Leveraging Stored Energy for Handling Power
Emergencies in Aggressively Provisioned Datacenters

Sriram Govindan

Datacenter Compute Infrastructure Team, Microsoft,
Redmond, WA, USA

srgovin@microsoft.com

Abstract

Datacenters spend $10-25 per watt in provisioning their power
infrastructure, regardless of the watts actually consumed. Since
peak power needs arise rarely, provisioning power infrastructure for
them can be expensive. One can, thus, aggressively under-provision
infrastructure assuming that simultaneous peak draw across all
equipment will happen rarely. The resulting non-zero probability of
emergency events where power needs exceed provisioned capacity,
however small, mandates graceful reaction mechanisms to cap the
power draw instead of leaving it to disruptive circuit breakers/fuses.
Existing strategies for power capping use temporal knobs local to
a server that throttle the rate of execution (using power modes),
and/or spatial knobs that redirect/migrate excess load to regions of
the datacenter with more power headroom. We show these mecha-
nisms to have performance degrading ramifications, and propose an
entirely orthogonal solution that leverages existing UPS batteries
to temporarily augment the utility supply during emergencies. We
build an experimental prototype to demonstrate such power cap-
ping on a cluster of 8 servers, each with an individual battery, and
implement several online heuristics in the context of different data-
center workloads to evaluate their effectiveness in handling power
emergencies. We show that: (i) our battery-based solution can han-
dle emergencies of short duration on its own, (ii) supplement exist-
ing reaction mechanisms to enhance their efficacy for longer emer-
gencies, and (iii) battery even provide feasible options when other
knobs do not suffice.

Categories and Subject Descriptors
ganization]: General

C.0 [Computer Systems Or-

General Terms
mance

Design, Experimentation, Measurement, Perfor-

Keywords UPS, Batteries, Data center, Peak power, Stored en-
ergy, Provisioning, Cap-ex, Peak shaving

1. Introduction

Datacenters incur capital expenditure (cap-ex) of $10-25 per watt
of provisioned power capacity, regardless of whether this watt is ac-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’12, March 3-7, 2012, London, England, UK.

Copyright © 2012 ACM 978-1-4503-0759-8/12/03. .. $10.00

75

Anand Sivasubramaniam
Bhuvan Urgaonkar

Di Wang

Department of Computer Science and Engineering,
The Pennsylvania State University, PA 16802

{diw5108,anand,bhuvan}@cse.psu.edu

&

E 0.6 ;e’

0
040506070809 1
Normalized Power (wrt peak)

Figure 1. Rack Power profile of a Google datacenter [12].

tually consumed [4, 23]. The power delivery infrastructure amounts
to several million dollars in cap-ex [5], contributing over a third of
the amortized monthly datacenter costs [4]. Although not all of this
may go towards the power delivery for IT equipment, since there is
other supporting infrastructure including HVACs, fans, etc., the IT-
related power network is still a substantial component that warrants
meticulous planning and provisioning. Provisioning for the theo-
retical peak (using face-plate ratings of equipment) that may never
happen, or even the occasional peak (which requires all equipment
to simultaneously exercise their maximum draw), can prove very
expensive. A study of power consumption in a Google datacen-
ter, depicted in Figure 1, reiterates this observation showing a very
low probability of reaching close to the provisioned peak (prob-
ability of exceeding 90% of the potential peak is less than 1%),
with a profile that is highly skewed around the average. Aggressive
provisioning of power infrastructure can thus yield substantial cap-
ex savings. The goal of this paper is to deal with the rare (“black
swan”) power emergencies (when the draw exceeds provisioned
power) that arise in such aggressively provisioned datacenters in
a seamless and graceful fashion.

The temporal and spatial load variations, and resulting power
draw, in a datacenter offer a strong reason for leveraging statistical
multiplexing to under-provision the power infrastructure. Circuit-
breakers are used to ensure equipment safety and handle power
spikes lasting several seconds [9], abruptly cutting off power sup-
ply upon an overdraw. Can we employ alternate solutions that han-
dle emergencies more gracefully by removing/easing such spikes,
thereby reducing the probability of hitting these safety limits?
Circuit-breakers would continue to be used, but only as the last
line of defense. Also, datacenters have power upgrade cycles to
handle growing IT load. The probability of emergencies can in-
crease as we get closer to the next upgrade, and such solutions can

help relieve disruptions during these periods. Gracefully handling
emergencies, while meeting performance SLAs, would allow more
aggressive power provisioning !

Software mechanisms for power capping have been examined to
some depth [12, 13, 16, 19, 25, 37, 38, 47]. Broadly, we can clas-
sify existing solutions into two categories. The first set of knobs
are local to servers, where temporal load-shifting/demand-shaping
is used to control the rate of workload execution (and thereby con-
trol power consumption which grows with utilization). Apart from
scheduling the load (temporally spacing it out using CPU schedul-
ing), hardware power mode control - clock throttling states (in-
cluding server shutdown [7, 36]) and/or dynamic voltage-frequency
modulation states (DVES) - is also used to control the rate of work-
load execution (with different trade-offs between performance and
power) [16, 47]. The second set of knobs exploits spatial non-
uniformity in power profiles across (groups of) servers, and dy-
namically redirects/migrates load to regions of the datacenter with
more headroom. While local knobs are agile and effective for han-
dling short-lived emergencies, prolonged throttling can impact per-
formance. While spatial migration is better for longer emergencies,
there can be overheads during and after (load imbalance on some
nodes, loss of locality, etc.) migration, in addition to the need for
headroom elsewhere in the datacenter. The load may also not be
“move-able” to other servers in some cases. Regardless, both these
strategies can have substantial performance repercussions.

This problem is analogous to supply-demand mismatch issues
on the electrical grid, and the solutions above are analogous to
“demand-response” mechanisms in that context. However, one so-
lution - energy storage - that is used in normal grids to amplify the
efficacy of demand-response has been little explored in the datacen-
ter context. Energy storage can be used to (i) deal with short/small
power spikes without even requiring other reaction mechanisms
(temporal/spatial) which have performance consequences, (ii) sup-
plement existing mechanisms to improve their efficacy in meeting
application SLAs, and (iii) offer remedial solutions, even if they are
temporary, when other mechanisms may not find feasible options to
meet application SLAs. Further, unlike in grids where energy stor-
age may be a costly proposition, datacenters already have storage
built-in in the form of UPS units to handle power disruptions - can
we tap into these for emergency handling without impinging on the
availability mandates?

There are different choices for UPS placement - from a central-
ized (usually redundant) configuration, to a distributed version at
each server as in Google datacenters [18], as well as at intermedi-
ate levels (e.g., per-rack) similar to the ones in Microsoft [33] and
Facebook [11] datacenters. Server-level UPS, when incorporated
with the power supply, can help eliminate double-conversion needs
and the associated energy losses. We assume a server-level UPS
unit, although many of our ideas will also apply to other configu-
rations . In general, UPS batteries help reduce/cap power draw at
and above the level in the power hierarchy where they are placed.
When using batteries beyond their original role, we must ensure
that the datacenter’s power availability (upon utility outages), as
well as the batteries’ normal lifetime (3-5 years for lead-acid) are
not compromised. Since UPS units are mainly transitionary devices
to temporarily handle load until diesel generators are started (which
takes around 15-30 seconds), we are able to utilize them for a cou-
ple of minutes for our purposes while still leaving enough charge
for availability purposes. To facilitate aggressive power provision-
ing, this paper makes the following contributions:

! As Taleb says in his book [42]: “Black Swans being unpredictable, we
need to adjust to their existence rather than naively try to predict them.”
Even if the datacenter power profile may follow bell-curve behavior as in
Figure 1, the extreme consequences of ignoring the “highly improbable”
tail makes emergency handling a critical problem.

76

e We present an offline theoretical framework combining all knobs
- batteries, power states, migration (both within and across dat-
acenter clusters) - to find the performance optimal way of han-
dling an emergency for a given level of power underprovision-
ing. This serves as a reference point for how well we can do
and offers insights on what knobs/combinations work for given
workload-emergency combinations.

e Since emergencies are inherently unpredictable (when? how se-
vere? how long?), we develop several on-line heuristics em-
ploying existing temporal and spatial knobs, and combinations
thereof. We also introduce battery-based emergency handling
techniques, accommodating different drain rates (slow and fast),
and combine them with existing knobs in interesting ways.

e We develop an experimental prototype of 8 servers with individ-
ual UPS units, and implement seven control heuristics. We ex-
amine emergencies in the context of several representative dat-
acenter workloads with unique characteristics: (i) TPC-W [40]
and Specjbb [41] server-based workloads with emergencies aris-
ing from load spikes (e.g., flash crowds), (ii) a MapReduce [22]
application where the map phase introduces power spikes sub-
stantially higher than the reduce phase, (iii) a streaming media
server where handling the power spike caused by a surge of new
connections leads to jitters in existing streams, and (iv) a multi-
programmed GPU + Virus scan application pair that is tied to a
particular set of servers (migration is not an option) which when
run together introduces a high power draw (requiring them to be
temporally spaced out).

e We consider different degrees of under-provisioning, and show
that battery by itself can sustain short emergencies (around 10-
20 minutes on our prototype). Longer emergencies (30 minutes
or higher), require migration since sustained local throttling hurts
performance. On the other hand, performance overheads of mi-
gration makes it less attractive for shorter emergencies. Our bat-
tery solution, in conjunction with migration, provides a seamless
bridge across the spectrum of these duration, and is able to re-
duce the performance impact of these intermediate duration. In
most cases, battery-based heuristics, with these knobs, help us
get within 10-20% of the theoretical bounds.

2. Related Work

Tighter Power Provisioning: Statistical multiplexing-based over-
booking/underprovisioning of resources, a widely used yield man-
agement technique in different domains, including IT resources in
datacenters [43, 46], is now being suggested for the power infras-
tructure. This ranges from components within servers [13, 25], to
groups/ensembles of servers and other equipment [19, 26, 35, 39,
48]. The basic underlying idea is to exploit the low likelihood of
simultaneous peak power needs of all components/servers [12, 13,
25]. Such provisioning requires agile reactive techniques to ensure
the power consumption stays below capacity to allow safe opera-
tion with satisfactory workload performance. These techniques in-
clude device power state control [10, 14, 16, 32, 37, 38, 47, 49]
and workload scheduling or migration within or even outside the
datacenter [2, 17, 19, 30, 34, 45].

Battery-based power management: While battery management
has been studied in the mobile/embedded domains [15, 50, 51]
(e.g., drain rate adjustment for longevity), their use in datacenters
has been limited to mere transition devices during utility failure.
Recent work has looked at using UPS batteries to reduce electricity
operational costs [20, 44], but their role in tighter provisioning for
reducing cap-ex is entirely novel. To our knowledge, we are the
first to explore the use of stored energy (UPS batteries) for tighter
provisioning.

3. Problem Details and Solutions
3.1 The Problem

Underprovisioning of power (equipment) does not have to be re-
stricted to the highest level in the hierarchy. As we aggressively
push such underprovisioning to equipment at lower levels, there
is scope for additional cap-ex savings. However, going deeper
lessens the potential for exploiting statistical multiplexing of power
demands across underlying servers. The higher burstiness (vari-
ance) at deeper levels can result in higher probability for emergen-
cies/violations. A more rigorous cost-benefit analysis is necessary
to find out how much to underprovision at each level of the hierar-
chy. We consider this beyond the scope of this paper, and focus here
on the following consequent problem: given a level c aggressively
underprovisioned at Pyyqge¢ to accommodate N servers under it,
how do we cap the net power draw of these servers to Pyyaget at
all times? We will consider different values of Pyyqge¢ relative to
the maximum possible peak draw by the N servers, henceforth
referred to as a cluster (c).

If P;(t) represents power draw of server j at time ¢, then
underprovisioning power capacity exploits the statistical property
Probability(zyzl Pj(t) > Poudget) < €,Vt. Just as in other
domains where underprovisioning is used, there are consequences
to be carefully traded-off against its benefits. Since e is non-zero,
despite being small, there would inevitably be situations when the
aggregate power draw of the IV servers cannot be safely accommo-
dated by the infrastructure at level c. Since ¢ may not be identified
precisely (Section 1), we need reactive mechanisms to deal with
the power overdraw situations. Normally, during such an episode
of power overdraw, circuit-breakers/fuses at level ¢ would kick in
to ensure safety from fire hazards and overdraw-induced equip-
ment burnout. Such workload-oblivious reaction mechanisms are
highly undesirable in the datacenter context since they can lead to
lost computation and inconsistent states or even impact IT equip-
ment reliability (e.g., hard disk failures [52]). Therefore, when un-
derprovisioning, it is essential to additionally employ workload-
aware reaction mechanisms to operate gracefully under such emer-
gencies, while continuing to leave circuit-breakers/fuses as the last
line of defense. Such mechanisms should also be agile to quickly
control the power draw. Fortunately, existing work has shown that
such agile power capping can be realized well within the time lim-
its (typically sub-second to a few seconds) imposed by circuit-
breakers [19, 25, 48].

3.2 Current Solution Strategies

We classify existing workload-aware reaction mechanisms into two
broad categories: temporal and spatial. Temporal mechanisms ad-
just the rate of resource usage within a server. Since the rate of
resource usage (particularly the CPU) affects power consumption,
it can be used as a knob for demand response. Two common tem-
poral mechanisms include (i) scheduling to defer some of the peak
load to a non-emergency period, and (ii) employing power states
- dynamic voltage and frequency scaling (DVES), clock throttling,
and even sleep/shutdown states.

Spatial mechanisms direct/migrate excess load to servers and/or
regions of the datacenter that have headroom in their power bud-
gets. Here again, we consider two broad strategies: (i) load redi-
rection/migration/consolidation to one or more servers within the
hierarchy at level ¢, allowing some servers in c to be shut/slowed
down. (ii) load movement/migration to one or more servers else-
where in the datacenter (outside c¢), with headroom for the in-
creased load. Many existing techniques [3, 6, 27, 36] on load bal-
ancing/unbalancing for energy/power reduction fall into this cate-
gory. Such load movement could be achieved by (a) request redi-
rection as in many network-based services [36], (b) “fault-tolerant”

77

applications that detect server unavailability and automatically re-
balance themselves amongst the available servers [22], and (c) dy-
namic process/VM migration [8].

All these mechanisms can have performance consequences with
different pros and cons in the options that they offer. Temporal
mechanisms are local to a server, and do not require headroom
elsewhere in the datacenter. These mechanisms are also quite ag-
ile, since power mode control and scheduling decisions can be
performed at a fine time granularity with the effects materializing
quickly. The downside to these mechanisms is their performance
degrading effect, especially when the applications do not provide
sufficient slack in their offered load and SLA specifications. Fi-
nally, since the load is not moved/migrated elsewhere, the dura-
tion of emergency is dictated by the application load, making these
mechanisms less desirable for handling long duration emergencies.
Temporal dampening mechanisms have to be continuously applied
as long as the high load persists.

On the other hand, spatial techniques can work well with long
periods of high load since they can move demands to regions of
the datacenter with sufficient headroom. However, these techniques
have their limitations: (i) they are less agile than temporal mecha-
nisms, implying their inadequacy in handling emergencies on their
own. Reacting to an emergency can take a long time, during which
a temporal mechanism must be relied upon to cap the power draw,
making them only suitable for long-duration emergencies; (ii) mi-
gration can be expensive, depending on the application state that
needs to be migrated. This can not only impact performance dur-
ing migration (which can take a few minutes) and after migration
(due to loss of locality), but can also temporarily increase power
draw of concerned servers; (iii) they require headroom elsewhere in
the datacenter which may not always be available (and sometimes
undesirable due to administrative boundaries); (iv) not all applica-
tions are amenable to migration, since they may require resources
(a graphics application requiring a GPU card, virus scan requiring
the local disk), on specific servers.

In general, a combination of these techniques can be used de-
pending on the duration of emergency and SLAs of involved work-
loads. Further, these decisions may not necessarily be static (i.e.,
determined completely at the beginning of the emergency), with
possibly an online algorithm that starts with a temporal mechanism
which optimistically looks for a purely local solution, and then
adaptively migrates load if needed. Regardless, all such algorithms
have performance degrading consequences either by throttling us-
ing power states/shutdown, and/or due to the overheads of load mi-
gration (during the movement, loss of locality after the movement,
etc.).

3.3 Our Proposal: Employing Batteries

We now present an entirely orthogonal and novel solution of us-
ing battery-based energy storage for handling emergencies that can
avoid/reduce the performance consequences of existing techniques.
Batteries are analogous to buffers that are used in networks to
smoothen out spikes and alleviate mismatches between workload
demand and capacity availability. Rather than additional batteries,
we propose to use UPS batteries that are already present in data-
centers for handling power outages. While most current datacen-
ters employ centralized UPS, we consider a distributed server-level
UPS, similar to that in Google datacenters [18]. Our ideas are also
applicable to a shared cluster-level UPS (with IV times the capacity
of a server-level UPS), where we only need to enforce how much
draw comes from utility versus from these UPSes. Evaluating such
a configuration is part of our future work.

Battery Capacity: We denote by t;, the duration for which a UPS
can sustain the associated server’s peak power needs. Typically,
provisioned UPS battery capacities are for ¢, ranging up to a few

minutes. There can also be redundancy in the UPS units to accom-
modate UPS failures, implying higher gross battery capacity. In ad-
dition to availability criteria, these capacities are also determined
by the discrete units of capacities that different vendors provide.
For instance, many APC battery offerings are in discrete capacities
of 4, 8, 16, 24 minutes, all rated at a certain peak power draw. In
our setup, we consider a UPS with ¢, = 4 minutes, which is in
line with (in fact, at the low-end of) existing capacities. There are
cost-benefit trade-offs with investing in higher battery capacities for
additional cap-ex savings achieved by aggressive power infrastruc-
ture underprovisioning. A preliminary study suggests that the costs
of extra battery capacity is worthwhile (see section 7.6), though a
detailed study of such economics is beyond the scope of this paper.

Sourcing Power: While a server could potentially draw current
simultaneously from the UPS and the power line (one source for
each of its dual power supplies), we do not consider this option
since our experimental platform does not allow this. Consequently,
at any time, a server either draws all of its current from its UPS
or from the power line. It is possible to meet a power budget over
an extended period of time (beyond what a single battery offers),
since servers could take turns sourcing power from their batteries
at different times. E.g., if reducing the power draw of 1 server using
its UPS meets the overall power budget for 2 minutes, then a cluster
of 8 servers can stay within the power budget for up to 16 minutes.

Battery Runtime: Batteries (including lead-acid used in most
UPS units) are characterized by their runtime chart as approximated
by Peukert’s Law [28], which shows the time to drain a certain
capacity for different power draws. Runtime of ¢, = 4 minutes is at
the maximum power draw of a server, and the duration of possible
battery draw is much higher for lower power draws. For instance, a
draw of 50% of the peak, allows the battery to last 11 minutes. We
will exploit this property to force a lower draw for longer battery
operation.

Availability and Lifetime Concerns: Since we are using UPS bat-
tery beyond its normal purpose (handling power outages), we need
to ensure that we do not compromise on datacenter availability.
In recent work [21], we have modeled datacenter availability as
a function of UPS battery capacities for different placement strate-
gies across the layers of the power delivery hierarchy. Across these
strategies, we have shown that leaving a 2 minute residual capac-
ity suffices to ensure a high availability of up to five nines. Con-
sequently, in all our experiments in this paper, we always leave 2
minutes of reserve capacity (to operate at full load) in each UPS
battery.

Another concern is the lifetime (reliability) of the battery itself:
the normal lead-acid battery typically lasts for about 3-5 years [31].
Since charge-discharge cycles can reduce its effective lifetime, we
have to ensure that our approach does not result in replacement
of batteries sooner than its expected lifetime. We leverage of our
recent work [20] to address this concern, where we have conducted
an extensive analysis of the impact of battery discharges cycles on
its lifetime. Using this analysis, we find that one can handle these
relatively rare power emergencies well within the expected battery
lifetime.

Efficiency and Additional Power of Batteries: Each charge-
discharge cycle has energy loss, which we find experimentally
to be 28% of the overall energy drawn in the worst case. Since
such loss is restricted to “rare” emergencies, we do not expect it to
significantly impact operational costs. However, battery charging
itself adds to instantaneous power draw and this must be considered
for adhering to the budget. There are different strategies for deal-
ing with this issue - restricting charging to non-emergency periods,
slow-charging so that the instantaneous draw is not significant,

78

and/or compensating with aggressive spatio-temporal workload
throttling mechanisms. In this work, we employ the first strategy.

4. Handling Emergencies: An Offline Theoretical
Framework

Having discussed the pros and cons of various strategies, we now
turn our attention to combining their best features.

Is migration (spatial) of one or more workloads on the N servers
under c even an option? There are different situations where a spa-
tial knob may not be applicable, even if workloads have sufficient
slack in their SLAs. First, there must be headroom elsewhere in
the datacenter to accommodate the migrated load, which may not
happen if the entire datacenter is highly utilized. Second, certain
workloads may not be amenable to migration: consider a workload
that needs a resource only available locally, e.g., a graphics appli-
cation requiring a GPU card.

Even if migration is an option, can local (temporal + bat-
tery) knobs alone handle the emergency while meeting application
SLAs? If yes, there is no reason to look for headroom elsewhere in
the datacenter and incur additional migration costs. The agility of
temporal knobs makes them more attractive over spatial knobs in
this case.

When local (temporal + battery) knobs do not suffice because of
the emergency duration and stringency of application SLAs, which
workloads should we migrate and at what time? These decisions
should be determined based on what impacts the application SLAs
the least while meeting the power budget. We develop a simple
framework to conduct such decision-making. Let us denote the
remaining time for an application to complete %, at the beginning of
an emergency, as ty. Let ¢,,, denote the time (from the emergency
beginning) when the application is migrated, if at all. ¢,, would
be a function of migration overhead: ¢,, = 0 implies immediate
migration (for relatively stateless applications with little migration
overhead), and a larger ¢,, implies local knobs will be employed
as much as possible until they become infeasible and migration is
necessary. If ¢,,, is larger than emergency duration, then it implies
that local knobs suffice to handle the emergency without requiring
any migration. To determine ¢,,, we denote the relative speed at
which the application runs on the destination server(s) with respect
to the source server(s) as s, (the slowdown). We assume that there
is sufficient power capacity at the destination, and the slowdown
can be approximated using a simple slowdown factor s,.. However,
the application runs until time t,, locally before migration, and
would have been subjected to local temporal knobs which would
have also slowed it down. This slowdown, is dependent on ¢,, itself
(i.e., local knobs affect execution time) and we denote it as s; (tm).
Since t§ — tm * Si(¢m) is the remaining time for the application
at migration time t,,, its remaining execution time on the remote
server(s) needs to be scaled as (¢ f — ¢, *Si(tm)) * 5. The resulting
total execution time of the application with migration (as depicted
in Figure 2), which needs to be minimized, can now be expressed
as

tm=ty

HlII{) (tm + (tf — tm * Sl(tm)) * ST)

The relative impact of the slowdown with local (temporal + bat-
tery) and migration (spatial) knobs is captured by s;(tm) and s,
(both lie between 0 and 1). Of these two, s, is mainly application
governed by its locality properties, since we assume the destination
has enough headroom to run it without any power-related dampen-
ing. However, s; is crucially dependent on ¢,,, and how the local

2 Even for applications without an explicit notion of remaining time (e.g.,
a Web server running forever), an equivalent framework, say based on
execution rate, can be developed.

Default

Emergency handling P

Power

' \‘/R,emi)lt/ei e\k’e"c/utioﬁ.
I I

m tm(l'sl(tm))sr

Time

Local execution

t

(t-t)s,

Figure 2. Timeline — above for default, and below for emergency
handling with local and spatial knobs. Migration happens at ¢,,, in-
stantaneously in this illustration. Note the elongation in execution
time due to s; and s,. Resulting lower power draw for the emer-
gency between 0 and ¢, compared to default is also shown.

knobs were employed to meet the power budget over ¢,,. This, in
turn, leads us to the following optimization problem: given a .,
how should the local (battery + temporal) knobs be used to meet
performance SLAs?

We use a generic metric R, whose minimization corresponds
to meeting the application’s SLA, to cast this optimization prob-
lem. R is general enough to capture a wide range of application
metrics, e.g., response time (as in TPC-W used in our evaluation),
reciprocal of throughput (in transaction-oriented applications such
as Specjbb), time-to-finish (for long running applications such as
Map-Reduce and virus scan), rate of playback discontinuities for a
streaming media server, etc. We view the duration ¢,,, as being di-
vided into W equal-sized intervals. We use R;; to denote average
response time offered by server j in time interval . We can now
express the problem of minimizing R (i.e., minimizing s; (¢,)) for
a given t,, using purely local knobs (battery + power states)). This
can then be iterated over different values of ¢,,, between 0 to W' to
determine when to migrate.

Minimizing R Using Only Local Knobs: Let the battery on
server j have upto B; joules of energy that it can safely provide for
this emergency, accounting for any residual energy that needs to be
maintained for availability. Each server j = 1,..., N, can oper-
ate during an interval within this emergency in a particular power
mode (server off, DVFS and Clock throttling states), ordered as
Dy where the server is off, to D4 which is the highest power con-
suming state and best in performance. We denote the intensity of
a workload during this emergency as L, discretized for the spec-
trum of intensities between the minimum and maximum for a given
workload as L1, ..., L;. For instance, in Specjbb, the transaction
rate specifies the intensity, and we can histogram this rate between
a minimum and maximum into [buckets.

The response time R;;(Lij, D;j) offered by server j during
interval 7 depends on the load L;; that is imposed on that server
during 4 and its power mode D;;, where L;; € [L1,...,L;] and
D;; € [Do,D1,...,Dg]. The power consumption of this server
during ¢ can be specified as P;;(L;j;, Dij), and this can also be
calculated a priori and made available to the optimizer for different
(L, D) combinations. We can then phrase our objective function
of minimizing average response time over W by employing purely

79

local (battery + power state) knobs as:

W N
minimize ZZR” (Lij, Dig).
i=1 j=1

Let b;; denote whether server j sources its power needs in
the i-th interval from its battery (b;; = 1) or the power line
(bi; = 0). Since we cannot drain more than B; for this peak,
we have: 21V b;; « Pi;(Li;, Dij) < Bj,Vj. The resulting total
power draw on the line, which has to adhere to the specified budget
Poudget, is given by: SN 1b;; + Pij(Liz, Dij) < Poudget, Vi.

5. Online Heuristics

Our theoretical framework is impossible to use in practice since
it requires a priori knowledge of the emergency duration and in-
tensity. Even if such knowledge were available, it may be com-
putationally prohibitive. However, we still use it as a baseline for
comparison with the practical solutions we develop next. We refer
to the solution offered by our framework above as Opt, and the
solution it offers solely using local knobs as Opt-local.

[Heuristics [Description
Local Throt Use only power states
to BattFast+Throt Drain batt. first before throttling

server BattSlow+Throt Drain batt. slowly while throttling

Local cMig Mig. within cluster and turnoff servers
to cluster | BattSlow+Throt+cMig Delay cMig as far as possible

Across dMig Mig. to elsewhere in datacenter
datacenter | BattSlow+Throt+dMig Delay dMig as far as possible

Table 1. Summary of our online heuristics

We consider seven online heuristics (Table 1) based on whether
the knob of adhering to Pyyq4ge¢ under c is (a) local to a server,
(b) local to the cluster of servers under ¢, or (c) pertains to the
entire datacenter. As before, we assume a priori knowledge of
performance (R;;(l,d)) and power (P;;(l, d)) for different loads
(I) and power states (d) of a server for the application. Further,
even though the above theoretical framework allows a different
power state (d) for each server at a given time, our heuristics only
consider a restricted version that employs the same state across all
N servers at any time. The resulting detrimental effects (if any),
would materialize in our results.

Heuristics Local to a Server: One would like to preferably
use knobs local to a server, namely battery, power state modula-
tion, and/or temporal deferring of the load to deal with the emer-
gency, because of their agility and less disruption in the datacenter.
Our first set of 3 heuristics - Throt, BattFast+Throt, and
BattSlow+Throt - employ only such local knobs. Throt em-
ploys only power state modulation (DVFS and/or clock throttling)
and temporal scheduling, and is representative of the power throt-
tling mechanisms available today. With knowledge of the power
consumption in different states for the current load, this heuris-
tic picks the least performance impacting power state for all NV
servers, ensuring adherence t0 Ppyyqge¢. BattFast+Throt and
BattSlow+Throt supplement temporal knobs with battery to
reduce performance impact, and thereby sustain longer emergency
handling. The two differ in battery drain rate. BattFast+Throt
is relatively optimistic about the emergency duration, and drains
the battery fully before resorting to power mode knobs, thereby
not requiring the latter if the battery can sustain the entire load
for short emergencies. BattSlow+Throt is conservative, and
tries to prolong the battery usage. Recall that we are using the same
power state d across all IV servers at any time, and our experimental

setup allows the drain rate from the battery at only server granu-
larity (i.e., a single server cannot source partly from battery and
partly from the power line, which is possible in dual power supply
servers). Consequently, we require (N — 1) x P(l,d) < Prudget,
since the remaining server, by sourcing its power from battery,
would help reduce the overall draw from power line to adhere to
the budget. Hence, in BattSlow+Throt, a single server draws
power from the battery at a power state d, while the other servers
(also operating at state d) draw their power from the normal supply.
d is the highest power state (i.e., least performance impacting) that
obeys the above conditions. This scheme can thus sustain a longer
duration of battery operation than BattFast+Throt, though the
performance consequences can be felt even earlier (where the bat-
tery alone may have been sufficient to handle the emergency in
BattFast+Throt).

Heuristics Local to Cluster c: With longer emergencies, local
knobs may not suffice to meet application SLAs within the stip-
ulated power budget. One option may be to migrate the load. It
may sometimes be desirable to simply re-arrange load within ¢
during an emergency, since (a) migration outside of ¢ may not
be possible (either there is no headroom or administrative rea-
sons force the application to be tied to nodes within c), and/or
(b) the locality of application needs (frequent communication, data
stored locally, etc.) may get impacted when parts of the applica-
tion are forced out of c¢. The downside to migrating (redistribut-
ing the load) within the cluster is that performance may be im-
pacted if the existing load is already pushing individual servers
to high resource utilization (which is usually what leads to the
emergency). When migrating within ¢, we consider two heuristics:
cMig and BattSlow+Throt+cMig. In cMig, the load is im-
mediately migrated at the beginning of the emergency, from one
or more servers and these servers are subsequently shut down. The
number of servers from which the load is to be migrated depends on
how many need to be taken down to get the total subsequent power
consumption within Pyyqge¢. Since migration is typically intended
to be the option of last resort, we do not consider local knobs (either
battery or power modes) after the migration. Using the same ratio-
nale, BattSlow+Throt+cMig defers the migration point to a
time using the above-mentioned Batt Slow+Throt strategy until
the battery capacity reaches residual capacity needed for availabil-
ity (2 minutes), and then employs cMig within c. While there are
numerous ways of performing load migration (see Section 3) we re-
strict our evaluations to virtual-machine based (live) migration [8],
which is a convenient vehicle for performing this task at the infras-
tructure level without any application-level knowledge/mechanism.
We can explore other strategies in future work.

Heuristics Across Clusters: Handling an extended emergency
without substantial performance repercussions may need moving
or migrating load outside of c to parts of the datacenter with suf-
ficient headroom. In this paper, we do not consider the problem of
where to move this load, and simply assume that it can be accom-
modated elsewhere. As explained above, the loss in locality (com-
munication and storage) after migration can impact subsequent per-
formance, and we again explore two strategies - dMig, which per-
forms the migration right at the beginning of the emergency, and
BattSlow+Throt+dMig, which delays the migration as much
as possible.

6. Implementation and Experimental Setup

We use a scaled-down experimental prototype to evaluate our
heuristics and compare them with Opt—-local and Opt. Our
prototype uses a cluster ¢ (Figure 3) of N=8 DELL PowerEdge
servers with two Intel Xeon 3.4GHz processors each, running Red-
Hat Linux 5.5. The face-plate rating of these servers is 450W. Their

80

Power budget
(Pyydget)

Cluster power strip (PDU) o,4et on/oft
OFF

Pbudget
Enforcer
Battery state 7

power draw

commands|

Linu; ux
Xen VMM
Dell Server

Server Server

Send throttllng/mlgratlon commands

Figure 3. Experimental prototype.

idle power consumption is around 120W and the peak power that
we can push the server to across our workloads is 320W. The dy-
namic power consumption can be modulated with 4 DVFS states
(P-states: 3.4GHz, 3.2GHz, 3.0GHz, and 2.8GHz) and 8 clock
throttling states (T-states: 12.5%, 25%, ..., 100%). To change power
states, we write custom drivers using the /A32_PERF _CTL and
1A32.CLOCK_MODULATION MSR registers. Each server
is directly connected to a 1000W APC UPS [1] which, in turn, is
connected to an outlet of a 30Amp Raritan PDU.

Although we have a 1000W UPS unit connected to each server,
for all our experiments we only assume a 330W UPS (close to the
maximum power consumed by our server) and drain the UPS us-
ing a corresponding scaled-down runtime chart *. We consider a
4-minute battery per server which is relatively on the lower end, of
which we leave a residual capacity of 2 minutes, required for avail-
ability guarantees. The UPS is capable of reporting its load, power
draw and remaining battery runtime over an RS232 serial interface.
The PDU is capable of dynamically switching ON/OFF the supply
to individual UPS units with SNMP commands over Ethernet. By
turning on/off individual outlets, we can selectively have a server
source power from either the battery or the power line. We use
a separate machine (“Power Budget Enforcer”) to implement the
heuristics - send throttling, migration and PDU turn on/off com-
mands. Our cluster has a shared NAS box which is mounted as a
NEFS storage volume by all the servers. We use another cluster (not
shown in the figure) of 8 servers as the destination for migrating
workloads in dMig and dMig+BattSlow+Throt. All our ap-
plications are hosted as VMs under Xen on each server.

7. Evaluation

We use four case studies involving six different applications to eval-
uate the efficacy of our online heuristics. In each, we present (i)
salient workload properties, (ii) emergencies lasting a range of du-
rations and corresponding to degrees (as 10-30% of potential peak)
of underprovisioning, (iii) the remedial actions corresponding to
our heuristics, and (iv) a comparison of their efficacy in alleviating
the emergency with respect to Opt —1ocal and Opt. Note that we
are only concerned with performance during an emergency in this
work. The remedial actions for emergencies lasting several hours
will typically mandate migration and there are no further insights
to be gained by studying such long durations. As discussed earlier,
we have profiled the performance (R(l, d)) and power (P(l, d)) of

3 The minimum capacity of UPS units available from APC is 500W. Al-
though UPS units are typically over-provisioned, we assume this conserva-
tive tight provisioning of 330W for our experiments.

each workload a priori. In general, enterprise/internet applications
typically undergo extensive profiling for right-sizing of datacen-
ter IT resources. Even for cloud-hosted third-party applications, re-
source usage can be determined via offline/online profiling. Such
profiling, with readily available power meters [25] on those plat-
forms, or in combination with well-understood power models [16]
that are based on resource utilization, can be used to determine
Ri;j(l,d) and P;;(l,d). Since, we already have plenty of ground
to cover in this paper, for the purposes of this work we assume that
R;; and P;; for a given workload, as a function of different power
states is made available. A more detailed treatment of these issues
can be considered in future work.

7.1 TPC-W and SPECjbb

We study two well-known server benchmarks: TPC-W [40] and
SPECjbb [41]. TPC-W emulates a 3-tiered (Apache, Tomcat, and
MySQL) transactional Web-based eCommerce bookstore. The
Apache front-end runs on a dedicated server, while the other two
tiers run on a set of servers whose size is chosen to accommo-
date the workload intensity. Apache employs a request distribution
module to balance requests among replicas of Tomcat. We use
the clustered MySQL database engine that provides a replicable,
shared-nothing database tier. Each Tomcat and MySQL instance
runs in its own Xen domain. TPC-W services a specified number
of clients over persistent HTTP sessions. We use the average client
response time during the emergency as the performance metric (R)
for TPC-W. SPEC;jbb is a 3-tiered server-side Java warehouse man-
agement application. We use the average transactions/second (tps)
as our performance metric (R?) for SPECjbb.

Emergency Handling for TPC-W: Applications like TPC-W are
known to experience significant temporal variations in the load.
Many such variations can be predicted (e.g., time-of-day behav-
ior) to ensure that enough power capacity is provisioned. However,
there are other variations not amenable to such prediction (e.g.,
flash crowds) which can cause emergencies when underprovision-
ing. Responding to the growing workload, the datacenter incremen-
tally adds replicas of Tomcat and MySQL on new servers till all 8
servers are utilized. This can cause an emergency since the aggre-
gate draw of these servers can exceed the power budget of the un-
derprovisioned cluster. For instance, when the workload saturates
all 8 servers, the aggregate power consumption hits 1630W. If the
infrastructure is underprovisioned by 10%, 20% and 30%, then the
corresponding Py dge: limits are 1470 W, 1300 W, and 1140 W re-
spectively. We inject load to introduce emergency durations of 2, 8,
15, 30, and 60 minutes, over these provisioned limits.

Figures 4(a) and (b) present the degradation in average response
times of TPC-W with 10 and 30% underprovisioning. Throt
chooses (2.8Ghz, 100%Clk) and (2.8Ghz, 25%CIk) for 10% and
30% underprovisioing, respectively, and severely degrades perfor-
mance (going from 30% degradation to over 500% in the more un-
derprovisioned case) in these high utilization regimes. On the other
hand, BattFast+Throt is better, particularly for short to mod-
erate emergency durations (upto 15 minutes). For such emergen-
cies, it is able to completely source the excess power from batteries
without throttling. For longer durations (30 minutes and more),
the batteries run out, mandating throttling which degrades perfor-
mance. The high sensitivity of performance to even small CPU
rate modulation makes BattSlow+Throt mostly ineffectual:
for short emergencies (upto 15 minutes), it unnecessarily throttles
due to its conservative (slow) drain from batteries; for moderate
durations (upto 30 minutes), it stretches the battery runtime, but
the accompanying throttling hurts performance; for long durations
(more than 30 minutes), batteries run out with subsequent conse-
quences similar to BattFast+Throt.

81

Next we consider the cluster-level migration, cMig. cMig
employs Xen’s live migration facility [8] to seamlessly migrate
a subset of (let us denote its size as n) Tomcat/MySQL repli-
cas from their original servers and co-locates them with those
on the remaining 8 — n servers - which in turn become over-
loaded. These n unoccupied servers are now turned off. We find
n to be 1 and 3 for underprovisioning degrees of 10% and 30%,
respectively. For the 30% underprovisioning, all 5 active servers
continue to operate at their highest power states. Since the TPC-
W components were operating at their peak requirements, the
components that are co-located experience significant resource
shortage, causing response time to nearly double. In fact, cMig
fares worse than the earlier two heuristics involving the battery.
The idea behind BattSlow+Throt+cMig is to improve upon
cMig by postponing migration as much as possible; it starts
as BattSlow+Throt and switches to cMig when the bat-
teries run out. For small/moderate emergencies, this defaults to
BattSlow+Throt with the same pros and cons - essentially un-
desirable for TPC-W. It is worse for longer emergencies since it
will end up switching to cMig, which we have already found to
hurt TPC-W.

Finally, let us discuss the efficacy of dMig. We migrate 1 and
3 Tomcat/MySQL VM pairs for 10% and 30% underprovisioning
respectively. Live migration can be carried out relatively quickly
for TPC-W (about 2 minutes) *. Furthermore, loss of data local-
ity suffered by migrated VMs is negligible in this case (i.e. small
sr), implying little performance consequence after the migration.
Consequently, dMig turns out to be the most effective heuris-
tic and is able to handle the entire range of emergencies with
little performance consequence (though requiring the battery to
temporarily handle the power spike during the act of migration).
The only situations where dMig is an unwise choice is when the
emergency lasts less than the migration duration of 2 minutes.
BattSlow+Throt+dMig attempts to postpone the remote mi-
gration invocation and ends up offering worse performance than
dMig due to TPC-W'’s sensitivity to even small degrees of throt-
tling.

BattFast+Throt comes close to Opt—local for emergen-
cies less than 15 minutes, while BattSlow+Throt is closer to
Opt-local for longer emergencies. Incidentally, Opt—-local
never chooses Throt when we examine (post-mortem) decisions
reached by the offline algorithm for durations less than 15 min-
utes, and in longer durations it chooses heterogeneous power states
across the servers, while our battery based heuristics choose the
same state across all servers at any time. Specifically, Opt-local
uses a lower power state on servers that source from batteries,
stretching the battery runtime. In this case study, Opt first drains
the battery fully, and then immediately migrates the load to a re-
mote node since there is little performance impact after migration.

Emergency Handling for SPECjbb: Emergency handling in
SPEC;jbb is similar to TPC-W, with similar results. The 8 servers
housing SPECjbb replicas end up operating close to saturation, and
their aggregate power consumption is found to be 1875W. Fig-
ures 4(c) and (d) present the degradation in average tps during
various emergencies.

Key Insights: (i) CPU throttling is undesirable for this class of
applications, even for short or moderate durations. (ii) batteries
are helpful for a wide range of emergencies (upto 30 minutes).
(iii) batteries can offer lower power draws than even the deepest

4Incidentally, though we do not explicitly present those details, we wish to
point out that migration itself does introduce a spike in power consumption
(of 10%) for this workload, and the battery is still needed (in solutions such
as cMig and dMig) to temporarily get the power draw under control during
the act of migration.

1.59Throt 2.l BattFast+Throt

Legends for Bar Charts: Note that the leg-
end numbers are given above some of the bars

cMig

3. 1BattSlow+Throt

5.EZ4 BattSlow+Throt+cMig 6. A

7. B33 BattSlow+Throt+dMig ++eeeOpt-local Opt
for easier readability. Opt and Opt-local lines
are also drawn as reference lower bounds.
2400
35 600 BattSIt:avw+Thru;:i-ecﬁlllfgt fffff
%30 500 2000 Map phase Last map
:25 ::’ = task finished
3 4 £ 400 z
320 | 3 T K-l DWW L Deuager
g &N € 300 8
15 N g <
Q | ’ 0 200
10 | .
e 5 g | 100 t,
0 Eé % Ei % : 0 | 400
2 8 15 30 60 8 15 30 60 " ® rimeming o %
Emergency duration (minutes) Emergency duration (minutes) (2) MapReduce profile: Default, 30% with
(a) TPC-W, 10% (b) TPC-W, 30% BattSlow+Throt+dMig. Reduce phase has been
14 truncated for clarity.
4 4 4 50 1 1 1
— — 100
g\c:12 8\0140 ?30 5
£10 4 < < <
% % g25 g80
g8 g% 520 T60 §
g g 3 o \
g 6 @20 815 g \
a} o o o \
4 3 g 40 \
£ £ NI a10 al \
a2 o 55 £20 §
. AR NIER EAR 1T d \
2 8 15 30 60 2 8 15 30 60

Emergency duration (minutes)
(c) Specjbb, 10%

Emergency duration (minutes)
(d) Specjbb, 30%

B ~16GB
Input File Size
(c) MapReduce, 30%

~ 16GB
Input File Size
(b) MapReduce, 10%

Figure 4. TPC-W and Specjbb results

power states. (iv) the low/zero slowdown after migration (s,), fa-
vors dMig (coming close to Opt), though the battery is still needed
to handle the initial power spike during migration (which takes 1-2
minutes). (v) Opt-local and Opt point towards the possibility
of heterogeneous power state assignment to servers to achieve bet-
ter power/performance trade-offs than offered by our heuristics.

7.2 MapReduce

This workload represents a growing and important class of parallel
applications used in domains such as search engines. We run a
word count application using Hadoop [22]. It schedules the mapper
and reducer tasks across a set of specified servers and reports the
application finish time as its performance metric. We consider 8
GB and 16 GB for input file sizes. MapReduce inherently uses
distributed storage, placing computations closer to the data that
it needs. If one considers a server’s storage volume to be part of
the VM, then cMig and dMig based on infrastructure-level VM
migration would require moving all of this data to the destination
node (which can be quite large), rather than just the data needed by
subsequent computation. While one could consider this in future
work, in this set of experiments, we assume storage to be decoupled
from the VM image (by implementing the local storage as a NFS-
mounted server), and only move the VM image for migration, with
the subsequent computation making NFS calls to get the specific
data that it needs from the source cluster ¢ (where the data is
replicated for availability even if servers go down).

Emergency Handling for MapReduce: Figure 5(a) shows evolu-
tion of the aggregated power of the 8 servers running MapReduce

82

Figure 5. MapReduce results

(labeled as default) with the 16GB input. We see high power varia-
tion over time, suggesting under-utilization if we provision for the
peak. Specifically, the mapper phase (upto 30 min.) consumes sig-
nificantly higher power that reaches up to 2020W. Consequently, a
surge of mapper activities across the cluster can sometimes lead to
emergencies in an aggressively underprovisioned system. Delaying
the mappers and/or spreading them temporally/spatially can delay
the application and possibly impact its locality.

Figures 5(b) and (c) compare the performance of our heuristics
for underprovisioning of 10% and 30% (with respect to 2020W),
respectively. For the 8GB input, we find battery-based techniques
are able to handle the emergency with little/no performance con-
sequences for 10% underprovisioning (comparable to Opt). The
emergency duration for this input is roughly 15 minutes, which
can be easily sustained by each of the 8 servers (only 1 server
needs to not source from power line to meet power bounds) tak-
ing turns sourcing power from the battery for roughly 2.3 min-
utes each. In fact, the power state modulation and migration mech-
anisms do not even kick in when the battery is complemented
with these knobs. However, for 30% underprovisioning, the other
knobs are also employed, and the performance progressively de-
grades. Still, the battery-supplemented techniques do better than
without this knob. Further, while BattFast+Throt does better
than BattSlow+Throt in the 20% underprovisioning case (not
shown in figure), the results are reversed in the 30% underprovi-
sioning case (shown in Figure 5 (c)) where the emergency man-
dates a higher power shaving, causing the battery to run out faster
if that is the first knob of choice. Sustaining a longer period of oper-

ation with the battery (a slow drain rate achieved with simultaneous
power state control) is a better option in such cases of high under-
provisioning.

The 16GB input extends the emergency duration to roughly 30
minutes, making it necessary to supplement battery with power
state modulation and/or migration. This degrades performance even
in the 10% underprovisioning case. In both 8GB and 16GB exper-
iments, we find migration does relatively worse than using local
knobs alone. This is because of migration overheads, where doing
it locally (cMig) results in increasing the load on one or more slave
nodes within the cluster, delaying the progress of the application.
dMig for MapReduce, has a different problem - loss of data local-
ity requiring considerable data movement across clusters - which
tremendously impacts performance (though this is still better per-
forming than cMig which overloads servers). MapReduce, thus,
depicts a spectrum of workloads not as conducive to migration for
emergency reaction (unlike the stateless applications in previous
subsection) impacting performance not just during the migration
but also subsequently. Like before, supplementing migration with
local knobs helps defer ¢,,, (to about 23 minutes in the 16GB ex-
periment), to lessen the subsequent performance slowdown (s;.) af-
ter migration in both cMig and dMig cases. Migration is more
competitive for longer emergency durations - for instance, con-
sider the 16GB degradation results in 30% underprovisioning for
cMig (92%) and dMig (55%) with respect to Batt Slow+Throt
(34%), and compare them with those for the 8GB degradation
where BattSlow+Throt suffers only 16% degradation while
cMig and dMig still suffer 89% and 49% degradation. The local
knobs supplemented with migration can thus help bridge the emer-
gency duration gap when migration becomes more competitive.

Figure 5(a) presents salient decisions made by our heuristic,
BattSlow+Throt+dMig (the closest heuristic to Opt) during
the emergency with 30% under-provisioning: (i) Duration t,: one
server at a time is sourced from its battery and all 8 servers are
operated at 2.8GHz DVFS till ¢ = 23 minutes; (ii) Duration ty:
migrating 3 mapper VMs to another cluster which takes 1-2 min-
utes; (iii) Duration t.: 3 machines are shut down after migration,
and the remaining 5 servers operate at the highest 3.4GHz DVFS
state. (iv) Duration t4: which is the “reduce” phase where there is
no longer an emergency, though we do not consider the option of
moving back the VMs to ¢ in our experiments. Note that we adhere
to the 1420W cap (30% underprovisioning) over the entire dura-
tion.

Performance degradation of Opt closely matches our heuristics
that only use the server-local knobs for 10% underprovisioning
where migration is less desirable (Opt does not choose migration
in this case). We observe the same behavior for the 8GB input at
30% underprovisioning where Opt only uses local knobs for the
entire emergency. One interesting observation is that for the 16GB
input at 30% underprovisioning, Throt becomes very expensive -
about 72% decrease in throughput. Opt resorts to dMig at t,, =
24 minutes in this case, which closely matches the decision by
BattSlow+Throt+dMig where the battery runs out of charge
at approximately the 23"¢ minute and migration is initiated. It is
important to note that MapReduce is very sensitive to the value
of t,, and migrating before or after 24 minutes results in poor
performance.

Key Insights: (i) Longer emergencies may mandate migration,
but this slows down the application either due to overload of some
servers in the cluster (cMig) or poor data locality (dMig); (ii)
BattSlow+Throt postpones migration, and allows it to become
more competitive; (iii) when migration is expensive, Opt refrains
from migration for short emergencies (BattFast+Throt comes
close) and defers migration as long as possible for long emergen-
cies (BattSlow+Throt+dMig comes close).

83

1. Throt

2.l BattFast+Throt
3.1 BattSlow+Throt
4 cMig 1
72221 BattSlow+Throt+cMig
dMig
BattSlow+Throt+dMig

+++++ Opt-local
= Opt

—
a
o

s/Client

5

che
~N O N
a1 O O

No. of Glit
[$)]
o

N
a

§22777222222222222272

o

10 20 30
Under-provisioning (%)

Figure 6. Media Server Results.

7.3 Streaming Media Server

Our third case study uses a multi threaded 1.5 Mbps streaming
MPEG media server that services several Java clients. It spawns a
separate thread for each client, which does password authentication
before it starts streaming. A 4.5MB buffer is used at the client to
smoothen traffic variations. There could still be playback discon-
tinuities (“glitches”) when the buffer becomes empty. The server
runs on all 8 machines, streaming a 60-minute long video for a to-
tal of 2400 clients.

Emergency Handling: During the initial phase (say first 10 min-
utes), when the clients try to connect to the server, we observe a
power spike of about 1700W, compared to the steady state draw of
1200W when there is only subsequent streaming. This initial con-
nection/authorization phase can be viewed as the emergency dura-
tion and we evaluate our heuristics over this duration for 10%, 20%
and 30% underprovisioning in Figure 7.2.

Throt degrades with aggressive underprovisioning (from 8
glitches per client for 10% underprovisioning to over 100 for 30%),
since it is not able to sustain the streaming needs. Due to the
short emergency (about 10 minutes), BattFast+Throt is able
to handle it without throttling and hence performs much better
than BattSlow+ Throt. In fact, BattFast+Throt performs
very well even at 30% underprovisioning, incurring only one-fifth
of the glitches compared to Throt. We note that cMig hurts
performance even for small underprovisioning, since each server
is already saturated. BattSlow+Throt+cMig is able to de-
lay (actually avoids migration completely because the battery is
able to fully sustain the emergency) this migration, defaulting to
BattSlow+Throt. It is interesting that dMig, which had poor
performance for MapReduce does very well since there is almost
no performance impact after the migration (s, is negligible). It
takes only about 30 seconds for the media server VM to migrate
and we find that the client buffer size is good enough to sustain
the performance impact for most of this duration. While the battery
serves as a buffer to allow temporary power spikes at the media
servers (as in earlier case studies), a similar effect is achieved by
the client buffer which allow the media servers to slowdown (either
by power state transition or migration) temporarily - thus reducing
their power draw. We also observe that unlike MapReduce, it does
not make sense to delay migration (BattSlow+Throt+dMig)
since migration overheads are low, and throttling has severe perfor-
mance impact.

Opt chooses to use the battery alone for 10% and 20% under-
provisioning, equivalent to BattFast+Throt and does not incur
any degradation. For 30% underprovisioning, battery cannot fully

sustain the peak and Opt uses datacenter-level migration which re-
sults in just 2 glitches per client. In this application, we find t,,, = 7
minutes for Opt (unlike 23 minutes in MapReduce), since migra-
tion overhead is negligible. Interestingly, when our optimization
(Opt—1local) is run with just the local knobs where we see that
for 30% underprovisioning it is comparable to Opt and achieves as
few as 3 glitches per client compared to the best local knob heuris-
tic - BattFast+Throt - which incurs 27 glitches/client. When
we analyzed the Opt—-1local results, we noticed that it sources
battery from 2 servers at any time and uses throttling to shave only
the remaining 10%. This behavior is somewhere in-between our
battery-aggressive, BattFast+Throt and battery-conservative,
BattSlow+Throt heuristics which source from 3 servers and 1
server respectively from battery and shave the rest by throttling.
This shows the importance of dynamically adjusting battery drain
rate, which we plan to investigate in future work.

Key Insights: (i) Battery-based heuristics perform very well due
to the smaller emergency duration. (ii) The battery and client buffer,
in combination, provide a seamless strategy for offloading the work
to elsewhere in the datacenter, and hide migration cost.

7.4 Graphics Application and Virus Scan

This case study involves two applications: a GPU application in
CUDA implementing the Black-Scholes financial model using a
NVIDIA card, and VirusScan (Linux AVG [29]) which needs to run
on the local machine to scan its 40GB hard drive. Not all datacenter
servers may offer the required graphics support (e.g., Amazon EC2
offers separate GPU cluster instances), and moving the VirusScan
elsewhere is not an option. VirusScan is a strawman we use to illus-
trate applications, that (i) are tied to a specific server, (ii) are fairly
flexible in their processing rate (low-priority), and (iii) have some
kind of deadline (24 hours in this case). Other examples include
back-ups, search-engine indexing, etc. Even though the deadlines
are “soft” in these examples, we will use a “hard” deadline for
more general illustration. We vary the rate at which GPU applica-
tions arrive which can, in turn impact the schedulability of VirusS-
can, and report throughput (GPU ops/sec) subject to the 24 hour
deadline for VirusScan that needs to be met. In our servers, the
GPU application running alone consumes 250W, the VirusScan at
full-throttle runs at 208W taking 45 minutes to complete, and the
two together at full-throttle hit 315W.

Emergency Handling: We define an emergency in this case as
an out-of-the-ordinary day wherein the VirusScan does not get suf-
ficient bandwidth (because of the power budget) to run until the
last minutes before the 24 hour deadline, and we vary x be-
tween 240 to 45 minutes (beyond 240 minutes there is sufficient
bandwidth for our considered load). This setup is different from
the earlier case studies, since we have multiple applications. We
adapt Throt, BattFast+Throt and BattSlow+Throt for
this scenario since migration is not an option. We do not explic-
itly discuss results for Batt Slow+Throt whose behavior is not
very different from BattFast+Throt. Throt does power state
modulation continuously over the last x minutes for VirusScan to
finish its remaining execution before the 24 hour deadline. CPU
throttling states have little impact on the progress or power con-
sumption of the GPU application (as it depends mainly on the
GPU). Hence, if there is not enough slack at a given time to meet
the VirusScan deadline, the GPU application is put on hold (sus-
pended), and VirusScan is run at full-throttle until there is slack
again. BattFast+Throt employs battery as long as possible
from the beginning of the x minutes, until it is drained to residual
capacity of 2 minutes (required for availability), with VirusScan
running at full-throttle. Subsequently, Throt is employed.

84

[=-]
o

-
(=)
o

Throt
BattFast+Throt
Opt-local +++e+

Throt
BattFast+Throt
Opt-local ++++-+

[=2]

o
(=]
o

D
o

B
o

N

o
»n
o

GPU throughput Degr (%)
S
o

GPU throughput Degr (%)

0 N N
240 180 120 60 45
Virus-scan slack (x mins)

(b) 100% GPUapp

o

120 60 45
Virus-scan slack (x mins)

(a) 80% GPUapp

240 180

Figure 7. Performance of GPU application during various emer-
gencies caused by VirusScan’s deadline. (10% underprovisioning)

A representative result for 10% power underprovisioning (with
respect to the maximum possible draw of 2520W) is given in Fig-
ure 7. The emergency is captured by different values of = on the
x-axis, and we present the percentage degradation in GPU ops on
the y-axis. This degradation is shown for different imposed loads
by GPU application, with intensities depicted as 80% and 100%,
i.e. percentage of time that the GPU is active. Throt by itself suf-
fices when there is sufficient notice (z > 240) given to run these
algorithms. Getting closer to the deadline to react does not allow
much room for Throt to run both applications without affecting
the GPU application. There is 50-60% slowdown in GPU ops dur-
ing the last hour with Throt. Higher GPU application intensity
leaves even less room for Throt to allocate sufficient bandwidth
for the two, thereby impacting throughput. The battery-based solu-
tion, on the other hand, is able to do much better across the entire
spectrum, not suffering any loss for z > 120. It is only at very
high GPU application intensities, and very little reaction time (in
the last hour) that it results in performance loss, and even then does
significantly better than Throt. Further, the battery based solution
comes quite close to Opt, with the latter doing slightly better be-
cause of more leeway in what gets scheduled (GPU or VirusScan)
at any time on different servers, and the possible heterogeneous
power states assignment across the servers at a given time.

Key Insights: (i) Application intensity, slack in scheduling and
reaction window, all impact throughput. (ii) Power state modulation
alone is not able to handle high intensities when sufficient slack is
absent. (iii) Battery provides substantial leeway in handling emer-
gencies for scheduling workloads with both temporal (deadlines)
and spatial (need to run on specific servers) constraints.

7.5 Summary of Observations

Table 2 summarizes the results from the six different applica-
tion case-studies evaluated above, pointing out the efficacy of the
knob(s) towards handling the different performance-power charac-
teristics.

7.6 Invest in additional battery capacity?

Even though we have considered a conservative 4-minute battery
capacity in our experiments, one may ask whether the cost of ad-
ditional battery capacity can be justified by the potential reduction
in datacenter power infrastructure costs that we can gain by under-
provisioning. Let us denote the cost of procuring additional bat-
tery capacity to sustain e hours of emergency as e - cpqr $/watt,
and the cap-ex cost of the power infrastructure to under-provision
by ceap $/watt. Lead-acid battery costs (cyq:) reported in literature
(see DOE/Sandia data [24]) are in the 100-300 $/kWh range, and
we consider conservative values as high as 500 $/kWh. Datacenter

Application Emergency handling
characteristics (knob selection)
Short peak Batteries are self-sufficient in handling peaks
widths up to 30 mins without requiring expensive throttling
Medium peak Batteries supplement power state throttling
widths to reduce performance overheads
Long peak Immediate migration is benefitial,
widths Batteries hide power spike during migration
Sensitive to Migration may impact performance,
data locality Batteries help postpone migration
Slack-based Shift peak temporally via flexible workload
workloads scheduling, Batteries help create more slack
Table 2. Summary of Results
Battery[emergency ~ Assumed Cap-ex $/W for IT -->
cost duration 1$/W 28/W 5$/W 10$/W 158/W
5mins ;39.0 79.0 199.0 399.0 ~ 599.0
100 15mins ! 12.3 25.7 65.7 132.3 199.0 ;
S/KWh 30mins | 5.7 123 323 65.7 99.0 |
thour !\ 23 57 15.7 323 49.0 !
4 hours 02 07 32 7 73 __1 115)
Smins 123 257 657 1323 199.0 |
300 15mins 134 7.9 21.2 43.4 65.7 !
$/KWh 30 mins ! 1.2 3.4 10.1 21.2 323
lhour 101 1.2 46 10.1 15.7 !
4 hours -0.7 04\ 04 18 32
Smins /7.0 150 390 790 "~ "119.0)
500 | 15mins 1.7 43 12.3 25.7 39.0 |
$/KWh| 30mins 103 1.7 5.7 12.3 19.0 |
1 hour 03 °N_03 ____23_ 5.7 9.0 |
4 hours 0.8 0.7 02 _07_____ 1.5 !
Figure 8. ROI with additional battery capacities. Positive values

indicates investment is worthwhile (magnitude indicates higher re-
turns) while negative values suggest not investing in higher capac-
ities.

power infrastructure cap-ex is reported to grow by $10-25 for ev-
ery provisioned watt [4, 23]. Since this includes costs for cooling,
Diesel Generators, UPS, etc., it is non-trivial to isolate the $/W for
the IT power infrastructure. Consequently, we study a wide range
for ccqp starting from as low as 1 $/W going all the way to 15 $/W.
We can then calculate the Return-On-Investment (ROI) for addi-
tional battery capacity as: W and show these in Figure 8
for emergency durations ranging from 5 minutes to 4 hours. In these
calculations, we ensure that battery costs are amortized over 4 year
lifetimes while infrastructure costs are amortized over 12 year life-
times. We find a positive ROI (very high ROI in many cases) for
most of the operating regions, despite considering pessimistic sce-
narios. This suggests that investing in additional battery capacity
may be worthwhile, although a more in-depth economic analysis is
warranted in future work.

8. Concluding Remarks

We have presented a framework for dealing with emergencies aris-
ing from aggressive underprovisioning of the power infrastructure.
Rather than disruptive fuses/circuit-breakers, IT controlled tech-
niques such as power state modulation, and workload migration can
be supplemented with our new proposal of leveraging already exist-
ing UPS batteries to gracefully deal with emergencies. We demon-
strate using an experimental prototype, with several interesting use
cases, that the battery based approaches are (i) self-sufficient to deal

85

with short duration emergencies, (ii) supplement existing solutions
to enhance their efficacy over a wider range of operating conditions,
and (iii) create opportunities where other options are infeasible. We
have also presented an offline theoretical framework to find bounds
on how well we can perform under these emergencies, and pre-
sented several online heuristics that can adapt themselves to work
under these unpredictable black swan events (when? how severe?
how long?). Since these emergencies are typically a consequence of
load surges, existing solutions - power state throttling and migra-
tion - by themselves can have serious performance implications.
Overall, we find that when migration/load-redirection overhead is
low, a fast drain of the battery locally to control the power surge
until migration is complete, works quite well. At the other extreme,
when migration costs are high, delaying the migration with a com-
bination of slow battery drain and power mode control is the better
option. The battery is thus an agile and useful stand-alone and/or
complementary solution to address both short and long duration
emergencies.

Acknowledgments

This work was supported, in part, by NSF grants CNS-0720456,
CNS-0615097, CAREER award 0953541, and research awards
from Google and HP. We would like to thank Luiz Barroso from
Google, who provided valuable inputs on motivating and shaping
the work presented in this paper.

References

[1] 1 KW APC UPS - SURTAI500RMXL2U. http://www.apc.
com/products/.

F. Ahmad and T. N. Vijaykumar. Joint optimization of idle and
cooling power in data centers while maintaining response time. In
Proceedings of the Architectural support for programming languages
and operating systems (ASPLOS), 2010.

H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan. Robust and flexible power-proportional storage. In
Proceedings of the ACM Symposium On Cloud Computing (SOCC),
2010.

L. A. Barroso and U. Holzle.
Introduction to the Design of Warehouse-Scale Machines.
and Claypool Publishers, 2009.

[5]1 D. Bhandarkar.
Summit, 2010.

[6] J. Chase, D. Anderson, P. Thakur, and A. Vahdat. Managing Energy
and Server Resources in Hosting Centers. In Proceedings of the
Symposium on Operating Systems Principles (SOSP), 2001.

Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam. Managing Server Energy and Operational Costs in Hosting Cen-
ters. In Proceedings of the Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), 2005.

C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proceedings

of the Symposium on Networked Systems Design and Implementation
(NSDI), 2005.

[2]

[3]

[4

=

The Datacenter as a Computer: An
Morgan

Watt Matters in Energy Efficiency, Server Design

[7]

[8

[9] Commercial circuit breakers, 2008. http://
circuit-breakers.carlingtech.com/all_circuits.
asp.

[10] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini.
Memscale: active low-power modes for main memory. In Proceedings
of Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2011.

[11] Facebook Open Compute Project, 2011. http://opencompute.
org.

[12] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for

a warehouse-sized computer. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2007.

[13] W. Felter, K. Rajamani, C. Rusu, and T. Keller. A Performance-
Conserving Approach for Reducing Peak Power Consumption in
Server Systems. In Proceedings of the International Conference on
Supercomputing (ICS), 2005.

[14] M. E. Femal and V. W. Freeh. Safe overprovisioning: Using power
limits to increase aggregate throughput. In Workshop on Power-Aware
Computer Systems (PACS), 2004.

[15] J. Flinn and M. Satyanarayanan. Managing battery lifetime with
energy-aware adaptation. Transaction On Computer Systems (TOCS),
2004.

[16] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal
power allocation in server farms. In Proceedings of the Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS),
2009.

[17] L. Ganesh, J. Liu, S. Nath, G. Reeves, and F. Zhao. Unleash Stranded
Power in Data Centers with RackPacker. In Workshop on Energy-
Efficient Design (WEED), 2009.

[18] Google Server-level UPS for improved efficiency. http://news.
cnet.com/8301-1001_3-10209580-92.html.

[19] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and
A.Baldini. Statistical profiling-based techniques for effective power
provisioning in data centers. In Proceedings of the International Eu-
ropean Conference on Computer Systems (EUROSYS), 2009.

[20] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar. Benefits and
Limitations of Tapping into Stored Energy For Datacenters. In Pro-
ceedings of the International Symposium of Computer Architecture
(ISCA), 2011.

[21] S. Govindan, D. Wang, L. Chen, A. Sivasubramaniam, and B. Ur-
gaonkar. Towards Realizing a Low Cost and Highly Available Data-
center Power Infrastructure. In Proceedings of the Workshop on Power
Aware Computing and Systems (HotPower), 2011.

[22] Hadoop Map Reduce.
mapreduce/.

http://hadoop.apache.org/

[23] J. Hamilton. Internet-scale Service Infrastructure Efficiency, ISCA
Keynote 2009.

[24] Lead-acid battery cost. http://photovoltaics.sandia.
gov/Pubs_2010/PV%20Website%20Publications%
20Folder_09/Hanley_PVSC09%5B1%5D.pdf.

[25] C. Lefurgy, X. Wang, and M. Ware. Server-Level Power Control.
In Proceedings of International Conference on Autonomic Computing
(ICAC), 2007.

[26] H. Lim, A. Kansal, and J. Liu. Power budgeting for virtualized data
centers. In Proceedings of the 2011 USENIX conference on USENIX
annual technical conference (USENIX), 2011.

[27] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dynamic
right-sizing for power-proportional data centers. In Proceedings of
the IEEE International Conference on Computer Communications
(INFOCOMM), 2011.

[28] D. Linden and T. B. Reddy. Handbook of Batteries. McGraw Hill
Handbooks, 2002.

[29] Linux AVG Anti Virus. http://free.avg.com/.

[30] K. Ma, X. Li, M. Chen, and X. Wang. Scalable power control for
many-core architectures running multi-threaded applications. In Pro-
ceedings of the International Symposium on Computer Architecture
(ISCA), 2011.

[31] S. McCluer. APC White paper 30 (Revision 11): Battery Technology
for Data Centers and Network Rooms: Lead-acid Battery Options,
2005.

[32] D. Meisner, C. M. Sadler, L. A. Barroso, W. Weber, and T. F. Wenisch.
Power management of online data-intensive services. In Proceedings
of the International Symposium on Computer Architecture (ISCA),
2011.

[33] Microsoft Reveals its Speciality Servers,
Racks, 2011. http://www.
datacenterknowledge.com/archives/2011/04/25/

microsoft-reveals—its-speciality-servers—racks/.

[34] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making schedul-
ing cool: Temperature-aware workload placement in data centers. In
Proceedings of the Usenix Annual Technical Conference (USENIX),
2005.

[35] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and J. Under-
wood. Power Routing: Dynamic Power Provisioning in the Data Cen-
ter. In Proceedings of Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2010.

[36] E. Pinheiro, R. Bianchini, E.Carrera, and T. Heath. Load Balancing
and Unbalancing for Power and Performance in Cluster-Based Sys-
tems. In Workshop on Compilers and Operating Systems for Low
Power (COLP), 2001.

[37] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No
Power Struggles: Coordinated multi-level power management for the
data center. In Proceedings of Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2008.

[38] L.Ramos and R. Bianchini. C-Oracle: Predictive thermal management
for data centers. In proceedings of the International Symposium on
High-Performance Computer Architecture (HPCA), 2008.

[39] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-level
Power Management for Dense Blade Servers. In Proceedings of
International Symposium on Computer Architecture (ISCA), 2006.

[40] W. Smith. TPC-W: Benchmarking An Ecommerce Solu-
tion. http://www.tpc.org/information/other/
techarticles.asp.

[41] SPEC JBB2005: Java Business Benchmark. http://www.spec.
org/jbb2005/.

[42] N. N. Taleb. The Black Swan: The Impact of the Highly Improbable.
Random House, 2007.

[43] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Overbooking and
Application Profiling in Shared Hosting Platforms. In Proceedings
of the Symposium on Operating Systems Design and Implementation
(OSDI), 2002.

[44] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam.
Optimal Power Cost Management Using Stored Energy in Data Cen-
ters. In Proceedings of the Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), 2011.

[45] A. Verma, P. De, V. Mann, T. Nayak, A. Purohit, G. Dasgupta, and
R. Kothari. Brownmap: Enforcing power budget in shared data cen-
ters. In Proceedings of the Conference on Middleware (MIDDLE-
WARE), 2010.

C. Waldspurger. Memory Resource Management in VMWare ESX
Server. In Proceedings of the Symposium on Operating System Design
and Implementation (OSDI), 2002.

[47] X. Wang and M. Chen. Cluster-level feedback power control for per-
formance optimization. In Proceedings of the International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2008.

[48] X. Wang, M. Chen, and C. Lefurgy. How much power oversubscrip-

tion is safe and allowed in data centers? In Proceedings of the Inter-
national Conference on Autonomic Computing (ICAC), 2011.

[46

[49] A. Weisel and F. Bellosa. Process cruise control-event-driven clock
scaling for dynamic power management. In Proceedings of Compilers,
Architecture and Synthesis for Embedded Systems (CASES), 2002.

[50] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat. ECOSystem:
Managing Energy as a First Class Operating System Resource. In Pro-
ceedings of the Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2002.

[51] FE. Zhang, Z. Shi, and W. Wolf. A dynamic battery model for co-
design in cyber-physical systems. In Proceedings of the International
Conference on Distributed Computing Systems Workshops (ICDCSW),
2009.

[52] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes. Hiber-
nator: helping disk arrays sleep through the winter. In Proceedings of
the Symposium on Operating Systems Principles (SOSP), 2005.

