Amazon Simple
Notification Service

Developer Guide
APl Version 2010-03-31

amazon
webservices™

Amazon Simple Notification Service Developer Guide

Amazon Simple Notification Service Developer Guide

Amazon Simple Notification Service: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon Simple Notification Service Developer Guide

Table of Contents

WAt IS AMAZON SN S 2 ettt ettt et ettt e ettt et e e e e e aaa 1
Are You a First-Time Amazon Simple Notification Service USer?ccooiiiiiniiiiiiiiieieeeens 2
Beyond the Getting Started SECHOMNc.iiiiiii e 2
ACCESSING AMAZON SNS ..ottt 2
(o100 1ol g ISTot=T o - T (o T PPV 3

FaNOUL .o s 3
Application and SyStem AlBITSouiii 4
Push Email and TexXt MESSAGING ... c.utuuiriiitiiit ettt e e e eeees 4
Mobile PUSh NOUFICAUONScuieieiee e 4

(€Tl 1110 To JRS3 F= T4 o [P IPTRPR 5
BEFOIE YOU BEOIN .. euiiiiiiieiie ittt et et et e e e et 5
(O LT L LI B o] o[TP 6
SUDSCIDE T0 @ TOPIC ..ttt et et e et et e e e e et aa e 6
[0 o1 g I (o N o o[PP 7

Create Different Messages for EACh ProtoColccuiiuiiiiiiiiii e 8
(G311 I o T PP P PR PRUPRPRN 9
USING the SDK fOF JAVA ... euiniiiie et ettt et e e e e ne e 9
MBNAGING ACCESS .. .uettie ettt et et ettt et et e e et et et e et e et ettt e e e et e e et e e e e e as 12
(@Y= 1 PP 12
When t0 USE ACCESS CONIOIounieiiit e 13
[NV o] (o7 o PPN 13
ATChIECTUIAl OVEIVIEWieiieii it e e 16
Using the ACCESS POICY LANGQUAGEuivuieiiiiiiii e eees 18
o 10 =i o] o I o T 1o PP 20
Example Cases for Amazon SNS ACCESS CONLIOlivuiiuiiiiiiiiii e 25
Special Information for AMazon SNS POlCIESouuiiiiiiiii e 29
AMAazon SNS POIICY LIMILSuiiiiiiii e e e e e e e e 29
Valid AMazon SNS POlICY ACHONSuuieiiiiiii e 29
AMAZON SNS KBY S ottt e 29
Controlling User ACCESS t0 YOUr AWS ACCOUNL ...uiuuitiititiiiieee et e e e e e e neaas 30
IAM and Amazon SNS Policies TOGEtNErooiiiiiii e 30
AMAZON SNS ARNS .o 33
AMAZON SNS ACHONS ..ttt et 34
AMAZON SNS KBY S ottt e 34
Example Policies for AmMazon SNS ... 34
Using Temporary Security CredentialSoiiiiiiiiii e 36

AMAazon SNS MODIIE PUSK ... e 38
(@Y= 1 PP 38
PrEIEQUISITES ..ttt ettt e e 39
Mobile PUSh HIGQh#LEVEI STEPS ..o e 40

Step 1: Request Credentials from Mobile Platformscoooviiiiiiiiiie e 40
Step 2: Request Token from Mobile Platformscooiiiiiiiiiiii e 40
Step 3: Create Platform Application ODJECTc.oouiiiiiiiiii e 41
Step 4: Create Platform Endpoint ODbJECto 41
Step 5: Publish Message to Mobile ENAPOINtc.oiuiiiiiiiiir e 41
Getting Started WIth ADM ... 41
ADM PrerEQUISIEES ...ttt ettt ettt ettt 42
Step 1: Create a Kindle Fire App with the ADM Service Enabledccoooviiiiiiiinnnnn, 42
Step 2: Obtain a Client ID and CleNt SECIEtociiiiiiiii e 42
Step 3: ODLAIN AN AP KBY ..ot 43
Step 4: Obtain @ REGISIration IDcouiiniiiiei e 43
Step 5: Sending a Message to a Kindle Fire app using Amazon SNS and ADM 44
Getting Started With APNS ... 46
APNS Prer@QUISITES ...ttt et 46
StEP 1: Creatl @n 10S AP iuuitititti ittt 46

API Version 2010-03-31
iv

Amazon Simple Notification Service Developer Guide

Step 2: Obtain an APNS SSL CertifiCateccoiuiiiiiiii e
Step 3: Obtain the APP Private KeY ..o
Step 4: Verify the Certificate and App Private Keyooiiiiiii e
Step 5: Obtain @ DEVICE TOKEN ...t e aenas
[Y= o TP PPPRPIN
Send @ MESSAGE t0 AN 1OS @PP +vuerrrinatiitt ettt e
Send a MeSSAge t0 @ VOIP @D . iuviniiiiii e
Send a MeSSage t0 @ MAC OS X @PP «vutrriiniiinieie et

Getting Started WIth BaITUo.iniiiiii e e e
BaidUu Prer@QUISITESieiie e e et e
Step 1: Create @ Baidu ACCOUNL ...t e ee e
Step 2: Register as a Baidu DEVEIOPETooiuiiiiiii e
Step 3: Create a Baidu Cloud PUSh ProjecCt ..o
Step 4: Download and Install the Android DemO APPvnieiiiiiii e
Step 5: Obtain a user Id and channel 1d
Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and

L= Lo L

Getting Started WIth GCM ... e e et
LTI o =T =0 U]
Step 1: Create a Google API Project and Enable the GCM Serviceccoovvviviiiiiiennen.n.
Step 2: Obtain the Server AP KEY ...
Step 3: Obtain a Registration ID from GCMooiiiiiiiii e
Step 4: Send a Message to a Mobile Endpoint using GCMoooiiiiiiiiiiiiiiieeeea

Getting Started With MPINS ... e
L AN ST o £ €= [0 S (=
Step 1: Set Up Your Windows Phone App to Receive Push Notifications Messages
Step 2: Get a Push Noatification URI from MPNS e
Step 3: Create a WIindows DeVveloper ACCOUNLuiuieiiiii e
Step 4: Upload TLS CertifiCateoeieiii e
Step 5: Send a Push Notification Message to a Windows Phone app using Amazon SNS and

MP NS

Getting Started With WIN S ... e et
WINS PrerEQUISIEES ...euitiie ittt et et et et e et et e et e e e et e e et e e e e ananns
Step 1: Set Up Your App to Receive Push Notifications MeSSagesccocevviiiviiniiiiinannenns
Step 2: Get a Push Notification URI from WNS,
Step 3: Get a Package Security Identifier from WNS ...
Step 4: Get a Secret Key from WINS ...
Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS
Using Amazon SNS Mobile PUSH ...
Register Your Mobile App With AWS ...
Add Device Tokens or Registration IDSoiuiiiiniiiiiii e
Create a Platform Endpoint and Manage Device TOKENSooviiiiiiiiiiiiiiiieieeee
Send a Direct Message to a MODIlE DEVICEooiuiiiiniiiii e
Send Messages to Mobile Devices Subscribed to a TOPICco.vviiiiiiiiii e
Send Custom Platform-Specific Payloads to Mobile DeviCescccoveiiiiiiiiiiiiiiiiieeens
Application Attributes for Message Delivery StatUsSoc.veiiriiieiiiie e
Configuring Message Delivery Status Attributes with the AWS Management Console
Amazon SNS Message Delivery Status CloudWatch Log Examplesc.ccoovviiiiiiiiiiinennne.
Configuring Message Delivery Status Attributes with the AWS SDKSccocoiviiiiiiiiiinennne.
Platform RESPONSE COUESvuiiieiiii et et ens
Application Event NOUfICAtIONS e
Available ApPlICAtioN EVENIS ..o
Sending Application Event NOLIfICAtioNSooiuiiiiii e
AMAZON SNS T L e ettt
TTL Message Attributes for Push Notification Servicescooviiiiiiiiiiiiiiieeas
Precedence Order for Determining TTL ..o
Specifying TTL with the AWS Management CONSOIEouiiiiiiiiiie e
Specifying TTL With the AWS SDKS ..ot

API Version 2010-03-31
v

Amazon Simple Notification Service Developer Guide

Amazon SNS Mobile PUSHh APIS ... e 98
APl BT O S e 99
Sending Messages to0 AMAazon SQS QUEUESuuuuieiin it e et e eenees 107
Step 1. Get the ARN of the queue and the tOPIC.c.viiiiiiii e 108
Step 2. Give permission to the Amazon SNS topic to send messages to the Amazon SQS queue 108
Step 3. Subscribe the queue to the Amazon SNS tOPICvuvviiiiiii e 109
Step 4. Give users permissions to the appropriate topic and queue actionsc..ccoceevvevinennenne. 110
Adding a policy t0 an IAM USEI OF GIOUP ...ueuinunintenat et e e et e et e et aeeaaeenees 110
Adding a policy t0 @ tOPIC OF QUEBUEuuieeiet ettt e e e e et eeaaenas 111
I (=T o I TR 1= A | 112
Sending Messages to a Queue in a Different ACCOUNEcieiiiiiiii e 113
Queue Owner Creates SUDSCHPLIONi.ir e e 113
User Who Does Not Own the Queue Creates SUDSCHPLIONc.oeviiiiiiiiiiiiee e, 114
Using an AWS CloudFormation Template to Create a Topic that Sends Messages to Amazon SQS
L 1T T2 116
Using an AWS CloudFormation Template to Set Up Topics and Queues Within an AWS
A CCOUNT ettt ettt 116
SENAING SIMS MESSAGESeutteintien ettt ettt et et e et e et e et e e e et e e e e e a e et e e aenas 121
SetliNG PrefErENCES ... e e e 121
Setting Preferences (CONSOIE) ... e 122
Setting Preferences (AWS SDKS) ... 123
SENAING A MESSAUE ... ettt ettt e e 124
Sending a Message (CONSOIE) ... e e 124
Sending @ MeSSage (AWS SDKS) ...t e 125
Sending a Message to Multiple Phone NUMDEIS ..o 127
Sending a Message to a TOPIC (CONSOIE)euiuieiii e 127
Sending a Message to a TOPIC (AWS SDKS) ...uuiiiiiiiiiiii e 128
MONILOFING SIMS ACHVITY . .e ettt et et eeenes 131
Viewing DeliVEry STAtISHICSueieiiit et 131
Viewing CloudWatch MetricsS and LOGScueuieiiiieiiie e 131
ViIEeWING USAGE REPOITSuieiiitiiit it e e ettt e e aees 133
Managing SUDSCIIPIONS ...t ettt e e e 136
Opting Out of ReCeIVING SMS MESSAQESuiuiriniiiiiie et ee e 136
Managing Phone Numbers and Subscriptions (CoNSole)cccoveiiiiiiiiiiiiiiieeeeans 136
Managing Phone Numbers and Subscriptions (AWS SDKS)ocivuiiiiiiiiiiiiieieieeeeeans 137
Supported Regions and COUNIIIESc.uiniii e e eaeae e 139
Sending Messages to HTTP/HTTPS ENAPOINTScuiiniiiiii e enas 147
Step 1: Make sure your endpoint is ready to process Amazon SNS mesSagescovevvvenvevenennenne. 148
Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topiCcoocvviiiiiiiiiiiiiennnen 151
Step 3: Confirm the SUDSCHPLION ... e 152
Step 4: Set the delivery retry policy for the subscription (optional)cooiiiiiiiiiiiiiin, 152
Step 5: Give users permissions to publish to the topic (optional)cccooiiiiiiiiiii 152
Step 6: Send messages to the HTTP/HTTPS endpoint ..o 153
Setting Amazon SNS Delivery Retry Policies for HTTP/HTTPS Endpointsccccoiiiiiiniininenns 154
Applying Delivery Policies to Topics and SUDBSCHPLONScouviiiiiiiiie e 156
Setting the Maximum ReCEIVE RALEooiiuiiiii e 157
IMmediate REtrY PRaSeooieiiii e 158
Pre-Backoff PRASE ... 158
BaCKOMT PRaSE ... 158
POSt-BacCKOff PRASE ... e 159
Certificate Authorities for HTTPS ENAPOINTSouiniiiii e 160
Verifying MESSAgE SIGNALUIES ...ttt ettt et e e e e aens 173
Example Code for an Endpoint Java ServIeto.viiiiii e 175
INVOKIiNg Lambda fUNCLIONSo e et 179
L (=TT U LS (= 179
Configuring Amazon SNS with Lambda Endpoints with the AWS Management Console 179
Using Amazon SNS Topic Attributes for Message Delivery Statuscooviiiiiiiiiiiieeee 181
Configuring Message Delivery Status Attributes with the AWS Management Console 181

API Version 2010-03-31
vi

Amazon Simple Notification Service Developer Guide

Configuring Message Delivery Status Attributes for Topics Subscribed to Amazon SNS Endpoints

WItN T8 AWS SIS ...ttt ettt ettt en s 182

QLI 0T A 1] 01U (= 182

Java Example to Configure Topic ArDULES ..o 183

MESSAGE ALIDULES ..ot e e 184
Message Attribute Items and Validation ..o 184

(D 1= B Y/ 01T TP PP 185
Reserved MeSSage AtIDULES ... et e 185
Using Message Attributes with the AWS SDKS ... 186
Monitoring Amazon SNS With ClOUAWALCK ... e 187
Access CloudWatch Metrics for Amazon SNS ... 187

Set CloudWatch Alarms for Amazon SNS METNCSvuieiiiiiiitiiii e 188
AMAZON SNS MEIIICS ..ottt ettt e ae e 189
Dimensions for Amazon Simple Notification Service MetriCscocoiiiiiiiiiiiiiiieeea 190
Logging Amazon SNS API Calls By Using CloudTrailc.oieiuiiiiiii e 191
Amazon SNS Information in ClOUATIAIcuuieiei e 191
Understanding Amazon SNS Log File ENHES ... 192
Appendix: Message and JSON FOIMALSuiuiii e e eneaen 195
HTTP/IHTTPS HEAUEIS ...ceieiiiiiiee ettt 195
HTTP/HTTPS Subscription Confirmation JSON FOrmatcooviiiiiiiiiiiie e 196
HTTP/HTTPS Notification JSON FOIMALc.uiiniiiiiiiii e 198
HTTP/HTTPS Unsubscribe Confirmation JISON FOrMatcovviiiiiiiiiiiiiiiceeie e 199
SetSubscriptionAttributes Delivery Policy JSON FOrmMatcoouviiiiiiiiiieiiie e 200
SetTopicAttributes Delivery Policy JISON FOIrMatcooiuiiiiiiiiiiiie e 201
Appendix: Large Payload and Raw Message DeliVEIYc.ooiiiiiii e 203
Enabling Raw Message Delivery with the AWS Management Consolec..cocvviiiiiiiiiiiieninnen. 203

[0 o8] 0 =Y oLl T3 (o Y/ 205

API Version 2010-03-31
vii

Amazon Simple Notification Service Developer Guide

What is Amazon Simple Notification
Service?

Amazon Simple Notification Service (Amazon SNS) is a web service that coordinates and manages
the delivery or sending of messages to subscribing endpoints or clients. In Amazon SNS, there are two
types of clients—publishers and subscribers—also referred to as producers and consumers. Publishers
communicate asynchronously with subscribers by producing and sending a message to a topic, which
is a logical access point and communication channel. Subscribers (i.e., web servers, email addresses,
Amazon SQS queues, AWS Lambda functions) consume or receive the message or natification over

one of the supported protocols (i.e., Amazon SQS, HTTP/S, email, SMS, Lambda) when they are
subscribed to the topic.

Lambda
sSQs

HTTP/S

Publisher q — —

\ SNS topic /

Amazon SNS

Email

R 2R 2R 2R

SMS
Subscriber

When using Amazon SNS, you (as the owner) create a topic and control access to it by defining
policies that determine which publishers and subscribers can communicate with the topic. A publisher
sends messages to topics that they have created or to topics they have permission to publish to.
Instead of including a specific destination address in each message, a publisher sends a message to
the topic. Amazon SNS matches the topic to a list of subscribers who have subscribed to that topic,
and delivers the message to each of those subscribers. Each topic has a unique name that identifies
the Amazon SNS endpoint for publishers to post messages and subscribers to register for notifications.

API Version 2010-03-31
1

http://aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Are You a First-Time Amazon
Simple Notification Service User?

Subscribers receive all messages published to the topics to which they subscribe, and all subscribers
to a topic receive the same messages.

Topics

¢ Are You a First-Time Amazon Simple Notification Service User? (p. 2)
¢ Beyond the Getting Started Section (p. 2)

¢ Accessing Amazon SNS (p. 2)

e« Common Amazon SNS Scenarios (p. 3)

Are You a First-Time Amazon Simple Notification
Service User?

If you are a first-time user of Amazon SNS, we recommend that you begin by reading the following
sections:

What is Amazon SNS — The rest of this section includes a video that introduces Amazon SNS
and walks you through the example presented in Getting Started with Amazon Simple Notification
Service (p. 5), and presents common use-case scenarios.

Getting Started — The Getting Started with Amazon Simple Notification Service (p. 5) section
walks you through creating a topic, subscribing to it, publishing a message to it, unsubscribing from
it, and finally, deleting the topic.

Beyond the Getting Started Section

Beyond the getting started section, you'll probably want to learn more about Amazon SNS operations.
The following sections provide detailed information about working with Amazon SNS:

Managing Access to Your Amazon SNS Topics (p. 12)

You have detailed control over which endpoints a topic allows, who is able to publish to a topic, and
under what conditions. This section shows you how to control access through the use of access
control policies.

Monitoring Amazon SNS with CloudWatch (p. 187)

Amazon SNS and CloudWatch are integrated so you can collect, view, and analyze metrics for every
active Amazon SNS topic.

Sending Amazon SNS Messages to Amazon SQS Queues (p. 107)

You can use Amazon SNS to send messages to one or more Amazon SQS queues.
Sending SMS Messages with Amazon SNS (p. 121)

You can use Amazon Simple Notification Service (Amazon SNS) to send SMS notifications to SMS-
enabled mobile phones and smart phones.

Sending Amazon SNS Messages to HTTP/HTTPS Endpoints (p. 147)

You can use Amazon SNS to send notification messages to one or more HTTP or HTTPS endpoints.

Accessing Amazon SNS

If you have an AWS account, you can access Amazon SNS in any of the following ways.

API Version 2010-03-31
2

Amazon Simple Notification Service Developer Guide
Common Scenarios

AWS Management Console
The AWS Management Console provides a web interface where you can manage your
compute, storage, and other cloud resources. Within the AWS Management Console,
individual services have their own console. To open the Amazon SNS console, log in to https://
console.aws.amazon.com/ and choose SNS from the console home page, or use the SNS console
direct URL: https://console.aws.amazon.com/sns/. For a tutorial that helps you complete common
SNS tasks in the console, see Getting Started with Amazon Simple Notification Service (p. 5).

AWS Command Line Interface (CLI)
Provides commands for a broad set of AWS products, and is supported on Windows, Mac, and
Linux. To get started, see AWS Command Line Interface User Guide. For more information about
the commands for Amazon SNS, see sns in the AWS Command Line Interface Reference.

AWS Tools for Windows PowerShell
Provides commands for a broad set of AWS products for those who script in the PowerShell
environment. To get started, see the AWS Tools for Windows PowerShell User Guide. For more
information about the cmdlets for Amazon SNS, see Amazon Simple Notification Service in the
AWS Tools for Windows PowerShell Reference.

AWS SDKs
AWS provides SDKs (software development kits) that consist of libraries and sample code for
various programming languages and platforms (Java, Python, Ruby, .NET, iOS, Android, etc.).
The SDKs provide a convenient way to create programmatic access to Amazon SNS and AWS.
For example, the SDKs take care of tasks such as cryptographically signing requests, managing
errors, and retrying requests automatically. For information about the AWS SDKs, including how to
download and install them, see the Tools for Amazon Web Services page.

Amazon SNS Query API
You can access Amazon SNS and AWS programmatically by using the Amazon SNS Query API,

which lets you issue requests directly to the service. For more information, see the Amazon Simple
Notification Service API Reference.

Common Amazon SNS Scenarios

Fanout

The "fanout" scenario is when an Amazon SNS message is sent to a topic and then replicated and
pushed to multiple Amazon SQS queues, HTTP endpoints, or email addresses. This allows for parallel
asynchronous processing. For example, you could develop an application that sends an Amazon SNS
message to a topic whenever an order is placed for a product. Then, the Amazon SQS queues that are
subscribed to that topic would receive identical notifications for the new order. The Amazon EC2 server
instance attached to one of the queues could handle the processing or fulfillment of the order while the
other server instance could be attached to a data warehouse for analysis of all orders received.

[endpoints]

C— 1

Fublisher |- S0S Queue EC2 Instance
[

(endpoint] SNS Topic

505 Queue EC2 Instance

Another way to use "fanout" is to replicate data sent to your production environment with your
development environment. Expanding upon the previous example, you could subscribe yet another
gueue to the same topic for new incoming orders. Then, by attaching this new queue to your
development environment, you could continue to improve and test your application using data received
from your production environment. For more information about sending Amazon SNS messages to
Amazon SQS queues, see Sending Amazon SNS Messages to Amazon SQS Queues (p. 107). For

API Version 2010-03-31
3

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/reference/sns
http://docs.aws.amazon.com/powershell/latest/userguide/
http://docs.aws.amazon.com/powershell/latest/reference/index.html?page=Amazon_Simple_Notification_Service_cmdlets.html&tocid=Amazon_Simple_Notification_Service_cmdlets
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/sns/latest/api/
http://docs.aws.amazon.com/sns/latest/api/

Amazon Simple Notification Service Developer Guide
Application and System Alerts

more information about sending Amazon SNS messages to HTTP/S endpoints, see Sending Amazon
SNS Messages to HTTP/HTTPS Endpoints (p. 147).

Application and System Alerts

Application and system alerts are notifications, triggered by predefined thresholds, sent to specified
users by SMS and/or email. For example, since many AWS services use Amazon SNS, you can
receive immediate notification when an event occurs, such as a specific change to your AWS Auto
Scaling group.

Push Email and Text Messaging

Push email and text messaging are two ways to transmit messages to individuals or groups via email
and/or SMS. For example, you could use Amazon SNS to push targeted news headlines to subscribers
by email or SMS. Upon receiving the email or SMS text, interested readers could then choose to learn
more by visiting a website or launching an application. For more information about using Amazon SNS
to send SMS notifications, see Sending SMS Messages with Amazon SNS (p. 121).

Mobile Push Notifications

Mobile push notifications enable you to send messages directly to mobile apps. For example, you
could use Amazon SNS for sending notifications to an app, indicating that an update is available. The
notification message can include a link to download and install the update. For more information about
using Amazon SNS to send direct notification messages to mobile endpoints, see Amazon SNS Mobile
Push Notifications (p. 38)

API Version 2010-03-31
4

Amazon Simple Notification Service Developer Guide
Before You Begin

Getting Started with Amazon Simple
Notification Service

This section contains information for you to understand Amazon SNS concepts and quickly set up
and use available tools and interfaces for creating and publishing to topics. To get started with push
notification messages, see Amazon SNS Mobile Push Notifications (p. 38).

Topics

Before You Begin (p. 5)

Create a Topic (p. 6)

Subscribe to a Topic (p. 6)

Publish to a Topic (p. 7)

Clean Up (p. 9)

Using the AWS SDK for Java with Amazon SNS (p. 9)

Before You Begin

To use Amazon SNS, you need an AWS account. If you don't already have one, use the following
procedure.

To sign up for AWS account

1.

Open http://aws.amazon.com/, and then choose Create an AWS Account.
Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

To get started with Amazon SNS

1.

Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

API Version 2010-03-31
5

http://aws.amazon.com/sns/
http://aws.amazon.com/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Create a Topic

2. Click the Get Started button.

You should now be on the SNS Home page.

Create a Topic

Now that you're signed up for Amazon SNS, you're ready to create a topic. A topic is a communication
channel to send messages and subscribe to notifications. It provides an access point for publishers
and subscribers to communicate with each other. In this section you create a topic named MyTopic.

To create a topic
1. Inthe Amazon SNS console, click Create topic.

The Create topic dialog box appears.
2. Inthe Topic name box, type a topic name.
3. Click Create topic.

The new topic appears in the Topics page.
4. Select the new topic and then click the topic ARN.

The Topic Details page appears.

Topic Details: MyTopic

Publish to topic Other topic actions ~

Topic ARN arn:aws:sns: i My Topic
Topic Owner

Region

Display Name DisplayNameHere

5. Copy the topic ARN for the next task.

arn: aws: sns: us-west-2:111122223333: MyTopi ¢

Subscribe to a Topic

To receive messages published to a topic, you have to subscribe an endpoint to that topic. An endpoint
is a mobile app, web server, email address, or an Amazon SQS queue that can receive notification
messages from Amazon SNS. Once you subscribe an endpoint to a topic and the subscription is
confirmed, the endpoint will receive all messages published to that topic.

API Version 2010-03-31
6

https://console.aws.amazon.com/sns/v2/home

Amazon Simple Notification Service Developer Guide
Publish to a Topic

In this section you subscribe an endpoint to the topic you just created in the previous section. You
configure the subscription to send the topic messages to your email account.

To subscribe to a topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/.
Click Create subscription.

The Create Subscription dialog box appears.

3. Inthe Topic ARN field, paste the topic ARN you created in the previous task, for example:
arn: aws: sns: us-west-2:111122223333: MyTopi c.

4. Inthe Protocol drop-down box, select Email.
5. Inthe Endpoint box, type an email address you can use to receive the notification.
Important

Entourage Users: Entourage strips out the confirmation URL. Type an email address you
can access in a different email application.

6. Click Create subscription.

Create Subscription
Topic ARN | amn:aws:sns 111122223333:MyTopic

Protocol Email ¢

Endpoint user@domain.com

Cancel Create subscription

7. Go to your email application and open the message from AWS Notifications, and then click the link
to confirm your subscription.

Your web browser displays a confirmation response from Amazon SNS.

Publish to a Topic

Publishers send messages to topics. Once a new message is published, Amazon SNS attempts to
deliver that message to every endpoint that is subscribed to the topic. In this section you publish a
message to the email address you defined in the previous task.

To publish to a topic
1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/.

In the left navigation pane, click Topics and then select the topic you want to publish to.
2. Click the Publish to topic button.

The Publish a Message page appears.

API Version 2010-03-31
7

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Create Different Messages for Each Protocol

Publish a Message

Amazon SNS enables you to publish notifications to all subscriptions associated with a topic as v

Topic ARN arn:aws:sns:sw w2 MyTopic
Subject
Message Format @ Raw © JSON
Message

3. Inthe Subject box, type a subject line for your message.
4. Inthe Message box, type a brief message.
5. Click Publish Message.

A confirmation dialog box appears.

You can now use your email application to open the message from AWS Notifications and read the
message.

Create Different Messages for Each Protocol

You can use message formatting support to customize the messages you send for each protocol. For
example, a notification that goes to both email and SMS subscribers can be tailored to each type of
client. SMS users can receive a short version of the message, while email users can receive a longer,
more detailed version.

To publish to a topic with message formatting

1. Signin to the AWS Management Console and open the Amazon SNS console at https:/
console.aws.amazon.com/sns/.

2. Inthe left navigation pane, click Topics and then select a topic.
Click the Publish to topic button.

w

The Publish a message page appears.

Click the JISON Message Generator button.

In the Message box, type a brief message.

In this example for the Target Platforms, select email and sms.
Click the Generate JSON button.

N o gk

You can now modify the message text so that it is tailored to each type of client.

The SMS message can contain up to 160 ASCII (or 70 Unicode) characters. If the message
exceeds this length, Amazon SNS sends it as multiple messages, each fitting within the character
limit. Messages are not cut off in the middle of a word but on whole-word boundaries.

API Version 2010-03-31
8

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Clean Up

Email messages can be up to 256 KB in size.

In the following example, messages are specified for the default, email, and SMS protocols.

{

"default": "Message body text here.",
"emai | ": "Message body text here.",
"sns": "Message body text here."

}

Click Publish message.

A confirmation dialog box appears.

Clean Up

You have created a topic, subscribed to it, and published a message to the topic. Now you clean up
your environment by unsubscribing from the topic and then deleting the topic.

To unsubscribe from a topic

1.

Open the Amazon SNS console at https://console.aws.amazon.com/sns/.
In the left navigation pane, click Subscriptions.

The Subscriptions page opens.

Select your subscription in the subscription list. This will be the only listing on the page, unless you
created more than one subscription.

Click the Other actions drop-down list and then click Delete subscription(s).

The Delete confirmation dialog box appears.
Click Delete.

The subscription is deleted, unless it is a pending subscription, meaning it has not yet been confirmed.
You cannot delete a pending subscription, but if it remains pending for 3 days, Amazon SNS
automatically deletes it.

To delete a topic

Open the Amazon SNS console at https://console.aws.amazon.com/sns/.

1.
2.

In the left navigation pane, click Topics, and then select the topic you want to delete.
Click the Actions drop-down list and select Delete topics.

The Delete confirmation dialog box appears.
Click Delete.

When you delete a topic, you also delete all subscriptions to that topic.

Using the AWS SDK for Java with Amazon SNS

The SDK for Java provides a class named AmazonSNSClient that you can use to interact with Amazon
SNS. For information about downloading the AWS SDK for Java, go to AWS SDK for Java.

API Version 2010-03-31
9

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sns/AmazonSNSClient.html
http://aws.amazon.com/sdkforjava/

Amazon Simple Notification Service Developer Guide
Using the SDK for Java

The AmazonSNSd i ent class defines methods that map to underlying Amazon SNS Query API
actions. (These actions are described in the Amazon SNS API Reference). When you call a method,
you must create a corresponding request object and response object. The request object includes
information that you must pass with the actual request. The response object includes information
returned from Amazon SNS in response to the request.

For example, the AmazonSNSC i ent class provides the cr eat eTopi ¢ method to create a topic to
which notifications can be published. This method maps to the underlying CreateTopic API action. You
create a CreateTopicRequest object to pass information with the cr eat eTopi ¢ method.

The following import statements are used with the provided java samples.

i mport com amazonaws. servi ces. sns. AnazonSNSCl i ent ;

i mport com amazonaws. aut h. Cl asspat hProperti esFil eCredenti al sProvi der;
i mport com amazonaws. r egi ons. Regi on;

i mport com amazonaws. r egi ons. Regi ons;

i mport com anmzonaws. servi ces. sns. nodel . Cr eat eTopi cRequest ;

i mport com anmzonaws. servi ces. sns. nodel . Cr eat eTopi cResul t;

i mport com anazonaws. ser Vi ces. sns. nodel . Subscri beRequest ;

i mport com anazonaws. servi ces. sns. nodel . Publ i shRequest ;

i mport com amazonaws. servi ces. sns. nodel . Publ i shResul t;

i mport com anmzonaws. servi ces. sns. nodel . Del et eTopi cRequest ;

The following example shows how to create a new Amazon SNS client, set the Amazon SNS endpoint
to use, and then create a new topic.

Note

In some of the following examples, the get CachedResponseMet adat a method is used to
show how to programmatically retrieve the request ID for a previously executed successful
Amazon SNS request. This is typically used for debugging issues and is helpful when
requesting assistance from Amazon Web Services.

Create a Topic

/lcreate a new SNS client and set endpoint
AmazonSNSC i ent snsClient = new AmazonSNSC i ent (new
Cl asspat hProperti esFil eCredenti al sProvider());
snsd i ent. set Regi on(Regi on. get Regi on(Regi ons. US_EAST_1));

//create a new SNS topic
Creat eTopi cRequest creat eTopi cRequest = new Creat eTopi cRequest (" MyNewTopi c");
Creat eTopi cResul t createTopi cResult =
snsCl i ent. createTopi c(createTopi cRequest);
/lprint Topi cArn
Systemout. println(createTopi cResult);
/1 get request id for CreateTopi cRequest from SNS net adat a
Systemout. println("CreateTopi cRequest - " +
snsCl i ent. get CachedResponseMet adat a(cr eat eTopi cRequest)) ;

When you run this example, the following is displayed in the console output window of your IDE, such
as Eclipse:

{Topi cArn: arn: aws: sns: us-east-1: 123456789012: MyNewTopi c}
Creat eTopi cRequest - {AWS_REQUEST_I| D=93f 7f c90- f 131- 5ca3- ab18- b741f ef 918b5}

The TopicArn is assigned to a string variable to use in additional operations.

API Version 2010-03-31
10

http://docs.aws.amazon.com/sns/latest/api/API_Operations.html
http://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sns/model/CreateTopicRequest.html

Amazon Simple Notification Service Developer Guide
Using the SDK for Java

String topi cCArn = "arn: aws: sns: us- east - 1: 123456789012: MyNewTopi c";

The following examples show how to subscribe to, publish to, and delete a topic.

Subscribe to a Topic

/1 subscribe to an SNS topic

Subscri beRequest subRequest = new Subscri beRequest (topi cArn, "email",
"name@xanpl e. cont') ;

snsC i ent. subscri be(subRequest);

/1get request id for SubscribeRequest from SNS net adat a

System out . println("Subscri beRequest - " +
snsCl i ent. get CachedResponseMet adat a(subRequest)) ;

System out . println("Check your email and confirm subscription.");

When you run this example, the following is displayed in the console output window of your IDE:

Subscri beRequest - {AWS_REQUEST_| D=9b7f f 59a-f 917- 533a- a6bd- be4bf 6df Oacf }
Check your emmil and confirm subscription.

Publish to a Topic

/1 publish to an SNS topic

String msg = "My text published to SNS topic with email endpoint”;
Publ i shRequest publ i shRequest = new Publ i shRequest (topi cArn, nsg);
Publ i shResult publishResult = snsCient.publish(publishRequest);
/1 print Messageld of nessage published to SNS topic
Systemout.println("Messageld - " + publishResult.getMessageld());

When you run this example, the following is displayed in the console output window of your IDE:

Messagel d - 9b888f 80- 15f 7- 5¢30- 81a2- c4511a3f 5229

Delete a Topic

//delete an SNS topic
Del et eTopi cRequest del et eTopi cRequest = new Del et eTopi cRequest (t opi cArn);
snsCl i ent. del et eTopi c(del et eTopi cRequest) ;
/1 get request id for Del eteTopi cRequest from SNS net adat a
System out. println("Del et eTopi cRequest - " +
snsCl i ent. get CachedResponseMet adat a(del et eTopi cRequest));

When you run this example, the following is displayed in the console output window of your IDE:

Del et eTopi cRequest - {AW5_REQUEST | D=067a4980- 4e93- 5bf c- b88c- 0251415bc852}

API Version 2010-03-31
11

Amazon Simple Notification Service Developer Guide
Overview

Managing Access to Your Amazon
SNS Topics

Topics
¢ Overview (p. 12)
¢ Special Information for Amazon SNS Policies (p. 29)
¢ Controlling User Access to Your AWS Account (p. 30)

Amazon SNS supports other protocols beside email. You can use HTTP, HTTPS, and Amazon SQS
gueues. You have detailed control over which endpoints a topic allows, who is able to publish to a
topic, and under what conditions. This appendix shows you how to control through the use of access
control policies.

The main portion of this section includes basic concepts you need to understand, how to write a policy,
and the logic Amazon Web Services (AWS) uses to evaluate policies and decide whether to give the
requester access to the resource. Although most of the information in this section is service-agnostic,
there are some Amazon SNS-specific details you need to know. For more information, see Special
Information for Amazon SNS Policies (p. 29).

Overview

Topics
¢ When to Use Access Control (p. 13)
¢ Key Concepts (p. 13)
¢ Architectural Overview (p. 16)
¢ Using the Access Policy Language (p. 18)
¢ Evaluation Logic (p. 20)
¢ Example Cases for Amazon SNS Access Control (p. 25)

This section describes basic concepts you need to understand to use the access policy language to
write policies. It also describes the general process for how access control works with the access policy
language, and how policies are evaluated.

API Version 2010-03-31
12

http://aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
When to Use Access Control

When to Use Access Control

You have a great deal of flexibility in how you grant or deny access to a resource. However, the typical
use cases are fairly simple:

¢ You want to grant another AWS account a particular type of topic action (e.g., Publish). For more
information, see Allowing AWS account Access to a Topic (p. 25).

¢ You want to limit subscriptions to your topic to only the HTTPS protocol. For more information, see
Limiting Subscriptions to HTTPS (p. 26).

¢ You want to allow Amazon SNS to publish messages to your Amazon SQS queue. For more
information, see Publishing to an Amazon SQS Queue (p. 26).

Key Concepts

The following sections describe the concepts you need to understand to use the access policy
language. They're presented in a logical order, with the first terms you need to know at the top of the
list.

Permission

A permission is the concept of allowing or disallowing some kind of access to a particular resource.
Permissions essentially follow this form: "A is/isn't allowed to do B to C where D applies." For example,
Jane (A) has permission to publish (B) to TopicA (C) as long as she uses the HTTP protocol (D).
Whenever Jane publishes to TopicA, the service checks to see if she has permission and if the request
satisfies the conditions set forth in the permission.

Statement

A statement is the formal description of a single permission, written in the access policy language. You
always write a statement as part of a broader container document known as a policy (see the next
concept).

Policy

A policy is a document (written in the access policy language) that acts as a container for one or
more statements. For example, a policy could have two statements in it: one that states that Jane
can subscribe using the email protocol, and another that states that Bob cannot publish to TopicA. As
shown in the following figure, an equivalent scenario would be to have two policies, one that states
that Jane can subscribe using the email protocol, and another that states that Bob cannot publish to
TopicA.

API Version 2010-03-31
13

Amazon Simple Notification Service Developer Guide

Key Concepts
Policy A P
Statement 1
is equivalent to
Statement 2 P

Issuer

The issuer is the person who writes a policy to grant permissions for a resource. The issuer (by
definition) is always the resource owner. AWS does not permit AWS service users to create policies for
resources they don't own. If John is the resource owner, AWS authenticates John's identity when he
submits the policy he's written to grant permissions for that resource.

Principal

The principal is the person or persons who receive the permission in the policy. The principal is A in
the statement "A has permission to do B to C where D applies." In a policy, you can set the principal
to "anyone" (i.e., you can specify a wildcard to represent all people). You might do this, for example,
if you don't want to restrict access based on the actual identity of the requester, but instead on some
other identifying characteristic such as the requester's IP address.

Action

The action is the activity the principal has permission to perform. The action is B in the statement "A
has permission to do B to C where D applies." Typically, the action is just the operation in the request
to AWS. For example, Jane sends a request to Amazon SNS with Act i on=Subscri be. You can
specify one or multiple actions in a policy.

Resource

The resource is the object the principal is requesting access to. The resource is C in the statement "A
has permission to do B to C where D applies."

Conditions and Keys

The conditions are any restrictions or details about the permission. The condition is D in the statement
"A has permission to do B to C where D applies." The part of the policy that specifies the conditions
can be the most detailed and complex of all the parts. Typical conditions are related to:

« Date and time (e.g., the request must arrive before a specific day)

API Version 2010-03-31
14

Amazon Simple Notification Service Developer Guide
Key Concepts

» IP address (e.g., the requester's IP address must be part of a particular CIDR range)

A key is the specific characteristic that is the basis for access restriction. For example, the date and
time of request.

You use both conditions and keys together to express the restriction. The easiest way to understand
how you actually implement a restriction is with an example: If you want to restrict access to

before May 30, 2010, you use the condition called Dat eLessThan. You use the key called

aws: Current Ti ne and set it to the value 2010- 05- 30T00: 00: 00Z. AWS defines the conditions
and keys you can use. The AWS service itself (e.g., Amazon SQS or Amazon SNS) might also
define service-specific keys. For more information, see Special Information for Amazon SNS
Policies (p. 29).

Requester

The requester is the person who sends a request to an AWS service and asks for access to a
particular resource. The requester sends a request to AWS that essentially says: "Will you allow me to
do B to C where D applies?"

Evaluation

Evaluation is the process the AWS service uses to determine if an incoming request should be denied
or allowed based on the applicable policies. For information about the evaluation logic, see Evaluation
Logic (p. 20).

Effect

The effect is the result that you want a policy statement to return at evaluation time. You specify this
value when you write the statements in a policy, and the possible values are deny and allow.

For example, you could write a policy that has a statement that denies all requests that come from
Antarctica (effect=deny given that the request uses an IP address allocated to Antarctica). Alternately,
you could write a policy that has a statement that allows all requests that don't come from Antarctica
(effect=allow, given that the request doesn't come from Antarctica). Although the two statements
sound like they do the same thing, in the access policy language logic, they are different. For more
information, see Evaluation Logic (p. 20).

Although there are only two possible values you can specify for the effect (allow or deny), there can

be three different results at policy evaluation time: default deny, allow, or explicit deny. For more
information, see the following concepts and Evaluation Logic (p. 20).

Default Deny

A default deny is the default result from a policy in the absence of an allow or explicit deny.

Allow

An allow results from a statement that has effect=allow, assuming any stated conditions are met.
Example: Allow requests if they are received before 1:00 p.m. on April 30, 2010. An allow overrides all
default denies, but never an explicit deny.

Explicit Deny
An explicit deny results from a statement that has effect=deny, assuming any stated conditions are

met. Example: Deny all requests if they are from Antarctica. Any request that comes from Antarctica
will always be denied no matter what any other policies might allow.

API Version 2010-03-31
15

Amazon Simple Notification Service Developer Guide
Architectural Overview

Architectural Overview

The following figure and table describe the main components that interact to provide access control for
your resources.

AW,
You O
Resource A F
9 Your policy for Yc
Resource A F
Requester
Requester
Incoming -
ts Eval
reques 5 | 6

Requester —

Requester

1 You, the resource owner.

API Version 2010-03-31
16

Amazon Simple Notification Service Developer Guide
Architectural Overview

Your resources (contained within the AWS service; e.g., Amazon SQS queues).

Your policies.

Typically you have one policy per resource, although you could have multiple. The AWS
service itself provides an API you use to upload and manage your policies.

Requesters and their incoming requests to the AWS service.

The access policy language evaluation code.

This is the set of code within the AWS service that evaluates incoming requests against the
applicable policies and determines whether the requester is allowed access to the resource.
For information about how the service makes the decision, see Evaluation Logic (p. 20).

API Version 2010-03-31
17

Amazon Simple Notification Service Developer Guide
Using the Access Policy Language

Using the Access Policy Language

The following figure and table describe the general process of how access control works with the
access policy language.

You write a policy You add the policy Someone reque
_—— to the system - to use your resol

1 2 3
The AWS service The AWS service
determines the evaluates the The AWS servis
applicable policies —™ policies —p returns the resi
4 5 6

Process for Using Access Control with the Access Policy Language

1 You write a policy for your resource.
For example, you write a policy to specify permissions for your Amazon SNS topics.

2 You upload your policy to AWS.

The AWS service itself provides an APl you use to upload your policies. For example, you use
the Amazon SNS Set Topi cAt t ri but es action to upload a policy for a particular Amazon
SNS topic.

3 Someone sends a request to use your resource.
For example, a user sends a request to Amazon SNS to use one of your topics.

4 The AWS service determines which policies are applicable to the request.

For example, Amazon SNS looks at all the available Amazon SNS policies and determines
which ones are applicable (based on what the resource is, who the requester is, etc.).

5 The AWS service evaluates the policies.

For example, Amazon SNS evaluates the policies and determines if the requester is allowed to
use your topic or not. For information about the decision logic, see Evaluation Logic (p. 20).

6 The AWS service either denies the request or continues to process it.

For example, based on the policy evaluation result, the service either returns an "Access
denied" error to the requester or continues to process the request.

API Version 2010-03-31
18

Amazon Simple Notification Service Developer Guide
Using the Access Policy Language

Related Topics

¢ Architectural Overview (p. 16)

API Version 2010-03-31
19

Amazon Simple Notification Service Developer Guide
Evaluation Logic

Evaluation Logic

The goal at evaluation time is to decide whether a given request should be allowed or denied. The
evaluation logic follows several basic rules:

« By default, all requests to use your resource coming from anyone but you are denied

¢ An allow overrides any default denies

¢ An explicit deny overrides any allows

¢ The order in which the policies are evaluated is not important

The following flow chart and discussion describe in more detail how the decision is made.

API Version 2010-03-31
20

Amazon Simple Notification Service Developer Guide
Evaluation Logic

Decision
starts at
“Deany”
(default deny)

'

Evaluate all
applicable
policies

'

|s there an

Yes

explicit deny?

|5 there an allow? Yes

Mo

Y

Final decision =

-

Final decision =

(explicit den

Final decision =

“Delieﬂr\lersion 2010-03-31

21

(default deny)

Amazon Simple Notification Service Developer Guide
Evaluation Logic

1 The decision starts with a default deny.

2 The enforcement code then evaluates all the policies that are applicable to the request (based
on the resource, principal, action, and conditions).

The order in which the enforcement code evaluates the policies is not important.

3 In all those policies, the enforcement code looks for an explicit deny instruction that would
apply to the request.

If it finds even one, the enforcement code returns a decision of "deny" and the process is
finished (this is an explicit deny; for more information, see Explicit Deny (p. 15)).

4 If no explicit deny is found, the enforcement code looks for any "allow" instructions that would
apply to the request.

If it finds even one, the enforcement code returns a decision of "allow" and the process is done
(the service continues to process the request).

5 If no allow is found, then the final decision is "deny" (because there was no explicit deny or
allow, this is considered a default deny (for more information, see Default Deny (p. 15)).

The Interplay of Explicit and Default Denials

A policy results in a default deny if it doesn't directly apply to the request. For example, if a user
requests to use Amazon SNS, but the policy on the topic doesn't refer to the user's AWS account at all,
then that policy results in a default deny.

A policy also results in a default deny if a condition in a statement isn't met. If all conditions in the
statement are met, then the policy results in either an allow or an explicit deny, based on the value
of the Effect element in the policy. Policies don't specify what to do if a condition isn't met, and so the
default result in that case is a default deny.

For example, let's say you want to prevent requests coming in from Antarctica. You write a policy

(called Policy A1) that allows a request only if it doesn't come from Antarctica. The following diagram
illustrates the policy.

Policy A1

Effect = Allow

Condition:
if request is NOT from Antarctica

If someone sends a request from the U.S., the condition is met (the request is not from Antarctica).
Therefore, the request is allowed. But, if someone sends a request from Antarctica, the condition isn't
met, and the policy's result is therefore a default deny.

API Version 2010-03-31
22

Amazon Simple Notification Service Developer Guide
Evaluation Logic

You could turn the result into an explicit deny by rewriting the policy (named Policy A2) as in the
following diagram. Here, the policy explicitly denies a request if it comes from Antarctica.

Policy A2
Effect = Deny

Condition:
if request is from Antarctica

If someone sends a request from Antarctica, the condition is met, and the policy's result is therefore an
explicit deny.

The distinction between a default deny and an explicit deny is important because a default deny can
be overridden by an allow, but an explicit deny can't. For example, let's say there's another policy that
allows requests if they arrive on June 1, 2010. How does this policy affect the overall outcome when
coupled with the policy restricting access from Antarctica? We'll compare the overall outcome when
coupling the date-based policy (we'll call Policy B) with the preceding policies A1 and A2. Scenario 1
couples Policy Al with Policy B, and Scenario 2 couples Policy A2 with Policy B. The following figure
and discussion show the results when a request comes in from Antarctica on June 1, 2010.

API Version 2010-03-31
23

Amazon Simple Notification Service Developer Guide
Evaluation Logic

Scenario 1

Request armives from Antarctica on
June 1, 2010

I Policy Evaluation

Policy A1

Effect = Allow

Condition:
if request is NOT from Antarctica

OR

Policy B

Effect = Allow

Condition:
if request comes in on June 1, 2010

I Result

Policy ARESYRBefault Deny

OR Policy B Result: Allow

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

In Scenario 1, Policy Al returns a default deny, as described earlier in this section. Policy B returns an
allow because the policy (by definition) allows requests that come in on June 1, 2010. The allow from
Policy B overrides the default deny from Policy A1, and the request is therefore allowed.

In Scenario 2, Policy B2 returns an explicit deny, as described earlier in this section. Again, Policy B
returns an allow. The explicit deny from Policy A2 overrides the allow from Policy B, and the request is
therefore denied.

Example Cases for Amazon SNS Access Control

Topics
¢ Allowing AWS account Access to a Topic (p. 25)
¢ Limiting Subscriptions to HTTPS (p. 26)
¢ Publishing to an Amazon SQS Queue (p. 26)
¢ Allowing Any AWS Resource to Publish to a Topic (p. 27)
¢ Allowing an Amazon S3 Bucket to Publish to a Topic (p. 27)

This section gives a few examples of typical use cases for access control.

Allowing AWS account Access to a Topic

Let's say you have a topic in the Amazon SNS system. In the simplest case, you want to allow one or
more AWS accounts access to a specific topic action (e.g., Publish).

You can do this by using the Amazon SNS API action AddPer nmi ssi on. It takes a topic, a list of
AWS account IDs, a list of actions, and a label, and automatically creates a new statement in the
topic's access control policy. In this case, you don't write a policy yourself, because Amazon SNS
automatically generates the new policy statement for you. You can remove the policy statement later
by calling RenovePer ni ssi on with its label.

For example, if you called AddPer ni ssi on on the topic arn:aws:sns:us-
east-1:444455556666:MyTopic, with AWS account ID 1111-2222-3333, the Publ i sh action, and the
label gi ve- 1234- publ i sh, Amazon SNS would generate and insert the following access control
policy statement:

{
"Version":"2012-10-17",
"1d":" AWBAccount Topi cAccess",
"Statenent" :[
{
"Sid":"give-1234-publish",
"Effect":"All ow',
"Principal" :{
"AWE": " 111122223333"
H
"Action":["sns: Publish"],
"Resource":"arn: aws: sns: us- east - 1: 444455556666: MyTopi c"
}
]
}

Once this statement is added, the user with AWS account 1111-2222-3333 can publish messages to
the topic.

API Version 2010-03-31
25

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

Limiting Subscriptions to HTTPS

In this use case, you want to allow subscription requests to your topic only by HTTPS, for security.

You need to know how to write your own policy for the topic because the Amazon SNS

AddPer m ssi on action doesn't let you specify a protocol restriction when granting someone access
to your topic. In this case, you would write your own policy, and then use the Set Topi cAttri but es
action to set the topic's Pol i cy attribute to your new policy.

The following example of a full policy gives the AWS account ID 1111-2222-3333 the ability to
subscribe to notifications from a topic.

"Version":"2012-10- 17",
"1d":"SomePol i cyld",
"Statenent” [
{
"Sid":"Statenmentl",
"Effect":"All ow',
"Principal" :{
"AWS":"111122223333"
I8
"Action":["sns: Subscribe"],
"Resource": "arn:aws:sns:us-east-1:444455556666: MyTopi c",
"Condition" :{
"StringEqual s" :{
"sns: Protocol ":"https"
}

Publishing to an Amazon SQS Queue

In this use case, you want to publish messages from your topic to your Amazon SQS queue. Like
Amazon SNS, Amazon SQS uses Amazon's access control policy language. To allow Amazon SNS to
send messages, you'll need to use the Amazon SQS action Set QueueAt t ri but es to set a policy on
the queue.

Again, you'll need to know how to write your own policy because the Amazon SQS AddPer i ssi on
action doesn't create policy statements with conditions.

Note that the example presented below is an Amazon SQS policy (controlling access to your queue),
not an Amazon SNS policy (controlling access to your topic). The actions are Amazon SQS actions,
and the resource is the Amazon Resource Name (ARN) of the queue. You can determine the queue's
ARN by retrieving the queue's QueueAr n attribute with the Get QueueAt t ri but es action.

"Version":"2012-10-17",
"Id":"MyQueuePol i cy",
"Statenent" :[
{
"Sid":"A | ow SNS- SendMessage",
"Effect":"Al |l ow',
"Principal" :"*",
"Action":["sqs: SendMessage"],

API Version 2010-03-31
26

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

"Resource": "arn:aws:sQs: us-east-1:444455556666: MyQueue",
"Condition" :{
"ArnEqual s" :{
"aws: Sour ceArn":"arn: aws: sns: us- east - 1: 444455556666: My Topi c"
}

This policy uses the aws: Sour ceAr n condition to restrict access to the queue based on the
source of the message being sent to the queue. You can use this type of policy to allow Amazon
SNS to send messages to your queue only if the messages are coming from one of your own
topics. In this case, you specify a particular one of your topics, whose ARN is arn:aws:sns:us-
east-1:444455556666:MyTopic.

The preceding policy is an example of the Amazon SQS policy you could write and add to a specific
queue. It would grant Amazon SNS and other AWS products access. Amazon SNS gives a default
policy to all newly created topics. The default policy gives all other AWS products access to your topic.
This default policy uses an aws: Sour ceAr n condition to ensure that AWS products access your topic
only on behalf of AWS resources you own.

Allowing Any AWS Resource to Publish to a Topic

In this case, you want to configure a topic's policy so that another AWS account's resource (e.g.,
Amazon S3 bucket, Amazon EC2 instance, or Amazon SQS queue) can publish to your topic. This
example assumes that you write your own policy and then use the Set Topi cAt t ri but es action to
set the topic's Pol i cy attribute to your new policy.

In the following example statement, the topic owner in these policies is 1111-2222-3333 and the AWS
resource owner is 4444-5555-6666. The example gives the AWS account ID 4444-5555-6666 the
ability to publish to My-Topic from any AWS resource owned by the account.

{
"Version":"2012-10-17",
"Id": " MyAWSPol i cy",
"Statenment" [
{
"Sid':"M-statement-id",
"Effect":"All ow',
"Principal" :"*",
"Action":"sns: Publish",
"Resource":"arn: aws: sns: us-east-1:111122223333: My- Topi ¢",
"Condition":{
"StringEqual s":{
" AWE: Sour ceAccount " : " 444455556666"
}
}
}
]
}

Allowing an Amazon S3 Bucket to Publish to a Topic

In this case, you want to configure a topic's policy so that another AWS account's Amazon S3 bucket
can publish to your topic. For more information about publishing naotifications from Amazon S3, go to
Setting Up Notifications of Bucket Events.

API Version 2010-03-31
27

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

This example assumes that you write your own policy and then use the Set Topi cAt tri but es action
to set the topic's Pol i cy attribute to your new policy.

The following example statement uses the Ar nLi ke condition to make sure the ARN of the resource
making the request (the AW5: Sour ceARN) is an Amazon S3 ARN. You could use a similar condition to
restrict the permission to a set of Amazon S3 buckets, or even to a specific bucket. In this example, the
topic owner is 1111-2222-3333 and the Amazon S3 owner is 4444-5555-6666. The example states that
any Amazon S3 bucket owned by 4444-5555-6666 is allowed to publish to My-Topic.

{
"Version":"2012-10-17",
"Id": " MyAWSPol i cy",
"Statenment" [
{
"Sid"':"My-statement-id",
"Effect":"All ow',
"Principal" :"*",
"Action":"sns: Publish",
"Resource":"arn:aws: sns: us-east-1:111122223333: My- Topi ¢",
"Condition":{
"StringEqual s":{ "AWS: Sour ceAccount": "444455556666" } |,
"ArnLi ke": {"AWS: SourceArn": "arn:aws:s3:*:*:*" }
}
}
]
}

API Version 2010-03-31
28

Amazon Simple Notification Service Developer Guide
Special Information for Amazon SNS Policies

Special Information for Amazon SNS Policies

The following list gives information specific to the Amazon SNS implementation of access control:

¢ Each policy must cover only a single topic (when writing a policy, don't include statements that cover

different topics)

¢ Each policy must have a unique policy 1 d

« Each statement in a policy must have a unique statement si d

Amazon SNS Policy Limits

The following table lists the maximum limits for policy information.

Name
Bytes
Statements
Principals

Resource

Maximum Limit

30 kb

100

1to 200 (0 is invalid.)

1 (0 is invalid. The value must match the ARN of the
policy's topic.)

Valid Amazon SNS Policy Actions

Amazon SNS supports the actions shown in the following table.

Action
sns:AddPermission
sns:DeleteTopic
sns:GetTopicAttributes

sns:ListSubscriptionsByTopic

sns:Publish

sns:RemovePermission

sns:SetTopicAttributes

sns:Subscribe

Description

Grants permission to add permissions to the topic policy.
Grants permission to delete a topic.

Grants permission to receive all of the topic attributes.

Grants permission to retrieve all the subscriptions to a specific
topic.

Grants permission to publish to a topic or endpoint. For more
information, see Publish in the Amazon Simple Notification Service
API| Reference

Grants permission to remove any permissions in the topic policy.
Grants permission to set a topic's attributes.

Grants permission to subscribe to a topic.

Amazon SNS Keys

Amazon SNS uses the following service-specific keys. You can use these in policies that restrict

access to Subscri be requests.

API Version 2010-03-31
29

http://docs.aws.amazon.com/sns/latest/api/API_Publish.html

Amazon Simple Notification Service Developer Guide
Controlling User Access to Your AWS Account

¢ sns:Endpoint—The URL, email address, or ARN from a Subscr i be request or a previously
confirmed subscription. Use with string conditions (see Example Policies for Amazon SNS (p. 34))
to restrict access to specific endpoints (e.g., *@example.com).

¢ sns:Protocol—The pr ot ocol value from a Subscri be request or a previously confirmed
subscription. Use with string conditions (see Example Policies for Amazon SNS (p. 34)) to restrict
publication to specific delivery protocols (e.g., https).

Important
When you use a policy to control access by sns:Endpoint, be aware that DNS issues might
affect the endpoint's name resolution in the future.

Controlling User Access to Your AWS Account

Topics
¢ |AM and Amazon SNS Policies Together (p. 30)
¢ Amazon SNS ARNSs (p. 33)
¢« Amazon SNS Actions (p. 34)
¢« Amazon SNS Keys (p. 34)
¢ Example Policies for Amazon SNS (p. 34)
¢ Using Temporary Security Credentials (p. 36)

Amazon Simple Notification Service integrates with AWS Identity and Access Management (IAM)
so that you can specify which Amazon SNS actions a user in your AWS account can perform with
Amazon SNS resources. You can specify a particular topic in the policy. For example, you could use
variables when creating an 1AM policy that gives certain users in your organization permission to
use the Publ i sh action with specific topics in your AWS account. For more information, see Policy
Variables in the Using IAM guide.

Important

Using Amazon SNS with IAM doesn't change how you use Amazon SNS. There are no
changes to Amazon SNS actions, and no new Amazon SNS actions related to users and
access control.

For examples of policies that cover Amazon SNS actions and resources, see Example Policies for
Amazon SNS (p. 34).

IAM and Amazon SNS Policies Together

You use an |IAM policy to restrict your users' access to Amazon SNS actions and topics. An 1AM policy
can restrict access only to users within your AWS account, not to other AWS accounts.

You use an Amazon SNS policy with a particular topic to restrict who can work with that topic (e.g.,
who can publish messages to it, who can subscribe to it, etc.). Amazon SNS policies can give access
to other AWS accounts, or to users within your own AWS account.

To give your users permissions for your Amazon SNS topics, you can use |AM policies, Amazon

SNS policies, or both. For the most part, you can achieve the same results with either. For example,
the following diagram shows an IAM policy and an Amazon SNS policy that are equivalent. The IAM
policy allows the Amazon SNS Subscri be action for the topic called topic_xyz in your AWS account.
The IAM policy is attached to the users Bob and Susan (which means that Bob and Susan have the
permissions stated in the policy). The Amazon SNS policy likewise gives Bob and Susan permission to
access Subscri be for topic_xyz.

API Version 2010-03-31
30

http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html

Amazon Simple Notification Service Developer Guide
IAM and Amazon SNS Policies Together

1AM Policy Amazon SNS Po
Allow Allow who:
Actions: User Bob
Subscribe is equivalent to User Susan
Resource: Actions:
arn:aws:sns:"; 12345678901 2topic_xyz Subscribe
Resource:
User User arn:aws:sns:": 1234567890
Bob Susan
topic_xyz

Note

The preceding example shows simple policies with no conditions. You could specify a
particular condition in either policy and get the same result.

There is one difference between AWS IAM and Amazon SNS policies: The Amazon SNS policy system
lets you grant permission to other AWS accounts, whereas the 1AM policy doesn't.

It's up to you how you use both of the systems together to manage your permissions, based on your
needs. The following examples show how the two policy systems work together.

API Version 2010-03-31
31

Amazon Simple Notification Service Developer Guide
IAM and Amazon SNS Policies Together

Example 1

In this example, both an IAM policy and an Amazon SNS policy apply to Bob. The IAM policy gives him
permission for Subscri be on any of the AWS account's topics, whereas the Amazon SNS policy gives
him permission to use Publ i sh on a specific topic (topic_xyz). The following diagram illustrates the
concept.

IAM Policy Amazon SNS Policy
Allow Allow who:
Actions: User Bob
Subscribe Actions:
Resource: * Publish
Resource:

arn:awssns " 123456780901 2topic_xyz

User
Bob

topic_xyz

If Bob were to send a request to subscribe to any topic in the AWS account, the IAM policy would allow
the action. If Bob were to send a request to publish a message to topic_xyz, the Amazon SNS policy
would allow the action.

API Version 2010-03-31
32

Amazon Simple Notification Service Developer Guide
Amazon SNS ARNs

Example 2

In this example, we build on example 1 (where Bob has two policies that apply to him). Let's say that
Bob publishes messages to topic_xyz that he shouldn't have, so you want to entirely remove his
ability to publish to topics. The easiest thing to do is to add an 1AM policy that denies him access to
the Publ i sh action on all topics. This third policy overrides the Amazon SNS policy that originally
gave him permission to publish to topic_xyz, because an explicit deny always overrides an allow (for
more information about policy evaluation logic, see Evaluation Logic (p. 20)). The following diagram
illustrates the concept.

IAM Policy Amazon SNS Policy
Allow Allow who:
Actions: User Bob
Subscribe ST
Resource: * Publish
Resource:
User arn:aws:sns.”: 12345678901 2topic

Bob IAM Policy

Deny topic_xyz

Overrides the
Amazon SNS

Resource: * policy

Actions: Publish

For examples of policies that cover Amazon SNS actions and resources, see Example Policies for
Amazon SNS (p. 34). For more information about writing Amazon SNS policies, go to the technical
documentation for Amazon SNS.

Amazon SNS ARNSs

For Amazon SNS, topics are the only resource type you can specify in a policy. Following is the
Amazon Resource Name (ARN) format for topics.

arn: aws: sns: regi on: account _I D: t opi c_nane

For more information about ARNSs, go to ARNs in IAM User Guide.

API Version 2010-03-31
33

http://aws.amazon.com/documentation/sns/
http://aws.amazon.com/documentation/sns/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_Identifiers.html#Identifiers_ARNs

Amazon Simple Notification Service Developer Guide
Amazon SNS Actions

Example

Following is an ARN for a topic named my_topic in the us-east-1 region, belonging to AWS account
123456789012.

arn: aws: sns: us-east-1:123456789012: ny_t opi c

Example

If you had a topic named my_topic in each of the different Regions that Amazon SNS supports, you
could specify the topics with the following ARN.

arn: aws: sns: *: 123456789012: ny_t opi c

You can use * and ? wildcards in the topic name. For example, the following could refer to all the topics
created by Bob that he has prefixed with bob_.

arn: aws: sns: *: 123456789012: bob_*

As a convenience to you, when you create a topic, Amazon SNS returns the topic's ARN in the
response.

Amazon SNS Actions

In an 1AM policy, you can specify any actions that Amazon SNS offers. However, the
ConfirnBubscri pti on and Unsubscri be actions do not require authentication, which means that
even if you specify those actions in a policy, IAM won't restrict users' access to those actions.

Each action you specify in a policy must be prefixed with the lowercase string sns: . To specify all
Amazon SNS actions, for example, you would use sns: *. For a list of the actions, go to the Amazon
Simple Noatification Service API Reference.

Amazon SNS Keys

Amazon SNS implements the following AWS-wide policy keys, plus some service-specific keys.

For a list of context keys supported by each AWS service and a list of AWS-wide policy keys, see AWS
Service Actions and Condition Context Keys and Available Keys for Conditions in the IAM User Guide.

Amazon SNS Keys

Amazon SNS uses the following service-specific keys. Use these keys in policies that restrict access to
Subscri be requests.

¢ sns:Endpoint—The URL, email address, or ARN from a Subscr i be request or a previously
confirmed subscription. Use with string conditions (see Example Policies for Amazon SNS (p. 34))
to restrict access to specific endpoints (e.g., *@yourcompany.com).

¢ sns:Protocol—The pr ot ocol value from a Subscri be request or a previously confirmed
subscription. Use with string conditions (see Example Policies for Amazon SNS (p. 34)) to restrict
publication to specific delivery protocols (e.g., https).

Example Policies for Amazon SNS

This section shows several simple policies for controlling user access to Amazon SNS.

API Version 2010-03-31
34

http://docs.aws.amazon.com/sns/latest/api/
http://docs.aws.amazon.com/sns/latest/api/
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actionsconditions.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actionsconditions.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Simple Notification Service Developer Guide
Example Policies for Amazon SNS

Note
In the future, Amazon SNS might add new actions that should logically be included in one of
the following policies, based on the policy’s stated goals.

Example 1: Allow a group to create and manage topics

In this example, we create a policy that gives access to Cr eat eTopi c, Li st Topi cs,
Set Topi cAttri but es, and Del et eTopi c.

"Version":"2012-10-17",
"Statenment": [{
"Effect":"A | ow',
"Action":
["sns: CreateTopi c", "sns: Li st Topi cs", "sns: Set Topi cAttri butes", "sns: Del et eTopi c"]
"Resource":"*"

}

Example 2: Allow the IT group to publish messages to a particular topic

In this example, we create a group for IT, and assign a policy that gives access to Publ i sh on the
specific topic of interest.

{
"Version":"2012-10-17",
"Statenment":[{
"Effect":"A | ow',
"Action":"sns: Publish",
"Resource":"arn: aws: sns: *: 123456789012: t opi c_xyz"
}
]
}

Example 3: Give users in the AWS account ability to subscribe to topics

In this example, we create a policy that gives access to the Subscr i beaction, with string matching
conditions for the sns: Pr ot ocol and sns: Endpoi nt policy keys.

{
"Version":"2012-10-17",
"Statenment":[{
"Effect":"All ow',
"Action":["sns: Subscribe"],
"Resource":"*",
"Condition":{
"StringLike": {
" SNS: Endpoi nt": "* @our conpany. cont
¥
"StringEqual s": {
"sns: Protocol ":"enail"
}
}
}
]
}

API Version 2010-03-31
35

Amazon Simple Notification Service Developer Guide
Using Temporary Security Credentials

Example 4: Allow a partner to publish messages to a particular topic

You can use an Amazon SNS policy or an 1AM policy to allow a partner to publish to a specific topic. If
your partner has an AWS account, it might be easier to use an Amazon SNS policy. However, anyone
in the partner's company who possesses the AWS security credentials could publish messages to the
topic. This example assumes that you want to limit access to a particular person (or application). To do
this you need to treat the partner like a user within your own company, and use a IAM policy instead of
an Amazon SNS policy.

For this example, we create a group called WidgetCo that represents the partner company; we create a
user for the specific person (or application) at the parther company who needs access; and then we put
the user in the group.

We then attach a policy that gives the group Publ i sh access on the specific topic named
WidgetPartnerTopic.

We also want to prevent the WidgetCo group from doing anything else with topics, so we add a
statement that denies permission to any Amazon SNS actions other than Publ i sh on any topics other
than WidgetPartnerTopic. This is necessary only if there's a broad policy elsewhere in the system that
gives users wide access to Amazon SNS.

{
"Version":"2012-10-17",
"Statenment":[{
"Effect":"All ow',
"Action":"sns: Publish",
"Resource":"arn:aws: sns: *: 123456789012: W dget Par t ner Topi c"
I8
{
"Effect":"Deny",
"Not Acti on":"sns: Publish",
"Not Resource": "arn: aws: sns: *: 123456789012: W dget Par t ner Topi c"
}
]
}

Using Temporary Security Credentials

In addition to creating IAM users with their own security credentials, IAM also enables you to grant
temporary security credentials to any user allowing this user to access your AWS services and
resources. You can manage users who have AWS accounts; these users are IAM users. You can
also manage users for your system who do not have AWS accounts; these users are called federated
users. Additionally, "users" can also be applications that you create to access your AWS resources.

You can use these temporary security credentials in making requests to Amazon SNS. The API
libraries compute the necessary signature value using those credentials to authenticate your request. If
you send requests using expired credentials Amazon SNS denies the request.

For more information about IAM support for temporary security credentials, go to Granting Temporary
Access to Your AWS Resources in Using I1AM.

Example Using Temporary Security Credentials to Authenticate an Amazon SNS
Request

The following example demonstrates how to obtain temporary security credentials to authenticate an
Amazon SNS request.

API Version 2010-03-31
36

http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html

Amazon Simple Notification Service Developer Guide
Using Temporary Security Credentials

http://sns. us-east-1. anazonaws. conf

?Name=My- Topi ¢

&Act i on=Cr eat eTopi ¢

&Si gnat ur e=gf zI F53exFVdpSNb8AI WN3Lv¥2FNYXh6S%2Br 3yy SK700X4%3D

&Si gnat ur eVer si on=2

&Si gnat ur eMet hod=Hmac SHA256

&Ti mest anp=2010- 03- 31T12%8A00%8A00. 000Z
&SecurityToken=SecurityTokenVal ue

&AWBAccessKeyl d=Access Key | D provided by AW Security Token Service

API Version 2010-03-31
37

Amazon Simple Notification Service Developer Guide
Overview

Amazon SNS Mobile Push
Notifications

With Amazon SNS, you have the ability to send push notification messages directly to apps on mobile
devices. Push notification messages sent to a mobile endpoint can appear in the mobile app as
message alerts, badge updates, or even sound alerts.

Overview

You send push notification messages to both mobile devices and desktops using one of the following
supported push notification services:

¢ Amazon Device Messaging (ADM)

¢ Apple Push Notification Service (APNS) for both iOS and Mac OS X
¢ Baidu Cloud Push (Baidu)

¢ Google Cloud Messaging for Android (GCM)

¢ Microsoft Push Noatification Service for Windows Phone (MPNS)

« Windows Push Notification Services (WNS)

The following figure shows an overview of how Amazon SNS is used to send a direct push notification
message to a mobile endpoint.
ADM

APNS
I,
Publisher #) #
Amazon SNS %
< ~

WNS

Push Notification Services

Push noatification services, such as APNS and GCM, maintain a connection with each app and
associated mobile device registered to use their service. When an app and mobile device register,
the push natification service returns a device token. Amazon SNS uses the device token to create a

API Version 2010-03-31
38

http://aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Prerequisites

mobile endpoint, to which it can send direct push notification messages. In order for Amazon SNS to
communicate with the different push notification services, you submit your push notification service
credentials to Amazon SNS to be used on your behalf. For more information, see Amazon SNS Mobile
Push High#Level Steps (p. 40)

In addition to sending direct push notification messages, you can also use Amazon SNS to send
messages to mobile endpoints subscribed to a topic. The concept is the same as subscribing other
endpoint types, such as Amazon SQS, HTTP/S, email, and SMS, to a topic, as described in What

is Amazon Simple Notification Service? (p. 1). The difference is that Amazon SNS communicates

using the push notification services in order for the subscribed mobile endpoints to receive push
notification messages sent to the topic. The following figure shows a mobile endpoint as a subscriber to
an Amazon SNS topic. The mobile endpoint communicates using push notification services where the
other endpoints do not.

ADM
APNS
Baidu

GCM

il
v

MPNS

WNS

Publisher q e —_—
\ SNS topic / # 505

ﬁ HTTP/S

— Email

|ﬁ SMS

Subscriber

Prerequisites

To begin using Amazon SNS mobile push notifications, you need the following:

» A set of credentials for connecting to one of the supported push notification services: ADM, APNS,
Baidu, GCM, MPNS, or WNS.

¢ A device token or registration ID for the mobile app and device.
* Amazon SNS configured to send push notification messages to the mobile endpoints.
« A mobile app that is registered and configured to use one of the supported push notification services.

Registering your application with a push notification service requires several steps. Amazon SNS
needs some of the information you provide to the push notification service in order to send direct push
notification messages to the mobile endpoint. Generally speaking, you need the required credentials
for connecting to the push notification service, a device token or registration ID (representing your
mobile device and mobile app) received from the push notification service, and the mobile app
registered with the push notification service.

The exact form the credentials take differs between mobile platforms, but in every case, these
credentials must be submitted while making a connection to the platform. One set of credentials is
issued for each mobile app, and it must be used to send a message to any instance of that app.

The specific names will vary depending on which push notification service is being used. For example,
when using APNS as the push notification service, you need a device token. Alternatively, when using

API Version 2010-03-31
39

Amazon Simple Notification Service Developer Guide
Mobile Push High#Level Steps

GCM, the device token equivalent is called a registration ID. The device token or registration ID is a
string that is sent to the application by the operating system of the mobile device. It uniquely identifies
an instance of a mobile app running on a particular mobile device and can be thought of as unique
identifiers of this app-device pair.

Amazon SNS stores the credentials (plus a few other settings) as a platform application resource. The
device tokens (again with some extra settings) are represented as objects called platform endpoints.
Each platform endpoint belongs to one specific platform application, and every platform endpoint can
be communicated with by using the credentials that are stored in its corresponding platform application.

The following sections include the prerequisites for each of the supported push notification services.
Once you've obtained the prerequisite information, you can send a push notification message using the
AWS Management Console or the Amazon SNS mobile push APIs. For more information, see Amazon
SNS Mobile Push High#Level Steps (p. 40).

Amazon SNS Mobile Push High#Level Steps

This section provides the high#level steps you must perform to use Amazon SNS mobile push.

First, for the mobile platforms you want to support you must complete the prerequisites, such as
obtaining the required credentials and device token. For more information, see Prerequisites (p. 39)
Then, you use the information you obtained from the mobile platforms with Amazon SNS to send

a message to a mobile device. This information should help you gain a better understanding of the
steps involved when using the Amazon SNS mobile push, as described in Using Amazon SNS Mobile
Push (p. 79).

Step 1: Request Credentials from Mobile Platforms

To use Amazon SNS mobile push, you must first request the necessary credentials from the mobile
platforms. For more information, see the getting started section for your platform later in this guide.

ADM
> APNS

Baidu

=]

Request Credentials

GCM

Return Credentials MPNS

Ll

«

W

=
w

Step 2: Request Token from Mobile Platforms

You then use the returned credentials to request a token for your mobile app and device from the
mobile platforms. The token you receive represents your mobile app and device. For more information,
see the getting started section for you platform later in this guide.

ADM

Request Token
> I APNS l
Return Token MPNS

-+

=
4

S

API Version 2010-03-31
40

Amazon Simple Notification Service Developer Guide
Step 3: Create Platform Application Object

Step 3: Create Platform Application Object

The credentials and token are then used to create a platform application object
(PlatformApplicationArn) from Amazon SNS. For more information, see Create a Platform Endpoint
and Manage Device Tokens (p. 84).

Request Platform Application Object

>

SNS Client Amazon

Return Platform Application Object

Step 4: Create Platform Endpoint Object

The PlatformApplicationArn is then used to create a platform endpoint object (EndpointArn)
from Amazon SNS. For more information, see Create a Platform Endpoint and Manage Device
Tokens (p. 84).

.
s

Request Platform Endpoint Object

>

NS Client Amazon
SNS Clie Return Platform Endpoint Object SNS

<
Step 5: Publish Message to Mobile Endpoint

The EndpointArn is then used to publish a message to an app on a mobile device. For more
information, see Send a Direct Message to a Mobile Device (p. 88) and the Publish APl in the
Amazon Simple Notification Service API Reference.

APNS

Publish Message Baidu
GCM
Amazon
SNS MPNS
WNS

SNS Client

Getting Started with Amazon Device Messaging

Amazon Device Messaging (ADM) is a service that enables you to send push notification messages
to Kindle Fire apps. This section describes how to obtain the ADM prerequisites and send a push
notification message using Amazon SNS and ADM.

Topics

API Version 2010-03-31
41

http://docs.aws.amazon.com/sns/latest/api/API_Publish.html

Amazon Simple Notification Service Developer Guide
ADM Prerequisites

« ADM Prerequisites (p. 42)

e Step 1: Create a Kindle Fire App with the ADM Service Enabled (p. 42)
¢ Step 2: Obtain a Client ID and Client Secret (p. 42)

e Step 3: Obtain an API Key (p. 43)

¢ Step 4: Obtain a Registration ID (p. 43)

¢ Step 5: Sending a Push Notification Message to a Kindle Fire app using Amazon SNS and
ADM (p. 44)

ADM Prerequisites

To send push natifications to a Kindle Fire app using Amazon SNS and ADM, you need the following:

« Kindle Fire app with the ADM service enabled
¢ Client ID and client secret

+ APl key

¢ Registration ID

If you already have these prerequisites, then you can send a push notification message to a Kindle Fire
app using either the Amazon SNS console or the Amazon SNS API. For more information about using
the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 79). For more information about
using the Amazon SNS API, see Step 5: Sending a Push Notification Message to a Kindle Fire app
using Amazon SNS and ADM (p. 44)

Step 1: Create a Kindle Fire App with the ADM
Service Enabled

To send a push notification message to a Kindle Fire app, you must have an Amazon developer
account, set up your development environment, created a Kindle Fire app with ADM enabled, and
registered the app with ADM. For more information, see Integrating Your App with ADM.

To create a Kindle Fire app

Create an Amazon developer account by following the instructions at Create an Account.

2. Set up your development environment for developing mobile apps for Kindle Fire tablets. For more
information, see Setting Up Your Development Environment.

3. Create a Kindle Fire app. For more information, see Creating Your First Kindle Fire App.

Note

If you do not already have a Kindle Fire app registered with ADM, then you can use
the sample Kindle Fire app provided by AWS as a template to get started. For more
information, see Step 4: Obtain a Registration ID (p. 43).

4. Onthe Amazon App Distribution Portal, click Apps and Services, click the name of your Kindle
Fire app, and then click Device Messaging.

5. Verify that ADM is enabled for the app. If your app is not listed on the Amazon App Distribution
Portal, then add it and enable ADM.

Step 2: Obtain a Client ID and Client Secret

ADM uses a client ID and client secret to verify your server's identity. For more information, Obtaining
ADM Credentials.

API Version 2010-03-31
42

https://developer.amazon.com/sdk/adm/integrating-app.html
https://developer.amazon.com/welcome.html
https://developer.amazon.com/sdk/fire/setup.html
https://developer.amazon.com/public/resources/development-tools/ide-tools/tech-docs/04-creating-your-first-kindle-fire-app
https://developer.amazon.com/home.html
https://developer.amazon.com/sdk/adm/credentials.html
https://developer.amazon.com/sdk/adm/credentials.html

Amazon Simple Notification Service Developer Guide
Step 3: Obtain an API Key

To obtain a client ID and client secret

1. Onthe Amazon App Distribution Portal, click Apps and Services, click the name of your Kindle
Fire app, and then click Security Profile. You should see a security profile associated with your
app. If not, click Security Profiles to create a new security profile.

2. Click View Security Profile. Make note of the client ID and client secret.

Security Profile Management

o] admpushapp - security profile - Security Profile credentiais | apikevs

Credentials

Your security profile credentials consist of two values: a Client ID value and a Client Secret value. These two values allow your
app to securely identify itself to Amazon servers. You can copy these values for use with your app.

Display Name admpushapp - security profile
Description security profile for admpushapp
|Client D amznl.application-oa2-client. I

|Client Secret |

Edit

Step 3: Obtain an API Key

ADM uses an API key to verify your app's identity.

Note

An API key is required to use ADM with pre-release or test apps. However, it is not required
with a release or production version of your app when you allow Amazon to sign your app on
your behalf.

To obtain an API key

¢ Obtain an API key by following instructions at Getting Your OAuth Credentials and API Key.

Step 4: Obtain a Registration ID

The following steps show how to use the sample Kindle Fire app provided by AWS to obtain a
registration ID from ADM. You can use this sample Kindle Fire app as an example to help you get
started with Amazon SNS push notifications. The sample app requires that you have included the ADM
JAR file, amazon- devi ce- messagi ng- 1. 0. 1. j ar in your development environment. For more
information, see Setting Up ADM.

To obtain a registration ID from ADM for your app

Download and unzip the snsmobilepush.zip file.

2. Import the Ki ndl eMobi | ePushApp folder into your IDE. In Eclipse, click File, Import, expand the
Android folder, click Existing Android Code Into Workspace, click Next, browse to the folder
Ki ndl eMobi | ePushApp, click OK, and then click Finish.

API Version 2010-03-31
43

https://developer.amazon.com/home.html
https://developer.amazon.com/sdk/adm/credentials.html
https://developer.amazon.com/sdk/adm/setup.html
samples/snsmobilepush.zip

Amazon Simple Notification Service Developer Guide
Step 5: Sending a Message to a Kindle
Fire app using Amazon SNS and ADM

After the sample Kindle Fire app has been imported into your IDE, you need to add the API key for
your Kindle Fire app to the st ri ngs. xmi file, which is included in the sample Kindle Fire app.

3. Add the APl key to the st ri ngs. xml file. In your IDE you will find the file included in the values
folder, which is a subfolder of res. You add the string to the following:

<string name="api _key"></string>

4. Run the app to see the registration ID as output to the Android logging system. If you are using
Eclipse with the Android ADT plug-in, you can see the registration ID in the LogCat display
window. For example, the output containing the registration 1D will look similar to the following:

anznl. admregi stration.v2. Exanpl e. .. 1cw U gkcPPYcaXCpPWrEBgn-
wi gl Ezp5zZ7y_j sMIPKPxKhddCzx6paEsyay9Zn3D4wWNUJb8n6HXr Bf 9dgqaEw

You should now have the necessary information from ADM (client ID, client secret, API key, and
registration ID) to send push notification messages to your mobile endpoint. You can now send a
push notification message to the Kindle Fire app on your device by either using the Amazon SNS
console or the Amazon SNS API. To use the Amazon SNS console, see Using Amazon SNS Mobile
Push (p. 79). To use the Amazon SNS API, see Step 5: Sending a Push Notification Message to a
Kindle Fire app using Amazon SNS and ADM (p. 44).

Step 5: Sending a Push Notification Message to a
Kindle Fire app using Amazon SNS and ADM

This section describes how to use the prerequisite information to send a push notification message to
your Kindle Fire app using Amazon SNS and ADM. You add the gathered prerequisite information to
the AWS sample file SNSMbbi | ePush. j ava, which is included in the snsmobilepush.zip file.

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do |
Get Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

Create a new Java project in Eclipse (File | New | Java Project).

Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In
Eclipse, right-click the name of the Java project and then click Import, expand General, click File
System, click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...
2. Click the Libraries tab, and then click Add Library....
3. Click AWS SDK for Java, click Next, and then click Finish.

API Version 2010-03-31
44

samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Step 5: Sending a Message to a Kindle
Fire app using Amazon SNS and ADM

To add the prerequisite information to SNSMobi | ePush. j ava

1.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open
SNSMbbi | ePush. j ava in Eclipse.

Uncomment sanpl e. denoKi ndl eAppNot i fi cati on(); . It should look similar to the following:

SNSMobi | ePush sanpl e = new SNSMbbi | ePush(sns);
/1 TODO Unconment the services you wish to use.
/1 sanpl e. denbAndr oi dAppNoti fi cation();

sanpl e. denoKi ndl eAppNot i fication();

/1 sanpl e. dempAppl eAppNoti fication();

/1 sanpl e. denbAppl eSandboxAppNoti fi cation();

/1 sanpl e. denoBai duAppNoti fication();

/1 sanpl e. demoWNSAppNot i fi cation();

/1 sanpl e. denoMPNSAppNot i fi cation();

Locate the denoKi ndl eAppNot i fi cati on method and enter the registration ID you received
from ADM for the value of the registration ID string. For example, it should look similar to the
following:

String registrationld = = "angnl. adm
regi stration.v2. Exanpl e. .. 1lcw UWvgkcPPYcaXCpPWrE3Bgn-
wi gl Ezp5zZ7y_j sMIPKPxKhddCzx6paEsyay92n3D4AwWNUI b8nbHXr Bf 9dgaEw' ;

Enter the client ID for your app. For example, it should look similar to the following:

String clientld = "anenl. appl i cati on-oa2-
client. EXAMPLE7423654b79f c9f 062f EXAMPLE";

Enter the client secret for your app. For example, it should look similar to the following:

String clientSecret =
"EXAMPLE01658e75ceb7bf 9f 71939647blaal05clc8eaccabaf 7d41f 68EXAMPLE";

Enter a name for your app. App names must be made up of only uppercase and lowercase ASCII
letters, numbers, underscores, hyphens, and periods, and must be between 1 and 256 characters
long. For example, it should look similar to the following:

String applicationNane = "adnpushapp";

Run the Java application. You should see output similar to the following in the output window of
your IDE:

Getting Started with Amazon SNS

{Pl atformApplicationArn: arn:aws:sns:us-west-2:111122223333: app/ ADM
nmypushappnane}

{Endpoi nt Arn: arn: aws: sns: us-west-2:111122223333: endpoi nt/ ADM
nmypushappnane/ 97e9ced9- f 136- 3893- 9d60- 775467eaf ebb}

{"ADM': "{ \"data\": { \"message\": \"ENTER YOUR MESSAGE\" } }"}
Publ i shed. Messagel d=b35f b4bz- b503- 4e37-83d4-f eu4218d6dab

API Version 2010-03-31
45

Amazon Simple Notification Service Developer Guide
Getting Started with APNS

On your Kindle Fire device, you should see a push notification message appear within the Kindle
Fire app.

Getting Started with Apple Push Notification
Service

Apple Push Notification Service (APNS) is a service that enables you to send push notification
messages to i0OS and OS X apps. This section describes how to obtain the APNS prerequisites and
send a push notification message using Amazon SNS and APNS.

Topics
¢ APNS Prerequisites (p. 46)
¢ Step 1: Create an iOS App (p. 46)
¢ Step 2: Obtain an APNS SSL Certificate (p. 47)
¢ Step 3: Obtain the App Private Key (p. 47)
¢ Step 4: Verify the Certificate and App Private Key (p. 48)
¢ Step 5: Obtain a Device Token (p. 48)
¢ Next Steps (p. 48)
¢ Send a push notification message to an iOS app using Amazon SNS and APNS (p. 49)
¢ Send a push notification message to a VolP iOS app using Amazon SNS and APNS (p. 51)
¢ Send a push notification message to a Mac OS X app using Amazon SNS and APNS (p. 51)

APNS Prerequisites

To send push natifications to mobile devices using Amazon SNS and APNS, you need to obtain the
following:

¢ iOS app registered with APNS
¢ APNS SSL certificate

* App private key

¢ Device token

If you already have these prerequisites, you can send a push notification message to an iOS app using
either the Amazon SNS console or you can use the Amazon SNS API. For more information about
using the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 79). For more information
about using the Amazon SNS API, see Send a push notification message to an iOS app using Amazon
SNS and APNS (p. 49).

Step 1: Create an iOS App

To get started with sending a push notification message to an iOS app, you must have an Apple
developer account, created an App ID (application identifier), registered your iOS device, and created
an iOS Provisioning Profile. For more information, see the Local and Remote Notification Programming
Guide in the iOS Developer Library.

Note

If you do not already have an iOS app registered with APNS, then you can use the sample
iOS app provided by AWS as a template to get started. For more information, see Step 5:
Obtain a Device Token (p. 48).

API Version 2010-03-31
46

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/Introduction.html

Amazon Simple Notification Service Developer Guide
Step 2: Obtain an APNS SSL Certificate

Step 2: Obtain an APNS SSL Certificate

Amazon SNS requires the APNS SSL certificate of the app in the .pem format when using the Amazon
SNS API. When using the Amazon SNS console you can upload the certificate in .p12 format and
Amazon SNS will convert it to .pem and display it in the console. You use the Keychain Access
application on your Mac computer to export the APNS SSL certificate. For more information about

the SSL certificate, see Provisioning and Development in the Apple Local and Push Notification
Programming Guide.

To download an APNS SSL certificate

1. Onthe Apple Developer web site, click Member Center, click Certificates, Identifiers and
Profiles, and then click Certificates.

2. Select the certificate you created for iOS APNS development, click Download, and then save the
file, which will have the .cer extension type.

To convert the APNS SSL certificate from .cer format to .pem format

The following steps use the openssl utility.

e Atacommand prompt, type the following command. Replace myapnsappcert. cer with the
name of the certificate you downloaded from the Apple Developer web site.

openssl x509 -in nyapnsappcert.cer -inform DER -out myapnsappcert.pem

The newly created .pem file will be used to configure Amazon SNS for sending mobile push
notification messages.

Step 3: Obtain the App Private Key

Amazon SNS requires an app private key in the .pem format. You use the Keychain Access
application on your Mac computer to export the app private key.

To obtain the app private key

The private key associated with the SSL certificate can be exported from the Keychain Access
application on your Mac computer. This is based on the assumption that you have already imported
the .cer file you downloaded from the Apple Developer web site into Keychain Access. You can do this
either by copying the .cer file into Keychain Access or double-clicking the .cer file.

1. Open Keychain Access, select Keys, and then highlight your app private key.
2. Click File, click Export Items..., and then enter a name in the Save As: field.
3. Accept the default .p12 file format and then click Save.

The .p12 file will then be converted to .pem file format.

To convert the app private key from .p12 format to .pem format

¢« Atacommand prompt, type the following command. Replace nyapnsapppri vat ekey. p12 with
the name of the private key you exported from Keychain Access.

openssl pkcsl2 -in nyapnsappprivatekey. pl2 -out nyapnsappprivatekey. pem -
nodes -clcerts

API Version 2010-03-31
47

https://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ProvisioningDevelopment.html
https://developer.apple.com/

Amazon Simple Notification Service Developer Guide
Step 4: Verify the Certificate and App Private Key

The newly created .pem file will be used to configure Amazon SNS for sending mobile push
notification messages.

Step 4: Verify the Certificate and App Private Key

You can verify the .pem certificate and private key files by using them to connect to APNS.
To verify the certificate and private key by connecting to APNS

¢ Atacommand prompt, type the following command. Replace myapnsappcert. pemand
nyapnsapppri vat ekey. pemwith the name of your certificate and private key.

openssl s_client -connect gateway.sandbox. push. appl e.com 2195 -
cert nyapnsappcert.pem -key myapnsappprivat ekey. pem

Step 5: Obtain a Device Token

When you register your app with APNS to receive push notification messages, a device token (64-
byte hexadecimal value) is generated. The following steps describe how to use the sample iOS app
provided by AWS to obtain a device token from APNS. You can use this sample iOS app to help you
get started with Amazon SNS push notifications. For more information, see Registering for Remote
Notifications in the Apple Local and Push Notification Programming Guide.

To obtain a device token from APNS for your app

1. Download and unzip the snsmobilepush.zip file.

2. Navigate to the Appl eMbbi | ePushApp folder and then open either thei CS 7 and earlier or
i Os 8 folder.

3. In Xcode, open the Amazonhbbi | ePush. xcodepr oj project.

4. Run the app in Xcode. In the output window, you should see the device token displayed, which is
similar to the following:

Devi ce Token = <exanple 29z6j 5c4 df 46f 809 505189c4 c83fjcgf 7f6257e9
8542d2jt 3395kj 73>

Note
Do not include spaces in the device token when submitting it to Amazon SNS.

Next Steps

You should now have the necessary information from APNS (SSL certificate, app private key, and
device token) to send push notification messages to your mobile endpoint. You can now send a
notification to the iOS app on your device by either using the Amazon SNS console or the Amazon
SNS API.

¢ To send a notification to the iOS app on your device using the Amazon SNS console, see Using
Amazon SNS Mobile Push (p. 79).

¢ To use the Amazon SNS API, see Send a push notification message to an iOS app using Amazon
SNS and APNS (p. 49).

¢ To send a push notification message to a VolP app using Amazon SNS and APNS, see Send a push
notification message to a VolP iOS app using Amazon SNS and APNS (p. 51).

API Version 2010-03-31
48

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html#//apple_ref/doc/uid/TP40008194-CH103-SW2
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html#//apple_ref/doc/uid/TP40008194-CH103-SW2
samples/snsmobilepush.zip

Amazon Simple Notification Service Developer Guide
Send a message to an iOS app

¢ To send a push notification message to a Mac OS X app using Amazon SNS and APNS, see Send a
push notification message to a Mac OS X app using Amazon SNS and APNS (p. 51).

Send a push notification message to an I0S app
using Amazon SNS and APNS

This section describes how to use the prerequisite information with the Amazon SNS API to send a
push natification message to your iOS app using Amazon SNS and APNS. You add the prerequisite
information to the AWS sample file SNSMbbi | ePush. j ava, which is included in the snsmobilepush.zip
file.

You can also use the Amazon SNS console. For more information about using the Amazon SNS
console, see Using Amazon SNS Mobile Push (p. 79).

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do |
Get Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

Create a new Java project in Eclipse (File | New | Java Project).

Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In
Eclipse, right-click the name of the Java project and then click Import, expand General, click File
System, click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...
2. Click the Libraries tab, and then click Add Library....
3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1. Inthe SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open
SNSMbbi | ePush. j ava in Eclipse.

2. Depending on which APNS you are using, uncomment
either sanpl e. demobAppl eAppNotification(); or
sanpl e. dembAppl eSandboxAppNot i fication(); . For example, if you're using
denmpAppl eSandboxAppNot i fi cati on, it should look similar to the following:

SNSMbbi | ePush sanpl e = new SNSMobi | ePush(sns);
/1 TODO Unconment the services you wish to use.
/1 sanpl e. denpbAndr oi dAppNoti fication();

/1 sanpl e. denoKi ndl eAppNotification();

/1 sanpl e. denbAppl eAppNoti fication();

sanpl e. denpAppl eSandboxAppNoti fication();

/1 sanpl e. denoBai duAppNoti fication();

/1 sanpl e. demoWNSAppNoti fi cation();

API Version 2010-03-31
49

samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Send a message to an iOS app

3.

/1 sanpl e. denoMPNSAppNot i fi cation();

Locate the denoAppl eSandboxAppNot i fi cati on method and enter the device token you
received from APNS for the value of the device token string. For example, it should look similar to
the following:

String deviceToken =
"exanple29z6j 5c4df 46f 809505189c4c83fj cgf 7f 6257€98542d2j t 3395kj 73" ;

Enter the APNS SSL certificate for your app. At the beginning of each new line in your certificate,
you must add \ n. For example, it should look similar to the following:

String certificate = "----- BEGA N CERTI FI CATE- - - - -

\ nM | G TCCAf | CCQDEN7 oRWOuXG ANBgk ghki GOWOBAQUFADCBiI DEL MAK GATUEBhMC

\ NVWMK Cz AJBgNVBAgTAl dBMRAWDg YDVQQHEWD TZWFOd Gx | MBWDQYDVQQKEWZBbWF6\ nb24x FDA
\ nBgkghki GOWOBCQEVEGEVH251 QGFt YXpvbi 5] b20wHhc NMITEWNDI 1M AONTI xWhcN

\ nMTI wNDI OM AONTI xW CBi DEL MAKk GA1UEBhMCVVMK Cz AJBgNVBAgTAl dBMRAWDG YD

\ nVQQHEWI TZWFOd &x | MBWDQYDVQQKEWZBbWFEb24x FDASBgNVBAS TCOI BTSBDb252

\ nb2x| MRI wWEAYDVQQDEW UZXNOQ2| s YWk Hz AdBgk ghki GOWOBCQEVEGEVb251 QGFt

\ nYXpvbi 5] b20wgZ8wbDQYJKoZI hvc NAQEBBQADg YOAM GJ Ao GBAMBKOdn+a4GmN W

\ n21uUSf wf Evy SW C2XADZ4nB+BLYgVI k60Cpi wsZ3@@3vUElI G31 yNoH f OWYK8nmBT

\ nr DHudUZg3gX4waLGMa3q7Wgc/ MoQ TxOUSQv 7¢c7ugFFDz QGBz ZswY6786nmB6gpE

\ nl bb3Chj ZnzcvQAaRHhdl QW Mh2nr AgMBAAEWDQYJKoZI hvec NAQEFBQADG YEAL Cu4\ nnUhVVxY
+auNKy ExzyLwax| Aoo7TJH dbt S4J5i NmzgXLOFkb

\ nFFBj vSf pJI | J00zbhNYS5f 6 GUOEDNFJl 0ZxBH Jnyp3780D8uTs7f Lvj x79Lj STb

\ nNYi yt VbZPQUBYaxu2j Xni mvw3rr szl aEXAMPLE=\ n- - - - - END CERTI FI CATE- - - - - "

Enter the private key for your app. At the beginning of each new line in your certificate, you must
add \ n. For example, it should look similar to the following:

String privateKey = "----- BEG N RSA PRLVATE KEY--- - -

\ nMJI G TCHAf | CCQDIn7 oRWOuX ANBgkghki G7wOBAQUFADCBiI DEL MAK GA1UEBhMC
\ NVWMk Cz AJBgNVBAGTA dBNRAWDgYDV@%E\AdTZV\FOdG(ZI\/QBWDQYDV(p(EWZBbV\FG\ nVVMKCz A
FYai 3296 EXAMPLE=\ n- - - - - END RSA PRLVATE KEY-----

Enter a name for your app. App hames must be made up of only uppercase and lowercase ASCII
letters, numbers, underscores, hyphens, and periods, and must be between 1 and 256 characters
long. For example, it should look similar to the following:

String applicationNane = "nypushappnane";

Run the Java application. You should see output similar to the following in the output window of
your IDE:

Getting Started with Amazon SNS

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333: app/
APNS_SANDBOX/ nypushappnane}
{Endpoi nt Arn: arn:aws:sns: us-west-2:111122223333: endpoi nt/ APNS_SANDBOX/
pushapp/ 97e9ced9- f 136- 3893- 9d60- 775467eaf ebb}
{"default":"This is the default Message", " APNS_SANDBOX":"{ \"aps\"

{ \"alert\" : \"You have got enmail.\", \"badge\" : 9,\"sound\" :\"default
\'FE}
Publ i shed. Messagel d=d65f b4bb- b903- 5e37-83d4-f eb4818d6da3

SBgNVBASTCOI E

Unt neD9+h8My¢

JBgNVBAgTA! dE

API Version 2010-03-31
50

Amazon Simple Notification Service Developer Guide
Send a message to a VolP app

On your iOS device, you should see a message notification.

Send a push notification message to a VolP 10S app
using Amazon SNS and APNS

To send a push notification message to a VolP app using Amazon SNS and APNS, you must first
complete the prerequisites in APNS Prerequisites (p. 46).

Note

If you do not already have an iOS app registered with APNS, you can download and use
the snsmobilepush.zip sample file provided by AWS as a template to get started. For more
information, see Step 5: Obtain a Device Token (p. 48).

To register your mobile app with AWS

1. Go to https://console.aws.amazon.com/sns/ and click Create platform application.

In the Application name box, enter a name to represent your app.

App names must be made up of only uppercase and lowercase ASCII letters, numbers,
underscores, hyphens, and periods, and must be between 1 and 256 characters long.

In the Push Notification Platform field, select Apple Development or Apple Production.
In the Push Certification Type field, select VolP Push Certificate.

Select the password encrypted certificate and private key, as exported from Keychain Access on
your Mac computer in the .p12 file format.

6. Enter your password, and then click Create Platform Application.

Send a push notification message to a Mac OS X
app using Amazon SNS and APNS

To send a push notification message to a Mac OS X app using Amazon SNS and APNS, you must first
complete the prerequisites in APNS Prerequisites (p. 46).

Note

If you do not already have a Mac OS X app registered with APNS, you can download and use
a sample application such as PushyMac, which is available from the Apple Developer web
site.

To register your mobile app with AWS

1. Go to https://console.aws.amazon.com/sns/ and click Create platform application.

In the Application name box, enter a name to represent your app.

App names must be made up of only uppercase and lowercase ASCII letters, numbers,
underscores, hyphens, and periods, and must be between 1 and 256 characters long.

In the Push Notification Platform field, select Apple Development or Apple Production.
In the Push Certification Type field, select MacOS Push Certificate.

Select the password encrypted certificate and private key, as exported from Keychain Access on
your Mac computer in the .p12 file format.

6. Enter your password, and then click Create Platform Application.

API Version 2010-03-31
51

samples/snsmobilepush.zip
https://console.aws.amazon.com/sns/
https://developer.apple.com/library/mac/samplecode/PushyMac/Introduction/Intro.html
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Getting Started with Baidu

Getting Started with Baidu Cloud Push

Baidu Cloud Push is a Chinese cloud service. Using Baidu, you can send push notification messages
to mobile devices. This section describes how to obtain the Baidu prerequisites and send a push
notification message using Amazon SNS and Baidu.
Topics

e Baidu Prerequisites (p. 52)

e Step 1: Create a Baidu Account (p. 52)

¢ Step 2: Register as a Baidu Developer (p. 54)

¢ Step 3: Create a Baidu Cloud Push Project (p. 57)

¢ Step 4: Download and Install the Android Demo App from Baidu (p. 60)

¢ Step 5: Obtain a User Id and Channel Id from Baidu (p. 64)

* Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and
Baidu (p. 64)

Baidu Prerequisites

To send a push notification message to mobile devices using Amazon SNS and Baidu, you need the
following:

» Baidu account

« Reqgistration as a Baidu developer

¢ Baidu cloud push project

« API key and secret key from a Baidu cloud push project

« Baidu user ID and channel ID

¢ Android demo app

If you already have these prerequisites, then you can send a push notification message to a mobile
endpoint using the Amazon SNS API. For more information about using the Amazon SNS API,

see Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and
Baidu (p. 64).

Step 1: Create a Baidu Account

To use Baidu, you must first create an account.

Important

In order to create a Baidu account there is a verification step where you must enter Chinese
Simplified characters. The easiest way to accomplish this task is for someone that can read
Chinese to assist. Another option is to use Amazon Mechanical Turk for creating the Baidu
account. Once you have the account and password created for Baidu, you could login and
change the password without needing to enter Chinese Simplified characters. For more
information about Mechanical Turk, see the Amazon Mechanical Turk Requester User
Interface.

To create a Baidu account

1. On the Baidu Portal, in the top right corner, click ## (Registration).

API Version 2010-03-31
52

http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/Welcome.html
http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/Welcome.html
http://www.baidu.com/

Amazon Simple Notification Service Developer Guide
Step 1: Create a Baidu Account

BERE | 2 [

90
Bai(®SE

HE Mm e GE 55 BN N4 thE

BE—T

Enter an email address, password, and verification code, and then click ## (Registration).

0
E)
BaiWSE mEske

B2 | emailname@domain.com I

zn | password |

win WGy | oo

¥ HEAEHEE cEER A

You should then see a page similar to the following, informing you that an activation email has
been sent to the email address you entered.

..l. .
Bai®WEE mEsks P,

© wx—suurmy
NP AT @omall.comE s T —HHNEREHE , & S B R SeRl T AR

SRS S5E] LSRN T RES
1R S A LGIERESS e HE . 2F. BT F2. #E

Login to your email account, open the activation email you received from Baidu, and click the
provided link:

API Version 2010-03-31
53

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

050
BaidhEE
RO
fElF
5T 20140 05F 150 06:04 EHMEEHS Sgmail. con « EELITEE RIS EKS
hitp:#passport baidy comh; ATace NS19TST A% 2F %2 Fwww,

HhiEl L ERb iR
1 ATEREEESAEEE WE e MRS RS R
2. EREEAEE. TG foE s8R 06 BEEEEIINERRE .

3 EMENESELRTERSE. R . YE. B FE . lEe

4. After you click the provided link in the activation email from Baidu, you must then enter the
verification code (Chinese Simplified characters).

90
Bai¥EE

T MAUE

AFEEEESERAN BREENPIREER - TR R ERARSHIT R

mzw S
=

2014 ©Baidu

Once you have created a Baidu account, you can then register as a developer.

Step 2: Register as a Baidu Developer

You must register as a Baidu developer to use the Baidu push notification service.

To register as a Baidu developer

1. Onthe Baidu Portal, click ## (More).

A

(')
Bai®SE

ﬁ@mﬁ@ﬂﬁﬁi@ﬁﬂﬁﬁ@ﬁﬂﬁ?%»|

AE-T

2. Click ###### (Baidu's Open Cloud Platform)

API Version 2010-03-31
54

http://www.baidu.com/

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

B
(1)
DA i .
BaidhBEE wia mm be i 55 BE e 0E
| AE-T | =
EEEE > EeA
AT
() Esom Arem [msme @ s
EERETARHE SEENESTE EEEEL, SRR -SEnEFRRTE
AE=E Q EEEEA @ EEMEE @& AREERE
FAmAEEIRER IE EMBENFAER — RS AT DEFFRE
@ A HEmE @ HzoE
TR =5 b L EENLE, CERES LIEHMES, EMESahEg!
AEnEEA AEELT+ 5 Aein
BEELEHAEPCE T FHBARE. FREE SRETEEeEHIA

3. On the next page, near the top right corner, click ##### (Developer Services).

ElEEHE v =

BT BN

4. Click #### (Start Now)

) BEARKES
/) \mumma
s —i2, HESEFEEE

5. Enter your name, description, and mobile phone number for receiving a verification text message,
and then click ##### (Send Verification Code).

API Version 2010-03-31
55

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

HERREER SRR HRIFRFE / (EFR SRS
7\ - -
[-
—/

Ph—EARNEEEREREUTESR, CME EARRA MRS L RE IS = IR

e [CIEIN O 28
- P = v |@ e
- FREENE ” FirstName LastName] L]

ek AL T Descriptive text I &

ju il.com #EEL

S FS | mobile phone number I mxnirE @ @

FREEAS - | ‘

makELOGO : 112px*54px , STHFPNG/IPG/GIFEL ,

RIFBiZREEPC

You should then receive a text message with a verification number, similar to the following:

QP —
FHNREGRED
B

{
/
_

Complete the developer registration by entering the verification number and then click ## (Submit)
on the bottom of the page.

EEFEEER Lan] 1RAERYF / (eI GRS
@ = | ¢

P BERTEERRERE TR, D AR AR B TS TR E RS

N ® A O 43
- PR = - |@ °
T AEENE ” FirstName LastName] L]

* FRES 2 Descriptive text I @

ju il.com #ERL

CFHIS | mobile phone number i@ (0@

FREEE AT | ‘

mERLOGO : 112px*54px , FFRFPNG/IPG/GIFIES ,

RIFIZREEPC

API Version 2010-03-31
56

Amazon Simple Notification Service Developer Guide
Step 3: Create a Baidu Cloud Push Project

Upon successful registration, you should see the following:

O sEAKS BN EEE REES &
WEFEEES SEIF RS HARNF / (BRI ERSS g
() (=) N
7 = s
\4) S 2

BEFASEHIERETD , $iF EnEAEEITAS |
BERREFSAGUTEEMNEANASIREH S RS , BERhsmilr £,
WREE R rETh I |

ZAEER > >

After registering as a Baidu developer, you can then proceed to the next step to create a Baidu

cloud push project. This assumes that you are still logged in. If you are not logged in, then you can
use the following login procedure.

To login to Baidu

1. On the Baidu Portal, in the top right corner, click ## (Login).
HEHE

00
Bai®EE

$iE MR KWE AE 55 He 085 08
I T

B# TE hao123 | FE

2. Enter your Baidu username (email address) and password and then click ## (Login).

o BRTEKS

P | Baidu username (email address) I
BEARS
password I
W ThEiHER icEaT
A
r 4 B3
ur
.

s . iz RlEm

Step 3: Create a Baidu Cloud Push Project

When you create a Baidu cloud push project, you receive your app ID, API key, and secret key.

API Version 2010-03-31
57

http://www.baidu.com/

Amazon Simple Notification Service Developer Guide
Step 3: Create a Baidu Cloud Push Project

To create a Baidu cloud push project

1. Onthe Baidu Portal, click ## (More).

00
.0
Bai®&EE
=
ﬂ@mﬁ@ﬂﬁﬁi@ﬁﬂﬁﬁ@ﬁﬂﬁ?ﬁ»l
BE—T
2. Click ###### (Baidu's Open Cloud Platform)
%% 3
BaidhBEE :a mm be 8 =5 BE 0E eE iE
| AE—T | @
EEEE > EEA
AT
N AEen AL %) EEC
EEREEAHE SFEEMERTE Eﬁ EEEGL, SIHMER L -EEERATE
BuzE @ muss © Emins & EREEBE
FA I EREER i EMBINFUER — R R TEFSRHLETR
BWER Hemg) AgoE
TR =5 b L EENLE, CERES LIEHMES, EMESahEg!
: ¥ AEELT+ B Aein
BETEHNEPCH T FHERE. PEER FEAFHEEHIA

Sa ottt e

3.

ElEEHE v =

BRI AR

4. Click ### (Cloud Push).

ZhE55(Cloud)

< FFSIE(BAE)
‘b ZES, BERSRETINE

=

=EEA. HE. EREEERS

5. Click ##### (Management Console).

API Version 2010-03-31
58

http://www.baidu.com/

Amazon Simple Notification Service Developer Guide
Step 3: Create a Baidu Cloud Push Project

6.

8.

iR Eavozii] EEEHE REST API

Click ##### (Management Console) to enter information for an Android project.

L

'~ '| BERMS « iy AR
> BinoEm - RS - TS > EEiEE

& zfE EEEHS

B mmEs i

B i

BEIHERG AR EERE TR EREHaRENRREEEN . RIHSIER ER S EERS -

| EliE ZHEEEIBSIE, SEEH U T

T RESTAPI . SRS
B sox R RESRERR T A R MR R R

. fEHE
B twms

EEERE . GELEEEN . HEREEEE.

B gabiey ——
B #mm IR Aol CT SRR AEERABSINANG, AR B0 PR B R -3
© anias A R A A E 516 JAEEERSEVEIBIIHE . SHESENERSNER, #ASRESEEE: ShE

HERI R RS » SR SR FAVEIRE RIS .

ARERSER

5 i
SN

[R(BCS ...
BAE3.0lr i@

Enter an app name and then click ## (Create).

API Version 2010-03-31
59

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

ARERSEE
0 W < BETE 4
WEEEESERT B
BT | AR * BB ER: App Name | ‘
Z TSRS | .
e " BERAVE: At
O af:
BRRE: O B

SitemapiEIElae... 03-12

9. Upon successful completion of the project, you will then see a page similar to the following with
your app ID, APl Key, and Secret Key. Make note of the API key and secret key, as they will be
needed later.

+. | AppName

5 Eaes EBES

"
(4]
E
o
e

HR: AppNeme

Icon:

({1}
Hi
el
=

ID: 2 3

™
v

Frontia

R API Key: nn jav

¥ =i
Secret Key: nllF; u Sutf | EE

[

B ERE 8] : 2014-05-20 12:23:09

B ARRE B3 R . 2014-05-20 12:23:12

Q iBsHH

Step 4: Download and Install the Android Demo App
from Baidu
Baidu generates an Android demo app that you can download and install to your mobile device.

To download and install the Android demo app from Baidu

1. Starting from the page that displays the app ID, API Key, and Secret Key, click ### (Cloud Push)

API Version 2010-03-31
60

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

ID:

A Frontia

API Key:
] =iEE

Secret Key:
B> Wik

2. Click #### (Push Settings)

Frontia WL S, SR ' b PN
=2 (

3. Using reverse domain name notation, enter a package name in the #### (App Package Name)
box.

+. AppName

HESR T < EREE <
EERS {

BRER: Applaze

& mAmaE

= =ui & Android ?
R Frontia |E-§ﬂ]ﬁ$’.-=| | com exampledomainname examplepackagename I |

¥ =i % 108
B ks TR - Browse. | No file selected.

[LIl £ Browse. | No file selected.

Q LBsiESH
ﬂ' Hilap EE3 et FE N (Devalopment) £ 5=l (Production)

¢ RREE

e A 2 e S NP SV

4. Click #### (Save Settings)

API Version 2010-03-31
61

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

+. AppName
" ErRe < {EEIRE
FRABS

R A& : Appiame
o mmsIg
= =xn W Android
= &
ﬁ Frontia EHAE: com. exampledonainname, exanplepackagenane]
1w ¢ 108
B #ikn HEUFH-: Browse. | ¥o file selscted.
B ArRiE L= .\c: file selected
Q LBSEESH
L+ Hibarr SBERE FERT Development) £ BRI (Production)
~ GTRES

EEH S - FRF BB ERR

. BEF |3 APl iR LR R E R A Bk ETAER

You should then see the ###H###(Successfully saved!) message displayed.

5. Next, click #### (Quick Example).

+. AppName

R < psinm
£ER
EME: Appliaze
o EAsE
- =i & Android
= &

_) Bl con, cxampledonainnene. exanplepackazenene || temmm
Frontia

You should then see a page similar to the following:

API Version 2010-03-31
62

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

x iREzfAl (Android)

ATHEENG @ T Android R, RRSNER T REFD LA DENppkey THER - BRI ERTHER-

FiE ol R R, TR TREIARETT R,

T ERAFEETHE | FRAPKZH TR,

On the Android mobile device you want to test with, scan the QR code icon using a code scanner,
such as QR Droid, to get a link to a demo app provided by Baidu.

Note
You can also download the demo app by clicking ##Android## (Download Android
Sample)

x HERA (Android) %

AT RIS B Findroi 0« FABNERT

FiE Rl TR B, BITRE TREFIEHTITA.

The Baidu Push Demo app is included in the downloaded PushDenp. zi p package. You
can use the demo app as an example for creating your own app to use with Baidu. In
addition, the push service jar file (pushser vi ce- 4. 0. 0. j ar) from Baidu is included in
the PushDenp. zi p package. You must use the jar file from Baidu in order to create a
new app.

Click the link you receive after scanning the scan code. This will download the demo app provided
by Baidu onto your mobile device.

After the download has completed, install the demo app onto your mobile device. You should then
see the following Push Demo app installed:

API Version 2010-03-31
63

http://qrdroid.com

Amazon Simple Notification Service Developer Guide
Step 5: Obtain a user Id and channel Id

Step 5: Obtain a User Id and Channel Id from Baidu

Baidu generates a user Id and channel Id that you will need to send a push notification message using
Baidu.

To obtain the user Id and channel Id from Baidu

1. Open Push Demo and then click, in the bottom right, ##### (Bind Without Baidu Account).

2. Make a note of the userld and channelld, as you will be using them in the next step.

Note

For an example of Java code that is used to retrieve the userlD and channelld, see the
onBi nd method in the MyPushMessageRecei ver . j ava file of the Push Demo app from
Baidu. For more information, see the Android integration guide. To translate this guide into
English, you can paste the URL, http://developer.baidu.com/wiki/index.php?title=docs/cplat/
push/guide, into Bing Translator and then click Translate.

Step 6: Send a Push Notification Message to a
Mobile Endpoint using Amazon SNS and Baidu

This section describes how to send a push notification message to your mobile endpoint. You add the
gathered prerequisite information to the AWS sample file SNSMbbi | ePush. j ava, which is included in
the snsmobilepush.zip file. Included in the SNSMbbi | ePush. j ava file are examples on how to create
a mobile endpoint and use message attributes for structuring the message. For additional information
and examples on how to create mobile endpoints and use message attributes with Baidu, see Creating
an Amazon SNS Endpoint for Baidu (p. 66) and Using Message Attributes for Structuring the

Message (p. 67).

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do |
Get Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

2. Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In
Eclipse, right-click the name of the Java project and then click Import, expand General, click File
System, click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

API Version 2010-03-31
64

http://developer.baidu.com/wiki/index.php?title=docs/cplat/push/guide
http://www.bing.com/translator/
samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Step 6: Send a Push Notification Message to a
Mobile Endpoint using Amazon SNS and Baidu

3.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1.
2.
3.

Right-click the Java project folder, click Build Path, and then click Configure Build Path...
Click the Libraries tab, and then click Add Library....
Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open
SNSMbbi | ePush. j ava in Eclipse and uncomment sanpl e. denoBai duAppNoti fi cation(); .
It should look similar to the following:

SNSMbbi | ePush sanpl e = new SNSMobi | ePush(sns);
/1 TODO Unconment the services you wish to use.
/I sanpl e. denpbAndr oi dAppNotification();

/I sanpl e. denoKi ndl eAppNoti fication();

/I sanpl e. denpAppl eAppNoti fication();

/I sanpl e. denpAppl eSandboxAppNoti fication();
sanpl e. denpBai duAppNoti fication();

/I sanpl e. denoWNSAppNot i fication();

/I sanpl e. denoMPNSAppNot i fi cation();

Locate the denpBai duAppNot i fi cati on method and enter the user ID and channel ID you
received from Baidu for the value of the userld and channelld strings. For example, it should look
similar to the following:

String userld = "EXAWPLE-
kLMchcXOv3xOxW/hGSTF dBp. . . KT2TGkvnKy TvLuSpzK_qsHgxVB_UpntUa7G 6g3EXAMPLE" ;
String channel Il d = "EXAMPLE<channel | d>EXAMPLE" ;

Enter the secret key for your application. For example, it should look similar to the following:

String secretKey = "EXAMPLE<secr et key>EXAMPLE";

Enter the API key for your application. For example, it should look similar to the following:

String api Key = "EXAMPLExV2| cV2zEKTLNYs625zf k2j h4EXAMPLE" ;

Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCI!I letters, numbers, underscores, hyphens, and periods, and must be between 1
and 256 characters long. For example, it should look similar to the following:

String applicationNane = "bai dupushapp”;

Run the application. You should see output similar to the following in the output window of your
IDE:

Getting Started with Amazon SNS

API Version 2010-03-31
65

Amazon Simple Notification Service Developer Guide
Step 6: Send a Push Notification Message to a
Mobile Endpoint using Amazon SNS and Baidu

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333: app/ BAl DU/
Test App}

{Endpoi nt Arn: arn:aws: sns: us-west-2:111122223333: endpoi nt/ BAl DU/

Test App/ 8f 3f df 0d- 520b- 38d1- 8ed2- 3301a477eef 3}

{Message Body: {"BAIDU":"{\"title\":\"New Notification Received from SNS
\",\"description\":\"Hello World!\"}"}}

{Message Attributes: ("AWS. SNS. MOBI LE. BAI DU. MessageKey": "defaul t-
channel - msg- key"), (" AW5. SNS. MOBI LE. BAI DU. Depl oyStatus": "1"),

(" AWB. SNS. MOBI LE. BAI DU. MessageType": "0")}

Publ i shed!

{Messagel d=56a3a3e6- 4b4b- 59b4- 8d1d- ef f 592¢c0f f al}

On your Android device, you should see a push notification message appear within the Android
app, similar to the following:

PE®mE o f e k350

- Amazon Mobile Push

Welcome!
message=Hello World!
from=353185151096
collapse_key=Welcome

Creating an Amazon SNS Endpoint for Baidu

This section provides additional information and examples on how to create an Amazon SNS endpoint
to use with Baidu. You create an Amazon SNS endpoint, using the combined userld and channelld
received from Baidu, to represent the app and mobile device. The endpoint is then used by Amazon
SNS for publishing notification messages using the Baidu push notification service to the app on the
mobile device.

The following Java example shows how to create an Amazon SNS endpoint for a Baidu app and
mobile device.

Map<String , String> attributes = new HashMap<String , String>();

/1 Insert your Userld. This is a mandatory field.
attributes. put("Userld", "9999999999");

/1 Insert your Channelld. This is a nandatory field.
attributes. put ("Channel 1d", "1234567890");

Creat ePl at f or nEndpoi nt Request creat ePl at f or nEndpoi nt Request = new
Cr eat ePl at f or nEndpoi nt Request () ;

/1 Baidu endpoints are identified by a conmbination of the userld and
channel I d whi ch nust be supplied as endpoint attributes,

/1 without which a valid endpoint cannot be successfully created.
creat ePl at f or nEndpoi nt Request . set Attributes(attributes);

API Version 2010-03-31
66

Amazon Simple Notification Service Developer Guide
Step 6: Send a Push Notification Message to a
Mobile Endpoint using Amazon SNS and Baidu

/1 Insert your Channelld. This is a nandatory field.
creat ePl at f or nEndpoi nt. set Pl at f or niToken(" 1234567890") ;

/'l Insert your Custoner User Data. This is an optional field.
creat ePl at f or nEndpoi nt . set Cust onlJser Dat a(" Test Endpoi nt");

/1 Insert your Platform Application Arn. This is a mandatory fi el d.
creat ePl at f or nEndpoi nt. set Pl at f or mAppl i cati onArn("arn: aws: sns: us-
west - 2: 123456789012: app/ BAI DU/ Test App") ;
String endpointArn =

snsCl i ent. createPl at f or nEndpoi nt (creat ePl at f or nfEndpoi nt Request) ;

Note the following considerations when using the Amazon SNS API to create an endpoint for use with
Baidu:

¢ In CreateEndpointRequest, the platform token field should contain the channelld.

« If you specify the endpoint attribute "Token" in the attributes map, this field must encapsulate the
channelld as well.

¢ The channelld should also be specified as an endpoint attribute with the name "Channelld".

¢ The value of the "Channelld" endpoint attribute and the platform token field and/or "Token" endpoint
attribute must be identical to construct a successful request.

¢ The userld should be specified as an endpoint attribute with the name "Userld".

¢ For a successful response, the request must contain valid Userld and Channelld values in the
attributes. Also, the Channelld parameter entered using setPlatformToken(String), which is a part of
CreatePlatformEndpointRequest, must be the same as the Channelld specified in the attributes map.

Using Message Attributes for Structuring the Message

This section provides additional information and examples for using message attributes to structure a
message and send a push notification message to a mobile endpoint.

The following Java example shows how to send a push notification message to a mobile endpoint and
how to use the optional message attributes for structuring the message. If an attribute is not sent, a
default value is auto-set in its place.

Note
The push notification message cannot exceed 256 bytes, which is the maximum size allowed
by Baidu.

Map<String, MessageAttributeVal ue> nessageAttributes = new HashMap<Stri ng,
MessageAttri but evVal ue>();

/1 Insert your desired value of Deploy Status here. 1 = DEV, 2 = PROD
nmessageAttri but es. put (" AWS. SNS. MOBI LE. BAI DU. Depl oy St at us", new
MessageAttributeVal ue().w thDat aType("String").w thStringValue("1"));

/1 Insert your desired value of Message Type here. 0 = I NAPP MESSACE, 1 =
ALERT NOTI FI CATI ON

messageAt tri but es. put (" AWS. SNS. MOBI LE. BAI DU. MessageType", new
MessageAttributeVal ue().w thDat aType("String").w thStringValue("1"));

/1 Insert your desired value of Message Key

nmessageAttri but es. put (" AWS. SNS. MOBI LE. BAI DU. MessageKey", new
MessageAttributeVal ue().w thDat aType("String").w thStringVal ue("test-

nmessage"));

API Version 2010-03-31
67

Amazon Simple Notification Service Developer Guide
Getting Started with GCM

Publ i shRequest publ i shRequest = new Publ i shRequest ();

publ i shRequest . set MessageAt tri but es(nmessageAttri butes);

String nmessage = "{\"title\":\"Test _Title\",\"description\":
\"Test_Description\"}";

publ i shRequest . set Message(nmessage) ;

publ i shRequest . set Target Arn("arn: aws: sns: us- west - 2: 999999999999: endpoi nt/
BAI DU/ Test App/ 309f c7d3- bc53- 3b63- ac42- e359260ac740") ;

Publ i shResult publishResult = snsCient.publish(publishRequest);

Note the following considerations when using the optional message attributes for structuring the
message:

+ AWB. SNS. MOBI LE. BAI DU. Depl oy St at us
Possible Values (Default = 1):
1 — Tags the notification as being sent in a development environment

2 — Tags the notification as being sent in a production environment
* AWSE. SNS. MOBI LE. BAI DU. MessageType

Possible Values (Default = 1):
0 — Generates an in-app message

1 — Generates an alert notification. Alert notifications are restricted to the following format:

{"title":"<TITLE>", "description":"<DESCRI PTI ON>"}

<TI TLE> and <DESCRI PTI ON> are the title and description you desire for your alert notification. If
the message is incorrectly formatted JSON, the request fails.

* AWE. SNS. MBI LE. BAI DU. MessageKey

A short message identifier you can attach to your message

Getting Started with Google Cloud Messaging for
Android

Google Cloud Messaging for Android (GCM) is a service that enables you to send push notification
messages to an Android app. This section describes how to obtain the GCM prerequisites and send a
push notification message to a mobile endpoint.

Topics
¢ GCM Prerequisites (p. 68)
¢ Step 1: Create a Google API Project and Enable the GCM Service (p. 69)
¢ Step 2: Obtain the Server API Key (p. 69)
¢ Step 3: Obtain a Registration ID from GCM (p. 69)
¢ Step 4: Send a Push Notification Message to a Mobile Endpoint using GCM (p. 71)

GCM Prerequisites

To send push notification messages to an Android app, you need the following:

API Version 2010-03-31
68

Amazon Simple Notification Service Developer Guide
Step 1: Create a Google API Project
and Enable the GCM Service

¢ Android app registered with GCM
« Registration ID
¢ Server API key (sender auth token)

If you already have these prerequisites, then you can either use the Amazon SNS console to send
a push notification message to the mobile endpoint or you can use the Amazon SNS API. For more
information about using the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 79).
For more information about using the Amazon SNS API, see Step 4: Send a Push Notification
Message to a Mobile Endpoint using GCM (p. 71).

Step 1: Create a Google API Project and Enable the
GCM Service

To send an push notification message to an Android app, you must have a Google API project and
enable the GCM service.

To create a Google API project and enable the GCM service

1. If you do not already have a Google API project, then see the Creating a Google API project in the
Android developer documentation.

Note

If you do not already have an Android app registered with GCM, then you can use the
sample Android app provided by AWS as a template to get started. For more information,
see Step 3: Obtain a Registration ID from GCM (p. 69).

2. Onthe Google APIs Console web site, verify that you have an Google API project.
3. Click Services, and make sure Google Cloud Messaging for Android is turned on.

2 Google Cloud Messaging for Android & m:|

Step 2: Obtain the Server API Key

To communicate with GCM on your behalf, Amazon SNS uses your server API key. This key will be
used in a later step to send a push notification to a mobile endpoint.

To obtain the server API key

1. Onthe Google APIs Console web site, click API Access and make note of the server API key with
the Key for server apps (with IP locking) label.

2. If you have not yet created a server API key, then click Create new Server key. This key will be
used later in this section to send a push notification to a mobile endpoint.

Step 3: Obtain a Registration ID from GCM

When you register your app with GCM to receive push natification messages, a registration ID is
generated. Amazon SNS uses this value to determine which app and associated device to send mobile
push natifications to.

The following steps show how to use the sample Android app provided by AWS to obtain a registration
ID from GCM. You can use this sample Android app to help you get started with Amazon SNS push
notifications. This sample app requires the Android SDK, the Google Play Services SDK, and the
Android Support Library package. For more information about these SDKs, see Get the Android

API Version 2010-03-31
69

http://developer.android.com/google/gcm/gs.html
https://code.google.com/apis/console
https://code.google.com/apis/console
http://developer.android.com/sdk/index.html

Amazon Simple Notification Service Developer Guide
Step 3: Obtain a Registration ID from GCM

SDK and Setup Google Play Services SDK. For more information about the Android Support Library
package, see Support Library Setup.

Note
The provided sample Android app is compatible with physical devices running Android version
2.3 or later and with virtual devices running Google API 17 or later.

To obtain a registration ID from GCM for your app

1. Download and unzip the snsmobilepush.zip file.

2. Import the Andr oi dMbbi | ePushApp folder into your IDE. In Eclipse, click File, Import, expand
the Android folder, click Existing Android Code Into Workspace, click Next, browse to the
folder Andr oi dMobi | ePushApp, click OK, and then click Finish.

After the sample Android app has been imported into your IDE, you need to add the Project
Number for your Google API project to the st ri ngs. xm file, which is included in the sample
Android app.

3. Add the Project Number for your Google API project to the st ri ngs. xm file. In your IDE, you will

find the file included in the values folder, which is a subfolder of res. The string will look similar to
the following:

<string name="project_nunber">012345678912</ stri ng>

4. Add googl e- pl ay-servi ces. j ar, andr oi d- support-v4.jar, and andr oi d. j ar to the
Java Build Path. Select googl e- pl ay- servi ces. jar and andr oi d- support-v4.j ar for
export, but do not select andr oi d. j ar for export.

= Properties for AndroidMobilePushApp *

type filter text Java Build Path

> Resource

Amazen Mobile App SDK | [Source | = Projects | =i Libraries| “% Order and Export
Android Build class path order and exported entries:

Android Lint Preferences (Exported entries are contributed to dependent projects)
Builders [AndroidMobilePushApp/src

Java Build Path

> Java Code Style

> Java Compiler

> Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Tags

- T

5. Run the app to see the registration ID as output to the Android logging system. If you are using
Eclipse with the Android ADT plug-in, you can see the registration ID in the LogCat display
window. For example, the output containing the registration 1D will look similar to the following:

[AndroidMobilePushApp/gen

[[] =hAndroid 4.0.3

=i, Android Private Libraries

= Android Dependencies

@' google-play-services.jar| C:\Program Files (x86)\Android\android-sdk\extra
@ android-support-wd,jar -|C:\Program Files (x86)\Android\android-sdk' extras
[faw android.jar - C:\Prograrr Files (x86)\Android\android-sdk\platformsi\androic

06-05 11:50:43.587: V/ Registration(14146): Regi stered,
regi strationld: = Exanpl ei 7f FachkJ1xj | qT64RaBkcGHochnf 1VQAr 9k-

I BJt Kj p7f edYPzEWT_Pq3TuOl r ogr o1lcw\J UvgkcPPYcaXCpPWiE3Bgn-

wi ql Ezp5z2Z7y_j sMOPKPxKhddCzx6paEsyay9Zn3D4AwWNUIb8nbHXr Bf 9dgaEw, error =
nul |, unregistered = null

The installed app will appear on your Android device:

API Version 2010-03-31
70

http://developer.android.com/sdk/index.html
http://developer.android.com/google/play-services/setup.html
http://developer.android.com/tools/support-library/setup.html
samples/snsmobilepush.zip

Amazon Simple Notification Service Developer Guide
Step 4: Send a Message to a Mobile Endpoint using GCM

Amazan
Mabilz Push

You should now have a registration ID, server API key, and Android app registered with GCM. You
can now send a notification to the Android app on your device by either using the Amazon SNS
console or the Amazon SNS API. To use the Amazon SNS console, see Using Amazon SNS Mobile
Push (p. 79). To use the Amazon SNS API, see Step 4: Send a Push Notification Message to a
Mobile Endpoint using GCM (p. 71).

Step 4: Send a Push Notification Message to a
Mobile Endpoint using GCM

This section describes how to send a push notification message to your mobile endpoint. You add the
gathered prerequisite information to the AWS sample file SNSMobi | ePush. j ava, which is included in
the snsmobilepush.zip file.

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do |
Get Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

2. Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In
Eclipse, right-click the name of the Java project and then click Import, expand General, click File
System, click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

3. Inthe SNSSamples/src/com/amazonaws/sns/samples/mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...
2. Click the Libraries tab, and then click Add Library....
3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1. Inthe SNSSamples/src/com/amazonaws/sns/samples/mobilepush
folder, open SNSMbbi | ePush. j ava in Eclipse and uncomment
sanpl e. denpbAndr oi dAppNoti fi cati on(); . It should look similar to the following:

SNSMobi | ePush sanpl e = new SNSMbbi | ePush(sns);
/1 TODO Unconment the services you wi sh to use.

API Version 2010-03-31
71

samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Step 4: Send a Message to a Mobile Endpoint using GCM

sanpl e. denpbAndr oi dAppNoti fication();

/'l sanpl e. denoKi ndl eAppNoti fication();

/1 sanpl e. denmbAppl eAppNoti fication();

/1 sanpl e. denmoAppl eSandboxAppNoti fi cation();
/1 sanpl e. denoBai duAppNoti fication();

/1 sanpl e. demoWNSAppNot i fication();

/1 sanpl e. denoMPNSAppNot i fi cation();

Locate the denpAndr oi dAppNot i fi cati on method and enter the registration ID you received
from GCM for the value of the registration ID string. For example, it should look similar to the
following:

String registrationld = = "EXAMPLE-
kLMchcXOv3xOxWhGSTf dBp. . . KT2TGkvnKy TvLuSpzK_qsHgxVB_UpntUa7G 6g3EXAMPLE" ;

Enter the API key for your application. For example, it should look similar to the following:

String server APl Key = "EXAMPLExV2| cV2zEKTLNYs625zf k2j hAEXAMPLE";

Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCI!I letters, numbers, underscores, hyphens, and periods, and must be between 1
and 256 characters long. For example, it should look similar to the following:

String applicationName = "gcnpushapp";

Run the application. You should see output similar to the following in the output window of your
IDE:

Getting Started with Amazon SNS

{Pl atformApplicationArn: arn:aws:sns:us-west-2:111122223333: app/ GCCM
gcrmpushapp}

{Endpoi nt Arn: arn:aws:sns: us-west-2:111122223333: endpoi nt/ GCM

gcnpushapp/ 5e3e9847-3183- 3f 18- a7e8- 671c3a57d4b3}

{"default":"This is the default nessage","GCM:"{\"delay_while_idle
\":true,\"col |l apse_key\":\"Wel cone\",\"data\": {\"nmessage\":\"Visit Anazon!
\" \N"url\":\"http://ww. amazon.comf\ "}, \"tinme_to_live\":125,\"dry_run
\":fal se}"}

Publ i shed. Messagel d=1ca8d7d1-c261- 5bf c- 8689- 9db269c4ed6¢c

On your Android device, you should see a push naotification message appear within the Android
app, similar to the following:

API Version 2010-03-31
72

Amazon Simple Notification Service Developer Guide
Getting Started with MPNS

F [Gl gs” gl 3:50 F
! Amazon Maobile Push

a b E® R

Welcome!
message=Hello World!
from=3531851510096
collapse_key=Welcome

Getting Started with MPNS

Microsoft Push Natification Service for Windows Phone (MPNS) is a service that enables you to

send push notification messages to Windows Phone 7+ and Windows Phone 8.0 apps. This section
describes how to obtain the MPNS prerequisites and send a push notification message using Amazon
SNS and MPNS. You can send both unauthenticated and authenticated push notification messages
with MPNS. For better security and to avoid throttling limits imposed by MPNS, you should send
authenticated push notification messages.

Topics
¢ MPNS Prerequisites (p. 73)
¢ Step 1: Set Up Your Windows Phone App to Receive Push Notifications Messages (p. 74)
¢ Step 2: Get a Push Notification URI from MPNS (p. 74)
¢ Step 3: Create a Windows Developer Account (p. 74)
¢ Step 4: Upload TLS Certificate (p. 74)

¢ Step 5: Send a Push Notification Message to a Windows Phone app using Amazon SNS and
MPNS (p. 74)

MPNS Prerequisites

To send an unauthenticated push notification message to a Windows Phone app using Amazon SNS
and MPNS, you need the following:

¢ Windows Phone app configured to use MPNS
¢ Push natification URI from MPNS

To send an authenticated push notification message to a Windows Phone app using Amazon SNS and
MPNS, you also need the following:

¢ HTTPS Push notification URI from MPNS
¢ Registered as a Windows app developer
¢ Transport Layer Security (TLS) certificate

If you already have these prerequisites, then you can send a push notification message to a Windows
Phone app using either the Amazon SNS console or the Amazon SNS API. For more information about
using the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 79). For more information
about using the Amazon SNS API, see Step 5: Send a Push Notification Message to a Windows Phone
app using Amazon SNS and MPNS (p. 74).

API Version 2010-03-31
73

Amazon Simple Notification Service Developer Guide
Step 1: Set Up Your Windows Phone App
to Receive Push Notifications Messages

Step 1: Set Up Your Windows Phone App to
Receive Push Notifications Messages

To send a push notification message to your Windows Phone app, you must enable the app for
the MPNS service. For more information, see Setting up your app to receive push notifications for
Windows Phone 8.

Step 2: Get a Push Notification URI from MPNS

To create a mobile endpoint with Amazon SNS you need a push notification URI from MPNS. You
can either get an HTTP or HTTPS push notification URI from MPNS. For better security and to avoid
throttling limits imposed by MPNS, you should get an HTTPS push notification URI for sending
authenticated messages. For more information about getting an HTTPS push notification URI, see
Setting up an authenticated web service to send push notifications for Windows Phone 8.

Step 3: Create a Windows Developer Account

To send authenticated messages using MPNS you must create a Windows developer account. For
more information about opening a Windows developer account, see Opening a developer account.

Step 4: Upload TLS Certificate

To send authenticated messages using MPNS, you must upload a TLS certificate obtained from one

of the trusted certificate authorities (CA) for Windows Phone to your Windows developer account. You
must also submit the complete TLS certificate chain and associated private key to Amazon SNS. This
is to help with establishing a secure connection to MPNS with Amazon SNS on your behalf. Amazon
SNS requires the TLS certificate and private key in the .pem format. You can use different utilities,
such as openssl, for converting and exporting certificates. For more information, see Setting up an
authenticated web service to send push natifications for Windows Phone 8 and SSL root certificates for
Windows Phone OS 7.1. For more information about openssl, see http://www.openssl.org/.

Step 5: Send a Push Notification Message to a
Windows Phone app using Amazon SNS and MPNS

This section describes how to use the prerequisite information with the Amazon SNS API to send a
push notification message to your Windows Phone app using Amazon SNS and MPNS. You add the
gathered prerequisite information to the AWS sample file SNSMobi | ePush. j ava, which is included in
the snsmobilepush.zip file.

You can also use the Amazon SNS console. However, to send toast notifications, you must use the
Amazon SNS API. For more information about using the Amazon SNS console, see Using Amazon
SNS Mobile Push (p. 79).

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do |
Get Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

API Version 2010-03-31
74

http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202940.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202940.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ff941099.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868184.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ff941099.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ff941099.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg521150.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg521150.aspx
http://www.openssl.org/
samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Step 5: Send a Push Notification Message to a
Windows Phone app using Amazon SNS and MPNS

Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In
Eclipse, right-click the name of the Java project and then click Import, expand General, click File
System, click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1.
2.
3.

Right-click the Java project folder, click Build Path, and then click Configure Build Path...
Click the Libraries tab, and then click Add Library....
Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open
SNSMobi | ePush. j ava in Eclipse and uncomment sanpl e. dembMPNSAppNot i fi cation(); . It
should look similar to the following:

SNSMobi | ePush sanpl e = new SNSMobi | ePush(sns);
/] TODO Unconment the services you wi sh to use.
/I sanpl e. dembAndr oi dAppNoti fication();

/I sanpl e. denoKi ndl eAppNoti fication();

/I sanpl e. dembAppl eAppNoti fication();

/I sanmpl e. denbAppl eSandboxAppNot i fi cati on();

/| sanpl e. denpBai duAppNoti fi cation();

/I sanmpl e. demdWNSAppNot i fi cation();

sanpl e. denoMPNSAppNoti fi cation();

Locate the denpoMPNSAppNot i fi cat i on method and enter the notification URI you received from
MPNS for the value of the notificationChannelURI string.

Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCI!I letters, numbers, underscores, hyphens, and periods, and must be between 1
and 256 characters long. For example, it should look similar to the following:

String applicationNane = "npnspushapp”;

Enter the MPNS TLS certificate in .pem file format. You must include the complete certificate
chain, beginning with the root CA certificate at the top and ending with the issued certificate at
the bottom. At the beginning of each new line in your certificate, you must add \ n. For example, it
should look similar to the following:

String certificateChain = "----- BEG N CERTI FI CATE- - - - -

\ nM | Gi TCCAf | CCQD6NY oRWOUXQ ANBgk ghki GOWOBAQUFADCBI DEL MAk GA1UEBhMC
\ NVWNMk Cz AJBgNVBAg TAI d BVMRAWDg Y DVQOHEWD TZWFOd Gx | MOBWDQYDVQOKEWZBbWE6\ nb24x FDA
\ nBgkghki GOWOBCQEMEGEV 251 QGFt YXpvbi 5j b20wHhc NMTEWNDI 1M AONTI xWhcN
\ nMT1 wNDI OM AONTI xW CBi DELMAk GA1UEBhMCVVIVK Cz AJ BgNVBAgG TAI d BMRAWDG YD
\ NVQOHEWd TZWFOd G| MOBWDQYDVQQKEWZ BbWF6b 24X FDASBgNVBAS TCOI BTSBDb252
\ nb2x| MRl WEAYDVQQDEW UZXNOQRI s YWk Hz AdBgk ghki GOWOBCQEVEGEV D251 QGFt
\ nYXpvbi 5] b20wgZ8wbQYJKoZI hvc NAQEBBQADGYOAM GJ AoGBAMaKOdN+a4GmA W
\ n21uUSf wf Evy SW C2XADZ4nB+BLYgVI k60Cpi ws Z3@3vUEl GBI yNoH/ f OWYK8nOT
\ nr DHudUZg3gX4walLGsMA3q7Wgc/ MoQ TxOUSQv7c7ugFFDz QGBz ZswY6786nmB6gpE
\ nl bb3Chj ZnzcvQAaRHhdl QA Mh2nr AgVBAAEWDQYJKoZI hvc NAQEFBQADG YEAL Cu4\ nnUhVVxY
+auNKy ExzyLwax| Aco7TJH dbt S4J5i NmZgXLOFkb

API Version 2010-03-31
75

SBgNVBAS TCOI E

Unt neD9+h8My¢

Amazon Simple Notification Service Developer Guide
Getting Started with WNS

\ nFFBj vSf pJI |1 J00zbhNYS5f 6 GUOEDNFJI 0ZxBHj Jnyp3780D8uTs7f Lvj x79Lj STh
\ nNYi yt VbZPQUQBYaxu2j Xni mvw3r r szl aEXAMPLE=\ n- - - - - END CERTI FI CATE- - - - - "

5. Enter the private key for the MPNS TLS certificate in .pem file format. At the beginning of each
new line in your certificate, you must add \ n. For example, it should look similar to the following:

String privatekKey = "----- BEG N RSA PR1VATE KEY-----

\ nMJ1 G TCHAf | CCQDIN7oRWOuXg ANBgkghki G7wOBAQUFADCBI DEL MAk GA1UEBhMC
\ NVWMk Cz AJBgNVBAGTAI dBI\/RAWDgYDV(XJ—lEV\dTZV\FOdG(ZN[BWDQYDVQJ(EWZBbV\FG\ nVVMKCz AJBgNVBAgQTAI dE
FYai 3z96EXAMPLE=\n- - - - - END RSA PR1VATE KEY-----

6. Run the application. You should see output similar to the following in the output window of your
IDE:

CGetting Started with Amazon SNS

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333: app/ MPNS/
Test App}

{Endpoi nt Arn: arn:aws: sns: us-west-2:111122223333: endpoi nt/ MPNS/

Test App/ 557597f 8- beda- 3035- 8c6d- bb7f a8b20f ef }

{Message Body: {"MPNS":"<?xm version=\"1.0\" encoding=\"utf-8\"?
><wp: Notification xm ns:wp=\"WPNotification\"><wp: Til e><wp: Count >23</
wp: Count ><wp: Title>This is a tile notification</wp: Title></wp: Tile></
wp: Notification>"}}

{Message Attributes: ("AWS. SNS. MOBI LE. MPNS. Type": "token"),

(" AWB. SNS. MOBI LE. MPNS. Not i fi cationC ass": "realtine")}

Publ i shed!

{Messagel d=ce9855bf - 395f - 5ala- a4b9- 19ace305780d}

On your Windows Phone, you should see a push notification message appear within the app.

Getting Started with WNS

Windows Push Notification Services (WNS) is a service that enables you to send push notification
messages and updates to Windows 8 (and later) and Windows Phone 8.1 (and later) apps. This
section describes how to obtain the WNS prerequisites and send a push notification message using
Amazon SNS and WNS.
Topics

¢ WNS Prerequisites (p. 77)

e Step 1: Set Up Your App to Receive Push Notifications Messages (p. 77)

e Step 2: Get a Push Notification URI from WNS (p. 77)

e Step 3: Get a Package Security Identifier from WNS (p. 77)

e Step 4: Get a Secret Key from WNS (p. 77)

¢ Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS (p. 77)

API Version 2010-03-31
76

Amazon Simple Notification Service Developer Guide
WNS Prerequisites

WNS Prerequisites

To send push notification messages to Windows devices using Amazon SNS and WNS, you need the
following:

¢ Windows 8 (and later) or Windows Phone 8.1 app configured to use WNS
¢ Push notification URI from WNS

¢ Package security identifier

¢ Secret key

If you already have these prerequisites, then you can send a push notification message to an app
using either the Amazon SNS console or the Amazon SNS API. For more information about using the
Amazon SNS console, see Using Amazon SNS Mobile Push (p. 79). For more information about
using the Amazon SNS API, see Step 5: Send a Push Notification Message to an App using Amazon
SNS and WNS (p. 77).

Step 1: Set Up Your App to Receive Push
Notifications Messages

To send push natification message to your app, you must enable the app for the WNS service. For
more information, see Windows Push Notification Services.

Step 2: Get a Push Notification URI from WNS

To create a mobile endpoint with Amazon SNS, you need a push notification URI from WNS. For more
information, see Windows Push Notification Services.

Step 3: Get a Package Security Identifier from WNS

To create a mobile endpoint with Amazon SNS, you need a package security identifier from WNS. For
more information, see Windows Push Notification Services.

Step 4: Get a Secret Key from WNS

To create a mobile endpoint with Amazon SNS, you need a secret key from WNS. For more
information, see Windows Push Notification Services.

Step 5: Send a Push Notification Message to an App
using Amazon SNS and WNS

This section describes how to use the prerequisite information to send a push notification message to
your app using Amazon SNS and WNS. You add the gathered prerequisite information to the AWS
sample file SNSMbbi | ePush. j ava, which is included in the snsmobilepush.zip file.

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do |
Get Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

API Version 2010-03-31
77

http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
samples/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Step 5: Send a Push Notification Message
to an App using Amazon SNS and WNS

2. Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In
Eclipse, right-click the name of the Java project and then click Import, expand General, click File
System, click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

3. Inthe SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCr edenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...
2. Click the Libraries tab, and then click Add Library....
3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1. Inthe SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open
SNSMobi | ePush. j ava in Eclipse and uncomment sanpl e. dembWNSAppNot i fi cation(); . It
should look similar to the following:

SNSMobi | ePush sanpl e = new SNSMbbi | ePush(sns);
/1 TODO Unconmment the services you wi sh to use.
/I sanpl e. denpAndr oi dAppNot i fication();

/1 sanpl e. denoKi ndl eAppNoti fication();

/| sanpl e. denpAppl eAppNot i fication();

/I sanpl e. denpAppl eSandboxAppNoti fication();

/| sanpl e. denpBai duAppNot i fi cation();

sanpl e. dendWNSAppNot i fication();

/] sanpl e. denoMPNSAppNot i fi cation();

2. Locate the denbVWNSAppNoti fi cati on method and enter the string values for the push
notification URI, package security identifier, and secret key.

3. Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCI!I letters, numbers, underscores, hyphens, and periods, and must be between 1
and 256 characters long. For example, it should look similar to the following:

String applicati onName = "wnspushapp";

4. Run the application. You should see output similar to the following in the output window of your
IDE:

Getting Started with Amazon SNS

{Pl atformApplicati onArn: arn:aws:sns:us-west-2:111122223333: app/ WNS/
Test App}

{Endpoi nt Arn: arn:aws: sns: us-west-2:111122223333: endpoi nt/ WS/

Test App/ 17cc2f 2a- df a8- 3450- 90c6- elf 88d820f 3d}

{Message Body: {"WNS":"<badge version=\"1\" value=\"23\"/>"}}
{Message Attributes: ("AWS. SNS. MOBI LE. WNS. Type": "wns/badge"),

(" AWB. SNS. MBI LE. WNS. CachePol i cy": "cache")}

Publ i shed!

{Messagel d=d4899281- 927e- 5f 68- 9f d0- de9248he6d47}

API Version 2010-03-31
78

Amazon Simple Notification Service Developer Guide
Using Amazon SNS Mobile Push

On your Windows device, you should see a push notification message appear within the app.

Using Amazon SNS Mobile Push

This section describes how to use the AWS Management Console with the information described in
Prerequisites (p. 39) to register your mobile app with AWS, add device tokens (also referred to as
registration IDs), send a direct message to a mobile device, and send a message to mobile devices
subscribed to an Amazon SNS topic.

Topics
¢ Register Your Mobile App with AWS (p. 79)
¢ Add Device Tokens or Registration IDs (p. 81)
¢ Create a Platform Endpoint and Manage Device Tokens (p. 84)
¢ Send a Direct Message to a Mobile Device (p. 88)
¢ Send Messages to Mobile Devices Subscribed to a Topic (p. 89)
¢ Send Custom Platform-Specific Payloads in Messages to Mobile Devices (p. 89)

Register Your Mobile App with AWS

For Amazon SNS to send notification messages to mobile endpoints, whether it is direct or with
subscriptions to a topic, you first need to register the app with AWS. To register your mobile app with
AWS, enter a name to represent your app, select the platform that will be supported, and provide your
credentials for the notification service platform. After the app is registered with AWS, the next step is
to create an endpoint for the app and mobile device. The endpoint is then used by Amazon SNS for
sending notification messages to the app and device.

To register your mobile app with AWS

1. Go to https://console.aws.amazon.com/sns/ and click Create platform application.
In the Application name box, enter a name to represent your app.

App names must be made up of only uppercase and lowercase ASCII letters, numbers,
underscores, hyphens, and periods, and must be between 1 and 256 characters long.

3. Inthe Push notification platform box, select the platform that the app is registered with and then
enter the appropriate credentials.

Note
If you are using one of the APNS platforms, then you can select Choose file to upload
the .p12 file (exported from Keychain Access) to Amazon SNS.

For detailed instructions on how to acquire the following information, see Getting Started
with Amazon Device Messaging (p. 41), Getting Started with Apple Push Notification
Service (p. 46), Getting Started with Baidu Cloud Push (p. 52), Getting Started with Google
Cloud Messaging for Android (p. 68), Getting Started with MPNS (p. 73), or Getting Started
with WNS (p. 76).

Platform Credentials

ADM Client ID — Go to the Amazon Mobile App
Distribution Portal, click Apps and Services,

API Version 2010-03-31
79

https://console.aws.amazon.com/sns/
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html

Amazon Simple Notification Service Developer Guide
Register Your Mobile App with AWS

Platform

APNS

APNS_SANDBOX

APNS_VOIP

APNS_VOIP_SANDBOX

MACOS

MACOS_SANDBOX

Baidu

GCM

Credentials

click the name of your Kindle Fire app, and
then click Security Profile.

Client Secret — Go to the Amazon Mobile App
Distribution Portal, click Apps and Services,
click the name of your Kindle Fire app, and
then click Security Profile.

Certificate — Select the password encrypted
certificate and private key, as exported from
Keychain Access on your Mac computer in
the .p12 file format.

Certificate Password — Enter the password.
Certificate — Same as previous for APNS.

Certificate Password — Same as previous for
APNS.

Certificate — Same as previous for APNS.

Certificate Password — Same as previous for
APNS.

Certificate — Same as previous for APNS.

Certificate Password — Same as previous for
APNS.

Certificate — Same as previous for APNS.

Certificate Password — Same as previous for
APNS.

Certificate — Same as previous for APNS.

Certificate Password — Same as previous for
APNS.

API Key — Enter the API key you received
after creating a Baidu cloud push project, as
described in Step 3: Create a Baidu Cloud
Push Project (p. 57).

Client Secret — Enter the secret key you
received after creating a Baidu cloud push
project, as described in Step 3: Create a Baidu
Cloud Push Project (p. 57).

API Key — Go to the Google APIs Console web
site, click APl Access, and make note of the
server API key with the Key for server apps
(with IP locking) label. If you have not yet
created a server API key, then click Create
new Server key....

API Version 2010-03-31

https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://code.google.com/apis/console
https://code.google.com/apis/console

Amazon Simple Notification Service Developer Guide
Add Device Tokens or Registration IDs

Platform Credentials

MPNS Certificate — Enter the TLS certificate for your
Windows developer account, as described in
Step 4: Upload TLS Certificate (p. 74).

Private Key — Enter the private key for the TLS
certificate, as described in Step 4: Upload TLS
Certificate (p. 74).

WNS Client Secret — Enter the client secret, as
described in How to authenticate with the
Windows Push Notification Service (WNS).

Package Security Identifier (SID) — Enter the
SID, as described in How to authenticate with
the Windows Push Notification Service (WNS).

4. After you have entered this information, then click Add New App.

This registers the app with Amazon SNS, which creates a platform application object for the
selected platform and then returns a corresponding PlatformApplicationArn.

Add Device Tokens or Registration IDs

When you first register an app and mobile device with a notification service, such as Apple Push
Notification Service (APNS) and Google Cloud Messaging for Android (GCM), device tokens or
registration IDs are returned from the notification service. When you add the device tokens or
registration IDs to Amazon SNS, they are used with the Pl at f or mAppl i cat i onAr n API to create
an endpoint for the app and device. When Amazon SNS creates the endpoint, an Endpoi nt Arn is
returned. The Endpoi nt Ar n is how Amazon SNS knows which app and mobile device to send the
notification message to.

You can add device tokens and registration IDs to Amazon SNS using the following methods:

¢ Manually add a single token to AWS using the AWS Management Console

¢ Migrate existing tokens from a CSV file to AWS using the AWS Management Console
¢ Upload several tokens using the Cr eat ePl at f or nEndpoi nt API

« Register tokens from devices that will install your apps in the future

To manually add a device token or registration ID
1. Go to https://console.aws.amazon.com/sns/, click Apps, click your app, and then click Add
Endpoints.

2. Inthe Endpoint Token box, enter either the token ID or registration ID, depending on which
notification service. For example, with ADM and GCM you enter the registration ID.

3. (Optional) In the User Data box, enter arbitrary information to associate with the endpoint.
Amazon SNS does not use this data. The data must be in UTF-8 format and less than 2KB.

4. Finally, click Add Endpoints.

API Version 2010-03-31
81

http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Add Device Tokens or Registration IDs

Now with the endpoint created, you can either send messages directly to a mobile device or send
messages to mobile devices that are subscribed to a topic.

To migrate existing tokens from a CSV file to AWS

You can migrate existing tokens contained in a CSV file. The CSV file cannot be larger than 2MB.
When migrating several tokens, it is recommended to use the Cr eat ePl at f or nEndpoi nt API. Each
of the tokens in the CSV file must be followed by a newline. For example, your CSV file should look
similar to the following:

anmznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- -

KMTT mWwRkx MaDNST21 uZz01, "User data with spaces requires quotes”

aneznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- -

KM MWW wWRkx MaDNST21 uZz04, " Dat a, wi t h, commas, r equi r es, quot es"

anmznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- -

KM mMWWwWRkx MaDNST21 uZz02, "Quot ed data requires ""escaped"" quotes”

aneznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- -

KMTT mWwWRkx MBDNST2I uzz03, "{""key"": ""json is allowed"",
““value"":""endpoint"", ""nunber"": 1}"

anmeznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- -

KM MW wWRkx MaDNST21 uZz 05, Si npl eDat aNoQuot es

anmeznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- -

KM MW wWRkx MaDNST21 uZz06, "The followi ng |line has no user data"

anznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- - KMTI mW&wWRkx MBDNST2| uZz07

APBTKzPd CyT6E60C pdwLpc RNxQo5v CPFi Fer u9oZyl ¢22HvZSWQTDgnmmOWINE XVer UPXmpX0wd, '

token style"

1. Goto https://console.aws.amazon.com/sns/, click Apps, click your app, and then click Add
Endpoints.

2. Click Migrate existing tokens over to AWS, click Choose File, select your CSV file, and then
click Add Endpoints.

To upload several tokens using the Creat ePl at f or nEndpoi nt API

The following steps show how to use the sample Java app (bul kupl oad package) provided by AWS
to upload several tokens (device tokens or registration IDs) to Amazon SNS. You can use this sample
app to help you get started with uploading your existing tokens.

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do |
Get Security Credentials? in the AWS General Reference.

1. Download and unzip the snsmobilepush.zip file.
2. Create a new Java Project in Eclipse.

3. Import the SNSSanpl es folder to the top-level directory of the newly created Java Project. In
Eclipse, right-click the name of the Java Project and then click Import, expand General, click File
System, click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

4. Download a copy of the OpenCSYV library and add it to the Build Path of the bul kupl oad
package.

5. Open the Bul kUpl oad. properti es file contained in the bul kupl oad package.
6. Add the following to Bul kUpl oad. pr operti es:

API Version 2010-03-31
82

Di fferent

https://console.aws.amazon.com/sns/
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
samples/snsmobilepush.zip
http://sourceforge.net/projects/opencsv/

Amazon Simple Notification Service Developer Guide
Add Device Tokens or Registration IDs

e The Appl i cati onAr n to which you want to add endpoints.
e The absolute path for the location of your CSV file containing the tokens.

« The names for CSV files (such as goodTokens. csv and badTokens. csv) to be created for
logging the tokens that Amazon SNS parses correctly and those that fail.

« (Optional) The characters to specify the delimiter and quote in the CSV file containing the
tokens.

« (Optional) The number of threads to use to concurrently create endpoints. The default is 1
thread.

Your completed Bul kUpl oad. pr operti es should look similar to the following:

appl i cationarn:arn: aws: sns: us-west-2:111122223333: app/ GCM gcnpushapp
csvfil enane: C:\\ nyt okendi r ect ory\\ nyt okens. csv

goodfi |l ename: C:\\ nmyl ogfil es\\ goodt okens. csv

badfil enane: C:\\ nyl ogfil es\\ badt okens. csv

delimterchar:’

quot echar: "

nunof t hr eads: 5

7. Run the BatchCreatePlatformEndpointSample.java application to upload the tokens to Amazon
SNS.

In this example, the endpoints that were created for the tokens that were uploaded successfully to
Amazon SNS would be logged to goodTokens. csv, while the malformed tokens would be logged
to badTokens. csv. In addition, you should see STD OUT logs written to the console of Eclipse,
containing content similar to the following:

<1>[SUCCESS] The endpoint was created with Arn arn: aws: sns: us-
west-2:111122223333: app/ GCM gcnpushapp/ 165j 2214-051z- 3176-

b586- 13803d420071

<2>[ERROR. MALFORMED CSV FI LE] Null token found in /mytokendirectory/
myt okens. csv

To register tokens from devices that will install your apps in the future
You can use one of the following two options:

¢ Use the Amazon Cognito service: Your mobile app will need credentials to create endpoints
associated with your Amazon SNS platform application. We recommend that you use
temporary credentials that expire after a period of time. For most scenarios, we recommend
that you use Amazon Cognito to create temporary security credentials. For more information,
see Creating Temporary Security Credentials for Mobile Apps Using Identity Providers. If
you would like to be notified when an app registers with Amazon SNS, you can register to
receive an Amazon SNS event that will provide the new endpoint ARN. You can also use the
Li st Endpoi nt ByPI at f or mAppl i cat i on API to obtain the full list of endpoints registered with
Amazon SNS.

« Use a proxy server: If your application infrastructure is already set up for your mobile apps to call in
and register on each installation, you can continue to use this setup. Your server will act as a proxy
and pass the device token to Amazon SNS mobile push notifications, along with any user data you
would like to store. For this purpose, the proxy server will connect to Amazon SNS using your AWS

API Version 2010-03-31
83

http://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingWIF.html

Amazon Simple Notification Service Developer Guide
Create a Platform Endpoint and Manage Device Tokens

credentials and use the Cr eat ePl at f or ntEndpoi nt API call to upload the token information. The
newly created endpoint Amazon Resource Name (ARN) will be returned, which your server can store
for making subsequent publish calls to Amazon SNS.

Create a Platform Endpoint and Manage Device
Tokens

When an app and mobile device register with a push notification service, the push notification service
returns a device token. Amazon SNS uses the device token to create a mobile endpoint, to which it
can send direct push notification messages. For more information, see Prerequisites (p. 39) and
Amazon SNS Mobile Push High#Level Steps (p. 40).

This section describes the recommended approach for creating a platform endpoint and managing
device tokens.

Topics
¢ Create a Platform Endpoint (p. 84)
¢ Pseudo Code (p. 84)
e Java Example (p. 85)
¢ Troubleshooting (p. 87)

Create a Platform Endpoint

To push notifications to an app with Amazon SNS, that app's device token must first be registered with
Amazon SNS by calling the create platform endpoint action. This action takes the Amazon Resource
Name (ARN) of the platform application and the device token as parameters and returns the ARN of
the created platform endpoint.

The create platform endpoint action does the following:

« If the platform endpoint already exists, then do not create it again. Return to the caller the ARN of the
existing platform endpoint.

« If the platform endpoint with the same device token but different settings already exists, then do not
create it again. Throw an exception to the caller.

« If the platform endpoint does not exist, then create it. Return to the caller the ARN of the newly-
created platform endpoint.

You should not call the create platform endpoint action immediately every time an app starts, because
this approach does not always provide a working endpoint. This can happen, for example, when an
app is uninstalled and reinstalled on the same device and the endpoint for it already exists but is
disabled. A successful registration process should accomplish the following:

1. Ensure a platform endpoint exists for this app-device combination.
2. Ensure the device token in the platform endpoint is the latest valid device token.
3. Ensure the platform endpoint is enabled and ready to use.

Pseudo Code

The following pseudo code describes a recommended practice for creating a working, current, enabled
platform endpoint in a wide variety of starting conditions. This approach works whether this is a first
time the app is being registered or not, whether the platform endpoint for this app already exists, and
whether the platform endpoint is enabled, has the correct device token, and so on. It is safe to call it

API Version 2010-03-31
84

Amazon Simple Notification Service Developer Guide
Create a Platform Endpoint and Manage Device Tokens

multiple times in a row, as it will not create duplicate platform endpoints or change an existing platform
endpoint if it is already up to date and enabled.

retrieve the | atest device token fromthe nobile operating system
if (the platformendpoint ARN is not stored)

this is a first-time registration

call create platform endpoint

store the returned pl atform endpoi nt ARN
endi f

call get endpoint attributes on the platform endpoi nt ARN

if (while getting the attributes a not-found exception is thrown)

the platform endpoint was del eted

call create platformendpoint with the | atest device token

store the returned pl atform endpoint ARN
el se

if (the device token in the endpoint does not match the | atest one) or

(get endpoint attributes shows the endpoint as disabl ed)
call set endpoint attributes to set the | atest device token and then

enabl e the pl atform endpoi nt

endi f
endi f

This approach can be used any time the app wants to register or re-register itself. It can also be used
when notifying Amazon SNS of a device token change. In this case, you can just call the action with
the latest device token value. Some points to note about this approach are:

¢ There are two cases where it may call the create platform endpoint action. It may be called at the
very beginning, where the app does not know its own platform endpoint ARN, as happens during a
first-time registration. It is also called if the initial get endpoint attributes action call fails with a not-
found exception, as would happen if the application knows its endpoint ARN but it was deleted.

« The get endpoint attributes action is called to verify the platform endpoint's state even if the platform
endpoint was just created. This happens when the platform endpoint already exists but is disabled.
In this case, the create platform endpoint action succeeds but does not enable the platform endpoint,
so you must double-check the state of the platform endpoint before returning success.

Java Example

Here is an implementation of the previous pseudo code in Java:

cl ass RegistrationExanpl e {
AmazonSNSCl i ent client = new AmazonSNSClient(); //provide credentials here
private void registerWthSNS() ({

String endpointArn = retrieveEndpoi nt Arn();

String token = "Retrieved fromthe nobil e operating systent;
bool ean updat eNeeded = fal se;
bool ean createNeeded = (null == endpointArn);

if (createNeeded) {
/1 No platformendpoint ARN is stored; need to call createEndpoint.
endpoi nt Arn = creat eEndpoi nt ();
creat eNeeded = fal se;

API Version 2010-03-31
85

Amazon Simple Notification Service Developer Guide
Create a Platform Endpoint and Manage Device Tokens

}

Systemout.println("Retrieving platformendpoint data...");
/1 Look up the platformendpoint and make sure the data in it is current,
even if
/1 it was just created.
try {
Get Endpoi nt Attri but esRequest geaReq =
new Get Endpoi nt Attri but esRequest ()
. W t hEndpoi nt Arn(endpoi nt Arn) ;
Get Endpoi nt Attri butesResult geaRes =
client.get Endpoi nt Attribut es(geaReq);

updat eNeeded = !geaRes. get Attri butes().get("Token").equal s(token)
|| !geaRes.getAttributes().get("Enabl ed"). equal sl gnoreCase("true");

} catch (Not FoundException nfe) {
/1 W had a stored ARN, but the platformendpoint associated with it
/1 disappeared. Recreate it.
createNeeded = true;

}

if (createNeeded) {
cr eat eEndpoi nt () ;
}

System out . println("updat eNeeded = " + updat eNeeded

i f (updat eNeeded) {
/1 The platformendpoint is out of sync with the current data;
/1 update the token and enable it.
Systemout. println("Updating platformendpoint " + endpointArn);
Map attribs = new HashMap();
attribs. put (" Token", token);
attribs. put ("Enabl ed", "true");
Set Endpoi nt Attri but esRequest saeReq =
new Set Endpoi nt Attri but esRequest ()
. W t hEndpoi nt Ar n(endpoi nt Ar n)
.withAttributes(attribs);
client.set Endpoi nt Attributes(saeReq);
}
}

/**

* @eturn never null
* */

private String createEndpoint() {

String endpointArn = null;
try {
Systemout.println("Creating platformendpoint with token " + token);
Cr eat ePl at f or nEndpoi nt Request cpeReq =
new Creat ePl at f or nEndpoi nt Request ()
.wi thPl at f ormAppl i cati onArn(applicati onArn)
. W thToken(t oken);
Creat ePl at f or nEndpoi nt Result cpeRes = client
. creat ePl at f or nEndpoi nt (cpeReq) ;
endpoi nt Arn = cpeRes. get Endpoi nt Arn();
} catch (InvalidParameterException ipe) {

API Version 2010-03-31
86

Amazon Simple Notification Service Developer Guide
Create a Platform Endpoint and Manage Device Tokens

String nmessage = i pe.get Error Message();
Systemout. println("Exception nessage: " + nessage);
Pattern p = Pattern
.conpi l e(".*Endpoint (arn:aws:sns[”]+) already exists " +
"with the sane token.*");
Mat cher m = p. nat cher (nmessage) ;
if (mmatches()) {
/1 The pl atform endpoint already exists for this token, but with
/1 additional custom data that
/1 createEndpoint doesn't want to overwite. Just use the
/1 existing platform endpoint.
endpoi nt Arn = mgroup(1);
} else {
/1 Rethrow the exception, the input is actually bad.
t hrow i pe;
}
}
st or eEndpoi nt Arn(endpoi nt Arn) ;
return endpoi nt Arn;

}

/**

* @eturn the ARN the app was registered under previously, or null if no
* pl at f or m endpoi nt ARN i s stored.

*/

private String retrieveEndpointArn() {
/1 Retrieve the platform endpoint ARN from pernanent storage,
/1 or return null if null is stored.
return arnStorage;

}
/**
* Stores the platformendpoint ARN in pernanent storage for |ookup next
tine.
* */
private void storeEndpoi nt Arn(String endpointArn) {
/'l Wite the platform endpoint ARN to permanent storage.
arnStorage = endpoi nt Arn;
}
}

An interesting thing to note about this implementation is how the | nval i dPar anet er Excepti on is
handled in the cr eat eEndpoi nt method. Amazon SNS rejects create platform endpoint requests
when an existing platform endpoint has the same device token and a non-null Cust onJser Dat a

field, because the alternative is to overwrite (and therefore lose) the Cust onlJser Dat a. The

cr eat eEndpoi nt method in the preceding code captures the | nval i dPar anet er Except i on
thrown by Amazon SNS, checks whether it was thrown for this particular reason, and if so, extracts the
ARN of the existing platform endpoint from the exception. This succeeds, since a platform endpoint
with the correct device token exists.

For more information, see Using Amazon SNS Mobile Push APIs (p. 98).
Troubleshooting

Repeatedly Calling Create Platform Endpoint with an Outdated Device Token

Especially for GCM endpoints, you may think it is best to store the first device token the application
is issued and then call the create platform endpoint with that device token every time on application

API Version 2010-03-31
87

Amazon Simple Notification Service Developer Guide
Send a Direct Message to a Mobile Device

startup. This may seem correct since it frees the app from having to manage the state of the device
token and Amazon SNS will automatically update the device token to its latest value. However, this
solution has a number of serious issues:

* Amazon SNS relies on feedback from GCM to update expired device tokens to new device tokens.
GCM retains information on old device tokens for some time, but not indefinitely. Once GCM forgets
about the connection between the old device token and the new device token, Amazon SNS will no
longer be able to update the device token stored in the platform endpoint to its correct value; it will
just disable the platform endpoint instead.

¢ The platform application will contain multiple platform endpoints corresponding to the same device
token.

¢« Amazon SNS imposes a limit to the number of platform endpoints that can be created starting with
the same device token. Eventually, the creation of new endpoints will fail with an invalid parameter
exception and the following error message: "This endpoint is already registered with a different
token."

Re-Enabling a Platform Endpoint Associated with an Invalid Device Token

When a mobile platform (such as APNS or GCM) informs Amazon SNS that the device token used

in the publish request was invalid, Amazon SNS disables the platform endpoint associated with that
device token. Amazon SNS will then reject subsequent publishes to that device token. While you may
think it is best to simply re-enable the platform endpoint and keep publishing, in most situations doing
this will not work: the messages that are published do not get delivered and the platform endpoint
becomes disabled again soon afterward.

This is because the device token associated with the platform endpoint is genuinely invalid. Deliveries
to it cannot succeed because it no longer corresponds to any installed app. The next time it is
published to, the mobile platform will again inform Amazon SNS that the device token is invalid, and
Amazon SNS will again disable the platform endpoint.

To re-enable a disabled platform endpoint, it needs to be associated with a valid device token (with a
set endpoint attributes action call) and then enabled. Only then will deliveries to that platform endpoint
become successful. The only time re-enabling a platform endpoint without updating its device token
will work is when a device token associated with that endpoint used to be invalid but then became valid
again. This can happen, for example, when an app was uninstalled and then re-installed on the same
mobile device and receives the same device token. The approach presented above does this, making
sure to only re-enable a platform endpoint after verifying that the device token associated with it is the
most current one available.

Send a Direct Message to a Mobile Device

You can send Amazon SNS push notification messages directly to an endpoint, which represents an
app and mobile device, by completing the following steps.

To send a direct message

Go to https://console.aws.amazon.com/sns/.
In the left Navigation pane, click Apps and click the app that you want to send a message to.
On the Application Details screen, select Endpoint Actions and then click Publish.

PO bdPRE

On the Publish dialog box, enter the message to appear in the app on the mobile device and then
click Publish.

The notification message will then be sent from Amazon SNS to the platform notification service,
which will then send the message to the app.

API Version 2010-03-31
88

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Send Messages to Mobile Devices Subscribed to a Topic

Send Messages to Mobile Devices Subscribed to a
Topic

You can also use Amazon SNS to send messages to mobile endpoints subscribed to a topic. The
concept is the same as subscribing other endpoint types, such as Amazon SQS, HTTP/S, email, and
SMS, to a topic, as described in What is Amazon Simple Notification Service? (p. 1). The difference is
that Amazon SNS communicates through the natification services in order for the subscribed mobile
endpoints to receive notifications sent to the topic.

To send to endpoints subscribed to a topic

1. Follow the steps as described in Subscribe to a Topic (p. 6). You just need to select Application
in the Protocol drop-down menu and then enter the mobile endpoint Amazon Resource Name
(ARN) in the Endpoint box.

2. Follow the steps to publish messages to a topic, as described in Publish to a Topic (p. 7), then all
mobile endpoints that are subscribed to the topic will be sent the message.

Send Custom Platform-Specific Payloads in
Messages to Mobile Devices

You can use either the Amazon SNS console or APIs to send custom platform-specific payloads in
messages to mobile devices. The following sections describe how to use the Amazon SNS console to
create and send custom platform-specific payloads for each of the supported natification services. For
information on using the Amazon SNS APIs, see Using Amazon SNS Mobile Push APIs (p. 98) and
the AWS sample file SNSMbbi | ePush. j ava, which is included in the snsmobilepush.zip file.

JSON Formatted Message Data

When sending platform-specific payloads in messages using the Amazon SNS console, the data
must be key-value pair strings and formatted as JSON with quotation marks escaped. The following
example, including formatting and spaces for readability, shows a sample custom message for the
GCM platform with key-value pair within the message body and formatted as JSON.

{
"CCM': " {
"data":{
"message": " Check out these awesone deal s!",
"url":"ww. amazon. cont'
}
}r
}

When sending messages using the console quotation marks must be escaped (\"), as the following
example shows.

"GCM' "
\"data\":{
\"message\":\" Check out these awesone deal s!'\",
\turl V"V " www. amazon. com

API Version 2010-03-31
89

samples/snsmobilepush.zip

Amazon Simple Notification Service Developer Guide
Send Custom Platform-Specific
Payloads to Mobile Devices

When entered in the Amazon SNS console, the example should look similar to the following:

{

"CCM':"{\"data\": {\"nessage\":\"Check out these awesone deal s!'\" , \"url\":
\ "www. amazon. com "} }"

}

Platform-Specific Key-Value Pairs

In addition to sending custom data as key-value pairs, you can also send platform-specific key-
value pairs within the JSON payload. For example, if you wanted to include ti me_to_I i ve and
col | apse_key GCM parameters after the custom data key-value pairs included in the dat a GCM
parameter, then the JSON payload without escaped quotation marks would look similar to the
following:

{
"CCM': " {
"data": {
"message”: " Check out these awesone deal s!",
"url":"ww. amazon. cont
H
"tinme_to_live": 3600,
"col | apse_key": "deal s"
3
}

When entered in the Amazon SNS console, the example should look similar to the following:

{
"M "{\"data\": {\"nessage\":\ " Check out these awesonme deal s!'\" , \"url\":
\"www. amazon.com "}, \"tinme_to_live\": 3600,\"collapse_key\":\"deal s\"}"

}

For a list of the supported key-value pairs in each of the push natification services supported in
Amazon SNS, see the following links:

¢ APNS — Apple Push Notification Service
¢ GCM — HTTP Connection Server Reference
< ADM - Sending a Message

Messages to an App on Multiple Platforms

To send a message to an app installed on devices for multiple platforms, such as GCM and APNS, you
must first subscribe the mobile endpoints to a topic in Amazon SNS and then publish the message to

API Version 2010-03-31
90

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developers.google.com/cloud-messaging/http-server-ref
https://developer.amazon.com/sdk/adm/sending-message.html

Amazon Simple Notification Service Developer Guide
Application Attributes for Message Delivery Status

the topic. The following example shows a message to send to subscribed mobile endpoints on APNS,
GCM, and ADM:

{

"default": "This is the default nmessage which nmust be present when publi shing
a nessage to a topic. The default nessage will only be used if a nessage is
not present for

one of the notification platforns.",

"APNS": "{\"aps\":{\"alert\": \"Check out these awesone deal s!'\",\"url\":

\"www. amazon. com "} }",

"M "{\"data\":{\"nessage\":\"Check out these awesone deal s!'\", \"url\":

\ "www. amazon. com"}}",

"ADM': "{ \"data\": { \"nessage\": \"Check out these awesone deal s!\", \"url

\ "\ "www. amazon. com " }}"

Using Amazon SNS Application Attributes for
Message Delivery Status

Amazon Simple Notification Service (Amazon SNS) provides support to log the delivery status of push
notification messages. After you configure application attributes, log entries will be sent to CloudWatch
Logs for messages sent from Amazon SNS to mobile endpoints. Logging message delivery status
helps provide better operational insight, such as the following:

* Know whether a push notification message was delivered from Amazon SNS to the push notification
service.

« Identify the response sent from the push notification service to Amazon SNS.

* Determine the message dwell time (the time between the publish timestamp and just before handing
off to a push notification service).

To configure application attributes for message delivery status, you can use the AWS Management
Console, AWS software development kits (SDKSs), or query API.

Topics
¢ Configuring Message Delivery Status Attributes with the AWS Management Console (p. 91)
¢« Amazon SNS Message Delivery Status CloudWatch Log Examples (p. 92)
¢ Configuring Message Delivery Status Attributes with the AWS SDKs (p. 93)
¢ Platform Response Codes (p. 93)

Configuring Message Delivery Status Attributes with
the AWS Management Console

You can configure message delivery status attributes with the AWS Management Console.

1. Signin to the AWS Management Console and open the Amazon SNS console at https:/
console.aws.amazon.com/sns/.

2. Inthe left Navigation pane, click Apps, and then click the app containing the endpoints for which
you want receive CloudWatch Logs.

API Version 2010-03-31
91

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Amazon SNS Message Delivery
Status CloudWatch Log Examples

3. Click Application Actions and then click Delivery Status.
4. On the Delivery Status dialog box, click Create IAM Roles.

You will then be redirected to the IAM console.
Click Allow to give Amazon SNS write access to use CloudWatch Logs on your behalf.

Now, back on the Delivery Status dialog box, enter a number in the Percentage of Success
to Sample (0-100) field for the percentage of successful messages sent for which you want to
receive CloudWatch Logs.

Note
After you configure application attributes for message delivery status, all failed message
deliveries generate CloudWatch Logs.

7. Finally, click Save Configuration. You will now be able to view and parse the CloudWatch Logs
containing the message delivery status. For more information about using CloudWatch, see the
CloudWatch Documentation.

Amazon SNS Message Delivery Status CloudWatch
Log Examples

After you configure message delivery status attributes for an application endpoint, CloudWatch Logs
will be generated. Example logs, in JSON format, are shown as follows:

SUCCESS

"status": "SUCCESS",
"notification": {

"timestanmp": "2015-01-26 23:07:39. 54",

"messagel d": "9655abe4- 6ed6- 5734- 89f 7- e6ab6ad42de02a"
}

"delivery": {
"statusCode": 200,
"dwel | Ti mreMs": 65,
"t oken": "Exanpl ei 7f FachkJ1xj | gT64RaBkcGHochnf 1VQAr 9k-
I BJt Kj p7f edYPzEWT_Pqg3TuOl r oqr o1cwW Uvgkc PPYcaXCpPWiE3Bgn-
wi gl Ezp5zZ7y_j sMOPKPxKhddCzx6paEsyay9Zn3DAwWNUIb8nbHXr Bf 9dgaEw' ,
"attenpts": 1,
"provi der Response": "{\"nulticast_id\":5138139752481671853, \ "success
\": 1, \"failure\":0,\"canonical _ids\":0,\"results\":[{\"message_id\":
\"0:1422313659698010%I6ba8edf f 9f d7ecd\"}]}",
"destination": "arn:aws:sns:us-east-1:111122223333: endpoi nt/ GCM
GCMPushApp/ c23e42de- 3699- 3639- 84dd- 65f 84474629d"

}
}
FAILURE
{

"status": "FAI LURE",
"notification": {
"timestanp”: "2015-01-26 23:29:35.678",
"messagel d": "c3ad79b0- 8996- 550a- 8bf a- 24f 05989898f "

}

elivery": {

API Version 2010-03-31
92

http://aws.amazon.com/documentation/cloudwatch

Amazon Simple Notification Service Developer Guide
Configuring Message Delivery Status
Attributes with the AWS SDKs

"statusCode": 8,
"dwel | Ti meMs": 1451,
"t oken":
"exanple29z6j 5c4df 46f 809505189c4c83fj cgf 7f 6257€98542d2j t 3395kj 73",
"attenpts": 1,
"provi der Response": "NotificationErrorResponse(conmand=8,
status=l nval i dToken, id=1, cause=null)",
"destination": "arn:aws:sns:us-east-1:111122223333: endpoi nt/
APNS_SANDBOX/ APNSPushApp/ 986cb8al- 4f 6b- 34b1- 9alb- d9e9cb553944"
}
}

For a list of push notification service response codes, see Platform Response Codes (p. 93).

Configuring Message Delivery Status Attributes with
the AWS SDKs

The AWS SDKs provide APIs in several languages for using message delivery status attributes with
Amazon SNS.

The following Java example shows how to use the Set Pl at f or mAppl i cati onAttri butes

API to configure application attributes for message delivery status of push notification messages.

You can use the following attributes for message delivery status: SuccessFeedbackRol eAr n,

Fai | ur eFeedbackRol eAr n, and SuccessFeedbackSanpl eRat e. The SuccessFeedbackRol eArn
and Fai | ur eFeedbackRol eAr n attributes are used to give Amazon SNS write access to use
CloudWatch Logs on your behalf. The SuccessFeedbackSanpl eRat e attribute is for specifying

the sample rate percentage (0-100) of successfully delivered messages. After you configure the

Fai | ur eFeedbackRol eAr n attribute, then all failed message deliveries generate CloudWatch Logs.

Set Pl at f or mAppl i cati onAttri but esRequest
set Pl at f or mAppl i cati onAttri but esRequest = new
Set Pl at f or mAppl i cati onAttri but esRequest();
Map<String, String> attributes = new HashMap<>();
attributes. put ("SuccessFeedbackRol eArn", "arn:aws:iam:111122223333:rol e/
SNS_CW ogs");
attributes. put ("Fail ureFeedbackRol eArn", "arn:aws:iam:111122223333:rol e/
SNS_CW ogs");
attributes. put ("SuccessFeedbackSanpl eRate", "5");
set Pl atformApplicationAttri butesRequest.withAttributes(attributes);
set Pl at f or mAppl i cati onAttri but esRequest. set Pl atformApplicati onArn("arn: aws: sns:
west -2:111122223333: app/ GCCM GCMPushApp") ;
sns. set Pl atformAppl i cati onAttri butes(setPl atformipplicationAttributesRequest);

For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

Platform Response Codes

The following is a list of links for the push notification service response codes:

Push Notification Service Response Codes

Amazon Device Messaging (ADM) See "Response Format" in Sending a Message
via Amazon Device Messaging

API Version 2010-03-31
93

us-

http://aws.amazon.com/tools/
http://aws.amazon.com/developers/getting-started/java/
https://developer.amazon.com/appsandservices/apis/engage/device-messaging/tech-docs/06-sending-a-message
https://developer.amazon.com/appsandservices/apis/engage/device-messaging/tech-docs/06-sending-a-message

Amazon Simple Notification Service Developer Guide
Application Event Notifications

Push Notification Service Response Codes

Apple Push Noatification Service (APNS) See Codes in error-response packet in the iOS
Developer Library

Google Cloud Messaging for Android (GCM) See Downstream message error response codes
in the GCM Connection Server Reference

Microsoft Push Notification Service for Windows | See Push Notification Service response codes
Phone (MPNS)

Windows Push Notification Services (WNS) See "Response codes" in Push notification
service request and response headers

Application Event Notifications

Amazon SNS provides support to trigger notifications when certain application events occur. You
can then take some programmatic action on that event. Your application must include support for a
push natification service such as Apple Push Notification Service (APNS), Google Cloud Messaging
for Android (GCM), and Windows Push Notification Services (WNS). You set application event
notifications using the Amazon SNS console, AWS CLI, or the AWS SDKs.

Topics
¢ Available Application Events (p. 94)
¢ Sending Application Event Notifications (p. 95)

Available Application Events

Application event notifications track when individual platform endpoints are created, deleted, and
updated, along with delivery failures. The attribute name for each application event is as follows:

Attribute name Description

EventEndpointCreated A natification is triggered when a new platform endpoint is added to your
application.

EventEndpointDeleted A notification is triggered when any of the platform endpoints associated

with your application is deleted.

EventEndpointUpdated A natification is triggered when any of the attributes of the platform
endpoints associated with your application are changed.

EventDeliveryFailure A notification is triggered when a delivery to any of the platform
endpoints associated with your application encounters a permanent
failure.

Note

To track delivery failures on the platform application side,
subscribe to message delivery status events for the application.
For more information, see Using Amazon SNS Application
Attributes for Message Delivery Status.

Each of the preceding attributes can be associated with an application. The application can then
receive these event notifications.

API Version 2010-03-31
94

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Appendixes/BinaryProviderAPI.html#//apple_ref/doc/uid/TP40008194-CH106-SW1
https://developers.google.com/cloud-messaging/http-server-ref#error-codes
https://msdn.microsoft.com/en-us/library/windows/apps/ff941100%28v=vs.105%29.aspx#BKMK_PushNotificationServiceResponseCodes
https://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx
http://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html
http://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html

Amazon Simple Notification Service Developer Guide
Sending Application Event Notifications

Sending Application Event Notifications

To send application event notifications, you specify a topic to receive the notifications for each type
of event. As Amazon SNS sends the notifications, the topic can route them to endpoints that will take
programmatic action.

Important

High-volume applications will create a large number of application event notifications (e.g.,
tens of thousands), which will overwhelm endpoints meant for human use, such as email
addresses, phone numbers, and mobile applications. Consider the following guidelines when
you send application event notifications to a topic:

« Each topic that receives notifications should contain only subscriptions for programmatic
endpoints, such as HTTP or HTTPS endpoints, Amazon SQS queues, or AWS Lambda
functions.

« To reduce the amount of processing that is triggered by the notifications, limit each topic's
subscriptions to a small number (e.qg., five or fewer).

You can send application event natifications by using the Amazon SNS console, the AWS Command
Line Interface (AWS CLI), or the AWS SDKs.

AWS Management Console

1. Signin to the AWS Management Console and open the Amazon SNS console at https:/
console.aws.amazon.com/sns/.

In the service navigation pane, choose Applications.
Choose the name of the application that you want to send event notifications for.
Choose Actions, Configure events.

For each of the events that you want to send event notifications for, type the ARN of the Amazon
SNS topic that will receive the notifications.

6. Choose Save configuration. The event notifications are set.

arwnbn

AWS CLI

Run the set-platform-application-attributes command.

The following example sets the same Amazon SNS topic for all four application events:

aws sns set-platformapplication-attributes
--platformapplication-arn arn: aws: sns: us-east - 1: 12345EXAMPLE: app/ GCM
MyGCWVPI at f or mAppl i cati on

--attributes Event Endpoi nt Cr eat ed="ar n: aws: sns: us-
east-1: 12345EXAMPLE: MyGCWVPI at f or mAppl i cati onEvent s",
Event Endpoi nt Del et ed="ar n: aws: sns: us-

east-1: 12345EXAMPLE: MyGCWVPI at f or mAppl i cati onEvent s",
Event Endpoi nt Updat ed="ar n: aws: sns: us-

east-1: 12345EXAMPLE: MyGCWVPI at f or mAppl i cati onEvent s",
Event Del i ver yFai | ure="arn: aws: sns: us-

east-1: 12345EXAMPLE: MyGCVP| at f or mAppl i cati onEvent s"

AWS SDKs

Call one of the following APIs, depending on your target programming language or platform:

API Version 2010-03-31
95

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/cli/latest/reference/sns/set-platform-application-attributes.html

Amazon Simple Notification Service Developer Guide
Amazon SNS TTL

Programming language @ API reference links

or platform

Android setPlatformApplicationAttributes

i0S AWSSNSSetPlatformApplicationAttributesinput
Java setPlatformApplicationAttributes
JavaScript setPlatformApplicationAttributes

.NET SetPlatformApplicationAttributes

PHP SetPlatformApplicationAttributes
Python (boto) set_platform_application_attributes
Ruby set_platform_application_attributes
Unity SetPlatformApplicationAttributesAsync
Windows PowerShell Set-SNSPlatformApplicationAttributes

Using the Amazon SNS Time To Live (TTL)
Message Attribute for Mobile Push Notifications

Amazon Simple Notification Service (Amazon SNS) provides support for setting a Time To Live (TTL)
message attribute for mobile push notifications messages. This is in addition to the existing capability
of setting TTL within the Amazon SNS message body for the mobile push notification services that
support this, such as Amazon Device Messaging (ADM) and Google Cloud Messaging for Android
(GCM).

The TTL message attribute is used to specify expiration metadata about a message. This allows you to
specify the amount of time that the push notification service, such as Apple Push Notification Service
(APNS) or GCM, has to deliver the message to the endpoint. If for some reason (such as the mobile
device has been turned off) the message is not deliverable within the specified TTL, then the message
will be dropped and no further attempts to deliver it will be made. To specify TTL within message
attributes, you can use the AWS Management Console, AWS software development kits (SDKs), or
query API.
Topics

¢ TTL Message Attributes for Push Notification Services (p. 96)

¢ Precedence Order for Determining TTL (p. 97)

¢ Specifying TTL with the AWS Management Console (p. 97)

¢ Specifying TTL with the AWS SDKs (p. 98)

TTL Message Attributes for Push Notification
Services

The following is a list of the TTL message attributes for push notification services that you can use to
set when using the AWS SDKs or query API:

API Version 2010-03-31
96

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/sns/AmazonSNSClient.html#setPlatformApplicationAttributes%28com.amazonaws.services.sns.model.SetPlatformApplicationAttributesRequest%29
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSSNSSetPlatformApplicationAttributesInput.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sns/AmazonSNSClient.html#setPlatformApplicationAttributes(com.amazonaws.services.sns.model.SetPlatformApplicationAttributesRequest)
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#setPlatformApplicationAttributes-property
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html?page=SNS/MSNSSNSSetPlatformApplicationAttributesSetPlatformApplicationAttributesRequest.html&tocid=Amazon_SimpleNotificationService_AmazonSimpleNotificationServiceClient
http://docs.aws.amazon.com/aws-sdk-php/v3/api/api-sns-2010-03-31.html#setplatformapplicationattributes
http://boto.readthedocs.org/en/latest/ref/sns.html
http://docs.aws.amazon.com/sdkforruby/api/Aws/SNS/Client.html#set_platform_application_attributes-instance_method
http://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html?page=SNS/MSNSSNSSetPlatformApplicationAttributesAsyncSetPlatformApplicationAttributesRequestCancellationToken.html&tocid=Amazon_SimpleNotificationService_AmazonSimpleNotificationServiceClient
http://docs.aws.amazon.com/powershell/latest/reference/items/Set-SNSPlatformApplicationAttributes.html

Amazon Simple Notification Service Developer Guide
Precedence Order for Determining TTL

Push Notification Service TTL Message Attribute

Amazon Device Messaging (ADM) AWS.SNS.MOBILE.ADM.TTL

Apple Push Notification Service (APNS) AWS.SNS.MOBILE.APNS.TTL

Apple Push Notification Service Sandbox AWS.SNS.MOBILE.APNS_SANDBOX.TTL
(APNS_SANDBOX)

Baidu Cloud Push (Baidu) AWS.SNS.MOBILE.BAIDU.TTL

Google Cloud Messaging for Android (GCM) AWS.SNS.MOBILE.GCM.TTL

Windows Push Notification Services (WNS) AWS.SNS.MOBILE.WNS.TTL

Each of the push notification services handle TTL differently. Amazon SNS provides an abstract view
of TTL over all the push notification services, which makes it easier to specify TTL. When you use the
AWS Management Console to specify TTL (in seconds), you only have to enter the TTL value once
and Amazon SNS will then calculate the TTL for each of the selected push notification services when
publishing the message.

TTL is relative to the publish time. Before handing off a push notification message to a specific push
notification service, Amazon SNS computes the dwell time (the time between the publish timestamp
and just before handing off to a push natification service) for the push notification and passes the
remaining TTL to the specific push natification service. If TTL is shorter than the dwell time, Amazon
SNS won't attempt to publish.

If you specify a TTL for a push notification message, then the TTL value must be a positive integer,
unless the value of 0 has a specific meaning for the push natification service—such as with APNS and
GCM. If the TTL value is set to 0 and the push notification service does not have a specific meaning
for 0, then Amazon SNS will drop the message. For more information about the TTL parameter set to
0 when using APNS, see Table A-3 Item identifiers for remote notifications in the Binary Provider API
documentation. For more information about the TTL parameter set to 0 when using GCM, see Lifetime
of a message.

Precedence Order for Determining TTL

The precedence that Amazon SNS uses to determine the TTL for a push notification message is based
on the following order, where the lowest number has the highest priority:

1. Message attribute TTL

2. Message body TTL

3. Push notification service default TTL (varies per service)
4. Amazon SNS default TTL (4 weeks)

If you set different TTL values (one in message attributes and another in the message body) for
the same message, then Amazon SNS will modify the TTL in the message body to match the TTL
specified in the message attribute.

Specifying TTL with the AWS Management Console

You can specify TTL with the AWS Management Console.

1. Signinto the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

API Version 2010-03-31
97

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Appendixes/BinaryProviderAPI.html
https://developers.google.com/cloud-messaging/concept-options#lifetime
https://developers.google.com/cloud-messaging/concept-options#lifetime
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Specifying TTL with the AWS SDKs

2. Inthe left Navigation pane, click Apps, and then click the app containing the endpoints you want
to set TTL for when publishing a message.

Select the endpoints to publish a message to, click Endpoint Actions and then click Publish.

On the Publish dialog box, enter the number of seconds for Time to Live (TTL) and then click
Publish Message.

Specifying TTL with the AWS SDKs

The AWS SDKs provide APIs in several languages for using TTL with Amazon SNS.
For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

The following Java example shows how to configure a TTL message attribute and publish the message
to an endpoint, which in this example is registered with Baidu Cloud Push:

Map<String, MessageAttributeVal ue> nessageAttributes = new HashMap<Stri ng,
MessageAttri but eVal ue>();

/1 Insert your desired value (in seconds) of TTL here. For exanple, a TTL of
1 day woul d be 86, 400 seconds.

nmessageAt tri but es. put (" AWS. SNS. MOBI LE. BAI DU. TTL", new
MessageAttri but eVal ue() . wi thDat aType("String").w thStringVal ue("86400"));

Publ i shRequest publ i shRequest = new Publ i shRequest ();

publ i shRequest . set MessageAt tri but es(nmessageAttri butes);

String message = "{\"title\":\"Test _Title\",\"description\":
\"Test_Description\"}";

publ i shRequest . set Message(nmessage) ;

publ i shRequest . set MessageStructure("json");

publ i shRequest . set Target Arn("arn: aws: sns: us- east - 1: 999999999999: endpoi nt/
BAI DU/ Test App/ 318f c7b3- bc53- 3d63- ac42- e359468ac730");

Publ i shResult publishResult = snsCient.publish(publishRequest);

For more information about using message attributes with Amazon SNS, see Using Amazon SNS
Message Attributes (p. 184).

Using Amazon SNS Mobile Push APIs

To use the Amazon SNS mobile push APIs, you must first meet the prerequisites for the push
notification service, such as Apple Push Natification Service (APNS) and Google Cloud Messaging for
Android (GCM). For more information about the prerequisites, see Prerequisites (p. 39).

To send a push notification message to a mobile app and device using the APIs, you must first use the
Creat ePl at f or mAppl i cat i on action, which returns a Pl at f or mAppl i cat i onAr n attribute. The

Pl at f or MAppl i cat i onAr n attribute is then used by Cr eat ePl at f or tEndpoi nt , which returns an
Endpoi nt Ar n attribute. You can then use the Endpoi nt Ar n attribute with the Publ i sh action to send
a notification message to a mobile app and device, or you could use the Endpoi nt Ar n attribute with
the Subscr i be action for subscription to a topic. For more information, see Amazon SNS Mobile Push
High#Level Steps (p. 40).

The Amazon SNS mobile push APlIs are as follows:

API Version 2010-03-31
98

http://aws.amazon.com/tools/
http://aws.amazon.com/developers/getting-started/java/

Amazon Simple Notification Service Developer Guide
API Errors

Creat ePl at f or mAppl i cati on
Creates a platform application object for one of the supported push notification services,
such as APNS and GCM, to which devices and mobile apps may register. Returns a
Pl at f or MAppl i cat i onAr n attribute, which is used by the Cr eat ePl at f or rtEndpoi nt action.

Cr eat ePl at f or nEndpoi nt
Creates an endpoint for a device and mobile app on one of the supported push notification
services. Cr eat ePl at f or nEndpoi nt uses the Pl at f or mAppl i cat i onAr n attribute returned
from the Cr eat ePl at f or mAppl i cat i on action. The Endpoi nt Ar n attribute, which is returned
when using Cr eat ePl at f or nEndpoi nt, is then used with the Publ i sh action to send a
notification message to a mobile app and device.

Creat eTopi c
Creates a topic to which messages can be published.

Del et eEndpoi nt
Deletes the endpoint for a device and mobile app on one of the supported push notification
services.

Del et ePl at f or mAppl i cati on
Deletes a platform application object.

Del et eTopi c
Deletes a topic and all its subscriptions.

Cet Endpoi nt Attri but es
Retrieves the endpoint attributes for a device and mobile app.

Get Pl at f or mAppl i cati onAttri butes
Retrieves the attributes of the platform application object.

Li st Endpoi nt sByPl at f or mAppl i cati on
Lists the endpoints and endpoint attributes for devices and mobile apps in a supported push
notification service.

Li st Pl at f or mAppl i cati ons
Lists the platform application objects for the supported push naotification services.

Publ i sh
Sends a notification message to all of a topic's subscribed endpoints.

Set Endpoi nt Attri but es
Sets the attributes for an endpoint for a device and mobile app.

Set Pl at f or mAppl i cationAttributes
Sets the attributes of the platform application object.

Subscri be
Prepares to subscribe an endpoint by sending the endpoint a confirmation message. To actually
create a subscription, the endpoint owner must call the ConfirmSubscription action with the token
from the confirmation message.

Unsubscribe
Deletes a subscription.

API Errors for Amazon SNS Mobile Push

Errors that are returned by the Amazon SNS APIs for mobile push are listed in the following table. For
more information about the Amazon SNS APIs for mobile push, see Using Amazon SNS Mobile Push

APIs (p. 98).
Error Description HTTPS Status Code Action that Returns
this Error
Application Name is The required 400 Creat ePl at f or mAppl i cati on
null string application name is set

to null.

API Version 2010-03-31
99

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
http://docs.aws.amazon.com/sns/latest/api/API_DeleteEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_DeletePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_DeleteTopic.html
http://docs.aws.amazon.com/sns/latest/api/API_GetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_ListEndpointsByPlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_ListPlatformApplications.html
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
http://docs.aws.amazon.com/sns/latest/api/API_SetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html

Amazon Simple Notification Service Developer Guide

API Errors

Error

Platform Name is null
string

Platform Name is
invalid

APNS — Principal is
not a valid certificate

APNS — Principal is
a valid cert but not in
a .pem format

APNS — Prinicipal is
an expired certificate

APNS — Principal is
not an Apple issued
certificate

APNS — Principal is
not provided

APNS — Credential is
not provided

APNS — Credential
are not in a valid .pem
format

Description

The required platform
name is set to null.

An invalid or out-
of-range value was
supplied for the
platform name.

An invalid certificate
was supplied for
the APNS principal,
which is the SSL
certificate. For more
information, see

HTTPS Status Code

400

400

400

CreatePlatformApplication

in the Amazon Simple

Notification Service API

Reference.

A valid certificate that
is not in the .pem
format was supplied
for the APNS principal,
which is the SSL
certificate.

An expired certificate
was supplied for the
APNS principal, which
is the SSL certificate.

A non-Apple issued
certificate was supplied
for the APNS principal,
which is the SSL
certificate.

The APNS principal,
which is the SSL
certificate, was not
provided.

The APNS credential,
which is the private
key, was not
provided. For more
information, see

400

400

400

400

400

CreatePlatformApplication

in the Amazon Simple

Notification Service API

Reference.

The APNS credential,
which is the private
key, is notin a

valid .pem format.

400

Action that Returns
this Error

Creat ePl at f or mAppl ijcati on

Creat ePl atf or mAppl i cation

Creat ePl at f or mAppl ijcati on

Creat ePl at f or mAppl i cati on

Creat ePl at f or mApplication

Creat ePl at f or mAppl ijcati on

Creat ePl at f or mAppl i cation

Creat ePl at f or mAppl ijcati on

Creat ePl at f or mAppl i cation

API Version 2010-03-31

100

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

API Errors

Error

GCM — serverAPIKey
is not provided

GCM — serverAPIKey
is empty

GCM — serverAPIKey
is a null string

GCM — serverAPIKey
is invalid

ADM — clientsecret is

not provided

ADM — clientsecret is
a null string

ADM — client_secret is
empty string

ADM — client_secret is
not valid

ADM — client_id is
empty string

ADM — clientld is not
provided

ADM — clientid is a
null string

ADM — client_id is not
valid

EventEndpointCreated
has invalid ARN format

EventEndpointDeleted
has invalid ARN format

Description HTTPS Status Code

The GCM credential,
which is the API key,
was not provided. For
more information, see
CreatePlatformApplication
in the Amazon Simple
Notification Service API
Reference.

400

The GCM credential,
which is the API key,
empty.

400
is

The GCM credential, 400
which is the API key,

null.

is

The GCM credential,
which is the API key,
invalid.

400
is

The required client 400

secret is not provided.

The required string for | 400

the client secret is null.

The required string 400
for the client secret is
empty.

The required string for | 400
the client secret is not

valid.

The required string for | 400

the client ID is empty.

The required string 400
for the client ID is not

provided.

The required string for | 400

the client ID is null.

The required string 400
for the client ID is not

valid.

EventEndpointCreated | 400
has invalid ARN

format.

EventEndpointDeleted | 400
has invalid ARN

format.

Action that Returns
this Error

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

API Version 2010-03-31
101

cati

cati

cati

cati

cati

cati

cati

cati

cati

cati

cati

cati

cati

cati

on

on

on

on

on

on

on

on

on

on

on

on

on

on

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

API Errors

Error

EventEndpointUpdated
has invalid ARN format

Description

EventEndpointUpdated | 400
has invalid ARN
format.

EventDeliveryAttemptFailltteentDeliveryAttemptFail @0

has invalid ARN format

EventDeliveryFailure
has invalid ARN format

EventEndpointCreated
is not an existing Topic

EventEndpointDeleted
is not an existing Topic

EventEndpointUpdated
is not an existing Topic

has invalid ARN
format.

EventDeliveryFailure 400
has invalid ARN
format.

EventEndpointCreated | 400
is not an existing topic.

EventEndpointDeleted | 400
is not an existing topic.

EventEndpointUpdated | 400
is not an existing topic.

EventDeliveryAttemptFailltteentDeliveryAttemptFail @0

is not an existing Topic

EventDeliveryFailure is
not an existing Topic

Platform ARN is invalid

Platform ARN is valid
but does not belong to
the user

APNS — Principal is
not a valid certificate

APNS — Principal is
a valid cert but not in
a .pem format

APNS — Prinicipal is
an expired certificate

is not an existing topic.

EventDeliveryFailure is | 400
not an existing topic.

Platform ARN is 400
invalid.

Platform ARN is valid 400
but does not belong to
the user.

An invalid certificate 400
was supplied for

the APNS principal,

which is the SSL

certificate. For more
information, see
CreatePlatformApplication

in the Amazon Simple
Notification Service API
Reference.

A valid certificate that 400
is not in the .pem

format was supplied

for the APNS principal,

which is the SSL

certificate.

An expired certificate 400
was supplied for the

APNS principal, which

is the SSL certificate.

HTTPS Status Code

Action that Returns
this Error

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

Creat ePl at f or mAppl i

cati

cati

cati

cati

cati

cati

cati

cati

Set Pl at formAttri butes

SetPlatformAttri butes

Set Pl atformAttri butes

SetPlatformAttri butes

Set Pl atformAttri butes

API Version 2010-03-31

102

on

on

on

on

on

on

on

on

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

API Errors

Error

APNS — Principal is
not an Apple issued
certificate

APNS — Principal is
not provided

APNS — Credential is
not provided

APNS — Credential
are not in a valid .pem
format

GCM — serverAPIKey
is not provided

GCM — serverAPIKey
is a null string

ADM — clientld is not
provided

ADM — clientid is a
null string

ADM — clientsecret is
not provided

ADM — clientsecret is
a null string

EventEndpointUpdated
has invalid ARN format

Description

A non-Apple issued
certificate was supplied
for the APNS principal,
which is the SSL
certificate.

The APNS principal,
which is the SSL
certificate, was not
provided.

The APNS credential,
which is the private
key, was not
provided. For more
information, see

HTTPS Status Code

400

400

400

CreatePlatformApplication

in the Amazon Simple
Notification Service API
Reference.

The APNS credential,
which is the private
key, is notin a

valid .pem format.

The GCM credential,
which is the API key,
was not provided. For
more information, see

400

400

CreatePlatformApplication

in the Amazon Simple
Notification Service API
Reference.

The GCM credential,
which is the API key, is
null.

The required string
for the client ID is not
provided.

The required string for
the client ID is null.

The required client
secret is not provided.

The required string for
the client secret is null.

EventEndpointUpdated
has invalid ARN
format.

400

400

400

400

400

400

Action that Returns
this Error

Set Pl atformAttri butes

SetPlatformAttri butes

Set Pl atformAttri butes

Set Pl at formAttri butes

SetPlatformAttri butes

Set Pl atformAttri butes

SetPlatformAttri butes

Set Pl atformAttri butes

Set Pl at formAttri butes

Set Pl atformAttri butes

Set Pl atformAttri butes

API Version 2010-03-31

103

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide
API Errors

Error Description HTTPS Status Code

EventEndpointDeleted
has invalid ARN format

EventEndpointUpdated
has invalid ARN format

EventEndpointDeleted
has invalid ARN
format.

EventEndpointUpdated
has invalid ARN
format.

400

400

EventDeliveryAttemptFailltreentDeliveryAttemptFail @0

has invalid ARN format

EventDeliveryFailure
has invalid ARN format

EventEndpointCreated
is not an existing Topic

EventEndpointDeleted
is not an existing Topic

EventEndpointUpdated
is not an existing Topic

has invalid ARN
format.

EventDeliveryFailure
has invalid ARN
format.

EventEndpointCreated
is not an existing topic.

EventEndpointDeleted
is not an existing topic.

EventEndpointUpdated
is not an existing topic.

400

400

400

400

EventDeliveryAttemptFailliteentDeliveryAttemptFail @0

is not an existing Topic

EventDeliveryFailure is
not an existing Topic

Platform ARN is invalid

Platform ARN is valid
but does not belong to
the user

Token specified is
invalid

Platform ARN is invalid

Platform ARN is valid
but does not belong to
the user

Token specified is
invalid

Platform ARN is invalid
Platform ARN is valid

but does not belong to
the user

is not an existing topic.

EventDeliveryFailure is
not an existing topic.

The platform ARN is
invalid.

The platform ARN is
valid, but does not
belong to the user.

The specified token is
invalid.

The platform ARN is
invalid.

The platform ARN is
valid, but does not
belong to the user.

The specified token is
invalid.

The platform ARN is
invalid.

The platform ARN is
valid, but does not
belong to the user.

400

400

403

400

400

404

400

400

403

Action that Returns
this Error

Set Pl atformAttri butes

SetPlatformAttri butes

Set Pl atformAttri butes

Set Pl at formAttri butes

SetPlatformAttri butes

Set Pl atformAttri butes

SetPlatformAttri butes

Set Pl atformAttri butes

Set Pl at formAttri butes

Get Pl at f or mAppl i cati onAttri butes

Get Pl at f or mAppl i cati onAttri butes

Li st Pl at f or mAppl i cati ons

Li st Endpoi nt sByPI at/f or mAppl i cat i

Li st Endpoi nt sByPI at/f or mAppl i cati

Li st Endpoi nt sByPI at/f or mAppl i cati

Del et ePl at f or mAppl i cati on

Del et ePl at f or mAppl i cati on

API Version 2010-03-31

104

Amazon Simple Notification Service Developer Guide

API Errors

Error

Platform ARN is invalid

Platform ARN is valid
but does not belong to
the user

Token is not specified

Token is not of correct
length

Customer User data is
too large

Endpoint ARN is invalid

Endpoint ARN is valid
but does not belong to
the user

Endpoint ARN is invalid

Endpoint ARN is valid
but does not belong to
the user

Token is not specified

Token is not of correct
length

Customer User data is
too large

Endpoint ARN is invalid

Endpoint ARN is valid
but does not belong to
the user

Target ARN is invalid

Target ARN is valid but
does not belong to the
user

Description HTTPS Status Code

The platform ARN is 400
invalid.

The platform ARN is 404
valid, but does not
belong to the user.

The token is not 400
specified.

The token is not the 400
correct length.

The customer user 400
data cannot be more

than 2048 bytes long in
UTF-8 encoding.

The endpoint ARN is 400
invalid.

The endpoint ARN 403
is valid, but does not
belong to the user.

The endpoint ARN is 400
invalid.

The endpoint ARN 403
is valid, but does not
belong to the user.

The token is not 400
specified.

The token is not the 400
correct length.

The customer user 400
data cannot be more

than 2048 bytes long in
UTF-8 encoding.

The endpoint ARN is 400
invalid.

The endpoint ARN 403
is valid, but does not
belong to the user.

The target ARN is 400
invalid.
The target ARN is 403

valid, but does not
belong to the user.

Action that Returns
this Error
Cr eat ePl at f or nEndpoi nt

Creat ePl at f or nEndpoi nt

Cr eat ePl at f or nEndpoi nt

Creat ePl at f or nEndpoi nt

Cr eat ePl at f or nEndpoi nt

Del et eEndpoi nt

Del et eEndpoi nt

Set Endpoi nt Attri butes

Set Endpoi nt Attri butes

Set Endpoi nt Attri butes

Set Endpoi nt Attri butes

Set Endpoi nt Attri butes

Get Endpoi nt Attri butes

Get Endpoi nt Attri butes

Publ i sh

Publ i sh

API Version 2010-03-31
105

Amazon Simple Notification Service Developer Guide

API Errors

Error

Message format is
invalid

Message size is larger
than supported by
protocol/end-service

Description HTTPS Status Code

The message formatis | 400
invalid.

The message size is 400
larger than supported

by the protocol/end-

service.

Action that Returns
this Error

Publ i sh

Publ i sh

API Version 2010-03-31
106

Amazon Simple Notification Service Developer Guide

Sending Amazon SNS Messages to
Amazon SQS Queues

Amazon SNS works closely with Amazon Simple Queue Service (Amazon SQS). Both services provide
different benefits for developers. Amazon SNS allows applications to send time-critical messages to
multiple subscribers through a “push” mechanism, eliminating the need to periodically check or “poll”
for updates. Amazon SQS is a message queue service used by distributed applications to exchange
messages through a polling model, and can be used to decouple sending and receiving components
—uwithout requiring each component to be concurrently available. By using Amazon SNS and Amazon
SQS together, messages can be delivered to applications that require immediate notification of an
event, and also persisted in an Amazon SQS queue for other applications to process at a later time.

When you subscribe an Amazon SQS queue to an Amazon SNS topic, you can publish a message to
the topic and Amazon SNS sends an Amazon SQS message to the subscribed queue. The Amazon
SQS message contains the subject and message that were published to the topic along with metadata
about the message in a JSON document. The Amazon SQS message will look similar to the following
JSON document.

{
"Type" : "Notification",
"Messagel d" : "63a3f 6b6-d533-4a47-aef 9-fcf5cf758c76",
"Topi CArn" : "arn:aws:sns: us-west-2:123456789012: MyTopi c",
"Subject" : "Testing publish to subscribed queues",
"Message" : "Hello world!",
“Ti mestanp” : "2012-03-29T05: 12: 16. 9012,
"Si gnatureVersi on" : "1",
" Si gnat ure"

" EXAMPLENTr FPa37t nVOOFF9I au3Mazj | JLRf y SEoW 4uZHSj 6ycK4ph71ZndvONt J4dC/
El 9FOGp3VuvchpaTr aNHWhhq/
OsN1HVZz20zxnF9b88R8G qj f KB5W0ZZnz87H MBCYDT03! 7LMMTAVU7ELt yaBBaf hPTg905CnKkg=",

"SigningCert URL" : "https://sns.us-west-2.amazonaws. conf
Si npl eNoti fi cati onServi ce-f3ecfb7224c7233f e7bb5f 59f 96de52f . pent',
"Unsubscri beURL" : "https://sns.us-west-2.anmazonaws. com ?

Acti on=Unsubscri be&Subscri pti onArn=arn: aws: sns: us-
west - 2: 123456789012: MyTopi c: c7f e3a54- abOe- 4ec2- 88e0- db410a0f 2bee”

}

Note

Instead of following the steps listed below, you can now subscribe an Amazon SQS queue to
an Amazon SNS topic using the Amazon SQS console, which simplifies the process. For more
information, see Subscribe Queue to Amazon SNS Topic

API Version 2010-03-31
107

http://aws.amazon.com/sns/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqssubscribe.html

Amazon Simple Notification Service Developer Guide
Step 1. Get the ARN of the queue and the topic.

To enable an Amazon SNS topic to send messages to an Amazon SQS queue, follow these steps:

1. Get the Amazon Resource Name (ARN) of the queue you want to send messages to and the topic
to which you want to subscribe the queue. (p. 108)

2. Give sqgs: SendMessage permission to the Amazon SNS topic so that it can send messages to the
queue. (p. 108)

3. Subscribe the queue to the Amazon SNS topic. (p. 109)

4. Give IAM users or AWS accounts the appropriate permissions to publish to the Amazon SNS topic
and read messages from the Amazon SQS queue. (p. 110)

5. Test it out by publishing a message to the topic and reading the message from the queue. (p. 112)

To learn about how to set up a topic to send messages to a queue that is in a different AWS account,
see Sending Amazon SNS messages to an Amazon SQS queue in a different account (p. 113).

To see an AWS CloudFormation template that creates a topic that sends messages to two queues,
see Using an AWS CloudFormation Template to Create a Topic that Sends Messages to Amazon SQS
Queues (p. 116).

Step 1. Get the ARN of the queue and the topic.

When subscribing a queue to your topic, you'll need a copy of the ARN for the queue. Similarly, when
giving permission for the topic to send messages to the queue, you'll need a copy of the ARN for the
topic.

To get the queue ARN, you can use the Amazon SQS console or the GetQueueAttributes API action.
To get the queue ARN from the Amazon SQS console

1. Signinto the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the box for the queue whose ARN you want to get.

3. From the Details tab, copy the ARN value so that you can use it to subscribe to the Amazon SNS
topic.

To get the topic ARN, you can use the Amazon SNS console, the sns-get-topic-attributes command, or
the GetQueueAttributes API action.

To get the topic ARN from the Amazon SNS console

1. Signinto the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the navigation pane, select the topic whose ARN you want to get.

3. From the Topic Details pane, copy the Topic ARN value so that you can use it to give permission
for the Amazon SNS topic to send messages to the queue.

Step 2. Give permission to the Amazon SNS topic
to send messages to the Amazon SQS queue

For an Amazon SNS topic to be able to send messages to a queue, you must set a policy on the queue
that allows the Amazon SNS topic to perform the sqs: SendMessage action.

API Version 2010-03-31
108

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryGetQueueAttributes.html
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
http://docs.aws.amazon.com/sns/latest/cli/sns_get_topic_attributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryGetQueueAttributes.html
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Step 3. Subscribe the queue to the Amazon SNS topic

Before you subscribe a queue to a topic, you need a topic and a queue. If you haven't already created
a topic or queue, create them now. For more information, see Creating a Topic in the Amazon Simple
Notification Service Getting Started Guide. For more information, see Creating a Queue in the Amazon
Simple Queue Service Getting Started Guide.

To set a policy on a queue, you can use the Amazon SQS console or the SetQueueAttributes API
action. Before you start, make sure you have the ARN for the topic that you want to allow to send
messages to the queue.

To set a SendMessage policy on a queue using the Amazon SQS console

1. Signin to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the box for the queue whose policy you want to set, click the Permissions tab, and then
click Add a Permission.

3. Inthe Add a Permission dialog box, select Allow for Effect, select Everybody (*) for Principal,
and then select SendMessage from the Actions drop-down.

4. Add a condition that allows the action for the topic. Click Add Conditions (optional), select
ArnEquals for Condition, select aws:SourceArn for Key, and paste in the topic ARN for Value.
Click Add Condition. The new condition should appear at the bottom of the box (you may have to
scroll down to see this).

5. Click Add Permission.

If you wanted to create the policy document yourself, you would create a policy like the following. The
policy allows MyTopic to send messages to MyQueue.

{
"Version":"2012-10-17",
"Statenent": |
{
"Sid":"MySQSPol i cy001",
"Effect":"All ow',
"Principal":"*",
"Action":"sqgs: SendMessage",
"Resource":"arn: aws: sgs: us-east - 1: 123456789012: MyQueue",
"Condi tion":{
"ArnEqual s": {
"aws: Sour ceArn":"arn:aws: sns: us-east-1:123456789012: MyTopi c"
}
}
}
]
}

Step 3. Subscribe the queue to the Amazon SNS
topic

To send messages to a queue through a topic, you must subscribe the queue to the Amazon SNS
topic. You specify the queue by its ARN. To subscribe to a topic, you can use the Amazon SNS
console, the sns-subscribe command, or the Subscribe API action. Before you start, make sure you
have the ARN for the queue that you want to subscribe.

API Version 2010-03-31
109

http://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QuerySetQueueAttributes.html
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
http://docs.aws.amazon.com/sns/latest/cli/sns_subscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html

Amazon Simple Notification Service Developer Guide
Step 4. Give users permissions to the
appropriate topic and queue actions

To subscribe a queue to a topic using the Amazon SNS console

1. Signin to the AWS Management Console and open the Amazon SNS console at https:/
console.aws.amazon.com/sns/.

2. Inthe navigation pane, select the topic.

3. Click Create Subscription, select Amazon SQS for Protocol, paste in the ARN for the queue
that you want the topic to send messages to for Endpoint, and click Subscribe.

4. For the Subscription request received! message, click Close.

When the subscription is confirmed, your new subscription's Subscription ID displays
its subscription ID. If the owner of the queue creates the subscription, the subscription is
automatically confirmed and the subscription should be active almost immediately.

Usually, you'll be subscribing your own queue to your own topic in your own account. However,
you can also subscribe a queue from a different account to your topic. If the user who creates
the subscription is not the owner of the queue (for example, if a user from account A subscribes
a queue from account B to a topic in account A), the subscription must be confirmed. For more
information about subscribing a queue from a different account and confirming the subscription,
see Sending Amazon SNS messages to an Amazon SQS queue in a different account (p. 113).

Step 4. Give users permissions to the appropriate
topic and queue actions

You should use AWS ldentity and Access Management (IAM) to allow only appropriate users to publish
to the Amazon SNS topic and to read/delete messages from the Amazon SQS queue. For more
information about controlling actions on topics and queues for IAM users, see Controlling User Access
to Your AWS Account in the Amazon Simple Notification Service Getting Started Guide and Controlling
User Access to Your AWS Account in the Amazon SQS Developer Guide.

There are two ways to control access to a topic or queue:

¢ Add a policy to an IAM user or group (p. 110). The simplest way to give users permissions to topics
or queues is to create a group and add the appropriate policy to the group and then add users to that
group. It's much easier to add and remove users from a group than to keep track of which policies
you set on individual users.

e Add a policy to topic or queue (p. 111). If you want to give permissions to a topic or queue to
another AWS account, the only way you can do that is by adding a policy that has as its principal the
AWS account you want to give permissions to.

You should use the first method for most cases (apply policies to groups and manage permissions for
users by adding or removing the appropriate users to the groups). If you need to give permissions to a
user in another account, you should use the second method.

Adding a policy to an IAM user or group

If you added the following policy to an IAM user or group, you would give that user or members of that
group permission to perform the sns: Publ i sh action on the topic MyTopic.

"Version":"2012-10-17",
"Statenent": [{
"Sid":"A |l owPubl i shToMyTopi c",
"Effect":"All ow',

API Version 2010-03-31
110

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/sns/latest/gsg/UsingIAMwithSNS.html
http://docs.aws.amazon.com/sns/latest/gsg/UsingIAMwithSNS.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html

Amazon Simple Notification Service Developer Guide
Adding a policy to a topic or queue

"Action":"sns: Publish",
"Resource":"arn: aws: sns: us-east - 1: 123456789012: MyTopi c"
}
]
}

If you added the following policy to an IAM user or group, you would give that user or members of that
group permission to perform the sgs: Recei veMessage and sgs: Del et eMessage actions on the
gueues MyQueuel and MyQueue2.

{
"Version":"2012-10-17",
"Statenent": [{
"Sid":"A | owReadDel et eMessageOnMyQueue”,
"Effect":"A | ow',
"Action":[
"sqs: Recei veMessage",
"sqs: Del et eMessage”
1
"Resource": [
"arn:aws: sns: us-east-1: 123456789012: MyQueuel",
"arn:aws: sns: us-east-1:123456789012: MyQueue2"
I
}
]
}

Adding a policy to a topic or queue

The following example policies show how to give another account permissions to a topic and queue.

Note

When you give another AWS account access to a resource in your account, you are also
giving IAM users who have admin-level access (wildcard access) permissions to that
resource. All other IAM users in the other account are automatically denied access to your
resource. If you want to give specific IAM users in that AWS account access to your resource,
the account or an IAM user with admin-level access must delegate permissions for the
resource to those IAM users. For more information about cross-account delegation, see
Enabling Cross-Account Access in the Using IAM Guide.

If you added the following policy to a topic MyTopic in account 123456789012, you would give account
111122223333 permission to perform the sns: Publ i sh action on that topic.

{
"Version":"2012-10-17",
"1d":"MyTopicPolicy",
"Statenent":[{
"Sid":"Al ow publish-to-topic",
"Effect":"All ow',
"Principal":{
"AWS"':"111122223333"
}
"Action":"sns: Publish",
"Resource":"arn: aws: sns: us- east - 1: 123456789012: MyTopi c"
}
]
}

API Version 2010-03-31
111

http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html

Amazon Simple Notification Service Developer Guide
Step 5. Test it

If you added the following policy to a queue MyQueue in account 123456789012, you would give
account 111122223333 permission to perform the sqs: Recei veMessage and sqgs: Del et eMessage
actions on that queue.

{
"Version":"2012-10- 17",
"Id":"MyQueuePol i cy",
"Statenent": |
{
"Sid":"Al ow Processi ng- O - Messages- f or - Queue"”,
"Effect":"All ow',
"Principal":{
"AWS":"111122223333"
H
"Action":[
"sqs: Del et eMessage",
"sqs: Recei veMessage"
1,
"Resource": [
"arn:aws: sns: us-east-1:123456789012: WyQueue",
]
}
]
}

Step 5. Test it

You can test a topic's queue subscriptions by publishing to the topic and viewing the message that the
topic sends to the queue.

To publish to a topic using the Amazon SNS console

1. Using the credentials of the AWS account or IAM user with permission to publish to the topic,
sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. Inthe navigation pane, select the topic and click Publish to Topic.

3. Inthe Subject box, enter a subject (for example, Testi ng publish to queue)inthe Message
box, enter some text (for example, Hel | o wor | d!), and click Publish Message. The following
message appears: Your message has been successfully published.

To view the message from the topic using the Amazon SQS console

1. Using the credentials of the AWS account or IAM user with permission to view messages in the
queue, sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Check the box for the queue that is subscribed to the topic.

3. From the Queue Action drop-down, select View/Delete Messages and click Start Polling for
Messages. A message with a type of Notification appears.

4. Inthe Body column, click More Details. The Message Details box contains a JSON document
that contains the subject and message that you published to the topic. The message looks similar
to the following JSON document.

{
"Type" : "Notification",

API Version 2010-03-31
112

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Notification Service Developer Guide
Sending Messages to a Queue in a Different Account

"Messagel d" : "63a3f6b6-d533-4a47- aef 9-f cf 5¢f 758¢c76",

"Topi cCArn" : "arn:aws:sns: us-west-2:123456789012: MyTopi c",
"Subject" : "Testing publish to subscribed queues",
"Message" : "Hello world!",

"Ti mestanp” : "2012-03-29T05:12: 16.9012",

"Si gnatureVersion" : "1",

" Si gnat ure"

" EXAMPLENTr FPa37t nVOOFF9I au3Mazj | JLRf y SEoW 4uZHSj 6ycK4ph71ZndvONt J4dC/
El 9FOGp3VuvchpaTr aNHWhhg/
OsN1HVZz20zxnmF9b88R8G qj f KB5wWoZZne87Hi M6CYDTo3l 7LMM-T4VU7ELt yaBBaf hPTg905CnK
"Si gningCert URL" : "https://sns.us-west-2. amazonaws. com
Si nmpl eNot i fi cati onServi ce-f3ecfb7224c7233f e7bb5f 59f 96de52f . pent',
"Unsubscri beURL" : "https://sns.us-west-2. amazonaws. com ?
Acti on=Unsubscri be&Subscri pti onArn=ar n: aws: sns: us-
west - 2: 123456789012: MyTopi c: c7f e3a54- abOe- 4ec2- 88e0- db410a0f 2bee"
}

Click Close. You have successfully published to a topic that sends notification messages to a
queue.

Sending Amazon SNS messages to an Amazon
SQS gueue in a different account

You can publish a notification to an Amazon SNS topic with one or more subscriptions to Amazon SQS

gueues in another account. You set up the topic and queues the same way you would if they were in
the same account (see Sending Amazon SNS Messages to Amazon SQS Queues (p. 107)). The
only difference is how you handle subscription confirmation, and that depends on how you subscribe
the queue to the topic.

Topics
¢ Queue Owner Creates Subscription (p. 113)
¢ User Who Does Not Own the Queue Creates Subscription (p. 114)

Queue Owner Creates Subscription

When the queue owner creates the subscription, the subscription does not require confirmation.
The queue starts receiving notifications from the topic as soon as the Subscri be action completes.
To enable the queue owner to subscribe to the topic owner's topic, the topic owner must give the
gueue owner's account permission to call the Subscr i be action on the topic. When added to the
topic MyTopic in the account 123456789012, the following policy gives the account 111122223333
permission to call sns: Subscri be on MyTopic in the account 123456789012.

{
"Version":"2012-10-17",

"Id":"MTopi cSubscri bePol i cy",
"Statenent":[{
"Sid":"All ow ot her-account -t o-subscribe-to-topic",
"Effect":"All ow',
"Principal":{
"AWS":"111122223333"
}

ction":"sns: Subscri be",
"Resource":"arn: aws: sns: us-east - 1: 123456789012: MyTopi c"

API Version 2010-03-31
113

kg:" ,

Amazon Simple Notification Service Developer Guide
User Who Does Not Own the Queue Creates Subscription

After this policy has been set on MyTopic, a user can log in to the Amazon SNS console with
credentials for account 111122223333 to subscribe to the topic.

To add an Amazon SQS queue subscription to a topic in another account using the
Amazon SQS console

1. Using the credentials of the AWS account containing the queue or an IAM user in that account,
sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. Make sure you have the ARNs for both the topic and the queue. You will need them when you
create the subscription.

3. Make sure you have set sqs: SendMessage permission on the queue so that it can receive
messages from the topic. For more information, see Step 2. Give permission to the Amazon SNS
topic to send messages to the Amazon SQS queue (p. 108).

In the navigation pane, select the SNS Dashboard.

In the Dashboard, in the Additional Actions section, click Create New Subscription.
In the Topic ARN box, enter the ARN for the topic.

For Protocol, select Amazon SQS.

In the Endpoint box, enter the ARN for the queue.

Click Subscribe.

10. For the Subscription request received! message, you'll notice text that says you must confirm
the subscription. Because you are the queue owner, the subscription does not need to be
confirmed. Click Close. You've completed the subscription process and notification messages
published to the topic can now be sent to the queue.

© 0N O~

The user can also use the access key and secret key for the AWS account 111122223333 to issue the
sns-subscri be command or call the Subscribe API action to subscribe an Amazon SQS queue to
MyTopic in the account 123456789012. The following sns-subscribe command subscribes the queue
MyQ from account 111122223333 to the topic MyTopic in account 123456789012.

aws sns subscribe --topic-arn arn:aws: sns: us-east-1:123456789012: MyTopi c - -
protocol sqgs --notification-endpoint arn:aws:sqs:us-east-1:111122223333: \WQ

Note
To be able to send, the queue must have permissions for Amazon SNS.

User Who Does Not Own the Queue Creates
Subscription

When a user who is not the queue owner creates the subscription (for example, when the topic owner
in account A adds a subscription for a queue in account B), the subscription must be confirmed.

Important

Before you subscribe to the topic, make sure you have set sqs: SendMessage permission on
the queue so that it can receive messages from the topic. See Step 2. Give permission to the
Amazon SNS topic to send messages to the Amazon SQS queue (p. 108).

When the user calls the Subscri be action, a message of type Subscri pti onConfi rmati on is sent
to the queue and the subscription is displayed in the Amazon SNS console with its Subscription ID

set to Pending Confirmation. To confirm the subscription, a user who can read messages from the
gueue must visit the URL specified in the Subscri beURL value in the message. Until the subscription

API Version 2010-03-31
114

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
http://docs.aws.amazon.com/sns/latest/cli/sns_subscribe.html

Amazon Simple Notification Service Developer Guide

User Who Does Not Own the Queue Creates Subscription

is confirmed, no notifications published to the topic are sent to the queue. To confirm a subscription,

you can use the Amazon SQS console or the ReceiveMessage API action.

To confirm a subscription using the Amazon SQS console

1. Signin to the AWS Management Console and open the Amazon SQS console at https://

console.aws.amazon.com/sqs/.
2. Select the queue that has a pending subscription to the topic.

3. From the Queue Action drop-down, select View/Delete Messages and click Start Polling for
Messages. A message with a type of SubscriptionConfirmation appears.

4. Inthe Body column, click More Details.

5. In the text box, find the SubscribeURL value and copy the URL. It will look similar to the following

URL.

View/Delete Messages in MyQueue

View up to: 10 messages Poll queue for: 30 seconds
Delete Body Size Sent
{ "Type™ : "SubscriptionConfirmation”, "Messageld” . "27e More Detals 1.3 KB 2012-03-28 20:55

https://sns. us-west-2. amazonaws. com ?
Act i on=Confi rnSubscri pti on&Topi CArn=arn: aws: sns: us-
west - 2: 123456789012: MyTopi c&Token=2336412f 37f b687f 5d51€6€241d09¢c805d352f e14

8e56f 8cf f 30f (

View/Delete Messages in MyQueue

View up to:

Delete

Stopped after polling the queue at 0.6 for 30.3

6. In aweb browser, paste the URL into the address bar to visit the URL. You will see a response

Body

("Type”

Message Details Cancal %

Brn:aws:sns:us-east-1:15536356108E :MyTopic. \nTo contirm the
subscription, visit the SubscribeURL included in this

SubscribeURL™ : "https://sns.us-east-1.amazonaws.com/?

Action=ConfirmSubscriptionaTopicArn=arn:aws:sns:us-east— L
1:123456789012:MyTopic&Token=2336412£f37fb687£5d51e6e241d40%cB05d.

" : ™2012-03-29T03:55:33.3322",
"SignatureVersion ™ § —1%7

"Signature" : =
« T »
Message ID: 111e7637-1945-4997-9715-83c3053d6630
Size: 1.3KB
MD5 of Body: ecaeS2e3ledielbas08a66rad216abil
Sender Account ID: 443302527238
Sant: 2012-03-28 20:556:33.647 GMT-07:00
First Received: 2012-03-28 20:56:27 402 GMT-07:00
Receive Count: 1 Close

similar to the following XML document.

shown above are now avallable to other consumers.

Cancel X

10 messages Poll queue for: 30 seconds Start Poling for Messages

Receive Count

1

Close

<Confi rnBubscri pti onResponse xm ns="http://sns. anazonaws. conl
doc/ 2010- 03-31/">

API Version 2010-03-31
115

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryReceiveMessage.html
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Create a
Topic that Sends Messages to Amazon SQS Queues

<ConfirnBubscri pti onResul t >
<Subscri pti onArn>arn: aws: sns: us-west - 2: 123456789012: MyTopi c: c7f e3a54-
abOe- 4ec2- 88e0- db410a0f 2bee</ Subscri pti onAr n>
</ Confi rmBubscri pti onResul t >
<ResponseMet adat a>
<Request | d>dd266ecc- 7955- 11el- b925- 5140d02da9af </ Request | d>
</ ResponseMet adat a>
</ Confi rmBubscri pti onResponse>

If you view the topic subscription in the Amazon SNS console, you will now see that subscription
ARN replaces the Pending Confirmation message in the Subscription ID column. The
subscribed queue is ready to receive messages from the topic.

Using an AWS CloudFormation Template to
Create a Topic that Sends Messages to Amazon
SQS Queues

AWS CloudFormation enables you to use a template file to create and configure a collection of AWS
resources together as a single unit. This section has an example template that makes it easy to deploy
topics that publish to queues. The templates take care of the setup steps for you by creating two
gueues, creating a topic with subscriptions to the queues, adding a policy to the queues so that the
topic can send messages to the queues, and creating IAM users and groups to control access to those
resources.

For more information about deploying AWS resources using an AWS CloudFormation template, see
Get Started in the AWS CloudFormation User Guide.

Using an AWS CloudFormation Template to Set Up
Topics and Queues Within an AWS Account

The example template creates an Amazon SNS topic that can send messages to two Amazon SQS
gueues with appropriate permissions for members of one 1AM group to publish to the topic and another
to read messages from the queues. The template also creates IAM users that are added to each

group.

You can download this template (https://s3.amazonaws.com/cloudformation-templates-us-east-1/
SNSToSQS.template) from the AWS CloudFormation Sample Templates page.

MySNSTopic is set up to publish to two subscribed endpoints, which are two Amazon SQS queues
(MyQueuel and MyQueue?2). MyPublishTopicGroup is an IAM group whose members have
permission to publish to MySNSTopic using the Publish API action or sns-publish command. The
template creates the IAM users MyPublishUser and MyQueueUser and gives them login profiles

and access keys. The user who creates a stack with this template specifies the passwords for the
login profiles as input parameters. The template creates access keys for the two IAM users with
MyPublishUserKey and MyQueueUserKey. AddUserToMyPublishTopicGroup adds MyPublishUser to
the MyPublishTopicGroup so that the user will have the permissions assigned to the group.

MyRDMessageQueueGroup is an IAM group whose members have permission to read and delete
messages from the two Amazon SQS queues using the ReceiveMessage and DeleteMessage API
actions. AddUserToMyQueueGroup adds MyQueueUser to the MyRDMessageQueueGroup so that
the user will have the permissions assigned to the group. MyQueuePolicy assigns permission for
MySNSTopic to publish its notifications to the two queues.

API Version 2010-03-31
116

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SNSToSQS.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SNSToSQS.template
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
http://docs.aws.amazon.com/sns/latest/cli/sns_publish.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryDeleteMessage.html

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set
Up Topics and Queues Within an AWS Account

{
" AWSTenpl at eFor mat Ver si on": " 2010- 09- 09",

"Description":"This Tenplate creates an Amazon SNS topic that can send
messages to two Amazon SQS queues with appropriate perm ssions for one

| AM user to publish to the topic and another to read nmessages fromthe
queues. MySNSTopic is set up to publish to two subscribed endpoints, which
are two Anazon SQ@S queues (MyQueuel and MyQueue2). MyPublishUser is an | AM
user that can publish to MySNSTopi ¢ using the Publish API. MTopicPolicy
assigns that perm ssion to MyPublishUser. MyQueueUser is an | AM user that
can read nmessages fromthe two Amazon SQS queues. MyQueuePol icy assigns
those perm ssions to MyQueueUser. It also assigns perm ssion for My/SNSTopic
to publish its notifications to the two queues. The tenplate creates access
keys for the two I AM users with M/PublishUserKey and MyQueueUserKey. Note
that you will be billed for the AW5 resources used if you create a stack
fromthis tenplate.",

"Paraneters": {
"MyPubl i shUser Passwor d": {
"NoEcho": "true",
"Type":"String",
"Description":"Password for the | AM user MyPublishUser",
"M nLength":"1",
"MaxLengt h": " 41",
"Al'l owedPattern":"[a-zA-Z0-9]*",
"ConstraintDescription":"must contain only al phanuneric characters."
8
"MyQueueUser Passwor d" : {
"NoEcho": "true",
"Type":"String",
"Description":"Password for the | AM user MyQueueUser",
"M nLength":"1",
"MaxLengt h": " 41",
"Al'l owedPattern":"[a-zA-Z0-9]*",
"ConstraintDescription":"nmust contain only al phanuneric characters."
}
8

"Resources": {
"MySNSTopi ¢c": {
"Type": " AWE: : SNS: : Topi c",
"Properties":{
"Subscription": [

{
"Endpoint":{"Fn:: GetAtt":["MyQueuel","Arn"]},
"Protocol ":"sqgs"
}s
{
"Endpoint":{"Fn:: GetAtt":["MyQueue2","Arn"]},
"Protocol ":"sqgs"
}
]
}
}s
"MyQueuel": {
"Type": " AWG: : SQS: : Queue”
}s

API Version 2010-03-31
117

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set
Up Topics and Queues Within an AWS Account

"MyQueue2": {
"Type": " AWG: : SQS: : Queue”
}

"MyPubl i shUser": {
"Type":"AWS: : | AM : User ",
"Properties":{
"Logi nProfile":{
"Password": {"Ref":" MyPubl i shUser Passwor d"}
}
}
H
"MyPubl i shUser Key": {
"Type":"AWS: : | AM : AccessKey",
"Properties":{
"User Name": {"Ref": " MyPubl i shUser"}
}
H
"MyPubl i shTopi cGroup": {
"Type":"AWS: : | AM : G oup”,
"Properties":{
"Policies":[
{
"Pol i cyNane": " MyTopi cG oupPol i cy",
"Pol i cyDocunent ": {
"Version":"2012-10-17",
"Statenent": |

"Effect":"All ow',
"Action":[
"sns: Publish"

1.
"Resource": {"Ref": " MySNSTopi c"}
}

1}
}
]
}
}s
"AddUser ToMyPubl i shTopi cGroup": {
"Type":"AWS: : | AM : User ToGr oupAddi ti on",
"Properties":{
"G oupNare": {"Ref":"MyPubl i shTopi cG oup"},
"Users":[{"Ref":"M/PublishUser"}]
}
}s
"MyQueueUser": {
"Type":"AWS: : | AM : User ",
"Properties":{
"Logi nProfile":{
"Password": {"Ref":" MyQueueUser Passwor d"}
}
}
}s
"MyQueueUser Key": {
"Type":"AWS: : | AM : AccessKey",
"Properties":{
"User Name": {"Ref": " MyQueueUser"}
}
}s

API Version 2010-03-31
118

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set
Up Topics and Queues Within an AWS Account

"MyRDMessageQueueG oup": {
"Type":"AWS: : | AM : G oup”,
"Properties":{
"Policies":[
{

"Pol i cyNane": " MyQueueG oupPol i cy",
"Pol i cyDocunent ": {
"Version":"2012-10-17",
"Statenent": |

"Effect":"All ow',
"Action":[
"sqgs: Del et eMessage",
"sqs: Recei veMessage"

]

Resource": [
{"Fn::GetAtt":["MWQeuel", "Arn"]},
{"Fn::GetAtt":["MWQeue2","Arn"]}

]
}
1}
}
]
}
H
"AddUser ToMyQueueG oup": {
"Type":"AWS: : | AM : User ToGr oupAddi ti on",
"Properties":{
"G oupNane": {"Ref": " MyRDMessageQueueG oup"},
"Users":[{"Ref":"M/QueueUser"}]
}

H

"MyQueuePol i cy":{

"Type": " AWS: : S@S: : QueuePol i cy",
"Properties":{

"Pol i cyDocunent ": {
"Version":"2012-10-17",
"Id":"MyQueuePol i cy",
"Statenent": |

"Sid":"Al ow SendMessage- To- Bot h- Queues- Fr om SNS- Topi c",

"Effect":"All ow',
"Principal":"*",

"Action":["sqgs: SendMessage"],
"Resource":"*"

" Condi t | on":{
"ArnEqual s": {
"aws: SourceArn": {"Ref":" MySNSTopi c"}
}
}
}
}]
eues": [{"Ref":"MyQueuel"}, {"Ref": "M Queue2"}]
}
}
1
"Qut puts":{

"MySNSTopi cTopi cARN": {

API Version 2010-03-31
119

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set
Up Topics and Queues Within an AWS Account

"Val ue": {"Ref": " MySNSTopi c"}
b,
"MyQueuell nf o": {

"Val ue": {"Fn::Join":[

[
"ARN: ",
{"Fn::GetAtt":["MWQeuel", "Arn"]},
"URL: ",
{"Ref":"MyQueuel"}
]

1}
}

"MyQueue2l nf o": {
"Val ue": {"Fn::Join":[

[
"ARN: ",
{"Fn::GetAtt":["MWQeue2","Arn"]},
"URL: ",
{"Ref":"MyQueue2"}

]

1}
}

"MyPubl i shUser | nfo": {
"Val ue": {"Fn::Join":[
[
"ARN: ",
{"Fn::GetAtt":["MyPublishUser","Arn"]},
"Access Key:",
{"Ref":"MyPubl i shUser Key"},
"Secret Key:",
{"Fn::GetAtt":["MPublishUserKey", " Secret AccessKey"]}
]
1}
}

"MyQueueUser | nfo": {
"Val ue": {"Fn::Join":[
[
"ARN: ",
{"Fn::GetAtt":["MWQeueUser","Arn"]},
"Access Key:",
{"Ref":"MyQueueUser Key"},
"Secret Key:",
{"Fn::GetAtt":["M/QueueUser Key", " Secr et AccessKey"]}

1}

API Version 2010-03-31
120

Amazon Simple Notification Service Developer Guide
Setting Preferences

Sending SMS Messages with
Amazon SNS

You can use Amazon SNS to send text messages, or SMS messages, to SMS-enabled devices. You
can send a message directly to a phone number (p. 124), or you can send a message to multiple
phone numbers (p. 127) at once by subscribing those phone numbers to a topic and sending your
message to the topic.

You can set SMS preferences (p. 121) for your AWS account to tailor your SMS deliveries for your
use cases and budget. For example, you can choose whether your messages are optimized for cost
or reliable delivery. You can also specify spending limits for individual message deliveries and monthly
spending limits for your AWS account.

Where required by local laws and regulations (such as the US and Canada), SMS recipients can

opt out (p. 136), which means that they choose to stop receiving SMS messages from your AWS
account. After a recipient opts out, you can, with limitations, opt in the phone number again so that you
can resume sending messages to it.

Amazon SNS supports SMS messaging in several regions, and you can send messages to more than
200 countries. For more information, see Supported Regions and Countries (p. 139).

Topics
¢ Setting SMS Messaging Preferences (p. 121)
¢ Sending an SMS Message (p. 124)
¢ Sending an SMS Message to Multiple Phone Numbers (p. 127)
¢ Monitoring SMS Activity (p. 131)
¢ Managing Phone Numbers and SMS Subscriptions (p. 136)
¢ Supported Regions and Countries (p. 139)

Setting SMS Messaging Preferences

Use Amazon SNS to specify preferences for SMS messaging, such as how your deliveries are
optimized (for cost or for reliable delivery), your monthly spending limit, how message deliveries are
logged, and whether to subscribe to daily SMS usage reports.

API Version 2010-03-31
121

Amazon Simple Notification Service Developer Guide
Setting Preferences (Console)

These preferences take effect for every SMS message that you send from your account, but you can
override some of them when you send an individual message. For more information, see Sending an
SMS Message (p. 124).

Topics

e Setting Preferences (Console) (p. 122)
¢ Setting Preferences (AWS SDKSs) (p. 123)

Setting Preferences (Console)

1.

Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

In the navigation pane, choose Text messaging (SMS).
On the Text messaging (SMS) page, choose Manage text messaging preferences.

On the Text messaging preferences page, for Default message type, select the type of SMS
message that you will usually send:

* Promotional (default) — Noncritical messages, such as marketing messages. Amazon SNS
optimizes the message delivery to incur the lowest cost.

e Transactional — Critical messages that support customer transactions, such as one-time
passcodes for multi-factor authentication. Amazon SNS optimizes the message delivery to
achieve the highest reliability.

You can override this setting when you send a message.

For pricing information for promotional and transactional messages, see Global SMS Pricing.

For Account spend limit, type the maximum amount in USD that you want to spend on SMS
messages each calendar month. When Amazon SNS determines that sending an SMS message
would incur a cost that exceeds your spend limit for that month, Amazon SNS stops publishing
SMS messages within minutes.

Important

Because Amazon SNS is a distributed system, it stops sending SMS messages within
a time interval of minutes of the spend limit being exceeded. During that interval, if you
continue to send SMS messages, you may incur costs that exceed your limit.

By default, the spend limit is set to the maximum allowed by Amazon SNS, which is 50 USD. If you
want to exceed the maximum, submit a request to increase the service limit.

For IAM role for CloudWatch Logs access, create an IAM role that allows Amazon SNS to write
logs for SMS deliveries in CloudWatch Logs:

a. Choose Create IAMrole.

b. Onthe SNSis requesting permission to use resources in your account page, choose
Allow.

For Default percentage of success to sample, specify the percentage of successful SMS
deliveries for which Amazon SNS will write logs in CloudWatch Logs. For example, to write logs
only for failed deliveries, set this value to 0. To write logs for 10% of your successful deliveries, set
it to 10. If you don't specify a percentage, Amazon SNS writes logs for all successful deliveries.

For Default sender ID, type a custom ID that contains up to 11 alphanumeric characters, including
at least one letter and no spaces. The sender ID is displayed as the message sender on the
receiving device. For example, you can use your business brand to make the message source
easier to recognize.

API Version 2010-03-31
122

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://aws.amazon.com/sns/sms-pricing/
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-vpc

Amazon Simple Notification Service Developer Guide
Setting Preferences (AWS SDKs)

Support for sender IDs varies by country. For example, messages delivered to U.S. phone
numbers will not display the sender ID. For the countries that support sender IDs, see Supported
Regions and Countries (p. 139).

If you do not specify a sender ID, the message will display a long code as the sender ID in
supported countries. For countries that require an alphabetic sender ID, the message displays
NOTICE as the sender ID.

You can override the this setting when you send a message.

9. For Reports storage, type the name of the Amazon S3 bucket to receive daily SMS usage
reports from Amazon SNS. Amazon SNS does not create daily usage reports unless you specify
an Amazon S3 bucket to receive them. For more information, see Viewing Daily SMS Usage
Reports (p. 133).

10. Choose Update preferences.

Setting Preferences (AWS SDKS)

To set your SMS preferences by using one of AWS SDKs, use the action in that SDK that corresponds
to the Set SMBAt t ri but es request in the Amazon SNS API. With this request, you assign values to
the different SMS attributes, such as your monthly spend limit and your default SMS type (promotional
or transactional). For all SMS attributes, see SetSMSAttributes in the Amazon Simple Notification
Service API Reference.

Setting Preferences (AWS SDK for Java)

The following example uses the set SMBAt t ri but es method of the AmazonSNSC i ent class to set
values for the different attribute names:

public static void nain(String[] args) {
AmazonSNSC i ent snsClient = new AmazonSNSClient ();
set Defaul t SnsAttri butes(snsdient);

}

public static void setDefaultSnsAttributes(AmazonSNSC ient snsCient) {
Set SMBAt tri but esRequest set Request = new Set SMSAtt ri but esRequest ()
.addAttri butesEntry("Defaul t Senderl D', "mySenderl|D")
.addAttri butesEntry("MnthlySpendLimt", "50")
.addAttributesEntry("DeliveryStatusl AMRol e",
"arn:aws:iam:123456789012: rol e/ mySnsRol e")
.addAttributesEntry("DeliveryStatusSuccessSanplingRate", "10")
.addAttri but esEntry("Def aul t SMSType", "Transactional")
.addAttri but esEntry("UsageReport S3Bucket", "sns-sms-daily-usage");
snsClient.set SMSAttri but es(set Request);
Map<String, String> myAttributes = snsCient.get SMBAttributes(new
Get SMBAt tri but esRequest ())
.getAttributes();
Systemout.printin("My SMS attributes:");
for (String key : nyAttributes. keySet()) {
Systemout.println(key + " = + nyAttributes. get(key));
}

}

To verify that the attributes were set correctly, the example prints the result of the get SMSAt t ri but es
method. When you run this example, the attributes are displayed in the console output window of your
IDE:

API Version 2010-03-31
123

http://docs.aws.amazon.com/sns/latest/api/API_SetSMSAttributes.html

Amazon Simple Notification Service Developer Guide
Sending a Message

My SMS attri butes:

Del i verySt at usSuccessSanpl i ngRate = 10

UsageReport S3Bucket = sns-sns-dail y-usage

Def aul t SMSType = Transacti onal

Del i veryStatusl AMRol e = arn: aws:iam:123456789012: rol e/ mySnsRol e
Mont hl ySpendLimit = 50

Def aul t Sender | D = nySender | D

Sending an SMS Message

You can use Amazon SNS to send SMS messages to SMS-enabled devices. You can publish
messages directly to the phone numbers for these devices, and you do not need to subscribe the
phone numbers to an Amazon SNS topic.

Subscribing phone numbers to a topic can be still useful if you want to publish each message to
multiple phone numbers at once. For steps on how to publish an SMS message to a topic, see Sending
an SMS Message to Multiple Phone Numbers (p. 127).

When you send a message, you can control whether the message is optimized for cost or reliable
delivery, and you can specify a sender ID. If you send the message programmatically by using the
Amazon SNS API or AWS SDKs, you can specify a maximum price for the message delivery.

When you send an SMS message, specify the phone number using the E.164 format. E.164 is a
standard for the phone number structure used for international telecommunication. Phone numbers
that follow this format can have a maximum of 15 digits, and they are prefixed with the plus character
(+) and the country code. For example, a U.S. phone number in E.164 format would appear as
+1XXX5550100.
Topics

¢ Sending a Message (Console) (p. 124)

¢ Sending a Message (AWS SDKs) (p. 125)

Sending a Message (Console)

1. Signinto the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

In the navigation pane, choose Text messaging (SMS).

On the Text messaging (SMS) page, choose Send a text message (SMS). The Send text
message (SMS) window opens.

4. For Message type, choose one of the following:
¢ Promotional — Noncritical messages, such as marketing messages. Amazon SNS optimizes
the message delivery to incur the lowest cost.

¢ Transactional — Critical messages that support customer transactions, such as one-time
passcodes for multi-factor authentication. Amazon SNS optimizes the message delivery to
achieve the highest reliability.

This message-level setting overrides your default message type, which you set on the Text
messaging preferences page.

For pricing information for promotional and transactional messages, see Global SMS Pricing.

API Version 2010-03-31
124

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://aws.amazon.com/sns/sms-pricing/

Amazon Simple Notification Service Developer Guide
Sending a Message (AWS SDKs)

5. For Number, type the phone number to which you want to send the message.

6. For Message, type the message to send. Your message can contain up to 160 ASCII (or 70
Unicode) characters. If the message exceeds this length, Amazon SNS sends it as multiple
messages, each fitting within the character limit. Messages are not cut off in the middle of a word
but on whole-word boundaries.

7. (Optional) For Sender ID, type a custom ID that contains up to 11 alphanumeric characters,
including at least one letter and no spaces. The sender ID is displayed as the message sender on
the receiving device. For example, you can use your business brand to make the message source
easier to recognize.

Support for sender IDs varies by country. For example, messages delivered to U.S. phone
numbers will not display the sender ID. For the countries that support sender IDs, see Supported
Regions and Countries (p. 139).

If you do not specify a sender ID, the message will display a long code as the sender ID in
supported countries. For countries that require an alphabetic sender ID, the message displays
NOTICE as the sender ID.

This message-level sender ID overrides your default sender ID, which you set on the Text
messaging preferences page.

8. Choose Send text message.

Sending a Message (AWS SDKSs)

To send an SMS message by using one of AWS SDKs, use the action in that SDK that corresponds
to the Publ i sh request in the Amazon SNS API. With this request, you can send an SMS message
directly to a phone number. You can also use the MessageAt t ri but es parameter to set values for
the following attribute names:

AWB. SNS. SMS. Sender | D
A custom ID that contains up to 11 alphanumeric characters, including at least one letter and no
spaces. The sender ID is displayed as the message sender on the receiving device. For example,
you can use your business brand to make the message source easier to recognize.

Support for sender IDs varies by country. For example, messages delivered to U.S. phone
numbers will not display the sender ID. For the countries that support sender IDs, see Supported
Regions and Countries (p. 139).

If you do not specify a sender ID, the message will display a long code as the sender ID in
supported countries. For countries that require an alphabetic sender ID, the message displays
NOTICE as the sender ID.

This message-level attribute overrides the account-level attribute Def aul t Sender | D, which you
set by using the Set SMSAt t ri but es request.

AWB. SNS. SMS. MaxPri ce
The maximum amount in USD that you are willing to spend to send the SMS message. Amazon
SNS will not send the message if it determines that doing so would incur a cost that exceeds the
maximum price.

This attribute has no effect if your month-to-date SMS costs have already exceeded the limit set
for the Mont hl ySpendLi ni t attribute, which you set by using the Set SMSAt t ri but es request.

If you are sending the message to an Amazon SNS topic, the maximum price applies to each
message delivery to each phone number that is subscribed to the topic.

AWB. SNS. SMS. SMSType
The type of message that you are sending:

API Version 2010-03-31
125

Amazon Simple Notification Service Developer Guide
Sending a Message (AWS SDKs)

e Pronotional (default) — Noncritical messages, such as marketing messages. Amazon SNS
optimizes the message delivery to incur the lowest cost.

e Transacti onal — Critical messages that support customer transactions, such as one-time
passcodes for multi-factor authentication. Amazon SNS optimizes the message delivery to
achieve the highest reliability.

This message-level attribute overrides the account-level attribute Def aul t SM5Type, which you
set by using the Set SMBAt t ri but es request.

(Optional) Setting Message Attributes (AWS SDK for Java)

You set message attribute values by constructing a map that associates the attribute keys with
MessageAt tri but eVal ue objects. Each MessageAt t ri but eVal ue object is initialized with an
attribute value, and each object declares the data type for the value. The following example sets the
sender ID to "mySenderID", maximum price to 0.50 USD, and SMS type to promotional:

Map<String, MessageAttributeValue> snsAttributes =
new HashMap<String, MessageAttributeVal ue>();

snsAttri butes. put (" AWS. SNS. SVMS. Sender | D', new MessageAttri but eVal ue()
W thStringVal ue("nySender| D') //The sender |ID shown on the device.
.wi t hDat aType("String"));

snsAttri but es. put (" AWS. SNS. SMS. MaxPri ce", new MessageAttri but eVal ue()
Wi thStringVal ue("0.50") //Sets the max price to 0.50 USD.
.wi t hDat aType(" Nunber"));

snsAttri but es. put (" AWS. SNS. SMS. SMSType", new MessageAttri but eVal ue()
.wi thStringVal ue("Pronotional") //Sets the type to pronotional.
.wi t hDat aType("String"));

When you send an SMS message, you will apply your attributes to the Publ i shRequest object.

Sending a Message (AWS SDK for Java)

The following example uses the publ i sh method of the AmazonSNSC i ent class to send a message
directly to a phone number:

public static void main(String[] args) {
AmazonSNSCl i ent snsClient = new AmazonSNSClient ();
String message = "My SMS nessage";
String phoneNunber = "+1XXX5550100";
Map<String, MessageAttributeVal ue> snsAttributes =
new HashMap<String, MessageAttributeVal ue>();
/l<set SM5 attributes>
sendSMsMessage(snsC i ent, nessage, phoneNunber, snsAttributes);

}

public static void sendSMsMessage(AnazonSNSCl i ent snsClient, String nessage,
String phoneNunmber, Map<String, MessageAttributeValue> snsAttributes) {
Publ i shResult result = snsCient. publish(new PublishRequest ()
.wi t hMessage(message)
.wi t hPhoneNunber (phoneNunber)
.wi thMessageAttributes(snsAttributes));
Systemout.printin(result); // Prints the nessage |ID.

When you run this example, the message ID is displayed in the console output window of your IDE:

API Version 2010-03-31
126

Amazon Simple Notification Service Developer Guide
Sending a Message to Multiple Phone Numbers

{ Messagel d: 9b888f 80- 15f 7- 5¢30- 81a2- c4511a3f 5229}

Sending an SMS Message to Multiple Phone
Numbers

You can publish a single SMS message to many phone numbers at once by subscribing those phone
numbers to a topic. A topic is a communication channel to which you can add subscribers and then
publish messages to all of those subscribers. A subscriber will receive all messages published to the
topic until you cancel the subscription or the subscriber opts out of receiving SMS messages from your
account.

Topics
¢ Sending a Message to a Topic (Console) (p. 127)
¢ Sending a Message to a Topic (AWS SDKs) (p. 128)

Sending a Message to a Topic (Console)

To create a topic

Complete the following steps if you don't already have a topic to which you want to send SMS
messages.

1. Signin to the AWS Management Console and open the Amazon SNS console at https:/
console.aws.amazon.com/sns/.

In the navigation pane, choose Topics.

On the Topics page, choose Create new topic. The Create new topic window opens.
For Topic name, type a name.

o ks wbn

(Optional) For Display name, type a custom prefix for your SMS messages. When you send a
message to the topic, Amazon SNS prepends the display name followed by a right angle bracket
(>) and a space. Display names are not case sensitive, and Amazon SNS converts display names
to uppercase characters. For example, if the display name of a topic is My Topi ¢ and the message
is Hel | o Worl d!, the message would appear as:

MYTOPI C Hell o Worl d!

6. Choose Create topic. The topic name and Amazon Resource Name (ARN) are added to the table
on the Topics page.

To add SMS subscriptions

Subscriptions enable you to send an SMS message to multiple recipients by publishing the message
just once to your topic.

On the Topics page, choose the topic ARN.

On the topic details page, choose Create Subscription.

For Protocol, select SMS.

For Endpoint, type the phone number to which you want to send messages.

ok wDnNPE

Choose Create Subscription. The subscription information is added to the Subscriptions table.

API Version 2010-03-31
127

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Sending a Message to a Topic (AWS SDKs)

You can repeat these steps to add more phone numbers, and you can add other types of
subscriptions, such as email.

To send the message

When you publish a message to a topic, Amazon SNS attempts to deliver that message to every phone
number that is subscribed to the topic.

On the topic details page, choose Publish to topic.
2. Onthe Publish a message page, for Subject, leave the field blank unless your topic contains

email subscriptions and you want to publish to both email and SMS subscriptions. The text that
you enter for Subject is used as the email subject line.

3. For Message, type a message.

A single SMS message can contain up to 160 ASCII characters or 70 Unicode characters.
Any message that exceeds these lengths is split into multiple messages, each fitting within the
character limit. Messages are not cut off in the middle of a word but on whole-word boundaries.

If your topic has a display name, Amazon SNS adds it to the message, which increases the
message length. The display name length is the number of characters in the name plus two
characters for the right angle bracket (>) and space that Amazon SNS adds.

4. Choose Publish message. Amazon SNS sends the SMS message and displays a success
message.

Sending a Message to a Topic (AWS SDKSs)

To send an SMS message to a topic by using one of AWS SDKs, use the actions in that SDK that
correspond to the following requests in the Amazon SNS API:

Creat eTopi c
Creates a topic to which you can subscribe phone numbers and then publish messages to all of
those phone numbers at once by publishing to the topic.

Subscri be
Subscribes a phone number to a topic.

Publ i sh
Sends a message to each phone number subscribed to a topic.

You can use the MessageAt t ri but es parameter to set several attributes for the message
(for example, the maximum price). For more information, see Sending a Message (AWS
SDKs) (p. 125).

Creating a Topic (AWS SDK for Java)

The following example uses the cr eat eTopi ¢ method of the AmazonSNSCl i ent class to create a
topic named "mySNSTopic":

public static void main(String[] args) {
AmazonSNSC i ent snsClient = new AmazonSNSClient ();
String topi cArn = creat eSNSTopi c(snsClient);

}

public static String createSNSTopi c(AmazonSNSC i ent snsCient) {
Creat eTopi cRequest createTopi ¢ = new Creat eTopi cRequest (" mySNSTopi c") ;

API Version 2010-03-31
128

Amazon Simple Notification Service Developer Guide
Sending a Message to a Topic (AWS SDKs)

Creat eTopi cResult result = snsCient.createTopic(createTopic);
Systemout.println("Create topic request: " +

snsC i ent. get CachedResponseMet adat a(cr eat eTopi c));
Systemout.printin("Create topic result: " + result);
return result.getTopi cArn();

The example uses the get CachedResponseMet adat a method to get the request ID.

When you run this example, the following is displayed in the console output window of your IDE:

{

Topi cArn: arn: aws: sns: us-east-1: 123456789012: mySNSTopi c}

Cr eat eTopi cRequest - {AWS_REQUEST | D=93f 7f c90-f 131- 5ca3- ab18- b741f ef 918b5}

Adding an SMS Subscription to Your Topic (AWS SDK for
Java)

The following example uses the subscri be method of the AmazonSNSCO i ent class to add a
subscription to a topic:

public static void nain(String[] args) {

}
/

AmazonSNSCl i ent snsClient = new AmazonSNSCl i ent () ;

String phoneNunber = "+1XXX5550100";

String topi cArn = creat eSNSTopi c(snsClient);

subscri beToTopi c(snsClient, topicArn, "sns", phoneNunber);

/ <create SNS topic>

public static void subscribeToTopi c(AmazonSNSCli ent snsCient, String

t opi cArn,
String protocol, String endpoint) {
Subscri beRequest subscribe = new Subscri beRequest (topi cArn, protocol,
endpoint) ;
Subscri beResult subscribeResult = snsCient.subscribe(subscribe);
Systemout. println("Subscribe request: " +
snsd i ent. get CachedResponseMet adat a(subscri be));
Systemout.println("Subscribe result: " + subscribeResult);

This example constructs the subscri beRequest object and passes it the following arguments:

t opi cAr n - The Amazon Resource Name (ARN) of the topic to which you are adding a subscription.
"sms" - The protocol option for an SMS subscription.
endpoi nt - The phone number that you are subscribing to the topic.

The example uses the get CachedResponseMet adat a method to get the request ID for the subscribe
request.

When you run this example, the ID of the subscribe request is displayed in the console window of your
IDE:

Subscri beRequest - {AWS_REQUEST_| D=f 38f €925- 8093- 5bd4- 9¢c19- a7c7625de38c}

API Version 2010-03-31
129

Amazon Simple Notification Service Developer Guide
Sending a Message to a Topic (AWS SDKs)

(Optional) Setting Message Attributes (AWS SDK for Java)

You set message attribute values by constructing a map that associates the attribute keys with
MessageAt t ri but eVal ue objects. Each MessageAt t ri but eVal ue object is initialized with an
attribute value, and each object declares the data type for the value. The following example sets the
sender ID to "mySenderID", maximum price to 0.50 USD, and SMS type to promotional:

Map<String, MessageAttributeVal ue> snsAttributes =
new HashMap<String, MessageAttributeVal ue>();

snsAttri butes. put ("AWS. SNS. SVMS. Sender | D', new MessageAttri but eVal ue()
.wi thStringVal ue("nySender| D') //The sender |ID shown on the device.
.wi thDat aType("String"));

snsAttri butes. put (" AWB. SNS. SMS. MaxPri ce", new MessageAttri but eVal ue()
.wi thStringVal ue("0.50") //Sets the nmax price to 0.50 USD.
.wi t hDat aType(" Nunber"));

snsAttri butes. put (" AWB. SNS. SMS. SMSType", new MessageAttri but eVal ue()
.wi thStringVal ue("Pronotional") //Sets the type to pronotional.
.wi t hDat aType("String"));

For more information about message attributes, see Sending a Message (AWS SDKs) (p. 125)

When you send an SMS message, you will apply your attributes to the Publ i shRequest object.

Publishing a Message to Your Topic (AWS SDK for Java)

The following example uses the publ i sh method of the AmazonSNSC i ent class to publish an SMS
message to a topic:

public static void main(String[] args) {
AmazonSNSCl i ent snsClient = new AmazonSNSCl i ent () ;
String nmessage = "My SMS nessage”;
Map<String, MessageAttributeVal ue> snsAttributes =
new HashMap<String, MessageAttributeVal ue>();
|l <set SMB attributes>
String topi cArn = creat eSNSTopi c(snsClient);
/| <subscribe to topic>
sendSMsMessageToTopi c(snsCl i ent, topi cArn, nmessage, snsAttributes);

}

|/ <create topic nethod>
/| <subscribe to topic nethod>

public static void sendSMsSMessageToTopi c(AmazonSNSCl i ent snsClient, String
topi cArn,
String nmessage, Map<String, MessageAttributeVal ue> snsAttributes) {

Publ i shResult result = snsCient. publish(new PublishRequest ()
.wi t hTopi cArn(topi cArn)
.wi t hMessage(nmessage)
.wi thMessageAttributes(snsAttributes));

Systemout.printin(result);

Amazon SNS will attempt to deliver that message to every phone number that is subscribed to the
topic.

API Version 2010-03-31
130

Amazon Simple Notification Service Developer Guide
Monitoring SMS Activity

This example constructs the publ i shRequest object while passing the topic Amazon Resource
Name (ARN) and the message as arguments. The publ i shResul t object captures the message 1D
returned by Amazon SNS.

When you run this example, the message ID is displayed in the console output window of your IDE:

{Messagel d: 9bh888f 80- 15f 7- 5¢30- 81a2- c4511a3f 5229}

Monitoring SMS Activity

By monitoring your SMS activity, you can keep track of destination phone numbers, successful or
failed deliveries, reasons for failure, costs, and other information. Amazon SNS helps by summarizing
statistics in the console, sending information to Amazon CloudWatch, and sending daily SMS usage
reports to an Amazon S3 bucket that you specify.

Topics
¢ Viewing SMS Delivery Statistics (p. 131)
¢ Viewing Amazon CloudWatch Metrics and Logs for SMS Deliveries (p. 131)
¢ Viewing Daily SMS Usage Reports (p. 133)

Viewing SMS Delivery Statistics

You can use the Amazon SNS console to view statistics about your recent SMS deliveries.

1. Signinto the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the navigation pane, choose Text messaging (SMS).

On the Text messaging (SMS) page, in the Account stats section, view the charts for your
transactional and promotional SMS message deliveries. Each chart shows the following data for
the preceding 15 days:

« Delivery rate (percentage of successful deliveries)
¢ Sent (number of delivery attempts)
« Failed (number of delivery failures)

On this page, you can also choose the Usage button to go to the Amazon S3 bucket where you store
your daily usage reports. For more information, see Viewing Daily SMS Usage Reports (p. 133).

Viewing Amazon CloudWatch Metrics and Logs for
SMS Deliveries

You can use Amazon CloudWatch and Amazon CloudWatch Logs to monitor your SMS message
deliveries.

Topics
¢ Viewing Amazon CloudWatch Metrics (p. 132)
¢ Viewing CloudWatch Logs (p. 132)
¢ Example Log for Successful SMS Delivery (p. 132)
e Example Log for Failed SMS Delivery (p. 133)

API Version 2010-03-31
131

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Viewing CloudwWatch Metrics and Logs

¢ SMS Delivery Failure Reasons (p. 133)

Viewing Amazon CloudWatch Metrics

Amazon SNS automatically collects metrics about your SMS message deliveries and pushes them
to Amazon CloudWatch. You can use CloudWatch to monitor these metrics and create alarms to
alert you when a metric crosses a threshold. For information about monitoring CloudWatch metrics,
setting CloudWatch alarms, and the types of metrics available, see Monitoring Amazon SNS with
CloudWatch (p. 187).

Viewing CloudWatch Logs

You can collect information about successful and unsuccessful SMS message deliveries by enabling
Amazon SNS to write to Amazon CloudWatch Logs. For each SMS message that you send, Amazon
SNS will write a log that includes the message price, the success or failure status, the reason for failure
(if the message failed), the message dwell time, and other information.

To enable CloudWatch Logs for your SMS messages

1. Signin to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the navigation pane, choose Text messaging (SMS).
On the Text messaging (SMS) page, choose Manage text messaging preferences.

4. Onthe Text messaging preferences page, for IAM role for CloudWatch Logs access, create
an IAM role that allows Amazon SNS to write logs for SMS deliveries in CloudWatch Logs:

a. Choose Create IAMrole.

b. Onthe SNSis requesting permission to use resources in your account page, choose
Allow.

5. For Default percentage of success to sample, specify the percentage of successful SMS
deliveries for which Amazon SNS will write logs in CloudWatch Logs. For example, to write logs
only for failed deliveries, set this value to 0. To write logs for 10% of your successful deliveries, set
it to 10. If you don't specify a percentage, Amazon SNS writes logs for all successful deliveries.

6. Choose Update preferences.

For information about the other options on the Text messaging preferences page, see Setting
Preferences (Console) (p. 122).

Example Log for Successful SMS Delivery

The delivery status log for a successful SMS delivery will resemble the following example:

"notification": {
"messagel d": "34d9b400- c6dd- 5444- 820d- f bebOf 1f 54cf ",
“tinmestanp": "2016-06-28 00: 40: 34. 558"

}

"delivery": {
"phoneCarrier": "My Phone Carrier",
"mc": 270,
"destination": "+1XXX5550100",
"pricelnUSD': 0.00645,
"snsType": "Transactional",
"mce': 310,

API Version 2010-03-31
132

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Viewing Usage Reports

"provi der Response": "Message has been accepted by phone carrier"”,
"dwel | Ti mreMs": 599,
"dwel | Ti meMsUnti | Devi ceAck": 1344

b
"status": " SUCCESS"

Example Log for Failed SMS Delivery

The delivery status log for a failed SMS delivery will resemble the following example:

{
"notification": {
"messagel d": "1077257a-92f 3-5ca3-bc97-6a915b310625",
"tinmestanp": "2016-06-28 00: 40: 34. 559"
H
"delivery": {
"mc": 0,
"destination": "+1XXX5550100",
"pricelnUSD': 0.00645,
"snsType": "Transactional",
"mce': 0,
"provi der Response": "Unknown error attenpting to reach phone",
"dwel | Ti meMs": 1420,
"dwel | Ti meMsUnti | Devi ceAck": 1692
H
"status": "FAlI LURE"
}

SMS Delivery Failure Reasons

The reason for a failure is provided with the pr ovi der Response attribute. SMS messages might fail
to deliver for the following reasons:

¢ Blocked as spam by phone carrier

« Destination is blacklisted

« Invalid phone number

¢ Message body is invalid

« Phone carrier has blocked this message

« Phone carrier is currently unreachable/unavailable
« Phone has blocked SMS

« Phone is blacklisted

¢ Phone is currently unreachable/unavailable
¢ Phone number is opted out

¢ This delivery would exceed max price

¢ Unknown error attempting to reach phone

Viewing Daily SMS Usage Reports

You can monitor your SMS deliveries by subscribing to daily usage reports from Amazon SNS. Each
day, Amazon SNS will deliver a usage report as a CSV file to an Amazon S3 bucket that you specify.

API Version 2010-03-31
133

Amazon Simple Notification Service Developer Guide
Viewing Usage Reports

Topics
¢ Daily Usage Report Information (p. 134)
¢ Subscribing to Daily Usage Reports (p. 134)

Daily Usage Report Information

The usage report includes the following information for each SMS message that was successfully
delivered by your account:

¢ Time that the message was published (in UTC)

* Message ID

¢ Destination phone number

* Message type

¢ Delivery status

¢ Message price (in USD)

¢ Part number (a message is split into multiple parts if it is too long for a single message)

« Total number of parts

Subscribing to Daily Usage Reports

To subscribe to daily usage reports, you must create an Amazon S3 bucket with the appropriate
permissions.

To create an Amazon S3 bucket for your daily usage reports

1. Signinto the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Choose Create Bucket.

3. For Bucket Name, type a name, such as sns- sns- dai | y- usage. For information about
conventions and restrictions for bucket names, see Rules for Bucket Naming in the Amazon
Simple Storage Service Developer Guide.

4. Choose Create.

5. Inthe All Buckets table, select the bucket and choose Properties.

6. Inthe Permissions section, choose Add bucket policy.

7. Inthe Bucket Policy Editor window, provide a policy that allows the Amazon SNS service

principal to write to your bucket. For an example, see Example Bucket Policy (p. 135).

If you use the example policy, remember to replace ny- s3- bucket with the name of your bucket.
8. Choose Save.

To subscribe to daily usage reports

1. Signin to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.
In the navigation pane, choose Text messaging (SMS).
On the Text messaging (SMS) page, choose Manage text messaging preferences.

On the Text messaging preferences page, for Reports storage, type the name of the Amazon
S3 bucket that will receive the daily SMS usage reports.

API Version 2010-03-31
134

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
http://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html#bucketnamingrules
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Viewing Usage Reports

5. Choose Update preferences.

For information about the other options on the Text messaging preferences page, see Setting
Preferences (Console) (p. 122).

After you subscribe to daily usage reports, you can view the reports in the Amazon S3 console. You
can also go to the Text messaging (SMS) page in the Amazon SNS console and choose the Usage
button.

Example Bucket Policy

The following policy allows the Amazon SNS service principal to perform the s3: Put Obj ect and
s3: Get Bucket Locat i on actions. You can use this example when you create an Amazon S3 bucket
to receive daily SMS usage reports from Amazon SNS.

{
"Version": "2012-10-17",
"Id": "sns-sms-daily-usage-policy",
"Statenent": [
{
"Sid": "AlowPut Object”,
"Effect": "Allow',
"Principal": {
"Service": "sns.amazonaws. conf
}
"Action": "s3:PutObject”,
"Resource": "arn:aws:s3:::nmy-s3-bucket/*"
}
{
"Sid": "AlIlowCGet Bucket Locati on",
"Effect": "All ow',
"Principal": {
"Service": "sns.amazonaws. conf
}
"Action": "s3:GetBucketLocation",
"Resource": "arn:aws:s3:::nmy-s3-bucket”
}
]
}

Example Daily Usage Report

After you subscribe to daily usage reports, each day, Amazon SNS puts a CSV file with usage data in
the following location:

<ny- s3- bucket >/ SMBUsageReport s/ <regi on>/ YYYY/ MM DD/ 00x. csv. gz

Each file can contain up to 50,000 records. If the records for a day exceed this limit, Amazon SNS will
add multiple files.

The following shows an example report:

Publ i shTi meUTC, Messagel d, Dest i nat i onPhoneNunber, MessageType, Del i verySt at us, Pri cel nUSD, Part N

2016- 05- 10T03: 00: 29. 476Z, 96a298ac- 1458- 4825-

a7eb- 7330e0720b72, 1XXX5550100, Pronot i onal , Message has been accepted by phone
carrier,0.90084,1,1

API Version 2010-03-31
135

Amazon Simple Notification Service Developer Guide
Managing Subscriptions

2016- 05- 10T03: 00: 29. 5617, 1€29d394-

d7f 4- 4dc9- 996e- 26412032c 344, 1XXX5550100, Pronoti onal , Message has been accepted
by phone carrier,0.34322,1,1

2016- 05- 10T03: 00: 30. 769Z, 98ba941c- af c7- 4c51-

ba2c- 56c6570a6¢c08, 1XXX5550100, Tr ansacti onal , Message has been accepted by
phone carrier,0.27815,1,1

Managing Phone Numbers and SMS
Subscriptions

Amazon SNS provides several options for managing who receives SMS messages from your account.
With a limited frequency, you can opt in phone numbers that have opted out of receiving SMS
messages from your account. To stop sending messages to SMS subscriptions, you can remove
subscriptions or the topics that publish to them.

Topics
¢ Opting Out of Receiving SMS Messages (p. 136)
¢ Managing Phone Numbers and Subscriptions (Console) (p. 136)
¢ Managing Phone Numbers and Subscriptions (AWS SDKSs) (p. 137)

Opting Out of Receiving SMS Messages

Where required by local laws and regulations (such as the US and Canada), SMS recipients can use
their devices to opt out by replying with STOP or ARRET (French) to the same long code or short code
with which Amazon SNS delivered the message. After opting out, the recipient will no longer receive
SMS messages delivered from your AWS account unless you opt in the phone number.

If the phone number is subscribed to an Amazon SNS topic, opting out does not remove the
subscription, but SMS messages will fail to deliver to that subscription unless you opt in the phone
number.

Managing Phone Numbers and Subscriptions
(Console)

You can use the Amazon SNS console to control which phone numbers receive SMS messages from
your account.

Opting in a Phone Number That Has Been Opted Out

You can view which phone numbers have been opted out of receiving SMS messages from your
account, and you can opt in these phone numbers to resume sending messages to them.

You can opt in a phone number only once every 30 days.

1. Signin to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the navigation pane, choose Text messaging (SMS).

3. Onthe Text messaging (SMS) page, choose View opted out phone numbers. The Opted out
phone numbers page displays the opted out phone numbers.

API Version 2010-03-31
136

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Managing Phone Numbers and
Subscriptions (AWS SDKs)

4. Select the check box for the phone number that you want to opt in, and choose Opt in. The phone
number is no longer opted out and will receive SMS messages that you send to it.

Deleting an SMS Subscription

Delete an SMS subscription to stop sending SMS messages to that phone number when you publish to
your topics.

1. Inthe navigation pane, choose Subscriptions.

2. Select the check boxes for the subscriptions that you want to delete. Then choose Actions, and
choose Delete Subscriptions.

3. Inthe Delete window, choose Delete. Amazon SNS deletes the subscription and displays a
success message.

Deleting a Topic
Delete a topic when you no longer want to publish messages to its subscribed endpoints.

1. Inthe navigation pane, choose Topics.

Select the check boxes for the topics that you want to delete. Then choose Actions, and choose
Delete Topics.

3. Inthe Delete window, choose Delete. Amazon SNS deletes the topic and displays a success
message.

Managing Phone Numbers and Subscriptions (AWS
SDKSs)

You can use the AWS SDKs to make programmatic requests to Amazon SNS and manage which
phone numbers can receive SMS messages from your account.

Viewing All Opted Out Phone Numbers

To view all opted out phone numbers, submit a Li st PhoneNurber sOpt edQut request
with the Amazon SNS API. For example, using the AWS SDK for Java, you can use the
i st PhoneNunber sOpt edOut method of the AmazonSNSC i ent class:

public static void main(String[] args) {
AmazonSNSO i ent snsClient = new AmazonSNSClient ();
listOptQut(snsCient);

}

public static void |istOptQut(AnmazonSNSClient snsCient) {
String next Token = null;
do {
Li st PhoneNunber sOpt edOut Result result = snsCient
. 1'i st PhoneNunber sOpt edQut (new Li st PhoneNunber sOpt edOut Request ()
. Wi t hNext Token(next Token));
next Token = result. get Next Token();
for (String phoneNum : result.getPhoneNunbers()) {
System out . printl n(phoneNum ;

} while (nextToken !'= null);

API Version 2010-03-31
137

Amazon Simple Notification Service Developer Guide
Managing Phone Numbers and
Subscriptions (AWS SDKs)

}

Amazon SNS returns a paginated response, so this example repeats the request each time Amazon
SNS returns a next token. When you run this example, it displays a list of all opted out phone numbers
in the console output window of your IDE.

Checking Whether a Phone Number Is Opted Out

To check whether a phone number is opted out, submit a Checkl f PhoneNunber | sOpt edCut
request with the Amazon SNS API. For example, using the AWS SDK for Java, you can use the
checkl f PhoneNunber | sOpt edOQut method of the AmazonSNSCl i ent class:

Checkl f PhoneNunber | sOpt edQut Request request = new
Checkl f PhoneNunber | sOpt edQut Request () . wi t hPhoneNunber (phoneNunber) ;
Systemout. println(snsdient.checkl f PhoneNunber | sOpt edQut (request));

When you run this example, a true or false result is displayed in the console output window of your
IDE:

{IsOptedQut: false}

Opting In a Phone Number That Has Been Opted Out

To opt in a phone number, submit an Opt | nPhoneNunber request with the Amazon SNS API.
For example, using the AWS SDK for Java, you can use the opt | nPhoneNunber method of the
AmazonSNSC i ent class:

snsd i ent. opt | nPhoneNunber (new
Opt | nPhoneNunber Request () . wi t hPhoneNunber (phoneNunber)) ;

You can opt in a phone number only once every 30 days.

Deleting an SMS Subscription

To delete an SMS subscription from an Amazon SNS topic, get the subscription ARN by submitting a
Li st Subscri pti ons request with the Amazon SNS API, and then pass the ARN to an Unsubscri be
request.

For example, using the AWS SDK for Java, you can get your subscription ARNs by using the
I'i st Subscri pti ons method of the AmazonSNSCl i ent class:

Li st SubscriptionsResult result = snsClient.|istSubscriptions();
for (Subscription sub : result.getSubscriptions()) {
System out . println(sub);

}

You can delete a subscription by passing its ARN as a string argument to the unsubscri be method:

snsC i ent. unsubscri be(subscripti onArn);

Deleting a Topic

To delete a topic and all of its subscriptions, get the topic ARN by submitting a Li st Topi cs request
with the Amazon SNS API, and then pass the ARN to the Del et eTopi ¢ request.

API Version 2010-03-31
138

Amazon Simple Notification Service Developer Guide
Supported Regions and Countries

For example, using the AWS SDK for Java, you can get your topic ARNs by using the | i st Topi cs
method of the AmazonSNSCl i ent class:

Li st Topi csResult result = snsCient.|istTopics();
for (Topic t : result.getTopics()) {
Systemout.printin(t);

}

You can delete a topic by passing its ARN as a string argument to the del et eTopi ¢ method:

snsC i ent. del et eTopi c(topi cArn);

Supported Regions and Countries

Currently, Amazon SNS supports SMS messaging in the following regions:

Region Name Region Endpoint Protocol

US East (N. Virginia) us-east-1 sns.us- HTTP and HTTPS
east-1l.amazonaws.com

US West (Oregon) us-west-2 sns.us- HTTP and HTTPS
west-2.amazonaws.com

EU (Ireland) eu-west-1 sns.eu- HTTP and HTTPS
west-1.amazonaws.com

Asia Pacific (Tokyo) ap-northeast-1 sns.ap- HTTP and HTTPS
northeast-1.amazonaws.com

Asia Pacific ap-southeast-1 sns.ap- HTTP and HTTPS

(Singapore) southeast-1.amazonaws.com

Asia Pacific (Sydney) ap-southeast-2 sns.ap- HTTP and HTTPS

southeast-2.amazonaws.com

You can use Amazon SNS to send SMS messages to the following countries:

Country ISO Code Supports Sender IDs
Afghanistan AF

Albania AL Yes

Algeria Dz

Andorra AD Yes

Angola AO Yes

Anguilla Al Yes

Antigua and Barbuda AG Yes

Argentina AR

Armenia AM Yes

API Version 2010-03-31
139

Amazon Simple Notification Service Developer Guide

Supported Regions and Countries

Country
Aruba
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize

Benin
Bermuda
Bhutan
Bolivia
Bosnia and Herzegovina
Botswana
Brazil

Brunei
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad

Chile

China

ISO Code
AW
AU
AT
AZ
BS
BH
BD
BB
BY
BE
Bz
BJ
BM
BT
BO
BA
BW
BR
BN
BG
BF
BI
KH
CM
CA
Ccv
KY
CF
TD
CL

CN

Supports Sender IDs
Yes
Yes

Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes

Yes

API Version 2010-03-31
140

Amazon Simple Notification Service Developer Guide

Supported Regions and Countries

Country
Colombia
Comoros

Cook Islands
Costa Rica
Croatia

Cyprus

Czech Republic

Democratic Republic of the
Congo

Denmark
Djibouti
Dominica
Dominican republic
East Timor
Ecuador

Egypt

El Salvador
Equatorial Guinea
Estonia
Ethiopia

Faroe Islands
Fiji

Finland
France

French Guiana
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar

Greece

ISO Code

CO
KM
CK
CR
HR
CY
cz

CD

DK
DJ
DM
DO
TL
EC
EG
S\
GQ
EE
ET
FO
FJ
FI
FR
GF
GA
GM
GE
DE
GH
Gl

GR

Supports Sender IDs

Yes

Yes

Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes

API Version 2010-03-31

141

Amazon Simple Notification Service Developer Guide

Supported Regions and Countries

Country
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hong Kong
Hungary
Iceland
India
Indonesia
Iraq

Ireland
Israel

Italy

Ivory Coast
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Kiribati
Kuwait
Kyrgyzstan
Laos
Latvia

Lebanon

ISO Code

GL
GD
GP
GU
GT
GN
GW
GY
HT
HN

HK

Cl
JM
JP
JO
Kz
KE
Ki
KW
KG
LA
LV

LB

Supports Sender IDs
Yes
Yes

Yes

Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

API Version 2010-03-31

142

Amazon Simple Notification Service Developer Guide

Supported Regions and Countries

Country ISO Code
Lesotho LS
Liberia LR
Libya LY
Liechtenstein LI
Lithuania LT
Luxembourg LU
Macau MO
Macedonia MK
Madagascar MG
Malawi MW
Malaysia MY
Maldives MV
Mali ML
Malta MT
Martinique MQ
Mauritania MR
Mauritius MU
Mexico MX
Moldova MD
Monaco MC
Mongolia MO
Montenegro ME
Montserrat MS
Morocco MA
Mozambique Mz
Myanmar MM
Namibia NA
Nepal NP
Netherlands NL
Netherlands Antilles AN
New Caledonia NC

Supports Sender IDs
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes
Yes

Yes

Yes
Yes

Yes

API Version 2010-03-31

143

Amazon Simple Notification Service Developer Guide

Supported Regions and Countries

Country

New Zealand
Nicaragua

Niger

Nigeria

Norway

Oman

Pakistan

Palau

Palestinian Territory
Panama

Papua New Guinea
Paraguay

Peru

Philippines

Poland

Portugal

Puerto Rico

Qatar

Republic of the Congo
Reunion Island
Romania

Russia

Rwanda

Saint Kitts and Nevis
Saint Lucia

Saint Vincent and the
Grenadines

Samoa

Sao Tome and Principe
Saudi Arabia

Senegal

Serbia

ISO Code
Nz
NI
NE
NG
NO
oM
PK
PW
PS
PA
PG
PY
PE
PH
PL
PT
PR
QA
CG
RE
RO
RU
RW
KN
LC

VvC

WS
ST
SA
SN

RS

Supports Sender IDs

Yes
Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

API Version 2010-03-31
144

Amazon Simple Notification Service Developer Guide

Supported Regions and Countries

Country ISO Code
Seychelles SC
Sierra Leone SL
Singapore SG
Slovakia SK
Slovenia Sl
Solomon Islands SB
Somalia SO
South Africa ZA
South Korea KR
South Sudan SS
Spain ES
Sri Lanka LK
Suriname SR
Swaziland Sz
Sweden SE
Switzerland CH
Taiwan TW
Tajikistan TJ
Tanzania TZ
Thailand TH
Togo TG
Tonga TO
Trinidad and Tobago TT
Tunisia TN
Turkey TR
Turkmenistan ™
Turks and Caicos Islands TC
Uganda UG
Ukraine UA
United Arab Emirates AE
United Kingdom GB

Supports Sender IDs
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes

Yes
Yes

Yes

Yes
Yes
Yes

Yes

Yes

API Version 2010-03-31

145

Amazon Simple Notification Service Developer Guide
Supported Regions and Countries

Country ISO Code Supports Sender IDs
United States us

Uruguay Uy

Uzbekistan uz Yes
Vanuatu VU Yes
Venezuela VE

Vietnam VN

Virgin Islands, British VG Yes
Virgin Islands, US VI

Yemen YE Yes
Zambia ZM Yes
Zimbabwe ZW Yes

API Version 2010-03-31
146

Amazon Simple Notification Service Developer Guide

Sending Amazon SNS Messages to
HTTP/HTTPS Endpoints

You can use Amazon SNS to send notification messages to one or more HTTP or HTTPS endpoints.
When you subscribe an endpoint to a topic, you can publish a notification to the topic and Amazon
SNS sends an HTTP POST request delivering the contents of the natification to the subscribed
endpoint. When you subscribe the endpoint, you select whether Amazon SNS uses HTTP or HTTPS to
send the POST request to the endpoint. If you use HTTPS, then you can take advantage of the support
in Amazon SNS for the following:

¢ Server Name Indication (SNI)—This allows Amazon SNS to support HTTPS endpoints that
require SNI, such as a server requiring multiple certificates for hosting multiple domains. For more
information about SNI, see http://en.wikipedia.org/wiki/Server_Name_Indication.

¢ Basic and Digest Access Authentication—This allows you to specify a username and password
in the HTTPS URL for the HTTP POST request, such as https://user:password@domain.com or
https://user@domain.com. The username and password are encrypted over the SSL connection
established when using HTTPS. Only the domain name is sent in plaintext. For more information
about Basic and Digest Access Authentication, see http://www.rfc-editor.org/info/rfc2617

The request contains the subject and message that were published to the topic along with metadata
about the notification in a JSON document. The request will look similar to the following HTTP POST
request. For details about the HTTP header and the JSON format of the request body, see HTTP/
HTTPS Headers (p. 195) and HTTP/HTTPS Notification JSON Format (p. 198).

POST / HTTP/ 1.1

X-ane-sns- nmessage-type: Notification

X-ane-sns-nmessage-i d: da4le39f - ea4d- 435a- b922- c6aae3915ebe
X-ane-sns-topi c-arn: arn: aws: sns: us-west -2: 123456789012: MyTopi ¢
X-anz-sns-subscription-arn: arn:aws:sns: us-

west - 2: 123456789012: MyTopi c: 2bcf bf 39- 05¢c3- 41de- beaa-fcfcc21c8f 55
Content -Length: 761

Cont ent - Type: text/plain; charset=UTF-8

Host: ec2-50-17-44-49. conput e- 1. amazonaws. com

Connection: Keep-Alive

User- Agent: Amazon Sinple Notification Service Agent

{
"Type" : "Notification",
"Messagel d" : "da41e39f - eadd- 435a- b922- c6aae3915ebe",

API Version 2010-03-31
147

http://aws.amazon.com/sns/
http://en.wikipedia.org/wiki/Server_Name_Indication
http://www.rfc-editor.org/info/rfc2617

Amazon Simple Notification Service Developer Guide
Step 1: Make sure your endpoint is ready
to process Amazon SNS messages

"Topi CArn" : "arn:aws:sns: us-west-2:123456789012: MyTopi c",
"Subject" : "test",
"Message" : "test message",
"Ti mestanp" : "2012-04-25T21:49: 25.719Z2",
" Si gnatureVersi on" : "1",
" Si gnat ure"
" EXAMPLEI DMXvB8r 9R83t GoNnOecwd5Uj | | zsvSvbl t zf aMpN2nk5HVSW7 XnOn/ 491 kxDKz8Yr | H2

"SigningCert URL" : "https://sns.us-west-2.amazonaws. conf

Si npl eNot i fi cati onServi ce-f3ecfb7224c7233f e7bb5f 59f 96de52f . pent',
"Unsubscri beURL" : "https://sns.us-west-2.amazonaws. com ?

Acti on=Unsubscri be&Subscri pti onArn=arn: aws: sns: us-
west - 2: 123456789012 MyTopi c: 2bcf bf 39- 05¢3- 41de- beaa-f cf cc21c8f 55"

}

1IXj 2i ZB0Z02C

To enable an Amazon SNS topic to send messages to an HTTP or HTTPS endpoint, follow these
steps:

Step 1: Make sure your endpoint is ready to process Amazon SNS messages (p. 148)
Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic (p. 151)

Step 3: Confirm the subscription (p. 152)

Step 4: Set the delivery retry policy for the subscription (optional) (p. 152)

Step 5: Give users permissions to publish to the topic (optional) (p. 152)

Step 6: Send messages to the HTTP/HTTPS endpoint (p. 153)

Step 1: Make sure your endpoint is ready to
process Amazon SNS messages

Before you subscribe your HTTP or HTTPS endpoint to a topic, you must make sure that the HTTP or

HTTPS endpoint has the capability to handle the HTTP POST requests that Amazon SNS uses to send

the subscription confirmation and notification messages. Usually, this means creating and deploying
a web application (for example, a Java servlet if your endpoint host is running Linux with Apache

and Tomcat) that processes the HTTP requests from Amazon SNS. When you subscribe an HTTP
endpoint, Amazon SNS sends it a subscription confirmation request. Your endpoint must be prepared
to receive and process this request when you create the subscription because Amazon SNS sends
this request at that time. Amazon SNS will not send notifications to the endpoint until you confirm the
subscription. Once you confirm the subscription, Amazon SNS will send notifications to the endpoint
when a publish action is performed on the subscribed topic.

To set up your endpoint to process subscription confirmation and notification
messages

1. Your code should read the HTTP headers of the HTTP POST requests that Amazon SNS sends
to your endpoint. Your code should look for the header field x- anz- sns- nessage- t ype, which
tells you the type of message that Amazon SNS has sent to you. By looking at the header, you
can determine the message type without having to parse the body of the HTTP request. There
are two types that you need to handle: Subscri pti onConfirnmati onand Notification. The
Unsubscri beConfi r mat i on message is used only when the subscription is deleted from the
topic.

For details about the HTTP header, see HTTP/HTTPS Headers (p. 195). The following HTTP
POST request is an example of a subscription confirmation message.

API Version 2010-03-31
148

Amazon Simple Notification Service Developer Guide
Step 1: Make sure your endpoint is ready
to process Amazon SNS messages

POST / HITP/ 1.1

X- ane-sns- message-type: SubscriptionConfirnmation
X-ane-sns-nmessage-id: 165545c9- 2a5c- 472c- 8df 2- 7f f 2be2b3blb
X-anE-sns-topic-arn: arn: aws: sns: us-west - 2: 123456789012: MyTopi ¢
Content -Length: 1336

Cont ent - Type: text/plain; charset=UTF-8

Host: exanpl e.com

Connection: Keep-Alive

User-Agent: Amazon Sinple Notification Service Agent

{
"Type" : "SubscriptionConfirnation",
"Messagel d" : "165545c9-2a5c-472c- 8df 2- 7f f 2be2b3b1b",
"Token"
" 2336412f 37f b687f 5d51e6€241d09c805a5a57b30d712f 794cc5f 6a988666d92768dd60a7
"Topi cArn" : "arn:aws:sns: us-west-2:123456789012: MyTopi c",
"Message" : "You have chosen to subscribe to the topic arn:aws:sns: us-

west - 2: 123456789012: MyTopi c. \nTo confirmthe subscription, visit the
Subscri beURL included in this nessage.",

"SubscribeURL" : "https://sns.us-west-2. anazonaws. coni ?

Act i on=Confi rnBubscri pti on&Topi CArn=arn: aws: sns: us-

west - 2: 123456789012: MyTopi c&Token=2336412f 37f b687f 5d51e6e241d09¢c805a5a57b30
"Ti mestanp” : "2012-04-26T20: 45: 04. 751Z",
"Si gnatureVersion" : "1",
"Signature" : "EXAMPLEpH

+DcEwj APg8ImY8dReBSwksf g2S7WKQei ke NKWL.Q wu6A4Vbe SOQHVCKhRS7f UQvi 2egU3N858f
"Si gningCert URL" : "https://sns.us-west-2. amazonaws. com

Si npl eNot i fi cati onService-f3ecfb7224c7233f e7bb5f 59f 96de52f . pent

}

47ba6f 3beb71€

d712f 794cc5f €

i TDNGbkk Ox'YD\

Your code should parse the JISON document in the body of the HTTP POST request to read the
name/value pairs that make up the Amazon SNS message. Use a JSON parser that handles
converting the escaped representation of control characters back to their ASCII character values
(for example, converting \n to a newline character). You can use an existing JSON parser such as
the Jackson JSON Processor (http://wiki.fasterxml.com/JacksonHome) or write your own. In order
to send the text in the subject and message fields as valid JSON, Amazon SNS must convert
some control characters to escaped representations that can be included in the JSON document.
When you receive the JSON document in the body of the POST request sent to your endpoint, you
must convert the escaped characters back to their original character values if you want an exact
representation of the original subject and messages published to the topic. This is critical if you
want to verify the signature of a notification because the signature uses the message and subject
in their original forms as part of the string to sign.

Your code should verify the authenticity of a notification, subscription confirmation, or unsubscribe
confirmation message sent by Amazon SNS. Using information contained in the Amazon SNS
message, your endpoint can recreate the signature so that you can verify the contents of the
message by matching your signature with the signature that Amazon SNS sent with the message.
For more information about verifying the signature of a message, see Verifying the Signatures of
Amazon SNS Messages (p. 173).

Based on the type specified by the header field x- anz- sns- nessage- t ype, your code should
read the JSON document contained in the body of the HTTP request and process the message.
Here are the guidelines for handling the two primary types of messages:

SubscriptionConfirmation
Read the value for Subscri beURL and visit that URL. To confirm the subscription and start
receiving notifications at the endpoint, you must visit the Subscr i beURLURL (for example, by
sending an HTTP GET request to the URL). See the example HTTP request in the previous
step to see what the Subscri beURL looks like. For more information about the format of

API Version 2010-03-31
149

http://wiki.fasterxml.com/JacksonHome

Amazon Simple Notification Service Developer Guide
Step 1: Make sure your endpoint is ready
to process Amazon SNS messages

the Subscri pti onConfi r mati on message, see HTTP/HTTPS Subscription Confirmation
JSON Format (p. 196). When you visit the URL, you will get back a response that looks like
the following XML document. The document returns the subscription ARN for the endpoint
within the Conf i r mSubscri pti onResul t element.

<Confi rnBubscri pti onResponse xm ns="http://sns. anazonaws. conl
doc/ 2010- 03- 31/ ">
<ConfirnBubscri pti onResul t >
<Subscri pti onArn>arn: aws: sns: us-
west - 2: 123456789012: MyTopi c: 2bcf bf 39- 05¢3- 41de- beaa-f cf cc21c8f 55</
Subscri pti onArn>
</ Confi rmBubscri pti onResul t >
<ResponseMet adat a>
<Request | d>075ecce8- 8dac- 11el- bf 80-f 781d96e9307</ Request | d>
</ ResponseMet adat a>
</ Confi rmBubscri pti onResponse>

As an alternative to visiting the Subscri beURL, you can confirm the subscription
using the ConfirmSubscription action with the Token set to its corresponding value
in the Subscri pti onConfirmati on message. If you want to allow only the topic
owner and subscription owner to be able to unsubscribe the endpoint, you call the
Confi rnSubscri pti on action with an AWS signature.

Notification
Read the values for Subj ect and Message to get the notification information that was
published to the topic.

For details about the format of the Not i fi cat i on message, see HTTP/HTTPS
Headers (p. 195). The following HTTP POST request is an example of a notification
message sent to the endpoint example.com.

POST / HTTP/ 1.1

X-ane-sns- nmessage-type: Notification

X-ane-sns-nmessage-i d: 22b80b92-f dea- 4c2c- 8f 9d- bdf bOc7bf 324
X-ane-sns-topi c-arn: arn:aws: sns: us-west-2:123456789012: MyTopi ¢
X-ane-sns-subscription-arn: arn:aws: sns: us-

west - 2: 123456789012: MyTopi c: ¢9135db0- 26¢c4- 47ec- 8998- 413945f b5a96
Cont ent -Length: 773

Cont ent - Type: text/plain; charset=UTF-8

Host: exanpl e.com

Connecti on: Keep-Alive

User-Agent: Amazon Sinple Notification Service Agent

{
"Type" : "Notification",
"Messagel d" : "22b80b92-f dea- 4c2c- 8f 9d- bdf bOc7bf 324",
"Topi CArn" : "arn:aws:sns: us-west-2:123456789012: MyTopi c",
"Subject” : "My First Message",
"Message" : "Hello world!",
"Ti mestanmp” : "2012-05-02T00: 54: 06. 655Z",
" Si gnatureVersion" @ "1",
" Si gnat ure”

" EXAMPLEW6J RNWrLLFQL41 CBObnXr dB8CI RMIQFGBgwWLpGhM7 8t J4et TwC5z U7 OBt S6t Gpey3ej edNdQJ
+1f kI p9F2/ LmNVKb5aF! Yq+9r k9Zi Pph5Yl LmA$Dcy C5T+Sy 9/
um ¢5S0UQc 2PEL gdpVBahwiNOdMMJ Pwk0kAJJzt nc=",
"SigningCertURL" : "https://sns.us-west-2. amazonaws. com
Si npl eNoti fi cati onServi ce-f 3ecfb7224c7233f e7bb5f 59f 96de52f . pent',

API Version 2010-03-31
150

http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide
Step 2: Subscribe the HTTP/HTTPS
endpoint to the Amazon SNS topic

"Unsubscri beURL" : "https://sns.us-west-2. amazonaws. com ?
Acti on=Unsubscri be&Subscri pti onArn=ar n: aws: sns: us-
west - 2: 123456789012: MyTopi c: ¢9135db0- 26¢c4- 47ec- 8998- 413945f b5a96"

}

Make sure that your endpoint responds to the HTTP POST message from Amazon SNS with
the appropriate status code. The connection will time out in 15 seconds. If your endpoint does
not respond before the connection times out or if your endpoint returns a status code outside the
range of 200—4xx, Amazon SNS will consider the delivery of the message as a failed attempt.

Make sure that your code can handle message delivery retries from Amazon SNS. If Amazon
SNS doesn't receive a successful response from your endpoint, it attempts to deliver the message
again. This applies to all messages, including the subscription confirmation message. By default,
if the initial delivery of the message fails, Amazon SNS attempts up to three retries with a delay
between failed attempts set at 20 seconds. Note that the message request times out at 15
seconds. This means that if the message delivery failure was caused by a timeout, Amazon SNS
will retry approximately 35 seconds after the previous delivery attempt. If you don't like the default
delivery policy, you can set a different delivery policy on the endpoint.

To be clear, Amazon SNS attempts to retry only after a delivery attempt has failed. You can
identify a message using the x- anz- sns- nessage- i d header field. By comparing the IDs of the
messages you have processed with incoming messages, you can determine whether the message
is a retry attempt.

If you are subscribing an HTTPS endpoint, make sure that your endpoint has a server certificate
from a trusted Certificate Authority (CA). Amazon SNS will only send messages to HTTPS
endpoints that have a server certificate signed by a CA trusted by Amazon SNS. For a list

of trusted CAs, see Certificate Authorities (CA) Recognized by Amazon SNS for HTTPS
Endpoints (p. 160).

Deploy the code that you have created to receive Amazon SNS messages. When you subscribe
the endpoint, the endpoint must be ready to receive at least the subscription confirmation
message.

Step 2: Subscribe the HTTP/HTTPS endpoint to
the Amazon SNS topic

To send messages to an HTTP or HTTPS endpoint through a topic, you must subscribe the endpoint
to the Amazon SNS topic. You specify the endpoint using its URL. To subscribe to a topic, you can
use the Amazon SNS console, the sns-subscribe command, or the Subscribe API action. Before you
start, make sure you have the URL for the endpoint that you want to subscribe and that your endpoint
is prepared to receive the confirmation and notification messages as described in Step 1.

To subscribe an HTTP or HTTPS endpoint to a topic using the Amazon SNS console

1.

a ke

Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

In the left navigation pane, click Topics and then select the topic.
Click the Other actions drop-down list and select Subscribe to topic.
In the Protocol drop-down list, select HTTP or HTTPS.

In the Endpoint box, paste in the URL for the endpoint that you want the topic to send messages
to and then click Create subscription.

For the Subscription request received! message, click Close.

Your new subscription's Subscription ID displays PendingConfirmation. When you confirm the
subscription, Subscription ID will display the subscription ID.

API Version 2010-03-31
151

http://docs.aws.amazon.com/sns/latest/cli/sns_subscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Step 3: Confirm the subscription

Step 3: Confirm the subscription

After you subscribe your endpoint, Amazon SNS will send a subscription confirmation message to
the endpoint. You should already have code that performs the actions described in Step 1 (p. 148)
deployed to your endpoint. Specifically, the code at the endpoint must retrieve the Subscri beURL
value from the subscription confirmation message and either visit the location specified by

Subscri beURL itself or make it available to you so that you can manually visit the Subscri beURL,
for example, using a web browser. Amazon SNS will not send messages to the endpoint until the
subscription has been confirmed. When you visit the Subscr i beURL, the response will contain

an XML document containing an element Subscr i pti onAr n that specifies the ARN for the
subscription. You can also use the Amazon SNS console to verify that the subscription is confirmed:
The Subscription ID will display the ARN for the subscription instead of the Pendi ngConfi r mati on
value that you saw when you first added the subscription.

Step 4: Set the delivery retry policy for the
subscription (optional)

By default, if the initial delivery of the message fails, Amazon SNS attempts up to three retries with

a delay between failed attempts set at 20 seconds. As discussed in Step 1 (p. 148), your endpoint
should have code that can handle retried messages. By setting the delivery policy on a topic or
subscription, you can control the frequency and interval that Amazon SNS will retry failed messages.
You can set a delivery policy on a topic or on a particular subscription.

Step 5: Give users permissions to publish to the
topic (optional)

By default, the topic owner has permissions to publish the topic. To enable other users or applications
to publish to the topic, you should use AWS Identity and Access Management (IAM) to give publish
permission to the topic. For more information about giving permissions for Amazon SNS actions to IAM
users, see Controlling User Access to Your AWS Account.

There are two ways to control access to a topic:

¢ Add a policy to an IAM user or group. The simplest way to give users permissions to topics is to
create a group and add the appropriate policy to the group and then add users to that group. It's
much easier to add and remove users from a group than to keep track of which policies you set on
individual users.

¢ Add a policy to the topic. If you want to give permissions to a topic to another AWS account, the only
way you can do that is by adding a policy that has as its principal the AWS account you want to give
permissions to.

You should use the first method for most cases (apply policies to groups and manage permissions for
users by adding or removing the appropriate users to the groups). If you need to give permissions to a
user in another account, use the second method.

If you added the following policy to an IAM user or group, you would give that user or members of that
group permission to perform the sns: Publ i sh action on the topic MyTopic.

{
"Version":"2012-10-17",

API Version 2010-03-31
152

http://docs.aws.amazon.com/sns/latest/gsg/UsingIAMwithSNS.html

Amazon Simple Notification Service Developer Guide
Step 6: Send messages to the HTTP/HTTPS endpoint

"Statenent": [{
"Sid":"A |l owPubl i shToMyTopi c",
"Effect":"All ow',
"Action":"sns: Publish",
"Resource":"arn: aws: sns: us-east - 1: 123456789012: MyTopi c"

The following example policy shows how to give another account permissions to a topic.

Note

When you give another AWS account access to a resource in your account, you are also
giving IAM users who have admin-level access (wildcard access) permissions to that
resource. All other IAM users in the other account are automatically denied access to your
resource. If you want to give specific IAM users in that AWS account access to your resource,
the account or an IAM user with admin-level access must delegate permissions for the
resource to those IAM users. For more information about cross-account delegation, see
Enabling Cross-Account Access in the Using IAM Guide.

If you added the following policy to a topic MyTopic in account 123456789012, you would give account
111122223333 permission to perform the sns: Publ i sh action on that topic.

{
"Version":"2012-10-17",
"1d":"MTopi cPolicy",
"Statenment": [{
"Sid":"Al ow publish-to-topic",
"Effect":"A | ow',
"Principal ":{
"AWS': " 111122223333"
1
"Action":"sns: Publish",
"Resource":"arn: aws: sns: us-east-1: 123456789012: MyTopi c"
}
]
}

Step 6: Send messages to the HTTP/HTTPS
endpoint

You can send a message to a topic's subscriptions by publishing to the topic. To publish to a topic, you
can use the Amazon SNS console, the sns-publish command, or the Publish API.

If you followed Step 1 (p. 148), the code that you deployed at your endpoint should process the
notification.

To publish to a topic using the Amazon SNS console

1. Using the credentials of the AWS account or IAM user with permission to publish to the topic,
sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. Inthe left navigation pane, click Topics and then select a topic.
3. Click the Publish to topic button.

API Version 2010-03-31
153

http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html
http://docs.aws.amazon.com/sns/latest/cli/sns_publish.html
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Setting Amazon SNS Delivery Retry
Policies for HTTP/HTTPS Endpoints

4. Inthe Subject box, enter a subject (for example, Testi ng publish to ny endpoint).
5. Inthe Message box, enter some text (for example, Hel | o wor | d!), and click Publish message.

The following message appears: Your message has been successfully published.

Setting Amazon SNS Delivery Retry Policies for
HTTP/HTTPS Endpoints

Topics
¢ Applying Delivery Policies to Topics and Subscriptions (p. 156)
¢ Setting the Maximum Receive Rate (p. 157)
¢ Immediate Retry Phase (p. 158)
¢ Pre-Backoff Phase (p. 158)
« Backoff Phase (p. 158)
¢ Post-Backoff Phase (p. 159)

A successful Amazon SNS delivery to an HTTP/HTTPS endpoint sometimes requires more than one
attempt. This can be the case, for example, if the web server that hosts the subscribed endpoint is
down for maintenance or is experiencing heavy traffic. If an initial delivery attempt doesn't result in a
successful response from the subscriber, Amazon SNS attempts to deliver the message again. We
call such an attempt a retry. In other words, a retry is an attempted delivery that occurs after the initial
delivery attempt.

Amazon SNS only attempts a retry after a failed delivery attempt. Amazon SNS considers the following
situations as a failed delivery attempt.

¢ HTTP status in the range 500-599.
¢ HTTP status outside the range 200-599.

¢ A request timeout (15 seconds). Note that if a request timeout occurs, the next retry will occur at
the specified interval after the timeout. For example, if the retry interval is 20 seconds and a request
times out, the start of the next request will be 35 seconds after the start of the request that timed out.

¢ Any connection error such as connection timeout, endpoint unreachable, bad SSL certificate, etc.

You can use delivery policies to control not only the total number of retries, but also the time delay
between each retry. You can specify up to 100 total retries distributed among four discrete phases. The
maximum lifetime of a message in the system is one hour. This one hour limit cannot be extended by a
delivery policy.

Initial Delivery
Attempt

Pre-Backoff Phase Backoff Phase Post-Backoff Phase

Time

Immediate Retry
Phase (no delay)

API Version 2010-03-31
154

Amazon Simple Notification Service Developer Guide
Setting Amazon SNS Delivery Retry
Policies for HTTP/HTTPS Endpoints

1. Immediate Retry Phase (p. 158)—Also called the no delay phase, this phase occurs immediately
after the initial delivery attempt. The value you set for Retries with no delay determines the number
of retries immediately after the initial delivery attempt. There is no delay between retries in this
phase.

2. Pre-Backoff Phase (p. 158)—The pre-backoff phase follows the immediate retry phase. Use this
phase to create a set of retries that occur before a backoff function applies to the retries. Use the
Minimum delay retries setting to specify the number of retries in the Pre-Backoff Phase. You can
control the time delay between retries in this phase by using the Minimum delay setting.

3. Backoff Phase (p. 158)—This phase is called the backoff phase because you can control the
delay between retries in this phase using the retry backoff function. Set the Minimum delay and
the Maximum delay, and then select a Retry backoff function to define how quickly the delay
increases from the minimum delay to the maximum delay.

4. Post-Backoff Phase (p. 159)—The post-backoff phase follows the backoff phase. Use the
Maximum delay retries setting to specify the number of retries in the post-backoff phase. You can
control the time delay between retries in this phase by using the Maximum delay setting.

The backoff phase is the most commonly used phase. If no delivery policies are set, the default is to
retry three times in the backoff phase, with a time delay of 20 seconds between each retry. The default
value for both the Minimum delay and the Maximum delay is 20. The default number of retries is 3,
so the default retry policy calls for a total of 3 retries with a 20 second delay between each retry. The
following diagram shows the delay associated with each retry.

Initial Delivery Relry 1 Retry 2 Retry 3
Attempt

Time

\j \J \J \J

Unsuccessiul Unsuccessiul Unsuccessiul T

To see how the retry backoff function affects the time delay between retries, you can set the maximum
delay to 40 seconds and leave the remaining settings at their default values. With this change, your
delivery policy now specifies 3 retries during the backoff phase, a minimum delay of 20 seconds, and
a maximum delay of 40 seconds. Because the default backoff function is linear, the delay between
messages increases at a constant rate over the course of the backoff phase. Amazon SNS attempts
the first retry after 20 seconds, the second retry after 30 seconds, and the final retry after 40 seconds.
The following diagram shows the delay associated with each retry.

Initial Delivery Retry 1 Retry 2
oo elry etry Retry 3

Delay Delay Delay

{20 sec) {30 sec) {40 sec)

Time

\J \J \J \j

Unsuccessful Unsuccessful Unsuccessiul 7

API Version 2010-03-31
155

Amazon Simple Notification Service Developer Guide
Applying Delivery Policies to Topics and Subscriptions

The maximum lifetime of a message in the system is one hour. This one hour limit cannot be extended
by a delivery policy.

Note

Only HTTP and HTTPS subscription types are supported by delivery policies. Support for
other Amazon SNS subscription types (e.g., email, Amazon SQS, and SMS) is not currently
available.

Applying Delivery Policies to Topics and
Subscriptions

You can apply delivery policies to Amazon SNS topics. If you set a delivery policy on a topic, the policy
applies to all of the topic's subscriptions. The following diagram illustrates a topic with a delivery policy
that applies to all three subscriptions associated with that topic.

Topic Delivery
Policy

Topic

N

Topic Delivery Topic Delivery Topic Delivery
Policy Policy Policy
subscription

subscription subscriphion

You can also apply delivery policies to individual subscriptions. If you assign a delivery policy to a
subscription, the subscription-level policy takes precedence over the topic-level delivery policy. In the
following diagram, one subscription has a subscription-level delivery policy whereas the two other
subscriptions do not.

Topic Delivery
Policy

Topic

Subscription
Delivery Policy

pLo

Topic Delivery Topic Delivery
Policy Policy
subscriplion subscriplion

In some cases, you might want to ignore all subscription delivery policies so that your topic's delivery
policy applies to all subscriptions even if a subscription has set its own delivery policy. To configure

API Version 2010-03-31
156

Amazon Simple Notification Service Developer Guide
Setting the Maximum Receive Rate

Amazon SNS to apply your topic delivery policy to all subscriptions, click Ignore subscription
override in the View/Edit Topic Delivery Policies dialog box. The following diagram shows a topic-
level delivery policy that applies to all subscriptions, even the subscription that has its own subscription
delivery policy because subscription-level policies have been specifically ignored.

Topic Delivery
Policy

Topic

Topic Delivery

Setting the Maximum Receive Rate

You can set the maximum number of messages per second that Amazon SNS sends to a subscribed
endpoint by setting the Maximum receive rate setting. Amazon SNS holds messages that are
awaiting delivery for up to an hour. Messages held for more than an hour are discarded.

« To set a maximum receive rate that applies to all of a topic's subscriptions, apply the setting at the
topic level using the Edit Topic Delivery Policy dialog box. For more information, see To set the
maximum receive rate for a topic (p. 157).

¢ To set a maximum receive rate that applies to a specific subscription, apply the setting at the
subscription level using the Edit Subscription Delivery Policy dialog box. For more information,
see To set the maximum receive rate for a subscription (p. 157).

To set the maximum receive rate for a topic

1. Signin to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select the topic.

Click the Other actions drop-down list and select Edit topic delivery policy.
In the Maximum receive rate box, type an integer value (e.g., 2).
Click Update policy to save your changes.

To set the maximum receive rate for a subscription

1. Signinto the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

In the left navigation pane, click Topics and then select a topic ARN.

In the Topic Details pane, select a subscription and click Edit topic delivery policy.

In the Maximum receive rate box, type an integer value (e.g., 2).

ok w D

Click Update policy to save your changes.

API Version 2010-03-31
157

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Immediate Retry Phase

Immediate Retry Phase

The immediate retry phase occurs directly after the initial delivery attempt. This phase is also known as
the No Delay phase because it happens with no time delay between the retries. The default number of
retries for this phase is 0.

To set the number of retries in the immediate retry phase

1. Signinto the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. Inthe left navigation pane, click Topics and then select a topic ARN.

3. Inthe Topic Details pane, select Edit topic delivery policy from the Other topic actions drop-
down list.

4. Inthe Retries with no delay box, type an integer value.
5. Click Update policy to save your changes.

Pre-Backoff Phase

The pre-backoff phase follows the immediate retry phase. Use this phase if you want to create a set
of one or more retries that happen before the backoff function affects the delay between retries. In
this phase, the time between retries is constant and is equal to the setting that you choose for the
Minimum delay. The Minumum delay setting affects retries in two phases—it applies to all retries in
the pre-backoff phase and serves as the initial time delay for retries in the backoff phase. The default
number of retries for this phase is 0.

To set the number of retries in the pre-backoff phase

1. Signin to the AWS Management Console and open the Amazon SNS console at https:/
console.aws.amazon.com/sns/.

2. Inthe left navigation pane, click Topics and then select a topic ARN.

3. Inthe Topic Details pane, select Edit topic delivery policy from the Other topic actions drop-
down list.

4. Inthe Minimum delay retries box, type an integer value.
5. Inthe Minimum delay box, type an integer value to set the delay between messages in this

phase.

The value you set must be less than or equal to the value you set for Maximum delay.
6. Click Update policy to save your changes.

Backoff Phase

The backoff phase is the only phase that applies by default. You can control the number of retries in
the backoff phase using Number of retries.

Important

The value you choose for Number of retries represents the total number of retries, including
the retries you set for Retries with no delay, Minimum delay retries, and Maximum delay
retries.

You can control the frequency of the retries in the backoff phase with three parameters.

¢ Minimum delay—The minimum delay defines the delay associated with the first retry attempt in the
backoff phase.

API Version 2010-03-31
158

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Post-Backoff Phase

« Maximum delay—The maximum delay defines the delay associated with the final retry attempt in
the backoff phase.

« Retry backoff function—The retry backoff function defines the algorithm that Amazon SNS uses to
calculate the delays associated with all of the retry attempts between the first and last retries in the
backoff phase.

You can choose from four retry backoff functions.

¢ Linear

¢ Arithmetic
* Geometric
¢ Exponential

The following screen shot shows how each retry backoff function affects the delay associated with
messages during the backoff period. The vertical axis represents the delay in seconds associated
with each of the 10 retries. The horizontal axis represents the retry number. The minimum delay is 5
seconds, and the maximum delay is 260 seconds.

300

250

200 =4 Exponential
150 == Arithmatic

/‘7 / Linear
100 .

/.//V(/ === Geometric
50

0 1 T T T T T T T T T 1

Post-Backoff Phase

The post-backoff phase is the final phase. Use this phase if you want to create a set of one or more
retries that happen after the backoff function affects the delay between retries. In this phase, the time
between retries is constant and is equal to the setting that you choose for the Maximum delay. The
Maximum delay setting affects retries in two phases—it applies to all retries in the post-backoff phase
and serves as the final time delay for retries in the backoff phase. The default number of retries for this
phase is 0.

To set the number of retries in the post-backoff phase

1. Signinto the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. In the left navigation pane, click Topics and then select a topic ARN.

3. Inthe Topic Details pane, select Edit topic delivery policy from the Other topic actions drop-
down list.

4. Inthe Maximum delay retries box, type an integer value.

5. Inthe Maximum delay box, type an integer value to set the delay between messages in this
phase.

API Version 2010-03-31
159

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

The value you set must be greater than or equal to the value you set for Minimum delay.
6. Click Update policy to save your changes.

Certificate Authorities (CA) Recognized by
Amazon SNS for HTTPS Endpoints

If you subscribe an HTTPS endpoint to a topic, that endpoint must have a server certificate signed by
a trusted Certificate Authority (CA). Amazon SNS will only deliver messages to HTTPS endpoints that
have a signed certificate from a trusted CA that Amazon SNS recognizes. Amazon SNS recognizes the
following CAs.

nmozi |l | acert 81. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

07: EO: 32: EO: 20: B7: 2C: 3F: 19: 2F: 06: 28: A2: 59: 3A: 19: A7: OF: 06: 9E
nmozi |l | acert 99. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

F1: 7F: 6F: B6: 31: DC. 99: E3: A3: C8: 7F: FE: 1C: F1: 81: 10: 88: D9: 60: 33
SwWi sssi gnpl ati nung2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

56: EO: FA: C0: 3B: 8F: 18: 23: 55: 18: E5: D3: 11: CA: E8: C2: 43: 31: AB: 66
nmozi | | acert 145. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

10: 1D: FA: 3F: D5: 0B: CB: BB: 9B: B5: 60: 0C: 19: 55: A4: 1A: F4: 73: 3A: 04
nmozi |l | acert 37. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

Bl: 2E: 13: 63: 45: 86: A4: 6F: 1A: B2: 60: 68: 37: 58: 2D: C4: AC: FD: 94: 97
nmozi | | acert 4. pem Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAl):

E3: 92: 51: 2F: OA: CF: F5: 05: DF: F6: DE: 06: 7F: 75: 37: E1: 65: EA: 57: 4B
anmeni nternal i tseccag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

FA: 07: FA: A6: 35: DO: BC: 98: 72: 3D: B3: 08: 8A: CD: CD: CD: 3E: 23: F9: ED
nmozi |l | acert 70. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

78: 6A: 74: AC. 76: AB: 14: 7F: 9C. 6A: 30: 50: BA: 9E: A8: 7E: FE: 9A: CE: 3C
nmozi | | acert 88. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

FE: 45: 65: 9B: 79: 03: 5B: 98: Al: 61: B5: 51: 2E: AC. DA: 58: 09: 48: 22: 4D
nmozi | | acert134. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

70:17: 9B: 86: 8C. 00: A4: FA: 60: 91: 52: 22: 3F: 9F: 3E: 32: BD: EO: 05: 62
nmozi | | acert 26. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

87:82: C6: C3: 04: 35: 3B: CF: D2: 96: 92: D2: 59: 3E: 7D: 44: D9: 34: FF: 11
veri si gncl ass2g2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

B3: EA: C4: 47: 76: C9: C8: 1C. EA: F2: 9D: 95: B6: CC. A0: 08: 1B: 67: EC. 9D
nmozi |l acert 77. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

13: 2D: 0D: 45: 53: 4B: 69: 97: CD: B2: D5: C3: 39: E2: 55: 76: 60: 9B: 5C. C6
nmozi | | acert123. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAl):

2A: B6: 28: 48: 5E: 78: FB: F3: AD: 9E: 79: 10: DD: 6B: DF: 99: 72: 2C. 96: E5
ut ndat acor psgcca, Apr 22, 2014, trustedCertEntry,

API Version 2010-03-31
160

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

58: 11: 9F: OE: 12: 82: 87: EA: 50: FD: DO: 87: 45: 6F: 4F: 78: DC. FA: D6: D4
nozi |l | acert 15. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

74:20:74:41:72: 9C. DD: 92: EC: 79: 31: D8: 23: 10: 8D: C2: 81: 92: E2: BB
di gi certgl obal rootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A8: 98: 5D: 3A: 65: E5: E5: C4: B2: D7: D6: 6D: 40: C6: DD: 2F: B1: 9C: 54: 36
nozi |l | acert 66. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DD: E1: D2: A9: 01: 80: 2E: 1D: 87: 5E: 84: B3: 80: 7E: 4B: B1: FD: 99: 41: 34
nmozi |l | acert112. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

43:13: BB: 96: F1: D5: 86: 9B: C1: 4E: 6A: 92: F6: CF: F6: 34: 69: 87: 82: 37
utnuserfirstclientauthemailca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

Bl: 72: B1: A5: 6D: 95: F9: 1F: E5: 02: 87: E1: 4D: 37: EA: 6A: 44: 63: 76: 8A
verisignc2gl. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

67: 82: AA: EO: ED: EE: E2: 1A: 58: 39: D3: C0: CD: 14: 68: OA: 4F: 60: 14: 2A
nozi |l | acert55. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AA: DB: BC: 22: 23: 8F: C4: 01: Al: 27: BB: 38: DD: F4: 1D: DB: 08: 9E: FO: 12
nozi |l acert 101. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

99: A6: 9B: E6: 1A: FE: 88: 6B: 4D: 2B: 82: 00: 7C: B8: 54: FC: 31: 7E: 15: 39
nozi |l acert119. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

75: EO: AB: B6: 13: 85: 12: 27: 1C: 04: F8: 5F: DD: DE: 38: E4: B7: 24: 2E: FE
verisi gnc3gl. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

Al: DB: 63: 93: 91: 6F: 17: E4: 18: 55: 09: 40: 04: 15: C7: 02: 40: BO: AE: 6B
nozi |l | acert 44. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: 43: E5: B1: BF: F8: 78: 8C. AC. 1C. C7: CA: 4A: 9A: C6: 22: 2B: CC. 34: C6
nozi |l | acert 108. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

Bl: BC: 96: 8B: D4: F4: 9D: 62: 2A: A8: 9A: 81: F2: 15: 01: 52: A4: 1D: 82: 9C
nozi |l | acert 95. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DA: FA: F7: FA: 66: 84: EC. 06: 8F: 14: 50: BD: C7: C2: 81: A5: BC: A9: 64: 57
keynecti srootca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

9C. 61: 5C: 4D: 4D: 85: 10: 3A: 53: 26: C2: 4D: BA: EA: E4: A2: D2: D5: CC: 97
nmozi | | acert 141. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

31: 7A: 2A: DO: 7F: 2B: 33: 5E: F5: Al: C3: 4E: 4B: 57: E8: B7: D8: F1: FC: A6
equi f axsecur egl obal ebusi nesscal, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

TE: 78: 4A: 10: 1C: 82: 65: CC. 2D: E1: F1: 6D: 47: B4: 40: CA: D9: 0A: 19: 45
bal ti norecodesi gni ngca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

30: 46: D8: C8: 88: FF: 69: 30: C3: 4A: FC. CD: 49: 27: 08: 7C: 60: 56: 7B: 0D
nozi |l | acert 33. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

FE: B8: C4: 32: DC: F9: 76: 9A: CE: AE: 3D: D8: 90: 8F: FD: 28: 86: 65: 64: 7D
nozill acert 0. pem Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):
97:81:79:50: D8: 1C:. 96: 70: CC: 34: D8: 09: CF: 79: 44: 31: 36: 7TE: F4: 74

API Version 2010-03-31
161

Amazon Simple Notification Service Developer Guide

Certificate Authorities for HTTPS Endpoints

nozi |l | acert 84. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D3: CO: 63: F2: 19: ED: 07: 3E: 34: AD: 5D: 75: 0B: 32: 76: 29: FF:
nmozi | | acert 130. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E5: DF: 74: 3C:. B6: 01: C4: 9B: 98: 43: DC: AB: 8C. E8: 6A: 81: 10:
nmozi | | acert 148. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

04: 83: ED: 33: 99: AC: 36: 08: 05: 87: 22: ED: BC: 5E: 46: 00: E3:
nozi |l | acert 22. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

32: 3C: 11: 8E: 1B: F7: B8: B6: 52: 54: E2: E2: 10: OD: D6: 02: 90:
verisignclgl. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

90: AE: A2: 69: 85: FF: 14: 80: 4C: 43: 49: 52: EC: E9: 60: 84: 77:
nozill acert7. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AD: 7E: 1C: 28: BO: 64: EF: 8F: 60: 03: 40: 20: 14: C3: DO: E3: 37:
nozill acert 73. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B5: 1C. 06: 7C. EE: 2B: OC: 3D: F8: 55: AB: 2D: 92: F4: FE: 39: D4:
nmozi | | acert 137. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4A: 65: D5: F4: 1D: EF: 39: B8: B8: 90: 4A: 4A: D3: 64: 81: 33: CF:
SWi sssi gnsi | verg2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9B: AA: E5: 9F: 56: EE: 21: CB: 43: 5A: BE: 25: 93: DF: A7: FO: 40:
nozill acert11. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

05: 63: B8: 63: 0D: 62: D7: 5A: BB: C8: AB: 1E: 4B: DF: B5: A8: 99:
nozi |l | acert 29. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

74: F8: A3: C3: EF: E7: B3: 90: 06: 4B: 83: 90: 3C: 21: 64: 60: 20:
nozil | acert 62. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

Al: DB: 63: 93: 91: 6F: 17: E4: 18: 55: 09: 40: 04: 15: C7: 02: 40:
nmozi | | acert 126. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

25:01:90: 19: CF: FB: D9: 99: 1C: B7: 68: 25: 74: 8D: 94: 5F: 30:
soneracl asslca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

07:47:22:01:99: CE: 74: B9: 7C. BO: 3D: 79: B2: 64: A2: C8: 55:
nozi |l acert 18. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

79:98: A3: 08: E1: 4D: 65: 85: E6: C2: 1E: 15: 3A: 71: 9F: BA: 5A:
nozil | acert51. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

FA: B7: EE: 36: 97: 26: 62: FB: 2D: BO: 2A: F6: BF: 03: FD: E8: 7C.
nozi |l | acert 69. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

2F: 78: 3D: 25: 52: 18: A7: 4A: 65: 39: 71: B5: 2C: A2: 9C. 45: 15:
nmozi | | acert 115. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

59: 0D: 2D: 7D: 88: 4F: 40: 2E: 61: 7E: A5: 62: 32: 17: 65: CF: 17:
veri si gncl ass3g5ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4E: B6: D5: 78: 49: 9B: 1C. CF: 5F: 58: 1E: AD: 56: BE: 3D: 9B: 67: 44: A5:
ut nuserfirsthardwareca, Apr 22, 2014, trustedCertEntry,

D5:

9F:

37:

AF:

OE:

E7:

C7:

D1:

93:

E9:

D3:

4B:

6F:

D8:

9A:

E4:

. FO:

FO:

55:

B5:

OF:

Al:

1D:

1 4D:

. AE:

95:

33:

4A:

2F:

E9:

94:

F2

8E

D7

96

6F

8A

OE

D1

43

6B

42

FF

9B

19

E9

ES

API Version 2010-03-31
162

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

04: 83: ED: 33: 99: AC:. 36: 08: 05: 87: 22: ED: BC. 5E: 46: 00: E3: BE: F9:

addtrustqual i fi edca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4D: 23: 78: EC. 91: 95: 39: B5: 00: 7F: 75: 8F: 03: 3B: 21: 1E: C5: 4D: 8B:

nozi |l | acert 40. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

80: 25: EF: F4: 6E: 70: C8: D4: 72: 24: 65: 84: FE: 40: 3B: 8A: 8D: 6A: DB:

nozi |l | acert 58. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8D: 17: 84: D5: 37: F3: 03: 7D: EC. 70: FE: 57: 8B: 51: 9A: 99: E6: 10: D7:

veri si gncl ass3g3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

13: 2D: 0D: 45: 53: 4B: 69: 97: CD: B2: D5: C3: 39: E2: 55: 76: 60: 9B: 5C.

nmozi | | acert 104. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4F: 99: AA: 93: FB: 2B: D1: 37: 26: Al: 99: 4A: CE: 7F: FO: 05: F2: 93: 5D:

nozill acert91. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

3B: C0: 38: 0B: 33: C3: F6: A6: 0C. 86: 15: 22: 93: D9: DF: F5: 4B: 81: CO:

t hawt eper sonal freenmi | ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E6: 18: 83: AE: 84: CA: C1: C1: CD: 52: AD: E8: E9: 25: 2B: 45: A6: 4F: B7:

certpluscl ass3ppri maryca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

21: 6B: 2A: 29: E6: 2A: 00: CE: 82: 01: 46: D8: 24: 41: 41: B9: 25: 11: B2:

veri signc3g4. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

22:. D5: D8: DF: 8F: 02: 31: D1: 8D: F7: 9D: B7: CF: 8A: 2D: 64: C9: 3F: 6C:

swi sssi gngol dg2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D8: C5: 38: 8A: B7: 30: 1B: 1B: 6E: D4: 7A: E6: 45: 25: 3A: 6F: 9F: 1A: 27:

nmozi | | acert47. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

1B: 4B: 39: 61: 26: 27: 6B: 64: 91: A2: 68: 6D: D7: 02: 43: 21: 2D: 1F: 1D:

nozi |l | acert 80. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B8: 23: 6B: 00: 2F: 1D: 16: 86: 53: 01: 55: 6C. 11: A4: 37: CA: EB: FF: C3:

nozil | acert 98. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

C9: A8: B9: E7: 55: 80: 5E: 58: E3: 53: 77: A7: 25: EB: AF: C3: 7B: 27: CC:

nozi |l | acert 144. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

37 F7:6D: E6: 07: 7C. 90: C5: B1: 3E: 93: 1A: B7: 41: 10: B4: F2: E4: 9A:

starfieldclass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AD: 7E: 1C. 28: BO: 64: EF: 8F: 60: 03: 40: 20: 14: C3: DO: E3: 37: OE: B5:

nozi |l | acert 36. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

23:88: C9: D3: 71: CC. 9E: 96: 3D: FF: 7D: 3C. A7: CE: FC: D6: 25: EC. 19:

nmozi |l | acert 3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

87: 9F: 4B: EE: 05: DF: 98: 58: 3B: E3: 60: D6: 33: E7: OD: 3F: FE: 98: 71:

gl obal si gnr2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

75: EO: AB: B6: 13:85: 12: 27: 1C. 04: F8: 5F: DD: DE: 38: E4: B7: 24: 2E:

nozill acert87. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: 3B: 8C. F2: F8: 10: B3: 7D: 78: B4: CE: EC. 19: 19: C3: 73: 34: B9: C7:

D7

F5

BO

1E

04

E2

79

3A

61

96

BB

D7

27

8A

(0]}

AF

FE

74

API Version 2010-03-31
163

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

nozi |l | acert 133. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: B5: FF: 67: 9B: 0C: 79: 96: 1F: C8: 6E: 44: 22: 00: 46: 13: DB: 17: 92: 84
nozi |l | acert 25. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4E: B6: D5: 78: 49: 9B: 1C. CF: 5F: 58: 1E: AD: 56: BE: 3D: 9B: 67: 44: A5: E5
veri si gncl asslg2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

27: 3E: E1: 24: 57: FD: C4: F9: 0C: 55: E8: 2B: 56: 16: 7F: 62: F5: 32: E5: 47
nozil | acert 76. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F9: B5: B6: 32: 45: 5F: 9C. BE: EC. 57: 5F: 80: DC: E9: 6E: 2C. C7: B2: 78: B7
nozi |l acert122. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

02: FA: F3: E2: 91: 43: 54: 68: 60: 78: 57: 69: 4D: F5: E4: 5B: 68: 85: 18: 68
godaddysecurecertificationauthority, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

7C. 46: 56: C3: 06: 1F: 7F: 4C. OD: 67: B3: 19: A8: 55: F6: OE: BC. 11: FC: 44
nozi |l | acert 14. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: B7: EE: 06: 33: E2: 59: DB: AD: 0C: 4C: 9A: E6: D3: 8F: 1A: 61: C7: DC: 25
equi faxsecureca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

D2:32: 09: AD: 23: D3: 14: 23: 21: 74: E4: OD: 7F: 9D: 62: 13: 97: 86: 63: 3A
nozi |l | acert 65. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

69: BD: 8C: F4: 9C: D3: 00: FB: 59: 2E: 17: 93: CA: 55: 6A: F3: EC: AA: 35: FB
nmozi |l acert111. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9C. BB: 48: 53: F6: A4: F6: D3: 52: A4: E8: 32: 52: 55: 60: 13: F5: AD: AF: 65
certuntrustednetworkca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

07: EO: 32: EO: 20: B7: 2C: 3F: 19: 2F: 06: 28: A2: 59: 3A: 19: A7: OF: 06: 9E
nozi |l | acert129. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E6: 21: F3: 35: 43: 79: 05: 9A: 4B: 68: 30: 9D: 8A: 2F: 74: 22: 15: 87: EC. 79
nozi |l | acert54. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

03: 9E: ED: B8: OB: E7: AO: 3C. 69: 53: 89: 3B: 20: D2: D9: 32: 3A: 4C. 2A: FD
nozi |l | acert 100. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

58: E8: AB: BO: 36: 15: 33: FB: 80: F7: 9B: 1B: 6D: 29: D3: FF: 8D: 5F: 00: FO
nozi |l acert118. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

TE: 78: 4A: 10: 1C: 82: 65: CC. 2D: E1: F1: 6D: 47: B4: 40: CA: D9: 0A: 19: 45
nozi |l | acert 151. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AC: ED: 5F: 65: 53: FD: 25: CE: 01: 5F: 1F: 7A: 48: 3B: 6A: 74: 9F: 61: 78: C6
t hawt epri maryr oot cag3, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F1: 8B: 53: 8D: 1B: E9: 03: B6: A6: FO: 56: 43: 5B: 17: 15: 89: CA: F3: 6B: F2
quovadi srootca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

DE: 3F: 40: BD: 50: 93: D3: 9B: 6C. 60: F6: DA: BC. 07: 62: 01: 00: 89: 76: C9
t hawt epri maryr oot cag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AA: DB: BC: 22: 23: 8F: C4: 01: Al: 27: BB: 38: DD: F4: 1D: DB: 08: 9E: FO: 12
deprecat edi tsecca, Apr 22, 2014, trustedCertEntry,

API Version 2010-03-31
164

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

12:12: 0B: 03: OE: 15: 14: 54: F4: DD: B3: F5: DE: 13: 6E: 83: 5A: 29: 72: 9D
entrustrootcag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8C. F4: 27: FD: 79: 0C: 3A: D1: 66: 06: 8D: E8: 1E: 57: EF: BB: 93: 22: 72: D4
nozi |l | acert43. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F9: CD: OE: 2C: DA: 76: 24: C1: 8F: BD: FO: FO: AB: B6: 45: B8: F7: FE: D5: 7A
nozi |l | acert 107. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8E: 1C:. 74: F8: A6: 20: B9: E5: 8A: F4: 61: FA: EC: 2B: 47: 56: 51: 1A: 52: C6
trustcenterclass4caii, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A6: 9A: 91: FD: 05: 7F: 13: 6A: 42: 63: 0B: B1: 76: OD: 2D: 51: 12: 0C: 16: 50
nozi |l | acert 94. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

49: 0A: 75: 74: DE: 87: OA: 47: FE: 58: EE: F6: C7: 6B: EB: C6: 0B: 12: 40: 99
nmozi | | acert 140. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CA: 3A: FB: CF: 12: 40: 36: 4B: 44: B2: 16: 20: 88: 80: 48: 39: 19: 93: 7C. F7
ttel esecgl obal root cl ass3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

55: A6: 72: 3E: CB: F2: EC. CD: C3: 23: 74: 70: 19: 9D: 2A: BE: 11: E3: 81: D1
anmeni nt ernal corpca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

43: E3: E6: 37: C5: 88: 05: 67: 91: 37: E3: 72: 4D: 01: 7F: F4: 1B: CE: 3A: 97
nozil | acert 32. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

60: D6: 89: 74: B5: C2: 65: 9E: 8A: OF: C1: 88: 7C: 88: D2: 46: 69: 1B: 18: 2C
nozil | acert 83. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AO0: 73: E5: C5: BD: 43: 61: 0D: 86: 4C: 21: 13: OA: 85: 58: 57: CC. 9C: EA: 46
verisi gnroot.pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: 79: CA: 35: 66: 87: 72: 30: 4D: 30: A5: FB: 87: 3B: OF: A7: 7B: B7: OD: 54
nmozi | | acert 147. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

58: 11: 9F: OE: 12: 82: 87: EA: 50: FD: DO: 87: 45: 6F: 4F: 78: DC. FA: D6: D4
canerfirmachanbersca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

78: 6A: 74: AC. 76: AB: 14: 7F: 9C: 6A: 30: 50: BA: 9E: A8: 7E: FE: 9A: CE: 3C
nozil | acert21. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9B: AA: E5: 9F: 56: EE: 21: CB: 43: 5A: BE: 25: 93: DF: A7: FO: 40: D1: 1D: CB
nozi |l | acert 39. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AE: 50: 83: ED: 7C: F4: 5C. BC: 8F: 61: C6: 21: FE: 68: 5D: 79: 42: 21: 15: 6E
nozil | acert 6. pem Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

27:96: BA: E6: 3F: 18: 01: E2: 77: 26: 1B: AO: D7: 77: 70: 02: 8F: 20: EE: E4
veri si gnuni versal rootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: 79: CA: 35: 66: 87: 72: 30: 4D: 30: A5: FB: 87: 3B: OF: A7: 7B: B7: OD: 54
nozill acert72. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

47: BE: AB: C9: 22: EA: E8: OE: 78: 78: 34: 62: A7: 9F: 45: C2: 54: FD: E6: 8B
geotrustuni versal ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E6: 21: F3: 35: 43: 79: 05: 9A: 4B: 68: 30: 9D: 8A: 2F: 74: 22: 15: 87: EC. 79

API Version 2010-03-31
165

Amazon Simple Notification Service Developer Guide

Certificate Authorities for HTTPS Endpoints

nozi |l | acert 136. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D1: EB: 23: A4: 6D: 17: D6: 8F: D9: 25: 64: C2: F1: F1: 60: 17: 64

nozil | acert 10. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: 3A: FC. OA: 8B: 64: F6: 86: 67: 34: 74: DF: 7E: A9: A2: FE: F9:

nozil | acert 28. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

66: 31: BF: 9E: F7: 4F: 9E: B6: C9: D5: A6: OC. BA: 6A: BE: D1: F7:

nozil | acert 61. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

EO: B4: 32: 2E: B2: F6: A5: 68: B6: 54: 53: 84: 48: 18: 4A: 50: 36:

nozill acert79. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D8: A6: 33: 2C. EO: 03: 6F: B1: 85: F6: 63: 4F: 7D: 6A: 06: 65: 26:

nmozi | | acert 125. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B3: 1E: B1: B7: 40: E3: 6C. 84: 02: DA: DC. 37: D4: 4D: F5: D4: 67:

nozill acert17. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

40: 54: DA: 6F: 1C. 3F: 40: 74: AC. ED: OF: EC. CD: DB: 79: D1: 53:

nozi |l | acert50. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8C. 96: BA: EB: DD: 2B: 07: 07: 48: EE: 30: 32: 66: AO: F3: 98: 6E:

nozil | acert 68. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AE: C5: FB: 3F: C8: E1: BF: C4: E5: 4F: 03: 07: 5A: 9A: E8: 00: B7:

nmozi | | acert114. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

51: C6: E7: 08: 49: 06: 6E: F3: 92: D4: 5C. AO: OD: 6D: A3: 62: 8F:

nozil | acert57. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D6: DA: A8: 20: 8D: 09: D2: 15: 4D: 24: B5: 2F: CB: 34: 6E: B2: 58:

verisignc2g3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

61: EF: 43: D7: 7F. CA: D4: 61: 51: BC. 98: EO: C3: 59: 12: AF: 9F:

veri si gncl ass2g3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

61: EF: 43: D7: 7F. CA: D4: 61: 51: BC. 98: EO: C3: 59: 12: AF: 9F:

nozi |l | acert 103. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

70: Cl: 8D: 74: B4: 28: 81: OA: E4: FD: A5: 75: D7: 01: 9F: 99: BO:

nozi |l | acert 90. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F3:73: B3: 87: 06: 5A: 28: 84: 8A: F2: F3: 4A: CE: 19: 2B: DD: C7:

verisignc3g3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

13: 2D: 0D: 45: 53: 4B: 69: 97: CD: B2: D5: C3: 39: E2: 55: 76: 60:

nozi |l | acert 46. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

40:9D: 4B: D9: 17: B5: 5C. 27: B6: 9B: 64: CB: 98: 22: 44: 0D: CD:

godaddycl ass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

27:.96: BA: E6: 3F: 18: 01: E2: 77: 26: 1B: AO: D7: 77: 70: 02: 8F:

verisignc4g3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

C8: EC. 8C. 87:92: 69: CB: 4B: AB: 39: E9: 8D: 7E: 57: 67: F3: 14:

nozil | acert 97. pem Apr 22, 2014, trustedCertEntry,

D8: E3:

FA: 7A:

BD: EF:

87: 43:

32: 28:

49:52:

FB: 90:

7C. AE:

F7: B6:

C3:52:

B2: 8A:

EB: 63:

EB: 63:

3D: 50:

8E: 9C.

9B: 5C.

09: B8:

20: EE:

95: 73:

49

51

7B

84

27

F9

1D

58

FA

39

58

11

11

74

AC

89

E4

9D

API Version 2010-03-31
166

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

85:37: 1C. A6: E5: 50: 14: 3D: CE: 28: 03: 47: 1B: DE: 3A: 09: E8: F8: 77:

nmozi | | acert 143. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: Bl: 2B: 49: F9: 81: 9E: D7: 4C. 9E: BC: 38: OF: C6: 56: 8F: 5D: AC. B2:

nozi |l | acert 35. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

2A: C8: D5: 8B: 57: CE: BF: 2F: 49: AF: F2: FC. 76: 8F: 51: 14: 62: 90: 7A:

nmozi |l | acert2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

22:. D5: D8: DF: 8F: 02: 31: D1: 8D: F7: 9D: B7: CF: 8A: 2D: 64: C9: 3F: 6C:

utnuserfirstobjectca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

El: 2D FB: 4B: 41: D7: D9: C3: 2B: 30: 51: 4B: AC. 1D: 81: D8: 38: 5E: 2D:

nozi |l | acert 86. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

74:.2C. 31: 92: E6: 07: E4: 24: EB: 45: 49: 54: 2B: E1: BB: C5: 3E: 61: 74:

nmozi | | acert 132. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

39:21: Cl: 15: C1: 5D: OE: CA: 5C. CB: 5B: C4: FO: 7D: 21: D8: 05: 0B: 56:

addtrustcl asslca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CC. AB: OE: AO: 4C. 23: 01: D6: 69: 7B: DD: 37: 9F: CD: 12: EB: 24: E3: 94:

nozi |l | acert 24. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

59: AF: 82: 79: 91: 86: C7: B4: 75: 07: CB: CF: 03: 57: 46: EB: 04: DD: B7:

verisignclg3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

20:42:85: DC. F7: EB: 76: 41: 95: 57: 8E: 13: 6B: D4: B7: D1: E9: 8E: 46:

nmozi |l | acert9. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F4: 8B: 11: BF: DE: AB: BE: 94: 54: 20: 71: E6: 41: DE: 6B: BE: 88: 2B: 40:

anmeni nt ernal rootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A7: B7: F6: 15: 8A: FF: 1E: C8: 85: 13: 38: BC. 93: EB: A2: AB: A4: 09: EF:

nozil | acert 75. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D2: 32: 09: AD: 23: D3: 14: 23: 21: 74: E4: OD: 7F: 9D: 62: 13: 97: 86: 63:

entrustevca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B3: 1E: B1: B7: 40: E3: 6C. 84: 02: DA: DC. 37: D4: 4D: F5: D4: 67: 49: 52:

seconscrootca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: 3B: 8C. F2: F8: 10: B3: 7D: 78: B4: CE: EC. 19: 19: C3: 73: 34: B9: C7:

caner firmachanbersi gnca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4A: BD: EE: EC: 95: OD: 35: 9C: 89: AE: C7: 52: Al: 2C: 5B: 29: F6: D6: AA:

seconscrootcal, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: Bl: 2B: 49: F9: 81: 9E: D7: 4C. 9E: BC: 38: OF: C6: 56: 8F: 5D: AC:. B2:

nmozi | | acert121. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CC. AB: OE: AO: 4C. 23: 01: D6: 69: 7B: DD: 37: 9F: CD: 12: EB: 24: E3: 94:

nozi |l | acert 139. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DE: 3F: 40: BD: 50: 93: D3: 9B: 6C:. 60: F6: DA: BC:. 07: 62: 01: 00: 89: 76:

nozill acert13. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

06: 08: 3F: 59: 3F: 15: Al: 04: AO: 69: A4: 6B: A9: 03: DO: 06: B7: 97: 09:

OF

F7

41

3A

46

E2

6A

9D

16

A5

B9

06

3A

F9

74

0ocC

F7

9D

91

API Version 2010-03-31
167

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

nozi |l | acert 64. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

62: 7F: 8D: 78: 27: 65: 63: 99: D2: 7D: 7F: 90: 44: C9: FE: B3: F3: 3E: FA: 9A
nmozi | | acert 110. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

93: 05: 7A: 88: 15: C6: 4F: CE: 88: 2F: FA: 91: 16: 52: 28: 78: BC. 53: 64: 17
nmozi | | acert 128. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A9: E9: 78: 08: 14: 37: 58: 88: F2: 05: 19: BO: 6D: 2B: 0D: 2B: 60: 16: 90: 7D
entrust 2048ca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

50: 30: 06: 09: 1D: 97: D4: F5: AE: 39: F7: CB: E7: 92: 7D:. 7D: 65: 2D: 34: 31
nozi |l | acert53. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

7F: 8A: BO: CF: DO: 51: 87: 6A: 66: F3: 36: OF: 47: C8: 8D: 8C:. D3: 35: FC: 74
nmozi |l acert117. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D4: DE: 20: DO: 5E: 66: FC: 53: FE: 1A: 50: 88: 2C. 78: DB: 28: 52: CA: E4: 74
nmozi | | acert 150. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

33: 9B: 6B: 14: 50: 24: 9B: 55: 7A: 01: 87: 72: 84: D9: EO: 2F: C3: D2: D3: E9
t hawt eserverca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

9F: AD: 91: A6: CE: 6A: C6: C5: 00: 47: CA: 4E: C9: D4: A5: 0D: 92: D8: 49: 79
seconval i certcl asslca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E5: DF: 74: 3C:. B6: 01: C4: 9B: 98: 43: DC: AB: 8C. E8: 6A: 81: 10: 9F: E4: 8E
nozi |l | acert42. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: A4: 08: CO: 9C: 19: 3E: 5D: 51: 58: 7D: CD: D6: 13: 30: FD: 8C. DE: 37: BF
gt ecybertrustgl obal ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

97:81:79:50: D8: 1C:. 96: 70: CC: 34: D8: 09: CF: 79: 44: 31: 36: 7TE: F4: 74
nmozi | | acert 106. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E7: Al: 90: 29: D3: D5: 52: DC: OD: OF: C6: 92: D3: EA: 88: 0D: 15: 2E: 1A: 6B
equi f axsecur eebusi nesscal, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DA: 40: 18: 8B: 91: 89: A3: ED: EE: AE: DA: 97: FE: 2F: 9D: F5: B7: D1: 8A: 41
nozi |l acert 93. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

31: F1: FD: 68: 22: 63: 20: EE: C6: 3B: 3F: 9D: EA: 4A: 3E: 53: 7C. 7C. 39: 17
quovadi sroot ca3, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

1F: 49: 14: F7: D8: 74: 95: 1D: DD: AE: 02: CO: BE: FD: 3A: 2D: 82: 75: 51: 85
quovadi sroot ca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CA: 3A: FB: CF: 12: 40: 36: 4B: 44: B2: 16: 20: 88: 80: 48: 39: 19: 93: 7C. F7
soner acl ass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

37: F7:6D: E6: 07: 7C:. 90: C5: B1: 3E: 93: 1A: B7: 41: 10: B4: F2: E4: 9A: 27
nozi |l acert 31. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9F: 74: 4E: 9F: 2B: 4D: BA: EC. OF: 31: 2C: 50: B6: 56: 3B: 8E: 2D: 93: C3: 11
nozi |l | acert49. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

61: 57: 3A: 11: DF: OE: D8: 7E: D5: 92: 65: 22: EA: DO: 56: D7: 44: B3: 23: 71
nozil | acert 82. pem Apr 22, 2014, trustedCertEntry,

API Version 2010-03-31
168

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

2E: 14: DA: EC. 28: FO: FA: 1E: 8E: 38: 9A: 4E: AB: EB: 26: C0: 0A: D3: 83:

nmozi | | acert 146. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

21: FC. BD: 8E: 7F:. 6C. AF: 05: 1B: D1: B3: 43: EC. A8: E7: 61: 47: F2: OF:

bal ti norecybertrustca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D4: DE: 20: DO: 5E: 66: FC. 53: FE: 1A: 50: 88: 2C. 78: DB: 28: 52: CA: E4:

nozi |l | acert 20. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D8: C5: 38: 8A: B7: 30: 1B: 1B: 6E: D4: 7A: E6: 45: 25: 3A: 6F: 9F: 1A: 27:

nozil | acert 38. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CB: Al: C5: F8: BO: E3: 5E: B8: B9: 45: 12: D3: F9: 34: A2: E9: 06: 10: D3:

nmozi |l | acert5. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B8: 01: 86: D1: EB: 9C: 86: A5: 41: 04: CF: 30: 54: F3: 4C. 52: B7: E5: 58:

nozill acert71. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4A: BD: EE: EC: 95: OD: 35: 9C: 89: AE: C7: 52: Al: 2C: 5B: 29: F6: D6: AA:

veri si gncl ass3g4ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

22:. D5: D8: DF: 8F: 02: 31: D1: 8D: F7: 9D: B7: CF: 8A: 2D: 64: C9: 3F: 6C:

nozi |l | acert 89. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

C8: EC. 8C. 87: 92: 69: CB: 4B: AB: 39: E9: 8D: 7E: 57: 67: F3: 14: 95: 73:

nozi |l | acert 135. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

62:52: DC. 40: F7: 11: 43: A2: 2F. DE: 9E: F7: 34: 8E: 06: 42: 51: B1: 81:

8A

74

61

36

0ocC

3A

9D

18

caner firmachanber scomerceca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

6E: 3A: 55: A4: 19: 0C. 19: 5C: 93: 84: 3C:. C0: DB: 72: 2E: 31: 30: 61: FO:

nozil | acert 27. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

3A: 44: 73: 5A: E5: 81: 90: 1F: 24: 86: 61: 46: 1E: 3B: 9C. C4: 5F: F5: 3A:

veri si gncl ass3g2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85:37: 1C. A6: E5: 50: 14: 3D: CE: 28: 03: 47: 1B: DE: 3A: 09: E8: F8: 77:

nozi |l | acert 60. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

3B: C4: 9F: 48: F8: F3: 73: A0: 9C. 1E: BD: F8: 5B: B1: C3: 65: C7: D8: 11:

nozil | acert 78. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

29:36: 21: 02: 8B: 20: ED: 02: F5: 66: C5: 32: D1: D6: ED: 90: 9F: 45: 00:

certunta, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

62:52: DC. 40: F7: 11: 43: A2: 2F. DE: 9E: F7: 34: 8E: 06: 42: 51: B1: 81:

deut schet el ekonr oot ca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: A4: 08: C0: 9C: 19: 3E: 5D: 51: 58: 7D: CD: D6: 13: 30: FD: 8C. DE: 37:

nmozi | | acert 124. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4D: 23: 78: EC. 91: 95: 39: B5: 00: 7F: 75: 8F: 03: 3B: 21: 1E: C5: 4D: 8B:

nozil | acert 16. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DA: C9: 02: 4F: 54: D8: F6: DF: 94: 93: 5F: B1: 73: 26: 38: CA: 6A: D7: 7C.

seconevrootcal, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

FE: B8: C4: 32: DC. F9: 76: 9A: CE: AE: 3D: D8: 90: 8F: FD: 28: 86: 65: 64

B1

1B

OF

B3

2F

18

BF

13

7D

API Version 2010-03-31
169

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

nozill acert 67. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D6: 9B: 56: 11: 48: FO: 1C. 77: C5: 45: 78: C1: 09: 26: DF: 5B: 85: 69: 76:

gl obal si gnr3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D6: 9B: 56: 11: 48: FO: 1C. 77: C5: 45: 78: C1: 09: 26: DF: 5B: 85: 69: 76:

nmozi | | acert 113. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

50: 30: 06: 09: 1D: 97: D4: F5: AE: 39: F7: CB: E7: 92: 7D. 7D: 65: 2D: 34:

aol rootca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: B5: FF: 67: 9B: 0C. 79: 96: 1F: C8: 6E: 44: 22: 00: 46: 13: DB: 17: 92:

trustcenteruniversal cai, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

6B: 2F: 34: AD: 89: 58: BE: 62: FD: BO: 6B: 5C. CE: BB: 9D: D9: 4F: 4E: 39:

aol rootcal, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

39:21: Cl: 15: C1: 5D: OE: CA: 5C. CB: 5B: C4: FO: 7D: 21: D8: 05: 0B: 56:

nozi |l | acert56. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F1: 8B: 53: 8D: 1B: E9: 03: B6: A6: FO: 56: 43: 5B: 17: 15: 89: CA: F3: 6B:

verisignc2g2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B3: EA: C4:47: 76: C9: C8: 1C. EA: F2: 9D: 95: B6: CC. A0: 08: 1B: 67: EC.

veri si gncl asslg3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

20:42:85: DC. F7: EB: 76: 41: 95: 57: 8E: 13: 6B: D4: B7: D1: E9: 8E: 46:

nmozi | | acert 102. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

96: C9: 1B: OB: 95: B4: 10: 98: 42: FA: DO: D8: 22: 79: FE: 60: FA: B9: 16:

addt rust external ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

02: FA: F3: E2: 91: 43: 54: 68: 60: 78: 57: 69: 4D: F5: E4: 5B: 68: 85: 18:

verisigncl ass3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

Al: DB: 63:93:91: 6F: 17: E4: 18: 55: 09: 40: 04: 15: C7: 02: 40: BO: AE:

verisignc3g2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85:37: 1C. A6: E5: 50: 14: 3D: CE: 28: 03: 47: 1B: DE: 3A: 09: E8: F8: 77:

nozi |l | acert 45. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

67:.65: 0D: F1: 7E: 8E: 7E: 5B: 82: 40: A4: F4: 56: 4B: CF: E2: 3D: 69: C6:

verisignc4g2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

0B: 77: BE: BB: CB: 7A: A2: 47: 05: DE: CC: OF: BD: 6A: 02: FC. 7A: BD: 9B:

di gi certassuredi drootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

05:63: B8: 63: 0D: 62: D7: 5A: BB: C8: AB: 1E: 4B: DF: B5: A8: 99: B2: 4D:

verisi gncl asslca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CE: 6A: 64: A3: 09: E4: 2F: BB: D9: 85: 1C: 45: 3E: 64: 09: EA: E8: 7D: 60:

nozi |l | acert 109. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B5: 61: EB: EA: A4: DE: E4: 25: 4B: 69: 1A: 98: A5: 57: 47: C2: 34: C7: D9:

t hawt eprem unserverca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

EO: AB: 05: 94: 20: 72: 54: 93: 05: 60: 62: 02: 36: 70: F7: CD: 2E: FC. 66:

verisi gntsaca, Apr 22, 2014, trustedCertEntry,

AD

AD

31

84

F3

6A

F2

9D

A5

83

68

6B

OF

FO

52

43

F1

71

66

API Version 2010-03-31
170

Amazon Simple Notification Service Developer Guide

Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

BE: 36: A4: 56: 2F: B2: EE: 05: DB: B3: D3: 23: 23: AD: F4: 45: 08:
nozi |l | acert 96. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

55: A6: 72: 3E: CB: F2: EC. CD: C3: 23: 74: 70: 19: 9D: 2A: BE: 11:
nmozi | | acert 142. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

1F: 49: 14: F7: D8: 74: 95: 1D: DD: AE: 02: CO: BE: FD: 3A: 2D: 82:
t hawt epri maryrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

91: C6: D6: EE: 3E: 8A: C8: 63: 84: E5: 48: C2: 99: 29: 5C. 75: 6C:
nozi |l | acert 34. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

59: 22: Al: E1: 5A: EA: 16: 35: 21: F8: 98: 39: 6A: 46: 46: BO: 44:
nozill acert1. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

23: E5:94:94:51: 95: F2: 41: 48: 03: B4: D5: 64: D2: A3: A3: F5:
nozi |l | acert 85. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CF: 9E: 87: 6D: D3: EB: FC. 42: 26: 97: A3: B5: A3: 7A: AO: 76: A9:
val i certclass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

31: 7A: 2A: DO: 7F: 2B: 33: 5E: F5: Al: C3: 4E: 4B: 57: E8: B7: D8:
nozi |l acert131. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

37:9A: 19: 7B: 41: 85: 45: 35: 0C: A6: 03: 69: F3: 3C. 2E: AF: 47:
nozi |l | acert 149. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

6E: 3A: 55: A4:19: 0C: 19: 5C: 93: 84: 3C. C0: DB: 72: 2E: 31: 30:
geotrustprimaryca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

32: 3C: 11: 8E: 1B: F7: B8: B6: 52: 54: E2: E2: 10: OD: D6: 02: 90:
nozi |l | acert 23. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

91: C6: D6: EE: 3E: 8A: C8: 63: 84: E5: 48: C2: 99: 29: 5C. 75: 6C:
verisignclg2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

27: 3E: E1: 24: 57: FD: C4: F9: 0C: 55: E8: 2B: 56: 16: 7F: 62: F5:
nozil | acert 8. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

3E: 2B: F7: F2: 03: 1B: 96: F3: 8C: E6: C4: D8: A8: 5D: 3E: 2D: 58:
nozil | acert 74. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

92: 5A: 8F: 8D: 2C. 6D: 04: EO: 66: 5F: 59: 6A: FF: 22: D8: 63: ES8:
nozi |l | acert120. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DA: 40: 18: 8B: 91: 89: A3: ED: EE: AE: DA: 97: FE: 2F: 9D: F5: B7:
geotrust gl obal ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DE: 28: F4: Ad: FF: E5: B9: 2F: A3: C5: 03: D1: A3: 49: A7: F9: 96:
nozi |l | acert 138. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

El: 9F: E3: OE: 8B: 84: 60: 9E: 80: 9B: 17: OD: 72: A8: C5: BA: 6E:
nozi |l acert12. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A8: 98: 5D: 3A: 65: E5: E5: C4: B2: D7: D6: 6D: 40: C6: DD: 2F: B1.:
conodoaaaca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D1: EB: 23: A4: 6D: 17: D6: 8F: D9: 25: 64: C2: F1: F1: 60: 17: 64:

4E:

75:

81:

1B:

D8:

06:

F1:

4F:

61:

37:

81:

32:

47

25:

D1:

2A:

14:

9C: 54:

D8:

1 81:

51:

7B:

OF:

8B:

23:

FC.

20:

FO:

FO:

7B:

E5:

B6A:

6F:

8A:

82:

09:

E3:

: 56

D1

85

81

A9

8C

48

A6

79

B1

96

81

47

OF

3F

41

12

BD

36

49

API Version 2010-03-31
171

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

nozil | acert 63. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

89: DF: 74: FE: 5C:. F4: OF: 4A: 80: F9: E3: 37: 7D: 54: DA: 91: E1: 01: 31: 8E
certpluscl ass2pri maryca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

74:20:74:41:72: 9C:. DD: 92: EC: 79: 31: D8: 23: 10: 8D: C2: 81: 92: E2: BB
nozi |l acert127. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DE: 28: F4: A4: FF: E5: B9: 2F: A3: C5: 03: D1: A3: 49: A7: F9: 96: 2A: 82: 12
ttel esecgl obal root cl ass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

59: 0D: 2D: 7D: 88: 4F: 40: 2E: 61: 7E: A5: 62: 32: 17: 65: CF: 17: D8: 94: E9
nozi |l acert19. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B4: 35: D4: E1: 11: 9D: 1C:. 66: 90: A7: 49: EB: B3: 94: BD: 63: 7B: A7: 82: B7
di gi cert hi ghassuranceevrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: B7: EE: 06: 33: E2: 59: DB: AD: 0C: 4C. 9A: E6: D3: 8F: 1A: 61: C7: DC: 25
nozi |l | acert52. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8B: AF: 4C: 9B: 1D: FO: 2A: 92: F7: DA: 12: 8E: B9: 1B: AC: F4: 98: 60: 4B: 6F
nozill acert116. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

2B: B1: F5: 3E: 55: 0C: 1D: C5: F1: D4: E6: B7: 6A: 46: 4B: 55: 06: 02: AC: 21
gl obal si gnca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

Bl: BC: 96: 8B: D4: F4: 9D: 62: 2A: A8: 9A: 81: F2: 15: 01: 52: A4: 1D: 82: 9C
nozil | acert41. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

6B: 2F: 34: AD: 89: 58: BE: 62: FD: BO: 6B: 5C: CE: BB: 9D: D9: 4F: 4E: 39: F3
nozi |l | acert59. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: 79: CA: 35: 66: 87: 72: 30: 4D: 30: A5: FB: 87: 3B: OF: A7: 7B: B7: OD: 54
nozi |l | acert 105. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

77:47: 4F: C6: 30: E4: OF: 4C. 47: 64: 3F: 84: BA: B8: C6: 95: 4A: 8A: 41: EC
trustcenterclass2caii, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AE: 50: 83: ED: 7C: F4: 5C. BC: 8F: 61: C6: 21: FE: 68: 5D: 79: 42: 21: 15: 6E
nozi |l | acert 92. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A3: F1: 33: 3F: E2: 42: BF: CF: C5: D1: 4E: 8F: 39: 42: 98: 40: 68: 10: D1: AO
geotrustprimarycag3, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

03: 9E: ED: B8: OB: E7: AO: 3C. 69: 53: 89: 3B: 20: D2: D9: 32: 3A: 4C. 2A: FD
entrustsslca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

99: A6: 9B: E6: 1A: FE: 88: 6B: 4D: 2B: 82: 00: 7C: B8: 54: FC: 31: 7E: 15: 39
verisi gnc3g5. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4E: B6: D5: 78: 49: 9B: 1C. CF: 5F: 58: 1E: AD: 56: BE: 3D: 9B: 67: 44: A5: E5
geotrustpri marycag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8D: 17: 84: D5: 37: F3: 03: 7D: EC: 70: FE: 57: 8B: 51: 9A: 99: E6: 10: D7: BO
nozi |l | acert 30. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E7: B4: F6: 9D: 61: EC: 90: 69: DB: 7E: 90: A7: 40: 1A: 3C:. F4: 7D: 4F: E8: EE
nozi |l | acert 48. pem Apr 22, 2014, trustedCertEntry,

API Version 2010-03-31
172

Amazon Simple Notification Service Developer Guide
Verifying Message Signatures

Certificate fingerprint (SHAL):
AO: Al: AB: 90: C9: FC: 84: 7B: 3B: 12: 61: E8: 97: 7D: 5F: D3: 22: 61: D3: CC

Verifying the Signatures of Amazon SNS
Messages

You should verify the authenticity of a notification, subscription confirmation, or unsubscribe
confirmation message sent by Amazon SNS. Using information contained in the Amazon SNS
message, your endpoint can recreate the string to sign and the signature so that you can verify the
contents of the message by matching the signature you recreated from the message contents with the
signature that Amazon SNS sent with the message.

To help prevent spoofing attacks, you should do the following when verifying messages sent by
Amazon SNS:

« Always use HTTPS when getting the certificate from Amazon SNS.
« Validate the authenticity of the certificate.
¢ Verify the certificate was received from Amazon SNS.

« When possible, use one of the supported AWS SDKs for Amazon SNS to validate and verify
messages. For example, with the AWS SDK for PHP you would use the i sVal i d method from the
MessageVal i dat or class.

For example code for a Java servlet that handles Amazon SNS messages , see Example Code for an
Amazon SNS Endpoint Java Servlet (p. 175).

To verify the signature of an Amazon SNS message when using HTTP query-based
requests

1. Extract the name/value pairs from the JSON document in the body of the HTTP POST request that
Amazon SNS sent to your endpoint. You'll be using the values of some of the name/value pairs to
create the string to sign. When you are verifying the signature of an Amazon SNS message, it is
critical that you convert the escaped control characters to their original character representations
in the Message and Subj ect values. These values must be in their original forms when you use
them as part of the string to sign. For information about how to parse the JSON document, see
Step 1: Make sure your endpoint is ready to process Amazon SNS messages (p. 148).

The Si gnat ur eVer si on tells you the signature version. From the signature version, you can
determine the requirements for how to generate the signature. For Amazon SNS notifications,
Amazon SNS currently supports signature version 1. This section provides the steps for creating a
signature using signature version 1.

2. Getthe X509 certificate that Amazon SNS used to sign the message. The Si gni ngCer t URL
value points to the location of the X509 certificate used to create the digital signature for the
message. Retrieve the certificate from this location.

3. Extract the public key from the certificate. The public key from the certificate specified by
Si gni ngCer t URL is used to verify the authenticity and integrity of the message.

4. Determine the message type. The format of the string to sign depends on the message type,
which is specified by the Type value.

5. Create the string to sign. The string to sign is a newline character—delimited list of specific name/
value pairs from the message. Each name/value pair is represented with the name first followed by
a newline character, followed by the value, and ending with a newline character. The name/value
pairs must be listed in byte-sort order.

Depending on the message type, the string to sign must have the following name/value pairs.

API Version 2010-03-31
173

Amazon Simple Notification Service Developer Guide
Verifying Message Signatures

Notification
Notification messages must contain the following name/value pairs:

Message

Messagel d

Subject (if included in the nessage)
Ti mest anp

Topi cArn

Type

The following example is a string to sign for a Not i fi cati on.

Message

M/ Test Message

Messagel d

4d4dc071- ddbf - 465d- bba8- 08f 81c89da64
Subj ect

My subj ect

Ti mest anp

2012- 06- 05T04: 37: 04. 3217

Topi cArn

arn: aws: sns: us-east - 1: 123456789012: s4- MySNSTopi ¢c- 1GLVWEFCOXTCOP
Type

Notification

SubscriptionConfirmation and UnsubscribeConfirmation
Subscri ptionConfirmation and Unsubscri beConfirmati on messages must contain
the following name/value pairs:

Message
Messagel d
Subscri beURL
Ti mest anmp
Token

Topi cArn
Type

The following example is a string to sign for a Subscri pti onConfi rnati on.

Message

My Test Message

Messagel d

3d891288-136d-417f - bc05-901¢c108273ee

Subscri beURL

https://sns. us-west-2. amazonaws. com ?

Act i on=Confi rnmSubscri pti on&Topi CAr n=ar n: aws: sns: us-
west - 2: 123456789012: s4-

Ti mest anp
2012- 06- 03T19: 25: 13. 719Z
Token

Topi cArn
arn: aws: sns: us-west - 2: 123456789012: s4- MySNSTopi ¢c- 1GLVWEFCOXTCOP

Type

My SNSTopi ¢- 1GLWEFCOXTCOP&Token=2336412f 37f b687f 5d051e6€241d09¢c8058323f 60k

2336412f 37f b687f 5d51e6€241d09c8058323f 60b964268bf e08ce35640228¢c208a66d36

API Version 2010-03-31
174

964268bf e08c

21bd9f 7b0129:

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

Subscri ptionConfirmation

6. Decode the Si gnat ur e value from Base64 format. The message delivers the signature in the
Si gnat ur e value, which is encoded as Base64. Before you compare the signature value with the
signature you have calculated, make sure that you decode the Si gnat ur e value from Base64 so
that you compare the values using the same format.

7. Generate the derived hash value of the Amazon SNS message. Submit the Amazon SNS
message, in canonical format, to the same hash function used to generate the signature.

8. Generate the asserted hash value of the Amazon SNS message. The asserted hash value is
the result of using the public key value (from step 3) to decrypt the signature delivered with the
Amazon SNS message.

9. Verify the authenticity and integrity of the Amazon SNS message. Compare the derived hash
value (from step 7) to the asserted hash value (from step 8). If the values are identical, then the
receiver is assured that the message has not been modified while in transit and the message must
have originated from Amazon SNS. If the values are not identical, it should not be trusted by the
receiver.

Example Code for an Amazon SNS Endpoint
Java Servlet

Important

The following code snippets help you understand a Java servlet that processes Amazon SNS
HTTP POST requests. You should make sure that any portions of these snippets are suitable
for your purposes before implementing them in your production environment. For example, in
a production environment to help prevent spoofing attacks, you should verify that the identity
of the received Amazon SNS messages is from Amazon SNS. You can do this by checking
that the DNS Name value (DNS Name=sns.us-west-2.amazonaws.com in us-west-2; this

will vary by region) for the Subject Alternative Name field, as presented in the Amazon SNS
Certificate, is the same for the received Amazon SNS messages. For more information about
verifying server identity, see section 3.1. Server Identity in RFC 2818. Also see Verifying the
Signatures of Amazon SNS Messages (p. 173)

The following method implements an example of a handler for HTTP POST requests from Amazon
SNS in a Java servlet.

protected void doPost (H t pServl et Request request, HttpServl et Response
response) throws Servl et Exception, |OException, SecurityException{

/1 Get the nessage type header.

String messagetype = request.get Header (" x-ane-sns- nessage-type");
/11f message doesn't have the nmessage type header, don't process it.
if (nmessagetype == null)

return;

/1 Parse the JSON nessage in the nmessage body
/1 and hydrate a Message object with its contents
/1l so that we have easy access to the nane/val ue pairs
/1 fromthe JSON nessage.
Scanner scan = new Scanner (request. getlnputStream));
StringBuil der builder = new StringBuilder();
whil e (scan. hasNextLine()) {
bui | der. append(scan. nextLine());
}

Message nsg = readMessageFromison(buil der.toString());

/1l The signature is based on SignatureVersion 1.

API Version 2010-03-31
175

http://tools.ietf.org/search/rfc2818

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

/1l |f the sig version is sonething other than 1,
/1 throw an exception.
if (nsg.getSignatureVersion().equals("1")) {
/1 Check the signature and throw an exception if the signature
verification fails.
if (isMessageSi gnatureValid(nsg))
| og.info(">>Signature verification succeeded");
el se {
log.info(">>Signature verification failed");
t hrow new SecurityException("Signature verification failed.");
}
}
el se {
| og. i nfo(">>Unexpected signature version. Unable to verify signature.");
t hrow new SecurityException("Unexpected signature version. Unable to
verify signature.");

}

/1 Process the nessage based on type.
if (nmessagetype.equal s("Notification")) {
[/ TODO Do sonething with the Message and Subj ect.
/1Just log the subject (if it exists) and the nessage.
String | ogMsgAndSubj ect = ">>Notification received fromtopic
nsg. get Topi cArn();
if (nmBg.getSubject() '= null)
| ogMsgAndSubj ect += " Subject: " + nsg.getSubject();
| ogMsgAndSubj ect += " Message: " + nsg. get Message();
| og. i nfo(l ogMsgAndSubj ect);
}

el se i f (nessagetype. equal s("Subscri ptionConfirmation"))

(LI

[/ TODO You should make sure that this subscriptionis fromthe topic
you expect. Conpare topi cARN to your list of topics
//that you want to enable to add this endpoint as a subscription.

/1 Confirmthe subscription by going to the subscribeURL | ocation
/land capture the return value (XM. nessage body as a string)
Scanner sc = new Scanner (new URL(nsg. get Subscri beURL()).openStream());
StringBuilder sb = new StringBuilder();
while (sc. hasNextLine()) {
sb. append(sc. next Line());
}
| og. i nfo(">>Subscription confirmation (" + nsg.get Subscri beURL() +")
Return value: " + sbh.toString());
[/ TODO Process the return value to ensure the endpoint is subscribed.
}
el se i f (nessagetype. equal s("Unsubscri beConfirmation")) {
/1 TODO Handl e Unsubscri beConfirmati on nessage.
[/ For exanple, take action if unsubscribing should not have occurred.
/1 You can read the SubscribeURL fromthis message and
/lre-subscribe the endpoint.

I og.info(">>Unsubscribe confirmation: " + nsg.get Message());
}
el se {
/1 TODO Handl e unknown nessage type.
I og. i nfo(">>Unknown nessage type.");
I og. i nfo(">>Done processing nessage: " + nsg. get Messagel d());

API Version 2010-03-31
176

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

The following example Java method creates a signature using information from a Message object
that contains the data sent in the request body and verifies that signature against the original Base64-
encoded signature of the message, which is also read from the Message object.

private static bool ean i sMessageSi gnatureVal i d(Message nsg) {
try {

URL url = new URL(nsg. getSigningCertURL());

I nput Stream i nStream = url.openStrean();

CertificateFactory cf = CertificateFactory.getlnstance("X 509");

X509Certificate cert =
(X509Certificate)cf.generateCertificate(inStrean);

inStream cl ose();

Signature sig = Signature.getlnstance("SHALw t hRSA") ;
sig.initVerify(cert.getPublicKey());

si g. updat e(get MessageByt esToSi gn(nsg)) ;

return sig.verify(Base64. decodeBase64(nsg. get Signature()));

catch (Exception e) {
t hrow new SecurityException("Verify method failed.", e);

}

The following example Java methods work together to create the string to sign for an Amazon
SNS message. The get MessageByt esToSi gn method calls the appropriate string-to-

sign method based on the message type and runs the string to sign as a byte array. The

bui | dNoti ficationStringToSi gnand bui |l dSubscri ptionStringToSi gn methods create
the string to sign based on the formats described in Verifying the Signatures of Amazon SNS
Messages (p. 173).

private static byte [] get MessageBytesToSi gn (Message nsg) {
byte [] bytesToSign = null;
if (nmsg.getType().equal s("Notification"))
byt esToSi gn = buil dNotificationStringToSi gn(nsg).getBytes();
else if (nsg.getType().equal s("SubscriptionConfirnmation") ||
nsg. get Type() . equal s(" Unsubscri beConfirnation"))
byt esToSi gn = bui | dSubscri ptionStri ngToSi gn(nsg). get Bytes();
return bytesToSi gn;
}

//Build the string to sign for Notification nessages.
public static String buildNotificationStringToSi gn(Message nsg) {
String stringToSign = null;

//Build the string to sign fromthe values in the message.
// Nane and val ues separated by newline characters
/1 The nane value pairs are sorted by nane
//in byte sort order.
stringToSign = "Message\n";
stringToSi gn += nsg. get Message() + "\n";
stringToSign += "Messagel d\n";
stringToSi gn += nsg. get Messagel d() + "\n";
if (nmsg.getSubject() !'=null) {
stringToSi gn += "Subject\n";

API Version 2010-03-31
177

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

stringToSi gn += nmsg. get Subject() + "\n";
}

stringToSign += "Ti nestanmp\n";
stringToSign += nsg. getTi nestanp() + "\n";
stringToSign += "Topi cArn\n";

stringToSi gn += nsg. get Topi cArn() + "\n";
stringToSign += "Type\n";

stringToSi gn += nsg. get Type() + "\n";
return stringToSi gn;

}

//Build the string to sign for SubscriptionConfirmation
//and Unsubscri beConfirmati on nessages.
public static String buildSubscriptionStringToSi gn(Message nsQ)
String stringToSign = null;
//Build the string to sign fromthe values in the nessage.
/I Name and val ues separated by newline characters
// The name value pairs are sorted by nane
/lin byte sort order.
stringToSign = "Message\n";
stringToSi gn += nsg. get Message() + "\n";
stringToSign += "Messagel d\n";
stringToSi gn += nsg. get Messagel d() + "\n";
stringToSign += "Subscri beURL\ n";
stringToSi gn += nsg. get Subscri beURL() + "\n";
stringToSign += "Ti nestanp\n";
stringToSign += nsg.getTi mestanp() + "\n";
stringToSi gn += "Token\n";
stringToSi gn += nsg. get Token() + "\n";
stringToSi gn += "Topi cArn\n";
stringToSi gn += msg. get Topi cArn() + "\n";
stringToSign += "Type\n";
stringToSign += nsg.get Type() + "\n";
return stringToSign;

API Version 2010-03-31
178

Amazon Simple Notification Service Developer Guide
Prerequisites

Invoking Lambda functions using
Amazon SNS notifications

Amazon SNS and AWS Lambda are integrated so you can invoke Lambda functions with Amazon SNS
notifications. When a message is published to an SNS topic that has a Lambda function subscribed to
it, the Lambda function is invoked with the payload of the published message. The Lambda function
receives the message payload as an input parameter and can manipulate the information in the
message, publish the message to other SNS topics, or send the message to other AWS services.

In addition, Amazon SNS also supports message delivery status attributes for message notifications
sent to Lambda endpoints. For more information, see Using Amazon SNS Topic Attributes for Message
Delivery Status.

Prerequisites

To invoke Lambda functions using Amazon SNS notifications, you need the following:

* Lambda function
¢ Amazon SNS topic

For information on creating a Lambda function, see Getting Started with AWS Lambda. For information
on creating a Amazon SNS topic, see Create a Topic.

Configuring Amazon SNS with Lambda Endpoints
with the AWS Management Console

1. Signinto the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. Inthe left Navigation pane, click Topics, and then click the topic to which you want to subscribe a
Lambda endpoint.

3. Click Actions and then click Subscribe to topic.

API Version 2010-03-31
179

http://docs.aws.amazon.com/sns/latest/dg/msg-status-topics.html
http://docs.aws.amazon.com/sns/latest/dg/msg-status-topics.html
http://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Configuring Amazon SNS with Lambda
Endpoints with the AWS Management Console

4. Inthe Protocol drop-down box, select AWS Lambda.
5. Inthe Endpoint drop-down box, select the ARN for the Lambda function.

6. Inthe Version or Alias drop-down box, select an available version or alias to use. You can
also choose $LATEST to specify the latest version of the Lambda function. If you do not want
to specify a version or alias, you can also choose default, which is functionally the same as
$LATEST. For more information, see AWS Lambda Function Versioning and Aliases.

7. Click Create subscription.

When a message is published to an SNS topic that has a Lambda function subscribed to it, the
Lambda function is invoked with the payload of the published message. For information on how to
create a sample message history store using SNS, Lambda, and Amazon DynamoDB, see the AWS
Mobile Development blog Invoking AWS Lambda functions via Amazon SNS.

API Version 2010-03-31
180

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
https://mobile.awsblog.com/post/Tx1VE917Z8J4UDY/Invoking-AWS-Lambda-functions-via-Amazon-SNS

Amazon Simple Notification Service Developer Guide
Configuring Message Delivery Status
Attributes with the AWS Management Console

Using Amazon SNS Topic Attributes
for Message Delivery Status

Amazon SNS provides support to log the delivery status of notification messages sent to topics with the
following Amazon SNS endpoints:

¢ Application
e HTTP

e Lambda

* SQS

After you configure the message delivery status attributes, log entries will be sent to CloudWatch Logs
for messages sent to a topic subscribed to an Amazon SNS endpoint. Logging message delivery status
helps provide better operational insight, such as the following:

¢ Knowing whether a message was delivered to the Amazon SNS endpoint.
« Identifying the response sent from the Amazon SNS endpoint to Amazon SNS.

« Determining the message dwell time (the time between the publish timestamp and just before
handing off to an Amazon SNS endpoint).

To configure topic attributes for message delivery status, you can use the AWS Management Console,
AWS software development kits (SDKs), or query API.

Topics
¢ Configuring Message Delivery Status Attributes with the AWS Management Console (p. 181)

¢ Configuring Message Delivery Status Attributes for Topics Subscribed to Amazon SNS Endpoints
with the AWS SDKs (p. 182)

Configuring Message Delivery Status Attributes
with the AWS Management Console

The following steps describe how to use the console to configure the message delivery status
attributes for notifications from Amazon SNS to a AWS Lambda endpoint.

API Version 2010-03-31
181

Amazon Simple Notification Service Developer Guide
Configuring Message Delivery Status
Attributes for Topics Subscribed to Amazon
SNS Endpoints with the AWS SDKs

To configure message delivery status for notifications from Amazon SNS to a Lambda
endpoint:

1. Signin to the AWS Management Console and open the Amazon SNS console at https:/
console.aws.amazon.com/sns/.

2. Inthe left Navigation pane, click Topics, and then click the topic to which you want to receive
message delivery status information.

3. Click Actions and then click Delivery status.
4. Click the Lambda check box.
5. On the Delivery Status dialog box, click Create IAM Roles.

You will then be redirected to the IAM console.
6. Click Allow to give Amazon SNS write access to use CloudWatch Logs on your behalf.

7. Switch back to the Delivery Status dialog box and enter a number in the Percentage of Success
to Sample (0-100) field for the percentage of successful messages sent for which you want to
receive CloudWatch Logs.

Note
After you configure application attributes for message delivery status, all failed message
deliveries generate CloudWatch Logs.

8. Finally, click Save Configuration.

You will now be able to view and parse the CloudWatch Logs containing the message delivery
status. For more information about using CloudWatch, see the CloudWatch Documentation.

Configuring Message Delivery Status Attributes
for Topics Subscribed to Amazon SNS Endpoints
with the AWS SDKs

The AWS SDKs provide APIs in several languages for using message delivery status attributes with
Amazon SNS.

Topic Attributes

You can use the following topic attribute name values for message delivery status:
Application

¢ ApplicationSuccessFeedbackRoleArn

¢ ApplicationSuccessFeedbackSampleRate

¢ ApplicationFailureFeedbackRoleArn
Note
In addition to being able to configure topic attributes for message delivery status of
notification messages sent to Amazon SNS application endpoints, you can also configure
application attributes for the delivery status of push notification messages sent to push
notification services. For more information, see Using Amazon SNS Application Attributes
for Message Delivery Status.

HTTP

¢ HTTPSuccessFeedbackRoleArn

API Version 2010-03-31
182

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/
http://aws.amazon.com/documentation/cloudwatch
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html
http://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html

Amazon Simple Notification Service Developer Guide
Java Example to Configure Topic Attributes

¢ HTTPSuccessFeedbackSampleRate
¢ HTTPFailureFeedbackRoleArn

Lambda

* LambdaSuccessFeedbackRoleArn
¢ LambdaSuccessFeedbackSampleRate
* LambdaFailureFeedbackRoleArn

SQS

¢ SQSSuccessFeedbackRoleArn
¢ SQSSuccessFeedbackSampleRate
¢ SQSFailureFeedbackRoleArn

The <ENDPO NT>SuccessFeedbackRol eAr n and <ENDPQO NT>Fai | ur eFeedbackRol eArn
attributes are used to give Amazon SNS write access to use CloudWatch Logs on your

behalf. The <ENDPO NT>SuccessFeedbackSanpl eRat e attribute is for specifying the

sample rate percentage (0-100) of successfully delivered messages. After you configure the
<ENDPO NT>Fai | ur eFeedbackRol eAr n attribute, then all failed message deliveries generate
CloudWatch Logs.

Java Example to Configure Topic Attributes

The following Java example shows how to use the Set Topi cAtt ri but es API to configure topic
attributes for message delivery status of notification messages sent to topics subscribed to Amazon
SNS endpoints. In this example, it is assumed that string values have been set for t opi cAr n,
attri bNane, and at tri bVal ue.

final static String topicArn = ("arn:aws:sns: us-

west - 2: 123456789012: MyTopi c") ;

final static String attribName = ("LanbdaSuccessFeedbackRol eArn");
final static String attribValue = ("arn:aws:iam:123456789012:rol e/
SNSSuccessFeedback") ;

Set Topi cAttri but esRequest set Topi cAttri but esRequest = new
Set Topi cAttri but esRequest ();

set Topi cAttri but esRequest. wi t hTopi cArn(topi cArn);

set Topi cAttri but esRequest. set Attri buteNane(attri bNane);

set Topi cAttri but esRequest. set Attri buteVal ue(attri bVval ue);

For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

API Version 2010-03-31
183

http://aws.amazon.com/developers/getting-started/java/

Amazon Simple Notification Service Developer Guide
Message Attribute Items and Validation

Using Amazon SNS Message
Attributes

Amazon Simple Notification Service (Amazon SNS) provides support for delivery of message attributes
to Amazon SQS endpoints. Message attributes allow you to provide structured metadata items (such
as timestamps, geospatial data, signatures, and identifiers) about the message. Message attributes are
optional and separate from, but sent along with, the message body to Amazon SQS endpoints. This
information can be used by the receiver of the message to help decide how to handle the message
without having to first process the message body. Each message can have up to 10 attributes. To
specify message attributes, you can use the AWS software development kits (SDKs) or query API.

Important

To use message attributes with Amazon SQS endpoints, you must set the subscription
attribute, Raw Message Delivery, to True. For more information about Raw Message
Delivery, see Appendix: Large Payload and Raw Message Delivery (p. 203)

You can also use message attributes to help structure the push notification message for mobile
endpoints. In this scenario the message attributes are only used to help structure the push notification
message and are not delivered to the endpoint, as they are when sending messages with message
attributes to Amazon SQS endpoints.

Topics
¢ Message Attribute Items and Validation (p. 184)
¢ Message Attribute Data Types and Validation (p. 185)

« Reserved Message Attributes (p. 185)
¢ Using Message Attributes with the AWS SDKs (p. 186)

Message Attribute Items and Validation

Each message attribute consists of the following items:

¢« Name — The message attribute name can contain the following characters: A-Z, a-z, 0-9,
underscore(_), hyphen(-), and period (.). The name must not start or end with a period, and it should
not have successive periods. The name is case sensitive and must be unique among all attribute

API Version 2010-03-31
184

Amazon Simple Notification Service Developer Guide
Data Types

names for the message. The name can be up to 256 characters long. The name cannot start with
"AWS." or "Amazon." (or any variations in casing) because these prefixes are reserved for use by
Amazon Web Services.

« Type — The supported message attribute data types are String, Number, and Binary. The data type
has the same restrictions on the content as the message body. The data type is case sensitive, and
it can be up to 256 bytes long. For more information, see the Message Attribute Data Types and
Validation (p. 185) section.

¢ Value — The user-specified message attribute value. For string data types, the value attribute has the
same restrictions on the content as the message body. For more information, see the Publish action
in the Amazon Simple Notification Service API Reference.

Name, type, and value must not be empty or null. In addition, the message body should not be empty
or null. All parts of the message attribute, including name, type, and value, are included in the message
size restriction, which is currently 256 KB (262,144 bytes).

Message Attribute Data Types and Validation

Message attribute data types identify how the message attribute values are handled by Amazon SNS.
For example, if the type is a number, Amazon SNS will validate that it's a number.

Amazon SNS supports the following logical data types:

e String — Strings are Unicode with UTF-8 binary encoding. For a list of code values, see http://
en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

« Number — Numbers are positive or negative integers or floating-point numbers. Numbers have
sufficient range and precision to encompass most of the possible values that integers, floats, and
doubles typically support. A number can have up to 38 digits of precision, and it can be between
107128 to 10M+126. Leading and trailing zeroes are trimmed.

¢ Binary — Binary type attributes can store any binary data, for example, compressed data, encrypted
data, or images.

Reserved Message Attributes

The following table lists the reserved message attributes for push notification services that you can use
to structure your push notification message:

Push Reserved Message Attribute Allowed Values

Notification

Service

Bai du AWS.SNS.MOBILE.BAIDU.DeployStatus 1—development environment. 2—
(optional) production environment. (default 1)

AWS.SNS.MOBILE.BAIDU.MessageType 0—in-app message. 1—alert
(optional) notification. (default 1)

AWS.SNS.MOBILE.BAIDU.MessageKey A short message identifier you can

(optional) attach to your message
MPNS AWS.SNS.MOBILE.MPNS.Type (required) | token (for tile notifications), toast,
raw

AWS.SNS.MOBILE.MPNS.NotificationClass
(required) realtime, priority, regular

API Version 2010-03-31
185

http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

Amazon Simple Notification Service Developer Guide
Using Message Attributes with the AWS SDKs

Push Reserved Message Attribute Allowed Values

Notification

Service

VNS AWS.SNS.MOBILE.WNS.Type (required) same as X-WNS-Type
AWS.SNS.MOBILE.WNS.CachePolicy same as X-WNS-Cache-Paolicy
(optional)

same as X-WNS-Group

AWS.SNS.MOBILE.WNS.Group (optional)
same as X-WNS-Match

AWS.SNS.MOBILE.WNS.Match (optional)
same as X-WNS-SuppressPopup

AWS.SNS.MOBILE.WNS.SuppressPopup
(optional) same as X-WNS-Tag

AWS.SNS.MOBILE.WNS.Tag (optional)

For more information about using message attributes with Baidu, see Using Message Attributes for
Structuring the Message (p. 67).

Using Message Attributes with the AWS SDKs

The AWS SDKs provide APIs in several languages for using message attributes with Amazon SNS.
Java examples with message attributes are in the AWS sample file SNSMobi | ePush. j ava, which is
included in the snsmobilepush.zip file.

When setting message attributes for a message, you can use either a st ri ng value or a bi nary
value, but not both st ri ng and bi nary values.

For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

API Version 2010-03-31
186

http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_type
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_cache
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_group
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_match
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_suppresspopup
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_tag
http://aws.amazon.com/tools/
samples/snsmobilepush.zip
http://aws.amazon.com/developers/getting-started/java/

Amazon Simple Notification Service Developer Guide
Access CloudWatch Metrics for Amazon SNS

Monitoring Amazon SNS with
CloudWatch

Amazon SNS and CloudWatch are integrated so you can collect, view, and analyze metrics for every
active Amazon SNS notifications. Once you have configured CloudWatch for Amazon SNS, you can
gain better insight into the performance of your Amazon SNS topics, push natifications, and SMS
deliveries. For example, you can set an alarm to send you an email notification if a specified threshold
is met for an Amazon SNS metric, such as NumberOfNotificationsFailed. For a list of all the metrics
that Amazon SNS sends to CloudWatch, see Amazon SNS Metrics (p. 189). For more information
about Amazon SNS push notifications, see Amazon SNS Mobile Push Notifications (p. 38)

The metrics you configure with CloudWatch for your Amazon SNS topics are automatically collected
and pushed to CloudWatch every five minutes. These metrics are gathered on all topics that meet the
CloudWatch guidelines for being active. A topic is considered active by CloudWatch for up to six hours
from the last activity (i.e., any API call) on the topic.

Note

There is no charge for the Amazon SNS metrics reported in CloudWatch; they are provided as
part of the Amazon SNS service.

Access CloudWatch Metrics for Amazon SNS

You can monitor metrics for Amazon SNS using the CloudWatch console, CloudWatch's own
command line interface (CLI), or programmatically using the CloudWatch API. The following
procedures show you how to access the metrics using these different options.

To view metrics using the CloudWatch console

1. Signin to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Click View Metrics.

3. From the Viewing drop-down menu select either SNS: Topic Metrics, SNS: Push Notifications
by Application, SNS: Push Notifications by Application and Platform, or SNS: Push
Notifications by Platform to show the available metrics.

4. Click a specific item to see more detail, such as a graph of the data collected. For example, the
following graph of the selected metric, NumberOfMessagesPublished, shows the average
number of published Amazon SNS messages for a five-minute period throughout the time range of
6 hours.

API Version 2010-03-31
187

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Simple Notification Service Developer Guide
Set CloudWatch Alarms for Amazon SNS Metrics

iewing:

]
O

(]

MyTopic
MyTopic
MyTopic
MyTopic

SNS: Topic Metrics

Search
NumberOfilessagesPublished

MumberOfotificationsDeliverad

{MMN.AWWMWM

MumberOfotificationsFailed
PublishSize

Average - 5 Minutes -

[I — B e I

NumberOfMe:... =dit
1.0

Time Range
Zoom: 1h | 3h | 6h | 12h | 24h | 1W | 2w
@ Relative © Absolute

From: 6 hours ago -

To: 0 hours ago -

Create Alarm Copy URL Refresh

2/s 2/s 2/s 2/8 2/8 2/8
16:00 17:00

Left axis units: Count

. F e, MM oy T
(=) [=] (=) (=)
(=] r o+ (1]
-
o
[=]
[=]
ek
o
(=]
[=]
[
(=]
(=]
[=]
ra
=t
(=]
[=]
| m

B NumberofMessagesPublished (7]

1

To access metrics from the CloudWatch CLI

Call non- get - st at s. You can learn more about this and other metrics-related functions in the
Amazon CloudWatch User Guide.

To access metrics from the CloudWatch API

Call Get MetricStatistics. You can learn more about this and other metrics-related functions
in the Amazon CloudWatch API Reference.

Set CloudWatch Alarms for Amazon SNS Metrics

CloudWatch also allows you to set alarms when a threshold is met for a metric. For example, you could
set an alarm for the metric, NumberOfNotificationsFailed, so that when your specified threshold
number is met within the sampling period, then an email notification would be sent to inform you of the
event.

To set alarms using the CloudWatch console

1.

Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

Click Alarms, and then click the Create Alarm button. This launches the Create Alarm wizard.

Scroll through the Amazon SNS metrics to locate the metric you want to place an alarm on. Select
the metric to create an alarm on and click Continue.

Fill in the Name, Description, Threshold, and Time values for the metric, and then click
Continue.

API Version 2010-03-31
188

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cli-mon-get-stats.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Simple Notification Service Developer Guide
Amazon SNS Metrics

5. Choose Alarm as the alarm state. If you want CloudWatch to send you an email when the alarm
state is reached, either select a preexisting Amazon SNS topic or click Create New Email Topic.
If you click Create New Email Topic, you can set the name and email addresses for a new topic.
This list will be saved and appear in the drop-down box for future alarms. Click Continue.

Note

If you use Create New Email Topic to create a new Amazon SNS topic, the email
addresses must be verified before they will receive notifications. Emails are sent only
when the alarm enters an alarm state. If this alarm state change happens before the
email addresses are verified, they will not receive a notification.

6. At this point, the Create Alarm wizard gives you a chance to review the alarm you're about to
create. If you need to make any changes, you can use the Edit links on the right. Once you are

satisfied, click Create Alarm.

For more information about using CloudWatch and alarms, see the CloudWatch Documentation.

Amazon SNS Metrics

Amazon SNS sends the following metrics to CloudWatch.

Metric

Nurber Of MessagesPubl i shed

Publ i shSi ze

Nunmber OF Not i fi cati onsDel i ver ed

Nunmber OF Not i fi cati onsFail ed

SMSSuccessRat e

Description

The number of messages published.
Units: Count

Valid Statistics: Sum

The size of messages published.
Units: Bytes

Valid Statistics: Minimum, Maximum, Average and
Count

The number of messages successfully delivered.
Units: Count
Valid Statistics: Sum

The number of messages that Amazon SNS failed to
deliver. This metric is applied after Amazon SNS stops
attempting message deliveries to Amazon SQS, email,
SMS, or mobile push endpoints. Each delivery attempt
to an HTTP or HTTPS endpoint adds 1 to the metric.
For all other endpoints, the count increases by 1 when
the message is not delivered (regardless of the number
of attempts). You can control the number of retries

for HTTP endpoints; for more information, see Setting
Amazon SNS Delivery Retry Policies for HTTP/HTTPS
Endpoints (p. 154).

Units: Count
Valid Statistics: Sum, Average

The rate of successful SMS message deliveries.

API Version 2010-03-31

189

http://aws.amazon.com/documentation/cloudwatch

Amazon Simple Notification Service Developer Guide
Dimensions for Amazon Simple
Notification Service Metrics

Metric

Description
Units: Count

Valid Statistics: Sum, Average, Data Samples

Dimensions for Amazon Simple Notification
Service Metrics

Amazon Simple Notification Service sends the following dimensions to CloudWatch.

Dimension Description

Application Filters on application objects, which represent an app and device
registered with one of the supported push notification services,
such as APNS and GCM.

Appl i cation, Pl atform Filters on application and platform objects, where the platform
objects are for the supported push naotification services, such as
APNS and GCM.

Country Filters on the destination country of an SMS message. The country
is represented by its ISO 3166-1 alpha-2 code.

Pl atform Filters on platform objects for the push notification services, such
as APNS and GCM.

Topi cNane Filters on Amazon SNS topic names.

SMSType Filters on the message type of SMS message. Can be promotional

or transactional.

API Version 2010-03-31
190

Amazon Simple Notification Service Developer Guide
Amazon SNS Information in CloudTrail

Logging Amazon Simple Notification
Service API Calls By Using AWS
CloudTrall

Amazon SNS is integrated with CloudTrail, a service that captures API calls made by or on behalf of
Amazon SNS in your AWS account and delivers the log files to an Amazon S3 bucket that you specify.
CloudTrail captures API calls made from the Amazon SNS console or from the Amazon SNS API.
Using the information collected by CloudTrail, you can determine what request was made to Amazon
SNS, the source IP address from which the request was made, who made the request, when it was
made, and so on. To learn more about CloudTrail, including how to configure and enable it, see the

AWS CloudTrail User Guide.

Amazon SNS Information in CloudTrall

When CloudTrail logging is enabled in your AWS account, API calls made to Amazon SNS actions are
tracked in log files. Amazon SNS records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

The following actions are supported:

AddPermission
ConfirmSubscription
CreatePlatformApplication
CreatePlatformEndpoint
CreateTopic
DeleteEndpoint
DeletePlatformApplication
DeleteTopic

API Version 2010-03-31
191

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/sns/latest/api/API_AddPermission.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
http://docs.aws.amazon.com/sns/latest/api/API_DeleteEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_DeletePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_DeleteTopic.html

Amazon Simple Notification Service Developer Guide
Understanding Amazon SNS Log File Entries

¢ GetEndpointAttributes

¢ GetPlatformApplicationAttributes
¢ GetSubscriptionAttributes

¢ GetTopicAttributes

¢ ListEndpointsByPlatformApplication
e ListPlatformApplications

e ListSubscriptions

¢ ListSubscriptionsByTopic

e ListTopics

¢ RemovePermission

¢ SetEndpointAttributes

¢ SetPlatformApplicationAttributes
¢ SetSubscriptionAttributes

¢ SetTopicAttributes

¢ Subscribe

¢ Unsubscribe

Note

When you are not logged in to Amazon Web Services (unauthenticated mode) and

either the ConfirmSubscription or Unsubscribe actions are invoked, then they will not be
logged to CloudTrail. Such as, when you click the provided link in an email notification to
confirm a pending subscription to a topic, the Conf i r nSubscri pti on action is invoked in
unauthenticated mode. In this example, the Conf i r nSubscri pti on action would not be
logged to CloudTrail.

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userldentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon
S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by
using Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS noatifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications.

You can also aggregate Amazon SNS log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a
Single Amazon S3 Bucket.

Understanding Amazon SNS Log File Entries

CloudTrail log files contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the
public API calls.

API Version 2010-03-31
192

http://docs.aws.amazon.com/sns/latest/api/API_GetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetSubscriptionAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetTopicAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_ListEndpointsByPlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_ListPlatformApplications.html
http://docs.aws.amazon.com/sns/latest/api/API_ListSubscriptions.html
http://docs.aws.amazon.com/sns/latest/api/API_ListSubscriptionsByTopic.html
http://docs.aws.amazon.com/sns/latest/api/API_ListTopics.html
http://docs.aws.amazon.com/sns/latest/api/API_RemovePermission.html
http://docs.aws.amazon.com/sns/latest/api/API_SetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

Amazon Simple Notification Service Developer Guide
Understanding Amazon SNS Log File Entries

The following example shows a CloudTrail log entry for the Li st Topi cs, Cr eat eTopi ¢, and
Del et eTopi ¢ actions.

"Records": [
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",
"user Nane": " Bob"
"principalld': "EX_PRINCI PAL_I D',
"arn": "arn:aws:iam:123456789012: user/ Bob",
"account!|d": "123456789012",
"accessKeyl d": " AKI Al OSFODNN7EXAMPLE"
}
"event Ti me": "2014-09-30T00: 00: 002",
"event Source": "sns.amazonaws. cont,
"event Name": "ListTopics",
"awsRegi on": "us-west-2",
"sour cel PAddress": "127.0.0.1",
"user Agent": "aws-sdk-java/ unknown-version",
"request Paraneters": {
"next Token": " ABCDEF1234567890EXAMPLE=="

}

esponseEl enents": nul I,
"request| D': "exanpl el-b9bb-50f a- abdb- 80f 274981d60",
"event| D': "exanpl e0-09a3-47d6- a810- c5f 9f d2534f e",
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

"event Version": "1.02",
"userldentity": {
"type": "I AMJser",
"user Nane": " Bob"
"principalld': "EX_PRINCI PAL_I D',
"arn": "arn:aws:iam:123456789012: user/ Bob",
"account | d": "123456789012",
"accessKeyl d": " AKI Al OSFODNN7EXAMPLE"
H
"event Ti me": "2014-09-30T00: 00: 002",
"event Source": "sns.amazonaws. cont,
"event Name": "CreateTopic",
"awsRegi on": "us-west-2",
"sour cel PAddress": "127.0.0.1",
"user Agent": "aws-sdk-java/ unknown-version",
"request Paraneters": {
"nane": "hello"

}

esponseEl ement s": {

"topi cCArn": "arn:aws:sns: us-west-2:123456789012: hel | o-t opi c"
1
"request| D': "exanpl e7-5cd3-5323-8a00-f 1889011f ee9",
"event| D': "exanpl ec-4f 2f - 4625- 8378- 130ac89660b1",
"event Type": "AwsApi Call",

"reci pi ent Account1d": "123456789012"

API Version 2010-03-31
193

Amazon Simple Notification Service Developer Guide
Understanding Amazon SNS Log File Entries

"event Version": "1.02",
"userldentity": {
"type": "I AMJser",
"user Nane": " Bob"
"principalld: "EX_PRINCI PAL_I D',
"arn": "arn:aws:iam:123456789012: user/ Bob",
"accountld": "123456789012",
"accessKeyl d": " AKI Al OSFODNN7EXAMPLE"

H

"event Ti me": "2014-09-30T00: 00: 002",

"event Source": "sns.amazonaws. cont,

"event Name": "Del eteTopic",

"awsRegi on": "us-west-2",

"sour cel PAddress": "127.0.0.1",

"user Agent": "aws-sdk-java/ unknown-version",

"request Paraneters": {

"topi cCArn": "arn:aws:sns: us-west-2:123456789012: hel | o-t opi c"
1
"responseEl ements": null,

"request| D': "exanpl e5-4f aa- 51d5- aab2- 803a8294388d",
"event| D': "exanpl e8-6443- 4b4d- abf d- 1b867280d964",
"event Type": "AwsApi Call",

"reci pi ent Account1d": "123456789012"

API Version 2010-03-31
194

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Headers

Appendix: Message and JSON
Formats

Amazon SNS uses the following formats.

Topics
¢ HTTP/HTTPS Headers (p. 195)
e HTTP/HTTPS Subscription Confirmation JSON Format (p. 196)
¢ HTTP/HTTPS Notification JSON Format (p. 198)
¢ HTTP/HTTPS Unsubscribe Confirmation JSON Format (p. 199)
¢ SetSubscriptionAttributes Delivery Policy JSON Format (p. 200)
¢ SetTopicAttributes Delivery Policy JSON Format (p. 201)

HTTP/HTTPS Headers

When Amazon SNS sends a subscription confirmation, notification, or unsubscribe confirmation
message to HTTP/HTTPS endpoints, it sends a POST message with a number of Amazon SNS-
specific header values. You can use these header values to do things such as identify the type of
message without having to parse the JSON message body to read the Type value.

X-amz-sns-message-type
The type of message. The possible values are Subscri pti onConfirmation, Notification,
and Unsubscri beConfirmati on.
X-amz-sns-message-id
A Universally Unique Identifier, unique for each message published. For a natification that Amazon
SNS resends during a retry, the message ID of the original message is used.
X-amz-sns-topic-arn
The Amazon Resource Name (ARN) for the topic that this message was published to.
X-amz-sns-subscription-arn
The ARN for the subscription to this endpoint.

The following HTTP POST header is an example of a header for a Notification message to an HTTP
endpoint.

API Version 2010-03-31
195

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Subscription Confirmation JSON Format

POST / HITP/ 1.1

X-ane-sns- nessage-type: Notification

X-ane-sns- nmessage-i d: 165545c¢9- 2a5c¢c- 472c- 8df 2- 7f f 2be2b3blb
X-ane-sns-topi c-arn: arn: aws: sns: us-west -2: 123456789012: MyTopi ¢
X-anz-sns-subscription-arn: arn:aws:sns: us-

west - 2: 123456789012: MyTopi c: 2bcf bf 39- 05¢3- 41de- beaa-fcfcc21c8f 55
Content -Length: 1336

Cont ent - Type: text/plain; charset=UTF-8

Host: nyhost. exanpl e. com

Connection: Keep-Alive

User - Agent: Amazon Sinple Notification Service Agent

HTTP/HTTPS Subscription Confirmation JSON
Format

After you subscribe an HTTP/HTTPS endpoint, Amazon SNS sends a subscription confirmation
message to the HTTP/HTTPS endpoint. This message contains a Subscr i beURL value that
you must visit to confirm the subscription (alternatively, you can use the Token value with the
ConfirmSubscription). Note that Amazon SNS will not send natifications to this endpoint until the
subscription is confirmed.

The subscription confirmation message is a POST message with a message body that contains a
JSON document with the following name/value pairs.

Message
A string that describes the message. For subscription confirmation, this string looks like this:

You have chosen to subscribe to the topic arn: aws: sns: us-
east-1:123456789012: MyTopi c.\nTo confirmthe subscription, visit the
Subscri beURL included in this nmessage.

Messageld
A Universally Unigue Identifier, unique for each message published. For a message that Amazon
SNS resends during a retry, the message ID of the original message is used.

Signature
Base64-encoded "SHA1withRSA" signature of the Message, Messageld, Type, Timestamp, and
TopicArn values.

SignatureVersion
Version of the Amazon SNS signature used.

SigningCertURL
The URL to the certificate that was used to sign the message.
SubscribeURL
The URL that you must visit in order to confirm the subscription. Alternatively, you can instead use
the Token with the ConfirmSubscription action to confirm the subscription.
Timestamp
The time (GMT) when the subscription confirmation was sent.
Token
A value you can use with the ConfirmSubscription action to confirm the subscription. Alternatively,
you can simply visit the Subscri beURL.
TopicArn
The Amazon Resource Name (ARN) for the topic that this endpoint is subscribed to.

API Version 2010-03-31
196

http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Subscription Confirmation JSON Format

Type
The type of message. For a subscription confirmation, the type is Subscri pti onConfi rmati on.

The following HTTP POST message is an example of a SubscriptionConfirmation message to an
HTTP endpoint.

PCST / HITP/ 1.1

X-ane-sns- nessage-type: SubscriptionConfirnmation
X-ane-sns-nessage-i d: 165545c¢9- 2a5c- 472c- 8df 2- 7f f 2be2b3b1lb
X-ane-sns-topi c-arn: arn: aws: sns: us-west -2: 123456789012: MyTopi ¢
Content -Length: 1336

Cont ent - Type: text/plain; charset=UTF-8

Host: nyhost. exanpl e. com

Connecti on: Keep-Alive

User- Agent: Amazon Sinple Notification Service Agent

{
"Type" : "SubscriptionConfirmation",
"Messagel d" : "165545c9- 2a5c-472c- 8df 2- 7f f 2be2b3blb",
"Token" :
" 2336412f 37f b687f 5d51e6€241d09c805a5a57b30d712f 794cc5f 6a988666d92768dd60a747ba6f 3beb71854e
"Topi CArn" : "arn:aws:sns: us-west-2:123456789012: MyTopi c",
"Message" : "You have chosen to subscribe to the topic arn:aws:sns: us-

west - 2: 123456789012: MyTopi c. \nTo confirmthe subscription, visit the
Subscri beURL included in this nessage. ",

"Subscri beURL" : "https://sns.us-west-2. anazonaws. com ?

Acti on=Confi rnSubscri pti on&Topi CAr n=ar n: aws: sns: us-

west - 2: 123456789012: MyTopi c&Token=2336412f 37f b687f 5d51e6e241d09¢c805a5a57b30d712f 794cc5f 6a98
"Ti mestanp" : "2012-04-26T20: 45: 04. 7512",
"Si gnatureVersion" : "1",
"Signature" : "EXAMPLEpH

+DcEwjf APg8mY8dReBSwksf g2S7WKQci ke NKWL.Q wu6A4VbeSOQHVCKhRS7f UQui 2egU3NB58f i TDN6bkk Ox YDVr YO
"SigningCertURL" : "https://sns.us-west-2.amazonaws. conf

Si npl eNoti fi cati onServi ce-f 3ecfb7224c7233f e7bb5f 59f 96de52f . pent’

}

You can download the following JSON file to view the definition of the JSON format for a subscription
confirmation: https://sns.us-west-2.amazonaws.com/doc/2010-03-31/SubscriptionConfirmation.json.

API Version 2010-03-31
197

https://sns.us-west-2.amazonaws.com/doc/2010-03-31/SubscriptionConfirmation.json

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Notification JSON Format

HTTP/HTTPS Notification JSON Format

When Amazon SNS sends a notification to a subscribed HTTP or HTTPS endpoint, the POST
message sent to the endpoint has a message body that contains a JSON document with the following
name/value pairs.

Message
The Message value specified when the notification was published to the topic.

Messageld
A Universally Unique Identifier, unique for each message published. For a notification that Amazon
SNS resends during a retry, the message ID of the original message is used.

Signature
Base64-encoded "SHA1withRSA" signature of the Message, Messageld, Subject (if present),
Type, Timestamp, and TopicArn values.

SignatureVersion
Version of the Amazon SNS signature used.

SigningCertURL
The URL to the certificate that was used to sign the message.

Subject
The Subject parameter specified when the notification was published to the topic. Note that this is
an optional parameter. If no Subject was specified, then this name/value pair does not appear in
this JSON document.

Timestamp
The time (GMT) when the notification was published.

TopicArn
The Amazon Resource Name (ARN) for the topic that this message was published to.

Type
The type of message. For a notification, the type is Not i fi cati on.

UnsubscribeURL
A URL that you can use to unsubscribe the endpoint from this topic. If you visit this URL, Amazon
SNS unsubscribes the endpoint and stops sending notifications to this endpoint.

The following HTTP POST message is an example of a Notification message to an HTTP endpoint.

POST / HTTP/ 1.1

X-ane-sns-nmessage-type: Notification

X-anz-sns- nessage-id: 22b80b92-f dea- 4c2c- 8f 9d- bdf bOc7bf 324
X-ane-sns-topi c-arn: arn: aws: sns: us-west -2: 123456789012: MyTopi ¢
X-anz-sns-subscription-arn: arn:aws:sns: us-

west - 2: 123456789012: MyTopi c: c9135db0- 26c4- 47ec- 8998- 413945f b5a96
Content -Length: 773

Cont ent - Type: text/plain; charset=UTF-8

Host: nyhost. exanpl e. com

Connection: Keep-Alive

User-Agent: Amazon Sinple Notification Service Agent

{
"Type" : "Notification",
"Messagel d" : "22b80b92-f dea- 4c2c- 8f 9d- bdf bOc7bf 324",
"Topi CArn" : "arn:aws:sns: us-west-2:123456789012: MyTopi c",
"Subject" : "My First Message",
"Message" : "Hello world!",
"Ti mestanp" : "2012-05-02T00: 54: 06. 655Z",
" Si gnat ureVersi on" : "1",

API Version 2010-03-31
198

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Unsubscribe Confirmation JSON Format

"Signature" :

" EXAMPLEW6J RNWTLLFQL41 CBObnXr dB8CI RMIQFGBqwWLpGhM7 8t J4et TwC5z U7 (Bt S6t Gpey3ej edNdQJ

+1f kI p9F2/ LnmNVKb5aF| Yq+9r k9Zi Pph5Yl L Dcy C5T+Sy 9/
um ¢5S0UQc 2PEt gdpVBahwNOdMM J Pwk0kAJJzt nc=",

"SigningCert URL" : "https://sns.us-west-2.amazonaws. conf
Si npl eNot i fi cati onServi ce-f3ecfb7224c7233f e7bb5f 59f 96de52f . pent',
"Unsubscri beURL" : "https://sns.us-west-2.amazonaws. com ?

Acti on=Unsubscri be&Subscri pti onArn=arn: aws: sns: us-
west - 2: 123456789012: MyTopi c: c9135db0- 26c4- 47ec- 8998- 413945f b5a96"

}

You can download the following JSON file to view the definition of the JSON format for a notification:
https://sns.us-west-2.amazonaws.com/doc/2010-03-31/Notification.json.

HTTP/HTTPS Unsubscribe Confirmation JSON
Format

After an HTTP/HTTPS endpoint is unsubscribed from a topic, Amazon SNS sends an unsubscribe
confirmation message to the endpoint.

The unsubscribe confirmation message is a POST message with a message body that contains a
JSON document with the following name/value pairs.

Message
A string that describes the message. For unsubscribe confirmation, this string looks like this:

You have chosen to deactivate subscription arn:aws: sns: us-

east-1:123456789012: MyTopi c: 2bcf bf 39- 05¢3- 41de- beaa- f cf cc21c8f 55.

\nTo cancel this operation and restore the subscription, visit the
Subscri beURL included in this nessage.

Messageld
A Universally Unique Identifier, unique for each message published. For a message that Amazon
SNS resends during a retry, the message ID of the original message is used.

Signature
Base64-encoded "SHA1withRSA" signature of the Message, Messageld, Type, Timestamp, and
TopicArn values.

SignatureVersion
Version of the Amazon SNS signature used.

SigningCertURL
The URL to the certificate that was used to sign the message.

SubscribeURL
The URL that you must visit in order to re-confirm the subscription. Alternatively, you can instead
use the Token with the ConfirmSubscription action to re-confirm the subscription.

Timestamp
The time (GMT) when the unsubscribe confirmation was sent.

Token
A value you can use with the ConfirmSubscription action to re-confirm the subscription.
Alternatively, you can simply visit the Subscri beURL.

TopicArn
The Amazon Resource Name (ARN) for the topic that this endpoint has been unsubscribed from.

API Version 2010-03-31
199

https://sns.us-west-2.amazonaws.com/doc/2010-03-31/Notification.json
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide
SetSubscriptionAttributes Delivery Policy JSON Format

Type
The type of message. For a unsubscribe confirmation, the type is Unsubscri beConfirmati on.

The following HTTP POST message is an example of a UnsubscribeConfirmation message to an
HTTP endpoint.

POST / HTTP/1.1

X-anz-sns- nessage-type: Unsubscri beConfirnmation
X-ane-sns-message-id: 47138184-6831- 46b8- 8f 7c- af c488602d7d
X-ane-sns-topi c-arn: arn: aws: sns: us-west -2: 123456789012: MyTopi ¢
X-anz-sns-subscription-arn: arn:aws:sns: us-

west - 2: 123456789012: MyTopi c: 2bcf bf 39- 05¢c3- 41de- beaa-f cfcc21c8f 55
Cont ent - Lengt h: 1399

Content - Type: text/plain; charset=UTF-8

Host: nyhost. exanpl e. com

Connection: Keep-Alive

User - Agent: Anmazon Sinple Notification Service Agent

{
"Type" : "Unsubscri beConfirmation",
"Messagel d" : "47138184-6831-46b8- 8f 7c- af c488602d7d",
"Token"
"2336412f 37f b687f 5d51e6€241d09c805a5a57b30d712f 7948a98bac386edf e3e10314e873973b3e0a3c09119
"Topi cCArn" : "arn:aws:sns:us-west-2:123456789012: MyTopi c",
"Message" : "You have chosen to deactivate subscription arn:aws:sns: us-

west - 2: 123456789012: MyTopi c: 2bcf bf 39- 05¢3- 41de- beaa- f cf cc21c8f 55.\ nTo cancel
this operation and restore the subscription, visit the SubscribeURL included
in this nmessage.",
"Subscri beURL" : "https://sns.us-west-2. amazonaws. conl ?
Act i on=Conf i r mSubscri pti on&Topi CArn=arn: aws: sns: us-
west - 2: 123456789012: MyTopi c&Token=2336412f 37f b687f 5d51e6e241d09c805a5a57b30d712f 7948a98bac3

"Ti mestanp” : "2012-04-26T20: 06: 41. 5812",
" Si gnat ureVersion" : "1",
"Signature" : "EXAMPLEHXgJnmXgnqsHTI qOCk7TI Zsnk8zpJJoQbr 8l eD

+8kAHcke3C C4VPOvdpZo9s/

VROGOznKab6sj GxE8uwgDI 9Hwp DBl Gx Sl FGUWCr uWeecnt 7MdJ CNhOXK4AXQCht GoXB762ePJf aSW 9t Ywz Ws5z AFUO
"SigningCert URL" : "https://sns.us-west-2. amazonaws. com

Si npl eNot i fi cati onServi ce-f3ecfb7224c7233f e7bb5f 59f 96de52f . pent

}

You can download the following JSON file to view the definition of the JSON format for an unsubscribe
confirmation: https://sns.us-west-2.amazonaws.com/doc/2010-03-31/UnsubscribeConfirmation.json.

SetSubscriptionAttributes Delivery Policy JSON
Format

If you send a request to the SetSubscriptionAttributes action and set the AttributeName parameter to
a value of Del i ver yPol i cy, the value of the AttributeValue parameter must be a valid JSON object.
For example, the following example sets the delivery policy to 5 total retries.

http://sns. us-east-1. anazonaws. conf

?Act i on=Set Subscri ptionAttributes

&Subscri pti onAr n=ar n%8Aaws ¥8Asns¥BAus- east - 198A123456789012%3AMy- Topi ¢
%8A80289bab- 0f d4- 4079- af b4- ce8c8260f Oca

API Version 2010-03-31
200

https://sns.us-west-2.amazonaws.com/doc/2010-03-31/UnsubscribeConfirmation.json

Amazon Simple Notification Service Developer Guide
SetTopicAttributes Delivery Policy JSON Format

&At t ri but eNane=Del i veryPol i cy
&At tri but eVal ue={"heal thyRetryPolicy": {"nunRetries":5}}

Use the following JSON format for the value of the AttributeValue parameter.

{
"heal thyRetryPolicy" : {
"m nDel ayTarget" : <int>,
"maxDel ayTarget" : <int>,
"nunRetries" : <int>,
"nunvaxDel ayRetri es" : <int>,
"backof f Function" : "<linear|arithnetic|geonetric|exponential >"
1
“"throttlePolicy" : {
"maxRecei vesPer Second" : <int>
}
}

For more information about the SetSubscriptionAttribute action, go to SetSubscriptionAttributes in the
Amazon Simple Notification Service API Reference.

SetTopicAttributes Delivery Policy JSON Format

If you send a request to the SetTopicAttributes action and set the AttributeName parameter to a value
of Del i ver yPol i cy, the value of the AttributeValue parameter must be a valid JSON object. For
example, the following example sets the delivery policy to 5 total retries.

http://sns. us-east-1. amazonaws. cont

?Acti on=Set Topi cAttri butes

&Topi cAr n=ar n¥8Aaws ¥B8Asns¥BAus- east - 1%8A123456789012%8AMy - Topi c

&At tri but eNane=Del i veryPol i cy

&Attri buteVal ue={"http":{"defaul tHeal t hyRetryPolicy":{"nunRetries":5}}}

Use the following JSON format for the value of the AttributeValue parameter.

"http" : {
"def aul t Heal t hyRet ryPol i cy" : {
"m nDel ayTarget": <int>,

"maxDel ayTarget": <int>,
"numRetries": <int>,
"numvaxDel ayRetri es": <int>,

"backof f Function": "<linear|arithmetic|geonetric|exponential >"
}s
"di sabl eSubscri ptionOverri des" : <bool ean>,
"defaul t Throttl ePolicy" : {
"maxRecei vesPer Second" : <int>
}

}

API Version 2010-03-31
201

http://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html

Amazon Simple Notification Service Developer Guide
SetTopicAttributes Delivery Policy JSON Format

For more information about the SetTopicAttribute action, go to SetTopicAttributes in the Amazon
Simple Notification Service API Reference.

API Version 2010-03-31
202

http://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html

Amazon Simple Notification Service Developer Guide
Enabling Raw Message Delivery
with the AWS Management Console

Appendix: Large Payload and Raw
Message Delivery

With Amazon SNS and Amazon SQS, you now have the ability to send large payload messages

that are up to 256KB (262,144 bytes) in size. To send large payloads (messages between 64KB and
256KB), you must use an AWS SDK that supports AWS Signature Version 4 (SigV4) signing. To verify
whether SigV4 is supported for an AWS SDK, check the SDK release notes.

In addition to sending large payloads, with Amazon SNS you can now enable raw message delivery
for messages delivered to either Amazon SQS endpoints or HTTP/S endpoints. This eliminates the
need for the endpoints to process JSON formatting, which is created for the Amazon SNS metadata
when raw message delivery is not selected. For example when enabling raw message delivery for

an Amazon SQS endpoint, the Amazon SNS metadata is not included and the published message

is delivered to the subscribed Amazon SQS endpoint as is. When enabling raw message delivery for
HTTP/S endpoints, the messages will contain an additional HTTP header x- anz- sns-rawdel i very
with a value of t r ue to indicate that the message is being published raw instead of with JSON
formatting. This enables those endpoints to understand what is being delivered and enables easier
transition for subscriptions from JSON to raw delivery.

To enable raw message delivery using one of the AWS SDKs, you must use the
Set Subscri ptionAttri but e action and configure the RawMessageDel i very attribute with a value
of t rue. The default value is f al se.

Enabling Raw Message Delivery with the AWS
Management Console

You can enable raw message delivery using the AWS Management Console by setting the Raw
Message Delivery subscription attribute to a value of true.

To enable raw message delivery with the AWS Management Console

1. Signin to the AWS Management Console and open the Amazon SNS console at https:/
console.aws.amazon.com/sns/.

2. Select a topic that is subscribed to either an Amazon SQS endpoint or an HTTP/S endpoint and
then click the topic ARN.

API Version 2010-03-31
203

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Enabling Raw Message Delivery
with the AWS Management Console

The Topic Details page appears.

Select the Subscription ID and then click the Other subscription actions drop-down box.

Click Edit subscription attributes, select Raw Message Delivery, and then click Set
subscription attributes.

Edit Subscription Attributes

Raw Message Delivery

Cancel Set Subscription Attributes

API Version 2010-03-31
204

Amazon Simple Notification Service Developer Guide

Document History

The following table describes the important changes to the documentation since the last release of the
Amazon SNS Developer Guide.

¢ APl version: 2010-03-31
¢ Latest documentation update: June 28, 2016

Change

Amazon SNS
supports worldwide
SMS

Platform endpoints
and device tokens

Application event
notifications

New support
for VoIP and
Mac OS X push
notifications

Invoking AWS
Lambda functions

Using Amazon
SNS topic
attributes for
message delivery
status

Description

Amazon SNS now supports SMS messaging to more
than 200 countries. You can send a message directly
to a phone number, or you can send a message to
multiple phone numbers at once by subscribing those
phone numbers to a topic and sending your message
to the topic. For more information, see Sending SMS
Messages with Amazon SNS (p. 121).

Added a topic about how to create a platform endpoint
and manage device tokens for Amazon SNS mobile
push notification. For more information, see Create a
Platform Endpoint and Manage Device Tokens (p. 84).

Added a topic about how to trigger notifications when
certain application events occur. For more information,
see Application Event Notifications (p. 94).

Added new topics about sending push notification
messages to VolP and Mac OS X apps using Apple
Push Notification Service. For more information,
see Getting Started with Apple Push Notification
Service (p. 46).

Added a topic on how to invoke Lambda functions
using Amazon SNS notifications. For more information,
see Invoking Lambda functions using Amazon SNS
notifications (p. 179).

Added a topic on using Amazon SNS topic attributes
for message delivery status. For more information,
see Using Amazon SNS Topic Attributes for Message
Delivery Status (p. 181).

Date Changed

June 28, 2016

September 23, 2015

September 23, 2015

June 15, 2015

April 09, 2015

April 09, 2015

API Version 2010-03-31
205

Amazon Simple Notification Service Developer Guide

Change Description Date Changed
Support to log the | Added a topic on using Amazon SNS application February 05, 2015
delivery status of attributes for message delivery status. For more

push natification information, see Using Amazon SNS Application

messages Attributes for Message Delivery Status (p. 91).

Support for AWS Added a topic on logging Amazon SNS API calls by October 09, 2014
CloudTrail with using CloudTrail. For more information, see Logging

Amazon Simple Amazon Simple Notification Service API Calls By Using

Notification Service | AWS CloudTrail (p. 191).

Amazon SNS Added a topic about the high-level steps you must October 09, 2014
mobile push high- | perform to use Amazon SNS mobile push. This
level steps information should help you gain a better understanding

of the steps involved when using the Amazon SNS
mobile push APIs. For more information, see Amazon
SNS Mobile Push High#Level Steps (p. 40).

Support for Updated a topic on how to send authenticated August 19, 2014
authenticated messages with MPNS. For more information, see
messages with Getting Started with MPNS (p. 73).

Microsoft Push
Notification Service

for Windows

Phone

Support for setting | Added a topic on how to specify expiration metadata July 10, 2014
a Time To Live for a mobile push notification message. For more

(TTL) message information, see Using the Amazon SNS Time

attribute for mobile | To Live (TTL) Message Attribute for Mobile Push
push natification Notifications (p. 96).

messages
Support for Baidu Added topics on how to use Baidu, MPNS, and June 12, 2014
Cloud Push, WNS, with Amazon SNS to send push natification
Microsoft Push messages to mobile devices. For more information, see
Notification Service | Getting Started with Baidu Cloud Push (p. 52), Getting
for Windows Started with MPNS (p. 73), and Getting Started with
Phone, and WNS (p. 76).
Windows Push
Notification
Services
Message attributes | Message attributes allow you to provide structured June 12, 2014
metadata items about a message. For more information,
see Using Amazon SNS Message Attributes (p. 184).
Amazon SNS Added a section about using the AWS SDK for Java with | April 23, 2014
samples in Java Amazon SNS. Examples in this section show how to

create a new Amazon SNS client, set the Amazon SNS
endpoint to use, and create a new topic. In addition,
examples are provided on how to subscribe to, publish
to, and delete a topic. For more information, see Using
the AWS SDK for Java with Amazon SNS (p. 9).

API Version 2010-03-31
206

Amazon Simple Notification Service Developer Guide

Change Description Date Changed
Mobile push Added a topic about how to create and send custom December 17, 2013
notifications platform-specific payloads in messages to mobile

devices. For more information, see Send Custom
Platform-Specific Payloads in Messages to Mobile
Devices (p. 89).

Mobile push Added support to send natification messages directly August 13, 2013
notifications to apps on mobile devices. For more information, see
Amazon SNS Mobile Push Notifications (p. 38).

Initial Release This is the first release of the Amazon SNS Developer May 1, 2013
Guide.

API Version 2010-03-31
207

	Amazon Simple Notification Service
	Table of Contents
	What is Amazon Simple Notification Service?
	Are You a First-Time Amazon Simple Notification Service User?
	Beyond the Getting Started Section
	Accessing Amazon SNS
	Common Amazon SNS Scenarios
	Fanout
	Application and System Alerts
	Push Email and Text Messaging
	Mobile Push Notifications

	Getting Started with Amazon Simple Notification Service
	Before You Begin
	Create a Topic
	Subscribe to a Topic
	Publish to a Topic
	Create Different Messages for Each Protocol

	Clean Up
	Using the AWS SDK for Java with Amazon SNS

	Managing Access to Your Amazon SNS Topics
	Overview
	When to Use Access Control
	Key Concepts
	Permission
	Statement
	Policy
	Issuer
	Principal
	Action
	Resource
	Conditions and Keys
	Requester
	Evaluation
	Effect
	Default Deny
	Allow
	Explicit Deny

	Architectural Overview
	Using the Access Policy Language
	Evaluation Logic
	The Interplay of Explicit and Default Denials

	Example Cases for Amazon SNS Access Control
	Allowing AWS account Access to a Topic
	Limiting Subscriptions to HTTPS
	Publishing to an Amazon SQS Queue
	Allowing Any AWS Resource to Publish to a Topic
	Allowing an Amazon S3 Bucket to Publish to a Topic

	Special Information for Amazon SNS Policies
	Amazon SNS Policy Limits
	Valid Amazon SNS Policy Actions
	Amazon SNS Keys

	Controlling User Access to Your AWS Account
	IAM and Amazon SNS Policies Together
	Amazon SNS ARNs
	Amazon SNS Actions
	Amazon SNS Keys
	Amazon SNS Keys

	Example Policies for Amazon SNS
	Using Temporary Security Credentials

	Amazon SNS Mobile Push Notifications
	Overview
	Prerequisites
	Amazon SNS Mobile Push High‐Level Steps
	Step 1: Request Credentials from Mobile Platforms
	Step 2: Request Token from Mobile Platforms
	Step 3: Create Platform Application Object
	Step 4: Create Platform Endpoint Object
	Step 5: Publish Message to Mobile Endpoint

	Getting Started with Amazon Device Messaging
	ADM Prerequisites
	Step 1: Create a Kindle Fire App with the ADM Service Enabled
	Step 2: Obtain a Client ID and Client Secret
	Step 3: Obtain an API Key
	Step 4: Obtain a Registration ID
	Step 5: Sending a Push Notification Message to a Kindle Fire app using Amazon SNS and ADM

	Getting Started with Apple Push Notification Service
	APNS Prerequisites
	Step 1: Create an iOS App
	Step 2: Obtain an APNS SSL Certificate
	Step 3: Obtain the App Private Key
	Step 4: Verify the Certificate and App Private Key
	Step 5: Obtain a Device Token
	Next Steps
	Send a push notification message to an iOS app using Amazon SNS and APNS
	Send a push notification message to a VoIP iOS app using Amazon SNS and APNS
	Send a push notification message to a Mac OS X app using Amazon SNS and APNS

	Getting Started with Baidu Cloud Push
	Baidu Prerequisites
	Step 1: Create a Baidu Account
	Step 2: Register as a Baidu Developer
	Step 3: Create a Baidu Cloud Push Project
	Step 4: Download and Install the Android Demo App from Baidu
	Step 5: Obtain a User Id and Channel Id from Baidu
	Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and Baidu
	Creating an Amazon SNS Endpoint for Baidu
	Using Message Attributes for Structuring the Message

	Getting Started with Google Cloud Messaging for Android
	GCM Prerequisites
	Step 1: Create a Google API Project and Enable the GCM Service
	Step 2: Obtain the Server API Key
	Step 3: Obtain a Registration ID from GCM
	Step 4: Send a Push Notification Message to a Mobile Endpoint using GCM

	Getting Started with MPNS
	MPNS Prerequisites
	Step 1: Set Up Your Windows Phone App to Receive Push Notifications Messages
	Step 2: Get a Push Notification URI from MPNS
	Step 3: Create a Windows Developer Account
	Step 4: Upload TLS Certificate
	Step 5: Send a Push Notification Message to a Windows Phone app using Amazon SNS and MPNS

	Getting Started with WNS
	WNS Prerequisites
	Step 1: Set Up Your App to Receive Push Notifications Messages
	Step 2: Get a Push Notification URI from WNS
	Step 3: Get a Package Security Identifier from WNS
	Step 4: Get a Secret Key from WNS
	Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS

	Using Amazon SNS Mobile Push
	Register Your Mobile App with AWS
	Add Device Tokens or Registration IDs
	Create a Platform Endpoint and Manage Device Tokens
	Create a Platform Endpoint
	Pseudo Code
	Java Example
	Troubleshooting
	Repeatedly Calling Create Platform Endpoint with an Outdated Device Token
	Re-Enabling a Platform Endpoint Associated with an Invalid Device Token

	Send a Direct Message to a Mobile Device
	Send Messages to Mobile Devices Subscribed to a Topic
	Send Custom Platform-Specific Payloads in Messages to Mobile Devices
	JSON Formatted Message Data
	Platform-Specific Key-Value Pairs
	Messages to an App on Multiple Platforms

	Using Amazon SNS Application Attributes for Message Delivery Status
	Configuring Message Delivery Status Attributes with the AWS Management Console
	Amazon SNS Message Delivery Status CloudWatch Log Examples
	Configuring Message Delivery Status Attributes with the AWS SDKs
	Platform Response Codes

	Application Event Notifications
	Available Application Events
	Sending Application Event Notifications
	AWS Management Console
	AWS CLI
	AWS SDKs

	Using the Amazon SNS Time To Live (TTL) Message Attribute for Mobile Push Notifications
	TTL Message Attributes for Push Notification Services
	Precedence Order for Determining TTL
	Specifying TTL with the AWS Management Console
	Specifying TTL with the AWS SDKs

	Using Amazon SNS Mobile Push APIs
	API Errors for Amazon SNS Mobile Push

	Sending Amazon SNS Messages to Amazon SQS Queues
	Step 1. Get the ARN of the queue and the topic.
	Step 2. Give permission to the Amazon SNS topic to send messages to the Amazon SQS queue
	Step 3. Subscribe the queue to the Amazon SNS topic
	Step 4. Give users permissions to the appropriate topic and queue actions
	Adding a policy to an IAM user or group
	Adding a policy to a topic or queue

	Step 5. Test it
	Sending Amazon SNS messages to an Amazon SQS queue in a different account
	Queue Owner Creates Subscription
	User Who Does Not Own the Queue Creates Subscription

	Using an AWS CloudFormation Template to Create a Topic that Sends Messages to Amazon SQS Queues
	Using an AWS CloudFormation Template to Set Up Topics and Queues Within an AWS Account

	Sending SMS Messages with Amazon SNS
	Setting SMS Messaging Preferences
	Setting Preferences (Console)
	Setting Preferences (AWS SDKs)
	Setting Preferences (AWS SDK for Java)

	Sending an SMS Message
	Sending a Message (Console)
	Sending a Message (AWS SDKs)
	(Optional) Setting Message Attributes (AWS SDK for Java)
	Sending a Message (AWS SDK for Java)

	Sending an SMS Message to Multiple Phone Numbers
	Sending a Message to a Topic (Console)
	Sending a Message to a Topic (AWS SDKs)
	Creating a Topic (AWS SDK for Java)
	Adding an SMS Subscription to Your Topic (AWS SDK for Java)
	(Optional) Setting Message Attributes (AWS SDK for Java)
	Publishing a Message to Your Topic (AWS SDK for Java)

	Monitoring SMS Activity
	Viewing SMS Delivery Statistics
	Viewing Amazon CloudWatch Metrics and Logs for SMS Deliveries
	Viewing Amazon CloudWatch Metrics
	Viewing CloudWatch Logs
	Example Log for Successful SMS Delivery
	Example Log for Failed SMS Delivery
	SMS Delivery Failure Reasons

	Viewing Daily SMS Usage Reports
	Daily Usage Report Information
	Subscribing to Daily Usage Reports
	Example Bucket Policy
	Example Daily Usage Report

	Managing Phone Numbers and SMS Subscriptions
	Opting Out of Receiving SMS Messages
	Managing Phone Numbers and Subscriptions (Console)
	Opting in a Phone Number That Has Been Opted Out
	Deleting an SMS Subscription
	Deleting a Topic

	Managing Phone Numbers and Subscriptions (AWS SDKs)
	Viewing All Opted Out Phone Numbers
	Checking Whether a Phone Number Is Opted Out
	Opting In a Phone Number That Has Been Opted Out
	Deleting an SMS Subscription
	Deleting a Topic

	Supported Regions and Countries

	Sending Amazon SNS Messages to HTTP/HTTPS Endpoints
	Step 1: Make sure your endpoint is ready to process Amazon SNS messages
	Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic
	Step 3: Confirm the subscription
	Step 4: Set the delivery retry policy for the subscription (optional)
	Step 5: Give users permissions to publish to the topic (optional)
	Step 6: Send messages to the HTTP/HTTPS endpoint
	Setting Amazon SNS Delivery Retry Policies for HTTP/HTTPS Endpoints
	Applying Delivery Policies to Topics and Subscriptions
	Setting the Maximum Receive Rate
	Immediate Retry Phase
	Pre-Backoff Phase
	Backoff Phase
	Post-Backoff Phase

	Certificate Authorities (CA) Recognized by Amazon SNS for HTTPS Endpoints
	Verifying the Signatures of Amazon SNS Messages
	Example Code for an Amazon SNS Endpoint Java Servlet

	Invoking Lambda functions using Amazon SNS notifications
	Prerequisites
	Configuring Amazon SNS with Lambda Endpoints with the AWS Management Console

	Using Amazon SNS Topic Attributes for Message Delivery Status
	Configuring Message Delivery Status Attributes with the AWS Management Console
	Configuring Message Delivery Status Attributes for Topics Subscribed to Amazon SNS Endpoints with the AWS SDKs
	Topic Attributes
	Java Example to Configure Topic Attributes

	Using Amazon SNS Message Attributes
	Message Attribute Items and Validation
	Message Attribute Data Types and Validation
	Reserved Message Attributes
	Using Message Attributes with the AWS SDKs

	Monitoring Amazon SNS with CloudWatch
	Access CloudWatch Metrics for Amazon SNS
	Set CloudWatch Alarms for Amazon SNS Metrics
	Amazon SNS Metrics
	Dimensions for Amazon Simple Notification Service Metrics

	Logging Amazon Simple Notification Service API Calls By Using AWS CloudTrail
	Amazon SNS Information in CloudTrail
	Understanding Amazon SNS Log File Entries

	Appendix: Message and JSON Formats
	HTTP/HTTPS Headers
	HTTP/HTTPS Subscription Confirmation JSON Format
	HTTP/HTTPS Notification JSON Format
	HTTP/HTTPS Unsubscribe Confirmation JSON Format
	SetSubscriptionAttributes Delivery Policy JSON Format
	SetTopicAttributes Delivery Policy JSON Format

	Appendix: Large Payload and Raw Message Delivery
	Enabling Raw Message Delivery with the AWS Management Console

	Document History

