
AWS IoT
Developer Guide

AWS IoT Developer Guide

AWS IoT Developer Guide

AWS IoT: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS IoT Developer Guide

Table of Contents
What Is AWS IoT? .. 1

AWS IoT Components ... 1
How to Get Started with AWS IoT ... 2
Accessing AWS IoT .. 2
Related Services ... 2
How AWS IoT Works .. 2

AWS IoT Button Quickstarts ... 4
AWS IoT Button Wizard Quickstart .. 5
AWS IoT Button AWS CloudFormation Quickstart .. 13
Next Steps ... 18

Getting Started with AWS IoT ... 19
Sign in to the AWS IoT Console .. 20
Create a Device in the Thing Registry .. 21
Create and Activate a Device Certificate ... 23
Create an AWS IoT Policy .. 26
Attach an AWS IoT Policy to a Device Certificate ... 27
Attach a Thing to a Certificate ... 28
Configure Your Device ... 30

AWS IoT Button .. 30
View Device MQTT Messages with the AWS IoT MQTT Client ... 32
Configure and Test Rules ... 34

Create an SNS Topic .. 34
Subscribe to an Amazon SNS Topic .. 35
Create a Rule ... 35
Test the Amazon SNS Rule .. 38

Next Steps ... 40
AWS IoT Rule Tutorials ... 41

Creating a DynamoDB Rule .. 42
Creating a Lambda Rule .. 50

Create the Lambda Function ... 50
Test Your Lambda Function .. 60
Creating a Lambda Rule .. 62
Test Your Lambda Rule ... 64

Managing Things with AWS IoT .. 67
Managing Things with the Thing Registry .. 67

Create a thing .. 68
List things .. 68
Search for things ... 68
Update a thing .. 70
Delete a thing ... 70
Attach a principal to a thing .. 70
Detach a principal from a thing ... 70

Thing Types ... 71
Create a Thing Type ... 71
List thing types ... 71
Describe a thing type ... 72
Associate a thing type with a thing .. 72
Deprecate a thing type ... 73
Delete a thing type .. 74

Security and Identity .. 75
Authentication in AWS IoT .. 76

X.509 Certificates .. 76
IAM Users, Groups, and Roles .. 82
Amazon Cognito Identities .. 83

Authorization .. 83

iv

AWS IoT Developer Guide

AWS IoT Policies .. 84
IAM IoT Policies .. 103

Cross Account Access ... 104
Transport Security ... 105

TLS Cipher Suite Support ... 105
Message Broker .. 106

Protocols .. 106
MQTT .. 106
HTTP ... 107
MQTT Over the WebSocket Protocol .. 107

Topics .. 111
Reserved Topics ... 111

Lifecycle Events .. 111
Policy Required for Receiving Lifecycle Events .. 111
Connect/Disconnect Events ... 112
Subscribe/Unsubscribe Events ... 112

Rules ... 114
Granting AWS IoT the Required Access ... 115
Pass Role Permissions ... 116
Creating an AWS IoT Rule ... 117
Viewing Your Rules ... 120
SQL Versions ... 120

What's New in the 2016-03-23 SQL Rules Engine Version ... 121
Troubleshooting a Rule .. 122
Deleting a Rule ... 122
AWS IoT Rule Actions ... 122

CloudWatch Alarm Action ... 123
CloudWatch Metric Action ... 124
DynamoDB Action ... 124
DynamoDBv2 Action .. 126
Amazon ES Action .. 126
Firehose Action ... 127
Kinesis Action ... 128
Lambda Action .. 128
Republish Action ... 129
S3 Action ... 130
SNS Action ... 131
SQS Action .. 131

AWS IoT SQL Reference ... 132
Data Types ... 133
Operators ... 136
Functions ... 141
SELECT Clause .. 171
FROM Clause ... 172
WHERE Clause ... 173
Literals ... 173
Case Statements ... 173
JSON Extensions .. 174
Substitution Templates ... 175

Device Shadows ... 176
Device Shadows Data Flow .. 176
Device Shadows Documents ... 182

Document Properties .. 182
Versioning of a Thing Shadow ... 183
Client Token ... 183
Example Document .. 183
Empty Sections ... 184
Arrays .. 185

v

AWS IoT Developer Guide

Using Device Shadows ... 185
Protocol Support ... 186
Updating a Thing Shadow .. 186
Retrieving a Thing Shadow Document .. 186
Deleting Data .. 189
Deleting a Thing Shadow ... 190
Delta State ... 191
Observing State Changes ... 192
Message Order ... 193
Trim Device Shadow Messages ... 194

RESTful API ... 194
GetThingShadow ... 195
UpdateThingShadow .. 195
DeleteThingShadow ... 196

MQTT Pub/Sub Topics ... 197
/update .. 197
/update/accepted ... 198
/update/documents ... 198
/update/rejected ... 199
/update/delta ... 199
/get .. 200
/get/accepted .. 200
/get/rejected .. 201
/delete ... 201
/delete/accepted .. 202
/delete/rejected .. 202

Document Syntax .. 203
Request State Documents .. 203
Response State Documents .. 204
Error Response Documents .. 205

Error Messages ... 205
AWS IoT SDKs ... 207

AWS Mobile SDK for Android .. 207
Arduino Yún SDK .. 207
AWS IoT Device SDK for Embedded C .. 208
AWS Mobile SDK for iOS ... 208
AWS IoT Device SDK for Java .. 208
AWS IoT Device SDK for JavaScript .. 208
AWS IoT Device SDK for Python ... 209
AWS IoT Embedded C SDK ... 209

Prerequisites ... 209
Connecting Your Raspberry Pi .. 209

AWS IoT Device SDK for JavaScript .. 219
Prerequisites ... 219
Connecting Your Raspberry Pi .. 220

Monitoring .. 232
Monitoring Tools .. 233

Automated Tools ... 233
Manual Tools .. 233

Monitoring with Amazon CloudWatch .. 234
Metrics and Dimensions ... 234
Using AWS IoT Metrics .. 236
Creating CloudWatch Alarms ... 236

Logging AWS IoT API Calls with AWS CloudTrail ... 239
AWS IoT Information in CloudTrail ... 239
Understanding AWS IoT Log File Entries .. 240

Troubleshooting ... 242
Diagnosing Connectivity Issues ... 242

vi

AWS IoT Developer Guide

Authentication ... 242
Authorization ... 242

Setting Up CloudWatch Logs .. 242
Configuring an IAM Role for Logging .. 243
CloudWatch Log Entry Format ... 244
Logging Events and Error Codes ... 245

Diagnosing Rules Issues .. 247
Diagnosing Problems with Thing Shadows .. 247

AWS IoT Limits ... 249
Message Broker Limits ... 249
Device Shadow Limits .. 251
Security and Identity Limits ... 252
Throttling Limits ... 252
AWS IoT Rules Engine Limits ... 254

vii

AWS IoT Developer Guide
AWS IoT Components

What Is AWS IoT?

AWS IoT provides secure, bi-directional communication between Internet-connected things (such as
sensors, actuators, embedded devices, or smart appliances) and the AWS cloud. This enables you
to collect telemetry data from multiple devices and store and analyze the data. You can also create
applications that enable your users to control these devices from their phones or tablets.

AWS IoT Components
AWS IoT consists of the following components:

Device gateway
Enables devices to securely and efficiently communicate with AWS IoT.

Message broker
Provides a secure mechanism for things and AWS IoT applications to publish and receive
messages from each other. You can use either the MQTT protocol directly or MQTT over
WebSocket to publish and subscribe. You can use the HTTP REST interface to publish.

Rules engine
Provides message processing and integration with other AWS services. You can use a SQL-based
language to select data from message payloads, process and send the data to other services,
such as Amazon S3, Amazon DynamoDB, and AWS Lambda. You can also use the message
broker to republish messages to other subscribers.

Security and Identity service
Provides shared responsibility for security in the AWS cloud. Your things must keep their
credentials safe in order to securely send data to the message broker. The message broker and
rules engine use AWS security features to send data securely to devices or other AWS services.

Thing registry
Sometimes referred to as the device registry. Organizes the resources associated with each thing.
You register your things and associate up to three custom attributes with each thing. You can also
associate certificates and MQTT client IDs with each thing to improve your ability to manage and
troubleshoot your things.

Thing shadow
Sometimes referred to as a device shadow. A JSON document used to store and retrieve current
state information for a thing (device, app, and so on).

Thing Shadows service
Provides persistent representations of your things in the AWS cloud. You can publish updated
state information to a thing shadow, and your thing can synchronize its state when it connects.

1

AWS IoT Developer Guide
How to Get Started with AWS IoT

Your things can also publish their current state to a thing shadow for use by applications or
devices.

How to Get Started with AWS IoT
• To learn more about AWS IoT, see How AWS IoT Works (p. 2).

• To learn how to connect a thing to AWS IoT, see Getting Started with AWS IoT (p. 19).

Accessing AWS IoT
AWS IoT provides the following interfaces to create and interact with your things:

• AWS Command Line Interface (AWS CLI)—Run commands for AWS IoT on Windows, OS X, and
Linux. These commands allow you to create and manage things, certificates, rules, and policies.
To get started, see the AWS Command Line Interface User Guide. For more information about the
commands for AWS IoT, see iot in the AWS Command Line Interface Reference.

• AWS IoT API—Build your IoT applications using HTTP or HTTPS requests. These API allow you to
programmatically create and manage things, certificates, rules, and policies. For more information
about the API actions for AWS IoT, see Actions in the AWS IoT API Reference.

• AWS SDKs—Build your IoT applications using language-specific APIs. These SDKs wrap the HTTP/
HTTPS API and allow you to program in any of the supported languages. For more information, see
AWS SDKs and Tools.

• AWS IoT Device SDKs—Build applications that run on your devices that send messages to and
receive messages from AWS IoT. For more information see, AWS IoT SDKs

Related Services
AWS IoT integrates directly with the following AWS services:

• Amazon Simple Storage Service—Provides scalable storage in the AWS cloud. For more
information, see Amazon S3.

• Amazon DynamoDB—Provides managed NoSQL databases. For more information, see Amazon
DynamoDB.

• Amazon Kinesis—Enables real-time processing of streaming data at a massive scale. For more
information, see Amazon Kinesis.

• AWS Lambda—Runs your code on virtual servers from Amazon EC2 in response to events. For
more information, see AWS Lambda.

• Amazon Simple Notification Service—Sends or receives notifications. For more information, see
Amazon SNS.

• Amazon Simple Queue Service—Stores data in a queue to be retrieved by applications. For more
information, see Amazon SQS.

How AWS IoT Works
AWS IoT enables Internet-connected things to connect to the AWS cloud and lets applications in the
cloud interact with Internet-connected things. Common IoT applications either collect and process
telemetry from devices or enable users to control a device remotely.

2

http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://docs.aws.amazon.com/iot/latest/apireference/API_Operations.html
http://aws.amazon.com/tools/#sdk
http://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/lambda/
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/

AWS IoT Developer Guide
How AWS IoT Works

Things report their state by publishing messages, in JSON format, on MQTT topics. Each MQTT topic
has a hierarchical name that identifies the thing whose state is being updated. When a message is
published on an MQTT topic, the message is sent to the AWS IoT MQTT message broker, which is
responsible for sending all messages published on an MQTT topic to all clients subscribed to that topic.

Communication between a thing and AWS IoT is protected through the use of X.509 certificates.
AWS IoT can generate a certificate for you or you can use your own. In either case, the certificate
must be registered and activated with AWS IoT, and then copied onto your thing. When your thing
communicates with AWS IoT, it presents the certificate to AWS IoT as a credential.

We recommend all things that connect to AWS IoT have an entry in the thing registry. The thing
registry stores information about a thing and the certificates that are used by the thing to secure
communication with AWS IoT.

You can create rules that define one or more actions to perform based on the data in a message. For
example, you can insert, update, or query a DynamoDB table or invoke a Lambda function. Rules use
expressions to filter messages. When a rule matches a message, the rules engine invokes the action
using the selected properties. Rules also contain an IAM role that grants AWS IoT permission to the
AWS resources used to perform the action.

Each thing has a thing shadow that stores and retrieves state information. Each item in the state
information has two entries: the state last reported by the thing and the desired state requested by an
application. An application can request the current state information for a thing. The shadow responds
to the request by providing a JSON document with the state information (both reported and desired),
metadata, and a version number. An application can control a thing by requesting a change in its state.
The shadow accepts the state change request, updates its state information, and sends a message to
indicate the state information has been updated. The thing receives the message, changes its state,
and then reports its new state.

3

AWS IoT Developer Guide

AWS IoT Button Quickstarts

The two quickstarts in this section show you how to configure and use the AWS IoT button. You can
use the AWS IoT button wizard in the AWS Lambda console to easily and quickly configure your AWS
IoT button. The AWS Lambda console contains a blueprint that will automate the process of setting up
your AWS IoT button by:

• Creating and activating an X.509 certificate and private key for authenticating with AWS IoT.

• Walking you through the configuration of your AWS IoT button in order to connect to your Wi-Fi
network.

• Walking you through the copying of your certificate and private key to your AWS IoT button.

• Creating and attaching to the certificate an AWS IoT policy that gives the button permission to make
calls to AWS IoT.

• Creating an AWS IoT rule that invokes a Lambda function when your AWS IoT button is pressed.

• Creating an IAM role and policy that allows the Lambda function to send email messages using
Amazon SNS.

• Creating a Lambda function that sends an email message to the address specified in the Lambda
function code.

You can also configure the AWS IoT button by using an AWS CloudFormation template. The second
quickstart shows you how to configure the AWS IoT resources required to process the MQTT
messages that are sent when the AWS IoT button is pressed, by using an AWS CloudFormation
template.

4

AWS IoT Developer Guide
AWS IoT Button Wizard Quickstart

If you do not have a button, you can purchase one here. For more information about AWS IoT, see
What Is AWS IoT (p. 1).

Topics

• AWS IoT Button Wizard Quickstart (p. 5)

• AWS IoT Button AWS CloudFormation Quickstart (p. 13)

• Next Steps (p. 18)

AWS IoT Button Wizard Quickstart
The AWS IoT button wizard is a Lambda blueprint, so you need to sign in to the AWS Lambda console
in order to use it. If you do not have an AWS account, you can create one by following these steps.

To create an AWS account

1. Open the AWS home page and choose Create an AWS Account.

2. Follow the online instructions. Part of the sign-up procedure involves receiving a phone call and
entering a PIN using your phone's keypad.

To configure the AWS IoT Button

1. Sign in to the AWS Management Console and open the AWS Lambda console.

2. If this is your first time in the AWS Lambda console, you will see the following page. Choose the
Get Started Now button.

If you have used the AWS Lambda console before, you will see the following page. Choose the
Create a Lambda function button.

5

https://www.amazon.com/dp/B01C7WE5WM
https://aws.amazon.com/
https://console.aws.amazon.com/lambda/home

AWS IoT Developer Guide
AWS IoT Button Wizard Quickstart

3. On the Select blueprint page, from the Runtime drop-down menu, choose Node.js 4.3. In the
filter text box, type button. To choose the iot-button-email blueprint, double-click it or choose
the Next button.

4. On the Configure triggers page, from the IoT Type drop-down menu, choose IoT Button.

6

AWS IoT Developer Guide
AWS IoT Button Wizard Quickstart

Type the serial number for your device. You'll find the device serial number (DSN) on the back of
the button.

Choose Generate certificate and keys.

Note
You only need to generate a certificate and private key once. Then you can navigate to
http://192.168.0.1/index.html in a browser to configure your button.

Use the links on the page to download the device certificate and the private key.

7

http://192.168.0.1/index.html

AWS IoT Developer Guide
AWS IoT Button Wizard Quickstart

The page also includes instructions for configuring your AWS IoT button. On step 3, you will
choose a link to open a web page that allows you to connect the AWS IoT button to your network.
Under Wi-Fi Configuration, type the network ID (SSID) and network password for your Wi-Fi
network. Under AWS IoT Configuration, choose the certificate and private key you downloaded
earlier. This will copy your certificate and private key to your AWS IoT button. Select the check box
to agree to the AWS IoT button terms and conditions, and then choose the Configure button.

8

AWS IoT Developer Guide
AWS IoT Button Wizard Quickstart

A configuration confirmation page will be displayed.

5. Close the Configure tab and go back to the AWS Lambda console page. Choose Enable trigger,
and then choose Next.

On the Configure function page, type a name for your function. The description, runtime, and
Lambda function code will be entered for you.

9

AWS IoT Developer Guide
AWS IoT Button Wizard Quickstart

In the Lambda function code, replace the example email address with your own email address.

10

AWS IoT Developer Guide
AWS IoT Button Wizard Quickstart

In the Lambda function handler and role section, from the Role drop-down menu, choose
Create new role from template(s). Type a unique name for the role.

At the bottom of the page, choose Next.

Review the settings for the Lambda function, and then choose Create function.

11

AWS IoT Developer Guide
AWS IoT Button Wizard Quickstart

You should see a page that confirms your Lambda function has been created:

12

AWS IoT Developer Guide
AWS IoT Button AWS CloudFormation Quickstart

6. To test your Lambda function, choose the Test button. After about a minute, you should receive
an email message with AWS Notification - Subscription Confirmation in the subject
line. Choose the link in the email message to confirm the subscription to an SNS topic created by
the Lambda function. When AWS IoT receives a message from your button, it will send a message
to Amazon SNS. The Lambda function created a subscription to the Amazon SNS topic using the
email address you added in the code. When Amazon SNS receives a message on this Amazon
SNS topic, it will forward the message to your subscribed email address.

Press your button to send a message to AWS IoT. The message will cause your Lambda rule to be
triggered, and then your Lambda function will be invoked. The Lambda function will check to see if your
SNS topic exists. The Lambda function will then send the contents of the message to the Amazon SNS
topic. Amazon SNS will then forward the message to the email address you specified in the Lambda
function code.

AWS IoT Button AWS CloudFormation Quickstart
When the AWS IoT button is pressed, it sends basic information about the button to an Amazon SNS
topic. The topic then forwards that information to you in an email message. This quickstart will show
you how to use an AWS CloudFormation template to configure your AWS IoT button.

You will need an AWS account and an AWS IoT button to complete the steps in this quickstart.

1. Use the AWS IoT console to create an AWS IoT certificate:

a. Open the AWS IoT console.

b. If a Welcome page appears, choose Get started.

13

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
AWS IoT Button AWS CloudFormation Quickstart

c. In the AWS region selector, choose the AWS region where you want to create the AWS
IoT certificate (for example, US East (N. Virginia)). You will be creating all supporting AWS
resources (additional AWS IoT resources and an Amazon SNS resource) in the same AWS
region.

d. On the Resources page, choose Create a certificate.

e. Select the Activate box, and then choose 1-Click certificate create.

f. Choose Download private key, and then choose Download certificate.

g. Select the box that represents the AWS IoT certificate (the box with the handshake icon).

h. In the Detail pane, make a note of the certificate ARN value (for example,
arn:aws:iot:region-ID:account-ID:cert/random-ID). You will need it later in this
procedure.

2. Use the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/ to
create the AWS IoT resources, an Amazon SNS resource, and an IAM role:

a. Save the following AWS CloudFormation template file named
AWSIoTButtonQuickStart.template to your computer.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "Creates required AWS resources to allow an AWS IoT
 button to send information through an Amazon Simple Notification
 Service (Amazon SNS) topic to an email address.",
 "Parameters": {
 "IoTButtonDSN": {
 "Type": "String",
 "AllowedPattern": "G030JF05[0-9][0-5][0-9][1-7][0-9A-HJ-NP-X][0-9A-
HJ-NP-X][0-9A-HJ-NP-X][0-9A-HJ-NP-X]",
 "Description": "The device serial number (DSN) of the AWS IoT
 Button. This can be found on the back of the button. The DSN must
 match the pattern of 'G030JF05[0-9][0-5][0-9][1-7][0-9A-HJ-NP-X]
[0-9A-HJ-NP-X][0-9A-HJ-NP-X][0-9A-HJ-NP-X]'."
 },
 "CertificateARN": {
 "Type": "String",
 "Description": "The Amazon Resource Name (ARN) of the existing AWS
 IoT certificate."
 },
 "SNSTopicName": {
 "Type": "String",
 "Default": "aws-iot-button-sns-topic",
 "Description": "The name of the Amazon SNS topic for AWS
 CloudFormation to create."
 },
 "SNSTopicRoleName": {
 "Type": "String",
 "Default": "aws-iot-button-sns-topic-role",
 "Description": "The name of the IAM role for AWS CloudFormation
 to create. This IAM role allows AWS IoT to send notifications to the
 Amazon SNS topic."
 },
 "EmailAddress": {
 "Type": "String",
 "Description": "The email address for the Amazon SNS topic to send
 information to."
 }
 },

14

https://console.aws.amazon.com/cloudformation/

AWS IoT Developer Guide
AWS IoT Button AWS CloudFormation Quickstart

 "Resources": {
 "IoTThing": {
 "Type": "AWS::IoT::Thing",
 "Properties": {
 "ThingName": {
 "Fn::Join" : ["",
 [
 "iotbutton_",
 { "Ref": "IoTButtonDSN" }
]
]
 }
 }
 },
 "IoTPolicy": {
 "Type" : "AWS::IoT::Policy",
 "Properties": {
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "iot:Publish",
 "Effect": "Allow",
 "Resource": {
 "Fn::Join": ["",
 [
 "arn:aws:iot:",
 { "Ref": "AWS::Region" },
 ":",
 { "Ref": "AWS::AccountId" },
 ":topic/iotbutton/",
 { "Ref": "IoTButtonDSN" }
]
]
 }
 }
]
 }
 }
 },
 "IoTPolicyPrincipalAttachment": {
 "Type": "AWS::IoT::PolicyPrincipalAttachment",
 "Properties": {
 "PolicyName": {
 "Ref": "IoTPolicy"
 },
 "Principal": {
 "Ref": "CertificateARN"
 }
 }
 },
 "IoTThingPrincipalAttachment": {
 "Type" : "AWS::IoT::ThingPrincipalAttachment",
 "Properties": {
 "Principal": {
 "Ref": "CertificateARN"
 },
 "ThingName": {
 "Ref": "IoTThing"

15

AWS IoT Developer Guide
AWS IoT Button AWS CloudFormation Quickstart

 }
 }
 },
 "SNSTopic": {
 "Type": "AWS::SNS::Topic",
 "Properties": {
 "DisplayName": "AWS IoT Button Press Notification",
 "Subscription": [
 {
 "Endpoint": {
 "Ref": "EmailAddress"
 },
 "Protocol": "email"
 }
],
 "TopicName": {
 "Ref": "SNSTopicName"
 }
 }
 },
 "SNSTopicRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sns:Publish",
 "Resource": {
 "Fn::Join": ["",
 [
 "arn:aws:sns:",
 { "Ref": "AWS::Region" },
 ":",
 { "Ref": "AWS::AccountId" },
 ":",
 { "Ref": "SNSTopicName" }
]
]
 }
 }
]
 },

16

AWS IoT Developer Guide
AWS IoT Button AWS CloudFormation Quickstart

 "PolicyName": {
 "Ref": "SNSTopicRoleName"
 }
 }
]
 }
 },
 "IoTTopicRule": {
 "Type": "AWS::IoT::TopicRule",
 "Properties": {
 "RuleName": {
 "Fn::Join": ["",
 [
 "iotbutton_",
 { "Ref": "IoTButtonDSN" }
]
]
 },
 "TopicRulePayload": {
 "Actions": [
 {
 "Sns": {
 "RoleArn": {
 "Fn::GetAtt": ["SNSTopicRole", "Arn"]
 },
 "TargetArn": {
 "Ref": "SNSTopic"
 }
 }
 }
],
 "AwsIotSqlVersion": "2015-10-08",
 "RuleDisabled": false,
 "Sql": {
 "Fn::Join": ["",
 [
 "SELECT * FROM 'iotbutton/",
 { "Ref": "IoTButtonDSN" },
 "'"
]
]
 }
 }
 }
 }
 }
}

b. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

c. Make sure the AWS region selector displays the region where you created the AWS IoT
certificate (for example, US East (N. Virginia)).

d. Choose Create Stack.

e. On the Select Template page, choose Upload a template to Amazon S3, and then choose
Browse.

f. Select the AWSIoTButtonQuickStart.template file you saved earlier, choose Open, and then
choose Next.

17

https://console.aws.amazon.com/cloudformation/

AWS IoT Developer Guide
Next Steps

g. On the Specify Details page, for Stack name, type a name for this AWS CloudFormation
stack (for example, MyAWSIoTButtonStack).

h. For CertificateARN, type the Amazon Resource Name (ARN) of the AWS IoT certificate (the
certificate ARN value) that you noted earlier.

i. For EmailAddress, type your email address.

j. For IoTButtonDSN, type the device serial number (DSN). You'll find it on the back of your
AWS IoT button (for example, G030JF051234A5BC).

k. You can leave SNSTopicName and SNSTopicRoleName at their defaults, or specify a
different Amazon SNS topic name and associated IAM role name. For example, if you plan to
set up more AWS IoT buttons, you might want to change these values. Choose Next.

l. You do not need to do anything on the Options page. Choose Next.

m. On the Review page, select I acknowledge that AWS CloudFormation might create IAM
resources, and then choose Create.

n. When CREATE_COMPLETE is displayed for MyAWSIoTButtonStack, check your email inbox
for a message with a subject line of AWS IoT Button Press Notification. Choose the Confirm
subscription link in the body of the email message.

3. Using the private key and certificate you created earlier, follow the steps in Configure Your Device
to set up your AWS IoT button.

4. After you have set it up, press the button once. A white light should blink several times and then be
followed by a steady green light for a few moments. Shortly afterward, you should receive an email
message with AWS IoT Button Press Notification in the subject line. You will see information sent
by the button in the body of the email message.

5. After you are finished experimenting, you can clean up the AWS resources created by the AWS
CloudFormation template. To do this, return to the AWS CloudFormation console and delete
MyAWSIoTButtonStack. After you delete MyAWSIoTButtonStack, delete the AWS IoT certificate
as follows:

a. Return to the AWS IoT console.

b. In the list of resources, select the check box inside of the box that represents the AWS IoT
certificate (the box with the handshake icon).

c. For Actions, choose Decativate, and then confirm.

d. With the box that represents the AWS IoT certificate still selected, for Actions, choose
Delete, and then confirm.

e. The private key and certificate that you downloaded earlier will no longer be valid, so you can
now delete them from your computer.

Next Steps
To learn more about the Lambda blueprint used to set up your button, see Getting Started
with AWS IoT. To learn how to use AWS CloudFormation with the AWS IoT button, see http://
docs.aws.amazon.com/iot/latest/developerguide/iot-button-cloud-formation.html

18

http://docs.aws.amazon.com/iot/latest/developerguide/configure-iot.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-button-cloud-formation.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-button-cloud-formation.html

AWS IoT Developer Guide

Getting Started with AWS IoT

Note
The AWS IoT console has been updated and this tutorial was written for the old version of the
console.

This section will guide you through the creation of resources required to send, receive, and process
MQTT messages from devices using AWS IoT. You will need a computer with Wi-Fi access to
complete this tutorial. If you have an AWS IoT button (pictured here), you can use it to complete this
tutorial.

If you do not have a button, you can purchase one here or you can use the MQTT client in the AWS
IoT console to complete this tutorial. For more information about AWS IoT, see What Is AWS IoT (p. 1).

Note
This tutorial uses Amazon Simple Notification Service (Amazon SNS), which is not available
in all regions. When you create AWS resources for this tutorial, make sure to sign in to the
US East (N. Virginia) Region. For more information about AWS regions, see Regions and
Endpoints.

Topics

• Sign in to the AWS IoT Console (p. 20)

• Create a Device in the Thing Registry (p. 21)

• Create and Activate a Device Certificate (p. 23)

19

https://www.amazon.com/dp/B01C7WE5WM
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

AWS IoT Developer Guide
Sign in to the AWS IoT Console

• Create an AWS IoT Policy (p. 26)

• Attach an AWS IoT Policy to a Device Certificate (p. 27)

• Attach a Thing to a Certificate (p. 28)

• Configure Your Device (p. 30)

• View Device MQTT Messages with the AWS IoT MQTT Client (p. 32)

• Configure and Test Rules (p. 34)

• Next Steps (p. 40)

Sign in to the AWS IoT Console
Note
The AWS IoT console has been updated and this tutorial was written for the old version of the
console.

If you do not have an AWS account, create one.

1. Open the AWS home page and choose Create an AWS Account.

2. Follow the online instructions. Part of the sign-up procedure involves receiving a phone call and
entering a PIN using your phone's keypad.

3. Sign in to the AWS Management Console and open the AWS IoT console.

4. On the Welcome page, choose Get started with AWS IoT.

5. If this is your first time using the AWS IoT console, you will see two options: Get started and Start
interactive tutorial. Choose Get Started.

20

https://aws.amazon.com/
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Create a Device in the Thing Registry

6. On the Resources page, if you don't see a blue banner with Create a thing, Create a rule,
Create a certificate, and Create a policy buttons, choose Create a resource.

Create a Device in the Thing Registry
To connect a device to AWS IoT, we recommend that you first create a device in the thing registry.
This registry allows you to keep a record of all of the devices that are connected to your AWS IoT
account.

1. Choose Create a thing, and then type a name for your device. You can also choose Add
attribute to provide information about your device (for example, its serial number, manufacturer,
and more). Choose Create to add your device to the thing registry.

21

AWS IoT Developer Guide
Create a Device in the Thing Registry

2. Choose View thing to display information about your device.

22

AWS IoT Developer Guide
Create and Activate a Device Certificate

Create and Activate a Device Certificate
Communication between your AWS IoT button and AWS IoT is protected through the use of X.509
certificates. AWS IoT can generate a certificate for you or you can use your own X.509 certificate. This
tutorial assumes that AWS IoT will generate the X.509 certificate for you. Certificates must be activated
prior to use.

1. In the Create a Certificate section, choose 1-Click certificate create.

23

AWS IoT Developer Guide
Create and Activate a Device Certificate

2. On the Resources page, choose the Download private key and Download certificate links, and
then save the private key and certificate to your computer.

24

AWS IoT Developer Guide
Create and Activate a Device Certificate

3. Select the check box on the certificate, and from the Actions menu, choose Activate.

25

AWS IoT Developer Guide
Create an AWS IoT Policy

Create an AWS IoT Policy
X.509 certificates are used to authenticate your AWS IoT button. AWS IoT policies are used to
authorize your button to perform AWS IoT operations, such as subscribing or publishing to MQTT
topics. Your button will present its certificate when sending messages to AWS IoT. To allow your
button to perform AWS IoT operations, you must create an AWS IoT policy and attach it to your device
certificate.

1. In the AWS IoT console, if you don't see the Create panel, choose Create a resource.

2. Choose Create a policy.

3. In the Create a policy section, type a name for the policy. From the Action menu, choose
iot:Publish. In the Resource field, type the ARN of your AWS IoT button, and then select the
Allow check box. This allows your button to publish messages to AWS IoT.

Note
The ARN follows this format:

26

AWS IoT Developer Guide
Attach an AWS IoT Policy to a Device Certificate

arn:aws:iot:your-region:your-aws-account:topic/iotbutton/your-
button-serial-number
For example:
arn:aws:iot:us-east-1:123456789012:topic/iotbutton/G030JF055364XVRB
You can find the serial number on the bottom of your button.

The settings explained in this step assume you are using an AWS IoT button which is programmed
to publish on a specific MQTT topic: topic/iotbutton/button-serial-number. The
policy created gives permission to publish to that topic. If you are not using an AWS IoT button,
you should modify the ARN described above to contain the MQTT topic on which your device
publishes. If your device is programmed to publish on myDevice/myTopic you would use the
following ARN:

arn:aws:iot:us-east-1:123456789012:topic/myDevice/myTopic.

Choose Add statement, and then choose Create.

For more information about AWS IoT policies, see Managing AWS IoT Policies.

Attach an AWS IoT Policy to a Device Certificate
Now that you have created a policy, you must attach it to your device certificate. Attaching an AWS IoT
policy to a certificate gives the device the permissions specified in the policy.

1. From the AWS IoT console, choose your device certificate, and from the Actions menu, choose
Attach a policy.

27

http://docs.aws.amazon.com/iot/latest/developerguide/authorization.html

AWS IoT Developer Guide
Attach a Thing to a Certificate

2. In the Confirm dialog box, type the name of the AWS IoT policy you created in the previous step,
and then choose Attach.

Attach a Thing to a Certificate
To attach a certificate to a device in the thing registry:

1. In the AWS IoT console, choose the certificate you want to attach, and from the Actions menu,
choose Attach a thing.

28

AWS IoT Developer Guide
Attach a Thing to a Certificate

2. In the Confirm dialog box, type the name of the thing to which you will attach the certificate, and
then choose Attach.

3. To verify the thing is attached, double-click the certificate. The policy and thing should appear in
the detail pane.

29

AWS IoT Developer Guide
Configure Your Device

Configure Your Device
Configuring your device allows it to connect to your Wi-Fi network. Your device must be connected to
your Wi-Fi network to install the device certificate and to send messages to AWS IoT. All devices must
have a device certificate in order to communicate with AWS IoT.

AWS IoT Button
To configure your AWS IoT button:

Turn on your device

1. Remove the AWS IoT button from its packaging, and then press and hold the button for 15
seconds until a blue blinking light appears.

2. The button acts as a Wi-Fi access point, so when your computer searches for Wi-Fi networks, it
will find one called Button ConfigureMe - XXX where XXX is a three-character string generated
by the button. Use your computer to connect to the button's Wi-Fi access point.

3. The first time you connect to the button's Wi-Fi access point, you will be prompted for the WPA2-
PSK password. Type the last 8 characters of the device serial number (DSN). You'll find the DSN
on the back of the device, as shown here:

30

AWS IoT Developer Guide
AWS IoT Button

Copy your device certificate onto your AWS IoT button

To connect to AWS IoT, you must copy your device certificate onto the AWS IoT button.

1. In a browser, navigate to http://192.168.0.1/index.html.

2. Complete the configuration form.

1. Type your Wi-Fi SSID and password.

2. Browse to and select your certificate and private key.

3. Find your custom endpoint in the AWS IoT console. Your endpoint will look something like the
following:

ABCDEFG1234567.iot.us-east-1.amazonaws.com

where ABCDEFG1234567 is the subdomain and us-east-1 is the region.

4. On the Button ConfigureMe page, type the subdomain, and then choose the region that
matches the region in your AWS IoT endpoint.

5. Select the Terms and Conditions check box. Your settings should now look like the
following:

6. Your button should now connect to your Wi-Fi.

31

http://192.168.0.1/index.html
https://console.aws.amazon.com/iot/home?region=us-east-1#/dashboard/help

AWS IoT Developer Guide
View Device MQTT Messages
with the AWS IoT MQTT Client

View Device MQTT Messages with the AWS IoT
MQTT Client

You can use the AWS IoT MQTT client to better understand the MQTT messages sent by a device.

Devices publish MQTT messages on topics. You can use the AWS IoT MQTT client to subscribe to
these topics to see the content of these messages.

To view MQTT messages:

1. In the AWS IoT console, choose MQTT Client.

2. Type a client ID or choose Generate client ID, and then choose Connect.

3. Subscribe to the topic on which your thing publishes. In the case of the AWS IoT button, you
can subscribe to iotbutton/+. Choose Subscribe to topic, in Subscription topic, type
iotbutton/+, and then choose Subscribe.

32

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
View Device MQTT Messages
with the AWS IoT MQTT Client

4. Press your AWS IoT button, and then view the message in the AWS IoT MQTT client.

33

AWS IoT Developer Guide
Configure and Test Rules

Configure and Test Rules
The AWS IoT rules engine listens for incoming MQTT messages that match a rule. When a matching
message is received, the rule takes some action with the data in the MQTT message (for example,
writing data to an Amazon S3 bucket, invoking a Lambda function, or sending a message to an
Amazon SNS topic). In this step, you will create and configure a rule to send the data received from a
device to an Amazon SNS topic. Specifically, you will:

• Create an Amazon SNS topic.

• Subscribe to the Amazon SNS topic using a cell phone number.

• Create a rule that will send a message to the Amazon SNS topic when a message is received from
your device.

• Test the rule using your AWS IoT button or an MQTT client.

In the upper-right corner of this page, there is a Filter View drop-down list. You can choose AWS IoT
Button to see instructions for testing your rule by using the AWS IoT button or MQTT Client to see
instructions for testing your rule by using the AWS IoT MQTT client.

Create an SNS Topic
You will use the Amazon SNS console to create an Amazon SNS topic.

Note
Amazon SNS is not available in all AWS regions.

1. Open the https://console.aws.amazon.com/sns/.

2. From the left pane, choose Topics, and on the right pane, choose Create new topic.

3. Type a topic name and a display name, and then choose Create topic.

4. Make a note of the ARN for the topic you just created.

34

https://console.aws.amazon.com/sns/

AWS IoT Developer Guide
Subscribe to an Amazon SNS Topic

Subscribe to an Amazon SNS Topic
To receive SMS messages on your cell phone, you need to subscribe to the Amazon SNS topic.

1. In the Amazon SNS console, from the Actions menu, choose Subscribe to topic.

2. From the Protocol drop-down list, choose SMS.

3. In Endpoint, type the phone number of an SMS-enabled cell phone, and then choose Create
Subscription.

Note
Enter the phone number using numbers and dashes only.

You will receive a text message that confirms you successfully created the subscription.

Create a Rule
AWS IoT rules consist of a topic filter, a rule action, and, in most cases, an IAM role. Messages
published on topics that match the topic filter trigger the rule. The rule action defines which action to
take when the rule is triggered. The IAM role contains one or more IAM policies that determine which
AWS services the rule can access. You can create multiple rules that listen on a single topic. Likewise,
you can create a single rule that is triggered by multiple topics. The AWS IoT rules engine continuously
processes messages published on topics that match the topic filters defined in the rules.

35

AWS IoT Developer Guide
Create a Rule

In this example, you will create a rule that uses Amazon SNS to send an SMS notification to a cell
phone number.

1. In the AWS IoT console, choose Create a rule.

2. On the Create a rule page, in Name, type a name for your rule.

3. In Description, type a description for the rule.

4. In Attribute, type *. This specifies that you want to send the entire MQTT message that triggered
the rule.

5. The rules engine uses the topic filter to determine which rules to trigger when an MQTT message
is received. In Topic filter, type iotbutton/your-button-DSN. If you are not using an AWS
IoT button, type my/topic.

Note
You can find the DSN on the bottom of the button.

6. Leave Condition blank.

7. From the Choose an action drop-down list, choose Send message as a push notification
(SNS).

8. From the SNS target drop-down list, choose the Amazon SNS topic you created earlier.

36

AWS IoT Developer Guide
Create a Rule

9. Now you need to give AWS IoT permission to publish to the Amazon SNS topic on your behalf
when the rule is triggered. Choose the Create a new role link. This will open a web page in the
IAM console.

10. Accept the default values, and then choose Allow.

11. Choose Add action to add the action to the rule.

37

AWS IoT Developer Guide
Test the Amazon SNS Rule

12. Choose Create to create the rule.

For more information about creating rules, see AWS IoT Rules.

Test the Amazon SNS Rule
You can test your rule by using an AWS IoT button or the AWS IoT MQTT client.

AWS IoT Button

Press your button. You should receive an SMS text that shows the current charge on your device.

AWS IoT MQTT Client

To test your rule with the AWS IoT MQTT client:

1. In the AWS IoT console, choose MQTT Client.

38

http://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Test the Amazon SNS Rule

2. Choose Generate client ID, and then choose Connect.

3. On the MQTT client page, choose Publish to topic.

4. In the Publish topic field, type my/topic.

5. In Payload, type the following JSON:

{
 "message": "Hello, world from AWS IoT!"
}

39

AWS IoT Developer Guide
Next Steps

6. Choose Publish. You should receive an Amazon SNS message on your cell phone.

Next Steps
For more information about AWS IoT rules, see AWS IoT Rule Tutorials (p. 41) and AWS IoT
Rules (p. 114).

40

AWS IoT Developer Guide

AWS IoT Rule Tutorials

This guide includes tutorials that walk you through the creation and testing of AWS IoT rules. If you
have not completed the AWS IoT Getting Started Tutorial (p. 19), we recommend you do that first. It
shows you how to create an AWS account and connect your device to AWS IoT.

Note
The AWS IoT console has been updated and this tutorial was written for the old version of the
console.

An AWS IoT rule consists of a SQL SELECT statement, a topic filter, and a rule action. Devices
send information to AWS IoT by publishing messages to MQTT topics. The SQL SELECT statement
allows you to extract data from an incoming MQTT message. The topic filter of an AWS IoT rule
specifies one or more MQTT topics. The rule is triggered when an MQTT message is received on a
topic that matches the topic filter. Rule actions allow you to take the information extracted from an
MQTT message and send it to another AWS service. Rule actions are defined for AWS services like
Amazon DynamoDB, AWS Lambda, Amazon SNS, and Amazon S3. By using a Lambda rule, you
can call other AWS or third-party web services. For a complete list of rule actions, see AWS IoT Rule
Actions (p. 122).

In these tutorials we assume you are using the AWS IoT button and will use iotbutton/+ as the topic
filter in the rules. If you do not have an AWS IoT button, you can buy one here.

The AWS IoT button sends a JSON payload that looks like this:

{
 "serialNumber" : "ABCDEFG12345",
 "batteryVoltage" : "2000mV",
 "clickType" : "SINGLE"
}

You can emulate the AWS IoT button by using an MQTT client like the AWS IoT MQTT client in the
AWS IoT console. To emulate the AWS IoT button, publish a similar message on the iotbutton/
ABCDEFG12345 topic. The number after the / is arbitrary. It will be used as the serial number for the
button.

You can use your own device, but you will need to know on which MQTT topic your device publishes
so you can specify it as the topic filter in the rule. For more information, see AWS IoT Rules (p. 114).

41

https://www.amazon.com/dp/B01C7WE5WM
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Creating a DynamoDB Rule

Creating a DynamoDB Rule
DynamoDB rules allow you to take information from an incoming MQTT message and write it to a
DynamoDB table.

To create a DynamoDB rule:

1. In the AWS IoT console, choose Create a resource.

2. Choose Create a rule.

42

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Creating a DynamoDB Rule

3. On the Create a rule page:

Type a rule name and description in Name and Description.

The Rule query statement field will be populated automatically when you enter data into the fields
below it.

In Attribute, type *. This determines which part of the incoming message will be sent to the rule
action. Using * sends the entire message.

In Topic filter, type iotbutton/+. If you are using a different device, type a topic filter that will
match the MQTT topic on which your device publishes.

From Choose an action, choose Insert message into a database table (DynamoDB).

43

AWS IoT Developer Guide
Creating a DynamoDB Rule

4. The Create a rule page will expand. Next to the Table name drop-down list, choose Create
a new resource. This will open the Amazon DynamoDB console where you can create a
DynamoDB table.

44

AWS IoT Developer Guide
Creating a DynamoDB Rule

5. Choose Create table.

45

AWS IoT Developer Guide
Creating a DynamoDB Rule

6. In Table name, type a name for the table. The partition and sort keys are combined to create
a primary key for your DynamoDB table. For the Partition key, type SerialNumber, and then
select Add sort key. For the Sort key, type ClickType. Both the partition and sort keys should
be of type String.

Your screen should now look like the following:

46

AWS IoT Developer Guide
Creating a DynamoDB Rule

7. Choose Create. It will take a few seconds to create your DynamoDB table. Close the browser tab
that contains the Amazon DynamoDB console. If you do not close the tab, your DynamoDB table
will not be displayed in the Table name drop-down list in the AWS IoT console. In the AWS IoT
console, choose your new table.

8. In Hash key value, type ${serialNumber} . This instructs the rule to take the value of the
serialNumber attribute from the MQTT message and write it into the SerialNumber column
in the DynamoDB table. In Range key value, type ${clickType}. This writes the value of the
clickType attribute into the ClickType column. Leave Payload field blank. By default, the entire
message will be written to a column in the table called Payload. Select Create a new role.

47

AWS IoT Developer Guide
Creating a DynamoDB Rule

9. Type a unique role name in the Create a new role dialog box, and then choose the Create button.

10. Choose Add action to add the action to the rule.

48

AWS IoT Developer Guide
Creating a DynamoDB Rule

11. Choose Create to create the rule.

12. A confirmation message shows the rule has been created.

49

AWS IoT Developer Guide
Creating a Lambda Rule

13. Test the rule by either pressing your configured AWS IoT button or using an MQTT client to
publish a message on a topic that matches your rule's topic filter.

Creating a Lambda Rule
You can define a rule that calls a Lambda function, passing in data from the MQTT message that
triggered the rule. This allows you to process the incoming message and then call another AWS or
third-party service.

In this tutorial, we assume you have completed the AWS IoT Getting Started Tutorial (p. 19) in which
you create and subscribe to an Amazon SNS topic using your cell phone number. You will create a
Lambda function that publishes a message to the Amazon SNS topic you created in the AWS IoT
Getting Started Tutorial (p. 19). You will also create a Lambda rule that calls the Lambda function,
passing in some data from the MQTT message that triggered the rule.

In this tutorial, we also assume you are using an AWS IoT button to trigger the Lambda rule. If you do
not have an AWS IoT button, you can purchase one here or you can use an MQTT client to send an
MQTT message that will trigger the rule.

Create the Lambda Function
To create the Lambda function:

1. In the AWS Lambda console, choose Create a Lambda function.

50

https://www.amazon.com/dp/B01C7WE5WM
https://console.aws.amazon.com/lambda/home

AWS IoT Developer Guide
Create the Lambda Function

2. For the filter, type hello-world, and then choose the hello-world blueprint.

3. On the Configure triggers page, select the box to the left of the Lambda icon, and select AWS
IoT from the drop down menu.

51

AWS IoT Developer Guide
Create the Lambda Function

4. On the Configure triggers page enter your button's device serial number (DSN). Your DSN is
printed on the back of your AWS IoT button. If you have not already generated a certificate and
private key for your AWS IoT button, select Generate certificate and keys. Otherwise, skip to
step 6.

52

AWS IoT Developer Guide
Create the Lambda Function

5. Select the links to download your certificate PEM and private key. Save these files in a secure
location on your computer.

53

AWS IoT Developer Guide
Create the Lambda Function

Follow the instructions on the screen to configure your AWS IoT button.

6. Ensure that the Enable trigger checkbox is selected and select Next.

54

AWS IoT Developer Guide
Create the Lambda Function

7. On the Configure function page, type a name and description for the Lambda function. In
Runtime, choose Node.js 4.3.

55

AWS IoT Developer Guide
Create the Lambda Function

8. Scroll down to the Lambda function code section of the page. Replace the existing code with the
following:

console.log('Loading function');
 // Load the AWS SDK
 var AWS = require("aws-sdk");

 // Set up the code to call when the Lambda function is invoked
 exports.handler = (event, context, callback) => {
 // Load the message passed into the Lambda function into a JSON
 object
 var eventText = JSON.stringify(event, null, 2);

 // Log a message to the console, you can view this text in
 the Monitoring tab in the Lambda console or in the CloudWatch Logs
 console
 console.log("Received event:", eventText);

 // Create a string extracting the click type and serial number
 from the message sent by the AWS IoT button
 var messageText = "Received " + event.clickType + " message from
 button ID: " + event.serialNumber;

 // Write the string to the console
 console.log("Message to send: " + messageText);

 // Crewate an SNS object
 var sns = new AWS.SNS();

 // Populate the parameters for the publish operation
 // - Message : the text of the message to send
 // - TopicArn : the ARN of the Amazon SNS topic to which you want
 to publish
 var params = {
 Message: messageText,
 TopicArn: "arn:aws:sns:us-
east-1:123456789012:MyIoTButtonSNSTopic"
 };
 sns.publish(params, context.done);
 };

9. Scroll down to the Lambda function handler and role section of the page. For Role, choose
Create a custom role. The IAM console will open, allowing you to create an IAM role that Lambda
can assume when executing the Lambda function.

To edit the role's policy to give it permission to publish to your Amazon SNS topic:

1. Choose View Policy Document.

56

AWS IoT Developer Guide
Create the Lambda Function

Choose Edit to edit the role's policy.

57

AWS IoT Developer Guide
Create the Lambda Function

2. Replace the policy document with the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "arn:aws:sns:us-
east-1:123456789012:MyIoTButtonSNSTopic"
 }
]
}

This policy document adds permission to publish to your Amazon SNS topic.

Note
This example uses a fictitious AWS account number in the resource ARN. Make sure
to use the ARN for your Amazon SNS topic.

10. Choose Allow.

58

AWS IoT Developer Guide
Create the Lambda Function

11. Leave the settings on the Advanced settings page at their defaults, and choose Next

12. On the Review page, choose Create function.

59

AWS IoT Developer Guide
Test Your Lambda Function

Test Your Lambda Function
To test the Lambda function:

1. From the Actions menu, choose Configure test event.

60

AWS IoT Developer Guide
Test Your Lambda Function

2. Copy and paste the following JSON into the Input test event page, and then choose Save and
test.

61

AWS IoT Developer Guide
Creating a Lambda Rule

3. In the AWS Lambda console and scroll to the bottom of the screen. The Log output section
displays the output the Lambda function has written to the console.

Creating a Lambda Rule
Now that you have created a Lambda function, you can create a rule that invokes the Lambda function.

1. In the AWS IoT console, choose Create a resource.

2. Choose Create a rule.

3. Type a name and description for the rule.

4. Enter the following settings for the rule:

62

https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Creating a Lambda Rule

5. For Choose an action, choose Insert this message into a code function and execute it
(Lambda).

6. From Function name, choose your Lambda function name, and then choose Add action.

7. Choose Create to create your Lambda function.

63

AWS IoT Developer Guide
Test Your Lambda Rule

Test Your Lambda Rule
In this tutorial, we assume you have completed the AWS IoT Getting Started Tutorial (p. 19), which
covers:

• Configuring an AWS IoT button.

• Creating and subscribing to an Amazon SNS topic with a cell phone number.

Now that your button is configured and connected to Wi-Fi and you have configured an Amazon SNS
topic, you can press the button to test your Lambda rule. You should receive an SMS text message
on your phone that contains the serial number of your button, the type of button press (SINGLE or
DOUBLE), and the battery voltage.

The message should look like the following:

IOT BUTTON> {
 "serialNumber" : "ABCDEFG12345",
 "clickType" : "SINGLE",
 "batteryVoltage" : "2000 mV"
}

If you do not have a button, you can buy one here or you can use the AWS IoT MQTT client instead.

1. In the AWS IoT console, choose MQTT Client.

64

https://www.amazon.com/dp/B01C7WE5WM
https://console.aws.amazon.com/iot/home

AWS IoT Developer Guide
Test Your Lambda Rule

2. Type a client ID or choose Generate client ID, and then choose Connect.

3. Choose Publish to topic.

4. In Publish topic, type iotbutton/ABCDEFG12345.

5. In Payload, type the following JSON, and then choose Publish.

{
 "serialNumber" : "ABCDEFG12345",
 "clickType" : "SINGLE",
 "batteryVoltage" : "2000 mV"
}

65

AWS IoT Developer Guide
Test Your Lambda Rule

You should receive a message on your cell phone.

66

AWS IoT Developer Guide
Managing Things with the Thing Registry

Managing Things with AWS IoT

AWS IoT provides a thing registry that helps you manage your things. A thing is a representation of
a specific device or logical entity. It can be a physical device or sensor (for example, a light bulb or a
switch on a wall). It can also be a logical entity like an instance of an application or physical entity that
does not connect to AWS IoT but is related to other devices that do (for example, a car that has engine
sensors or a control panel).

Information about a thing is stored in the thing registry as JSON data. Here is an example thing:

{
 "version": 3,
 "thingName": "MyLightBulb",
 "defaultClientId": "MyLightBulb",
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 }
}

Things are identified by a name. Things can also have attributes, which are name-value pairs you can
use to store information about the thing, such as its serial number or manufacturer.

A typical device use case involves the use of the thing name as the default MQTT client ID. Although
we do not enforce a mapping between a thing’s registry name and its use of MQTT client IDs,
certificates, or shadow state, we recommend you choose a thing name and use it as the MQTT
client ID for both the thing registry and the Thing Shadows service. This provides organization and
convenience to your IoT fleet without removing the flexibility of the underlying device certificate model
or thing shadows.

You do not need to create a thing in the thing registry to connect it to AWS IoT. Adding your things in
the thing registry allows you to manage and search for them more easily.

Managing Things with the Thing Registry
You use the AWS IoT console or the AWS CLI to interact with the registry. The following sections show
how to use the CLI to work with the thing registry.

67

AWS IoT Developer Guide
Create a thing

Create a thing
The following command shows how to use the AWS IoT create-thing CLI command to create a
thing:

$ aws iot create-thing --thing-name "MyLightBulb" --attribute-payload
 "{\"attributes\": {\"wattage\":\"75\", \"model\":\"123\"}}"

The create-thing API will display the name and ARN of your new thing:

{
 "thingArn": "arn:aws:iot:us-east-1:803981987763:thing/MyLightBulb",
 "thingName": "MyLightBulb"
}

List things
You can use the list-things API to list all things in your account:

$ aws iot list-things
{
 "things": [
 {
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MyLightBulb"
 },
 {
 "attributes": {
 "numOfStates":"3"
 },
 "version": 11,
 "thingName": "MyWallSwitch"
 }
]
}

Search for things
You can use the describe-thing API to list information about a thing:

$ aws iot describe-thing --thing-name "MyLightBulb"
{
 "version": 3,
 "thingName": "MyLightBulb",
 "defaultClientId": "MyLightBulb",
 "thingTypeName": "StopLight",
 "attributes": {
 "model": "123",
 "wattage": "75"
 }

68

AWS IoT Developer Guide
Search for things

}

You can use the list-things API to search for all things associated with a thing type name:

$ aws iot list-things --thing-type-name "LightBulb"

{
 "things": [
 {
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MyRGBLight"
 },
 {
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MySecondLightBulb"
 }
]
}

You can use the list-things API to search for all things that have an attribute with a specific value:

$ aws iot list-things --attribute-name "wattage" --attribute-value "75"

{
 "things": [
 {
 "thingTypeName": "StopLight",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 3,
 "thingName": "MyLightBulb"
 },
 {
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MyRGBLight"
 },

69

AWS IoT Developer Guide
Update a thing

 {
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MySecondLightBulb"
 }
]
}

Update a thing
You can use the update-thing API to update a thing:

$ aws iot update-thing --thing-name "MyLightBulb" --attribute-payload
 "{\"attributes\": {\"wattage\":\"150\", \"model\":\"456\"}}"

The update-thing command does not produce output. You can use the describe-thing API to
see the result:

$ aws iot describe-thing --thing-name "MyLightBulb"
{
 "attributes": {
 "model": "456",
 "wattage": "150"
 },
 "version": 2,
 "thingName": "MyLightBulb"
}

Delete a thing
You can use the delete-thing API to delete a thing:

$ aws iot delete-thing --thing-name "MyThing"

Attach a principal to a thing
A physical device must have an X.509 certificate in order to communicate with AWS IoT. You can
associate the certificate on your device with the thing in the thing registry that represents your device.
To attach a certificate to your thing, use the attach-thing-principal API:

$ aws iot attach-thing-principal --thing-name "MyLightBulb"
 --principal "arn:aws:iot:us-east-1:123456789012:cert/
a0c01f5835079de0a7514643d68ef8414ab739a1e94ee4162977b02b12842847"

The attach-thing-principal command does not produce any output.

Detach a principal from a thing
You can use the detach-thing-principal API to detach a certificate from a thing:

70

AWS IoT Developer Guide
Thing Types

$ aws iot detach-thing-principal --thing-name "MyLightBulb"
 --principal "arn:aws:iot:us-east-1:123456789012:cert/
a0c01f5835079de0a7514643d68ef8414ab739a1e94ee4162977b02b12842847"

The detach-thing-principal command does not produce any output.

Thing Types
Thing types allow you to store description and configuration information that is common to all things
associated with the same thing type. This simplifies the management of things in the thing registry.
For example, you can define a LightBulb thing type. All things associated with the LightBulb thing type
share a set of attributes: serial number, manufacturer, and wattage. When you create a thing of type
LightBulb (or change the type of an existing thing to LightBulb) you can specify values for each of the
attributes defined in the LightBulb thing type.

Although thing types are optional, their use provides better discovery of things.

• Things can have up to 50 attributes.

• Things without a thing type can have up to three attributes.

• A thing can only be associated with one thing type.

• There is no limit on the number of thing types you can create in your account.

Thing types are immutable. You cannot change a thing type name after it has been created. You can
deprecate a thing type at any time to prevent new things from being associated with it. You can also
delete thing types that have no things associated with them.

Create a Thing Type
You can use the create-thing-type API to create a thing type:

$ aws iot create-thing-type
 --thing-type-name "LightBulb" --thing-type-properties
 "thingTypeDescription=light bulb type, searchableAttributes=wattage,model"

The create-thing-type command returns a response that contains the thing type and its ARN:

{
 "thingTypeName": "LightBulb",
 "thingTypeArn": "arn:aws:iot:us-west-2:803981987763:thingtype/LightBulb"
}

List thing types
You can use the list-thing-types API to list thing types:

$ aws iot list-thing-types

The list-thing-types command returns a list of the thing types defined in your AWS account:

71

AWS IoT Developer Guide
Describe a thing type

{
 "thingTypes": [
 {
 "thingTypeName": "LightBulb",
 "thingTypeProperties": {
 "deprecated": false,
 "creationDate": 1468423800950,
 "searchableAttributes": [
 "wattage",
 "model"
],
 "thingTypeDescription": "light bulb type"
 }
 }
]
}

Describe a thing type
You can use the describe-thing-type API to get information about a thing type:

$ aws iot describe-thing-type --thing-type-name "LightBulb"

The describe-thing-type API responds with information about the specified type:

{
 "thingTypeName": "LightBulb",
 "thingTypeProperties": {
 "deprecated": false,
 "creationDate": 1468423800950,
 "searchableAttributes": [
 "wattage",
 "model"
],
 "thingTypeDescription": "light bulb type"
 }
}

Associate a thing type with a thing
You can use the create-thing API to specify a thing type when you create a thing:

$ aws iot create-thing --thing-name "MySecondLightBulb" --thing-type-name
 "LightBulb" --attribute-payload "{\"attributes\": {\"wattage\":\"75\",
 \"model\":\"123\"}}"

You can use the update-thing API at any time to change the thing type associated with a thing:

$ aws iot update-thing --thing-name "MyLightBulb" --thing-type-name
 "StopLight" --attribute-payload "{\"attributes\": {\"wattage\":\"75\",
 \"model\":\"123\"}}"

You can also use the update-thing API to disassociate a thing from a thing type.

72

AWS IoT Developer Guide
Deprecate a thing type

Deprecate a thing type
Thing types are immutable. They cannot be changed after they are defined. You can, however,
deprecate a thing type to prevent users from associating any new things with it. All existing things
associated with the thing type will be unchanged.

To deprecate a thing type, use the deprecate-thing-type API:

$ aws iot deprecate-thing-type --thing-type-name "myThingType"

You can use the describe-thing-type API to see the result:

$ aws iot describe-thing --thing-type-name "StopLight":

{
 "thingTypeName": "StopLight",
 "thingTypeProperties": {
 "deprecated": true,
 "creationDate": 1468425854308,
 "searchableAttributes": [
 "wattage",
 "numOfLights",
 "model"
],
 "thingTypeDescription": "traffic light type",
 "deprecationDate": 1468446026349
 }
}

Deprecating a thing type is a reversible operation. You can undo a deprecation by using the --undo-
deprecate flag with the deprecate-thing-type CLI command:

$ aws iot deprecate-thing-type --thing-type-name "myThingType" --undo-
deprecate

You can use the deprecate-thing-type CLI command to see the result:

$ aws iot deprecate-thing-type --thing-type-name "StopLight":

{
 "thingTypeName": "StopLight",
 "thingTypeProperties": {
 "deprecated": false,
 "creationDate": 1468425854308,
 "searchableAttributes": [
 "wattage",
 "numOfLights",
 "model"
],
 "thingTypeDescription": "traffic light type"
 }
}

73

AWS IoT Developer Guide
Delete a thing type

Delete a thing type
You can delete thing types only after they have been deprecated. To delete a thing type, use the
delete-thing-type API:

$ aws iot delete-thing-type --thing-type-name "StopLight"

Note
You must wait five minutes after you deprecate a thing type before you can delete it.

74

AWS IoT Developer Guide

Security and Identity for AWS IoT

Each connected device must have a credential to access the message broker or the Thing Shadows
service. All traffic to and from AWS IoT must be encrypted over Transport Layer Security (TLS). Device
credentials must be kept safe in order to send data securely to the message broker. After data reaches
the message broker, AWS cloud security mechanisms protect data as it moves between AWS IoT and
other devices or AWS services.

• You are responsible for managing device credentials (X.509 certificates, AWS credentials) on your
devices and policies in AWS IoT. You are responsible for assigning unique identities to each device
and managing the permissions for a device or group of devices.

• Devices connect using your choice of identity (X.509 certificates, IAM users and groups, or Amazon
Cognito identities) over a secure connection according to the AWS IoT connection model.

75

AWS IoT Developer Guide
Authentication in AWS IoT

• The AWS IoT message broker authenticates and authorizes all actions in your account. The
message broker is responsible for authenticating your devices, securely ingesting device data, and
adhering to the access permissions you place on devices using policies.

• The AWS IoT rules engine forwards device data to other devices and other AWS services according
to rules you define. It is responsible for leveraging AWS access management systems to securely
transfer data to its final destination.

Authentication in AWS IoT
AWS IoT supports three types of identity principals for authentication:

• X.509 certificates

• IAM users, groups, and roles

• Amazon Cognito identities

Each identity type supports different use cases for accessing the AWS IoT message broker and Thing
Shadows service.

The identity type you use depends on your choice of application protocol. If you use HTTP, use IAM
(users, groups, roles) or Amazon Cognito identities. If you use MQTT, use X.509 certificates.

X.509 Certificates
X.509 certificates are digital certificates that use the X.509 public key infrastructure standard to
associate a public key with an identity contained in a certificate. X.509 certificates are issued by a
trusted entity called a certification authority (CA). The CA maintains one or more special certificates
called CA certificates that it uses to issue X.509 certificates. Only the certification authority has access
to CA certificates.

AWS IoT supports the following certificate-signing algorithms:

• SHA256WITHRSA

• SHA384WITHRSA

• SHA384WITHRSA

• SHA512WITHRSA

• RSASSAPSS

• DSA_WITH_SHA256

• ECDSA-WITH-SHA256

• ECDSA-WITH-SHA384

• ECDSA-WITH-SHA512

Certificates provide several benefits over other identification and authentication mechanisms.
Certificates enable asymmetric keys to be used with devices. This means you can burn private keys
into secure storage on a device without ever allowing the sensitive cryptographic material to leave the
device. Certificates provide stronger client authentication over other schemes, such as user name and
password or bearer tokens, because the secret key never leaves the device.

AWS IoT authenticates certificates using the TLS protocol’s client authentication mode. TLS is
available in many programming languages and operating systems and is commonly used for
encrypting data. In TLS client authentication, AWS IoT requests a client X.509 certificate and validates

76

AWS IoT Developer Guide
X.509 Certificates

the certificate’s status and AWS account against a registry of certificates. It then challenges the client
for proof of ownership of the private key that corresponds to the public key contained in the certificate.

To use AWS IoT certificates, clients must support all of the following in their TLS implementation:

• TLS 1.2.

• SHA-256 RSA certificate signature validation.

• One of the cipher suites from the TLS cipher suite support section.

X.509 Certificates and AWS IoT

AWS IoT can use AWS IoT-generated certificates or certificates signed by a CA certificate for device
authentication. Certificates generated by AWS IoT do not expire. The expiry date and time for
certificates signed by a CA certificate are set when the certificate is created.

To use a certificate that is not created by AWS IoT, you must register a CA certificate. All device
certificates must be signed by the CA certificate you register.

You can use the AWS IoT console or CLI to create and manage certificates. The following operations
are available:

• Create and register an AWS IoT certificate.

• Register a CA certificate.

• Register a device certificate.

• Activate or deactivate a device certificate.

• Revoke a device certificate.

• Transfer a device certificate to another AWS account.

• List all CA certificates registered to your AWS account.

• List all device certificates registered to your AWS account.

For more information about the CLI commands to use to perform these operations, see AWS IoT CLI
Reference.

For more information about using the AWS IoT console to create certificates, see Create and Activate
a Device Certificate.

Server Authentication

Device certificates allow AWS IoT to authenticate devices. To ensure your device is communicating
with AWS IoT and not another server impersonating AWS IoT, copy the VeriSign root CA certificate
onto your device. Reference the CA root certificate in your device code when connecting to AWS IoT.
For more information, see the AWS IoT Device SDKs (p. 207).

Note
You cannot use your own CA certificate to authenticate the AWS IoT server, only the VeriSign
root CA certificate.

Create and Register an AWS IoT Device Certificate

You can use the AWS IoT console or the AWS IoT CLI to create an AWS IoT certificate.

To create a certificate (console)

You can use the UpdateCertificate API to revoke a certificate at any time. For more information about
managing device certificates, see the AWS Command Line Interface User Guide.

77

http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html
http://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html
https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem
http://docs.aws.amazon.com/iot/latest/apireference/API_UpdateCertificate.html
http://docs.aws.amazon.com/cli/latest/userguide/

AWS IoT Developer Guide
X.509 Certificates

1. Sign in to the AWS Management Console and open the AWS IoT console at https://
console.aws.amazon.com/iot.

2. Choose Create a resource, and then choose Create a certificate.

3. Choose 1-Click certificate create. Alternatively, to generate a certificate with a certificate signing
request (CSR), choose the Create with CSR button.

4. Use the links to the public key, private key, and certificate to download each to a secure location.

5. The newly created certificate will be displayed as INACTIVE. Choose it, and from the Actions
drop-down list, choose Activate.

To create a certificate (CLI)

The AWS IoT CLI provides two commands to create certificates:

• create-keys-and-certificate

The CreateKeysAndCertificate API creates a private key, public key, and X.509 certificate.

• create-certificate-from-csr

The CreateCertificateFromCSR API creates a certificate given a CSR.

Use Your Own Certificate

To use your own X.509 certificates, you must register a CA certificate with AWS IoT. The CA certificate
can then be used to sign device certificates. You can register up to ten CA certificates with the same
subject field and public key per AWS account. This allows you to have more than one CA sign your
device certificates.

Note
Device certificates must be signed by the registered CA certificate. It is common for a
CA certificate to be used to create an intermediate CA certificate. If you will be using an
intermediate certificate to sign your device certificates, you must register the intermediate
CA certificate. You should use the AWS IoT root CA certificate when connecting to AWS IoT
even if you register your own root CA certificate. The AWS IoT root CA certificate is used by a
device to verify the identity of the AWS IoT servers.

Contents

• Registering Your CA certificate (p. 79)

• Creating a Device Certificate (p. 80)

• Registering a Device Certificate (p. 80)

• Registering Device Certificates Manually (p. 81)

• Using Automatic/Just-in-Time Registration for Device Certificates (p. 81)

• Deactivate the CA Certificate (p. 82)

• Revoke the Device Certificate (p. 82)

If you do not have a CA certificate, you can create your own by using OpenSSL tools.

To create a CA certificate

1. Generate a key pair.

openssl genrsa -out rootCA.key 2048

78

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
http://docs.aws.amazon.com/cli/latest/reference/iot/create-keys-and-certificate.html
http://docs.aws.amazon.com/iot/latest/apireference/API_CreateKeysAndCertificate.html
http://docs.aws.amazon.com/cli/latest/reference/iot/create-certificate-from-csr.html
http://docs.aws.amazon.com/iot/latest/apireference/API_CreateCertificateFromCSR.html
https://www.openssl.org/

AWS IoT Developer Guide
X.509 Certificates

2. Use the private key from the key pair to generate a CA certificate.

openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out
 rootCA.pem

Registering Your CA certificate

To register your CA certificate, you must get a registration code from AWS IoT, sign a private key
verification certificate with your CA certificate, and pass both your CA certificate and a private key
verification certificate to the register-ca-certificate CLI command. The Common Name field
in the private key verification certificate must be set to the registration code generated by the get-
registration-code CLI command. A single registration code is generated per AWS account.
You can use the register-ca-certificate command or the AWS IoT console to register CA
certificates.

To register a CA certificate

1. Get a registration code from AWS IoT. This code will be used as the Common Name of the private
key verification certificate.

aws iot get-registration-code

2. Generate a key pair for the private key verification certificate.

openssl genrsa -out verificationCert.key 2048

3. Create a CSR for the private key verification certificate, setting the Common Name field of the
certificate to your registration code.

openssl req -new -key verificationCert.key -out verificationCert.csr

You will be prompted for some information, including the Common Name for the certificate.

Country Name (2 letter code) [AU]:
State or Province Name (full name) []:
Locality Name (eg, city) []:
Organization Name (eg, company) []:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name)
 []:XXXXXXXXXXXXMYREGISTRATIONCODEXXXXXX
Email Address []:

4. Use the CSR to create a private key verification certificate.

openssl x509 -req -in verificationCert.csr -CA rootCA.pem -CAkey
 rootCA.key -CAcreateserial -out verificationCert.pem -days 500 -sha256

5. Register the CA certificate with AWS IoT, passing in the CA certificate and the private key
verification certificate to the register-ca-certificate CLI command.

aws iot register-ca-certificate -—ca-certificate file://rootCA.pem -—
verification-cert file://verificationCert.pem

6. Activate the CA certificate using the update-certificate CLI command.

79

AWS IoT Developer Guide
X.509 Certificates

aws iot update-ca-certificate --certificate-id xxxxxxxxxxx --new-status
 ACTIVE

Creating a Device Certificate

You can use a CA certificate registered with AWS IoT to create a device certificate. The device
certificate must be registered with AWS IoT before use.

To create a device certificate

1. Generate a key pair.

openssl genrsa -out deviceCert.key 2048

2. Create a CSR for the device certificate.

openssl req -new -key deviceCert.key -out deviceCert.csr

You will be prompted for some additional information, as shown here.

Country Name (2 letter code) [AU]:
State or Province Name (full name) []:
Locality Name (eg, city) []:
Organization Name (eg, company) []:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:

3. Create a device certificate from the CSR.

openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key -
CAcreateserial -out deviceCert.pem -days 500 -sha256

Note
You must use the CA certificate registered with AWS IoT to create device certificates.
If you have more than one CA certificate (with the same subject field and public key)
registered in your AWS account, you must specify the CA certificate used to create the
device certificate when registering your device certificate.

4. Register a device certificate.

aws iot register-certificate -—certificate file://deviceCert.crt --
caCertificate file://caCert.crt

5. Activate the device certificate using the update-certificate CLI command.

aws iot update-certificate --certificate-id xxxxxxxxxxx --new-status
 ACTIVE

Registering a Device Certificate

You must use the CA certificate registered with AWS IoT to sign device certificates. If you have more
than one CA certificate (with the same subject field and public key) registered in your AWS account,

80

AWS IoT Developer Guide
X.509 Certificates

you must specify the CA certificate used to sign the device certificate when registering your device
certificate. You can register each device certificate manually, or you can use automatic registration,
which allows devices to register their certificate when they connect to AWS IoT for the first time.

Registering Device Certificates Manually

Use the following CLI command to register a device certificate:

aws iot register-certificate -—certificate file://deviceCert.crt --
caCertificate file://caCert.crt

Using Automatic/Just-in-Time Registration for Device Certificates

You can also have your device certificates automatically registered when devices first connect to AWS
IoT. To do this, you must enable automatic registration for your CA certificate. This will automatically
register any device certificate signed by your CA certificate when it connects to AWS IoT.

Enable Auto Registration

Use the update-ca-certificate API to set the CA certificates auto-registration-status to
ENABLE:

$ aws iot update-ca-certificate --certificate-id caCertificateId --new-auto-
registration-status ENABLE

You can also set the auto-registration-status to ENABLE when you register your CA certificate
using the register-ca-certificate API:

aws iot register-ca-certificate -—ca-certificate file://rootCA.pem -—
verification-cert file://privateKeyVerificationCert.crt --allow-auto-
registration

When a device first attempts to connect to AWS IoT, as part of the TLS handshake, it must present
a registered CA certificate and a device certificate. AWS IoT will recognize the CA certificate as a
registered CA certificate and will automatically register the device certificate and set its status to
PENDING_ACTIVATION. This means the device certificate was automatically registered and is awaiting
activation. A certificate must be in the ACTIVE state before it can be used to connect to AWS IoT.
When AWS IoT automatically registers a certificate or when a certificate in PENDING_ACTIVATION
status connects, AWS IoT publishes a message to the following MQTT topic:

$aws/events/certificates/registered/caCertificateID

Where caCertificateID is the ID of the CA certificate that issued the device certificate.

The message published to this topic has the following structure:

{
 "certificateId": "certificateID",
 "caCertificateId": "caCertificateId",
 "timestamp": timestamp,
 "certificateStatus": "PENDING_ACTIVATION",
 "awsAccountId": "awsAccountId",
 "certificateRegistrationTimestamp": "certificateRegistrationTimestamp"
}

81

AWS IoT Developer Guide
IAM Users, Groups, and Roles

You can create a rule that listens on this topic and performs some additional actions. We recommend
that you create a Lambda rule that verifies the device certificate is not on a certificate revocation
list (CRL), activates the certificate, and creates and attaches a policy to the certificate. The policy
determines which resources the device is able to access. For more information about how to create a
Lambda rule that listens on the $aws/events/certificates/registered/caCertificateID
topic and performs these actions, see Just-in-Time Registration.

Deactivate the CA Certificate

When you attempt to register a device certificate, AWS will check if the associated CA certificate
is ACTIVE. If the CA certificate is INACTIVE, AWS IoT will not allow the device certificate to be
registered. By marking the CA certificate as INACTIVE, you are preventing any new device certificates
issued by the compromised CA to be registered in your account. You can deactivate the CA certificate
using the update-ca-certificate API:

$ aws iot update-ca-certificate --certificate-id certificateId --new-status
 INACTIVE

Note
Any registered device certificates that were signed by the compromised CA certificate will
continue to work until you explicitly revoke the device certificate.

Use the ListCertificatesByCA API to get a list of all registered device certificates that were signed
by the compromised CA. For each device certificate signed by the compromised CA certificate, use the
UpdateCertificate API to revoke the device certificate to prevent it from being used.

Revoke the Device Certificate

If you detect any suspicious activity with a registered device certificate, you can revoke it by using the
update-certificate API:

 $ aws iot update-certificate --certificate-id certificateId
 --new-status REVOKED

If any error or exception occurs during the auto-registration of the device certificates, AWS IoT will
send the appropriate events or messages to your logs in CloudWatch Logs. For more information
about setting up the CloudWatch Logs for your account, see the Amazon CloudWatch documentation.

IAM Users, Groups, and Roles
IAM users, groups, and roles are the standard mechanisms for managing identity and authentication in
AWS. As with any other AWS service, you can use them to connect to AWS IoT HTTP interfaces using
the AWS SDK and CLI.

IAM roles are also the basis for AWS IoT security in the cloud. Roles allow AWS IoT to issue calls to
other AWS resources in your account on your behalf. If you want to have a device publish its state to
a DynamoDB table, for example, IAM roles allow AWS IoT to do the heavy lifting securely. For more
information, see IAM Roles.

For message broker connections, AWS IoT authenticates IAM users, groups, and roles using
the Signature Version 4 signing process. For information about authentication with AWS security
credentials, see Signing AWS API Requests.

When using AWS Signature Version 4 with AWS IoT, clients must support the following in their TLS
implementation:

• TLS 1.2, TLS 1.1, TLS 1.0.

82

https://aws.amazon.com/blogs/iot/just-in-time-registration-of-device-certificates-on-aws-iot/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

AWS IoT Developer Guide
Amazon Cognito Identities

• SHA-256 RSA certificate signature validation.

• One of the cipher suites from the TLS cipher suite support section.

For information, see the IAM User Guide.

Amazon Cognito Identities
Amazon Cognito Identity allows you to use your own identity provider or leverage other popular identity
providers, such as Login with Amazon, Facebook, or Google. You exchange a token from your identity
provider for AWS security credentials. The credentials represent an IAM role and can be used with
AWS IoT.

AWS IoT extends Amazon Cognito and allows policy attachment to Amazon Cognito identities. You
can attach a policy to an Amazon Cognito identity and give fine-grained permissions to an individual
user of your AWS IoT application. This can be used to assign permissions between specific customers
and their devices. For more information, see Amazon Cognito Identity.

Authorization
Communication with AWS IoT follows the principle of least privilege. An identity can execute AWS IoT
operations only if you grant the appropriate permission. You create AWS IoT and IAM policies to give
permissions to authenticated identities in AWS IoT.

Policies give permissions to AWS IoT clients regardless of the authentication mechanism they use
to connect to AWS IoT. To control which resources a device can access, attach one or more AWS
IoT policies to the certificate associated with the device. To control which resources a web or mobile
application can access, attach one or more AWS IoT policies to the Amazon Cognito identity pool
associated with the application. AWS IoT policies control access to AWS IoT resources (MQTT topics,
devices, thing shadows, and so on). IAM policies control access to other AWS services and are
attached to IAM users, groups, and roles.

Policy-based authorization is a powerful tool. It gives you complete control over the topics and topic
filters in your AWS account. For example, consider a device connecting to AWS IoT with a certificate.
You can open its access to all topics, or you can restrict its access to a single topic. The latter example
allows you to assign a topic per device. For example, the device ID 123ABC can subscribe to /
device/123ABC and you can grant other identities permission to subscribe to this topic, effectively
opening a communication channel to this device.

83

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

AWS IoT Developer Guide
AWS IoT Policies

AWS IoT Policies
AWS IoT policies are JSON documents. They follow the same conventions as IAM policies. AWS IoT
supports named policies so many identities can reference the same policy document. Named policies
are versioned so they can be easily rolled back. For more information, see Overview of IAM Policies.

An AWS IoT policy looks like the following:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action":["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/foo/bar"]
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": ["*"]
 }]
}

This policy allows the principal to connect and publish messages to AWS IoT.

AWS IoT Policy Actions

The following actions are available for use with AWS IoT:

iot:Publish
Checked every time a PUBLISH request is sent to the broker. Used to allow clients to publish to
specific topic patterns.

iot:Subscribe
Checked every time a SUBSCRIBE request is sent to the broker. Used to allow clients to
subscribe to topics that match specific topic patterns.

iot:Receive
Checked every time a message is delivered to a client. Because the Receive permission is
checked on every delivery, it can be used to revoke permissions to clients that are currently
subscribed to a topic.

iot:Connect
Checked every time a CONNECT request is sent to the broker. The message broker does not
allow two clients with the same client ID to stay connected at the same time. After the second
client connects, the broker detects this case and disconnects one of the clients. The Connect
permission can be used to ensure only authorized clients can connect using a specific client ID.

iot:UpdateThingShadow
Checked every time a request is made to update the state of a thing shadow document.

iot:GetThingShadow
Checked every time a request is made to get the state of a thing shadow document.

iot:DeleteThingShadow
Checked every time a request is made to delete the thing shadow document.

Action Resources

The following table shows the resource to specify for each action type:

84

http://docs.aws.amazon.com/IAM/latest/UserGuide//access_policies.html

AWS IoT Developer Guide
AWS IoT Policies

Action Resource

iot:DeleteThingShadow thing ARN

iot:Connect client ID ARN

iot:Publish topic ARN

iot:Subscribe topic filter ARN

iot:Receive topic ARN

iot:UpdateThingShadow thing ARN

iot:GetThingShadow thing ARN

AWS IoT Policy Variables
AWS IoT defines policy variables that can be used in AWS IoT policies within the resource or
condition block. For more information about policy variables, see IAM Policy Variables and Multi-Value
Conditions.

Basic Policy Variables

AWS IoT defines the following basic policy variables:

• iot:ClientId

• aws:SourceIp

iot:ClientId is replaced by the client ID that sent an MQTT message. aws:SourceIp is replaced
by the IP address from which the message originated.

The following AWS IoT policy illustrates the use of policy variables:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": [
 "arn:aws:iot:us-east-1:123451234510:client/${iot:ClientId}"
]
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": [
 "arn:aws:iot:us-east-1:123451234510:topic/foo/bar/
${iot:ClientId}"
]
 }]
}

When you use policy variables like ${iot:ClientId}, you can inadvertently open access to topics
you do not want to be accessible. For example, if you use a policy that uses ${iot:ClientId} to
specify a topic filter:

85

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html

AWS IoT Developer Guide
AWS IoT Policies

{
 "Effect": "Allow",
 "Action": ["iot:Subscribe"],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/foo/${iot:ClientId}/
bar"
]
}

A client can connect using + as the client ID. This would allow the user to subscribe to any topic
matching foo/+/bar. To protect against such security gaps, use the iot:Connect policy action to
control which client IDs are able to connect. For example, this policy will allow only clients whose client
ID is clientid1 to connect:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientid1"
]
 }]
}

X.509 Certificate Policy Variables

X.509 certificate policy variables allow you to write AWS IoT policies that grant permissions based on
X.509 certificate attributes. The following sections describe how you can use these certificate policy
variables.

Issuer Attributes

The following AWS IoT policy variables allow you to allow or deny permissions based on certificate
attributes set by the certificate issuer.

• iot:Certificate.Issuer.DistinguishedNameQualifier

• iot:Certificate.Issuer.Country

• iot:Certificate.Issuer.Organization

• iot:Certificate.Issuer.OrganizationalUnit

• iot:Certificate.Issuer.State

• iot:Certificate.Issuer.CommonName

• iot:Certificate.Issuer.SerialNumber

• iot:Certificate.Issuer.Title

• iot:Certificate.Issuer.Surname

• iot:Certificate.Issuer.GivenName

• iot:Certificate.Issuer.Initials

• iot:Certificate.Issuer.Pseudonym

• iot:Certificate.Issuer.GenerationQualifier

Subject Attributes

The following AWS IoT policy variables allow you to grant or deny permissions based on certificate
attributes set by the certificate subject.

86

AWS IoT Developer Guide
AWS IoT Policies

• iot:Certificate.Subject.DistinguishedNameQualifier

• iot:Certificate.Subject.Country

• iot:Certificate.Subject.Organization

• iot:Certificate.Subject.OrganizationalUnit

• iot:Certificate.Subject.State

• iot:Certificate.Subject.CommonName

• iot:Certificate.Subject.SerialNumber

• iot:Certificate.Subject.Title

• iot:Certificate.Subject.Surname

• iot:Certificate.Subject.GivenName

• iot:Certificate.Subject.Initials

• iot:Certificate.Subject.Pseudonym

• iot:Certificate.Subject.GenerationQualifier

X.509 certificates allow these attributes to contain one or more values. By default, the
policy variables for each multi-value attribute return the first value. For example, the
Certificate.Subject.Country attribute might contain a list of country names. When
evaluated in a policy, iot:Certificate.Subject.Country is replaced by the first country
name. You can request a specific attribute value using a zero-based index. For example,
iot:Certificate.Subject.Country#1 is replaced by the second country name in the
Certificate.Subject.Country attribute. If you specify an attribute value that does not exist
(for example, if you ask for a third value when there are only two values assigned to the attribute),
no substitution will be made and authorization will fail. You can use the .List suffix on the policy
variable name to specify all values of the attribute. The following example policy allows any client
to connect to AWS IoT, but restricts publishing rights to those clients with certificates whose
Certificate.Subject.Organization attribute is set to "Example Corp" or "AnyCompany".
This is done through the use of a "Condition" attribute that specifies a condition for the preceding
action. The condition in this case is that the Certificate.Subject.Organization attribute of the
certificate must include one of the listed values.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "iot:Connect"
],
 "Resource":[
 "*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "iot:Publish"
],
 "Resource":[
 "*"
],
 "Condition":{
 "ForAllValues:StringEquals":{
 "iot:Certificate.Subject.Organization.List":[
 "Example Corp",

87

AWS IoT Developer Guide
AWS IoT Policies

 "AnyCompany"
]
 }
 }
 }
]
}

Issuer Alternate Name Attributes

The following AWS IoT policy variables allow you to grant or deny permissions based on issuer
alternate name attributes set by the certificate subject.

• iot:Certificate.Issuer.AlternativeName.RFC822Name

• iot:Certificate.Issuer.AlternativeName.DNSName

• iot:Certificate.Issuer.AlternativeName.DirectoryName

• iot:Certificate.Issuer.AlternativeName.UniformResourceIdentifier

• iot:Certificate.Issuer.AlternativeName.IPAddress

Subject Alternate Name Attributes

The following AWS IoT policy variables allow you to grant or deny permissions based on subject
alternate name attributes set by the certificate subject.

• iot:Certificate.Subject.AlternativeName.RFC822Name

• iot:Certificate.Subject.AlternativeName.DNSName

• iot:Certificate.Subject.AlternativeName.DirectoryName

• iot:Certificate.Subject.AlternativeName.UniformResourceIdentifier

• iot:Certificate.Subject.AlternativeName.IPAddress

Other Attributes

You can use iot:Certificate.SerialNumber to allow or deny access to AWS IoT resources
based on the serial number of a certificate. The iot:Certificate.AvailableKeys policy variable
contains the name of all certificate policy variables that contain values.

X.509 Certificate Policy Variable Limitations

The following limitations apply to X.509 certificate policy variables:

Wildcards
If wildcard characters are present in certificate attributes, the policy variable will not be replaced by
the certificate attribute value, leaving the ${policy-variable} text in the policy document. This
might cause authorization failure.

Array fields
Certificate attributes that contain arrays are limited to five items. Additional items will be ignored.

String length
All string values are limited to 1024 characters. If a certificate attribute contains a string longer than
1024 characters, the policy variable will not be replaced by the certificate attribute value, leaving
the ${policy-variable} in the policy document. This might cause authorization failure.

Thing Policy Variables

Thing policy variables allow you to write AWS IoT policies that grant permissions based on thing
properties like thing names, thing types, and thing attribute values. The thing name is obtained from

88

AWS IoT Developer Guide
AWS IoT Policies

the client ID in the MQTT Connect message sent when a thing connects to AWS IoT. The thing policy
variables are replaced when a thing connects to AWS IoT over MQTT using TLS mutual authentication
or MQTT over the WebSocket protocol using authenticated Amazon Cognito identities. Thing policy
variables are also replaced when a certificate or authenticated Amazon Cognito identity is attached to
a thing. Certificates and authenticated Amazon Cognito identities can be attached to a thing using the
AttachThingPrincipal API.

The following thing policy variables are available:

• iot:Connection.Thing.ThingName

• iot:Connection.Thing.ThingTypeName

• iot:Connection.Thing.Attributes[attributeName]

• iot:Connection.Thing.IsAttached

iot:Connection.Thing.ThingName

This resolves to the name of the thing for which the policy is being evaluated. The thing name is
obtained from the client ID for the MQTT/Websocket connection. This policy variable is only available
when connecting over MQTT or MQTT over the WebSocket protocol.

iot:Connection.Thing.ThingTypeName

This resolves to the thing type associated with the thing for which the policy is being evaluated. The
thing name is obtained from the client ID for the MQTT/Websocket connection and the thing type name
is obtained by a call to the DescribeThing API. This policy variable is only available when connecting
over MQTT or MQTT over the WebSocket protocol.

iot:Connection.Thing.Attributes[attributeName]

This resolves to the value of the specified attribute associated with the thing for which the policy is
being evaluated. A thing can have up to 50 attributes. Each attribute will be available as a policy
variable: iot:Connection.Thing.Attributes[attributeName] where attributeName is
the name of the attribute. The thing name is obtained from the client ID for the MQTT/Websocket
connection. This policy variable is only available when connecting over MQTT or MQTT over the
WebSocket protocol.

iot:Connection.Thing.IsAttached

This resolves to true if the thing has a certificate or Amazon Cognito attached.

Example Policies

AWS IoT policies are specified in a JSON document. These are the components of an AWS IoT policy:

Version
Must be set to "2012-10-17".

Effect
Must be set to "Allow" or "Deny".

Action
Must be set to "iot:<operation-name>" where <operation-name> is one of the following:

"iot:Publish": MQTT publish.

"iot:Subscribe": MQTT subscribe.

"iot:UpdateThingShadow": Update a thing shadow.

"iot:GetThingShadow":Retrieve a thing shadow.

89

AWS IoT API ReferenceAPI_AttachThingPrincipal.html

AWS IoT Developer Guide
AWS IoT Policies

"iot:DeleteThingShadow:Delete a thing shadow.

Resource
Must be set to one of the following:

Client - arn:aws:iot:<region>:<accountId>:client/<clientId>

Topic ARN - arn:aws:iot:<region>:<accountId>:topic/<topicName>

Topic filter ARN - arn:aws:iot:<region>:<accountId>:topicfilter/<topicFilter>

Connect Policy Examples

The following policy allows a set of client IDs to connect:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientid1",
 "arn:aws:iot:us-east-1:123456789012:client/clientid2",
 "arn:aws:iot:us-east-1:123456789012:client/clientid3"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": [
 "*"
]
 }
]
}

The following policy prevents a set of client IDs from connecting:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientid1",
 "arn:aws:iot:us-east-1:123456789012:client/clientid2"
]

90

AWS IoT Developer Guide
AWS IoT Policies

 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 }
]
}

The following policy allows the certificate holder using any client ID to subscribe to topic filter foo/*:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/foo/*"
]
 }
]
}

Publish/Subscribe Policy Examples

The policy you use will depend on how you are connecting to AWS IoT. You can connect to AWS
IoT using an MQTT client, HTTP, or WebSocket. When you connect with an MQTT client, you will be
authenticating with an X.509 certificate. When you connect over HTTP or the WebSocket protocol, you
will be authenticating with Signature Version 4 and Amazon Cognito.

Policies for MQTT Clients

The following policy allows the certificate holder using any client ID to publish to all topics and
subscribe to all topic filters in the AWS account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:*"

91

AWS IoT Developer Guide
AWS IoT Policies

],
 "Resource": [
 "*"
]
 }
]
}

The following policy allows the certificate holder using any client ID to publish to all topics in the AWS
account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Connect"
],
 "Resource": [
 "*"
]
 }
]
}

The following policy allows the certificate holder using any client ID to publish to the foo/bar and
foo/baz topics:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/foo/bar",
 "arn:aws:iot:us-east-1:123456789012:topic/foo/baz"
]
 }
]
}

The following policy prevents the certificate holder using any client ID from publishing to the foo/bar
topic:

92

AWS IoT Developer Guide
AWS IoT Policies

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/foo/bar"
]
 }
]
}

The following policy allows the certificate holder using any client ID to subscribe to topic filter foo/+/
bar:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/foo/+/bar"
]
 }
]
}

The following policy allows the certificate holder using any client ID to publish on topic foo and
subscribe to topic filter foo/bar/*:

{
 "Version": "2012-10-17",
 "Statement": [

93

AWS IoT Developer Guide
AWS IoT Policies

 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/foo"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/foo/bar/*"
]
 }
]
}

The following policy allows the certificate holder using any client ID to publish on topic foo and
prevents the certificate holder using any client ID from publishing to topic bar:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/foo"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:Publish"

94

AWS IoT Developer Guide
AWS IoT Policies

],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/bar"
]
 }
]
}

The following policy allows the certificate holder using any client ID to subscribe to topic filter foo/bar:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/foo/bar"
]
 }
]
}

The following policy allows the certificate holder using any client ID to publish
on the arn:aws:iot:us-east-1:123456789012:topic/iotmonitor/
provisioning/8050373158915119971 topic and allows the certificate holder using any client
ID to subscribe to the topic filter arn:aws:iot:us-east-1:123456789012:topicfilter/
iotmonitor/provisioning/8050373158915119971:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Receive"
],

95

AWS IoT Developer Guide
AWS IoT Policies

 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/iotmonitor/
provisioning/8050373158915119971"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/iotmonitor/
provisioning/8050373158915119971"
]
 }
]
}

Policies for HTTP and WebSocket Clients

For the following operations, AWS IoT uses policies attached to Amazon Cognito identities (through
the AttachPrincipalPolicy API) to scope down the permissions attached to the Amazon Cognito
identity pool with authenticated identities. That means an Amazon Cognito identity needs permission
from the role policy attached to the pool and the policy attached to the Amazon Cognito identity through
the AWS IoT AttachPrincipalPolicy API.

• iot:Connect

• iot:Publish

• iot:Subscribe

• iot:Receive

• iot:GetThingShadow

• iot:UpdateThingShadow

• iot:DeleteThingShadow

Note
For other AWS IoT operations or for unauthenticated identities, AWS IoT does not
scope down the permissions attached to the Amazon Cognito identity pool role. For both
authenticated and unauthenticated identities, this is the most permissive policy that we
recommend attaching to the Amazon Cognito pool role.

To allow unauthenticated Amazon Cognito identities to publish messages over HTTP on any topic,
attach the following policy to the Amazon Cognito identity pool role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect",
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow"

96

AWS IoT Developer Guide
AWS IoT Policies

],
 "Resource": ["*"]
 }]
}

To allow unauthenticated Amazon Cognito identities to publish MQTT messages over HTTP on any
topic in your account, attach the following policy to the Amazon Cognito identity pool role:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": ["*"]
 }]
}

Note
This example is for illustration only. Unless your service absolutely requires it, we recommend
the use of a more restrictive policy, one that does not allow unauthenticated Amazon Cognito
identities to publish on any topic.

To allow unauthenticated Amazon Cognito identities to publish MQTT messages over HTTP on
topic1 in your account, attach the following policy to your Amazon Cognito identity pool role:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topic1"]
 }]
}

For an authenticated Amazon Cognito identity to publish MQTT messages over HTTP on topic1 in
your AWS account, you must specify two policies, as outlined here. The first policy must be attached
to an Amazon Cognito identity pool role and allow identities from that pool to make a publish call. The
second policy is attached to an Amazon Cognito user using the AWS IoT AttachPrincipalPolicy API and
allows the specified Amazon Cognito user access to the topic1 topic.

Amazon Cognito identity pool policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topic1"]
 }]
}

Amazon Cognito user policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",

97

http://docs.aws.amazon.com//iot/latest/apireference/API_AttachPrincipalPolicy.html

AWS IoT Developer Guide
AWS IoT Policies

 "Action": ["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topic1"]
 }]
}

Similarly, the following example policy allows the Amazon Cognito user to publish MQTT messages
over HTTP on the topic1 and topic2 topics. Two policies are required. The first policy gives the
Amazon Cognito identity pool role the ability to make the publish call. The second policy gives the
Amazon Cognito user access to the topic1 and topic2 topics.

Amazon Cognito identity pool policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": ["*"]
 }]
}

Amazon Cognito user policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/topic1",
 "arn:aws:iot:us-east-1:123456789012:topic/topic2"
]
 }]
}

The following policies allow multiple Amazon Cognito users to publish to a topic. Two policies per
Amazon Cognito identity are required. The first policy gives the Amazon Cognito identity pool role the
ability to make the publish call. The second and third policies give the Amazon Cognito users access to
the topics topic1 and topic2, respectively.

Amazon Cognito identity pool policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": ["*"]
 }]
}

Amazon Cognito user1 policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",

98

AWS IoT Developer Guide
AWS IoT Policies

 "Action": ["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topic1"]
 }]
}

Amazon Cognito user2 policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/topic2"]
 }]
}

Receive Policy Examples

The following policy prevents the certificate holder using any client ID from receiving messages from a
topic:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/foo/restricted"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:*"
],
 "Resource": [
 "*"
]
 }
]
}

The following policy allows the certificate holder using any client ID to subscribe and receive messages
on one topic:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [*]

99

AWS IoT Developer Guide
AWS IoT Policies

 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/foo/bar"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/foo/bar"
]
 }
]
}

Certificate Policy Examples

The following policy allows a device to publish on a topic whose name is equal to the certificateId of the
certificate with which the device authenticated itself:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action":["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/
${iot:CertificateId}"]
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": ["*"]
 }]
}

The following policy allows a device to publish on a topic whose name is equal to the subject's common
name field of the certificate with which the device authenticated itself:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action":["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/
${iot:Certificate.Issuer.CommonName}"]
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": ["*"]

100

AWS IoT Developer Guide
AWS IoT Policies

 }]
}

The following policy allows a device to publish on a topic which is prefixed with "admin/" when the
certificate used to authenticate the device has its Subject.CommonName.2 field set to "Administrator":

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": ["*"]
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/admin/*"],
 "Condition": {
 "StringEquals": {
 "iot:Certificate.Subject.CommonName.2": "Administrator"
 }
 }
 }]
}

The following policy allows a device to publish on a topic which is prefixed with "admin/" when
the certificate used to authenticate the device has any one of its Subject.Common fields set to
"Administrator":

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": ["*"]
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/admin/*"],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iot:Certificate.Subject.CommonName.List": "Administrator"
 }
 }
 }]
}

Thing Policy Examples

The following policy allows a thing to publish on a specific topic that contains the thing type name and
thing name:

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect":"Allow",

101

AWS IoT Developer Guide
AWS IoT Policies

 "Action":["iot:Publish"],
 "Resource":[
 "arn:aws:iot:us-east-1:123456789012:topic/
${iot:Connection.Thing.ThingTypeName}/${iot:Connection.Thing.ThingName}"
]
 }]
}

The following policy allows the device to connect if it is attached to the certificate used to authenticate
with AWS IoT

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": ["*"],
 "Condition":{
 "Bool":{
 "iot:Connection.Thing.IsAttached ":["true"]
 }
 }
 }]
}

The following policy allows a device to publish on a set of topics ("/foo/bar" and "/foo/baz") if:

• The thing associated with the device has an attribute called "Manufacturer" with a value of "foo",
"bar", or "baz".

• The thing associated with the device exists in the thing registry and is attached to the certificate used
to connect to AWS IoT

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/foo/bar",
 "arn:aws:iot:us-east-1:123456789012:topic/foo/baz"
],
 "Condition": {
 "ForAnyValue:StringLike": {
 "iot:Connection.Thing.Attributes[Manufacturer]": [
 "foo",
 "bar",
 "baz"
]
 }
 }
 }]
}

The following policy allows a device to publish to a topic if:

• The topic is composed of the thing type name, a '/', and the thing name.

102

AWS IoT Developer Guide
IAM IoT Policies

• The thing exists in the thing registry.

• The thing is attached to the certificate used to connect to AWS IoT.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":["iot:Publish"],
 "Resource":[
 "arn:aws:iot:us-east-1:123456789012:topic/
${iot:Connection.Thing.ThingTypeName}/${iot:Connection.Thing.ThingName}"
]
 }]
}

The following policy allows a device to publish only on its own thing shadow topic if the thing exists in
the thing registry.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/update"
]
 }]
}

IAM IoT Policies
AWS IoT provides a set of IAM policy templates you can either use as-is or as a starting point for
creating custom IAM policies. These templates allow access to configuration and data operations.
Configuration operations allow you to create things, certificates, policies, and rules. Data operations
send data over MQTT or HTTP protocols. The following table describes these templates.

Policy Template Description

AWSIotLogging Allows the associated identity to configure
CloudWatch logging. This policy is attached to
your CloudWatch logging role.

AWSIoTConfigAccess Allows the associated identity access to all AWS
IoT configuration operations.

AWSIoTConfigReadOnlyAccess Allows the associated identity to call read-only
configuration operations.

AWSIoTDataAccess Allows the associated identity full access to
all AWS IoT data operations. Data operations
send data over MQTT or HTTP protocols. When
MQTT over the WebSocket protocol is used,
only policies stored in IAM will apply to the
WebSocket connection.

103

AWS IoT Developer Guide
Cross Account Access

Policy Template Description

AWSIoTFullAccess Allows the associated identity full access to all
AWS IoT configuration and data operations.

AWSIoTRuleActions Allows the associated identity access to all AWS
services supported in AWS IoT rule actions.

Cross Account Access
AWS IoT allows you to enable a principal to publish or subscribe to a topic that is defined in an AWS
account not owned by the principal. You configure cross account access by creating an IAM policy and
IAM role and then attaching the policy to the role.

First, create an IAM policy just like you would for other users and certificates in your AWS account. For
example, the following policy grants permissions to connect and publish to the /foo/bar topic.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/foo/bar"
]
 }]
}

Next, follow the steps in Creating a Role for an IAM User. Enter the AWS account ID of the AWS
account with which you want to share access. Then, in the final step, attach the policy you just created
to the role. If, at a later time, you need to modify the AWS account ID to which you are granting access,
you can use the following trust policy format to do so.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam:us-east-1:111111111111:user/MyUser"
 },
 "Action": "sts:AssumeRole"
 }]
}

104

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

AWS IoT Developer Guide
Transport Security

Transport Security
The AWS IoT message broker and Thing Shadows service encrypt all communication with TLS. TLS
is used to ensure the confidentiality of the application protocols (MQTT, HTTP) supported by AWS IoT.
TLS is available in a number of programming languages and operating systems.

For MQTT, TLS encrypts the connection between the device and the broker. TLS client authentication
is used by AWS IoT to identify devices. For HTTP, TLS encrypts the connection between the device
and the broker. Authentication is delegated to AWS Signature Version 4.

TLS Cipher Suite Support
AWS IoT supports the following cipher suites:

• ECDHE-ECDSA-AES128-GCM-SHA256 (recommended)

• ECDHE-RSA-AES128-GCM-SHA256 (recommended)

• ECDHE-ECDSA-AES128-SHA256

• ECDHE-RSA-AES128-SHA256

• ECDHE-ECDSA-AES128-SHA

• ECDHE-RSA-AES128-SHA

• ECDHE-ECDSA-AES256-GCM-SHA384

• ECDHE-RSA-AES256-GCM-SHA384

• ECDHE-ECDSA-AES256-SHA384

• ECDHE-RSA-AES256-SHA384

• ECDHE-RSA-AES256-SHA

• ECDHE-ECDSA-AES256-SHA

• AES128-GCM-SHA256

• AES128-SHA256

• AES128-SHA

• AES256-GCM-SHA384

• AES256-SHA256

• AES256-SHA

105

AWS IoT Developer Guide
Protocols

Message Broker for AWS IoT

The AWS IoT message broker is a publish/subscribe broker service that enables the sending and
receiving of messages to and from AWS IoT. When communicating with AWS IoT, a client sends a
message addressed to a topic like Sensor/temp/room1. The message broker, in turn, sends the
message to all clients that have registered to receive messages for that topic. The act of sending the
message is referred to as publishing. The act of registering to receive messages for a topic filter is
referred to as subscribing.

The topic namespace is isolated for each AWS account and region pair. For example, the Sensor/
temp/room1 topic for an AWS account is independent from the Sensor/temp/room1 topic for
another AWS account. This is true of regions, too. The Sensor/temp/room1 topic in the same AWS
account in us-east-1 is independent from the same topic in us-west-2. AWS IoT does not support
sending and receiving messages across AWS accounts and regions.

The message broker maintains a list of all client sessions and the subscriptions for each session.
When a message is published on a topic, the broker checks for sessions with subscriptions that
map to the topic. The broker then forwards the publish message to all sessions that have a currently
connected client.

Protocols
The message broker supports the use of the MQTT protocol to publish and subscribe and the HTTPS
protocol to publish. Both protocols are supported through IP version 4 and IP version 6. The message
broker also supports MQTT over the WebSocket protocol.

MQTT
MQTT is a widely adopted lightweight messaging protocol designed for constrained devices. For more
information, see MQTT.

Although the AWS IoT message broker implementation is based on MQTT version 3.1.1, it deviates
from the specification as follows:

• In AWS IoT, subscribing to a topic with Quality of Service (QoS) 0 means a message will be
delivered zero or more times. A message might be delivered more than once. Messages delivered
more than once might be sent with a different packet ID. In these cases, the DUP flag is not set.

106

http://www.mqtt.org

AWS IoT Developer Guide
HTTP

• AWS IoT does not support publishing and subscribing with QoS 2. The AWS IoT message broker
does not send a PUBACK or SUBACK when QoS 2 is requested.

• The QoS levels for publishing and subscribing to a topic have no relation to each other. One client
can subscribe to a topic using QoS 1 while another client can publish to the same topic using QoS 0.

• When responding to a connection request, the message broker sends a CONNACK message. This
message contains a flag to indicate if the connection is resuming a previous session. The value of
this flag might be incorrect if two MQTT clients connect with the same client ID simultaneously.

• When a client subscribes to a topic, there might be a delay between the time the message broker
sends a SUBACK and the time the client starts receiving new matching messages.

• The MQTT specification provides a provision for the publisher to request that the broker retain the
last message sent to a topic and send it to all future topic subscribers. AWS IoT does not support
retained messages. If a request is made to retain messages, the connection is disconnected.

• The message broker uses the client ID to identify each client. The client ID is passed in from the
client to the message broker as part of the MQTT payload. Two clients with the same client ID are
not allowed to be connected concurrently to the message broker. When a client connects to the
message broker using a client ID that another client is using, a CONNACK message will be sent to
both clients and the currently connected client will be disconnected.

• The message broker does not support persistent sessions (clean session set to 0). All sessions are
assumed to be clean sessions and messages are not stored across sessions. If an MQTT client
sends a message with the clean session attribute set to false, the client will be disconnected.

• On rare occasions, the message broker might resend the same logical PUBLISH message with a
different packet ID.

• The message broker does not guarantee the order in which messages and ACK are received.

HTTP
The message broker supports clients connecting with the HTTP protocol using a REST
API. Clients can publish by sending a POST message to <AWS IoT Endpoint>/
topics/<url_encoded_topic_name>?qos=1".

MQTT Over the WebSocket Protocol
AWS IoT supports MQTT over the WebSocket protocol to enable browser-based and remote
applications to send and receive data from AWS IoT-connected devices using AWS credentials. AWS
credentials are specified using AWS Signature Version 4. WebSocket support is available on TCP port
443, which allows messages to pass through most firewalls and web proxies.

A WebSocket connection is initiated on a client by sending an HTTP GET request. The URL you use is
of the following form:

wss://<endpoint>.iot.<region>.amazonaws.com/mqtt

wss
Specifies the WebSocket protocol.

endpoint
Your AWS account-specific AWS IoT endpoint. You can use the AWS IoT CLI describe-endpoint
command to find this endpoint.

region
The AWS region of your AWS account.

mqtt
Specifies you will be sending MQTT messages over the WebSocket protocol.

107

https://en.wikipedia.org/wiki/WebSocket
http://docs.aws.amazon.com/general/latest/gr//sigv4_signing.html
http://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html

AWS IoT Developer Guide
MQTT Over the WebSocket Protocol

When the server responds, the client sends an upgrade request to indicate to the server it will
communicate using the WebSocket protocol. After the server acknowledges the upgrade request, all
communication is performed using the WebSocket protocol. The WebSocket implementation you use
acts as a transport protocol. The data you send over the WebSocket protocol are MQTT messages.

Using the WebSocket Protocol in a Web Application
The WebSocket implementation provided by most web browsers does not allow the modification of
HTTP headers, so you must add the Signature Version 4 information to the query string. For more
information, see Adding Signing Information to the Query String.

The following JavaScript defines some utility functions used in generating a Signature Version 4
request.

 /**
 * utilities to do sigv4
 * @class SigV4Utils
 */
 function SigV4Utils() {}

SigV4Utils.getSignatureKey = function (key, date, region, service) {
 var kDate = AWS.util.crypto.hmac('AWS4' + key, date, 'buffer');
 var kRegion = AWS.util.crypto.hmac(kDate, region, 'buffer');
 var kService = AWS.util.crypto.hmac(kRegion, service, 'buffer');
 var kCredentials = AWS.util.crypto.hmac(kService, 'aws4_request',
 'buffer');
 return kCredentials;
};

SigV4Utils.getSignedUrl = function(host, region, credentials) {
 var datetime = AWS.util.date.iso8601(new Date()).replace(/[:\-]|\.\d{3}/
g, '');
 var date = datetime.substr(0, 8);

 var method = 'GET';
 var protocol = 'wss';
 var uri = '/mqtt';
 var service = 'iotdevicegateway';
 var algorithm = 'AWS4-HMAC-SHA256';

 var credentialScope = date + '/' + region + '/' + service + '/' +
 'aws4_request';
 var canonicalQuerystring = 'X-Amz-Algorithm=' + algorithm;
 canonicalQuerystring += '&X-Amz-Credential=' +
 encodeURIComponent(credentials.accessKeyId + '/' + credentialScope);
 canonicalQuerystring += '&X-Amz-Date=' + datetime;
 canonicalQuerystring += '&X-Amz-SignedHeaders=host';

 var canonicalHeaders = 'host:' + host + '\n';
 var payloadHash = AWS.util.crypto.sha256('', 'hex')
 var canonicalRequest = method + '\n' + uri + '\n' + canonicalQuerystring
 + '\n' + canonicalHeaders + '\nhost\n' + payloadHash;

 var stringToSign = algorithm + '\n' + datetime + '\n' + credentialScope +
 '\n' + AWS.util.crypto.sha256(canonicalRequest, 'hex');
 var signingKey = SigV4Utils.getSignatureKey(credentials.secretAccessKey,
 date, region, service);
 var signature = AWS.util.crypto.hmac(signingKey, stringToSign, 'hex');

108

http://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html#sigv4-add-signature-querystring

AWS IoT Developer Guide
MQTT Over the WebSocket Protocol

 canonicalQuerystring += '&X-Amz-Signature=' + signature;
 if (credentials.sessionToken) {
 canonicalQuerystring += '&X-Amz-Security-Token=' +
 encodeURIComponent(credentials.sessionToken);
 }

 var requestUrl = protocol + '://' + host + uri + '?' +
 canonicalQuerystring;
 return requestUrl;
};

To create a Signature Version 4 request

1. Create a canonical request for Signature Version 4.

The following JavaScript code creates a canonical request:

var datetime = AWS.util.date.iso8601(new Date()).replace(/[:\-]|\.\d{3}/g,
 '');
var date = datetime.substr(0, 8);

var method = 'GET';
var protocol = 'wss';
var uri = '/mqtt';
var service = 'iotdevicegateway';
var algorithm = 'AWS4-HMAC-SHA256';

var credentialScope = date + '/' + region + '/' + service + '/' +
 'aws4_request';
var canonicalQuerystring = 'X-Amz-Algorithm=' + algorithm;
canonicalQuerystring += '&X-Amz-Credential=' +
 encodeURIComponent(credentials.accessKeyId + '/' + credentialScope);
canonicalQuerystring += '&X-Amz-Date=' + datetime;
canonicalQuerystring += '&X-Amz-SignedHeaders=host';

var canonicalHeaders = 'host:' + host + '\n';
var payloadHash = AWS.util.crypto.sha256('', 'hex')
var canonicalRequest = method + '\n' + uri + '\n' + canonicalQuerystring +
 '\n' + canonicalHeaders + '\nhost\n' + payloadHash;

2. Create a string to sign, generate a signing key, and sign the string.

Take the canonical URL you created in the previous step and assemble it into a string to sign. You
do this by creating a string composed of the hashing algorithm, the date, the credential scope, and
the SHA of the canonical request. Next, generate the signing key and sign the string, as shown in
the following JavaScript code.

var stringToSign = algorithm + '\n' + datetime + '\n' + credentialScope +
 '\n' + AWS.util.crypto.sha256(canonicalRequest, 'hex');
var signingKey = SigV4Utils.getSignatureKey(credentials.secretAccessKey,
 date, region, service);
var signature = AWS.util.crypto.hmac(signingKey, stringToSign, 'hex');

3. Add the signing information to the request.

109

AWS IoT Developer Guide
MQTT Over the WebSocket Protocol

The following JavaScript code shows how to add the signing information to the query string.

canonicalQuerystring += '&X-Amz-Signature=' + signature;

4. If you have session credentials (from an STS server, AssumeRole, or Amazon Cognito), append
the session token to the end of the URL string after signing:

canonicalQuerystring += '&X-Amz-Security-Token=' +
 encodeURIComponent(credentials.sessionToken);

5. Prepend the protocol, host, and URI to the canonicalQuerystring:

var requestUrl = protocol + '://' + host + uri + '?' +
 canonicalQuerystring;

6. Open the WebSocket.

The following JavaScript code shows how to create a Paho MQTT client and call CONNECT to
AWS IoT. The endpoint argument is your AWS account-specific endpoint. The clientId is a
text identifier that is unique among all clients simultaneously connected in your AWS account.

var client = new Paho.MQTT.Client(requestUrl, clientId);
var connectOptions = {
 onSuccess: function(){
 // connect succeeded
 },
 useSSL: true,
 timeout: 3,
 mqttVersion: 4,
 onFailure: function() {
 // connect failed
 }
};
client.connect(connectOptions);

Using the WebSocket Protocol in a Mobile Application

We recommend using one of the AWS IoT Device SDKs to connect your device to AWS IoT when
making a WebSocket connection. The following AWS IoT Device SDKs support WebSocket-based
MQTT connections to AWS IoT:

• Node.js

• iOS

• Android

For a reference implementation for connecting a web application to AWS IoT using MQTT over the
WebSocket protocol, see AWS Labs WebSocket sample.

If you are using a programming or scripting language that is not currently supported, any existing
WebSocket library can be used as long as the initial WebSocket upgrade request (HTTP POST) is

110

https://github.com/aws/aws-iot-device-sdk-js
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/
https://github.com/awslabs/aws-iot-examples

AWS IoT Developer Guide
Topics

signed using AWS Signature Version 4. Some MQTT clients, such as Eclipse Paho for JavaScript,
support the WebSocket protocol natively.

Topics
The message broker uses topics to route messages from publishing clients to subscribing clients. The
forward slash (/) is used to separate topic hierarchy. The following table lists the wildcards that can be
used in the topic filter when you subscribe.

Topic Wildcards

Wildcard Description

Must be the last character in the topic to which
you are subscribing. Works as a wildcard by
matching the current tree and all subtrees.
For example, a subscription to Sensor/# will
receive messages published to Sensor/,
Sensor/temp, Sensor/temp/room1, but not
the messages published to Sensor.

+ Matches exactly one item in the topic hierarchy.
For example, a subscription to Sensor/+/room1
will receive messages published to Sensor/
temp/room1, Sensor/moisture/room1, and
so on.

Reserved Topics
Any topics beginning with $ are considered reserved and are not supported for publishing and
subscribing except when working with the Thing Shadows service. For more information, see Thing
Shadows.

Lifecycle Events
AWS IoT publishes lifecycle events on the MQTT topics discussed in the following sections. These
messages allow you to be notified of lifecycle events from the message broker.

Note
Lifecycle messages might be sent out of order and you might receive duplicate messages.

Policy Required for Receiving Lifecycle Events
The following is an example of the policy required for receiving lifecycle events:

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":[
 "iot:Subscribe",
 "iot:Receive"
],

111

http://www.eclipse.org/paho/
http://docs.aws.amazon.com/iot/latest/developerguide//iot-thing-shadows.html
http://docs.aws.amazon.com/iot/latest/developerguide//iot-thing-shadows.html

AWS IoT Developer Guide
Connect/Disconnect Events

 "Resource":[
 "arn:aws:iot:region:account:topicfilter/$aws/events/*"
]
 }]
}

Connect/Disconnect Events
AWS IoT publishes a message to the following MQTT topics when a client connects or disconnects:

$aws/events/presence/connected/clientId

or

$aws/events/presence/disconnected/clientId

Where clientId is the MQTT client ID that connects to or disconnects from the AWS IoT message
broker.

The message published to this topic has the following structure:

{
 "clientId": "a1b2c3d4e5f6a7b8c9d0e1f2a3b4c5d6",
 "timestamp": 1460065214626,
 "eventType": "connected",
 "sessionIdentifier": "00000000-0000-0000-0000-000000000000",
 "principalIdentifier": "000000000000/ABCDEFGHIJKLMNOPQRSTU:some-user/
ABCDEFGHIJKLMNOPQRSTU:some-user"
}

The following is a list of JSON elements that are contained in the connection/disconnection messages
published to the $aws/events/presence/connected/clientId topic.

clientId
The client ID of the connecting or disconnecting client.

Note
Client IDs that contain # or + will not receive lifecycle events.

eventType
The type of event. Valid values are connected or disconnected.

principalIdentifier
The credential used to authenticate. For TLS mutual authentication certificates, this is the
certificate ID. For other connections, this is IAM credentials.

sessionIdentifier
A globally unique identifier in AWS IoT that exists for the life of the session.

timestamp
An approximation of when the event occurred, expressed in milliseconds since the Unix epoch.
The accuracy of the timestamp is +/- 2 minutes.

Subscribe/Unsubscribe Events
AWS IoT publishes a message to the following MQTT topic when a client subscribes or unsubscribes
to an MQTT topic:

112

AWS IoT Developer Guide
Subscribe/Unsubscribe Events

$aws/events/subscriptions/subscribed/clientId

or

$aws/events/subscriptions/unsubscribed/clientId

Where clientId is the MQTT client ID that connects to the AWS IoT message broker.

The message published to this topic has the following structure:

{
 "clientId": "186b5",
 "timestamp": 1460065214626,
 "eventType": "subscribed" | "unsubscribed",
 "sessionIdentifier": "00000000-0000-0000-0000-000000000000",
 "principalIdentifier": "000000000000/ABCDEFGHIJKLMNOPQRSTU:some-user/
ABCDEFGHIJKLMNOPQRSTU:some-user"
 "topics" : ["foo/bar","device/data","dog/cat"]
}

The following is a list of JSON elements that are contained in the subscribed and unsubscribed
messages published to the $aws/events/subscriptions/subscribed/clientId and $aws/
events/subscriptions/unsubscribed/clientId topics.

clientId
The client ID of the subscribing or unsubscribing client.

Note
Client IDs that contain # or + will not receive lifecycle events.

eventType
The type of event. Valid values are subscribed or unsubscribed.

principalIdentifier
The credential used to authenticate. For TLS mutual authentication certificates, this is the
certificate ID. For other connections, this is IAM credentials.

sessionIdentifier
A globally unique identifier in AWS IoT that exists for the life of the session.

timestamp
An approximation of when the event occurred, expressed in milliseconds since the Unix epoch.
The accuracy of the timestamp is +/- 2 minutes.

topics
An array of the MQTT topics to which the client has subscribed.

Note
Lifecycle messages might be sent out of order. You might receive duplicate messages.

113

AWS IoT Developer Guide

Rules for AWS IoT

Rules give your devices the ability to interact with AWS services. Rules are analyzed and actions are
performed based on the MQTT topic stream. You can use rules to support tasks like these:

• Augment or filter data received from a device.

• Write data received from a device to an Amazon DynamoDB database.

• Save a file to Amazon S3.

• Send a push notification to all users using Amazon SNS.

• Publish data to an Amazon SQS queue.

• Invoke a Lambda function to extract data.

• Process messages from a large number of devices using Amazon Kinesis.

• Send data to the Amazon Elasticsearch Service.

• Capture a CloudWatch metric.

• Change a CloudWatch alarm.

• Send the data from an MQTT message to Amazon Machine Learning to make predictions based on
an Amazon ML model.

Before AWS IoT can perform these actions, you must grant it permission to access your AWS
resources on your behalf. When the actions are performed, you incur the standard charges for the
AWS services you use.

Contents

• Granting AWS IoT the Required Access (p. 115)

• Pass Role Permissions (p. 116)

• Creating an AWS IoT Rule (p. 117)

• Viewing Your Rules (p. 120)

• SQL Versions (p. 120)

• Troubleshooting a Rule (p. 122)

• Deleting a Rule (p. 122)

114

AWS IoT Developer Guide
Granting AWS IoT the Required Access

• AWS IoT Rule Actions (p. 122)

• AWS IoT SQL Reference (p. 132)

Granting AWS IoT the Required Access
You use IAM roles to control the AWS resources to which each rule has access. Before you create a
rule, you must create an IAM role with a policy that allows access to the required AWS resources. AWS
IoT assumes this role when executing a rule.

To create an IAM role (AWS CLI)

1. Save the following trust policy document, which grants AWS IoT permission to assume the role, to
a file called iot-role-trust.json:

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }]
}

Use the create-role command to create an IAM role specifying the iot-role-trust.json file:

aws iam create-role --role-name my-iot-role --assume-role-policy-document
 file://iot-role-trust.json

The output of this command will look like the following:

{
 "Role": {
 "AssumeRolePolicyDocument": "url-encoded-json",
 "RoleId": "AKIAIOSFODNN7EXAMPLE",
 "CreateDate": "2015-09-30T18:43:32.821Z",
 "RoleName": "my-iot-role",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
}

2. Save the following JSON into a file named iot-policy.json.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "*"
 }]
}

115

http://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

AWS IoT Developer Guide
Pass Role Permissions

This JSON is an example policy document that grants AWS IoT administrator access to
DynamoDB.

Use the create-policy command to grant AWS IoT access to your AWS resources upon assuming
the role, passing in the iot-policy.json file:

aws iam create-policy --policy-name my-iot-policy --policy-document
 file://my-iot-policy-document.json

For more information about how to grant access to AWS services in policies for AWS IoT, see
Creating an AWS IoT Rule (p. 117).

The output of the create-policy command will contain the ARN of the policy. You will need to attach
the policy to a role.

{
 "Policy": {
 "PolicyName": "my-iot-policy",
 "CreateDate": "2015-09-30T19:31:18.620Z",
 "AttachmentCount": 0,
 "IsAttachable": true,
 "PolicyId": "ZXR6A36LTYANPAI7NJ5UV",
 "DefaultVersionId": "v1",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:policy/my-iot-policy",
 "UpdateDate": "2015-09-30T19:31:18.620Z"
 }
}

3. Use the attach-role-policy command to attach your policy to your role:

aws iam attach-role-policy --role-name my-iot-role --policy-arn
 "arn:aws:iam::123456789012:policy/my-iot-policy"

Pass Role Permissions
When creating or replacing a rule, you must pass a role that controls the AWS resources to which
the rule has access. The role must be defined in the same AWS account as the rule. The AWS
IoT rules engine checks to make sure you have iam:PassRole permission to pass the role to the
create-topic-rule API. To ensure you have this access, you need to create a policy that grants
the iam:PassRole permission and attach it to your IAM user. The following policy shows how to allow
iam:PassRole permission for a role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [

116

http://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
http://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
http://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html

AWS IoT Developer Guide
Creating an AWS IoT Rule

 "arn:aws:iam::123456789012:role/myRole"
]
 }
]
}

In this policy example, the iam:PassRole permission is granted for the role myRole. The role is
specified using the role's ARN. You must also attach this policy to your IAM user or role to which your
user belongs. For more information, see Working with Managed Policies.

Note
Lambda functions use resource-based policy, where the policy is attached directly to the
Lambda function itself. When creating a rule that invokes a Lambda function, you do not pass
a role, so the user creating the rule does not need the iam:PassRole permission. For more
information about Lambda function authorization, see Granting Permissions Using a Resource
Policy.

Creating an AWS IoT Rule
You configure rules to route data from your connected things. Rules consist of the following:

Rule name
The name of the rule.

Optional description
A textual description of the rule.

SQL statement
A simplified SQL syntax to filter messages received on an MQTT topic and push the data
elsewhere. For more information, see AWS IoT SQL Reference (p. 132).

SQL version
The version of the SQL rules engine to use when evaluating the rule. Although this property is
optional, we strongly recommend that you specify the SQL version. If this property is not set, the
default, 2015-10-08, will be used.

One or more actions
The actions AWS IoT performs when executing the rule. For example, you can insert data into a
DynamoDB table, write data to an Amazon S3 bucket, publish to an Amazon SNS topic, or invoke
a Lambda function.

When you create a rule, be aware of how much data you are publishing on topics. If you create rules
that include a wildcard topic pattern, they might match a large percentage of your messages, and you
might need to increase the capacity of the AWS resources used by the target actions. Also, if you
create a republish rule that includes a wildcard topic pattern, you can end up with a circular rule that
causes an infinite loop.

Note
Creating and updating rules are administrator-level actions. Any user who has permission to
create or update rules will be able to access data processed by the rules.

To create a rule (AWS CLI)

Use the create-topic-rule command to create a rule:

aws iot create-topic-rule --rule-name my-rule --topic-rule-payload file://my-
rule.json

117

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
http://docs.aws.amazon.com/cli/latest/reference/iot/create-topic-rule.html

AWS IoT Developer Guide
Creating an AWS IoT Rule

The following is an example payload file with a rule that inserts all messages sent to the iot/test
topic into the specified DynamoDB table. The SQL statement filters the messages and the role ARN
grants AWS IoT permission to write to the DynamoDB table.

{
 "sql": "SELECT * FROM 'iot/test'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "dynamoDB": {
 "tableName": "my-dynamodb-table",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role",
 "hashKeyField": "topic",
 "hashKeyValue": "${topic(2)}",
 "rangeKeyField": "timestamp",
 "rangeKeyValue": "${timestamp()}"
 }
 }]
}

The following is an example payload file with a rule that inserts all messages sent to the iot/test
topic into the specified S3 bucket. The SQL statement filters the messages, and the role ARN grants
AWS IoT permission to write to the Amazon S3 bucket.

{
 "rule": {
 "awsIotSqlVersion": "2016-03-23",
 "sql": "SELECT * FROM 'iot/test'",
 "ruleDisabled": false,
 "actions": [
 {
 "s3": {
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_s3",
 "bucketName": "my-bucket",
 "key": "myS3Key"
 }
 }
],
 "ruleName": "MyS3Rule"
 }
}

The following is an example payload file with a rule that pushes data to Amazon ES:

{
 "sql":"SELECT *, timestamp() as timestamp FROM 'iot/test'",
 "ruleDisabled":false,
 "awsIotSqlVersion": "2016-03-23",
 "actions":[
 {
 "elasticsearch":{
 "roleArn":"arn:aws:iam::123456789012:role/aws_iot_es",
 "endpoint":"https://my-endpoint",
 "index":"my-index",
 "type":"my-type",
 "id":"${newuuid()}"

118

AWS IoT Developer Guide
Creating an AWS IoT Rule

 }
 }
]
}

The following is an example payload file with a rule that invokes a Lambda function:

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "lambda": {
 "functionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
lambda-function"
 }
 }]
}

The following is an example payload file with a rule that publishes to an Amazon SNS topic:

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:my-sns-topic",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

The following is an example payload file with a rule that republishes on a different MQTT topic:

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "republish": {
 "topic": "my-mqtt-topic",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

The following is an example payload file with a rule that pushes data to an Amazon Kinesis Firehose
stream:

{
 "sql": "SELECT * FROM 'my-topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "firehose": {

119

AWS IoT Developer Guide
Viewing Your Rules

 "roleArn": ""arn:aws:iam::123456789012:role/my-iot-role",
 "deliveryStreamName": "my-stream-name"
 }
 }]
}

The following is an example payload file with a rule that uses the Amazon Machine Learning
machinelearning_predict function to republish to a topic if the data in the MQTT payload is
classified as a 1.

{
 "sql": "SELECT * FROM 'iot/test' where machinelearning_predict('my-
model', 'arn:aws:iam::123456789012:role/my-iot-aml-role',
 *).predictedLabel=1",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "republish": {
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role",
 "topic": "my-mqtt-topic"
 }
 }]
}

Viewing Your Rules
Use the list-topic-rules command to list your rules:

aws iot list-topic-rules

Use the get-topic-rule command to get information about a rule:

aws iot get-topic-rule --rule-name my-rule

SQL Versions
The AWS IoT rules engine uses an SQL-like syntax to select data from MQTT messages. The SQL
statements are interpreted based on a SQL version specified with the awsIotSqlVersion property
in a JSON document that describes the rule. For more information about the structure of JSON rule
documents, see Creating a Rule (p. 117). The awsIotSqlVersion property allows you to specify
which version of the AWS IoT SQL rules engine you want to use. When a new version is deployed, you
can continue to use an older version or change your rule to use the new version. Your current rules will
continue to use the version with which they were created.

The following JSON example shows how to specify the SQL version using the awsIotSqlVersion
property:

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{

120

http://docs.aws.amazon.com/cli/latest/reference/iot/list-topic-rules.html
http://docs.aws.amazon.com/cli/latest/reference/iot/get-topic-rule.html

AWS IoT Developer Guide
What's New in the 2016-03-23 SQL Rules Engine Version

 "republish": {
 "topic": "my-mqtt-topic",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

Current supported versions are:

• 2015-10-08, the original SQL version built on 2015-10-08.

• 2016-03-23, the SQL version built on 2016-03-23.

• beta, the most recent beta SQL version. The use of this version might introduce breaking changes
to your rules.

What's New in the 2016-03-23 SQL Rules Engine
Version
• Fixes for selecting nested JSON objects.

• Fixes for array queries.

• Inter-object query support.

• Support to output an array as a top-level object.

• Adds the encode (value, encodingScheme) function, which can be applied on both JSON and non-
JSON format data.

Inter-Object Queries

This feature allows you to query for an attribute in a JSON object. For example, given the following
MQTT message:

{
 "e": [
 { "n": "temperature", "u": "Cel", "t": 1234, "v":22.5 },
 { "n": "light", "u": "lm", "t": 1235, "v":135 },
 { "n": "acidity", "u": "pH", "t": 1235, "v":7 }
]
}

And the following rule:

SELECT (SELECT v FROM e WHERE n = 'temperature') as temperature FROM 'my/
topic'

The rule will generate the following output:

{"temperature": [{"v":22.5}]}

Using the same MQTT message, given a slightly more complicated rule such as:

SELECT get((SELECT v FROM e WHERE n = 'temperature'),1).v as temperature FROM
 'topic'

121

AWS IoT Developer Guide
Troubleshooting a Rule

The rule will generate the following output:

{"temperature":22.5}

Output an Array as a Top-Level Object
This feature allows a rule to return an array as a top-level object. For example, given the following
MQTT message:

{
 "a": {"b":"c"},
 "arr":[1,2,3,4]
}

And the following rule:

SELECT VALUE arr FROM 'topic'

The rule will generate the following output:

[1,2,3,4]

Encode Function
Encodes the payload, which potentially might be non-JSON data, into its string representation based
on the specified encoding scheme.

Troubleshooting a Rule
If you are having an issue with your rules, you should enable CloudWatch Logs. By analyzing your
logs, you can determine whether the issue is authorization or whether, for example, a WHERE clause
condition did not match. For more information about using Amazon CloudWatch Logs, see Setting Up
CloudWatchLogs.

Deleting a Rule
When you are finished with a rule, you can delete it.

To delete a rule (AWS CLI)

Use the delete-topic-rule command to delete a rule:

aws iot delete-topic-rule --rule-name my-rule

AWS IoT Rule Actions
AWS IoT rule actions are used to specify what to do when a rule is triggered. You can define actions to
write data to a DynamoDB database or an Amazon Kinesis stream or to invoke a Lambda function, and
more. The following actions are supported:

122

http://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
http://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
http://docs.aws.amazon.com/cli/latest/reference/iot/delete-topic-rule.html

AWS IoT Developer Guide
CloudWatch Alarm Action

• cloudwatchAlarm to change a CloudWatch alarm.

• cloudwatchMetric to capture a CloudWatch metric.

• dynamoDB to write data to a DynamoDB database.

• dynamoDBv2 to write data to a DynamoDB database.

• elasticsearch to write data to a Amazon Elasticsearch Service domain.

• firehose to write data to an Amazon Kinesis Firehose stream.

• kinesis to write data to a Amazon Kinesis stream.

• lambda to invoke a Lambda function.

• s3 to write data to a Amazon S3 bucket.

• sns to write data as a push notification.

• sqs to write data to an SQS queue.

• republish to republish the message on another MQTT topic.

Note
The AWS IoT rules engine does not currently retry delivery for messages that fail to be
published to another service.

The following sections discuss each action in detail.

CloudWatch Alarm Action
The CloudWatch alarm action allows you to change CloudWatch alarm state. You can specify the state
change reason and value in this call. When creating an AWS IoT rule with a CloudWatch alarm action,
you must specify the following information:

roleArn
The IAM role that allows access to the CloudWatch alarm.

alarmName
The CloudWatch alarm name.

stateReason
Reason for the alarm change.

stateValue
The value of the alarm state. Acceptable values are OK, ALARM, INSUFFICIENT_DATA.

Note
Ensure the role associated with the rule has a policy granting the
cloudwatch:SetAlarmState permission.

The following JSON example shows how to define a CloudWatch alarm action in an AWS IoT rule:

{
 "rule": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "actions": [{
 "cloudwatchAlarm": {
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_cw",
 "alarmName": "IotAlarm",
 "stateReason": "Temperature stabilized.",
 "stateValue": "OK"
 }

123

AWS IoT Developer Guide
CloudWatch Metric Action

 }]
 }
}

For more information, see CloudWatch Alarms.

CloudWatch Metric Action
The CloudWatch metric action allows you to capture a CloudWatch metric. You can specify the metric
namespace, name, value, unit, and timestamp. When creating an AWS IoT rule with a CloudWatch
metric action, you must specify the following information:

roleArn
The IAM role that allows access to the CloudWatch metric.

metricNamespace
CloudWatch metric namespace name.

metricName
The CloudWatch metric name.

metricValue
The CloudWatch metric value.

metricUnit
The metric unit supported by CloudWatch.

metricTimestamp
An optional Unix timestamp.

Note
Ensure the role associated with the rule has a policy granting the
cloudwatch:PutMetricData permission.

The following JSON example shows how to define a CloudWatch metric action in an AWS IoT rule:

{
 "rule": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "actions": [{
 "cloudwatchMetric": {
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_cw",
 "metricNamespace": "IotNamespace",
 "metricName": "IotMetric",
 "metricValue": "1",
 "metricUnit": "Count",
 "metricTimestamp": "1456821314"
 }
 }]
 }
}

For more information, see CloudWatch Metrics.

DynamoDB Action
The dynamoDB action allows you to write all or part of an MQTT message to a DynamoDB table. When
creating a DynamoDB rule, you must specify the following information:

124

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CW_Support_For_AWS.html

AWS IoT Developer Guide
DynamoDB Action

hashKeyType
The data type of the hash key (also called the partition key). Valid values are: "STRING" or
"NUMBER".

hashKeyField
The name of the hash key (also called the partition key).

hashKeyValue
The value of the hash key.

rangeKeyType
Optional. The data type of the range key (also called the sort key). Valid values are: "STRING" or
"NUMBER".

rangeKeyField
Optional. The name of the range key (also called the sort key).

rangeKeyValue
Optional. The value of the range key.

operation
Optional. The type of operation to be performed. This follows the substitution template, so it can
be ${operation}, but the substitution must result in one of the following: INSERT, UPDATE, or
DELETE.

payloadField
Optional. The name of the field where the payload will be written. If this value is omitted, the
payload is written to payload field.

table
The name of the DynamoDB table.

roleARN
The IAM role that allows access to the DynamoDB table. At a minimum, the role must allow the
dynamoDB:PutItem IAM action.

The data written to the DynamoDB table is the result from the SQL statement of the rule. The
hashKeyValue and rangeKeyValue fields are usually composed of expressions (for example,
"${topic()}" or "${timestamp()}").

Note
Non-JSON data is written to DynamoDB as binary data. The DynamoDB console will display
the data as Base64-encoded text.
Ensure the role associated with the rule has a policy granting the dynamodb:PutItem
permission.

The following JSON example shows how to define a dynamoDB action in an AWS IoT rule:

{
 "rule": {
 "ruleDisabled": false,
 "sql": "SELECT * AS message FROM 'some/topic'",
 "description": "A test Dynamo DB rule",
 "actions": [{
 "dynamoDB": {
 "hashKeyField": "key",
 "roleArn": "arn:aws:iam::123456789012:role/
aws_iot_dynamoDB",
 "tableName": "my_ddb_table",
 "hashKeyValue": "${topic()}",
 "rangeKeyValue": "${timestamp()}",
 "rangeKeyField": "timestamp"
 }
 }]
 }

125

AWS IoT Developer Guide
DynamoDBv2 Action

}

For more information, see the Amazon DynamoDB Getting Started Guide.

DynamoDBv2 Action
The dynamoDBv2 action allows you to write all or part of an MQTT message to a DynamoDB table.
Each attribute in the payload is written to a separate column in the DynamoDB database. When
creating a DynamoDB rule, you must specify the following information:

roleARN
The IAM role that allows access to the DynamoDB table. At a minimum, the role must allow the
dynamoDB:PutItem IAM action.

tableName
The name of the DynamoDB table.

Note
The MQTT message payload must contain a root-level key that matches the table's primary
partition key and a root-level key that matches the table's primary sort key, if one is defined.

The data written to the DynamoDB table is the result from the SQL statement of the rule.

Note
Ensure the role associated with the rule has a policy granting the dynamodb:PutItem
permission.

The following JSON example shows how to define a dynamoDB action in an AWS IoT rule:

{
 "rule": {
 "ruleDisabled": false,
 "sql": "SELECT * AS message FROM 'some/topic'",
 "description": "A test DynamoDBv2 rule",
 "actions": [{
 "dynamoDBv2": {
 "roleArn": "arn:aws:iam::123456789012:role/
aws_iot_dynamoDBv2",
 "putItem": {
 "tableName": "my_ddb_table"
 }
 }
 }]
 }
}

For more information, see the Amazon DynamoDB Getting Started Guide.

Amazon ES Action
The elasticsearch action allows you to write data from MQTT messages to an Amazon
Elasticsearch Service domain. Data in Amazon ES can then be queried and visualized by using tools
like Kibana. When you create an AWS IoT rule with an elasticsearch action, you must specify the
following information:

endpoint
The endpoint of your Amazon ES domain.

126

http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/

AWS IoT Developer Guide
Firehose Action

index
The Amazon ES index where you want to store your data.

type
The type of document you are storing.

id
The unique identifier for each document.

Note
Ensure the role associated with the rule has a policy granting the es:ESHttpPut permission.

The following JSON example shows how to define an elasticsearch action in an AWS IoT rule:

{
 "rule":{
 "sql":"SELECT *, timestamp() as timestamp FROM 'iot/test'",
 "ruleDisabled":false,
 "actions":[
 {
 "elasticsearch":{
 "roleArn":"arn:aws:iam::123456789012:role/aws_iot_es",
 "endpoint":"https://my-endpoint",
 "index":"my-index",
 "type":"my-type",
 "id":"${newuuid()}"
 }
 }
]
 }
}

For more information, see the Amazon ES Developer Guide.

Firehose Action
A firehose action sends data from an MQTT message that triggered the rule to an Firehose stream.
When creating a rule with a firehose action, you must specify the following information:

deliveryStreamName
The Firehose stream to which to write the message data.

roleArn
The IAM role that allows access to Firehose.

separator
A character separator that will be used to separate records written to the firehose stream. Valid
values are: '\n' (newline), '\t' (tab), '\r\n' (Windows newline), ',' (comma).

Note
Make sure the role associated with the rule has a policy granting the firehose:PutRecord
permission.

The following JSON example shows how to create an AWS IoT rule with a firehose action:

{
 "rule": {
 "sql": "SELECT * FROM 'some/topic'",

127

http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/

AWS IoT Developer Guide
Kinesis Action

 "ruleDisabled": false,
 "actions": [{
 "firehose": {
 "roleArn": "arn:aws:iam::123456789012:role/
aws_iot_firehose",
 "deliveryStreamName": "my_firehose_stream"
 }
 }]
 }
}

For more information, see the Firehose Developer Guide.

Kinesis Action
The kinesis action allows you to write data from MQTT messages into an Amazon Kinesis stream.
When creating an AWS IoT rule with a kinesis action, you must specify the following information:

stream
The Amazon Kinesis stream to which to write data.

partitionKey
The partition key used to determine to which shard the data is written. The partition key is usually
composed of an expression (for example, "${topic()}" or "${timestamp()}").

Note
Ensure that the policy associated with the rule has the kinesis:PutRecord permission.

The following JSON example shows how to define a kinesis action in an AWS IoT rule:

{
 "rule": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "actions": [{
 "kinesis": {
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_kinesis",
 "streamName": "my_kinesis_stream",
 "partitionKey": "${topic()}"
 }
 }],
 }
}

For more information, see the Amazon Kinesis Developer Guide.

Lambda Action
A lambda action calls a Lambda function, passing in the MQTT message that triggered the
rule. In order for AWS IoT to call a Lambda function, you must configure a policy granting the
lambda:InvokeFunction permission to AWS IoT. Lambda functions use resource-based policies,
so you must attach the policy to the Lambda function itself. Use the following CLI command to attach a
policy granting lambda:InvokeFunction permission:

aws lambda add-permission --function-name "function_name" --region
 "region" --principal iot.amazonaws.com --source-arn arn:aws:iot:us-

128

http://docs.aws.amazon.com/firehose/latest/dev/
http://docs.aws.amazon.com/streams/latest/dev/introduction.html

AWS IoT Developer Guide
Republish Action

east-1:account_id:rule/rule_name --source-account "account_id" --statement-id
 "unique_id" --action "lambda:InvokeFunction"

The following are the arguments for the add-permission command:

--function-name
Name of the Lambda function whose resource policy you are updating by adding a new
permission.

--region
The AWS region of your account.

--principal
The principal who is getting the permission. This should be iot.amazonaws.com to allow AWS
IoT permission to call a Lambda function.

--source-arn
The ARN of the rule. You can use the get-topic-rule CLI command to get the ARN of a rule.

--source-account
The AWS account where the rule is defined.

--statement-id
A unique statement identifier.

--action
The Lambda action you want to allow in this statement. In this case, we want to allow AWS IoT to
invoke a Lambda function, so we specify lambda:InvokeFunction.

Note
If you add a permission for a AWS IoT principal without providing the source ARN, any AWS
account that creates a rule with your Lambda action can trigger rules to invoke your Lambda
function from AWS IoT

For more information, see Lambda Permission Model.

When creating a rule with a lambda action, you must specify the Lambda function to invoke when the
rule is triggered.

The following JSON example shows a rule that calls a Lambda function:

{
 "rule": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "actions": [{
 "lambda": {
 "functionArn": "arn:aws:lambda:us-
east-1:123456789012:function:myLambdaFunction"
 }
 }]
 }
}

For more information, see the AWS Lambda Developer Guide.

Republish Action
The republish action allows you to republish the message that triggered the role to another MQTT
topic. When creating a rule with a republish action, you must specify the following information:

129

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model
http://docs.aws.amazon.com/lambda/latest/dg/

AWS IoT Developer Guide
S3 Action

topic
The MQTT topic to which to republish the message.

roleArn
The IAM role that allows publishing to the MQTT topic.

Note
Make sure the role associated with the rule has a policy granting the iot:Publish
permission.

{
 "rule": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "actions": [{
 "republish": {
 "topic": "another/topic",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_republish"
 }
 }]
 }
}

S3 Action
A s3 action writes the data from the MQTT message that triggered the rule to an Amazon S3 bucket.
When creating an AWS IoT rule with an s3 action, you must specify the following information:

bucket
The Amazon S3 bucket to which to write data.

cannedacl
The Amazon S3 canned ACL that controls access to the object identified by the object key. For
more information, see S3 Canned ACLs.

key
The path to the file where the data is written. For example, if the value of this argument is
"${topic()}/${timestamp()}", the topic the message was sent to is "this/is/my/topic,", and the current
timestamp is 1460685389 the data will be written to a file called "1460685389" in the "this/is/my/
topic" folder on Amazon S3.

Note
Using a static key will result in a single file in Amazon S3 being overwritten for each
invocation of the rule. More common use cases are to use the message timestamp or
another unique message identifier, so that a new file will be saved in Amazon S3 for each
message received.

roleArn
The IAM role that allows access to the Amazon S3 bucket.

Note
Make sure the role associated with the rule has a policy granting the s3:PutObject
permission.

The following JSON example shows how to define an s3 action in an AWS IoT rule:

{

130

http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl

AWS IoT Developer Guide
SNS Action

 "rule": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "actions": [{
 "s3": {
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_s3",
 "bucketName": "my-bucket",
 "key": "${topic()}/${timestamp()}"
 }
 }]
 }
}

For more information, see the Amazon S3 Developer Guide.

SNS Action
A sns action sends the data from the MQTT message that triggered the rule as an SNS push
notification. When creating a rule with an sns action, you must specify the following information:

messageFormat
The message format. Accepted values are "JSON" and "RAW". The default value of the attribute is
"RAW". SNS uses this setting to determine if the payload should be parsed and relevant platform-
specific parts of the payload should be extracted.

roleArn
The IAM role that allows access to SNS.

targetArn
The SNS topic or individual device to which the push notification will be sent.

Note
Make sure the policy associated with the rule has the sns:Publish permission.

The following JSON example shows how to define an sns action in an AWS IoT rule:

{
 "rule": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "actions": [{
 "sns": {
 "targetArn": "arn:aws:sns:us-
east-1:123456789012:my_sns_topic",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_sns"
 }
 }]
 }
}

For more information, see the Amazon SNS Developer Guide.

SQS Action
A sqs action sends data from the MQTT message that triggered the rule to an SQS queue. When
creating a rule with an sqs action, you must specify the following information:

131

http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://docs.aws.amazon.com/sns/latest/dg/

AWS IoT Developer Guide
AWS IoT SQL Reference

queueUrl
The URL of the SQS queue to which to write the data.

useBase64
Set to true if you want the MQTT message data to be Base64-encoded before writing to the SQS
queue; otherwise, set to false.

roleArn
The IAM role that allows access to the SQS queue.

Note
Make sure the role associated with the rule has a policy granting the sqs:SendMessage
permission.

The following JSON example shows how to create an AWS IoT rule with an sqs action:

{
 "rule": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "actions": [{
 "sqs": {
 "queueUrl": "https://sqs.us-
east-1.amazonaws.com/123456789012/my_sqs_queue",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_sqs",
 "useBase64": false
 }
 }]
 }
}

For more information, see the Amazon SQS Developer Guide.

AWS IoT SQL Reference
In AWS IoT, rules are defined using an SQL-like syntax. SQL statements are composed of three types
of clauses:

SELECT
Required. Extracts information from the incoming payload and performs transformations.

FROM
Required. The MQTT topic filter from which the rule will receive messages.

WHERE
Optional. Adds conditional logic that determines if a rule is evaluated and its actions are executed.

An example SQL statement looks like this:

SELECT color AS rgb FROM 'a/b' WHERE temperature > 50

An example MQTT message (also called an incoming payload) looks like this:

{
 "color":"red",

132

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/

AWS IoT Developer Guide
Data Types

 "temperature":100
}

If this message is published on the 'a/b' topic, the rule is triggered and the SQL statement is
evaluated. The SQL statement extracts the value of the rgb property if the "temperature" property
is greater than 50. The WHERE clause specifies the condition temperature > 50. The AS keyword
renames the "color" property to "rgb". The result (also called an outgoing payload) looks like this:

{
 "rgb":"red"
}

This data is then forwarded to the rule's action, which sends the data for more processing. For more
information about rule actions, see AWS IoT Rule Actions (p. 122).

Data Types
The AWS IoT rules engine supports all JSON data types.

Supported Data Types

Type Meaning

Int A discrete Int. 34 digits maximum.

Decimal A Decimal with a precision of 34 digits, with a
minimum non-zero magnitude of 1E-999 and a
maximum magnitude 9.999…E999.

Note
Some functions return Decimals with
double precision rather than 34-digit
precision.

Boolean True or False.

String A UTF-8 string.

Array A series of values that don't have to have the
same type.

Object A JSON value consisting of a key and a value.
Keys must be strings. Values can be any type.

Null Null as defined by JSON. It's an actual value
that represents the absence of a value. You can
explicitly create a Null value by using the Null
keyword in your SQL statement. For example:
"SELECT NULL AS n FROM 'a/b'"

Undefined Not a value. This isn't explicitly representable
in JSON except by omitting the value. For
example, in the object {"foo": null}, the key
"foo" returns NULL, but the key "bar" returns
Undefined. Internally, the SQL language treats
Undefined as a value, but it isn't representable
in JSON, so when serialized to JSON, the results
are Undefined.

133

AWS IoT Developer Guide
Data Types

Type Meaning

 {"foo":null, "bar":undefined}

is serialized to JSON as:

 {"foo":null}

Similarly, Undefined is converted to an empty
string when serialized by itself. Functions called
with invalid arguments (for example, wrong
types, wrong number of arguments, and so on)
will return Undefined.

Conversions
The following table lists the results when a value of one type is converted to another type (when
a value of the incorrect type is given to a function). For example, if the absolute value function
"abs" (which expects an Int or Decimal) is given a String, it attempts to convert the String to a
Decimal, following these rules. In this case, 'abs("-5.123")' is treated as 'abs(-5.123)'.

Note
There are no attempted conversions to Array, Object, Null, or Undefined.

To Decimal

Argument Type Result

Int A Decimal with no decimal point.

Decimal The source value.

Boolean Undefined. (You can explicitly use the cast
function to transform true = 1.0, false = 0.0.)

String The SQL engine will try to parse the string as
a Decimal. We will attempt to parse strings
matching the regular expression:^-?\d+(\.\d
+)?((?i)E-?\d+)?$. "0", "-1.2", "5E-12" are all
examples of strings that would be automatically
converted to Decimals.

Array Undefined.

Object Undefined.

Null Null.

Undefined Undefined.

To Int

Argument Type Result

Int The source value.

Decimal The source value rounded to the nearest Int.

134

AWS IoT Developer Guide
Data Types

Argument Type Result

Boolean Undefined. (You can explicitly use the cast
function to transform true = 1.0, false = 0.0.)

String The SQL engine will try to parse the string as
a Decimal. We will attempt to parse strings
matching the regular expression:^-?\d+(\.\d
+)?((?i)E-?\d+)?$. "0", "-1.2", "5E-12" are
all examples of strings that would automatically
be converted to Decimals. We will attempt to
convert the String to a Decimal, and then
truncate the decimal places of that Decimal to
make an Int.

Array Undefined.

Object Undefined.

Null Null.

Undefined Undefined.

To Boolean

Argument Type Result

Int Undefined. (You can explicitly use the
cast function to transform 0 = False,
any_nonzero_value = True.)

Decimal Undefined. (You can explicitly use the
cast function to transform 0 = False,
any_nonzero_value = True.)

Boolean The original value.

String "true"=True and "false"=False (case-insensitive).
Other string values will be Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

To String

Argument Type Result

Int A string representation of the Int in standard
notation.

Decimal A string representing the Decimal value,
possibly in scientific notation.

Boolean "true" or "false". All lowercase.

135

AWS IoT Developer Guide
Operators

Argument Type Result

String The original value.

Array The Array serialized to JSON. The resultant
string will be a comma-separated list, enclosed
in square brackets. Strings will be quoted.
Decimals, Ints, Booleans and Null will not.

Object The object serialized to JSON. The resultant
string will be a comma-separated list of key-
value pairs and will begin and end with curly
braces. Strings will be quoted. Decimals,
Ints, Booleans and Null will not.

Null Undefined.

Undefined Undefined.

Operators
The following operators can be used in SELECT, FROM, and WHERE clauses.

AND operator

Returns a Boolean result. Performs a logical AND operation. Returns true if left and right operands are
true; returns false otherwise. Boolean operands or case-insensitive "true" or "false" string operands
are required.

Syntax: expression AND expression.

AND Operator

Left Operand Right Operand Output

Boolean Boolean Boolean. True if both operands are true; otherwise, false.

String/Boolean String/Boolean If all strings are "true" or "false" (case-insensitive), they
are converted to Boolean and processed normally as
boolean AND boolean.

Other Value Other Value Undefined.

OR operator

Returns a Boolean result. Performs a logical OR operation. Returns true if either the left or the right
operands are true; returns false otherwise. Boolean operands or case-insensitive "true" or "false"
string operands are required.

Syntax: expression OR expression.

OR Operator

Left Operand Right Operand Output

Boolean Boolean Boolean. True if either operand is true; otherwise, false.

136

AWS IoT Developer Guide
Operators

Left Operand Right Operand Output

String/Boolean String/Boolean If all strings are "true" or "false" (case-insensitive), they
are converted to Booleans and processed normally as
boolean OR boolean.

Other Value Other Value Undefined.

NOT operator

Returns a Boolean result. Performs a logical NOT operation. Returns true if the operand is false;
returns true otherwise. A boolean operand or case-insensitive "true" or "false" string operand is
required.

Syntax: NOT expression.

NOT Operator

Operand Output

Boolean Boolean. True if operand is false; otherwise,
true.

String If string is "true" or "false" (case-insensitive), it is
converted to the corresponding boolean value,
and the opposite value is returned.

Other Value Undefined.

> operator

Returns a Boolean result. Returns true if the left operand is greater than the right operand. Both
operands are converted to a Decimal, and then compared.

Syntax: expression > expression.

> Operator

Left Operand Right Operand Output

Int/Decimal Int/Decimal Boolean. True if the left operand is greater than the right
operand; otherwise, false.

String/Int/
Decimal

String/Int/
Decimal

If all strings can be converted to Decimal, then Boolean.
Returns true if the left operand is greater than the right
operand, otherwise false.

Other Value Undefined. Undefined.

>= operator

Returns a Boolean result. Returns true if the left operand is greater than or equal to the right operand.
Both operands are converted to a Decimal, and then compared.

Syntax: expression >= expression.

137

AWS IoT Developer Guide
Operators

>= Operator

Left Operand Right Operand Output

Int/Decimal Int/Decimal Boolean. True if the left operand is greater than or equal to
the right operand; otherwise, false.

String/Int/
Decimal

String/Int/
Decimal

If all strings can be converted to Decimal, then Boolean.
Returns true if the left operand is greater than or equal to
the right operand; otherwise, false.

Other Value Undefined. Undefined.

< operator
Returns a Boolean result. Returns true if the left operand is less than the right operand. Both
operands are converted to a Decimal, and then compared.

Syntax: expression < expression.

< Operator

Left Operand Right Operand Output

Int/Decimal Int/Decimal Boolean. True if the left operand is less than the right
operand; otherwise, false.

String/Int/
Decimal

String/Int/
Decimal

If all strings can be converted to Decimal, then Boolean.
Returns true if the left operand is less than the right
operand; otherwise, false.

Other Value Undefined Undefined

<= operator
Returns a Boolean result. Returns true if the left operand is less than or equal to the right operand.
Both operands are converted to a Decimal, and then compared.

Syntax: expression <= expression.

>= Operator

Left Operand Right Operand Output

Int/Decimal Int/Decimal Boolean. True if the left operand is less than or equal to
the right operand; otherwise, false.

String/Int/
Decimal

String/Int/
Decimal

If all strings can be converted to Decimal, then Boolean.
Returns true if the left operand is less than or equal to the
right operand; otherwise, false.

Other Value Undefined Undefined

<> operator
Returns a Boolean result. Returns true if both left and right operands are not equal; returns false
otherwise.

138

AWS IoT Developer Guide
Operators

Syntax: expression <> expression.

<> Operator

Left Operand Right Operand Output

Int Int True if left operand is not equal to right operand; otherwise,
false.

Decimal Decimal True if left operand is not equal to right operand; otherwise
false.Int is converted to Decimal before being compared.

String String True if left operand is not equal to right operand; otherwise,
false.

Array Array True if the items in each operand are not equal and not in
the same order; otherwise, false

Object Object True if the keys and values of each operand are not equal;
otherwise, false. The order of keys/values is unimportant.

Null Null False.

Any Value Undefined Undefined.

Undefined Any Value Undefined.

Mismatched Type Mismatched Type True.

= operator

Returns a Boolean result. Returns true if both left and right operands are equal; returns false
otherwise.

Syntax: expression = expression.

= Operator

Left Operand Right Operand Output

Int Int True if left operand is equal to right operand; otherwise,
false.

Decimal Decimal True if left operand is equal to right operand; otherwise,
false.Int is converted to Decimal before being compared.

String String True if left operand is equal to right operand; otherwise,
false.

Array Array True if the items in each operand are equal and in the same
order; otherwise, false.

Object Object True if the keys and values of each operand are equal;
otherwise, false. The order of keys/values is unimportant.

Any Value Undefined Undefined.

Undefined Any Value Undefined.

Mismatched Type Mismatched Type False.

139

AWS IoT Developer Guide
Operators

+ operator

The "+" is an overloaded operator. It can be used for string concatenation or addition.

Syntax: expression + expression.

+ Operator

Left Operand Right Operand Output

String Any Value Converts the right operand to a string and concatenates it
to the end of the left operand.

Any Value String Converts the left operand to a string and concatenates the
right operand to the end of the converted left operand.

Int Int Int value. Adds operands together.

Int/Decimal Int/Decimal Decimal value. Adds operands together.

Other Value Other Value Undefined.

- operator

Subtracts the right operand from the left operand.

Syntax: expression - expression.

- Operator

Left Operand Right Operand Output

Int Int Int value. Subtracts right operand from left operand.

Int/Decimal Int/Decimal Decimal value. Subtracts right operand from left operand.

String/Int/
Decimal

String/Int/
Decimal

If all strings convert to Decimals correctly, a Decimal
value is returned. Subtracts right operand from left operand.
Otherwise, returns Undefined.

Other Value Other value Undefined.

Other Value Other Value Undefined.

* operator

Multiplies the left operand by the right operand.

Syntax: expression * expression.

* Operator

Left Operand Right Operand Output

Int Int Int value. Multiplies the left operand by the right operand.

Int/Decimal Int/Decimal Decimal value. Multiplies the left operand by the right
operand.

140

AWS IoT Developer Guide
Functions

Left Operand Right Operand Output

String/Int/
Decimal

String/Int/
Decimal

If all strings convert to Decimals correctly, a Decimal
value is returned. Multiplies the left operand by the right
operand. Otherwise, returns Undefined.

Other Value Other value Undefined.

/ operator
Divides the left operand by the right operand.

Syntax: expression / expression.

/ Operator

Left Operand Right Operand Output

Int Int Int value. Divides the left operand by the right operand.

Int/Decimal Int/Decimal Decimal value. Divides the left operand by the right
operand.

String/Int/
Decimal

String/Int/
Decimal

If all strings convert to Decimals correctly, a Decimal
value is returned. Divides the left operand by the right
operand. Otherwise, returns Undefined.

Other Value Other value Undefined.

% operator
Returns the remainder from dividing the left operand by the right operand.

Syntax: expression % expression.

% Operator

Left Operand Right Operand Output

Int Int Int value. Returns the remainder from dividing the left
operand by the right operand.

String/Int/
Decimal

String/Int/
Decimal

If all Strings convert to Decimals correctly, a Decimal
value is returned. Returns the remainder from dividing the
left operand by the right operand. Otherwise, Undefined.

Other Value Other value Undefined.

Functions
You can use the following built-in functions in the SELECT or WHERE clauses of your SQL
expressions.

abs(Decimal)
Returns the absolute value of a number. Supported by SQL version 2015-10-8 and later.

141

AWS IoT Developer Guide
Functions

Example: abs(-5) returns 5.

Argument Type Result

Int Int, the absolute value of the argument.

Decimal Decimal, the absolute value of the
argument.

Boolean Undefined.

String Decimal. The result is the absolute value
of the argument. If the string cannot be
converted, the result is Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

accountid()
Returns the ID of the account that owns this rule as a String. Supported by SQL version 2015-10-8
and later.

Example:

accountid() = "123456789012"

acos(Decimal)
Returns the inverse cosine of a number in radians. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later.

Example: acos(0) = 1.5707963267948966

Argument Type Result

Int Decimal (with double precision), the
inverse cosine of the argument. Imaginary
results are returned as Undefined.

Decimal Decimal (with double precision), the
inverse cosine of the argument. Imaginary
results are returned as Undefined.

Boolean Undefined.

String Decimal, the inverse cosine of the
argument. If the string cannot be converted,
the result is Undefined. Imaginary results
are returned as Undefined.

Array Undefined.

Object Undefined.

142

AWS IoT Developer Guide
Functions

Argument Type Result

Null Undefined.

Undefined Undefined.

asin(Decimal)
Returns the inverse sine of a number in radians. Decimal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: asin(0) = 0.0

Argument Type Result

Int Decimal (with double precision), the
inverse sine of the argument. Imaginary
results are returned as Undefined.

Decimal Decimal (with double precision), the
inverse sine of the argument. Imaginary
results are returned as Undefined.

Boolean Undefined.

String Decimal (with double precision), the
inverse sine of the argument. If the
string cannot be converted, the result is
Undefined. Imaginary results are returned
as Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

atan(Decimal)
Returns the inverse tangent of a number in radians. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later.

Example: atan(0) = 0.0

Argument Type Result

Int Decimal (with double precision), the
inverse tangent of the argument. Imaginary
results are returned as Undefined.

Decimal Decimal (with double precision), the
inverse tangent of the argument. Imaginary
results are returned as Undefined.

Boolean Undefined.

143

AWS IoT Developer Guide
Functions

Argument Type Result

String Decimal, the inverse tangent of the
argument. If the string cannot be converted,
the result is Undefined. Imaginary results
are returned as Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

atan2(Decimal, Decimal)

Returns the angle, in radians, between the positive x-axis and the (x, y) point defined in the two
arguments. The angle is positive for counter-clockwise angles (upper half-plane, y > 0), and negative
for clockwise angles (lower half-plane, y < 0). Decimal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: atan2(1, 0) = 1.5707963267948966

Argument Type Argument Type Result

Int/Decimal Int/Decimal Decimal (with double precision), the angle
between the x-axis and the specified (x,y)
point.

Int/Decimal/String Int/Decimal/String Decimal, the inverse tangent of the point
described. If a string cannot be converted,
the result is Undefined.

Other Value Other Value Undefined.

bitand(Int, Int)

Performs a bitwise AND on the bit representations of the two Int(-converted) arguments. Supported
by SQL version 2015-10-8 and later.

Example: bitand(13, 5) = 5

Argument Type Argument Type Result

Int Int Int, a bitwise AND of the two arguments.

Int/Decimal Int/Decimal Int, a bitwise AND of the two arguments.
All non-Int numbers are rounded down to
the nearest Int. If any of the arguments
cannot be converted to an Int, the result is
Undefined.

Int/Decimal/String Int/Decimal/String Int, a bitwise AND of the two arguments.
All strings are converted to Decimals and

144

AWS IoT Developer Guide
Functions

Argument Type Argument Type Result

are rounded down to the nearest Int. If the
conversion fails, the result is Undefined.

Other Value Other Value Undefined.

bitor(Int, Int)

Performs a bitwise OR of the bit representations of the two arguments. Supported by SQL version
2015-10-8 and later.

Example: bitor(13, 5) = 8

Argument Type Argument Type Result

Int Int Int, the bitwise OR of the two arguments.

Int/Decimal Int/Decimal Int, the bitwise OR of the two arguments.
All non-Int numbers are rounded down to
the nearest Int. If the conversion fails, the
result is Undefined.

Int/Decimal/String Int/Decimal/String Int, the bitwise OR on the two arguments.
All strings are converted to Decimals and
rounded down to the nearest Int. If the
conversion fails, the result is Undefined.

Other Value Other Value Undefined.

bitxor(Int, Int)

Performs a bitwise XOR on the bit representations of the two Int(-converted) arguments. Supported
by SQL version 2015-10-8 and later.

Example:bitor(13, 5) = 8

Argument Type Argument Type Result

Int Int Int, a bitwise XOR on the two arguments.

Int/Decimal Int/Decimal Int, a bitwise XOR on the two arguments.
Non-Int numbers are rounded down to the
nearest Int.

Int/Decimal/String Int/Decimal/String Int, a bitwise XOR on the two arguments.
Strings are converted to Decimals and
rounded down to the nearest Int. If any
conversion fails, the result is Undefined.

Other Value Other Value Undefined.

145

AWS IoT Developer Guide
Functions

bitnot(Int)
Performs a bitwise NOT on the bit representations of the Int(-converted) argument. Supported by
SQL version 2015-10-8 and later.

Example: bitnot(13) = 2

Argument Type Result

Int Int, a bitwise NOT of the argument.

Decimal Int, a bitwise NOT of the argument. The
Decimal value is rounded down to the
nearest Int.

String Int, a bitwise NOT of the argument.
Strings are converted to Decimals and
rounded down to the nearest Int. If any
conversion fails, the result is Undefined.

Other Value Other value.

cast()
Converts a value from one data type to another. Cast behaves mostly like the standard conversions,
with the addition of the ability to cast numbers to/from Booleans. If we cannot determine how to cast
one type to another, the result is Undefined. Supported by SQL version 2015-10-8 and later. Format:
cast(value as type).

Example:

cast(true as Decimal) = 1.0

The following keywords may appear after "as" when calling cast:

Keyword Result

Decimal Casts value to Decimal.

Bool Casts value to Boolean.

Boolean Casts value to Boolean.

String Casts value to String.

Nvarchar Casts value to String.

Text Casts value to String.

Ntext Casts value to String.

varchar Casts value to String.

Int Casts value to Int.

Int Casts value to Int.

Casting rules:

146

AWS IoT Developer Guide
Functions

Cast to Decimal

Argument Type Result

Int A Decimal with no decimal point.

Decimal The source value.

Boolean true = 1.0, false = 0.0.

String Will try to parse the string as a Decimal.
We will attempt to parse strings matching
the regex: ^-?\d+(\.\d+)?((?i)E-?\d+)?$. "0",
"-1.2", "5E-12" are all examples of Strings
that would be converted automatically to
Decimals.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

Cast to Int

Argument Type Result

Int The source value.

Decimal The source value, rounded down to the
nearest Int.

Boolean true = 1.0, false = 0.0.

String Will try to parse the string as a Decimal.
We will attempt to parse strings matching
the regex: ^-?\d+(\.\d+)?((?i)E-?\d+)?$. "0",
"-1.2", "5E-12" are all examples of Strings
that would be converted automatically
to Decimals. Will attempt to convert the
string to a Decimal and round down to the
nearest Int.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

Cast to Boolean

Argument Type Result

Int 0 = False, any_nonzero_value = True.

Decimal 0 = False, any_nonzero_value = True.

147

AWS IoT Developer Guide
Functions

Argument Type Result

Boolean The source value.

String "true" = True and "false" = False (case-
insensitive). Other string values =
Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

Cast to String

Argument Type Result

Int A string representation of the Int, in
standard notation.

Decimal A string representing the Decimal value,
possibly in scientific notation.

Boolean "true" or "false", all lowercase.

String "true"=True and "false"=False (case-
insensitive). Other string values =
Undefined.

Array The array serialized to JSON. The result
string will be a comma-separated list
enclosed in square brackets. Strings are
quoted. Decimals, Ints, Booleans are
not.

Object The object serialized to JSON. The JSON
string will be a comma-separated list of
key-value pairs and will begin and end
with curly braces. Strings are quoted.
Decimals, Ints, Booleans and Null are
not.

Null Undefined.

Undefined Undefined.

ceil(Decimal)

Rounds the given Decimal up to the nearest Int. Supported by SQL version 2015-10-8 and later.

Examples:

ceil(1.2) = 2

ceil(11.2) = -1

148

AWS IoT Developer Guide
Functions

Argument Type Result

Int Int, the argument value.

Decimal Int, the Decimal value rounded up to the
nearest Int.

String Int. The string is converted to Decimal
and rounded up to the nearest Int. If the
string cannot be converted to a Decimal,
the result is Undefined.

Other Value Undefined.

chr(String)
Returns the ASCII character that corresponds to the given Int argument. Supported by SQL version
2015-10-8 and later.

Examples:

chr(65) = "A".

chr(49) = "1".

Argument Type Result

Int The character corresponding to the
specified ASCII value. If the argument
is not a valid ASCII value, the result is
Undefined.

Decimal The character corresponding to the
specified ASCII value. The Decimal
argument is rounded down to the nearest
Int. If the argument is not a valid ASCII
value, the result is Undefined.

Boolean Undefined.

String If the String can be converted to a
Decimal, it is rounded down to the nearest
Int. If the argument is not a valid ASCII
value, the result is Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Other Value Undefined.

clientid()
Returns the ID of the MQTT client sending the message, or Undefined if the message wasn't sent
over MQTT. Supported by SQL version 2015-10-8 and later.

149

AWS IoT Developer Guide
Functions

Example:

clientid() = "123456789012"

concat()

Concatenates arrays or strings. This function accepts any number of arguments and returns a String
or an Array. Supported by SQL version 2015-10-8 and later.

Examples:

concat() = Undefined.

concat(1) = "1".

concat([1, 2, 3], 4) = [1, 2, 3, 4].

concat([1, 2, 3], "hello") = [1, 2, 3, "hello"]

concat("con", "cat") = "concat"

concat(1, "hello") = "1hello"

concat("he","is","man") = "heisman"

concat([1, 2, 3], "hello", [4, 5, 6]) = [1, 2, 3, "hello", 4, 5, 6]

Number of Arguments Result

0 Undefined.

1 The argument is returned unmodified.

2+ If any argument is an Array, the result
is a single array containing all of the
arguments. If no arguments are Arrays,
and at least one argument is a String, the
result is the concatenation of the String
representations of all the arguments.
Arguments will be converted to Strings
using the standard conversions listed
above.
.

cos(Decimal)

Returns the cosine of a number in radians. Decimal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example:

cos(0) = 1.

Argument Type Result

Int Decimal (with double precision), the
cosine of the argument. Imaginary results
are returned as Undefined.

150

AWS IoT Developer Guide
Functions

Argument Type Result

Decimal Decimal (with double precision), the
cosine of the argument. Imaginary results
are returned as Undefined.

Boolean Undefined.

String Decimal (with double precision), the
cosine of the argument. If the string cannot
be converted to a Decimal, the result is
Undefined. Imaginary results are returned
as Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

cosh(Decimal)

Returns the hyperbolic cosine of a number in radians. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later.

Example: cosh(2.3) = 5.037220649268761.

Argument Type Result

Int Decimal (with double precision), the
hyperbolic cosine of the argument.
Imaginary results are returned as
Undefined.

Decimal Decimal (with double precision), the
hyperbolic cosine of the argument.
Imaginary results are returned as
Undefined.

Boolean Undefined.

String Decimal (with double precision), the
hyperbolic cosine of the argument. If the
string cannot be converted to a Decimal,
the result is Undefined. Imaginary results
are returned as Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

151

AWS IoT Developer Guide
Functions

encode(value, encodingScheme)

Use the encode function to encode the payload, which potentially might be non-JSON data, into its
string representation based on the encoding scheme. Supported by SQL version 2016-03-23 and later.

value
Any of the valid expressions, as defined in AWS IoT SQL Reference (p. 132). In addition, you
can specify * to encode the entire payload, regardless of whether it's in JSON format. If you supply
an expression, the result of the evaluation will first be converted to a string before it is encoded.

encodingScheme
A literal string representing the encoding scheme you want to use. Currently, only 'base64' is
supported.

endswith(String, String)

Returns a Boolean indicating whether the first String argument ends with the second String
argument. If either argument is Null or Undefined, the result is Undefined. Supported by SQL
version 2015-10-8 and later.

Example: endswith("cat","at") = true.

argument Type 1 argument Type 2 Result

String String True if the first argument ends in the
second argument; otherwise, false.

Other Value Other Value Both arguments are converted to Strings
using the standard conversion rules.
True if the first argument ends in the
second argument; otherwise, false. If either
argument is Null or Undefined, the result
is Undefined.

exp(Decimal)

Returns e raised to the Decimal argument. Decimal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: exp(1) = e.

Argument Type Result

Int Decimal (with double precision), e ^
argument.

Decimal Decimal (with double precision), e ^
argument.

String Decimal (with double precision), e
^ argument. If the String cannot be
converted to a Decimal, the result is
Undefined.

Other Value Undefined.

152

AWS IoT Developer Guide
Functions

get

Extracts a value from a collection-like type (Array, String, Object). No conversion will be applied to the
first argument. Conversion applies as documented in the table to the second argument. Supported by
SQL version 2015-10-8 and later.

Examples:

get(["a", "b", "c"], 1) = "b"

get({"a":"b"}, "a") = "b"

get("abc", 1) = "b"

argument Type 1 argument Type 2 Result

Array Any Type (converted to Int) The item at the 0-based index of the
Array provided by the second argument
(converted to Int). If the conversion is
unsuccessful, the result is Undefined.
If the index is outside the bounds of the
Array (negative or >= array.length), the
result is Undefined.

String Any Type (converted to Int) The character at the 0-based index of the
string provided by the second argument
(converted to Int). If the conversion is
unsuccessful, the result is Undefined. If
the index is outside the bounds of the string
(negative or >= string.length), the result is
Undefined.

Object String (no conversion is applied) The value stored in the first argument
object corresponding to the string key
provided as the second argument.

Other Value Any Value Undefined.

get_thing_shadow(thingName, roleARN)

Returns the shadow of the specified thing. Supported by SQL version 2016-03-23 and later.

thingName
String: The name of the thing whose shadow you want to retrieve.

roleArn
String: A role ARN with iot:GetThingShadow permission.

Example:

SELECT * from 'a/b' WHERE
get_thing_shadow("MyThing","arn:aws:iam::123456789012:role/
AllowsThingShadowAccess").state.reported.alarm = 'ON'

Hashing Functions

We provide the following hashing functions:

153

AWS IoT Developer Guide
Functions

• md2

• md5

• sha1

• sha224

• sha256

• sha384

• sha512

All hash functions expect one string argument. The result is the hashed value of that string. Standard
string conversions apply to non-string arguments. All hash functions are supported by SQL version
2015-10-8 and later.

Examples:

md2("hello") = "a9046c73e00331af68917d3804f70655"

md5("hello") = "5d41402abc4b2a76b9719d911017c592"

hsin(Decimal)

Returns the hyperbolic sine of a number. Decimal values are rounded to double precision before
function application. The result is a Decimal value of double precision. Supported by SQL version
2015-10-8 and later.

Example: sinh(2.3) = 4.936961805545957

Argument Type Result

Int Decimal (with double precision), the
hyperbolic sine of the argument.

Decimal Decimal (with double precision), the
hyperbolic sine of the argument.

Boolean Undefined.

String Decimal (with double precision), the
hyperbolic sine of the argument. If the string
cannot be converted to a Decimal, the
result is Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

htan(Decimal)

Returns the hyperbolic tangent of a number in radians. Decimal values are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later.

Example: tanh(2.3) = 0.9800963962661914

154

AWS IoT Developer Guide
Functions

Argument Type Result

Int Decimal (with double precision), the
hyperbolic tangent of the argument.

Decimal Decimal (with double precision), the
hyperbolic tangent of the argument.

Boolean Undefined.

String Decimal (with double precision), the
hyperbolic tangent of the argument. If the
string cannot be converted to a Decimal,
the result is Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

indexof(String, String)

Returns the first index (0-based) of the second argument as a substring in the first argument. Both
arguments are expected as strings. Arguments that are not strings are subjected to standard string
conversion rules. This function does not apply to arrays, only to strings. Supported by SQL version
2015-10-8 and later.

Examples:

indexof("abcd", "bc") = 1

isNull()

Returns whether the argument is the Null value. Supported by SQL version 2015-10-8 and later.

Examples:

isNull(5) = false.

isNull(Null) = true.

Argument Type Result

Int false

Decimal false

Boolean false

String false

Array false

Object false

155

AWS IoT Developer Guide
Functions

Argument Type Result

Null true

Undefined false

isUndefined()

Returns whether the argument is Undefined. Supported by SQL version 2015-10-8 and later.

Examples:

isUndefined(5) = false.

isNull(floor([1,2,3]))) = true.

Argument Type Result

Int false

Decimal false

Boolean false

String false

Array false

Object false

Null false

Undefined true

length(String)

Returns the number of characters in the provided string. Standard conversion rules apply to
non-String arguments. Supported by SQL version 2015-10-8 and later.

Examples:

length("hi") = 2

length(false) = 5

ln(Decimal)

Returns the natural logarithm of the argument. Decimal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: ln(e) = 1.

Argument Type Result

Int Decimal (with double precision), the
natural log of the argument.

156

AWS IoT Developer Guide
Functions

Argument Type Result

Decimal Decimal (with double precision), the
natural log of the argument.

Boolean Undefined.

String Decimal (with double precision), the
natural log of the argument. If the string
cannot be converted to a Decimal the
result is Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

log(Decimal)

Returns the base 10 logarithm of the argument. Decimal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-8 and later.

Example: log(100) = 2.0.

Argument Type Result

Int Decimal (with double precision), the base
10 log of the argument.

Decimal Decimal (with double precision), the base
10 log of the argument.

Boolean Undefined.

String Decimal (with double precision), the base
10 log of the argument. If the String
cannot be converted to a Decimal, the
result is Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

lower(String)

Returns the lowercase version of the given String. Non-string arguments are converted to Strings
using the standard conversion rules. Supported by SQL version 2015-10-8 and later.

Examples:

lower("HELLO") = "hello".

157

AWS IoT Developer Guide
Functions

lower(["HELLO"]) = "[\"hello\"]".

lpad(String, Int)

Returns the String argument, padded on the left side with the number of spaces specified by the
second argument. The Int argument must be between 0 and 1000. If the provided value is outside
of this valid range, the argument will be set to the nearest valid value (0 or 1000). Supported by SQL
version 2015-10-8 and later.

Examples:

lpad("hello", 2) = " hello".

lpad(1, 3) = " 1"

argument Type 1 argument Type 2 Result

String Int String, the provided String padded on
the left side with a number of spaces equal
to the provided Int.

String Decimal The Decimal argument will be rounded
down to the nearest Int and the String
is padded on the left with the specified
number of spaces.

String String The second argument will be converted
to a Decimal, which is rounded down
to the nearest Int, and the String is
padded with the specified number spaces
on the left. If the second argument cannot
be converted to an Int, the result is
Undefined.

Other Value Int/Decimal/String The first value will be converted to a
String using the standard conversions,
and then the LPAD function will be applied
on that String. If it cannot be converted,
the result is Undefined.

Any Value Other Value Undefined.

ltrim(String)

Removes all leading whitespace (tabs and spaces) from the provided String. Supported by SQL
version 2015-10-8 and later.

Example:

Ltrim(" h i ") = "hi ".

Argument Type Result

Int The String representation of the Int with
all leading whitespace removed.

158

AWS IoT Developer Guide
Functions

Argument Type Result

Decimal The String representation of the Decimal
with all leading whitespace removed.

Boolean The String representation of the
boolean ("true" or "false") with all leading
whitespace removed.

String The argument with all leading whitespace
removed.

Array The String representation of the Array
(using standard conversion rules) with all
leading whitespace removed.

Object The String representation of the Object
(using standard conversion rules) with all
leading whitespace removed.

Null Undefined.

Undefined Undefined.

machinelearning_predict(modelId)

Use the machinelearning_predict function to make predictions using the data from an MQTT
message based on an Amazon Machine Learning (Amazon ML) model. Supported by SQL version
2015-10-8 and later. The arguments for the machinelearning_predict function are:

modelId
The ID of the model against which to run the prediction. The real-time endpoint of the model must
be enabled.

roleArn
The IAM role that has a policy with machinelearning:Predict and
machinelearning:GetMLModel permissions and allows access to the model against which the
prediction is run.

record
The data to be passed into the Amazon ML Predict API. This should be represented as a single
layer JSON object. If the record is a multi-level JSON object, the record will be flattened by
serializing its values. For example, the following JSON:

{ "key1": {"innerKey1": "value1"}, "key2": 0}

would become:

{ "key1": "{\"innerKey1\": \"value1\"}", "key2": 0}

The function returns a JSON object with the following fields:

predictedLabel
The classification of the input based on the model.

details
Contains the following attributes:

159

AWS IoT Developer Guide
Functions

PredictiveModelType
The model type. Valid values are REGRESSION, BINARY, MULTICLASS.

Algorithm
The algorithm used by Amazon ML to make predictions. The value must be SGD.

predictedScores
Contains the raw classification score corresponding to each label.

predictedValue
The value predicted by Amazon ML.

mod(Decimal, Decimal)

Returns the remainder of the division of the first argument by the second argument. Supported by
SQL version 2015-10-8 and later. You can also use "%" as an infix operator for the same modulo
functionality. Supported by SQL version 2015-10-8 and later.

Example: mod(8, 3) = 2.

Left Operand Right Operand Output

Int Int Int, the first argument modulo the second
argument.

Int/Decimal Int/Decimal Decimal, the first argument modulo the
second operand.

String/Int/Decimal String/Int/Decimal If all strings convert to Decimals, the result
is the first argument modulo the second
argument; otherwise, Undefined.

Other Value Other Value Undefined.

nanvl(AnyValue, AnyValue)

Returns the first argument if it is a valid Decimal; otherwise, the second argument is returned.
Supported by SQL version 2015-10-8 and later.

Example: Nanvl(8, 3) = 8.

argument Type 1 argument Type 2 Output

Undefined Any Value The second argument.

Null Any Value The second argument.

Decimal (NaN) Any Value The second argument.

Decimal (not NaN) Any Value The first argument.

Other Value Any Value The first argument.

newuuid()

Returns a random 16-byte UUID. Supported by SQL version 2015-10-8 and later.

160

AWS IoT Developer Guide
Functions

Example: uuid() = 123a4567-b89c-12d3-e456-789012345000

numbytes(String)

Returns the number of bytes in the UTF-8 encoding of the provided string. Standard conversion rules
apply to non-String arguments. Supported by SQL version 2015-10-8 and later.

Examples:

numbytes("hi") = 4

numbytes("€") = 3

principal()

Returns the X.509 certificate fingerprint or thing name, depending on which endpoint, MQTT or HTTP,
received the request. Supported by SQL version 2015-10-8 and later.

Example:

principal() = "ba67293af50bf2506f5f93469686da660c7c844e7b3950bfb16813e0d31e9373"

power(Decimal, Decimal)

Returns the first argument raised to the second argument. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-8 and later. Supported by
SQL version 2015-10-8 and later.

Example: power(2, 5) = 32.0.

argument Type 1 argument Type 2 Output

Int/Decimal Int/Decimal A Decimal (with double precision), the first
argument raised to the second argument's
power.

Int/Decimal/String Int/Decimal/String A Decimal (with double precision), the first
argument raised to the second argument's
power. Any strings are converted to
Decimals. If any String fails to be
converted to Decimal, the result is
Undefined.

Other Value Other Value Undefined.

rand()

Returns a pseudorandom, uniformly distributed double between 0.0 and 1.0. Supported by SQL
version 2015-10-8 and later.

Example:

rand() = 0.8231909191640703

regexp_matches(String, String)

Returns whether the first argument contains a match for the second argument (regex).

161

AWS IoT Developer Guide
Functions

Example:

Regexp_matches("aaaa", "a{2,}") = true.

Regexp_matches("aaaa", "b") = false.

First argument:

Argument Type Result

Int The String representation of the Int.

Decimal The String representation of the
Decimal.

Boolean The String representation of the boolean
("true" or "false").

String The String.

Array The String representation of the Array
(using standard conversion rules).

Object The String representation of the Object
(using standard conversion rules).

Null Undefined.

Undefined Undefined.

Second argument:

Must be a valid regex expression. Non-string types are converted to String using the standard
conversion rules. Depending on the type, the resultant string may or may not be a valid regular
expression. If the (converted) argument is not valid regex, the result is Undefined.

Third argument:

Must be a valid regex replacement string. (Can reference capture groups.) Non-string types will be
converted to String using the standard conversion rules. If the (converted) argument is not a valid
regex replacement string, the result is Undefined.

regexp_replace(String, String, String)
Replaces all occurrences of the second argument (regular expression) in the first argument with the
third argument. Reference capture groups with "$". Supported by SQL version 2015-10-8 and later.

Example:

Regexp_replace("abcd", "bc", "x") = "axd".

Regexp_replace("abcd", "b(.*)d", "$1") = "ac".

First argument:

Argument Type Result

Int The String representation of the Int.

Decimal The String representation of the
Decimal.

162

AWS IoT Developer Guide
Functions

Argument Type Result

Boolean The String representation of the boolean
("true" or "false").

String The source value.

Array The String representation of the Array
(using standard conversion rules).

Object The String representation of the Object
(using standard conversion rules).

Null Undefined.

Undefined Undefined.

Second argument:

Must be a valid regex expression. Non-string types are converted to Strings using the standard
conversion rules. Depending on the type, the resultant string may or may not be a valid regular
expression. If the (converted) argument is not a valid regex expression, the result is Undefined.

Third argument:

Must be a valid regex replacement string. (Can reference capture groups.) Non-string types will be
converted to Strings using the standard conversion rules. If the (converted) argument is not a valid
regex replacement string, the result is Undefined.

regexp_substr(String, String)
Finds the first match of the 2nd parameter (regex) in the first parameter. Reference capture groups with
"$". Supported by SQL version 2015-10-8 and later.

Example:

regexp_substr("hihihello", "hi") => "hi"

regexp_substr("hihihello", "(hi)*") => "hihi".

First argument:

Argument Type Result

Int The String representation of the Int.

Decimal The String representation of the
Decimal.

Boolean The String representation of the boolean
("true" or "false").

String The String argument.

Array The String representation of the Array
(using standard conversion rules).

Object The String representation of the Object
(using standard conversion rules).

Null Undefined.

163

AWS IoT Developer Guide
Functions

Argument Type Result

Undefined Undefined.

Second argument:

Must be a valid regex expression. Non-string types are converted to Strings using the standard
conversion rules. Depending on the type, the resultant string may or may not be a valid regular
expression. If the (converted) argument is not a valid regex expression, the result is Undefined.

Third argument:

Must be a valid regex replacement string. (Can reference capture groups.) Non-string types will
be converted to String using the standard conversion rules. If the argument is not a valid regex
replacement string, the result is Undefined.

rpad(String, Int)
Returns the string argument, padded on the right side with the number of spaces specified in the
second argument. The Int argument must be between 0 and 1000. If the provided value is outside
of this valid range, the argument will be set to the nearest valid value (0 or 1000). Supported by SQL
version 2015-10-8 and later.

Examples:

rpad("hello", 2) = "hello ".

rpad(1, 3) = "1 ".

argument Type 1 argument Type 2 Result

String Int The String is padded on the
right side with a number of
spaces equal to the provided
Int.

String Decimal The Decimal argument
will be rounded down to the
nearest Int and the string is
padded on the right side with
a number of spaces equal to
the provided Int.

String String The second argument will
be converted to a Decimal,
which is rounded down to the
nearest Int. The String is
padded on the right side with
a number of spaces equal to
the Int value.

Other Value Int/Decimal/String The first value will be
converted to a String using
the standard conversions,
and the rpad function will be
applied on that String. If
it cannot be converted, the
result is Undefined.

164

AWS IoT Developer Guide
Functions

argument Type 1 argument Type 2 Result

Any Value Other Value Undefined.

round(Decimal)

Rounds the given Decimal to the nearest Int. If the Decimal is equidistant from two Int values (for
example, 0.5), the Decimal is rounded up. Supported by SQL version 2015-10-8 and later.

Example: Round(1.2) = 1.

Round(1.5) = 2.

Round(1.7) = 2.

Round(-1.1) = -1.

Round(-1.5) = -2.

Argument Type Result

Int The argument.

Decimal Decimal is rounded down to the nearest
Int.

String Decimal is rounded down to the nearest
Int. If the string cannot be converted to a
Decimal, the result is Undefined.

Other Value Undefined.

rtrim(String)

Removes all trailing whitespace (tabs and spaces) from the provided String. Supported by SQL
version 2015-10-8 and later.

Examples:

rtrim(" h i ") = " h i"

Argument Type Result

Int The String representation of the Int.

Decimal The String representation of the
Decimal.

Boolean The String representation of the boolean
("true" or "false").

Array The String representation of the Array
(using standard conversion rules).

Object The String representation of the Object
(using standard conversion rules).

165

AWS IoT Developer Guide
Functions

Argument Type Result

Null Undefined.

Undefined Undefined

sign(Decimal)
Returns the sign of the given number. When the sign of the argument is positive, 1 is returned. When
the sign of the argument is negative, -1 is returned. If the argument is 0, 0 is returned. Supported by
SQL version 2015-10-8 and later.

Examples:

sign(-7) = -1.

sign(0) = 0.

sign(13) = 1.

Argument Type Result

Int Int, the sign of the Int value.

Decimal Int, the sign of the Decimal value.

String Int, the sign of the Decimal value. The
string is converted to a Decimal value, and
the sign of the Decimal value is returned.
If the String cannot be converted to
a Decimal, the result is Undefined.
Supported by SQL version 2015-10-8 and
later.

Other Value Undefined.

sin(Decimal)
Returns the sine of a number in radians. Decimal arguments are rounded to double precision before
function application. Supported by SQL version 2015-10-8 and later.

Example: sin(0) = 0.0

Argument Type Result

Int Decimal (with double precision), the sine
of the argument.

Decimal Decimal (with double precision), the sine
of the argument.

Boolean Undefined.

String Decimal (with double precision), the
sine of the argument. If the string cannot
be converted to a Decimal, the result is
Undefined.

166

AWS IoT Developer Guide
Functions

Argument Type Result

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

substring(String, Int [, Int])

Expects a String followed by one or two Int values. For a String and a single Int argument, this
function returns the substring of the provided String from the provided Int index (0-based, inclusive)
to the end of the String. For a String and two Int arguments, this function returns the substring of
the provided String from the first Int index argument (0-based, inclusive) to the second Int index
argument (0-based, exclusive). Indices that are less than zero will be set to zero. Indices that are
greater than the String length will be set to the String length. For the three argument version, if the
first index is greater than (or equal to) the second index, the result is the empty String.

 If the arguments provided are not (String, Int), or (String, Int, Int>), the standard conversions
will be applied to the arguments to attempt to convert them into the correct types. If the types cannot be
converted, the result of the function is Undefined. Supported by SQL version 2015-10-8 and later.

Examples:

substring("012345", 0) = "012345".

substring("012345", 2) = "2345".

substring("012345", 2.745) = "2345".

substring(123, 2) = "3".

substring("012345", -1) = "012345".

substring(true, 1.2) = "rue".

substring(false, -2.411E247) = "false".

substring("012345", 1, 3) = "12".

substring("012345", -50, 50) = "012345".

substring("012345", 3, 1) = "".

sqrt(Decimal)

Returns the square root of a number. Decimal arguments are rounded to double precision before
function application. Supported by SQL version 2015-10-8 and later.

Example: sqrt(9) = 3.0.

Argument Type Result

Int The square root of the argument.

Decimal The square root of the argument.

167

AWS IoT Developer Guide
Functions

Argument Type Result

Boolean Undefined.

String The square root of the argument. If the
string cannot be converted to a Decimal,
the result is Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

startswith(String, String)
Returns Boolean, whether the first string argument starts with the second string argument. If either
argument is Null or Undefined, the result is Undefined. Supported by SQL version 2015-10-8 and
later.

Example:

startswith("ranger","ran") = true

argument Type 1 argument Type 2 Result

String String Whether the first string starts with the
second string.

Other Value Other Value Both arguments will be converted to
Strings using the standard conversion
rules. Returns whether the first string
starts with the second string. If either
argument is Null or Undefined, the result
is Undefined.

timestamp()
Returns the current Unix timestamp, as observed by the AWS IoT rules engine. Supported by SQL
version 2015-10-8 and later.

Example: timestamp() = 1472857716

topic(Decimal)
Returns the topic to which the message that triggered the rule was sent. If no parameter is specified,
the entire topic is returned. The Decimal parameter is used to specify a specific, one-based topic
segment. For the topic foo/bar/baz, topic(1) will return foo, topic(2) will return bar, and so on.
Supported by SQL version 2015-10-8 and later.

Examples:

topic() = "things/myThings/thingOne"

topic(1) = "things"

168

AWS IoT Developer Guide
Functions

tan(Decimal)
Returns the tangent of a number in radians. Decimal values are rounded to double precision before
function application. Supported by SQL version 2015-10-8 and later.

Example: tan(3) = -0.1425465430742778

Argument Type Result

Int Decimal (with double precision), the
tangent of the argument.

Decimal Decimal (with double precision), the
tangent of the argument.

Boolean Undefined.

String Decimal (with double precision), the
tangent of the argument. If the string cannot
be converted to a Decimal, the result is
Undefined.

Array Undefined.

Object Undefined.

Null Undefined.

Undefined Undefined.

traceid()
Returns the trace ID (UUID) of the MQTT message, or Undefined if the message wasn't sent over
MQTT. Supported by SQL version 2015-10-8 and later.

Example:

traceid() = "12345678-1234-1234-1234-123456789012"

trunc(Decimal, Int)
Truncates the first argument to the number of Decimal places specified by the second argument. If the
second argument is less than zero, it will be set to zero. If the second argument is greater than 34, it
will be set to 34. Trailing zeroes are stripped from the result. Supported by SQL version 2015-10-8 and
later.

Examples:

trunc(2.3, 0) = 2.

trunc(2.3123, 2 = 2.31.

trunc(2.888, 2) = 2.88.

(2.00, 5) = 2.

argument Type 1 argument Type 2 Result

Int Int The source value.

169

AWS IoT Developer Guide
Functions

argument Type 1 argument Type 2 Result

Int/Decimal Int/Decimal The first argument is truncated to the length
described by the second argument. The
second argument, if not an Int, will be
rounded down to the nearest Int.

Int/Decimal/String The first argument is truncated to the
length described by the second argument.
The second argument, if not an Int, will
be rounded down to the nearest Int.
Strings are converted to Decimal values.
If the string conversion fails, the result is
Undefined.

Other Value Undefined.

trim(String)

Removes all leading and trailing whitespace from the provided String. Supported by SQL version
2015-10-8 and later.

Example:

Trim(" hi ") = "hi"

Argument Type Result

Int The String representation of the Int with
all leading and trailing whitespace removed.

Decimal The String representation of the Decimal
with all leading and trailing whitespace
removed.

Boolean The String representation of the Boolean
("true" or "false") with all leading and trailing
whitespace removed.

String The String with all leading and trailing
whitespace removed.

Array The String representation of the Array
using standard conversion rules.

Object The String representation of the Object
using standard conversion rules.

Null Undefined.

Undefined Undefined.

upper(String)

Returns the uppercase version of the given String. Non-String arguments are converted to String
using the standard conversion rules. Supported by SQL version 2015-10-8 and later.

170

AWS IoT Developer Guide
SELECT Clause

Examples:

upper("hello") = "HELLO"

upper(["hello"]) = "[\"HELLO\"]"

SELECT Clause
The AWS IoT SELECT clause is essentially the same as the ANSI SQL SELECT clause, with some
minor differences.

You can use the SELECT clause to extract information from incoming MQTT messages. SELECT *
can be used to retrieve the entire incoming message payload. For example:

Incoming payload published on topic 'a/b': {"color":"red", "temperature":50}
SQL statement: SELECT * FROM 'a/b'
Outgoing payload: {"color":"red", "temperature":50}

If the payload is a JSON object, you can reference keys in the object. Your outgoing payload will
contain the key-value pair. For example:

Incoming payload published on topic 'a/b': {"color":"red", "temperature":50}
SQL statement: SELECT color FROM 'a/b'
Outgoing payload: {"color":"red"}

You can use the AS keyword to rename keys. For example:

Incoming payload published on topic 'a/b':{"color":"red", "temperature":50}
SQL:SELECT color AS my_color FROM 'a/b'
Outgoing payload: {"my_color":"red"}

You can select multiple items by separating them with a comma. For example:

Incoming payload published on topic 'a/b': {"color":"red", "temperature":50}
SQL: SELECT color as my_color, temperature as farenheit FROM 'a/b'
Outgoing payload: {"my_color":"red","farenheit":50}

You can select multiple items including '*' to add items to the incoming payload. For example:

Incoming payload published on topic 'a/b': {"color":"red", "temperature:50}
SQL: SELECT *, 15 as speed FROM 'a/b'
Outgoing payload: {"color":"red", "temperature:50, speed:15}"

You can use the "VALUE" keyword to produce outgoing payloads that are not JSON objects. You may
only select one item. For example:

Incoming payload published on topic 'a/b': {"color":"red", "temperature":50}
SQL: SELECT VALUE color FROM 'a/b'
Outgoing payload: "red"

You can use '.' syntax to drill into nested JSON objects in the incoming payload. For example:

Incoming payload published on topic 'a/b': {"color":
{"red":255,"green":0,"blue":0}, "temperature":50}

171

AWS IoT Developer Guide
FROM Clause

SQL: SELECT color.red as red_value FROM 'a/b'
Outgoing payload: {"red_value":255}

You can use functions (see Functions (p. 141)) to transform the incoming payload. Parentheses can
be used for grouping. For example:

Incoming payload published on topic 'a/b': {"color":"red", "temperature":50}
SQL: SELECT (temperature – 32) * 5 / 9 AS celsius, upper(color) as my_color
 FROM 'a/b'
Outgoing payload: {"celsius":10,"my_color":"RED"}

FROM Clause
The FROM clause subscribes your rule to a topic or topic filter. A topic filter allows you to subscribe to
a group of similar topics.

Example:

Incoming payload published on topic 'a/b': {temperature: 50}

Incoming payload published on topic 'a/c': {temperature: 50}

SQL: "SELECT temperature AS t FROM 'a/b'".

The rule is subscribed to 'a/b', so the incoming payload is passed to the rule, and the outgoing
payload (passed to the rule actions) is: {t: 50}. The rule is not subscribed to 'a/c', so the rule is
not triggered for the message published on 'a/c'.

You can use the # wildcard character to match any subpath in a topic filter:

Example:

Incoming payload published on topic 'a/b': {temperature: 50}.

Incoming payload published on topic 'a/c': {temperature: 60}.

Incoming payload published on topic 'a/e/f': {temperature: 70}.

Incoming payload published on topic 'b/x': {temperature: 80}.

SQL: "SELECT temperature AS t FROM 'a/#'".

The rule is subscribed to any topic beginning with 'a', so it is executed three times, sending outgoing
payloads of {t: 50} (for a/b), {t: 60} (for a/c), and {t: 70} (for a/e/f) to its actions. It is not
subscribed to 'b/x', so the rule will not be triggered for the {temperature: 80} message.

You can use the '+' character to match any one particular path element:

Example:

Incoming payload published on topic 'a/b': {temperature: 50}.

Incoming payload published on topic 'a/c': {temperature: 60}.

Incoming payload published on topic 'a/e/f': {temperature: 70}.

Incoming payload published on topic 'b/x': {temperature: 80}.

SQL: "SELECT temperature AS t FROM 'a/+'".

172

AWS IoT Developer Guide
WHERE Clause

The rule is subscribed to all topics with two path elements where the first element is 'a'. The rule is
executed for the messages sent to 'a/b' and 'a/c', but not 'a/e/f' or 'b/x'.

You can use functions and operators in the WHERE clause. In the WHERE clause, you cannot
reference any aliases created with the AS keyword in the SELECT. (The WHERE clause is evaluated
first, to determine if the SELECT clause is evaluated.)

WHERE Clause
The WHERE clause determines if a rule is evaluated for a message sent to an MQTT topic to which
the rule is subscribed. If the WHERE clause evaluates to true, the rule is evaluated; otherwise, the rule
is not evaluated.

Example:

Incoming payload published on a/b: {"color":"red", "temperature":40}.

SQL: SELECT color AS my_color FROM 'a/b' WHERE temperature > 50 AND color <>
'red'.

In this case, the rule would not be evaluated; there would be no outgoing payload; and rules actions
would not be triggered.

You can use functions and operators in the WHERE clause. However, you cannot reference any
aliases created with the AS keyword in the SELECT. (The WHERE clause is evaluated first, to
determine if SELECT is evaluated.)

Literals
You can directly specify objects in the SELECT and WHERE clauses of your rule SQL, which can be
useful for passing information. JSON object syntax is used (key-value pairs, comma-separated, where
keys are strings and values are JSON values, wrapped in curly brackets {}). For example:

Incoming payload published on topic a/b: "{lat_long: [47.606,-122.332]}"

SQL statement: SELECT {'latitude': get(lat_long, 0),'longitude':get(lat_long,
1)} as lat_long FROM 'a/b'

The resulting outgoing payload would be: {'latitude':47.606,'longitude':-122.332}.

You can also directly specify arrays in the SELECT and WHERE clauses of your rule SQL, which
allows you to group information. JSON syntax is used (wrap comma-separated items in square
brackets [] to create an array literal). For example:

Incoming payload published on topic a/b: {lat: 47.696, long: -122.332}

SQL statement: SELECT [lat,long] as lat_long FROM 'a/b'

The resulting output payload would be: {"lat_long": [47.606,-122.332]}.

Case Statements
Case statements can be used for branching execution, like a switch statement, or if/else statements.

Syntax:

CASE v WHEN t[1] THEN r[1]
 WHEN t[2] THEN r[2] ...

173

AWS IoT Developer Guide
JSON Extensions

 WHEN t[n] THEN r[n]
 ELSE r[e] END

The expression v is evaluated and matched for equality against each t[i] expression. If a match is
found, the corresponding r[i] expression becomes the result of the case statement. If there is more
than one possible match, the first match is selected. If there are no matches, the else statement's re
is used as the result. If there is no match and no else statement, the result of the case statement is
Undefined. For example:

Incoming payload published on topic a/b: {"color":"yellow"}

SQL statement: SELECT CASE color WHEN 'green' THEN 'go' WHEN 'yellow' THEN
'caution' WHEN 'red' THEN 'stop' ELSE 'you are not at a stop light' END as
instructions FROM 'a/b'

The resulting output payload would be: {"instructions":"caution"}.

Case statements require at least one WHEN clause. An ELSE clause is not required.

Note
If v is Undefined, the result of the case statement is Undefined.

JSON Extensions
You can use the following extensions to ANSI SQL syntax to make it easier to work with nested JSON
objects.

"." Operator

This operator accesses members in embedded JSON objects and functions identically to ANSI SQL
and JavaScript. For example:

SELECT foo.bar AS bar.baz FROM 'a/b'

* Operator

This functions in the same way as the * wildcard in ANSI SQL. It's used in the SELECT clause only
and creates a new JSON object containing the message data. If the message payload is not in JSON
format, * returns the entire message payload as raw bytes. For example:

SELECT * FROM 'a/b'

Applying a Function to an Attribute Value

The following is an example JSON payload that could be published by a device:

{
 "deviceid" : "iot123",
 "temp" : 54.98,
 "humidity" : 32.43,
 "coords" : {
 "latitude" : 47.615694,
 "longitude" : -122.3359976
 }
}

The following example applies a function to an attribute value in a JSON payload:

174

AWS IoT Developer Guide
Substitution Templates

SELECT temp, md5(deviceid) AS hashed_id FROM topic/#

The result of this query is the following JSON object:

{
 "temp": 54.98,
 "hashed_id": "e37f81fb397e595c4aeb5645b8cbbbd1"
}

Substitution Templates
You can use a substitution template to augment the JSON data returned when a rule is triggered
and AWS IoT performs an action. The syntax for a substitution template is ${expression}, where
expression can be any expression supported by AWS IoT in SELECT or WHERE clauses. For more
information about supported expressions, see AWS IoT SQL Reference (p. 132).

Substitution templates appear in the SELECT clause within a rule:

{
 "sql": "SELECT *, topic() AS topic FROM 'my/iot/topic'",
 "ruleDisabled": false,
 "actions": [{
 "republish": {
 "topic": "${topic()}/republish",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

If this rule is triggered by the following JSON:

{
 "deviceid" : "iot123",
 "temp" : 54.98,
 "humidity" : 32.43,
 "coords" : {
 "latitude" : 47.615694,
 "longitude" : -122.3359976
}

Here is the output of the rule:

{
 "coords":{
 "longitude":-122.3359976,
 "latitude":47.615694
 },
 "humidity":32.43,
 "temp":54.98,
 "deviceid":"iot123",
 "topic":"my/iot/topic"
}

175

AWS IoT Developer Guide
Device Shadows Data Flow

Device Shadows for AWS IoT

A thing shadow (sometimes referred to as a device shadow) is a JSON document that is used to store
and retrieve current state information for a thing (device, app, and so on). The Thing Shadows service
maintains a thing shadow for each thing you connect to AWS IoT. You can use thing shadows to get
and set the state of a thing over MQTT or HTTP, regardless of whether the thing is connected to the
Internet. Each thing shadow is uniquely identified by its name.

Contents

• Device Shadows Data Flow (p. 176)

• Device Shadows Documents (p. 182)

• Using Device Shadows (p. 185)

• Device Shadow RESTful API (p. 194)

• Device Shadow MQTT Topics (p. 197)

• Device Shadow Document Syntax (p. 203)

• Device Shadow Error Messages (p. 205)

Device Shadows Data Flow
The Thing Shadows services acts as an intermediary, allowing devices and applications to retrieve and
update thing shadows.

To illustrate how devices and applications communicate with the Thing Shadows service, this section
walks you through the use of the AWS IoT MQTT client and the AWS CLI to simulate communication
between an internet-connected light bulb, an application, and the Thing Shadows service.

The Thing Shadows service uses a number of MQTT topics to facilitate communication between
applications and devices. To see how this works, use the AWS IoT MQTT client to subscribe to the
following MQTT topics with QoS 1:

$aws/things/myLightBulb/shadow/update/accepted
The Thing Shadows service sends messages to this topic when an update is successfully made to
a thing shadow.

176

AWS IoT Developer Guide
Device Shadows Data Flow

$aws/things/myLightBulb/shadow/update/rejected
The Thing Shadows service sends messages to this topic when an update to a thing shadow is
rejected.

$aws/things/myLightBulb/shadow/update/delta
The Thing Shadows service sends messages to this topic when a difference is detected between
the reported and desired sections of a thing shadow.

$aws/things/myLightBulb/shadow/get/accepted
The Thing Shadows service sends messages to this topic when a request for a thing shadow is
made successfully.

$aws/things/myLightBulb/shadow/get/rejected
The Thing Shadows service sends messages to this topic when a request for a thing shadow is
rejected.

$aws/things/myLightBulb/shadow/delete/accepted
The Thing Shadows service sends messages to this topic when a thing shadow is deleted.

$aws/things/myLightBulb/shadow/delete/rejected
The Thing Shadows service sends messages to this topic when a request to delete a thing shadow
is rejected.

To learn more about all of the MQTT topics used by the Thing Shadows service, see Device Shadow
MQTT Topics (p. 197).

Note
We recommend you subscribe to the .../rejected topics to see any errors sent by the
Thing Shadows service.

When the light bulb comes online, it sends its current state to the Thing Shadows service by sending
an MQTT message to the $aws/things/myLightBulb/shadow/update topic.

To simulate this, use the AWS IoT MQTT client to publish the following message to the $aws/
things/myLightbulb/shadow/update topic:

{
 "state": {
 "reported": {
 "color": "red"
 }
 }
}

The Thing Shadows service responds by sending the following message to the $aws/things/
myLightBulb/shadow/update/accepted topic:

{
 "messageNumber": 4,
 "payload": {
 "state": {
 "reported": {
 "color": "red"
 }
 },
 "metadata": {
 "reported": {
 "color": {
 "timestamp": 1469564492
 }

177

AWS IoT Developer Guide
Device Shadows Data Flow

 }
 },
 "version": 1,
 "timestamp": 1469564492
 },
 "qos": 0,
 "timestamp": 1469564492848,
 "topic": "$aws/things/myLightBulb/shadow/update/accepted"
}

This message indicates the Thing Shadows service received the UPDATE request and updated the
thing shadow. If the thing shadow doesn't exist, it is created. Otherwise, the thing shadow is updated
with the data in the message. If you don't see a message published to $aws/things/myLightBulb/
shadow/update/accepted, check the subscription to $aws/things/myLightBulb/shadow/
update/rejected to see any error messages.

An application that interacts with the light bulb comes online and requests the light bulb's current state.
The application sends an empty message to the $aws/things/myLightBulb/shadow/get topic. To
simulate this, use the AWS IoT MQTT client to publish an empty message ("") to the $aws/things/
myLightBulb/shadow/get topic.

The Thing Shadows service responds by publishing the requested thing shadow to the $aws/things/
myLightBulb/shadow/get/accepted topic:

{
 "messageNumber": 1,
 "payload": {
 "state": {
 "reported": {
 "color": "red"
 }
 },
 "metadata": {
 "reported": {
 "color": {
 "timestamp": 1469564492
 }
 }
 },
 "version": 1,
 "timestamp": 1469564571
 },
 "qos": 0,
 "timestamp": 1469564571533,
 "topic": "$aws/things/myLightBulb/shadow/get/accepted"
}

If you don't see a message on the $aws/things/myLightBulb/shadow/get/accepted topic,
check the $aws/things/myLightBulb/shadow/get/rejected topic for any error messages.

The application displays this information to the user, and the user requests a change to the light bulb's
color (from red to green). To do this, the application publishes a message on the $aws/things/
myLightBulb/shadow/update topic:

{
 "state": {
 "desired": {

178

AWS IoT Developer Guide
Device Shadows Data Flow

 "color": "green"
 }
 }
}

To simulate this, use the AWS IoT MQTT client to publish the preceding message to the $aws/
things/myLightBulb/shadow/update topic.

The Thing Shadows service responds by sending a message to the $aws/things/myLightBulb/
shadow/update/accepted topic:

{
 "messageNumber": 5,
 "payload": {
 "state": {
 "desired": {
 "color": "green"
 }
 },
 "metadata": {
 "desired": {
 "color": {
 "timestamp": 1469564658
 }
 }
 },
 "version": 2,
 "timestamp": 1469564658
 },
 "qos": 0,
 "timestamp": 1469564658286,
 "topic": "$aws/things/myLightBulb/shadow/update/accepted"
}

and to the $aws/things/myLightBulb/shadow/update/delta topic:

{
 "messageNumber": 1,
 "payload": {
 "version": 2,
 "timestamp": 1469564658,
 "state": {
 "color": "green"
 },
 "metadata": {
 "color": {
 "timestamp": 1469564658
 }
 }
 },
 "qos": 0,
 "timestamp": 1469564658309,
 "topic": "$aws/things/myLightBulb/shadow/update/delta"
}

The light bulb is subscribed to the $aws/things/myLightBulb/shadow/update/delta topic, so
it receives the message, changes its color, and publishes its new state. To simulate this, use the AWS

179

AWS IoT Developer Guide
Device Shadows Data Flow

IoT MQTT client to publish the following message to the $aws/things/myLightbulb/shadow/
update topic to update the shadow state:

{
 "state":{
 "reported":{
 "color":"green"
 },
 "desired":null}
 }
}

In response, the Thing Shadows service sends a message to the $aws/things/myLightBulb/
shadow/update/accepted topic:

{
 "messageNumber": 6,
 "payload": {
 "state": {
 "reported": {
 "color": "green"
 },
 "desired": null
 },
 "metadata": {
 "reported": {
 "color": {
 "timestamp": 1469564801
 }
 },
 "desired": {
 "timestamp": 1469564801
 }
 },
 "version": 3,
 "timestamp": 1469564801
 },
 "qos": 0,
 "timestamp": 1469564801673,
 "topic": "$aws/things/myLightBulb/shadow/update/accepted"
}

The app requests the current state from the Thing Shadows service and displays the most recent state
data. To simulate this, run the following command:

aws iot-data get-thing-shadow --thing-name "myLightBulb" "output.txt" && cat
 "output.txt"

Note
On Windows, omit the && cat "output.txt", which displays the contents of output.txt
to the console. You can open the file in Notepad or any text editor to see the contents of the
thing shadow.

The Thing Shadows service returns the thing shadow document:

{

180

AWS IoT Developer Guide
Device Shadows Data Flow

 "state":{
 "reported":{
 "color":"green"
 }
 },
 "metadata":{
 "reported":{
 "color":{
 "timestamp":1469564801
 }
 }
 },
 "version":3,
 "timestamp":1469564864}

If you want to determine if a device is currently connected, include a connected setting in the thing
shadow and use an MQTT Last Will and Testament (LWT) message that will set the connected setting
to false if a device is disconnected due to error.

Note
Currently, LWT messages sent to AWS IoT reserved topics (topics that begin with $) are
ignored. To work around this issue, register an LWT message to a non-reserved topic and
create a rule that republishes the message on the reserved topic. The following example
shows how to create a republish rule that listens for a messages from the my/things/
myLightBulb/update topic and republishes it to $aws/things/myLightBulb/shadow/
update.

{
 "rule": {
 "ruleDisabled": false,
 "sql": "SELECT * FROM 'my/things/myLightBulb/update'",
 "description": "Turn my/things/ into $aws/things/",
 "actions": [{
 "republish": {
 "topic": "$$aws/things/myLightBulb/shadow/update",
 "roleArn": "arn:aws:iam::123456789012:role/
aws_iot_republish"
 }
 }]
 }
}

When a device connects, it registers an LWT that sets the connected setting to false:

{
 "reported":
 {
 "connected":"false"
 }
}

It also publishes a message on its update topic ($aws/things/myLightBulb/shadow/update),
setting its connected state to true:

{
 "reported":
 {

181

AWS IoT Developer Guide
Device Shadows Documents

 "connected":"true"
 }
}

When the device disconnects gracefully, it publishes a message on its update topic and sets its
connected state to false:

{
 "reported":
 {
 "connected":"false"
 }
}

If the device disconnects due to an error, its LWT message is posted automatically to the update topic.

To delete the thing shadow, publish an empty message to the $aws/things/myLightBulb/
shadow/delete topic. AWS IoT will respond by publishing a message to the $aws/things/
myLightBulb/shadow/delete/accepted topic:

{
 "messageNumber": 2,
 "payload": {
 "version": 3,
 "timestamp": 1469564968
 },
 "qos": 0,
 "timestamp": 1469564968492,
 "topic": "$aws/things/myLightBulb/shadow/delete/accepted"
}

Device Shadows Documents
The Thing Shadows service respects all rules of the JSON specification. Values, objects, and arrays
are stored in the thing shadow document.

Contents

• Document Properties (p. 182)

• Versioning of a Thing Shadow (p. 183)

• Client Token (p. 183)

• Example Document (p. 183)

• Empty Sections (p. 184)

• Arrays (p. 185)

Document Properties
A thing shadow document has the following properties:

state

desired
The desired state of the thing. Applications can write to this portion of the document to update
the state of a thing without having to directly connect to a thing.

182

AWS IoT Developer Guide
Versioning of a Thing Shadow

reported
The reported state of the thing. Things write to this portion of the document to report their new
state. Applications read this portion of the document to determine the state of a thing.

metadata
Information about the data stored in the state section of the document. This includes timestamps,
in Epoch time, for each attribute in the state section, which enables you to determine when they
were updated.

timestamp
Indicates when the message was transmitted by AWS IoT. By using the timestamp in the message
and the timestamps for individual attributes in the desired or reported section, a thing can
determine how old an updated item is, even if it doesn't feature an internal clock.

clientToken
A string unique to the device that enables you to associate responses with requests in an MQTT
environment.

version
The document version. Every time the document is updated, this version number is incremented.
Used to ensure the version of the document being updated is the most recent.

For more information, see Device Shadow Document Syntax (p. 203).

Versioning of a Thing Shadow
The Thing Shadows service supports versioning on every update message (both request and
response), which means that with every update of a thing shadow, the version of the JSON document
is incremented. This ensures two things:

• A client can receive an error if it attempts to overwrite a shadow using an older version number. The
client is informed it must resync before it can update a thing shadow.

• A client can decide not to act on a received message if the message has a lower version than the
version stored by the client.

In some cases, a client might bypass version matching by not submitting a version.

Client Token
You can use a client token with MQTT-based messaging to verify the same client token is contained in
a request and request response. This ensures the response and request are associated.

Example Document
Here is an example thing shadow document:

{
 "state" : {
 "desired" : {
 "color" : "RED",
 "sequence" : ["RED", "GREEN", "BLUE"]
 },
 "reported" : {
 "color" : "GREEN"
 }
 },

183

AWS IoT Developer Guide
Empty Sections

 "metadata" : {
 "desired" : {
 "color" : {
 "timestamp" : 12345
 },
 "sequence" : {
 "timestamp" : 12345
 }
 },
 "reported" : {
 "color" : {
 "timestamp" : 12345
 }
 }
 },
 "version" : 10,
 "clientToken" : "UniqueClientToken",
 "timestamp": 123456789
}

Empty Sections
A thing shadow document contains a desired section only if it has a desired state. For example, the
following is a valid state document with no desired section:

{
 "reported" : { "temp": 55 }
}

The reported section can also be empty:

{
 "desired" : { "color" : "RED" }
}

If an update causes the desired or reported sections to become null, the section is removed from
the document. To remove the desired section from a document (in response, for example, to a device
updating its state), set the desired section to null:

{
 "state": {
 "reported": {
 "color": "red"
 },
 "desired": null
 }
}

It is also possible a thing shadow document will not contain desired or reported sections. In that
case, the shadow document is empty. For example, this is a valid document:

{
}

184

AWS IoT Developer Guide
Arrays

Arrays
Thing shadows support arrays, but treat them as normal values in that an update to an array replaces
the whole array. It is not possible to update part of an array.

Initial state:

{
 "desired" : { "colors" : ["RED", "GREEN", "BLUE"] }
}

Update:

{
 "desired" : { "colors" : ["RED"] }
}

Final state:

{
 "desired" : { "colors" : ["RED"] }
}

Arrays can't have null values. For example, the following array is not valid and will be rejected.

{
 "desired" : {
 "colors" : [null, "RED", "GREEN"]
 }
}

Using Device Shadows
AWS IoT provides three methods for working with thing shadows:

UPDATE
Creates a thing shadow if it doesn't exist, or updates the content of a thing shadow with the data
provided in the request. The data is stored with timestamp information to indicate when it was
last updated. Messages are sent to all subscribers with the difference between desired or
reported state (delta). Things or apps that receive a message can perform an action based on
the difference between desired or reported states. For example, a device can update its state
to the desired state, or an app can update its UI to show the change in the device's state.

GET
Retrieves the latest state stored in the thing shadow (for example, during startup of a device to
retrieve configuration and the last state of operation). This method returns the full JSON document,
including metadata.

DELETE
Deletes a thing shadow, including all of its content. This removes the JSON document from the
data store. You can't restore a thing shadow you deleted, but you can create a new thing shadow
with the same name.

185

AWS IoT Developer Guide
Protocol Support

Protocol Support
These methods are supported through both MQTT and a RESTful API over HTTPS. Because MQTT
is a publish/subscribe communication model, AWS IoT implements a set of reserved topics. Things
or applications subscribe to these topics before publishing on a request topic in order to implement a
request–response behavior. For more information, see Device Shadow MQTT Topics (p. 197) and
Device Shadow RESTful API (p. 194).

Updating a Thing Shadow
You can update a thing shadow by using the UpdateThingShadow (p. 195) RESTful API or by
publishing to the /update (p. 197) topic. Updates affect only the fields specified in the request.

Initial state:

{
 "state": {
 "reported" : {
 "color" : { "r" :255, "g": 255, "b": 0 }
 }
 }
}

An update message is sent:

{
 "state": {
 "desired" : {
 "color" : { "r" : 10 },
 "engine" : "ON"
 }
 }
}

The device receives the desired state on the /update/delta topic that is triggered by the previous
/update message and then executes the desired changes. When finished, the device should confirm
its updated state through the reported section in the thing shadow JSON document.

Final state:

{
 "state": {
 "reported" : {
 "color" : { "r" : 10, "g" : 255, "b": 0 },
 "engine" : "ON"
 }
 }
}

Retrieving a Thing Shadow Document
You can retrieve a thing shadow by using the GetThingShadow (p. 195) RESTful API or by
subscribing and publishing to the /get (p. 200) topic. This retrieves the entire document plus the delta
between the desired or reported states.

186

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

AWS IoT Developer Guide
Retrieving a Thing Shadow Document

Example document:

{
 "state": {
 "desired": {
 "lights": {
 "color": "RED"
 },
 "engine": "ON"
 },
 "reported": {
 "lights": {
 "color": "GREEN"
 },
 "engine": "ON"
 }
 },
 "metadata": {
 "desired": {
 "lights": {
 "color": {
 "timestamp": 123456
 },
 "engine": {
 "timestamp": 123456
 }
 }
 },
 "reported": {
 "lights": {
 "color": {
 "timestamp": 789012
 }
 },
 "engine": {
 "timestamp": 789012
 }
 },
 "version": 10,
 "timestamp": 123456789
 }
}

Response:

{
 "state": {
 "desired": {
 "lights": {
 "color": "RED"
 },
 "engine": "ON"
 },
 "reported": {
 "lights": {
 "color": "GREEN"
 },
 "engine": "ON"

187

AWS IoT Developer Guide
Retrieving a Thing Shadow Document

 },
 "delta": {
 "lights": {
 "color": "RED"
 }
 }
 },
 "metadata": {
 "desired": {
 "lights": {
 "color": {
 "timestamp": 123456
 },
 "engine": {
 "timestamp": 123456
 }
 },
 "reported": {
 "lights": {
 "color": {
 "timestamp": 789012
 }
 },
 "engine": {
 "timestamp": 789012
 }
 },
 "delta": {
 "lights": {
 "color": {
 "timestamp": 123456
 }
 }
 }
 },
 "version": 10,
 "timestamp": 123456789
 }
}

Optimistic Locking

You can use the state document version to ensure you are updating the most recent version of a thing
shadow document. When you supply a version with an update request, the service rejects the request
with an HTTP 409 conflict response code if the current version of the state document does not match
the version supplied.

For example:

Initial document:

{
 "state" : {
 "desired" : { "colors" : ["RED", "GREEN", "BLUE"] }
 },
 "version" : 10
}

188

AWS IoT Developer Guide
Deleting Data

Update: (version doesn't match; request will be rejected)

{
 "state": {
 "desired": {
 "colors": [
 "BLUE"
]
 }
 },
 "version": 9
}

Result:

409 Conflict

Update: (version matches; this request will be accepted)

{
 "state": {
 "desired": {
 "colors": [
 "BLUE"
]
 }
 },
 "version": 10
}

Final state:

{
 "state": {
 "desired": {
 "colors": [
 "BLUE"
]
 }
 },
 "version": 11
}

Deleting Data
You can delete data from a thing shadow by publishing to the /update (p. 197) topic, setting the fields
to be deleted to null. Any field with a value of null is removed from the document.

Initial state:

{
 "state": {
 "desired" : {
 "lights": { "color": "RED" },
 "engine" : "ON"

189

AWS IoT Developer Guide
Deleting a Thing Shadow

 },
 "reported" : {
 "lights" : { "color": "GREEN" },
 "engine" : "OFF"
 }
 }
}

An update message is sent:

{
 "state": {
 "desired": null,
 "reported": {
 "engine": null
 }
 }
}

Final state:

{
 "state": {
 "reported" : {
 "lights" : { "color" : "GREEN" }
 }
 }
}

You can delete all data from a thing shadow by setting its state to null. For example, sending the
following message will delete all of the state data, but the thing shadow will remain.

{
 "state": null
}

The thing shadow still exists even if its state is null. The version of the thing shadow will be
incremented when the next update occurs.

Deleting a Thing Shadow
You can delete a thing shadow document by using the DeleteThingShadow (p. 196) RESTful API or
by publishing to the /delete (p. 201) topic.

Initial state:

{
 "state": {
 "desired" : {
 "lights": { "color": "RED" },
 "engine" : "ON"
 },
 "reported" : {
 "lights" : { "color": "GREEN" },
 "engine" : "OFF"

190

AWS IoT Developer Guide
Delta State

 }
 }
}

A message is sent to the /delete topic.

Final state:

 HTTP 404 - resource not found

Delta State
Delta state is a virtual type of state that contains the difference between the desired and reported
states. Fields in the desired section that are not in the reported section are included in the delta.
Fields that are in the reported section and not in the desired section are not included in the delta.
The delta contains metadata, and its values are equal to the metadata in the desired field. For
example:

{
 "state": {
 "desired": {
 "color": "RED",
 "state": "STOP"
 },
 "reported": {
 "color": "GREEN",
 "engine": "ON"
 },
 "delta": {
 "color": "RED",
 "state": "STOP"
 }
 },
 "metadata": {
 "desired": {
 "color": {
 "timestamp": 12345
 },
 "state": {
 "timestamp": 12345
 },
 "reported": {
 "color": {
 "timestamp": 12345
 },
 "engine": {
 "timestamp": 12345
 }
 },
 "delta": {
 "color": {
 "timestamp": 12345
 },
 "state": {
 "timestamp": 12345
 }
 }

191

AWS IoT Developer Guide
Observing State Changes

 },
 "version": 17,
 "timestamp": 123456789
 }
}

When nested objects differ, the delta contains the path all the way to the root.

{
 "state": {
 "desired": {
 "lights": {
 "color": {
 "r": 255,
 "g": 255,
 "b": 255
 }
 }
 },
 "reported": {
 "lights": {
 "color": {
 "r": 255,
 "g": 0,
 "b": 255
 }
 }
 },
 "delta": {
 "lights": {
 "color": {
 "g": 255
 }
 }
 }
 },
 "version": 18,
 "timestamp": 123456789
}

The Thing Shadows service calculates the delta by iterating through each field in the desired state
and comparing it to the reported state.

Arrays are treated like values. If an array in the desired section doesn't match the array in the
reported section, then the entire desired array is copied into the delta.

Observing State Changes
When a thing shadow is updated, messages are published on two MQTT topics:

• $aws/things/thing-name/shadow/update/accepted

• $aws/things/thing-name/shadow/update/delta

The message sent to the update/delta topic is intended for the thing whose state is being updated.
This message contains only the difference between the desired and reported sections of the thing
shadow document. Upon receiving this message, the thing decides whether to make the requested

192

AWS IoT Developer Guide
Message Order

change. If the thing's state is changed, it publishes its new current state to the $aws/things/thing-
name/shadow/update topic.

Devices and applications can subscribe to either of these topics to be notified when the state of the
document has changed.

Here is an example of that flow:

1. Device reports state.

2. The system updates the state document in its persistent data store.

3. The system publishes a delta message, which contains only the delta and is targeted at the
subscribed devices. Devices should subscribe to this topic to receive updates.

4. The thing shadow publishes an accepted message, which contains the entire received document,
including metadata. Applications should subscribe to this topic to receive updates.

Message Order
There is no guarantee that messages from the AWS IoT service will arrive at the device in any specific
order.

Initial state document:

{
 "state" : {
 "reported" : { "color" : "blue" }
 },
 "version" : 10,
 "timestamp": 123456777
}

Update 1:

{
 "state": { "desired" : { "color" : "RED" } },
 "version": 10,
 "timestamp": 123456777
}

Update 2:

{
 "state": { "desired" : { "color" : "GREEN" } },
 "version": 11 ,
 "timestamp": 123456778
}

Final state document:

{
 "state": {
 "reported": { "color" : "GREEN" }
 },
 "version": 12,
 "timestamp": 123456779

193

AWS IoT Developer Guide
Trim Device Shadow Messages

}

This results in two delta messages:

{
 "state": {
 "color": "RED"
 },
 "version": 11,
 "timestamp": 123456778
}

{
 "state": { "color" : "GREEN" },
 "version": 12,
 "timestamp": 123456779
}

The device might receive these messages out of order. Because the state in these messages is
cumulative, a device can safely discard any messages that contain a version number older than the
one it is tracking. If the device receives the delta for version 12 before version 11, it can safely discard
the version 11 message.

Trim Device Shadow Messages
To reduce the size of thing shadow messages sent to your device, define a rule that selects only the
fields your device needs and republishes the message on an MQTT topic to which your device is
listening.

The rule is specified in JSON and should look like the following:

{
 "sql": "SELECT state, version FROM '$aws/things/+/shadow/update/delta'",
 "ruleDisabled": false,
 "actions": [{
 "republish": {
 "topic": "${topic(2)}/delta",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

The SELECT statement determines which fields from the message will be republished to the specified
topic. A "+" wildcard is used to match all thing shadow names. The rule specifies that all matching
messages should be republished to the specified topic. In this case, the "topic()" function is used to
specify the topic on which to republish. topic(2) evaluates to the thing name in the original topic. For
more information about creating rules, see Rules.

Device Shadow RESTful API
A thing shadow exposes the following URI for updating state information:

https://endpoint/things/thingName/shadow

194

http://docs.aws.amazon.com/iot/latest/developerguide//iot-rules.html

AWS IoT Developer Guide
GetThingShadow

The endpoint is specific to your AWS account. To retrieve your endpoint, use the describe-endpoint
command. The format of the endpoint is as follows:

identifier.iot.region.amazonaws.com

API Actions

• GetThingShadow (p. 195)

• UpdateThingShadow (p. 195)

• DeleteThingShadow (p. 196)

GetThingShadow
Gets the thing shadow for the specified thing.

The response state document includes the delta between the desired and reported states.

Request

The request includes the standard HTTP headers plus the following URI:

HTTP GET https://endpoint/things/thingName/shadow

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: response state document

For more information, see Example Response State Document (p. 204).

Authorization

Retrieving a thing shadow requires a policy that allows the caller to perform the
iot:GetThingShadow action. The Thing Shadows service accepts two forms of authentication:
Signature Version 4 with IAM credentials or TLS mutual authentication with a client certificate.

The following is an example policy that allows a caller to retrieve a thing shadow:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iot:GetThingShadow",
 "Resource": ["arn:aws:iot:region:account:thing/thing"]
 }]
}

UpdateThingShadow
Updates the thing shadow for the specified thing.

Updates affect only the fields specified in the request state document. Any field with a value of null is
removed from the thing shadow.

195

http://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html

AWS IoT Developer Guide
DeleteThingShadow

Request

The request includes the standard HTTP headers plus the following URI and body:

HTTP POST https://endpoint/things/thingName/shadow
BODY: request state document

For more information, see Example Request State Document (p. 203).

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: response state document

For more information, see Example Response State Document (p. 204).

Authorization

Updating a thing shadow requires a policy that allows the caller to perform the
iot:UpdateThingShadow action. The Thing Shadows service accepts two forms of authentication:
Signature Version 4 with IAM credentials or TLS mutual authentication with a client certificate.

The following is an example policy that allows a caller to update a thing shadow:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iot:UpdateThingShadow",
 "Resource": ["arn:aws:iot:region:account:thing/thing"]
 }]
}

DeleteThingShadow
Deletes the thing shadow for the specified thing.

Request

The request includes the standard HTTP headers plus the following URI:

HTTP DELETE https://endpoint/things/thingName/shadow

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: Empty response state document

Authorization

Deleting a thing shadow requires a policy that allows the caller to perform the
iot:DeleteThingShadow action. The Thing Shadows service accepts two forms of authentication:
Signature Version 4 with IAM credentials or TLS mutual authentication with a client certificate.

196

AWS IoT Developer Guide
MQTT Pub/Sub Topics

The following is an example policy that allows a caller to delete a thing shadow:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iot:DeleteThingShadow",
 "Resource": ["arn:aws:iot:region:account:thing/thing"]
 }]
}

Device Shadow MQTT Topics
The Thing Shadows service uses reserved MQTT topics to enable applications and things to get,
update, or delete the state information for a thing (thing shadow). The names of these topics start with
$aws/things/thingName/shadow. Publishing and subscribing on thing shadow topics requires topic-
based authorization. AWS IoT reserves the right to add new topics to the existing topic structure. For
this reason, we recommend that you avoid wildcard subscriptions to shadow topics. For example, avoid
subscribing to topic filters like $aws/things/thingName/shadow/# because the number of topics
that match this topic filter might increase as AWS IoT introduces new shadow topics.

The following are the MQTT topics used for interacting with thing shadows.

Topics

• /update (p. 197)

• /update/accepted (p. 198)

• /update/documents (p. 198)

• /update/rejected (p. 199)

• /update/delta (p. 199)

• /get (p. 200)

• /get/accepted (p. 200)

• /get/rejected (p. 201)

• /delete (p. 201)

• /delete/accepted (p. 202)

• /delete/rejected (p. 202)

/update
A thing publishes a request state document to this topic to update the thing shadow:

$aws/things/thingName/shadow/update

AWS IoT responds by publishing to either /update/accepted (p. 198) or /update/rejected (p. 199).

For more information, see Request State Documents (p. 203).

Example Policy
The following is an example policy:

{

197

AWS IoT Developer Guide
/update/accepted

 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["iot:Publish"],
 "Resource": ["arn:aws:iot:region:account:topic/$aws/things/thingName/
shadow/update"]
 }]
}

/update/accepted
AWS IoT publishes a response state document to this topic when it accepts a change for the thing
shadow:

$aws/things/thingName/shadow/update/accepted

For more information, see Response State Documents (p. 204).

Example Policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
things/thingName/shadow/update/accepted"]
 }]
}

/update/documents
AWS IoT publishes a state document to this topic whenever an update to the shadow is successfully
performed:

$aws/things/thingName/shadow/update/documents

The JSON document will contain two primary nodes: previous and current. The previous node
will contain the contents of the full shadow document before the update was performed while current
will contain the full shadow document after the update is successfully applied. When the device
shadow is updated (created) for the first time, the previous node will contain null.

Example Policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",

198

AWS IoT Developer Guide
/update/rejected

 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
things/thingName/shadow/update/documents"]
 }]
}

/update/rejected
AWS IoT publishes an error response document to this topic when it rejects a change for the thing
shadow:

$aws/things/thingName/shadow/update/rejected

For more information, see Error Response Documents (p. 205).

Example Policy
The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
things/thingName/shadow/update/rejected"]
 }]
}

/update/delta
AWS IoT publishes a response state document to this topic when it accepts a change for the thing
shadow and the request state document contains different values for desired and reported states:

$aws/things/thingName/shadow/update/delta

For more information, see Response State Documents (p. 204).

Publishing Details

• A message published on update/delta includes only the desired attributes that differ between
the desired and reported sections. It contains all of these attributes, regardless of whether
these attributes were contained in the current update message or were already stored in AWS IoT.
Attributes that do not differ between the desired and reported sections are not included.

• If an attribute is in the reported section but has no equivalent in the desired section, it is not
included.

199

AWS IoT Developer Guide
/get

• If an attribute is in the desired section but has no equivalent in the reported section, it is not
included.

• If an attribute is deleted from the reported section but still exists in the desired section, it is
included.

Example Policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
things/thingName/shadow/update/delta"]
 }]
}

/get
A thing publishes to this topic to get the thing shadow:

$aws/things/thingName/shadow/get

AWS IoT responds by publishing to either /get/accepted (p. 200) or /get/rejected (p. 201).

Example Policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:region:account:topic/$aws/things/thingName/
shadow/get"]
 }]
}

/get/accepted
AWS IoT publishes a response state document to this topic when returning the thing shadow:

$aws/things/thingName/shadow/get/accepted

200

AWS IoT Developer Guide
/get/rejected

For more information, see Response State Documents (p. 204).

Example Policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
things/thingName/shadow/get/accepted"]
 }]
}

/get/rejected
AWS IoT publishes an error response document to this topic when it can't return the thing shadow:

$aws/things/thingName/shadow/get/rejected

For more information, see Error Response Documents (p. 205).

Example Policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
things/thingName/shadow/get/rejected"]
 }]
}

/delete
A thing publishes a document to this topic to delete a thing shadow:

$aws/things/thingName/shadow/delete

To delete a thing shadow, send a message to the delete topic. The content of the message is ignored.

AWS IoT responds by publishing to either /delete/accepted (p. 202) or /delete/rejected (p. 202).

201

AWS IoT Developer Guide
/delete/accepted

Example Policy

The following is an example policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": ["arn:aws:iot:region:account:topic filter/$aws/
things/thingName/shadow/delete"]
 }]
}

/delete/accepted
AWS IoT publishes a message to this topic when deleting a thing shadow:

$aws/things/thingName/shadow/delete/accepted

Example Policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
things/thingName/shadow/delete/accepted"]
 }]
}

/delete/rejected
AWS IoT publishes an error response document to this topic when it can't delete the thing shadow:

$aws/things/thingName/shadow/delete/rejected

For more information, see Error Response Documents (p. 205).

Example Policy

The following is an example of the required policy:

202

AWS IoT Developer Guide
Document Syntax

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": ["arn:aws:iot:region:account:topicfilter/$aws/
things/thingName/shadow/delete/rejected"]
 }]
}

Device Shadow Document Syntax
The Thing Shadows service uses the following documents in UPDATE, GET, and DELETE operations
using the RESTful API (p. 194) or MQTT Pub/Sub Messages (p. 197). For more information, see
Device Shadows Documents (p. 182).

Examples

• Request State Documents (p. 203)

• Response State Documents (p. 204)

• Error Response Documents (p. 205)

Request State Documents
Request state documents have the following format:

{
 "state": {
 "desired": {
 "attribute1": integer2,
 "attribute2": "string2",
 ...
 "attributeN": boolean2
 },
 "reported": {
 "attribute1": integer1,
 "attribute2": "string1",
 ...
 "attributeN": boolean1
 }
 }
 "clientToken": "token",
 "version": version
}

• state — Updates affect only the fields specified.

• clientToken — If used, you can verify that the request and response contain the same client
token.

• version — If used, the Thing Shadows service processes the update only if the specified version
matches the latest version it has.

203

AWS IoT Developer Guide
Response State Documents

Response State Documents
Response state documents have the following format:

{
 "state": {
 "desired": {
 "attribute1": integer2,
 "attribute2": "string2",
 ...
 "attributeN": boolean2
 },
 "reported": {
 "attribute1": integer1,
 "attribute2": "string1",
 ...
 "attributeN": boolean1
 },
 "delta": {
 "attribute3": integerX,
 "attribute5": "stringY"
 }
 },
 "metadata": {
 "desired": {
 "attribute1": {
 "timestamp": timestamp
 },
 "attribute2": {
 "timestamp": timestamp
 },
 ...
 "attributeN": {
 "timestamp": timestamp
 }
 },
 "reported": {
 "attribute1": {
 "timestamp": timestamp
 },
 "attribute2": {
 "timestamp": timestamp
 },
 ...
 "attributeN": {
 "timestamp": timestamp
 }
 }
 },
 "timestamp": timestamp,
 "clientToken": "token",
 "version": version
}

• state

• reported — Only present if a thing reported any data in the reported section and contains only
fields that were in the request state document.

204

AWS IoT Developer Guide
Error Response Documents

• desired — Only present if a thing reported any data in the desired section and contains only
fields that were in the request state document.

• metadata — Contains the timestamps for each attribute in the desired and reported sections so
that you can determine when the state was updated.

• timestamp — The Epoch date and time the response was generated by AWS IoT.

• clientToken — Present only if a client token was used when publishing valid JSON to the /
update topic.

• version — The current version of the document for the thing shadow shared in AWS IoT. It is
increased by one over the previous version of the document.

Error Response Documents
Error response documents have the following format:

{
 "code": error-code,
 "message": "error-message",
 "timestamp": timestamp,
 "clientToken": "token"
}

• code — An HTTP response code that indicates the type of error.

• message — A text message that provides additional information.

• timestamp — The date and time the response was generated by AWS IoT.

• clientToken — Present only if a client token was used when publishing valid JSON to the /
update topic.

For more information, see Device Shadow Error Messages (p. 205).

Device Shadow Error Messages
The Thing Shadows service publishes a message on the error topic (over MQTT) when an attempt
to change the state document fails. This message is only emitted as a response to a publish request
on one of the reserved $aws topics. If the client updates the document using the REST API, then it
receives the HTTP error code as part of its response, and no MQTT error messages are emitted.

HTTP Error Code Error Messages

400 (Bad Request) • Invalid JSON

• Missing required node: state

• State node must be an object

• Desired node must be an object

• Reported node must be an object

• Invalid version

• Invalid clientToken

• JSON contains too many levels of nesting; maximum is 6

• State contains an invalid node

401 (Unauthorized) • Unauthorized

205

AWS IoT Developer Guide
Error Messages

HTTP Error Code Error Messages

403 (Forbidden) • Forbidden

404 (Not Found) • Thing not found

409 (Conflict) • Version conflict

413 (Payload Too Large) • The payload exceeds the maximum size allowed

415 (Unsupported Media Type) • Unsupported documented encoding; supported encoding
is UTF-8

429 (Too Many Requests) • The Thing Shadow service will generate this error
message when there are more than 10 in-flight requests.

500 (Internal Server Error) • Internal service failure

206

AWS IoT Developer Guide
AWS Mobile SDK for Android

AWS IoT SDKs

Contents

• AWS Mobile SDK for Android (p. 207)

• Arduino Yún SDK (p. 207)

• AWS IoT Device SDK for Embedded C (p. 208)

• AWS Mobile SDK for iOS (p. 208)

• AWS IoT Device SDK for Java (p. 208)

• AWS IoT Device SDK for JavaScript (p. 208)

• AWS IoT Device SDK for Python (p. 209)

• Getting Started with AWS IoT on the Raspberry Pi and the AWS IoT Embedded C SDK (p. 209)

• Getting Started with AWS IoT on Raspberry Pi and the AWS IoT Device SDK for
JavaScript (p. 219)

The AWS IoT Device SDKs help you to easily and quickly connect your devices to AWS IoT. The AWS
IoT Device SDKs include open-source libraries, developer guides with samples, and porting guides so
that you can build innovative IoT products or solutions on your choice of hardware platforms.

AWS Mobile SDK for Android
The AWS SDK for Android contains a library, samples, and documentation for developers to build
connected mobile applications using AWS. This SDK also includes support for calling AWS IoT APIs.
For more information, see the following:

• AWS Mobile SDK for Android on GitHub

• AWS Mobile SDK for Android Readme

• AWS Mobile SDK for Android Samples

Arduino Yún SDK
The AWS IoT Arduino Yún SDK allows developers to connect their Arduino Yún-compatible boards
to AWS IoT. By connecting a device to AWS IoT, users can securely work with the message broker,

207

https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android/blob/master/README.md
https://github.com/awslabs/aws-sdk-android-samples

AWS IoT Developer Guide
AWS IoT Device SDK for Embedded C

rules, and thing shadows provided by AWS IoT and with other AWS services like AWS Lambda,
Amazon Kinesis, and Amazon S3. For more information, see the following:

• Arduino Yún SDK on GitHub

• Arduino Yún SDK Readme

AWS IoT Device SDK for Embedded C
The AWS IoT Device SDK for Embedded C is a collection of C source files that can be used in
embedded applications to securely connect to the AWS IoT platform. It includes transport clients, TLS
implementations, and examples for their use. It also supports AWS IoT-specific features such as an
API to access the Thing Shadows service. It is distributed as source code and is intended to be built
into customer firmware along with application code, other libraries, and RTOS. For more information
see the following:

• AWS IoT Device SDK for Embedded C GitHub

• AWS IoT Device SDK for Embedded C Readme

• AWS IoT Device SDK for Embedded C Porting Guide

AWS Mobile SDK for iOS
The AWS SDK for iOS is an open-source software development kit, distributed under an Apache
Open Source license. The SDK for iOS provides a library, code samples, and documentation to help
developers build connected mobile applications using AWS. This SDK also includes support for calling
the AWS IoT API.

• AWS SDK for iOS on GitHub

• AWS SDK for iOS Readme

• AWS SDK for iOS Samples

AWS IoT Device SDK for Java
The AWS IoT Device SDK for Java enables Java developers to access the AWS IoT platform through
MQTT or MQTT over the WebSocket protocol. The SDK is built with AWS IoT thing shadow support,
providing access to thing shadows using HTTP methods, including GET, UPDATE, and DELETE. It
also supports a simplified thing shadow access model, which allows developers to exchange data with
thing shadows by just using getter and setter methods without having to serialize or deserialize any
JSON documents. For more information, see the following:

• AWS IoT Device SDK for Java on GitHub

• AWS IoT Device SDK for Java readme

AWS IoT Device SDK for JavaScript
The aws-iot-device-sdk.js package allows developers to write JavaScript applications that access AWS
IoT using MQTT or MQTT over the WebSocket protocol. It can be used in Node.js environments and
browser applications. For more information, see the following:

208

https://github.com/aws/aws-iot-device-sdk-arduino-yun
https://github.com/aws/aws-iot-device-sdk-arduino-yun/blob/master/README.md
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C/blob/master/README.md
https://github.com/aws/aws-iot-device-sdk-embedded-C/blob/master/PortingGuide.md
https://github.com/aws/aws-sdk-ios
https://github.com/aws/aws-sdk-ios/blob/master/README.md
https://github.com/aws/aws-sdk-ios/blob/master/README.md#iot-sample-swift
https://github.com/aws/aws-iot-device-sdk-java
https://github.com/aws/aws-iot-device-sdk-java/blob/master/README.md

AWS IoT Developer Guide
AWS IoT Device SDK for Python

• AWS IoT Device SDK for JavaScript on GitHub

• AWS IoT Device SDK for JavaScript readme

AWS IoT Device SDK for Python
The AWS IoT Device SDK for Python allows developers to write Python scripts to use their devices to
access the AWS IoT platform through MQTT or MQTT over the WebSocket protocol. By connecting
their devices to AWS IoT, users can securely work with the message broker, rules, and thing shadows
provided by AWS IoT and with other AWS services like AWS Lambda, Amazon Kinesis, and Amazon
S3, and more.

• AWS IoT Device SDK for Python on GitHub

• AWS IoT Device SDK for Python readme

Getting Started with AWS IoT on the Raspberry Pi
and the AWS IoT Embedded C SDK

This guide provides step-by-step instructions for connecting your Raspberry Pi to the AWS IoT platform
and setting it up for use with the AWS IoT Embedded C SDK. After following the steps in this guide,
you will be able to get connected to the AWS IoT platform and run sample apps included with the AWS
IoT Embedded C SDK.

Prerequisites
• A fully set up Raspberry Pi board with Internet access

For information about setting up your Raspberry Pi, see Raspberry Pi Quickstart Guide.

• Chrome or Firefox (Iceweasel) browser

For information about installing Iceweasel, see the instructions on the Embedded Linux wiki.

In this guide, the following hardware and software are used:

• Raspberry Pi 2 Model B

• Raspbian Wheezy

• Iceweasel browser

Connecting Your Raspberry Pi

Sign in to the AWS IoT Console

Turn on your Raspberry Pi and confirm you have an Internet connection.

Sign in to the AWS Management Console and open the AWS IoT console at https://aws.amazon.com/
iot. On the Welcome page, choose Get started with AWS IoT.

209

https://github.com/aws/aws-iot-device-sdk-js
https://github.com/aws/aws-iot-device-sdk-js/blob/master/README.md
https://github.com/aws/aws-iot-device-sdk-python
https://github.com/aws/aws-iot-device-sdk-python/blob/master/README.rst
https://www.raspberrypi.org/help/quick-start-guide/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://www.raspberrypi.org/
https://www.raspberrypi.org/downloads/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://aws.amazon.com/iot
https://aws.amazon.com/iot

AWS IoT Developer Guide
Connecting Your Raspberry Pi

If this is your first time using the AWS IoT console, you will see two buttons: Get Started and Start
interactive tutorial.

Choose Get Started. The following page should appear.

210

AWS IoT Developer Guide
Connecting Your Raspberry Pi

If you don't see a blue banner with Create a thing, Create a rule, Create a certificate, and Create a
policy buttons, choose the Create a resource button:

Create and Attach a Thing (Device)

A thing represents a device whose status or data is stored in the AWS IoT cloud. The Thing Shadows
service maintains a thing shadow for each device connected to AWS IoT. Thing shadows allow you to
access and modify thing state data.

Choose Create a thing, type a name for the thing, and then choose Create:

211

AWS IoT Developer Guide
Connecting Your Raspberry Pi

In addition to a confirmation message, the View thing button will be displayed:

212

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose View thing to display information about your thing:

213

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose the Connect a device button to download a key pair and a certificate generated by AWS IoT:

214

AWS IoT Developer Guide
Connecting Your Raspberry Pi

On the Connect a device page, select the SDK to use, and then choose Generate certificate and
policy:

215

AWS IoT Developer Guide
Connecting Your Raspberry Pi

This will generate an X.509 certificate and key pair; activate the X.509 certificate; and create an AWS
IoT policy and attach it to the certificate.

The following page will be displayed:

Create a working directory called deviceSDK where your files will be stored. Choose the links to
download your public and private keys and certificate and save them in the deviceSDK directory.

Choose Confirm & start connecting. The following page will be displayed:

216

AWS IoT Developer Guide
Connecting Your Raspberry Pi

There are two versions of the AWS IoT Embedded C SDK: OpenSSL and mbed TLS. Choose
the OpenSSL link. This will download the AWS IoT AWS IoT Device SDK for C in a tarball
(linux_mqtt_openssl-latest.tar). Save it in your deviceSDK directory. In a terminal window,
type the following command to extract the tarball into your deviceSDK directory:

`tar -xvf linux_mqtt_openssl-latest.tar`

Set Up the Runtime Environment for the AWS IoT Embedded
C SDK

Before you can use the AWS IoT Embedded C SDK, you must install the OpenSSL library on
Raspberry Pi. . In a terminal window, run sudo apt-get install libssl-dev.

Sample App Configuration

The AWS IoT Embedded C SDK includes sample apps for you to try. For simplicity, we are going to
run subscribe_publish_sample. Copy your certificate and private key into the deviceSDK/certs
directory. Download a root CA certificate here. Copy the root CA text from the browser, paste it into a
file, and then copy it into the deviceSDK/certs directory.

217

https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Navigate to the deviceSDK/sample_apps/subscribe_publish_sample directory. You will need
to configure your personal endpoint, private key, and certificate. If you have access to a machine
with the AWS CLI installed, you can use the aws iot describe-endpoint command to find your
personal endpoint URL. Otherwise, go to the AWS IoT console, double-click MyNewThing, and copy
everything after "https://" including ".com" from REST API endpoint.

Open the aws_iot_config.h file and update the values for the following:

AWS_IOT_MQTT_HOST
Your personal endpoint.

AWS_IOT_MY_THING_NAME
Your thing name.

AWS_IOT_ROOT_CA_FILENAME
Your root CA certificate.

AWS_IOT_CERTIFICATE_FILENAME
Your certificate.

AWS_IOT_PRIVATE_KEY_FILENAME
Your private key.

Run Sample Applications

Compile the subscribe_publish_sample_app using the included makefile.

make -f Makefile

This will generate an executable file.

218

AWS IoT Developer Guide
AWS IoT Device SDK for JavaScript

Now run the subscribe_publish_sample_app. You should see output similar to the following:

Your Raspberry Pi is now connected to AWS IoT using the AWS IoT Device SDK for C.

Getting Started with AWS IoT on Raspberry Pi
and the AWS IoT Device SDK for JavaScript

This guide provides step-by-step instructions for connecting your Raspberry Pi to the AWS IoT platform
and setting it up for use with the AWS IoT Device SDK for JavaScript. After following the steps in this
guide, you will be able to get connected to the AWS IoT platform and run sample apps included in the
SDK.

Prerequisites
• A fully set up Raspberry Pi board with Internet access

219

AWS IoT Developer Guide
Connecting Your Raspberry Pi

For information about setting up your Raspberry Pi, see the Raspberry Pi Quickstart Guide.

• Chrome or Firefox (Iceweasel) browser

For information about installing Iceweasel, see the instructions on the Embedded Linux wiki.

In this guide, the following hardware and software are used:

• Raspberry Pi 2 Model B

• Raspbian Jessie

• Iceweasel browser

Connecting Your Raspberry Pi

Sign in to the AWS IoT Console

Turn on your Raspberry Pi and confirm you have an Internet connection.

Sign in to the AWS Management Console and open the AWS IoT console at https://aws.amazon.com/
iot. On the Welcome page, choose Get started with AWS IoT:

If this is your first time using the AWS IoT console, you will see two buttons: Get Started and Start
Interactive Tutorial.

220

https://www.raspberrypi.org/help/quick-start-guide/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://www.raspberrypi.org/
https://www.raspberrypi.org/downloads/raspbian/
http://elinux.org/RPi_IceWeasel#Installing_the_software
https://aws.amazon.com/iot
https://aws.amazon.com/iot

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose Get Started. The following page should appear.

If you don't see a blue banner with Create a thing, Create a rule, Create a certificate, and Create a
policy buttons, choose the Create a resource button:

221

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Create and Attach a Thing (Device)

A thing represents a device whose status or data is stored in the AWS IoT cloud. The Thing Shadow
service maintains a thing shadow for each device connected to AWS IoT. Thing shadows allow you to
access and modify thing state data.

Choose Create a thing, type in a name for the thing, and then choose Create:

222

AWS IoT Developer Guide
Connecting Your Raspberry Pi

In addition to a confirmation message, the View thing button will be displayed:

223

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose View thing to display information about your thing:

224

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Choose the Connect a device button to download a key pair and a certificate generated by AWS IoT :

225

AWS IoT Developer Guide
Connecting Your Raspberry Pi

On the Connect a device page, select the NodeJS SDK, and then choose Generate certificate and
policy:

226

AWS IoT Developer Guide
Connecting Your Raspberry Pi

This will generate an X.509 certificate and a key pair; activate the X.509 certificate; and create an AWS
IoT policy and attach it to the certificate.

The following page will be displayed:

Create a working directory called deviceSDK where your SDK files will be stored. Create a directory
called certs within the deviceSDK directory where you will store your device certificate, private key,
and root CA certificate.

Choose the links to download your public and private keys and certificate, and then save them in the
deviceSDK/certs directory.

227

AWS IoT Developer Guide
Connecting Your Raspberry Pi

Download a root CA certificate from here. Copy the text from the browser, paste it into a file, and save
it to a file called rootCA.pem.crt in the certs directory.

Choose Confirm & start connecting. The following page will be displayed:

This page contains a link to download the AWS IoT Device SDK for Node.js. You can download the
SDK using this link, but it is easier to install the SDK using npm as shown below. But first you must
install Node and npm as discussed in the next section.

Set Up the Runtime Environment for the AWS IoT Device SDK
for JavaScript

To use the AWS IoT Device SDK for JavaScript, you need to install Node and the npm development
tool on your Raspberry Pi. These packages are not installed by default.

Note
Before you continue, you might want to configure the keyboard mapping for your Raspberry
Pi. For more information, see Configure Raspberry Pi Keyboard Mapping.

To add the Node repository, open a terminal and run the following command:

curl -sLS https://apt.adafruit.com/add | sudo bash

228

https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem
https://www.raspberrypi.org/documentation/configuration/localisation.md

AWS IoT Developer Guide
Connecting Your Raspberry Pi

To install Node, run sudo apt-get install node. You should see output similar to the following:

To install npm, run sudo apt-get install npm. You should see output similar to the following:

229

AWS IoT Developer Guide
Connecting Your Raspberry Pi

To verify the installation of Node and npm, run node -v and npm -v. You should see output similar to
the following:

Install the AWS IoT Device SDK for JavaScript

Now you will install the AWS IoT Device SDK for JavaScript/Node.js on your Raspberry Pi. Open a
console window and from your ~/deviceSDK directory use npm to install the SDK:

npm install aws-iot-device-sdk

After the installation is complete, you should find a node_modules directory in your ~/deviceSDK
directory.

Prepare to Run the Sample Applications

The AWS IoT Device SDK for JavaScript includes sample apps for you to try. To run them, you must
configure your certificates and private key.

230

AWS IoT Developer Guide
Connecting Your Raspberry Pi

By default, the files should be named as follows:

• your private key: private.pem.key

• your certificate: certificate.pem.crt

• the CA root certificate: root-CA.crt

You can edit the cmdline.js file to change the default names used by each sample.

default: {
 region: 'us-east-1',
 clientId: clientIdDefault,
 privateKey: 'private.pem.key',
 clientCert: 'certificate.pem.crt',
 caCert: 'root-CA.crt,
 testMode: 1,
 reconnectPeriod: 3 * 1000, /* milliseconds */
 delay: 4 * 1000 /* milliseconds */
};

Run the Sample Applications

Now you can run examples using node examples/<YourDesiredExample>.js -f <certs location>
(assuming you are under ~/deviceSDK/node_modules/aws-iot-device-sdk/). In this case, the
certificates location should be ~/deviceSDK/certs/. You can specify the certificates location and
your own host address using command line options. For information, see Certificates.

Your Raspberry Pi is now connected to AWS IoT using the AWS IoT SDK for JavaScript.

231

https://github.com/aws/aws-iot-device-sdk-js#certificates

AWS IoT Developer Guide

Monitoring AWS IoT

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS IoT
and your AWS solutions. You should collect monitoring data from all parts of your AWS solution so that
you can more easily debug a multi-point failure if one occurs. Before you start monitoring AWS IoT, you
should create a monitoring plan that includes answers to the following questions:

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal AWS IoT performance in your environment, by
measuring performance at various times and under different load conditions. As you monitor AWS
IoT, store historical monitoring data so that you can compare it with current performance data, identify
normal performance patterns and performance anomalies, and devise methods to address issues.

For example, if you're using Amazon EC2, you can monitor CPU utilization, disk I/O, and network
utilization for your instances. When performance falls outside your established baseline, you might
need to reconfigure or optimize the instance to reduce CPU utilization, improve disk I/O, or reduce
network traffic.

To establish a baseline you should, at a minimum, monitor the following items:

• PublishIn.Success

• PublishOut.Success

• Subscribe.Success

• Ping.Success

• Connect.Success

• GetThingShadow.Accepted

• UpdateThingShadow.Accepted

232

AWS IoT Developer Guide
Monitoring Tools

• DeleteThingShadow.Accepted

• RulesExecuted

Topics

• Monitoring Tools (p. 233)

• Monitoring with Amazon CloudWatch (p. 234)

• Logging AWS IoT API Calls with AWS CloudTrail (p. 239)

Monitoring Tools
AWS provides various tools that you can use to monitor AWS IoT. You can configure some of these
tools to do the monitoring for you, while some of the tools require manual intervention. We recommend
that you automate monitoring tasks as much as possible.

Automated Monitoring Tools
You can use the following automated monitoring tools to watch AWS IoT and report when something is
wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Auto Scaling policy. CloudWatch alarms do not invoke
actions simply because they are in a particular state; the state must have changed and been
maintained for a specified number of periods. For more information, see Monitoring with Amazon
CloudWatch (p. 234).

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Monitoring Log Files in the Amazon CloudWatch User
Guide.

• Amazon CloudWatch Events – Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see Using Events in the Amazon CloudWatch User Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information, see
Working with CloudTrail Log Files in the AWS CloudTrail User Guide.

Manual Monitoring Tools
Another important part of monitoring AWS IoT involves manually monitoring those items that the
CloudWatch alarms don't cover. The AWS IoT, CloudWatch, and other AWS console dashboards
provide an at-a-glance view of the state of your AWS environment. We recommend that you also check
the log files on AWS IoT.

• AWS IoT dashboard shows:

• CA certificates

• Certificates

• Polices

• Rules

233

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

AWS IoT Developer Guide
Monitoring with Amazon CloudWatch

• Things

• CloudWatch home page shows:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your AWS resource metrics

• Create and edit alarms to be notified of problems

Monitoring with Amazon CloudWatch
You can monitor AWS IoT using CloudWatch, which collects and processes raw data from AWS IoT
into readable, near real-time metrics. These statistics are recorded for a period of two weeks, so that
you can access historical information and gain a better perspective on how your web application or
service is performing. By default, AWS IoT metric data is automatically sent to CloudWatch in 1 minute
periods. For more information, see What Are Amazon CloudWatch, Amazon CloudWatch Events, and
Amazon CloudWatch Logs? in the Amazon CloudWatch User Guide.

Topics

• AWS IoT Metrics and Dimensions (p. 234)

• How Do I Use AWS IoT Metrics? (p. 236)

• Creating CloudWatch Alarms to Monitor AWS IoT (p. 236)

AWS IoT Metrics and Dimensions
When you interact with AWS IoT, it sends the following metrics and dimensions to CloudWatch every
minute. You can use the following procedures to view the metrics for AWS IoT.

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations
within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. In the CloudWatch Metrics by Category pane, under the metrics category for AWS IoT, select a
metrics category, and then in the upper pane, scroll down to view the full list of metrics.

To view metrics using the AWS CLI

• At a command prompt, use the following command:

aws cloudwatch list-metrics --namespace "AWS/IoT"

CloudWatch displays the following metrics for AWS IoT:

234

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://console.aws.amazon.com/cloudwatch/

AWS IoT Developer Guide
Metrics and Dimensions

AWS IoT Metrics

The AWS/IoT namespace includes the following metrics.

AWS IoT sends the following metrics to CloudWatch once per received request.

Metric Description

PublishIn.Success A client published on an MQTT topic successfully.

Valid Dimensions: Protocol

Valid Statistics:1 for success, 0 for failure.

Unit: Count

PublishOut.Success Clients subscribed to an MQTT topic recieved a
published message.

Valid Dimensions: Protocol

Valid Statistics:1 for success, 0 for failure.

Unit: Count

Subscribe.Success AWS IoT message broker received a request to
subscribe to an MQTT topic.

Valid Dimensions: Protocol

Valid Statistics:1 for success, 0 for failure.

Unit: Count

Ping.Success AWS IoT received a Ping message.

Valid Dimensions: Protocol

Valid Statistics:1 per ping request from the client.

Unit: Count

Connect.Success A client connected to AWS IoT.

Valid Dimensions: Protocol

Valid Statistics: 1 per successful MQTT connection
from the client.

Unit: Count

GetThingShadow.Accepted AWS IoT received a GetThingShadow request.

Valid Dimensions: Protocol

Valid Statistics:1 for success, 0 for failure.

Unit: Count

UpdateThingShadow.Accepted AWS IoT received a UpdateThingShadow request.

Valid Dimensions: Protocol

235

AWS IoT Developer Guide
Using AWS IoT Metrics

Metric Description

Valid Statistics:1 for success, 0 for failure.

Unit: Count

DeleteThingShadow.Accepted AWS IoT received a DeleteThingShadow request.

Valid Dimensions: Protocol

Valid Statistics:1 for success, 0 for failure.

Unit: Count

RulesExecuted AWS IoT executed a rule..

Valid Dimensions: Protocol

Valid Statistics:1 for success, 0 for failure.

Unit: Count

Dimensions for AWS IoT Metrics
Metrics use the namespace and provide metrics for the following dimension(s):

Dimension Description

Protocol The protocol with which the request was made. Valid
values are MQTT or HTTP.

How Do I Use AWS IoT Metrics?
The metrics reported by AWS IoT provide information that you can analyze in different ways. The
following use cases are based on a scenario where you have ten things that connect to the internet
once a day. Each day:

• Ten things connect to AWS IoT at roughly the same time.

• Each thing subscribes to a topic filter, and then waits for an hour before disconnecting. During this
period, things communicate with one another and learn more about the state of the world.

• Each thing publishes some perception it has based on its newly found data using
UpdateThingShadow.

• Each thing disconnects from AWS IoT.

These are suggestions to get you started, not a comprehensive list.

• How can I be notified if my things do not connect successfully each day? (p. 237)

• How can I be notified if my things are not publishing data each day? (p. 238)

• How can I be notified if my thing's shadow updates are being rejected each day? (p. 238)

Creating CloudWatch Alarms to Monitor AWS IoT
You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period you specify and performs one or more

236

AWS IoT Developer Guide
Creating CloudWatch Alarms

actions based on the value of the metric relative to a given threshold over a number of time periods.
The action is a notification sent to an Amazon SNS topic or Auto Scaling policy. Alarms invoke actions
for sustained state changes only. CloudWatch alarms do not invoke actions simply because they are in
a particular state; the state must have changed and been maintained for a specified number of periods.

How can I be notified if my things do not connect successfully
each day?

1. Create an Amazon SNS topic, arn:aws:sns:us-east-1:123456789012:things-not-connecting-
successfully.

For more information, see Set Up Amazon Simple Notification Service.

2. Create the alarm.

Prompt>aws cloudwatch put-metric-alarm \
 --alarm-name ConnectSuccessAlarm \
 --alarm-description "Alarm when my Things don't connect successfully"
 \
 --namespace AWS/IoT \
 --metric-name Connect.Success \
 --dimensions Name=Protocol,Value=MQTT \
 --statistic Sum \
 --threshold 10 \
 --comparison-operator LessThanThreshold \
 --period 86400 \
 --unit Count \
 --evaluation-periods 1 \
 --alarm-actions arn:aws:sns:us-east-1:1234567890:things-not-
connecting-successfully

Prompt>aws cloudwatch put-metric-alarm \
 --alarm-name ConnectSuccessAlarm \
 --alarm-description "Alarm when my Things don't connect successfully"
 \
 --namespace AWS/IoT \
 --metric-name Connect.Success \
 --dimensions Name=Protocol,Value=MQTT \
 --statistic Sum \
 --threshold 10 \
 --comparison-operator LessThanThreshold \
 --period 86400 \
 --unit Count \
 --evaluation-periods 1 \
 --alarm-actions arn:aws:sns:us-east-1:1234567890:things-not-
connecting-successfully

3. Test the alarm.

Prompt>aws cloudwatch set-alarm-state --alarm-name ConnectSuccessAlarm --
state-reason "initializing" --state-value OK

 Prompt>aws cloudwatch set-alarm-state --alarm-name ConnectSuccessAlarm --
state-reason "initializing" --state-value ALARM

237

Amazon Simple Notification Service Developer GuideUS_SetupSNS.html

AWS IoT Developer Guide
Creating CloudWatch Alarms

How can I be notified if my things are not publishing data each
day?

1. Create an Amazon SNS topic, arn:aws:sns:us-east-1:123456789012:things-not-
publishing-data.

For more information, see Set Up Amazon Simple Notification Service.

2. Create the alarm.

Prompt>aws cloudwatch put-metric-alarm \
 --alarm-name PublishInSuccessAlarm\
 --alarm-description "Alarm when my Things don't publish their data \
 --namespace AWS/IoT \
 --metric-name PublishIn.Success \
 --dimensions Name=Protocol,Value=MQTT \
 --statistic Sum \
 --threshold 10 \
 --comparison-operator LessThanThreshold \
 --period 86400 \
 --unit Count \
 --evaluation-periods 1 \
 --alarm-actions arn:aws:sns:us-east-1:1234567890:things-not-
publishing-data

3. Test the alarm.

Prompt>aws cloudwatch set-alarm-state --alarm-name PublishInSuccessAlarm
 --state-reason "initializing" --state-value OK

Prompt>aws cloudwatch set-alarm-state --alarm-name PublishInSuccessAlarm
 --state-reason "initializing" --state-value ALARM

How can I be notified if my thing's shadow updates are being
rejected each day?

1. Create an Amazon SNS topic, arn:aws:sns:us-east-1:1234567890:things-shadow-updates-
rejected.

For more information, see Set Up Amazon Simple Notification Service.

2. Create the alarm.

Prompt>aws cloudwatch put-metric-alarm \
 --alarm-name UpdateThingShadowSuccessAlarm \
 --alarm-description "Alarm when my Things Shadow updates are getting
 rejected" \
 --namespace AWS/IoT \
 --metric-name UpdateThingShadow.Success \
 --dimensions Name=Protocol,Value=MQTT \
 --statistic Sum \
 --threshold 10 \
 --comparison-operator LessThanThreshold \
 --period 86400 \
 --unit Count \

238

Amazon Simple Notification Service Developer GuideUS_SetupSNS.html
Amazon Simple Notification Service Developer GuideUS_SetupSNS.html

AWS IoT Developer Guide
Logging AWS IoT API Calls with AWS CloudTrail

 --evaluation-periods 1 \
 --alarm-actions arn:aws:sns:us-east-1:1234567890:things-shadow-
updates-rejected

3. Test the alarm.

Prompt>aws cloudwatch set-alarm-state --alarm-name
 UpdateThingShadowSuccessAlarm --state-reason "initializing" --state-value
 OK

Prompt>aws cloudwatch set-alarm-state --alarm-name
 UpdateThingShadowSuccessAlarm --state-reason "initializing" --state-value
 ALARM

Logging AWS IoT API Calls with AWS CloudTrail
AWS IoT is integrated with CloudTrail, a service that captures all of the AWS IoTAPI calls and delivers
the log files to an Amazon S3 bucket that you specify. CloudTrail captures API calls from the AWS IoT
console or from your code to the AWS IoT APIs. Using the information collected by CloudTrail, you can
determine the request that was made to AWS IoT, the source IP address from which the request was
made, who made the request, when it was made, and so on.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

AWS IoT Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to AWS IoT actions are
tracked in CloudTrail log files where they are written with other AWS service records. CloudTrail
determines when to create and write to a new file based on a time period and file size.

All AWS IoT actions are logged by CloudTrail and are documented in the AWS IoT API Reference. For
example, calls to the CreateThing, ListThings, and ListTopicRules sections generate entries in the
CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information in
the log entry helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

You can store your log files in your Amazon S3 bucket for as long as you want, but you can also define
Amazon S3 lifecycle rules to archive or delete log files automatically. By default, your log files are
encrypted with Amazon S3 server-side encryption (SSE).

If you want to be notified upon log file delivery, you can configure CloudTrail to publish Amazon SNS
notifications when new log files are delivered. For more information, see Configuring Amazon SNS
Notifications for CloudTrail.

You can also aggregate AWS IoT log files from multiple AWS regions and multiple AWS accounts into
a single Amazon S3 bucket.

239

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/iot/latest/apireference/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html

AWS IoT Developer Guide
Understanding AWS IoT Log File Entries

For more information, see Receiving CloudTrail Log Files from Multiple Regions and Receiving
CloudTrail Log Files from Multiple Accounts.

Understanding AWS IoT Log File Entries
CloudTrail log files can contain one or more log entries. Each entry lists multiple JSON-formatted
events. A log entry represents a single request from any source and includes information about the
requested action, the date and time of the action, request parameters, and so on. Log entries are not
an ordered stack trace of the public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the AttachPrincipalPolicy
action.

{
 "timestamp":"1460159496",
 "AdditionalEventData":"",
 "Annotation":"",
 "ApiVersion":"",
 "ErrorCode":"",
 "ErrorMessage":"",
 "EventID":"8bff4fed-c229-4d2d-8264-4ab28a487505",
 "EventName":"AttachPrincipalPolicy",
 "EventTime":"2016-04-08T23:51:36Z",
 "EventType":"AwsApiCall",
 "ReadOnly":"",
 "RecipientAccountList":"",
 "RequestID":"d4875df2-fde4-11e5-b829-23bf9b56cbcd",
 "RequestParamters":{
 "principal":"arn:aws:iot:us-
east-1:123456789012:cert/528ce36e8047f6a75ee51ab7beddb4eb268ad41d2ea881a10b67e8e76924d894",
 "policyName":"ExamplePolicyForIoT"
 },
 "Resources":"",
 "ResponseElements":"",
 "SourceIpAddress":"52.90.213.26",
 "UserAgent":"aws-internal/3",
 "UserIdentity":{
 "type":"AssumedRole",
 "principalId":"AKIAI44QH8DHBEXAMPLE",
 "arn":"arn:aws:sts::12345678912:assumed-role/iotmonitor-us-east-1-
beta-InstanceRole-1C5T1YCYMHPYT/i-35d0a4b6",
 "accountId":"222222222222",
 "accessKeyId":"access-key-id",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"Fri Apr 08 23:51:10 UTC 2016"
 },
 "sessionIssuer":{
 "type":"Role",
 "principalId":"AKIAI44QH8DHBEXAMPLE",
 "arn":"arn:aws:iam::123456789012:role/
executionServiceEC2Role/iotmonitor-us-east-1-beta-
InstanceRole-1C5T1YCYMHPYT",
 "accountId":"222222222222",
 "userName":"iotmonitor-us-east-1-InstanceRole-1C5T1YCYMHPYT"
 }

240

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS IoT Developer Guide
Understanding AWS IoT Log File Entries

 },
 "invokedBy":{
 "serviceAccountId":"111111111111"
 }
 },
 "VpcEndpointId":""
}

241

AWS IoT Developer Guide
Diagnosing Connectivity Issues

Troubleshooting AWS IoT

The following information might help you troubleshoot common issues in AWS IoT.

Tasks

• Diagnosing Connectivity Issues (p. 242)

• Setting Up CloudWatch Logs (p. 242)

• Diagnosing Rules Issues (p. 247)

• Diagnosing Problems with Thing Shadows (p. 247)

Diagnosing Connectivity Issues

Authentication
How do my devices authenticate AWS IoT endpoints?

Add the AWS IoT CA certificate to your client’s trust store. You can download the CA certificate
from here.

How can I validate a correctly configured certificate?
Use the OpenSSL s_client command to test a connection to the AWS IoT endpoint:

openssl s_client -connect custom_endpoint.iot.us-east-1.amazonaws.com:8443
-CAfile CA.pem -cert cert.pem -key privateKey.pem

Authorization
I received a PUBNACK or SUBNACK response from the broker. What do I do?

Make sure there is a policy attached to the certificate you are using to call AWS IoT. All publish/
subscribe operations are denied by default.

Setting Up CloudWatch Logs
As messages from your devices pass through the message broker and the rules engine, AWS IoT
sends progress events about each message. You can opt in to view these events in CloudWatch Logs.
For more information, see CloudWatch Logs.

242

https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide//WhatIsCloudWatchLogs.html

AWS IoT Developer Guide
Configuring an IAM Role for Logging

Note
Before you enable AWS IoT logging, be sure you understand the access permissions to
CloudWatch Logs in your AWS account. Users with access to CloudWatch Logs will be able to
see debugging information from your devices.

Configuring an IAM Role for Logging
Use the IAM console to create a logging role.

Create an IAM Role for Logging

The following policy documents provide the role policy and trust policy that allow AWS IoT to submit
logs to CloudWatch on your behalf.

Role policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:PutMetricFilter",
 "logs:PutRetentionPolicy"
],
 "Resource": [
 "*"
]
 }
]
}

Trust policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Register the Logging Role with AWS IoT

Use the AWS IoT console or the following CLI command to register the logging role with AWS IoT.

243

AWS IoT Developer Guide
CloudWatch Log Entry Format

aws iot set-logging-options --logging-options-payload
roleArn="arn:aws:iam::<your-aws-account-num>:role/
IoTLoggingRole",logLevel="INFO"

The log level can be DEBUG, INFO, ERROR, or DISABLED:

• DEBUG provides the most detailed information of AWS IoT activity.

• INFO provides a summarized view of most actions. This is sufficient for most users.

• ERROR provides error cases only.

• DISABLED removes logging altogether, but keeps your logging role intact.

CloudWatch Log Entry Format
Each log entry has the following information:

Event
Describes the actions that take place in AWS IoT.

TimeStamp
The time the log was generated.

TraceId
An identifier generated randomly for an incoming request that can be used to filter all of the
corresponding logs to one incoming message.

PrincipalId
A certificate fingerprint or a thing name, depending on which endpoint (MQTT or HTTP) received
the request from a device.

LogLevel
The logging level. Can be DEBUG, INFO, ERROR, or WARN.

Topic Name
The MQTT topic name, which is added to an entry when an MQTT publish or subscribe message
is received.

ClientId
The ID of the client that sent an MQTT message.

ThingId
The thing identifier, which is added to an entry when a request is sent to an HTTP endpoint to
update or delete thing state.

RuleId
The rule identifier, which contains the ID of a rule when the rule is triggered.

Log Level

The log level specifies which types of logs will be generated.

DEBUG
Information that might be helpful when debugging a problem.

Logs will include DEBUG, INFO, ERROR, and WARN information.

ERROR
Any error that causes an operation to fail.

Logs will include ERROR information only.

INFO
High-level information about the flow of things.

244

AWS IoT Developer Guide
Logging Events and Error Codes

Logs will include INFO, ERROR, and WARN information.

WARN
Anything that can potentially cause inconsistencies in the system, but might not necessarily cause
the operation to fail.

Logs will include ERROR and WARN information.

Logging Events and Error Codes

This section lists the logging events and error codes sent by AWS IoT.

Identity and Security

Operation/Event Name Description

Authentication Success Successfully authenticated a certificate.

Authentication Failure Failed to authenticate a certificate.

Identity and Security Error Codes

Error Code Error Description

401 Unauthorized

Message Broker

Operation/Event Name Description

MQTT Publish MQTT Publish received.

MQTT Subscribe MQTT Subscribe received.

MQTT Connect MQTT Connect received.

MQTT Disconnect MQTT Disconnect received.

HTTP/1.1 POST MHTTP/1.1 POST received.

HTTP/1.1 GET HTTP/1.1 GET received.

HTTP/1.1 Unsupported Method Used when a message contains a syntax error or
the action (HTTP PUT/DELETE/) is forbidden.

Malformed HTTP Message The connection was terminated because of a
malformed HTTP message.

Malformed MQTT Message The connection was terminated because of a
malformed MQTT message.

Authorization Failed This client attempted to publish to or subscribe
on a topic for which it has no authorization.

Package Exceeds Maximum Payload Size This client attempted to publish a payload that
exceeds the message broker's upper limit.

245

AWS IoT Developer Guide
Logging Events and Error Codes

Message Broker Error Codes

Error Code Error Description

400 Bad Request

401 Unauthorized

403 Forbidden

503 Service Unavailable

Rules Engine Events

Operation/Event Name Description

MessageReceived Received a request for a topic.

DynamoActionSuccess Successfully put DynamoDB record.

DynamoActionFailure Failed to put DynamoDB record.

KinesisActionSuccess Successfully published Amazon Kinesis
message.

KinesisActionFailure Failed to publish Amazon Kinesis message.

LambdaActionSuccess Successfully invoked Lambda function.

LambdaActionFailure Failed to invoke Lambda function.

RepublishActionSuccess Successfully republished message.

MessageReceived Received request for a topic.

RepublishActionFailure Failed to republish message.

S3ActionSuccess Successfully put Amazon S3 object.

S3ActionFailure Failed to put Amazon S3 object.

SNSActionSuccess Successfully published to Amazon SNS topic.

SNSActionFailure Failed to publish to Amazon SNS topic.

SQSActionSuccess Successfully sent message to Amazon SQS.

SQSActionFailure Failed to send message to Amazon SQS.

Thing Shadow Events

Operation/Event Name Description

UpdateThingState A thing's state is updated over HTTP or MQTT.

DeleteThing A thing is deleted.

246

AWS IoT Developer Guide
Diagnosing Rules Issues

Thing Shadow Error Codes

Error Code Error Description

400 Bad request.

401 Unauthorized.

403 Forbidden.

404 Not found.

409 Conflict.

413 Request too large.

422 Failed to process request.

429 Too many requests.

500 Internal error.

503 Service unavailable.

Diagnosing Rules Issues
CloudWatch Logs is the best place to debug issues you are having with rules. When you enable
CloudWatch Logs for AWS IoT, you get visibility into which rules are triggered and their success or
failure. You also get information about whether WHERE clause conditions match.

The most common issue is authorization. In this case, the logs will tell you your role is not authorized to
perform AssumeRole on the resource.

To view CloudWatch logs (console)

1. In the AWS Management Console, navigate to the CloudWatch console.

2. Choose Logs, and then choose the AWSIoTLogs log group from the list.

3. On the Streams for AWSIoTLogs page, you will find a log stream for each principal (X.509
certificate, IAM user, or Amazon Cognito identity) that called into AWS IoT under your account.

For more information, see CloudWatch Logs.

External services are controlled by the end user. Before rule execution, make sure external services
are set up with enough throughput and capacity units.

Diagnosing Problems with Thing Shadows

Diagnosing Thing Shadows

Issue Troubleshooting Guidelines

A thing shadow document is rejected with
"Invalid JSON document."

If you are unfamiliar with JSON, modify the
examples provided in this guide for your own
use. For more information, see Thing Shadow
Document Syntax.

247

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide//WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-document-syntax.html
http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-document-syntax.html

AWS IoT Developer Guide
Diagnosing Problems with Thing Shadows

Issue Troubleshooting Guidelines

I submitted correct JSON, but none or only parts
of it are stored in the thing shadow document.

Be sure you are following the JSON formatting
guidelines. Only JSON fields in the desired
and reported sections will be stored. JSON
content (even if formally correct) outside of those
sections will be ignored.

I received an error that the thing shadow exceeds
the allowed size.

The thing shadow supports 8 KB of data only.
Try shortening field names inside of your JSON
document or simply create more thing shadows.
A device can have an unlimited number of thing
shadows. The only requirement is that the thing
name is unique in your account.

When I receive a thing shadow, it is larger than 8
KB. How can this happen?

Upon receipt, the AWS IoT service adds
metadata to the thing shadow. The service
includes this data in its response, but it does
not count toward the limit of 8 KB. Only the data
for desired and reported state inside the
state document sent to the thing shadow counts
toward the limit.

My request has been rejected due to incorrect
version. What should I do?

Perform a GET operation to sync to the latest
state document version. When using MQTT,
subscribe to the ./update/accepted topic so you
will be notified about state changes and receive
the latest version of the JSON document.

The timestamp is off by several seconds. The timestamp for individual fields and the whole
JSON document is updated when the document
is received by the AWS IoT service or when the
state document is published onto the ./update/
accepted and ./update/delta message. Messages
can be delayed over the network, which can
cause the timestamp to be off by a few seconds.

My device can publish and subscribe on the
corresponding thing shadow topics, but when I
attempt to update the thing shadow document
over the HTTP REST API, I get HTTP 403.

Be sure you have created policies in IAM
to allow access to these topics and for the
corresponding action (UPDATE/GET/DELETE)
for the credentials you are using. IAM policies
and certificate policies are independent.

Other issues. The Thing Shadows service will log errors
to CloudWatch Logs. To identify device and
configuration issues, enable CloudWatch Logs
and view the logs for debug information.

248

AWS IoT Developer Guide
Message Broker Limits

AWS IoT Limits

The following tables list limits in AWS IoT.

Message Broker Limits

Client ID size 128 bytes of UTF-8 encoded characters.

Connection inactivity (keep-alive interval) By default, an MQTT client connection is
disconnected after 30 minutes of inactivity. When
the client sends a PUBLISH, SUBSCRIBE,
PING, or PUBACK message, the inactivity timer
is reset.

A client can request a shorter keep-alive interval
by specifying a value between 5-1,200 seconds
in the MQTT CONNECT message sent to the
server. If a keep-alive value is specified, the
server will disconnect the client if it does not
receive a PUBLISH, SUBSCRIBE, PINGREQ, or
PUBACK message within a period 1.5 times the
requested interval. The keep-alive timer starts
after the sender sends a CONNACK.

If a client sends a keep-alive value of zero, the
default keep-alive behavior will remain in place.

If a client request a keep-alive shorter than 5
seconds, the server will treat the client as though
it requested a keep-alive interval of 5 seconds.

The keep-alive timer begins immediately after
the server returns a CONNACK to the client.
There might be a brief delay between the client's
sending of a CONNECT message and the start
of keep-alive behavior.

Maximum number of slashes in topic and topic
filter

A topic provided while publishing a message or
a topic filter provided while subscribing can have
no more than 7 forward slashes (/).

249

AWS IoT Developer Guide
Message Broker Limits

Maximum inbound unacknowledged messages The message broker allows 100 in-progress
unacknowledged messages per client. (This limit
is applied across all messages that require ACK.)
When this limit is reached, no new messages
will be accepted from this client until an ACK is
returned by the server.

Maximum outbound unacknowledged messages The message broker allows only 100 in-progress
unacknowledged messages per client.(This limit
is applied across all messages that require ACK.)
When this limit is reached, no new messages will
be sent to the client until the client acknowledges
the in-progress messages.

Maximum retry interval for delivering QoS 1
messages

If a connected client is unable to receive an ACK
on a QoS 1 message for one hour, the message
broker will drop the message. The client might be
unable to receive the message if it has 100 in-
flight messages, it is being throttled due to large
payloads, or other errors.

Maximum subscriptions per subscribe call A single SUBSCRIBE call is limited to request a
maximum of eight subscriptions.

Message size The payload for every PUBLISH message is
limited to 128 KB. The AWS IoT service will
reject messages larger than this size.

Restricted client ID prefix '$' is reserved for internally generated client IDs.

Restricted topic prefix Topics beginning with '$' are considered reserved
and are not supported for publishing and
subscribing except when working with the Thing
Shadows service.

Subscriptions per session The message broker limits each client session
to subscribe to up to 50 subscriptions. A
SUBSCRIBE request that pushes the total
number of subscriptions past 50 will result in the
connection being disconnected.

Thing name size 128 bytes of UTF-8 encoded characters. This
limit applies for both the thing registry and Thing
Shadow services.

Throughput per connection AWS IoT limits the ingress and egress rate on
each client connection to 512 KB/s. Data sent or
received at a higher rate will be throttled to this
throughput.

Topic size The topic passed to the message broker when
publishing a message cannot exceed 256 bytes
of UTF-8 encoded characters.

250

AWS IoT Developer Guide
Device Shadow Limits

WebSocket connection duration WebSocket connections are limited to 24
hours. If the limit is exceeded, the WebSocket
connection will automatically be closed when
an attempt is made to send a message by the
client or server. If you need to maintain an
active WebSocket connection for longer than 24
hours, simply close and reopen the WebSocket
connection from the client side before the time
limit elapses.

AWS IoT supports keep-alive values specified
in MQTT CONNECT messages. When a client
specifies a keep-alive value, the client tells the
server to disconnect the client and transmit any
last-will message associated with the MQTT
session if the server does not receive a message
(PUBLISH, SUBSCRIBE, PUBACK, PINGREQ)
within 1.5 times the keep-alive period. AWS
IoT supports keep-alive values between 5
seconds and 20 minutes. If a client requests
no keep-alive (that is, sets the field to 0 in the
MQTT CONNECT message), the server will
set the keep-alive value to 20 minutes, which
corresponds to the maximum idle time supported
by AWS IoT of 30 minutes. Most MQTT clients
(including the AWS SDK clients) support keep-
alive values by sending a PINGREQ if the keep-
alive period expires without the transmission of
any other message by the client.

Device Shadow Limits

Maximum depth of JSON device state
documents

The maximum number of levels in the desired
or reported section of the JSON device state
document is 5. For example:

"desired": {
 "one": {
 "two": {
 "three": {
 "four": {
 "five":{
 }
 }
 }
 }
 }
}

Maximum number of in-flight, unacknowledged
messages

The Thing Shadows service supports up to 10
in-flight unacknowledged messages. When this
limit is reached, all new shadow requests will be
rejected with a 429 error code.

251

AWS IoT Developer Guide
Security and Identity Limits

Maximum number of JSON objects per AWS
account

There is no limit on the number of JSON objects
per AWS account.

Maximum size of a JSON state document 8 KB.

Maximum size of a thing name 128 bytes of UTF-8 encoded characters.

Shadow lifetime A thing shadow is deleted by AWS IoT if it has
not been updated or retrieved in more than one
year.

Security and Identity Limits

Maximum number of policies that can be
attached to a certificate or Amazon Cognito
identity

10

Maximum number of named policy versions 5

Maximum policy document size 2048 characters (excluding white space)

Maximum number of device certificates that can
be registered per second

15

Throttling Limits
The following table lists the throttling limits for AWS IoT API:

API Transaction per Second

AcceptCertificateTransfer 10

AttachPrincipalPolicy 15

AttachThingPrincipal 15

CancelCertificateTransfer 10

CreateCertificateFromCsr 15

CreatePolicy 10

CreatePolicyVersion 10

CreateThing 15

CreateThingType 15

DeleteCertificate 10

DeleteCACertificate 10

DeletePolicy 10

DeletePolicyVersion 10

252

AWS IoT Developer Guide
Throttling Limits

API Transaction per Second

DeleteThing 15

DeleteThingType 15

DeprecateThingType 15

DescribeCertificate 10

DescribeCACertificate 10

DescribeThing 10

DescribeThingType 10

DetachThingPrincipal 15

DetachPrincipalPolicy 15

DeleteRegistrationCode 10

GetPolicy 10

GetPolicyVersion 15

GetRegistrationCode 10

ListCACertificates 10

ListCertificates 10

ListCertificatesByCA 10

ListOutgoingCertificates 10

ListPolicies 10

ListPolicyPrincipals 10

ListPolicyVersions 10

ListPrincipalPolicies 15

ListPrincipalThings 10

ListThings 10

ListThingPrincipals 10

ListThingTypes 10

RegisterCertificate 10

RegisterCACertificate 10

RejectCertificateTransfer 10

SetDefaultPolicyVersion 10

TransferCertificate 10

UpdateCertificate 10

253

AWS IoT Developer Guide
AWS IoT Rules Engine Limits

API Transaction per Second

UpdateCACertificate 10

UpdateThing 10

AWS IoT Rules Engine Limits

Maximum number of rules per AWS account 1000

Actions per rule A maximum of 10 actions can be defined per
rule.

Rule size Up to 256 KB of UTF-8 encoded characters
(including white space).

254

	AWS IoT
	Table of Contents
	What Is AWS IoT?
	AWS IoT Components
	How to Get Started with AWS IoT
	Accessing AWS IoT
	Related Services
	How AWS IoT Works

	AWS IoT Button Quickstarts
	AWS IoT Button Wizard Quickstart
	AWS IoT Button AWS CloudFormation Quickstart
	Next Steps

	Getting Started with AWS IoT
	Sign in to the AWS IoT Console
	Create a Device in the Thing Registry
	Create and Activate a Device Certificate
	Create an AWS IoT Policy
	Attach an AWS IoT Policy to a Device Certificate
	Attach a Thing to a Certificate
	Configure Your Device
	AWS IoT Button
	Turn on your device
	Copy your device certificate onto your AWS IoT button

	View Device MQTT Messages with the AWS IoT MQTT Client
	Configure and Test Rules
	Create an SNS Topic
	Subscribe to an Amazon SNS Topic
	Create a Rule
	Test the Amazon SNS Rule
	AWS IoT Button
	AWS IoT MQTT Client

	Next Steps

	AWS IoT Rule Tutorials
	Creating a DynamoDB Rule
	Creating a Lambda Rule
	Create the Lambda Function
	Test Your Lambda Function
	Creating a Lambda Rule
	Test Your Lambda Rule

	Managing Things with AWS IoT
	Managing Things with the Thing Registry
	Create a thing
	List things
	Search for things
	Update a thing
	Delete a thing
	Attach a principal to a thing
	Detach a principal from a thing

	Thing Types
	Create a Thing Type
	List thing types
	Describe a thing type
	Associate a thing type with a thing
	Deprecate a thing type
	Delete a thing type

	Security and Identity for AWS IoT
	Authentication in AWS IoT
	X.509 Certificates
	X.509 Certificates and AWS IoT
	Server Authentication
	Create and Register an AWS IoT Device Certificate
	To create a certificate (console)
	To create a certificate (CLI)

	Use Your Own Certificate
	Registering Your CA certificate
	Creating a Device Certificate
	Registering a Device Certificate
	Registering Device Certificates Manually
	Using Automatic/Just-in-Time Registration for Device Certificates
	Enable Auto Registration

	Deactivate the CA Certificate
	Revoke the Device Certificate

	IAM Users, Groups, and Roles
	Amazon Cognito Identities

	Authorization
	AWS IoT Policies
	AWS IoT Policy Actions
	Action Resources
	AWS IoT Policy Variables
	Basic Policy Variables
	X.509 Certificate Policy Variables
	Issuer Attributes
	Subject Attributes
	Issuer Alternate Name Attributes
	Subject Alternate Name Attributes
	Other Attributes
	X.509 Certificate Policy Variable Limitations

	Thing Policy Variables
	iot:Connection.Thing.ThingName
	iot:Connection.Thing.ThingTypeName
	iot:Connection.Thing.Attributes[attributeName]
	iot:Connection.Thing.IsAttached

	Example Policies
	Connect Policy Examples
	Publish/Subscribe Policy Examples
	Policies for MQTT Clients
	Policies for HTTP and WebSocket Clients
	Receive Policy Examples

	Certificate Policy Examples
	Thing Policy Examples

	IAM IoT Policies

	Cross Account Access
	Transport Security
	TLS Cipher Suite Support

	Message Broker for AWS IoT
	Protocols
	MQTT
	HTTP
	MQTT Over the WebSocket Protocol
	Using the WebSocket Protocol in a Web Application
	Using the WebSocket Protocol in a Mobile Application

	Topics
	Reserved Topics

	Lifecycle Events
	Policy Required for Receiving Lifecycle Events
	Connect/Disconnect Events
	Subscribe/Unsubscribe Events

	Rules for AWS IoT
	Granting AWS IoT the Required Access
	Pass Role Permissions
	Creating an AWS IoT Rule
	Viewing Your Rules
	SQL Versions
	What's New in the 2016-03-23 SQL Rules Engine Version
	Inter-Object Queries
	Output an Array as a Top-Level Object
	Encode Function

	Troubleshooting a Rule
	Deleting a Rule
	AWS IoT Rule Actions
	CloudWatch Alarm Action
	CloudWatch Metric Action
	DynamoDB Action
	DynamoDBv2 Action
	Amazon ES Action
	Firehose Action
	Kinesis Action
	Lambda Action
	Republish Action
	S3 Action
	SNS Action
	SQS Action

	AWS IoT SQL Reference
	Data Types
	Conversions

	Operators
	AND operator
	OR operator
	NOT operator
	> operator
	>= operator
	< operator
	<= operator
	<> operator
	= operator
	+ operator
	- operator
	* operator
	/ operator
	% operator

	Functions
	abs(Decimal)
	accountid()
	acos(Decimal)
	asin(Decimal)
	atan(Decimal)
	atan2(Decimal, Decimal)
	bitand(Int, Int)
	bitor(Int, Int)
	bitxor(Int, Int)
	bitnot(Int)
	cast()
	ceil(Decimal)
	chr(String)
	clientid()
	concat()
	cos(Decimal)
	cosh(Decimal)
	encode(value, encodingScheme)
	endswith(String, String)
	exp(Decimal)
	get
	get_thing_shadow(thingName, roleARN)
	Hashing Functions
	hsin(Decimal)
	htan(Decimal)
	indexof(String, String)
	isNull()
	isUndefined()
	length(String)
	ln(Decimal)
	log(Decimal)
	lower(String)
	lpad(String, Int)
	ltrim(String)
	machinelearning_predict(modelId)
	mod(Decimal, Decimal)
	nanvl(AnyValue, AnyValue)
	newuuid()
	numbytes(String)
	principal()
	power(Decimal, Decimal)
	rand()
	regexp_matches(String, String)
	regexp_replace(String, String, String)
	regexp_substr(String, String)
	rpad(String, Int)
	round(Decimal)
	rtrim(String)
	sign(Decimal)
	sin(Decimal)
	substring(String, Int [, Int])
	sqrt(Decimal)
	startswith(String, String)
	timestamp()
	topic(Decimal)
	tan(Decimal)
	traceid()
	trunc(Decimal, Int)
	trim(String)
	upper(String)

	SELECT Clause
	FROM Clause
	WHERE Clause
	Literals
	Case Statements
	JSON Extensions
	Substitution Templates

	Device Shadows for AWS IoT
	Device Shadows Data Flow
	Device Shadows Documents
	Document Properties
	Versioning of a Thing Shadow
	Client Token
	Example Document
	Empty Sections
	Arrays

	Using Device Shadows
	Protocol Support
	Updating a Thing Shadow
	Retrieving a Thing Shadow Document
	Optimistic Locking

	Deleting Data
	Deleting a Thing Shadow
	Delta State
	Observing State Changes
	Message Order
	Trim Device Shadow Messages

	Device Shadow RESTful API
	GetThingShadow
	UpdateThingShadow
	DeleteThingShadow

	Device Shadow MQTT Topics
	/update
	Example Policy

	/update/accepted
	Example Policy

	/update/documents
	Example Policy

	/update/rejected
	Example Policy

	/update/delta
	Publishing Details
	Example Policy

	/get
	Example Policy

	/get/accepted
	Example Policy

	/get/rejected
	Example Policy

	/delete
	Example Policy

	/delete/accepted
	Example Policy

	/delete/rejected
	Example Policy

	Device Shadow Document Syntax
	Request State Documents
	Response State Documents
	Error Response Documents

	Device Shadow Error Messages

	AWS IoT SDKs
	AWS Mobile SDK for Android
	Arduino Yún SDK
	AWS IoT Device SDK for Embedded C
	AWS Mobile SDK for iOS
	AWS IoT Device SDK for Java
	AWS IoT Device SDK for JavaScript
	AWS IoT Device SDK for Python
	Getting Started with AWS IoT on the Raspberry Pi and the AWS IoT Embedded C SDK
	Prerequisites
	Connecting Your Raspberry Pi
	Sign in to the AWS IoT Console
	Create and Attach a Thing (Device)
	Set Up the Runtime Environment for the AWS IoT Embedded C SDK
	Sample App Configuration
	Run Sample Applications

	Getting Started with AWS IoT on Raspberry Pi and the AWS IoT Device SDK for JavaScript
	Prerequisites
	Connecting Your Raspberry Pi
	Sign in to the AWS IoT Console
	Create and Attach a Thing (Device)
	Set Up the Runtime Environment for the AWS IoT Device SDK for JavaScript
	Install the AWS IoT Device SDK for JavaScript
	Prepare to Run the Sample Applications
	Run the Sample Applications

	Monitoring AWS IoT
	Monitoring Tools
	Automated Monitoring Tools
	Manual Monitoring Tools

	Monitoring with Amazon CloudWatch
	AWS IoT Metrics and Dimensions
	AWS IoT Metrics
	Dimensions for AWS IoT Metrics

	How Do I Use AWS IoT Metrics?
	Creating CloudWatch Alarms to Monitor AWS IoT
	How can I be notified if my things do not connect successfully each day?
	How can I be notified if my things are not publishing data each day?
	How can I be notified if my thing's shadow updates are being rejected each day?

	Logging AWS IoT API Calls with AWS CloudTrail
	AWS IoT Information in CloudTrail
	Understanding AWS IoT Log File Entries

	Troubleshooting AWS IoT
	Diagnosing Connectivity Issues
	Authentication
	Authorization

	Setting Up CloudWatch Logs
	Configuring an IAM Role for Logging
	Create an IAM Role for Logging
	Register the Logging Role with AWS IoT

	CloudWatch Log Entry Format
	Log Level

	Logging Events and Error Codes

	Diagnosing Rules Issues
	Diagnosing Problems with Thing Shadows

	AWS IoT Limits
	Message Broker Limits
	Device Shadow Limits
	Security and Identity Limits
	Throttling Limits
	AWS IoT Rules Engine Limits

