application load balancer to distribute traffic to Amazon
EC2 instances, which use the AWS SDK to contact DynamoDB to store data, and make HTTP calls
to external web APIs. In the X-Ray service graph, the instances, DynamoDB tables, and downstream
HTTP APIs all appear as separate services connected by edges.

Traces

The path of a request through your application is tracked with a trace ID. A trace collects all of the
segments generated by a single request, typically an HTTP GET or POST request that travels through
a load balancer, hits your application code, and generates downstream calls to other AWS services or
external web APIs. A trace ID header is added to each HTTP request by the first supported service that
it interacts with, and propagates downstream to track the latency, disposition, and other request data.

Sampling

To ensure that tracing is efficient, while still providing a representative sample of the requests that your
application serves, the first service that a request hits applies a sampling algorithm to determine which
requests get traced. You can modify the default sampling rules and configure different sampling rates
for different routes that your application serves with the X-Ray SDK.

Tracing Header

All requests are traced up to a configurable minimum, after which a percentage of requests are traced
to avoid unnecessary cost. The sampling decision and trace ID, are added to HTTP requests in tracing
headers named X- Anzn- Tr ace- | d. The tracing header is added to the request by the first X-Ray-
integrated service that it hits, read by the X-Ray SDK, and included in the response.

Example Tracing header with root trace ID and sampling decision

X- Anmen- Trace-1d: Root =1-5759e988- bd862e3f e1lbe46a994272793; Sanpl ed=1

14

http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide
Filter Expressions

Tracing Header Security

A tracing header can originate from the X-Ray SDK, an AWS service, or the client request.
Your application can remove X- Anzn- Tr ace- | d from incoming requests to avoid issues
caused by users adding trace IDs or sampling decisions to their requests.

The tracing header can also contain a parent segment ID if the request originated from an
instrumented application. For example, if your application calls a downstream HTTP web API with an
instrumented HTTP client, the X-Ray SDK adds the ID of the segment for the original request to the
tracing header of the downstream request. An instrumented application that serves the downstream
request can record the parent segment ID to connect the two requests.

Example Tracing header with root trace ID, parent segment ID and sampling decision

X- Anzn- Trace-1d: Root =1-5759e988- bd862e3f e1lbed46a994272793;
Par ent =53995c3f 42cd8ad8; Sanpl ed=1

Filter Expressions

Even with sampling, a complex application generates a lot of data. The AWS X-Ray console provides
an easy-to-navigate view of the service graph. It shows health and performance information that helps
you identify issues and opportunities for optimization in your application. For advanced tracing, you can
drill down to traces for individual requests, or use filter expressions to find traces related to specific
paths or users.

15

AWS X-Ray Developer Guide
Viewing the Service Map

The AWS X-Ray Console

The AWS X-Ray console lets you view service maps and traces for requests that your applications
serve.

The console's service map is a visual representation of the JSON service graph that X-Ray generates
from the trace data generated by your applications. The map consists of service nodes for each
application in your account that serves requests, upstream client nodes that represent the origins of
the requests, and downstream service nodes that represent web services and resources used by an
application while processing a request.

You can use filters to view a service map or traces for a specific request, a service, a connection
between two services (an edge), or requests that satisfy a condition. X-Ray provides a filter expression

language for filtering requests, services, and edgdes based on data in request headers, response
status, and indexed fields on the original segments.

Viewing the Service Map

View the service map in the X-Ray console to identify services where errors are occurring, connections
with high latency, or traces for requests that were unsuccessful.

To view the service map

1. Open the service map page of the X-Ray console.

16

https://console.aws.amazon.com/xray/home#/service-map

AWS X-Ray Developer Guide
Viewing the Service Map

scorekeep-move
AWS::DynamoD8:: Table

avg. 0.01s
» 15 thmin

scorekeep-game
AWS::DynamoDE:: Table

N 2o 003
0.8 t/min

Scorekeep scorekeap-user
AWS: ElasticBaanstalk: Environment AWS DynamoDE: Tabile

Clients

A avg 0.03s
5 timin

scorekeep-session
AWS::DynamoDE. Table

"
avg. 0.01s
B tmin

scorekeep-state
AWS:DynamoDE: Table

This service map shows a web API and five DynamoDB tables that it calls.

2. Choose a service node to view traces for that node, or an edge between two nodes to view traces
for requests that travelled that connection.

The service map indicates the health of each node by coloring it based on the ratio of successful calls
to errors and faults.

» Green for successful calls.

* Red for server faults (500 series errors).

¢ Yellow for client errors (400 series errors).

¢ Purple for throttling errors (429 Too Many Requests).

17

AWS X-Ray Developer Guide
Using Filter Expressions

avg. 0.01s

7 timin

scorekeep-session
AWS:DynamoDB: Table

[} avg. 0.158

Clients T ymin

Scorekeep

AWS:ElasticBeanstalk:Environment y

avg. 0.01s
2 timin

scorekeep-state
AWS:DynamoDB:: Table

This service map shows a web API with 7% of requests returning 400 series errors.

Using Filter Expressions

Use filter expressions to view a service map or traces for requests that have performance issues or
relate to specific requests.

Requests where response time was more than 5 seconds:

responsetinme > 5

Request where the total duration was 5 to 8 seconds:

duration >= 5 AND duration <= 8

Requests that included a call to "api.example.com" with a fault (500 series error) or latency above 2.5
seconds, and one or more segments has an annotation named "account" with value "12345".

service("api.exanple.conf) { fault = true OR responsetine > 2.5 } AND
annot ati on. account = "12345"

Request where the service "api.example.com" made a call to "backend.example.com" that failed with a
fault.

edge(" api . exanpl e. cont', "backend. exanpl e.com') { fault = true }

Request where the URL begins with "http://api.example.com/" and contains "/v2/" but does not reach a
service named "api.example.com".

http.url BEG NSWTH "http://api.exanple.com” AND http.url CONTAINS "/v2/"
AND ! service("api.exanpl e.coni)

18

http://api.example.com/

AWS X-Ray Developer Guide
Deep Linking

Requests that completed successfully in under 3 seconds, including all downstream calls.

ok !partial duration <3

Boolean Keywords

¢ ok — Response status code was 2XX Success.

e error —Response status code was 4XX Client Error.
e faul t — Response status code was 5XX Server Error.
e partial —Request has incomplete segments.

Number Keywords

e responseti me — Time that the server took to send a response.
e durati on — Total request duration including all downstream calls.
e http. status — Response status code.

String Keywords

e http.url —Request URL.

e http. met hod — Request method.

¢ http. useragent — Request user agent string.

e http.clientip—-Requestor's IP address.

¢ user — Value of user field on any segment in the trace.
e annot ati on. key — Value of annotation with field key.

Complex Keywords

e service(nane) {filter} — Service with name nane. Optional curly braces can contain a filter
expression that applies to segments created by the service.

« edge(nanme) {filter} — Connection between services sour ce and dest i nat i on. Optional curly
braces can contain a filter expression that applies to segments on this connection.

Deep Linking

You can use routes and queries to deep link into specific traces, or filtered views of traces and the
service map.

Console Pages

* Welcome Page: xray/home#/welcome

e Getting Started: xray/home#/getting-started
¢ Service Map: xray/home#/service-map

¢ Traces: xray/home#/traces

Traces

¢ Single trace - timeline: xr ay/ home#/ traces/trace-id
¢ Single trace - raw JSON: xr ay/ hone#/ traces/ trace-i d/ raw

19

https://console.aws.amazon.com/xray/home#/welcome
https://console.aws.amazon.com/xray/home#/getting-started
https://console.aws.amazon.com/xray/home#/service-map
https://console.aws.amazon.com/xray/home#/traces

AWS X-Ray Developer Guide
Deep Linking

Example: xr ay/ honme#/ t r aces/ 1- 57f 5498f - d91047849216d0f 2ea3b6442/ r aw
¢ Single trace - map: xr ay/ hone#/ traces/trace-id/ map

Filter Expressions

« Filtered home view: xr ay/ hone#filter=filter-expression
* Filtered traces view: xr ay/ honme#/ traces?filter=filter-expression

Example: xr ay/ hone#/traces?filter=servi ce("api.amazon.con') { fault = true OR
responsetinme > 2.5 } AND annotation.foo = "bar"

Example (URL encoded): xr ay/ home#/ traces?filter=servi ce(%22api . amazon. com
922) ¥20% BY20f aul t ¥20¥8D¥20t r ue¥200RY20r esponset i Me¥20¥BEYR02. 5%20% DY20AND
%20annot ati on. f 00920Y8DYR20%22bar 922

Time Range
Specify a length of time or start and end time in ISO8601 format.

» Length of time: xr ay/ home#t i me- r ange=r ange- i n- m nut es

Example - last minute: xr ay/ hone#t i me-r ange=PT1M
¢ Start and end time: xr ay/ hone#t i ne-r ange=st art ~end

Example: xr ay/ hone#t i me- range=2016- 11- 06T01: 05: 00~2016- 11- 08T13: 46: 31

Example: xr ay/ honme#t i me-r ange=2016- 11- 06T01: 05~2016- 11- 08T13: 46

Combined

e Example: xr ay/ hone#/ traces?ti ne-range=PT15M&f i | t er =dur at i onY%20%8EY¥8D
%205%20ANDYR0dur at i on%20%3CY8D¥R208

* Output:
» View: Traces Section
« Time Range: Last 15 Minutes
* Filter: duration >=5 AND duration <= 8

20

AWS X-Ray Developer Guide
Using the AWS X-Ray API with the AWS CLI

The AWS X-Ray API

The X-Ray API provides access to all X-Ray functionality through the AWS SDK, AWS Command Line
Interface, or directly over HTTPS. The X-Ray API Reference documents input parameters each API
action, and the fields and data types that they return.

You can use the AWS SDK to develop programs that use the X-Ray API. The X-Ray console and X-
Ray daemon both use the AWS SDK to communicate with X-Ray. The AWS SDK for each language
has a reference document for classes and methods that map to X-Ray API actions and types.

AWS SDK References

¢ Java — AWS SDK for Java

e JavaScript — AWS SDK for JavaScript
e .NET — AWS SDK for .NET

¢ Ruby — AWS SDK for Ruby

* Go — AWS SDK for Go

e PHP — AWS SDK for PHP

e Python — AWS SDK for Python (Boto)

The AWS Command Line Interface is a command line tool that uses the SDK for Python to call AWS
APIs. When you are first learning an AWS API, the AWS CLI provides an easy way to explore the
available parameters and view the service output in JSON or text form.

See the AWS CLI Command Reference for details on aws xray subcommands.

Sections
¢ Using the AWS X-Ray API with the AWS CLI (p. 21)
¢ Uploading Segment Documents (p. 26)
¢ Sending Segment Documents to the X-Ray Daemon (p. 27)
¢ AWS X-Ray Segment Documents (p. 27)

Using the AWS X-Ray API with the AWS CLI

The AWS CLI lets your access the X-Ray service directly and use the same APIs that the X-Ray
console uses to retrieve the service graph and raw traces data. The sample application includes scripts
that show how to use these APIs with the AWS CLI.

21

http://docs.aws.amazon.com//xray/latest/api/Welcome.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/xray/package-summary.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/XRay.html
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/XRay/NXRay.html
http://docs.aws.amazon.com/sdkforruby/api/Aws/XRay.html
http://docs.aws.amazon.com/sdk-for-go/api/service/xray/
http://docs.aws.amazon.com/aws-sdk-php/v3/api/namespace-Aws.XRay.html
http://boto3.readthedocs.org/en/latest/reference/services/xray.html
http://docs.aws.amazon.com/cli/latest/reference//xray

AWS X-Ray Developer Guide
Prerequisites

Prerequisites

This tutorial uses the Scorekeep sample application and included scripts to generate tracing data and a

service map. Follow the instructions in the getting started tutorial (p. 5) to launch the application.

This tutorial uses the AWS CLI to show basic use of the X-Ray API. The AWS CLI, available for
Windows, Linux, and OS-X, provides command line access to the public APIs for all AWS services.

Scripts included to test the sample application uses cURL to send traffic to the API and jq to parse the
output. You can download the j q executable from stedolan.github.io, and the cur | executable from
https://curl.haxx.se/download.html. Most Linux and OS X installations include cURL.

Generate Trace Data

The web app continues to generate traffic to the API every few seconds while the game is in-progress,
but only generates one type of request. Use the t est - api . sh script to run end to end scenarios and
generate more diverse trace data while you test the API.

To use the test - api . sh script

Open the Elastic Beanstalk console.
Navigate to the management console for your environment.

Copy the environment URL from the page header.

PN PR

Open bi n/ t est - api . sh and replace the value for API with your environment's URL.

#! / bi n/ bash
APl =scor ekeep. 9hbt bn23t 2. us- east - 1. el asti cbeanst al k. com

5. Run the script to generate traffic to the API.

~/ debugger-tutorial$./bin/test-api.sh

Creating users,

sessi on,

gane,

configuring gane,

pl ayi ng gane,

endi ng gane,

gane conpl ete.

{"id":"MIBP8BAS", "sessi on": "HUF6I T64", "nanme":"tic-tac-toe-test", "users":

["QFF3HBGM', "KL6JRO8D'], "rul es": " 102", "start Ti ne": 1476314241, "endTi ne": 1476
["IQVLEOWR", "D67QLPI C', "VFO9BMBNC', " OEAABCK9", " 2A705073", " 1U2LFTLJ", " HUKI DD7
[*BS8F8LQ', "4MITSPKP", "4630ETES", " SVEBCL3N', " N7CQLGHP", " OB4ONEPD", " EG4BPROQ

314245, "st at €
0", " BAN1C8FI "
", "V4BLI DJ3",

Use the X-Ray API

The AWS CLI provides commands for all of the API actions that X-Ray provides, including
Get Servi ceG aph and Get Tr aceSunmar i es. See the AWS X-Ray AP| Reference for more
information on all of the supported actions and the data types that they use.

22

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://stedolan.github.io/jq/
https://curl.haxx.se/download.html
https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html
http://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html
http://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
http://docs.aws.amazon.com/xray/latest/api/Welcome.html

AWS X-Ray Developer Guide
Use the X-Ray API

Example bin/service-graph.sh

EPOCH=$(dat e +%s)
aws xray get-service-graph --start-time $(($EPOCH 600))

--end-ti me $EPOCH

The script retrieves a service graph for the last 10 minutes.

~/ eb-j ava- scor ekeep$./bin/service-graph.sh | |ess
{
"StartTime": 1479068648. 0,
"Services": |
{
"StartTime": 1479068648. 0,
"Referenceld": 0,
"State": "unknown",
"EndTi ne": 1479068651. 0,
"Type": "client",
"Edges": [
{
"StartTime": 1479068648. 0,
"Referenceld": 1,
"SunmmaryStatistics": {
"ErrorStatistics": {
"Throttl eCount": O,
"Total Count": O,
"CtherCount": O
b,
"FaultStatistics": {
"Total Count": O,
"CtherCount": O
b,
"Tot al Count": 2,
"CkCount": 2,
"Tot al ResponseTi ne": 0.054000139236450195
b,
"EndTi ne": 1479068651. 0,
"Aliases": []
}
]
b,
{
"StartTi me": 1479068648. 0,
"Nanmes": [

"scor ekeep. exanpl e. us-west - 2. el asti cheanst al k. cont

I,
"Referenceld": 1,

"State": "active",

"EndTi ne": 1479068651. 0,

"Root": true,

"Nanme": "scorekeep. exanpl e. us-west - 2. el asti cheanst al k. cont',

23

AWS X-Ray Developer Guide
Use the X-Ray API

Example bin/trace-urls.sh

EPOCH=$(dat e +%s)
aws xray get-trace-summaries --start-tinme $(($EPCCH 120)) --end-tinme
$(($EPCCH-60)) --query 'TraceSummaries[*].Htp. Ht pURL'

The script retrieves the URLs of traces generated between one and two minutes ago.

~/ eb-j ava- scorekeep$./bin/trace-urls.sh

[

"http://scorekeep. exanpl e. us-west - 2. el asti cheanst al k. cont api /
gane/ 6QQUELDGE 5FG.MBU3/ endt i me/ 1479069438",

"http://scorekeep. exanpl e. us-west - 2. el asti cheanst al k. com api / sessi on/
KH4341QH",

"http://scorekeep. exanpl e. us-west - 2. el asti cheanst al k. com api / gane/
GLQBJ3K5/ 153AHDI A",

"http://scorekeep. exanpl e. us-west - 2. el asti cheanst al k. com api / gane/
VPDL672J)/ QRV41HWB/ endt i me/ 1479069466"

]

24

AWS X-Ray Developer Guide
Cleanup

Example bin/full-traces.sh

EPOCH=$(dat e +%s)

TRACEI DS=$(aws xray get-trace-summaries --start-tinme $(($EPCCH 120)) --end-
time $(($SEPOCH 60)) --query ' TraceSunmmaries[*].1d" --output text)

aws xray batch-get-traces --trace-ids $TRACEIDS --query 'Traces[*]"'

The script retrieves full traces generated between one and two minutes ago.

~/ eb-j ava- scorekeep$./bin/full-traces.sh | less

[
{
"Segnents": [
{

"1d": "3f212bc237bafd5d",

"Docunent": "{\"id\":\"3f212bc237baf d5d\",\ " name\":
\"DynanmoDB\",\"trace_i d\":\"1-5828d9f 2- a90669393f 4343211bclcf 75\ ",
\"start_time\":1.479072242459E9,\ "end_ti me\": 1. 479072242477E9, \ "parent _i d\":
\ " 72a08dcf 87991cad9\ ", \"http\": {\"response\": {\"content _| ength\": 60, \"status
\":200}},\"inferred\":true,\"aws\":{\"consi stent _read\":fal se,\"tabl e_nane
\":\"scorekeep-session-xray\",\"operation\":\"Getltem ", \"request _id\":

\ " QAKEOS8DDOLJM245KACPMA7 46 BVWAKQONSCE AEMVIF66(OASUAAIG ", \ "resour ce_nanes\ ":
[\"scorekeep-session-xray\"]},\"origin\":\"AWS: : DynanoDB: : Tabl e\ "}"
},
{
"1d": "309e355f1148347f",

"Docunent”: "{\"id\":\"309e355f1148347f\",\"nane\":
\"DynanmoDB\",\"trace_i d\":\"1-5828d9f 2- a90669393f 4343211bclcf 75\ ",
\"start_time\":1.479072242477E9,\"end_time\": 1. 479072242494E9, \ "parent _i d
\ "\ "37f 14ef 837f 00022\ ", \"http\": {\ "response\": {\ "content _| ength
\":606,\"status\":200}},\"inferred\":true,\"aws\": {\"tabl e_nane\":

\ "scor ekeep-gane-xray\",\"operation\":\"Updateltem ", \"request _id\":
\ " 388CGEROCAPCAGD59ED3CTI 5EEJVWAKQNSCEAEMVIF66(OASUAAIG ", \ "resour ce_nanes\ ":
[\"scorekeep-game-xray\"]},\"origin\":\"AWS: : DynanoDB: : Tabl e\"}"

I,
"ld": "1-5828d9f 2- a90669393f 4343211bclcf 75",

"Duration": 0.05099987983703613

Cleanup

Terminate your Elastic Beanstalk environment to shut down the Amazon EC2 instances, DynamoDB
tables and other resources.

To terminate your Elastic Beanstalk environment

Open the Elastic Beanstalk console.

Navigate to the management console for your environment.
Choose Actions.

Choose Terminate Environment.

Choose Terminate.

ok wbdPE

Trace data is automatically deleted from X-Ray after 30 days.

25

https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide
Uploading Segment Documents

Uploading Segment Documents

You can upload segments and subsegments with the Put Tr aceSegnent s APL.

Required Segment Document Fields

¢ nane — The name of the service that handled the request.

¢ i d — A 64-bit identifier for the segment, unique among segments in the same trace, in 16
hexadecimal digits.

Trace ID Security

Trace IDs are visible in response headers (p. 14). Generate trace IDs with a secure random
algorithm to ensure that attackers cannot calculate future trace IDs and send requests with
those IDs to your application.

e trace_i d — A unique identifier that connects all segments and subsegments originating from a
single client request.

Trace ID Format

Atrace_i d consists of three numbers separated by hyphens. For example, 1- 58406520-
a006649127e371903a2de979. This includes:

* The version number, that is, 1.

» The time of the original request, in Unix epoch time, in 8 hexadecimal digits.
For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or
58406520 in hexadecimal.

» A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

e start_tine — Time the segment or subsegment was created, in floating point seconds in epoch
time, accurate to milliseconds. For example, 1480615200. 010 or 1. 480615200010E9

e end_ti me — Time the segment or subsegment was closed. For example, 1480615200. 090 or
1. 480615200090E9. Specify either an end_t i me ori n_pr ogr ess.

e in_progress —Settotrue instead of specifying an end_t i me to record that a segment has been
started, but is not complete. Send an in progress segment when your application receives a request
that will take a long time to serve, to trace the fact that the request was received. When the response
is sent, send the complete segment to overwrite the in-progress segment.

Service Names

A segment's nane should match the domain name or logical name of the service generates
the segment, but this is not enforced. Any application with permission to Put Tr aceSegnent s
can send segments with any name.

Example Minimal complete segment

{
"name" : "exanple.cont,
"id" : "70de5b6f 19ff9al0a",
"start_time" : 1.478293361271E9,
"trace_id" : "1-581cf771-a006649127e371903a2de979",
"end_tinme" : 1.478293361449E9
}

26

http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide
Sending Segment Documents to the X-Ray Daemon

Example In-progress segment

{
"name" : "exanple.cont,
"id" : "70de5b6f 19ff9al0b",
"start_time" : 1.478293361271E9,
"trace_id" : "1-581cf771-a006649127e371903a2de979",
“in_progress”: true
}

A subsegment records a downstream call from the point of view of the service that calls it. X-Ray uses
subsegments to identify downstream services that don't send segments and create entries for them on
the service graph.

A subsegment can be embedded in a full segment document, or sent separately. Send subsegments
separately to asynchronously trace downstream calls for long-running requests, or to avoid exceeding
the maximum segment document size (64 kB).

Example Subsegment

A subsegment has at ype of subsegnent and a par ent _i d that identifies the parent segment.

{
"name" : "ww2. exanpl e. cont,
"id" : "70de5b6f 19ff9alc",
"start_time" : 1.478293361271E9,
"trace_id" : "1-581cf771-a006649127e371903a2de979"
“end_tinme" : 1.478293361449E9,
“type” : “subsegnent”,
“parent _id" : “70de5b6f 19f f 9a0b”
}

For more information on the fields and values that you can include in segments and subsegments, see
AWS X-Ray Segment Documents (p. 27).

Sending Segment Documents to the X-Ray
Daemon

You can send segments and subsegments to the X-Ray daemon, which will buffer them and upload to
the X-Ray APl in batches.

Send the segment in JSON over UDP port 2000, prepended by the daemon's header, {“f or mat " :

"json”, “version”: 1}\n
{“format”: "json”, “version”: 1}\n{"trace_id": "1-5759e988-
bd862e3f elbe46a994272793", "id": "defdfd9912dc5a56", "start _tine":

1461096053. 37518, "end_tine": 1461096053. 4042, "nane":
"hel | o- 1. nbf zgxzcpe. us- east - 1. el asti cbeanst al k. coni'}

AWS X-Ray Segment Documents

A trace segment is a JSON representation of a request that your application serves. A trace segment
records information about the original request, information about the work that your application does

27

AWS X-Ray Developer Guide
Segment Fields

locally, and subsegments with information about downstream calls that your application makes to
AWS resources, HTTP APIs, and SQL databases.

A segment document conveys information about a segment to X-Ray. A segment document can be
up to 64 kB and contain a whole segment with subsegments, a fragment of a segment that indicates
that a request is in progress, or a single subsegment that is sent separately. You can send segment

documents directly to X-Ray by using the Put Tr aceSegnent s API.

X-Ray compiles and processes segment documents to generate queryable trace summaries and
full traces that you can access by using the Get Tr aceSunmar i es and Bat chGet Tr aces APIs,
respectively. In addition to the segments and subsegments that you send to X-Ray, the service uses
information in subsegments to generate inferred segments and adds them to the full trace. Inferred
segments represent downstream services and resources in the service map.

X-Ray provides a JSON schema for segment documents. You can download the schema here: xray-
segmentdocument-schema-v1.0.0-beta.zip. The fields and objects listed in the schema are described
in more detail in the following sections.

A subset of segment fields are indexed by X-Ray for use with filter expressions. For example, if you
set the user field on a segment to a unique identifier, you can search for segments associated with
specific users in the X-Ray console or by using the Get Tr aceSunmar i es API. For more information,
see Using Filter Expressions (p. 18).

When you instrument your application with the X-Ray SDK, the SDK generates segment documents
for you. Instead of sending segment documents directly to X-Ray, the SDK transmits them over a local
UDP port to the X-Ray daemon (p. 82). For more information, see Sending Segment Documents to
the X-Ray Daemon (p. 27).

Sections
e Segment Fields (p. 28)
¢ Subsegments (p. 30)
e HTTP Request Data (p. 33)
¢ Annotations (p. 35)
¢ Metadata (p. 36)
« AWS Resource Data (p. 37)
e Errors and Exceptions (p. 39)
¢ SQL Queries (p. 40)

Segment Fields

A segment records tracing information about a request that your application serves. At a minimum, a
segment records the name, ID, start time, trace ID, and end time of the request.

Example Minimal Complete Segment

{
"name" : "exanple.cont,
"id" : "70de5b6f 19ff9a0a",
"start _tine" : 1.478293361271E9,
"trace_id" : "1-581lcf771-a006649127e371903a2de979",
"end_time" : 1.478293361449E9
}

The following fields are required, or conditionally required, for segments.

Note
Values must be strings (up to 250 characters) unless noted otherwise.

28

http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
http://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
http://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
samples/xray-segmentdocument-schema-v1.0.0-beta.zip
samples/xray-segmentdocument-schema-v1.0.0-beta.zip

AWS X-Ray Developer Guide
Segment Fields

Required Segment Fields

nane — The logical name of the service that handled the request, up to 200 characters. For
example, your application's name or domain name. Names can contain alphanumeric characters and
the following symbols: _,.,:,/, % & #, =, +,\,-,@],*,).$

i d — A 64-bit identifier for the segment, unique among segments in the same trace, in 16
hexadecimal digits.

trace_i d — A unique identifier that connects all segments and subsegments originating from a
single client request.

Trace ID Format

Atrace_i d consists of three numbers separated by hyphens. For example, 1- 58406520-
a006649127e371903a2de979. This includes:

* The version number, that is, 1.
* The time of the original request, in Unix epoch time, in 8 hexadecimal digits.

For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or
58406520 in hexadecimal.

< A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

Trace ID Security

Trace IDs are visible in response headers (p. 14). Generate trace IDs with a secure random
algorithm to ensure that attackers cannot calculate future trace IDs and send requests with
those IDs to your application.

start _ti me —number that is the time the segment was created, in floating point seconds in epoch
time. For example, 1480615200. 010 or 1. 480615200010E9. Use as many decimal places as you
need. Microsecond resolution is recommended when available.

end_t i me — number that is the time the segment was closed. For example, 1480615200. 090 or
1. 480615200090E9. Specify either an end_t i me ori n_pr ogr ess.

i n_progress —boolean, setto t r ue instead of specifying an end_t i ne to record that a segment
is started, but is not complete. Send an in-progress segment when your application receives a
request that will take a long time to serve, to trace the request receipt. When the response is sent,
send the complete segment to overwrite the in-progress segment. Only send one complete segment,
and one or zero in-progress segments, per request.

Service Names

A segment's nanme should match the domain name or logical name of the service generates
the segment, but this is not enforced. Any application with permission to Put Tr aceSegnent s
can send segments with any name.

The following fields are optional for subsegments.

Optional Segment Fields

servi ce — An object with information about your application.
e ver si on — A string that identifies the version of your application that served the request.
user — A string that identifies the user who sent the request.

par ent _i d — A subsegment ID you specify if the request originated from an instrumented
application. The X-Ray SDK adds the parent subsegment ID to the tracing header (p. 14) for
downstream HTTP calls.

http—http (p. 33) objects with information about the original HTTP request.

aws —aws (p. 37) object with information about the AWS resource on which your application
served the request.

29

http://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide
Subsegments

e« error,throttle,faul t,and cause — error (p. 39) fields that indicate an error occurred and
that include information about the exception that caused the error.

e annot ati ons —annot at i ons (p. 35) object with key-value pairs that you want X-Ray to index
for search.

« net adat a — net adat a (p. 36) object with any additional data that you want to store in the
segment.

e subsegment s —array of subsegnent (p. 30) objects.

Subsegments

You can create subsegments to record calls to AWS services and resources that you make with the
AWS SDK, calls to internal or external HTTP web APIs, or SQL database queries. You can also create
subsegments to debug or annotate blocks of code in your application. Subsegments can contain other
subsegments, so a custom subsegment that records metadata about an internal function call can
contain other custom subsegments and subsegments for downstream calls.

A subsegment records a downstream call from the point of view of the service that calls it. X-Ray uses
subsegments to identify downstream services that don't send segments and create entries for them on
the service graph.

A subsegment can be embedded in a full segment document or sent independently. Send
subsegments separately to asynchronously trace downstream calls for long-running requests, or to
avoid exceeding the maximum segment document size.

30

AWS X-Ray Developer Guide
Subsegments

Example Segment with Embedded Subsegment

An independent subsegment has at ype of subsegnent and a par ent _i d that identifies the parent
segment.

{
"trace_id" : "1-5759e988- bd862e3f elbe46a994272793",
"id" : "defdf d9912dc5a56",
"start_time" : 1461096053. 37518,
"end_ti ne" : 1461096053. 4042,
"nane" © "www. exanpl e. cont',
"http" s
"request" : {
“url" : "https://ww. exanpl e. coni heal t h",
" nmet hod" .O"GETY,
"user_agent" : "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6)
Appl eVebKi t/601.7. 7",
"client _ip" : "11.0.3.111"
H
"response" : {
"status" . 200,
"content_l ength" : 86
}
H
"subsegnments" : |
{
"id" : "53995c3f 42cd8ad8",
"name" : "api.exanple.cont,
"start_time" : 1461096053. 37769,
"end_ti ne" : 1461096053. 40379,
"nanespace" : "renote",
"http" s
"request" : {
“url" : "https://api.exanple.conf health",
"“met hod" : "POST",
"traced" : true
H
"response" : {
"status" : 200,
"content _l ength" : 861
}
}
}
]
}

For long-running requests, you can send an in-progress segment to notify X-Ray that the request was
received, and then send subsegments separately to trace them before completing the original request.

Example In-Progress Segment

{
"name" : "exanple.cont,
"id" : "70de5b6f 19ff 9a0b",
"start_time" : 1.478293361271E9,
"trace_id" : "1-581lcf771-a006649127e371903a2de979",
“in_progress”: true
}

31

AWS X-Ray Developer Guide
Subsegments

Example Independent Subsegment

An independent subsegment has at ype of subsegnent,atrace_i d, and a par ent _i d that
identifies the parent segment.

"name" : "api.exanple.conf,
"id" @ "53995c3f42cd8ad8",
"start_time" : 1.478293361271E9,
“end_time” : 1.478293361449E9,
"type" : "subsegnent",
"trace_id" : "1-581cf771-a006649127e371903a2de979"
"parent _id" : "defdfd9912dc5a56",
"nanespace" : "renote",
"http" Y
"request” @ {
“url™” : "https://api.exanpl e.conf heal th",
"met hod" : "POST",
"traced" : true
}
"response" : {
"status" . 200,
"content_| ength" : 861

When the request is complete, close the segment by resending it with an end_t i me. The complete
segment overwrites the in-progress segment.

You can also send subsegments separately for completed requests that triggered asynchronous
workflows. For example, a web APl may return a OK 200 response immediately prior to starting
the work that the user requested. You can send a full segment to X-Ray as soon as the response
is sent, followed by subsegments for work completed later. As with segments, you can also send
a subsegment fragment to record that the subsegment has started, and then overwrite it with a full
subsegment once the downstream call is complete.

The following fields are required, or are conditionally required, for subsegments.

Note
Values are strings up to 250 characters unless noted otherwise.

Required Subsegment Fields

¢ i d — A 64-bit identifier for the subsegment, unique among segments in the same trace, in 16
hexadecimal digits.

* nane — The logical name of the subsegment. For downstream calls, name the subsegment after the
resource or service called. For custom subsegments, name the subsegment after the code that it
instruments (e.g., a function name).

e start_time —number that is the time the subsegment was created, in floating point seconds in
epoch time, accurate to milliseconds. For example, 1480615200. 010 or 1. 480615200010E9.

* end_ti me —number that is the time the subsegment was closed. For example, 1480615200. 090
or 1. 480615200090E9. Specify an end_t i ne or i n_pr ogr ess.

e in_progress —boolean that is set to t r ue instead of specifying an end_t i ne to record that a
subsegment is started, but is not complete. Only send one complete subsegment, and one or zero
in-progress subsegments, per downstream request.

» trace_i d — Trace ID of the subsegment's parent segment. Required only if sending a subsegment
separately.

32

AWS X-Ray Developer Guide
HTTP Request Data

Trace ID Format

Atrace_i d consists of three numbers separated by hyphens. For example, 1- 58406520-
a006649127e371903a2de979. This includes:

» The version number, that is, 1.
» The time of the original request, in Unix epoch time, in 8 hexadecimal digits.

For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or
58406520 in hexadecimal.

» A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

parent _i d — Segment ID of the subsegment's parent segment. Required only if sending a
subsegment separately.

t ype — subsegment . Required only if sending a subsegment separately.

The following fields are optional for subsegments.

Optional Subsegment Fields

nanespace — aws for AWS SDK calls; r enot e for other downstream calls.
http—http (p. 33) object with information about an outgoing HTTP call.

aws —aws (p. 37) object with information about the downstream AWS resource that your
application called.

error,throttle,faul t,and cause — error (p. 39) fields that indicate an error occurred and
that include information about the exception that caused the error.

annot at i ons —annot at i ons (p. 35) object with key-value pairs that you want X-Ray to index
for search.

net adat a — net adat a (p. 36) object with any additional data that you want to store in the
segment.

subsegnent s —array of subsegnent (p. 30) objects.

precursor _i ds — array of subsegment IDs that identifies subsegments with the same parent that
completed prior to this subsegment.

HTTP Request Data

Use an HTTP block to record details about an HTTP request that your application served (in a
segment) or that your application made to a downstream HTTP API (in a subsegment). Most of the
fields in this object map to information found in an HTTP request and response.

http

All fields are optional.

request — Information about a request.

* et hod — The request method. For example, GET.

e url —The full URL of the request, compiled from the protocol, hostname, and path of the request.
* user_agent — The user agent string from the requestor's client.

e client_ip-The IP address of the requestor. Can be retrieved from the IP packet's Sour ce
Addr ess or, for forwarded requests, from an X- For war ded- For header.

» x_forwarded_f or — (segments only) boolean indicating that the cl i ent _i p was read from an
X- For war ded- For header and is not reliable as it could have been forged.

33

AWS X-Ray Developer Guide
HTTP Request Data

» traced - (subsegments only) boolean indicating that the downstream call is to another traced
service. If this field is set to t r ue, X-Ray considers the trace to be broken until the downstream
service uploads a segment with a par ent _i d that matches the i d of the subsegment that
contains this block.

¢ response — Information about a response.
» stat us —number indicating the HTTP status of the response.

e cont ent _| engt h — number indicating the length of the response body in bytes.

When you instrument a call to a downstream web api, record a subsegment with information about
the HTTP request and response. X-Ray uses the subsegment to generate an inferred segment for the
remote API.

Example Segment for HTTP Call Served by an Application Running on Amazon EC2

"id": "6b55dcc497934f 1a",
"start _tinme": 1484789387. 126,
"end_time": 1484789387. 535,
"trace_id": "1-5880168b-fd5158284b67678a3bb5a78c",
"name": "ww. exanpl e. cont,
"origin": "AWS: :EC2::Instance",
"aws": {
"ec2": {
"availability_zone": "us-west-2c",
"instance_id": "i-0b5a4678f c325bg98"
}
}
"http": {
"request": {
"met hod": "POST",
"client_ip": "78.255.233.48",
"url": "http://ww. exanpl e. conf api / user™",
"user_agent": "Mozilla/5.0 (Wndows NT 6.1; WOW64; rv:45.0)
Gecko/ 20100101 Firefox/45.0",
"x_forwarded_for": true
}
"response": {
"status": 200

34

AWS X-Ray Developer Guide
Annotations

Example Subsegment for a Downstream HTTP Call

{
"id": "004f 72bel9cddc2a",
"start _tine": 1484786387.131,
"end_time": 1484786387.501,
"name": "nanes. exanpl e. cont',
"namespace": "renote",
"http": {
"request": {
"met hod": "GET",
"url": "https://nanes. exanple.com"
}s
"response": {
"content _length": -1,
"status": 200
}
}
}

Example Inferred Segment for a Downstream HTTP Call

"id": "168416dc2ea97781",
"nanme": "nanes.exanpl e.cont,
"trace_id": "1-5880168b-fd5153bb58284h67678aa78c",
"start _tinme": 1484786387. 131,
"end_time": 1484786387.501,
"parent _id": "004f 72bel9cddc2a",
"http": {
"request": {
"met hod": "GET",
"url": "https://nanes. exanpl e.con "

}
"response": {
"content _length": -1,
"status": 200

}
}

"inferred": true

Annotations

Segments and subsegments can include an annot at i ons object containing one or more fields that
X-Ray indexes for use with filter expressions. Fields can have string, number, or Boolean values (no
objects or arrays).

35

AWS X-Ray Developer Guide
Metadata

Example Segment for HTTP Call with Annotations

"id": "6b55dcc497932f 1a",

"start _tine": 1484789187. 126,

"end_time": 1484789187. 535,

"trace_id": "1-5880168b-fd515828hs07678a3bb5a78c",
"name": "ww. exanpl e. cont,

"origin": "AWS::EC2::Instance",

"annotations": {

"custoner_category" : 124,
"zip_code" : 98101,
"country" : "United States",
"internal" : false

H

"http": {

"request": {
"met hod": "POST",
"client_ip": "78.255.233.48",
“url": "http://ww. exanpl e. conf api / user",
"user_agent": "Mozilla/5.0 (Wndows NT 6.1; WOW64; rv:45.0)

Gecko/ 20100101 Firefox/ 45. 0",

"x_forwarded_for": true

H

"response": {
"status": 200

}

}

Metadata

Segments and subsegments can include a nmet adat a object containing one or more fields with values
of any type, including objects and arrays. X-Ray does not index metadata, and values can be any
size, as long as the segment document doesn't exceed the maximum size (64 kB). You can view
metadata in the full segment document returned by the Bat chGet Tr aces API. Field keys (debug in
the following example) starting with AWS. are reserved for use by AWS-provided SDKs and clients.

36

http://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html

AWS X-Ray Developer Guide
AWS Resource Data

Example Custom Subsegment with Metadata

{
"id": "0e58d2918e9038e8",
"start _tine": 1484789387.502,
"end_time": 1484789387.534,
"nane": "## User Mbdel . saveUser",
"metadata": {
"debug": {
"test": "Metadata string from UserMobdel . saveUser"
}
H
"subsegments": |
{
"id": "0f910026178b71leb",
"start _tine": 1484789387.502,
"end_time": 1484789387.534,
"name": "DynanoDB",
"nanespace": "aws",
"http": {
"response": {
"content _| ength": 58,
"status": 200
}
H
"aws": {
"tabl e_nane": "scorekeep-user",
"operation": "Updateltent,
"request _id": "3Al ENVJ4ELQBSPODHKBI RVI C3VV4KQNSCEAEMVI F66QOASUAAIG' ,
"resource_names": [
"scor ekeep-user"
]
}
}
]
}

AWS Resource Data

For segments, the aws object contains information about the resource on which your application

is running. Multiple fields can apply to a single resource. For example, an application running in a
multicontainer Docker environment on Elastic Beanstalk could have information about the Amazon
EC2 instance, the Amazon ECS container running on the instance, and the Elastic Beanstalk
environment itself.

aws (Segments)

All fields are optional.

37

AWS X-Ray Developer Guide
AWS Resource Data

Example AWS Block with Plugins

"aws": {

"el astic_beanstal k": {
"version_| abel ": "app-5a56-170119_190650- st age- 170119 _190650",
"depl oynment _id": 32,
"envi ronment _nane": "scorekeep"”

1

"ec2": {
"availability_zone": "us-west-2c",
"instance_id": "i-075ad396f 12bc325a"

1

"xray": {

"sdk": "1.0.4-beta for Java"
}

e account _i d — If your application sends segments to a different AWS account, record the ID of the
account running your application.

* ecs — Information about an Amazon ECS container.
e cont ai ner — The container ID of the container running your application.
* ec2 - Information about an EC2 instance.
e instance_i d - The instance ID of the EC2 instance.
e avail abi l i ty_zone — The Availability Zone in which the instance is running.

¢ el asti c_beanst al k — Information about an Elastic Beanstalk environment. You can find this
information in a file named / var / el ast i cbeanst al k/ xr ay/ envi ronnment . conf on the latest
Elastic Beanstalk platforms.

e envi ronnent _nane — The name of the environment.

» versi on_| abel —The name of the application version that is currently deployed to the instance
that served the request.

« depl oyrment _i d — number indicating the ID of the last successful deployment to the instance that
served the request.

For subsegments, record information about the AWS services and resources that your application
accesses. X-Ray uses this information to create inferred segments that represent the downstream
services in your service map.

aws (Subsegments)

All fields are optional.

» oper ati on — The name of the API action invoked against an AWS service or resource.

¢ account _i d — If your application accesses resources in a different account, or sends segments to
a different account, record the ID of the account that owns the AWS resource that your application
accessed.

¢ regi on — If the resource is in a region different from your application, record the region. For
example, us- west - 2.

e request _i d — Unique identifier for the request.
e queue_url — For operations on an Amazon SQS queue, the queue's URL.
¢ tabl e_nane — For operations on a DynamoDB table, the name of the table.

38

AWS X-Ray Developer Guide
Errors and Exceptions

Example Subsegment for a Call to DynamoDB to Save an ltem

"id": "24756640c0d0978a",
"start_tinme": 1.480305974194E9,
"end_time": 1.4803059742E9,
"nane": "DynanoDB",
"nanespace": "aws",
"http": {
"response": {
"content _| ength": 60,
"status": 200

}
}s
"aws": {
"tabl e_nane": "scorekeep-user",
"operation": "Updateltent,
"request _id": "UBQNSOC5AEMBT4FDA4RQDEBI4OVTDRVVAKAH RGVIF66(QQASUAAIG',

}
}

Errors and Exceptions

When an error occurs, you can record details about the error and exceptions that it generated. Record
errors in segments when your application returns an error to the user, and in subsegments when a
downstream call returns an error.

error types

Set one or more of the following fields to t r ue to indicate that an error occurred. Multiple types can
apply if errors compound. For example, a 429 Too Many Request s error from a downstream call
may cause your application to return 500 I nternal Server Error,inwhich case all three types
would apply.

e error —boolean indicating that a client error occurred (400 series error).
e throttl e —boolean indicating that a request was throttled (429 error).
e fault —boolean indicating that a server error occurred (500 series error).

Indicate the cause of the error by including a cause object in the segment or subsegment.
cause
A cause can be either a 16 character exception ID or an object with the following fields:

e wor ki ng_di rect ory — The full path of the working directory when the exception occurred.
¢ pat hs — The array of paths to libraries or modules in use when the exception occurred.
e exceptions — The array of exception objects.

Include detailed information about the error in one or more exception objects.
exception
All fields are optional except i d.

¢ i d — A 64-bit identifier for the exception, unigue among segments in the same trace, in 16
hexadecimal digits.

39

AWS X-Ray Developer Guide
SQL Queries

nessage — The exception message.
t ype — The exception type.

r enot e — boolean indicating that the exception was caused by an error returned by a downstream
service.

t runcat ed — integer indicating the number of stack frames that are omitted from the st ack.

ski pped — integer indicating the number of exceptions that were skipped between this exception
and its child, that is, the exception that it caused.

cause — Exception ID of the exception's parent, that is, the exception that caused this exception.

st ack — array of stackFrame objects.

If available, record information about the call stack in stackFrame objects.

st ackFr ane

All fields are optional.

pat h — The relative path to the file.
| i ne — The line in the file.
| abel — The function or method name.

SQL Queries

You can create subsegments for queries that your application makes to an SQL database.

sql

All fields are optional.

connection_string — For SQL Server or other database connections that don't use URL
connection strings, record the connection string, excluding passwords.

ur | — For a database connection that uses a URL connection string, record the URL, excluding
passwords.

sani ti zed_query — The database query, with any user provided values removed or replaced by a
placeholder.

dat abase_t ype — The name of the database engine.
dat abase_ver si on — The version number of the database engine.

dri ver _versi on — The name and version number of the database engine driver that your
application uses.

user — The database username.

preparation—call ifthe query used a Prepar edCal | ; st at enent if the query used a
Pr epar edSt at enent .

40

AWS X-Ray Developer Guide
SQL Queries

Example Subsegment with an SQL Query

"id": "3fd8634e78ca9560",
"start_tinme": 1484872218. 696,
"end_time": 1484872218. 697,
"name": "ebdb@awi j b5u25wdoy. cpamkznpdog8. us- west - 2. rds. amazonaws. conf',
"nanespace": "renote",
"sql " o {
"url": "jdbc: postgresql://aaw j b5u25wdoy. cpamxznpdoqg8. us-
west - 2. rds. amazonaws. com 5432/ ebdb",
"preparation": "statement",
"dat abase_type": "PostgreSQ.",
"dat abase_version": "9.5.4",
"driver_version": "PostgreSQ 9.4.1211.jre7",
"user" : "dbuser",

"sanitized_query" : "SELECT * FROM customers WHERE custoner_id=?;"

41

AWS X-Ray Developer Guide

The AWS X-Ray SDK for Java

The X-Ray SDK for Java is a set of libraries for Java web applications that provide classes and
methods for generating and sending trace data to the X-Ray daemon. Trace data includes information
about incoming HTTP requests served by the application, and calls that the application makes to
downstream services using the AWS SDK, HTTP clients, or an SQL database connector. You can also
create segments manually and add debug information in annotations and metadata.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed but can be
viewed in the raw segment with the X-Ray console or API. Anyone that you grant read access
to X-Ray can view this data.

Start by adding AWSXRay Ser vl et Fi | t er as a servlet filter (p. 54) to trace incoming requests. A
servlet filter creates a segment to record information about each traced request that your application
serves, and completes the segment when the response is sent. Within this segment you can create
subsegments to trace downstream calls to other AWS services, HTTP web APIs, and SQL databases.

Next, use the X-Ray SDK for Java to instrument your SDK for Java clients (p. 77). Whenever you
make a call to a downstream AWS service or resource with an instrumented client, the SDK records
information about the call in a subsegment. AWS services and the resources that you access within
the services appear as downstream nodes on the service map to help you identify errors and throttling
issues on individual connections.

When you include the SDK Instrumentor submodule (p. 43) in your build configuration, the X-Ray
SDK for Java instruments all AWS SDK for Java clients automatically. Any call to an AWS service
made with an instrumented client adds a subsegment to the request trace with information about the
service, the resource in the service that was changed (if any), the response, and latency.

If you don't want to instrument all downstream calls to AWS services, you can leave out the
Instrumentor submodule and choose which clients to instrument. Instrument individual clients by
adding a Tr aci ngHandl er (p. 57) to an AWS SDK service client.

Other X-Ray SDK for Java submodules provide instrumentation for downstream calls to HTTP web
APIs and SQL databases. You can use the X-Ray SDK for Java's versions of HTTPCl i ent and
HTTPC i ent Bui | der (p. 58) in the Apache HTTP submodule to instrument Apache HTTP clients.
To instrument SQL queries, add the SDK's interceptor to your data source (p. 60).

42

AWS X-Ray Developer Guide
Requirements

The X-Ray SDK for Java is split into submodules for each type of trace data. The submodules and bill
of materials are available from Maven:

e aws- xray-recorder - sdk- cor e (required) — Basic functionality for creating segments and
transmitting segments. Includes AWSXRay Ser vl et Fi | t er for instrumenting incoming requests.

e aws- xray-recorder - sdk- aws- sdk — Instruments calls to AWS services made with AWS SDK for
Java clients by adding a tracing client as a request handler.

e aws- xray-recorder-sdk-aws- sdk-i nstrument or —With aws- xr ay- r ecor der - sdk- aws-
sdk, instruments all AWS SDK for Java clients automatically.

e aws- xray-recorder - sdk- apache- ht t p — Instruments outbound HTTP calls made with Apache
HTTP clients.

e aws- xray-recorder-sdk-sql - post gres — Instruments outbound calls to a PostgreSQL
database made with JDBC.

e aws- xray-recorder-sdk-sql -nmysgl — Instruments outbound calls to a MySQL database made
with JDBC.

e aws- xray-recorder - sdk- bom— Provides a bill of materials that you can use to specify the
version to use for all submodules.

For reference documentation for of the SDK's classes and methods, see AWS X-Ray SDK for Java API
Reference.

Requirements

The X-Ray SDK for Java requires Java 8 or later, Servlet API 3, the AWS SDK, and Jackson.
The SDK depends on the following libraries at compile and runtime:

¢ AWS SDK for Java version 1.11.42 or later

¢ Servlet API 3.0

+ Jackson Core, Databind and Annotations 2.8
« Commons Validator 1.5.1

These dependencies are declared in the SDK's pom xml file and are included automatically if you build
using Maven or Gradle.

If you use a library that is included in the X-Ray SDK for Java, you must use the included version.
For example, if you already depend on Jackson at runtime and include JARs in your deployment for
that dependency, you must remove those JARs because the SDK JAR includes its own versions of
Jackson libraries.

Dependency Management

The X-Ray SDK for Java is available from Maven:

e Group —com amazonaws
¢ Bill of Materials —aws- xr ay-r ecor der - sdk- bom
e Version —1.0. 4-beta

If you use Maven to build your application, add the SDK as a dependency in your pom xni file.

43

https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-core
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk-instrumentor
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-apache-http
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-sql-postgres
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-sql-mysql
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-bom
http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc
http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc

AWS X-Ray Developer Guide
Dependency Management

Example pom.xml - dependencies

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>com amazonaws</ gr oupl d>
<artifactld>aws- xray-recorder-sdk-bonk/artifactld>
<versi on>1. 0. 2- bet a</ ver si on>
<t ype>ponx/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >
<dependency>
<gr oupl d>com amazonaws</ gr oupl d>
<artifactld>aws-xray-recorder-sdk-core</artifactld>
</ dependency>
<dependency>
<gr oupl d>com amazonaws</ gr oupl d>
<artifactld>aws- xray-recorder-sdk-apache-http</artifactld>
</ dependency>
<dependency>
<gr oupl d>com amazonaws</ gr oupl d>
<artifactld>aws-xray-recorder-sdk-aws-sdk</artifactld>
</ dependency>
<dependency>
<gr oupl d>com amazonaws</ gr oupl d>
<artifactld>aws-xray-recorder-sdk-aws-sdk-instrunentor</artifactld>
</ dependency>
<dependency>
<gr oupl d>com amazonaws</ gr oupl d>
<artifactld>aws-xray-recorder-sdk-sql -postgres</artifactld>
</ dependency>
<dependency>
<gr oupl d>com amazonaws</ gr oupl d>
<artifactld>aws- xray-recorder-sdk-sql -nysql </artifactld>
</ dependency>

For Gradle, add the SDK as a compile-time dependency in your bui | d. gr adl e file.

44

AWS X-Ray Developer Guide
Configuration

Example build.gradle - dependencies

dependenci es {
conpi | e("org. springframework. boot : spri ng-boot-starter-web")
test Conpi | e("org. springframework. boot: spring-boot-starter-test")
conpi | e("com amazonaws: aws- j ava- sdk- dynanodb")
conpi | e("com amazonaws: aws- xr ay-r ecor der - sdk- core")
conpi | e("com amazonaws: aws- xr ay-r ecor der - sdk- aws- sdk")
conpi | e("com amazonaws: aws- xr ay- r ecor der - sdk- aws- sdk- i nstrunment or ")
conpi | e("com amazonaws: aws- xr ay- r ecor der - sdk- apache- htt p")
conpi | e("com amazonaws: aws- xr ay-r ecor der - sdk- sql - post gres")
conpi | e("com amazonaws: aws- xr ay-r ecor der - sdk- sql - nysql ")
testConpile("junit:junit:4.11")

}
dependencyManagenent {
i mports {
mavenBon(' com amazonaws: aws- j ava- sdk- bom 1. 11. 39")
mavenBon(' com amazonaws: aws- xr ay-r ecor der - sdk- bom 1. 0. 4-beta')
}
}

If you use Elastic Beanstalk to deploy your application, you can use Maven or Gradle to build on-
instance each time you deploy, instead of building and uploading a large archive that includes all of
your dependencies. See the sample application (p. 48) for an example that uses Gradle.

Configuring the X-Ray SDK for Java

The X-Ray SDK for Java provides a class named AWSXRay that provides the global recorder, a
Tr aci ngHandl er that you can use to instrument your code. You can configure the global recorder to
customize the AWSXRay Ser vl et Fi | t er that creates segments for incoming HTTP calls.

Sections
¢ Service Plugins (p. 45)
¢ Sampling Rules (p. 46)
¢ Logging (p. 48)

Service Plugins

Use pl ugi ns to add trace data about the service hosting your application.

¢ Amazon EC2 — Adds the instance ID.
¢ El asti ¢ Beanst al k — Adds the environment ID.
« Amazon ECS - Adds the cluster ID.

To use a plugin, call wi t hPl ugi n on your AWSXRayRecor der Bui | der:

45

AWS X-Ray Developer Guide
Sampling Rules

Example src/main/java/scorekeep/WebConfig.java - Recorder

i mport com amazonaws. xr ay. AWSXRay;

i mport com amazonaws. xr ay. AWSXRayRecor der Bui | der ;

i mport com amazonaws. xr ay. pl ugi ns. EC2PI ugi n;

i mport com amazonaws. xray. strat egy. sanpl i ng. Def aul t Sanpl i ngSt r at egy;

@Configuration
public class WebConfig {

static {
AWEXRayRecor der Bui | der buil der =
AWEXRayRecor der Bui | der. st andard() . w t hPl ugi n(new EC2PI ugi n()) . w t hPl ugi n(new
El asti cBeanst al kPl ugi n());

URL rul eFile = WebConfi g.cl ass. get Resource("/sanpling-rules.ym");
bui | der. wi t hSanpl i ngSt r at egy(new Def aul t Sanpl i ngStrategy(ruleFile));

AWEXRay. set A obal Recor der (bui I der. buil d());

}
}

Sampling Rules

The SDK has a default sampling strategy that determines which requests get traced. By default, the
SDK traces the first request each second, and 5 percent of any additional requests. You can customize
the SDK's sampling behavior by applying rules defined in a local file.

Example sampling-rules.json

{

"rules": {
"move": {
"id" 1,
"service_nanme": "*",
"http_nethod": "*",
"url _path": "/api/move/*",
"fixed_ target": O,
"rate": 0.05
}
"base": {
"id" 2,
"service_nanme": "*",
"http_nethod": "*",
"url _path": "*"|
"fixed_ target": 1,
"rate": 0.1

This example defines two rules. The first rule applies a five-percent sampling rate with no minimum
number of requests to trace to requests with paths under / api / rove/ . The second overrides the
default sampling rule with a rule that traces the first request each second and 10 percent of additional
requests.

For Spring, configure the global recorder in a configuration class.

46

AWS X-Ray Developer Guide
Sampling Rules

Example src/main/java/myapp/WebConfig.java - Recorder Configuration

i nport com amazonaws. xr ay. ANBXRay;

i mport com amazonaws. xr ay. AWSXRayRecor der Bui | der;

i mport com amazonaws. xray. j avax. servl et. AWGXRayServl etFilter;

i mport com amazonaws. xr ay. pl ugi ns. EC2PI ugi n;

i mport com amazonaws. xray. strat egy. sanpl i ng. Def aul t Sanpl i ngSt r at egy;

@Configuration
public class WbConfig {

static {
AWEXRayRecor der Bui | der buil der =
AWSXRayRecor der Bui | der. st andard() . w t hPl ugi n(new EC2PI ugi n());

URL rul eFile = WebConfi g.cl ass. get Resource("file://sanpling-rules.json");
bui | der. wi t hSanpl i ngSt r at egy(new Def aul t Sanpl i ngStrategy(ruleFile));

AVWEXRay. set A obal Recor der (bui l der. buil d());
}

For Tomcat, add a listener that extends Ser vl et Cont ext Li st ener .

Example src/com/myapp/web/Startup.java

package com nyapp. web;
i mport java.net. URL;

i mport javax.servlet. Servl et Cont ext Event ;
i mport javax.servlet. Servl et Cont extLi stener;

i nport com amazonaws. xr ay. ANBXRay;

i mport com amazonaws. xr ay. AWsXRayRecor der Bui | der;

i mport com amazonaws. xr ay. pl ugi ns. EC2PI ugi n;

i mport com amazonaws. xray. strat egy. sanpl i ng. Def aul t Sanpl i ngSt r at egy;

public class Startup inplenments Servl et ContextListener {

@verride
public void contextlnitialized(ServletContextEvent event) {
AWBXRayRecor der Bui | der buil der =
AWSXRayRecor der Bui | der. standard() . w t hPl ugi n(new EC2PI ugi n());

URL rul eFile = Context.class. get Resource("/sanpling-rules.json");
bui | der. wi t hSanpl i ngSt r at egy(new Def aul t Sanpl i ngStrategy(ruleFile));

AVWBXRay. set A obal Recor der (bui l der. buil d());
}

@verride
public void contextDestroyed(Servl et ContextEvent event) { }

Register the listener in the deployment descriptor.

47

AWS X-Ray Developer Guide
Logging

Example WEB-INF/web.xml

<l istener>
<l i stener-class>com nyapp. web. Startup</listener-class>
</listener>

Logging

By default, the SDK outputs SEVERE and ERROR level messages to your application logs. You can
enable debug-level logging on the SDK to output more detailed logs to your application log file.

Example application.properties

Set the logging level with the | oggi ng. | evel . com amazonaws. xr ay property.

| oggi ng. | evel . com amazonaws. xray = DEBUG

Use debug logs to identify issues such as unclosed subsegments when you generate subsegments
manually (p. 62).

X-Ray SDK for Java Sample Application

A sample application that shows the use of the SDK to instrument incoming HTTP calls, DynamoDB
SDK clients, and HTTP clients is available on GitHub. The app, eb-java-scorekeep, uses AWS Elastic
Beanstalk features to create DynamoDB tables, compile Java code on-instance, and run the X-Ray
daemon without any additional configuration.

48

https://github.com/awslabs/eb-java-scorekeep/tree/xray

AWS X-Ray Developer Guide
Sample Application

Username

random =
Session
‘ games ‘
‘ session ID =

games

Create a game

Mew

tac

Rules: | Tic Tac Toe ¥ |

* Games

% fac

oy

(P

The sample is an instrumented version of the Scorekeep project on AWSLabs. It includes a front-
end web app, the API that it calls, and the DynamoDB tables that it uses to store data. All of the
components are hosted in an AWS Elastic Beanstalk environment for portability and ease of

deployment.

The xr ay branch of the application shows the use of filters (p. 54), plugins (p. 45),
instrumented AWS SDK clients (p. 57), HTTPClient (p. 58), SQL queries (p. 60), and custom

subsegments (p. 62).

49

https://github.com/awslabs/eb-java-scorekeep

AWS X-Ray Developer Guide
Sample Application

avyg. .03
0.1 timin

scorekeep-n
AWSE:Dyname

avyg. 0L01s
1 timin
¥

scorakeep-state
AWS DynamaDE:- Table

SCOnE

& avg 0.02s AWS
4 timin

Clients

Scorekeep

AWSE: ElasticBeansialk. Enviranment avy. 0.02s
0.1 timin

scorekeep-user
AWS:DynamoDB:: Tabls

The sample application shows basic instrumentation in these files:

e HTTP request filter —W\ebConfi g.] ava
¢ AWS SDK client instrumentation — bui | d. gr adl e

For instructions on using the sample application with X-Ray, see the getting started tutorial (p. 5). In
addition to the basic use of the X-Ray SDK for Java discussed in the tutorial, the sample also shows
how to use the following features.
Advanced Features

¢ Manually Instrumenting AWS SDK Clients (p. 51)

¢ Creating Additional Subsegments (p. 51)

¢ Instrumenting Outgoing HTTP Calls (p. 51)

¢ Instrumenting Calls to a PostgreSQL Database (p. 52)

50

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/WebConfig.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/build.gradle

AWS X-Ray Developer Guide
Manually Instrumenting AWS SDK Clients

Manually Instrumenting AWS SDK Clients

Sample — Manual AWS SDK Client Instrumentation — Sessi onhbdel . j ava

The X-Ray SDK for Java automatically instruments all AWS SDK clients when you include the AWS
SDK Instrumentor submodule in your build dependencies (p. 43).

You can disable automatic client instrumentation by removing the Instrumentor submodule, which
enables you to instrument some clients manually while ignoring others, or use different tracing handlers
on different clients.

To illustrate support for instrumenting specific AWS SDK clients, the application passes a tracing
handler to AmazonDynanoDBCl i ent Bui | der as a request handler in the user, game, and session
model. This code change tells the SDK to instrument all calls to DynamoDB using those clients.

Example src/main/java/scorekeep/SessionModel.java

i mport com amazonaws. xr ay. AWSXRay;
i mport com amazonaws. xr ay. handl ers. Traci ngHandl er;

public class SessionMdel {
private AmazonDynanoDB client = AmazonDynanoDBC i ent Bui | der. st andard()
.w t hRegi on(Const ant s. REG ON)
.w t hRequest Handl er s(new Tr aci ngHandl er (AWSXRay. get G obal Recorder()))
Lbuild();
private DynamoDBMapper mapper = new DynanoDBMapper (client);

If you remove the AWS SDK Instrumentor submodule from project dependencies, only the manually
instrumented AWS SDK clients appear in the service map.

Creating Additional Subsegments

Sample — Manual segment creation and annotation — User Model . j ava

In the user model class, the application manually creates subsegments to group all downstream calls
made within the saveUser function and adds metadata.

Example src/main/java/scorekeep/UserModel.java - saveUser

public void saveUser(User user) {
/1 wrap in subsegnent
Subsegnent subsegnent = AWBXRay. begi nSubsegnent ("## User Mbdel . saveUser");
try {
mapper . save(user);
} catch (Exception e) {
subsegment . addException(e);
throw e;
} finally {
subsegnent . put Met adat a("debug", "test", "Metadata string from
User Model . saveUser");
AVWEXRay. endSubsegrent () ;
}
}

Instrumenting Outgoing HTTP Calls

Sample — HTTPClient instrumentation — User Fact ory. j ava

51

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/SessionModel.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserModel.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserFactory.java

AWS X-Ray Developer Guide
Instrumenting Calls to a PostgreSQL Database

The user factory class shows how the application uses the X-Ray SDK for Java's version of
HTTPC i ent Bui | der to instrument outgoing HTTP calls.

Example src/main/java/scorekeep/UserFactory.java

i mport com amazonaws. Xray. proxi es. apache. http. Htt pCl i ent Bui | der;

public String randomNanme() throws | OException {
Cl oseabl eHttpCient httpclient = HitpCientBuilder.create().build();
HtpGet httpGet = new HitpGet("http://uinanes.comapi/");
Cl oseabl eHt t pResponse response = httpclient. execute(httpGet);
try {
HttpEntity entity = response.getEntity();
I nput Stream i nput Stream = entity.getContent();
Obj ect Mapper nmapper = new Cbj ect Mapper () ;
Map<String, String> jsonMap = napper.readVal ue(i nput Stream Map.cl ass);
String nane = j sonMap. get ("nane");
EntityUtils.consune(entity);
return nane;
} finally {
response. cl ose();
}
}

If you currently use or g. apache. http.inpl.client.HtpdientBuilder,
you can simply swap out the import statement for that class with one for
com amazonaws. Xr ay. proxi es. apache. http. H t pCl i ent Bui | der .

Instrumenting Calls to a PostgreSQL Database

Sample — PostgreSQL Database Instrumentation —appl i cati on-pgsql . properties

The appl i cati on-pgsql . properti es file adds the X-Ray PostgreSQL tracing interceptor to the
data source created in Rds\\ebConf i g. j ava.

Note
See Configuring Databases with Elastic Beanstalk in the AWS Elastic Beanstalk Developer
Guide for details on how to add a PostgreSQL database to the application environment.

The X-Ray demo page in the xr ay branch includes a demo that uses the instrumented data source
to generate traces that show information about the SQL queries that it generates. Navigate to the / #/
xr ay path in the running application or choose Powered by AWS X-Ray in the navigation bar to see
the demo page.

52

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/resources/application-pgsql.properties
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/RdsWebConfig.java
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.db.html

AWS X-Ray Developer Guide
Instrumenting Calls to a PostgreSQL Database

Scorekeep

AWS X-Ray integration

This branch is integrated with the AWS X-Ray SDK for Java to record information about
requests from this web app to the Scorekeep APL and calls that the API makes to Amazon
DynamoDB and other downstream services

Trace game sessions

Create users and a session, and then create and play a game of tic-tac-toe with those use
Each call to Scorekeep is traced with AWS X-Ray, which generates a service map from the
data.

| Trace game sessions |

Trace SQL queries

Simulate game sessions, and store the results in a PostgreSQL Amazon RDS database
attached to the AWS Elastic Beanstalk environment running Scorekeep. This demo uses ar
instrumented JDBC data source to send details about the SQL queries to X-Ray.

For more information about Scorekeep’s SQL integration, see the sql branch of this pro

Trace SQL queries

ID Winner Loser

1 Mugur Gheorghita
2 Paula Adorjan

3 Apylog Stela

4 B 53 Parvana

A I gyl S IRl il el pipptetie i

AWS X-Ray Developer Guide
Incoming Requests

Choose Trace SQL queries to simulate game sessions and store the results in the attached database.
Then, choose View traces in AWS X-Ray to see a filtered list of traces that hit the API's / api /
hi st ory route.

Choose one of the traces from the list to see the timeline, including the SQL query.

Q, http.url CONTAINS "history”

Traces > 1-5893c4ca-8aa7a9310cabbb5f50433f2e

Timeline Raw
Name Res. Duration Status IZI.IZIImE 1 .IZIImE 2.I]|m5 3.I2I|m5 4.I]|m5 5. IZIImE
¥ Scorekeep
Scorekeep 200
ebdb@aaw: - 20 ms Remote

Tracing Incoming Requests with the X-Ray SDK
for Java

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

Use a Fi | t er to instrument incoming HTTP requests. When you add the X-Ray servlet filter to your
application, the X-Ray SDK for Java creates a segment for each sampled request. Any segments
created by additional instrumentation become subsegments of the request-level segment that provides
information about the HTTP request and response, including timing, method, and disposition of the
request.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header in the
incoming request. Dynamic naming lets you group traces based on the domain name in the request,
and apply a default name if the name doesn't match an expected pattern (for example, if the host
header is forged).

Forwarded Requests

If a request is forwarded to your application by a load balancer or other intermediary, The
client IP in the segment is taken from the X- For war ded- For header in the request instead of
the source IP in the IP packet. The client IP recorded for a forwarded request can be forged
so should not be trusted.

When a request is forwarded, the X-Ray SDK for Java sets an additional field in the segment to
indicate this. If the segment contains the field x_f or war ded_f or settot r ue, the client IP is taken
from the X- For war ded- For header in the HTTP request.

Sections

54

AWS X-Ray Developer Guide
Adding a Tracing Filter to your Application

¢ Adding a Tracing Filter to your Application (p. 55)
¢ Configuring a Segment Naming Strategy (p. 56)

Adding a Tracing Filter to your Application

For Tomcat, add a <fi | t er > to your project's web. xm file. Use the f i xedNane parameter to specify
a service name (p. 56) to apply to segments created for incoming requests.

Example WEB-INF/web.xml - Tomcat

<filter>
<filter-name>AWSXRayServl etFilter</filter-name>
<filter-class>com amazonaws. xray. j avax. servl et . AWsXRayServl et Fil ter</
filter-class>
<i nit-paranp
<par am nanme>f i xedNane</ par am nanme>
<par am val ue>MyApp</ par am val ue>
</init-paranp
</filter>
<filter-mppi ng>
<filter-name>AWSXRayServl etFilter</filter-name>
<url-pattern>*</url-pattern>
</filter-mappi ng>

For Spring, add a Fi | t er to your WebConf i g class. Pass the segment name to the
AWSXRaySer vl et Fi | t er constructor as a string.

Example src/main/java/myapp/WebConfig.java - Spring

package nyapp;

i mport org.springfranework. cont ext.annotati on. Configuration;
i mport org.springfranewor k. cont ext. annot ati on. Bean;

import javax.servlet.Filter;

i mport com amazonaws. xray.j avax. servl et. AWGXRayServl etFilter;

@configuration
public class WbConfig {

@Bean
public Filter TracingFilter() {
return new AWsXRayServl et Fil ter (" Scorekeep");
}
}

The servlet filter creates a segment for each incoming request with an ht t p block that contains the
following information:

¢ HTTP method — GET, POST, PUT, DELETE, etc.

¢ Client address — The IP address of the client that sent the request.

¢ Response code — The HTTP response code for the completed request.

¢ Timing — The start time (when the request was received) and end time (when the response was
sent).

55

http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html

AWS X-Ray Developer Guide
Configuring a Segment Naming Strategy

Configuring a Segment Naming Strategy

The X-Ray SDK can name segments after the host name in the HTTP request header, but this header
can be forged, which could result in unexpected nodes in your service map. To prevent the SDK from
naming segments incorrectly due to requests with forged host headers, you must specify a name to
use for all segments, or configure a dynamic naming strategy. A dynamic naming strategy allows the
SDK to use the host name for names that match an expected pattern, and apply a default name to
names that don't.

To use the same name for all request segments, specify the name of your application when you
initialize the servlet filter, as shown in the previous section (p. 55). This has the same effect as
creating a FixedSegmentNamingStrategy and passing it to AWEXRay Ser vl et Fi | t er constructor.

A dynamic naming strategy defines a pattern that host names should match, and a default name to use
if the host name in the HTTP request does not match the pattern. To name segments dynamically in
Tomcat, use the dynam cNam ngRecogni zedHost s and dynam cNam ngFal | backNare to define
the pattern and default name, respectively.

Example WEB-INF/web.xml - Servlet Filter with Dynamic Naming

<filter>
<filter-name>AWSXRayServl etFilter</filter-name>
<filter-class>com amazonaws. xray. j avax. servl et. AWsXRayServl et Fi |l ter</
filter-class>
<i nit-paranp
<par am nane>dynam cNani ngRecogni zedHost s</ par am nanme>
<par am val ue>*. exanpl e. conk/ par am val ue>
</init-paranp
<i nit-paranp
<par am nane>dynam cNani ngFal | backNane</ par am nane>
<par am val ue>MyApp</ par am val ue>
</init-paranp
</filter>
<filter-mppi ng>
<filter-name>AWSXRayServl etFilter</filter-name>
<url-pattern>*</url-pattern>
</filter-mappi ng>

For Spring, create a DynamicSegmentNamingStrategy and pass it to the AWBXRaySer vl et Fi | t er
constructor.

56

http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/FixedSegmentNamingStrategy.html
http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
http://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/DynamicSegmentNamingStrategy.html

AWS X-Ray Developer Guide
AWS SDK Clients

Example src/main/java/myapp/WebConfig.java - Servlet Filter with Dynamic Naming

package nyapp;

i mport org.springfranmework. cont ext. annot ati on. Confi gurati on;

i mport org.springfranmewor k. cont ext. annot ati on. Bean;

import javax.servlet.Filter;

i mport com amazonaws. xray.j avax. servl et. AWGXRayServl etFilter;

i mport com amazonaws. xray. strat egy. Dynam cSegnent Nam ngSt r at egy;

@Configuration
public class WebConfig {

@ean
public Filter TracingFilter() {
return new AWSXRaySer vl et Fi |l t er (new Dynam cSegnent Nam ngStrat egy (" MyApp",
"* exanpl e.cont'));

}

}

Tracing AWS SDK Calls with the X-Ray SDK for
Java

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Java tracks the calls downstream in subsegments (p. 62). Traced
AWS services and resources that you access within those services (for example, an Amazon S3
bucket or Amazon SQS queue), appear as downstream nodes on the service map in the X-Ray
console.

The X-Ray SDK for Java automatically instruments all AWS SDK clients when you include the aws-
sdk and aws- sdk-i nstrunent or submodules (p. 43) in your build. If you don't include the
Instrumentor submodule, you can choose to instrument some clients while excluding others.

To instrument individual clients, remove the aws- sdk- i nst r ument or submodule from your build and
add an XRayCl i ent as a Tr aci ngHandl er on your AWS SDK client using the service's client builder.

For example, to instrument an AnmazonDynanoDB client, pass a tracing handler to
AmazonDynanoDBd i ent Bui | der.

Example MyModel.java

i mport com amazonaws. xr ay. ANSXRay;
i mport com amazonaws. xr ay. handl ers. Traci ngHandl er;

public class MyMdel ({
private AmazonDynanoDB client = AmazonDynanoDBC i ent Bui | der. st andard()
.wi t hRegi on(Regi ons. fromNane(Syst em get env("AW5_REG ON')))
.wi t hRequest Handl er s(new Tr aci ngHandl er (AWSXRay. get A obal Recorder()))
Lbui I d();

You can wrap any AWS SDK client to trace calls made using that client. For all services, you will
see the name of the API called in the X-Ray console. For a subset of services, the X-Ray SDK adds
information to the segment to provide more granularity in the service map.

57

AWS X-Ray Developer Guide
Outgoing HTTP Calls

For example, when you instrument a DynamoDB client, the SDK adds the table name to the segment
for calls that target a table. In the console, each table appears as a separate node in the service map,
along with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a Call to DynamoDB to Save an ltem

"id": "24756640c0d0978a",
"start _tine": 1.480305974194E9,
"end_time": 1.4803059742E9,
"name": "DynanoDB",
"namespace": "aws",
"http": {
"response": {
"content _| ength": 60,
"status": 200
}
}
"aws": {
"tabl e_nane": "scorekeep-user",
"operation": "Updateltent,
"request _id": "UBQNSOC5AEMBT4FDA4RQDEBI4OVTDRVVAKAHI RGVIF66(QASUAAIG',
}
}

Calls to the following services create additional nodes in the service map when you access named
resources.

¢« Amazon DynamoDB - table name

< Amazon Simple Storage Service — bucket and key name

« Amazon Simple Queue Service — queue name

Calls to these services that don't target specific resources create a generic node for the service.

Tracing Calls to Downstream HTTP Web Services
with the X-Ray SDK for Java

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Java's version of Ht t pd i ent to instrument those calls and add the API to the service graph as a
downstream service.

The X-Ray SDK for Java includes Def aul t Ht t pd i ent and Htt pCl i ent Bui | der classes that can
be used in place of the Apache HttpComponents equivalents to instrument outgoing HTTP calls.

e CcOom amazonaws. Xray. pr oxi es. apache. http. Defaul t Ht t pCl i ent -
org. apache. http.inpl.client.Defaul tHtpCient

e com amazonaws. Xray. proxi es. apache. http. Ht t pCl i ent Bui | der -
org. apache. http.inpl.client. H tpC ientBuil der

You can replace your existing import statements with the X-Ray equivalent to instrument all clients, or
use the fully qualified name when you initialize a client to instrument specific clients.

58

AWS X-Ray Developer Guide
Outgoing HTTP Calls

Example HttpClientBuilder

i mport com fasterxmn .jackson. dat abi nd. Obj ect Mapper ;

i mport org.apache. http. HtpEntity;

i mport org. apache. http.client. methods. C oseabl eHt t pResponse;

i mport org.apache. http.client. nethods. HtpGet;

i mport org.apache. http.inpl.client.C oseableHtpdient;

i mport org.apache. http.util.EntityUtils;

i mport com anmzonaws. xray. proxi es. apache. http. H t pC i ent Bui | der;

public String randomNanme() throws | OException {
Cl oseabl eHttpCient httpclient = HitpCientBuilder.create().build();
Ht pGet httpGet = new HttpGet("http://names. exanpl e.confapi/");
Cl oseabl eHt t pResponse response = httpclient. execute(httpGet);
try {
HttpEntity entity = response.getEntity();
I nput Stream i nput Stream = entity.getContent();
oj ect Mapper nmapper = new (bj ect Mapper () ;
Map<String, String> jsonMap = napper.readVal ue(i nput Stream Map.cl ass);
String nane = j sonMap. get ("nane");
EntityUtils.consune(entity);
return nane;
} finally {
response. cl ose();
}
}

When you instrument a call to a downstream web api, the X-Ray SDK for Java records a subsegment
with information about the HTTP request and response. X-Ray uses the subsegment to generate an
inferred segment for the remote API.

Example Subsegment for a Downstream HTTP Call

{
"id": "004f 72bel9cddc2a",
"start _tinme": 1484786387. 131,
"end_time": 1484786387.501,
"name": "nanes. exanpl e. cont,
"nanmespace": "renote",
"http": {
"request": {
"met hod": "CET",
"url": "https://nanes. exanpl e.con "
}
"response": {
"content _length": -1,
"status": 200
}
}
}

59

AWS X-Ray Developer Guide
SQL Queries

Example Inferred Segment for a Downstream HTTP Call

"id": "168416dc2ea97781",
"nane": "nanes.exanpl e.cont,
"trace_id": "1-5880168b-fd5153bb58284h67678aa78c",
"start_tine": 1484786387. 131,
"end_tine": 1484786387.501,
"parent _id": "004f 72bel9cddc2a",
"http": {
"request": {
"met hod": "GET",
"url": "https://nanes. exanple.com"
H
"response": {
"content _length": -1,
"status": 200
}
H

"inferred": true

Tracing SQL Queries with the X-Ray SDK for
Java

Instrument SQL database queries by adding the X-Ray SDK for Java JDBC interceptor to your data
source configuration.

¢ PostgreSQL —com anmazonaws. xr ay. sql . post gres. Traci ngl nt ercept or

¢ MySQL —com anazonaws. xr ay. sql . mysql . Traci ngl nt er cept or

For Spring, add the interceptor in a properties file and build the data source with Spring Boot's
Dat aSour ceBui | der .

Example src/ mai n/j aval/ resour ces/ appl i cati on. properties - PostgreSQL JDBC
Interceptor

spring. dat asour ce. conti nue-on-error=true

spring. j pa. show sqgl =f al se

spring. j pa. hi bernate. ddl - aut o=cr eat e- dr op

spring. dat asour ce. j dbc-

i nt er cept or s=com amazonaws. xr ay. sql . post gres. Tr aci ngl nt er cept or
spring. j pa. dat abase- pl at f or m=or g. hi ber nat e. di al ect. Post gr eSQL94Di al ect

60

AWS X-Ray Developer Guide
SQL Queries

Example src/ mai n/ j aval/ nyapp/ WebConfi g. j ava - Data Source

i mport org.springfranmework. boot . aut oconfi gur e. Enabl eAut oConfi gurati on;

i mport org.springfranework. boot . aut oconfi gure. jdbc. Dat aSour ceBui | der;

i mport org.springfranmework. boot. cont ext. properties. Configurati onProperti es;
i mport org.springfranework. cont ext.annot ati on. Bean;

i mport org.springfranework. cont ext.annot ati on. Confi gurati on;

i mport org.springfranework. data.jpa.repository.config. Enabl eJpaRepositori es;

import javax.servlet.Filter;
i mport javax. sql . DataSource;
i mport java.net. URL;

@configuration

@Enabl eAut oConf i guration

@nabl eJpaReposi tori es("nyapp")
public class RdsWebConfig {

@Bean
@onfigurationProperties(prefix = "spring. datasource")
publ i ¢ Dat aSour ce dat aSource() {
l ogger.info("Initializing PostgreSQ. datasource");
return DataSourceBuil der. create()
.driverd assNane("org. postgresql.Driver")
.url ("jdbc: postgresqgl://" + System getenv("RDS_HOSTNAME') + ":"
+ System getenv("RDS_PORT") + "/ebdb")
. user nane(Syst em get env(" RDS_USERNAME"))
. passwor d(Syst em get env(" RDS_PASSWORD'))
Lbui I d();

For Tomcat, call set Jdbcl nt er cept or s on the JDBC data source with a reference to the X-Ray SDK
for Java class.

Example src/ mai n/ nyapp/ nodel . j ava - Data Source

i mport org.apache.tontat.j dbc. pool . Dat aSour ce;

Dat aSour ce source = new Dat aSource();

source.set Ul (url);

sour ce. set User nane(user) ;

sour ce. set Passwor d(passwor d) ;

source. setDriverCl assNane("com nysql . jdbc. Driver");

sour ce. set Jdbcl nt ercept or s("com amazonaws. xray. sql . nysql . Traci ngl nterceptor;");

You can declare the Tomcat JDBC Data Source library as a provided dependency to document that
you use it.

61

AWS X-Ray Developer Guide
Custom Subsegments

Example pom xni - JDBC Data Source

<dependency>
<groupl d>or g. apache. t ontat </ gr oupl d>
<artifactld>tontat-jdbc</artifactld>
<versi on>8. 0. 36</ ver si on>
<scope>provi ded</ scope>

</ dependency>

Generating Custom Subsegments with the X-Ray
SDK for Java

A segment is a JSON document that records the work that your application does to serve a single
request. The AWSXRayServletFilter (p. 54) creates segments for HTTP requests and adds details
about the request and response, including information from headers in the request, the time that the
request was received, and the time that the response was sent.

Further instrumentation generates subsegments. Instrumented AWS SDK clients, HTTP clients, and
JDBC clients add subsegments to the segment document with details of downstream calls made by the
servlet or any functions that the servlet calls.

You can create subsegments manually to organize downstream calls into groups. For example, you
can create a custom subsegment for a function that makes several calls to DynamoDB.

Example src/main/java/scorekeep/GameModel.java

i mport com amazonaws. xr ay. ANBXRay;

public void saveGane(Gane gane) throws Sessi onNot FoundException {

/1 wrap in subsegnent
Subsegnent subsegnent = AWBXRay. begi nSubsegnent (" Save Gane");
try {

/'l check session

String sessionld = gane. get Session();

if (sessionMdel.loadSession(sessionld) == null) {

t hr ow new Sessi onNot FoundExcepti on(sessi onld);

}

mapper . save(gane) ;
} catch (Exception e) {

subsegnent . addException(e);

throw e;
} finally {

AWEXRay. endSubsegnent () ;

In this example, the code within the subsegment loads the game's session from DynamoDB with a
method on the session model, and uses the AWS SDK for Java's DynamoDB mapper to save the
game. Wrapping this code in a subsegment makes the calls DynamoDB children of the Save Gane
subsegment in the trace view in the console.

If the code in your subsegment throws checked exceptions, wrap itin atry block and call
AWSXRay. endSubsegnent () inafi nal | y block to ensure that the subsegment is always closed. If a
subsegment is not closed, the parent segment cannot be completed and won't be sent to X-Ray.

62

AWS X-Ray Developer Guide
Custom Subsegments

For code that doesn't throw checked exceptions, you can pass the code to
AWSXRay. Cr eat eSubsegnent as a lambda function.

Example

i mport com amazonaws. xr ay. ANBXRay;

AWBXRay. cr eat eSubsegnent (" get Movi es" (subsegment) -> {
/1 function code

1)

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for Java
generates an ID for it and records the start time and end time.

Example Subsegment with Metadata

"subsegments": [{
"id": "6f1605cd8a07cbh70",
"start _tine": 1.480305974194E9,
"end_tinme": 1.4803059742E9,

"name": "Custom subsegnment for User Model . saveUser function",
"metadata": {
"debug": {
"test": "Metadata string from UserMdel . saveUser"
}
}

63

AWS X-Ray Developer Guide
Requirements

The X-Ray SDK for Node.js

The X-Ray SDK for Node.js is a library for Express framework Node.js web applications that provides
classes and methods for generating and sending trace data to the X-Ray daemon. Trace data includes
information about incoming HTTP requests served by the application, and calls that the application
makes to downstream services using the AWS SDK or HTTP clients.

If you use Express, start by adding the SDK as middleware (p. 67) on your application server to
trace incoming requests. The middleware creates a segment for each traced request, and completes
the segment when the response is sent. While the segment is open you can use the SDK client's
methods to add information to the segment and create subsegments to trace downstream calls. The
middleware also automatically captures exceptions that your application throws while the segment is
open.

The middleware applies sampling rules to incoming requests to determine which requests to trace.
You can configure the X-Ray SDK for Node.js (p. 65) to adjust the sampling behavior or to record
information about the AWS compute resources on which your application runs.

Next, use the X-Ray SDK for Node.js to instrument your AWS SDK for JavaScript in Node.js

clients (p. 68). Whenever you make a call to a downstream AWS service or resource with an
instrumented client, the SDK records information about the call in a subsegment. AWS services and
the resources that you access within the services appear as downstream nodes on the service map to
help you identify errors and throttling issues on individual connections.

The X-Ray SDK for Node.js also provides instrumentation for downstream calls to HTTP web APIs
and SQL queries. Wrap your HTTP client in the SDK's capture method (p. 69) to record information
about outgoing HTTP calls. For SQL clients, use the capture method for your database type (p. 70).

While a segment is open, you can also create subsegments (p. 70) for any function in your
application, and add debug information to segments and subsegments in annotations and metadata. X-
Ray indexes annotations for use with expression filters (p. 18).

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed but can be
viewed in the raw segment with the X-Ray console or API. Anyone that you grant read access
to X-Ray can view this data.

For reference documentation about the SDK's classes and methods, see the AWS X-Ray SDK for
Node.js API Reference.

Requirements

The X-Ray SDK for Node.js requires Node.js and the following libraries:

64

http://docs.aws.amazon.com//xray-sdk-for-nodejs/latest/reference
http://docs.aws.amazon.com//xray-sdk-for-nodejs/latest/reference

AWS X-Ray Developer Guide
Dependency Management

cls-0.15

e continuation-|ocal -storage—3.2.0
e pkginfo-0.4.0

e underscore —1.8.3

The SDK pulls these libraries in when you install it with NPM.

To trace AWS SDK clients, the X-Ray SDK for Node.js requires a minimum version of the AWS SDK
for JavaScript in Node.js.

<listitem>

aws- sdk —2.7.15

</listitem>

Dependency Management

The X-Ray SDK for Node.js is available from NPM.

¢ Package — aws- xr ay- sdk

For local development, install the SDK in your project directory with npm.

~/ nodej s-xray$ npminstall aws-xray-sdk
nodej s-xray@. 0. 0 ~/ nodej s- xr ay
aws- xray-sdk@l. 0. 4-beta
continuation-|ocal -storage@. 2.0
async-listener@.6.3
shimer@l. 0.0
emtter-listener@.0.1
noment @. 17. 1
pkgi nfo@. 4.0
senver @. 3.0
under score@l. 8. 3
W nston@. 3.1
async@.0.0
colors@l. 0.3
cycle@.0.3
eyes@. 1.8
| sstream@®. 1. 2
stack-trace@. 0.9

Use the - - save option to save the SDK as a dependency in your application's package. j son.

~/ nodej s-xray$ npminstall aws-xray-sdk --save
nodej s-xray@. 0. 0 ~/ nodej s- xr ay
aws- xray-sdk@l. 0. 4-beta

Configuring the X-Ray SDK for Node.js

You can configure the X-Ray SDK for Node.js with plugins to include information about the service
that your application runs on, modify the default sampling behavior, or add sampling rules that apply to
requests to specific paths.

65

https://www.npmjs.com/package/aws-xray-sdk

AWS X-Ray Developer Guide
Service Plugins

Sections
e Service Plugins (p. 66)
¢ Sampling Rules (p. 66)

Service Plugins

Use the pl ugi ns parameter to use a plugin that adds data about the service hosting your application.
Plugins

*« EC2 — Adds the instance ID.
¢ ECS - Adds the cluster ID.
* El asti cBeanst al k — Adds the environment ID.

To use a plugin, configure the X-Ray SDK for Node.js client by using the conf i g method.

Example app.js

var AWEXRay = require(' aws-xray-sdk');
AWEXRay. confi g([AWSXRay. pl ugi ns. EC2]) ;

Sampling Rules

The SDK has a default sampling strategy that determines which requests get traced. By default, the
SDK traces the first request each second, and 5 percent of any additional requests. You can customize
the SDK's sampling behavior by applying rules defined in a local file.

Example sampling-rules.json

{

"rules": {

"move": {
"id' 1,
"service_nane": "*",
"http_nethod": "*",
“url _path": "/api/nmovel/*",
"fixed_target": O,
"rate": 0.05

}

"base": {

"id': 2,
"service_nane": "*",
"http_nethod": "*",
“url _path": "*",
"fixed_target": 1,
"rate": 0.1

This example defines two rules. The first rule applies a five-percent sampling rate with no minimum
number of requests to trace to requests with paths under / api / nove/ . The second overrides the

66

AWS X-Ray Developer Guide
Incoming Requests

default sampling rule with a rule that traces the first request each second and 10 percent of additional
requests.

Tell the X-Ray SDK for Node.js to load sampling rules from a file with set Sanpl i ngRul es.

Example app.js - sampling rules

var AWBXRay = require(' aws-xray-sdk');
AWEXRay. set Sanpl i ngRul es(' sanmpling-rul es.json");

Tracing Incoming Requests with the X-Ray SDK
for Node.js

You can use the X-Ray SDK for Node.js to trace incoming HTTP requests that your Express
application serves on an EC2 instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

The X-Ray SDK for Node.js provides middleware for applications that use the Express framework.
When you add the X-Ray middleware to your application, the X-Ray SDK for Node.js creates a
segment for each sampled request. Any segments created by additional instrumentation become
subsegments of the request-level segment. The request-level segment provides information about the
HTTP request and response including timing, method, and disposition of the request.

Forwarded Requests

If a request is forwarded to your application by a load balancer or other intermediary, The
client IP in the segment is taken from the X- For war ded- For header in the request instead of
the source IP in the IP packet. The client IP recorded for a forwarded request can be forged
so should not be trusted.

To use the middleware, initialize the SDK client and use the middleware returned by the
expr ess. openSegnent function before you define your routes.

Example app.js

var app = express();

var AWBXRay = require(' aws-xray-sdk');
app. use(AWBXRay. expr ess. openSegnent (' MyApp'));

app.get('/', function (req, res) {
res. render ('index');

1)

app. use(AWBXRay. expr ess. cl oseSegment ()) ;

After you define your routes, use the output of expr ess. cl oseSegnent as shown to handle any
errors returned by the X-Ray SDK for Node.js.

Segments generated by the middleware include the following information:

e HTTP method — GET, POST, PUT, DELETE, etc.
¢ Client address — The IP address of the client that sent the request.
¢ Response code — The HTTP response code for the completed request.

67

AWS X-Ray Developer Guide
AWS SDK Clients

¢ Timing — The start time (when the request was received) and end time (when the response was
sent).

Tracing AWS SDK Calls with the X-Ray SDK for
Node.|s

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Node.js tracks the calls downstream in subsegments (p. 70).

Traced AWS services, and resources that you access within those services (for example, an Amazon
S3 bucket or Amazon SQS queue), appear as downstream nodes on the service map in the X-Ray
console.

You can instrument all AWS SDK clients by wrapping your aws- sdk require statement in a call to
AWEXRay. capt ur eAWS.

var AWS = AWSXRay. capt ur eAWS(requi re(' aws-sdk'));

To instrument individual clients, wrap your AWS SDK client in a call to AWBXRay. capt ur eAWSd i ent .
For example, to instrument an AmazonDynanpDB client:

Example app.js

var AWBXRay = require(' aws-xray-sdk');

var ddb = AWBXRay. capt ur eAWSd i ent (new AWS. DynanoDB()) ;

You can wrap any AWS SDK client to trace calls made using that client. For all services, you will
see the name of the API called in the X-Ray console. For a subset of services, the X-Ray SDK adds
information to the segment to provide more granularity in the service map.

For example, when you instrument a DynamoDB client, the SDK adds the table name to the segment
for calls that target a table. In the console, each table appears as a separate node in the service map,
along with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a Call to DynamoDB to Save an Iltem

"id": "24756640c0d0978a",
"start _tine": 1.480305974194E9,
"end_tinme": 1.4803059742E9,
"nane": "DynanoDB",
"nanespace": "
"http": {
"response": {
"content _| ength": 60,
"status": 200

aws ",

}
b
"aws": {
"tabl e_nane": "scorekeep-user",
"operation": "Updateltent,
"request _id": "UBQNSOC5AEMBT4FDA4RQDEBI4OVTDRVVAKAH RGVIF66(QQASUAAIG',
}
}

68

AWS X-Ray Developer Guide
Outgoing HTTP Calls

Calls to the following services create additional nodes in the service map when you access named
resources.

¢ Amazon DynamoDB - table name
¢« Amazon Simple Storage Service — bucket and key name
« Amazon Simple Queue Service — queue name

Calls to these services that don't target specific resources create a generic node for the service.

Tracing Calls to Downstream HTTP Web Services
with the X-Ray SDK for Node.js

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Node.js client to instrument those calls and add the API to the service graph as a downstream
service.

Pass your ht t p or ht t ps client to the X-Ray SDK for Node.js's capt ur eHTTPs method to trace
outgoing calls.

Example

var AWEXRay = require(' aws-xray-sdk');
var http = require(' http');

AWEXRay. capt ur eHTTPs(http);

When you instrument a call to a downstream web api, the X-Ray SDK for Node.js records a
subsegment with information about the HTTP request and response. X-Ray uses the subsegment to
generate an inferred segment for the remote API.

Example Subsegment for a Downstream HTTP Call

{
"id": "004f 72bel9cddc2a",
"start _time": 1484786387. 131,
"end tinme": 1484786387. 501,
"nanme": "names. exanpl e. cont,
"nanespace": "renote",
"http": {
"request”: {
"met hod": "GET",
“url": "https://nanes. exanpl e. com "

}

"response": {
"content_length": -1,
"status": 200

}

}
}

69

AWS X-Ray Developer Guide
SQL Queries

Example Inferred Segment for a Downstream HTTP Call

"id": "168416dc2ea97781",
"name": "names. exanpl e. cont,
"trace_id": "1-5880168b-fd5153bb58284b67678aa78c",
"start_tinme": 1484786387. 131,
"end_time": 1484786387.501,
"parent _id": "004f 72bel9cddc2a",
"http": {
"request": {
"met hod": "CET",
“url": "https://nanmes. exanpl e. com "
H
"response”: {
"content_length": -1,
"status": 200
}
I

"inferred": true

Tracing SQL Queries with the X-Ray SDK for
Node.|s

Instrument SQL database queries by wrapping your SQL client in the corresponding X-Ray SDK for
Node.js client method.

e PostgreSQL — AWEXRay. capt ur ePost gres()

var AWSBXRay = require('aws-xray-sdk');
var pg = AWSXRay. capturePostgres(require('pg'));
var client = new pg.Cient();

¢ MySQL — AWEXRay. capt ur eMySQL()

var AWBXRay = require('aws-xray-sdk');
var pg = AWBXRay. captureMySQ.(require(' mysql'));

var connection = nysql.createConnection(config);

When you use an instrumented client to make SQL queries, the X-Ray SDK for Node.js records
information about the connection and query in a subsegment.

Generating Custom Subsegments with the X-Ray
SDK for Node.|s

A segment is a JSON document that records the work that your application does to serve a single
request. The X-Ray SDK for Node.js middleware creates segments for HTTP requests and adds

70

AWS X-Ray Developer Guide
Custom Subsegments

details about the request and response, including information from headers in the request, the time that
the request was received, and the time that the response was sent.

Further instrumentation generates subsegments. Instrumented AWS SDK clients and HTTP clients add
subsegments to the segment document with details of downstream calls made by the application.

You can create subsegments manually to instrument functions and organize other subsegments

into groups. For example, you can create a custom subsegment for a function that makes calls to
downstream services with the capt ur eAsync function.

Example app.js

var AWBXRay = require(' aws-xray-sdk');
app. use(AWsXRay. expr ess. openSegnent (' MyApp'));

app.get('/', function (req, res) {
var host = 'api.exanple.con;

AWBXRay. capt ureAsync(' send', function(subsegnment) {
sendRequest (host, function() {
consol e.log('rendering!");
res. render ('index');
subsegnent . cl ose();
1)
1)
1)

app. use(AWBXRay. expr ess. cl oseSegnent ()) ;

function sendRequest (host, cb) {
var options = {

host: host,

path: '/',

}

var call back = function(response) {

var str =)

response. on('data', function (chunk) ({
str += chunk;

1)

response.on('end', function () {
cb();

1
}

http. request (options, callback).end();
s

In this example, the application creates a custom subsegment named send for calls to the
sendRequest function. capt ur eAsync passes a subsegment that you must close within the callback
function when the asynchronous calls that it makes are complete.

For synchronous functions, you can use the capt ur e function, which closes the subsegment
automatically as soon as the function block finishes executing.

71

AWS X-Ray Developer Guide
Custom Subsegments

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for Node.js
generates an ID for it and records the start time and end time.

Example Subsegment with Metadata

"subsegments": [{
"id": "6f1605cd8a07ch70",
"start _tinme": 1.480305974194E9,
"end_tine": 1.4803059742E9,

"name": "Custom subsegnent for User Model . saveUser function",
"metadata": {
"debug": {
"test": "Metadata string from User Model . saveUser"
}
}

72

AWS X-Ray Developer Guide
Requirements

The AWS X-Ray SDK for .NET

The X-Ray SDK for .NET is a library for C# .NET web applications that provides classes and methods
for generating and sending trace data to the X-Ray daemon. Trace data includes information about
incoming HTTP requests served by the application, and calls that the application makes to downstream
AWS services, HTTP web APIs, and SQL databases. You can also create segments manually and add
debug information in annotations and metadata.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed but can be
viewed in the raw segment with the X-Ray console or API. Anyone that you grant read access
to X-Ray can view this data.

Download the X-Ray SDK for .NET from NuGet: nuget.org/packages/AWSXRayRecorder/

Start by adding a Tr aci ngMessageHandl er to your web configuration (p. 75) to trace incoming
requests. The message handler creates a segment to record information about each traced request
that your application serves, and completes the segment when the response is sent. Within this
segment you can create subsegments to trace downstream calls to other AWS services, HTTP web
APIls, and SQL databases.

Next, use the X-Ray SDK for .NET to instrument your AWS SDK for .NET clients (p. 77). Whenever
you make a call to a downstream AWS service or resource with an instrumented client, the SDK
records information about the call in a subsegment. AWS services and the resources that you access
within the services appear as downstream nodes on the service map to help you identify errors and
throttling issues on individual connections.

The X-Ray SDK for .NET also provides instrumentation for downstream calls to HTTP web

APIs (p. 78) and SQL databases (p. 79). The Get ResponseTr aced extension method for

Syst em Net . Ht t pWWebRequest traces outgoing HTTP calls. You can use the X-Ray SDK for .NET's
version of Sgl Command to instrument SQL queries.

For reference documentation about the SDK's classes and methods, see the AWS X-Ray SDK
for NET API Reference.

Requirements

The X-Ray SDK for .NET requires the .NET framework and AWS SDK for .NET.

73

https://www.nuget.org/packages/AWSXRayRecorder/
http://docs.aws.amazon.com//xray-sdk-for-dotnet/latest/reference
http://docs.aws.amazon.com//xray-sdk-for-dotnet/latest/reference

AWS X-Ray Developer Guide
Adding the X-Ray SDK for .NET to Your Application

Adding the X-Ray SDK for .NET to Your
Application
Use NuGet to add the X-Ray SDK for .NET to your application.

To install the X-Ray SDK for .NET with NuGet Package Manager in Visual Studio

1. Choose Tools, choose NuGet Package Manager, and then choose Manage NuGet Packages
for Solution.

Search for AWSXRayRecorder.

Choose the package and then choose Install.

Configuring the X-Ray SDK for .NET

You can configure the X-Ray SDK for .NET with plugins to include information about the service that
your application runs on, modify the default sampling behavior, or add sampling rules that apply to
requests to specific paths.

Sections
¢ Plugins (p. 74)
¢ Sampling Rules (p. 74)

Plugins

Use plugins to add data about the service hosting your application.

Plugins

e EC2 — Adds the instance ID.

To use a plugin, configure the X-Ray SDK for .NET client by adding the AWSXRayPI ugi ns setting.

Example Web.config - plugins

<configurati on>
<appSettings>
<add key="AWSXRayPl ugi ns" val ue="EC2PI ugi n"/ >
</ appSettings>
</ confi guration>

Sampling Rules

The SDK has a default sampling strategy that determines which requests get traced. By default, the
SDK traces the first request each second, and 5 percent of any additional requests. You can customize
the SDK's sampling behavior by applying rules defined in a local file.

74

AWS X-Ray Developer Guide
Incoming Requests

Example sampling-rules.json

{

"rules": {

"move": {
"id"o1,
"service_nanme": "*",
“http_nethod": "*",
"url _path": "/api/move/*",
"fixed_target": O,
"rate": 0.05

I8

"base": {
"id" 2,
"servi ce_nanme": "*",
“http_nethod": "*",
"url _path": "*"|
"fixed_target": 1,
"rate": 0.1

This example defines two rules. The first rule applies a five-percent sampling rate with no minimum
number of requests to trace to requests with paths under / api / nove/ . The second overrides the
default sampling rule with a rule that traces the first request each second and 10 percent of additional
requests.

Tell the X-Ray SDK for .NET to load sampling rules from a file with the Sanpl i ngRul eMani f est
setting.

Example Web.config - sampling rules

<configurati on>
<appSettings>
<add key="Sanpl i ngRul eMani fest" val ue="sanpling-rules.json"/>
</ appSettings>
</ configuration>

Instrumenting Incoming HTTP Requests with the
X-Ray SDK for .NET

To instrument requests served by your application, add a Tr aci ngMessageHandlI er to the
Ht t pConf i gur at i on. MessageHandl er s collection in your web configuration.

75

AWS X-Ray Developer Guide
Incoming Requests

Example WebApiConfig - Message handler

using System Wb. Htt p;
usi ng Amazon. XRay. Recorder. Handl er. Htt p;
usi ng Sanpl eEBWebAppl i cati on. Controll ers;

nanmespace Sanpl eEBWebApplication

{
public static class WebApi Config
{
public static void Register(HttpConfiguration config)
{
/1 Add the nessage handler to H tpCofiguration
confi g. MessageHandl ers. Add(new Tr aci ngMessageHandl er());
/1 Web APl routes
config. MapHtt pAttri but eRoutes();
confi g. Rout es. MapHt t pRout e(
nane: "Defaul t Api ",
routeTenpl ate: "api/{controller}/{id}",
defaults: new { id = RouteParaneter.Optional }
)
}
}
}

When you add the X-Ray message handler to your application, the X-Ray SDK for .NET creates a
segment for each sampled request. Any segments created by additional instrumentation become

subsegments of the request-level segment that provides information about the HTTP request and
response, including timing, method, and disposition of the request.

Forwarded Requests

If a request is forwarded to your application by a load balancer or other intermediary, The
client IP in the segment is taken from the X- For war ded- For header in the request instead of
the source IP in the IP packet. The client IP recorded for a forwarded request can be forged
so should not be trusted.

Alternatively, you can also add the tracing handler to a gl obal . asax file.

Example global.asax - Message handler

usi ng System Web. Ht t p;

nanespace Sanpl eEBWebApplication
{
public class WebApi Application : System Wb. Htt pApplication
{
protected void Application_Start()
{
d obal Confi guration. Confi gure(WebApi Confi g. Regi ster);
d obal Confi guration. Configuration. MessageHand! ers. Add(new
Traci ngMessageHandl er ());
}
}
}

76

AWS X-Ray Developer Guide
AWS SDK Clients

Instrumenting Downstream Calls to AWS Services

You can instrument your AWS SDK for .NET clients by adding an event handler with
AWEXRayRecor der . | nst ance. AddEvent Handl er .

Example SampleController.cs - DynamoDB Client Instrumentation

Initialize a DynamoDB client with the AWS SDK for Java, and then add the event handler with the
default AWSXRay Recor der 's AddEvent Handl er method.

usi ng Amazon;

usi ng Amazon. Util;

usi ng Amazon. DynanoDBv2;

usi ng Amazon. DynanpoDBv2. Docunent Model ;
usi ng Amazon. XRay. Recor der. Cor e;

nanespace Sanpl eEBWebApplication. Controllers

{
public class SanpleController : ApiController

{
private static readonly Lazy<AmazonDynanmoDBC i ent> LazyDdbC i ent = new
Lazy<AmazonDynanoDBO i ent >(() =>

{
var client = new AmazonDynanoDBC i ent (EC2l nst anceMet adat a. Regi on ??
Regi onEndpoi nt . USEast 1) ;
AWEXRayRecor der . | nst ance. AddEvent Handl er (cl i ent);
return client;

1)

You can wrap any AWS SDK client to trace calls made using that client. For all services, you will
see the name of the API called in the X-Ray console. For a subset of services, the X-Ray SDK adds
information to the segment to provide more granularity in the service map.

For example, when you instrument a DynamoDB client, the SDK adds the table name to the segment
for calls that target a table. In the console, each table appears as a separate node in the service map,
along with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a Call to DynamoDB to Save an Item

"id": "24756640c0d0978a",
"start _tine": 1.480305974194E9,
"end_tinme": 1.4803059742E9,
"nane": "DynanoDB",
"nanespace": "
"http": {
"response": {
"content _| ength": 60,
"status": 200

aws ",

}
b
"aws": {
"tabl e_nane": "scorekeep-user",
"operation": "Updateltent,
"request _id": "UBQNSOC5AEMBT4FDA4RQDEBI4OVTDRVVAKAH RGVIF66(QASUAAIG',
}
}

77

AWS X-Ray Developer Guide
Outgoing HTTP Calls

Calls to the following services create additional nodes in the service map when you access named
resources.

¢ Amazon DynamoDB - table name
¢« Amazon Simple Storage Service — bucket and key name

« Amazon Simple Queue Service — queue name

Calls to these services that don't target specific resources create a generic node for the service.

Tracing Calls to Downstream HTTP Web Services
with the X-Ray SDK for .NET

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for .NET's Get ResponseTr aced extension method for Syst em Net . Ht t pWebRequest to instrument
those calls and add the API to the service graph as a downstream service.

Example HttpClient

usi ng System Net ;

usi ng Amazon;

usi ng Amazon. Util;

usi ng Amazon. XRay. Recor der. Cor e;

usi ng Amazon. XRay. Recor der. Handl er. Ht t p;

private void MakeHtt pRequest ()

Ht t pWebRequest request = (H t pWebRequest)WbRequest. Create("http://
nanes. exanpl e. com api ") ;
request . Get ResponseTraced() ;

}

When you instrument a call to a downstream web api, the X-Ray SDK for .NET records a subsegment
with information about the HTTP request and response. X-Ray uses the subsegment to generate an
inferred segment for the remote API.

78

AWS X-Ray Developer Guide
SQL Queries

Example Subsegment for a Downstream HTTP Call

"id": "004f 72bel9cddc2a",
"start _tine": 1484786387.131,
"end_time": 1484786387.501,
"name": "nanes. exanpl e. cont',
"namespace": "renote",
"http": {
"request": {
"met hod": "GET",
"url": "https://nanes. exanple.com"
}s
"response": {
"content _length": -1,
"status": 200

Example Inferred Segment for a Downstream HTTP Call

"id": "168416dc2ea97781",
"name": "nanes. exanpl e. cont,
"trace_id": "1-5880168b-fd5153bb58284b67678aa78c",
"start _tinme": 1484786387. 131,
"end_time": 1484786387.501,
"parent _id": "004f 72bel9cddc2a",
"http": {
"request": {
"met hod": "CET",
"url": "https://nanes. exanpl e.con "
}
"response": {
"content _length": -1,
"status": 200
}
}

"inferred": true

Tracing SQL Queries with the X-Ray SDK
for NET

The SDK provides a wrapper class for Syst em Dat a. Sgl C i ent . Sql Conmand named
Traceabl eSgl Command that you can use in place of Sql Command.

79

AWS X-Ray Developer Guide
Custom Subsegments

Example Control | er.cs - SQL Client Instrumentation

Initialize an SQL command with the X-Ray SDK for .NET's Tr aceabl eSgl Conmand class.

usi ng Amazon;
usi ng Amazon. Util;
usi ng Amazon. XRay. Recor der. Cor e;
usi ng Amazon. XRay. Recor der. Handl er. Sql ;
private void QuerySql (int id)
{
var connectionString =
Confi gur ati onManager . AppSetti ngs[" RDS_CONNECTI ON_STRI NG'] ;
usi ng (var sql Connection = new Sgl Connecti on(connectionString))
using (var sql Command = new Traceabl eSql Conmand(" SELECT " + id,
sqgl Connection))

sql Command. Connecti on. Qpen();
sql Command. Execut eNonQuery();
}
}

Creating Additional Subsegments

You can add subsegments to request segments with Begi nSubsegnment and EndSubsegnent .
Perform any work in the subsegment in a try block and use AddExcept i on to trace exceptions. Call
EndSubsegnent in a finally block to ensure that the subsegment is closed.

AWBXRayRecor der . | nst ance. Begi nSubsegnent (" cust om net hod") ;

try
{

DoWor k() ;
}
catch (Exception e)
{

AWBXRayRecor der . | nst ance. AddExcepti on(e);
}
finally
{

AWBXRayRecor der . | nst ance. EndSubsegnent () ;
}

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for .NET
generates an ID for it and records the start time and end time.

80

AWS X-Ray Developer Guide
Custom Subsegments

Example Subsegment with Metadata

"subsegments”: [{
"id": "6f1605cd8a07cb70",
"start_tinme": 1.480305974194E9,
"end_tine": 1.4803059742E9,

nane": "Custom subsegnent for UserMbdel . saveUser function",
"met adata": {
"debug": {
"test": "Metadata string from User Mbdel . saveUser"
}

b

81

AWS X-Ray Developer Guide

The AWS X-Ray Daemon

The AWS X-Ray daemon is a software application that listens for traffic on UDP port 2000, gathers raw
segment data, and relays it to the AWS X-Ray API. The daemon works in conjunction with the AWS X-
Ray SDKs and must be running so that data sent by the SDKs can reach the X-Ray service.

You can download the daemon from Amazon S3.

¢ Linux (executable) —aws- xr ay- daenon-1i nux-1. x. zi p

e Linux (RPM installer) — aws- xr ay- daenon- 1. x. r pm

e Linux (DEB installer) — aws- xr ay- daenon- 1. x. deb

¢ Windows (executable) — aws- xr ay- daenon- wi ndows- process- 1. x. zi p

¢ Windows (service) —aws- xr ay- daenon-w ndows- servi ce-1.x. zi p

Run the daemon from a command line.

~/ Downl oads$./ xray

For detailed platform-specific instructions, see the following:

¢ Linux (local) — Running the X-Ray Daemon on Linux (p. 86)

¢ Windows (local) — Running the X-Ray Daemon on Windows (p. 86)

¢ Elastic Beanstalk — Running the X-Ray Daemon on AWS Elastic Beanstalk (p. 87)
¢« Amazon EC2 — Running the X-Ray Daemon on Amazon EC2 (p. 90)

¢« Amazon ECS - Running the X-Ray Daemon on Amazon ECS (p. 91)

Sections
¢ Giving the Daemon Permission to Send Data to X-Ray (p. 83)
¢ X-Ray Daemon Logs (p. 84)
¢ Configuring the Daemon (p. 84)

82

https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-linux-1.x.zip
https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-1.x.rpm
https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-1.x.deb
https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-windows-process-1.x.zip
https://s3.amazonaws.com/aws-xray-assets.us-east-1/xray-daemon/aws-xray-daemon-windows-service-1.x.zip

AWS X-Ray Developer Guide
Giving the Daemon Permission to Send Data to X-Ray

¢ Running the X-Ray Daemon Locally (p. 85)

¢ Running the X-Ray Daemon on AWS Elastic Beanstalk (p. 87)
¢ Running the X-Ray Daemon on Amazon EC2 (p. 90)

¢ Running the X-Ray Daemon on Amazon ECS (p. 91)

Giving the Daemon Permission to Send Data to
X-Ray

The X-Ray daemon uses the AWS SDK to upload trace data to X-Ray, and it needs AWS credentials
with permission to do that.

On Amazon EC2, the daemon uses the instance's instance profile role automatically. Locally, save
your access keys to a file named cr edent i al s in your user directory under a folder named . aws.

Example ~/.aws/credentials

[defaul t]
aws_access_key_id = AKI Al OSFODNN7EXAMPLE
aws_secret _access_key = wlal r XUt nFEM / K7MDENG bPxRf i CYEXAMPLEKEY

For more information about providing credentials to an SDK, see Specifying Credentials in the AWS
SDK for Go Developer Guide.

The IAM role or user that the daemon's credentials belong to must have permission to write data to the
service on your behalf.

« To use the daemon on Amazon EC2, create a new instance profile role or add the managed policy to
an existing one.

¢ To use the daemon on Elastic Beanstalk, add the managed policy to the Elastic Beanstalk default
instance profile role.

¢ To run the daemon locally, create an IAM user and save its access keys on your computer.

To create an instance profile for use with X-Ray on Amazon EC2

Open the IAM console.

Choose Roles.

Choose Create New Role.

For Role Name, type xr ay- i nst ance- profi | e. Choose Next Step.
For Role Type, choose Amazon EC2.

o0k wDdE

Attach managed policies to give your application access to AWS services.

e AWSXrayWriteOnlyAccess — Gives the X-Ray daemon permission to upload trace data.

*« AmazonS3ReadOnlyAccess — Gives the instance permission to download the X-Ray daemon
from Amazon S3.

If your application uses the AWS SDK to access other services, add policies that grant access to
those services.

7. Choose Next Step.

83

http://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://console.aws.amazon.com/iam/home

AWS X-Ray Developer Guide
X-Ray Daemon Logs

8. Choose Create Role.

To add X-Ray write permissions to an IAM user, group, or role

1. Open the IAM console.
2. Open the role associated with your instance profile, your IAM user, or your IAM user's group.
3. Under Permissions, add the following managed policies.

« AWSXrayWriteOnlyAccess — Gives the X-Ray daemon permission to upload trace data.

« AmazonS3ReadOnlyAccess — Gives the instance or IAM user permission to download the X-
Ray daemon from Amazon S3.

X-Ray Daemon Logs

The daemon outputs information about its current configuration and segments that it sends to AWS X-
Ray.

2016- 11- 24T06: 07: 06Z [Info] Initializing AWS X-Ray daenon 1.0.0

2016-11- 24T06: 07: 06Z [Info] Using nmemory limt of 49 MB

2016-11- 24T06: 07: 06Z [I nfo] 313 segnent buffers all ocated

2016- 11- 24T06: 07: 08Z [I nfo] Successfully sent batch of 1 segnents (0.123
seconds)

2016- 11- 24T06: 07: 09Z [I nfo] Successfully sent batch of 1 segnents (0.006
seconds)

Configuring the Daemon

You can use command line options to customize the daemon's behavior.
Command line options

¢ -b, --bi nd — Bind the daemon to a different port.

--bind "127.0.0. 1: 3000"

Default — 2000.
e -c,--config-Load a configuration file from the specified path.

--config "/ hone/ ec2-user/ xray-daenon. yam "

-f,--log-fil e—Outputlogs to the specified file path.

--log-file "/var/log/xray-daenon. | og"

-1,--10g-1evel —Log level, from most verbose to least: dev, debug, info, warn, error, prod.

--log-level warn

Default — pr od
e -m--menory-1|imt — Change the amount of memory (in MiB) that the daemon can use.

84

AWS X-Ray Developer Guide
Run the Daemon Locally

--menmory-limt 150

Default — 5% of available memory.
e -0,--1ocal -node — Don't check for EC2 instance metadata.
e -r,--rol e-arn— Assume the specified IAM role to upload segments to a different account.

--role-arn "arn:aws:iam:123456789012: rol e/ xray-cross-account"

e -v,--version—Show AWS X-Ray daemon version.
¢ -h, --hel p-Show the help screen.

You can load a YAML format configuration file with the - - conf i g option.
Configuration file options

¢ Local Mbde — Setto t r ue to skip checking for EC2 instance metadata.
¢ Loggi ng — Configure logging behavior.
* LogLevel — Change the log level, from most verbose to least: dev, debug, i nf o, warn, error,
pr od (default).
» LogPat h — Output logs to the specified file path.
¢ Processor — Configure the daemon process.
* Regi on — Specify a region to send trace data to that region instead of the current region.
¢ Rol eARN - Assume the specified IAM role to upload segments to a different account.
¢ Socket — Configure the daemon's binding.
« UDPAddr ess — Change the port on which the daemon listens.

Example xray-daemon.yaml

Socket :

UDPAddr ess: "127.0.0. 1: 3000"
Processor:

Regi on: "us-east-2"
Loggi ng:

LogLevel : "warn"

LogPat h: "/var/| og/ xray- daenon. | og"
Local Mode: true
Rol eARN: "arn:aws:iam:123456789012: rol e/ xray- cross-account"”

Pass the configuration file to the daemon by using the - c option.

~$./xray -c ~/xray-daenon. yan

Running the X-Ray Daemon Locally

You can run the daemon locally for development and testing.

When running locally, the daemon can read credentials from an AWS SDK credentials file (. aws/
credenti al s in your user directory) or from environment variables. For more information, see Giving
the Daemon Permission to Send Data to X-Ray (p. 83).

85

AWS X-Ray Developer Guide
Running the X-Ray Daemon on Linux

The daemon listens for UDP data on port 2000. You can change the port and other options by
using a configuration file and command line options. For more information, see Configuring the
Daemon (p. 84).

Running the X-Ray Daemon on Linux

You can run the daemon executable from the command line, as follows.

~/ xr ay- daenmon$./ xray

To run the daemon in the background, use &.

~/ xray-daenon$./xray &

Terminate a daemon process running in the background with pki | 1 .

~$ pkill xray

Running the X-Ray Daemon on Windows

You can run the daemon executable from the command line.

> .\ xray_wi ndows. exe

Use a PowerShell script to create and run a service for the daemon.

Example PowerShell Script - Windows

if (Get-Service "AWXRayDaenon" -ErrorAction SilentlyContinue){
sc. exe stop AWSXRayDaenon
sc. exe del ete AWSXRayDaenon

if (Get-ltem-path aws-xray-daenmon -ErrorAction SilentlyContinue) {
Renmove-1tem - Recurse - Force aws-xray-daenon

}

$currentLocati on = Get-Location

$zi pFil eName = "aws- xray- daenon-w ndows- servi ce- 1. x. zi p"

$zi pPath = "$current Locati on\ $zi pFi | eNane"

$dest Path = "$currentLocati on\ aws- xr ay- daenon"

$daenonPat h = " $dest Pat h\ xray. exe"

$daenonLogPat h = " C:\i net pub\ wwar oot \ xr ay- daenon. | 0og"

$url = "https://s3.amazonaws. con aws- xr ay- asset s. us- east - 1/ xr ay- daenon/ aws-
Xray-daenmon-w ndows- servi ce- 1. x. zi p"

I nvoke- WbRequest -Uri $url -QutFile $zipPath
Add- Type -Assenbly "System | O Conpression. Fil esystent
[io.conpression.zipfile]::ExtractToDirectory($zi pPath, $dest Pat h)

sc. exe create AWBXRayDaenon bi nPat h= "$daenonPath -f $daenobnLogPat h"
sc.exe start AWSXRayDaenon

86

AWS X-Ray Developer Guide
On Elastic Beanstalk

Running the X-Ray Daemon on AWS Elastic
Beanstalk

You can run the X-Ray daemon on your Elastic Beanstalk environment's EC2 instances to relay trace
data from your application to AWS X-Ray.

The daemon uses your environment's instance profile for permissions. For instructions about adding
permissions to the Elastic Beanstalk instance profile, see Giving the Daemon Permission to Send Data
to X-Ray (p. 83).

AWS Elastic Beanstalk platforms provide a configuration option that you can set to run the daemon
automatically. You can enable the daemon in a configuration file in your source code or by checking an
option in the Elastic Beanstalk console.

The daemon is installed on the instance and runs as a service when you enable the configuration
option.

The version included on Elastic Beanstalk platforms may not be the latest version. See the Elastic
Beanstalk release notes to find out the version of the daemon that is available for the platform
configuration that you use.

Using Elastic Beanstalk's X-Ray Integration to Run
the X-Ray Daemon

Use the console to turn on X-Ray integration, or configure it in your application source code with a
configuration file.

To enable the X-Ray daemon in the Elastic Beanstalk console

Open the Elastic Beanstalk console.

Navigate to the management console for your environment.
Choose Configuration.

Choose Software Settings.

For X-Ray daemon, choose Enabled.

ook wDdE

Choose Apply.

You can include a configuration file in your source code to make your configuration portable between
environments.

Example .ebextensions/xray-daemon.config

option_settings:
aws: el asti cheanst al k: xr ay:
XRayEnabl ed: true

Elastic Beanstalk passes a configuration file to the daemon and outputs logs to a standard location.

On Windows Server Platforms

¢ Configuration file — C: \ Progam Fi | es\ Amazon\ XRay\ cf g. yani

87

https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide
Downloading and Running the X-
Ray Daemon Manually (Advanced)

e Logs —c:\Progam Fi | es\ Amazon\ XRay\ | ogs\ xr ay-servi ce. | og

On Linux Platforms

¢ Configuration file —/ et ¢/ amazon/ xr ay/ cf g. yan
e Logs —/var/l og/ xray/ xray.| og

You can tell Elastic Beanstalk to pull the daemon logs on demand by adding a file to the log tasks
directory with a configuration file.

Example .ebextensions/xray-logs.config - Linux

files:
"/ opt/el asti cbeanstal k/tasks/taill ogs.d/xray-daenon. conf"
nmode: "000644"
owner: root
group: root
content: |
/var/ 1 ogl/ xray/ xray. | og

Example .ebextensions/xray-logs.config - Windows Server

files:
"c:/Program Fil es/ Amazon/ El asti cBeanst al k/ confi g/taill ogs. d/ xray-

daenon. conf"

nmode: "000644"

owner: root

group: root

content: |

c:\ Progam Fi | es\ Anazon\ XRay\ | ogs\ xray- service. | og

See Advanced Environment Customization with Configuration Files (.ebextensions) in the AWS Elastic
Beanstalk Developer Guide for more information.

Downloading and Running the X-Ray Daemon
Manually (Advanced)

If the X-Ray daemon isn't available for your platform configuration, you can download it from Amazon
S3 and run it with a configuration file.

Use an Elastic Beanstalk configuration file to download and run the daemon.

88

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html

AWS X-Ray Developer Guide
Downloading and Running the X-
Ray Daemon Manually (Advanced)

Example .ebextensions/xray.config - Linux

comrands:
01- stop-tracing:
command: yum renove -y Xray
ignoreErrors: true
02- copy-tracing:
command: curl https://s3.amzonaws. conl aws- Xr ay- asset s. us- east - 1/ xray-
daenon/ aws- xr ay- daenon-1. x. rpm - o / honme/ ec2- user/ xray.rpm
03-start-tracing:
command: yuminstall -y /hone/ec2-user/xray.rpm

files:
"/ opt/el asti cbeanstal k/tasks/taill ogs. d/ xray-daenon. conf"
nmode: "000644"
owner: root
group: root
content:
/var/ |l ogl/ xray/ xray. | og
"/ etc/amazon/ xray/cfg.yam "
nmode: "000644"
owner: root
group: root
content:
Loggi ng:
LogLevel : "debug"

89

AWS X-Ray Developer Guide
On Amazon EC2

Example .ebextensions/xray.config - Windows Server

cont ai ner _comuands:
01- execut e-config-scirpt:
conmand: Powershel | . exe -ExecutionPolicy Bypass -File c:\\tenp\
\'i nst al | Daenon. ps1
wai t After Conpl etion: O

files:
"c:/tenp/instal | Daenmon. psl”:
content: |
if (Get-Service "AWSXRayDaenon" -ErrorAction SilentlyContinue) {
sc. exe stop AWSXRayDaenon
sc. exe del ete AWSXRayDaenon

}

$targetLocati on = "C: \ Program Fi | es\ Amazon\ XRay"
if ((Test-Path $targetlLocation) -eq 0) {
nmkdi r $t arget Locati on

}

$zi pFi | eName = "aws- xray- daenon-w ndows- servi ce-1. x. zi p"
$zi pPath = "$targetLocati on\ $zi pFi | eNanme"

$dest Path = "$target Locati on\ aws- xr ay- daenon"

if ((Test-Path $destPath) -eq 1) {
Renove-1tem - Recurse -Force $dest Pat h

}

$daenonPat h = "$dest Pat h\ xr ay. exe"

$daenonLogPat h = "$target Locati on\ xray- daenon. | 0og"

$url = "https://s3.dual stack. us-east-1. amazonaws. conf aws- xr ay-

assets. us- east - 1/ xr ay- daenon/ aws- xr ay- daenon- wi ndows- servi ce- 1. x. zi p"

I nvoke- WebRequest -Uri $url -CQutFile $zipPath
Add- Type -Assenbly "System | O Conpression. Fil esystent
[io.conpression.zipfile]::ExtractToDirectory($zi pPath, $dest Pat h)

New Servi ce - Name " AWSXRayDaenon" -StartupType Automatic -
Bi nar yPat hNane """ $daenonPath™" -f " "$daenonLogPath™""
sc. exe start AWSXRayDaenon
encodi ng: plain
"c:/Program Fi |l es/ Amazon/ El asti cBeanst al k/ confi g/taill ogs. d/xray-
daenon. conf "
node: "000644"
owner: root
group: root
content: |
C:\ Program Fi | es\ Amazon\ XRay\ xr ay- daenon. | og

These examples also adds the daemon's log file to Elastic Beanstalk's tail logs task, to include it when
you request logs with the console or Elastic Beanstalk Command Line Interface (EB CLI).

Running the X-Ray Daemon on Amazon EC2

You can run the X-Ray daemon on the following operating systems on Amazon EC2:

¢ Amazon Linux

90

AWS X-Ray Developer Guide
On Amazon ECS

¢ Ubuntu
« Windows Server (2012 R2 and newer)

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the Daemon Permission to Send Data to X-Ray (p. 83).

Use a user data script to run the daemon automatically when you launch the instance.

Example User Data Script - Linux

#!1/ bi n/ bash

curl https://s3.amazonaws. conl aws- xr ay- asset s. us- east - 1/ xr ay- daenon/ aws- xr ay-
daenon-1. x.rpm -o /honme/ ec2-user/xray.rpm

yuminstall -y /home/ec2-user/xray.rpm

Example User Data Script - Windows Server

<power shel | >

if (Get-Service "AWSXRayDaenon" -ErrorAction SilentlyContinue) {
sc. exe stop AWSXRayDaenon
sc. exe del ete AWSXRayDaenon

}

$targetLocation = "C \Program Fi | es\ Anazon\ XRay"
if ((Test-Path $targetlLocation) -eq 0) {
nkdi r $targetLocation

}

$zi pFi |l eNanme = "aws- xray- daenon-w ndows- service-1. x. zi p"
$zi pPath = "$targetLocation\ $zi pFi | eNanme"

$dest Pat h = "$t ar get Locat i on\ aws- xr ay- daenon"

if ((Test-Path $destPath) -eq 1) {
Renove-1tem - Recurse -Force $dest Path

}

$daenonPat h = "$dest Pat h\ xr ay. exe"

$daenonLogPat h = "$t arget Locat i on\ xr ay- daenon. | 0og"

$url = "https://s3.dual stack. us-east-1. anazonaws. conf aws- xr ay- asset s. us-

east - 1/ xr ay- daenon/ aws- xr ay- daenopn- wi ndows- servi ce- 1. x. zi p"

I nvoke- WebRequest -Uri $url -QutFile $zipPath
Add- Type -Assenbly "System | O Conpression. Fil esystent
[io.conpression.zipfile]::ExtractToDirectory($zi pPath, $dest Path)

New Servi ce - Name " AWSXRayDaenon" -StartupType Automatic - Bi naryPat hName
"*"$daenmonPath'" -f " "S$daenonLogPath ""

sc.exe start AWSXRayDaenon

</ power shel | >

Running the X-Ray Daemon on Amazon ECS

On Amazon ECS, create a Docker image that runs the daemon, upload it to a Docker image repository,
and then deploy it to your Amazon ECS cluster.

91

AWS X-Ray Developer Guide
On Amazon ECS

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the Daemon Permission to Send Data to X-Ray (p. 83).

Use a Dockerfile file to create a Docker image that runs the daemon.

Example Dockerfile

FROM ubunt u: 12. 04
COPY xray /usr/bin/xray
CVMD xray --log-file /var/log/xray-daenmon.|log &

Download the X-Ray daemon (p. 82) Linux executable into the same folder as your Dockerfile and
build it to create an image.

92

AWS X-Ray Developer Guide
Elastic Load Balancing

Integrating AWS X-Ray with AWS
Services

Other AWS services provide integration with AWS X-Ray by adding trace IDs to requests, making
sampling decisions, or uploading trace data to X-Ray.

Note

The X-Ray SDKs include plugins for additional integration with AWS services. For example,
you can use the X-Ray SDK for Java's Elastic Beanstalk plugin to add information about the
Elastic Beanstalk environment that runs your application including the environment name and
ID.

Elastic Load Balancing

Elastic Load Balancing application load balancers add a trace ID to incoming HTTP requests in a
header named X- Anmen- Trace- | d.

X- Anmzn- Trace- |1 d: Root=1-5759e988- bd862e3f e1be46a994272793

Trace ID Format

Atrace_i d consists of three numbers separated by hyphens. For example, 1- 58406520-
a006649127e371903a2de979. This includes:

* The version number, that is, 1.
« The time of the original request, in Unix epoch time, in 8 hexadecimal digits.

For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or
58406520 in hexadecimal.

* A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

Amazon API Gateway

Amazon API Gateway gateways add a trace ID to incoming HTTP requests in a header named X-
Anen- Trace- 1 d.

93

AWS X-Ray Developer Guide
Amazon Elastic Compute Cloud

X- Amzn- Trace- 1 d: Root =1-5759e988- bd862e3f e1be46a994272793

Trace ID Format

Atrace_i d consists of three numbers separated by hyphens. For example, 1- 58406520-
a006649127e371903a2de979. This includes:

¢ The version number, that is, 1.
¢ The time of the original request, in Unix epoch time, in 8 hexadecimal digits.
For example, 10:00AM December 2nd, 2016 PST in epoch time is 1480615200 seconds, or

58406520 in hexadecimal.
« A 96-bit identifier for the trace, globally unique, in 24 hexadecimal digits.

API| Gateway does not propagate X-Ray trace ID and sampling headers. If your gateway is
downstream of other services in your application, traces will terminate at the gateway. If the gateway
chooses to sample the request, it will continue with a different trace ID.

Amazon Elastic Compute Cloud

You can install and run the X-Ray daemon on an Amazon EC2 instance with a user data script. See
Running the X-Ray Daemon on Amazon EC2 (p. 90) for instructions.

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the Daemon Permission to Send Data to X-Ray (p. 83).

AWS Elastic Beanstalk

AWS Elastic Beanstalk platforms include the X-Ray daemon. You can run the daemon (p. 87) by
setting an option in the Elastic Beanstalk console or with a configuration file.

On the Java SE platform, you can use a Buildfile file to build your application with Maven or Gradle
on-instance. The X-Ray SDK for Java and AWS SDK for Java are available from Maven, so you can
deploy only your application code and build on-instance to avoid bundling and uploading all of your
dependencies.

For more information, see Configuring AWS X-Ray Debugging in the AWS Elastic Beanstalk Developer
Guide.

94

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-configuration-debugging.html

	AWS X-Ray
	Table of Contents
	What is AWS X-Ray?
	Using AWS X-Ray
	Supported Languages and Frameworks
	Supported AWS Services
	Code and Configuration Changes

	Getting Started with AWS X-Ray
	Prerequisites
	Deploy to Elastic Beanstalk and Generate Trace Data
	View the Service Graph in the X-Ray Console
	Explore the Sample Application
	Clean Up
	Next Steps

	AWS X-Ray Concepts
	Segments
	Subsegments
	Service Graph
	Traces
	Sampling
	Tracing Header
	Filter Expressions

	The AWS X-Ray Console
	Viewing the Service Map
	Using Filter Expressions
	Deep Linking

	The AWS X-Ray API
	Using the AWS X-Ray API with the AWS CLI
	Prerequisites
	Generate Trace Data
	Use the X-Ray API
	Cleanup

	Uploading Segment Documents
	Sending Segment Documents to the X-Ray Daemon
	AWS X-Ray Segment Documents
	Segment Fields
	Subsegments
	HTTP Request Data
	Annotations
	Metadata
	AWS Resource Data
	Errors and Exceptions
	SQL Queries

	The AWS X-Ray SDK for Java
	Requirements
	Dependency Management
	Configuring the X-Ray SDK for Java
	Service Plugins
	Sampling Rules
	Logging

	X-Ray SDK for Java Sample Application
	Manually Instrumenting AWS SDK Clients
	Creating Additional Subsegments
	Instrumenting Outgoing HTTP Calls
	Instrumenting Calls to a PostgreSQL Database

	Tracing Incoming Requests with the X-Ray SDK for Java
	Adding a Tracing Filter to your Application
	Configuring a Segment Naming Strategy

	Tracing AWS SDK Calls with the X-Ray SDK for Java
	Tracing Calls to Downstream HTTP Web Services with the X-Ray SDK for Java
	Tracing SQL Queries with the X-Ray SDK for Java
	Generating Custom Subsegments with the X-Ray SDK for Java

	The X-Ray SDK for Node.js
	Requirements
	Dependency Management
	Configuring the X-Ray SDK for Node.js
	Service Plugins
	Sampling Rules

	Tracing Incoming Requests with the X-Ray SDK for Node.js
	Tracing AWS SDK Calls with the X-Ray SDK for Node.js
	Tracing Calls to Downstream HTTP Web Services with the X-Ray SDK for Node.js
	Tracing SQL Queries with the X-Ray SDK for Node.js
	Generating Custom Subsegments with the X-Ray SDK for Node.js

	The AWS X-Ray SDK for .NET
	Requirements
	Adding the X-Ray SDK for .NET to Your Application
	Configuring the X-Ray SDK for .NET
	Plugins
	Sampling Rules

	Instrumenting Incoming HTTP Requests with the X-Ray SDK for .NET
	Instrumenting Downstream Calls to AWS Services
	Tracing Calls to Downstream HTTP Web Services with the X-Ray SDK for .NET
	Tracing SQL Queries with the X-Ray SDK for .NET
	Creating Additional Subsegments

	The AWS X-Ray Daemon
	Giving the Daemon Permission to Send Data to X-Ray
	X-Ray Daemon Logs
	Configuring the Daemon
	Running the X-Ray Daemon Locally
	Running the X-Ray Daemon on Linux
	Running the X-Ray Daemon on Windows

	Running the X-Ray Daemon on AWS Elastic Beanstalk
	Using Elastic Beanstalk's X-Ray Integration to Run the X-Ray Daemon
	Downloading and Running the X-Ray Daemon Manually (Advanced)

	Running the X-Ray Daemon on Amazon EC2
	Running the X-Ray Daemon on Amazon ECS

	Integrating AWS X-Ray with AWS Services
	Elastic Load Balancing
	Amazon API Gateway
	Amazon Elastic Compute Cloud
	AWS Elastic Beanstalk

