
Quick Start ..4

Installing and Running..14

Projects...25

Building ...38

Artifacts ...49

Packaging ..58

Testing ...81

Settings & Profiles ..91

Languages ...101

More Stuff..122

Extending Buildr ..163

Contributing ...171

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Copyright 2007-2016 Apache Buildr

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this

file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under

the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied. See the License for the specific

language governing permissions and limitations under the License.

2

Daniel Spiewak:

If you think about it, the question isn’t “Why use Buildr?”, it’s really “Why use

anything else?” The advantages afforded by Buildr are so substantial, I really can’t see

myself going with any other tool, at least not when I have a choice.

Tristan Juricek:

That’s still the strongest sell: it builds everything I need, and as I’ve needed more, I

just got things working without a lot of fuss.

Matthieu Riou:

We used to rely on Ant, with a fairly extensive set of scripts. It worked but was

expensive to maintain. The biggest mistake afterward was to migrate to Maven2. I

could write pages of rants explaining all the problems we ran into and we still ended

up with thousands of lines of XML.

Martin Grotzke:

The positive side effect for me as a java user is that I learn a little ruby, and that’s easy

but lots of fun… :-)

p(preface).

3

http://www.codecommit.com/blog
http://tristanhunt.com/
http://offthelip.org/
http://www.javakaffee.de/blog/

Quick Start

Your First Project..4

Dependencies..7

Testing ...10

Custom Tasks ...11

Summary ...13

This quick start guide is meant to be a very simple introduction to Buildr and its most

basic concepts. However, despite its basic level, we will still cover most of the concepts

you will ever need to be productive with Buildr. We will leave out some important

things (like sub-projects), and we will over-simplify some other concepts (such as

artifacts). Nevertheless, most Buildr projects never need to go beyond the techniques

contained within these pages.

No knowledge of Ruby is assumed. Buildr is designed to be a very intuitive, very easy-

to-use tool. You can create buildfiles which describe incredibly intricate projects, write

custom tasks which do things far beyond Ant, and still never need to pick up more than

a smattering of Ruby syntax. With that said, if you do know Ruby, Buildr’s DSL will

seem very natural and welcoming. We do assume that you have already downloaded

and installed Buildr and are ready to put the tool to good use.

Your First Project

Much like Maven, Buildr is oriented around projects and tasks. You define your project

in a concise, declarative fashion and most common tasks (such as compilation and

testing) will be made available to you “at no extra charge”. Most of the project definition

is contained within the buildfile — or Buildfile, if you’re really in love with the Make

convention — a single file sitting at the root of your project. A project definition does not

need to be any more complicated than the following:

define 'killer-app'

Compiling

Of course, this isn’t really giving Buildr much information. What it can’t learn from the

buildfile, Buildr will figure out by inspecting your directory structure. Java sources are

expected to exist within the src/main/java/ directory. If Buildr finds these sources, it

will automatically configure the compilation to source that directory, depositing the

results in the target/classes/ directory (all under the project directory of course). We

can run this compilation using the following command:

$ buildr compile

Information about the classpath and dependencies is described later on.

By default, Buildr projects assume the Java language and the src/main/java/
source directory. You can also have projects in the Scala or Groovy language

(both languages support joint compilation with Java). To use Scala, place your

.scala files in the src/main/scala/ directory and include the following

invocation at the head of your buildfile: require 'buildr/scala' Similarly,

Groovy expects sources in the src/main/groovy/ directory and necessitates

require 'buildr/groovy' (see languages for more information).

The compile task will also detect any files which exist under the src/main/resources/
directory. These resources are copied verbatim to the target/resources/ directory as

part of the compilation task. Buildr also performs some basic change detection to

minimize compilation. If your source files haven’t changed since the last compile, then

they will not be recompiled.

Packaging

At some point, we’re going to want to wrap up our classes and produce a single JAR file

for distribution. Buildr can certainly help us with this, but we are going to need to

provide it with a little bit more information. Specifically, we need to say the type of

package to produce (e.g. :jar, :war, etc) as well as the current version of our project.

This information is placed within the buildfile:

Quick Start 5

define 'killer-app' do
project.version = '0.1.0'
package :jar

end

The project.version attribute can be any value you like. Even non-numeric versions are

perfectly acceptable (e.g. 'ikj-0.3.1-E'). This version — coupled with the packaging

information — will be used to generate a JAR file: killer-app-0.1.0.jar. As would be

expected, this file is placed within the target/ directory when the following command is

run:

$ buildr package

The package task depends upon the compile task, so if a rebuild is necessary prior to the

creation of the JAR, Buildr will see to it.

We can also chain tasks together in a single invocation. For example, we may want to

clean all of the old compilation results prior to recompiling and generating a packaged

result:

$ buildr clean package

The clean task simply removes the target/ directory, effectively wiping out any

compilation results like class files or resources.

Directory Structure

As you may have noticed, Buildr does have some default notions about what a project

should look like and how it should be organized. We think that these defaults are quite

nice and make for a more navigable project. However, we do understand that not all

projects are exactly alike. Buildr’s layouts make it possible for any project to easily

change these defaults. For example, this would allow you to easily migrate a project that

had been based on a different directory structure, such as the src/ and bin/ convention

often used by Ant.

6 Quick Start

Dependencies

So far, we have seen how Buildr can automatically infer what amounts to dozens of lines

of build.xml contents, all based on a buildfile and a directory structure. However, the

best is yet to come. Buildr also provides Maven-style dependency management (but

without the long loading times!). In other words, you specify each dependent library

using a string descriptor and Buildr figures out how to download and configure your

classpath (the library descriptors are just a Ruby array, therefore they are separated by

commas (,)). You must specify at least one remote repository so that Buildr knows from

where to download these libraries. For example, we can configure our project to

reference the Apache Commons CLI library and download libraries from the Ibiblio

repository:

repositories.remote << 'http://www.ibiblio.org/maven2'

define 'killer-app' do
project.version = '0.1.0'
compile.with 'commons-cli:commons-cli:jar:1.2'
package :jar

end

This sort of dependency declaration should look quite familiar if you are at all familiar

with Maven. The general format for an artifact descriptor is

groupId:artifactId:packageType:version. Any Maven artifacts included in this fashion will be

retrieved from the list of remote repositories (in this case, Ibiblio) and installed in your

local repository at ~/.m2/repository/.

You can search the global repository of artifacts at sites like MvnBrowser.

Simply enter the name of the library you are looking for, and the search should

pull up the groupId, artifactId and a list of available versions.

Quick Start 7

http://commons.apache.org/cli/
http://www.mvnbrowser.com

Unfortunately, not all libraries are quite as simple as Commons CLI. Many libraries

(such as Apache Wicket) have dependencies of their own. While we may be able to

compile against Apache Wicket without these extra libraries on our classpath, we cannot

actually run our application without its transitive dependencies. To avoid tracking down

each of these dependencies and adding them manually, we can simply use the

transitive directive (this is how Maven behaves by default):

repositories.remote << 'http://www.ibiblio.org/maven2'

define 'killer-app' do
project.version = '0.1.0'
compile.with transitive('org.apache.wicket:wicket:jar:1.4-rc6')
package :jar

end

The compile.with property accepts a full array of comma-separated artifacts, making it

possible to specify any number of dependencies as necessary. Of course, such a long list

of verbose string descriptors could get very tiresome and messy. For this reason, it is

conventional to assign each dependency to a constant (e.g. WICKET) which is declared just

above the project in the buildfile and passed to compile.with in a clean, easy-to-read

style:

repositories.remote << 'http://www.ibiblio.org/maven2'

WICKET = transitive('org.apache.wicket:wicket:jar:1.4-rc6')
SLF4J = 'org.slf4j:slf4j-jdk14:jar:1.5.8'

define 'killer-app' do
project.version = '0.1.0'
compile.with WICKET, SLF4J
package :jar

end

8 Quick Start

Unfortunate as it may seem, not all libraries are available in Maven repositories. While

most of the major libraries (e.g. Hibernate, Spring, etc) are kept updated by intrepid

volunteers, some of the more obscure frameworks are left out in the cold. An example of

one such framework is DBPool, a very fast connection pool designed to integrate with

JDBC. However, like most Java libraries, DBPool does provide a zip archive which

contains the JAR file, as well as some documentation and perhaps a license or two.

Almost magically, we can instruct Buildr to get the DBPool artifact from this URL.

Buildr will treat this download just like any other artifact, retrieving it when requried by

the compile task. However, unlike a normal Maven artifact, Buildr will do some extra

processing once the download is complete. It will actually dig into the downloaded

archive, detect and extract the JAR file, installing it into the local repository just like any

other artifact:

DBPOOL = 'net.snaq:dbpool:jar:4.8.3'
download artifact(DBPOOL) => 'http://www.snaq.net/java/DBPool/
DBPool_v4.8.3.zip'

define 'killer-app' do
project.version '0.1.0'
compile.with DBPool
package :jar

end

This is one area where Buildr’s dependency management vastly excedes Maven’s. With

Maven, you would have to install the DBPool dependency manually. Buildr’s auto-

magical download and extraction keeps the dependency definitions centralized within

the buildfile, available to your entire team and automatically resolved as needed by the

compilation tasks.

Quick Start 9

http://www.snaq.net/java/DBPool

Testing

Buildr supports auto-magical integration with a number of mainstream testing

frameworks. For Java, this includes the ubiquitus JUnit4, as well as TestNG and a

number of others. Scala supports Specs and ScalaTest, while Groovy supports EasyB.

Configuration is as simple as placing your test sources in the appropriate directory. In

the case of JUnit or TestNG, this would be src/test/java/. Once these tests are in place,

we can run them using the test task:

$ buildr test

When the test task runs, it will ensure that your main sources are compiled, as well as

the tests themselves. In the case of JUnit4, test classes are auto-detected based on which

base class they extend (TestCase). These tests will be invoked using the special test

classpath. This classpath includes all of the dependencies passed to compile.with along

with the dependencies required for testing. Thus, Buildr will actually go out and

download JUnit 4.5 (if necessary) and place that JAR on the classpath in order to run

your tests. It is also possible to add artifacts specifically required for testing. So, if your

tests make use of the Commons Collections library, but your main sources do not, you

can include that dependency only for the tests by using the test.with property. This

functions identically to compile.with:

define 'killer-app' do
project.version = '0.1.0'
compile.with 'commons-cli:commons-cli:jar:1.2'
test.with 'commons-collections:commons-collections:jar:3.2'
package :jar

end

Of course, not everyone likes JUnit4. As mentioned previously, Buildr supports a

number of test frameworks. It is possible to use TestNG instead of JUnit4 by setting the

test.using property to :testng:

10 Quick Start

define 'killer-app' do
project.version = '0.1.0'
compile.with 'commons-cli:commons-cli:jar:1.2'
test.with 'commons-collections:commons-collections:jar:3.2'
test.using :testng
package :jar

end

Note that only one test framework per-project may be used. This may seem like an

obvious restriction given that both frameworks introduced so far have used the same

directory, but other frameworks such as Specs and EasyB do not follow the same

convention. In cases of ambiguity (for example, when tests are present in both src/test/
java/ and src/spec/scala/), only one test framework will be chosen, but this choice is

not well-defined. When in doubt, explicitly specify the test framework with the

test.using property. This overrides Buildr’s auto-detection and ensures sane behavior.

Other test frameworks are documented here and here.

Custom Tasks

If there is one area in which Buildr excels, it is defining custom tasks. This is something

which is notoriously difficult in both Ant and Maven, often requiring separate Java

plugins and mountains of code simply to perform basic tasks. For example, let’s imagine

that we wanted to define a run task which would compile and run our “killer-app”

project. This is a simple matter of invoking the java command against our main class:

define 'killer-app' do
project.version = '0.1.0'
package :jar

task :run => :compile do
system 'java -cp target/classes org.apache.killer.Main'

end
end

Quick Start 11

This code defines a new task, run, which depends upon the compile task. This task only

performs a single operation: it invokes the system method, passing the relevant

command as a string. Note that the system method documentation may be found here.

Tasks use real Ruby (actually, the entire buildfile is real Ruby too), so if you are familiar

with that language, then you should be right at home writing custom tasks in Buildr. We

can invoke this task in the following way:

$ buildr killer-app:run

This works, but it’s clumsy. The reason we had to give the “killer-app:” prefix is

because we defined the run task within our project, rather than outside of the define
block. However, if we define run outside of the project, then we don’t really have access

to the compile task (which is project-specific). The solution here is a bit of magic known

as local_task. This is how tasks like compile and test, which are technically project-

specific (think: instance methods) can be invoked without the fully-qualified project

name:

Project.local_task :run

define 'killer-app' do
project.version '0.1.0'

package :jar

task :run => :compile do
system 'java -cp target/classes org.apache.killer.Main'

end
end

Now, we can invoke run exactly the way we want, with a minimum of wasted

characters:

$ buildr run

12 Quick Start

http://www.ruby-doc.org/core/classes/Kernel.html#M005971

Summary

As long as this guide was, we have barely even scratched the surface of Buildr’s true

power. This was meant only to get you up and running as quickly as possible, exploiting

some of Buildr’s unique features to ease your build process. For more comprehensive

documentation, start reading about projects in Buildr and work your way from there.

Quick Start 13

Installing and Running

Installing on Linux...16

Installing on OS X ..18

Installing on Windows ..19

Installing for JRuby..19

Using multiple versions of Buildr

Running Buildr...22

Help Tasks...23

Learning More ..24

All In One Bundle

Contributors to this project maintain a separate distribution over on RubyForge. Using

this distribution, it is possible to install Buildr just like you would install Apache Ant or

Apache Maven. It comes bundled with JRuby and distributed as a cross-platform zip or

tar.gz file.

The RubyForge distribution is not an official Apache distribution. The all-in-one bundles

are hosted on the Files page.

In details: Navigate to Rubyforge’s buildr’s Files page and download the all-in-one

bundle for the latest version available.

Unzip the bundle in a convenient location.

You can execute the buildr executable under the bin directory directly.

You should consider adding the bin directory of the result to the PATH global

environment variable. See Installing Buildr for JRuby for instructions to update it.

All In One Bundle 15

http://rubyforge.org/projects/buildr
http://rubyforge.org/frs/?group_id=3180
http://rubyforge.org/frs/?group_id=3180

Installing the gem

The easy way: We recommend you pick the platform you want to run Buildr on and

then follow the easy way instructions for that platform. It could save you an hour or two

struggling to install all the right dependencies.

Installing Buildr for JRuby is the same on all operating systems. Choose JRuby if you’re

working with Java 6 on OS X, developing with multiple JDKs, or just like JRuby better.

If you are running behind a proxy server, make sure the environment variable

HTTP_PROXY is set, as many of these steps require HTTP access.

In details: The gem install and gem update commands install Buildr from a binary

distribution provided through RubyForge. This distribution is maintained by

contributors to this project, but is not an official Apache distribution. You can obtain the

official Apache distribution files from the download page.

Older versions of RubyGems are all kind of fail. You want to avoid these unless you

have the patience to install each Buildr dependency manually. Get RubyGems 1.3.1 or

later, and when using Debian packages (e.g. Ubuntu), make sure to get the unmolested

RubyGems straight form the source.

The Ruby interpreter and JVM must use compatible architectures. For example, OS X

comes with 32-bit version of Ruby, Java 1.5 in both 32-bit and 64-bit flavors, and 64-bit

Java 6. As a result you can run Ruby with Java 1.5 (32-bit), but to use Java 6 you either

need to build Ruby from source for 64-bit, or use Buildr for JRuby.

Installing on Linux

The easy way: Use this bash script to install Buildr on Linux. This script will install the

most recent version of Buildr, or if already installed, upgrade to the most recent version.

It will also install Ruby 1.8.6 if not already installed (requires apt-get, yum or urpmi) and

upgrade to RubyGems 1.3.1 or later.

16 Installing the gem

http://rubyforge.org/projects/buildr
_site/download.html
_site/scripts/install-linux.sh

In details: To get started you will need a recent version of Ruby, Ruby Gems and build

tools for compiling native libraries (make, gcc and standard headers).

On RedHat/Fedora you can use yum to install Ruby and RubyGems, and then upgrade

to the most recent version of RubyGems:

$ sudo yum install ruby rubygems ruby-devel gcc
$ sudo gem update --system

On Ubuntu you have to install several packages:

$ sudo apt-get install ruby-full ruby1.8-dev libopenssl-ruby build-essential

If using Ubuntu 9.10 or earlier, the Debian package for rubygems will not allow you to

install Buildr, so you need to install RubyGems from source:

$ wget http://rubyforge.org/frs/download.php/45905/rubygems-1.3.1.tgz
$ tar xzf rubygems-1.3.1.tgz
$ cd rubygems-1.3.1
$ sudo ruby setup.rb
$ sudo ln -s /usr/bin/gem1.8 /usr/bin/gem

Before installing Buildr, please set the JAVA_HOME environment variable to point to your

JDK distribution. Next, use Ruby Gem to install Buildr:

$ sudo env JAVA_HOME=$JAVA_HOME gem install buildr

To upgrade to a new version or install a specific version:

$ sudo env JAVA_HOME=$JAVA_HOME gem update buildr
$ sudo env JAVA_HOME=$JAVA_HOME gem install buildr -v 1.4.3

Installing the gem 17

Installing on OS X

The easy way: Use this script to install Buildr on OS X. This script will install the most

recent version of Buildr, or if already installed, upgrade to the most recent version. It

will also install Ruby 1.8.6 if not already installed (using MacPorts/Fink) and upgrage

RubyGems to 1.3.1 or later.

You need to have the Apple Development Tools installed. They are available on the Mac

OSX installation CD.

Java Update 3 for Snow Leopard removes header files necessary to compile the

native Ruby-Java Bridge (RJB) gem, so installing rjb gem may fail on OS X. The

solution is to install Java for Mac OS X 10.6 Update 3 Developer Package from

http://connect.apple.com before gem install.

Using RVM? If you’re not using the built-in ruby on OS X (e.g., if you’re using RVM),

you’ll need to force-install the platform-independent RJB:

$ gem install rjb -v 1.3.3 --platform ruby

The darwin pre-built binary seems to only work with the built-in ruby.

In details: OS X 10.5 (Leopard) comes with a recent version of Ruby 1.8.6. You do not

need to install a different version of Ruby when running OS X 10.5.

OS X 10.4 (Tiger) includes an older version of Ruby that is not compatible with Buildr.

You can install Ruby 1.8.6 using MacPorts (sudo port install ruby rb-rubygems), Fink

or the Ruby One-Click Installer for OS X.

We recommend you first upgrade to the latest version of Ruby gems:

$ sudo gem update --system

Before installing Buildr, please set the JAVA_HOME environment variable to point to your

JDK distribution:

18 Installing the gem

_site/scripts/install-osx.sh
http://rubyosx.rubyforge.org/

$ export JAVA_HOME=/Library/Java/Home

To install Buildr:

$ sudo env JAVA_HOME=$JAVA_HOME gem install buildr

To upgrade to a new version or install a specific version:

$ sudo env JAVA_HOME=$JAVA_HOME gem update buildr
$ sudo env JAVA_HOME=$JAVA_HOME gem install buildr -v 1.3.4

Installing on Windows

The easy way: The easiest way to install Ruby is using the one-click installer. Be sure to

install Ruby 1.8.6; support for Ruby 1.9.x is still a work in progress. Once installed, set

the JAVA_HOME environment variable and run gem install buildr --platform mswin32.

In details: Before installing Buildr, please set the JAVA_HOME environment variable to

point to your JDK distribution. Next, use Ruby Gem to install Buildr:

> gem install buildr --platform mswin32

To upgrade to a new version or install a specific version:

> gem update buildr
> gem install buildr -v 1.3.4 --platform mswin32

Installing for JRuby

The easy way: Use this bash script to install Buildr on JRuby. This script will install the

most recent version of Buildr, or if already installed, upgrade to the most recent version.

If necessary, it will also install JRuby 1.6.1 in /opt/jruby and update the PATH variable in

~/.bash_profile or ~/.profile.

Installing the gem 19

http://rubyinstaller.rubyforge.org/
_site/scripts/install-jruby.sh

In details: If you don’t already have JRuby 1.5.1 or later installed, you can download it

from the JRuby site.

After uncompressing JRuby, update your PATH to include both java and jruby
executables.

For Linux and OS X:

$ export PATH=$PATH:[path to JRuby]/bin:$JAVA_HOME/bin
$ jruby -S gem install buildr

For Windows:

> set PATH=%PATH%;[path to JRuby]/bin;%JAVA_HOME%/bin
> jruby -S gem install buildr

To upgrade to a new version or install a specific version:

$ jruby -S gem update buildr
$ jruby -S gem install buildr -v 1.3.4

Important: Running JRuby and Ruby side by side

Ruby and JRuby maintain separate Gem repositories, and in fact install slightly different

versions of the Buildr Gem (same functionality, different dependencies). Installing

Buildr for Ruby does not install it for JRuby and vice versa.

If you have JRuby installed but not Ruby, the gem and buildr commands will use JRuby.

If you have both JRuby and Ruby installed, follow the instructions below. To find out if

you have Ruby installed (some operating systems include it by default), run ruby --
version from the command line.

To work exclusively with JRuby, make sure it shows first on the path, for example, by

setting PATH=/opt/jruby/bin:$PATH.

You can use JRuby and Ruby side by side, by running scripts with the -S command line

argument. For example:

20 Installing the gem

http://www.jruby.org/download

$ # with Ruby
$ ruby -S gem install buildr
$ ruby -S buildr
$ # with JRuby
$ jruby -S gem install buildr
$ jruby -S buildr

Run buildr --version from the command line to find which version of Buildr you are

using by default. If you see (JRuby ...), Buildr is running on that version of JRuby.

Using multiple versions of Buildr

Rubygems makes it possible to install several versions of Buildr side-by-side on the

same system. If you want to run a specific version, you can do so by adding the version

number between underscores (‘_’) as the first command-line parameter. For example,

$ buildr _1.3.4_ clean # runs Buildr v1.3.4

$ buildr _1.4.4_ clean # runs Buildr v1.4.4

There are two `buildr` executables installed by Rubygems. One script serves to

select the specified (or default) version of Buildr and is typically found under

`/usr/bin/buildr` or `/var/lib/gems/1.8/bin/buildr`. The exact location will

vary depending on your system. The other script is the Buildr bootstrap per se

and can be found under the specific version of Buildr, e.g, `/var/lib/gems/

1.8/gems/buildr-1.4.0/bin/buildr`. The first script should be on your `PATH`.

The second script should not be called directly and should not be on your

`PATH`.

Installing the gem 21

Running Buildr

You need a Buildfile, a build script that tells Buildr all about the projects it’s building,

what they contain, what to produce, and so on. The Buildfile resides in the root directory

of your project. We’ll talk more about it in the next chapter. If you don’t already have

one, ask Buildr to create it by running buildr.

You’ll notice that Buildr creates a file called buildfile. It’s case sensitive, but

Buildr will look for either buildfile or Buildfile.

You use Buildr by running the buildr command:

$ buildr [options] [tasks] [name=value]

There are several options you can use, for a full list of options type buildr --help:

Option Usage

-f/--buildfile [file] Specify the buildfile.

-e/--environment [name] Environment name (e.g. development, test, production).

-h/--help Display this help message.

-n/--nosearch Do not search parent directories for the buildfile.

-q/--quiet Do not log messages to standard output.

-r/--require [file] Require MODULE before executing buildfile.

-t/--trace Turn on invoke/execute tracing, enable full backtrace.

-v/--verbose Log message to standard output

-V/--version Display the program version.

-P/--prereqs Display tasks and dependencies, then exit.

You can tell Buildr to run specific tasks and the order to run them. For example:

22 Installing the gem

Clean and rebuild
buildr clean build
Package and install
buildr install

If you don’t specify a task, Buildr will run the build task, compiling source code and

running test cases. Running a task may run other tasks as well, for example, running the

install task will also run package.

There are several environment variables that let you control how Buildr works, for

example, to skip test cases during a build, or specify options for the JVM. Depending on

the variable, you may want to set it once in your environment, or set a different value

each time you run Buildr.

For example:

$ export JAVA_OPTS='-Xms1g -Xmx1g'
$ buildr TEST=no

Help Tasks

Buildr includes a number of informative tasks. Currently that number stands at two, but

we’ll be adding more tasks in future releases. These tasks report information from the

Buildfile, so you need one to run them. For more general help (version number,

command line arguments, etc) use buildr --help.

To start with, type:

$ buildr help

You can list the name and description of all your projects using the help:projects task.

For example:

Installing the gem 23

$ buildr help:projects
killer-app # Code. Build. ??? Profit!
killer-app:teh-api # Abstract classes and interfaces
killer-app:teh-impl # All those implementation details
killer-app:la-web # What our users see

You are, of course, describing your projects for the sake of those who will maintain your

code, right? To describe a project, or a task, call the desc method before the project or

task definition.

So next let’s talk about projects.

Learning More

Ruby It pays to pick up Ruby as a second (or first) programming language. It’s fun,

powerful and slightly addictive. If you’re interested in learning Ruby the language, a

good place to start is Programming Ruby: The Pragmatic Programmer’s Guide, fondly

known as the Pickaxe book.

For a quicker read (and much more humor), Why’s (Poignant) Guide to Ruby is

available online. More resources are listed on the ruby-lang web site.

Rake Buildr is based on Rake, a Ruby build system that handles tasks and dependencies.

Check out the Rake documentation for more information.

AntWrap Buildr uses AntWrap, for configuring and running Ant tasks. You can learn

more from the Antwrap documentation.

YAML Buildr uses YAML for its profiles. You can learn more about YAML here, and use

this handy YAML quick reference.

24 Installing the gem

http://www.pragprog.com/titles/ruby/programming-ruby
http://poignantguide.net/ruby/
http://www.ruby-lang.org/en/documentation/
http://docs.rubyrake.org/
https://rubygems.org/gems/Antwrap
http://www.yaml.org
http://www.yaml.org/refcard.html

Projects

Starting Out...25

When defining your project, the order in which you place instructions matter.

The Directory Structure...28

Naming And Finding Projects ...30

Running Project Tasks...31

Setting Project Properties ..32

Resolving Paths ..33

Defining The Project ..34

Writing Your Own Tasks ..36

Starting Out

In Java, most projects are built the same way: compile source code, run test cases,

package the code, release it. Rinse, repeat.

Feed it a project definition, and Buildr will set up all these tasks for you. The only thing

you need to do is specify the parts that are specific to your project, like the classpath

dependencies, whether you’re packaging a JAR or a WAR, etc.

The remainder of this guide deals with what it takes to build a project. But first, let’s

pick up a sample project to work with. We’ll call it killer-app:

require "buildr/openjpa"

include Buildr::OpenJPA

VERSION_NUMBER = '1.0'

AXIS2 = 'org.apache.axis2:axis2:jar:1.2'
AXIOM = group('axiom-api', 'axiom-impl', 'axiom-dom',

:under=>'org.apache.ws.commons.axiom', :version=>'1.2.4')
AXIS_OF_WS = [AXIOM, AXIS2]
OPENJPA = ['org.apache.openjpa:openjpa:jar:1.2.0',

'net.sourceforge.serp:serp:jar:1.12.0']

repositories.remote << 'http://www.ibiblio.org/maven2/'

desc 'Code. Build. ??? Profit!'
define 'killer-app' do

project.version = VERSION_NUMBER
project.group = 'acme'
manifest['Copyright'] = 'Acme Inc (C) 2007'
compile.options.target = '1.5'

desc 'Abstract classes and interfaces'
define 'teh-api' do

package :jar
end

desc 'All those implementation details'
define 'teh-impl' do

compile.with AXIS_OF_WS, OPENJPA
compile { open_jpa_enhance }
package :jar

end

desc 'What our users see'

26 Projects

define 'la-web' do
test.with AXIS_OF_WS
package(:war).with :libs=>projects('teh-api', 'teh-impl')

end

javadoc projects
package :javadoc

end

A project definition requires four pieces of information: the project name, group

identifier, version number and base directory. The project name … do we need to

explain why its necessary? The group identifier and version number are used for

packaging and deployment, we’ll talk more about that in the Packaging section. The

base directory lets you find files inside the project.

Everything else depends on what that particular project is building. And it all goes

inside the project definition block, the piece of code that comes between define <name>
.. do and end.

Order is important
When defining your project, the order in which you
place instructions matter.

For example, the project below will not pick up resources because they are defined after

the package instruction.

define 'testwar' do
project.version = 1.0
package(:war)
project.resources.from(_('src/main/java')).exclude('*.java')
end

Projects 27

The Directory Structure

Buildr follows a convention we picked from years of working with Apache projects.

Java projects are laid out so the source files are in the src/main/java directory and

compile into the target/classes directory. Resource files go in the src/main/resources
directory, and copied over to target/resources. Likewise, tests come from src/test/
java and src/test/resources, and end life in target/test/classes and target/test/
resources, respectively.

WAR packages pick up additional files from the aptly named src/main/webapp. And

most stuff, including generated source files are parked under the target directory. Test

cases and such may generate reports in the, you guessed it, reports directory.

Other languages will use different directories, but following the same general

conventions. For example, Scala code compiles from the src/main/scala directory,

RSpec tests are found in the src/test/rspec directory, and Flash will compile to target/
flash. Throughout this document we will show examples using mostly Java, but you

can imagine how this pattern applies to other languages.

When projects grow big, you split them into smaller projects by nesting projects inside

each other. Each sub-project has a sub-directory under the parent project and follows the

same internal directory structure. You can, of course, change all of that to suite your

needs, but if you follow these conventions, Buildr will figure all the paths for you.

Going back to the example above, the directory structure will look something like this:

28 Projects

Notice the buildfile at the top. That’s your project build script, the one Buildr runs.

Projects 29

When you run the buildr command, it picks up the buildfile (which here we’ll just call

Buildfile) from the current directory, or if not there, from the closest parent directory. So

you can run buildr from any directory inside your project, and it will always pick up the

same Buildfile. That also happens to be the base directory for the top project. If you have

any sub-projects, Buildr assumes they reflect sub-directories under their parent.

And yes, you can have two top projects in the same Buildfile. For example, you can use

that to have one project that groups all the application modules (JARs, WARs, etc) and

another project that groups all the distribution packages (binary, sources, javadocs).

When you start with a new project you won’t see the target or reports directories.

Buildr creates these when it needs to. Just know that they’re there.

Naming And Finding Projects

Each project has a given name, the first argument you pass when calling define. The

project name is just a string, but we advise to stay clear of colon (:) and slashes (/ and \),

which could conflict with other task and file names. Also, avoid using common Buildr

task names, don’t pick compile, build or any existing task name for your project name.

Since each project knows its parent project, child projects and siblings, you can reference

them from within the project using just the given name. In other cases, you’ll need to use

the full name. The full name is just parent:child. So if you wanted to refer to teh-impl,

you could do so with either project('killer-app:teh-impl') or project('killer-
app').project('teh-impl').

The project method is convenient when you have a dependency from one project to

another, e.g. using the other project in the classpath, or accessing one of its source files.

Call it with a project name and it will return that object or raise an error. You can also

call it with no arguments and it will return the project itself. It’s syntactic sugar that’s

useful when accessing project properties.

The projects method takes a list of names and returns a list of projects. If you call it with

no arguments on a project, it returns all its sub-projects. If you call it with no argument

in any other context, it returns all the projects defined so far.

30 Projects

Let’s illustrate this with a few examples:

puts projects.inspect
=> [project("killer-app"), project("killer-app:teh-api") ...]

puts project('killer-app').projects.inspect
=> [project("killer-app:teh-api"), project("killer-app:teh-impl") ...]

puts project('teh-api')
=> No such project teh-api

puts project('killer-app:teh-api').inspect
=> project("killer-app:teh-api")

puts project('killer-app').project('teh-api').inspect
=> project("killer-app:teh-api")

To see a list of all projects defined in your Buildfile run buildr help:projects.

Running Project Tasks

Most times, you run tasks like build or package that operate on the current project and

recursively on its sub-projects. The “current project” is the one that uses the current

working directory. So if you’re in the la-web/src directory looking at source files, la-web

is the current project. For example:

build killer-app and all its sub-projects
$ buildr build

switch to and test only teh-impl
$ cd teh-impl
$ buildr test

switch to and package only la-web
$ cd ../la-web
$ buildr package

Projects 31

You can use the project’s full name to invoke one of its tasks directly, and it doesn’t

matter which directory you’re in. For example:

build killer-app and all its sub-projects
$ buildr killer-app:build

test only teh-impl
$ buildr killer-app:teh-impl:test

package only la-web
$ buildr killer-app:la-web:package

Buildr provides the following tasks that you can run on the current project, or on a

specific project by prefixing them with the project’s full name:

clean # Clean files generated during a build
compile # Compile all projects
build # Build the project
upload # Upload packages created by the project
install # Install packages created by the project
javadoc # Create the Javadocs for this project
package # Create packages
test # Run all test cases
uninstall # Remove previously installed packages

To see a list of all the tasks provided by Buildr run buildr help:tasks.

Setting Project Properties

We mentioned the group identifier, version number and base directory. These are

project properties. There are a few more properties we’ll cover later on.

There are two ways to set project properties. You can pass them as a hash when you call

define, or use accessors to set them on the project directly. For example:

32 Projects

define 'silly', :version=>'1.0' do
project.group = 'acme'

end

puts project('silly').version
=> 1.0
puts project('silly').group
=> acme

Project properties are inherited. You can specify them once in the parent project, and

they’ll have the same value in all its sub-projects. In the example, we only specify the

version number once, for use in all sub-projects.

Resolving Paths

You can run buildr from any directory in your project. To keep tasks consistent and

happy, it switches over to the Buildfile directory and executes all the tasks from there,

before returning back to your working directory. Your tasks can all rely on relative paths

that start from the same directory as the Buildfile.

But in practice, you’ll want to use the path_to method. This method calculates a path

relative to the project, a better way if you ever need to refactor your code, say turn a ad

hoc task into a function you reuse.

The path_to method takes an array of strings and concatenates them into a path.

Absolute paths are returned as they are, relative paths are expanded relative to the

project’s base directory. Slashes, if you don’t already know, work very well on both

Windows, Linux and OS X. And as a shortcut, you can use _.

For example:

Projects 33

Relative to the current project
path_to('src', 'main', 'java')

the same using symbols
path_to(:src, :main, :java)

Exactly the same thing
_('src/main/java')

Relative to the teh-impl project
project('teh-impl')._('src/main/java')

Defining The Project

The project definition itself gives you a lot of pre-canned tasks to start with, but that’s

not enough to build a project. You need to specify what gets built and how, which

dependencies to use, the packages you want to create and so forth. You can configure

existing tasks, extend them to do additional work, and create new tasks. All that magic

happens inside the project definition block.

Since the project definition executes each time you run Buildr, you don’t want to

perform any work directly inside the project definition block. Rather, you want to use it

to specify how different build task work when you invoke them. Here’s an example to

illustrate the point:

define 'silly' do
puts 'Running buildr'

build do
puts 'Building silly'

end
end

34 Projects

Each time you run Buildr, it will execute the project definition and print out “Running

buildr”. We also extend the build task, and whenever we run it, it will print “Building

silly”. Incidentally, build is the default task, so if you run Buildr with no arguments, it

will print both messages while executing the build. If you run Buildr with a different

task, say clean, it will only print the first message.

The define method gathers the project definition, but does not execute it immediately. It

executes the project definition the first time you reference that project, directly or

indirectly, for example, by calling project with that project’s name, or calling projects
to return a list of all projects. Executing a project definition will also execute all its sub-

projects’ definitions. And, of course, all project definitions are executed once the

Buildfile loads, so Buildr can determine how to execute each of the build tasks.

If this sounds a bit complex, don’t worry. In reality, it does the right thing. A simple rule

to remember is that each project definition is executed before you need it, lazy

evaluation of sort. The reason we do that? So you can write projects that depend on each

other without worrying about their order.

In our example, the la-web project depends on packages created by the teh-api and teh-

impl projects, the later requiring teh-api to compile. That example is simple enough that

we ended up specifying the projects in order of dependency. But you don’t always want

to do that. For large projects, you may want to group sub-projects by logical units, or

sort them alphabetically for easier editing.

One project can reference another ahead of its definition. If Buildr detects a cyclic

dependency, it will let you know.

In this example we define one project in terms of another, using the same dependencies,

so we only need to specify them once:

define 'bar' do
compile.with project('foo').compile.dependencies

end

define 'foo' do
compile.with ..lots of stuff..

end

Projects 35

One last thing to remember. Actually three, but they all go hand in hand.

Self is project Each of these project definition blocks executes in the context of that

project, just as if it was a method defined on the project. So when you call the compile
method, you’re essentially calling that method on the current project: compile,

self.compile and project.compile are all the same.

Blocks are closures The project definition is also a closure, which can reference variables

from enclosing scopes. You can use that, for example, to define constants, variables and

even functions in your Buildfile, and reference them from your project definition. As

you’ll see later on, in the Artifacts section, it will save you a lot of work.

Projects are namespaces While executing the project definition, Buildr switches the

namespace to the project name. If you define the task “do-this” inside the teh-impl

project, the actual task name is “killer-app:teh-impl:do-this”. Likewise, the compile task

is actually “killer-app:teh-impl:compile”.

From outside the project you can reference a task by its full name, either task('foo:do')
or project('foo').task('do'). If you need to reference a task defined outside the

project from within the project, prefix it with “rake:”, for example,

task('rake:globally-defined').

Writing Your Own Tasks

Of all the features Buildr provide, it doesn’t have a task for making coffee. Yet. If you

need to write your own tasks, you get all the power of Rake: you can use regular tasks,

file tasks, task rules and even write your own custom task classes. Check out the Rake

documentation for more information.

We mentioned projects as namespaces before. When you call task on a project, it finds or

defines the task using the project namespace. So given a project object, task('do-this')
will return it’s “do-this” task. If you lookup the source code for the compile method,

you’ll find that it’s little more than a shortcut for task('compile').

36 Projects

http://docs.rubyrake.org/
http://docs.rubyrake.org/

Another shortcut is the file method. When you call file on a project, Buildr uses the

path_to method to expand relative paths using the project’s base directory. If you call

file('src') on teh-impl, it will return you a file task that points at the teh-impl/src
directory.

In the current implementation projects are also created as tasks, although you don’t

invoke these tasks directly. That’s the reason for not using a project name that conflicts

with an existing task name. If you do that, you’ll find quick enough, as the task will

execute each time you run Buildr.

So now that you know everything about projects and tasks, let’s go and build some

code.

Projects 37

Building

Compiling..38

Resources...42

More On Building ..44

Cleaning...46

Continuous Compilation ..47

To remove any confusion, Buildr’s build task is actually called build. It’s also the default

task that executes when you run buildr without any task name.

The build task runs two other tasks: compile and its associated tasks (that would be,

resources) and test and its associated tasks (test:compile, test:setup and friends).

We’ll talk about compile more in this section, and test later on. We’ll also show you

how to run build without testing, not something we recommend, but a necessary

feature.

Why build and not compile? Some projects do more than just compiling. Other projects

don’t compile at all, but perform other build tasks, for example, creating a database

schema or command line scripts. So we want you to get in the practice of running the

build task, and help you by making it the default task.

Compiling

Each project has its own compile task you can invoke directly, by running buildr
compile or as part of another build task. (Yes, that build).

The compile task looks for source files in well known directories, determines which

compiler to use, and sets the target directory accordingly. For example, if it finds any

Java source files in the src/main/java directory, it selects the Javac compiler and

generates bytecode in the target/classes directories. If it finds Scala source files in the

src/main/scala directory it selects the Scalac compiler, and so forth.

A single project cannot use multiple compilers at the same time, hence you may prefer

creating subprojects by programming language. Some compilers like Groovy’s are joint-

compilers, this means they can handle several languages. When the Groovy compiler is

selected for a project, .groovy and .java files are compiled by groovyc.

Most often, that’s just good enough and the only change you need to make is adding

compile dependencies. You can use compile.dependencies to get the array of

dependency file tasks. For Java, each of these tasks points to a JAR or a directory

containing Java classes, and the entire set of dependencies is passed to Javac as the

classpath.

Buildr uses file tasks to handle dependencies, but here we’re talking about the Rake

dependency mechanism. It’s a double entendre. It invokes these tasks before running the

compiler. Some of these tasks will download JARs from remote repositories, others will

create them by compiling and packaging from a different project. Using file task ensures

all the dependencies exist before the compiler can use them.

An easier way to specify dependencies is by calling the compile.with method. It takes a

list of arguments and adds them to the dependency list. The compile.with method is

easier to use, it accepts several type of dependencies. You can use file names, file tasks,

projects, artifacts specifications and even pass arrays of dependencies.

Most dependencies fall into the last three categories. When you pass a project to

compile.with, it picks up all the packages created by that project. In doing so, it

establishes an order of dependency between the two projects (see Defining the Project).

For example, if you make a change in project teh-api and build teh-impl, Buildr will detect

that change, recompile and package teh-api before compiling teh-impl. You can also select

a specific package using the project’s package or packages methods (see Packaging).

When you pass an artifact specification to compile.with, it creates an Artifact task that

will download that artifact from one of the remote repositories, install it in the local

repository, and use it in your project. Rake’s dependency mechanism is used here to

make sure the artifact is downloaded once, when needed. Check the Artifacts section for

more information about artifact specification and repositories.

For now let’s just show a simple example:

Building 39

compile.with 'org.apache.axis2:axis2:jar:1.2',
'org.apache.derby:derby:jar:10.1.2.1', projects('teh-api', 'teh-impl')

Passing arrays to compile.with is just a convenient for handling multiple dependencies,

we’ll show more examples of that when we talk about Artifacts.

Likewise, the compile task has an array of file tasks that point at the source directories

you want to compile from. You can access that array by calling compile.sources. You

can use compile.from to add new source directories by passing a file name or a file task.

For example, let’s run the APT tool on our annotated source code before compiling it:

compile.from apt

When you call apt on a project, it returns a file task that points to the target/generated/
apt directory. This file task executes by running APT, using the same list of source

directories, dependencies and compiler options. It then generates new source files in the

target directory. Calling compile.from with that file task includes those additional source

files in the list of compiled sources.

Here’s another example:

jjtree = jjtree(_('src/main/jjtree'), :in_package=>'com.acme')
compile.from javacc(jjtree, :in_package=>'com.acme'), jjtree

This time, the variable jjtree is a file task that reads a JJTree source file from the src/
main/jjtree directory, and generates additional source files in the target/generated/
jjtree directory. The second line creates another file task that takes those source files,

runs JavaCC on them, and generates yet more source files in target/generated/javacc.

Finally, we include both sets of source files in addition to those already in src/main/
java, and compile the lot.

The interesting thing about these two examples is how you’re wiring file tasks together

to create more complicated tasks, piping the output of one task into the inputs of

another. Wiring tasks this way is the most common way to handle complex builds, and

uses Rake’s dependency mechanism to only run tasks when it detects a change to one of

the source files.

40 Building

You can also control the target directory. Use compile.target to get the target directory

file task. If you need to change the target directory, call the compile.into method with

the new path.

We use method pairs to give you finer control over the compiler, but also a way to easily

configure it. Methods like dependencies and sources give you a live array you can

manipulate, or iterate over. On the other hand, methods like with and from accept a

wider set of arguments and clean them up for you. They also all return the same task

you’re calling, so you can chain methods together.

For example:

compile.from('srcs').with('org.apache.axis2:axis2:jar:1.2').
into('classes').using(:target=>'1.4')

Buildr uses the method pair and method chaining idiom in many places to make your

life easier without sacrificing flexibility.

Occasionally, you’ll need to post-process the generated bytecode. Since you only want to

do that after compiling, and let the compiler decide when to do that – only when

changes require re-compiling – you’ll want to extend the compile task. You can do that

by calling compile with a block.

For example, to run the OpenJPA bytecode enhancer after compiling the source files:

compile { open_jpa_enhance }

You can change various compile options by calling, you guessed, compile.options. For

example, to set the compiler to VM compatibility with Java 1.5 and turn on all Lint

messages:

compile.options.target = '1.5'
compile.options.lint = 'all'

Or, if you want to chain methods together:

compile.using :target=>'1.5', :lint=>'all'

Building 41

Sub-projects inherit compile options from their parent project, so you only need to

change these settings once in the top project. You can do so, even if the top project itself

doesn’t compile anything.

The options available to you depend on which compiler you are using for this particular

project, obviously the options are not the same for Java and Flash. Two options are

designed to work consistently across compilers.

Buildr turns the warning option on by default, but turns it off when you run buildr --
silent. It also sets the debug option on, but turns it off when making a release. You can

also control the debug option from the command line, for example:

When calling buildr
$ buildr compile debug=off

Once until we change the variable
$ export DEBUG=off
$ buildr compile

The default source and target directories, compiler settings and other options you can

use depend on the specific language. You can find more information in the Languages

section.

Resources

The compile task comes bundled with a resources task. It copies files from the src/main/
resources directory into target/resources. Best used for copying files that you want to

include in the generated code, like configuration files, i18n messages, images, etc.

The resources task uses a filter that can change files as it copies them from source to

destination. The most common use is by mapping values using a hash. For example, to

substitute “${version}” for the project’s version number and “${copyright}” for “Acme

Inc © 2007” :

resources.filter.using 'version'=>version,
'copyright'=>'Acme Inc (C) 2007'

42 Building

You can also use profiles to supply a name/value map that all resources task should

default to, by adding a filter element to each of the profiles. The following examples

shows a profiles.yaml file that applies the same filter in development and test

environments:

filter: &alpha1
version: experimental
copyright: Acme Inc (C) 2007

development:
filter: *alpha1

test:
filter: *alpha1

You can specify a different format by passing it as the first argument. Supported formats

include:

Format Usage

:ant Map from @key@ to value.

:maven Map from ${key} to value (default).

:ruby Map from #{key} to value.

:erb Map from <%=key%> to value.

Regexp Map using the matched value of the regular expression (e.g. /=(.*?)=/).

For example, using the :ruby format instead of the default :maven format:

resources.filter.using :ruby, 'version'=>version,
'copyright'=>'Acme Inc (C) 2007'

For more complicated mapping you can also pass a method or a proc. The filter will call

it once for each file with the file name and content.

If you need to copy resource files from other directories, add these source directories by

calling the from method, for example:

Building 43

resources.from _('src/etc')

You can select to copy only specific files using common file matching patterns. For

example, to include only HTML files:

resources.include '*.html'

To include all files, except for files in the scratch directory:

resources.exclude 'scratch/*'

The filter always excludes the CVS and .svn directories, and all files ending with .bak or

~, so no need to worry about these.

A file pattern can match any file name or part of a file name using an asterisk (*). Double

asterisk (**) matches directories recursively, for example, 'src/main/java/**/*.java'.

You can match any character using a question mark (?), or a set of characters using

square brackets ([]), similar to regular expressions, for example, '[Rr]eadme'. You can

also match from a set of names using curly braces ({}), for example, '*.{html,css}'.

You can use filters elsewhere. The filter method creates a filter, the into method sets

the target directory, and using specifies the mapping. Last, you call run on the filter to

activate it.

For example:

filter('src/specs').into('target/specs').
using('version'=>version, 'created'=>Time.now).run

The resources task is, in fact, just a wrapper around such a filter that automatically adds

the src/main/resources directory as one of the source directories.

More On Building

The build task runs the compile (and resources) tasks as prerequisites, followed by any

actions you add to it, and completes by running the test task. The build task itself is a

prerequisite to other tasks, for example, package and upload.

44 Building

You can extend the build task in two ways. You can add more prerequisites that will

execute before the task itself, or you can add actions that will execute as part of the task.

Which one you choose is up to you, we’ll show you how they differ in a second. If you

call build with a list of tasks, it adds these tasks as prerequisites. Call build with a block,

and it adds that block as an action. Again, a common idiom you’ll see elsewhere in

Buildr and Rake.

Let’s look at a simple example. Say we want to generate a Derby database from an SQL

file and include it in the ZIP package:

db = Derby.create(_('target/derby/db')=>_('src/main/sql/derby.sql'))
package(:zip).include db

There’s nothing fundamentally wrong with this code, if that’s what you intend to do.

But in practice, you don’t always run the package task during development, so you

won’t notice if something is wrong with this task when you build. For example, if it fails

to generate the SQL file. In addition, the package task runs after build, so you can’t use

the database in your test cases.

So let’s refactor it. We’re going to use the variable db to reference the file task that creates

the database, and make it a prerequisite of the build task. And use that same variable

again to include the database in the ZIP package:

db = Derby.create(_('target/derby/db')=>_('src/main/sql/derby.sql'))
build db
package(:zip).include db

Much better. We’re using the same task twice, but since we’re using Rake here, it will

only execute once. In fact, it will only execute if we don’t already have a Derby database,

or if it detects a change to the SQL file and needs to recreate the database.

Derby.create is not part of Buildr, you can get derby.rake here.

Here’s another example. We want to copy some files over as part of the build, and apply

a filter to them. This time, we’re going to extend the build task:

Building 45

http://svn.apache.org/repos/asf/ode/trunk/tasks/derby.rake

build do
filter('src/specs').into('target/specs').

using('version'=>version, 'created'=>Time.now).run
end

The build task is recursive, so running buildr build picks the current project and runs

its build task, which in turn runs the build task on each of its sub-projects. One build
task to rule them all.

Cleaning

The build task has an evil twin, the clean task. It’s the task you use to remove all the

files created during the build, especially when you mess things up and want to start all

over.

It basically erases the target directories, the one called target, and if you get creative and

change the target directory for tasks like compile, it will also erase those. If you decide to

generate files outside the target directory and want to cleanup after yourself, just extend

the clean task.

For example:

clean { rm_rf _('staged') }

The rm_rf method deletes the directory and all files in it. It’s named after UNIX’s

infamous rm -rf. Use it wisely. This is also a good time to introduce you to FileUtils, a

standard Ruby library that contains convenient methods for creating and deleting

directories, copying and moving files, even comparing two files. They’re all free of

charge when you use Buildr.

46 Building

Continuous Compilation

And if all that weren’t enough, Buildr also offers a time-saving feature called continuous

compilation. This feature, implemented by the cc task, instructs Buildr to loop eternally,

polling your project’s source directories for changes. Whenever a change is detected,

Buildr immediately triggers the appropriate compilation step and goes right back to

polling. This allows you to reap many of the benefits of an incrementally compiling IDE

like Eclipse without sacrificing your favorite build tool.

To get started, simply invoke the cc task at the command prompt:

$ buildr cc

This task will immediately invoke the compile and test:compile tasks on your project if

necessary. This ensures that your build is completely up to the minute before polling is

initiated. After this initial build (if required), Buildr will print a notification indicating

which directories are being monitored. By default, these directories will include any

source folders (e.g. src/main/java/), any test directories (e.g. src/spec/scala/) as well as

any resources (e.g. @src/main/resources/). The Buildr process will remain running

during this time, meaning that in order to test this functionality, we will need to open a

new shell:

$ touch src/main/java/Test.java

The moment we run this command, Buildr will detect the change and invoke the

compile task. It will not invoke the test:compile task, since none of the test files were

actually changed. This ensures that potentially time-consuming tasks are avoided if

possible. Note that, unlike the build task, the continuous compilation also does not

actually run any of your tests. Continuous compilation is designed to be a simple

daemon which runs forever, quickly recompiling your project as soon as you save or

delete a file. We can terminate the continuous compilation task by pressing Ctrl-C. Left

to its own devices, the cc task really will loop forever.

Building 47

There are several advantages to continuous compilation. Number one is convenience.

Once you invoke the cc task, you can focus exclusively on the code, editing and saving

your files in an unbroken workflow. There is no need to break your concentration to

invoke Buildr manually unless you need to run the test suite, deploy the application or

anything beyond compilation. The second advantage is speed. By using the continuous

compilation process, you avoid repeatedly incurring Buildr’s startup overhead. While

this startup time is kept to a minimum, it is still perceptable, particularly when running

on JRuby. Since the cc task runs within a Buildr instance which has already been started,

there is no need for repeated, inefficient load times. Again, this allows you to focus more

completely on what’s really important: the code.

By default, the cc task will poll your sources once every 200 milliseconds. We have

found that this frequency strikes a nice balance between CPU load (which is

insignificant) and nearly-instant detection. However, you may wish to tune this value

based on your own needs. To do so, simply use the cc.frequency property in your

project definition:

project 'foo' do
cc.frequency 1.5 # poll every one-and-a-half seconds

end

If you find that the 200 ms default imposes too much overhead, try changing

cc.frequency to a higher value. On the flip side, if you find that you’re waiting too long

for changes to be caught by the poll, tune the frequency lower.

Now let’s talk about the artifacts we mentioned before.

48 Building

Artifacts

Specifying Artifacts..50

Specifying Repositories ...52

Downloading Artifacts..53

Install and Upload ...56

In Buildr, almost everything is a file or a file task. You compile source files that come

from the file system using dependencies found on the file system, generating even more

files. But how do you get these dependencies to start with, and how do you share them

with others?

Artifacts. We designed Buildr to work as a drop-in replacement for Maven 2.0, and share

artifacts through the same local and remote repositories. Artifact tasks know how to

download a file from one of the remote repositories, and install it in the local repository,

where Buildr can find it. Packages know how to create files and upload them to remote

repositories.

We’ll get into all of that in a second, but first, let’s introduce the artifact specification. It’s

a simple string that takes one of two forms:

group:id:type:version
group:id:type:classifier:version

For example, 'org.apache.axis2:axis2:jar:1.2' refers to an artifact with group

identifier org.apache.axis2, artifact identifier axis2, a JAR file with version 1.2. Classifiers

are typically used to distinguish between similar file types, for example, a source

distribution and a binary distribution that otherwise have the same identifier and are

both ZIP files.

Specifying Artifacts

If your Buildfile spells out 'org.apache.axis2:axis2:jar:1.2' more than once, you’re

doing something wrong. Repeating the same string over and over will make your code

harder to maintain. You’ll know that when you upgrade to a new version in one place,

forget to do it in another, and end up with a mismatch.

You can use Ruby’s syntax to do simple string substitution, for example:

AXIS_VERSION = '1.2'

compile.with "org.apache.axis2:axis2:jar:#{AXIS_VERSION}"

Better yet, you can define all your artifacts at the top of the Buildfile and use constants to

reference them in your project definition. For example:

AXIS2 = 'org.apache.axis2:axis2:jar:1.2'

compile.with AXIS2

Note that we’re not using a separate constant for the version number. In our experience,

it’s unnecessary. The version number intentionally appears at the end of the string,

where it stands out easily.

If you have a set of artifacts that belong to the same group and version, and that’s quite

common, you can use the group shortcut:

AXIOM = group('axiom-api', 'axiom-impl', 'axiom-dom',
:under=>'org.apache.ws.commons.axiom', :version=>'1.2.4')

Buildr projects also define a group attribute which can lead to some confusion.

If you want to define an artifact group within a project definition, you should

use the explicit qualifier Buildr::group.

If you have several artifacts you always use together, consider placing them in an array.

Methods that accept lists of artifacts also accept arrays. For example:

50 Artifacts

OPENJPA = ['org.apache.openjpa:openjpa:jar:1.2.1',
'net.sourceforge.serp:serp:jar:1.12.0']

AXIS_OF_WS = [AXIS2, AXIOM]

compile.with OPENJPA, AXIS_OF_WS

Another way to group related artifacts together and access them individually is using

the struct shortcut. For example:

JAVAX = struct(
:activation =>'javax.activation:activation:jar:1.1',
:persistence =>'javax.persistence:persistence-api:jar:1.0',
:stream =>'stax:stax-api:jar:1.0.1',

)

compile.with JAVAX.persistence, OPENJPA

In our experience, using constants in this manner makes your Buildfile much easier to

write and maintain.

And, of course, you can always place your artifact specifications in a separate file and

require it into your Buildfile. For example, if you’re working on several different projects

that all share the same artifacts:

require '../shared/artifacts'

When you use require, Ruby always looks for a filename with the .rb extension, so in

this case it expects to find artifacts.rb in the shared directory.

One last thing. You can also treat artifact specifications as hashes. For example:

AXIS = { :group=>'org.apache.axis2', :id=>'axis2', :version=>'1.2' }
compile.with AXIS
puts compile.dependencies.first.to_hash
=> { :group=>'org.apache.axis2', :id=>'axis2',

:version=>'1.2', :type=>:jar }

Artifacts 51

Specifying Repositories

Buildr can download artifacts for you, but only if you tell it where to find them. You

need to specify at least one remote repository, from which to download these artifacts.

When you call repositories.remote, you get an array of URLs for the various remote

repositories. Initially, it’s an empty array, to which you can add new repositories. For

example:

repositories.remote << 'http://www.ibiblio.org/maven2/'

If your repository requires HTTP authentication, you can write,

repositories.remote <<
URI.parse("http://user:password@repository.example.com")

or

repositories.remote << { :url => "http://repository.example.com", :user =>
"user", :pass => "password" }

If you need to use a proxy server to access remote repositories, you can set the

environment variable HTTP_PROXY to the proxy server URL (use HTTPS_PROXY for proxying

HTTPS connections). You can also work without a proxy for certain hosts by specifying

the NO_PROXY environment variable. For example:

$ export HTTP_PROXY = 'http://myproxy:8080'
$ export NO_PROXY = '*.mycompany.com,localhost,special:800'

Alternatively you can use the Buildr options proxy.http and proxy.exclude:

options.proxy.http = 'http://myproxy:8080'
options.proxy.exclude << '*.mycompany.com'
options.proxy.exclude << 'localhost'

52 Artifacts

All the artifacts download into the local repository. Since all your projects share the

same local repository, you only need to download each artifact once. Buildr was

designed to be used alongside Maven 2.0, for example, when migrating projects from

Maven 2.0 over to Buildr. By default it will share the same local repository, expecting the

repository to be the .m2/repository directory inside your home directory.

You can choose to relocate the local repository by giving it a different path, for example:

repositories.local = '/usr/local/maven/repository'

That’s one change you don’t want to commit into the Buildfile, so the best place to do it

is in the buildr.rb file in the .buildr directory under your home directory.

Buildr downloads artifacts when it needs to use them, for example, to compile a project.

You don’t need to download artifacts directly. Except when you do, for example, if you

want to download all the latest artifacts and then go off-line. It’s as simple as:

$ buildr artifacts

Mirrors

You can specify mirrors to override remote repositories. This is useful when you use a

Nexus proxy or Artifactory, for example.

You can use the same syntax as repositories.remote, for example:

repositories.mirrors << 'http://corporateserver001.com/repository'

This is even more useful when you place this in your user settings.

See the Settings/Profiles section.

Downloading Artifacts

Within your buildfile you can download artifacts directly by invoking them, for

example:

Artifacts 53

/settings_profiles.html

artifact('org.apache.openjpa:openjpa:jar:1.2.1').invoke
artifacts(OPENJPA).each(&:invoke)

When you let Buildr download artifacts for you, or by invoking the artifact task yourself,

it scans through the remote repositories assuming each repository follows the Maven 2

structure. Starting from the root repository URL, it will look for each artifact using the

path group/id/version/id-version.type (or …/id-version-classifier.type). The

group identifier becomes a path by turning periods (.) into slashes (/). So to find

org.apache.axis2:axis2:jar:1.2, we’re going to look for org/apache/axis2/axis2/1.2/
axis2-1.2.jar.

You’ll find a lot of open source Java libraries in public repositories that support this

structure (for example, the Ibiblio Maven repository). And, of course, every remote

repository you setup for your projects.

But there are exceptions to the rule. Say we want to download the Dojo widget library

and use it in our project. It’s available from the Dojo Web site, but that site doesn’t

follow the Maven repository conventions, so our feeble attempt to use existing remote

repositories will fail.

We can still treat Dojo as an artifact, by telling Buildr where to download it from:

DOJO = '0.2.2'

url = "http://download.dojotoolkit.org/
release-#{DOJO}/dojo-#{DOJO}-widget.zip"
download(artifact("dojo:dojo:zip:widget:#{DOJO}")=>url)

Explaining how it works is tricky, skip if you don’t care for the details. On the other

hand, it will give you a better understanding of Buildr/Rake, so if not now, come back

and read it later.

We use the artifact method to create an Artifact task that references the Dojo widget

in our local repository. The Artifact task is a file task with some additional behavior

added by Buildr. When you call compile.with, that’s exactly what it does internally,

turning each of your artifact specifications into an Artifact task.

54 Artifacts

http://www.ibiblio.org/maven2/

But the Artifact task doesn’t know how to download the Dojo widget, only how to

handle conventional repositories. So we’re going to create a download task as well. We

use the download method to create a file task that downloads the file from a remote URL.

(Of course, it will only download the file if it doesn’t already exist.)

But which task gets used when? We could have defined these tasks separately and used

some glue code to make one use the other. Instead, we call download with the results of

artifact. Essentially, we’re telling download to use the same file path as artifact. So

now we have two file tasks that point to the very same file. We wired them together.

You can’t have more than one task pointing to the same file. Rake’s rule of the road.

What Rake does is merge the tasks together, creating a single file task for artifact, and

then enhancing it with another action from download. One task, two actions. Statistically,

we’ve doubled the odds that at least one of these actions will manage to download the

Dojo widget and install it in the local repository.

Since we ordered the calls to artifact first and download second, we know the actions

will execute in that order. But artifact is slightly devilish: when its action runs, it adds

another action to the end of the list. So the artifact action runs first, adds an action at

the end, the download action runs second, and downloads the Dojo widget for us. The

second artifact action runs last, but checks that the file already exist and doesn’t try to

download it again.

Magic.

SSL and Self-signed certificates

There’s always that Maven repository you learnt to hate, because it’s using a faulty SSL

certificate, or a self-signed one.

On top of installing that certificate everywhere, it’s messing with your build!

To get out of there, you can use the environment variable SSL_CA_CERTS to point at a

folder containing your certificates.

For example:

Artifacts 55

export SSL_CA_CERTS=/Users/john/certs
buildr package

You can also change the OpenSSL verify mode so it won’t barf on your certificate. Use

the environment variable SSL_VERIFY_MODE to specify one of the following: VERIFY_NONE,

VERIFY_PEER, VERIFY_CLIENT_ONCE, VERIFY_FAIL_IF_NO_PEER_CERT. See OpenSSL::SSL for

more info.

For example:

Don't verify certificates
export SSL_VERIFY_MODE=VERIFY_NONE
buildr package

Install and Upload

Generally you use artifacts that download from remote repositories into the local

repository, or artifacts packaged by the project itself (see Packaging), which are then

installed into the local repository and uploaded to the release server.

Some artifacts do not fall into either category. In this example we’re going to download

a ZIP file, extract a JAR file from it, and use that JAR file as an artifact. We would then

expect to install this JAR in the local repository and upload it to the release server, where

it can be shared with other projects.

So let’s start by creating a task that downloads the ZIP, and another one to extract it and

create the JAR file:

app_zip = download('target/app.zip'=>url)
bean_jar = file('target/app/bean.jar'=>unzip('target/app'=>app_zip))

When you call artifact, it returns an Artifact task that points to the artifact file in the

local repository, downloading the file if it doesn’t already exist. You can override this

behavior by enhancing the task and creating the file yourself (you may also want to

create a POM file). Or much simpler, call the from method on the artifact and tell it

where to find the source file.

56 Artifacts

So the next step is to specify the artifact and tell it to use the extracted JAR file:

bean = artifact('example.com:beans:jar:1.0').from(bean_jar)

The artifact still points to the local repository, but when we invoke the task it copies the

source file over to the local repository, instead of attempting a download.

Use the install method if you want the artifact and its POM installed in the local

repository when you run the install task. Likewise, use the upload method if you want

the artifact uploaded to the release server when you run the upload task. You do not

need to do this on artifacts downloaded from a remote server, or created with the

package method, the later are automatically added to the list of installed/uploaded

artifacts.

Our example ends by including the artifact in the install and upload tasks:

install bean
upload bean

Calling the install (and likewise upload) method on an artifact run buildr
install. If you need to download and install an artifact, invoke the task

directly with install(<artifact>).invoke.

We’ll talk more about installing and uploading in the next chapter, but right now we’re

going to package some artifacts.

Artifacts 57

Packaging

Specifying And Referencing Packages..59

Packaging ZIPs ...61

Packaging JARs ..63

Packaging WARs..64

Packaging AARs...66

Packaging EARs ...67

Packaging OSGi Bundles ..70

Packaging Tars and GZipped Tars..76

Installing and Uploading ..77

Packaging Sources and JavaDocs ..79

For our next trick, we’re going to try and create an artifact ourselves. We’re going to

start with:

package :jar

We just told the project to create a JAR file in the target directory, including all the

classes (and resources) that we previously compiled into target/classes. Or we can

create a WAR file:

package :war

The easy case is always easy, but sometimes we have more complicated use cases which

we’ll address through the rest of this section.

Now let’s run the build, test cases and create these packages:

$ buildr package

The package task runs the build task (remember: compile and test) and then runs each

of the packaging tasks, creating packages in the projects’ target directories.

The package task and package methods are related, but that relation is different

from other task/method pairs. The package method creates a file task that

points to the package in the target directory and knows how to create it. It then

adds itself as a prerequisite to the package task. Translation: you can create

multiple packages from the same project.

Specifying And Referencing Packages

Buildr supports several packaging types, and so when dealing with packages, you have

to indicate the desired package type. The packaging type can be the first argument, or

the value of the :type argument. The following two are equivalent:

package :jar
package :type=>:jar

If you do not specify a package type, Buildr will attempt to infer one.

In the documentation you will find a number of tasks dealing with specific packaging

types (ZipTask, JarTask, etc). The package method is a convenience mechanism that sets

up the package for you associates it with various project life cycle tasks.

To package a particular file, use the :file argument, for example:

package :zip, :file=>_('target/interesting.zip')

This returns a file task that will run as part of the project’s package task (generating all

packages). It will invoke the build task to generate any necessary prerequisites, before

creating the specified file.

The package type does not have to be the same as the file name extension, but if you

don’t specify the package type, it will be inferred from the extension.

Packaging 59

Most often you will want to use the second form to generate packages that are also

artifacts. These packages have an artifact specification, which you can use to reference

them from other projects (and buildfiles). They are also easier to share across projects:

artifacts install themselves in the local repository when running the install task, and

upload to the remote repository when running the upload task (see Installing and

Uploading).

The artifact specification is based on the project name (using dashes instead of colons),

group identifier and version number, all three obtained from the project definition. You

can specify different values using the :id, :group, :version and :classifier arguments.

For example:

define 'killer-app', :version=>'1.0' do
Generates silly-1.0.jar
package :jar, :id=>'silly'

Generates killer-app-la-web-1.x.war
project 'la-web' do

package :war, :version=>'1.x'
end

Generates killer-app-the-api-1.0-sources.zip
project 'teh-api' do

package :zip, :classifier=>'sources'
end

end

The file name is determined from the identifier, version number, classifier and extension

associated with that packaging type.

If you do not specify the packaging type, Buildr attempt to infer it from the project

definition. In the general case it will use the default packaging type, ZIP. A project that

compiles Java classes will default to JAR packaging; for other languages, consult the

specific documentation.

60 Packaging

A single project can create multiple packages. For example, a Java project may generate

a JAR package for the runtime library and another JAR containing just the API; a ZIP file

for the source code and another ZIP for the documentation. Make sure to always call

package with enough information to identify the specific package you are referencing.

Even if the project only defines a single package, calling the package method with no

arguments does not necessarily refer to that one.

You can use the packages method to obtain a list of all packages defined in the project,

for example:

project('killer-app:teh-impl').packages.first
project('killer-app:teh-impl').packages.select { |pkg| pkg.type == :zip }

Packaging ZIPs

ZIP is the most common form of packaging, used by default when no other packaging

type applies. It also forms the basis for many other packaging types (e.g. JAR and WAR).

Most of what you’ll find here applies to other packaging types.

Let’s start by including additional files in the ZIP package. We’re going to include the

target/docs directory and README file:

package(:zip).include _('target/docs'), 'README'

The include method accepts files, directories and file tasks. You can also use file pattern

to match multiple files and directories. File patterns include asterisk (*) to match any file

name or part of a file name, double asterisk (**) to match directories recursively,

question mark (?) to match any character, square braces ([]) to match a set of characters,

and curly braces ({}) to match one of several names.

And the same way you include, you can also exclude specific files you don’t want

showing up in the ZIP. For example, to exclude .draft and .raw files:

package(:zip).include(_('target/docs')).exclude('*.draft', '*.raw')

So far we’ve included files under the root of the ZIP. Let’s include some files under a

given path using the :path option:

Packaging 61

package(:zip).include _('target/docs'), :path=>"#{id}-#{version}"

If you need to use the :path option repeatedly, consider using the tap method instead.

For example:

package(:zip).path("#{id}-#{version}").tap do |path|
path.include _('target/docs')
path.include _('README')

end

The tap method is not part of the core library, but a very useful extension. It

takes an object, yields to the block with that object, and then returns that object.

To allow you to spread files across different paths, the include/exclude

patterns are specific to a path. So in the above example, if you want to exclude

some files from the “target/docs” directory, make sure to call exclude on the

path, not on the ZIP task itself.

If you need to include a file or directory under a different name, use the :as option. For

example:

package(:zip).include(_('corporate-logo-350x240.png'), :as=>'logo.png')

You can also use :as=>'.' to include all files from the given directory. For example:

package(:zip).include _('target/docs/*')
package(:zip).include _('target/docs'), :as=>'.'

These two perform identically. They both include all the files from the target/docs
directory, but not the directory itself, and they are both lazy, meaning that the files can

be created later and they will still get packaged into the zip package.

62 Packaging

For example, when you use package :jar, under the hood it specifies to include all the

files from target/classes with :as=>'.'. Even though this happens during project

definition and nothing has been compiled yet (and in fact target/classes may not even

exist yet), the .class files generated during compilation are still packaged in the .jar file,

as expected.

If you need to get rid of all the included files, call the clean method. Some packaging

types default to adding various files and directories, for example, JAR packaging will

include all the compiled classes and resources.

You can also merge two ZIP files together, expanding the content of one ZIP into the

other. For example:

package(:zip).merge _('part1.zip'), _('part2.zip')

If you need to be more selective, you can apply the include/exclude pattern to the

expanded ZIP. For example:

Everything but the libs
package(:zip).merge(_('bigbad.war')).exclude('libs/**/*')

Packaging JARs

JAR packages extend ZIP packages with support for Manifest files and the META-INF

directory. They also default to include the class files found in the target/classes
directory.

You can tell the JAR package to include a particular Manifest file:

package(:jar).with :manifest=>_('src/main/MANIFEST.MF')

Or generate a manifest from a hash:

package(:jar).with :manifest=>{ 'Copyright'=>'Acme Inc (C) 2007' }

You can also generate a JAR with no manifest with the value false, create a manifest

with several sections using an array of hashes, or create it from a proc.

Packaging 63

In large projects, where all the packages use the same manifest, it’s easier to set it once

on the top project using the manifest project property. Sub-projects inherit the property

from their parents, and the package method uses that property if you don’t override it, as

we do above.

For example, we can get the same result by specifying this at the top project:

manifest['Copyright'] = 'Acme Inc (C) 2007'

If you need to mix-in the project’s manifest with values that only one package uses, you

can do so easily:

package(:jar).with :manifest=>manifest.merge('Main-Class'=>'com.acme.Main')

If you need to include more files in the META-INF directory, you can use the :meta_inf
option. You can give it a file, or array of files. And yes, there is a meta_inf project

property you can set once to include the same set of file in all the JARs. It works like this:

meta_inf << file('DISCLAIMER') << file('NOTICE')

If you have a LICENSE file, it’s already included in the meta_inf list of files.

Other than that, package :jar includes the contents of the compiler’s target directory

and resources, which most often is exactly what you intend it to do. If you want to

include other files in the JAR, instead or in addition, you can do so using the include
and exclude methods. If you do not want the target directory included in your JAR,

simply call the clean method on it:

package(:jar).clean.include(only_these_files)

Packaging WARs

Pretty much everything you know about JARs works the same way for WARs, so let’s

just look at the differences.

64 Packaging

Without much prompting, package :war picks the contents of the src/main/webapp
directory and places it at the root of the WAR, copies the compiler target directory into

the WEB-INF/classes path, and copies any compiled dependencies into the WEB-INF/libs
paths.

Again, you can use the include and exclude methods to change the contents of the

WAR. There are two convenience options you can use to make the more common

changes. If you need to include a classes directory other than the default:

package(:war).with :classes=>_('target/additional')

If you want to include a different set of libraries other than the default:

package(:war).with :libs=>MYSQL_JDBC

Both options accept a single value or an array. The :classes option accepts the name of

a directory containing class files, initially set to compile.target and resources.target.

The :libs option accepts artifact specifications, file names and tasks, initially set to

include everything in compile.dependencies.

As you can guess, the package task has two attributes called classes and libs; the with
method merely sets their value. If you need more precise control over these arrays, you

can always work with them directly, for example:

Add an artifact to the existing set:
package(:war).libs += artifacts(MYSQL_JDBC)
Remove an artifact from the existing set:
package(:war).libs -= artifacts(LOG4J)
List all the artifacts:
puts 'Artifacts included in WAR package:'
puts package(:war).libs.map(&:to_spec)

Packaging 65

Compiling Assets

In modern web applications, it is common to use tools that compile and compress assets.

i.e. Coffeescript is compiled into javascript and Sass compiles into CSS. Buildr provides

support using a simple assets abstraction. Directory or file tasks can be added to the

assets.paths configuration variable for a project and the contents will be included in the

package.

Integrating CoffeeScript

target_dir = _(:target, :generated, "coffee/main/webapp")
source_dir = _(:source, :main, :coffee)

assets.paths << file(target_dir => [FileList["#{source_dir}/**/*.coffee"]]) do
puts "Compiling coffeescript"
sh "coffee --bare --compile --output #{target_dir} #{source_dir}"
touch target_dir

end

Integrating Sass

target_dir = _(:target, :generated, "sass/main/webapp")
source_dir = _(:source, :main, :sass)

assets.paths << file(target_dir => [FileList["#{source_dir}/**/*.scss"]]) do
puts "Compiling scss"
sh "scss -q --update #{source_dir}:#{target_dir}"
touch target_dir

end

Packaging AARs

Axis2 service archives are similar to JAR’s (compiled classes go into the root of the

archive) but they can embed additional libraries under /lib and include services.xml
and WSDL files.

66 Packaging

http://coffeescript.org/
http://sass-lang.com/

package(:aar).with(:libs=>'log4j:log4j:jar:1.1')
package(:aar).with(:services_xml=>_('target/services.xml'),

:wsdls=>_('target/*.wsdl'))

The libs attribute is a list of .jar artifacts to be included in the archive under /lib. The

default is no artifacts; compile dependencies are not included by default.

The services_xml attribute points to an Axis2 services configuration file called

services.xml that will be placed in the META-INF directory inside the archive. The default

behavior is to point to the services.xml file in the project’s src/main/axis2 directory. In

the second example above we set it explicitly.

The wsdls attribute is a collection of file names or glob patterns for WSDL files that get

included in the META-INF directory. In the second example we include WSDL files from

the target directory, presumably created by an earlier build task. In addition, AAR

packaging will include all files ending with .wsdl from the src/main/axis2 directory.

If you already have WSDL files in the src/main/axis2 directory but would like to

perform some filtering, for example, to set the HTTP port number, consider ignoring the

originals and including only the filtered files, for example:

Host name depends on environment.
host = ENV['ENV'] == 'test' ? 'test.host' : 'ws.example.com'
filter.from(_('src/main/axis2')).into(_(:target)).

include('services.xml', '==*==.wsdl').using('http_port'=>'8080',
'http_host'=>host)

package(:aar).wsdls.clear
package(:aar).with(:services_xml=>_('target/services.xml'),

:wsdls=>_('target/==*==.wsdl'))

Packaging EARs

EAR packaging is slightly different from JAR/WAR packaging. It’s main purpose is to

package components together, and so it includes special methods for handling

component inclusion that take care to update application.xml and the component’s

classpath.

Packaging 67

EAR packages support four component types:

Argument Component

:war J2EE Web Application (WAR).

:ejb Enterprise Java Bean (JAR).

:jar J2EE Application Client (JAR).

:lib Shared library (JAR).

This example shows two ways for adding components built by other projects:

package(:ear) << project('coolWebService').package(:war)
package(:ear).add project('commonLib') # By default, the JAR package

Adding a WAR package assumes it’s a WAR component and treats it as such, but JAR

packages can be any of three component types, so by default they are all treated as

shared libraries. If you want to add an EJB or Application Client component, you need

to say so explicitly, either passing :type=>package, or by passing the component type in

the :type option.

Here are three examples:

Assumed to be a shared library.
package(:ear).add 'org.springframework:spring:jar:2.6'
Component type mapped to package.
package(:ear).add :ejb=>project('beanery')
Adding component with specific package type.
package(:ear).add project('client'), :type=>:jar

By default, WAR components are all added under the /war path, and likewise, EJB

components are added under the /ejb path, shared libraries under /lib and Application

Client components under /jar.

If you want to place components in different locations you can do so using the :path
option, or by specifying a different mapping between component types and their

destination directory. The following two examples are equivalent:

68 Packaging

Specify once per component.
package(:ear).add project('coolWebService').package(:war),
:path=>'coolServices'
Configure once and apply to all added components.
package(:ear).dirs[:war] = 'coolServices'
package(:ear) << project('coolWebService').package(:war)

EAR packages include an application.xml file in the META-INF directory that describes

the application and its components. This file is created for you during packaging, by

referencing all the components added to the EAR. There are a couple of things you will

typically want to change.

• display-name — The application’s display name defaults to the project’s

identifier. You can change that by setting the display_name attribute.

• description — The application’s description defaults to the project’s comment.

You can change that by setting the description attribute.

• context-root — WAR components specify a context root, based on the package

identifier, for example, “cool-web-1.0.war” will have the context root “cool-

web”. To specify a different context root, add the WAR package with the

context_root option.

Again, by example:

package(:ear).display_name = 'MyCoolWebService'
package(:ear).description = 'MyCoolWebService: Making coolness kool again'
package(:ear).add project('coolWebService').package(:war),
:context_root=>'coolness'

If you need to disable the context root (e.g. for Portlets), set context_root to false.

It is also possible to add security-role tags to the application.xml file by appending a

hash with :id, :description and :name to the security_role array, like so:

Packaging 69

package(:ear).security_roles << {:id=>'SecurityRole_123',
:description=>'Read only user', :name=>'coolUser'}

package(:ear).security_roles << {:id=>'SecurityRole_456',
:description=>'Super user', :name=>'superCoolUser'}

Packaging OSGi Bundles

OSGi bundles are jar files with additional metadata stored in the manifest. Buildr uses

an external tool Bnd to create the package. Directives and properties can be explicitly

passed to the build tool and buildr will provide reasonable defaults for properties that

can be derived from the project model. Please see the bnd tool for documentation on the

available properties.

The bundle packaging format is included as an addon so the build file must explicitly

require the addon using using require "buildr/bnd" and must add a remote repository

from which the bnd can be downloaded. A typical project that uses the bundle

packaging addon may look something like;

require "buildr/bnd"

repositories.remote << "http://central.maven.org/maven2"
uncomment the next version to override the version of bnd
Buildr::Bnd.version = '0.0.384'

define 'myProject' do
...
package(:bundle).tap do |bnd|

bnd['Import-Package'] = "*;resolution:=optional"
bnd['Export-Package'] = "*;version=#{version}"

end
...

end

The [] method on the bundle package is used to provide directives to the bnd tool that

are not inherited by sub-projects while the standard ‘manifest’ setting is used to define

properties that inherited by sub-projects.

70 Packaging

http://www.aqute.biz/Code/Bnd

Defaults

The addon sets the following bnd parameters;

• “Bundle-Version” defaults to the project version.

• “Bundle-SymbolicName” defaults to the concatenation of the project group

and project id, replacing ‘:’ characters with ‘.’.

• “Bundle-Name” defaults to the project description if present else the project

name

• “Bundle-Description” defaults to the project description.

• “-classpath” is set to the compile target directory and any compile time

dependencies.

• “Include-Resource” defaults to the dir project.resources.target if it exists.

Parameters

classpath_element

The user can also specify additional elements that are added to the classpath using the

‘classpath_element’ method. If the parameter to this element is a task, artifact, artifact

namespace etc. then it will be resolved prior to invoking bnd.

Packaging 71

...
define 'foo' do

...
package(:bundle).tap do |bnd|

This dependency will be added to classpath
bnd.classpath_element 'someOtherExistingFile.zip'
All of these dependencies will be invoked and added to classpath
bnd.classpath_element artifact('com.sun.messaging.mq:imq:jar:4.4')
bnd.classpath_element project('bar') # Adds all the packages
bnd.classpath_element 'org.apache.ant:ant:jar:1.8.0'
bnd.classpath_element file('myLocalFile.jar')
...

end

project 'bar' do
...

end
end

classpath

The user can specify the complete classpath using the ‘classpath’ method. The classpath

should be an array of elements. If the element is a task, artifact, artifact namespace etc.

then it will be resolved prior to invoking bnd.

72 Packaging

...
define 'foo' do

...
package(:bundle).tap do |bnd|

bnd.classpath [project.compile.target,
'someOtherExistingFile.zip',
artifact('com.sun.messaging.mq:imq:jar:4.4'),
project('bar'),
'org.apache.ant:ant:jar:1.8.0',
file('myLocalFile.jar')]

...
end

project 'bar' do
...

end
end

Examples

Including non-class resources in a bundle

Bnd can be used to include non-class resources in a bundle. The following example

includes all resources in ‘src/etc’ into the bundle.

define 'myproject' do
...
package(:bundle).tap do |bnd|

bnd['Include-Resource'] = project._('src/etc') + '/'
...

end
end

Packaging 73

Using bnd to wrap an existing jar

Bnd can be used to wrap an existing jar as an OSGi bundle. The following example

wraps the OpenMQ JMS provider as an OSGi bundle.

...
Add repository for OpenMQ
repositories.remote << 'http://download.java.net/maven/2'

desc 'OSGi bundle for OpenMQ JMS provider client library'
define 'com.sun.messaging.mq.imq' do

project.version = '4.4'
project.group = 'iris'
package(:bundle).tap do |bnd|

bnd['Import-Package'] = "*;resolution:=optional"
bnd['Export-Package'] = "com.sun.messaging.*;version=#{version}"
bnd.classpath_element 'com.sun.messaging.mq:imq:jar:4.4'

end
end

Create an OSGi bundle with an Activator

The following example presents a basic buildfile for building an OSGi bundle with an

activator.

74 Packaging

...
repository for OSGi core bundle
repositories.remote << 'https://repository.apache.org/content/repositories/
releases'

desc 'Hello World bundle'
define 'helloworld' do

project.version = '1.0'
project.group = 'org.example'
compile.with 'org.apache.felix:org.osgi.core:jar:1.4.0'
package(:bundle).tap do |bnd|

bnd['Export-Package'] = "org.example.helloworld.api.*;version=#{version}"
bnd['Bundle-Activator'] = "org.example.helloworld.Activator"

end
end

Inheriting parameters for bnd tool

The following example shows how you can use ‘manifest’ to define a bnd parameter that

is inherited by all child sub-projects. The “Bundle-License” defined in the top level

project is passed to the bnd tool when generating both the ‘fe’ and ‘fi’ sub-projects but

the ‘fo’ sub-project overrides this parameter with a local value.

Packaging 75

...
define 'myproject' do

manifest['Bundle-License'] = "http://www.apache.org/licenses/LICENSE-2.0"
...
define 'fe' do

...
package(:bundle).tap do |bnd|

...
end

end

define 'fi' do
...
package(:bundle).tap do |bnd|

...
end

end

define 'fo' do
...
package(:bundle).tap do |bnd|

bnd['Bundle-License'] = "http://www.apache.org/licenses/LICENSE-1.1"
end

end
end

Packaging Tars and GZipped Tars

Everything you know about working with ZIP files translates to Tar files, the two tasks

are identical in more respect, so here we’ll just go over the differences.

package(:tar).include _('target/docs'), 'README'
package(:tgz).include _('target/docs'), 'README'

The first line creates a Tar archive with the extension .tar, the second creates a GZipped

Tar archive with the extension .tgz.

76 Packaging

In addition to packaging that includes the archive in the list of installed/released files,

you can use the method tar to create a TarTask. This task is similar to ZipTask, and

introduces the gzip attribute, which you can use to tell it whether to create a regular file,

or GZip it. By default the attribute it set to true (GZip) if the file name ends with either

.gz or .tgz.

Installing and Uploading

You can bring in the artifacts you need from remote repositories and install them in the

local repositories. Other projects have the same expectation, that your packages be their

artifacts.

So let’s create these packages and install them in the local repository where other

projects can access them:

$ buildr install

If you changes your mind you can always:

$ buildr uninstall

That works between projects you build on the same machine. Now let’s share these

artifacts with other developers through a remote repository:

$ buildr upload

Of course, you’ll need to tell Buildr about the release server:

repositories.release_to = 'sftp://john:secret@release/usr/share/repo'

If you have separate repositories for releases and snapshots, you can specify them

accordingly. Buildr takes care of picking the correct one.

repositories.release_to = 'sftp://john:secret@release/usr/share/repo/releases'
repositories.snapshot_to = 'sftp://john:secret@release/usr/share/repo/
snapshots'

Packaging 77

This example uses the SFTP protocol. In addition, you can use the HTTP protocol —

Buildr supports HTTP and HTTPS, Basic Authentication and uploads using PUT — or

point to a directory on your file system.

The URL in this example contains the release server (“release”), path to repository

(“user/share/repo”) and username/password for access. The way SFTP works, you

specify the path on the release server, and give the user permissions to create directories

and files inside the repository. The file system path is different from the path you use to

download these artifacts through an HTTP server, and starts at the root, not the user’s

home directory.

Of course, you’ll want to specify the release server URL in the Buildfile, but leave the

username/password settings private in your local buildr.rb file. Let’s break up the

release server settings:

build.rb, loaded first
repositories.release_to[:username] = 'john'
repositories.release_to[:password] = 'secret'

Buildfile, loaded next
repositories.release_to[:url] = 'sftp://release/usr/share/repo'

The upload task takes care of uploading all the packages created by your project, along

with their associated POM files and MD5/SHA1 signatures (Buildr creates these for

you).

If you need to upload other files, you can always extend the upload task and use

repositories.release_to in combination with URI.upload. You can also extend it to

upload to different servers, for example, to publish the documentation and test coverage

reports to your site:

We'll let some other task decide how to create 'docs'
task 'upload'=>'docs' do

uri = URI("sftp://#{username}:#{password}@var/www/docs")
uri.upload file('docs')

end

78 Packaging

Uploading Options

For convenience, you can also pass any option of Net::SSH when configuring the remote

repository.

If you need to enforce to use password-only authentication for example, you can set this

option:

Set password authentication only
repositories.release_to[:options] = {:ssh_options=>{:auth_methods=>
'password'}}

Packaging Sources and JavaDocs

IDEs can take advantage of source packages to help you debug and trace through

compiled code. We’ll start with a simple example:

package :sources

This one creates a ZIP package with the classifier “sources” that will contain all the

source directories in that project, typically src/main/java, but also other sources

generated from Apt, JavaCC, XMLBeans and friends.

You can also generate a ZIP package with the classifier “javadoc” that contains the

JavaDoc documentation for the project. It uses the same set of documentation files

generated by the project’s doc task, so you can use it in combination with the doc
method. For example:

package :javadoc
doc :windowtitle=>'Buggy but Works'

By default Buildr picks the project’s description for the window title.

You can also tell Buildr to automatically create sources and JavaDoc packages in all the

sub-projects that have any source files to package or document. Just add either or both

of these methods in the top-level project:

Packaging 79

http://net-ssh.github.com/ssh/v2/api/classes/Net/SSH.html#M000002

package_with_sources
package_with_javadoc

You can also tell it to be selective using the :only and :except options.

For example:

package_with_javadoc :except=>'la-web'

We packaged the code, but will it actually work? Let’s see what the tests say.

80 Packaging

Testing

Writing Tests...81

Excluding Tests and Ignoring Failures ...82

Running Tests ...83

Integration Tests...85

Using Setup and Teardown..86

Testing Your Build ...87

Behaviour-Driven Development..90

Untested code is broken code, so we take testing seriously. Off the bat you get to use

either JUnit or TestNG for writing unit tests and integration tests. And you can also add

your own framework, or even script tests using Ruby. But first, let’s start with the basics.

Writing Tests

Each project has a TestTask that you can access using the test method. TestTask reflects

on the fact that each project has one task responsible for getting the tests to run and

acting on the results. But in fact there are several tasks that do all the work, and a test
task coordinates all of that.

The first two tasks to execute are test.compile and test.resources. They work similar

to compile and resources, but uses a different set of directories. For example, Java tests

compile from the src/test/java directory into the target/test/classes directory, while

resources are copied from src/test/resources into target/test/resources.

The test.compile task will run the compile task first, then use the same dependencies to

compile the test classes. That much you already assumed. It also adds the test

framework (e.g. JUnit, TestNG) and JMock to the dependency list. Less work for you.

If you need more dependencies, the best way to add them is by calling test.with. This

method adds dependencies to both compile.dependencies (for compiling) and

test.dependencies (for running). You can manage these two dependency lists

separately, but using test.with is good enough in more cases.

Once compiled, the test task runs all the tests.

Different languages use different test frameworks. You can find out more about

available test frameworks in the Languages section.

Excluding Tests and Ignoring Failures

If you have a lot of tests that are failing or just hanging there collecting dusts, you can

tell Buildr to ignore them. You can either tell Buildr to only run specific tests, for

example:

test.include 'com.acme.tests.passing.*'

Or tell it to exclude specific tests, for example:

test.exclude '*FailingTest', '*FailingWorseTest'

Note that we’re always using the package qualified class name, and you can use star (*)

to substitute for any set of characters.

When tests fail, Buildr fails the test task. This is usually a good thing, but you can also

tell Buildr to ignore failures by resetting the :fail_on_failure option:

test.using :fail_on_failure=>false

Besides giving you a free pass to ignore failures, you can use it for other causes, for

example, as a gentle reminder:

test do
warn "Did you forget something?" if test.tests.nil? || test.tests.empty?

end

82 Testing

The tests collection holds the names of all classes with tests, if any. And there’s classes,

which holds the names of all test classes. We’ll let you imagine creative use for these

two.

Running Tests

It’s a good idea to run tests every time you change the source code, so we wired the

build task to run the test task at the end of the build. And conveniently enough, the

build task is the default task, so another way to build changes in your code and run

your tests:

$ buildr

That only works with the local build task and any local task that depends on it, like

package, install and upload. Each project also has its own build task that does not

invoke the test task, so buildr build will run the tests cases, but buildr foo:build will

not.

While it’s a good idea to always run your tests, it’s not always possible. There are two

ways you can get build to not run the test task. You can set the environment variable

test to no (but skip and off will also work). You can do that when running Buildr:

$ buildr test=no

Or set it once in your environment:

$ export TEST=no
$ buildr

If you’re feeling really adventurous, you can also disable tests from your Buildfile or

buildr.rb file, by setting options.test = false. We didn’t say it’s a good idea, we’re

just giving you the option.

The test task is just smart enough to run all the tests it finds, but will accept include/

exclude patterns. Often enough you’re only working on one broken test and you only

want to run that one test. Better than changing your Buildfile, you can run the test task

with a pattern. For example:

Testing 83

$ buildr test:KillerAppTest

Buildr will then run only tests that match the pattern KillerAppTest. It uses pattern

matching, so test:Foo will run com.acme.FooTest and com.acme.FooBarTest. With Java,

you can use this to pick a class name, or a package name to run all tests in that package,

or any such combination. In fact, you can specify several patterns separated with

commas. For example:

$ buildr test:FooTest,BarTest

Buildr forcefully runs all tests that match the pattern. If you want to re-run all tests even

if your sources have not changed, you can execute:

$ buildr test:*

You can exclude tests by preceeding them with a minus sign (‘-’):

$ buildr test:-Bar

The above would run all tests except those with a name containing Bar. Exclusions can

be combined with inclusions:

$ buildr test:Foo,-Bar

Buildr would then run tests with names containing Foo but not Bar.

As you probably noticed, Buildr will stop your build at the first test that fails. We think

it’s a good idea, except when it’s not. If you’re using a continuous build system, you’ll

want a report of all the failed tests without stopping at the first failure. To make that

happen, set the environment variable test to “all”, or the Buildr options.test option to

:all. For example:

$ buildr package test=all

We’re using package and not build above. When using a continuous build system, you

want to make sure that packages are created, contain the right files, and also run the

integration tests.

84 Testing

During development, if you want to re-run only tests that have failed during the last test

execution, you can execute:

$ buildr test:failed

One last note on running tests. By default when you run tests, Buildr will automatically

run all transitive test dependencies. This mean if you run “buildr test” inside project bar
and bar depends on project foo, Buildr will first run tests in project foo if there have

been any changes affecting foo that haven’t been taken into account yet. This behavior

often surprises people, especially when they are trying to get things done and only care

about tests in bar at that moment. For those times when you’d like to focus your testing

on specific projects, Buildr has the only option that will only run tests for projects

specified on the command line,

$ buildr test=only bar:test

Integration Tests

So far we talked about unit tests. Unit tests are run in isolation on the specific project

they test, in an isolated environment, generally with minimal setup and teardown. You

get a sense of that when we told you tests run after the build task, and include JMock in

the dependency list.

In contrast, integration tests are run with a number of components, in an environment

that resembles production, often with more complicates setup and teardown

procedures. In this section we’ll talk about the differences between running unit and

integration tests.

You write integration tests much the same way as you write unit tests, using

test.compile and test.resources. However, you need to tell Buildr that your tests will

execute during integration test. To do so, add the following line in your project

definition:

test.using :integration

Testing 85

Typically you’ll use unit tests in projects that create internal modules, such as JARs, and

integration tests in projects that create components, such as WARs and EARs. You only

need to use the :integration option with the later.

To run integration tests on the current project:

$ buildr integration

You can also run specific tests cases, for example:

$ buildr integration:ClientTest

If you run the package task (or any task that depends on it, like install and upload),

Buildr will first run the build task and all its unit tests, and then create the packages and

run the integration tests. That gives you full coverage for your tests and ready to release

packages. As with unit tests, you can set the environment variable test to “no” to skip

integration tests, or “all” to ignore failures.

Using Setup and Teardown

Some tests need you to setup an environment before they run, and tear it down

afterwards. The test frameworks (JUnit, TestNG) allow you to do that for each test.

Buildr provides two additional mechanisms for dealing with more complicated setup

and teardown procedures.

Integration tests run a setup task before the tests, and a teardown task afterwards. You

can use this task to setup a Web server for testing your Web components, or a database

server for testing persistence. You can access either task by calling integration.setup
and integration.teardown. For example:

integration.setup { server.start ; server.deploy }
integration.teardown { server.stop }

Depending on your build, you may want to enhance the setup/teardown tasks from

within a project, for example, to populate the database with data used by that project’s

test, or from outside the project definition, for example, to start and stop the Web server.

86 Testing

Likewise, each project has its own setup and teardown tasks that are run before and

after tests for that specific project. You can access these tasks using test.setup and

test.teardown.

Testing Your Build

So you got the build running and all the tests pass, binaries are shipping when you find

out some glaring omissions. The license file is empty, the localized messages for

Japanese are missing, the CSS files are not where you expect them to be. The fact is,

some errors slip by unit and integration tests. So how do we make sure the same mistake

doesn’t happen again?

Each project has a check task that runs just after packaging. You can use this task to

verify that your build created the files you wanted it to create. And to make it extremely

convenient, we introduced the notion of expectations.

You use the check method to express and expectation. Buildr will then run all these

expectations against your project, and fail at the first expectation that doesn’t match. An

expectation says three things. Let’s look at a few examples:

Testing 87

check package(:war), 'should exist' do
it.should exist

end
check package(:war), 'should contain a manifest' do

it.should contain('META-INF/MANIFEST.MF')
end
check package(:war).path('WEB-INF'), 'should contain files' do

it.should_not be_empty
end
check package(:war).path('WEB-INF/classes'), 'should contain classes' do

it.should contain('**/*.class')
end
check package(:war).entry('META-INF/MANIFEST'), 'should have license' do

it.should contain(/Copyright (C) 2007/)
end
check file('target/classes'), 'should contain class files' do

it.should contain('**/*.class')
end
check file('target/classes/killerapp/Code.class'), 'should exist' do

it.should exist
end

The first argument is the subject, or the project if you skip the first argument. The second

argument is the description, optional, but we recommend using it. The method it
returns the subject.

You can also write the first expectation like this:

check do
package(:jar).should exist

end

We recommend using the subject and description, they make your build easier to read

and maintain, and produce better error messages.

88 Testing

There are two methods you can call on just about any object, called should and

should_not. Each method takes an argument, a matcher, and executes that matcher. If

the matcher returns false, should fails. You can figure out what should_not does in the

same case.

Buildr provides the following matchers:

Method Checks that …

exist Given a file task checks that the file (or directory) exists.

empty Given a file task checks that the file (or directory) is empty.

contain Given a file task referencing a file, checks its contents, using string or

regular expression. For a file task referencing a directory, checks that it

contains the specified files; global patterns using * and ** are allowed.

All these matchers operate against a file task. If you run them against a ZipTask

(including JAR, WAR, etc) or a TarTask, they can also check the contents of the archive.

And as you can see in the examples above, you can also run them against a path in an

archive, checking its contents as if it was a directory, or against an entry in an archive,

checking the content of that file.

The package method returns a package task based on packaging type, identifier,

group, version and classifier. The last four are inferred, but if you create a

package with different specifications (for example, you specify a classifier) your

checks must call package with the same qualifying arguments to return the very

same package task.

Buildr expectations are based on RSpec. RSpec is the behavior-driven development

framework we use to test Buildr itself. Check the RSpec documentation if want to see all

the supported matchers, or want to write your own.

Testing 89

http://rspec.info/

Behaviour-Driven Development

Buildr supports several Behaviour-Driven Development(BDD) frameworks for testing

your projects. Buildr follows each framework naming conventions, searching for files

under the src/spec/{lang} directory.

You can learn more about each BDD framework in the Languages section.

Next, let’s talk about customizing your environment and using profiles

90 Testing

Settings/Profiles

Environment Variables..91

Personal Settings ..93

Build Settings..95

Non constant settings ..96

Environments ...97

Profiles ...98

Environment Variables

Buildr uses several environment variables that help you control how it works. Some

environment variables you will only set once or change infrequently. You can set these

in your profile, OS settings or any tool you use to launch Buildr (e.g. continuous

integration).

For example:

$ export HTTP_PROXY=http://myproxy:8080

There are other environment variables you will want to set when running Buildr, for

example, to do a full build without running the tests:

$ buildr test=no

For convenience, the environment variables TEST and DEBUG are case insensitive, you can

use either test=no or TEST=no. Any other environment variable names are case sensitive.

You can also set environment variables from within your Buildfile. For example, if you

discover that building your project requires gobs of JVM heap space, and you want all

other team members to run with the same settings:

This project builds a lot of code.
ENV['JAVA_OPTS'] ||= '-Xms1g -Xmx1g'

Make sure to set any environment variables at the very top of the Buildfile, above any

Ruby statement (even require).

Using ||= sets the environment variable, if not already set, so it’s still possible

for other developers to override this environment variable without modifying

the Buildfile.

Buildr supports the following environment variables:

Variable Description

BUILDR_ENV Environment name (development, production, test, etc). Another

way to set this is using the -e command line option.

DEBUG Set to no/off if you want Buildr to compile without debugging

information (default when running the release task, see

Compiling).

HOME Your home directory.

HTTP_PROXY URL for HTTP proxy server (see Specifying Repositories).

HTTPS_PROXY URL for HTTPS proxy server (see Specifying Repositories).

IGNORE_BUILDFILE Set to “true” or “yes” to ignore changes in Buildfile or its

dependencies when running tests.

JAVA_HOME Points to your JDK, required when using Java and Ant.

JAVA_OPTS Command line options to pass to the JDK (e.g. '-Xms1g').

M2_REPO Location of the Maven2 local repository. Defaults to the .m2
directory in your home directory (ENV['HOME']).

NO_PROXY Comma separated list of hosts and domain that should not be

proxied (see Specifying Repositories).

92 Settings/Profiles

TEST Set to no/off to tell Buildr to skip tests, or all to tell Buildr to run

all tests and ignore failures (see Running Tests).

USER Tasks that need your user name, for example to log to remote

servers, will use this environment variable.

Buildr does not check any of the arguments in JAVA_OPTS. A common mistake is

to pass an option like mx512mb, where it should be Xmx512mb. Make sure to

double check JAVA_OPTS.

Some extensions may use additional environment variables, and of course, you can

always add your own. This example uses two environment variables for specifying the

username and password:

repositories.release_to[:username] = ENV['USERNAME']
repositories.release_to[:password] = ENV['PASSWORD']

The same works for the repositories.snapshot_to hash.

Personal Settings

Some things clearly do not belong in the Buildfile. For example, the username and

password you use to upload releases. If you’re working in a team or on an open source

project, you’d want to keep these in a separate place.

You may want to use personal settings for picking up a different location for the local

repository, or use a different set of preferred remote repositories, and so forth.

The prefered way to store personal settings is to create a .buildr/settings.yaml file

under your home directory. Settings stored there will be applied the same across all

builds.

Here’s an example settings.yaml:

Settings/Profiles 93

The repositories hash is read automatically by buildr.
repositories:

customize user local maven2 repository location
local: some/path/to/my_repo

prefer the local or nearest mirrors
remote:
- https://intra.net/maven2
- http://example.com

specify the corporate mirror
mirrors:
- http://www.corporateserver001.com/repo

release_to:
url: http://intra.net/maven2
username: john
password: secret

You can place settings of your own, and reference them
on buildfiles.
im:

server: jabber.company.com
usr: notifier@company-jabber.com
pwd: secret

Later your buildfile or addons can reference user preferences using the hash returned by

the Buildr.settings.user accessor.

task 'release-notification' do
usr, pwd, server = settings.user['im'].values_at('usr', 'pwd', 'server')
jabber = JabberAPI.new(server, usr, pwd)
jabber.msg("We are pleased to announce the last stable version #{VERSION}")

end

94 Settings/Profiles

Build Settings

Build settings are local to the project being built, and are placed in the build.yaml file

located in the same directory that the buildfile. Normally this file would be managed

by the project revision control system, so settings here are shared between developers.

They help keep the buildfile and build.yaml file simple and readable, working to the

advantages of each one. Example for build settings are gems, repositories and artifacts

used by that build.

This project requires the following ruby gems, buildr addons
gems:

Suppose we want to notify developers when testcases fail.
- buildr-twitter-notifier-addon >=1
we test with ruby mock objects
- mocha
- ci_reporter

The artifact declarations will be automatically loaded by buildr, so that
you can reference artifacts by name (a ruby-symbol) on your buildfile.
artifacts:

spring: org.springframework:spring:jar:2.0
log4j: log4j:log4j:jar:1.0
j2ee: geronimo-spec:geronimo-spec-j2ee:jar:1.4-rc4

Of course project settings can be defined here
twitter:

notify:
test_failure: unless-modified
compile_failure: never

developers:
- joe
- jane

jira:
uri: https://jira.corp.org

Settings/Profiles 95

When buildr is loaded, required ruby gems will be installed if needed, thus adding

features like the imaginary twitter notifier addon.

Artifacts defined on build.yaml can be referenced on your buildfile by supplying the

ruby symbol to the Buildr.artifact and Buildr.artifacts methods. The compile.with,

test.with methods can also be given these names.

define 'my_project' do
compile.with artifacts(:log4j, :j2ee)
test.with :spring, :j2ee

end

Build settings can be retreived using the Buildr.settings.build accessor.

task 'create_patch' do
patch = Git.create_patch :interactive => true
if patch && agree("Would you like to request inclusion of #{patch}")

jira = Jira.new(Buildr.settings.build['jira']['uri']) # submit a patch
jira.create(:improvement, patch.summary, :attachment => patch.blob)

end
end

Non constant settings

Before loading the Buildfile, Buildr will attempt to load two other files: the buildr.rb file

in the .buildr directory under your home directory, followed by the _buildr.rb (or

.buildr.rb) file it finds in the build directory.

The loading order allows you to place global settings that affect all your builds in your

buildr.rb, but also over-ride those with settings for a given project.

Here’s an example buildr.rb:

96 Settings/Profiles

Only I should know that
repositories.release_to[:username] = 'assaf'
repositories.release_to[:password] = 'supersecret'
Search here first, it's faster
repositories.remote << 'http://inside-the-firewall'

Buildr 1.3 and earlier used the file buildr.rb directly in your home directory.

Starting with version 1.4, Buildr loads buildr.rb from the .buildr directory

under your home directory in preference. If you use Buildr 1.3 and earlier and

don’t want to duplicate your settings, you can move you existing buildr.rb
under the .buildr directory and create a new buildr.rb in your home directory

containing:

Backward compatibility: Buildr 1.4+ uses $HOME/.buildr/buildr.rb
load File.expand_path('buildr.rb', Buildr.application.home_dir)

Environments

One common use case is adapting the build to different environments. For example, to

compile code with debugging information during development and testing, but strip it

for production. Another example is using different databases for development, testing

and production, or running services at different URLs.

So let’s start by talking about the build environment. Buildr has a global attributes that

indicates which environment it’s running in, accessible from the environment method.

You can set the current build environment in one of two ways. Using the -e/--
environment command line option:

$ buildr -e test
(in /home/john/project, test)

Or by setting the environment variable BUILDR_ENV:

$ export BUILDR_ENV=production
$ buildr
(in /home/john/project, production)

Settings/Profiles 97

Unless you tell it otherwise, Buildr assumes you’re developing and sets the environment

to development.

Here’s a simple example for handling different environments within the Buildfile:

project 'db-module' do
db = (Buildr.environment == 'production' ? 'oracle' : 'hsql')
resources.from(_("src/main/#{db}"))

end

We recommend picking a convention for your different environments and following it

across all your projects. For example:

Environment Use when …

development Developing on your machine.

test Running in test environment, continuous integration.

production Building for release/production.

Profiles

Different environments may require different configurations, some you will want to

control with code, others you will want to specify in the profiles file.

The profiles file is a YAML file called profiles.yaml that you place in the same directory

as the Buildfile. We selected YAML because it’s easier to read and edit than XML.

For example, to support three different database configurations, we could write:

98 Settings/Profiles

HSQL, don't bother storing to disk.
development:

db: hsql
jdbc: hsqldb:mem:devdb

Make sure we're not messing with bigstrong.
test:

db: oracle
jdbc: oracle:thin:@localhost:1521:test

The real deal.
production:

db: oracle
jdbc: oracle:thin:@bigstrong:1521:mighty

Here’s a simple example for a buildfile that uses the profile information:

project 'db-module' do
Copy SQL files specific for the database we're using,
for example, everything under src/main/hsql.
resources.from(_("src/main/#{Buildr.settings.profile['db']}"))
Set the JDBC URL in copied resource files (config.xml needs this).
resources.filter.using :jdbc=>Buildr.settings.profile['jdbc']

end

The profile method returns the current profile, selected based on the current

environment. You can get a list of all profiles by calling profiles.

When you run the above example in development, the current profile will return the hash

{ 'db'=>'hsql', 'jdbc'=>'hsqldb:mem:devdb' }.

We recommend following conventions and using the same environments in all your

projects, but sometimes the profiles end up being the same, so here’s a trick you can use

to keep your profiles DRY.

YAML allows you to use anchors (&), similar to ID attributes in XML, reference the

anchored element (*) elsewhere, and merge one element into another (<<). For example:

Settings/Profiles 99

We'll reference this one as common.
development: &common

db: hsql
jdbc: hsqldb:mem:devdb
resources:

copyright: Me (C) 2008
Merge the values from common, override JDBC URL.
test:

<<: *common
jdbc: hsqldb:file:testdb

You can learn more about YAML here, and use this handy YAML quick reference.

100 Settings/Profiles

http://www.yaml.org
http://www.yaml.org/refcard.html

Languages

Java...101

Scala ...106

Groovy ...117

Ruby...120

Java

Compiling Java

The Java compiler looks for source files in the project’s src/main/java directory, and

defaults to compiling them into the target/classes directory. It looks for test cases in

the project’s src/test/java and defaults to compile them into the target/test/classes
directory.

If you point the compile task at any other source directory, it will use the Java compiler if

any of these directories contains files with the extension .java.

When using the Java compiler, if you don’t specify the packaging type, it defaults to

JAR. If you don’t specify the test framework, it defaults to JUnit.

The Java compiler supports the following options:

Option Usage

:debug Generates bytecode with debugging information. You can also

override this by setting the environment variable debug to off.

:deprecation If true, shows deprecation messages. False by default.

:lint Defaults to false. Set this option to true to use all lint options, or

specify a specific lint option (e.g. :lint=>'cast').

:other Array of options passed to the compiler (e.g. :other=>'-
implicit:none').

:source Source code compatibility (e.g. ‘1.5’).

:target Bytecode compatibility (e.g. ‘1.4’).

:warnings Issue warnings when compiling. True when running in verbose mode.

ECJ

You can use the ECJ compiler instead of javac. ECJ abides to the same options as javac.

For example, to configure the project to use ECJ:

compile.using :ecj

To use a custom version of ECJ, add an entry to your settings.

For example, to set the version of ECJ to 3.5.1, add an entry to your project’s buildr.yml:

ecj: 3.5.1

Testing with Java

JUnit

The default test framework for Java projects is JUnit 4.

When you use JUnit, the dependencies includes JUnit and JMock, and Buildr picks up all

test classes from the project by looking for classes that either subclass

junit.framework.TestCase, include methods annotated with org.junit.Test, or test

suites annotated with org.org.junit.runner.RunWith.

The JUnit test framework supports the following options:

Option Value

:fork VM forking, defaults to true.

:clonevm If true clone the VM each time it is forked.

102 Languages

http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-using_batch_compiler.htm
/settings_profiles.html
http://www.junit.org
http://www.jmock.org

:properties Hash of system properties available to the test case.

:environment Hash of environment variables available to the test case.

:java_args Arguments passed as is to the JVM.

For example, to pass properties to the test case:

test.using :properties=>{ :currency=>'USD' }

There are benefits to running test cases in separate VMs. The default forking mode is

:once, and you can change it by setting the :fork option.

:fork=> Behavior

:once Create one VM to run all test classes in the project, separate VMs for each

project.

:each Create one VM for each test case class. Slow but provides the best isolation

between test classes.

false Without forking, Buildr runs all test cases in a single VM. This option runs

fastest, but at the risk of running out of memory and causing test cases to

interfere with each other.

You can see your tests running in the console, and if any tests fail, Buildr will show a list

of the failed test classes. In addition, JUnit produces text and XML report files in the

project’s reports/junit directory. You can use that to get around too-much-stuff-in-my-

console, or when using an automated test system.

In addition, you can get a consolidated XML or HTML report by running the

junit:report task. For example:

$ buildr test junit:report test=all
$ firefox report/junit/html/index.html

The junit:report task generates a report from all tests run so far. If you run tests in a

couple of projects, it will generate a report only for these two projects. The example

above runs tests in all the projects before generating the reports.

Languages 103

You can use the build.yaml settings file to specify a particular version of JUnit or JMock.

For example, to force your build to use JUnit version 4.4 and JMock 2.0:

junit: 4.4
jmock: 2.0

TestNG

You can use TestNG instead of JUnit. To select TestNG as the test framework, add this to

your project:

test.using :testng

Like all other options you can set with test.using, it affects the projects and all its sub-

projects, so you only need to do this once at the top-most project to use TestNG

throughout. You can also mix TestNG and JUnit by setting different projects to use

different frameworks, but you can’t mix both frameworks in the same project. (And yes,

test.using :junit will switch a project back to using JUnit)

TestNG works much like JUnit, it gets included in the dependency list along with

JMock, Buildr picks test classes that contain methods annotated with

org.testng.annotations.Test, and generates test reports in the reports/testng
directory. At the moment we don’t have consolidated HTML reports for TestNG.

The TestNG test framework supports the following options:

Option Value

:properties Hash of system properties available to the test case.

:java_args Arguments passed as is to the JVM.

You can use the build.yaml settings file to specify a particular version of TestNG, for

example, to force your build to use TestNG 5.7:

testng: 5.7

104 Languages

http://testng.org

JBehave

JBehave is a pure Java BDD framework, stories and behaviour specifications are written

in the Java language.

To use JBehave in your project you can select it with test.using :jbehave.

This framework will search for the following patterns under your project:

src/spec/java/**/*Behaviour.java

Supports the following options:

Option Value

:properties Hash of system properties available to the test case.

:java_args Arguments passed as is to the JVM.

You can use the build.yaml settings file to specify a particular version of JBehave, for

example, to force your build to use JBehave 1.0.1:

jbehave: 1.0.1

Documentation

Buildr offers support for using JavaDoc to generate documentation from any Java

sources in a project. This is done using the doc task:

$ buildr doc

This will use the same .java sources used by the compile task to produce JavaDoc

results in the target/doc/ directory. By default, these sources are chosen only from the

current project. However, it is possible to override this and generate documentation

from the sources in a sub-project (potentially more than one):

Languages 105

http://jbehave.org/

define 'foo' do
...

doc.from projects('foo:bar', 'foo')

define 'bar' do
...

end
end

With this configuration, the doc task will use sources from both foo:bar and

foo.

The doc task supports any option that the javadoc command does (e.g. -windowtitle). To

pass an option to the JavaDoc generator, simply specify it using the doc method:

define 'foo' do
...

doc :windowtitle => 'Abandon All Hope, Ye Who Enter Here', :private => true
end

Scala

Before using Scala, you must first require the Scala compiler:

require 'buildr/scala'

By default, Buildr will attempt to use the latest stable release of Scala, which is currently

Scala 2.9.0 as of May 2011. Of course you can configure a specific version of Scala for

your project by adding the following entry in build.yaml:

scala.version: 2.8.0.Beta1 # Pick your version

Or, you can do the same programmatically:

106 Languages

Must be placed before require 'buildr/scala'
Buildr.settings.build['scala.version'] = "2.8.0.Beta1"

You may also determine the version in use by querying the Scala.version attribute:

Scala.version # => '2.8.0'

Regardless of how the Scala version is determined, if you have the same Scala version

installed on your system and the SCALA_HOME environment variable points to it, then

your local installation will be used. Otherwise, Buildr will download it from the

Sonatype repository which is automatically enlisted when you require Scala. The only

drawback if you don’t have a local installation is the FSC compiler won’t be available.

For Mac users, if you have installed Scala via MacPorts Buildr will look in the

/opt/local/share/scala/ directory if you have not set SCALA_HOME.

Compiling Scala

The Scala compiler looks for source files in the project’s src/main/scala directory, and

defaults to compiling them into the target/classes directory. It looks for test cases in

the project’s src/test/scala and defaults to compile them into the target/test/classes
directory.

Any Java source files found in the src/main/java directory will be compiled using the

Scala/Java joint compiler into the target/classes directory. Both the Java and the Scala

sources are compiled with an inclusive classpath, meaning that you may have a Java

class which depends upon a Scala class which depends upon a Java class, all within the

same project. The Java sources will be compiled with the same dependencies as the Scala

sources with the addition of the scala-library.jar file as required for Scala interop.

Note that you cannot use the Groovy and the Scala joint compilers in the same project. If

both are required, the Groovy joint compiler will take precedence.

Languages 107

http://oss.sonatype.org/content/repositories/releases
http://www.macports.org/

If you point the compile task at any other source directory, it will use the Scala compiler

if any of these directories contains files with the extension .scala. The joint compilation

of Java sources may only be pointed at an alternative directory using the feature to

redefine the _(:src, :main, :java) path.

When using the Scala compiler, if you don’t specify the packaging type, it defaults to

JAR.

The Scala compiler supports the following options:

Option Usage

:debug If true, generates bytecode with debugging information. Scala 2.9 also

accepts: none,source,line,vars,notc.

:deprecation If true, shows deprecation messages. False by default.

:make Make strategy to be used by the compiler (e.g. :make=>'transitive').

Scala 2.8 only

:optimise Generates faster bytecode by applying optimisations to the program.

:other Array of options passed to the compiler (e.g. :other=>'-Xprint-
types').

:target Bytecode compatibility (e.g. ‘1.4’).

:warnings Issue warnings when compiling. True when running in verbose mode.

:javac A hash of options passed to the javac compiler verbatim.

:incremental If true, enables incremental compilation using Zinc.

Fast Scala Compiler

You may use fsc, the Fast Scala Compiler, which submits compilation jobs to a

compilation daemon, by setting the environment variable USE_FSC to yes. Note that fsc
may cache class libraries — don’t forget to run fsc -reset if you upgrade a library.

(Note fsc is not compatible with zinc incremental compilation.)

108 Languages

Rebuild detection

Scala 2.7

The Scala 2.7 compiler task assumes that each .scala source file generates a

corresponding .class file under target/classes (or target/test/classses for tests). The

source may generate more .class files if it contains more than one class, object, trait or

for anonymous functions and closures.

For example, src/main/scala/com/example/MyClass.scala should generate at least

target/classes/com/example/MyClass.class. If that it not the case, Buildr will always

recompile your sources because it will assume this is a new source file that has never

been compiled before.

Scala 2.8

Scala 2.8 provides a substantially better interface for implementing change detection.

Whenever you use Scala 2.8 (see below), Buildr will auto-detect the version and enable

this feature dynamically. After the compile task runs, the relevant target directory will

contain a .scala-deps file, generated by the Scala compiler. The manner in which this

file is used can be configured using the :make compiler option. The following values are

available:

• :all – Disables compiler-level change detection

• :changed – Only build changed files without considering file dependencies

• :immediate – unknown

• :transitive – Build changed files as well as their transitive file dependencies

• :transitivenocp – Build changed files as well as their transitive file

dependencies (default)

Please note that there are limits to compiler-level change detection. Most notably,

dependencies cannot be tracked across separate compilation targets. This would cause

problems in the case where an API has been changed in a main source file. The test suite

for the project will not be detected as requiring recompilation, potentially resulting in

unexpected runtime exceptions. When in doubt, run clean to remove all dependency

information. In extreme cases, it is possible to completely disable compiler-level change

detection by adding the following statement to your project definition:

Languages 109

compile.using :make => :all

Effectively, this is telling the Scala compiler to ignore the information it has built up

regarding source file dependencies. When in this mode, only Buildr’s change detection

semantics remain in play (as described above).

To avoid unusual behavior, compiler-level change detection is disabled whenever the

joint Scala-Java compiler is used. Thus, any .java files in a project handled by the Scala

compiler will cause the :make option to be ignored and revert to the exclusive use of

Buildr’s change detection mechanism (as described above).

Scala 2.9 and later

Starting with Buildr 1.4.8, Buildr integrates with the Zinc incremental compilation

wrapper for scalac. Incremental compilation can be enabled 3 ways,

1) By setting the compiler’s option directly,

compile.using :incremental => true

compile.options.incremental = true # same as above

Note that this won’t enable incremental compilation for both compile and test.compile,

you would have to set options on both. For this reason, it’s recommended that you set

the option on the project instead (see below).

2) By setting the project’s scalac_options.incremental,

project.scalac_options.incremental = true

3) By setting the global scalac.incremental option,

in your buildfile:

Buildr.settings.build['scalac.incremental'] = true

or in your build.yaml:

scalac.incremental: true

110 Languages

https://github.com/typesafehub/zinc

Support for different Scala versions

Buildr defaults to the latest stable Scala version available at the time of the release if

neither SCALA_HOME nor the scala.version build property are set.

If your SCALA_HOME environment variable points to an installation of Scala (2.7, 2.8, 2.9,

…), then Buildr will use that compiler and enable version-specific features.

You may select the Scala version by dynamically in different ways,

1) By reassigning SCALA_HOME at the top of the buildfile (before require 'buildr/scala'):

ENV['SCALA_HOME'] = ENV['SCALA28_HOME']

require 'buildr/scala'
...

2) By setting the scala.version build property in your build.yaml file:

scala.version: 2.9.1.RC1

3) By setting the scala.version build property in your buildfile:

require 'buildr/scala'
...
Buildr.settings.build['scala.version'] = '2.10-M6'

Testing with Scala

Buildr supports two main Scala testing frameworks: ScalaTest and Specs. ScalaCheck is

also supported within the confines of either of these two frameworks. Thus, your Specs

may use ScalaCheck properties, as may your ScalaTest suites.

test.using(:scalatest)

Languages 111

http://www.artima.com/scalatest
http://code.google.com/p/specs/
http://code.google.com/p/scalacheck/

ScalaTest

ScalaTest support is activated automatically when there are any .scala source files

contained in the src/test/scala directory. If you are not using this directory

convention, you may force the test framework by using the test.using :scalatest
directive.

Buildr automatically detects and runs tests that extend the org.scalatest.Suite
interface.

A very simplistic test class might look like,

class MySuite extends org.scalatest.FunSuite {
test("addition") {

val sum = 1 + 1
assert(sum === 2)

}
}

You can also pass properties to your tests by doing test.using :properties => {
'name'=>'value' }, and by overriding the Suite.runTests method in a manner similar

to:

112 Languages

import org.scalatest._

class PropertyTestSuite extends FunSuite {
var properties = Map[String, Any]()

test("testProperty") {
assert(properties("name") === "value")

}

protected override def runTests(testName: Option[String],
reporter: Reporter, stopper: Stopper, includes: Set[String],
excludes: Set[String], properties: Map[String, Any])

{
this.properties = properties;
super.runTests(testName, reporter, stopper,

includes, excludes, properties)
}

}

Specs

Specs is automatically selected whenever there are .scala source files under the src/
spec/scala directory. It is also possible to force selection of the test framework by using

the test.using :specs directive. This can sometimes be useful when Scala sources may

be found in both src/test/scala and src/spec/scala. Normally in such cases, ScalaTest

will have selection precedence, meaning that in case of a conflict between it and Specs,

ScalaTest will be chosen.

Any objects which extend the org.specs.Specification or org.specs2.Specification
superclass will be automatically detected and run. Note that any classes which extend

Specification will also be invoked. As such classes will not have a main method, such

an invocation will raise an error.

A simple specification might look like this:

Languages 113

import org.specs._
import org.specs.runner._

object StringSpecs extends Specification {
"empty string" should {

"have a zero length" in {
"".length mustBe 0

}
}

}

ScalaCheck is automatically added to the classpath when Specs is used. However,

JMock, Mockito, CGlib and similar are not. This is to avoid downloading extraneous

artifacts which are only used by a small percentage of specifications. To use Specs with

Mockito (or any other library) in a Buildr project, simply add the appropriate

dependencies to test.with:

MOCKITO = 'org.mockito:mockito-all:jar:1.7'
CGLIB = 'cglib:cglib:jar:2.1_3'
ASM = 'asm:asm:jar:1.5.3'
OBJENESIS = 'org.objenesis:objenesis:jar:1.1'

define 'killer-app' do
...

test.with MOCKITO, CGLIB, ASM, OBJENESIS
end

The dependencies for Specs’s optional features are defined here.

ScalaCheck

You may use ScalaCheck inside ScalaTest- and Specs-inherited classes. Here is an

example illustrating checks inside a ScalaTest suite,

114 Languages

http://code.google.com/p/specs/wiki/RunningSpecs#Dependencies

import org.scalatest.prop.PropSuite
import org.scalacheck.Arbitrary._
import org.scalacheck.Prop._

class MySuite extends PropSuite {

test("list concatenation") {
val x = List(1, 2, 3)
val y = List(4, 5, 6)
assert(x ::: y === List(1, 2, 3, 4, 5, 6))
check((a: List[Int], b: List[Int]) => a.size + b.size == (a ::: b).size)

}

test(
"list concatenation using a test method",
(a: List[Int], b: List[Int]) => a.size + b.size == (a ::: b).size

)
}

Documentation

Buildr offers support for using ScalaDoc or VScalaDoc to generate documentation from

any Scala sources in a project. This is done using the doc task:

$ buildr doc

This will use the same .scala sources used by the compile task to produce ScalaDoc

results in the target/doc/ directory. By default, these sources are chosen only from the

current project. However, it is possible to override this and generate documentation

from the sources in a sub-project (potentially more than one):

Languages 115

define 'foo' do
...

doc.from projects('foo:bar', 'foo')

define 'bar' do
...

end
end

With this configuration, the doc task will use sources from both foo:bar and

foo.

The doc task supports any option that the scaladoc command does (e.g. -windowtitle).

To pass an option to the ScalaDoc (or VScalaDoc) generator, simply specify it using the

doc method:

define 'foo' do
...

doc :windowtitle => 'Abandon All Hope, Ye Who Enter Here', :private => true
end

By default, the doc task will use the ScalaDoc generator on Scala projects. To select the

VScalaDoc generator, you must use the doc.using invocation:

define 'foo' do
doc.using :vscaladoc

end

The doc task is not joint-compilation aware. Thus, it will only generate ScalaDoc for

mixed-source projects, it will not attempt to generate both JavaDoc and ScalaDoc.

116 Languages

Groovy

Compiling Groovy

Before using the Groovy compiler, you must first require it on your buildfile:

require 'buildr/java/groovyc'

Once loaded, the groovyc compiler will be automatically selected if any .groovy source

files are found under src/main/groovy directory, compiling them by default into the

target/classes directory.

If the project has java sources in src/main/java they will get compiled using the groovyc

joint compiler.

Sources found in src/test/groovy are compiled into the target/test/classes.

If you don’t specify the packaging type, it defaults to JAR.

The Groovy compiler supports the following options:

Option Usage

encoding Encoding of source files.

verbose Asks the compiler for verbose output, true when running in

verbose mode.

fork Whether to execute groovyc using a spawned instance of the

JVM. Defaults to no.

memoryInitialSize The initial size of the memory for the underlying VM, if using

fork mode, ignored otherwise. Defaults to the standard VM

memory setting. (Examples: 83886080, 81920k, or 80m)

memoryMaximumSize The maximum size of the memory for the underlying VM, if

using fork mode, ignored otherwise. Defaults to the standard

VM memory setting. (Examples: 83886080, 81920k, or 80m)

Languages 117

listfiles Indicates whether the source files to be compiled will be listed.

Defaults to no.

stacktrace If true each compile error message will contain a stacktrace.

warnings Issue warnings when compiling. True when running in verbose

mode.

debug Generates bytecode with debugging information. Set from the

debug environment variable/global option.

deprecation If true, shows deprecation messages. False by default.

optimise Generates faster bytecode by applying optimisations to the

program.

source Source code compatibility.

target Bytecode compatibility.

javac Hash of options passed to the ant javac task.

Testing with Groovy

EasyB

EasyB is a BDD framework using Groovy.

Specifications are written in the Groovy language, of course you get seamless Java

integration as with all things groovy.

To use this framework in your project you can select it with test.using :easyb.

This framework will search for the following patterns under your project:

src/spec/groovy/**/*Behavior.groovy
src/spec/groovy/**/*Story.groovy

Supports the following options:

118 Languages

http://www.easyb.org/
http://groovy.codehaus.org/

Option Value

:properties Hash of system properties available to the test case.

:java_args Arguments passed as is to the JVM.

:format Report format, either :txt or :xml

Documentation

Buildr offers support for using GroovyDoc to generate documentation from any Groovy

sources in a project. This is done using the doc task:

$ buildr doc

This will use the same .groovy sources used by the compile task to produce GroovyDoc

results in the target/doc/ directory. By default, these sources are chosen only from the

current project. However, it is possible to override this and generate documentation

from the sources in a sub-project (potentially more than one):

define 'foo' do
...

doc.from projects('foo:bar', 'foo')

define 'bar' do
...

end
end

With this configuration, the doc task will use sources from both foo:bar and

foo.

The doc task supports any option that the groovydoc command does (e.g. -windowtitle).

To pass an option to the GroovyDoc generator, simply specify it using the doc method:

Languages 119

define 'foo' do
...

doc :windowtitle => 'Abandon All Hope, Ye Who Enter Here', :private => true
end

The doc task is not joint-compilation aware. Thus, it will only generate GroovyDoc for

mixed-source projects, it will not attempt to generate both JavaDoc and GroovyDoc.

Ruby

Testing with Ruby

Buildr provides integration with some ruby testing frameworks, allowing you to test

your Java code with state of the art tools.

Testing code is written in Ruby language, and is run by using JRuby. That means you

have access to all your Java classes and any Java or Ruby tool out there.

Because of the use of JRuby, you will notice that running ruby tests is faster when

running Buildr on JRuby, as in this case there’s no need to run another JVM.

When not running on JRuby, Buildr will use the JRUBY_HOME environment

variable to find the JRuby installation directory. If no JRUBY_HOME is set or it

points to an empty directory, Buildr will prompt you to either install JRuby

manually or let it extract it for you.

You can use the build.yaml settings file to specify a particular version of JRuby (defaults

to 1.4.0 as of Buildr 1.3.5). For example:

jruby: 1.3.1

120 Languages

http://www.ruby-lang.org/en/
http://jruby.codehaus.org/

RSpec

RSpec is the de-facto BDD framework for ruby. It’s the framework used to test Buildr

itself.

To use this framework in your project you can select it with test.using :rspec.

This framework will search for the following patterns under your project:

src/spec/ruby/**/*_spec.rb

Supports the following options:

Option Value

:gems Hash of gems needed before running the tests. Keys are gem names,

values are the required gem version. An example use of this option

would be to require the ci_reporter gem to generate xml reports

:requires Array of ruby files to require before running the specs

:format Array of valid RSpec --format option values. Defaults to html report on

the reports directory and text progress

:output File path to output dump. false to supress output

:fork Run the tests on a new java vm. (enabled unless running on JRuby)

:properties Hash of system properties available to the test case.

:java_args Arguments passed as is to the JVM. (only when fork is enabled)

Languages 121

http://rspec.info/

More Stuff

Interactive Shells (REPLs) ...122

Running Your Application ...128

Using Gems...129

Using Java Libraries...131

BuildrServer ..133

Notifications: Growl, Libnotify, Qube ..133

Eclipse ..135

Releasing to Maven Central..136

Cobertura, Emma...150

Checkstyle ...152

FindBugs..153

JavaNCSS...154

JDepend ...155

Sonar ..157

Xjc Compiler

CssLint ...159

ScssLint ..160

Anything Ruby Can Do...161

Interactive Shells (REPLs)

Many languages (including Scala and Groovy) provide an interactive shell tool which

allows developers to run arbitrary expressions and see the results immediately:

$ scala
Welcome to Scala version 2.7.4.final (Java HotSpot(TM) 64-Bit Server VM, Java
1.6.0_03-p3).
Type in expressions to have them evaluated.
Type :help for more information.

scala> 6 * 7
res0: Int = 42

scala>

These tools are alternatively known as “REPLs” (Read, Eval, Print Loop), a term which

originally comes from Lisp. This sort of interactive shell can be an invaluable asset when

developing frameworks or other non-UI-oriented modules. A common use-case is

running a quick, manual test to make sure that the framework is functioning properly. It

is faster and easier to do this in a shell, and also averts the need for extra test cases to be

developed just to check simple things during development.

Unfortunately, for such a tool to be useful in Java, Scala or Groovy development, it must

have access to the CLASSPATH, not only the compiled project binaries, but also its full list

of dependencies. While it is usually possible with such tools to specify the classpath

upon startup (e.g. the -cp switch for the Scala shell), this can get extremely tedious for

project’s with more dependencies, especially when some of these dependencies are

defined using transitive artifacts.

Buildr is capable of easing this workflow by providing full support for the configuration

and launch of interactive shells, the relevant shell may be launched simply by invoking

the shell task:

$ buildr shell

The shell task depends upon compile, meaning that any changed source files will be

recompiled prior to the shell’s launch. Tests will not be run, nor will test files be

recompiled. From within the shell itself, you should have access to your project’s

compilation classpath (anything specified using compile.with) as well as the compiled

sources for your project.

More Stuff 123

The project classpath is determined by checking the current working directory of your

system shell (the path from which the buildr shell command was invoked) and

recursively finding the relevant project for that directory. Thus, if you have a parent

project foo which has sub-projects bar and baz, you may invoke an interactive shell for

the baz project simply by cd-ing into its project directory (or any of its sub-directories)

and invoking the shell task. You may also invoke a shell against a specific project by

giving its fully-qualified descriptor as a prefix to the shell task:

$ buildr foo:bar:shell

Supported Shells

By default, Buildr will open the interactive shell which corresponds to your project’s

language. Thus, if your project is using Groovy, it will invoke the groovysh command,

configured with the appropriate classpath. If your project is using Scala, then the shell
task will invoke the scala command. Unfortunately, the Java language does not define

an interactive shell of any kind, however for those projects using exclusively the Java

language, Buildr will use the BeanShell console.

However, you may still wish to exploit the advantages of an interactive shell from some

other JVM language even while working in Java. Alternatively, you may want to use

some shell other than the default even when working in a language which has its own.

There are two ways to acheive this aim. The quickest way is to explicitly specify the

relevant shell at the call-site:

$ buildr foo:shell:jirb

This will open the JIRB shell (the JRuby REPL) for the foo project. Whenever you are

specifying a shell explicitly in this fashion, you must fully-qualify the project name:

$ buildr shell:jirb # wrong!!

The above will fail because of the way that Rake tasks are dispatched.

Obviously, this explicit specification is a little bit clunky. It would be much easier if we

could simply say that we always want to use the JIRB shell for this particular project.

This can be done by using the shell.using directive within your project definition:

124 More Stuff

http://www.beanshell.org/manual/quickstart.html#The_BeanShell_GUI

define 'foo' do
shell.using :jirb

end

With this project definition, we can now invoke the shell task and JIRB will be

launched, regardless of the default for our project’s language:

$ buildr shell

Buildr supports several different shell providers, and the framework is flexible enough

that additional support can be added almost trivially. The following table gives the

complete list of supported shells, their corresponding shell.using descriptor and the

language for which they are the default (if applicable):

Shell Name Descriptor Language

BeanShell Console :bsh Java

Clojure REPL :clj N/A

GroovySH :groovysh Groovy

JRuby IRB :jirb N/A

Scala Interpreter :scala Scala

Note that some of these shells impose certain requirements to enable use. The Groovy

shell requires the GROOVY_HOME environment variable to point to the Groovy install path.

The Clojure REPL makes a similar requirement of CLOJURE_HOME. The JRuby and Scala

shells will use JRUBY_HOME and SCALA_HOME respectively if they are defined. However, if

these environment variables are not defined, the relevant JAR files will be automatically

downloaded from the appropriate Maven2 repository.

Verbosity and Tracing

By default, Buildr is moderately verbose, meaning that it attempts to give you enough

context into what’s happening during the build.

More Stuff 125

It’s possible to silence Buildr if you’re inconvenienced by its default verbosity by

issuing,

$ buildr --silent

On the other hand, if you want Buildr to give you more context in order to trace what’s

happening, you can use the -t options:

$ buildr -t

Using -t will also display backtraces if and when they occur.

Many components can be individually configured to display more output if you’re

debugging a specific area of your build. For instance, you could use --
trace=javac,groovyc to enable tracing of the Java and Groovy compilers:

$ buildr --trace=javac,groovyc

If you don’t know which tracing category you need to enable or if you want a full

firehose worth of traces, you can enable all traces:

$ buildr --trace=all

JavaRebel Integration

JavaRebel is a live bytecode reloading solution by Zero Turnaround. It’s a lot like the hot

code reload feature found in many Java IDE debuggers (like Eclipse and IntelliJ), but

capable of handling things like member addition or removal and new class definition.

The tool itself is commercial and works with any JVM language, but they do offer a free

license for use with Scala classes only.

If available, Buildr will use JavaRebel when configuring the launch for each interactive

shell. Shells launched with JavaRebel integration will automatically receive recompiled

changes on the fly without any need to restart the shell. There are some limitations to

this which are specific to the shell in question, but for the most part, things Just Work.

JavaRebel auto-magical integration is done by searching for a valid JavaRebel install

path in the following list of environment variables (in order):

126 More Stuff

http://www.zeroturnaround.com/javarebel

• REBEL_HOME
• JAVA_REBEL
• JAVAREBEL
• JAVAREBEL_HOME

These environment variables may point to either the JavaRebel install directory (e.g.

~/javarebel-2.0.1), or the JAR file itself (e.g. ~/javarebel-2.0.1/javarebel.jar). If the

path is valid, Buildr will automatically append the appropriate JVM switches to the

launch configurations of each shell:

$ buildr shell
(in ~/foo, development)
Compiling foo into ~/foo/target/classes
Running java scala.tools.nsc.MainGenericRunner

###

ZeroTurnaround JavaRebel 2.0.1 (200905251513)
(c) Copyright Webmedia, Ltd, 2007-2009. All rights reserved.

This product is licensed to Daniel Spiewak
for personal use only.

###

Welcome to Scala version 2.7.4.final (Java HotSpot(TM) 64-Bit Server VM, Java
1.6.0_03-p3).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

Note that Buildr does not check to make sure that you have a valid JavaRebel license, so

you may end up launching with JavaRebel configured but without the ability to use it

(in which case, JavaRebel will print a notification).

More Stuff 127

Running Your Application

The run task lets you easily run programs from your buildfile, such as launching your

own application.

In its simplest form, you simply define the main class of your Java application,

define 'my-project' do
compile.with COMMONS_IO, HTTPCLIENT
run.using :main => "org.example.Main"

end

And then run,

~/my-project$ buildr run

which would launch your application using the project’s compile classpath.

It’s also possible to pass arguments to the JVM using the :java_args option:

run.using :main => "org.example.Main",
:java_args => ["-server"]

If your application requires arguments, you can pass in an array of values for the :main
option, or provide a set of system properties using :properties.

run.using :main => ["org.example.Main", "-t", "input.txt"],
:properties => { :debug => "true" }

The run task is a local task, which means that Buildr will automatically pick the run task

matching the project in the current directory. Executing the following command:

~/my-project/subproject$ buildr run

will run the my-project:subproject:run task, assuming my-project is your top-level

project.

Here is a summary of run.using options,

128 More Stuff

Option Description …

:main The java main class, e.g. “com.example.Main”. Can also be an array if

the main class requires arguments.

:properties A hash of system properties to be passed to java.

:java_args An array of additional parameters to pass to java

:classpath An array of additional classpath elements (i.e. artifacts, files, etc.). By

default, the run task automatically uses the compile.dependencies,

test.dependencies and test.compile.target of your project.

The run task also detects and uses JavaRebel if it’s available. See the JavaRebel

section for details.

Using Gems

The purpose of the buildfile is to define your projects, and the various tasks and

functions used for building them. Some of these are specific to your projects, others are

more general in nature, and you may want to share them across projects.

There are several mechanisms for developing extensions and build features across

projects which we cover in more details in the section Extending Buildr. Here we will

talk about using extensions that are distributed in the form of RubyGems.

RubyGems provides the gem command line tool that you can use to search, install,

upgrade, package and distribute gems. It installs all gems into a local repository that is

shared across your builds and all other Ruby applications you may have running. You

can install a gem from a local file, or download and install it from any number of remote

repositories.

RubyGems is preconfigured to use the RubyForge repository. You’ll find a large number

of open source Ruby libraries there, including Buildr itself and all its dependencies.

More Stuff 129

http://rubygems.org
http://rubygems.org

You can also set up your own private repository and use it instead or in addition to

RubyForge. Use the gem sources command to add repositories, and the gem server
command to run a remote repository. You can see all available options by running gem
help.

If your build depends on other gems, you will want to specify these dependencies as

part of your build and check that configuration into source control. That way you can

have a specific environment that will guarantee repeatable builds, whether you’re

building a particular version, moving between branches, or joining an existing project.

Buildr will take care of installing all the necessary dependencies, which you can then

manage with the gem command.

Use the build.yaml file to specify these dependencies (see Build Settings for more

information), for example:

This project requires the following gems
gems:

Suppose we want to notify developers when testcases fail.
- buildr-twitter-notifier-addon >=1
we test with ruby mock objects
- mocha
- ci_reporter

Gems contain executable code, and for that reason Buildr will not install gems without

your permission. When you run a build that includes any dependencies that are not

already installed on your machine, Buildr will ask for permission before installing them.

On Unix-based operating systems, you will also need sudo privileges and will be asked

for your password before proceeding.

Since this step requires your input, it will only happen when running Buildr

interactively from the command line. In all other cases, Buildr will fail and report the

missing dependencies. If you have an automated build environment, make sure to run

the build once manually to install all the necessary dependencies.

130 More Stuff

When installing a gem for the first time, Buildr will automatically look for the latest

available version. You can specify a particular version number, or a set of version

numbers known to work with that build. You can use equality operations to specify a

range of versions, for example, 1.2.3 to install only version 1.2.3, and => 1.2.3 to install

version 1.2.3 or later.

You can also specify a range up to one version bump, for example, ~> 1.2.3 is the same

as >= 1.2.3 < 1.3.0, and ~> 1.2 is the same as >= 1.2.0 < 2.0.0. If necessary, you can

exclude a particular version number, for example, ~> 1.2.3 != 1.2.7.

Buildr will install the latest version that matches the version requirement. To keep up

with newer versions, execute the gem update command periodically. You can also use

gem outdated to determine which new versions are available.

Most gems include documentation that you can access in several forms. You can use the

ri command line tool to find out more about a class, module or specific method. For

example:

$ ri Buildr::Jetty
$ ri Buildr::Jetty.start

You can also access documentation from a Web browser by running gem server and

pointing your browser to http://localhost:8808. Note that after installing a new gem,

you will need to restart the gem server to see its documentation.

Using Java Libraries

Buildr runs along side a JVM, using either RJB or JRuby. The Java module allows you to

access Java classes and create Java objects.

Java classes are accessed as static methods on the Java module, for example:

More Stuff 131

http://localhost:8808

str = Java.java.lang.String.new('hai!')
str.toUpperCase
=> 'HAI!'
Java.java.lang.String.isInstance(str)
=> true
Java.com.sun.tools.javac.Main.compile(args)

The classpath attribute allows Buildr to add JARs and directories to the classpath, for

example, we use it to load Ant and various Ant tasks, code generators, test frameworks,

and so forth.

When using an artifact specification, Buildr will automatically download and install the

artifact before adding it to the classpath.

For example, Ant is loaded as follows:

Java.classpath << 'org.apache.ant:ant:jar:1.7.0'

Artifacts can only be downloaded after the Buildfile has loaded, giving it a chance to

specify which remote repositories to use, so adding to classpath does not by itself load

any libraries. You must call Java.load before accessing any Java classes to give Buildr a

chance to load the libraries specified in the classpath.

When building an extension, make sure to follow these rules:

1. Add to the classpath when the extension is loaded (i.e. in module or class

definition), so the first call to Java.load anywhere in the code will include the

libraries you specify.

2. Call Java.load once before accessing any Java classes, allowing Buildr to set up

the classpath.

3. Only call Java.load when invoked, otherwise you may end up loading the JVM

with a partial classpath, or before all remote repositories are listed.

4. Check on a clean build with empty local repository.

132 More Stuff

BuildrServer

Buildr provides an addon that allows you start a dRuby server hosting a buildfile, so

that you can later invoke tasks on it without having to load the complete buildr runtime

again.

Usage:

buildr -r buildr/drb drb:start

To stop the BuildrServer simply use Ctrl+C or kill the process.

Once the server has been started you can invoke tasks using a simple script:

#!/usr/bin/env ruby
require 'rubygems'
require 'buildr/drb'
Buildr::DRbApplication.run

Save this script as dbuildr, make it executable and use it to invoke tasks.

$ dbuildr clean compile

The dbuildr command will start the BuildrServer if there isn’t one already running.

Subsequent calls to dbuildr will act as the client and invoke the tasks you provide to the

server. If the buildfile has been modified it will be reloaded on the BuildrServer.

Notifications: Growl, Libnotify, Qube

Buildr support sending notifications when the build completes or fails, such as

displaying the outcome message in an overlaid window on top of other applications.

For OS X users, Buildr supports Growl out of the box by using the Ruby Cocoa bindings.

More Stuff 133

http://www.ruby-doc.org/stdlib/libdoc/drb/rdoc/index.html
http://growl.info/

For Debian-based Linux users, Buildr supports notifications via the notify-send

command which is part of the “libnotify-bin”:“http://packages.debian.org/

search?keywords=libnotify-bin” package. Just make sure `notify-send` is installed and

on your path is on your `PATH`.

For other platforms or if you want to notify the user differently, Buildr offers two

extension points:

• Buildr.application.on_completion
• Buildr.application.on_failure

Here is an example using these extension points to send notifications using Qube:

Send notifications using Qube
notify = lambda do |type, title, message|

param = case type
when 'completed'; '-i'
when 'failed'; '-e'
else '-i'

end
system "qube #{param} #{title.inspect} #{message.inspect}"

end

Buildr.application.on_completion do |title, message|
notify['completed', title, message]

end
Buildr.application.on_failure do |title, message, ex|

notify['failed', title, message]
end

You can place this code inside buildr.rb in the .buildr directory under your home

directory.

134 More Stuff

http://manpages.ubuntu.com/manpages/gutsy/man1/notify-send.1.html
http://launchpad.net/qube

Eclipse

Use Apache Buildr to create Eclipse projects

If you’re using Eclipse, you can generate .classpath and .project from your Buildfile

and use them to create a project in your workspace:

$ buildr eclipse

The eclipse task will generate a .classpath and .project file for each of projects (and

sub-project) that compiles source code. It will not generate files for other projects, for

examples, projects you use strictly for packaging a distribution, or creating command

line scripts, etc.

If you add a new project, change the dependencies, or make any other change to your

Buildfile, just run the eclipse task again to re-generate the Eclipse project files. To have

your libraries’ source code available in Eclipse, run the artifacts:sources task.

You may explicitly specify the nature of your project, for example if you are developing

an Eclipse plugin:

define 'my-plugin' do
eclipse.natures :plugin

end

The currently supported natures are :java, :scala and :plugin. Buildr will attempts to

auto-detect your project type and apply the most relevant settings by default. If it

doesn’t or you need something special, you may also explicitly set the nature, container

and builders of your project by doing:

define 'custom-plugin' do
eclipse.natures 'org.eclipse.pde.PluginNature'
eclipse.classpath_containers 'org.eclipse.pde.core.requiredPlugins'
eclipse.builders ['org.eclipse.pde.ManifestBuilder',

'org.eclipse.pde.SchemaBuilder']
end

More Stuff 135

One more thing; these settings are inherited hierarchically so you may set them on a

parent project if you want to share them across different projects.

Use Apache Buildr to create a buildfile from an Eclipse workspace

If you’re using Eclipse, you can generate a buildfile from a directory which contains

one (or more) Eclipse projects somewhere in its sub-directories.

$ buildr --generate /path/to/my_project

This creates a basic buildfile with a main project called ‘my_project’. The buildfile

contains a skeleton for compiling the Eclipse projects. If you want to automate

dependency tracking via OSGi have a look at the buildr4osgi project. Support for

building Eclipse RCP applications, running PDE tests and P2-sites is currently lacking in

Buildr.

Releasing to Maven Central

Many opensource projects release their artifacts to Maven Central. To release a library to

Maven Central, the project needs to provide several elements for each library;

• the jar artifact,

• the sources artifact,

• the javadocs artifact,

• a pom that supplies fields required by Maven Central, and

• gpg signatures for every file supplied.

Buildr has built-in support for the artifacts and can easily sign the artifacts using the

‘buildr/gpg’ addon. However it has not always been easy to generate a pom in the

required format until the ‘buildr/custom_pom’ became available.

Below is an extremely verbose example of a project that provides all the elements

required to publish to Maven Central.

136 More Stuff

http://oss.intalio.com/buildr4osgi/

Include addon to generate GPG Signatures
require 'buildr/gpg'
Include addon to generate custom pom
require 'buildr/custom_pom'

define 'myproject' do
project.group = 'org.myproject'
project.version = '1.0'

pom.licenses['The Apache Software License, Version 2.0'] =
'http://www.apache.org/licenses/LICENSE-2.0.txt'

pom.scm_connection = pom.scm_developer_connection =
'scm:git:git@github.com:jbloggs/myproject'

pom.scm_url = 'git@github.com:jbloggs/myproject'
pom.url = 'https://github.com/jbloggs/myproject'
pom.issues_url = 'https://github.com/jbloggs/myproject/issues'
pom.issues_system = 'GitHub Issues'
pom.add_developer('jbloggs', 'Joe Bloggs', 'jbloggs@example.com', ['Project

Lead'])
pom.provided_dependencies.concat [:javax_servlet]
pom.optional_dependencies.concat [:optional_api]

compile.with :javax_servlet, :some_api, :optional_api

test.with :mockito

package(:jar)
package(:sources)
package(:javadoc)

end

That example is however, extremely verbose and there is a number of helper methods

been added to the ‘buildr/custom_pom’ addon to simplify common scenarios. It would

be more common to see the addon used in the following manner;

More Stuff 137

require 'buildr/gpg'
require 'buildr/custom_pom'

define 'myproject' do
project.group = 'org.myproject'
project.version = '1.0'

pom.add_apache_v2_license
pom.add_github_project('jbloggs/myproject')
pom.add_developer('jbloggs', 'Joe Bloggs')
pom.provided_dependencies.concat [:javax_servlet]
pom.optional_dependencies.concat [:optional_api]

compile.with :javax_servlet, :optional_api

test.with :mockito

package(:jar)
package(:sources)
package(:javadoc)

end

If there are other common scenarios useful for opensource developers, feel free to make

a request on buildr mailing list to provide simplified helper methods.

IntelliJ IDEA

If you use IntelliJ IDEA, you can generate project files by issuing:

$ buildr idea

This task will generate a .iml file for every project (or subproject) and a .ipr that you

can directly open for the root project.

The generated project files can be removed by issuing:

$ buildr idea:clean

138 More Stuff

The idea task generates the project files based on the settings of each project and idea

extension specific settings. The main and test source trees are added to the .iml file for

each project as are the respective resource directories. The target and report directories

are excluded from the project. If the project files exist on the file system the extension

will replace specific component sections in the xml with the generated component

configurations.

Dependencies come in two forms. Dependencies on other projects and dependencies on

external jars. Dependencies on other projects are added as module dependencies in the

.iml while jars are added as regular file dependencies. Dependencies are exported from

the .iml file if they are compile dependencies. If a artifact that matches dependency but

has a classifier of ‘sources’ is present then it is configured as the source for the

dependency. Note: Use “buildr artifacts:sources” to download the source for

dependencies.

Idea Specific Directives

The extension specific settings of sub-projects inherit the parent projects settings unless

overwritten.

Project file naming

The extension will use the last element of the projects name when generating the .ipr
and .iml files. i.e. A project named “foo” will generate “foo.iml” and “foo.ipr” while a

project named “foo:bar” will generate “bar/bar.iml” and no ipr. (The .ipr project files

are only generated for the base project). The name can be modified by setting the

“ipr.suffix” or “iml.suffix” settings which specifies the suffix appended to the file names.

The user can also override the name completely by setting “ipr.id” or “iml.id”.

More Stuff 139

Example: Setting id

define "foo" do
ipr.id = "beep"
define "bar" do

iml.id = "baz"
end

end

Will generate:

beep.ipr
foo.iml
bar/baz.iml

Example: Setting suffix

define "foo" do
ipr.suffix = "-suffix1"
iml.suffix = "-suffix2"
define "bar"

end

Will generate:

foo-suffix1.ipr
foo-suffix2.iml
bar/bar-suffix2.iml

Example: Setting prefix

define "foo" do
ipr.prefix = "prefix1-"
iml.prefix = "prefix2-"
define "bar"

end

140 More Stuff

Will generate:

prefix1-foo.ipr
prefix2-foo.iml
bar/prefix2-bar.iml

Disabling project file generation

The extension will not generate an iml file for a project if the “project.no_iml” method is

invoked. Generation of ipr files can be disabled by invoking the method

“project.no_ipr”.

Example

define "foo" do
project.no_ipr
define "bar" do

project.no_iml
end

end

Will generate:

foo.iml

Disabling generation of content section in .iml file

The extension will not generate a content section in an iml file if the “iml.skip_content!”

method is invoked. This can be useful if a project is just exporting dependencies and has

no associated source code. This may also be of use in scenarios where the build is

repackaging an existing jar with more meta-data or the project is just a container for

other projects.

More Stuff 141

Example

define "foo" do
iml.skip_content!

end

VCS Integration

The extension will attempt to guess the VCS type of the project by looking for a .svn or

.git directory in the base projects directory. If either of these are set it will configure the

component as appropriate. Otherwise the user will need to manually specify the project

to one of either ‘Git’ or ‘svn’ using the ipr.vcs setting.

Example

define "foo" do
ipr.vcs = 'Git'

end

Adding main, test or exclude paths to the .iml file

The extension allows you to add source paths, test source paths or add paths to the

excluded set by modifying the “iml.main_source_directories”,

“iml.test_source_directories” or “iml.excluded_directories” settings respectively. This is

only needed when the defaults inherited from project.compile or project.test are not

sufficient.

142 More Stuff

Example

define "foo" do
Add path for generated resources to .iml file
iml.main_source_directories << _("generated/main/resources")

Add path for generated test resources to .iml file
iml.test_source_directories << _("generated/test/resources")

Exclude the temp directory created during testing
iml.excluded_directories << _("tmp")

...
end

Adding main or test dependencies to the .iml file

The extension allows you to add main or test dependencies by modifying the

“iml.main_dependencies” or “iml.test_dependencies” settings respectively. This is only

needed when the defaults inherited from project.compile or project.test are not

sufficient. Note: These dependencies are not included on compile path when running

buildr.

Example

define "foo" do
Add idea specific jar dependency to .iml file
iml.main_dependencies << 'group:id:jar:1.0'

Add idea specific test jar dependency to .iml file
iml.test_dependencies << 'group:id:jar:1.0'
...

end

More Stuff 143

Dependency generation

A file dependency that exists in the local maven 2 repository is stored in the IML file

relative to the $MAVEN_REPOSITORY$ environment variable (that defaults to ~/.m2/
repository). The user can override the environment variable by setting the

“iml.local_repository_env_override” setting. If the dependency does not exist in to

maven repository or the “iml.local_repository_env_override” setting is set to nil, then

the path stored in the IML is relative to the IML file.

Example: Setting local_repository_env_override

define "foo" do
iml.local_repository_env_override = nil
compile.with 'group:id:jar:1.0'

end

Will generate a dependency with a path like:

jar:///home/peter/.m2/repository/group/id/1.0/id-1.0.jar!/

rather than the default

jar://$MAVEN_REPOSITORY$/group/id/1.0/id-1.0.jar!/

Example: A dependency outside the maven repository

define "foo" do
compile.with _("foos-dep.jar")

end

Will generate a dependency with a path like:

jar://$MODULE_DIR$/foo-dep.jar!/

144 More Stuff

Module Facets

Facets are IDEAs mechanism for adding support for languages, tools and frameworks

other than core java. A facet can be added to a project so that it can be deployed as a web

application or a hibernate application. A facet can also be used t provide support for

other languages such as ruby and scala. The extension makes it possible to generate .iml
with the appropriate facets via the “iml.add_facet” method. It should be noted that

facets are NOT inherited by sub-projects.

Example

This example adds the web facet to a project.

define "foo" do
iml.add_facet("Web","web") do |facet|

facet.configuration do |conf|
conf.descriptors do |desc|

desc.deploymentDescriptor :name => 'web.xml',
:url => "file://$MODULE_DIR$/src/main/webapp/WEB-INF/web.xml",
:optional => "false", :version => "2.4"

end
conf.webroots do |webroots|

webroots.root :url => "file://$MODULE_DIR$/src/main/webapp",
:relative => "/"

end
end

end
end

Project Configurations

Configurations are IDEAs mechanism for running or debugging the project. Shared

configurations are stored in the project file. The extension makes it possible to generate

an .ipr with specific configurations via the “ipr.add_configuration” method.

More Stuff 145

Example

This example adds a configuration to invoke a GWT application.

define "foo" do
...
ipr.add_configuration("Run Contacts.html", "GWT.ConfigurationType", "GWT

Configuration") do |xml|
xml.module(:name => project.iml.id)
xml.option(:name => "RUN_PAGE", :value => "Contacts.html")
xml.option(:name => "compilerParameters", :value => "-draftCompile

-localWorkers 2")
xml.option(:name => "compilerMaxHeapSize", :value => "512")

xml.RunnerSettings(:RunnerId => "Run")
xml.ConfigurationWrapper(:RunnerId => "Run")
xml.method()

end
end

Project Artifacts

IDEA can build artifacts such as jars and wars. The artifact configuration is stored in the

project file. The extension makes it possible to generate an .ipr with specific artifacts via

the “ipr.add_artifact” method.

Example

This example adds a jar artifact to the project.

146 More Stuff

define "foo" do
...
ipr.add_artifact("MyFancy.jar", "jar") do |xml|

xml.tag!('output-path', project._(:artifacts, "MyFancy.jar"))
xml.element :id => "module-output", :name => "foo"

end
end

Custom Component Sections

If the extension does not provide capability to generate configuration for a particular

IDEA plugin the user can provide their own configuration data via the

“ipr.add_component” or “iml.add_component” methods.

Example: Adding .ipr specific component

This example changes the compiler configuration for project.

define "foo" do
ipr.add_component("CompilerConfiguration") do |component|

component.option :name => 'DEFAULT_COMPILER', :value => 'Javac'
component.option :name => 'DEPLOY_AFTER_MAKE', :value => '0'
component.resourceExtensions do |xml|

xml.entry :name => '.+\.nonexistent'
end
component.wildcardResourceExtensions do |xml|

xml.entry :name => '?*.nonexistent'
end

end
end

Example: Adding .iml specific component

This example adds the web facet to a project. Note: This overrides the facets defined by

the “iml.add_facet” method.

More Stuff 147

define "foo" do
iml.add_component("FacetManager") do |component|

component.facet :type => 'web', :name => 'Web' do |facet|
facet.configuration do |conf|

conf.descriptors do |desc|
desc.deploymentDescriptor :name => 'web.xml',

:url => "file://$MODULE_DIR$/src/main/webapp/WEB-INF/web.xml",
:optional => "false", :version => "2.4"

end
conf.webroots do |webroots|

webroots.root :url => "file://$MODULE_DIR$/src/main/webapp",
:relative => "/"

end
end

end
end

end

Templates

The underlying project files are xml the contain elements for a number of “components”.

The extension will load any existing project files and replace or add any component

elements that are generated by the extension. The extension also allows the user to

specify a template with either “ipr.template” or “iml.template” settings. If a template is

specified it will be loaded and any component elements in these documents will be

merged into the base document prior to merging in generated sections. Templates are

useful if you want to enforce certain configuration options (i.e. project specific code

style).

Example

define "foo" do
ipr.template = 'project.ipr.template'
iml.template = 'module.iml.template'

end

148 More Stuff

Groups

IDEA provides the facility to organise modules into groups. By default the extension

does not do this but it can be enabled by “iml.group” setting. If that setting is set to true

then the .iml file will be placed in a group based on the parent projects name. If the

setting is a string then that is used as the name of the group.

Example

define "foo" do
iml.group = true
define 'bar' do

define 'baz'
end
define 'rab' do

iml.group = "MyGroup"
end

end

Will place the generated .imls in the following groups:

foo.iml => ''
bar/bar.iml => 'foo'
bar/baz/baz.iml => 'foo/bar'
rab/rab.iml => 'MyGroup'

Add Extra .iml files to .ipr

The ‘ipr.extra_modules’ setting makes it possible to add extra modules to the generated

iml file. The setting is an array of file names relative to the base project directory.

More Stuff 149

Example

define "foo" do
ipr.extra_modules << 'other.iml'
ipr.extra_modules << 'other_other.iml'

end

Will add the ‘other.iml’ and ‘other_other.iml’ files to the .ipr project files.

Buildr plugin for IDEA

Also, check out the Buildr plugin for IDEA (IDEA 7 and later). Once installed, open your

project with IDEA. If IDEA finds that you have Buildr installed and finds a buildfile in

the project’s directory, it will show all the tasks available for that project. To run a task,

double-click it. When the task completes, IDEA will show the results in the Buildr

Output window.

Cobertura, Emma

You can use Cobertura or Emma to instrument your code, run the tests and create a test

coverage report in either HTML or XML format.

There are two main tasks for each tool, both of which generate a test coverage report in

the reports/cobertura (respectively reports/emma) directory. For example:

$ buildr test cobertura:html

As you can guess, the other tasks are cobertura:xml, emma:html and emma:xml.

If you want to generate a test coverage report only for a specific project, you can do so

by using the project name as prefix to the tasks.

$ buildr subModule:cobertura:html

Each project can specify which classes to include or exclude from cobertura

instrumentation by giving a class-name regexp to the cobertura.include or

cobertura.exclude methods:

150 More Stuff

http://www.digitalsanctum.com/buildr-plug-in/
http://cobertura.sourceforge.net/
http://emma.sourceforge.net/

define 'someModule' do
cobertura.include 'some.package.==*=='
cobertura.include /some.(foo|bar).==*==/
cobertura.exclude 'some.foo.util.SimpleUtil'
cobertura.exclude /==*==.Const(ants)?/i

end

Emma has include and exclude methods too, but they take glob patterns instead of

regexps.

Cobertura also provides a cobertura:check task. This task is intended to be used as a

dependency for other tasks (such as deploy) which might wish to fail if coverage is

unacceptable. The respective thresholds for task failure may be defined using the

cobertura.check configuration namespace. For example:

define 'someModule' do
cobertura.check.branch_rate = 75
cobertura.check.line_rate = 100
cobertura.check.total_line_rate = 98

task(:deploy).enhance 'cobertura:check'
end

The cobertura:check task supports all of the configuration parameters allowed by the

cobertura-check Ant task (as documented here). Configuration parameters are “Ruby-

ized” (as demonstrated in the example above).

We want Buildr to load fast, and not everyone cares for these tasks, so we don’t include

them by default. If you want to use one of them, you need to require it explicitly. The

proper way to do it in Ruby:

require 'buildr/java/cobertura'
require 'buildr/java/emma'

You may want to add those to the Buildfile. Alternatively, you can use these tasks for all

your projects without modifying the Buildfile. One convenient method is to add these

lines to the buildr.rb file in the .buildr directory under your home directory.

More Stuff 151

http://cobertura.sourceforge.net/anttaskreference.html

Another option is to require it from the command line (--require or -r), for example:

$ buildr -rbuildr/java/cobertura cobertura:html

Checkstyle

Checkstyle is integrated into Buildr through an extension. The extension adds the

“checkstyle:xml” task that generates an xml report listing checkstyle violations and a

“checkstyle:html” task to generate the html variant. A typical project that uses the

extension may look something like;

require 'buildr/checkstyle'

define "foo" do
project.version = "1.0.0"

define "bar" do ... end

checkstyle.config_directory = _('etc/checkstyle')
checkstyle.source_paths << project('bar')._(:source, :main, :java)
checkstyle.extra_dependencies << :javax_servlet

end

By default checkstyle will look for all configuration files in the src/main/etc/checkstyle

directory but this can be overriden by the setting the “checkstyle.config_directory”

parameter. The “checkstyle:xml” task will be defined if the checkstyle rules file is found.

The rules file is typically named “checks.xml” but can be overridden by setting the

“checkstyle.configuration_file” parameter. If a suppressions file or import control file is

included in the directory, these will also be used by the extension. These names of these

files will default to “suppressions.xml” and “import-control.xml” but these can be

overriden by the parameters “checkstyle.suppressions_file” and

“checkstyle.import_control_file”.

152 More Stuff

The extension will include the source and test directories of the project aswell as the

compile and test dependencies when invoking the checkstyle tool. These can be added

to by the parameters “checkstyle.source_paths” and “checkstyle.extra_dependencies” as

appropriate.

If the xsl file named “checkstyle-report.xsl” is present in the configuration directory then

it will be used to generate the html report, otherwise a xsl file that comes with buildr

will be used. The name of the xsl file can be overridden by the parameter

“checkstyle.style_file”.

FindBugs

FindBugs is integrated into Buildr through an extension. The extension adds the

“findbugs:xml” task that generates an xml report listing findbugs violations and may

add a “findbugs:html” task if an appropriate xsl is present. A typical project that uses

the extension may look something like;

require 'buildr/findbugs'

define "foo" do
project.version = "1.0.0"

define "bar" do ... end

findbugs.config_directory = _('etc/findbugs')
findbugs.source_paths << project('bar')._(:source, :main, :java)
findbugs.analyze_paths << project('bar').compile.target
findbugs.extra_dependencies << project('bar').compile.dependencies

end

By default findbugs will look for all configuration files in the src/main/etc/findbugs

directory but this can be overriden by the setting the “findbugs.config_directory”

parameter. The “findbugs:xml” task will past FindBugs a filter xml if a file named

“filter.xml” is present in the configuration directory. This can be overridden by setting

the “findbugs.filter_file” parameter.

More Stuff 153

The extension will include the source and test directories of the project aswell as the

compile and test dependencies when invoking the findbugs tool. These can be added to

by the parameters “findbugs.source_paths” and “findbugs.extra_dependencies” as

appropriate. The actual analysis is run across compiled artifacts ad this will default to

the target directory of the project but this can be overriden by the

“findbugs.analyze_paths” parameter.

If the xsl file named “findbugs-report.xsl” is present in the configuration directory then a

“findbugs:html” task will be defined. The name of the xsl file can be overridden by the

parameter “findbugs.style_file”.

JavaNCSS

JavaNCSS is integrated into Buildr through an extension. The extension adds the

“javancss:xml” task that generates an xml report and may add a “javancss:html” task if

an appropriate xsl is present. A typical project that uses the extension may look

something like;

require 'buildr/javancss'

define "foo" do
project.version = "1.0.0"

define "bar" do ... end

javancss.enabled = true
javancss.config_directory = _('etc/javancss')
javancss.source_paths << project('bar')._(:source, :main, :java)

end

The extension will include the source and test directories of the project when invoking

the javancss tool. These can be added to by the parameters “javancss.source_paths”.

154 More Stuff

By default javancss will look for all configuration files in the src/main/etc/javancss

directory but this can be overriden by the setting the “javancss.config_directory”

parameter. The “javancss:xml” task will be defined if the “javancss.enabled” property is

set to true. If the xsl file named “javancss2html.xsl” is present in the configuration

directory then a “javancss:html” task will be defined. The name of the xsl file can be

overridden by the parameter “javancss.style_file”.

JDepend

JDepend is integrated into Buildr through an extension. The extension adds the

“jdepend:xml” task that generates an xml report, “jdepend:swing” that shows a Swing

UI, and may add a “jdepend:html” task if an appropriate xsl is present. A typical project

that uses the extension may look something like;

require 'buildr/jdepend'

define "foo" do
project.version = "1.0.0"

define "bar" do ... end

jdepend.enabled = true
jdepend.config_directory = _('etc/jdepend')
jdepend.target_paths << project('bar').compile.target

end

The extension will include the compiled source and test directories of the project when

invoking the JDepend tool. These can be added to by the parameters

“jdepend.target_paths”.

More Stuff 155

http://clarkware.com/software/JDepend.html

By default JDepend will look for all configuration files in the src/main/etc/jdepend

directory but this can be overriden by the setting the “jdepend.config_directory”

parameter. The “jdepend:xml” and “jdepend:swing” task will be defined if the

“jdepend.enabled” property is set to true. If a “jdepend.properties” is included in the

configuration directory then jdepend will load it during the analysis. If the xsl file

named “jdepend.xsl” is present in the configuration directory then a “jdepend:html”

task will be defined. The name of the xsl file can be overridden by the parameter

“jdepend.style_file”.

PMD

PMD is integrated into Buildr through an extension. The extension adds the

“pmd:rule:xml” and “pmd:rule:html” tasks. A typical project that uses the extension

may look something like;

require 'buildr/javancss'

define "foo" do
project.version = "1.0.0"

define "bar" do ... end

pmd.enabled = true
pmd.rule_set_paths = _('etc/pmd') + "/"
pmd.source_paths << project('bar')._(:source, :main, :java)
pmd.rule_set_files =

['basic','imports','unusedcode','logging-java','finalizers']

end

The “pmd:rule:xml” task will be defined if the “pmd.enabled” property is set to true.

The extension will include the source and test directories of the project when invoking

the pmd tool. These can be added to by the parameters “pmd.source_paths”.

156 More Stuff

By default the pmd rule files ‘basic’,‘imports’ and ‘unusedcode’ will be evaluated but

this can be overriden by the “pmd.rule_set_files” parameter. The rule sets will be loaded

from the classpath and this can be added to by modifying the “pmd.rule_set_paths”

parameter.

Sonar

Sonar is “an open platform to manage code quality”. It is integrated into Buildr through

an extension. The extension adds the “sonar” task. A typical project that uses the

extension may look something like;

require 'buildr/sonar'

define "foo" do
project.version = "1.0.0"

define "bar" do ... end

sonar.enabled = true
sonar.project_name = 'Foo-Project'
sonar.key = 'foo:project'
sonar.jdbc_url = 'jdbc:jtds:sqlserver://example.org/

SONAR;instance=MyInstance;SelectMethod=Cursor'
sonar.jdbc_driver_class_name = 'net.sourceforge.jtds.jdbc.Driver'
sonar.jdbc_username = 'sonar'
sonar.jdbc_password = 'secret'
sonar.host_url = 'http://127.0.0.1:9000'
sonar.sources << project('foo:bar')._(:source, :main, :java)
sonar.binaries << project('foo:bar').compile.target
sonar.libraries << project('foo:bar').compile.dependencies

end

The “sonar” task will be defined if the “sonar.enabled” property is set to true.

More Stuff 157

http://www.sonarsource.org/

Defaults exist for the “project_name”, “key”, “sources”, “binaries” and “libraries”

parameters but the others should be set explicitly. The extension will include the source

and test directories of the project as sources by default, the target directory as a binary

and the dependencies as libraries.

JAXB Xjc Compiler

Buildr includes an extension that provides the ability to invoke jaxb xjc binding

compiler. A typical project that uses the extension may look something like;

require 'buildr/jaxb_xjc'

define "foo" do
project.version = "1.0.0"
compile.from compile_jaxb(_('src/schemas/wildfire-1.3.xsd'),

"-quiet",
:package => "org.foo.api")

package :jar
end

The method compile_jaxb accepts either an array of files or a single file as the first

parameter. It then accepts 0 or more arguments that are passed to the underlying XJC

compiler. The arguments are documented on the jaxb site. If the last argument is an

options hash then the extension handles the options hash specially. The supported

options include:

• :directory: The directory to which source is generated. Defaults to

_(:target, :generated, :jaxb)

• :keep_content: By default the generated directory will be deleted. If true is

specified for this parameter the directory will not be deleted.

• :package: The package in which the source is generated.

158 More Stuff

https://jaxb.dev.java.net/nonav/2.2.1/docs/xjc.html

CssLint

CssLint is integrated into Buildr through an extension. The extension adds the

“css_lint:xml” task to generate an xml report listing css lint violations and a

“css_lint:html” task for a html variant of the same data. It is expected that a project that

makes use of css linting will have installed the csslint using node. A typical project that

uses the extension may look something like;

require 'buildr/css_lint'

define "foo" do
project.version = "1.0.0"

define "bar" do ... end

css_lint.source_paths.concat([some_generated_dir])
css_lint.ignore.concat(%w(box-sizing font-sizes adjoining-classes))

end

By default css_lint will look for the xsl file in the src/main/etc/css_lint directory but

this can be overriden by the setting the “css_lint.config_directory” parameter. The

“css_lint:xml” task will be defined if the source_paths is not empty. The rules can be

passed to the task using the ‘ignores’, ‘errors’ and ‘warnings’ parameters.

The extension will lint the css files in the “_(:source, :main, :webapp, :css)” directory by

default. The set of source directories linted can be controlled by the

“css_lint.source_paths” parameter.

If the xsl file named “css_lint-report.xsl” is present in the configuration directory then

that will be used in the “css_lint:html” task otherwise a default xsl included with buildr

will be used. The name of the xsl file can be overridden by the parameter

“css_lint.style_file”.

More Stuff 159

https://github.com/CSSLint/csslint

ScssLint

ScssLint is integrated into Buildr through an extension. The extension adds the

“scss_lint:xml” task to generate an xml report listing scss lint violations and a

“scss_lint:html” task for a html variant of the same data. A buildr project that makes

uses of the extension is expected to have added ‘scss_lint’ gem to the projects Gemfile by

adding a line such as;

gem 'scss-lint', '= 0.24.0'

A typical project that uses the extension may look something like;

require 'buildr/scss_lint'

define "foo" do
project.version = "1.0.0"

define "bar" do ... end

scss_lint.configuration_file = _('etc/scss_lint/checks.yml')
scss_lint.source_paths << project('web')._(:source, :main, :webapp, 'sass')
scss_lint.file_excludes = FileList["#{project('web')._(:source, :main,

:webapp, 'sass')}/vendor/**/*"]
end

By default scss_lint will look for all configuration files in the src/main/etc/scss_lint

directory but this can be overriden by the setting the “scss_lint.config_directory”

parameter. The “scss_lint:xml” task will be defined if the scss_lint rules file is found. The

rules file is named “checks.yml” by default but can be overridden by setting the

“scss_lint.configuration_file” parameter.

The extension will lint the sass files in the “_(:source, :main, :webapp, :sass)” directory

by default. The set of source directories linted can be controlled by the

“scss_lint.source_paths” parameter.

160 More Stuff

https://github.com/causes/scss-lint

If the xsl file named “scss_lint-report.xsl” is present in the configuration directory then

that will be used in the “scss_lint:html” task otherwise a default xsl included with buildr

will be used. The name of the xsl file can be overridden by the parameter

“scss_lint.style_file”.

Anything Ruby Can Do

Buildr is Ruby code. That’s an implementation detail for some, but a useful features for

others. You can use Ruby to keep your build scripts simple and DRY, tackle ad hoc tasks

and write reusable features without the complexity of “plugins”.

We already showed you one example where Ruby could help. You can use Ruby to

manage dependency by setting constants and reusing them, grouping related

dependencies into arrays and structures.

You can use Ruby to perform ad hoc tasks. For example, Buildr doesn’t have any pre-

canned task for setting file permissions. But Ruby has a method for that, so it’s just a

matter of writing a task:

bins = file('target/bin'=>FileList[_('src/main/dist/bin/==*==')]) do |task|
mkpath task.name
cp task.prerequisites, task.name
chmod 0755, FileList[task.name + '/==*==.sh'], :verbose=>false

end

You can use functions to keep your code simple. For example, in the ODE project we

create two binary distributions, both of which contain a common set of files, and one

additional file unique to each distribution. We use a method to define the common

distribution:

More Stuff 161

def distro(project, id)
project.package(:zip, :id=>id).path("#{id}-#{version}").tap do |zip|

zip.include meta_inf + ['RELEASE_NOTES', 'README'].map { |f| path_to(f) }
zip.path('examples').include project.path_to('src/examples'), :as=>'.'
zip.merge project('ode:tools-bin').package(:zip)
zip.path('lib').include artifacts(COMMONS.logging, COMMONS.codec,

COMMONS.httpclient, COMMONS.pool, COMMONS.collections, JAXEN, SAXON,
LOG4J, WSDL4J, XALAN, XERCES)

project('ode').projects('utils', 'tools', 'bpel-compiler', 'bpel-api',
'bpel-obj', 'bpel-schemas').map(&:packages).flatten.each do |pkg|

zip.include(pkg.to_s, :as=>"#{pkg.id}.#{pkg.type}", :path=>'lib')
end

yield zip
end

end

And then use it in the project definition:

define 'distro-axis2' do
parent.distro(self, "#{parent.id}-war") { |zip|

zip.include project('ode:axis2-war').package(:war), :as=>'ode.war' }
end

Ruby’s functional style and blocks make some task extremely easy. For example, let’s

say we wanted to count how many source files we have, and total number of lines:

sources = projects.map { |prj| prj.compile.sources.
map { |src| FileList["#{src}/**/*.java"] } }.flatten

puts "There are #{source.size} source files"
lines = sources.inject(0) { |lines, src| lines += File.readlines(src).size }
puts "That contain #{lines} lines"

162 More Stuff

Extending Buildr

Organizing Tasks ...163

Creating Extensions ...165

Using Alternative Layouts..168

Organizing Tasks

A couple of things we learned while working on Buildr. Being able to write your own

Rake tasks is a very powerful feature. But if you find yourself doing the same thing over

and over, you might also want to consider functions. They give you a lot more power

and easy abstractions.

For example, we use OpenJPA in several projects. It’s a very short task, but each time I

have to go back to the OpenJPA documentation to figure out how to set the Ant

MappingTool task, tell Ant how to define it. After the second time, you’re recognizing a

pattern and it’s just easier to write a function that does all that for you.

Compare this:

file('derby.sql') do
REQUIRES = [

'org.apache.openjpa:openjpa-all:jar:0.9.7-incubating',
'commons-collections:commons-collections:jar:3.1',
. . .
'net.sourceforge.serp:serp:jar:1.11.0']

ant('openjpa') do |ant|
ant.taskdef :name=>'mapping',

:classname=>'org.apache.openjpa.jdbc.ant.MappingToolTask',
:classpath=>REQUIRES.join(File::PATH_SEPARATOR)

ant.mapping :schemaAction=>'build', :sqlFile=>task.name,
:ignoreErrors=>true do

ant.config :propertiesFile=>_('src/main/sql/derby.xml')
ant.classpath :path=>projects('store', 'utils').

flatten.map(&:to_s).join(File::PATH_SEPARATOR)
end

end
end

To this:

file('derby.sql') do
mapping_tool :action=>'build', :sql=>task.name,

:properties=>_('src/main/sql/derby.xml'),
:classpath=>projects('store', 'utils')

end

I prefer the second. It’s easier to look at the Buildfile and understand what it does. It’s

easier to maintain when you only have to look at the important information.

But just using functions is not always enough. You end up with a Buildfile containing a

lot of code that clearly doesn’t belong there. For starters, I recommend putting it in the

tasks directory. Write it into a file with a .rake extension and place that in the tasks
directory next to the Buildfile. Buildr will automatically pick it up and load it for you.

164 Extending Buildr

If you want to share these pre-canned definitions between projects, you have a few more

options. You can share the tasks directory using SVN externals, Git modules, or

whichever cross-repository feature your source control system supports. Another

mechanism with better version control is to package all these tasks, functions and

modules into a Gem and require it from your Buildfile. You can run your own internal

Gem server for that.

To summarize, there are several common ways to distribute extensions:

• Put them in the same place (e.g. ~/.buildr) and require them from your

buildfile
• Put them directly in the project, typically under the tasks directory.

• Put them in a shared code repository, and link to them from your project’s tasks
directory

• As Ruby gems and specify which gems are used in the settings file

You can also get creative and devise your own way to distribute extensions.

Sake is a good example of such initiative that lets you deploy Rake tasks on a system-

wide basis.

Creating Extensions

The basic mechanism for extending projects in Buildr are Ruby modules. In fact, base

features like compiling and testing are all developed in the form of modules, and then

added to the core Project class.

A module defines instance methods that are then mixed into the project and become

instance methods of the project. There are two general ways for extending projects. You

can extend all projects by including the module in Project:

class Project
include MyExtension

end

You can also extend a given project instance and only that instance by extending it with

the module:

Extending Buildr 165

http://rubygems.org/
http://errtheblog.com/post/6069

define 'foo' do
extend MyExtension

end

Some extensions require tighter integration with the project, specifically for setting up

tasks and properties, or for configuring tasks based on the project definition. You can do

that by adding callbacks to the process.

The easiest way to add callbacks is by incorporating the Extension module in your own

extension, and using the various class methods to define callback behavior.

Method Usage

first_time This block will be called once for any particular extension. You can

use this to setup top-level and local tasks.

before_define This block is called once for the project with the project instance, right

before running the project definition. You can use this to add tasks

and set properties that will be used in the project definition.

after_define This block is called once for the project with the project instance, right

after running the project definition. You can use this to do any post-

processing that depends on the project definition.

This example illustrates how to write a simple extension:

166 Extending Buildr

module LinesOfCode

include Extension

first_time do
Define task not specific to any projet.
desc 'Count lines of code in current project'
Project.local_task('loc')

end

before_define do |project|
Define the loc task for this particular project.
project.recursive_task 'loc' do |task|

lines = task.prerequisites.map { |path|
Dir["#{path}/**/*"]

}.uniq.select { |file|
File.file?(file)

}.inject(0) { |total, file|
total + File.readlines(file).count

}
puts "Project #{project.name} has #{lines} lines of code"
end

end

after_define do |project|
Now that we know all the source directories, add them.
task('loc' => project.compile.sources + project.test.sources)

end

To use this method in your project:
loc path_1, path_2
def loc(*paths)

task('loc' => paths)
end

end

Extending Buildr 167

class Buildr::Project
include LinesOfCode

end

You may find interesting that this Extension API is used pervasively inside Buildr itself.

Many of the standard tasks such as compile, test, package are extensions to a very small

core.

Starting with Buildr 1.4, it’s possible to define ordering between before_define and

after_define code blocks in a way similar to Rake’s dependencies. For example, if you

wanted to override project.test.compile.from in after_define, you could do so by in

after_define(:functional_tests) do |project|
Change project.test.compile.from if it's not already pointing
to a location with Java sources
if Dir["#{project.test.compile.from}/**/*.java"].size == 0 &&

Dir["#{project._(:src, 'test-functional', :java)}/**/*.java"].size > 0
project.test.compile.from project._(:src, 'test-functional', :java)

end
end

make sure project.test.compile.from is updated before the
compile extension picks up its value
after_define(:compile => :functional_test)

Core extensions provide the following named callbacks: compile, test, build, package
and check.

Using Alternative Layouts

Buildr follows a common convention for project layouts: Java source files appear in src/
main/java and compile to target/classes, resources are copied over from src/main/
resources and so forth. Not all projects follow this convention, so it’s now possible to

specify an alternative project layout.

168 Extending Buildr

The default layout is available in Layout.default, and all projects inherit it. You can set

Layout.default to your own layout, or define a project with a given layout

(recommended) by setting the :layout property. Projects inherit the layout from their

parent projects. For example:

define 'foo', :layout=>my_layout do
...

end

A layout is an object that implements the expand method. The easiest way to define a

custom layout is to create a new Layout object and specify mapping between names used

by Buildr and actual paths within the project. For example:

my_layout = Layout.new
my_layout[:source, :main, :java] = 'java'
my_layout[:source, :main, :resources] = 'resources'

Partial expansion also works, so you can specify the above layout using:

my_layout = Layout.new
my_layout[:source, :main] = ''

If you need anything more complex, you can always subclass Layout and add special

handling in the expand method, you’ll find one such example in the API documentation.

The built-in tasks expand lists of symbols into relative paths, using the following

convention:

Path Expands to

:source, :main,
<lang/usage>

Directory containing source files for a given language or usage,

for example, :java, :resources, :webapp.

:source, :test,
<lang/usage>

Directory containing test files for a given language or usage, for

example, :java, :resources.

:target,
:generated

Target directory for generated code (typically source code).

Extending Buildr 169

:target, :main,
<lang/usage>

Target directory for compiled code, for example, :classes,

:resources.

:target, :test,
<lang/usage>

Target directory for compile test cases, for example, :classes,

:resources.

:reports,
<framework/usage>

Target directory for generated reports, for example, :junit,

:coverage.

All tasks are encouraged to use the same convention, and whenever possible, we

recommend using the project’s path_to method to expand a list of symbols into a path,

or use the appropriate path when available. For example:

define 'bad' do
This may not be the real target.
puts 'Compiling to ' + path_to('target/classes')
This will break with different layouts.
package(:jar).include 'src/main/etc/*'

end

define 'good' do
This is always the compiler's target.
puts 'Compiling to ' + compile.target.to_s
This will work with different layouts.
package(:jar).include path_to(:source, :main, :etc, '*')

end

170 Extending Buildr

Contributing

Getting involved ..171

Mailing Lists ...171

Internet Relay Chat ..172

Bugs (aka Issues) ..172

Community Wiki ...172

Contributing Code ...173

Living on the edge ...174

Tested and Documented ...176

Documentation ...177

Continuous Integration ...179

Contributors..181

Buildr is a community effort, and we welcome all contributors. Here’s your chance to get

involved and help your fellow developers.

Getting involved

All our discussions are done in the open, over email, and that would be the first place to

look for answers, raise ideas, etc. For bug reports, issues and patches, see below.

Mailing Lists

We run two mailing lists, the users mailing list for developers working with Buildr, that

would be you if you’re using Buildr or interested in using it. There’s the dev mailing list

for talking about development of Buildr itself. There’s also commits mailing list for

following SVN commits and JIRA issues.

_site/mailing_lists.html
http://buildr.markmail.org/search/list:users
http://buildr.markmail.org/search/list:dev
http://buildr.markmail.org/search/list:commits

Check the mailing lists page for more information on subscribing, searching and posting

to the mailing list.

Internet Relay Chat

We are live on IRC under the buildr channel on irc.freenode.net, with a broad coverage

of the US timezone. We tend to idle there, so feel free to ping the channel owner

(toulmean) to make noise.

Our “conversations”: are logged by the echelog and irclogger bots. If you’re really

curious, we also have activity statistics

Sincere thanks to Matzon and Christopher Schneider for setting these up!

Bugs (aka Issues)

We really do try to keep bugs to a minimum, and anticipate everything you’ll ever want

to do with Buildr. We’re also, not perfect. So you may have found a bug, or have an

enhancement in mind, or better yet, a patch to contribute. Here’s what you can do.

If it’s a bug, enhancement or patch, add it to JIRA. For trivial stuff, that’s good enough.

If it needs more attention, start a discussion over on the mailing list. We will still use

JIRA to log the progress, but the mailing list is a better place for talking things through.

When reporting a bug, please tell us which version of Ruby, Buildr and Java you are

using, and also which operating system you are on:

$ ruby --version
$ buildr --version
$ java --version

Community Wiki

Our community Wiki.

172 Contributing

_site/mailing_lists.html
http://echelog.matzon.dk/logs/browse/buildr/1279663200
http://irclogger.com/buildr/
http://echelog.matzon.dk/stats/buildr.html
http://issues.apache.org/jira/browse/Buildr
http://cwiki.apache.org/confluence/display/BUILDR/Index

Contributing Code

Yes, please.

If you have a patch to submit, do it through JIRA. We want to make sure Apache gets

the right to use your contribution, and the JIRA upload form includes a simple

contribution agreement. Lawyer not included.

The Perfect Patch

If you want to get your patch accepted quickly:

1. Provide a good summary of the bug/fix. We use that to decide which issue we

can do quickly, and also copy and paste it into the changelog.

2. Provide short explanation of what failed, under what conditions, why, and what

else could be affected by the change (when relevant). The helps us understand

the problem and move on to the next step.

3. Provide a patch with relevant specs, or a fix to incomplete/broken specs. First

thing we have to do is replicate the problem, before applying the change, and

then make sure the change fixes that problem. And we need to have those specs

in there, they make sure we don’t accidentally break it again in the future.

4. Provide a patch with the fix/change itself. Keep it separate from the specs, so

it’s easy to apply them individually.

If you don’t know how to fix it, but can at least write a spec for the correct behavior

(which, obviously would fail), do just that. A spec is preferred to a fix.

Working on a new feature?

If you want to work on a cool new feature, but not quite ready to submit a patch, there’s

still a way you can get the Buildr community involved. We’re experimenting with using

Git for that. You can use Git to maintain a fork of Buildr that can keep up with changes

in the main branch (tip: use git rebase), while developing your own changes/features

on it.

Contributing 173

http://issues.apache.org/jira/browse/Buildr

That way you can get other people involved, checking out the code, and eventually

merge it back with the main branch. Check out the Git section below and the post Git

forking for fun and profit.

Living on the edge

Did we mention Buildr is an open source project? In fact, when you install Buildr you

get all the source code, documentation, test case and everything you need to use it,

extend it and patch it. Have a look in your Gem directory.

GIT

But if you want to work with the latest and greatest, you’ll want to check out Buildr

from source control. You can use the official Apache Git clone. This clone is maintained

by the ASF and kept in sync with the SVN repository (though, in practice there may be

some delay in cloning recent commits). Apache’s Git hosting supports both git:// and

http:// protocols (you should use git:// if at all possible as it is faster than http://):

$ git clone git://git.apache.org/buildr.git
or...
$ git clone http://git.apache.org/buildr.git

If you want to learn more about Git, you can start by watching Scott Chacon’s Git

presentation (PDF), or any of the Git screencasts. For more, there’s also the Git Internals

book.

And keep this Git cheat sheet close at hand. Very useful.

GitHub

You are also welcome to fork or clone the Buildr repository on GitHub. This repository

is just an exact mirror of the official Apache Git clone referenced above (updated every

30 minutes).

174 Contributing

http://blog.labnotes.org/2008/04/30/git-forking-for-fun-and-profit/
http://blog.labnotes.org/2008/04/30/git-forking-for-fun-and-profit/
http://git.apache.org
http://en.oreilly.com/rails2008/public/asset/attachment/2816
http://en.oreilly.com/rails2008/public/asset/attachment/2816
http://www.gitcasts.com/
http://peepcode.com/products/git-internals-pdf
http://peepcode.com/products/git-internals-pdf
http://ktown.kde.org/~zrusin/git/git-cheat-sheet-medium.png
http://github.com/apache/buildr

Working with Source Code

To install Buildr from the source directory:

$ cd buildr
$ rake setup install

When using Buildr for JRuby:

$ cd buildr
$ jruby -S rake setup install

The setup task takes care of installing all the necessary dependencies used for building,

testing and running Buildr. Once in a while we upgrade or add new dependencies, if

you’re experiencing a missing dependency, simply run rake setup again.

The install task creates a Gem in your working directory (pkg/) and install it in your local

repository. Since Ruby Gems uses version numbers to detect new releases, if you

installed Buildr this way and want to upgrade to the latest official release, you need to

use gem install buildr rather than gem upgrade.

Both setup and install tasks use the sudo command on platforms that require it (i.e. not

Windows), so there’s no need to run sudo rake when working with the Buildr source

code.

Using development build

Occasionally we’ll make development builds from the current code in trunk/head. We

appreciate if you can take the time to test those out and report any bugs. To install

development builds, use the Gem repository at people.apache.org/~assaf/buildr/
snapshot:

gem source --add http://people.apache.org/~assaf/buildr/snapshot/

Since Ruby Gems uses version numbers to detect new releases, if you installed Buildr

from a snapshot and want to upgrade to a newer snapshot or the latest official release,

you need to use gem install buildr rather than gem upgrade.

Contributing 175

If you want to go back to using the RubyForge releases:

gem source --remove http://people.apache.org/~assaf/buildr/snapshot/
gem install buildr

Tested and Documented

Two things we definitely encourage!

Testing/Specs

Obviously we won’t turn down patches, but we’ll love you even more if you include a

test case. One that will fail without the patch, and run successfully with it. If not for our

love, then think of the benefit to you: once we add that test case, we won’t accidentally

break that feature in the next release.

We test using RSpec, a Behavior-Driven Development test framework. The main

difference between RSpec and xUnit is that RSpec helps you formulate test cases in

terms of specifications: you describe how the code should behave, and run RSpec to

make sure it matches that specification.

You can run an individual specifications using the spec command, for example:

$ spec spec/compiler_spec.rb
$ spec spec/compiler_spec.rb -l 409

The first command will run all the specifications in compiler_spec, the second command

will run only the specification identified by line 409 of that file. You can use line

numbers to point at a particular specification (lines starting with it), or set of

specifications (lines starting with describe). You can also use the -e command line

option to name a particular specification.

To make sure your change did not break anything else, you can run all the specifications

(be patient, we have a lot of these):

$ rake spec

176 Contributing

http://rspec.info/

If you get any failures, you can use rake failed to run only the failed specs, and repeat

until there are no more failed specs to run. The list of failed specs is stored in the file

failed.

We always rake spec before making a release.

For full test coverage:

$ rake coverage

Specification and coverage reports are HTML files you can view with a Web browser,

look for them in the reports directory. You can also check out the RSpec report and test

coverage we publish with each release.

Documentation

Yes, we do make typos, spelling errors and sometimes we write things that don’t make

sense, so if you find a documentation bug, or want to help make the documentation

even better, here’s the way to do it.

For simple typos and quick fixes, just send a message to the mailing list or log an issue

in JIRA.

If you end up rewriting a significant piece of text, or add new documentation (you

rock!), send a patch. Making documentation patches is fairly easy. All the

documentation is generated from text files in the doc/pages directory, so all you need to

do is check it out from Git, edit, and git diff to create a patch.

We use Textile as the markup language, it takes all of a few minutes to learn, it’s

intuitive to use, and produces clean HTML. You can learn it all in a few minutes from

the Textile Reference Manual. Also check out the Textile Quick Reference.

Syntax highlighting handled by Pygments. Use the special highlight tag to separate

code sample from the rest of the text and to tell Pygments which language to use. For

example:

Contributing 177

_site/specs.html
_site/coverage/index.html
_site/coverage/index.html
http://www.textism.com/tools/textile/
http://redcloth.org/textile
http://hobix.com/textile/quick.html
http://pygments.org

{% highlight ruby %}
define 'project' do

Just a sample
end
{% endhighlight %}

Have a look at existing documentation to see writing conventions, specifically:

• Separate paragraphs with two newlines.

• Use one newline only if you need a
 tag, otherwise, no newlines inside the

paragraph.

• When creating a new page, don’t forget the YAML premable at the top (Jekyll

needs the page title and layout).

• The layout uses H1 to render the page title; only use H2 through H4 for the page

content.

• Use H2 headers for the major page sections. Give each H2 header a unique ID so

the table of contents can link to it.

• Separating sentences with two spaces, just a convenience when editing in a text

editor using monospaced fonts.

• If in doubt, ask.

To go from Textile to HTML we use Jekyll. You can use the jekyll rake task to

transform the files under doc and create a copy of the Web site in the directory _site. For

example:

$ rake jekyll
$ open _site/index.html

There is no live editing, but you can run rake jekyll auto=true, and when you update

and save a Textile page it will regenerate the corresponding HTML page.

To go from HTML to PDF we use PrinceXML. The target file buildr.pdf is generated by

first running Jekyll and then merging the generated HTML pages into a single PDF

document. For example:

$ rake buildr.pdf
$ open buildr.pdf

178 Contributing

http://github.com/mojombo/jekyll
http://www.princexml.com/

Continuous Integration

Buildr uses the Jenkins continuous integration tool to perform builds, run tests and

report back on problems when changes are made to the source code repository.

The care and feeding of the CI Jobs is the responsibility of the committers. To get access

to configure the CI Jobs a committer needs to follow the directions on the jenkins

documentation site.

You may also need to coordinate with the Apache infrastructure team to get accounts on

the actual slave hosts that run the CI jobs. This access may be required to install tools

and gems required to run the CI jobs. The main slave host to get access to is

vesta.apache.org at the time of writing. You can also log on to the slave host,

impersonate hudson and manually run tasks when you are attempting to track down

build problems. Of course to impersonate hudson you will need to learn how to use

OPIE.

Linux Setup

The tests on the Linux hosts rely on RVM to setup the ruby environment. At the time of

writing the Linux/x86 nodes that Apache uses for CI are based of the old “Ubuntu

10.04.4 LTS (Lucid Lynx)” operating system. As it is a relatively old operating system, it

requires a little bit of manual intervention to install RVM on the node. We have installed

the required tools on vesta.apache.org manually. The script looks something like;

Contributing 179

https://builds.apache.org/view/A-F/view/Buildr
http://wiki.apache.org/general/Hudson
http://apache.org/dev/freebsd-jails
https://rvm.io/

ssh my_username@vesta.apache.org
sudo su - hudson

curl -L https://get.rvm.io | bash -s stable
rvm reload
rvm pkg install readline
rvm pkg install iconv
rvm pkg install curl
rvm pkg install openssl
rvm pkg install zlib
rvm pkg install autoconf
rvm pkg install ncurses
rvm pkg install pkgconfig
rvm pkg install gettext
rvm pkg install glib
rvm pkg install mono
rvm pkg install llvm
rvm pkg install libxml2
rvm pkg install libxslt
rvm pkg install libyaml
rvm install ruby-1.8.7-p358
rvm install ruby-1.9.2-p320
rvm install jruby-1.6.7
rvm install ruby-1.9.3-p194

It should also be noted that jruby-1.6.7 release has a native library that is compiled using

a more modern version of libc than is available on this variant of the operating system.

We could download the source release and recompile the library but instead we have

just avoided the need for any use of the ruby native interface library in our CI

infrastructure.

180 Contributing

Windows Setup

The ci infrastructure on the windows host (hudson-win.apache.org) is a little fragile.

First you need to RDP in and download the support libraries. We have manually

installed the tools in the following locations. Note: it is important to make the locations

read-write access to the hudson user.

F:\hudson\tools\Ruby193-p194
F:\hudson\tools\Ruby192-p290
F:\hudson\tools\Ruby187-p370
F:\hudson\tools\jruby-1.6.7
F:\hudson\tools\scala-2.9.0.1

WARNING: Several attempts were made to use GEM_HOME to install the dependent

gems for each test in a separate location but we were unable to figure out the

mechanisms via which sub-shells would inherit the paths and the ability to run tools

such as rspec.

Contributors

Here is the list of people who are actively working and committing on Buildr:

Assaf Arkin (assaf at apache.org)

Started working on Buildr because Maven was too much pain and Rake wasn’t enough.

Assaf has been hanging around Apache since 1999, as founding contributor to XML

Apache, Ode and Buildr. Assaf is also co-author of Ruby In Practice.

Alex Boisvert

Came to Buildr as a refuge from the Maven Uncertainty Principle. Alex has been

working mostly on the Scala integration and believes Ruby scripting is a great

complement to statically typed languages.

Matthieu Riou

Victor Hugo Borja (vborja at apache.org)

Contributing 181

http://labnotes.org
http://manning.com/mcanally/
http://offthelip.org

Currently a Java Developer at http://jwmsolutions.com, Victor has been enjoying and

using Apache’s software since 1999 when he started with Java, now he prefers

programming Ruby and is happy to help on Apache’s first ruby project.

Lacton (lacton at apache.org)

A test-infected developer since 2001, Lacton yearns for a development infrastructure that

would shorten feedback loops so much that testing, building, refactoring and

committing would feel as easy and natural as breathing air.

Daniel Spiewak (djspiewak at apache.org)

Daniel originally came to Buildr in search of a Scala build tool which was better than

Ant. He got more than he bargained for. Now, he works to advance Buildr as the

absolute best tool for supporting Scala development.

Antoine Toulme (toulmean at apache.org)

Antoine used Buildr first as an excuse to evade in Ruby land, creating plugins for

Debian packaging, GWT compilation, or the NSIS installer. His main area of interest is

the resolving of dependencies in the OSGi world. He works on making Buildr a

standalone rock solid tool.

Peter Donald

Peter already used rake to automate jobs in his ruby and java projects. When it came

time to upgrade that home grown ant/java/rake build system Buildr seemed the perfect

match.

182 Contributing

http://jwmsolutions.com
http://www.codecommit.com/blog
http://www.lunar-ocean.com/

	Quick Start
	Your First Project
	Compiling
	Packaging
	Directory Structure

	Dependencies
	Testing
	Custom Tasks
	Summary

	Installing and Running
	All In One Bundle
	Installing the gem
	Installing on Linux
	Installing on OS X
	Installing on Windows
	Installing for JRuby
	Using multiple versions of Buildr
	Running Buildr
	Help Tasks
	Learning More

	Projects
	Starting Out
	Order is important When defining your project, the order in which you place instructions matter.
	The Directory Structure
	Naming And Finding Projects
	Running Project Tasks
	Setting Project Properties
	Resolving Paths
	Defining The Project
	Writing Your Own Tasks

	Building
	Compiling
	Resources
	More On Building
	Cleaning
	Continuous Compilation

	Artifacts
	Specifying Artifacts
	Specifying Repositories
	Mirrors

	Downloading Artifacts
	SSL and Self-signed certificates

	Install and Upload

	Packaging
	Specifying And Referencing Packages
	Packaging ZIPs
	Packaging JARs
	Packaging WARs
	Compiling Assets
	Integrating CoffeeScript
	Integrating Sass

	Packaging AARs
	Packaging EARs
	Packaging OSGi Bundles
	Defaults
	Parameters
	classpath_element
	classpath

	Examples
	Including non-class resources in a bundle
	Using bnd to wrap an existing jar
	Create an OSGi bundle with an Activator
	Inheriting parameters for bnd tool

	Packaging Tars and GZipped Tars
	Installing and Uploading
	Uploading Options

	Packaging Sources and JavaDocs

	Testing
	Writing Tests
	Excluding Tests and Ignoring Failures
	Running Tests
	Integration Tests
	Using Setup and Teardown
	Testing Your Build
	Behaviour-Driven Development

	Settings/Profiles
	Environment Variables
	Personal Settings
	Build Settings
	Non constant settings
	Environments
	Profiles

	Languages
	Java
	Compiling Java
	ECJ
	Testing with Java
	JUnit
	TestNG
	JBehave

	Documentation

	Scala
	Compiling Scala
	Fast Scala Compiler
	Rebuild detection
	Support for different Scala versions

	Testing with Scala
	ScalaTest
	Specs
	ScalaCheck

	Documentation

	Groovy
	Compiling Groovy
	Testing with Groovy
	EasyB

	Documentation

	Ruby
	Testing with Ruby
	RSpec

	More Stuff
	Interactive Shells (REPLs)
	Supported Shells
	Verbosity and Tracing
	JavaRebel Integration

	Running Your Application
	Using Gems
	Using Java Libraries
	BuildrServer
	Notifications: Growl, Libnotify, Qube
	Eclipse
	Use Apache Buildr to create Eclipse projects
	Use Apache Buildr to create a buildfile from an Eclipse workspace

	Releasing to Maven Central
	IntelliJ IDEA
	Idea Specific Directives
	Project file naming
	Example: Setting id
	Example: Setting suffix
	Example: Setting prefix

	Disabling project file generation
	Example

	Disabling generation of content section in .iml file
	Example

	VCS Integration
	Example

	Adding main, test or exclude paths to the .iml file
	Example

	Adding main or test dependencies to the .iml file
	Example

	Dependency generation
	Example: Setting local_repository_env_override
	Example: A dependency outside the maven repository

	Module Facets
	Example

	Project Configurations
	Example

	Project Artifacts
	Example

	Custom Component Sections
	Example: Adding .ipr specific component
	Example: Adding .iml specific component

	Templates
	Example

	Groups
	Example

	Add Extra .iml files to .ipr
	Example

	Buildr plugin for IDEA

	Cobertura, Emma
	Checkstyle
	FindBugs
	JavaNCSS
	JDepend
	PMD
	Sonar
	JAXB Xjc Compiler
	CssLint
	ScssLint
	Anything Ruby Can Do

	Extending Buildr
	Organizing Tasks
	Creating Extensions
	Using Alternative Layouts

	Contributing
	Getting involved
	Mailing Lists
	Internet Relay Chat
	Bugs (aka Issues)
	Community Wiki
	Contributing Code
	The Perfect Patch
	Working on a new feature?

	Living on the edge
	GIT
	GitHub

	Working with Source Code
	Using development build

	Tested and Documented
	Testing/Specs

	Documentation
	Continuous Integration
	Linux Setup
	Windows Setup

	Contributors

