
AWS Lambda
Developer Guide

AWS Lambda Developer Guide

AWS Lambda Developer Guide

AWS Lambda: Developer Guide
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

AWS Lambda Developer Guide

Table of Contents
What Is AWS Lambda? ... 1

When should I Use Lambda? ... 1
Are You a First-time User of AWS Lambda? ... 2

Lambda Functions ... 3
Compute Requirements – Lambda Function Configuration ... 3
Invocation Types ... 4
Building Lambda Functions .. 5

Authoring Code for Your Lambda Function ... 5
Deploying Code and Creating a Lambda Function .. 6
Monitoring and Troubleshooting .. 7
AWS Lambda-Based Application Examples ... 7
Related Topics ... 8
Programming Model .. 8
Creating a Deployment Package ... 56
Versioning and Aliases ... 72
Environment Variables ... 89

VPC Support .. 96
Configuring a Lambda Function for Amazon VPC Access .. 96
Internet Access for Lambda Functions .. 97
Guidelines for Setting Up VPC-Enabled Lambda Functions .. 98
Tutorials: Accessing Resources in an Amazon VPC .. 98

Troubleshooting and Monitoring ... 107
Troubleshooting Scenarios .. 108
Accessing CloudWatch Metrics .. 109
Accessing CloudWatch Logs ... 110
Metrics ... 111
Dead Letter Queues .. 113

Building Applications with AWS Lambda ... 115
Example 1 .. 116
Example 2 .. 117
Example 3: Custom Application Publishes Events and Invokes a Lambda Function 118
Event Source Mapping ... 120

Event Source Mapping for AWS Services .. 120
Event Source Mapping for AWS Stream-based Services .. 122
Event Source Mapping for Custom Applications ... 123

Supported Event Sources ... 124
Amazon S3 .. 125
Amazon DynamoDB ... 126
Amazon Kinesis Streams .. 126
Amazon Simple Notification Service ... 126
Amazon Simple Email Service ... 127
Amazon Cognito .. 127
AWS CloudFormation ... 127
Amazon CloudWatch Logs .. 128
Amazon CloudWatch Events ... 128
AWS CodeCommit ... 128
Scheduled Events (powered by Amazon CloudWatch Events) ... 128
AWS Config .. 129
Amazon Echo ... 129
Amazon Lex ... 129
Amazon API Gateway .. 130
Other Event Sources: Invoking a Lambda Function On Demand .. 130
Sample Event Data .. 130

Deploying Lambda-based Applications .. 139
Deploying Serverless Applications Using AWS CloudFormation .. 139

iv

AWS Lambda Developer Guide

Using the AWS Serverless Application Model (AWS SAM) ... 139
Create Your Own Serverless Application ... 144
Automating Deployment of Lambda-based Applications ... 147

How It Works .. 151
How Does AWS Lambda Run My Code? The Container Model ... 151
Concurrent Executions ... 152

Concurrent Execution Request Rate ... 152
Concurrent Executions Safety Limit .. 153

Retries on Errors ... 154
Permissions Model .. 155

Manage Permissions: Using an IAM Role (Execution Role) .. 155
Manage Permissions: Using a Lambda Function Policy ... 156

Execution Environment ... 157
Environment Variables Available to Lambda Functions .. 158

Getting Started .. 160
Step 1: Set Up an AWS Account and the AWS CLI .. 160

Step 1.1: Set Up an Account ... 160
Step 1.2: Set Up the AWS CLI .. 163

Step 2: Create a HelloWorld Lambda Function and Explore the Console 164
Preparing for the Getting Started ... 164
Step 2.1: Create a Hello World Lambda Function ... 164
Step 2.2: Invoke the Lambda Function .. 167
Step 2.3: (Optional) Create a Lambda Function Authored in Java 169
Step 2.4: (Optional) Create a Lambda Function Authored in C# .. 170

Step 3: Create a Simple Microservice using Lambda and API Gateway 171
Next Step ... 171
Step 3.1: Create an API Using Amazon API Gateway ... 172
Step 3.2: Test Sending an HTTPS Request ... 172
Step 3.3: (Optional) Try Other Blueprints ... 173
What's Next? .. 174

Use Cases ... 175
Amazon S3 .. 175

Tutorial .. 177
Amazon Kinesis .. 193

Tutorial .. 194
Amazon DynamoDB ... 203

Tutorial .. 204
AWS CloudTrail ... 215

Tutorial .. 216
Amazon SNS .. 230

Tutorial .. 230
Amazon API Gateway .. 236

Using AWS Lambda with Amazon API Gateway (On-Demand Over HTTPS) 236
Mobile Backend (Android) ... 250

Tutorial .. 251
Scheduled Events .. 263

Tutorial .. 264
Custom User Applications ... 269

Tutorial .. 269
AWS Lambda@Edge (Preview) ... 277

How It Works .. 278
Authoring Functions for Lambda@Edge .. 278
Permissions .. 278
Testing and Debugging .. 279
Simple Setup .. 279
Lambda@Edge Limits .. 280

API Logging with AWS CloudTrail .. 281
AWS Lambda Information in CloudTrail ... 281

v

AWS Lambda Developer Guide

Understanding AWS Lambda Log File Entries .. 282
Best Practices ... 284
Limits ... 285

List of AWS Lambda Limits ... 285
AWS Lambda Limit Errors .. 286

Authentication and Access Control ... 287
Authentication ... 287
Access Control .. 288
Overview of Managing Access ... 289

AWS Lambda Resources and Operations .. 289
Understanding Resource Ownership ... 290
Managing Access to Resources ... 290
Specifying Policy Elements: Actions, Effects, Resources, and Principals 292
Specifying Conditions in a Policy ... 293

Using Identity-Based Policies (IAM Policies) .. 293
Permissions Required to Use the AWS Lambda Console ... 294
AWS Managed (Predefined) Policies for AWS Lambda .. 294
Customer Managed Policy Examples .. 295
Console Permissions .. 298

Using Resource-Based Policies (Lambda Function Policies) ... 306
Allow Amazon S3 to Invoke a Lambda Function ... 307
Allow Amazon API Gateway to Invoke a Lambda Function ... 308
Cross-Account Scenario ... 309
Retrieve a Lambda Function Policy .. 309
Remove Permissions ... 309
Working with Lambda Function Versioning, Aliases, and Permissions 310

Lambda API Permissions Reference .. 310
Policy Templates ... 311

Basic: 'Basic Lambda Permissions' ... 312
VPCAccess: 'Lambda VPC Access Permissions' .. 312
Kinesis: 'Lambda Kinesis stream poller permissions' ... 312
DynamoDB: 'Lambda DynamoDB stream poller permissions' .. 313
Edge: 'Basic Edge Lambda permissions' ... 313
RedrivePolicySNS: ‘Dead letter queue SNS permissions’ ... 314
RedrivePolicySQS: 'Dead letter queue SQS permissions' ... 314
CloudFormation: 'CloudFormation stack read-only permissions' ... 314
AMI: 'AMI read-only permissions' ... 315
KMS: 'KMS decryption permissions' .. 315
S3: 'S3 object read-only permissions' ... 315
Elasticsearch: 'Elasticsearch permissions' .. 316
SES: 'SES bounce permissions' ... 316
TestHarness: 'Test Harness permissions' .. 316
Microservice: 'Simple Microservice permissions' ... 317
VPN: 'VPN Connection Monitor permissions' .. 317
SQS: 'SQS Poller permissions' .. 317
IoTButton: 'AWS IoT Button permissions' .. 318
RekognitionNoDataAccess:'Amazon Rekognition no data permissions' 318
RekognitionReadOnlyAccess: 'Amazon Rekognition read-only permissions' 319
RekognitionWriteOnlyAccess: 'Amazon Rekognition write-only permissions' 319

API Reference .. 320
Actions ... 320

AddPermission .. 322
CreateAlias ... 325
CreateEventSourceMapping .. 328
CreateFunction .. 332
DeleteAlias ... 338
DeleteEventSourceMapping ... 339
DeleteFunction .. 341

vi

AWS Lambda Developer Guide

GetAccountSettings .. 343
GetAlias ... 345
GetEventSourceMapping .. 347
GetFunction .. 349
GetFunctionConfiguration .. 352
GetPolicy .. 356
Invoke .. 358
InvokeAsync ... 362
ListAliases .. 364
ListEventSourceMappings ... 366
ListFunctions ... 368
ListVersionsByFunction ... 370
PublishVersion .. 372
RemovePermission .. 376
UpdateAlias .. 378
UpdateEventSourceMapping ... 380
UpdateFunctionCode .. 383
UpdateFunctionConfiguration ... 387

Data Types ... 391
AccountLimit ... 393
AccountUsage ... 394
AliasConfiguration .. 395
DeadLetterConfig ... 396
Environment ... 397
EnvironmentError ... 398
EnvironmentResponse .. 399
EventSourceMappingConfiguration ... 400
FunctionCode .. 401
FunctionCodeLocation .. 402
FunctionConfiguration ... 403
VpcConfig ... 405
VpcConfigResponse ... 406

Document History .. 407
AWS Glossary .. 412

vii

AWS Lambda Developer Guide
When should I Use Lambda?

What Is AWS Lambda?

AWS Lambda is a compute service that lets you run code without provisioning or managing servers.
AWS Lambda executes your code only when needed and scales automatically, from a few requests
per day to thousands per second. You pay only for the compute time you consume - there is no
charge when your code is not running. With AWS Lambda, you can run code for virtually any type of
application or backend service - all with zero administration. AWS Lambda runs your code on a high-
availability compute infrastructure and performs all of the administration of the compute resources,
including server and operating system maintenance, capacity provisioning and automatic scaling,
code monitoring and logging. All you need to do is supply your code in one of the languages that AWS
Lambda supports (currently Node.js, Java, C# and Python).

You can use AWS Lambda to run your code in response to events, such as changes to data in an
Amazon S3 bucket or an Amazon DynamoDB table; to run your code in response to HTTP requests
using Amazon API Gateway; or invoke your code using API calls made using AWS SDKs. With
these capabilities, you can use Lambda to easily build data processing triggers for AWS services like
Amazon S3 and Amazon DynamoDB process streaming data stored in Amazon Kinesis, or create your
own back end that operates at AWS scale, performance, and security.

For more information about the AWS Lambda execution environment, see Lambda Execution
Environment and Available Libraries (p. 157). For information about how AWS Lambda determines
compute resources required to execute your code, see Compute Requirements – Lambda Function
Configuration (p. 3).

When Should I Use AWS Lambda?
AWS Lambda is an ideal compute platform for many application scenarios, provided that you can write
your application code in languages supported by AWS Lambda (that is, Node.js, Java, C# and Python),
and run within the AWS Lambda standard runtime environment and resources provided by Lambda.

When using AWS Lambda, you are responsible only for your code. AWS Lambda manages the
compute fleet that offers a balance of memory, CPU, network, and other resources. This is in exchange
for flexibility, which means you cannot log in to compute instances, or customize the operating system
or language runtime. These constraints enable AWS Lambda to perform operational and administrative
activities on your behalf, including provisioning capacity, monitoring fleet health, applying security
patches, deploying your code, and monitoring and logging your Lambda functions.

If you need to manage your own compute resources, Amazon Web Services also offers other compute
services to meet your needs.

1

AWS Lambda Developer Guide
Are You a First-time User of AWS Lambda?

• Amazon Elastic Compute Cloud (Amazon EC2) service offers flexibility and a wide range of EC2
instance types to choose from. It gives you the option to customize operating systems, network and
security settings, and the entire software stack, but you are responsible for provisioning capacity,
monitoring fleet health and performance, and using Availability Zones for fault tolerance.

• Elastic Beanstalk offers an easy-to-use service for deploying and scaling applications onto Amazon
EC2 in which you retain ownership and full control over the underlying EC2 instances.

Are You a First-time User of AWS Lambda?
If you are a first-time user of AWS Lambda, we recommend that you read the following sections in
order:

1. Read the product overview and watch the introductory video to understand sample use
cases. These resources are available on the AWS Lambda webpage.

Read the "How It Works" section of this guide. This section introduces various AWS Lambda
components you work with to create an end-to-end experience. For more information, see How It
Works (p. 151).

2. Review the “Lambda Functions” section of this guide. To understand the programming model
and deployment options for a Lambda function there are core concepts you should be familiar
with. This section explains these concepts and provides details of how they work in different
languages that you can use to author your Lambda function code. For more information, see
Lambda Functions (p. 3).

3. Try the console-based Getting Started exercise. The exercise provides instructions for you to
create and test your first Lambda function using the console. You also learn about the console
provided blueprints to quickly create your Lambda functions. For more information, see Getting
Started (p. 160).

4. Read the "Building Applications with AWS Lambda" section of this guide. This section
introduces various AWS Lambda components you work with to create an end-to-end experience.
For more information, see Building applications with AWS Lambda (p. 115).

Beyond the Getting Started exercise, you can explore the various use cases, each of which is provided
with a tutorial that walks you through an example scenario. Depending on your application needs
(for example, whether you want event driven Lambda function invocation or on-demand invocation),
you can follow specific tutorials that meet your specific needs. For more information, see Use
Cases (p. 175).

The following topics provide additional information about AWS Lambda:

• AWS Lambda Function Versioning and Aliases (p. 72)

• Troubleshooting and Monitoring AWS Lambda Functions with Amazon CloudWatch (p. 107)

• Best Practices for Working with AWS Lambda Functions (p. 284)

• AWS Lambda Limits (p. 285)

2

https://aws.amazon.com/lambda/

AWS Lambda Developer Guide
Compute Requirements – Lambda Function Configuration

Lambda Functions

After you package up your custom code, including any dependencies, and upload it to AWS Lambda,
you have created a Lambda function.

If you are new to AWS Lambda, you might ask: what type of code can I run as a Lambda function?
How does AWS Lambda execute my code? How does AWS Lambda know the amount of memory and
CPU requirements needed to run my Lambda code? The following sections provide an overview of
how a Lambda function works.

Depending on your scenario, you can build applications where you use the AWS Lambda
service to run all or parts of your application code. For more information, see Building Lambda
Functions (p. 5). How It Works (p. 151) provides examples that illustrate how to create a Lambda
function for specific scenarios.

The sections in this topic provide the following introductory information about Lambda functions:

Topics

• Compute Requirements – Lambda Function Configuration (p. 3)

• Invocation Types (p. 4)

• Introduction: Building Lambda Functions (p. 5)

• Configuring a Lambda Function to Access Resources in an Amazon VPC (p. 96)

• Troubleshooting and Monitoring AWS Lambda Functions with Amazon CloudWatch (p. 107)

Compute Requirements – Lambda Function
Configuration

A Lambda function consists of code and any associated dependencies. In addition, a Lambda
function also has configuration information associated with it. Initially, you specify the configuration
information when you create a Lambda function. Lambda provides an API for you to update some of
the configuration data. Lambda function configuration information includes the following key elements:

• Compute resources that you need – You only specify the amount of memory you want to allocate
for your Lambda function. AWS Lambda allocates CPU power proportional to the memory by using
the same ratio as a general purpose Amazon EC2 instance type, such as an M3 type. For example,
if you allocate 256 MB memory, your Lambda function will receive twice the CPU share than if you
allocated only 128 MB.

You can update the configuration and request additional memory in 64 MB increments. For
information about relevant limits, see AWS Lambda Limits (p. 285).

3

AWS Lambda Developer Guide
Invocation Types

To change the amount of memory your Lambda function requires, do the following:

1. Sign in to the AWS Management Console and navigate to the AWS Lambda console.

2. Choose the function whose memory size you wish to change.

3. Click the Configuration tab and then expand Advanced settings.

4. In the Memory (MB) list, choose your desired amount.

Optionally, you can update the memory size of your functions using the following AWS CLI command
(using valid 64 MB increments):

$ aws lambda update-function-configuration \
 --function-name your function name \
 --region region where your function resides \
 --memorysize memory amount \
 --profile adminuser

For information on setting up and using the AWS CLI, see Step 1: Set Up an AWS Account and the
AWS CLI (p. 160).

• Maximum execution time (timeout) – You pay for the AWS resources that are used to run your
Lambda function. To prevent your Lambda function from running indefinitely, you specify a timeout.
When the specified timeout is reached, AWS Lambda terminates your Lambda function.

• IAM role (execution role) – This is the role that AWS Lambda assumes when it executes the
Lambda function on your behalf.

• Handler name – The handler refers to the method in your code where AWS Lambda begins
execution. AWS Lambda passes any event information, which triggered the invocation, as a
parameter to the handler method.

Invocation Types
AWS Lambda supports synchronous and asynchronous invocation of a Lambda function. You can
control the invocation type only when you invoke a Lambda function (referred to as on-demand
invocation). The following examples illustrate on-demand invocations:

• Your custom application invokes a Lambda function.

• You manually invoke a Lambda function (for example, using the AWS CLI) for testing purposes.

In both cases, you invoke your Lambda function using the Invoke (p. 358) operation, and you can
specify the invocation type as synchronous or asynchronous.

However, when you are using AWS services as event sources, the invocation type is predetermined for
each of these services. You don't have any control over the invocation type that these event sources
use when they invoke your Lambda function. For example, Amazon S3 always invokes a Lambda
function asynchronously and Amazon Cognito always invokes a Lambda function synchronously. For

4

AWS Lambda Developer Guide
Building Lambda Functions

stream-based AWS services (Amazon Kinesis Streams and Amazon DynamoDB Streams), AWS
Lambda polls the stream and invokes your Lambda function synchronously.

Introduction: Building Lambda Functions
You upload your application code in the form of one or more Lambda functions to AWS Lambda,
a compute service, and the service can run the code on your behalf. AWS Lambda takes care of
provisioning and managing the servers to run the code upon invocation.

Typically, the lifecycle for an AWS Lambda-based application includes authoring code, deploying code
to AWS Lambda, and then monitoring and troubleshooting. The following are general questions that
come up in each of these lifecycle phases:

• Authoring code for your Lambda function – What languages are supported? Is there a
programming model that I need to follow? How do I package my code and dependencies for
uploading to AWS Lambda? What tools are available?

• Uploading code and creating Lambda functions – How do I upload my code package to AWS
Lambda? How do I tell AWS Lambda where to begin executing my code? How do I specify compute
requirements like memory and timeout?

• Monitoring and troubleshooting – For my Lambda function that is in production, what metrics are
available? If there are any failures, how do I get logs or troubleshoot issues?

The following sections provide introductory information and the Example section at the end provides
working examples for you to explore.

Note
This topic provides an introductory overview of how you develop AWS Lambda-based
applications. The How It Works (p. 151) section describes the specifics about Lambda
functions, event sources, and how AWS Lambda executes your Lambda functions.

Authoring Code for Your Lambda Function
You can author your Lambda function code in the languages that are supported by AWS Lambda. For
a list of supported languages, see Lambda Execution Environment and Available Libraries (p. 157).
There are tools for authoring code, such as the AWS Lambda console, Eclipse IDE, and Visual Studio
IDE. But the available tools and options depend on the following:

• Language you choose to write your Lambda function code.

• Libraries that you use in your code. AWS Lambda runtime provides some of the libraries and you
must upload any additional libraries that you use.

The following table lists languages, and the available tools and options that you can use.

Language Tools and Options for Authoring
Code

More Info

Node.js • AWS Lambda console You can use the console if the
languages you choose do not require

5

AWS Lambda Developer Guide
Deploying Code and Creating a Lambda Function

Language Tools and Options for Authoring
Code

More Info

• Visual Studio, with IDE plug-in (see
AWS Lambda Support in Visual
Studio)

• Your own authoring environment

compilation, the code is saved in a
single file, and it does not depend on
any libraries.

Java • Eclipse, with AWS Toolkit for Eclipse
(see Using AWS Lambda with the
AWS Toolkit for Eclipse)

• Your own authoring environment

The AWS Toolkit also creates
the deployment package,
which is explained in Deploying
Code and Creating a Lambda
Function (p. 6).

C# • Visual Studio, with IDE plug-in (see
AWS Lambda Support in Visual
Studio)

• .NET Core (see .NET Core
installation guide)

• Your own authoring environment

The AWS Toolkit also creates
the deployment package,
which is explained in Deploying
Code and Creating a Lambda
Function (p. 6).

Python • AWS Lambda console

• Your own authoring environment

You can use the console if the
languages you choose do not require
compilation, the code is saved in a
single file, and it does not depend on
any libraries.

In addition, regardless of the language you choose, there is a pattern to writing Lambda function code.
For example, how you write the handler method of your Lambda function (that is, the method that
AWS Lambda first calls when it begins executing the code), how you pass events to the handler, what
statements you can use in your code to generate logs in CloudWatch Logs, how to interact with AWS
Lambda runtime and obtain information such as the time remaining before timeout, and how to handle
exceptions. The Programming Model (p. 8) section provides information for each of the supported
languages.

Note
After you familiarize yourself with AWS Lambda, see the Use Cases (p. 175), which provide
step-by-step instructions to help you explore the end-to-end experience.

Deploying Code and Creating a Lambda Function
To create a Lambda function, you first package your code and dependencies in a deployment package.
Then, you upload the deployment package to AWS Lambda to create your Lambda function.

Topics

• Creating a Deployment Package (p. 6)

• Uploading a Deployment Package (p. 7)

• Testing a Lambda Function (p. 7)

Creating a Deployment Package – Organizing Code and
Dependencies

You must first organize your code and dependencies in certain ways and create a deployment
package. Instructions to create a deployment package vary depending on the language you choose

6

http://blogs.aws.amazon.com/net/post/Tx381XNNQALP8BA/AWS-Lambda-Support-in-Visual-Studio
http://blogs.aws.amazon.com/net/post/Tx381XNNQALP8BA/AWS-Lambda-Support-in-Visual-Studio
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/ug/lambda.html
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/ug/lambda.html
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/visualstudio/
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core

AWS Lambda Developer Guide
Monitoring and Troubleshooting

to author the code. For example, you can use build plugins such as Jenkins (for Node.js and Python),
and Maven (for Java) to create the deployment packages. For more information, see Creating a
Deployment Package (p. 56).

When you create Lambda functions using the console, the console creates the deployment package for
you, and then uploads it to create your Lambda function.

Uploading a Deployment Package – Creating a Lambda
Function

AWS Lambda provides the CreateFunction (p. 332) operation, which is what you use to create a
Lambda function. You can use the AWS Lambda console, AWS CLI, and AWS SDKs to create a
Lambda function. Internally, all of these interfaces call the CreateFunction operation.

In addition to providing your deployment package, you can provide configuration information when you
create your Lambda function including the compute requirements of your Lambda function, the name
of the handler method in your Lambda function, and the runtime, which depends on the language you
chose to author your code. For more information, see Lambda Functions (p. 3).

Note
This section provides an introductory overview of developing AWS Lambda-based
applications. How It Works (p. 151) describes specifics about Lambda functions, event
sources, and how AWS Lambda executes your Lambda functions.

Testing a Lambda Function

If your Lambda function is designed to process events of a specific type, you can use sample event
data to test your Lambda function using one of the following methods:

• Test your Lambda function in the console.

• Test your Lambda function using the AWS CLI. You can use the Invoke method to invoke your
Lambda function and pass in sample event data.

The console provides sample event data. The same data is also provided in the Sample Events
Published by Event Sources (p. 130) topic, which you can use in the AWS CLI to invoke your
Lambda function.

Monitoring and Troubleshooting
After your Lambda function is in production, AWS Lambda automatically monitors functions on your
behalf, reporting metrics through Amazon CloudWatch. For more information, see Accessing Amazon
CloudWatch Metrics for AWS Lambda (p. 109).

To help you troubleshoot failures in a function, Lambda logs all requests handled by your function
and also automatically stores logs that your code generates in Amazon CloudWatch Logs. For more
information, see Accessing Amazon CloudWatch Logs for AWS Lambda (p. 110).

AWS Lambda-Based Application Examples
This guide provides several examples with step-by-step instructions. If you are new to AWS Lambda,
we recommend you try the following exercises:

• Getting Started (p. 160) – The Getting Started exercise provides a console-based experience. The
sample code is authored in Python. You can edit the code in the console, upload it to AWS Lambda,
and test it using sample event data provided in the console.

7

AWS Lambda Developer Guide
Related Topics

• Use Cases (p. 175) – If you cannot author your code using the console, you must create your own
deployment packages and use the AWS CLI (or SDKs) to create your Lambda function. For more
information, see Authoring Code for Your Lambda Function (p. 5). Most examples in the Uses
Cases section use the AWS CLI. If you are new to AWS Lambda, we recommend that you try one of
these exercises.

Related Topics
The following topics provide additional information.

Programming Model (p. 8)

Creating a Deployment Package (p. 56)

AWS Lambda Function Versioning and Aliases (p. 72)

Troubleshooting and Monitoring AWS Lambda Functions with Amazon CloudWatch (p. 107)

Programming Model

You write code for your Lambda function in one of the languages AWS Lambda supports. Regardless
of the language you choose, there is a common pattern to writing code for a Lambda function that
includes the following core concepts:

• Handler – Handler is the function AWS Lambda calls to start execution of your Lambda function.
You identify the handler when you create your Lambda function. When a Lambda function is
invoked, AWS Lambda starts executing your code by calling the handler function. AWS Lambda
passes any event data to this handler as the first parameter. Your handler should process the
incoming event data and may invoke any other functions/methods in your code.

• The context object and how it interacts with Lambda at runtime – AWS Lambda also passes
a context object to the handler function, as the second parameter. Via this context object your
code can interact with AWS Lambda. For example, your code can find the execution time remaining
before AWS Lambda terminates your Lambda function.

In addition, for languages such as Node.js, there is an asynchronous platform that uses callbacks.
AWS Lambda provides additional methods on this context object. You use these context object
methods to tell AWS Lambda to terminate your Lambda function and optionally return values to the
caller.

• Logging – Your Lambda function can contain logging statements. AWS Lambda writes these logs
to CloudWatch Logs. Specific language statements generate log entries, depending on the language
you use to author your Lambda function code.

• Exceptions – Your Lambda function needs to communicate the result of the function execution
to AWS Lambda. Depending on the language you author your Lambda function code, there are
different ways to end a request successfully or to notify AWS Lambda an error occurred during
execution. If you invoke the function synchronously, then AWS Lambda forwards the result back to
the client.

8

AWS Lambda Developer Guide
Programming Model

Note
Your Lambda function code must be written in a stateless style, and have no affinity with
the underlying compute infrastructure. Your code should expect local file system access,
child processes, and similar artifacts to be limited to the lifetime of the request. Persistent
state should be stored in Amazon S3, Amazon DynamoDB, or another cloud storage
service. Requiring functions to be stateless enables AWS Lambda to launch as many copies
of a function as needed to scale to the incoming rate of events and requests. These functions
may not always run on the same compute instance from request to request, and a given
instance of your Lambda function may be used more than once by AWS Lambda.

The following language specific topics provide detail information:

• Programming Model (Node.js) (p. 9)

• Programming Model for Authoring Lambda Functions in Java (p. 21)

• Programming Model for Authoring Lambda Functions in C# (p. 46)

• Programming Model for Authoring Lambda Functions in Python (p. 39)

Programming Model (Node.js)

AWS Lambda currently supports the following Node.js runtimes:

• Node.js runtime v4.3 (runtime = nodejs4.3)

• Node.js runtime v0.10.42 (runtime = nodejs)

Important
The v0.10.42 runtime will be unavailable to create new functions beginning on December
2016, given the end-of-life announcement for this version. Use the new runtime (nodejs4.3)
while creating new functions and we recommend you migrate existing functions to the
nodejs4.3 runtime as soon as possible. All examples in this documentation use the new
v4.3 runtime. For information about programming model differences in the v0.10.42 runtime,
see Using the Earlier Node.js Runtime v0.10.42 (p. 18).

When you create a Lambda function, you specify the runtime that you want to use. For more
information, see runtime parameter of the CreateFunction (p. 332).

The following sections explain how common programming patterns and core concepts apply when
authoring Lambda function code in Node.js. The programming model described in the following
sections apply to both versions, except where indicated.

Topics

• Lambda Function Handler (Node.js) (p. 9)

• The Context Object (Node.js) (p. 12)

• Logging (Node.js) (p. 15)

• Exceptions (Node.js) (p. 16)

• Using the Earlier Node.js Runtime v0.10.42 (p. 18)

Lambda Function Handler (Node.js)

At the time you create a Lambda function you specify a handler, a function in your code, that AWS
Lambda can invoke when the service executes your code. Use the following general syntax when
creating a handler function in Node.js.

9

http://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html

AWS Lambda Developer Guide
Programming Model

exports.myHandler = function(event, context,) {
 ...
}

The callback parameter is optional and you want to return information to the caller.

exports.myHandler = function(event, context, callback) {
 ...

 // Use callback() and return information to the caller.
}

In the syntax, note the following:

• event – AWS Lambda uses this parameter to pass in event data to the handler.

• context – AWS Lambda uses this parameter to provide your handler the runtime information
of the Lambda function that is executing. For more information, see The Context Object
(Node.js) (p. 12).

• callback – You can use the optional callback to return information to the caller, otherwise return
value is null. For more information, see Using the Callback Parameter (p. 11).

Note
The callback is supported only in the Node.js runtime v4.3. If you are using the earlier
runtime v0.10.42, you need to use the context methods (done, succeed, and fail) to properly
terminate the Lambda function. For information about terminating Lambda functions written
for earlier runtime versions, see Using the Earlier Node.js Runtime v0.10.42 (p. 18).

• myHandler – This is the name of the function AWS Lambda invokes. You export this
so it is visible to AWS Lambda. Suppose you save this code as helloworld.js.
Then, helloworld.myHandler is the handler. For more information, see handler in
CreateFunction (p. 332).

• If you used the RequestResponse invocation type (synchronous execution), AWS Lambda
returns the result of the Node.js function call to the client invoking the Lambda function (in the
HTTP response to the invocation request, serialized into JSON). For example, AWS Lambda
console uses the RequestResponse invocation type, so when you test invoke the function using
the console, the console will display the return value.

If the handler does not return anything, AWS Lambda returns null.

• If you used the Event invocation type (asynchronous execution), the value is discarded.

Example

Consider the following Node.js example code.

exports.myHandler = function(event, context, callback) {
 console.log("value1 = " + event.key1);
 console.log("value2 = " + event.key2);
 callback(null, "some success message");
 // or
 // callback("some error type");
}

This example has one function, which is also the handler. In the function, the console.log()
statements log some of the incoming event data to CloudWatch Logs. When the callback is called,

10

AWS Lambda Developer Guide
Programming Model

the Lambda function exits only after the Node.js event loop is empty (the Node.js event loop is not the
same as the event that was passed as a parameter).

Note
If you are using the earlier runtime v0.10.42, you need to use the context methods (done,
succeed, and fail) to properly terminate the Lambda function. For more information, see Using
the Earlier Node.js Runtime v0.10.42 (p. 18).

To upload and test this code as a Lambda function (console)

1. In the console, create a Lambda function using the following information:

• Use the hello-world blueprint.

• Specify nodejs4.3 as the runtime.

• In Handler, replace index.handler with exports.myHandler.

For instructions to create a Lambda function using the console, see Step 2.1: Create a Hello World
Lambda Function (p. 164).

2. Replace the template code with the code provided in this section and create the function.

3. Test the Lambda function using the Sample event template called Hello World provided in the
Lambda console. For instructions on how to do this, see Step 2.2: Invoke the Lambda Function
Manually and Verify Results, Logs, and Metrics (p. 167).

Using the Callback Parameter

The Node.js runtime v4.3 supports the optional callback parameter. You can use it to explicitly return
information back to the caller. The general syntax is:

callback(Error error, Object result);

Where:

• error – is an optional parameter that you can use to provide results of the failed Lambda function
execution. When a Lambda function succeeds, you can pass null as the first parameter.

• result – is an optional parameter that you can use to provide the result of a successful function
execution. The result provided must be JSON.stringify compatible. If an error is provided, this
parameter is ignored.

Note
Using the callback parameter is optional. If you don't use the optional callback parameter,
the behavior is same as if you called the callback() without any parameters. You can
specify the callback in your code to return information to the caller.

If you don't use callback in your code, AWS Lambda will call it implicitly and the return value is null.

When the callback is called (explicitly or implicitly), AWS Lambda continues the Lambda function
invocation until the Node.js event loop is empty.

The following are example callbacks:

callback(); // Indicates success but no information returned to the
 caller.
callback(null); // Indicates success but no information returned to the
 caller.

11

AWS Lambda Developer Guide
Programming Model

callback(null, "success"); // Indicates success with information returned to
 the caller.
callback(error); // Indicates error with error information returned to
 the caller.

AWS Lambda treats any non-null value for the error parameter as a handled exception.

Note the following:

• Regardless of the invocation type specified at the time of the Lambda function invocation (see
Invoke (p. 358)), the callback method automatically logs the string representation of non-null
values of error to the Amazon CloudWatch Logs stream associated with the Lambda function.

• If the Lambda function was invoked synchronously (using the RequestResponse invocation type),
the callback returns a response body as follows:

• If error is null, the response body is set to the string representation of result.

• If the error is not null, the error value will be populated in the response body.

Note
When the callback(error, null) (and callback(error)) is called, Lambda will log the
first 256 KB of the error object. For a larger error object, AWS Lambda truncates the log and
displays the text Truncated by Lambda next to the error object.

The Context Object (Node.js)

While a Lambda function is executing, it can interact with AWS Lambda to get useful runtime
information such as:

• How much time is remaining before AWS Lambda terminates your Lambda function (timeout is one
of the Lambda function configuration properties).

• The CloudWatch log group and log stream associated with the Lambda function that is executing.

• The AWS request ID returned to the client that invoked the Lambda function. You can use the
request ID for any follow up inquiry with AWS support.

• If the Lambda function is invoked through AWS Mobile SDK, you can learn more about the mobile
application calling the Lambda function.

AWS Lambda provides this information via the context object that the service passes as the second
parameter to your Lambda function handler. For more information, see Lambda Function Handler
(Node.js) (p. 9).

The following sections provide an example Lambda function that uses the context object, and then
lists all of the available methods and attributes.

Example

Consider the following Node.js example. The handler receives runtime information via a context
 parameter.

console.log('Loading function');

exports.handler = function(event, context, callback) {
 //console.log('Received event:', JSON.stringify(event, null, 2));
 console.log('value1 =', event.key1);
 console.log('value2 =', event.key2);
 console.log('value3 =', event.key3);
 console.log('remaining time =', context.getRemainingTimeInMillis());
 console.log('functionName =', context.functionName);

12

AWS Lambda Developer Guide
Programming Model

 console.log('AWSrequestID =', context.awsRequestId);
 console.log('logGroupName =', context.logGroupName);
 console.log('logStreamName =', context.logStreamName);
 console.log('clientContext =', context.clientContext);
 if (typeof context.identity !== 'undefined') {
 console.log('Cognito
 identity ID =', context.identity.cognitoIdentityId);
 }
 callback(null, event.key1); // Echo back the first key value
 // or
 // callback("some error type");
};

The handler code in this example logs some of the runtime information of the Lambda function to
CloudWatch. If you invoke the function using the Lambda console, the console displays the logs in the
Log output section. You can create a Lambda function using this code and test it using the console.

To test this code in the AWS Lambda console

1. In the console, create a Lambda function using the hello-world blueprint. In runtime, choose
nodejs4.3. For instructions on how to do this, see Step 2.1: Create a Hello World Lambda
Function (p. 164).

2. Test the function, and then you can also update the code to get more context information.

The Context Object Methods (Node.js)

The context object provides the following methods.

context.getRemainingTimeInMillis()

Returns the approximate remaining execution time (before timeout occurs) of the Lambda function
that is currently executing. The timeout is one of the Lambda function configuration. When the timeout
reaches, AWS Lambda terminates your Lambda function.

You can use this method to check the remaining time during your function execution and take
appropriate corrective action at run time.

The general syntax is:

context.getRemainingTimeInMillis();

The Context Object Properties (Node.js)

The context object provides the following property that you can update:

callbackWaitsForEmptyEventLoop
The default value is true. This property is useful only to modify the default behavior of the callback.
By default, the callback will wait until the Node.js runtime event loop is empty before freezing the
process and returning the results to the caller. You can set this property to false to request AWS
Lambda to freeze the process soon after the callback is called, even if there are events in the
event loop. AWS Lambda will freeze the process, any state data and the events in the Node.js
event loop (any remaining events in the event loop processed when the Lambda function is called
next and if AWS Lambda chooses to use the frozen process). For more information about callback,
see Using the Callback Parameter (p. 11).

13

AWS Lambda Developer Guide
Programming Model

In addition, the context object provides the following properties that you can use obtain runtime
information:

functionName
Name of the Lambda function that is executing.

functionVersion
The Lambda function version that is executing. If an alias is used to invoke the function, then
function_version will be the version the alias points to.

invokedFunctionArn
The ARN used to invoke this function. It can be a function ARN or an alias ARN. An unqualified
ARN executes the $LATEST version and aliases execute the function version it is pointing to.

memoryLimitInMB
Memory limit, in MB, you configured for the Lambda function. You set the memory limit at the time
you create a Lambda function and you can change it later.

awsRequestId
AWS request ID associated with the request. This is the ID returned to the client that called the
invoke method.

Note
If AWS Lambda retries the invocation (for example, in a situation where the Lambda
function that is processing Amazon Kinesis records throws an exception), the request ID
remains the same.

logGroupName
The name of the CloudWatch log group where you can find logs written by your Lambda function.

logStreamName
The name of the CloudWatch log group where you can find logs written by your Lambda function.
The log stream may or may not change for each invocation of the Lambda function.

The value is null if your Lambda function is unable to create a log stream, which can happen if
the execution role that grants necessary permissions to the Lambda function does not include
permissions for the CloudWatch actions.

identity
Information about the Amazon Cognito identity provider when invoked through the AWS Mobile
SDK. It can be null.

• identity.cognitoIdentityId

• identity.cognitoIdentityPoolId

For more information about the exact values for a specific mobile platform, see Identity Context in
the AWS Mobile SDK for iOS Developer Guide, and Identity Context in the AWS Mobile SDK for
Android Developer Guide.

clientContext
Information about the client application and device when invoked through the AWS Mobile SDK. It
can be null. Using clientContext, you can get the following information:

• clientContext.client.installation_id

• clientContext.client.app_title

• clientContext.client.app_version_name

• clientContext.client.app_version_code

• clientContext.client.app_package_name

• clientContext.Custom

Custom values set by the mobile client application.

• clientContext.env.platform_version

• clientContext.env.platform

• clientContext.env.make

14

http://docs.aws.amazon.com/mobile/sdkforios/developerguide/lambda.html#identitycontext
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/lambda.html#identity-context

AWS Lambda Developer Guide
Programming Model

• clientContext.env.model

• clientContext.env.locale

For more information about the exact values for a specific mobile platform, see Client Context in the
AWS Mobile SDK for iOS Developer Guide, and Client Context in the AWS Mobile SDK for Android
Developer Guide.

Logging (Node.js)

Your Lambda function can contain logging statements. AWS Lambda writes these logs to CloudWatch.
If you use the Lambda console to invoke your Lambda function, the console displays the same logs.

The following Node.js statements generate log entries:

• console.log()

• console.error()

• console.warn()

• console.info()

For example, consider the following Node.js code example.

console.log('Loading function');

exports.handler = function(event, context, callback) {
 //console.log('Received event:', JSON.stringify(event, null, 2));
 console.log('value1 =', event.key1);
 console.log('value2 =', event.key2);
 console.log('value3 =', event.key3);
 callback(null, event.key1); // Echo back the first key value

};

The screenshot shows an example Log output section in Lambda console, you can also find
these logs in CloudWatch. For more information, see Accessing Amazon CloudWatch Logs for AWS
Lambda (p. 110).

The console uses the RequestResponse invocation type (synchronous invocation) when invoking
the function, therefore it gets the return value (value1) back from AWS Lambda which the console
displays.

15

http://docs.aws.amazon.com/mobile/sdkforios/developerguide/lambda.html#clientcontext
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/lambda.html#client-context

AWS Lambda Developer Guide
Programming Model

To test the preceding Node.js code in AWS Lambda console

1. In the console, create a Lambda function using the hello-world blueprint. Make sure to select the
Node.js as the runtime. For instructions on how to do this, see Step 2.1: Create a Hello World
Lambda Function (p. 164).

2. Test the Lambda function using the Sample event template called Hello World provided in the
Lambda console. For instructions on how to do this, see Step 2.2: Invoke the Lambda Function
Manually and Verify Results, Logs, and Metrics (p. 167). You can also update the code and try
other logging methods and properties discussed in this section.

For step-by-step instructions, see Getting Started (p. 160).

Finding Logs

You can find the logs that your Lambda function writes, as follows:

• In the AWS Lambda console – The Log output section in the AWS Lambda console shows the
logs.

• In the response header, when you invoke a Lambda function programmatically – If you invoke
a Lambda function programmatically, you can add the LogType parameter to retrieve the last 4 KB
of log data that is written to CloudWatch Logs. AWS Lambda returns this log information in the x-
amz-log-results header in the response. For more information, see Invoke.

If you use AWS CLI to invoke the function, you can specify the --log-type parameter with
value Tail to retrieve the same information.

• In CloudWatch Logs – To find your logs in CloudWatch you need to know the log group name
and log stream name. You can get that information by adding the context.logGroupName,
and context.logStreamName methods in your code. When you run your Lambda function, the
resulting logs in the console or CLI will show you the log group name and log stream name.

Exceptions (Node.js)

If your Lambda function notifies AWS Lambda that it failed to execute properly by calling the
context.fail method, AWS Lambda serializes the error information and returns it. If the error value
passed to context.fail is an exception, Lambda will attempt to serialize information about the
exception such as its type, error message, and stack trace. Otherwise, Lambda will attempt to convert
the error object to a String. Consider the following example:

console.log('Loading function');

exports.handler = function(event, context, callback) {
 // This example code only throws error.
 var error = new Error("something is wrong");
 callback(error);

};

When you invoke this Lambda function, it will notify AWS Lambda that function execution completed
with an error and passes error information to AWS Lambda. AWS Lambda returns the error information
back to the client:

{
 "errorMessage": "something is wrong",
 "errorType": "Error",
 "stackTrace": [

16

http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

AWS Lambda Developer Guide
Programming Model

 "exports.handler (/var/task/index.js:10:17)"
]
}

Note that the stack trace is returned as the stackTrace JSON array of stack trace elements.

How you get the error information back depends on the invocation type that the client specifies at the
time of function invocation:

• If a client specifies the RequestResponse invocation type (that is, synchronous execution), it
returns the result to the client that made the invoke call.

For example, the console always use the RequestResponse invocation type, so the console will
display the error in the Execution result section as shown:

The same information is also sent to CloudWatch and the Log output section shows the same
logs.

• If a client specifies the Event invocation type (that is, asynchronous execution), AWS Lambda will
not return anything. Instead, it logs the error information to CloudWatch Logs. You can also see the
error metrics in CloudWatch Metrics.

Depending on the event source, AWS Lambda may retry the failed Lambda function. For example,
if Amazon Kinesis is the event source, AWS Lambda will retry the failed invocation until the Lambda
function succeeds or the records in the stream expire. For more information on retries, see Retries on
Errors (p. 154).

To test the preceding Node.js code (console)

1. In the console, create a Lambda function using the hello-world blueprint. In runtime, choose
Node.js and, in Role, choose Basic execution role. For instructions on how to do this, see Step
2.1: Create a Hello World Lambda Function (p. 164).

2. Replace the template code with the code provided in this section.

3. Test the Lambda function using the Sample event template called Hello World provided in the
Lambda console. For instructions on how to do this, see Step 2.2: Invoke the Lambda Function
Manually and Verify Results, Logs, and Metrics (p. 167).

17

AWS Lambda Developer Guide
Programming Model

Using the Earlier Node.js Runtime v0.10.42

As of April 2016, AWS Lambda supports Node.js runtime v4.3. For information about
specifying this runtime when you create your Lambda function, see the runtime parameter of
CreateFunction (p. 332).

AWS Lambda continues to support the earlier runtime v0.10.42 (launched Nov 2014), which you can
refer to using runtime=nodejs while creating a function. Given the upcoming end of life for this
version, you will no longer be able to create new functions using this version on December 2016.
Existing functions will be supported until early 2017. Use the new runtime (nodejs4.3) while creating
new functions and we recommend you migrate existing functions to the nodejs4.3 runtime as soon as
possible. The section highlights behavior unique to the earlier runtime v0.10.42 and how to transition
your existing functions to runtime v4.3.

Topics

• The Context Methods in Node.js Runtime v0.10.42 (p. 18)

• Transitioning Lambda Function Code to Node.js Runtime v4.3 (p. 20)

The Context Methods in Node.js Runtime v0.10.42

The earlier Node.js runtime v0.10.42 does not support the callback parameter for your Lambda function
that runtime v4.3 supports. When using runtime v0.10.42, you use the following context object methods
to properly terminate your Lambda function. The context object supports the done(), succeed(), and
fail() methods that you can use to terminate your Lambda function. These methods are also present
in runtime v4.3 for backward compatibility. For information about transitioning your code to use runtime
v4.3, see Transitioning Lambda Function Code to Node.js Runtime v4.3 (p. 20).

context.succeed()

Indicates the Lambda function execution and all callbacks completed successfully. Here's the general
syntax:

context.succeed(Object result);

Where:

result – is an optional parameter and it can be used to provide the result of the function execution.

The result provided must be JSON.stringify compatible. If AWS Lambda fails to stringify or
encounters another error, an unhandled exception is thrown, with the X-Amz-Function-Error
response header set to Unhandled.

You can call this method without any parameters (succeed()) or pass a null value (succeed(null)).

The behavior of this method depends on the invocation type specified in the Lambda function
invocation. For more information about invocation types, see Invoke (p. 358).

• If the Lambda function is invoked using the Event invocation type (asynchronous invocation), the
method will return HTTP status 202, request accepted response.

• If the Lambda function is invoked using the RequestResponse invocation type (synchronous
invocation), the method will return HTTP status 200 (OK) and set the response body to the string
representation of the result.

18

AWS Lambda Developer Guide
Programming Model

context.fail()

Indicates the Lambda function execution and all callbacks completed unsuccessfully, resulting in a
handled exception. The general syntax is shown following:

context.fail(Error error);

Where:

error – is an optional parameter that you can use to provide the result of the Lambda function
execution.

If the error value is non-null, the method will set the response body to the string representation
of error and also write corresponding logs to CloudWatch. If AWS Lambda fails to stringify or
encounters another error, an unhandled error occurs with the X-Amz-Function-Error header set to
Unhandled.

Note
For the error from context.fail(error) and context.done(error, null), Lambda
logs the first 256 KB of the error object. For larger error objects, AWS Lambda truncates the
error and displays the text: Truncated by Lambda next to the error object.

You can call this method without any parameters (fail()) or pass a null value (fail(null)).

context.done()

Causes the Lambda function execution to terminate.

Note
This method complements the succeed() and fail() methods by allowing the use of the
"error first" callback design pattern. It provides no additional functionality.

The general syntax is:

context.done(Error error, Object result);

Where:

• error – is an optional parameter that you can use to provide results of the failed Lambda function
execution.

• result – is an optional parameter that you can use to provide the result of a successful function
execution. The result provided must be JSON.stringify compatible. If an error is provided, this
parameter is ignored.

You can call this method without any parameters (done()), or pass null (done(null)).

AWS Lambda treats any non-null value for the error parameter as a handled exception.

The function behavior depends on the invocation type specified at the time of the Lambda invocation.
For more information about invocation types, see Invoke (p. 358).

• Regardless of the invocation type, the method automatically logs the string representation of non-null
values of error to the Amazon CloudWatch Logs stream associated with the Lambda function.

19

AWS Lambda Developer Guide
Programming Model

• If the Lambda function was invoked using the RequestResponse (synchronous) invocation type, the
method returns response body as follows:

• If error is null, set the response body to the JSON representation of result. This is similar to
context.succeed().

• If the error is not null or the function is called with a single argument of type error, the error
value will be populated in the response body.

Note
For the error from both the done(error, null) and fail(error), Lambda logs the first
256 KB of the error object, and for larger error object, AWS Lambda truncates the log and
displays the text Truncated by Lambda" next to the error object.

Transitioning Lambda Function Code to Node.js Runtime v4.3

You can update your existing Lambda function to use Node.js runtime v4.3 using
UpdateFunctionConfiguration (p. 387) or using the console.

Note
You might need to update your Lambda code to work in the new runtime. For a list of changes
in Node.js v4.3, see API changes between v0.10 and v4 on GitHub.

If you previously created Lambda functions using Node.js runtime v0.10.42, you used one of the
context object methods (done(), succeed(), and fail()) to terminate your Lambda function.
In Node.js runtime v4.3, these methods are supported primarily for backward compatibility. We
recommend you use the callback (see Using the Callback Parameter (p. 11)). The following are
callback examples equivalent to the context object methods:

• The following example shows the context.done() method and corresponding equivalent
callback supported in the newer runtime.

// Old way (Node.js runtime v0.10.42).
context.done(null, 'Success message');

// New way (Node.js runtime v4.3).
context.callbackWaitsForEmptyEventLoop = false;
callback(null, 'Success message');

Important
For performance reasons, AWS Lambda may reuse the same Node.js process for multiple
executions of the Lambda function. If this happens, AWS Lambda freezes the Node process
between execution,retaining the state information it needs to continue execution.
When the context methods are called, AWS Lambda freezes the Node process
immediately, without waiting for the event loop associated with the process to empty. The
process state and any events in the event loop are frozen. When the function is invoked
again, if AWS Lambda re-uses the frozen process, the function execution continues with
its same global state (for example, events that remained in the event loop will begin to get
processed). However, when you use callback, AWS Lambda continues the Lambda function
execution until the event loop is empty. After all events in the event loop are processed,
AWS Lambda then freezes the Node process, including any state variables in the Lambda
function. Therefore, if you want the same behavior as the context methods, you must set
the context object property, callbackWaitsForEmptyEventLoop, to false.

• The following example shows the context.succeed() method and corresponding equivalent
callback supported in the newer runtime.

// Old way (Node.js runtime v0.10.42).

20

https://github.com/nodejs/node/wiki/API-changes-between-v0.10-and-v4

AWS Lambda Developer Guide
Programming Model

context.succeed('Success message');

// New way (Node.js runtime v4.3).
context.callbackWaitsForEmptyEventLoop = false;
callback(null, 'Success message');

• The following example shows the context.fail() method and corresponding equivalent
callback supported in the newer runtime.

// Old way (Node.js runtime v0.10.42).
context.fail('Fail object');

// New way (Node.js runtime v4.3).
context.callbackWaitsForEmptyEventLoop = false;
callback('Fail object', 'Failed result');

Programming Model for Authoring Lambda Functions in Java

The following sections explain how common programming patterns and core concepts apply when
authoring Lambda function code in Java.

Topics

• Lambda Function Handler (Java) (p. 21)

• The Context Object (Java) (p. 32)

• Logging (Java) (p. 34)

• Exceptions (Java) (p. 38)

Additionally, note that AWS Lambda provides the following libraries:

• aws-lambda-java-core – This library provides the Context object, RequestStreamHandler,
and the RequestHandler interfaces. The Context object (The Context Object (Java) (p. 32))
provides runtime information about your Lambda function. The predefined interfaces provide one
way of defining your Lambda function handler. For more information, see Leveraging Predefined
Interfaces for Creating Handler (Java) (p. 28).

• aws-lambda-java-events – This library provides predefined types that you can use when writing
Lambda functions to process events published by Amazon S3, Amazon Kinesis, Amazon SNS, and
Amazon Cognito. These classes help you process the event without having to write your own custom
serialization logic.

• Custom Appender for Log4j 1.2 – You can use the custom Log4j (see Apache log4j) appender
provided by AWS Lambda for logging from your lambda functions. For more information, see
Logging (Java) (p. 34).

These libraries are available through the Maven Central Repository and can also be found on GitHub.

Lambda Function Handler (Java)

At the time you create a Lambda function you specify a handler that AWS Lambda can invoke when
the service executes the Lambda function on your behalf.

Lambda supports two approaches for creating a handler:

21

http://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
https://logging.apache.org/log4j/1.2/

AWS Lambda Developer Guide
Programming Model

• Loading the handler method directly without having to implement an interface. This section describes
this approach.

• Implementing standard interfaces provided as part of aws-lambda-java-core library (interface
approach). For more information, see Leveraging Predefined Interfaces for Creating Handler
(Java) (p. 28).

The general syntax for the handler is as follows:

outputType handler-name(inputType input, Context context) {
 ...
}

In order for AWS Lambda to successfully invoke a handler it must be invoked with input data that can
be serialized into the data type of the input parameter.

In the syntax, note the following:

• inputType – The first handler parameter is the input to the handler, which can be event data
(published by an event source) or custom input that you provide such as a string or any custom data
object. In order for AWS Lambda to successfully invoke this handler, the function must be invoked
with input data that can be serialized into the data type of the input parameter.

• outputType – If you plan to invoke the Lambda function synchronously (using the
RequestResponse invocation type), you can return the output of your function using any of the
supported data types. For example, if you use a Lambda function as a mobile application backend,
you are invoking it synchronously. Your output data type will be serialized into JSON.

If you plan to invoke the Lambda function asynchronously (using the Event invocation type), the
outputType should be void. For example, if you use AWS Lambda with event sources such as
Amazon S3, Amazon Kinesis, and Amazon SNS, these event sources invoke the Lambda function
using the Event invocation type.

• The inputType and outputType can be one of the following:

• Primitive Java types (such as String or int).

• Predefined AWS event types defined in the aws-lambda-java-events library.

For example S3Event is one of the POJOs predefined in the library that provides methods for you
to easily read information from the incoming Amazon S3 event.

• You can also write your own POJO class. AWS Lambda will automatically serialize and deserialize
input and output JSON based on the POJO type.

For more information, see Handler Input/Output Types (Java) (p. 23).

• You can omit the Context object from the handler method signature if it isn't needed. For more
information, see The Context Object (Java) (p. 32).

For example, consider the following Java example code.

package example;

import com.amazonaws.services.lambda.runtime.Context;

public class Hello {
 public String myHandler(int myCount, Context context) {
 return String.valueOf(myCount);
 }
}

22

AWS Lambda Developer Guide
Programming Model

In this example input is of type int and output is of type String. If you package this code and
dependencies, and create your Lambda function, you specify example.Hello::myHandler
(package.class::method-reference) as the handler.

In the example Java code, the first handler parameter is the input to the handler (myHandler), which
can be event data (published by an event source such as Amazon S3) or custom input you provide
such as an int (as in this example) or any custom data object.

For instructions to create a Lambda function using this Java code, see Step 2.3: (Optional) Create a
Lambda Function Authored in Java (p. 169).

Handler Overload Resolution

If your Java code contains multiple methods with same name as the handler name, then AWS
Lambda uses the following rules to pick a method to invoke:

1. Select the method with the largest number of parameters.

2. If two or more methods have the same number of parameters, AWS Lambda selects the method
that has the Context as the last parameter.

If none or all of these methods have the Context parameter, then the behavior is undefined.

Additional Information

The following topics provide more information about the handler.

• For more information about the handler input and output types, see Handler Input/Output Types
(Java) (p. 23).

• For information about using predefined interfaces to create a handler, see Leveraging Predefined
Interfaces for Creating Handler (Java) (p. 28).

If you implement these interfaces, you can validate your handler method signature at compile time.

• If your Lambda function throws an exception, AWS Lambda records metrics in CloudWatch
indicating that an error occurred. For more information, see Exceptions (Java) (p. 38).

Handler Input/Output Types (Java)

When AWS Lambda executes the Lambda function, it invokes the handler. The first parameter is
the input to the handler which can be event data (published by an event source) or custom input you
provide such as a string or any custom data object.

AWS Lambda supports the following input/output types for a handler:

• Simple Java types (AWS Lambda supports the String, Integer, Boolean, Map, and List types)

• POJO (Plain Old Java Object) type

• Stream type (If you do not want to use POJOs or if Lambda's serialization approach does not meet
your needs, you can use the byte stream implementation. For more information, see Example: Using
Stream for Handler Input/Output (Java) (p. 27).)

Handler Input/Output: String Type

The following Java class shows a handler called myHandler that uses String type for input and output.

package example;

23

AWS Lambda Developer Guide
Programming Model

import com.amazonaws.services.lambda.runtime.Context;

public class Hello {
 public String myHandler(String name, Context context) {
 return String.format("Hello %s.", name);
 }
}

You can have similar handler functions for other simple Java types.

Note
When you invoke a Lambda function asynchronously, any return value by your Lambda
function will be ignored. Therefore you might want to set the return type to void to make this
clear in your code. For more information, see Invoke (p. 358).

To test an end-to-end example, see Step 2.3: (Optional) Create a Lambda Function Authored in
Java (p. 169).

Handler Input/Output: POJO Type

The following Java class shows a handler called myHandler that uses POJOs for input and output.

package example;

import com.amazonaws.services.lambda.runtime.Context;

public class HelloPojo {

 // Define two classes/POJOs for use with Lambda function.
 public static class RequestClass {
 ...
 }

 public static class ResponseClass {
 ...
 }

 public static ResponseClass myHandler(RequestClass request, Context
 context) {
 String greetingString = String.format("Hello %s, %s.",
 request.getFirstName(), request.getLastName());
 return new ResponseClass(greetingString);
 }
}

AWS Lambda serializes based on standard bean naming conventions (see The Java EE 6 Tutorial).
You should use mutable POJOs with public getters and setters.

Note
You shouldn't rely on any other features of serialization frameworks such as annotations. If
you need to customize the serialization behavior, you can use the raw byte stream to use your
own serialization.

If you use POJOs for input and output, you need to provide implementation of the RequestClass
and ResponseClass types. For an example, see Example: Using POJOs for Handler Input/Output
(Java) (p. 25).

24

https://docs.oracle.com/javaee/6/tutorial/doc/gipks.html

AWS Lambda Developer Guide
Programming Model

Example: Using POJOs for Handler Input/Output (Java)

Suppose your application events generate data that includes first name and last name as shown:

{ "firstName": "John", "lastName": "Doe" }

For this example, the handler receives this JSON and returns the string "Hello John Doe".

public static ResponseClass handleRequest(RequestClass request, Context
 context){
 String greetingString = String.format("Hello %s, %s.",
 request.firstName, request.lastName);
 return new ResponseClass(greetingString);
}

To create a Lambda function with this handler, you must provide implementation of the input and
output types as shown in the following Java example. The HelloPojo class defines the handler
method.

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class HelloPojo implements RequestHandler<RequestClass,
 ResponseClass>{

 public ResponseClass handleRequest(RequestClass request, Context context)
{
 String greetingString = String.format("Hello %s, %s.",
 request.firstName, request.lastName);
 return new ResponseClass(greetingString);
 }
}

In order to implement the input type, add the following code to a separate file and name it
RequestClass.java. Place it next to the HelloPojo.java class in your directory structure:

package example;

 public class RequestClass {
 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {

25

AWS Lambda Developer Guide
Programming Model

 this.lastName = lastName;
 }

 public RequestClass(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public RequestClass() {
 }
 }

In order to implement the output type, add the following code to a separate file and name it
ResponseClass.java. Place it next to the HelloPojo.java class in your directory structure:

package example;

 public class ResponseClass {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass() {
 }

 }

Note
The get and set methods are required in order for the POJOs to work with AWS Lambda's
built in JSON serializer. The constructors that take no arguments are usually not required,
however in this example we provided other constructors and therefore we need to explicitly
provide the zero argument constructors.

You can upload this code as your Lambda function and test as follows:

• Using the preceding code files, create a deployment package.

• Upload the deployment package to AWS Lambda and create your Lambda function. You can do this
using the console or AWS CLI.

• Invoke the Lambda function manually using the console or the CLI. You can use provide sample
JSON event data when you manually invoke your Lambda function. For example:

{ "firstName":"John", "lastName":"Doe" }

Follow instructions provided in the Getting Started. For more information, see Step 2.3: (Optional)
Create a Lambda Function Authored in Java (p. 169). Note the following differences:

26

AWS Lambda Developer Guide
Programming Model

• When you create a deployment package, don't forget the aws-lambda-java-core library
dependency.

• When you create the Lambda function, specify example.HelloPojo::myHandler
(package.class::method) as the handler value.

Example: Using Stream for Handler Input/Output (Java)

If you do not want to use POJOs or if Lambda's serialization approach does not meet your needs,
you can use the byte stream implementation. In this case, you can use the InputStream and
OutputStream as the input and output types for the handler. An example handler function is shown:

public void handler(InputStream inputStream, OutputStream outputStream,
 Context context) {
 ...
}

Note that in this case the handler function uses parameters for both the request and response streams.

The following is a Lambda function example that implements the handler that uses InputStream and
OutputStream types for the input and output parameters.

Note
The input payload must be valid JSON but the output stream does not carry such a restriction.
Any bytes are supported.

package example;

import java.io.InputStream;
import java.io.OutputStream;
import com.amazonaws.services.lambda.runtime.RequestStreamHandler;
import com.amazonaws.services.lambda.runtime.Context;

public class Hello implements RequestStreamHandler{
 public static void handler(InputStream inputStream, OutputStream
 outputStream, Context context) throws IOException {
 int letter;
 while((letter = inputStream.read()) != -1)
 {
 outputStream.write(Character.toUpperCase(letter));
 }
 }
}

You can do the following to test the code:

• Using the preceding code, create a deployment package.

• Upload the deployment package to AWS Lambda and create your Lambda function. You can do this
using the console or AWS CLI.

• You can manually invoke the code by providing sample input. For example:

test

Follow instructions provided in the Getting Started. For more information, see Step 2.3: (Optional)
Create a Lambda Function Authored in Java (p. 169). Note the following differences:

27

AWS Lambda Developer Guide
Programming Model

• When you create a deployment package, don't forget the aws-lambda-java-core library
dependency.

• When you create the Lambda function, specify example.Hello::handler
(package.class::method) as the handler value.

Leveraging Predefined Interfaces for Creating Handler (Java)

You can use one of the predefined interfaces provided by the AWS Lambda Java core library (aws-
lambda-java-core) to create your Lambda function handler, as an alternative to writing your own
handler method with an arbitrary name and parameters. For more information about handlers, see (see
Lambda Function Handler (Java) (p. 21)).

You can implement one of the predefined interfaces, RequestStreamHandler or RequestHandler
and provide implementation for the handleRequest method that the interfaces provide. You
implement one of these interfaces depending on whether you want to use standard Java types or
custom POJO types for your handler input/output (where AWS Lambda automatically serializes and
deserializes the input and output to Match your data type), or customize the serialization using the
Stream type.

Note
These interfaces are available in the aws-lambda-java-core library.

When you implement standard interfaces, they help you validate your method signature at compile
time.

If you implement one of the interfaces, you specify package.class in your Java code as the handler
when you create the Lambda function. For example, the following is the modified create-function
CLI command from the getting started. Note that the --handler parameter specifies "example.Hello"
value:

aws lambda create-function \
--region us-west-2 \
--function-name getting-started-lambda-function-in-java \
--zip-file fileb://deployment-package (zip or jar)
 path \
--role arn:aws:iam::account-id:role/lambda_basic_execution \
--handler example.Hello \
--runtime java8 \
--timeout 15 \
--memory-size 512

The following sections provide examples of implementing these interfaces.

Example 1: Creating Handler with Custom POJO Input/Output (Leverage the RequestHandler
Interface)

The example Hello class in this section implements the RequestHandler interface. The interface
defines handleRequest() method that takes in event data as input parameter of the Request type
and returns an POJO object of the Response type:

public Response handleRequest(Request request, Context context) {
 ...
}

The Hello class with sample implementation of the handleRequest() method is shown. For this
example, we assume event data consists of first name and last name.

28

AWS Lambda Developer Guide
Programming Model

package example;

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.Context;

public class Hello implements RequestHandler<Request, Response> {

 public Response handleRequest(Request request, Context context) {
 String greetingString = String.format("Hello %s %s.",
 request.firstName, request.lastName);
 return new Response(greetingString);
 }
}

For example, if the event data in the Request object is:

{
 "firstName":"value1",
 "lastName" : "value2"
}

The method returns a Response object as follows:

{
 "greetings": "Hello value1 value2."
}

Next, you need to implement the Request and Response classes. You can use the following
implementation for testing:

The Request class:

package example;

public class Request {
 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Request(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;

29

AWS Lambda Developer Guide
Programming Model

 }

 public Request() {
 }
}

The Response class:

package example;

public class Response {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public Response(String greetings) {
 this.greetings = greetings;
 }

 public Response() {
 }
}

You can create a Lambda function from this code and test the end-to-end experience as follows:

• Using the preceding code, create a deployment package.

• Upload the deployment package to AWS Lambda and create your Lambda function.

• Test the Lambda function using either the console or CLI. You can specify any sample JSON data
that conform to the getter and setter in your Request class, for example:

{
 "firstName":"John",
 "lastName" : "Doe"
}

The Lambda function will return the following JSON in response.

{
 "greetings": "Hello John, Doe."
}

Follow instructions provided in the getting started (see Step 2.3: (Optional) Create a Lambda Function
Authored in Java (p. 169)). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-core library
dependency.

• When you create the Lambda function specify example.Hello (package.class) as the handler
value.

30

AWS Lambda Developer Guide
Programming Model

Example 2: Creating Handler with Stream Input/Output (Leverage the RequestStreamHandler
Interface)

The Hello class in this example implements the RequestStreamHandler interface. The interface
defines handleRequest method as follows:

public void handleRequest(InputStream inputStream, OutputStream outputStream,
 Context context)
 throws IOException {
 ...
}

The Hello class with sample implementation of the handleRequest() handler is shown. The handler
processes incoming event data (for example, a string "hello") by simply converting it to uppercase and
return it.

package example;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import com.amazonaws.services.lambda.runtime.RequestStreamHandler;
import com.amazonaws.services.lambda.runtime.Context;

public class Hello implements RequestStreamHandler {
 public void handleRequest(InputStream inputStream, OutputStream
 outputStream, Context context)
 throws IOException {
 int letter;
 while((letter = inputStream.read()) != -1)
 {
 outputStream.write(Character.toUpperCase(letter));
 }
 }
}

You can create a Lambda function from this code and test the end-to-end experience as follows:

• Use the preceding code to create deployment package.

• Upload the deployment package to AWS Lambda and create your Lambda function.

• Test the Lambda function using either the console or CLI. You can specify any sample string data,
for example:

"test"

The Lambda function will return TEST in response.

Follow instructions provided in the getting started (see Step 2.3: (Optional) Create a Lambda Function
Authored in Java (p. 169)). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-core library
dependency.

• When you create the Lambda function specify example.Hello (package.class) as the handler
value.

31

AWS Lambda Developer Guide
Programming Model

The Context Object (Java)

You interact with AWS Lambda execution environment via the context parameter. The context object
allows you to access useful information available within the Lambda execution environment. For
example, you can use the context parameter to determine the CloudWatch log stream associated with
the function, or use the clientContext property of the context object to learn more about the application
calling the Lambda function (when invoked through the AWS Mobile SDK).

The context object properties are:

• getMemoryLimitInMB(): Memory limit, in MB, you configured for the Lambda function.

• getFunctionName(): Name of the Lambda function that is running.

• getFunctionVersion(): The Lambda function version that is executing. If an alias is used to
invoke the function, then getFunctionVersion will be the version the alias points to.

• getInvokedFunctionArn(): The ARN used to invoke this function. It can be function ARN or alias
ARN. An unqualified ARN executes the $LATEST version and aliases execute the function version it
is pointing to.

• getAwsRequestId(): AWS request ID associated with the request. This is the ID returned to the
client called the invoke(). You can use the request ID for any follow up enquiry with AWS support.
Note that if AWS Lambda retries the function (for example, in a situation where the Lambda function
processing Amazon Kinesis records throw an exception), the request ID remains the same.

• getLogStreamName(): The CloudWatch log stream name for the particular Lambda function
execution. It can be null if the IAM user provided does not have permission for CloudWatch actions.

• getLogGroupName(): The CloudWatch log group name associated with the Lambda function
invoked. It can be null if the IAM user provided does not have permission for CloudWatch actions.

• getClientContext(): Information about the client application and device when invoked through
the AWS Mobile SDK. It can be null. Client context provides client information such as client ID,
application title, version name, version code, and the application package name.

• getIdentity(): Information about the Amazon Cognito identity provider when invoked through the
AWS Mobile SDK. It can be null.

• getRemainingTimeInMillis(): Remaining execution time till the function will be terminated, in
milliseconds. At the time you create the Lambda function you set maximum time limit, at which time
AWS Lambda will terminate the function execution. Information about the remaining time of function
execution can be used to specify function behavior when nearing the timeout.

• getLogger(): Returns the Lambda logger associated with the Context object. For more
information, see Logging (Java) (p. 34).

The following Java code snippet shows a handler function that prints some of the context information.

public static void handler(InputStream inputStream, OutputStream
 outputStream, Context context) {

 ...
 System.out.println("Function name: " + context.getFunctionName());
 System.out.println("Max mem allocated: " +
 context.getMemoryLimitInMB());
 System.out.println("Time remaining in milliseconds: " +
 context.getRemainingTimeInMillis());
 System.out.println("CloudWatch log stream name: " +
 context.getLogStreamName());
 System.out.println("CloudWatch log group name: " +
 context.getLogGroupName());

32

AWS Lambda Developer Guide
Programming Model

}

Example: Using Context Object (Java)

The following Java code example shows how to use the Context object to retrieve runtime information
of your Lambda function, while it is running.

package example;
import java.io.InputStream;
import java.io.OutputStream;
import com.amazonaws.services.lambda.runtime.Context;

public class Hello {
 public static void myHandler(InputStream inputStream, OutputStream
 outputStream, Context context) {

 int letter;
 try {
 while((letter = inputStream.read()) != -1)
 {
 outputStream.write(Character.toUpperCase(letter));
 }
 Thread.sleep(3000); // Intentional delay for testing the
 getRemainingTimeInMillis() result.
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 // For fun, let us get function info using the context object.
 System.out.println("Function name: " + context.getFunctionName());
 System.out.println("Max mem allocated: " +
 context.getMemoryLimitInMB());
 System.out.println("Time remaining in milliseconds: " +
 context.getRemainingTimeInMillis());
 System.out.println("CloudWatch log stream name: " +
 context.getLogStreamName());
 System.out.println("CloudWatch log group name: " +
 context.getLogGroupName());
 }
}

You can do the following to test the code:

• Using the preceding code, create a deployment package.

• Upload the deployment package to AWS Lambda to create your Lambda function. You can do this
using the console or AWS CLI.

• To test your Lambda function use the "Hello World" Sample event that the Lambda console
provides.

You can type any string and the function will return the same string in uppercase. In addition, you will
also get the useful function information provided by the context object.

Follow the instructions provided in the Getting Started. For more information, see Step 2.3: (Optional)
Create a Lambda Function Authored in Java (p. 169). Note the following differences:

33

AWS Lambda Developer Guide
Programming Model

• When you create a deployment package, don't forget the aws-lambda-java-core library
dependency.

• When you create the Lambda function, specify example.Hello::myHandler
(package.class::method) as the handler value.

Logging (Java)

Your Lambda function can contain logging statements. AWS Lambda writes these logs to CloudWatch.
We recommend you use one of the following to write logs.

• Custom Appender for Log4j™ 1.2

AWS Lambda supports Log4j 1.2 by providing a custom appender. You can use the custom Log4j
(see Apache log4j) appender provided by Lambda for logging from your lambda functions. Every call
to Log4j methods, such as log.debug() or log.error(), will result in a CloudWatch Logs event.
The custom appender is called LambdaAppender and must be used in the log4j.properties
file. You must include the aws-lambda-java-log4j artifact (artifactId:aws-lambda-java-
log4j) in the deployment package (.jar file). For an example, see Example 1: Writing Logs Using
Log4J (Java) (p. 35).

Note
Currently, AWS Lambda supports Log4j 1.2 version.

• LambdaLogger.log()

Each call to LambdaLogger.log() results in a CloudWatch Logs event, provided the event size
is within the allowed limits. For information about CloudWatch logs limits, see CloudWatch Logs
Limits in the Amazon CloudWatch User Guide. For an example, see Example 2: Writing Logs Using
LambdaLogger (Java) (p. 36).

In addition, you can also use the following statements in your Lambda function code to generate log
entries:

• System.out()

• System.err()

However, note that AWS Lambda treats each line returned by System.out and System.err as a
separate event. This works well when each output line corresponds to a single log entry. When a log
entry has multiple lines of output, AWS Lambda attempts to parse them using line breaks to identify
separate events. For example, the following logs the two words ("Hello" and "world") as two separate
events:

System.out.println("Hello \n world");

How to Find Logs

You can find the logs that your Lambda function writes, as follows:

• Find logs in CloudWatch Logs. The context object (in the aws-lambda-java-core library)
provides the getLogStreamName() and the getLogGroupName() methods. Using these methods,
you can find the specific log stream where logs are written.

• If you invoke a Lambda function via the console, the invocation type is always RequestResponse
(that is, synchronous execution) and the console displays the logs that the Lambda function
writes using the LambdaLogger object. AWS Lambda also returns logs from System.out and
System.err methods.

34

https://logging.apache.org/log4j/1.2/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

AWS Lambda Developer Guide
Programming Model

• If you invoke a Lambda function programmatically, you can add the LogType parameter to
retrieve the last 4 KB of log data that is written to CloudWatch Logs. For more information, see
Invoke (p. 358). AWS Lambda returns this log information in the x-amz-log-results header in
the response. If you use the AWS Command Line Interface to invoke the function, you can specify
the --log-type parameter with value Tail.

Logging Examples (Java)

This section provides examples of using Custom Appender for Log4j and the LambdaLogger objects
for logging information.

Example 1: Writing Logs Using Log4J (Java)

The following Java code example writes logs using both the System methods and Log4j to illustrate
how they differ when AWS Lambda logs information to CloudWatch.

package example;

import com.amazonaws.services.lambda.runtime.Context;

import org.apache.logging.log4j.Logger;

public class Hello {
 // Initialize the Log4j logger.
 static final Logger log = Logger.getLogger(Hello.class);

 public String myHandler(String name, Context context) {
 // System.out: One log statement but with a line break (AWS Lambda
 writes two events to CloudWatch).
 System.out.println("log data from stdout \n this is continuation of
 system.out");

 // System.err: One log statement but with a line break (AWS Lambda
 writes two events to CloudWatch).
 System.err.println("log data from stderr. \n this is a continuation
 of system.err");

 // Use log4j to log the same thing as above and AWS Lambda will log
 only one event in CloudWatch.
 log.debug("log data from log4j debug \n this is continuation of log4j
 debug");

 log.error("log data from log4j err. \n this is a continuation of
 log4j.err");

 // Return will include the log stream name so you can look
 // up the log later.
 return String.format("Hello %s. log stream = %s", name,
 context.getLogStreamName());
 }
}

The example uses the following log4j.properties file (project-dir/src/main/resources/ directory).

log = .
log4j.rootLogger = DEBUG, LAMBDA

35

AWS Lambda Developer Guide
Programming Model

#Define the LAMBDA appender
log4j.appender.LAMBDA=com.amazonaws.services.lambda.runtime.log4j.LambdaAppender
log4j.appender.LAMBDA.layout=org.apache.log4j.PatternLayout
log4j.appender.LAMBDA.layout.conversionPattern=%d{yyyy-MM-dd HH:mm:ss} <
%X{AWSRequestId}> %-5p %c{1}:%L - %m%n

The following is sample of log entries in CloudWatch Logs.

Note:

• AWS Lambda parses the log string in each of the System.out.println() and
System.err.println() statements logs as two separate events (note the two down arrows in the
screenshot) because of the line break.

• The Log4j methods (log.debug() and log.error()) produce one CloudWatch event.

• AWS Lambda runtime adds the AWSRequestId in the MDC (see Class MDC). To get this
value in the log as shown, we added %X{AWSRequestId} in the conversion pattern in the
log4.properties file.

You can do the following to test the code:

• Using the code, create a deployment package. In your project, don't forget to add the
log4j.properties files in the project-dir/src/main/resources/ directory.

• Upload the deployment package to AWS Lambda to create your Lambda function.

• To test your Lambda function use a string ("this is a test") as sample event. The handler code
receives the sample event but does nothing with it. It only shows how to write logs.

Follow the instructions provided in the Getting Started. For more information, see Step 2.3: (Optional)
Create a Lambda Function Authored in Java (p. 169). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-log4j library
dependency.

• When you create the Lambda function, specify example.Hello::myHandler
(package.class::method) as the handler value.

Example 2: Writing Logs Using LambdaLogger (Java)

The following Java code example writes logs using both the System methods and the LambdaLogger
object to illustrate how they differ when AWS Lambda logs information to CloudWatch.

36

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/MDC.html

AWS Lambda Developer Guide
Programming Model

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;

public class Hello {
 public String myHandler(String name, Context context) {

 // System.out: One log statement but with a line break (AWS Lambda
 writes two events to CloudWatch).
 System.out.println("log data from stdout \n this is continuation of
 system.out");

 // System.err: One log statement but with a line break (AWS Lambda
 writes two events to CloudWatch).
 System.err.println("log data from stderr \n this is continuation of
 system.err");

 LambdaLogger logger = context.getLogger();
 // Write log to CloudWatch using LambdaLogger.
 logger.log("log data from LambdaLogger \n this is continuation of
 logger.log");

 // Return will include the log stream name so you can look
 // up the log later.
 return String.format("Hello %s. log stream = %s", name,
 context.getLogStreamName());
 }
}

The following is sample of log entries in CloudWatch Logs.

Note:

• AWS Lambda parses the log string in each of the System.out.println() and
System.err.println() statements logs as two separate events (note the two down arrows in the
screenshot) because of the line break.

• The LambdaLogger.log() produce one CloudWatch event.

You can do the following to test the code:

• Using the code, create a deployment package.

37

AWS Lambda Developer Guide
Programming Model

• Upload the deployment package to AWS Lambda to create your Lambda function.

• To test your Lambda function use a string ("this is a test") as sample event. The handler code
receives the sample event but does nothing with it. It only shows how to write logs.

Follow the instructions provided in the Getting Started. For more information, see Step 2.3: (Optional)
Create a Lambda Function Authored in Java (p. 169). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-core library
dependency.

• When you create the Lambda function, specify example.Hello::myHandler
(package.class::method) as the handler value.

Exceptions (Java)

If your Lambda function throws an exception, AWS Lambda recognizes the failure and serializes the
exception information into JSON and returns it. Following is an example error message:

{
 "errorMessage": "Name John Doe is invalid. Exception occurred...",
 "errorType": "java.lang.Exception",
 "stackTrace": [
 "example.Hello.handler(Hello.java:9)",
 "sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)",

 "sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)",

 "sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)",
 "java.lang.reflect.Method.invoke(Method.java:497)"
]
}

Note that the stack trace is returned as the stackTrace JSON array of stack trace elements.

The method in which you get the error information back depends on the invocation type that you
specified at the time you invoked the function:

• RequestResponse invocation type (that is, synchronous execution): In this case, you get the error
message back.

For example, if you invoke a Lambda function using the Lambda console, the RequestResponse is
always the invocation type and the console displays the error information returned by AWS Lambda
in the Execution result section as shown in the following image.

38

AWS Lambda Developer Guide
Programming Model

• Event invocation type (that is, asynchronous execution): In this case AWS Lambda does not return
anything. Instead, it logs the error information in CloudWatch Logs and CloudWatch metrics.

Depending on the event source, AWS Lambda may retry the failed Lambda function. For example, if
Amazon Kinesis is the event source for the Lambda function, AWS Lambda retries the failed function
until the Lambda function succeeds or the records in the stream expire.

Programming Model for Authoring Lambda Functions in Python

The following sections explain how common programming patterns and core concepts apply when
authoring Lambda function code in Python.

Topics

• Lambda Function Handler (Python) (p. 39)

• The Context Object (Python) (p. 40)

• Logging (Python) (p. 42)

• Exceptions (Python) (p. 45)

Lambda Function Handler (Python)

At the time you create a Lambda function, you specify a handler, which is a function in your code,
that AWS Lambda can invoke when the service executes your code. Use the following general syntax
structure when creating a handler function in Python.

def handler_name(event, context):
 ...
 return some_value

In the syntax, note the following:

• event – AWS Lambda uses this parameter to pass in event data to the handler. This parameter is
usually of the Python dict type. It can also be list, str, int, float, or NoneType type.

• context – AWS Lambda uses this parameter to provide runtime information to your handler. This
parameter is of the LambdaContext type.

• Optionally, the handler can return a value. What happens to the returned value depends on the
invocation type you use when invoking the Lambda function:

• If you use the RequestResponse invocation type (synchronous execution), AWS Lambda returns
the result of the Python function call to the client invoking the Lambda function (in the HTTP
response to the invocation request, serialized into JSON). For example, AWS Lambda console
uses the RequestResponse invocation type, so when you invoke the function using the console,
the console will display the returned value.

If the handler does not return anything, AWS Lambda returns null.

• If you use the Event invocation type (asynchronous execution), the value is discarded.

For example, consider the following Python example code.

def my_handler(event, context):

39

http://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html

AWS Lambda Developer Guide
Programming Model

 message = 'Hello {} {}!'.format(event['first_name'],
 event['last_name'])
 return {
 'message' : message
 }

This example has one function called my_handler. The function returns a message containing data
from the event it received as input.

To upload and test this code as a Lambda function

1. Save this file (for example, as hello_python.py).

2. Package the file and any dependencies into a .zip file. When creating the zip, include only the
code and its dependencies, not the containing folder.

For instructions, see Creating a Deployment Package (Python) (p. 69).

3. Upload the .zip file using either the console or AWS CLI to create a Lambda function. You
specify the function name in the Python code to be used as the handler when you create
a Lambda function. For instructions to create a Lambda function using the console, see
Step 2.1: Create a Hello World Lambda Function (p. 164). In this example, the handler
is hello_python.my_handler (file-name.function-name). Note that the Getting
Started (p. 160) uses a blueprint that provides sample code for a Lambda function. In this case
you already have a deployment package. Therefore, in the configure function step you choose to
upload a zip.

The following create-function AWS CLI command creates a Lambda function. Among other
parameters, it specifies the --handler parameter to specify the handler name.

aws lambda create-function \
--region us-west-2 \
--function-name HelloPython \
--zip-file fileb://deployment-package.zip \
--role arn:aws:iam::account-id:role/lambda_basic_execution \
--handler hello_python.my_handler \
--runtime python2.7 \
--timeout 15 \
--memory-size 512

The Context Object (Python)

Topics

• Example (p. 41)

• The Context Object Methods (Python) (p. 41)

• The Context Object Attributes (Python) (p. 41)

While a Lambda function is executing, it can interact with the AWS Lambda service to get useful
runtime information such as:

• How much time is remaining before AWS Lambda terminates your Lambda function (timeout is one
of the Lambda function configuration properties).

• The CloudWatch log group and log stream associated with the Lambda function that is executing.

• The AWS request ID returned to the client that invoked the Lambda function. You can use the
request ID for any follow up inquiry with AWS support.

40

AWS Lambda Developer Guide
Programming Model

• If the Lambda function is invoked through AWS Mobile SDK, you can learn more about the mobile
application calling the Lambda function.

AWS Lambda provides this information via the context object that the service passes as the second
parameter to your Lambda function handler. For more information, see Lambda Function Handler
(Python) (p. 39).

The following sections provide an example Lambda function that uses the context object, and then
lists all of the available methods and attributes.

Example

Consider the following Python example. It has one function that is also the handler. The handler
receives runtime information via the context object passed as parameter.

from __future__ import print_function

import time
def get_my_log_stream(event, context):
 print("Log stream name:", context.log_stream_name)
 print("Log group name:", context.log_group_name)
 print("Request ID:",context.aws_request_id)
 print("Mem. limits(MB):", context.memory_limit_in_mb)
 # Code will execute quickly, so we add a 1 second intentional delay so
 you can see that in time remaining value.
 time.sleep(1)
 print("Time remaining (MS):", context.get_remaining_time_in_millis())

The handler code in this example simply prints some of the runtime information. Each print statement
creates a log entry in CloudWatch. If you invoke the function using the Lambda console, the console
displays the logs. The from __future__ statement enables you to write code that is compatible with
Python 2 or 3.

To test this code in the AWS Lambda console

1. In the console, create a Lambda function using the hello-world blueprint. In runtime,
choose Python 2.7. In Handler, replace lambda_function.lambda_handler with
lambda_function.get_my_log_stream. For instructions on how to do this, see Step 2.1:
Create a Hello World Lambda Function (p. 164).

2. Test the function, and then you can also update the code to get more context information.

The following sections provide a list of available context object methods and attributes that you can
use to get runtime information of your Lambda function.

The Context Object Methods (Python)

The context object provides the following methods:

get_remaining_time_in_millis()
Returns the remaining execution time, in milliseconds, until AWS Lambda terminates the function.

The Context Object Attributes (Python)

The context object provides the following attributes:

function_name
Name of the Lambda function that is executing.

41

AWS Lambda Developer Guide
Programming Model

function_version
The Lambda function version that is executing. If an alias is used to invoke the function, then
function_version will be the version the alias points to.

invoked_function_arn
The ARN used to invoke this function. It can be function ARN or alias ARN. An unqualified ARN
executes the $LATEST version and aliases execute the function version it is pointing to.

memory_limit_in_mb
Memory limit, in MB, you configured for the Lambda function. You set the memory limit at the time
you create a Lambda function and you can change it later.

aws_request_id
AWS request ID associated with the request. This is the ID returned to the client that called the
invoke method.

Note
If AWS Lambda retries the invocation (for example, in a situation where the Lambda
function that is processing Amazon Kinesis records throws an exception), the request ID
remains the same.

log_group_name
The name of the CloudWatch log group where you can find logs written by your Lambda function.

log_stream_name
The name of the CloudWatch log stream where you can find logs written by your Lambda function.
The log stream may or may not change for each invocation of the Lambda function.

The value is null if your Lambda function is unable to create a log stream, which can happen if
the execution role that grants necessary permissions to the Lambda function does not include
permissions for the CloudWatch Logs actions.

identity
Information about the Amazon Cognito identity provider when invoked through the AWS Mobile
SDK. It can be null.

• identity.cognito_identity_id

• identity.cognito_identity_pool_id

client_context
Information about the client application and device when invoked through the AWS Mobile SDK. It
can be null.

• client_context.client.installation_id

• client_context.client.app_title

• client_context.client.app_version_name

• client_context.client.app_version_code

• client_context.client.app_package_name

• client_context.custom

A dict of custom values set by the mobile client application.

• client_context.env

A dict of environment information provided by the AWS Mobile SDK.

Logging (Python)

Your Lambda function can contain logging statements. AWS Lambda writes these logs to CloudWatch.
If you use the Lambda console to invoke your Lambda function, the console displays the same logs.

The following Python statements generate log entries:

42

AWS Lambda Developer Guide
Programming Model

• print statements.

• Logger functions in the logging module (for example, logging.Logger.info and
logging.Logger.error).

Both print and logging.* functions write logs to CloudWatch Logs but the logging.* functions
write additional information to each log entry, such as time stamp and log level.

For example, consider the following Python code example.

import logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def my_logging_handler(event, context):
 logger.info('got event{}'.format(event))
 logger.error('something went wrong')
 return 'Hello World!'

Because the code example uses the logging module to write message to the logs, you also get some
additional information in the log such as the time stamp and the log levels. The log level identifies the
type of log, such as [INFO], [ERROR], and [DEBUG], as shown:

The screen shot shows an example Log output section in the Lambda console; you can also find
these logs in CloudWatch. For more information, see Accessing Amazon CloudWatch Logs for AWS
Lambda (p. 110).

Instead of using the logging module, you can use the print statements in your code as shown in the
following Python example:

from __future__ import print_function
def my_other_logging_handler(event, context):
 print('this will also show up in cloud watch')
 return 'Hello World!'

43

AWS Lambda Developer Guide
Programming Model

In this case only the text passed to the print method is sent to CloudWatch. The log entries will not
have additional information that the logging.* function returns. The from __future__ statement
enables you to write code that is compatible with Python 2 or 3.

The console uses the RequestResponse invocation type (synchronous invocation) when invoking
the function. And therefore it gets the return value ("Hello world!") back from AWS Lambda which the
console displays.

To test the preceding Python code (console)

1. In the console, create a Lambda function using the hello-world-python blueprint. In runtime,
choose Python 2.7. In Handler, replace lambda_function.lambda_handler with
lambda_function.my_other_logging_handler and in Role, choose Basic execution role.
You also replace the code provided by the blueprint by the code in this section. For step-by-step
instructions to create a Lambda function using the console, see Step 2.1: Create a Hello World
Lambda Function (p. 164).

2. Replace the template code with the code provided in this section.

3. Test the Lambda function using the Sample event template called Hello World provided in the
Lambda console.

Finding Logs

You can find the logs that your Lambda function writes, as follows:

• In the AWS Lambda console – The Log output section in AWS Lambda console shows the logs.

• In the response header, when you invoke a Lambda function programmatically – If you invoke
a Lambda function programmatically, you can add the LogType parameter to retrieve the last 4 KB
of log data that is written to CloudWatch Logs. AWS Lambda returns this log information in the x-
amz-log-results header in the response. For more information, see Invoke (p. 358).

If you use AWS CLI to invoke the function, you can specify the --log-type parameter with
value Tail to retrieve the same information.

• In CloudWatch Logs – To find your logs in CloudWatch you need to know the log group name and
log stream name. You can use the context.logGroupName, and context.logStreamName

44

AWS Lambda Developer Guide
Programming Model

properties in your code to get this information. When you run your Lambda function, the resulting
logs in the console or CLI will show you the log group name and log stream name.

Exceptions (Python)

If your Lambda function raises an exception, AWS Lambda recognizes the failure and serializes the
exception information into JSON and returns it. Consider the following example:

def always_failed_handler(event, context):
 raise Exception('I failed!')

When you invoke this Lambda function, it will raise an exception and AWS Lambda returns the
following error message:

{
 "errorMessage": "I failed!",
 "stackTrace": [
 [
 "/var/task/lambda_function.py",
 3,
 "my_always_fails_handler",
 "raise Exception('I failed!')"
]
],
 "errorType": "Exception"
}

Note that the stack trace is returned as the stackTrace JSON array of stack trace elements.

How you get the error information back depends on the invocation type that the client specifies at the
time of function invocation:

• If a client specifies the RequestResponse invocation type (that is, synchronous execution), it
returns the result to the client that made the invoke call.

For example, the console always use the RequestResponse invocation type, so the console will
display the error in the Execution result section as shown:

The same information is also sent to CloudWatch and the Log output section shows the same logs.

45

AWS Lambda Developer Guide
Programming Model

• If a client specifies the Event invocation type (that is, asynchronous execution), AWS Lambda will
not return anything. Instead, it logs the error information to CloudWatch Logs. You can also see the
error metrics in CloudWatch Metrics.

Depending on the event source, AWS Lambda may retry the failed Lambda function. For example,
if Amazon Kinesis is the event source, AWS Lambda will retry the failed invocation until the Lambda
function succeeds or the records in the stream expire.

To test the preceding Python code (console)

1. In the console, create a Lambda function using the hello-world blueprint. In runtime,
choose Python 2.7. In Handler, replace lambda_function.lambda_handler with
lambda_function.always_failed_handler. For instructions on how to do this, see Step 2.1:
Create a Hello World Lambda Function (p. 164).

2. Replace the template code with the code provided in this section.

3. Test the Lambda function using the Sample event template called Hello World provided in the
Lambda console.

Programming Model for Authoring Lambda Functions in C#

The following sections explain how common programming patterns and core concepts apply when
authoring Lambda function code in C#.

Topics

• Lambda Function Handler (C#) (p. 47)

• The Context Object (C#) (p. 51)

• Logging (C#) (p. 52)

• Exceptions (C#) (p. 53)

Additionally, note that AWS Lambda provides the following:

• Amazon.Lambda.Core – This library provides a static Lambda logger, serialization interfaces
and a context object. The Context object (The Context Object (C#) (p. 51)) provides runtime
information about your Lambda function.

• Amazon.Lambda.Serialization.Json – This an implementation of the serialization interface in
Amazon.Lambda.Core.

• Amazon.Lambda.Logging.AspNetCore – This provides a library for logging from ASP.NET.

• Event objects (POCOs) for several AWS services, including:

46

http://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html

AWS Lambda Developer Guide
Programming Model

• Amazon.Lambda.APIGatewayEvents

• Amazon.Lambda.CognitoEvents

• Amazon.Lambda.ConfigEvents

• Amazon.Lambda.DynamoDBEvents

• Amazon.Lambda.KinesisEvents

• Amazon.Lambda.S3Events

• Amazon.Lambda.SNSEvents

These packages are available at Nuget Packages.

Lambda Function Handler (C#)

When you create a Lambda function, you specify a handler that AWS Lambda can invoke when the
service executes the function on your behalf.

You define a Lambda function handler as an instance or static method in a class. If you want access to
the Lambda context object, it is available by defining a method parameter of type ILambdaContext..

returnType handler-name(inputType input, ILambdaContext context) {
 ...
}

In the syntax, note the following:

• inputType – The first handler parameter is the input to the handler, which can be event data
(published by an event source) or custom input that you provide such as a string or any custom data
object.

• returnType – If you plan to invoke the Lambda function synchronously (using the
RequestResponse invocation type), you can return the output of your function using any of the
supported data types. For example, if you use a Lambda function as a mobile application backend,
you are invoking it synchronously. Your output data type will be serialized into JSON.

If you plan to invoke the Lambda function asynchronously (using the Event invocation type), the
returnType should be void. For example, if you use AWS Lambda with event sources such as
Amazon S3, Amazon Kinesis, and Amazon SNS, these event sources invoke the Lambda function
using the Event invocation type.

Handling Streams

Only the System.IO.Stream type is supported as an input parameter by default.

For example, consider the following C# example code.

using System.IO;
{
 namespace Example

 public class Hello
 {
 public Stream MyHandler(Stream stream)
 {
 //function logic
 }
}

47

https://www.nuget.org/packages/

AWS Lambda Developer Guide
Programming Model

In the example C# code, the first handler parameter is the input to the handler (MyHandler), which can
be event data (published by an event source such as Amazon S3) or custom input you provide such as
a Stream (as in this example) or any custom data object. The output is of type Stream.

Handling Standard Data Types

All other types, as listed below, require you to specify a serializer.

• Primitive .NET types (such as string or int).

• Collections and maps - IList, IEnumerable, IList<T>, Array, IDictionary, IDictionary<TKey, TValue>

• POCO types (Plain old CLR objects)

• Predefined AWS event types

• For asynchronous invocations the return-type will be ignored by Lambda. The return type may be set
to void in such cases.

• If you are using .NET asynchronous programming, the return type can be Task and Task<T> types
and use async and await keywords. For more information, see Using Async in C# Functions with
AWS Lambda (p. 50).

Unless your function input and output parameters are of type System.IO.Stream, you will
need to serialize them. AWS Lambda provides a default serializer that can be applied at the
assembly or method level of your application, or you can define your own by implementing the
ILambdaSerializer interface provided by the Amazon.Lambda.Core library. For more information,
see Creating a Deployment Package (C#) (p. 57).

To add the default serializer attribute to a method, first add a dependency on
Amazon.Lambda.Serialization.Json in your project.json file.

{
 "version": "1.0.0-*",
 "dependencies":{
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.1"
 },
 "Amazon.Lambda.Serialization.Json": "1.0.0"
 },
 "frameworks": {
 "netcoreapp1.0": {
 "imports": "dnxcore50"
 }
 }
}

The example below illustrates the flexibility you can leverage by specifying the default Json.NET
serializer on one method and another of your choosing on a different method:

public class ProductService{

 [LambdaSerializer(typeof(Amazon.Lambda.Serialization.Json.JsonSerializer))]
 public Product DescribeProduct(DescribeProductRequest request)
 {
 return catalogService.DescribeProduct(request.Id);
 }

 [LambdaSerializer(typeof(MyJsonSerializer))]
 public Customer DescribeCustomer(DescribeCustomerRequest request)

48

AWS Lambda Developer Guide
Programming Model

 {
 return customerService.DescribeCustomer(request.Id);
 }
}

Handler Signatures

When creating Lambda functions, you have to provide a handler string that tells AWS Lambda where to
look for the code to invoke. In C#, the format is:

ASSEMBLY::TYPE::METHOD where:

• ASSEMBLY is the name of the .NET assembly file for your application. When using
the .NET Core CLI to build your application, if you haven't set the assembly name using the
buildOptions.outputName setting in project.json, the ASSEMBLY name will be the name of the
folder that contains your project.json file. For more information, see .NET Core CLI (p. 57). In this
case, let's assume the folder name is HelloWorldApp.

• TYPE is the full name of the handler type, which consists of the Namespace and the ClassName. In
this case Example.Hello.

• METHOD is name of the function handler, in this case MyHandler.

Ultimately, the signature will be of this format: Assembly::Namespace.ClassName::MethodName

Again, consider the following example:

using System.IO;
{
 namespace Example

 public class Hello
 {
 public Stream MyHandler(Stream stream)
 {
 //function logic
 }
}

The handler string would be: HelloWorldApp::Example.Hello::MyHandler

For instructions to create a Lambda function using this C# code, see Step 2.4: (Optional) Create a
Lambda Function Authored in C# (p. 170).

Important
If the method specified in your handler string is overloaded, you must provide the exact
signature of the method Lambda should invoke. AWS Lambda will reject an otherwise valid
signature if the resolution would require selecting among multiple (overloaded) signatures.

Lambda Function Handler Restrictions

Note that there are some restrictions on the handler signature

• It may not be unsafe and use pointer types in the handler signature, though unsafe context can
be used inside the handler method and its dependencies. For more information, see unsafe (C#
Reference).

• It may not pass a variable number of parameters using the params keyword, or use ArgIterator
as an input or return parameter which is used to support variable number of parameters.

• The handler may not be a generic method (e.g. IList<T> Sort<T>(IList<T> input)).

• Async handlers with signature async void are not supported.

49

https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx
https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx

AWS Lambda Developer Guide
Programming Model

Using Async in C# Functions with AWS Lambda

If you know your Lambda function will require a long-running process, such as uploading large files
to Amazon S3 or reading a large stream of records from DynamoDB, you can take advantage of
the async/await pattern. By creating a handler with this signature, Lambda will execute the function
synchronously and wait a maximum of 5 minutes for execution to complete before returning or timing
out. For example:

public async Task<Response> ProcessS3ImageResizeAsync(SimpleS3Event input)
{
 var response = await client.DoAsyncWork(input);
 return response;
}

If you use this pattern, there are some considerations you must take into account:

• AWS Lambda will not support async void methods.

• If you create an async Lambda function without implementing the await operator, .NET will issue a
compiler warning and you will observe unexpected behavior. For example, some async actions will
execute while others won't. Or some async actions won't complete before the function execution is
complete.

public async Task ProcessS3ImageResizeAsync(SimpleS3Event event) // Compiler
 warning
{
 client.DoAsyncWork(input);
}

• Your Lambda function can include multiple async calls, which can be invoked in parallel. You can
use the Task.WaitAll and Task.WaitAny methods to work with multiple tasks. To use the
Task.WaitAll method, you pass a list of the operations as an array to the method. Note that in the
example below, if you neglect to include any operation to the array, that call may return before its
operation completes.

public async Task SaveAsync(Profile profile)
{
 var s3Save = s3.SaveImage(profile.image);
 var ddbSave = ddb.SaveAttributes(profile.Attributes);
 var ddbSave2 = ddb.SaveConnections(profile.connections); // Lambda will
 return before this call completes
 // No compiler
 warnings
 return await Task.WaitAll(new Task[]{ s3Save, ddbSave }); // Did not
 "await" for ddbSave2
}

To use the Task.WaitAny method, you again pass a list of operations as an array to the method.
The call returns as soon as the first operation completes, even if the others are still running.

public async Task<SearchResult> SearchAsync(Query q)
{
 var siteSearch1 = site1.SearchAsync(q);
 var siteSearch2 = site2.SearchAsyc(q);
 var siteSearch3 = site3.SearchAsync(q);
 var tasks[] = new Task[]{siteSearch1, siteSearch2, siteSearch3};

50

AWS Lambda Developer Guide
Programming Model

 var index = await Task.WaitAny(tasks); // Returns as soon as any of the
 tasks complete, other task may run in background
 return tasks[index].Result;
}

We do not recommend using Task.WaitAny for the above reasons.

The Context Object (C#)

You can gain useful information on how your Lambda function is interacting with the AWS Lambda
runtime by adding the ILambdaContext parameter to your method. In return, AWS Lambda provides
runtime details such as the CloudWatch log stream associated with the function or the id of the client
that called your functions, which you access via the properties provided by the context object.

To do this, create a method with the following signature:

public void Handler(string Input, ILambdaContext context)

The context object properties are:

• MemoryLimitInMB: Memory limit, in MB, you configured for the Lambda function.

• FunctionName: Name of the Lambda function that is running.

• FunctionVersion: The Lambda function version that is executing. If an alias is used to invoke the
function, then FunctionVersion will be the version the alias points to.

• InvokedFunctionArn: The ARN used to invoke this function. It can be function ARN or alias ARN.
An unqualified ARN executes the $LATEST version and aliases execute the function version it is
pointing to.

• AwsRequestId: AWS request ID associated with the request. This is the ID returned to the client
that invoked this Lambda function. You can use the request ID for any follow up enquiry with AWS
support. Note that if AWS Lambda retries the function (for example, in a situation where the Lambda
function processing Amazon Kinesis records throw an exception), the request ID remains the same.

• LogStreamName: The CloudWatch log stream name for the particular Lambda function execution. It
can be null if the IAM user provided does not have permission for CloudWatch actions.

• LogGroupName: The CloudWatch log group name associated with the Lambda function invoked. It
can be null if the IAM user provided does not have permission for CloudWatch actions.

• ClientContext: Information about the client application and device when invoked through the
AWS Mobile SDK. It can be null. Client context provides client information such as client ID,
application title, version name, version code, and the application package name.

• Identity: Information about the Amazon Cognito identity provider when invoked through the AWS
Mobile SDK. It can be null.

• RemainingTime: Remaining execution time till the function will be terminated. At the time you
create the Lambda function you set maximum time limit, at which time AWS Lambda will terminate
the function execution. Information about the remaining time of function execution can be used to
specify function behavior when nearing the timeout. This is a TimeSpan field.

• Logger: The Lambda logger associated with the ILambdaContext object. For more information, see
Logging (C#) (p. 52).

The following C# code snippet shows a simple handler function that displays the value of the input
parameter and then prints some of the context information.

public async Task Handler(ILambdaContext context)
{
 Console.Writeline("Function name: " + context.FunctionName);

51

AWS Lambda Developer Guide
Programming Model

 Console.Writeline("RemainingTime: " + context.RemainingTime);
 await Task.Delay(TimeSpan.FromSeconds(0.42));
 Console.Writeline("RemainingTime after sleep: " + context.RemainingTime);
}

Logging (C#)

Your Lambda function can contain logging statements and, in turn, AWS Lambda writes these logs to
CloudWatch Logs.

In the C# programming model, there are three ways to log data in your function:

• Use the static Write or WriteLine methods provided by the C# Console class. Anything written
to standard out or standard error - using Console.Write or a similar method - will be logged in
CloudWatch Logs.

public class ProductService
{
 public async Task<Product> DescribeProduct(DescribeProductRequest
 request)
 {
 Console.WriteLine("DescribeProduct invoked with Id " + request.Id);
 return await catalogService.DescribeProduct(request.Id);
 }
}

• Use the Log method on the Amazon.Lambda.Core.LambdaLogger class. This is a static class that
can be used anywhere in your application. To use this, you must include the Amazon.Lambda.Core
library.

using Amazon.Lambda.Core;

public class ProductService
{
 public async Task<Product> DescribeProduct(DescribeProductRequest
 request)
 {
 LambdaLogger.Log("DescribeProduct invoked with Id " + request.Id);
 return await catalogService.DescribeProduct(request.Id);
 }
}

Each call to LambdaLogger.Log results in a CloudWatch Logs event, provided the event size is
within the allowed limits. For information about CloudWatch Logs logs limits, see CloudWatch Logs
Limits in the Amazon CloudWatch User Guide.

• Use the logger in ILambdaContext. The ILambdaContext object (if specified) in your method
contains a Logger property that represents a LambdaLogger. The following is an example of using
this method:

public class ProductService
{
 public async Task<Product> DescribeProduct(DescribeProductRequest
 request, ILambdaContext context)
 {
 context.Logger.Log("DescribeProduct invoked with Id " + request.Id);
 return await catalogService.DescribeProduct(request.Id);

52

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

AWS Lambda Developer Guide
Programming Model

 }
}

How to Find Logs

You can find the logs that your Lambda function writes, as follows:

• Find logs in CloudWatch Logs. The ILambdaContext object provides the LogStreamName and the
LogGroupName properties. Using these properties, you can find the specific log stream where logs
are written.

• If you invoke a Lambda function via the console, the invocation type is always RequestResponse
(that is, synchronous execution) and the console displays the logs that the Lambda function writes
using the LambdaLogger object. AWS Lambda also returns logs from Console.Write and
Console.WriteLine methods.

• If you invoke a Lambda function programmatically, you can add the LogType parameter to
retrieve the last 4 KB of log data that is written to CloudWatch Logs. For more information, see
Invoke (p. 358). AWS Lambda returns this log information in the x-amz-log-results header in
the response. If you use the AWS Command Line Interface to invoke the function, you can specify
the --log-type parameter with value Tail.

Exceptions (C#)

When an exception occurs in your Lambda function, Lambda will report the exception information back
to you. Exceptions can occur in two different places:

• Initialization (Lambda loading your code, validating the handler string, and creating an instance of
your class if it is non-static).

• The Lambda function invocation.

The serialized exception information is returned as the payload as a modeled JSON object and
outputted to CloudWatch logs.

In the initialization phase, exceptions can be thrown for invalid handler strings, a rule-breaking type
or method (see Lambda Function Handler Restrictions (p. 49)), or any other validation method
(such as forgetting the serializer attribute and having a POCO as your input or output type). These
exceptions are of type LambdaException. For example:

{
 "errorType": "LambdaException",
 "errorMessage": "Invalid lambda function handler: 'http://
this.is.not.a.valid.handler/'.
 The valid format is 'ASSEMBLY::TYPE::METHOD'."
}

If your constructor throws an exception, the error type is also of type LambdaException, but the
exception thrown during construction is provided in the cause property, which is itself a modeled
exception object:

{
 "errorType": "LambdaException",
 "errorMessage": "An exception was thrown when the constructor for type
 'LambdaExceptionTestFunction.ThrowExceptionInConstructor'
 was invoked. Check inner exception for more details.",
 "cause": {

53

AWS Lambda Developer Guide
Programming Model

 "errorType": "TargetInvocationException",
 "errorMessage": "Exception has been thrown by the target of an
 invocation.",
 "stackTrace": [
 "at System.RuntimeTypeHandle.CreateInstance(RuntimeType type, Boolean
 publicOnly, Boolean noCheck, Boolean&canBeCached,
 RuntimeMethodHandleInternal&ctor, Boolean& bNeedSecurityCheck)",
 "at System.RuntimeType.CreateInstanceSlow(Boolean publicOnly, Boolean
 skipCheckThis, Boolean fillCache, StackCrawlMark& stackMark)",
 "at System.Activator.CreateInstance(Type type, Boolean nonPublic)",
 "at System.Activator.CreateInstance(Type type)"
],
 "cause": {
 "errorType": "ArithmeticException",
 "errorMessage": "Sorry, 2 + 2 = 5",
 "stackTrace": [
 "at LambdaExceptionTestFunction.ThrowExceptionInConstructor..ctor()"
]
 }
 }
}

As the example shows, the inner exceptions are always preserved (as the cause property), and can be
deeply nested.

Exceptions can also occur during invocation. In this case, the exception type is preserved and the
exception is returned directly as the payload and in the CloudWatch logs. For example:

{
 "errorType": "AggregateException",
 "errorMessage": "One or more errors occurred. (An unknown web exception
 occurred!)",
 "stackTrace": [
 "at System.Threading.Tasks.Task.ThrowIfExceptional(Boolean
 includeTaskCanceledExceptions)",
 "at System.Threading.Tasks.Task`1.GetResultCore(Boolean
 waitCompletionNotification)",
 "at lambda_method(Closure , Stream , Stream , ContextInfo)"
],
 "cause": {
 "errorType": "UnknownWebException",
 "errorMessage": "An unknown web exception occurred!",
 "stackTrace": [
 "at LambdaDemo107.LambdaEntryPoint.<GetUriResponse>d__1.MoveNext()",
 "--- End of stack trace from previous location where exception was
 thrown ---",
 "at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task
 task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Runtime.CompilerServices.TaskAwaiter`1.GetResult()",
 "at LambdaDemo107.LambdaEntryPoint.<CheckWebsiteStatus>d__0.MoveNext()"
],
 "cause": {
 "errorType": "WebException",
 "errorMessage": "An error occurred while sending the request. SSL peer
 certificate or SSH remote key was not OK",
 "stackTrace": [

54

AWS Lambda Developer Guide
Programming Model

 "at System.Net.HttpWebRequest.EndGetResponse(IAsyncResult
 asyncResult)",
 "at
 System.Threading.Tasks.TaskFactory`1.FromAsyncCoreLogic(IAsyncResult
 iar, Func`2 endFunction, Action`1 endAction, Task`1 promise, Boolean
 requiresSynchronization)",
 "--- End of stack trace from previous location where exception was
 thrown ---",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Runtime.CompilerServices.TaskAwaiter`1.GetResult()",
 "at LambdaDemo107.LambdaEntryPoint.<GetUriResponse>d__1.MoveNext()"
],
 "cause": {
 "errorType": "HttpRequestException",
 "errorMessage": "An error occurred while sending the request.",
 "stackTrace": [
 "at
 System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Net.Http.HttpClient.<FinishSendAsync>d__58.MoveNext()",
 "--- End of stack trace from previous location where exception was
 thrown ---",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Net.HttpWebRequest.<SendRequest>d__63.MoveNext()",
 "--- End of stack trace from previous location where exception was
 thrown ---",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Net.HttpWebRequest.EndGetResponse(IAsyncResult
 asyncResult)"
],
 "cause": {
 "errorType": "CurlException",
 "errorMessage": "SSL peer certificate or SSH remote key was not
 OK",
 "stackTrace": [
 "at System.Net.Http.CurlHandler.ThrowIfCURLEError(CURLcode
 error)",
 "at
 System.Net.Http.CurlHandler.MultiAgent.FinishRequest(StrongToWeakReference`1
 easyWrapper, CURLcode messageResult)"
]
 }
 }
 }
 }

55

AWS Lambda Developer Guide
Creating a Deployment Package

}

The method in which error information is conveyed depends on the invocation type:

• RequestResponse invocation type (that is, synchronous execution): In this case, you get the error
message back.

For example, if you invoke a Lambda function using the Lambda console, the RequestResponse is
always the invocation type and the console displays the error information returned by AWS Lambda
in the Execution result section of the console.

• Event invocation type (that is, asynchronous execution): In this case AWS Lambda does not return
anything. Instead, it logs the error information in CloudWatch Logs and CloudWatch metrics.

Depending on the event source, AWS Lambda may retry the failed Lambda function. For more
information, see Retries on Errors (p. 154).

Creating a Deployment Package
To create a Lambda function you first create a Lambda function deployment package, a .zip or .jar file
consisting of your code and any dependencies. When creating the zip, include only the code and its
dependencies, not the containing folder.

• Creating a Deployment Package (Node.js) (p. 56)

• Creating a Deployment Package (Java) (p. 62)

• Creating a Deployment Package (C#) (p. 57)

• Creating a Deployment Package (Python) (p. 69)

Creating a Deployment Package (Node.js)

To create a Lambda function you first create a Lambda function deployment package, a .zip file
consisting of your code and any dependencies.

You can create a deployment package yourself or write your code directly in the Lambda console, in
which case the console creates the deployment package for you and uploads it, creating your Lambda
function. Note the following to determine if you can use the console to create your Lambda function:

• Simple scenario – If your custom code requires only the AWS SDK library, then you can use the
inline editor in the AWS Lambda console. Using the console, you can edit and upload your code to
AWS Lambda. The console will zip up your code with the relevant configuration information into a
deployment package that the Lambda service can run.

You can also test your code in the console by manually invoking it using sample event data.

Note
The Lambda service has preinstalled the AWS SDK for Node.js.

• Advanced scenario – If you are writing code that uses other resources, such as a graphics library
for image processing, or you want to use the AWS CLI instead of the console, you need to first
create the Lambda function deployment package, and then use the console or the CLI to upload the
package.

Note
After you create a deployment package, you may either upload it directly or upload the .zip file
first to an Amazon S3 bucket in the same AWS region where you want to create the Lambda

56

AWS Lambda Developer Guide
Creating a Deployment Package

function, and then specify the bucket name and object key name when you create the Lambda
function using the console or the AWS CLI.

The following is an example procedure to create a deployment package (outside the console).
Suppose you want to create a deployment package that includes a filename.js code file and your
code uses the async library.

1. Open a text editor, and write your code. Save the file (for example, filename.js).

You will use the file name to specify the handler at the time of creating the Lambda function.

2. In the same directory, use npm to install the libraries that your code depends on. For example, if
your code uses the async library, use the following npm command.

npm install async

3. Your directory will then have the following structure:

filename.js
node_modules/async
node_modules/async/lib
node_modules/async/lib/async.js
node_modules/async/package.json

4. Zip the content of the folder, that is your deployment package (for example, sample.zip).

Then, specify the .zip file name as your deployment package at the time you create your Lambda
function.

If you want to include your own binaries, including native ones, just package them in the Zip file you
upload and then reference them (including the relative path within the Zip file you created) when you
call them from Node.js or from other processes that you’ve previously started. Ensure that you include
the following at the start of your function code: process.env[‘PATH’] = process.env[‘PATH’]
+ ‘:’ + process.env[‘LAMBDA_TASK_ROOT’]

For more information on including native binaries in your Lambda function package, see Running
Executables in AWS Lambda.

Creating a Deployment Package (C#)

You can create .NET-core based AWS Lambda applications and package them for deployment in the
following ways:

• Use the .NET Core CLI, which you can download here to create your Lambda application.

• Use the Lambda plugin to the AWS ToolKit for Microsoft Visual Studio, which can you download
here.

Topics

• .NET Core CLI (p. 57)

• AWS Toolkit for Visual Studio (p. 60)

.NET Core CLI

The .NET Core CLI offers a cross-platform way for you to create .NET-based Lambda applications.

57

https://aws.amazon.com/blogs/compute/running-executables-in-aws-lambda/
https://aws.amazon.com/blogs/compute/running-executables-in-aws-lambda/
https://www.microsoft.com/net/core#windowsvs2015
https://aws.amazon.com/visualstudio

AWS Lambda Developer Guide
Creating a Deployment Package

Before You Begin

This section assumes you have done the following:

• Installed the .NET Core CLI. If you haven't, do so here.

Create a .NET Project

To create an application using the .NET Core CLI, open a command prompt and navigate to the folder
where you installed the .NET Core runtime and follow these steps:

1. Make a directory where your project will be created using the following command: mkdir example

2. Navigate to that directory using the following command: cd example

3. Enter the following command: dotnet new

This will create two files in your example directory:

• Program.cs, which is where you write your Lambda function code.

• project.json, which is the file is where you declare Nuget dependencies (or dependencies on
local projects). NuGet is the package manager for the .NET platform. For more information, see
Nuget.org.

Note
Lambda methods don't use the Main() entry point provided by default in .NET, so open
the project.json file and remove the "buildOptions" property. After this, your project.json
should look something like this (exact versions may differ depending on when you
installed the NetCore CLI):

{
 "version": "1.0.0-*",
 "dependencies": {},
 "frameworks": {
 "netcoreapp1.0": {
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.1.0"
 }
 },
 "imports": "dnxcore50"
 }
 }
}

4. Open the Program.cs file using an editor of you choice, such as Microsoft Visual Studio.

• Replace the default code that is provided with your Lambda function handler code:

At this point, your .cs file structure should resemble this:

using System;
using System.IO;

namespace CSharpLambdaFunction
{
 public class LambdaHandler
 {

58

https://www.microsoft.com/net/core#windowsvs2015
https://www.nuget.org

AWS Lambda Developer Guide
Creating a Deployment Package

 public Stream myHandler(Stream inputStream)
 {
 //function logic
 }
 }
}

Your Lambda function handler signature should be of the format
Assembly::Namespace.ClassName::MethodName. For more information, see Handler
Signatures (p. 49).

Using a Serializer

For any Lambda functions that use input or output types other than a Stream object, you will need to
add a serialization library to your application. You can do this in the following ways:

• Use Json.NET. Lambda will provide an implementation for JSON serializer using JSON.NET as a
NuGet package.

• Create your own serialization library by implementing the ILambdaSerializer interface, which is
available as part of the Amazon.Lambda.Core library. The interface defines two methods:

• T Deserialize<T>(Stream requestStream);

You implement this method to deserialize the request payload from the Invoke API into the object
that is passed to the Lambda function handler.

• T Serialize<T>(T response, Stream responseStream);.

You implement this method to serialize the result returned from the Lambda function handler into
the response payload that is returned by the Invoke API.

You use whichever serializer you wish by adding it as a dependency to your project.json file.

{
 "version": "1.0.0-*",
 "buildOptions": {
 },

 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.1"
 },

 "Newtonsoft.Json": "9.0.1",

 "Amazon.Lambda.Core": "1.0.0*",
 "Amazon.Lambda.Serialization.Json": "1.0.0",

 "Amazon.Lambda.Tools" : {
 "type" :"build",
 "version":"0.9.0-preview1"
 }
 },

 "tools": {
 "Amazon.Lambda.Tools" : "0.9.0-preview1"

59

https://www.nuget.org

AWS Lambda Developer Guide
Creating a Deployment Package

 },

 "frameworks": {
 "netcoreapp1.0": {
 "imports": "dnxcore50"
 }
 }
}

You then add it to your AssemblyInfo.cs file. For example, if you are using the default Json.NET
serializer, this is what you would add:

[assembly:LambdaSerializer(typeof(Amazon.Lambda.Serialization.Json.JsonSerializer))]

Note
You can define a custom serialization attribute at the method level, which will override the
default serializer specified at the assembly level. For more information, see Handling Standard
Data Types (p. 48).

Create the Deployment Package

To create the deployment package, open a command prompt and navigate to the folder that contains
your project.json file and run the following commands:

• dotnet restore which will restore any references to dependencies of the project that may have
changed during the development process.

• dotnet publish which compiles the application and packages the source code and any
dependencies into a folder. The output of the command window will instruct you where the folder
was created. For example:

publish: Published to C:\Users\yourname\project-folder\bin\debug
\netcoreapp1.1\publish

The contents of this folder represent your application and at a minimum would look something like
this:

application-name.deps.json

application-name.dll

application-name.pdb

application-name.runtimeconfig.json

Zip the contents of the folder (not the folder itself). This is your deployment package.

AWS Toolkit for Visual Studio

You can build .NET-based Lambda applications using the Lambda plugin to the AWS Toolkit for Visual
Studio. The plugin is available as part of a Nuget package.

Step 1: Create and Build a Project

1. Launch Microsoft Visual Studio and choose New project.

a. From the File menu, choose New, and then choose Project.

60

AWS Lambda Developer Guide
Creating a Deployment Package

b. In the New Project window, choose AWS Lambda Project (.NET Core) and then choose
OK.

c. In the Select Blueprint window, you will be presented with the option of selecting from a
list of sample applications that will provide you with sample code to get started with creating
a .NET-based Lambda application.

d. To create a Lambda application from scratch, choose Blank Function and then choose
Finish.

e. Note that the libraries necessary for you to build a .NET-based Lambda application are
provided in the References node of your project.

2. Open the Function.cs file. You will be provided with a template to implement your Lambda
function handler code.

3. Once you have written the code that represents your Lambda function, you can upload it by right-
clicking the Project node in your application and then choosing Publish to AWS Lambda.

4. In the Upload Lambda Function window, do the following:

• Specify the Region:

• Specify the Function Name:

• Specify the Assembly Name:

• Specify the Type Name:

• Specify the Method Name:

Then choose Next

5. In the Advanced Function Details window, do the following:

61

AWS Lambda Developer Guide
Creating a Deployment Package

• Specify the Role Name:, which is the IAM role required for your Lambda function's execution. If
you have not yet created an execution role, do the following:

1. Sign in to the Identity and Access Management (IAM) console at https://
console.aws.amazon.com/iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM
User Guide to create an IAM role (execution role). As you follow the steps to create a role,
note the following:

• In Role Name, use a name that is unique within your AWS account.

• In Select Role Type, choose AWS Service Roles, and then choose a service role that
grants that service permissions to assume the role.

• In Attach Policy, choose a permissions policy that is suitable to execute your Lambda
function.

• (Optional) In Environment:: specify any environment variables you wish to use. For more
information, see Environment Variables (p. 89).

• (Optional)Specify the Memory (MB): or Timeout (Secs): configurations.

• (Optional)Specify any VPC: configurations if your Lambda function needs to access resources
running inside a private VPC. For more information, see Configuring a Lambda Function to
Access Resources in an Amazon VPC (p. 96).

• Choose Next and then choose Upload to deploy your application.

Creating a Deployment Package (Java)

Your deployment package can be a .zip file or a standalone jar; it is your choice. You can use any build
and packaging tool you are familiar with to create a deployment package.

We provide examples of using Maven to create standalone jars and using Gradle to create a .zip file.
For more information, see the following topics:

Topics

• Creating a .jar Deployment Package Using Maven without any IDE (Java) (p. 62)

• Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java) (p. 65)

• Creating a .zip Deployment Package (Java) (p. 67)

• Authoring Lambda Functions Using Eclipse IDE and AWS SDK Plugin (Java) (p. 69)

Creating a .jar Deployment Package Using Maven without any IDE (Java)

This section shows how to package your Java code into a deployment package using Maven at the
command line.

Topics

• Before You Begin (p. 62)

• Project Structure Overview (p. 63)

• Step 1: Create Project (p. 63)

• Step 2: Build Project (Create Deployment Package) (p. 64)

Before You Begin

You will need to install the Maven command-line build tool. For more information, go to Maven. If you
are using Linux, check your package manager.

62

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://maven.apache.org/

AWS Lambda Developer Guide
Creating a Deployment Package

sudo apt-get install mvn

if you are using Homebrew

brew install maven

Project Structure Overview

After you set up the project, you should have the following folder structure:

project-dir/pom.xml
project-dir/src/main/java/ (your code goes here)

Your code will then be in the /java folder. For example, if your package name is example and you have
a Hello.java class in it, the structure will be:

project-dir/src/main/java/example/Hello.java

After you build the project, the resulting .jar file (that is, your deployment package), will be in the
project-dir/target subdirectory.

Step 1: Create Project

Follow the steps in this section to create a Java project.

1. Create a project directory (project-dir).

2. In the project-dir directory, create the following:

• Project Object Model file, pom.xml. Add the following project information and configuration
details for Maven to build the project.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>doc-examples</groupId>
 <artifactId>lambda-java-example</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>lambda-java-example</name>

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.1.0</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

63

AWS Lambda Developer Guide
Creating a Deployment Package

 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Note

• In the dependencies section, the groupId (that is, com.amazonaws) is the
Amazon AWS group ID for Maven artifacts in the Maven Central Repository. The
artifactId (that is, aws-lambda-java-core) is the AWS Lambda core library that
provides definitions of the RequestHandler, RequestStreamHandler, and the
Context AWS Lambda interfaces for use in your Java application. At the build time
Maven resolves these dependencies.

• In the plugins section, the Apache maven-shade-plugin is a plugin that Maven will
download and use during your build process. This plugin is used for packaging jars to
create a standalone .jar (a .zip file), your deployment package.

• If you are following other tutorial topics in this guide, the specific tutorials might
require you to add more dependencies. Make sure to add those dependencies as
required.

3. In the project-dir, create the following structure:

project-dir/src/main/java

4. Under the /java subdirectory you add your Java files and folder structure, if any. For example, if
you Java package name is example, and source code is Hello.java, your directory structure
looks like this:

project-dir/src/main/java/example/Hello.java

Step 2: Build Project (Create Deployment Package)

Now you can build the project using Maven at the command line.

1. At a command prompt, change directory to the project directory (project-dir).

2. Run the following mvn command to build the project:

$ mvn package

The resulting .jar is saved as project-dir/target/lambda-java-example-1.0-
SNAPSHOT.jar. The .jar name is created by concatenating the artifactId and version in the
pom.xml file.

64

AWS Lambda Developer Guide
Creating a Deployment Package

The build creates this resulting .jar, using information in the pom.xml to do the necessary
transforms. This is a standalone .jar (.zip file) that includes all the dependencies. This is your
deployment package that you can upload to AWS Lambda to create a Lambda function.

Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java)

This section shows how to package your Java code into a deployment package using Eclipse IDE and
Maven plugin for Eclipse.

Topics

• Before You Begin (p. 65)

• Step 1: Create and Build a Project (p. 65)

Before You Begin

Install the Maven Plugin for Eclipse.

1. Start Eclipse. From the Help menu in Eclipse, choose Install New Software.

2. In the Install window, type http://download.eclipse.org/technology/m2e/releases in
the Work with: box, and choose Add.

3. Follow the steps to complete the setup.

Step 1: Create and Build a Project

In this step, you start Eclipse and create a Maven project. You will add the necessary dependencies,
and build the project. The build will produce a .jar, which is your deployment package.

1. Create a new Maven project in Eclipse.

a. From the File menu, choose New, and then choose Project.

b. In the New Project window, choose Maven Project.

c. In the New Maven Project window, choose Create a simple project, and leave other default
selections.

d. In the New Maven Project, Configure project windows, type the following Artifact
information:

• Group Id: doc-examples

• Artifact Id: lambda-java-example

• Version: 0.0.1-SNAPSHOT

• Packaging: jar

• Name: lambda-java-example

2. Add the aws-lambda-java-core dependency to the pom.xml file.

It provides definitions of the RequestHandler, RequestStreamHandler, and Context
interfaces. This allows you to compile code that you can use with AWS Lambda.

a. Open the context (right-click) menu for the pom.xml file, choose Maven, and then choose
Add Dependency.

b. In the Add Dependency windows, type the following values:

Group Id: com.amazonaws

Artifact Id: aws-lambda-java-core

65

AWS Lambda Developer Guide
Creating a Deployment Package

Version: 1.1.0

Caution
If you are following other tutorial topics in this guide, the specific tutorials might
require you to add more dependencies. Make sure to add those dependencies as
required.

3. Add Java class to the project.

a. Open the context (right-click) menu for the src/main/java subdirectory in the project,
choose New, and then choose Class.

b. In the New Java Class window, type the following values:

• Package: example

• Name: Hello

Caution
If you are following other tutorial topics in this guide, the specific tutorials might
recommend different package name or class name.

c. Add your Java code. If you are following other tutorial topics in this guide, add the provided
code.

4. Build the project.

Open the context (right-click) menu for the project in Package Explorer, choose Run As, and
then choose Maven Build In the Edit Configuration window, type package in the Goals box.

Note
The resulting .jar, lambda-java-example-0.0.1-SNAPSHOT.jar, is not the final
standalone .jar that you can use as your deployment package. In the next step, you add
the Apache maven-shade-plugin to create the standalone .jar. For more information,
go to Apache Maven Shade Plugin.

5. Add the maven-shade-plugin plugin and rebuild.

The maven-shade-plugin will take artifacts (jars) produced by the package goal (produces
customer code .jar), and created a standalone .jar that contains the compiled customer code, and
the resolved dependencies from the pom.xml.

a. Open the context (right-click) menu for the pom.xml file, choose Maven, and then choose
Add Plugin.

b. In the Add Plugin window, type the following values:

• Group Id: org.apache.maven.plugins

• Artifact Id: maven-shade-plugin

• Version: 2.3

c. Now build again.

This time we will create the jar as before, and then use the maven-shade-plugin to pull in
dependencies to make the standalone .jar.

i. Open the context (right-click) menu for the project, choose Run As, and then choose
Maven build

ii. In the Edit Configuration windows, type package shade:shade in the Goals box.

iii. Choose Run.

You can find the resulting standalone .jar (that is, your deployment package), in the /
target subdirectory.

66

https://maven.apache.org/plugins/maven-shade-plugin/

AWS Lambda Developer Guide
Creating a Deployment Package

Open the context (right-click) menu for the /target subdirectory, choose Show In,
choose System Explorer, and you will find the lambda-java-example-0.0.1-
SNAPSHOT.jar.

Creating a .zip Deployment Package (Java)

This section provides examples of creating .zip file as your deployment package. You can use any
build and packaging tool you like to create this zip. Regardless of the tools you use, the resulting .zip
file must have the following structure:

• All compiled class files and resource files at the root level.

• All required jars to run the code in the /lib directory.

Note
You can also build a standalone .jar (also a zipped file) as your deployment package. For
examples of creating standalone .jar using Maven, see Creating a Deployment Package
(Java) (p. 62).

The following examples use Gradle build and deployment tool to create the .zip.

Important
Gradle version 2.0 or later is required.

Before You Begin

You will need to download Gradle. For instructions, go to the gradle website, https://gradle.org/ .

Example 1: Creating .zip Using Gradle and the Maven Central Repository

At the end of this walkthrough, you will have a project directory (project-dir) with content having the
following structure:

project-dir/build.gradle
project-dir/src/main/java/

The /java folder will contain your code. For example, if your package name is example, and you
have a Hello.java class in it, the structure will be:

project-dir/src/main/java/example/Hello.java

After you build the project, the resulting .zip file (that is, your deployment package), will be in the
project-dir/build/distributions subdirectory.

1. Create a project directory (project-dir).

2. In the project-dir, create build.gradle file and add the following content:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {

67

https://gradle.org/

AWS Lambda Developer Guide
Creating a Deployment Package

 compile (
 'com.amazonaws:aws-lambda-java-core:1.1.0',
 'com.amazonaws:aws-lambda-java-events:1.1.0'
)
}

task buildZip(type: Zip) {
 from compileJava
 from processResources
 into('lib') {
 from configurations.runtime
 }
}

build.dependsOn buildZip

Note

• The repositories section refers to Maven Central Repository. At the build time, it fetches
the dependencies (that is, the two AWS Lambda libraries) from Maven Central.

• The buildZip task describes how to create the deployment package .zip file.

For example, if you unzip the resulting .zip file you should find any of the compiled
class files and resource files at the root level. You should also find a /lib directory
with the required jars for running the code.

• If you are following other tutorial topics in this guide, the specific tutorials might require
you to add more dependencies. Make sure to add those dependencies as required.

3. In the project-dir, create the following structure:

project-dir/src/main/java/

4. Under the /java subdirectory you add your Java files and folder structure, if any. For example,
if you Java package name is example, and source code is Hello.java, then your directory
structure looks like this:

project-dir/src/main/java/example/Hello.java

5. Run the following gradle command to build and package the project in a .zip file.

project-dir> gradle build

6. Verify the resulting project-dir.zip file in the project-dir/build/distributions
subdirectory.

7. Now you can upload the .zip file, your deployment package to AWS Lambda to create a Lambda
function and test it by manually invoking it using sample event data. For instruction, see Step 2.3:
(Optional) Create a Lambda Function Authored in Java (p. 169).

Example 2: Creating .zip Using Gradle Using Local Jars

You may choose not to use the Maven Central repository. Instead have all the dependencies in the
project folder. In this case your project folder (project-dir) will have the following structure:

project-dir/jars/ (all jars go here)
project-dir/build.gradle

68

AWS Lambda Developer Guide
Creating a Deployment Package

project-dir/src/main/java/ (your code goes here)

So if your Java code has example package and Hello.java class, the code will be in the following
subdirectory:

project-dir/src/main/java/example/Hello.java

You build.gradle file should be as follows:

apply plugin: 'java'

dependencies {
 compile fileTree(dir: 'jars', include: '*.jar')
}

task buildZip(type: Zip) {
 from compileJava
 from processResources
 into('lib') {
 from configurations.runtime
 }
}

build.dependsOn buildZip

Note that the dependencies specify fileTree which identifies project-dir/jars as the
subdirectory that will include all the required jars.

Now you build the package. Run the following gradle command to build and package the project in
a .zip file.

project-dir> gradle build

Authoring Lambda Functions Using Eclipse IDE and AWS SDK Plugin (Java)

AWS SDK Eclipse Toolkit provides an Eclipse plugin for you to both create a deployment package
and also upload it to create a Lambda function. If you can use Eclipse IDE as your development
environment, this plugin enables you to author Java code, create and upload a deployment package,
and create your Lambda function. For more information, see the AWS Toolkit for Eclipse Getting
Started Guide. For an example of using the toolkit for authoring Lambda functions, see Using AWS
Lambda with the AWS Toolkit for Eclipse.

Creating a Deployment Package (Python)

To create a Lambda function you first create a Lambda function deployment package, a .zip file
consisting of your code and any dependencies.

You can create a deployment package yourself or write your code directly in the Lambda console, in
which case the console creates the deployment package for you and uploads it, creating your Lambda
function. Note the following to determine if you can use the console to create your Lambda function:

• Simple scenario – If your custom code requires only the AWS SDK library, then you can use the
inline editor in the AWS Lambda console. Using the console, you can edit and upload your code to

69

http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide//lambda.html
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide//lambda.html

AWS Lambda Developer Guide
Creating a Deployment Package

AWS Lambda. The console will zip up your code with the relevant configuration information into a
deployment package that the Lambda service can run.

You can also test your code in the console by manually invoking it using sample event data.

Note
The Lambda service has preinstalled the AWS SDK for Python.

• Advanced scenario – If you are writing code that uses other resources, such as a graphics library
for image processing, or you want to use the AWS CLI instead of the console, you need to first
create the Lambda function deployment package, and then use the console or the CLI to upload the
package.

Note
After you create a deployment package, you may either upload it directly or upload the .zip file
first to an Amazon S3 bucket in the same AWS region where you want to create the Lambda
function, and then specify the bucket name and object key name when you create the Lambda
function using the console or the AWS CLI.

The following is an example procedure to create a deployment package (outside the console).

Note
This should work for most standard installations of Python and pip when using pure Python
modules in your Lambda function. If you are including modules that have native dependencies
or have Python installed with Homebrew on OS X, you should see the next section which
provides instructions to create a deployment package when using Virtualenv. For more
information, see Create Deployment Package Using a Python Environment Created with
Virtualenv (p. 71) and the Virtualenv website.

You will use pip to install dependencies/libraries. For information to install pip, go to Installation.

1. You create a directory, for example project-dir.

2. Save all of your Python source files (the .py files) at the root level of this directory.

3. Install any libraries using pip. Again, you install these libraries at the root level of the directory.

pip install module-name -t /path/to/project-dir

For example, the following command installs the requests HTTP library in the project-dir
directory.

pip install requests -t /path/to/project-dir

If using Mac OS X and you have Python installed using Homebrew (see Homebrew), the
preceding command will not work. A simple workaround is to add a setup.cfg file in your /
path/to/project-dir with the following content.

[install]
prefix=

4. Zip the content of the project-dir directory, which is your deployment package.

Important
Zip the directory content, not the directory. The contents of the Zip file are available as the
current working directory of the Lambda function. For example: /project-dir/codefile.py/lib/
yourlibraries

70

http://virtualenv.readthedocs.io/en/latest/
https://pip.pypa.io/en/stable/installing/
http://brew.sh/

AWS Lambda Developer Guide
Creating a Deployment Package

Note
AWS Lambda includes the AWS SDK for Python (Boto 3), so you don't need to include it in
your deployment package. However, if you want to use a version of Boto3 other than the one
included by default, you can include it in your deployment package.

Create Deployment Package Using a Python Environment Created with
Virtualenv

This section explains how to create a deployment package if you are using a Python environment that
you created with the Virtualenv tool. Consider the following example:

• Created the following isolated Python environment using the Virtualenv tool and activated the
environment:

virtualenv path/to/my/virtual-env

You can activate the environment on Windows, OS X, and Linux as follows:

• On Windows, you activate using the activate.bat:

path\to\my\virtual-env\Scripts\activate.bat

• On OS X and Linux, you source the activate script:

source path/to/my/virtual-env/bin/activate

• Also, suppose you have installed the requests package in the activated environment (assume that
you will you use these in your code). You can install these packages as follows :

pip install requests

Now, to create a deployment package you do the following:

1. First, create .zip file with your Python code you want to upload to AWS Lambda.

2. Add the libraries from preceding activated virtual environment to the .zip file. That is, you add
the content of the following directory to the .zip file (note again that you add the content of the
directory and not the directory itself).

For Windows the directory is:

%VIRTUAL_ENV%\Lib\site-packages

For OS X, Linux, the directory is:

$VIRTUAL_ENV/lib/python2.7/site-packages

Note
If you don't find the packages in the site-packages directory in your virtual
environment, you might find it in the dist-packages directory.

For an example of creating a Python deployment package, see Python (p. 186).

71

AWS Lambda Developer Guide
Versioning and Aliases

AWS Lambda Function Versioning and Aliases
Versioning allows you to better manage your in-production Lambda function code by enabling you
to publish one or more versions of your Lambda function. As a result, you can work with different
variations of your Lambda function in your development workflow, such as development, beta, and
production. Each Lambda function version has a unique Amazon Resource Name (ARN). After you
publish a version, it is immutable (that is, it can't be changed).

AWS Lambda supports creating aliases for each of your Lambda function versions. Conceptually, an
AWS Lambda alias is a pointer to a specific Lambda function version, but it is also a resource similar
to a Lambda function, and each alias has a unique ARN. Each alias maintains an ARN for a function
version to which it points (note that an alias can only point to a function version, not to another alias).
Unlike versions, which are immutable, aliases are mutable (that is, they can be changed) and can be
updated to point to different versions

The following example shows two versions of a helloworld Lambda function (version $LATEST, and
version 1). Each of these function versions has an alias (DEV and PROD) pointing to it.

Aliases enable you to abstract the process of promoting new Lambda function versions into production
from the mapping of the Lambda function version and its event source. For more information, see How
It Works (p. 151).

For example, suppose Amazon S3 is the event source that invokes your Lambda function when new
objects are created in a bucket. When Amazon S3 is your event source, you store the event source
mapping information in the bucket notification configuration. In the configuration you can identify the
Lambda function ARN that Amazon S3 can invoke, but, in this case, each time you publish a new
version of your Lambda function you need to update the notification configuration so that Amazon S3
invokes the correct version. Instead of specifying the function ARN, you can specify an alias ARN in
the notification configuration (for example, PROD alias ARN). As you promote new versions of your
Lambda function into production, you only need to update the PROD alias to point to the latest stable
version, and you don't need to update the notification configuration in Amazon S3.

72

AWS Lambda Developer Guide
Versioning and Aliases

The same applies when you need to roll back to a previous version of your Lambda function. In this
scenario, you just update the PROD alias to point to a different function version, and there is no need
to update event source mappings.

We recommend you use versioning and aliases to deploy your Lambda functions when building
applications with multiple dependencies and developers involved.

For detailed information, see the following topics:

Topics

• Versioning (p. 73)

• Aliases (p. 77)

• Versioning, Aliases, and Resource Policies (p. 85)

• Managing Versioning (p. 87)

Introduction to AWS Lambda Versioning

This section explains how to create a Lambda function and publish a version from it. It also explains
how to update function code and configuration information when you have one or more published
versions. In addition, this section includes information on how to delete function versions, either
specific versions or the entire Lambda function (with all of its versions and associated aliases).

Creating a Lambda Function (the $LATEST version)

When you create a Lambda function, there is only one version. It is the $LATEST version.

You can refer to this function using its Amazon Resource Name (ARN). There are two ARNs
associated with this initial version:

• Qualified ARN – The function ARN with the version suffix.

arn:aws:lambda:aws-region:acct-id:function:helloworld:$LATEST

• Unqualified ARN – The function ARN without the version suffix.

You can use this ARN in all relevant operations however you cannot use it to create an alias. For
more information, see Introduction to AWS Lambda Aliases (p. 77).

The unqualified ARN has its own resource policies.

arn:aws:lambda:aws-region:acct-id:function:helloworld

73

AWS Lambda Developer Guide
Versioning and Aliases

Note
Unless you choose to publish versions, the $LATEST version is the only Lambda function
version you have. You can use either the qualified or unqualified ARN in your event source
mapping to invoke this $LATEST version.

The following is an example response of a CreateFunction API call:

{
 "CodeSize": 287,
 "Description": "test function."
 "FunctionArn": "arn:aws:lambda:aws-region:acct-id:function:helloworld",
 "FunctionName": "helloworld",
 "Handler": "helloworld.handler",
 "LastModified": "2015-07-16T00:34:31.322+0000",
 "MemorySize": 128,
 "Role": "arn:aws:iam::acct-id:role/lambda_basic_execution",
 "Runtime": "nodejs4.3",
 "Timeout": 3,
 "CodeSHA256": "OjRFuuHKizEE8tHFIMsI+iHR6BPAfJ5S0rW31Mh6jKg=",
 "Version": "$LATEST"
}

For more information, see CreateFunction (p. 332).

In this response, AWS Lambda returns the unqualified ARN of the newly created function as well as its
version, $LATEST. The response also shows that the Version is $LATEST. The CodeSha256 is the
checksum of the deployment package that you uploaded.

Publishing a Lambda Function Version

When you publish a version, AWS Lambda makes a snapshot copy of the Lambda function code (and
configuration) in the $LATEST version. A published version is immutable. That is, you can't change the
code or configuration information. The new version has a unique ARN that includes a version number
suffix as shown:

You can publish a version using any of the following methods:

• Publish a version explicitly – Use the PublishVersion API to explicitly publish a version. For
more information, see PublishVersion (p. 372). This action creates a new version using the code
and configuration in the $LATEST version.

• Publish a version at the time you create or update a Lambda function – Use the
CreateFunction or UpdateFunctionCode requests to also publish a version by adding the
optional publish parameter in the request:

74

AWS Lambda Developer Guide
Versioning and Aliases

• Specify the publish parameter in your CreateFunction request to create a new Lambda
function (the $LATEST version), and then immediately publish it by creating a snapshot
and assigning it to be version 1. For more information about CreateFunction, see
CreateFunction (p. 332).

• Specify the publish parameter in your UpdateFunctionCode request to update the code in
the $LATEST version, and then publish a version from the $LATEST. For more information about
UpdateFunctionCode, see UpdateFunctionCode (p. 383).

If you specify the publish parameter at the time you create a Lambda function, the function
configuration information that AWS Lambda returns in response shows the version number of the
newly published version, as shown following (in the example, the version is 1):

{
 "CodeSize": 287,
 "Description": "test function."
 "FunctionArn": "arn:aws:lambda:aws-region:acct-id:function:helloworld",
 "FunctionName": "helloworld",
 "Handler": "helloworld.handler",
 "LastModified": "2015-07-16T00:34:31.322+0000",
 "MemorySize": 128,
 "Role": "arn:aws:iam::acct-id:role/lambda_basic_execution",
 "Runtime": "nodejs4.3",
 "Timeout": 3,
 "CodeSHA256": "OjRFuuHKizEE8tHFIMsI+iHR6BPAfJ5S0rW31Mh6jKg=",
 "Version": "1"
}

Note
Lambda will only publish a new version if the code has not yet been published or if the
code has changed when compared against the $LATEST version. If there is no change, the
$LATEST published version will be returned.

We recommend that you publish a version at the same time that you create your Lambda function
or update your Lambda function code, especially when multiple developers contribute to the same
Lambda function development. You can use the publish parameter in your request to do this. When
you have multiple developers working on a project, it is possible for developer A to create a Lambda
function ($LATEST version) and before developer A publishes a version, developer B updates the code
(deployment package) associated with the $LATEST version. In this case, you lose the original code
that developer A uploaded. When both developers add the publish parameter it prevents the race
condition described.

Note
The published versions are immutable. That is, you cannot change code or configuration
information associated with a version.

Each version of a Lambda function is a unique resource with a Amazon Resource Name (ARN). The
following example shows the ARN of version number 1 of the helloworld Lambda function:

arn:aws:lambda:aws-region:acct-id:function:helloworld:1

Note
This is a qualified ARN, where the version number is a suffix. Published versions can have
only qualified ARN.

You can publish multiple versions. Each time you publish a version, AWS Lambda copies $LATEST
version (code and configuration information) to create a new version. When you publish additional

75

AWS Lambda Developer Guide
Versioning and Aliases

versions, AWS Lambda assigns a monotonically increasing sequence number for versioning, even if
the function was deleted and re-created. Version numbers are never reused, even for a function that
has been deleted and re-created, so that the consumer of that version can depend on the executable
of that version to never change (except if it's deleted). If you want to re-use a qualifier, use aliases with
your versions. Aliases can be deleted and re-created with the same name.

Updating Lambda Function Code and Configuration

AWS Lambda maintains your latest function code in the $LATEST version. When you update your
function code, AWS Lambda replaces the code in the $LATEST version of the Lambda function. For
more information, see UpdateFunctionCode (p. 383).

Published versions are immutable. You cannot update code or configuration information associated
with a published version.

You have the following options of publishing a new version as you update your Lambda function code:

• Publish a version in the same update code request – Use the UpdateFunctionCode API
(recommended).

• First update the code, and then explicitly publish a version – Use the PublishVersion API.

You can update code and configuration information (such as description, memory size, and execution
timeout) of the $LATEST version of the Lambda function. However, published versions are immutable.
That is, you cannot change code or configuration information.

Deleting a Lambda Function and a Specific Version

With versioning, you have the following choices:

• Delete a specific version – You can delete a Lambda function version by specifying the version
you want to delete in your DeleteFunction request. If there are aliases dependent on this version,
the request will fail. AWS Lambda deletes the version only if there are no aliases dependent on this
version. For more information about aliases, see Introduction to AWS Lambda Aliases (p. 77).

• Delete the entire Lambda function (all of its versions and aliases) – To delete the Lambda
function and all of its versions, do not specify any version in your DeleteFunction request. This
deletes the entire function including all of its versions and aliases.

Important
You can delete a specific function version, but you cannot delete the $LATEST.

76

AWS Lambda Developer Guide
Versioning and Aliases

Related Topics

Introduction to AWS Lambda Aliases (p. 77)

Managing Versioning Using the AWS Management Console, the AWS CLI, or Lambda APIs (p. 87)

Introduction to AWS Lambda Aliases

You can create aliases for your Lambda function. An AWS Lambda alias is like a pointer to a specific
Lambda function version. For more information about versioning, see Introduction to AWS Lambda
Versioning (p. 73). By using aliases, you can access the Lambda function it is pointing to (for
example, to invoke the function) without the caller having to know the specific version the alias is
pointing to.

AWS Lambda aliases enable the following use cases:

• Easier support for promotion of new versions of Lambda functions and roll back when
needed – After initially creating a Lambda function (the $LATEST version) you can first publish a
version 1 of it. By creating an alias named PROD that points to version 1, you can now use the
PROD alias to invoke version 1 of the Lambda function.

Now, you can update the code (the $LATEST version) with all of your improvements, and then
publish another stable and improved version (version 2). You can promote version 2 to production by
remapping the PROD alias so that it points to version 2. If you find something wrong, you can easily
roll back the production version to version 1 by remapping the PROD alias so that it points to version
1.

Note
In this context, the terms promotion and roll back refer to the remapping of aliases to
different function versions.

• Simplify management of event source mappings – Instead of using Lambda function ARNs in
event source mappings, by using an alias ARN you ensure that you don't need to update your event
source mappings when you promote a new version or roll back to a previous version.

An AWS Lambda alias is a resource similar to a Lambda function. However, you can't create an alias
independently. You create an alias for an existing Lambda function. If a Lambda function is a resource,
you can think of an AWS Lambda alias as a subresource that is associated with a Lambda function.

Both the Lambda function and alias are AWS Lambda resources, and like all other AWS resources
they both have unique Amazon Resource Names (ARNs). The following example shows a Lambda
function (the $LATEST version), with one published version. Each version has an alias pointing to it.

77

AWS Lambda Developer Guide
Versioning and Aliases

You can access the function using either the function ARN or the alias ARN.

• Because the function version is $LATEST, you can access it using the qualified or unqualified
function ARN.

• Qualified function ARN (with the $LATEST version suffix):

arn:aws:lambda:aws-region:acct-id:function:helloworld:$LATEST

• When using any of the alias ARNs, you are using a qualified ARN. Each alias ARN has an alias
name suffix.

arn:aws:lambda:aws-region:acct-id:function:helloworld:PROD
arn:aws:lambda:aws-region:acct-id:function:helloworld:BETA
arn:aws:lambda:aws-region:acct-id:function:helloworld:DEV

AWS Lambda provides the following APIs for you to create and manages aliases:

• CreateAlias (p. 325)

• UpdateAlias (p. 378)

• GetAlias (p. 345)

• ListAliases (p. 364)

• DeleteAlias (p. 338)

Example: Using Aliases to Manage Lambda Function Versions

The following is an example scenario of how to use versioning and aliases to promote new versions of
Lambda functions into production.

78

AWS Lambda Developer Guide
Versioning and Aliases

Initially, you create a Lambda function.
It is the $LATEST version. You also create an alias (DEV, for development) that points to the newly
created function. Developers can use this alias to test the function with the event sources in a
development environment.

Test the function version using event sources in a beta environment, in a stable way while
continuing to develop newer versions.

You publish a version from the $LATEST and have another alias (BETA) point to it. This allows you
to associate your beta event sources to this specific alias. In the event source mappings, use the
BETA alias to associate your Lambda function with the event source.

79

AWS Lambda Developer Guide
Versioning and Aliases

Promote the Lambda function version in production to work with event sources in production
environment.

After testing the BETA version you can define the production version by creating an alias that
maps to version 1. This means you want to point your production event sources to this specific
version. You do this by creating a PROD alias and using the PROD alias ARN in all of your
production event source mappings.

80

AWS Lambda Developer Guide
Versioning and Aliases

Continue development, publish more versions, and test.
As you develop your code you can update the $LATEST version by uploading updated code and
then publish to beta testing by having the BETA alias point to it. This simple remapping of the beta
alias enables you put version 2 of your Lambda function into beta without changing any of your
event sources. This is how aliases enable you to control which versions of your function are used
with specific event sources in your development environment.

If you want to try creating this setup using AWS CLI, see Tutorial: Using AWS Lambda
Aliases (p. 81).

Related Topics

Introduction to AWS Lambda Versioning (p. 73)

Tutorial: Using AWS Lambda Aliases (p. 81)

Managing Versioning Using the AWS Management Console, the AWS CLI, or Lambda APIs (p. 87)

Tutorial: Using AWS Lambda Aliases

This AWS CLI-based tutorial creates Lambda function versions and aliases that point to it as described
in the Example: Using Aliases to Manage Lambda Function Versions (p. 78).

This example uses the us-west-2 (US West, Oregon) region to create the Lambda function and aliases.

1. First, you need to create a deployment package that you can upload to create your Lambda
function.

a. Open a text editor, and then copy the following code.

console.log('Loading function');

exports.handler = function(event, context, callback) {

81

AWS Lambda Developer Guide
Versioning and Aliases

 console.log('value1 =', event.key1);
 console.log('value2 =', event.key2);
 console.log('value3 =', event.key3);
 callback(null, "message");

};

b. Save the file as helloworld.js.

c. Zip the helloworld.js file as helloworld.zip.

2. Create an IAM role (execution role) that you can specify at the time you create your Lambda
function.

a. Sign in to the Identity and Access Management (IAM) console at https://
console.aws.amazon.com/iam/.

b. Follow the steps in IAM Roles in the IAM User Guide to create an IAM role (execution role).
As you follow the steps to create a role, note the following:

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda.

• In Attach Policy, choose the policy named AWSLambdaBasicExecutionRole.

c. Write down the Amazon Resource Name (ARN) of the IAM role. You need this value when
you create your Lambda function in the next step.

3. Create a Lambda function (helloworld).

aws lambda create-function \
--region us-west-2 \
--function-name helloworld \
--zip-file fileb://file-path/helloworld.zip \
--role arn:aws:iam::account-id:role/lambda_basic_execution \
--handler helloworld.handler \
--runtime nodejs4.3 \
--profile adminuser

The response returns the configuration information showing $LATEST as the function version as
shown in the following example response:

{
 "CodeSha256": "OjRFuuHKizEE8tHFIMsI+iHR6BPAfJ5S0rW31Mh6jKg=",
 "FunctionName": "helloworld",
 "CodeSize": 287,
 "MemorySize": 128,
 "FunctionArn": "arn:aws:lambda:us-west-2:account-
id:function:helloworld",
 "Version": "$LATEST",
 "Role": "arn:aws:iam::account-id:role/lambda_basic_execution",
 "Timeout": 3,
 "LastModified": "2015-09-30T18:39:53.873+0000",
 "Handler": "helloworld.handler",
 "Runtime": "nodejs4.3",
 "Description": ""
}

4. Create an alias (DEV) that points to the $LATEST version of the helloworld Lambda function:

aws lambda create-alias \
--region us-west-2 \

82

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Lambda Developer Guide
Versioning and Aliases

--function-name helloworld \
--description "sample alias" \
--function-version "\$LATEST" \
--name DEV \
--profile adminuser

The response returns the alias information, including the function version it is pointing to and the
alias ARN. The ARN is the same as the function ARN with an alias name suffix. The following is
an example response:

{
 "AliasArn": "arn:aws:lambda:us-west-2:account-
id:function:helloworld:DEV",
 "FunctionVersion": "$LATEST",
 "Name": "DEV",
 "Description": "sample alias"
}

5. Publish a version of the helloworld Lambda function.

aws lambda publish-version \
--region us-west-2 \
--function-name helloworld \
--profile adminuser

The response returns configuration information of the function version, including the version
number, and the function ARN with the version suffix. The following is an example response:

{
 "CodeSha256": "OjRFuuHKizEE8tHFIMsI+iHR6BPAfJ5S0rW31Mh6jKg=",
 "FunctionName": "helloworld",
 "CodeSize": 287,
 "MemorySize": 128,
 "FunctionArn": "arn:aws:lambda:us-west-2:account-
id:function:helloworld:1",
 "Version": "1",
 "Role": "arn:aws:iam::account-id:role/lambda_basic_execution",
 "Timeout": 3,
 "LastModified": "2015-10-03T00:48:00.435+0000",
 "Handler": "helloworld.handler",
 "Runtime": "nodejs4.3",
 "Description": ""
}

6. Create an alias (BETA) for the for the helloworld Lambda function version 1.

aws lambda create-alias \
--region us-west-2 \
--function-name helloworld \
--description "sample alias" \
--function-version 1 \
--name BETA \
--profile adminuser

83

AWS Lambda Developer Guide
Versioning and Aliases

Now you have two aliases for the helloworld function. The DEV alias points to the $LATEST
function version, and the BETA alias points to version 1 of the Lambda function.

7. Now suppose you want to put the version 1 of the helloworld function in production. Create
another alias (PROD) that points to version 1.

aws lambda create-alias \
--region us-west-2 \
--function-name helloworld \
--description "sample alias" \
--function-version 1 \
--name PROD \
--profile adminuser

At this time you have both the BETA and PROD aliases pointing to version 1 of the Lambda
function.

8. You can now publish a newer version (for example, version 2), but first you need to update your
code and upload a modified deployment package. If the $LATEST version is not changed, you
cannot publish more than one version of it. Assuming you updated the deployment package,
uploaded it, and published version 2, you can now change the BETA alias to point to version 2 of
the Lambda function.

aws lambda update-alias \
--region us-west-2 \
--function-name helloworld \
--function-version 2 \
--name BETA \
--profile adminuser

Now you have three aliases pointing to a different version of the Lambda function (DEV alias points
to the $LATEST version, BETA alias points to version 2, and the PROD alias points to version 1 of
the Lambda function.

For information about using the AWS Lambda console to manage versioning, see Managing
Versioning Using the AWS Management Console, the AWS CLI, or Lambda APIs (p. 87).

Granting Permissions in a Push Model

In a push model (see Event Source Mapping (p. 120)), event sources such as Amazon S3 invoke
your Lambda function. These event sources maintain a mapping that identifies a function version or
alias they will invoke when events occur. Note the following:

• We recommend that you specify an existing Lambda function alias in the mapping configuration (see
Introduction to AWS Lambda Aliases (p. 77)). For example, if the event source is Amazon S3, you
specify the alias ARN in the bucket notification configuration so that Amazon S3 can invoke the alias
when it detects specific events.

• In the push model, you grant event sources permissions using a resource policy that you attach to
your Lambda function. In versioning, the permissions you add are specific to the qualifier that you
specify in the AddPermission request (see Versioning, Aliases, and Resource Policies (p. 85)).

84

AWS Lambda Developer Guide
Versioning and Aliases

For example, the following AWS CLI command grants Amazon S3 permissions to invoke the PROD
alias of the helloworld Lambda function (note that the --qualifier parameter specifies the alias
name).

aws lambda add-permission \
--region us-west-2 \
--function-name helloworld \
--qualifier PROD \
--statement-id 1 \
--principal s3.amazonaws.com \
--action lambda:InvokeFunction \
--source-arn arn:aws:s3:::examplebucket \
--source-account 111111111111 \
--profile adminuser

In this case, Amazon S3 is now able to invoke the PROD alias and AWS Lambda can then execute
the helloworld Lambda function version that the PROD alias points to. For this to work, you must use
the PROD alias ARN in the S3 bucket's notification configuration.

For information about how to handle Amazon S3 events, see Tutorial: Using AWS Lambda with
Amazon S3 (p. 177).

Note
If you use the AWS Lambda console to add an event source for your Lambda function, the
console adds the necessary permissions for you.

Versioning, Aliases, and Resource Policies

With versioning and aliases you can access a Lambda function using various ARNs. For example,
consider the following scenario:

85

AWS Lambda Developer Guide
Versioning and Aliases

You can invoke for example the helloworld function version 1 using any of the following two ARNs:

• Using the qualified function ARN:

arn:aws:lambda:aws-region:acct-id:function:helloworld:1

Note
An unqualified function ARN (function ARN without a version or alias suffix), maps to the
$LATEST version.

• Using the BETA alias ARN:

arn:aws:lambda:aws-region:acct-id:function:helloworld:BETA

In a push model, event sources (such as Amazon S3 and custom applications) can invoke any of the
Lambda function versions as long you grant the necessary permissions to these event sources by
using an access policy associated with the Lambda function. For more information about the push
model, see Event Source Mapping (p. 120).

Assuming that you grant permission, the next question is, "can an event source invoke a function
version using any of the associated ARNs?" The answer is, it depends on how you identified function in
your add permissions request (see AddPermission (p. 322)). The key to understanding this is that the
permission you grant apply only to the ARN used in the add permission request:

• If you use a qualified function name (such as helloworld:1), the permission is valid for invoking
the helloworld function version 1 only using its qualified ARN (using any other ARNs will result in
a permission error).

86

AWS Lambda Developer Guide
Versioning and Aliases

• If you use an alias name (such as helloworld:BETA), the permission is valid only for invoking the
helloworld function using the BETA alias ARN (using any other ARNs will result in a permission
error, including the function version ARN to which the alias points).

• If you use an unqualified function name (such as helloworld), the permission is valid only for
invoking the helloworld function using the unqualified function ARN (using any other ARNs will
result in a permission error).

Note
Note that even though the access policy is only on the unqualified ARN, the code and
configuration of the invoked Lambda function is still from function version $LATEST. The
unqualified function ARN maps to the $LATEST version but the permissions you add are
ARN-specific.

• If you use a qualified function name using the $LATEST version (helloworld:$LATEST), the
permission is valid for invoking the helloworld function version $LATEST only using its qualified
ARN (using unqualified ARN will result in a permission error).

Managing Versioning Using the AWS Management Console,
the AWS CLI, or Lambda APIs

You can manage Lambda function versioning programmatically using AWS SDKs (or make the AWS
Lambda API calls directly, if you need to), using AWS Command Line Interface (AWS CLI), or the AWS
Lambda console.

AWS Lambda provides the following APIs to manage versioning and aliases:

PublishVersion (p. 372)

ListVersionsByFunction (p. 370)

CreateAlias (p. 325)

UpdateAlias (p. 378)

DeleteAlias (p. 338)

GetAlias (p. 345)

ListAliases (p. 364)

In addition to these APIs, existing relevant APIs also support versioning related operations.

For an example of how you can use the AWS CLI, see Tutorial: Using AWS Lambda Aliases (p. 81).

This section explains how you can use the AWS Lambda console to manage versioning. In the AWS
Lambda console, choose a function and then choose Qualifiers.

87

AWS Lambda Developer Guide
Versioning and Aliases

The expanded Qualifiers menu displays a Versions and Aliases tab, as shown in the following screen
shot. In the Versions pane, you can see a list of versions for the selected function. If you have not
previously published a version for the selected function, the Versions pane lists only the $LATEST
version, as shown:

Choose the Aliases tab to see a list of aliases for the function. Initially, you won't have any aliases, as
shown following:

88

AWS Lambda Developer Guide
Environment Variables

Now, you can publish a version or create aliases for the selected Lambda function using the Actions
menu.

To learn about versioning and aliases, see AWS Lambda Function Versioning and Aliases (p. 72).

Environment Variables
Environment variables for Lambda functions enable you to dynamically pass settings to your function
code and libraries, without making changes to your code. Environment variables are key-value pairs
that you create and modify as part of your function configuration, using either the AWS Lambda
Console, the AWS Lambda CLI or the AWS Lambda SDK. AWS Lambda then makes these key value
pairs available to your Lambda function code using standard APIs supported by the language, like
process.env for Node.js functions.

89

AWS Lambda Developer Guide
Environment Variables

You can use environment variables to help libraries know what directory to install files in, where to
store outputs, store connection and logging settings, and more. By separating these settings from the
application logic, you don't need to update your function code when you need to change the function
behavior based on different settings.

Setting Up
Suppose you want a Lambda function to behave differently as it moves through lifecycle stages from
development to deployment. For example, the dev, test, and production stages can contain databases
that the function needs to connect to that require different connection information and use different
table names. You can create environment variables to reference the database names, connection
information or table names and set the value for the function based on the stage in which it’s executing
(for example, development, test, production) while your function code remains unchanged.

The following screenshots show how modify your function's configuration using the AWS console. The
first screenshot configures the settings for the function corresponding to a test stage. The second one
configures settings for a production stage.

Note the Enable encryption helpers checkbox. You will learn more about using this in the Create a
Lambda Function Using Environment Variables To Store Sensitive Information (p. 95) tutorial.

You can also use the AWS CLI to create Lambda functions that contain environment variables.
For more details, see the CreateFunction (p. 332) and UpdateFunctionConfiguration (p. 387)
APIs. Environment variables are also supported when creating and updating functions using AWS
CloudFormation. Environment variables can also be used to configure settings specific to the language
runtime or a library included in your function. For example, you can modify PATH to specify a directory
where executables are stored. You can also set runtime-specific environment variables, such as
PYTHONPATH for Python or NODE_PATH for Node.js.

The following example creates a new Lambda function that sets the LD_LIBRARY_PATH environment
variable, which is used to specify a directory where shared libraries are dynamically loaded at runtime.
In this example, the Lambda function code uses the shared library in the /usr/bin/test/lib64
directory.

90

AWS Lambda Developer Guide
Environment Variables

aws lambda create-function \
 --region us-east-1
 --function-name myTestFunction
 --zip-file fileb://path/package.zip
 --role role-arn
 --environment Variables={LD_LIBRARY_PATH=/usr/bin/test/lib64}
 --handler index.handler
 --runtime nodejs4.3
 --profile default

Rules for Naming Environment Variables

There is no limit to the number of environment variables you can create as long as the total size of the
set does not exceed 4 KB.

Other requirements include:

• Must start with letters [a-zA-Z].

• Can only contain alphanumeric characters and underscores ([a-zA-Z0-9_].

In addition, there are a specific set of keys that AWS Lambda reserves. If you try to set values for any
of these reserved keys, you will receive an error message indicating that the action is not allowed. For
more information on these keys, see Environment Variables Available to Lambda Functions (p. 158).

Environment Variables and Function Versioning

Function versioning provides a way to manage your Lambda function code by enabling you to publish
one or more versions of your Lambda function as it proceeds from development to test to production.
For each version of a Lambda function that you publish, the environment variables (as well as other
function-specific configurations such as MemorySize and Timeout limit) are saved as a snapshot of
that version and those settings are immutable (cannot be changed).

As application and configuration requirements evolve, you can create new versions of your Lambda
function and update the environment variables to meet those requirements prior to the newest version
being published. The current version of your function is $LATEST.

In addition, you can create aliases, which are pointers to a particular version of your function. The
advantage of aliases is that if you need to roll back to a previous function version, you point the alias to
that version, which contains the environment variables required for that version. For more information,
see AWS Lambda Function Versioning and Aliases (p. 72).

Environment Variable Encryption

When you create or update Lambda functions that use environment variables, AWS Lambda encrypts
them using the AWS Key Management Service. When your Lambda function is invoked, those values
are decrypted and made available to the Lambda code.

The first time you create or update Lambda functions that use environment variables in a region, a
default service key is created for you automatically within AWS KMS. This key is used to encrypt
environment variables. You can alternatively select a key that you created separately using AWS Key
Management Service, via the IAM console or AWS KMS Keys APIs. Creating your own key gives you
more flexibility, including the ability to create, rotate, disable, and define access controls, and to audit
the encryption keys used to protect your data. For more information, see the AWS Key Management
Service Developer Guide.

91

http://docs.aws.amazon.com/kms/latest/developerguide/
http://docs.aws.amazon.com/kms/latest/developerguide/
http://docs.aws.amazon.com/kms/latest/developerguide/

AWS Lambda Developer Guide
Environment Variables

If you use your own key, you will be billed per AWS Key Management Service Pricing guidelines. You
will not be billed if you use the default service key provided by AWS Lambda.

If you’re using the default KMS service key for Lambda, then no additional IAM permissions are
required in your function execution role – your role will just work automatically without changes.
If you’re supplying your own (custom) KMS key, then you’ll need to add kms:Decrypt to your
execution role. In addition, the user that will be creating and updating the Lambda function must have
permissions to use the KMS key. For more information on KMS keys, see the Using Key Policies in
AWS KMS.

Storing Sensitive Information

As mentioned in the previous section, when you deploy your Lambda function, all the environment
variables you've specified are encrypted by default. They are then decrypted automatically by AWS
Lambda when the function is invoked. However, if you need to store sensitive information in an
environment variable, we strongly suggest you encrypt that information before deploying your Lambda
function.

Fortunately, the Lambda console makes that easier for you by providing encryption helpers that
leverage AWS Key Management Service to store that sensitive information as Ciphertext. The
Lambda console also provides decryption helper code to decrypt that information for use in your in
Lambda function code. For more information, see Create a Lambda Function Using Environment
Variables To Store Sensitive Information (p. 95).

Error scenarios

If your function configuration exceeds 4KB, or you use environment variable keys reserved by AWS
Lambda, then your update or create operation will fail with a configuration error. During execution time,
it's possible that the encryption/decryption of environment variables can fail. If AWS Lambda is unable
to decrypt the environment variables due to an AWS KMS service exception, AWS KMS will return an
exception message explaining what the error conditions are and what, if any, remedies you can apply
to address the issue. These will be logged to your function log stream in Amazon CloudWatch logs. For
example, if the KMS key you are using to access the environment variables is disabled, you will see
the following error:

Lambda was unable to configure access to your environment variables because
 the KMS key used is disabled.
 Please check your KMS key settings.

Next Step

Create a Lambda Function Using Environment Variables (p. 92)

Create a Lambda Function Using Environment Variables
This section will illustrate how you can modify a Lambda function's behavior through configuration
changes that require no changes to the Lambda function code.

In this tutorial, you will do the following:

• Create a deployment package with sample code that returns the value of an environment variable
that specifies the name of an Amazon S3 bucket.

92

https://aws.amazon.com/kms/pricing/
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
http://docs.aws.amazon.com/kms/latest/developerguide/

AWS Lambda Developer Guide
Environment Variables

• Invoke a Lambda function and verify that the Amazon S3 bucket name that is returned matches the
value set by the environment variable.

• Update the Lambda function by changing the Amazon S3 bucket name specified by the environment
variable.

• Invoke the Lambda function again and verify that the Amazon S3 bucket name that is returned
matches the updated value.

Step 1: Prepare

Make sure you have completed the following steps:

• Signed up for an AWS account and created an administrator user in the account.

• Installed and set up the AWS CLI.

For instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Step 2: Set Up the Lambda Environment

In this section, you do the following:

• Create the Lambda function deployment package using the sample code provided.

• Create a Lambda execution role.

• Create the Lambda function by uploading the deployment package, and then test it by invoking it
manually.

Step 2.1: Create the Deployment Package

The code sample below reads the environment variable of a Lambda function that returns the name of
an Amazon S3 bucket.

1. Open a text editor and copy the following code:

var AWS = require('aws-sdk');

 exports.handler = function(event, context, callback) {

 var bucketName = process.env.S3_BUCKET;
 callback(null, bucketName);
 }

2. Save the file as index.js.

3. Zip the index.js. file as Test_Environment_Variables.zip.

Step 2.2: Create an Execution Role

Create an IAM role (execution role) that you can specify at the time you create your Lambda function.

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in IAM Roles in the IAM User Guide to create an IAM role (execution role). As you
follow the steps to create a role, note the following:

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda.

93

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Lambda Developer Guide
Environment Variables

• In Attach Policy, choose the policy named AWSLambdaBasicExecutionRole.

3. Write down the Amazon Resource Name (ARN) of the IAM role. You need this value when you
create your Lambda function in the next step.

Step 2.3 Create the Lambda function and Test It

In this section, you create a Lambda function containing an environment variable that specifies an
Amazon S3 bucket named Test. When invoked, the function simply returns the name of the Amazon
S3 bucket. Then you update the configuration by changing the Amazon S3 bucket name to Prod and
when invoked again, the function returns the updated name of the Amazon S3 bucket.

To create the Lambda function, open a command prompt and run the following Lambda AWS CLI
create-function command. You need to provide the .zip file path and the execution role ARN. For
the runtime parameter, choose nodejs4.3.

aws lambda create-function \
--region us-east-1 \
--function-name ReturnBucketName \
--zip-file fileb://file-path/Test_Environment_Variables.zip \
--role role-arn \
--environment Variables={S3_BUCKET=Test} \
--handler index.handler \
--runtime nodejs4.3 \
--version version \
--profile default

Note
Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and
then specify the bucket and object name in the preceding command. You need to replace the
--zip-file parameter with the --code parameter. For example:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

Next, run the following Lambda CLI invoke command to invoke the function. Note that the command
requests asynchronous execution. You can optionally invoke it synchronously by specifying
RequestResponse as the invocation-type parameter value.

aws lambda invoke \
--invocation-type Event \
--function-name ReturnBucketName \
--region us-east-1 \
--profile default \
outputfile.txt

The Lambda function will return the name of the Amazon S3 bucket as "Test".

Next, run the following Lambda CLI update-function-configuration command to update the
Amazon S3 environment variable by pointing it to the Prod bucket.

aws lambda update-function-configuration
--invocation-type Event \
--function-name ReturnBucketName \
--region us-east-1 \
--environment Variables={S3_BUCKET=Prod} \

94

AWS Lambda Developer Guide
Environment Variables

--profile default \

Run the aws lambda invoke command again using the same parameters. This time, the Lambda
function will return the Amazon S3 bucket name as Prod.

Create a Lambda Function Using Environment Variables To
Store Sensitive Information

Along with specifying configuration settings for your Lambda function, you can also use environment
variables to store sensitive information, such as a database password, using AWS Key Management
Service and the Lambda console's encryption helpers. For more information, see Environment Variable
Encryption (p. 91). The following example shows you how to do this and also how to use KMS to
decrypt that information.

This tutorial will demonstrate how you can use the Lambda console to encrypt an environment variable
containing sensitive information and provides sample code for decrypting that information to use in
your Lambda function.

Step 1: Create the Lambda Function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.

3. In Select blueprint, choose the Blank Function blueprint.

4. On the Configure triggers page, you can optionally choose a service that automatically triggers
your Lambda function by choosing the gray box with ellipses (...) to display a list of available
services. For this example, do not configure a trigger and choose Next.

5. In Configure function, do the following:

• In Name*, specify your Lambda function name.

• In Runtime, specify Node.js4.3.

Note that in Lambda function code section you can take advantage of the Edit code inline
option to do the following:

• Replace the Lambda function handler code with your custom code.

• Implement the decryption helper code that Lambda provides, which you will learn about later
in this exercise.

• Check the Enable encryption helpers checkbox.

• If you already have a KMS key associated with your user account, the Encryption key field will
be auto-populated with that key. If you haven't created a KMS key for your account, you will be
provided a link to the AWS IAM console to create one. The account must have have encrypt
and decrypt permissions for that key.

Note
You cannot use the default Lambda service key for encrypting sensitive information on
the client side.

• In Environment variables, enter your key-value pair. If the value you provided is sensitive,
choose the Encrypt button. This masks the value you entered and results in a call to AWS
KMS to encrypt the value and return it as Ciphertext. Note that the Encrypt button toggles
to Decrypt after you choose it. This affords you the option to update the information. Once you
have done that, choose the Encrypt button.

The Code button provides sample decrypt code specific to the runtime of your Lambda function
that you can use with your application.

• In Role*, choose Choose an existing role.

95

http://docs.aws.amazon.com/kms/latest/developerguide/
http://docs.aws.amazon.com/kms/latest/developerguide/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

AWS Lambda Developer Guide
VPC Support

• In Existing role*, choose lambda_basic_execution.

Note
If the policy of the execution role does not have the decrypt permission, you will need
add it.

6. In Review, review the configuration and then choose Create Function.

Configuring a Lambda Function to Access
Resources in an Amazon VPC

Typically, you create resources inside Amazon Virtual Private Cloud (Amazon VPC) so that they
cannot be accessed over the public Internet. These resources could be AWS service resources, such
as Amazon Redshift data warehouses, Amazon ElastiCache clusters, or Amazon RDS instances. They
could also be your own services running on your own EC2 instances. By default, resources within a
VPC are not accessible from within a Lambda function.

AWS Lambda runs your function code securely within a VPC by default. However, to enable your
Lambda function to access resources inside your private VPC, you must provide additional VPC-
specific configuration information that includes VPC subnet IDs and security group IDs. AWS Lambda
uses this information to set up elastic network interfaces (ENIs) that enable your function to connect
securely to other resources within your private VPC.

Important
AWS Lambda does not support connecting to resources within Dedicated Tenancy VPCs. For
more information, see Dedicated VPCs.

Configuring a Lambda Function for Amazon VPC
Access
You add VPC information to your Lambda function configuration using the VpcConfig parameter,
either at the time you create a Lambda function (see CreateFunction (p. 332)), or you can add it to
the existing Lambda function configuration (see UpdateFunctionConfiguration (p. 387)). Following are
AWS CLI examples:

• The create-function CLI command specifies the --vpc-config parameter to provide VPC
information at the time you create a Lambda function.

$ aws lambda create-function \
--function-name ExampleFunction \
--runtime python2.7 \
--role execution-role-arn \
--zip-file fileb://path/app.zip \
--handler app.handler \
--vpc-config SubnetIds=comma-separated-vpc-subnet-
ids,SecurityGroupIds=comma-separated-security-group-ids \
--memory-size 1024 \
--profile adminuser

Note
The Lambda function execution role must have permissions to create,
describe and delete ENIs. AWS Lambda provides a permissions policy,
AWSLambdaVPCAccessExecutionRole, with permissions for the necessary EC2
actions (ec2:CreateNetworkInterface, ec2:DescribeNetworkInterfaces,

96

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/dedicated-instance.html

AWS Lambda Developer Guide
Internet Access for Lambda Functions

and ec2:DeleteNetworkInterface) that you can use when creating a role. You can
review the policy in the IAM console. Do not delete this role immediately after your Lambda
function execution. There is a delay between the time your Lambda function executes
and ENI deletion. If you do delete the role immediately after function execution, you are
responsible for deleting the ENIs.

• The update-function-configuration CLI command specifies the --vpc-config parameter to
add VPC information to an existing Lambda function configuration.

$ aws lambda update-function-configuration \
--function-name ExampleFunction \
--vpc-config SubnetIds=comma-separated-vpc-subnet-
ids,SecurityGroupIds=security-group-ids

To remove VPC-related information from your Lambda function configuration, use the
UpdateFunctionConfiguration API by providing an empty list of subnet IDs and security group
IDs as shown in the following example CLI command.

$ aws lambda update-function-configuration \
--function-name ExampleFunction \
--vpc-config SubnetIds=[],SecurityGroupIds=[]

Note the following additional considerations:

• We recommend that you avoid DNS resolution of public host names for your VPC. This can take
several seconds to resolve, which adds several seconds of billable time on your request. For
example, if your Lambda function accesses an Amazon RDS instance in your VPC, launch the
instance with the no-publicly-accessible option.

• When you add VPC configuration to a Lambda function, it can only access resources in that VPC. If
a Lambda function needs to access both VPC resources and the public Internet, the VPC needs to
have a Network Address Translation (NAT) instance inside the VPC.

• When a Lambda function is configured to run within a VPC, it incurs an additional ENI start-
up penalty. This means address resolution may be delayed when trying to connect to network
resources.

Internet Access for Lambda Functions
AWS Lambda uses the VPC information you provide to set up ENIs that allow your Lambda function
to access VPC resources. Each ENI is assigned a private IP address from the IP address range within
the Subnets you specify, but is not assigned any public IP addresses. Therefore, if your Lambda
function requires Internet access (for example, to access AWS services that don't have VPC endpoints,
such as Amazon Kinesis), you can configure a NAT instance inside your VPC or you can use the
Amazon VPC NAT gateway. For more information, see NAT Gateways in the Amazon VPC User
Guide. You cannot use an Internet gateway attached to your VPC, since that requires the ENI to have
public IP addresses.

Important
If your Lambda function needs Internet access, do not attach it to a public subnet or to a
private subnet without Internet access. Instead, attach it only to private subnets with Internet
access through a NAT instance or an Amazon VPC NAT gateway.

97

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-nat-gateway.html

AWS Lambda Developer Guide
Guidelines for Setting Up VPC-Enabled Lambda Functions

Guidelines for Setting Up VPC-Enabled Lambda
Functions
Your Lambda function automatically scales based on the number of events it processes. The following
are general guidelines for setting up VPC-enabled Lambda functions to support the scaling behavior.

• If your Lambda function accesses a VPC, you must make sure that your VPC has sufficient ENI
capacity to support the scale requirements of your Lambda function. You can use the following
formula to approximately determine the ENI capacity.

Projected peak concurrent executions * (Memory in GB / 1.5GB)

Where:

• Projected peak concurrent execution – Use the information in Lambda Function Concurrent
Executions (p. 152) to determine this value.

• Memory – The amount of memory you configured for your Lambda function.

• The subnets you specify should have sufficient available IP addresses to match the number of ENIs.

We also recommend that you specify at least one subnet in each Availability Zone in your Lambda
function configuration. By specifying subnets in each of the Availability Zones, your Lambda function
can run in another Availability Zone if one goes down or runs out of IP addresses.

Caution
If your VPC does not have sufficient ENIs or subnet IPs, your Lambda function will not scale
as requests increase, and you will see an increase in function failures. AWS Lambda currently
does not log errors to CloudWatch Logs that are caused by insufficient ENIs or IP addresses.
If you see an increase in errors without corresponding CloudWatch Logs, you can invoke the
Lambda function synchronously to get the error responses (for example, test your Lambda
function in the AWS Lambda console because the console invokes your Lambda function
synchronously and displays errors).

Topics

• Tutorials: Accessing Resources in an Amazon VPC (p. 98)

Tutorials: Configuring a Lambda Function to Access
Resources in an Amazon VPC
This section provides end-to-end example tutorials where you create and configure a Lambda function
to access resources in an Amazon VPC, such as an Amazon ElastiCache cluster or an Amazon RDS
database instance.

Topics

• Tutorial: Configuring a Lambda Function to Access Amazon ElastiCache in an Amazon
VPC (p. 99)

• Tutorial: Configuring a Lambda Function to Access Amazon RDS in an Amazon VPC (p. 103)

98

AWS Lambda Developer Guide
Tutorials: Accessing Resources in an Amazon VPC

Tutorial: Configuring a Lambda Function to Access Amazon
ElastiCache in an Amazon VPC
In this tutorial, you do the following:

• Create an Amazon ElastiCache cluster in your default Amazon Virtual Private Cloud (Amazon VPC)
in the us-east-1 region. For more information about Amazon ElastiCache, see Amazon ElastiCache.

• Create a Lambda function to access the ElastiCache cluster. When you create the Lambda function,
you provide subnet IDs in your Amazon VPC and a VPC security group to allow the Lambda function
to access resources in your VPC. For illustration in this tutorial, the Lambda function generates a
UUID, writes it to the cache, and retrieves it from the cache.

• Invoke the Lambda function manually and verify that it accessed the ElastiCache cluster in your
VPC.

Important
This tutorial uses the default Amazon VPC in the us-east-1 region in your account. For more
information about Amazon VPC, see How to Get Started with Amazon VPC in the Amazon
VPC User Guide.

Next Step

Step 1: Create an ElastiCache Cluster (p. 99)

Step 1: Create an ElastiCache Cluster

In this step, you create an ElastiCache cluster in the default Amazon VPC in us-east-1 region in your
account.

1. Run the following AWS CLI command to create a Memcached cluster in the default VPC in the us-
east-1 region in your account.

aws elasticache create-cache-cluster \
 --cache-cluster-id ClusterForLambdaTest \
 --cache-node-type cache.m3.medium \
 --engine memcached \
 --security-group-ids your-default-vpc-security-group \
 --num-cache-nodes 1

You can look up the default VPC security group in the VPC console under Security Groups. Your
example Lambda function will add and retrieve an item from this cluster.

You can also launch a cache cluster using the Amazon ElastiCache console. For instructions, see
Getting Started with Amazon ElastiCache in the Amazon ElastiCache User Guide.

2. Write down the configuration endpoint for the cache cluster that you launched. You can get this
from the Amazon ElastiCache console. You will specify this value in your Lambda function code in
the next section.

Next Step

Step 2: Create a Lambda Function (p. 99)

Step 2: Create a Lambda Function

In this step, you do the following:

• Create a Lambda function deployment package using the sample code provided.

99

https://aws.amazon.com/elasticache/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#howto
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/GettingStarted.html

AWS Lambda Developer Guide
Tutorials: Accessing Resources in an Amazon VPC

• Create an IAM role (execution role). At the time you upload the deployment package, you need to
specify this role so that Lambda can assume the role and then execute the function on your behalf.

The permissions policy grants AWS Lambda permissions to set up elastic network interfaces (ENIs)
to enable your Lambda function to access resources in the VPC. In this example, your Lambda
function accesses an ElastiCache cluster in the VPC.

• Create the Lambda function by uploading the deployment package.

Topics

• Step 2.1: Create a Deployment Package (p. 100)

• Step 2.2: Create the Execution Role (IAM Role) (p. 101)

• Step 2.3: Create the Lambda Function (Upload the Deployment Package) (p. 101)

Step 2.1: Create a Deployment Package

Note
At this time, example code for the Lambda function is provided only in Python.

Python

The following example Python code reads and writes an item to your ElastiCache cluster.

1. Open a text editor, and then copy the following code.

from __future__ import print_function
import time
import uuid
import sys
import socket
import elasticache_auto_discovery
from pymemcache.client.hash import HashClient

#elasticache settings
elasticache_config_endpoint = "your-elasticache-cluster-endpoint:port"
nodes = elasticache_auto_discovery.discover(elasticache_config_endpoint)
nodes = map(lambda x: (x[1], int(x[2])), nodes)
memcache_client = HashClient(nodes)

def handler(event, context):
 """
 This function puts into memcache and get from it.
 Memcache is hosted using elasticache
 """

 #Create a random UUID... this will the sample element we add to the
 cache.
 uuid_inserted = uuid.uuid4().hex
 #Put the UUID to the cache.
 memcache_client.set('uuid', uuid_inserted)
 #Get item (UUID) from the cache.
 uuid_obtained = memcache_client.get('uuid')
 if uuid_obtained == uuid_inserted:
 # this print should go to the CloudWatch Logs and Lambda console.
 print ("Success: Fetched value %s from memcache" %(uuid_inserted))
 else:
 raise Exception("Value is not the same as we put :(. Expected %s
 got %s" %(uuid_inserted, uuid_obtained))

100

AWS Lambda Developer Guide
Tutorials: Accessing Resources in an Amazon VPC

 return "Fetched value from memcache: " + uuid_obtained

2. Save the file as app.py.

3. Install the following library dependencies using pip:

• pymemcache – The Lambda function code uses this library to create a HashClient object to
set and get items from memcache (see pymemcache).

• elasticache-auto-discovery – The Lambda function uses this library to get the nodes in
your Amazon ElastiCache cluster (see elasticache-auto-discovery).

4. Zip all of these files into a file named app.zip to create your deployment package. For step-by-
step instructions, see Creating a Deployment Package (Python) (p. 69).

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 101)

Step 2.2: Create the Execution Role (IAM Role)

In this step, you create an AWS Identity and Access Management (IAM) role using the following
predefined role type and access permissions policy:

• AWS Lambda (AWS service role) – This role grants AWS Lambda permissions to assume the role.

• AWSLambdaVPCAccessExecutionRole (access permissions policy) – This is the policy that you
attach to the role. The policy grants permissions for the EC2 actions that AWS Lambda needs to
manage ENIs. You can view this AWS managed policy in IAM console.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedure to create the IAM role.

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-vpc-
execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

• In Attach Policy, choose AWSLambdaVPCAccessExecutionRole. The permissions in this
policy are sufficient for the Lambda function in this tutorial.

3. Write down the role ARN. You will need it in the next step when you create your Lambda function.

Next Step

Step 2.3: Create the Lambda Function (Upload the Deployment Package) (p. 101)

Step 2.3: Create the Lambda Function (Upload the Deployment Package)

In this step, you create the Lambda function (AccessMemCache) using the create-function AWS
CLI command.

At the command prompt, run the following Lambda CLI create-function command using the
adminuser profile.

101

https://pypi.python.org/pypi/pymemcache
https://pypi.python.org/pypi/elasticache-auto-discovery
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Tutorials: Accessing Resources in an Amazon VPC

You need to update the following create-function command by providing the .zip file path and
the execution role ARN. The --runtime parameter value can be python2.7, nodejs and java8,
depending on the language you used to author your code.

Note
At this time, example code for the Lambda function is provided only in Python.

$ aws lambda create-function \
--function-name AccessMemCache \
--region us-east-1 \
--zip-file fileb://path-to/app.zip \
--role execution-role-arn \
--handler app.handler \
--runtime python2.7 \
--timeout 30 \
--vpc-config SubnetIds=comma-separated-vpc-subnet-
ids,SecurityGroupIds=default-security-group-id \
--memory-size 1024 \
--profile adminuser

You can find the subnet IDs and the default security group ID of your VPC from the VPC console.

Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and then
specify the bucket and object name in the preceding command. You need to replace the --zip-file
parameter by the --code parameter, as shown following:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

Note
You can also create the Lambda function using the AWS Lambda console. When creating the
function, choose a VPC for the Lambda and then select the subnets and security groups from
the provided fields.

Next Step

Step 3: Test the Lambda Function (Invoke Manually) (p. 102)

Step 3: Test the Lambda Function (Invoke Manually)

In this step, you invoke the Lambda function manually using the invoke command. When the Lambda
function executes, it generates a UUID and writes it to the ElastiCache cluster that you specified in
your Lambda code. The Lambda function then retrieves the item from the cache.

1. Invoke the Lambda function (AccessMemCache) using the AWS Lambda invoke command.

$ aws lambda invoke \
--function-name AccessMemCache \
--region us-east-1 \
--profile adminuser \
output.txt

2. Verify that the Lambda function executed successfully as follows:

• Review the output.txt file.

• Review the results in the AWS Lambda console.

• Verify the results in CloudWatch Logs.

102

AWS Lambda Developer Guide
Tutorials: Accessing Resources in an Amazon VPC

What Next?

Now that you have created a Lambda function that accesses an ElastiCache cluster in your VPC, you
can have the function invoked in response to events. For information about configuring event sources
and examples, see Use Cases (p. 175).

Tutorial: Configuring a Lambda Function to Access Amazon
RDS in an Amazon VPC

In this tutorial, you do the following:

• Launch an Amazon RDS MySQL database engine instance in your default Amazon VPC. In the
MySQL instance, you create a database (ExampleDB) with a sample table (Employee) in it. For
more information about Amazon RDS, see Amazon RDS.

• Create a Lambda function to access the ExampleDB database, create a table (Employee), add a few
records, and retrieve the records from the table.

• Invoke the Lambda function manually and verify the query results. This is how you verify that your
Lambda function was able to access the RDS MySQL instance in the VPC.

Important
This tutorial uses the default Amazon VPC in the us-east-1 region in your account. For more
information about Amazon VPC, see How to Get Started with Amazon VPC in the Amazon
VPC User Guide.

Next Step

Step 1: Create an Amazon RDS MySQL Instance and ExampleDB Database (p. 103)

Step 1: Create an Amazon RDS MySQL Instance and ExampleDB Database

In this tutorial, the example Lambda function creates a table (Employee), inserts a few records, and
then retrieves the records. The table that the Lambda function creates has the following schema:

Employee(EmpID, Name)

Where EmpID is the primary key. Now, you need to add a few records to this table.

First, you launch an RDS MySQL instance in your default VPC with ExampleDB database. If you
already have an RDS MySQL instance running in your default VPC, skip this step.

Important
This tutorial uses the RDS MySQL DB engine launched in the default VPC in the us-east-1
region.

You can launch an RDS MySQL instance using one of the following methods:

• Follow the instructions at Creating a MySQL DB Instance and Connecting to a Database on a
MySQL DB Instance in the Amazon Relational Database Service User Guide.

• Use the following AWS CLI command:

$ aws rds create-db-instance \
 --db-instance-identifier MySQLForLambdaTest \
 --db-instance-class db.t2.micro \
 --engine MySQL \
 --allocated-storage 5 \
 --no-publicly-accessible \

103

https://aws.amazon.com/rds
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#howto
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.MySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.MySQL.html

AWS Lambda Developer Guide
Tutorials: Accessing Resources in an Amazon VPC

 --db-name ExampleDB \
 --master-username username \
 --master-user-password password \
 --backup-retention-period 3 \
 --profile adminuser

Write down the database name, user name, and password. You also need the host address (endpoint)
of the DB instance, which you can get from the RDS console (you might need to wait until the instance
status is available and the Endpoint value appears in the console).

Next Step

Step 2: Create a Lambda Function (p. 104)

Step 2: Create a Lambda Function

In this step, you do the following:

• Create a Lambda function deployment package using the sample code provided.

• Create an IAM role (execution role) that you specify at the time of creating your Lambda function.
This is the role AWS Lambda assumes when executing the Lambda function.

The permissions policy associated with this role grants AWS Lambda permissions to set up elastic
network interfaces (ENIs) to enable your Lambda function to access resources in the VPC.

• Create the Lambda function by uploading the deployment package.

Topics

• Step 2.1: Create a Deployment Package (p. 104)

• Step 2.2: Create the Execution Role (IAM Role) (p. 106)

• Step 2.3: Create the Lambda Function (Upload the Deployment Package) (p. 106)

Step 2.1: Create a Deployment Package

Note
At this time, example code for the Lambda function is provided only in Python.

Python

The following example Python code runs a SELECT query against the Employee table in the MySQL
RDS instance that you created in the VPC. The code creates a table in the ExampleDB database, adds
sample records, and retrieves those records.

1. Open a text editor, and then copy the following code.

import sys
import logging
import rds_config
import pymysql
#rds settings
rds_host = "rds-instance-endpoint"
name = rds_config.db_username
password = rds_config.db_password
db_name = rds_config.db_name

104

AWS Lambda Developer Guide
Tutorials: Accessing Resources in an Amazon VPC

logger = logging.getLogger()
logger.setLevel(logging.INFO)

try:
 conn = pymysql.connect(rds_host, user=name, passwd=password,
 db=db_name, connect_timeout=5)
except:
 logger.error("ERROR: Unexpected error: Could not connect to MySql
 instance.")
 sys.exit()

logger.info("SUCCESS: Connection to RDS mysql instance succeeded")
def handler(event, context):
 """
 This function fetches content from mysql RDS instance
 """

 item_count = 0

 with conn.cursor() as cur:
 cur.execute("create table Employee3 (EmpID int NOT NULL, Name
 varchar(255) NOT NULL, PRIMARY KEY (EmpID))")
 cur.execute('insert into Employee3 (EmpID, Name) values(1,
 "Joe")')
 cur.execute('insert into Employee3 (EmpID, Name) values(2,
 "Bob")')
 cur.execute('insert into Employee3 (EmpID, Name) values(3,
 "Mary")')
 conn.commit()
 cur.execute("select * from Employee3")
 for row in cur:
 item_count += 1
 logger.info(row)
 #print(row)

 return "Added %d items from RDS MySQL table" %(item_count)

Note
We recommend that pymysql.connect() is executed outside the handler, as shown,
for better performance.

2. Save the file as app.py.

3. Install the following library dependencies using pip:

• pymysql – The Lambda function code uses this library to access your MySQL instance (see
PyMySQL) .

4. Create a config file that contains the following information and save it as rds_config.py:

#config file containing credentials for rds mysql instance
db_username = "username"
db_password = "password"
db_name = "databasename"

5. Zip all of these files into a file named app.zip to create your deployment package. For step-by-
step instructions, see Creating a Deployment Package (Python) (p. 69).

105

https://pypi.python.org/pypi/PyMySQL

AWS Lambda Developer Guide
Tutorials: Accessing Resources in an Amazon VPC

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 106)

Step 2.2: Create the Execution Role (IAM Role)

In this step, you create an execution role (IAM role) for your Lambda function using the following
predefined role type and access permissions policy:

• AWS Lambda (AWS service role) – This role grants AWS Lambda permissions to assume the role.

• AWSLambdaVPCAccessExecutionRole (access permissions policy) – This role grants AWS
Lambda permissions for EC2 actions to create ENIs and your Lambda function can access VPC
resources and CloudWatch Logs actions to write logs.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedure to create the IAM role.

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-vpc-
execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

• In Attach Policy, choose AWSLambdaVPCAccessExecutionRole. The permissions in this
policy are sufficient for the Lambda function in this tutorial.

3. Write down the role ARN. You will need it in the next step when you create your Lambda function.

Next Step

Step 2.3: Create the Lambda Function (Upload the Deployment Package) (p. 106)

Step 2.3: Create the Lambda Function (Upload the Deployment Package)

In this step, you create the Lambda function (ReadMySqlTable) using the create-function AWS
CLI command.

At the command prompt, run the following Lambda CLI create-function command using the
adminuser profile.

You need to update the following create-function command by providing the .zip file path and
the execution role ARN. The --runtime parameter value can be python2.7, nodejs, or java8,
depending on the language you used to author your code.

Note
At this time, example code for the Lambda function is provided only in Python.

$ aws lambda create-function \
--region us-east-1 \
--function-name CreateTableAddRecordsAndRead \

106

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Troubleshooting and Monitoring

--zip-file fileb://file-path/app.zip \
--role execution-role-arn \
--handler app.handler \
--runtime python2.7 \
--vpc-config SubnetIds=comma-separated-subnet-ids,SecurityGroupIds=default-
vpc-security-group-id \
--profile adminuser

Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and then
specify the bucket and object name in the preceding command. You need to replace the --zip-file
parameter by the --code parameter, as shown following:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

Note
You can also create the Lambda function using the AWS Lambda console (use the parameter
values shown in the preceding CLI command).

Next Step

Step 3: Test the Lambda Function (Invoke Manually) (p. 107)

Step 3: Test the Lambda Function (Invoke Manually)

In this step, you invoke the Lambda function manually using the invoke command. When the Lambda
function executes, it runs the SELECT query against the Employee table in the RDS MySQL instance
and prints the results (these results also go to the CloudWatch Logs).

1. Invoke the Lambda function (ReadMySqlTable) using the AWS Lambda invoke command.

$ aws lambda invoke \
--function-name CreateTableAddRecordsAndRead \
--region us-east-1 \
--profile adminuser \
output.txt

2. Verify that the Lambda function executed successfully as follows:

• Review the output.txt file.

• Review the results in the AWS Lambda console.

• Verify the results in CloudWatch Logs.

Troubleshooting and Monitoring AWS Lambda
Functions with Amazon CloudWatch

AWS Lambda automatically monitors Lambda functions on your behalf, reporting metrics through
Amazon CloudWatch. To help you monitor your code as it executes, Lambda automatically tracks
the number of requests, the latency per request, and the number of requests resulting in an error and
publishes the associated CloudWatch metrics. You can leverage these metrics to set CloudWatch
custom alarms. For more information about CloudWatch, see the Amazon CloudWatch User Guide.

107

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

AWS Lambda Developer Guide
Troubleshooting Scenarios

You can view request rates and error rates for each of your Lambda functions by using the AWS
Lambda console, the CloudWatch console, and other Amazon Web Services (AWS) resources. The
following topics describe Lambda CloudWatch metrics and how to access them.

• Accessing Amazon CloudWatch Metrics for AWS Lambda (p. 109)

• AWS Lambda Metrics (p. 111)

You can insert logging statements into your code to help you validate that your code is working as
expected. Lambda automatically integrates with Amazon CloudWatch Logs and pushes all logs from
your code to a CloudWatch Logs group associated with a Lambda function (/aws/lambda/<function
name>). To learn more about log groups and accessing them through the CloudWatch console, see
the Monitoring System, Application, and Custom Log Files in the Amazon CloudWatch User Guide. For
information about how to access CloudWatch log entries, see Accessing Amazon CloudWatch Logs for
AWS Lambda (p. 110).

Note
If your Lambda function code is executing, but you don't see any log data being generated
after several minutes, this could mean your execution role for the Lambda function did not
grant permissions to write log data to CloudWatch Logs. For information about how to make
sure that you have set up the execution role correctly to grant these permissions, see Manage
Permissions: Using an IAM Role (Execution Role) (p. 155).

AWS Lambda Troubleshooting Scenarios
This sections describes examples of how to monitor and troubleshoot your Lambda functions using the
logging and monitoring capabilities of CloudWatch.

Troubleshooting Scenario 1: Lambda Function Not Working as
Expected
In this scenario, you have just finished Tutorial: Using AWS Lambda with Amazon S3 (p. 177).
However, the Lambda function you created to upload a thumbnail image to Amazon S3 when you
create an S3 object is not working as expected. When you upload objects to Amazon S3, you see that
the thumbnail images are not being uploaded. You can troubleshoot this issue in the following ways.

To determine why your Lambda function is not working as expected

1. Check your code and verify that it is working correctly. An increased error rate would indicate that
it is not.

You can test your code locally as you would any other Node.js function, or you can test it within
the Lambda console using the console's test invoke functionality, or you can use the AWS CLI
Invoke command. Each time the code is executed in response to an event, it writes a log entry
into the log group associated with a Lambda function, which is /aws/lambda/<function name>.

Following are some examples of errors that might show up in the logs:

• If you see a stack trace in your log, there is probably an error in your code. Review your code
and debug the error that the stack trace refers to.

• If you see a permissions denied error in the log, the IAM role you have provided as an
execution role may not have the necessary permissions. Check the IAM role and verify that it
has all of the necessary permissions to access any AWS resources that your code references.
To ensure that you have correctly set up the execution role, see Manage Permissions: Using an
IAM Role (Execution Role) (p. 155).

• If you see a timeout exceeded error in the log, your timeout setting exceeds the run time of
your function code. This may be because the timeout is too low, or the code is taking too long to
execute.

108

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

AWS Lambda Developer Guide
Accessing CloudWatch Metrics

• If you see a memory exceeded error in the log, your memory setting is too low. Set it to a
higher value. For information about memory size limits, see CreateFunction (p. 332). When
you change the memory setting, it can also change how you are charged for duration. For
information about pricing, see the AWS Lambda product website.

2. Check your Lambda function and verify that it is receiving requests.

Even if your function code is working as expected and responding correctly to test invokes, the
function may not be receiving requests from Amazon S3. If Amazon S3 is able to invoke the
function, you should see an increase in your CloudWatch requests metrics. If you do not see an
increase in your CloudWatch requests, check the access permissions policy associated with the
function.

Troubleshooting Scenario 2: Increased Latency in Lambda
Function Execution

In this scenario, you have just finished Tutorial: Using AWS Lambda with Amazon S3 (p. 177).
However, the Lambda function you created to upload a thumbnail image to Amazon S3 when you
create an S3 object is not working as expected. When you upload objects to Amazon S3, you can
see that the thumbnail images are being uploaded, but your code is taking much longer to execute
than expected. You can troubleshoot this issue in a couple of different ways. For example, you could
monitor the latency CloudWatch metric for the Lambda function to see if the latency is increasing. Or
you could see an increase in the CloudWatch errors metric for the Lambda function, which might be
due to timeout errors.

To determine why there is increased latency in the execution of a Lambda function

1. Test your code with different memory settings.

If your code is taking too long to execute, it could be that it does not have enough compute
resources to execute its logic. Try increasing the memory allocated to your function and testing the
code again, using the Lambda console's test invoke functionality. You can see the memory used,
code execution time, and memory allocated in the function log entries. Changing the memory
setting can change how you are charged for duration. For information about pricing, see AWS
Lambda.

2. Investigate the source of the execution bottleneck that is using logs.

You can test your code locally, as you would with any other Node.js function, or you can test it
within Lambda using the test invoke capability on the Lambda console, or using the asyncInvoke
command by using AWS CLI. Each time the code is executed in response to an event, it
writes a log entry into the log group associated with a Lambda function, which is named aws/
lambda/<function name>. Add logging statements around various parts of your code, such as
callouts to other services, to see how much time it takes to execute different parts of your code.

Accessing Amazon CloudWatch Metrics for AWS
Lambda
AWS Lambda automatically monitors functions on your behalf, reporting metrics through Amazon
CloudWatch. These metrics include total requests, latency, and error rates. For more information about
Lambda metrics, see AWS Lambda Metrics (p. 111). For more information about CloudWatch, see
the Amazon CloudWatch User Guide.

You can monitor metrics for Lambda and view logs by using the Lambda console, the CloudWatch
console, the AWS CLI, or the CloudWatch API. The following procedures show you how to access
metrics using these different methods.

109

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

AWS Lambda Developer Guide
Accessing CloudWatch Logs

To access metrics using the Lambda console

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. If you have not created a Lambda function before, see Getting Started (p. 160).

3. On the Functions page, choose the function name and then choose the Monitoring tab.

A graphical representation of the metrics for the Lambda function are shown.

4. Choose View logs in CloudWatch to view the logs.

To access metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. From the navigation bar, choose a region.

3. In the navigation pane, choose Metrics.

4. In the CloudWatch Metrics by Category pane, choose Lambda Metrics.

5. (Optional) In the graph pane, choose a statistic and a time period, and then create a CloudWatch
alarm using these settings.

To access metrics using the AWS CLI

Use the list-metrics and get-metric-statistics commands.

To access metrics using the CloudWatch CLI

Use the mon-list-metrics and mon-get-stats commands.

To access metrics using the CloudWatch API

Use the ListMetrics and GetMetricStatistics operations.

Accessing Amazon CloudWatch Logs for AWS
Lambda
AWS Lambda automatically monitors Lambda functions on your behalf, reporting metrics through
Amazon CloudWatch. To help you troubleshoot failures in a function, Lambda logs all requests

110

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
http://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-list-metrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-get-stats.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

AWS Lambda Developer Guide
Metrics

handled by your function and also automatically stores logs generated by your code through Amazon
CloudWatch Logs.

You can insert logging statements into your code to help you validate that your code is working
as expected. Lambda automatically integrates with CloudWatch Logs and pushes all logs from
your code to a CloudWatch Logs group associated with a Lambda function, which is named /
aws/lambda/<function name>. To learn more about log groups and accessing them through the
CloudWatch console, see the Monitoring System, Application, and Custom Log Files in the Amazon
CloudWatch User Guide.

You can view logs for Lambda by using the Lambda console, the CloudWatch console, the AWS CLI,
or the CloudWatch API. The following procedure show you how to view the logs by using the Lambda
console.

Note
There is no additional charge for using Lambda logs; however, standard CloudWatch Logs
charges apply. For more information, see CloudWatch Pricing.

To view logs using the Lambda console

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. If you have not created a Lambda function before, see Getting Started (p. 160).

3. On the Functions page, choose the function name and then choose the Monitoring tab.

A graphical representation of the metrics for the Lambda function are shown.

4. Choose View logs in CloudWatch to view the logs.

For more information on accessing CloudWatch Logs, see the following guides:

• Amazon CloudWatch User Guide

• Amazon CloudWatch Logs API Reference

• Monitoring Log Files in the Amazon CloudWatch User Guide

AWS Lambda Metrics
This topic describes the AWS Lambda namespace, metrics, and dimensions. AWS Lambda
automatically monitors functions on your behalf, reporting metrics through Amazon CloudWatch
(CloudWatch). These metrics include total invocations, errors, duration, and throttles.

111

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

AWS Lambda Developer Guide
Metrics

CloudWatch is basically a metrics repository. A metric is the fundamental concept in CloudWatch and
represents a time-ordered set of data points. You (or AWS services) publish metrics data points into
CloudWatch and you retrieve statistics about those data points as an ordered set of time-series data.

Metrics are uniquely defined by a name, a namespace, and one or more dimensions. Each data
point has a time stamp, and, optionally, a unit of measure. When you request statistics, the returned
data stream is identified by namespace, metric name, and dimension. For more information about
CloudWatch, see the Amazon CloudWatch User Guide.

AWS Lambda CloudWatch Metrics

The AWS Lambda namespace for CloudWatch is AWS/Lambda.

The following metrics are available from the AWS Lambda service.

Metric Description

Invocations Measures the number of times a function is invoked in response to an
event or invocation API call. This replaces the deprecated RequestCount
metric. This includes successful and failed invocations, but does not
include throttled attempts. This equals the billed requests for the function.
Note that AWS Lambda only sends these metrics to CloudWatch if they
have a nonzero value.

Units: Count

Errors Measures the number of invocations that failed due to errors in the function
(response code 4XX). This replaces the deprecated ErrorCount metric.
Failed invocations may trigger a retry attempt that succeeds. This includes:

• Handled exceptions (e.g., context.fail(error))

• Unhandled exceptions causing the code to exit

• Out of memory exceptions

• Timeouts

• Permissions errors

This does not include invocations that fail due to invocation rates
exceeding default concurrent limits (error code 429) or failures due to
internal service errors (error code 500).

Units: Count

Dead Letter Error The Dead Letter Error metric will be incremented when Lambda is
unable to write the failed event payload to your configured Dead Letter
Queues (p. 113). This could be due to the following:

• Permissions errors

• Throttles from downstream services

• Misconfigured resources

• Timeouts

Units: Count

Duration Measures the elapsed wall clock time from when the function code starts
executing as a result of an invocation to when it stops executing. This
replaces the deprecated Latency metric. The maximum data point value

112

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

AWS Lambda Developer Guide
Dead Letter Queues

Metric Description

possible is the function timeout configuration. The billed duration will be
rounded up to the nearest 100 millisecond. Note that AWS Lambda only
sends these metrics to CloudWatch if they have a nonzero value.

Units: Milliseconds

Throttles Measures the number of Lambda function invocation attempts that were
throttled due to invocation rates exceeding the customer’s concurrent
limits (error code 429). Failed invocations may trigger a retry attempt that
succeeds.

Units: Count

Errors/Invocations Ratio
When calculating the error rate on Lambda function invocations, it’s important to distinguish
between an invocation request and an actual invocation. It is possible for the error rate to
exceed the number of billed Lambda function invocations. Lambda reports an invocation
metric only if the Lambda function code is executed. If the invocation request yields a throttling
or other initialization error that prevents the Lambda function code from being invoked,
Lambda will report an error, but it does not log an invocation metric.

• Lambda emits Invocations=1 when the function is executed. If the Lambda function is
not executed, nothing is emitted.

• Lambda emits a data point for Errors for each invoke request. Errors=0 means that there
is no function execution error. Errors=1 means that there is a function execution error.

• Lambda emits a data point for Throttles for each invoke request. Throttles=0 means
there is no invocation throttle. Throttles=1 means there is an invocation throttle.

AWS Lambda CloudWatch Dimensions

You can use the dimensions in the following table to refine the metrics returned for your Lambda
functions.

Dimension Description

FunctionName Filters the metric data by Lambda function.

Resource Filters the metric data by Lambda function resource.

Version Filters the metric data by Lambda version.

Alias Filters the metric data by Lambda alias.

Dead Letter Queues
By default, a failed Lambda function invoked asynchronously will be retried twice, after which the
event will be discarded. Using Dead Letter Queues (DLQ), you can indicate to Lambda that any such
unprocessed events should instead be sent to an Amazon SQS queue or Amazon SNS topic, where
you can take further action.

You configure a DLQ by specifying a target arn (Amazon Resource Name) on a Lambda function's
DeadLetterConfig parameter of an Amazon SNS topic or an Amazon SQS queue where you want
the event payload delivered. For more information on creating an Amazon SNS topic, see Create

113

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

AWS Lambda Developer Guide
Dead Letter Queues

an SNS Topic. For more information on creating an Amazon SQS queue, see Tutorial: Creating an
Amazon SQS Queue.

{
 "Code": {
 "ZipFile": blob,
 "S3Bucket": “string”,
 "S3Key": “string”,
 "S3ObjectVersion": “string”
 },
 "Description": "string",
 "FunctionName": "string",
 "Handler": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number
 "Publish": bool,
 "DeadLetterConfig": {
 "TargetArn": "string"
 }
}

Lambda will direct events that cannot be processed to the Amazon SNS topic or Amazon SQS queue
that you’ve configured for the Lambda function. Functions without an associated DLQ will discard
events that have exhausted their retries. For more information on retry policies, see Retries on
Errors (p. 154). You will need to explicitly provide read/publish/sendMessage access to your DLQ
resource as part of the execution role for your Lambda function. The payload written to the DLQ target
arn will be the original event payload with no modifications to the message body. The attributes of
the message, described below, will contain information to help you understand why the event wasn’t
processed:

Name Type Value

RequestID String Unique request identifier

ErrorCode Number 3-digit HTTP error code

ErrorMessage String Error message (truncated
to 1 KB)

If for some reason, the event payload consistently fails to reach the target arn, Lambda will increment a
CloudWatch metric called DeadLetterErrors and then delete the event payload.

114

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-create-queue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-create-queue.html

AWS Lambda Developer Guide

Building applications with AWS
Lambda

When building applications on AWS Lambda, the core components are Lambda functions and event
sources. An event source is the AWS service or custom application that publishes events, and a
Lambda function is the custom code that processes the events. To illustrate, consider the following
scenarios:

• File processing – Suppose you have a photo sharing application. People use your application
to upload photos, and the application stores these user photos in an Amazon S3 bucket. Then,
your application creates a thumbnail version of each user's photos and displays them on the user's
profile page. In this scenario, you may choose to create a Lambda function that creates a thumbnail
automatically. Amazon S3 is one of the supported AWS event sources that can publish object-
created events and invoke your Lambda function. Your Lambda function code can read the photo
object from the S3 bucket, create a thumbnail version, and then save it in another S3 bucket.

• Data and analytics – Suppose you are building an analytics application and storing raw data
in a DynamoDB table. When you write, update, or delete items in a table, DynamoDB streams
can publish item update events to a stream associated with the table. In this case, the event data
provides the item key, event name (such as insert, update, and delete), and other relevant details.
You can write a Lambda function to generate custom metrics by aggregating raw data.

• Websites – Suppose you are creating a website and you want to host the backend logic on Lambda.
You can invoke your Lambda function over HTTP using Amazon API Gateway as the HTTP
endpoint. Now, your web client can invoke the API, and then API Gateway can route the request to
Lambda.

• Mobile applications – Suppose you have a custom mobile application that produces events. You
can create a Lambda function to process events published by your custom application. For example,
in this scenario you can configure a Lambda function to process the clicks within your custom mobile
application.

Each of these event sources uses a specific format for the event data. For more information, see
Sample Events Published by Event Sources (p. 130). When a Lambda function is invoked, it receives
the event as a parameter for the Lambda function.

115

AWS Lambda Developer Guide
Example 1

AWS Lambda supports many AWS services as event sources. For more information, see Supported
Event Sources (p. 124). When you configure these event sources to trigger a Lambda function, the
Lambda function is invoked automatically when events occur. You define event source mapping, which
is how you identify what events to track and which Lambda function to invoke.

In addition to the supported AWS services, user applications can also generate events—you can build
your own custom event sources. Custom event sources invoke a Lambda function using the AWS
Lambda Invoke (p. 358) operation. User applications, such as client, mobile, or web applications, can
publish events and invoke Lambda functions on demand using the AWS SDKs or AWS Mobile SDKs,
such as the AWS Mobile SDK for Android.

The following are introductory examples of event sources and how the end-to-end experience works.

Example 1: Amazon S3 Pushes Events and
Invokes a Lambda Function

Amazon S3 can publish events of different types, such as PUT, POST, COPY, and DELETE object
events on a bucket. Using the bucket notification feature, you can configure an event source mapping
that directs Amazon S3 to invoke a Lambda function when a specific type of event occurs, as shown in
the following illustration.

The diagram illustrates the following sequence:

1. The user creates an object in a bucket.

2. Amazon S3 detects the object created event.

3. Amazon S3 invokes your Lambda function using the permissions provided by the execution
role. For more information on execution roles, see Authentication and Access Control for AWS
Lambda (p. 287). Amazon S3 knows which Lambda function to invoke based on the event source
mapping that is stored in the bucket notification configuration.

4. AWS Lambda executes the Lambda function, specifying the event as a parameter.

116

AWS Lambda Developer Guide
Example 2

Note the following:

• The event source mapping is maintained within the event source service, Amazon S3 in this
scenario. This is true for all supported AWS event sources except the stream-based sources
(Amazon Kinesis and DynamoDB streams). The next example explains stream-based event sources.

• The event source (Amazon S3) invokes the Lambda function (referred to as the push model). Again,
this is true for all supported AWS services except the stream-based event sources.

• In order for the event source (Amazon S3) to invoke your Lambda function, you must grant
permissions using the permissions policy attached to the Lambda function.

Example 2: AWS Lambda Pulls Events from an
Amazon Kinesis Stream and Invokes a Lambda
Function

For stream-based event sources, AWS Lambda polls the stream and invokes the Lambda function
when records are detected on the stream. These stream sources are special in that event source
mapping information is stored in Lambda. AWS Lambda provides an API for you to create and manage
these event source mappings.

The following diagram shows how a custom application writes records to an Amazon Kinesis stream.

The diagram illustrates the following sequence:

1. The custom application writes records to an Amazon Kinesis stream.

2. AWS Lambda continuously polls the stream, and invokes the Lambda function when the service
detects new records on the stream. AWS Lambda knows which stream to poll and which Lambda
function to invoke based on the event source mapping you create in Lambda.

3. The Lambda function is invoked with the incoming event.

117

AWS Lambda Developer Guide
Example 3: Custom Application Publishes
Events and Invokes a Lambda Function

Note the following:

• When working with stream-based event sources:

• You create event source mappings in AWS Lambda.

• AWS Lambda invokes the Lambda function (referred to as the pull model).

• AWS Lambda does not need permission to invoke your Lambda function, therefore you don't need to
add any permissions to the permissions policy attached to your Lambda function.

• Your Lambda role needs permission to read from the stream.

Example 3: Custom Application Publishes Events
and Invokes a Lambda Function

The following diagram shows how a custom application in your account invokes your Lambda function.

The diagram illustrates the following sequence:

1. The custom application invokes your Lambda function using the AWS SDK.

2. The Lambda function is invoked with the incoming event.

The following diagram shows how a custom mobile application invokes a Lambda function.

118

AWS Lambda Developer Guide
Example 3: Custom Application Publishes
Events and Invokes a Lambda Function

1. The mobile application sends a request to Amazon Cognito with an identity pool ID in the request
(you create the identity pool as part of the setup).

2. Amazon Cognito returns temporary security credentials to the application.

Amazon Cognito assumes the role associated with the identity pool to generate temporary
credentials.

3. The mobile application invokes the Lambda function using the temporary credentials (Cognito
Identity).

4. AWS Lambda assumes the execution role to execute your Lambda function on your behalf.

5. The Lambda function executes.

6. AWS Lambda returns results to the mobile application, assuming the app invoked the Lambda
function using the RequestResponse invocation type (referred to as synchronous invocation).

Note the following:

• This is an example of an on-demand invocation of a Lambda function. For on-demand invocations,
you don't need to preconfigure an event source mapping like you do for AWS services.

• In this example, because the custom application is using the same account credentials as the
account that owns the Lambda function, it does not require additional permissions to invoke the
function.

119

AWS Lambda Developer Guide
Event Source Mapping

Suggested Reading

If you are new to AWS Lambda, at this time you can continue and read all of the topics in this How It
Works chapter for details. You might also consider exploring the Getting Started (p. 160) exercise
first to get hands-on experience creating and testing a Lambda function, and then read the topics in
this chapter.

Additionally, the Building Lambda Functions (p. 5) also provides introductory information that you might
find useful, before you dive deep into the technology.

Event Source Mapping
In AWS Lambda, Lambda functions and event sources are the core components in AWS Lambda.
An event source is the entity that publishes events, and a Lambda function is the custom code that
processes the events. Supported event sources refer to those AWS services that can be preconfigured
to work with AWS Lambda. The configuration is referred to as event source mapping, which maps an
event source to a Lambda function. It enables automatic invocation of your Lambda function when
events occur.

Each event source mapping identifies the type of events to publish and the Lambda function to invoke
when events occur. The specific Lambda function then receives the event information as a parameter,
your Lambda function code can then process the event.

Note the following about the event sources. These event sources can be any of the following:

• AWS services – These are the supported AWS services that can be preconfigured to work with
AWS Lambda. You can group these services as regular AWS services or stream-based services.
Amazon Kinesis Streams and Amazon DynamoDB Streams are stream-based event sources, all
others AWS services do not use stream-based event sources. Where you maintain the event source
mapping and how the Lambda function is invoked depends on whether or not you're using a stream-
based event source.

• Custom applications – You can have your custom applications publish events and invoke a
Lambda function.

You may be wondering—where do I keep the event mapping information? Do I keep it within the event
source or within AWS Lambda? The following sections explain event source mapping for each of these
event source categories. These sections also explain how the Lambda function is invoked and how you
manage permissions to allow invocation of your Lambda function.

Topics

• Event Source Mapping for AWS Services (p. 120)

• Event Source Mapping for AWS Stream-based Services (p. 122)

• Event Source Mapping for Custom Applications (p. 123)

Event Source Mapping for AWS Services
Except for the stream-based AWS services (Amazon Kinesis Streams and DynamoDB streams), other
supported AWS services publish events and can also invoke your Lambda function (referred to as the
push model). In the push model, note the following:

• Event source mappings are maintained within the event source. Relevant API support in the event
sources enables you to create and manage event source mappings. For example, Amazon S3

120

lambda-introduction.html

AWS Lambda Developer Guide
Event Source Mapping for AWS Services

provides the bucket notification configuration API. Using this API, you can configure an event source
mapping that identifies the bucket events to publish and the Lambda function to invoke.

• Because the event sources invoke your Lambda function, you need to grant the event source the
necessary permissions using a resource-based policy (referred to as the Lambda function policy).
For more information, see AWS Lambda Permissions Model (p. 155).

The following example illustrates how this model works.

Example – Amazon S3 Pushes Events and Invokes a Lambda Function

Suppose that you want your AWS Lambda function invoked for each object created bucket event. You
add the necessary event source mapping in the bucket notification configuration.

The diagram illustrates the flow:

1. The user creates an object in a bucket.

2. Amazon S3 detects the object created event.

3. Amazon S3 invokes your Lambda function according to the event source mapping described in the
bucket notification configuration.

4. AWS Lambda verifies the permissions policy attached to the Lambda function to ensure that
Amazon S3 has the necessary permissions. For more information on permissions policies, see
Authentication and Access Control for AWS Lambda (p. 287)

5. Once AWS Lambda verifies the attached permissions policy, it executes the Lambda function.
Remember that your Lambda function receives the event as a parameter.

121

AWS Lambda Developer Guide
Event Source Mapping for AWS Stream-based Services

Event Source Mapping for AWS Stream-based
Services
The Amazon Kinesis Streams and DynamoDB streams are the stream-based services that you can
preconfigure to use with AWS Lambda. After you do the necessary event source mapping, AWS
Lambda polls the streams and invokes your Lambda function (referred to as the pull model). In the pull
model, note the following:

• The event source mappings are maintained within the AWS Lambda. AWS Lambda provides
the relevant APIs to create and manage event source mappings. For more information, see
CreateEventSourceMapping (p. 328).

• AWS Lambda needs your permission to poll the stream and read records. You grant these
permissions via the execution role, using the permissions policy associated with role that you specify
when you create your Lambda function. AWS Lambda does not need any permissions to invoke your
Lambda function.

The following example illustrates how this model works.

122

AWS Lambda Developer Guide
Event Source Mapping for Custom Applications

Example – AWS Lambda Pulls Events from an Amazon Kinesis Stream and Invokes a
Lambda Function

The following diagram shows a custom application that writes records to an Amazon Kinesis stream
and how AWS Lambda polls the stream. When AWS Lambda detects a new record on the stream, it
invokes your Lambda function.

Suppose you have a custom application that writes records to an Amazon Kinesis stream. You want
to invoke a Lambda function when new records are detected on the stream. You create a Lambda
function and the necessary event source mapping in AWS Lambda.

The diagram illustrates the following sequence:

1. The custom application writes records to an Amazon Kinesis stream.

2. AWS Lambda continuously polls the stream, and invokes the Lambda function when the service
detects new records on the stream. AWS Lambda knows which stream to poll and which Lambda
function to invoke based on the event source mapping you create in AWS Lambda.

3. Assuming the attached permission policy, which allows AWS Lambda to poll the stream, is verified,
AWS Lambda then executes the Lambda function. For more information on permissions policies,
see Authentication and Access Control for AWS Lambda (p. 287)

The example uses an Amazon Kinesis stream but the same applies when working with a DynamoDB
stream.

Event Source Mapping for Custom Applications
If you have custom applications that publish and process events, you can create a Lambda function
to process these events. In this case, there is no preconfiguration required—you don't have to set
up an event source mapping. Instead, the event source uses the AWS Lambda Invoke API. If the
application and Lambda function are owned by different AWS accounts, the AWS account that owns
the Lambda function must allow cross-account permissions in the permissions policy associated with
the Lambda function.

The following example illustrates how this works.

123

AWS Lambda Developer Guide
Supported Event Sources

Example – Custom Application Publishes Events and Invokes a Lambda Function

The following diagram shows how a custom application in your account can invoke a Lambda function.
In this example, the custom application is using the same account credentials as the account that owns
the Lambda function, and, therefore, does not require additional permissions to invoke the function.

In the following example, the user application and Lambda function are owned by different AWS
accounts. In this case, the AWS account that owns the Lambda function must have cross-account
permissions in the permissions policy associated with the Lambda function. For more information, see
AWS Lambda Permissions Model (p. 155).

Suggested Reading

If you are new to AWS Lambda, we suggest you read through all of the topics in the How It Works
section to familiarize yourself with Lambda. The next topic is Supported Event Sources (p. 124).

After you read all of the topics in the How it Works section, we recommend that you review Building
Lambda Functions (p. 5), try the Getting Started (p. 160) exercise, and then explore the Use
Cases (p. 175). Each use case provides step-by-step instructions for you to set up the end-to-end
experience.

Supported Event Sources
This topic lists the supported AWS services that you can configure as event sources for AWS Lambda
functions. After you preconfigure the event source mapping, your Lambda function gets invoked
automatically when these event sources detect events. For more information about invocation modes,
see Event Source Mapping (p. 120).

124

AWS Lambda Developer Guide
Amazon S3

For all of the event sources listed in this topic, note the following:

• Event sources maintain the event source mapping, except for the stream-based services
(Amazon Kinesis Streams and Amazon DynamoDB Streams). For the stream-based
services, AWS Lambda maintains the event source mapping. AWS Lambda provides the
CreateEventSourceMapping (p. 328) operation for you to create and manage the event source
mapping. For more information, see Event Source Mapping (p. 120).

• The invocation type that these event sources use when invoking a Lambda function is also
preconfigured. For example, Amazon S3 always invokes a Lambda function asynchronously and
Amazon Cognito invokes a Lambda function synchronously. The only time you can control the
invocation type is when you are invoking the Lambda function yourself using the Invoke (p. 358)
operation (for example, invoking a Lambda function on demand from your custom application).

You can also invoke a Lambda function on demand. For details, see Other Event Sources: Invoking a
Lambda Function On Demand (p. 130).

For examples of events that are published by these event sources, see Sample Events Published by
Event Sources (p. 130).

Topics

• Amazon S3 (p. 125)

• Amazon DynamoDB (p. 126)

• Amazon Kinesis Streams (p. 126)

• Amazon Simple Notification Service (p. 126)

• Amazon Simple Email Service (p. 127)

• Amazon Cognito (p. 127)

• AWS CloudFormation (p. 127)

• Amazon CloudWatch Logs (p. 128)

• Amazon CloudWatch Events (p. 128)

• AWS CodeCommit (p. 128)

• Scheduled Events (powered by Amazon CloudWatch Events) (p. 128)

• AWS Config (p. 129)

• Amazon Echo (p. 129)

• Amazon Lex (p. 129)

• Amazon API Gateway (p. 130)

• Other Event Sources: Invoking a Lambda Function On Demand (p. 130)

• Sample Events Published by Event Sources (p. 130)

Amazon S3
You can write Lambda functions to process S3 bucket events, such as the object-created or object-
deleted events. For example, when a user uploads a photo to a bucket, you might want Amazon S3 to
invoke your Amazon S3 function so that it reads the image and creates a thumbnail for the photo.

You can use the bucket notification configuration feature in Amazon S3 to configure the event source
mapping, identifying the bucket events that you want Amazon S3 to publish and which Lambda
function to invoke.

For an example Amazon S3 event, see Event Message Structure, Amazon S3 Put Sample
Event (p. 136), and Amazon S3 Delete Sample Event (p. 137). For an example use case, see
Using AWS Lambda with Amazon S3 (p. 175).

125

http://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html

AWS Lambda Developer Guide
Amazon DynamoDB

Error handling for a given event source depends on how Lambda is invoked. Amazon S3 invokes
your Lambda function asynchronously. For more information on how errors are retried, see Retries on
Errors (p. 154).

Amazon DynamoDB
You can use Lambda functions as triggers for your Amazon DynamoDB table. Triggers are custom
actions you take in response to updates made to the DynamoDB table. To create a trigger, first you
enable Amazon DynamoDB Streams for your table. AWS Lambda polls the stream and your Lambda
function processes any updates published to the stream.

This is a stream-based event source. For stream-based service, you create event source mapping in
AWS Lambda, identifying the stream to poll and which Lambda function to invoke.

For an example DynamoDB event, see Step 2.3.2: Test the Lambda Function (Invoke
Manually) (p. 210) and Amazon DynamoDB Update Sample Event (p. 134). For general format,
see GetRecord in the Amazon DynamoDB API Reference. For an example use case, see Using AWS
Lambda with Amazon DynamoDB (p. 203).

Error handling for a given event source depends on how Lambda is invoked. DynamoDB is a stream-
based event source. For more information on how errors are retried, see Retries on Errors (p. 154).

Amazon Kinesis Streams
You can configure AWS Lambda to automatically poll your stream and process any new records such
as website click streams, financial transactions, social media feeds, IT logs, and location-tracking
events. Then, AWS Lambda polls the stream periodically (multiple times per second) for new records.

For stream-based service, you create event source mapping in AWS Lambda, identifying the stream to
poll and which Lambda function to invoke.

For an example event, see Step 2.3: Create the Lambda Function and Test It Manually (p. 199) and
Amazon Kinesis Streams Sample Event (p. 136). For an example use case, see Using AWS Lambda
with Amazon Kinesis (p. 193).

Error handling for a given event source depends on how Lambda is invoked. Amazon Kinesis Streams
is a stream-based event source. For more information on how errors are retried, see Retries on
Errors (p. 154).

Amazon Simple Notification Service
You can write Lambda functions to process Amazon Simple Notification Service notifications. When
a message is published to an Amazon SNS topic, the service can invoke your Lambda function by
passing the message payload as parameter. Your Lambda function code can then process the event,
for example publish the message to other Amazon SNS topics, or send the message to other AWS
services.

This also enables you to trigger a Lambda function in response to Amazon CloudWatch alarms and
other AWS services that use Amazon SNS.

You configure the event source mapping in Amazon SNS via topic subscription configuration. For more
information, see Invoking Lambda functions using Amazon SNS notifications in the Amazon Simple
Notification Service Developer Guide.

For an example event, see Appendix: Message and JSON Formats and Amazon SNS Sample
Event (p. 133). For an example use case, see Using AWS Lambda with Amazon SNS from Different
Accounts (p. 230).

When a user calls the SNS Publish API on a topic that your Lambda function is subscribed to, Amazon
SNS will call Lambda to invoke your function asynchronously. Lambda will then return a delivery status.

126

http://docs.aws.amazon.com/dynamodbstreams/latest/APIReference/API_GetRecords.html
http://docs.aws.amazon.com/sns/latest/dg/sns-lambda.html
http://docs.aws.amazon.com/sns/latest/dg/json-formats.html

AWS Lambda Developer Guide
Amazon Simple Email Service

If there was an error calling Lambda, Amazon SNS will retry invoking the Lambda function up to three
times. After three tries, if Amazon SNS still could not successfully invoke the Lambda function, then
Amazon SNS will send a delivery status failure message to CloudWatch.

Error handling for a given event source depends on how Lambda is invoked. Amazon SNS invokes
your Lambda function asynchronously. For more information on how errors are retried, see Retries on
Errors (p. 154).

Amazon Simple Email Service
Amazon Simple Email Service (Amazon SES) is a cost-effective email service. With Amazon SES, in
addition to sending emails, you can also use the service to receive messages. For more information
about Amazon SES, see Amazon Simple Email Service. When you use Amazon SES to receive
messages, you can configure Amazon SES to call your Lambda function when messages arrive. The
service can then invoke your Lambda function by passing in the incoming email event as parameter.
For example scenarios, see Considering Your Use Case for Amazon SES Email Receiving.

You configure event source mapping using the rule configuration in Amazon SES. The following topics
provide additional information in the Amazon Simple Email Service Developer Guide:

• For sample events, see Lambda Action and Amazon SES Email Receiving Sample Event (p. 131).

• For Lambda function examples, see Lambda Function Examples.

Error handling for a given event source depends on how Lambda is invoked. Amazon SES invokes
your Lambda function asynchronously. For more information on how errors are retried, see Retries on
Errors (p. 154).

Amazon Cognito
The Amazon Cognito Events feature enables you to run Lambda function in response to events in
Amazon Cognito. For example, you can invoke a Lambda function for the Sync Trigger events, that
is published each time a dataset is synchronized. To learn more and walk through an example, see
Introducing Amazon Cognito Events: Sync Triggers in the Mobile Development blog.

You configure event source mapping using Amazon Cognito event subscription configuration. For
information about event source mapping and a sample event, see Amazon Cognito Events in the
Amazon Cognito Developer Guide. For another example event, see Amazon Cognito Sync Trigger
Sample Event (p. 136)

Error handling for a given event source depends on how Lambda is invoked. Amazon Cognito is
configured to invoke a Lambda function synchronously. For more information on how errors are retried,
see Retries on Errors (p. 154).

AWS CloudFormation
As part of deploying AWS CloudFormation stacks, you can specify a Lambda function as a
custom resource to execute any custom commands. Associating a Lambda function with a custom
resource enables you to invoke your Lambda function whenever you create, update, or delete AWS
CloudFormation stacks.

You configure event source mapping in AWS CloudFormation using stack definition. For more
information, see AWS Lambda-backed Custom Resources in the AWS CloudFormation User Guide.

For an example event, see AWS CloudFormation Create Request Sample Event (p. 131).

Error handling for a given event source depends on how Lambda is invoked. AWS CloudFormation
invokes your Lambda function asynchronously. For more information on how errors are retried, see
Retries on Errors (p. 154).

127

https://aws.amazon.com/ses/
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-consider-use-case.html
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-action-lambda.html
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-action-lambda-example-functions.html
http://mobile.awsblog.com/post/Tx31I7KB4XXQUL3/Introducing-Amazon-Cognito-Events-Sync-Triggers
http://docs.aws.amazon.com/cognito/devguide/sync/cognito-events/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources-lambda.html

AWS Lambda Developer Guide
Amazon CloudWatch Logs

Amazon CloudWatch Logs
You can use AWS Lambda functions to perform custom analysis on Amazon CloudWatch Logs using
CloudWatch Logs subscriptions. CloudWatch Logs subscriptions provide access to a real-time feed of
log events from CloudWatch Logs and deliver it to your AWS Lambda function for custom processing,
analysis, or loading to other systems. For more information about CloudWatch Logs, see Monitoring
Log Files.

You maintain event source mapping in Amazon CloudWatch Logs using the log subscription
configuration. For more information, see Real-time Processing of Log Data with Subscriptions
(Example 2: AWS Lambda) in the Amazon CloudWatch User Guide.

For an example event, see Amazon CloudWatch Logs Sample Event (p. 133).

Error handling for a given event source depends on how Lambda is invoked. Amazon CloudWatch
Logs invokes your Lambda function asynchronously (invoking a Lambda function does not block
write operation into the logs). For more information on how errors are retried, see Retries on
Errors (p. 154).

Amazon CloudWatch Events
Amazon CloudWatch Events help you to respond to state changes in your AWS resources. When your
resources change state, they automatically send events into an event stream. You can create rules that
match selected events in the stream and route them to your AWS Lambda function to take action. For
example, you can automatically invoke an AWS Lambda function to log the state of an EC2 instance or
AutoScaling Group.

You maintain event source mapping in Amazon CloudWatch Events by using a rule target definition.
For more information, see the PutTargets operation in the Amazon CloudWatch Events API Reference.

For sample events, see Supported Event Types in the Amazon CloudWatch User Guide.

Error handling for a given event source depends on how Lambda is invoked. Amazon CloudWatch
Events invokes your Lambda function asynchronously. For more information on how errors are retried,
see Retries on Errors (p. 154).

AWS CodeCommit
You can create a trigger for an AWS CodeCommit repository so that events in the repository will invoke
a Lambda function. For example, you can invoke a Lambda function when a branch or tag is created
or when a push is made to an existing branch. For more information, see Manage Triggers for an AWS
CodeCommit Repository.

You maintain the event source mapping in AWS CodeCommit by using a repository trigger. For more
information, see the PutRepositoryTriggers operation.

Error handling for a given event source depends on how Lambda is invoked. AWS CodeCommit
invokes your Lambda function asynchronously. For more information on how errors are retried, see
Retries on Errors (p. 154).

Scheduled Events (powered by Amazon
CloudWatch Events)
You can also set up AWS Lambda to invoke your code on a regular, scheduled basis using the
schedule event capability in Amazon CloudWatch Events. To set a schedule you can specify a fixed

128

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Subscriptions.html#LambdaFunctionExample
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Subscriptions.html#LambdaFunctionExample
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/LogEC2InstanceState.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/LogASGroupState.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/EventTypes.html
http://docs.aws.amazon.com/codecommit/latest/userguide/how-to-notify.html
http://docs.aws.amazon.com/codecommit/latest/userguide/how-to-notify.html
http://docs.aws.amazon.com/codecommit/latest/APIReference/API_PutRepositoryTriggers.html

AWS Lambda Developer Guide
AWS Config

rate (number of hours, days, or weeks) or specify a cron expression (see Schedule Expression Syntax
for Rules in the Amazon CloudWatch User Guide).

You maintain event source mapping in Amazon CloudWatch Events by using a rule target definition.
For more information, see the PutTargets operation in the Amazon CloudWatch Events API Reference.

For an example use case, see Using AWS Lambda with Scheduled Events (p. 263).

For an example event, see Scheduled Event Sample Event (p. 133).

Error handling for a given event source depends on how Lambda is invoked. Amazon CloudWatch
Events is configured to invoke a Lambda function asynchronously. For more information on how errors
are retried, see Retries on Errors (p. 154).

AWS Config
You can use AWS Lambda functions to evaluate whether your AWS resource configurations comply
with your custom Config rules. As resources are created, deleted, or changed, AWS Config records
these changes and sends the information to your Lambda functions. Your Lambda functions then
evaluate the changes and report results to AWS Config. You can then use AWS Config to assess
overall resource compliance: you can learn which resources are noncompliant and which configuration
attributes are the cause of noncompliance.

You maintain event source mapping in AWS Config by using a rule target definition. For more
information, see the PutConfigRule operation in the AWS Config API reference.

For more information, see Evaluating Resources With AWS Config Rules. For an example of setting
a custom rule, see Developing a Custom Rule for AWS Config. For example Lambda functions, see
Example AWS Lambda Functions for AWS Config Rules (Node.js).

Error handling for a given event source depends on how Lambda is invoked. AWS Config is configured
to invoke a Lambda function asynchronously. For more information on how errors are retried, see
Retries on Errors (p. 154).

Amazon Echo
You can use Lambda functions to build services that give new skills to Alexa, the Voice assistant on
Amazon Echo. The Alexa Skills Kit provides the APIs, tools, and documentation to create these new
skills, powered by your own services running as Lambda functions. Amazon Echo users can access
these new skills by asking Alexa questions or making requests. For more information, see Getting
Started with Alexa Skills Kit.

Error handling for a given event source depends on how Lambda is invoked. Amazon Echo is
configured to invoke a Lambda function synchronously. For more information on how errors are retried,
see Retries on Errors (p. 154).

Amazon Lex
Amazon Lex is an AWS service for building conversational interfaces into applications using voice and
text. Amazon Lex provides pre-build integration with AWS Lambda, allowing you to create Lambda
functions for use as code hook with your Amazon Lex bot. In your intent configuration, you can identify
your Lambda function to perform initialization/validation, fulfillment, or both.

For more information, see Using Lambda Functions. For an example use case, see Exercise 1: Create
Amazon Lex Bot Using a Blueprint.

Error handling for a given event source depends on how Lambda is invoked. Amazon Lex is configured
to invoke a Lambda function synchronously. For more information on how errors are retried, see
Retries on Errors (p. 154).

129

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ScheduledEvents.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ScheduledEvents.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html
http://docs.aws.amazon.com/config/latest/APIReference/API_PutConfigRule.html
http://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
http://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules_nodejs.html
http://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules_nodejs-sample.html
https://developer.amazon.com/appsandservices/solutions/alexa/alexa-skills-kit/getting-started-guide
https://developer.amazon.com/appsandservices/solutions/alexa/alexa-skills-kit/getting-started-guide
http://docs.aws.amazon.com/lex/latest/dg//using-lambda.html
http://docs.aws.amazon.com/lex/latest/dg/gs-bp.html
http://docs.aws.amazon.com/lex/latest/dg/gs-bp.html

AWS Lambda Developer Guide
Amazon API Gateway

Amazon API Gateway
You can invoke a Lambda function over HTTPS. You can do this by defining a custom REST API and
endpoint using Amazon API Gateway. You map individual API operations, such as GET and PUT, to
specific Lambda functions. When you send an HTTPS request to the API endpoint, the Amazon API
Gateway service invokes the corresponding Lambda function.

For more information, see Make Synchronous Calls to Lambda Functions. For an example use case,
see Using AWS Lambda with Amazon API Gateway (On-Demand Over HTTPS) (p. 236).

Error handling for a given event source depends on how Lambda is invoked. Amazon API Gateway is
configured to invoke a Lambda function synchronously. For more information on how errors are retried,
see Retries on Errors (p. 154).

In addition, you can also use Lambda functions with other AWS services that publish data to one of the
supported AWS event sources listed in this topic. For example, you can:

• Trigger Lambda functions in response to CloudTrail updates because it records all API access
events to an Amazon S3 bucket.

• Trigger Lambda functions in response to CloudWatch alarms because it publishes alarm events to
an Amazon SNS topic.

Other Event Sources: Invoking a Lambda Function
On Demand
In addition to invoking Lambda functions using event sources, you can also invoke your Lambda
function on demand. You don't need to preconfigure any event source mapping in this case. However,
make sure that the custom application has the necessary permissions to invoke your Lambda function.

For example, user applications can also generate events (build your own custom event sources).
User applications such as client, mobile, or web applications can publish events and invoke Lambda
functions using the AWS SDKs or AWS Mobile SDKs such as the AWS Mobile SDK for Android.

For more information, see Tools for Amazon Web Services. For an example tutorial, see Using AWS
Lambda with Amazon API Gateway (On-Demand Over HTTPS) (p. 236).

Sample Events Published by Event Sources
The following is a list of example events published by the supported AWS services. For more
information about the supported AWS event sources, see Supported Event Sources (p. 124).

Sample Events

• AWS CloudFormation Create Request Sample Event (p. 131)

• Amazon SES Email Receiving Sample Event (p. 131)

• Scheduled Event Sample Event (p. 133)

• Amazon CloudWatch Logs Sample Event (p. 133)

• Amazon SNS Sample Event (p. 133)

• Amazon DynamoDB Update Sample Event (p. 134)

• Amazon Cognito Sync Trigger Sample Event (p. 136)

• Amazon Kinesis Streams Sample Event (p. 136)

• Amazon S3 Put Sample Event (p. 136)

• Amazon S3 Delete Sample Event (p. 137)

• Mobile Backend Sample Event (p. 138)

130

http://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html
https://aws.amazon.com/tools/

AWS Lambda Developer Guide
Sample Event Data

• Amazon Lex Sample Event (p. 138)

AWS CloudFormation Create Request Sample Event

{
 "StackId": stackidarn,
 "ResponseURL": "http://pre-signed-S3-url-for-response",
 "ResourceProperties": {
 "StackName": "stack-name",
 "List": [
 "1",
 "2",
 "3"
]
 },
 "RequestType": "Create",
 "ResourceType": "Custom::TestResource",
 "RequestId": "unique id for this create request",
 "LogicalResourceId": "MyTestResource"
}

Amazon SES Email Receiving Sample Event

 "Records": [
 {
 "eventVersion": "1.0",
 "ses": {
 "mail": {
 "commonHeaders": {
 "from": [
 "Jane Doe <janedoe@example.com>"
],
 "to": [
 "johndoe@example.com"
],
 "returnPath": "janedoe@example.com",
 "messageId": "<0123456789example.com>",
 "date": "Wed, 7 Oct 2015 12:34:56 -0700",
 "subject": "Test Subject"
 },
 "source": "janedoe@example.com",
 "timestamp": "1970-01-01T00:00:00.000Z",
 "destination": [
 "johndoe@example.com"
],
 "headers": [
 {
 "name": "Return-Path",
 "value": "<janedoe@example.com>"
 },
 {
 "name": "Received",
 "value": "from mailer.example.com (mailer.example.com
 [203.0.113.1]) by inbound-smtp.us-west-2.amazonaws.com with SMTP id

131

AWS Lambda Developer Guide
Sample Event Data

 o3vrnil0e2ic28trm7dfhrc2v0cnbeccl4nbp0g1x for johndoe@example.com; Wed,
 07 Oct 2015 12:34:56 +0000 (UTC)"
 },
 {
 "name": "DKIM-Signature",
 "value": "v=1; a=rsa-sha256; c=relaxed/relaxed; d=example.com;
 s=example; h=mime-version:from:date:message-id:subject:to:content-type;
 bh=jX3F0bCAI7sIbkHyy3mLYO28ieDQz2R0P8HwQkklFj4x=; b=sQwJ+LMe9RjkesGu
+vqU56asvMhrLRRYrWCbVt6WJulueecwfEwRf9JVWgkBTKiL6m2hr70xDbPWDhtLdLO
+jB3hzjVnXwK3pYIOHw3vxG6NtJ6o61XSUwjEsp9tdyxQjZf2HNYee873832l3K1EeSXKzxYk9Pwqcpi3dMC74ct9GukjIevf1H46hm1L2d9VYTL0LGZGHOAyMnHmEGB8ZExWbI
+k6khpurTQQ4sp4PZPRlgHtnj3Zzv7nmpTo7dtPG5z5S9J+L+Ba7dixT0jn3HuhaJ9b
+VThboo4YfsX9PMNhWWxGjVksSFOcGluPO7QutCPyoY4gbxtwkN9W69HA=="
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "From",
 "value": "Jane Doe <janedoe@example.com>"
 },
 {
 "name": "Date",
 "value": "Wed, 7 Oct 2015 12:34:56 -0700"
 },
 {
 "name": "Message-ID",
 "value": "<0123456789example.com>"
 },
 {
 "name": "Subject",
 "value": "Test Subject"
 },
 {
 "name": "To",
 value": "johndoe@example.com"
 },
 {
 "name": "Content-Type",
 "value": "text/plain; charset=UTF-8"
 }
],
 "headersTruncated": false,
 "messageId": "o3vrnil0e2ic28trm7dfhrc2v0clambda4nbp0g1x"
 },
 "receipt": {
 "recipients": [
 "johndoe@example.com"
],
 "timestamp": "1970-01-01T00:00:00.000Z",
 "spamVerdict": {
 "status": "PASS"
 },
 "dkimVerdict": {
 "status": "PASS"
 },
 "processingTimeMillis": 574,
 "action": {
 "type": "Lambda",

132

AWS Lambda Developer Guide
Sample Event Data

 "invocationType": "Event",
 "functionArn": functionarn
 },
 "spfVerdict": {
 "status": "PASS"
 },
 "virusVerdict": {
 "status": "PASS"
 }
 }
 },
 "eventSource": "aws:ses"
 }
]
 }]}

Scheduled Event Sample Event

{
 "account": "123456789012",
 "region": "us-east-1",
 "detail": {},
 "detail-type": "Scheduled Event",
 "source": "aws.events",
 "time": "1970-01-01T00:00:00Z",
 "id": "cdc73f9d-aea9-11e3-9d5a-835b769c0d9c",
 "resources": [
 "arn:aws:events:us-east-1:123456789012:rule/my-schedule"
]
}

Amazon CloudWatch Logs Sample Event

{
 "awslogs": {
 "data": "H4sIAAAAAAAAAHWPwQqCQBCGX0Xm7EFtK
+smZBEUgXoLCdMhFtKV3akI8d0bLYmibvPPN3wz00CJxmQnTO41whwWQRIctmEcB6sQbFC3CjW3XW8kxpOpP
+OC22d1Wml1qZkQGtoMsScxaczKN3plG8zlaHIta5KqWsozoTYw3/
djzwhpLwivWFGHGpAFe7DL68JlBUk+l7KSN7tCOEJ4M3/qOI49vMHj
+zCKdlFqLaU2ZHV2a4Ct/an0/ivdX8oYc1UVX860fQDQiMdxRQEAAA=="
 }
 }

Amazon SNS Sample Event

{
 "Records": [
 {
 "EventVersion": "1.0",
 "EventSubscriptionArn": eventsubscriptionarn,
 "EventSource": "aws:sns",
 "Sns": {
 "SignatureVersion": "1",
 "Timestamp": "1970-01-01T00:00:00.000Z",
 "Signature": "EXAMPLE",
 "SigningCertUrl": "EXAMPLE",
 "MessageId": "95df01b4-ee98-5cb9-9903-4c221d41eb5e",

133

AWS Lambda Developer Guide
Sample Event Data

 "Message": "Hello from SNS!",
 "MessageAttributes": {
 "Test": {
 "Type": "String",
 "Value": "TestString"
 },
 "TestBinary": {
 "Type": "Binary",
 "Value": "TestBinary"
 }
 },
 "Type": "Notification",
 "UnsubscribeUrl": "EXAMPLE",
 "TopicArn": topicarn,
 "Subject": "TestInvoke"
 }
 }
]
}

Amazon DynamoDB Update Sample Event

 {
 "Records": [
 {
 "eventID": "1",
 "eventVersion": "1.0",
 "dynamodb": {
 "Keys": {
 "Id": {
 "N": "101"
 }
 },
 "NewImage": {
 "Message": {
 "S": "New item!"
 },
 "Id": {
 "N": "101"
 }
 },
 "StreamViewType": "NEW_AND_OLD_IMAGES",
 "SequenceNumber": "111",
 "SizeBytes": 26
 },
 "awsRegion": "us-west-2",
 "eventName": "INSERT",
 "eventSourceARN": eventsourcearn,
 "eventSource": "aws:dynamodb"
 },
 {
 "eventID": "2",
 "eventVersion": "1.0",
 "dynamodb": {
 "OldImage": {
 "Message": {
 "S": "New item!"

134

AWS Lambda Developer Guide
Sample Event Data

 },
 "Id": {
 "N": "101"
 }
 },
 "SequenceNumber": "222",
 "Keys": {
 "Id": {
 "N": "101"
 }
 },
 "SizeBytes": 59,
 "NewImage": {
 "Message": {
 "S": "This item has changed"
 },
 "Id": {
 "N": "101"
 }
 },
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "awsRegion": "us-west-2",
 "eventName": "MODIFY",
 "eventSourceARN": sourcearn,
 "eventSource": "aws:dynamodb"
 },
 {
 "eventID": "3",
 "eventVersion": "1.0",
 "dynamodb": {
 "Keys": {
 "Id": {
 "N": "101"
 }
 },
 "SizeBytes": 38,
 "SequenceNumber": "333",
 "OldImage": {
 "Message": {
 "S": "This item has changed"
 },
 "Id": {
 "N": "101"
 }
 },
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "awsRegion": "us-west-2",
 "eventName": "REMOVE",
 "eventSourceARN": sourcearn,
 "eventSource": "aws:dynamodb"
 }
]
}

135

AWS Lambda Developer Guide
Sample Event Data

Amazon Cognito Sync Trigger Sample Event

 {
 "datasetName": "datasetName",
 "eventType": "SyncTrigger",
 "region": "us-east-1",
 "identityId": "identityId",
 "datasetRecords": {
 "SampleKey2": {
 "newValue": "newValue2",
 "oldValue": "oldValue2",
 "op": "replace"
 },
 "SampleKey1": {
 "newValue": "newValue1",
 "oldValue": "oldValue1",
 "op": "replace"
 }
 },
 "identityPoolId": "identityPoolId",
 "version": 2
}

Amazon Kinesis Streams Sample Event

 "Records": [
 {
 "eventID":
 "shardId-000000000000:49545115243490985018280067714973144582180062593244200961",
 "eventVersion": "1.0",
 "kinesis": {
 "partitionKey": "partitionKey-3",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0IDEyMy4=",
 "kinesisSchemaVersion": "1.0",
 "sequenceNumber":
 "49545115243490985018280067714973144582180062593244200961"
 },
 "invokeIdentityArn": identityarn,
 "eventName": "aws:kinesis:record",
 "eventSourceARN": eventsourcearn,
 "eventSource": "aws:kinesis",
 "awsRegion": "us-east-1"
 }
]
}

Amazon S3 Put Sample Event

 "Records": [
 {

136

AWS Lambda Developer Guide
Sample Event Data

 "eventVersion": "2.0",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "s3": {
 "configurationId": "testConfigRule",
 "object": {
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901",
 "key": "HappyFace.jpg",
 "size": 1024
 },
 "bucket": {
 "arn": bucketarn,
 "name": "sourcebucket",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 }
 },
 "s3SchemaVersion": "1.0"
 },
 "responseElements": {
 "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/
mnopqrstuvwxyzABCDEFGH",
 "x-amz-request-id": "EXAMPLE123456789"
 },
 "awsRegion": "us-east-1",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "eventSource": "aws:s3"
 }
]
}

Amazon S3 Delete Sample Event

 {
 "Records": [
 {
 "eventVersion": "2.0",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "s3": {
 "configurationId": "testConfigRule",
 "object": {
 "sequencer": "0A1B2C3D4E5F678901",
 "key": "HappyFace.jpg"
 },
 "bucket": {
 "arn": bucketarn,
 "name": "sourcebucket",

137

AWS Lambda Developer Guide
Sample Event Data

 "ownerIdentity": {
 "principalId": "EXAMPLE"
 }
 },
 "s3SchemaVersion": "1.0"
 },
 "responseElements": {
 "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/
mnopqrstuvwxyzABCDEFGH",
 "x-amz-request-id": "EXAMPLE123456789"
 },
 "awsRegion": "us-east-1",
 "eventName": "ObjectRemoved:Delete",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "eventSource": "aws:s3"
 }
]
}

Mobile Backend Sample Event

 {
 "operation": "echo",
 "message": "Hello world!"
}

Amazon Lex Sample Event

{
 "messageVersion": "1.0",
 "invocationSource": "FulfillmentCodeHook or DialogCodeHook",
 "userId": "user-id specified in the POST request to Amazon Lex.",
 "sessionAttributes": {
 "key1": "value1",
 "key2": "value2",
 },
 "bot": {
 "name": "bot-name",
 "alias": "bot-alias",
 "version": "bot-version"
 },
 "outputDialogMode": "Text or Voice, based on ContentType request header
 in runtime API request",
 "currentIntent": {
 "name": "intent-name",
 "slots": {
 "slot-name": "value",
 "slot-name": "value",
 "slot-name": "value"
 },
 "confirmationStatus": "None, Confirmed, or Denied
 (intent confirmation, if configured)"

138

AWS Lambda Developer Guide
Deploying Lambda-based Applications

 }
}

Deploying Lambda-based Applications

Lambda-based applications (also referred to as serverless applications) are composed of functions
triggered by events. A typical serverless application consists of one or more functions triggered by
events such as object uploads to Amazon S3, Amazon SNS notifications, and API actions. Those
functions can stand alone or leverage other resources such as DynamoDB tables or Amazon S3
buckets. The most basic serverless application is simply a function.

AWS Lambda provides API operations that you can use to create and update Lambda functions by
providing a deployment package as a ZIP file. However, this mechanism might not be convenient
for automating deployment steps for functions, or coordinating deployments and updates to other
elements of a serverless application (like event sources and downstream resources). For example, in
order to deploy an Amazon SNS trigger, you need to update the function, the Amazon SNS topic, the
mapping between the function and the topic, and any other downstream resources required by your
function such as a DynamoDB table.

Deploying Serverless Applications Using AWS
CloudFormation
You can use AWS CloudFormation to specify, deploy, and configure serverless applications. AWS
CloudFormation is a service that helps you model and set up your AWS resources so that you can
spend less time managing those resources and more time focusing on your applications that run in
AWS. You create a template that describes all of the AWS resources that you want (like Lambda
functions and DynamoDB tables), and AWS CloudFormation takes care of provisioning and configuring
those resources for you. You don't need to individually create and configure AWS resources and figure
out what's dependent on what—AWS CloudFormation handles all of that. For more information, see
AWS CloudFormation Concepts in the AWS CloudFormation User Guide.

Using the AWS Serverless Application Model (AWS
SAM)
The AWS Serverless Application Model (AWS SAM) is a model to define serverless applications.
AWS SAM is natively supported by AWS CloudFormation and defines simplified syntax for expressing
serverless resources. The specification currently covers APIs, Lambda functions and Amazon
DynamoDB tables. The specification is available under Apache 2.0 for AWS partners and customers
to adopt and extend within their own toolsets. For details on the specification, see the AWS Serverless
Application Model.

Serverless Resources Within AWS CloudFormation

AWS SAM supports special resource types that simplify how to express functions, APIs, mappings,
and DynamoDB tables for serverless applications, as well as some features for these services like
environment variables. The AWS CloudFormation description of these resources conforms to the
AWS Serverless Application Model. In order to deploy your application, simply specify the resources
you need as part of your application, along with their associated permissions policies in an AWS
CloudFormation template file (written in either JSON or YAML), package your deployment artifacts, and
deploy the template.

139

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#d0e3897
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model

AWS Lambda Developer Guide
Using the AWS Serverless Application Model (AWS SAM)

An AWS CloudFormation template with serverless resources conforming to the AWS SAM model is
referred to as a SAM file or template.

The examples below illustrate how to leverage AWS SAM to declare common components of a
serverless application:

Lambda function

The following shows the notation you use to describe a Lambda function:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:

 FunctionName:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 CodeUri: s3://bucketName/codepackage.zip

The handler value of the Handler property points to the module containing the code your Lambda
function will execute when invoked. The index value of the Handler property indicates the name of
the file containing the code. You can declare as many functions as your serverless application requires.

You can also declare environment variables, which are configuration settings you can set for your
application. The following shows an example of a serverless app with two Lambda functions and an
environment variable that points to a DynamoDB table. You can update environment variables without
needing to modify, repackage, or redeploy your Lambda function code. For more information, see
Environment Variables (p. 89).

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 PutFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 Policies: AWSLambdaDynamoDBExecutionRole
 CodeUri: s3://bucketName/codepackage.zip
 Environment:
 Variables:
 TABLE_NAME: !Ref Table
 DeleteFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 Policies: AWSLambdaDynamoDBExecutionRole
 CodeUri: s3://bucketName/codepackage.zip
 Environment:
 Variables:
 TABLE_NAME: !Ref Table

140

AWS Lambda Developer Guide
Using the AWS Serverless Application Model (AWS SAM)

 Events:
 Stream:
 Type: DynamoDB
 Properties:
 Stream: !GetAtt DynamoDBTable.StreamArn
 BatchSize: 100
 StartingPosition: TRIM_HORIZON

 DynamoDBTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 5
 WriteCapacityUnits: 5
 StreamSpecification:
 StreamViewType: streamview type

Note the notation at the top:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

This is required in order to include objects defined by the AWS Serverless Application Model within an
AWS CloudFormation template.

SimpleTable

SimpleTable is a resource that creates a DynamoDB table with a single-attribute primary key. You
can use this simplified version if the data your serverless application is interacting with only needs to be
accessed by a single-valued key. You could update the previous example to use a SimpleTable, as
shown following:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 TableName:
 Type: AWS::Serverless::SimpleTable
 Properties:
 PrimaryKey:
 Name: id
 Type: String
 ProvisionedThroughput:
 ReadCapacityUnits: 5
 WriteCapacityUnits: 5

Events

Events are AWS resources that trigger the Lambda function, such as an Amazon API Gateway
endpoint or an Amazon SNS notification. The Events property is an array, which allows you to set

141

AWS Lambda Developer Guide
Using the AWS Serverless Application Model (AWS SAM)

multiple events per function. The following shows the notation you use to describe a Lambda function
with a DynamoDB table as an event source:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 FunctionName:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 Events:
 Stream:
 Type: DynamoDB
 Properties:
 Stream: !GetAtt DynamoDBTable.StreamArn
 BatchSize: 100
 StartingPosition: TRIM_HORIZON
 TableName:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 5
 WriteCapacityUnits: 5

As mentioned above, you can set multiple event sources that will trigger the Lambda function. The
example below shows a Lambda function that can be triggered by either an HTTP PUT or POST event.

API

There are two ways to define an API using AWS SAM. The following uses Swagger to configure the
underlying Amazon API Gateway resources:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 Api:
 Type: AWS::Serverless::Api
 Properties:
 StageName: prod
 DefinitionUri: swagger.yml

In the next example, the AWS::Serverless::Api resource type is implicity added from the union of
API events defined on AWS::Serverless::Function resources.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 GetFunction:

142

AWS Lambda Developer Guide
Using the AWS Serverless Application Model (AWS SAM)

 Type: AWS::Serverless::Function
 Properties:
 Handler: index.get
 Runtime: nodejs4.3
 CodeUri: s3://bucket/api_backend.zip
 Policies: AmazonDynamoDBReadOnlyAccess
 Environment:
 Variables:
 TABLE_NAME: !Ref Table
 Events:
 GetResource:
 Type: Api
 Properties:
 Path: /resource/{resourceId}
 Method: get

 PutFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.put
 Runtime: nodejs4.3
 CodeUri: s3://bucket/api_backend.zip
 Policies: AmazonDynamoDBFullAccess
 Environment:
 Variables:
 TABLE_NAME: !Ref Table
 Events:
 PutResource:
 Type: Api
 Properties:
 Path: /resource/{resourceId}
 Method: put

 DeleteFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.delete
 Runtime: nodejs4.3
 CodeUri: s3://bucket/api_backend.zip
 Policies: AmazonDynamoDBFullAccess
 Environment:
 Variables:
 TABLE_NAME: !Ref Table
 Events:
 DeleteResource:
 Type: Api
 Properties:
 Path: /resource/{resourceId}
 Method: delete

 Table:
 Type: AWS::Serverless::SimpleTable

In the example above, AWS CloudFormation will automatically generate an Amazon API Gateway API
with the path "/resource/{resourceId}" and with the methods GET, PUT and DELETE.

Permissions

You can supply an IAM role ARN to be used as this function's execution role, as shown below:

143

AWS Lambda Developer Guide
Create Your Own Serverless Application

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 FunctionName:
 Type: AWS::Serverless::Function
 Properties:
 Role:role arn

Alternatively, you could supply one or more managed policies to the Lambda function resource. AWS
CloudFormation will then create a new role with the managed policies plus the default Lambda basic
execution policy.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 FunctionName:
 Type: AWS::Serverless::Function
 Properties:
 Policies: AmazonDynamoDBFullAccess

If none of these are supplied, a default execution role is created with Lambda basic execution
permissions.

Note
In addition to using the serverless resources, you can also use conventional CloudFormation
syntax for expressing resources in the same template. Any resources not included in the
current SAM model can still be created in the AWS CloudFormation template using AWS
CloudFormation syntax. In addition, you can use AWS CloudFormation syntax to express
serverless resources as an alternative to using the SAM model. For information about
specifying a Lambda function using conventional CloudFormation syntax as part of your SAM
template, see AWS::Lambda::Function in the AWS CloudFormation User Guide.

For a list of complete serverless application examples, see Examples of How to Use AWS
Lambda (p. 175).

Next Step

Create Your Own Serverless Application (p. 144)

Create Your Own Serverless Application
In the following tutorial, you create a simple serverless application that consists of a single function that
returns the name of an Amazon S3 bucket you specify as an environment variable. Follow these steps:

1. Copy and paste the following into a text file and save it as index.js

var AWS = require('aws-sdk');

exports.handler = function(event, context, callback) {
 var bucketName = process.env.S3_BUCKET;

144

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

AWS Lambda Developer Guide
Create Your Own Serverless Application

 callback(null, bucketName);
}

2. Paste the following into a text file and save it as example.yaml:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 TestFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 Environment:
 Variables:
 S3_BUCKET: bucket-name

3. Create a folder called examplefolder and place the example.yaml file and the index.js file inside
the folder.

Your example folder now contains the following two files that you can then use to package the
serverless application:

• example.yaml

• index.js

Packaging and Deployment

After you create your Lambda function handler and your example.yaml file, you can use the AWS CLI
to package and deploy your serverless application.

Packaging

To package your application, create an Amazon S3 bucket that the package command will use to
upload your ZIP deployment package (if you haven't specified one in your example.yaml file). You can
use the following command to create the Amazon S3 bucket:

aws s3 mb s3://bucket-name --region region

Next, open a command prompt and type the following:

aws cloudformation package \
 --template-file example.yaml \
 --output-template-file serverless-output.yaml \
 --s3-bucket s3-bucket-name

The package command returns an AWS SAM template, in this case serverless-output.yaml that
contains the CodeUri that points to the deployment zip in the Amazon S3 bucket that you specified.
This template represents your serverless application. You are now ready to deploy it.

Deployment

To deploy the application, run the following command:

aws cloudformation deploy \

145

AWS Lambda Developer Guide
Create Your Own Serverless Application

 --template-file serverless-output.yaml \
 --stack-name new-stack-name \
 --capabilities CAPABILITY_IAM

Note that the value you specify for the --template-file parameter is the name of the SAM template
that was returned by the package command. In addition, the --capabilities parameter is optional.
The AWS::Serverless::Function resource will implicitly create a role to execute the Lambda
function if one is not specified in the template. You use the --capabilities parameter to explicitly
acknowledge that AWS CloudFormation is allowed to create roles on your behalf.

When you run the aws cloudformation deploy command, it creates an AWS CloudFormation
ChangeSet, which is a list of changes to the AWS CloudFormation stack, and then deploys it. Some
stack templates might include resources that can affect permissions in your AWS account, for example,
by creating new AWS Identity and Access Management (IAM) users. For those stacks, you must
explicitly acknowledge their capabilities by specifying the --capabilities parameter. For more
information, see CreateChangeSet in the AWS CloudFormation API Reference.

To verify your results, open the AWS CloudFormation console to view the newly created AWS
CloudFormation stack and the Lambda console to view your function.

For a list of complete serverless application examples, see Examples of How to Use AWS
Lambda (p. 175).

Exporting a Serverless Application

You can export a serverless application and re-deploy it to, for example, a different AWS region
or development stage, using the Lambda console. When you export a Lambda function, you will
be provided with a ZIP deployment package and a SAM template that represents your serverless
application. You can then use the package and deploy commands described in the previous section
for re-deployment.

You can also select one of Lambda blueprints to create a ZIP package for you to package and deploy.
Follow the steps below to do this:

To export a serverless application using the Lambda console

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Do any of the following:

• Create a function using a Lambda blueprint – Choose a blueprint and follow the steps
to create a Lambda function. For an example, see Step 2.1: Create a Hello World Lambda
Function (p. 164). When you reach the Review page, choose Export function.

• Create a function – Choose Create function, and then create your function. After your Lambda
function is created, you can export it by selecting the function. Choose Actions, then choose
Export function.

• Open an existing Lambda function – Open the function by choosing the Function name,
choose Actions, choose Export function.

3. In the Export your function window, you have the following options:

• Choose Download AWS SAM file, which defines the Lambda function and other resources that
comprise your serverless application.

• Choose Download deployment package, which contains your Lambda function code and any
dependent libraries.

Use the AWS SAM file and the ZIP deployment package and follow the steps in Packaging and
Deployment (p. 145) to re-deploy the serverless application.

146

http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_CreateChangeSet.html
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

AWS Lambda Developer Guide
Automating Deployment of Lambda-based Applications

Automating Deployment of Lambda-based
Applications

In the previous section, you learned how to create a SAM template, generate your deployment
package, and use the AWS CLI to manually deploy your serverless application. In this section, you will
leverage the following AWS services to fully automate the deployment process.

• CodePipeline: You use CodePipeline to model, visualize, and automate the steps required to
release your serverless application. For more information, see What is AWS CodePipeline?

• CodeBuild: You use CodeBuild to build, locally test, and package your serverless application. For
more information, see What is AWS CodeBuild?

• AWS CloudFormation: You use AWS CloudFormation to deploy your application. For more
information, see What is AWS CloudFormation?

Building a Pipeline for Your Serverless Application

In the following tutorial, you will create an AWS CodePipeline that automates the deployment of your
serverless application. First, you will need to set up a source stage to trigger your pipeline. For the
purposes of this tutorial:

• We will use GitHub. For instructions on how to create a GitHub repository, see Create a Repository
in GitHub.

• You will need to create an AWS CloudFormation role and add the
AWSLambdaBasicExecutionRole policy to that role, as outlined below:

1. Sign in to the Identity and Access Management (IAM) console at https://
console.aws.amazon.com/iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example,
cloudformation-lambda-execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS CloudFormation.
This grants the AWS CloudFormation service permissions to assume the role.

• In Attach Policy, choose AWSLambdaBasicExecutionRole. The permissions in this policy
are sufficient for the Lambda function in this tutorial.

Step 1: Set Up Your Repository

To set up your repository, do the following:

• Add an index.js file containing the code below:

var time = require('time');
exports.handler = (event, context, callback) => {
 var currentTime = new time.Date();
 currentTime.setTimezone("America/Los_Angeles");
 callback(null, {
 statusCode: '200',
 body: 'The time in Los Angeles is: ' + currentTime.toString(),
 });

147

http://docs.aws.amazon.com/codepipeline/latest/APIReference/
http://docs.aws.amazon.com/codebuild/latest/userguide/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://help.github.com/articles/create-a-repo/
https://help.github.com/articles/create-a-repo/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Automating Deployment of Lambda-based Applications

};

• Add a SAM_template.yaml file, containing the content below. This is the SAM template that defines
the resources in your application. This SAM template defines a Lambda function that is triggered by
API Gateway. For more information about AWS SAM see AWS Serverless Application Model.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: Outputs the time
Resources:
 TimeFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 Events:
 MyTimeApi:
 Type: Api
 Properties:
 Path: /TimeResource
 Method: GET

• Add a buildspec.yaml file. A build spec is a collection of build commands and related settings, in
YAML format, that AWS CodeBuild uses to run a build. For more information, see Build Specification
Reference for AWS CodeBuild. In this example, the build action will be:

• Use npm to install the time package.

• Running the Package command to prepare your deployment package for subsequent deployment
steps in your pipeline. For more information on the package command, see Uploading Local
Artifacts to an S3 Bucket

version: 0.1
phases:
 install:
 commands:
 - npm install time
 - aws cloudformation package
 --template-file samTemplate.yaml \
 --s3-bucket bucket-name \
 --output-template-file NewSamTemplate.yaml
artifacts:
 type: zip
 files:
 - NewSamTemplate.yaml

Note that you need to supply the --s3-bucket parameter value with the name of the your
Amazon S3 bucket, similar to the step you would take if you were manually going to package the
deployment package with SAM, as discussed in the Packaging (p. 145) step of the previous
tutorial.

Step 2: Create Your Pipeline

Follow the steps below to create your AWS CodePipeline.

148

https://github.com/awslabs/serverless-application-model
http://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
http://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-cli-package.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-cli-package.html

AWS Lambda Developer Guide
Automating Deployment of Lambda-based Applications

1. Sign in to the AWS Management Console and open the AWS CodePipeline console.

2. Choose Get Started Now.

3. In Pipeline name: enter a name for your pipeline and then choose Next step.

4. In Source provider: choose GitHub.

5. Choose Connect to GitHub: and then choose the Repository and Branch you want to connect
to. Every git push to the branch you select will trigger your pipeline. Choose Next step.

6. Choose AWS CodeBuild as your Build provider.

7. Choose Create a new build project and enter a project name.

8. Choose Ubuntu as the operating system.

9. Choose Node.js as the runtime.

10. In Version choose aws/codebuild/nodejs:4.3.2

11. Choose Save build project.

Note
A service role for AWS CodeBuild will automatically be created on your behalf.

Choose Next step.

12. In Deployment provider: choose AWS CloudFormation.

By selecting this option, AWS CloudFormation commands will be used to deploy the SAM
template. For more information see Serverless Resources Within AWS CloudFormation (p. 139).

13. In Action mode: choose create or replace a change set.

14. In Stack name: enter MyBetaStack.

15. In Change set name: enter MyChangeSet.

16. In Template file: enter NewSamTemplate.yaml.

17. In Capabilities: choose CAPABILITY_IAM.

18. In Role select the AWS CloudFormation role you created at the beginning of this tutorial and then
choose Next step.

19. Choose Create role. Choose Next and then choose Allow. Choose Next step.

20. Review your pipeline and then choose Create pipeline.

Step 3: Complete Your Beta Deployment Stage

Follow the steps below to complete your Beta stage.

1. Choose Edit.

2. Choose the

icon for your beta stage.

3. In the beta stage, choose the

icon that is located below your existing action.

4. In Category: choose Deploy.

5. In Action: enter execute_cs.

6. In Deployment provider: choose AWS CloudFormation.

7. In Action mode: choose execute a changeset. This is similar to the step you would take if
you were manually going to deploy the package, as discussed in the Deployment (p. 145)
step of the previous tutorial. CreateChangeSet transforms the SAM template to the full AWS
CloudFormation format and deployChangeSet deploys the AWS CloudFormation template.

149

AWS Lambda Developer Guide
Automating Deployment of Lambda-based Applications

8. In Stack name: enter MyBetaStack.

9. In Change set name: enter MyChangeSet.

10. Choose Add action.

11. Choose Save pipeline changes.

12. Choose Save and continue.

Your pipeline is ready. Any git push to the branch you connected to this pipeline is going to trigger a
deployment. To test your pipeline and deploy your application for the first time, do one of the following:

• Perform a git push to the branch connected to your pipeline.

• Go the AWS CodePipeline console, choose the name of the pipeline you created and then choose
Release change.

150

AWS Lambda Developer Guide
How Does AWS Lambda Run

My Code? The Container Model

AWS Lambda: How It Works

How Does AWS Lambda Run My Code? The
Container Model

When AWS Lambda executes your Lambda function on your behalf, it takes care of provisioning
and managing resources needed to run your Lambda function. When you create a Lambda function,
you specify configuration information, such as the amount of memory and maximum execution time
that you want to allow for your Lambda function. When a Lambda function is invoked, AWS Lambda
launches a container (that is, an execution environment) based on the configuration settings you
provided.

Note
The content of this section is for information only. AWS Lambda manages container creations
and deletion, there is no AWS Lambda API for you to manage containers.

It takes time to set up a container and do the necessary bootstrapping, which adds some latency each
time the Lambda function is invoked. You typically see this latency when a Lambda function is invoked
for the first time or after it has been updated because AWS Lambda tries to reuse the container for
subsequent invocations of the Lambda function.

After a Lambda function is executed, AWS Lambda maintains the container for some time in
anticipation of another Lambda function invocation. In effect, the service freezes the container after a
Lambda function completes, and thaws the container for reuse, if AWS Lambda chooses to reuse the
container when the Lambda function is invoked again. This container reuse approach has the following
implications:

• Any declarations in your Lambda function code (outside the handler code, see Programming
Model (p. 8)) remains initialized, providing additional optimization when the function is invoked again.
For example, if your Lambda function establishes a database connection, instead of reestablishing
the connection, the original connection is used in subsequent invocations. You can add logic in your
code to check if a connection already exists before creating one.

• Each container provides some disk space in the /tmp directory. The directory content remains when
the container is frozen, providing transient cache that can be used for multiple invocations. You can

151

AWS Lambda Developer Guide
Concurrent Executions

add extra code to check if the cache has the data that you stored. For disk space size, see AWS
Lambda Limits (p. 285).

• Background processes or callbacks initiated by your Lambda function that did not complete when the
function ended resume if AWS Lambda chooses to reuse the container. You should make sure any
background processes or callbacks (in case of Node.js) in your code are complete before the code
exits.

Note
When you write your Lambda function code, do not assume that AWS Lambda always reuses
the container because AWS Lambda may choose not to reuse the container. Depending on
various other factors, AWS Lambda may simply create a new container instead of reusing an
existing container.

Lambda Function Concurrent Executions

Concurrent executions refers to the number of executions of your function code that are happening at
any given time. You can estimate the concurrent execution count, but the concurrent execution count
will differ depending on whether or not your Lambda function is processing events from a stream-based
event source.

• Stream-based event sources – If you create a Lambda function that processes events from
stream-based services (Amazon Kinesis Streams or DynamoDB streams), the number of shards per
stream is the unit of concurrency. If your stream has 100 active shards, there will be 100 Lambda
functions running concurrently. Then, each Lambda function processes events on a shard in the
order that they arrive.

• Event sources that aren't stream-based – If you create a Lambda function to process events from
event sources that aren't stream-based (for example, Amazon S3 or API Gateway), each published
event is a unit of work. Therefore, the number of events (or requests) these event sources publish
influences the concurrency.

You can use the following formula to estimate your concurrent Lambda function invocations:

events (or requests) per second * function duration

For example, consider a Lambda function that processes Amazon S3 events. Suppose that the
Lambda function takes on average three seconds and Amazon S3 publishes 10 events per second.
Then, you will have 30 concurrent executions of your Lambda function.

Request Rate
Request rate refers to the rate at which your Lambda function is invoked. For all services except the
stream-based services, the request rate is the rate at which the event sources generate the events. For
stream-based services, AWS Lambda calculates the request rate as follow:

request rate = number of concurrent executions / function duration

For example, if there are five active shards on a stream (that is, you have five Lambda functions
running in parallel) and your Lambda function takes about two seconds, the request rate is 2.5
requests/second.

152

AWS Lambda Developer Guide
Concurrent Executions Safety Limit

Safety Limit

By default, AWS Lambda limits the total concurrent executions across all functions within a given
region to 100. The default limit is a safety limit that protects you from costs due to potential runaway
or recursive functions during initial development and testing. To increase this limit above the default,
follow the steps in To request a limit increase for concurrent executions (p. 153).

Any invocation that causes your function's concurrent execution to exceed the safety limit is throttled,
and does not execute your function. Each throttled invocation increases the CloudWatch Throttles
metric for the function.

The throttled invocation is handled differently based on how the function is invoked:

• Event sources that aren't stream-based – Some of these event sources invoke a Lambda function
synchronously and others invoke it asynchronously.

• Synchronous invocation – If the function is invoked synchronously and is throttled, the invoking
application receives a 429 error and the invoking application is responsible for retries. These event
sources may have additional retries built into the integration. For example, CloudWatch Logs
retries the failed batch up to five times with delays between retries. For a list of supported event
sources and the invocation types that they use, see Supported Event Sources (p. 124).

If you invoke Lambda through API Gateway, you need to make sure you map Lambda response
errors to API Gateway error codes. If you invoke the function directly, such as through the AWS
SDKs using the RequestResponse invocation mode or through API Gateway, your client receives
the 429 error and you can choose to retry the invocation.

• Asynchronous invocation – If your Lambda function is invoked asynchronously and is throttled,
AWS Lambda automatically retries the throttled event for up to six hours, with delays between
retries. Asynchronous events are queued before they are used to invoke the Lambda function.

• Stream-based event sources – For stream-based event sources (Amazon Kinesis Streams and
DynamoDB streams), AWS Lambda polls your stream and invokes your Lambda function. Therefore,
when your Lambda function is throttled, AWS Lambda attempts to process the throttled batch of
records until the time the data expires, which can be up to seven days for Amazon Kinesis Streams.
The throttled request is treated as blocking per shard and Lambda will not read any new records
from the shard until the throttled batch of records either expires or succeeds. If there is more than
one shard in the stream, Lambda will continue invokes on the non-throttled shards until one gets
through.

To request a limit increase for concurrent executions

1. Open the AWS Support Center page, sign in, if necessary, and then click Create case.

2. Under Regarding, select Service Limit Increase.

3. Under Limit Type, select Lambda, fill in the necessary fields in the form, and then click the button
at the bottom of the page for your preferred method of contact.

Note
AWS may automatically raise the concurrent execution limit on your behalf to enable your
function to match the incoming event rate, as in the case of triggering the function from an
Amazon S3 bucket.

153

https://console.aws.amazon.com/support/home#/

AWS Lambda Developer Guide
Retries on Errors

Suggested Reading

If you are new to AWS Lambda, we suggest you read through all of the topics in the How It Works
section to familiarize yourself with Lambda. The next topic is Retries on Errors (p. 154).

After you read all of the topics in the How it Works section, we recommend that you review Building
Lambda Functions (p. 5), try the Getting Started (p. 160) exercise, and then explore the Use
Cases (p. 175). Each use case provides step-by-step instructions for you to set up the end-to-end
experience.

Retries on Errors

A Lambda function can fail for any of the following reasons:

• The function times out while trying to reach an endpoint.

• The function fails to successfully parse input data.

• The function experiences resource constraints, such as out-of-memory errors or other timeouts.

If any of these failures occur, your function will throw an exception. How the exception is handled
depends upon how the Lambda function was invoked:

• Event sources that aren't stream-based – Some of these event sources are set up to invoke a
Lambda function synchronously and others invoke it asynchronously. Accordingly, exceptions are
handled as follows:

• Synchronous invocation – The invoking application receives a 429 error, and is responsible for
retries. For a list of supported event sources and the invocation types they use, see Supported
Event Sources. These event sources may have additional retries built into the integration.

If you invoked the Lambda function directly through AWS SDKs, or through API Gateway,
your client receives the error and can choose to retry. If you are invoking Lambda through API
Gateway, you need to make sure you map Lambda response errors to API Gateway error codes.

• Asynchronous invocation – Asynchronous events are queued before being used to invoke the
Lambda function. If AWS Lambda is unable to fully process the event, it will automatically retry the
invocation twice, with delays between retries. If you have specified a Dead Letter Queue for your
function, then the failed event is sent to the specified Amazon SQS queue or Amazon SNS topic. If
you don't specify a Dead Letter Queue (DLQ), which is not required and is the default setting, then
the event will be discarded. For more information, see Dead Letter Queues (p. 113).

• Stream-based event sources – For stream-based event sources (Amazon Kinesis Streams and
DynamoDB streams), AWS Lambda polls your stream and invokes your Lambda function. Therefore,
if a Lambda function fails, AWS Lambda attempts to process the erring batch of records until the
time the data expires, which can be up to seven days for Amazon Kinesis Streams. The exception
is treated as blocking, and AWS Lambda will not read any new records from the stream until the
failed batch of records either expires or processed successfully. This ensures that AWS Lambda
processes the stream events in order.

154

http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html

AWS Lambda Developer Guide
Permissions Model

For more information about invocation modes, see Event Source Mapping (p. 120).

Suggested Reading

If you are new to AWS Lambda, we suggest you read through all of the topics in the How It
Works section to familiarize yourself with Lambda. The next topic is AWS Lambda Permissions
Model (p. 155).

After you read all of the topics in the How it Works section, we recommend that you review Building
Lambda Functions (p. 5), try the Getting Started (p. 160) exercise, and then explore the Use
Cases (p. 175). Each use case provides step-by-step instructions for you to set up the end-to-end
experience.

AWS Lambda Permissions Model
For the end-to-end AWS Lambda-based applications to work, you have to manage various
permissions. For example:

• For event sources, except for the stream-based services (Amazon Kinesis Streams and DynamoDB
streams), you must grant the event source permissions to invoke your AWS Lambda function.

• For stream-based event sources (Amazon Kinesis Streams and DynamoDB streams), AWS Lambda
polls the streams on your behalf and reads new records on the stream, so you need to grant AWS
Lambda permissions for the relevant stream actions.

• When your Lambda function executes, it can access AWS resources in your account (for example,
read an object from your S3 bucket). AWS Lambda executes your Lambda function on your behalf
by assuming the role you provided at the time of creating the Lambda function. Therefore, you need
to grant the role the necessary permissions that your Lambda function needs, such as permissions
for Amazon S3 actions to read an object.

The following sections describe permissions management.

Topics

• Manage Permissions: Using an IAM Role (Execution Role) (p. 155)

• Manage Permissions: Using a Lambda Function Policy (p. 156)

Manage Permissions: Using an IAM Role (Execution
Role)
Each Lambda function has an IAM role (execution role) associated with it. You specify the IAM role
when you create your Lambda function. Permissions you grant to this role determine what AWS
Lambda can do when it assumes the role. There are two types of permissions that you grant to the IAM
role:

• If your Lambda function code accesses other AWS resources, such as to read an object from an S3
bucket or write logs to CloudWatch Logs, you need to grant permissions for relevant Amazon S3 and
CloudWatch actions to the role.

155

AWS Lambda Developer Guide
Manage Permissions: Using a Lambda Function Policy

• If the event source is stream-based (Amazon Kinesis Streams and DynamoDB streams), AWS
Lambda polls these streams on your behalf. AWS Lambda needs permissions to poll the stream and
read new records on the stream so you need to grant the relevant permissions to this role.

For more information about IAM roles, see Roles (Delegation and Federation) in the IAM User Guide.

Important
The user that creates the IAM role is, in effect, passing permissions to AWS Lambda to
assume this role, which requires the user to have permissions for the iam:PassRole
action. If an administrator user is creating this role, you don't need to do anything extra to
set up permissions for the iam:PassRole action because the administrator user has full
permissions, including the iam:PassRole action.

To simplify the process for creating an execution role, AWS Lambda provides the following AWS
managed (predefined) permissions policies that you can use. These policies include common
permissions for specific scenarios:

• AWSLambdaBasicExecutionRole – Grants permissions only for the Amazon CloudWatch Logs
actions to write logs. You can use this policy if your Lambda function does not access any other
AWS resources except writing logs.

• AWSLambdaKinesisExecutionRole – Grants permissions for Amazon Kinesis Streams actions,
and CloudWatch Logs actions. If you are writing a Lambda function to process Amazon Kinesis
stream events you can attach this permissions policy.

• AWSLambdaDynamoDBExecutionRole – Grants permissions for DynamoDB streams actions and
CloudWatch Logs actions. If you are writing a Lambda function to process DynamoDB stream events
you can attach this permissions policy.

• AWSLambdaVPCAccessExecutionRole – Grants permissions for Amazon Elastic Compute Cloud
(Amazon EC2) actions to manage elastic network interfaces (ENIs). If you are writing a Lambda
function to access resources in a VPC in the Amazon Virtual Private Cloud (Amazon VPC) service,
you can attach this permissions policy. The policy also grants permissions for CloudWatch Logs
actions to write logs.

You can find these AWS managed permissions policies in the IAM console. Search for these policies
and you can see the permissions each of these policies grant.

Manage Permissions: Using a Lambda Function
Policy
All supported event sources, except the stream-based services (Amazon Kinesis and DynamoDB
streams), invoke your Lambda function (the push model), provided the you grant the necessary
permissions. For example, if you want Amazon S3 to invoke your Lambda function when objects are
created in a bucket, Amazon S3 needs permissions to invoke your Lambda function.

You can grant these permissions via the function policies. AWS Lambda provides APIs for you to
manage permission in a function policy. For example, see AddPermission (p. 322).

You can also grant cross-account permissions using the function policy. For example, if a user-defined
application and the Lambda function it invokes belong to the same AWS account, you don't need to
grant explicit permissions. Otherwise, the AWS account that owns the Lambda function must allow
cross-account permissions in the permissions policy associated with the Lambda function.

156

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Lambda Developer Guide
Execution Environment

Note
Instead of using a Lambda function policy, you can create another IAM role that grants the
event sources (for example, Amazon S3 or DynamoDB) permissions to invoke your Lambda
function. However, you might find that resource policies are easier to set up and they make it
easier for you to track which event sources have permissions to invoke your Lambda function.

For more information about Lambda function policies, see Using Resource-Based Policies for AWS
Lambda (Lambda Function Policies) (p. 306). For more information about Lambda permissions, see
Authentication and Access Control for AWS Lambda (p. 287).

Suggested Reading

If you are new to AWS Lambda, we suggest you read through all of the topics in the How It Works
section to familiarize yourself with Lambda. The next topic is Lambda Execution Environment and
Available Libraries (p. 157).

After you read all of the topics in the How it Works section, we recommend that you review Building
Lambda Functions (p. 5), try the Getting Started (p. 160) exercise, and then explore the Use
Cases (p. 175). Each use case provides step-by-step instructions for you to set up the end-to-end
experience.

Lambda Execution Environment and Available
Libraries

The underlying AWS Lambda execution environment is based on the following:

• Public Amazon Linux AMI version (AMI name: amzn-ami-hvm-2016.03.3.x86_64-gp2):

For information about using an AMI, see Amazon Machine Images (AMI) in the Amazon EC2 User
Guide for Linux Instances.

• Linux kernel version – 4.4.23-31.54.amzn1.x86_64

If you are using any native binaries in your code, make sure they are compiled in this environment.
Note that only 64-bit binaries are supported on AWS Lambda.

AWS Lambda supports the following runtime versions:

157

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

AWS Lambda Developer Guide
Environment Variables Available to Lambda Functions

• Node.js – v0.10.36, v4.3.2 (recommended)

• Java – Java 8

• Python – Python 2.7

• .NET Core – .NET Core 1.0.1 (C#)

The following libraries are available in the AWS Lambda execution environment, regardless of the
supported runtime you use, so you don't need to include them:

AWS SDK – AWS SDK for JavaScript version 2.6.9

The following libraries are available in the AWS Lambda execution environment so you don't need to
include them:

• AWS SDK for Python (Boto 3) version 1.4.1, Botocore version 1.4.61

• Amazon Linux build of java-1.8.0-openjdk for Java.

Environment Variables Available to Lambda
Functions
The following is a list of environment variables that are part of the AWS Lambda execution environment
and made available to Lambda functions. The table below indicates which ones are reserved by AWS
Lambda and cannot be changed as well as which ones you can set when creating your Lambda
function. For more information on using environment variables with your Lambda function, see
Environment Variables (p. 89).

Lambda Environment Variables

Key Reserved Value

LAMBDA_TASK_ROOT Yes Contains the path to your Lambda
function code.

LAMBDA_RUNTIME_DIR Yes Restricted to Lambda runtime-
related artifacts. For example the
aws-sdk for Node.js and boto3 for
Python can be found under this path.

AWS_REGION Yes The AWS region where the Lambda
function is executed.

AWS_DEFAULT_REGION Yes The AWS region where the Lambda
function is executed.

AWS_LAMBDA_LOG_GROUP_NAMEYes The name of Amazon CloudWatch
Logs group where log streams
containing your Lambda function
logs are created.

AWS_LAMBDA_LOG_STREAM_NAMEYes The Amazon CloudWatch Logs
streams containing your Lambda
function logs.

AWS_LAMBDA_FUNCTION_NAME Yes The name of the Lambda function.

AWS_LAMBDA_FUNCTION_MEMORY_SIZEYes The size of the Lambda function in
MB.

158

http://docs.aws.amazon.com/AWSJavaScriptSDK/guide/

AWS Lambda Developer Guide
Environment Variables Available to Lambda Functions

Key Reserved Value

AWS_LAMBDA_FUNCTION_VERSIONYes The version of the Lambda function.

AWS_ACCESS_KEY

AWS__ACCESS_KEY_ID

AWS_SECRET__KEY

AWS_SECRET_ACCESS_KEY

AWS_SESSION_TOKEN

AWS_SECURITY_TOKEN

Yes The security credentials required
to execute the Lambda function,
depending on which runtime is used.
Different runtimes use a subset of
these keys. They are generated via
an IAM execution role specified for
the function.

PATH No Contains /usr/local/bin, /usr/bin or /
bin for running executables.

LANG No Set to en_US.UTF-8. This is the
Locale of the runtime.

LD_LIBRARY_PATH No Contains /lib64, /usr/lib64,
LAMBDA_TASK_ROOT,
LAMBDA_TASK_ROOT/lib. Used
to store helper libraries and function
code.

NODE_PATH No Set for the Node.js runtime. It
contains LAMBDA_RUNTIME_DIR,
LAMBDA_RUNTIME_DIR/
node_modules,
LAMBDA_TASK_ROOT.

PYTHON_PATH No Set for the Python runtime. It
contains LAMBDA_RUNTIME_DIR.

Suggested Reading

If you are new to AWS Lambda, we suggest you read through all of the topics in the How It Works
section to familiarize yourself with Lambda, starting with How It Works (p. 151).

After you read all of the topics in the How it Works section, we recommend that you review Building
Lambda Functions (p. 5), try the Getting Started (p. 160) exercise, and then explore the Use
Cases (p. 175). Each use case provides step-by-step instructions for you to set up the end-to-end
experience.

159

AWS Lambda Developer Guide
Step 1: Set Up an AWS Account and the AWS CLI

Getting Started

In this Getting Started section, you do the following:

• Set up an AWS account and AWS Command Line Interface (AWS CLI). Most tutorials use the AWS
CLI commands.

• Create and test a simple Hello World Lambda function.

To get started, complete the steps in the following topics:

Topics

• Step 1: Set Up an AWS Account and the AWS CLI (p. 160)

• Step 2: Create a HelloWorld Lambda Function and Explore the Console (p. 164)

• Step 3: Create a Simple Microservice using Lambda and API Gateway (p. 171)

Step 1: Set Up an AWS Account and the AWS
CLI

If you have not already done so, you need to sign up for an AWS account and create an administrator
user in the account. You also need to set up the AWS Command Line Interface (AWS CLI). Many of
the tutorials use the AWS CLI.

To complete the setup, follow the instructions in the following topics:

Topics

• Step 1.1: Set Up an AWS Account and Create an Administrator User (p. 160)

• Step 1.2: Set Up the AWS Command Line Interface (AWS CLI) (p. 163)

Step 1.1: Set Up an AWS Account and Create an
Administrator User
Before you use AWS Lambda for the first time, complete the following tasks:

160

AWS Lambda Developer Guide
Step 1.1: Set Up an Account

1. Sign up for AWS (p. 161)

2. Create an IAM User (p. 161)

Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for
all services in AWS, including AWS Lambda. You are charged only for the services that you use.

With AWS Lambda, you pay only for the resources you use. For more information about AWS Lambda
usage rates, see the AWS Lambda product page. If you are a new AWS customer, you can get started
with AWS Lambda for free. For more information, see AWS Free Usage Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Note your AWS account ID, because you'll need it for the next task.

Create an IAM User

Services in AWS, such as AWS Lambda, require that you provide credentials when you access
them, so that the service can determine whether you have permissions to access the resources
owned by that service. The console requires your password. You can create access keys for your
AWS account to access the AWS CLI or API. However, we don't recommend that you access AWS
using the credentials for your AWS account. Instead, we recommend that you use AWS Identity and
Access Management (IAM). Create an IAM user, add the user to an IAM group with administrative
permissions, and then grant administrative permissions to the IAM user that you created. You can then
access AWS using a special URL and that IAM user's credentials.

If you signed up for AWS, but you haven't created an IAM user for yourself, you can create one using
the IAM console.

The Getting Started exercises and tutorials in this guide assume you have a user (adminuser) with
administrator privileges. When you follow the procedure, create a user with name adminuser.

To create an IAM user for yourself and add the user to an Administrators group

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane, choose Users, and then choose Add user.

3. For User name, type a user name, such as Administrator. The name can consist of letters,
digits, and the following characters: plus (+), equal (=), comma (,), period (.), at (@), underscore
(_), and hyphen (-). The name is not case sensitive and can be a maximum of 64 characters in
length.

4. Select the check box next to AWS Management Console access, select Custom password,
and then type the new user's password in the text box. You can optionally select Require
password reset to force the user to select a new password the next time the user signs in.

161

https://aws.amazon.com/lambda/
https://aws.amazon.com/free/
https://aws.amazon.com/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Lambda Developer Guide
Step 1.1: Set Up an Account

5. Choose Next: Permissions.

6. On the Set permissions for user page, choose Add user to group.

7. Choose Create group.

8. In the Create group dialog box, type the name for the new group. The name can consist of letters,
digits, and the following characters: plus (+), equal (=), comma (,), period (.), at (@), underscore
(_), and hyphen (-). The name is not case sensitive and can be a maximum of 128 characters in
length.

9. For Filter, choose Job function.

10. In the policy list, select the check box for AdministratorAccess. Then choose Create group.

11. Back in the list of groups, select the check box for your new group. Choose Refresh if necessary
to see the group in the list.

12. Choose Next: Review to see the list of group memberships to be added to the new user. When
you are ready to proceed, choose Add permissions.

You can use this same process to create more groups and users, and to give your users access to
your AWS account resources. To learn about using policies to restrict users' permissions to specific
AWS resources, go to Access Management and Example Policies for Administering AWS Resources.

To sign in as the new IAM user

1. Sign out of the AWS Management Console.

2. Use the following URL format to log in to the console:

https://aws_account_number.signin.aws.amazon.com/console/

The aws_account_number is your AWS account ID without hyphen. For example, if your AWS
account ID is 1234-5678-9012, your AWS account number is 123456789012. For information
about how to find your account number, see Your AWS Account ID and Its Alias in the IAM User
Guide.

3. Enter the IAM user name and password that you just created. When you're signed in, the
navigation bar displays your_user_name @ your_aws_account_id.

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an
account alias.

To create or remove an account alias

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. On the navigation pane, choose Dashboard.

3. Find the IAM users sign-in link.

4. To create the alias, click Customize, enter the name you want to use for your alias, and then
choose Yes, Create.

5. To remove the alias, choose Customize, and then choose Yes, Delete. The sign-in URL reverts
to using your AWS account ID.

To sign in after you create an account alias, use the following URL:

https://your_account_alias.signin.aws.amazon.com/console/

162

http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Lambda Developer Guide
Step 1.2: Set Up the AWS CLI

To verify the sign-in link for IAM users for your account, open the IAM console and check under IAM
users sign-in link: on the dashboard.

For more information about IAM, see the following:

• Identity and Access Management (IAM)

• Getting Started

• IAM User Guide

Next Step

Step 1.2: Set Up the AWS Command Line Interface (AWS CLI) (p. 163)

Step 1.2: Set Up the AWS Command Line Interface
(AWS CLI)
All the exercises in this guide assume that you are using administrator user credentials (adminuser) in
your account to perform the operations. For instructions on creating an administrator user in your AWS
account, see Step 1.1: Set Up an AWS Account and Create an Administrator User (p. 160), and then
follow the steps to download and configure the AWS Command Line Interface (AWS CLI).

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide.

• Getting Set Up with the AWS Command Line Interface

• Configuring the AWS Command Line Interface

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

3. Verify the setup by entering the following commands at the command prompt.

• Try the help command to verify that the AWS CLI is installed on your computer:

aws help

• Try a Lambda command to verify the user can reach AWS Lambda. This command lists Lambda
functions in the account, if any. The AWS CLI uses the adminuser credentials to authenticate
the request.

aws lambda list-functions --profile adminuser

Now that you have set up an account and AWS CLI, you can create your first Lambda function. For
instructions, see Step 2: Create a HelloWorld Lambda Function and Explore the Console (p. 164).

163

https://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Lambda Developer Guide
Step 2: Create a HelloWorld Lambda

Function and Explore the Console

Step 2: Create a HelloWorld Lambda Function
and Explore the Console

In this Getting Started exercise you first create a Hello World Lambda function using the AWS Lambda
console. Next, you manually invoke the Lambda function using a sample event data. AWS Lambda
executes the Lambda function and returns results. You then verify execution results, including the logs
that your Lambda function created and various CloudWatch metrics.

As you follow the steps, you will also familiarize yourself with the AWS Lambda console including:

• Explore the blueprints. Each blueprint provides sample code and sample configurations that enable
you to create Lambda functions with just a few clicks. The Getting Started exercise uses the hello-
world-python blueprint.

• View and update configuration information of your Lambda function.

• Invoke a Lambda function manually and explore results in the Execution results section.

• Monitor CloudWatch metrics in the console.

Although not required, we recommend you review How It Works (p. 151) first.

Preparing for the Getting Started
First, you need to sign up for an AWS account and create an administrator user in your account. For
instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Next Step

Step 2.1: Create a Hello World Lambda Function (p. 164)

Step 2.1: Create a Hello World Lambda Function
Follow the steps in this section to create a Hello World Lambda function. In this step, you will do the
following:

• Select a blueprint – For this exercise, you use the hello-world-python blueprint. It provides sample
code authored in Python. The language used for the Lambda function does not matter for this
exercise. Later you can create your own Lambda functions in any of the supported languages.

Blueprints provide example code to do some minimal processing. Most blueprints process events
from specific event sources, such as Amazon S3, DynamoDB, or custom application. For example,
if you select an s3-get-object blueprint, it provides sample code that processes an object-created
event published by Amazon S3 that Lambda receives as parameter.

• Configure function – Because you select a blueprint for this exercise, the console will have some
of the configuration information prepopulated. For example, it preconfigures Python 2.7 as the
runtime, provides example code, identifies the handler in the code sample, and other configuration
information such as memory and timeout. For more information about configuring functions, see
Lambda Functions (p. 3). For more information about the function configuration parameters, see
CreateFunction (p. 332).

You will also create an IAM role (referred as the execution role) with the necessary permissions that
AWS Lambda can assume to invoke your Lambda function on your behalf.

164

AWS Lambda Developer Guide
Step 2.1: Create a Hello World Lambda Function

To create a Hello World Lambda function

1. Sign in to the AWS Management Console and open the AWS Lambda console.

2. Choose Get Started Now.

Note
The console shows the Get Started Now page only if you do not have any Lambda
functions created. If you have created functions already, you will see the Lambda >
Functions page. On the list page, choose Create a Lambda function to go to the
Lambda > New function page.

3. On the Select blueprint page, first explore the available blueprints. Then, select a specific
blueprint for this Getting Started exercise.

a. Review the blueprints. You can also use the Filter to search for specific blueprints. For
example:

• Enter S3 in Filter to get only the list of blueprints available to process Amazon S3 events.

• Enter dynamodb in Filter to get a list of available blueprints to process Amazon DynamoDB
events.

b. For this Getting Started exercise, enter hello-world-python in Filter, and then choose the
hello-world-python blueprint.

4. On the Configure triggers page, you can optionally choose a service that automatically triggers
your Lambda function by choosing the gray box with ellipses (...) to display a list of available
services.

a. Depending on which service you select, you are prompted to provide relevant information for
that service. For example, if you select DynamoDB, you need to provide the following:

• The name of the DynamoDB table

• Batch size

• Starting position

b. For this Getting Started exercise, do not configure a trigger and choose Next.

5. On the Configure function page, do the following:

a. Review the preconfigured Lambda function configuration information, including:

• Runtime is Python 2.7.

• Code authored in Python is provided. It reads incoming event data and logs some of the
information to CloudWatch.

• Handler shows lambda_function.lambda_handler value. It is the
filename.handler-function. The console saves the sample code in the

165

AWS Lambda Developer Guide
Step 2.1: Create a Hello World Lambda Function

lambda_function.py file and in the code lambda_handler is the function name
that receives the event as a parameter when the Lambda function is invoked. For more
information, see Lambda Function Handler (Python) (p. 39).

b. Enter the function name hello-world-python in Name.

c. In the Lambda Function Code section, do the following:

• Review the sample code. Note that:

• The console saves this code as lambda_handler.py. The console then zips the file,
and uploads it to AWS Lambda creating your Lambda function.

• The sample code processes incoming events of the following form:

{
 "key3": "value3",
 "key2": "value2",
 "key1": "value1"
}

After creating the Lambda function, you invoke it using sample events of this form in
the next section.

d. In the Lambda function handler and role section, do the following:

i. Note the Handler* value. It is of the form python-file-name.handler-function.

ii. In Role*, choose Create new role from template(s).

iii. In Role name, type a name for the role.

iv. In Role templates, Lambda provides a list of optional templates that, should you select
one, automatically creates the role with the requisite permissions attached to that policy.
For a list of the Policy templates, see Policy Templates (p. 311). For the purpose of
this tutorial, you can leave this field blank because your Lambda function already has the
basic execution permission it needs.

Note
Optionally, you could select Choose an existing role if you already have a role
created with specific permissions beyond basic execution. You can also select
Create a custom role. When you choose this option, a window appears where you
can edit the permissions policy inline.

e. In the Advanced settings section, leave the default Lambda function configuration values.

The memory and timeout values are sufficient for the Lambda function you are creating.
These configurations influence the performance of your code. For more information, see
Lambda Functions (p. 3).

f. Choose Next.

g.
Choose Create Function to create a Lambda function.

The console saves the code into a file and then zips the file, which is the deployment
package. The console then uploads the deployment package to AWS Lambda creating your
Lambda function. The console shows the hello-world-python Lambda function, you can now
perform various action including test the function:

166

AWS Lambda Developer Guide
Step 2.2: Invoke the Lambda Function

Note the tabs in the console:

• Code – Shows the Lambda function code.

• Configuration – shows current function configuration and you can change the configuration
as needed. After you change any configuration settings, you choose Save to save the
updated configuration.

• Triggers – Shows any triggers you configured for this function (does not apply to this
Getting Started exercise).

• Monitoring – Provides various CloudWatch metrics for your Lambda function. In the next
section, you invoke your hello-world-python Lambda function and review these metrics.

Next Step

Step 2.2: Invoke the Lambda Function Manually and Verify Results, Logs, and Metrics (p. 167)

Step 2.2: Invoke the Lambda Function Manually and
Verify Results, Logs, and Metrics
Follow the steps to invoke your Lambda function using the sample event data provided in the console.

1. On the Lambda > Functions > HelloWorld page, choose Test.

2. In the Input test event page, choose Hello World from the Sample event template list. The
following sample event template appears in the window.

{
 "key3": "value3",
 "key2": "value2",
 "key1": "value1"
}

167

AWS Lambda Developer Guide
Step 2.2: Invoke the Lambda Function

You can change key and values in the sample JSON, but don't change the event structure. If you
do change any keys and values, you must update the sample code accordingly. Choose Save and
test.

3. AWS Lambda executes your function on your behalf. The handler in your Lambda function
receives and then processes the sample event.

4. Upon successful execution, view results in the console.

Note the following:

• The Execution result section shows the execution status as succeeded and also shows the
function execution results, returned by the return statement.

Note
The console always uses the RequestResponse invocation type (synchronous
invocation) when invoking a Lambda function which causes AWS Lambda to return a
response immediately. For more information, see Invocation Types (p. 4).

• The Summary section shows the key information reported in the Log output section (the
REPORT line in the execution log).

• The Log output section shows the log AWS Lambda generates for each execution. These are
the logs written to CloudWatch by the Lambda function. The AWS Lambda console shows these
logs for your convenience.

Note that the Click here link shows logs in the CloudWatch console. The function then adds logs
to Amazon CloudWatch in the log group that corresponds to the Lambda function.

5. Run the Lambda function a few times to gather some metrics that you can view in the next step.

6. Choose the Monitoring tab to view the CloudWatch metrics for your Lambda function. This page
shows four CloudWatch metrics.

168

AWS Lambda Developer Guide
Step 2.3: (Optional) Create a

Lambda Function Authored in Java

Note the following:

• The X-axis shows the past 24 hours from the current time (for example, 2:00 pm as shown in the
screen shot).

• Invocation count shows the number of invocations during this interval.

• Invocation duration shows how long it took for your Lambda function to run. It shows minimum,
maximum, and average time of execution.

• Invocation errors show the number of times your Lambda function failed. You can compare the
number of times your function executed and how many times it failed (if any).

• Throttled invocation metrics show whether AWS Lambda throttled your Lambda function
invocation. For more information, see List of AWS Lambda Limits (p. 285).

• The AWS Lambda console shows these CloudWatch metrics for your convenience. You can see
these metrics in the Amazon CloudWatch console by clicking any of these metrics.

Next Step

Step 2.3: (Optional) Create a Lambda Function Authored in Java (p. 169)

Step 2.3: (Optional) Create a Lambda Function
Authored in Java
The blueprints provide sample code authored either in Python or Node.js. You can easily modify the
example using the inline editor in the console. However, if you want to author code for your Lambda
function in Java, there are no blueprints provided. Also, there is no inline editor for you to write Java
code in the AWS Lambda console.

That means, you must write your Java code and also create your deployment package outside the
console. After you create the deployment package, you can use the console to upload the package
to AWS Lambda to create your Lambda function. You can also use the console to test the function by
manually invoking it.

In this section you create a Lambda function using the following Java code example.

package example;

import com.amazonaws.services.lambda.runtime.Context;

169

AWS Lambda Developer Guide
Step 2.4: (Optional) Create a

Lambda Function Authored in C#

import com.amazonaws.services.lambda.runtime.LambdaLogger;

public class Hello {
 public String myHandler(int myCount, Context context) {
 LambdaLogger logger = context.getLogger();
 logger.log("received : " + myCount);
 return String.valueOf(myCount);
 }
}

The programming model explains how to write your Java code in detail, for example the input/output
types AWS Lambda supports. For more information about the programming model, see Programming
Model for Authoring Lambda Functions in Java (p. 21). For now, note the following about this code:

• When you package and upload this code to create your Lambda function, you specify the
example.Hello::myHandler method reference as the handler.

• The handler in this example uses the int type for input and the String type for output.

AWS Lambda supports input/output of JSON-serializable types and InputStream/OutputStream
types. When you invoke this function you will pass a sample int (for example, 123).

• In this exercise you use the console to manually invoke this Lambda function. The console always
uses the RequestResponse invocation type (synchronous) and therefore you will see the response
in the console.

• The handler includes the optional Context parameter. In the code we use the LambdaLogger
provided by the Context object to write log entries to CloudWatch logs. For information about using
the Context object, see The Context Object (Java) (p. 32).

First, you need to package this code and any dependencies into a deployment package. Then, you can
use the Getting Started exercise to upload the package to create your Lambda function and test using
the console.

Next Step

Step 2.4: (Optional) Create a Lambda Function Authored in C# (p. 170)

Step 2.4: (Optional) Create a Lambda Function
Authored in C#
The AWS Lambda console blueprints provide sample code authored either in Python or Node.js. You
can easily modify the example using the inline editor in the console. However, if you want to author
code for your Lambda function in C#, there are no blueprints provided. Also, there is no inline editor for
you to write C# code in the AWS Lambda console.

While the Lambda console does not offer editing for compiled languages such as Java and C#, you
can use your choice of IDEs, such as Visual Studio, to create and package your C# code and libraries.
Once packaged as a ZIP file, you can use the AWS Lambda console to upload and test C# Lambda
functions and to view logs and metrics for them.

In this section you create a Lambda function using the following C# code example.

using Amazon.Lambda.Core;
namespace LambdaFunctionExample{
public class Hello {

170

AWS Lambda Developer Guide
Step 3: Create a Simple Microservice

using Lambda and API Gateway

 public string MyHandler(int count, ILambdaContext context) {
 var logger = context.Logger;
 logger.log("received : " + count);
 return count.ToString();
 }
 }
}

Your Lambda function handler signature should be of the format
Assembly::Namespace.ClassName::MethodName. The programming model explains how to
write your C# code in detail, for example the input/output types AWS Lambda supports. For more
information about the programming model, see Programming Model for Authoring Lambda Functions in
C# (p. 46). For now, note the following about this code:

• The handler in this example uses the int type for input and the string type for output.

When you invoke this function you will pass a sample int (for example, 123).

• In this exercise you use the console to manually test this Lambda function. The console always uses
the RequestResponse invocation type (synchronous) and therefore you will see the response in the
console.

• The handler includes the optional ILambdaContext parameter. In the code we use the
LambdaLogger provided by the Amazon.Lambda.Core.LambdaLogger object to write log entries
to CloudWatch logs. For information about using the ILambdaContext object, see The Context
Object (C#) (p. 51).

First, you need to package this code and any dependencies into a deployment package. Then, you can
use the Getting Started exercise to upload the package to create your Lambda function and test using
the console. For more information, see Creating a Deployment Package (C#) (p. 57).

Next Step

Step 3: Create a Simple Microservice using Lambda and API Gateway (p. 171)

Step 3: Create a Simple Microservice using
Lambda and API Gateway

In this exercise you will use the Lambda console to create a Lambda function
(MyLambdaMicroservice), and an Amazon API Gateway endpoint to trigger that function. You will
be able to call the endpoint with any method (GET, POST, PATCH, etc.) to trigger your Lambda function.
When the endpoint is called, the entire request will be passed through to your Lambda function. Your
function action will depend on the method you call your endpoint with:

• DELETE: delete an item from a DynamoDB table

• GET: scan table and return all items

• POST: Create an item

• PUT: Update an item

Next Step
Step 3.1: Create an API Using Amazon API Gateway (p. 172)

171

AWS Lambda Developer Guide
Step 3.1: Create an API Using Amazon API Gateway

Step 3.1: Create an API Using Amazon API
Gateway
Follow the steps in this section to create a new Lambda function an API Gateway endpoint to trigger it:

1. Sign in to the AWS Management Console and open the AWS Lambda console.

2. Choose Create Lambda function.

3. On the Select blueprint page, choose the microservice-http-endpoint blueprint. You can use the
Filter to find it.

4. The Configure triggers page will be populated with an API Gateway trigger. The default API name
that will be created is LambdaMicroservice (You can change this name via the API Name field if
you wish).

Note
When you complete the wizard and create your function, Lambda automatically creates
a proxy resource named MyLambdaMicroservice (your function name) under the API
name you selected. For more information about proxy resources, see Configure Proxy
Integration for a Proxy Resource. A proxy resource has an AWS_PROXY integration type
and a catch-all method ANY. The AWS_PROXY integration type applies a default mapping
template to pass through the entire request to the Lambda function and transforms the
output from the Lambda function to HTTP responses. The ANY method defines the same
integration setup for all the supported methods, including GET, POST, PATCH, DELETE and
others.

After reviewing your trigger, choose Next.

5. On the Configure function page, do the following:

a. Review the preconfigured Lambda function configuration information, including:

• Runtime is Node.js 4.3

• Code authored in JavaScript is provided. The code performs DynamoDB operations based on
the method called and payload provided.

• Handler shows index.handler. The format is: filename.handler-function

b. Enter the function name MyLambdaMicroservice in Name.

c. In Role, enter a role name for the new role that will be created.

Note
The microservice-http-endpoint blueprint pre-populates the Simple Microservice
permission policy template in the Policy templates field, to be added to your new role
upon creation. This automatically adds the requisite permissions attached to that policy
to your new role. For more information, see Policy Templates (p. 311).

6. Choose Create function.

Next Step

Step 3.2: Test Sending an HTTPS Request (p. 172)

Step 3.2: Test Sending an HTTPS Request
In this step, you will use the console to test the Lambda function. In addition, you can run a curl
command to test the end-to-end experience. That is, send an HTTPS request to your API method and
have Amazon API Gateway invoke your Lambda function.

1. With your MyLambdaMicroService function still open in the console, choose the Actions tab and
then choose Configure test event.

172

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html

AWS Lambda Developer Guide
Step 3.3: (Optional) Try Other Blueprints

2. Replace the existing text with the following:

{
 "httpMethod": "GET",
 "queryStringParameters": {
 "TableName": "MyTable"
 }
}

3. After entering the text above choose Save and test.

To test your microservice end-to-end, you will need to create a DynamoDB table, copy your newly
created API Gateway endpoint, and invoke it using a curl command. To do this:

• Open a new window or tab and go to the DynamoDB console and create a new table called
MyTable.

• Go to the Lambda console and choose your Lambda function. Choose the Triggers tab
and then copy the endpoint that appears under your API Gateway trigger (for example,
https://someid.execute-api-region-amazon.aws.com/prod/your_function_name.

• Run the following command to send an HTTPS POST method to your API endpoint:

curl endpoint?TableName=TableName

Next Step

Step 3.3: (Optional) Try Other Blueprints (p. 173)

Step 3.3: (Optional) Try Other Blueprints
You can optionally try the following exercises:

• You used the hello-world-python blueprint in this Getting Started exercise. This blueprint provides
sample code authored in Python. There is also the hello-world blueprint that provides similar
Lambda function code that is authored in Node.js.

• Both the hello-world-python and the hello-world blueprints process custom events. For this
Getting Started exercise, you used hand-crafted sample event data. Your can write Lambda
functions to process events published by event sources such as Amazon S3 and DynamoDB. This
requires event source configuration in the console.

For example, you can write a Lambda function to process Amazon S3 events. Then, you configure
Amazon S3 as the event source to publish object-created events to AWS Lambda. When you upload
an object to your bucket, Amazon S3 detects the event and invokes your Lambda function. Your
Lambda function receives the event data as a parameter. You can verify your Lambda function
executed by reviewing the CloudWatch logs either in the Lambda console or the CloudWatch
console.

The Lambda console provide blueprint to set up an example Lambda function to process Amazon S3
events. When creating a Lambda function in the console on the Select blueprint page, enter s3 in
the Filter box to search for a list of available blueprints.

For more information about working with different event sources, see Use Cases (p. 175).

Next Step

What's Next? (p. 174)

173

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/lambda/

AWS Lambda Developer Guide
What's Next?

What's Next?
This Getting Started exercise provided you with an overview of how to use the AWS Lambda console.

AWS Lambda functions can also be automatically invoked in response to events in other AWS services
such as Amazon S3 and DynamoDB. Lambda functions can also be invoked on-demand over HTTPS.
You can also build your own custom event sources and invoke Lambda functions on demand. For
more information, see How It Works (p. 151).

Depending on your integration scenario, whether your application needs event-driven Lambda function
invocation or on-demand invocation, see the following sections:

• Using AWS Lambda with Amazon S3 (p. 175)

• Using AWS Lambda with Amazon Kinesis (p. 193)

• Using AWS Lambda with Amazon DynamoDB (p. 203)

• Using AWS Lambda with AWS CloudTrail (p. 215)

• Using AWS Lambda with Amazon API Gateway (On-Demand Over HTTPS) (p. 236)

• Using AWS Lambda as Mobile Application Backend (Custom Event Source: Android) (p. 250)

The console provides several blueprints for you to set up example Lambda functions quickly that can
process events from these event sources. You may want to explore other blueprints in the console to
get started with Lambda functions triggered by these event sources.

174

AWS Lambda Developer Guide
Amazon S3

Examples of How to Use AWS
Lambda

The use cases for AWS Lambda can be grouped into the following categories:

• Using AWS Lambda with AWS services as event sources – Event sources publish events that
cause the Lambda function to be invoked. These can be AWS services such as Amazon S3. For
more information and tutorials, see the following topics:

Using AWS Lambda with Amazon S3 (p. 175)

Using AWS Lambda with Amazon Kinesis (p. 193)

Using AWS Lambda with Amazon DynamoDB (p. 203)

Using AWS Lambda with AWS CloudTrail (p. 215)

Using AWS Lambda with Amazon SNS from Different Accounts (p. 230)

• On-demand Lambda function invocation over HTTPS (Amazon API Gateway) – In addition to
invoking Lambda functions using event sources, you can also invoke your Lambda function over
HTTPS. You can do this by defining a custom REST API and endpoint using API Gateway. For more
information and a tutorial, see Using AWS Lambda with Amazon API Gateway (On-Demand Over
HTTPS) (p. 236).

• On-demand Lambda function invocation (build your own event sources using custom apps) –
User applications such as client, mobile, or web applications can publish events and invoke Lambda
functions using the AWS SDKs or AWS Mobile SDKs, such as the AWS Mobile SDK for Android.
For more information and a tutorial, see Getting Started (p. 160) and Using AWS Lambda as Mobile
Application Backend (Custom Event Source: Android) (p. 250)

• Scheduled events – You can also set up AWS Lambda to invoke your code on a regular, scheduled
basis using the AWS Lambda console. You can specify a fixed rate (number of hours, days, or
weeks) or you can specify a cron expression. For more information and a tutorial, see Using AWS
Lambda with Scheduled Events (p. 263).

Using AWS Lambda with Amazon S3
Amazon S3 can publish events (for example, when an object is created in a bucket) to AWS Lambda
and invoke your Lambda function by passing the event data as a parameter. This integration enables

175

AWS Lambda Developer Guide
Amazon S3

you to write Lambda functions that process Amazon S3 events. In Amazon S3, you add bucket
notification configuration that identifies the type of event that you want Amazon S3 to publish and the
Lambda function that you want to invoke.

Note the following about how the Amazon S3 and AWS Lambda integration works:

• Non-stream based (async) model – This is a model (see Event Source Mapping (p. 120)), where
Amazon S3 monitors a bucket and invokes the Lambda function by passing the event data as a
parameter. In a push model, you maintain event source mapping within Amazon S3 using the bucket
notification configuration. In the configuration, you specify the event types that you want Amazon S3
to monitor and which AWS Lambda function you want Amazon S3 to invoke. For more information,
see Configuring Amazon S3 Event Notifications in the Amazon Simple Storage Service Developer
Guide.

• Asynchronous invocation – AWS Lambda invokes a Lambda function using the Event invocation
type (asynchronous invocation). For more information about invocation types, see Invocation
Types (p. 4).

• Event structure – The event your Lambda function receives is for a single object and it provides
information, such as the bucket name and object key name.

Note that there are two types of permissions policies that you work with when you set up the end-to-
end experience:

• Permissions for your Lambda function – Regardless of what invokes a Lambda function, AWS
Lambda executes the function by assuming the IAM role (execution role) that you specify at the time
you create the Lambda function. Using the permissions policy associated with this role, you grant
your Lambda function the permissions that it needs. For example, if your Lambda function needs to
read an object, you grant permissions for the relevant Amazon S3 actions in the permissions policy.
For more information, see Manage Permissions: Using an IAM Role (Execution Role) (p. 155).

• Permissions for Amazon S3 to invoke your Lambda function – Amazon S3 cannot invoke your
Lambda function without your permission. You grant this permission via the permissions policy
associated with the Lambda function.

The following diagram summarizes the flow:

1. User uploads an object to an S3 bucket (object-created event).

2. Amazon S3 detects the object-created event.

176

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

AWS Lambda Developer Guide
Tutorial

3. Amazon S3 invokes a Lambda function that is specified in the bucket notification configuration.

4. AWS Lambda executes the Lambda function by assuming the execution role that you specified at
the time you created the Lambda function.

5. The Lambda function executes.

For a tutorial that walks you through an example setup, see Tutorial: Using AWS Lambda with Amazon
S3 (p. 177).

Tutorial: Using AWS Lambda with Amazon S3
Suppose you want to create a thumbnail for each image (.jpg and .png objects) that is uploaded to a
bucket. You can create a Lambda function (CreateThumbnail) that Amazon S3 can invoke when
objects are created. Then, the Lambda function can read the image object from the source bucket
and create a thumbnail image target bucket (in this tutorial, it's called the sourceresized bucket).

Important
You must use two buckets. If you use the same bucket as the source and the target, each
thumbnail uploaded to the source bucket triggers another object-created event, which then
invokes the Lambda function again, creating an unwanted recursion.

Implementation Summary

The following diagram illustrates the application flow:

1. A user uploads an object to the source bucket in Amazon S3 (object-created event).

2. Amazon S3 detects the object-created event.

3. Amazon S3 publishes the s3:ObjectCreated:* event to AWS Lambda by invoking the Lambda
function and passing event data as a function parameter.

4. AWS Lambda executes the Lambda function by assuming the execution role that you specified at
the time you created the Lambda function.

5. From the event data it receives, the Lambda function knows the source bucket name and object key
name. The Lambda function reads the object and creates a thumbnail using graphics libraries, and
saves it to the target bucket.

Note that upon completing this tutorial, you will have the following Amazon S3, Lambda, and IAM
resources in your account:

177

AWS Lambda Developer Guide
Tutorial

In Lambda:

• A Lambda function.

• An access permissions policy associated with your Lambda function – You grant Amazon S3
permissions to invoke the Lambda function using this permissions policy. You will also restrict the
permissions so that Amazon S3 can invoke the Lambda function only for object-created events from
a specific bucket that is owned by a specific AWS account.

Note
It is possible for an AWS account to delete a bucket and some other AWS account to later
create a bucket with the same name. The additional conditions ensure that Amazon S3 can
invoke the Lambda function only if Amazon S3 detects object-created events from a specific
bucket owned by a specific AWS account.

For more information, see How It Works (p. 151).

In IAM:

• Administrator user – Called adminuser. Using root credentials of an AWS account is not
recommended. Instead, use the adminuser credentials to perform the steps in this tutorial.

• An IAM role (execution role) – You grant permissions that your Lambda function needs through the
permissions policy associated with this role.

In Amazon S3:

• Two buckets named source and sourceresized. Note that source is a placeholder name and
you need to replace it with your actual bucket name. For example, if you have a bucket named
example as your source, you will create exampleresized as the target bucket.

• Notification configuration on the source bucket – You add notification configuration on your source
bucket identifying the type of events (object-created events) you want Amazon S3 to publish to AWS
Lambda and the Lambda function to invoke. For more information about the Amazon S3 notification
feature, see Setting Up Notification of Bucket Events in Amazon Simple Storage Service Developer
Guide..

178

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

AWS Lambda Developer Guide
Tutorial

Now you are ready to start the tutorial. Note that after the initial preparation, the tutorial is divided into
two main sections:

• First, you complete the necessary setup steps to create a Lambda function and invoke it manually
using Amazon S3 sample event data. This intermediate testing verifies that the function works.

• Second, you add notification configuration to your source bucket so that Amazon S3 can invoke your
Lambda function when it detects object-created events.

Next Step

Step 1: Prepare (p. 179)

Step 1: Prepare

In this section, you do the following:

• Sign up for an AWS account and set up the AWS CLI.

• Create two buckets (source and sourceresized bucket) with a sample .jpg object
(HappyFace.jpg) in the source bucket. For instructions, see the following procedure.

Step 1.1: Sign Up for AWS and Set Up the AWS CLI

Make sure you have completed the following steps:

• Signed up for an AWS account and created an administrator user in the account (called adminuser).

• Installed and set up the AWS CLI.

For instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Step 1.2: Create Buckets and Upload a Sample Object

Follow the steps to create buckets and upload an object.

Important
Both the source bucket and your Lambda function must be in the same AWS region. In
addition, the example code used for the Lambda function also assumes that both of the
buckets are in the same region. In this tutorial, we use the us-west-2 region.

1. Using the IAM User Sign-In URL, sign in to the Amazon S3 console as adminuser.

2. Create two buckets. The target bucket name must be source followed by resized, where
source is the name of the bucket you want to use for the source. For example, mybucket and
mybucketresized.

For instructions, see Create a Bucket in the Amazon Simple Storage Service Getting Started Guide.

3. In the source bucket, upload a .jpg object, HappyFace.jpg.

When you invoke the Lambda function manually before you connect to Amazon S3, you pass
sample event data to the function that specifies the source bucket and HappyFace.jpg as the
newly created object so you need to create this sample object first.

Next Step

Step 2: Create a Lambda Function and Invoke It Manually (Using Sample Event Data) (p. 180)

179

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

AWS Lambda Developer Guide
Tutorial

Step 2: Create a Lambda Function and Invoke It Manually
(Using Sample Event Data)
In this section, you do the following:

• Create a Lambda function deployment package using the sample code provided.

Note
To see more examples of using other AWS services within your function, including calling
other Lambda functions, see AWS SDK for JavaScript

• Create an IAM role (execution role). At the time you upload the deployment package, you need to
specify an IAM role (execution role) that Lambda can assume to execute the function on your behalf.

• Create the Lambda function by uploading the deployment package, and then test it by invoking it
manually using sample Amazon S3 event data.

Topics

• Step 2.1: Create a Deployment Package (p. 180)

• Step 2.2: Create the Execution Role (IAM Role) (p. 187)

• Step 2.3: Create the Lambda Function and Test It Manually (p. 188)

Step 2.1: Create a Deployment Package

From the Filter View list, choose the language you want to use for your Lambda function. The
appropriate section appears with code and specific instructions for creating a deployment package.

Node.js

The deployment package is a .zip file containing your Lambda function code and dependencies.

1. Create a folder (examplefolder), and then create a subfolder (node_modules).

2. Install the Node.js platform. For more information, see the Node.js website.

3. Install dependencies. The code examples use the following libraries:

• AWS SDK for JavaScript in Node.js

• gm, GraphicsMagick for node.js

• Async utility module

The AWS Lambda runtime already has the AWS SDK for JavaScript in Node.js, so you only need
to install the other libraries. Open a command prompt, navigate to the examplefolder, and install
the libraries using the npm command, which is part of Node.js.

npm install async gm

4. Open a text editor, and then copy the following code.

// dependencies
var async = require('async');
var AWS = require('aws-sdk');
var gm = require('gm')
 .subClass({ imageMagick: true }); // Enable ImageMagick
 integration.
var util = require('util');

// constants

180

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/frames.html
https://nodejs.org/

AWS Lambda Developer Guide
Tutorial

var MAX_WIDTH = 100;
var MAX_HEIGHT = 100;

// get reference to S3 client
var s3 = new AWS.S3();

exports.handler = function(event, context, callback) {
 // Read options from the event.
 console.log("Reading options from event:\n", util.inspect(event,
 {depth: 5}));
 var srcBucket = event.Records[0].s3.bucket.name;
 // Object key may have spaces or unicode non-ASCII characters.
 var srcKey =
 decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g, "
 "));
 var dstBucket = srcBucket + "resized";
 var dstKey = "resized-" + srcKey;

 // Sanity check: validate that source and destination are different
 buckets.
 if (srcBucket == dstBucket) {
 callback("Source and destination buckets are the same.");
 return;
 }

 // Infer the image type.
 var typeMatch = srcKey.match(/\.([^.]*)$/);
 if (!typeMatch) {
 callback("Could not determine the image type.");
 return;
 }
 var imageType = typeMatch[1];
 if (imageType != "jpg" && imageType != "png") {
 callback('Unsupported image type: ${imageType}');
 return;
 }

 // Download the image from S3, transform, and upload to a different S3
 bucket.
 async.waterfall([
 function download(next) {
 // Download the image from S3 into a buffer.
 s3.getObject({
 Bucket: srcBucket,
 Key: srcKey
 },
 next);
 },
 function transform(response, next) {
 gm(response.Body).size(function(err, size) {
 // Infer the scaling factor to avoid stretching the image
 unnaturally.
 var scalingFactor = Math.min(
 MAX_WIDTH / size.width,
 MAX_HEIGHT / size.height
);
 var width = scalingFactor * size.width;
 var height = scalingFactor * size.height;

181

AWS Lambda Developer Guide
Tutorial

 // Transform the image buffer in memory.
 this.resize(width, height)
 .toBuffer(imageType, function(err, buffer) {
 if (err) {
 next(err);
 } else {
 next(null, response.ContentType, buffer);
 }
 });
 });
 },
 function upload(contentType, data, next) {
 // Stream the transformed image to a different S3 bucket.
 s3.putObject({
 Bucket: dstBucket,
 Key: dstKey,
 Body: data,
 ContentType: contentType
 },
 next);
 }
], function (err) {
 if (err) {
 console.error(
 'Unable to resize ' + srcBucket + '/' + srcKey +
 ' and upload to ' + dstBucket + '/' + dstKey +
 ' due to an error: ' + err
);
 } else {
 console.log(
 'Successfully resized ' + srcBucket + '/' + srcKey +
 ' and uploaded to ' + dstBucket + '/' + dstKey
);
 }

 callback(null, "message");
 }
);
};

Note
The code sample is compliant with the Node.js runtime v4.3. For more information, see
Programming Model (Node.js) (p. 9)

5. Review the preceding code and note the following:

• The function knows the source bucket name and the key name of the object from the event data
it receives as parameters. If the object is a .jpg, the code creates a thumbnail and saves it to the
target bucket.

• The code assumes that the destination bucket exists and its name is a concatenation
of the source bucket name followed by the string resized. For example, if the source
bucket identified in the event data is examplebucket, the code assumes you have an
examplebucketresized destination bucket.

• For the thumbnail it creates, the code derives its key name as the concatenation of the string
resized- followed by the source object key name. For example, if the source object key is
sample.jpg, the code creates a thumbnail object that has the key resized-sample.jpg.

6. Save the file as CreateThumbnail.js in examplefolder. After you complete this step, you will
have the following folder structure:

182

AWS Lambda Developer Guide
Tutorial

CreateThumbnail.js
/node_modules/gm
/node_modules/async

7. Zip the CreateThumbnail.js file and the node_modules folder as CreateThumbnail.zip.

This is your Lambda function deployment package.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 187)

Java

The following is example Java code that reads incoming Amazon S3 events and creates a thumbnail.
Note that it implements the RequestHandler interface provided in the aws-lambda-java-core
library. Therefore, at the time you create a Lambda function you specify the class as the handler (that
is, example.S3EventProcessorCreateThumbnail). For more information about using interfaces to
provide a handler, see Leveraging Predefined Interfaces for Creating Handler (Java) (p. 28).

The S3Event type that the handler uses as the input type is one of the predefined classes in the aws-
lambda-java-events library that provides methods for you to easily read information from the
incoming Amazon S3 event. The handler returns a string as output.

package example;

import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URLDecoder;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import javax.imageio.ImageIO;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import
 com.amazonaws.services.s3.event.S3EventNotification.S3EventNotificationRecord;
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.S3Object;

public class S3EventProcessorCreateThumbnail implements
 RequestHandler<S3Event, String> {
 private static final float MAX_WIDTH = 100;
 private static final float MAX_HEIGHT = 100;

183

AWS Lambda Developer Guide
Tutorial

 private final String JPG_TYPE = (String) "jpg";
 private final String JPG_MIME = (String) "image/jpeg";
 private final String PNG_TYPE = (String) "png";
 private final String PNG_MIME = (String) "image/png";

 public String handleRequest(S3Event s3event, Context context) {
 try {
 S3EventNotificationRecord record = s3event.getRecords().get(0);

 String srcBucket = record.getS3().getBucket().getName();
 // Object key may have spaces or unicode non-ASCII characters.
 String srcKey = record.getS3().getObject().getKey()
 .replace('+', ' ');
 srcKey = URLDecoder.decode(srcKey, "UTF-8");

 String dstBucket = srcBucket + "resized";
 String dstKey = "resized-" + srcKey;

 // Sanity check: validate that source and destination are
 different
 // buckets.
 if (srcBucket.equals(dstBucket)) {
 System.out
 .println("Destination bucket must not match source
 bucket.");
 return "";
 }

 // Infer the image type.
 Matcher matcher = Pattern.compile(".*\\.([^\
\.]*)").matcher(srcKey);
 if (!matcher.matches()) {
 System.out.println("Unable to infer image type for key "
 + srcKey);
 return "";
 }
 String imageType = matcher.group(1);
 if (!(JPG_TYPE.equals(imageType)) && !
(PNG_TYPE.equals(imageType))) {
 System.out.println("Skipping non-image " + srcKey);
 return "";
 }

 // Download the image from S3 into a stream
 AmazonS3 s3Client = new AmazonS3Client();
 S3Object s3Object = s3Client.getObject(new GetObjectRequest(
 srcBucket, srcKey));
 InputStream objectData = s3Object.getObjectContent();

 // Read the source image
 BufferedImage srcImage = ImageIO.read(objectData);
 int srcHeight = srcImage.getHeight();
 int srcWidth = srcImage.getWidth();
 // Infer the scaling factor to avoid stretching the image
 // unnaturally
 float scalingFactor = Math.min(MAX_WIDTH / srcWidth, MAX_HEIGHT
 / srcHeight);
 int width = (int) (scalingFactor * srcWidth);
 int height = (int) (scalingFactor * srcHeight);

184

AWS Lambda Developer Guide
Tutorial

 BufferedImage resizedImage = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D g = resizedImage.createGraphics();
 // Fill with white before applying semi-transparent (alpha)
 images
 g.setPaint(Color.white);
 g.fillRect(0, 0, width, height);
 // Simple bilinear resize
 // If you want higher quality algorithms, check this link:
 // https://today.java.net/pub/a/today/2007/04/03/perils-of-image-
getscaledinstance.html
 g.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);
 g.drawImage(srcImage, 0, 0, width, height, null);
 g.dispose();

 // Re-encode image to target format
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 ImageIO.write(resizedImage, imageType, os);
 InputStream is = new ByteArrayInputStream(os.toByteArray());
 // Set Content-Length and Content-Type
 ObjectMetadata meta = new ObjectMetadata();
 meta.setContentLength(os.size());
 if (JPG_TYPE.equals(imageType)) {
 meta.setContentType(JPG_MIME);
 }
 if (PNG_TYPE.equals(imageType)) {
 meta.setContentType(PNG_MIME);
 }

 // Uploading to S3 destination bucket
 System.out.println("Writing to: " + dstBucket + "/" + dstKey);
 s3Client.putObject(dstBucket, dstKey, is, meta);
 System.out.println("Successfully resized " + srcBucket + "/"
 + srcKey + " and uploaded to " + dstBucket + "/" +
 dstKey);
 return "Ok";
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
}

Amazon S3 invokes your Lambda function using the Event invocation type, where AWS Lambda
executes the code asynchronously. What you return does not matter. However, in this case we are
implementing an interface that requires us to specify a return type, so in this example the handler uses
String as the return type.

Using the preceding code (in a file named ProcessKinesisEvents.java), create a deployment
package. Make sure that you add the following dependencies:

• aws-lambda-java-core.

• aws-lambda-java-events

These can be found at aws-lambda-java-libs.

185

https://github.com/aws/aws-lambda-java-libs

AWS Lambda Developer Guide
Tutorial

For more information, see Programming Model for Authoring Lambda Functions in Java (p. 21).

Your deployment package can be a .zip file or a standalone .jar. You can use any build and packaging
tool you are familiar with to create a deployment package. For examples of how to use the Maven build
tool to create a standalone .jar, see Creating a .jar Deployment Package Using Maven without any IDE
(Java) (p. 62) and Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java) (p. 65).
For an example of how to use the Gradle build tool to create a .zip file, see Creating a .zip Deployment
Package (Java) (p. 67).

After you verify that your deployment package is created, go to the next step to create an IAM role
(execution role). You specify this role at the time you create your Lambda function.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 187)

Python

In this section, you create an example Python function and install dependencies.

1. Open a text editor, and copy the following code. The code uploads the resized image to a different
bucket with the same image name, as shown following:

source-bucket/image.png -> source-bucketresized/image.png

from __future__ import print_function
import boto3
import os
import sys
import uuid
from PIL import Image
import PIL.Image

s3_client = boto3.client('s3')

def resize_image(image_path, resized_path):
 with Image.open(image_path) as image:
 image.thumbnail(tuple(x / 2 for x in image.size))
 image.save(resized_path)

def handler(event, context):
 for record in event['Records']:
 bucket = record['s3']['bucket']['name']
 key = record['s3']['object']['key']
 download_path = '/tmp/{}{}'.format(uuid.uuid4(), key)
 upload_path = '/tmp/resized-{}'.format(key)

 s3_client.download_file(bucket, key, download_path)
 resize_image(download_path, upload_path)
 s3_client.upload_file(upload_path, '{}resized'.format(bucket),
 key)

2. Save the file as CreateThumbnail.py.

3. If your source code is on a local host, copy it over.

scp -i key.pem /path/to/my_code.py ec2-user@public-ip-address:~/
CreateThumbnail.py

4. Connect to a 64-bit Amazon Linux instance via SSH.

186

AWS Lambda Developer Guide
Tutorial

ssh -i key.pem ec2-user@public-ip-address

5. Ensure basic build requirements are installed.

sudo yum install python27-devel python27-pip gcc

6. Install native dependencies required by Pillow.

sudo yum install libjpeg-devel zlib-devel

7. Create and activate a virtual environment.

virtualenv ~/shrink_venv

source ~/shrink_venv/bin/activate

8. Install libraries in the virtual environment.

pip install Pillow

pip install boto3

Note
AWS Lambda includes the AWS SDK for Python (Boto 3), so you don't need to include it
in your deployment package, but you can optionally include it for local testing.

9. Create a .zip file

zip -9 ~/CreateThumbnail.zip

10. Add the contents of lib and lib64 site-packages to your .zip file.

cd $VIRTUAL_ENV/lib/python2.7/site-packages

zip -r9 ~/CreateThumbnail.zip *

cd $VIRTUAL_ENV/lib64/python2.7/site-packages

zip -r9 ~/CreateThumbnail.zip *

11. Add your python code to the .zip file

cd ~

zip -g CreateThumbnail.zip CreateThumbnail.py

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 187)

Step 2.2: Create the Execution Role (IAM Role)

In this section, you create an IAM role using the following predefined role type and access permissions
policy:

• AWS service role of the type AWS Lambda – This role grants AWS Lambda permissions to assume
the role.

• AWSLambdaExecute access permissions policy that you attach to the role.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedure to create the IAM role.

187

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Lambda Developer Guide
Tutorial

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-s3-
execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

• In Attach Policy, choose AWSLambdaExecute.

3. Write down the role ARN. You will need it in the next step when you create your Lambda function.

Next Step

Step 2.3: Create the Lambda Function and Test It Manually (p. 188)

Step 2.3: Create the Lambda Function and Test It Manually

In this section, you do the following:

• Create a Lambda function by uploading the deployment package.

• Test the Lambda function by invoking it manually and passing sample Amazon S3 event data as a
parameter.

Step 2.3.1: Create the Lambda Function (Upload the Deployment Package)

In this step, you upload the deployment package using the AWS CLI.

1. At the command prompt, run the following Lambda AWS CLI create-function command
using the adminuser as the --profile. You need to update the command by providing the .zip
file path and the execution role ARN. For the runtime parameter, choose between nodejs4.3,
python2.7 or java8, depending on the code sample you when you created your deployment
package.

$ aws lambda create-function \
--region us-west-2 \
--function-name CreateThumbnail \
--zip-file fileb://file-path/CreateThumbnail.zip \
--role role-arn \
--handler CreateThumbnail.handler \
--runtime runtime \
--profile adminuser \
--timeout 10 \
--memory-size 1024

Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and then
specify the bucket and object name in the preceding command. You need to replace the --zip-
file parameter by the --code parameter, as shown following:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

188

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Tutorial

2. Write down the function ARN. You will need this in the next section when you add notification
configuration to your Amazon S3 bucket.

3. (Optional) The preceding command specifies a 10-second timeout value as the function
configuration. Depending on the size of objects you upload, you might need to increase the
timeout value using the following AWS CLI command.

$ aws lambda update-function-configuration \
 --function-name CreateThumbnail \
 --region us-west-2 \
 --timeout timeout-in-seconds \
 --profile adminuser

Note
You can create the Lambda function using the AWS Lambda console, in which case note
the value of the create-function AWS CLI command parameters. You provide the same
values in the console UI.

Step 2.3.2: Test the Lambda Function (Invoke Manually)

In this step, you invoke the Lambda function manually using sample Amazon S3 event data. You can
test the function using the AWS Management Console or the AWS CLI.

To test the Lambda function (console)

1. Follow the steps in the Getting Started to create and invoke the Lambda function at Step 2.2:
Invoke the Lambda Function Manually and Verify Results, Logs, and Metrics (p. 167). For the
sample event for testing, choose S3 Put in Sample event template.

2. Verify that the thumbnail was created in the target bucket and monitor the activity of your Lambda
function in the AWS Lambda console as follows:

• The AWS Lambda console shows a graphical representation of some of the CloudWatch
metrics in the Cloudwatch Metrics at a glance section for your function.

• For each graph, you can also click the logs link to view the CloudWatch Logs directly.

To test the Lambda function (AWS CLI)

1. Save the following Amazon S3 sample event data in a file and save it as input.txt. You need to
update the JSON by providing your sourcebucket name and a .jpg object key.

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-west-2",
 "eventTime":"1970-01-01T00:00:00.000Z",
 "eventName":"ObjectCreated:Put",
 "userIdentity":{
 "principalId":"AIDAJDPLRKLG7UEXAMPLE"
 },
 "requestParameters":{
 "sourceIPAddress":"127.0.0.1"
 },
 "responseElements":{
 "x-amz-request-id":"C3D13FE58DE4C810",

189

AWS Lambda Developer Guide
Tutorial

 "x-amz-id-2":"FMyUVURIY8/IgAtTv8xRjskZQpcIZ9KG4V5Wp6S7S/
JRWeUWerMUE5JgHvANOjpD"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"testConfigRule",
 "bucket":{
 "name":"sourcebucket",
 "ownerIdentity":{
 "principalId":"A3NL1KOZZKExample"
 },
 "arn":"arn:aws:s3:::sourcebucket"
 },
 "object":{
 "key":"HappyFace.jpg",
 "size":1024,
 "eTag":"d41d8cd98f00b204e9800998ecf8427e",
 "versionId":"096fKKXTRTtl3on89fVO.nfljtsv6qko"
 }
 }
 }
]
}

2. Run the following Lambda CLI invoke command to invoke the function. Note that the command
requests asynchronous execution. You can optionally invoke it synchronously by specifying
RequestResponse as the invocation-type parameter value.

$ aws lambda invoke \
--invocation-type Event \
--function-name CreateThumbnail \
--region us-west-2 \
--payload file://file-path/inputfile.txt \
--profile adminuser \
outputfile.txt

Note
You are able to invoke this function because you are using your own credentials to invoke
your own function. In the next section, you configure Amazon S3 to invoke this function
on your behalf, which requires you to add permissions to the access policy associated
with your Lambda function to grant Amazon S3 permissions to invoke your function.

3. Verify that the thumbnail was created in the target bucket and monitor the activity of your Lambda
function in the AWS Lambda console as follows:

• The AWS Lambda console shows a graphical representation of some of the CloudWatch
metrics in the Cloudwatch Metrics at a glance section for your function.

• For each graph, you can also click the logs link to view the CloudWatch Logs directly.

Next Step

Step 3: Add an Event Source (Configure Amazon S3 to Publish Events) (p. 191)

190

AWS Lambda Developer Guide
Tutorial

Step 3: Add an Event Source (Configure Amazon S3 to Publish
Events)

In this step, you add the remaining configuration so that Amazon S3 can publish object-created events
to AWS Lambda and invoke your Lambda function. You do the following in this step:

• Add permissions to the Lambda function access policy to allow Amazon S3 to invoke the function.

• Add notification configuration to your source bucket. In the notification configuration, you provide the
following:

• Event type for which you want Amazon S3 to publish events. For this tutorial, you specify the
s3:ObjectCreated:* event type so that Amazon S3 publishes events when objects are created.

• Lambda function to invoke.

Step 3.1: Add Permissions to the Lambda Function's Access Permissions
Policy

1. Run the following Lambda CLI add-permission command to grant Amazon S3 service principal
(s3.amazonaws.com) permissions to perform the lambda:InvokeFunction action. Note that
permission is granted to Amazon S3 to invoke the function only if the following conditions are met:

• An object-created event is detected on a specific bucket.

• The bucket is owned by a specific AWS account. If a bucket owner deletes a bucket, some
other AWS account can create a bucket with the same name. This condition ensures that only a
specific AWS account can invoke your Lambda function.

$ aws lambda add-permission \
--function-name CreateThumbnail \
--region us-west-2 \
--statement-id some-unique-id \
--action "lambda:InvokeFunction" \
--principal s3.amazonaws.com \
--source-arn arn:aws:s3:::sourcebucket \
--source-account bucket-owner-account-id \
--profile adminuser

2. Verify the function's access policy by running the AWS CLI get-policy command.

$ aws lambda get-policy \
--function-name function-name \
--profile adminuser

Step 3.2: Configure Notification on the Bucket

Add notification configuration on the source bucket to request Amazon S3 to publish object-created
events to Lambda. In the configuration, you specify the following:

• Event type – For this tutorial, select the ObjectCreated (All) Amazon S3 event type.

• Lambda function – This is your Lambda function that you want Amazon S3 to invoke.

For instructions on adding notification configuration to a bucket, see Enabling Event Notifications in the
Amazon Simple Storage Service Console User Guide.

191

http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html

AWS Lambda Developer Guide
Tutorial

Step 3.3: Test the Setup

You're all done! Now adminuser can test the setup as follows:

1. Upload .jpg or .png objects to the source bucket using the Amazon S3 console.

2. Verify that the thumbnail was created in the target bucket using the CreateThumbnail function.

3. The adminuser can also verify the CloudWatch Logs. You can monitor the activity of your Lambda
function in the AWS Lambda console. For example, choose the logs link in the console to view logs,
including logs your function wrote to CloudWatch Logs.

Step 4: Deploy With AWS SAM and AWS CloudFormation
In the previous section, you used AWS Lambda APIs to create and update a Lambda function by
providing a deployment package as a ZIP file. However, this mechanism may not be convenient
for automating deployment steps for functions, or coordinating deployments and updates to other
elements of a serverless application, like event sources and downstream resources.

You can use AWS CloudFormation to easily specify, deploy, and configure serverless applications.
AWS CloudFormation is a service that helps you model and set up your Amazon Web Services
resources so that you can spend less time managing those resources and more time focusing on
your applications that run in AWS. You create a template that describes all the AWS resources that
you want (like Lambda functions and DynamoDB tables), and AWS CloudFormation takes care of
provisioning and configuring those resources for you.

In addition, you can use the AWS Serverless Application Model to express resources that comprise the
serverless application. These resource types, such as Lambda functions and APIs, are fully supported
by AWS CloudFormation and make it easier for you to define and deploy your serverless application.

For more information, see Deploying Lambda-based Applications (p. 139).

Specification for Amazon S3 Thumbnail Application

The following contains the SAM template for this application. Copy the text below to a .yaml file and
save it next to the ZIP package you created previously.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 CreateThumbnail:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 Timeout: 60
 Policies: AWSLambdaExecute
 Events:
 Type: S3
 Properties:
 Bucket: !Ref SrcBucket
 Events: s3:ObjectCreated:*

 SrcBucket:
 Type: AWS::S3::Bucket

Deploying the Serverless Application

For information on how to package and deploy your serverless application using the package and
deploy commands, see Packaging and Deployment (p. 145).

192

AWS Lambda Developer Guide
Amazon Kinesis

Using AWS Lambda with Amazon Kinesis
You can create an Amazon Kinesis stream to continuously capture and store terabytes of data per hour
from hundreds of thousands of sources such as website click streams, financial transactions, social
media feeds, IT logs, and location-tracking events. For more information, see Amazon Kinesis.

You can subscribe Lambda functions to automatically read batches of records off your Amazon Kinesis
stream and process them if records are detected on the stream. AWS Lambda then polls the stream
periodically (multiple times per second) for new records.

Note the following about how the Amazon Kinesis and AWS Lambda integration works:

• Stream-based model – This is a model (see Event Source Mapping (p. 120)), where AWS Lambda
polls the stream and, when it detects new records, invokes your Lambda function by passing the new
records as a parameter.

In a stream-based model, you maintain event source mapping in AWS Lambda. The event source
mapping describes which stream maps to which Lambda function. AWS Lambda provides an API
(CreateEventSourceMapping (p. 328)) that you can use to create the mapping. You can also use
the AWS Lambda console to create event source mappings.

• Synchronous invocation – AWS Lambda invokes a Lambda function using the RequestResponse
invocation type (synchronous invocation) by polling the Kinesis Stream. For more information about
invocation types, see Invocation Types (p. 4).

• Event structure – The event your Lambda function receives is a collection of records AWS Lambda
reads from your stream. When you configure event source mapping, the batch size you specify is the
maximum number of records that you want your Lambda function to receive per invocation.

Regardless of what invokes a Lambda function, AWS Lambda always executes a Lambda function
on your behalf. If your Lambda function needs to access any AWS resources, you need to grant the
relevant permissions to access those resources. You also need to grant AWS Lambda permissions to
poll your Amazon Kinesis stream. You grant all of these permissions to an IAM role (execution role)
that AWS Lambda can assume to poll the stream and execute the Lambda function on your behalf.
You create this role first and then enable it at the time you create the Lambda function. For more
information, see Manage Permissions: Using an IAM Role (Execution Role) (p. 155).

The following diagram illustrates the application flow:

1. Custom app writes records to the stream.

2. AWS Lambda polls the stream and, when it detects new records in the stream, invokes your
Lambda function.

193

https://aws.amazon.com/kinesis/

AWS Lambda Developer Guide
Tutorial

3. AWS Lambda executes the Lambda function by assuming the execution role you specified at the
time you created the Lambda function.

For a tutorial that walks you through an example setup, see Tutorial: Using AWS Lambda with Amazon
Kinesis (p. 194).

Tutorial: Using AWS Lambda with Amazon Kinesis
In this tutorial, you create a Lambda function to consume events from an Amazon Kinesis stream.

The tutorial is divided into two main sections:

• First, you perform the necessary setup to create a Lambda function and then you test it by invoking it
manually using sample event data (you don't need an Amazon Kinesis stream).

• Second, you create an Amazon Kinesis stream (event source). You add an event source mapping
in AWS Lambda to associate the stream with your Lambda function. AWS Lambda starts polling the
stream, you add test records to the stream using the Amazon Kinesis API, and then you verify that
AWS Lambda executed your Lambda function.

Important
Both the Lambda function and the Amazon Kinesis stream must be in the same AWS region.
This tutorial assumes that you create these resources in the us-west-2 region.

In this tutorial, you use the AWS Command Line Interface to perform AWS Lambda operations such
as creating a Lambda function, creating a stream, and adding records to the stream. You use the AWS
Lambda console to manually invoke the function before you create a Amazon Kinesis stream. You
verify return values and logs in the console UI.

Next Step

Step 1: Prepare (p. 194)

Step 1: Prepare

Make sure you have completed the following steps:

• Signed up for an AWS account and created an administrator user in the account.

• Installed and set up the AWS CLI.

For instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Next Step

Step 2: Create a Lambda Function and Invoke It Manually (Using Sample Event Data) (p. 194)

Step 2: Create a Lambda Function and Invoke It Manually
(Using Sample Event Data)

In this section, you do the following:

• Create a Lambda function deployment package using the sample code provided. The sample
Lambda function code that you'll use to process Amazon Kinesis events is provided in various
languages. Select one of the languages and follow the corresponding instructions to create a
deployment package.

194

AWS Lambda Developer Guide
Tutorial

Note
To see more examples of using other AWS services within your function, including calling
other Lambda functions, see AWS SDK for JavaScript

• Create an IAM role (execution role). At the time you upload the deployment package, you need to
specify an IAM role (execution role) that Lambda can assume to execute the function on your behalf.

• Create the Lambda function by uploading the deployment package, and then test it by invoking it
manually using sample Amazon Kinesis event data.

Topics

• Step 2.1: Create a Deployment Package (p. 195)

• Step 2.2: Create the Execution Role (IAM Role) (p. 198)

• Step 2.3: Create the Lambda Function and Test It Manually (p. 199)

Step 2.1: Create a Deployment Package

From the Filter View list, choose the language you want to use for your Lambda function. The
appropriate section appears with code and specific instructions for creating a deployment package.

Node.js

The following is example Node.js code that receives Amazon Kinesis event records as input and
processes them. For illustration, the code writes some of the incoming event data to CloudWatch Logs.

Follow the instructions to create a AWS Lambda function deployment package.

1. Open a text editor, and then copy the following code.

console.log('Loading function');

exports.handler = function(event, context, callback) {
 //console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(function(record) {
 // Kinesis data is base64 encoded so decode here
 var payload = new Buffer(record.kinesis.data,
 'base64').toString('ascii');
 console.log('Decoded payload:', payload);
 });
 callback(null, "message");
};

Note
The code sample is compliant with the Node.js runtime v4.3. For more information, see
Programming Model (Node.js) (p. 9)

2. Save the file as ProcessKinesisRecords.js.

3. Zip the ProcessKinesisRecords.js file as ProcessKinesisRecords.zip.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 198)

Java

The following is example Java code that receives Amazon Kinesis event record data as a input and
processes it. For illustration, the code writes some of the incoming event data to CloudWatch Logs.

195

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/frames.html

AWS Lambda Developer Guide
Tutorial

In the code, recordHandler is the handler. The handler uses the predefined KinesisEvent class
that is defined in the aws-lambda-java-events library.

package example;

import java.io.IOException;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import
 com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;

public class ProcessKinesisEvents {
 public void recordHandler(KinesisEvent event) throws IOException {
 for(KinesisEventRecord rec : event.getRecords()) {
 System.out.println(new
 String(rec.getKinesis().getData().array()));
 }
 }
}

If the handler returns normally without exceptions, Lambda considers the input batch of records
as processed successfully and begins reading new records in the stream. If the handler throws an
exception, Lambda considers the input batch of records as not processed and invokes the function with
the same batch of records again.

Using the preceding code (in a file named ProcessKinesisEvents.java), create a deployment
package. Make sure that you add the following dependencies:

• aws-lambda-java-core

• aws-lambda-java-events

For more information, see Programming Model for Authoring Lambda Functions in Java (p. 21).

Your deployment package can be a .zip file or a standalone .jar. You can use any build and packaging
tool you are familiar with to create a deployment package. For examples of how to use the Maven build
tool to create a standalone .jar, see Creating a .jar Deployment Package Using Maven without any IDE
(Java) (p. 62) and Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java) (p. 65).
For an example of how to use the Gradle build tool to create a .zip file, see Creating a .zip Deployment
Package (Java) (p. 67).

After you verify that your deployment package is created, go to the next step to create an IAM role
(execution role). You specify this role at the time you create your Lambda function.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 198)

C#

The following is example C# code that receives Amazon Kinesis event record data as a input and
processes it. For illustration, the code writes some of the incoming event data to CloudWatch Logs.

In the code, HandleKinesisRecord is the handler. The handler uses the predefined KinesisEvent
class that is defined in the Amazon.Lambda.KinesisEvents library.

using System;
using System.IO;

196

AWS Lambda Developer Guide
Tutorial

using System.Text;

using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;

namespace KinesisStreams
{
 public class KinesisSample
 {
 [LambdaSerializer(typeof(JsonSerializer))]
 public void HandleKinesisRecord(KinesisEvent kinesisEvent)
 {
 Console.WriteLine($"Beginning to process
 {kinesisEvent.Records.Count} records...");

 foreach (var record in kinesisEvent.Records)
 {
 Console.WriteLine($"Event ID: {record.EventId}");
 Console.WriteLine($"Event Name: {record.EventName}");

 string recordData = GetRecordContents(record.Kinesis);
 Console.WriteLine($"Record Data:");
 Console.WriteLine(recordData);
 }

 Console.WriteLine("Stream processing complete.");
 }

 private string GetRecordContents(KinesisEvent.Record streamRecord)
 {
 using (var reader = new StreamReader(streamRecord.Data,
 Encoding.ASCII))
 {
 return reader.ReadToEnd();
 }
 }
 }
}

To create a deployment package, follow the steps outlined in .NET Core CLI (p. 57). In doing so, note
the following after you've created your .NET project:

• Rename the default Program.cs file with a file name of your choice, such as
ProcessingKinesisEvents.cs.

• Replace the default contents of the renamed Program.cs file with the code example above.

• In the project.json file, make sure the following references are included in the dependencies node.

• "Amazon.Lambda.Core": "1.0.0-*"

• "Amazon.Lambda.KinesisEvents":"1.0.0-*"

• "Amazon.Lambda.Serialization.Json":"1.0.0-*"

After you verify that your deployment package is created, go to the next step to create an IAM role
(execution role). You specify this role at the time you create your Lambda function.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 198)

197

AWS Lambda Developer Guide
Tutorial

Python

The following is example Python code that receives Amazon Kinesis event record data as input and
processes it. For illustration, the code writes to some of the incoming event data to CloudWatch Logs.

Follow the instructions to create a AWS Lambda function deployment package.

1. Open a text editor, and then copy the following code.

from __future__ import print_function
#import json
import base64
def lambda_handler(event, context):
 for record in event['Records']:
 #Kinesis data is base64 encoded so decode here
 payload=base64.b64decode(record["kinesis"]["data"])
 print("Decoded payload: " + payload)

2. Save the file as ProcessKinesisRecords.py.

3. Zip the ProcessKinesisRecords.py file as ProcessKinesisRecords.zip.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 198)

Step 2.2: Create the Execution Role (IAM Role)

In this section, you create an IAM role using the following predefined role type and access policy:

• AWS service role of the type AWS Lambda – This role grants AWS Lambda permissions to assume
the role.

• AWSLambdaKinesisExecutionRole – This is the access permissions policy that you attach to the
role.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedure to create the IAM role.

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-
kinesis-execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

• In Attach Policy, choose AWSLambdaKinesisExecutionRole. The permissions in this policy
are sufficient for the Lambda function in this tutorial.

3. Write down the role ARN. You will need it in the next step when you create your Lambda function.

198

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Tutorial

Next Step

Step 2.3: Create the Lambda Function and Test It Manually (p. 199)

Step 2.3: Create the Lambda Function and Test It Manually

In this section, you do the following:

• Create a Lambda function by uploading the deployment package.

• Test the Lambda function by invoking it manually. Instead of creating an event source, you use
sample Amazon Kinesis event data.

In the next section, you create an Amazon Kinesis stream and test the end-to-end experience.

Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)

In this step, you upload the deployment package using the AWS CLI.

At the command prompt, run the following Lambda CLI create-function command using the
adminuser profile.

You need to update the command by providing the .zip file path and the execution role ARN. The --
runtime parameter value can be python2.7, nodejs4.3, or java8, depending on the language you
used to author your code.

$ aws lambda create-function \
--region us-west-2 \
--function-name ProcessKinesisRecords \
--zip-file fileb://file-path/ProcessKinesisRecords.zip \
--role execution-role-arn \
--handler handler \
--runtime runtime-value \
--profile adminuser

The --handler parameter value for Java should be
example.ProcessKinesisRecords::recordHandler. For Node.js, it
should be ProcessKinesisRecords.handler and for Python it should be
ProcessKinesisRecords.lambda_handler.

Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and then
specify the bucket and object name in the preceding command. You need to replace the --zip-file
parameter by the --code parameter, as shown following:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

Note
You can create the Lambda function using the AWS Lambda console, in which case note
the value of the create-function AWS CLI command parameters. You provide the same
values in the console UI.

Step 2.3.2: Test the Lambda Function (Invoke Manually)

Invoke the function manually using sample Amazon Kinesis event data. We recommend that you
invoke the function using the console because the console UI provides a user-friendly interface for
reviewing the execution results, including the execution summary, logs written by your code, and

199

AWS Lambda Developer Guide
Tutorial

the results returned by the function (because the console always performs synchronous execution—
invokes the Lambda function using the RequestResponse invocation type).

To test the Lambda function (console)

1. Follow the steps in the Getting Started to create and invoke the Lambda function at Step 2.2:
Invoke the Lambda Function Manually and Verify Results, Logs, and Metrics (p. 167). For the
sample event for testing, choose Kinesis in Sample event template.

2. Verify the results in the console.

To test the Lambda function (AWS CLI)

1. Copy the following JSON into a file and save it as input.txt.

{
 "Records": [
 {
 "kinesis": {
 "partitionKey": "partitionKey-3",
 "kinesisSchemaVersion": "1.0",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0IDEyMy4=",
 "sequenceNumber":
 "49545115243490985018280067714973144582180062593244200961"
 },
 "eventSource": "aws:kinesis",
 "eventID":
 "shardId-000000000000:49545115243490985018280067714973144582180062593244200961",
 "invokeIdentityArn": "arn:aws:iam::account-id:role/
testLEBRole",
 "eventVersion": "1.0",
 "eventName": "aws:kinesis:record",
 "eventSourceARN": "arn:aws:kinesis:us-
west-2:35667example:stream/examplestream",
 "awsRegion": "us-west-2"
 }
]
}

2. Execute the following invoke command:

$ aws lambda invoke \
--invocation-type Event \
--function-name ProcessKinesisRecords \
--region us-west-2 \
--payload file://file-path/input.txt \
--profile adminuser
outputfile.txt

Note
In this tutorial example, the message is saved in the outputfile.txt file. If you request
synchronous execution (RequestResponse as the invocation type), the function returns
the string message in the response body.
For Node.js, it could be one of the following (whatever one you specify in the code):
context.succeed("message")
context.fail("message")
context.done(null, "message)
For Python or Java, it is the message in the return statement:

200

AWS Lambda Developer Guide
Tutorial

return "message"

Next Step

Step 3: Add an Event Source (Create an Amazon Kinesis Stream and Associate It with Your Lambda
Function) (p. 201)

Step 3: Add an Event Source (Create an Amazon Kinesis
Stream and Associate It with Your Lambda Function)
In this section, you create an Amazon Kinesis stream, and then you add an event source in AWS
Lambda to associate the Amazon Kinesis stream with your Lambda function.

After you create an event source, AWS Lambda starts polling the stream. You then test the setup by
adding events to the stream and verify that AWS Lambda executed your Lambda function on your
behalf:

Step 3.1: Create an Amazon Kinesis Stream

Use the following Amazon Kinesis create-stream CLI command to create a stream.

$ aws kinesis create-stream \
--stream-name examplestream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Run the following Amazon Kinesis describe-stream AWS CLI command to get the stream ARN.

$ aws kinesis describe-stream \
--stream-name examplestream \
--region us-west-2 \
--profile adminuser

You need the stream ARN in the next step to associate the stream with your Lambda function. The
stream is of the form:

arn:aws:kinesis:aws-region:account-id:stream/stream-name

Step 3.2: Add an Event Source in AWS Lambda

Run the following AWS CLI add-event-source command. After the command executes, note down
the UUID. You'll need this UUID to refer to the event source in any commands (for example, when
deleting the event source).

$ aws lambda create-event-source-mapping \
--region us-west-2 \
--function-name ProcessKinesisRecords \
--event-source kinesis-stream-arn \
--batch-size 100 \
--starting-position TRIM_HORIZON \
--profile adminuser

201

AWS Lambda Developer Guide
Tutorial

You can get a list of event source mappings by running the following command.

$ aws lambda list-event-source-mappings \
--region us-west-2 \
--function-name ProcessKinesisRecords \
--event-source kinesis-stream-arn \
--profile adminuser \
--debug

In the response, you can verify the status value is enabled.

Note
If you disable the event source mapping, AWS Lambda stops polling the Amazon Kinesis
stream. If you re-enable event source mapping, it will resume polling from the sequence
number where it stopped, so each record is processed either before you disabled the mapping
or after you enabled it. If the sequence number falls behind TRIM_HORIZON, when you
re-enable it polling will start from TRIM_HORIZON. However, if you create a new event
source mapping, polling will always start from TRIM_HORIZON, LATEST or AT_TIMESTAMP,
depending on the starting position you specify. This applies even if you delete an event source
mapping and create a new one with the same configuration as the deleted one.

Step 3.3: Test the Setup

You're all done! Now adminuser can test the setup as follows:

1. Using the following AWS CLI command, add event records to your Amazon Kinesis stream. The --
data value is a base64-encoded value of the "Hello, this is a test." string. You can run
the same command more than once to add multiple records to the stream.

$ aws kinesis put-record \
--stream-name examplestream \
--data "This is a test. final" \
--partition-key shardId-000000000000 \
--region us-west-2 \
--profile adminuser

2. AWS Lambda polls the stream and, when it detects updates to the stream, it invokes your Lambda
function by passing in the event data from the stream.

AWS Lambda assumes the execution role to poll the stream. You have granted the role permissions
for the necessary Amazon Kinesis actions so that AWS Lambda can poll the stream and read
events from the stream.

3. Your function executes and adds logs to the log group that corresponds to the Lambda function in
Amazon CloudWatch.

The adminuser can also verify the logs reported in the Amazon CloudWatch console. Make sure
you are checking for logs in the same AWS region where you created the Lambda function.

Step 4: Deploy With AWS SAM and AWS CloudFormation
In the previous section, you used AWS Lambda APIs to create and update a Lambda function by
providing a deployment package as a ZIP file. However, this mechanism may not be convenient
for automating deployment steps for functions, or coordinating deployments and updates to other
elements of a serverless application, like event sources and downstream resources.

You can use AWS CloudFormation to easily specify, deploy, and configure serverless applications.
AWS CloudFormation is a service that helps you model and set up your Amazon Web Services

202

AWS Lambda Developer Guide
Amazon DynamoDB

resources so that you can spend less time managing those resources and more time focusing on
your applications that run in AWS. You create a template that describes all the AWS resources that
you want (like Lambda functions and DynamoDB tables), and AWS CloudFormation takes care of
provisioning and configuring those resources for you.

In addition, you can use the AWS Serverless Application Model to express resources that comprise the
serverless application. These resource types, such as Lambda functions and APIs, are fully supported
by AWS CloudFormation and make it easier for you to define and deploy your serverless application.

For more information, see Deploying Lambda-based Applications (p. 139).

Specification for Amazon Kinesis Application

The following contains the SAM template for this application. Copy the text below to a .yaml file and
save it next to the ZIP package you created previously.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 ProcessKinesisRecords:
 Type: AWS::Serverless::Function
 Properties:
 Handler: ProcessKinesisRecords.handler
 Runtime: nodejs4.3
 Policies: AWSLambdaKinesisExecutionRole
 Events:
 Stream:
 Type: Kinesis
 Properties:
 Stream: !GetAtt ExampleStream.Arn
 BatchSize: 100
 StartingPosition: TRIM_HORIZON

 ExampleStream:
 Type: AWS::Kinesis::Stream
 Properties:
 ShardCount: 1

Deploying the Serverless Application

For information on how to package and deploy your serverless application using the package and
deploy commands, see Packaging and Deployment (p. 145).

Using AWS Lambda with Amazon DynamoDB
You can use Lambda functions as triggers for your Amazon DynamoDB table. Triggers are custom
actions you take in response to updates made to the DynamoDB table. To create a trigger, first you
enable Amazon DynamoDB Streams for your table. Then, you write a Lambda function to process the
updates published to the stream.

Note the following about how the Amazon DynamoDB and AWS Lambda integration works:

• Stream-based model – This is a model (see Event Source Mapping (p. 120)), where AWS Lambda
polls the stream and, when it detects new records, invokes your Lambda function by passing the
update event as parameter.

In a stream-based model, you maintain event source mapping in AWS Lambda. The event source
mapping describes which stream maps to which Lambda function. AWS Lambda provides an API

203

AWS Lambda Developer Guide
Tutorial

(CreateEventSourceMapping (p. 328)) for you to create the mapping. You can also the AWS
Lambda console to create event source mappings.

• Synchronous invocation – AWS Lambda invokes a Lambda function using the RequestResponse
invocation type (synchronous invocation). For more information about invocation types, see
Invocation Types (p. 4).

• Event structure – The event your Lambda function receives is the table update information AWS
Lambda reads from your stream. When you configure event source mapping, the batch size you
specify is the maximum number of records that you want your Lambda function to receive per
invocation.

Regardless of what invokes a Lambda function, AWS Lambda always executes a Lambda function
on your behalf. If your Lambda function needs to access any AWS resources, you need to grant the
relevant permissions to access those resources. You also need to grant AWS Lambda permissions
to poll your DynamoDB stream. You grant all of these permissions to an IAM role (execution role)
that AWS Lambda can assume to poll the stream and execute the Lambda function on your behalf.
You create this role first and then enable it at the time you create the Lambda function. For more
information, see Manage Permissions: Using an IAM Role (Execution Role) (p. 155).

The following diagram illustrates the application flow:

1. Custom app updates the DynamoDB table.

2. Amazon DynamoDB publishes item updates to the stream.

3. AWS Lambda polls the stream and invokes your Lambda function when it detects new records in the
stream.

4. AWS Lambda executes the Lambda function by assuming the execution role you specified at the
time you created the Lambda function.

For a tutorial that walks you through an example setup, see Tutorial: Using AWS Lambda with Amazon
DynamoDB (p. 204).

Tutorial: Using AWS Lambda with Amazon
DynamoDB
In this tutorial, you create a Lambda function to consume events from a DynamoDB stream.

The tutorial is divided into two main sections:

• First, you perform the necessary setup to create a Lambda function and then you test it by invoking it
manually using sample event data.

204

AWS Lambda Developer Guide
Tutorial

• Second, you create an DynamoDB stream-enabled table and add an event source mapping in
AWS Lambda to associate the stream with your Lambda function. AWS Lambda starts polling the
stream. Then, you test the end-to-end setup. As you create, update, and delete items from the table,
Amazon DynamoDB writes records to the stream. AWS Lambda detects the new records as it polls
the stream and executes your Lambda function on your behalf.

Important
Both the Lambda function and the DynamoDB stream must be in the same AWS region. This
tutorial assumes that you create these resources in the us-east-1 region.

In this tutorial, you use the AWS Command Line Interface to perform AWS Lambda operations such
as creating a Lambda function, creating a stream, and adding records to the stream. You use the AWS
Lambda console to manually invoke the function before you create a DynamoDB stream. You verify
return values and logs in the console UI.

Next Step

Step 1: Prepare (p. 205)

Step 1: Prepare

Make sure you have completed the following steps:

• Signed up for an AWS account and created an administrator user in the account.

• Installed and set up the AWS CLI.

For instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Next Step

Step 2: Create a Lambda Function and Invoke It Manually (Using Sample Event Data) (p. 205)

Step 2: Create a Lambda Function and Invoke It Manually
(Using Sample Event Data)

In this section, you do the following:

• Create a Lambda function deployment package using the sample code provided. The sample
Lambda function code that you'll use to process DynamoDB events is provided in various languages.
Select one of the languages and follow the corresponding instructions to create a deployment
package.

Note
To see more examples of using other AWS services within your function, including calling
other Lambda functions, see AWS SDK for JavaScript

• Create an IAM role (execution role). At the time you upload the deployment package, you need to
specify an IAM role (execution role) that Lambda can assume to execute the function on your behalf.
For example, AWS Lambda needs permissions for DynamoDB actions so it can poll the stream
and read records from the stream. In the pull model you must also grant AWS Lambda permissions
to invoke your Lambda function. The example Lambda function writes some of the event data to
CloudWatch, so it needs permissions for necessary CloudWatch actions.

• Create the Lambda function by uploading the deployment package, and then test it by invoking
it manually using sample DynamoDB event data. You provide both the deployment package and
the IAM role at the time of creating a Lambda function. You can also specify other configuration

205

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/frames.html

AWS Lambda Developer Guide
Tutorial

information, such as the function name, memory size, runtime environment to use, and the handler.
For more information about these parameters, see CreateFunction (p. 332). After creating the
Lambda function, you invoke it using sample Amazon DynamoDB event data.

Topics

• Step 2.1: Create a Lambda Function Deployment Package (p. 206)

• Step 2.2: Create the Execution Role (IAM Role) (p. 209)

• Step 2.3: Create the Lambda Function and Test It Manually (p. 209)

Step 2.1: Create a Lambda Function Deployment Package

From the Filter View list, choose the language you want to use for your Lambda function. The
appropriate section appears with code and specific instructions for creating a deployment package.

Node.js

1. Open a text editor, and then copy the following code.

console.log('Loading function');

exports.lambda_handler = function(event, context, callback) {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(function(record) {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log('DynamoDB Record: %j', record.dynamodb);
 });
 callback(null, "message");
};

Note
The code sample is compliant with the Node.js runtime v4.3. For more information, see
Programming Model (Node.js) (p. 9)

2. Save the file as ProcessDynamoDBStream.js.

3. Zip the ProcessDynamoDBStream.js file as ProcessDynamoDBStream.zip.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 209)

Java

In the following code, handleRequest is the handler that AWS Lambda invokes and provides event
data. The handler uses the predefined DynamodbEvent class, which is defined in the aws-lambda-
java-events library.

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import
 com.amazonaws.services.lambda.runtime.events.DynamodbEvent.DynamodbStreamRecord;

206

AWS Lambda Developer Guide
Tutorial

public class DDBEventProcessor implements
 RequestHandler<DynamodbEvent, String> {

 public String handleRequest(DynamodbEvent ddbEvent, Context context) {

 for (DynamodbStreamRecord record : ddbEvent.getRecords()){
 System.out.println(record.getEventID());
 System.out.println(record.getEventName());
 System.out.println(record.getDynamodb().toString());

 }
 return "Successfully processed " + ddbEvent.getRecords().size() + "
 records.";
 }
}

If the handler returns normally without exceptions, Lambda considers the input batch of records
as processed successfully and begins reading new records in the stream. If the handler throws an
exception, Lambda considers the input batch of records as not processed and invokes the function with
the same batch of records again.

Using the preceding code (in a file named DDBEventProcessor.java), create a deployment
package. Make sure that you add the following dependencies:

• aws-lambda-java-core

• aws-lambda-java-events

For more information, see Programming Model for Authoring Lambda Functions in Java (p. 21).

Your deployment package can be a .zip file or a standalone .jar. You can use any build and packaging
tool you are familiar with to create a deployment package. For examples of how to use the Maven build
tool to create a standalone .jar, see Creating a .jar Deployment Package Using Maven without any IDE
(Java) (p. 62) and Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java) (p. 65).
For an example of how to use the Gradle build tool to create a .zip file, see Creating a .zip Deployment
Package (Java) (p. 67).

After you verify that your deployment package is created, go to the next step to create an IAM role
(execution role). You specify this role at the time you create your Lambda function.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 209)

C#

In the following code, ProcessDynamoEvent is the handler that AWS Lambda invokes and
provides event data. The handler uses the predefined DynamoDbEvent class, which is defined in the
Amazon.Lambda.DynamoDBEvents library.

using System;
using System.IO;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

using Amazon.Lambda.Serialization.Json;

207

AWS Lambda Developer Guide
Tutorial

namespace DynamoDBStreams
{
 public class DdbSample
 {
 private static readonly JsonSerializer _jsonSerializer = new
 JsonSerializer();

 public void ProcessDynamoEvent(DynamoDBEvent dynamoEvent)
 {
 Console.WriteLine($"Beginning to process
 {dynamoEvent.Records.Count} records...");

 foreach (var record in dynamoEvent.Records)
 {
 Console.WriteLine($"Event ID: {record.EventID}");
 Console.WriteLine($"Event Name: {record.EventName}");

 string streamRecordJson = SerializeObject(record.Dynamodb);
 Console.WriteLine($"DynamoDB Record:");
 Console.WriteLine(streamRecordJson);
 }

 Console.WriteLine("Stream processing complete.");
 }

 private string SerializeObject(object streamRecord)
 {
 using (var ms = new MemoryStream())
 {
 _jsonSerializer.Serialize(streamRecord, ms);
 return Encoding.UTF8.GetString(ms.ToArray());
 }
 }
 }
}

To create a deployment package, follow the steps outlined in .NET Core CLI (p. 57). In doing so, note
the following after you've created your .NET project:

• Rename the default Program.cs file with a file name of your choice, such as
ProcessingDynamoDBStreams.cs.

• Replace the default contents of the renamed Program.cs file with the code example above.

• In the project.json file, add the following references to the dependencies node.

• "Amazon.Lambda.Core":"1.0.0-*"

• "Amazon.Lambda.Serialiation.Json":"1.0.0-*"

• "Amazon.Lambda.DynamoDBEvents":"1.0.0-*"

After you verify that your deployment package is created, go to the next step to create an IAM role
(execution role). You specify this role at the time you create your Lambda function.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 209)

Python

1. Open a text editor, and then copy the following code.

208

AWS Lambda Developer Guide
Tutorial

from __future__ import print_function

def lambda_handler(event, context):
 for record in event['Records']:
 print(record['eventID'])
 print(record['eventName'])
 print('Successfully processed %s records.' %
 str(len(event['Records'])))

2. Save the file as ProcessDynamoDBStream.py.

3. Zip the ProcessDynamoDBStream.py file as ProcessDynamoDBStream.zip.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 209)

Step 2.2: Create the Execution Role (IAM Role)

In this section, you create an IAM role using the following predefined role type and access policy:

• AWS service role of the type AWS Lambda – This role grants AWS Lambda permissions to assume
the role.

• AWSLambdaDynamoDBExecutionRole – This is the access permissions policy that you attach to
the role.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedure to create the IAM role.

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-
dynamodb-execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

• In Attach Policy, choose AWSLambdaDynamoDBExecutionRole. The permissions in this
policy are sufficient for the Lambda function in this tutorial.

3. Write down the role ARN. You will need it in the next step when you create your Lambda function.

Next Step

Step 2.3: Create the Lambda Function and Test It Manually (p. 209)

Step 2.3: Create the Lambda Function and Test It Manually

In this section, you do the following:

• Create a Lambda function by uploading the deployment package.

• Test the Lambda function by invoking it manually. Instead of creating an event source, you use
sample DynamoDB event data.

209

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Tutorial

In the next section, you create an DynamoDB stream and test the end-to-end experience.

Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)

In this step, you upload the deployment package using the AWS CLI.

At the command prompt, run the following Lambda CLI create-function command using the
adminuser profile.

You need to update the command by providing the .zip file path and the execution role ARN. The --
runtime parameter value can be python2.7, nodejs4.3, or java8, depending on the language you
used to author your code.

$ aws lambda create-function \
--region us-east-1 \
--function-name ProcessDynamoDBStream \
--zip-file fileb://file-path/ProcessDynamoDBStream.zip \
--role role-arn \
--handler ProcessDynamoDBStream.lambda_handler \
--runtime runtime-value \
--profile adminuser

Note
If you choose Java 8 as the runtime, the handler value must be
packageName::methodName.

For more information, see CreateFunction (p. 332). AWS Lambda creates the function and returns
function configuration information.

Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and then
specify the bucket and object name in the preceding command. You need to replace the --zip-file
parameter by the --code parameter, as shown following:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

Step 2.3.2: Test the Lambda Function (Invoke Manually)

In this step, you invoke your Lambda function manually using the invoke AWS Lambda CLI command
and the following sample DynamoDB event.

1. Copy the following JSON into a file and save it as input.txt.

{
 "Records":[
 {
 "eventID":"1",
 "eventName":"INSERT",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"New item!"

210

AWS Lambda Developer Guide
Tutorial

 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"111",
 "SizeBytes":26,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"2",
 "eventName":"MODIFY",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"222",
 "SizeBytes":59,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"3",
 "eventName":"REMOVE",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{

211

AWS Lambda Developer Guide
Tutorial

 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"333",
 "SizeBytes":38,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 }
]
}

2. Execute the following invoke command.

$ aws lambda invoke \
--invocation-type RequestResponse \
--function-name ProcessDynamoDBStream \
--region us-east-1 \
--payload file://file-path/input.txt \
--profile adminuser \
outputfile.txt

Note that the invoke command specifies the RequestResponse as the invocation type, which
requests synchronous execution. For more information, see Invoke (p. 358). The function returns
the string message (message in the context.succeed() in the code) in the response body.

3. Verify the output in the outputfile.txt file.

You can monitor the activity of your Lambda function in the AWS Lambda console.

• The AWS Lambda console shows a graphical representation of some of the CloudWatch
metrics in the Cloudwatch Metrics at a glance section for your function. Sign in to the AWS
Management Console at https://console.aws.amazon.com/.

• For each graph you can also click the logs link to view the CloudWatch logs directly.

Next Step

Step 3: Add an Event Source (Create a DynamoDB Stream and Associate It with Your Lambda
Function) (p. 212)

Step 3: Add an Event Source (Create a DynamoDB Stream
and Associate It with Your Lambda Function)

In this section, you do the following:

• Create an Amazon DynamoDB table with a stream enabled.

• Create an event source mapping in AWS Lambda. This event source mapping associates the
DynamoDB stream with your Lambda function. After you create this event source mapping, AWS
Lambda starts polling the stream.

• Test the end-to-end experience. As you perform table updates, DynamoDB writes event records to
the stream. As AWS Lambda polls the stream, it detects new records in the stream and executes
your Lambda function on your behalf by passing events to the function.

212

https://console.aws.amazon.com/

AWS Lambda Developer Guide
Tutorial

Step 3.1: Create a DynamoDB Table with a Stream Enabled

Follow the procedure to create a table with a stream:

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the DynamoDB console, create a table with streams enabled. Make sure you have the US East
(N. Virginia) region selected before you create the table.

Important
You must create a DynamoDB table in the same region where you created the Lambda
function. This tutorial assumes the US East (N. Virginia) region. In addition, both the table
and the Lambda functions must belong to the same AWS account.

3. Write down the stream ARN. You need this in the next step when you associate the stream with
your Lambda function.

Step 3.2: Add an Event Source in AWS Lambda

Run the following AWS CLI create-event-source-mapping command. After the command
executes, note down the UUID. You'll need this UUID to refer to the event source mapping in any
commands, for example, when deleting the event source mapping.

$ aws lambda create-event-source-mapping \
--region us-east-1 \
--function-name ProcessDynamoDBStream \
--event-source DynamoDB-stream-arn \
--batch-size 100 \
--starting-position TRIM_HORIZON \
--profile adminuser

Note
This creates a mapping between the specified DynamoDB stream and the Lambda function.
You can associate a DynamoDB stream with multiple Lambda functions, and associate the
same Lambda function with multiple streams. However, the Lambda functions will share the
read throughput for the stream they share.

You can get the list of event source mappings by running the following command.

$ aws lambda list-event-source-mappings \
--region us-east-1 \
--function-name ProcessDynamoDBStream \
--event-source DynamoDB-stream-arn \
--profile adminuser

The list returns all of the event source mappings you created, and for each mapping it shows the
LastProcessingResult, among other things. This field is used to provide an informative message
if there are any problems. Values such as No records processed (indicates that AWS Lambda
has not started polling or that there are no records in the stream) and OK (indicates AWS Lambda
successfully read records from the stream and invoked your Lambda function) indicate that there no
issues. If there are issues, you receive an error message.

Step 3.3: Test the Setup

You're all done! Now adminuser can test the setup as follows:

213

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

AWS Lambda Developer Guide
Tutorial

1. In the DynamoDB console, add, update, delete items to the table. DynamoDB writes records of
these actions to the stream.

2. AWS Lambda polls the stream and when it detects updates to the stream, it invokes your Lambda
function by passing in the event data it finds in the stream.

3. Your function executes and creates logs in Amazon CloudWatch. The adminuser can also verify
the logs reported in the Amazon CloudWatch console.

Step 4: Deploy With AWS SAM and AWS CloudFormation
In the previous section, you used AWS Lambda APIs to create and update a Lambda function by
providing a deployment package as a ZIP file. However, this mechanism may not be convenient
for automating deployment steps for functions, or coordinating deployments and updates to other
elements of a serverless application, like event sources and downstream resources.

You can use AWS CloudFormation to easily specify, deploy, and configure serverless applications.
AWS CloudFormation is a service that helps you model and set up your Amazon Web Services
resources so that you can spend less time managing those resources and more time focusing on
your applications that run in AWS. You create a template that describes all the AWS resources that
you want (like Lambda functions and DynamoDB tables), and AWS CloudFormation takes care of
provisioning and configuring those resources for you.

In addition, you can use the AWS Serverless Application Model to express resources that comprise the
serverless application. These resource types, such as Lambda functions and APIs, are fully supported
by AWS CloudFormation and make it easier for you to define and deploy your serverless application.

For more information, see Deploying Lambda-based Applications (p. 139).

Specification for DynamoDB Application

The following contains the SAM template for this application. Copy the text below to a .yaml file and
save it next to the ZIP package you created previously.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 ProcessDynamoDBStream:
 Type: AWS::Serverless::Function
 Properties:
 Handler: ProcessDynamoDBStream.handler
 Runtime: nodejs4.3
 Policies: AWSLambdaDynamoDBExecutionRole
 Events:
 Stream:
 Type: DynamoDB
 Properties:
 Stream: !GetAtt DynamoDBTable.StreamArn
 BatchSize: 100
 StartingPosition: TRIM_HORIZON

 DynamoDBTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 KeySchema:
 - AttributeName: id
 KeyType: HASH

214

AWS Lambda Developer Guide
AWS CloudTrail

 ProvisionedThroughput:
 ReadCapacityUnits: 5
 WriteCapacityUnits: 5
 StreamSpecification:
 StreamViewType: NEW_IMAGE

Deploying the Serverless Application

For information on how to package and deploy your serverless application using the package and
deploy commands, see Packaging and Deployment (p. 145).

Using AWS Lambda with AWS CloudTrail
You can enable CloudTrail in your AWS account to get logs of API calls and related events history in
your account. CloudTrail records all of the API access events as objects in your Amazon S3 bucket
that you specify at the time you enable CloudTrail.

You can take advantage of Amazon S3's bucket notification feature and direct Amazon S3 to publish
object-created events to AWS Lambda. Whenever CloudTrail writes logs to your S3 bucket, Amazon
S3 can then invoke your Lambda function by passing the Amazon S3 object-created event as a
parameter. The S3 event provides information, including the bucket name and key name of the log
object that CloudTrail created. Your Lambda function code can read the log object and process the
access records logged by CloudTrail. For example, you might write Lambda function code to notify you
if specific API call was made in your account.

In this scenario, you enable CloudTrail so it can write access logs to your S3 bucket. As for AWS
Lambda, Amazon S3 is the event source so Amazon S3 publishes events to AWS Lambda and
invokes your Lambda function.

Note
Amazon S3 can only support one event destination.

For detailed information about how to configure Amazon S3 as the event source, see Using AWS
Lambda with Amazon S3 (p. 175).

The following diagram summarizes the flow:

1. AWS CloudTrail saves logs to an S3 bucket (object-created event).

2. Amazon S3 detects the object-created event.

215

AWS Lambda Developer Guide
Tutorial

3. Amazon S3 publishes the s3:ObjectCreated:* event to AWS Lambda by invoking the Lambda
function, as specified in the bucket notification configuration. Because the Lambda function's access
permissions policy includes permissions for Amazon S3 to invoke the function, Amazon S3 can
invoke the function.

4. AWS Lambda executes the Lambda function by assuming the execution role that you specified at
the time you created the Lambda function.

5. The Lambda function reads the Amazon S3 event it receives as a parameter, determines where
the CloudTrail object is, reads the CloudTrail object, and then it processes the log records in the
CloudTrail object.

6. If the log includes a record with specific eventType and eventSource values, it publishes the
event to your Amazon SNS topic. In Tutorial: Using AWS Lambda with AWS CloudTrail (p. 216),
you subscribe to the SNS topic using the email protocol, so you get email notifications.

For a tutorial that walks you through an example scenario, see Tutorial: Using AWS Lambda with AWS
CloudTrail (p. 216).

Tutorial: Using AWS Lambda with AWS CloudTrail
Suppose you have turned on AWS CloudTrail for your AWS account to maintain records (logs) of AWS
API calls made on your account and you want to be notified anytime an API call is made to create an
SNS topic. As API calls are made in your account, CloudTrail writes logs to an Amazon S3 bucket that
you configured. In this scenario, you want Amazon S3 to publish the object-created events to AWS
Lambda and invoke your Lambda function as CloudTrail creates log objects.

When Amazon S3 invokes your Lambda function, it passes an S3 event identifying, among other
things, the bucket name and key name of the object that CloudTrail created. Your Lambda function can
read the log object, and it knows the API calls that were reported in the log.

Each object CloudTrail creates in your S3 bucket is a JSON object, with one or more event records.
Each record, among other things, provides eventSource and eventName.

{
 "Records":[

 {
 "eventVersion":"1.02",
 "userIdentity":{
 ...
 },
 "eventTime":"2014-12-16T19:17:43Z",
 "eventSource":"sns.amazonaws.com",
 "eventName":"CreateTopic",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"72.21.198.64",
 ...
 },
 {
 ...
 },
 ...
}

For illustration, the Lambda function notifies you by email if an API call to create an Amazon SNS topic
is reported in the log. That is, when your Lambda function parses the log, it looks for records with the
following:

216

AWS Lambda Developer Guide
Tutorial

• eventSource = "sns.amazonaws.com"

• eventName = "CreateTopic"

If found, it publishes the event to your Amazon SNS topic (you configure this topic to notify you by
email).

Implementation Summary

Upon completing this tutorial, you will have Amazon S3, AWS Lambda, Amazon SNS, and AWS
Identity and Access Management (IAM) resources in your account:

Note
This tutorial assumes that you create these resources in the us-west-2 region.

In Lambda:

• A Lambda function.

• An access policy associated with your Lambda function – You grant Amazon S3 permissions to
invoke the Lambda function using this permissions policy. You will also restrict the permissions
so that Amazon S3 can invoke the Lambda function only for object-created events from a specific
bucket that is owned by a specific AWS account.

Note
It is possible for an AWS account to delete a bucket and some other AWS account to later
create a bucket with same name. The additional conditions ensure that Amazon S3 can
invoke the Lambda function only if Amazon S3 detects object-created events from a specific
bucket owned by a specific AWS account.

For more information, see How It Works (p. 151).

In IAM:

• An IAM role (execution role) – You grant permissions that your Lambda function needs through the
permissions policy associated with this role.

In Amazon S3:

• A bucket – In this tutorial, the bucket name is examplebucket. When you turn the trail on in the
CloudTrail console, you specify this bucket for CloudTrail to save the logs.

• Notification configuration on the examplebucket – In the configuration, you direct Amazon S3 to
publish object-created events to Lambda, by invoking your Lambda function. For more information
about the Amazon S3 notification feature, see Setting Up Notification of Bucket Events in Amazon
Simple Storage Service Developer Guide.

• Sample CloudTrail log object (ExampleCloudTrailLog.json) in examplebucket bucket – In the
first half of this exercise, you create and test your Lambda function by manually invoking it using a
sample S3 event. This sample event identifies examplebucket as the bucket name and this sample
object key name. Your Lambda function then reads the object and sends you email notifications
using an SNS topic.

In Amazon SNS

• An SNS topic – You subscribe to this topic by specifying email as the protocol.

Now you are ready to start the tutorial.

217

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

AWS Lambda Developer Guide
Tutorial

Next Step
Step 1: Prepare (p. 218)

Step 1: Prepare
In this section you do the following:

• Sign up for an AWS account and set up the AWS CLI.

• Turn on CloudTrail in your account.

• Create an SNS topic and subscribe to it.

Follow the steps in the following sections to walk through the setup process.

Note
In this tutorial, we assume that you are setting the resources in the us-west-2 region.

Step 1.1: Sign Up for AWS and Set Up the AWS CLI

Make sure you have completed the following steps:

• Signed up for an AWS account and created an administrator user in the account (called adminuser).

• Installed and set up the AWS CLI.

For instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Step 1.2: Turn on CloudTrail

In the AWS CloudTrail console, turn on the trail in your account by specifying examplebucket in
the us-west-2 region for CloudTrail to save logs. When configuring the trail, do not enable SNS
notification.

For instructions, see Creating and Updating Your Trail in the AWS CloudTrail User Guide.

Note
Although you turn CloudTrail on now, you do not perform any additional configuration for your
Lambda function to process the real CloudTrail logs in the first half of this exercise. Instead,
you will use sample CloudTrail log objects (that you will upload) and sample S3 events to
manually invoke and test your Lambda function. In the second half of this tutorial, you perform
additional configuration steps that enable your Lambda function to process the CloudTrail
logs.

Step 1.3: Create an SNS Topic and Subscribe to the Topic

Follow the procedure to create an SNS topic in the us-west-2 region and subscribe to it by providing
an email address as the endpoint.

To create and subscribe to a topic

1. Create an SNS topic.

For instructions, see Create a Topic in the Amazon Simple Notification Service Developer Guide.

2. Subscribe to the topic by providing an email address as the endpoint.

For instructions, see Subscribe to a Topic in the Amazon Simple Notification Service Developer
Guide.

3. Note down the topic ARN. You will need the value in the following sections.

218

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html

AWS Lambda Developer Guide
Tutorial

Next Step

Step 2: Create a Lambda Function and Invoke It Manually (Using Sample Event Data) (p. 219)

Step 2: Create a Lambda Function and Invoke It Manually
(Using Sample Event Data)
In this section, you do the following:

• Create a Lambda function deployment package using the sample code provided. The sample
Lambda function code that you'll use to process Amazon S3 events is provided in various languages.
Select one of the languages and follow the corresponding instructions to create a deployment
package.

Note
Your Lambda function uses an S3 event that provides the bucket name and key name
of the object CloudTrail created. Your Lambda function then reads that object to process
CloudTrail records.

• Create an IAM role (execution role). At the time you upload the deployment package, you need to
specify an IAM role (execution role) that Lambda can assume to execute the function on your behalf.

• Create the Lambda function by uploading the deployment package, and then test it by invoking it
manually using sample CloudTrail event data.

Topics

• Step 2.1: Create a Deployment Package (p. 219)

• Step 2.2: Create the Execution Role (IAM Role) (p. 221)

• Step 2.3: Create the Lambda Function and Test It Manually (p. 222)

Step 2.1: Create a Deployment Package

The deployment package is a .zip file containing your Lambda function code. For this tutorial, you will
need to install the async library. To do this, open a command window and navigate to the directory
where you intend to store the code file file you will copy and save below. Use npm to install the async
library as shown below :

npm install async

Node.js

1. Open a text editor, and then copy the following code.

var aws = require('aws-sdk');
var zlib = require('zlib');
var async = require('async');

var EVENT_SOURCE_TO_TRACK = /sns.amazonaws.com/;
var EVENT_NAME_TO_TRACK = /CreateTopic/;
var DEFAULT_SNS_REGION = 'us-west-2';
var SNS_TOPIC_ARN = 'The ARN of your SNS topic';

var s3 = new aws.S3();
var sns = new aws.SNS({
 apiVersion: '2010-03-31',
 region: DEFAULT_SNS_REGION
});

219

AWS Lambda Developer Guide
Tutorial

exports.handler = function(event, context, callback) {
 var srcBucket = event.Records[0].s3.bucket.name;
 var srcKey = event.Records[0].s3.object.key;

 async.waterfall([
 function fetchLogFromS3(next){
 console.log('Fetching compressed log from S3...');
 s3.getObject({
 Bucket: srcBucket,
 Key: srcKey
 },
 next);
 },
 function uncompressLog(response, next){
 console.log("Uncompressing log...");
 zlib.gunzip(response.Body, next);
 },
 function publishNotifications(jsonBuffer, next) {
 console.log('Filtering log...');
 var json = jsonBuffer.toString();
 console.log('CloudTrail JSON from S3:', json);
 var records;
 try {
 records = JSON.parse(json);
 } catch (err) {
 next('Unable to parse CloudTrail JSON: ' + err);
 return;
 }
 var matchingRecords = records
 .Records
 .filter(function(record) {
 return record.eventSource.match(EVENT_SOURCE_TO_TRACK)
 && record.eventName.match(EVENT_NAME_TO_TRACK);
 });

 console.log('Publishing ' + matchingRecords.length + '
 notification(s) in parallel...');
 async.each(
 matchingRecords,
 function(record, publishComplete) {
 console.log('Publishing notification: ', record);
 sns.publish({
 Message:
 'Alert... SNS topic created: \n TopicARN=' +
 record.responseElements.topicArn + '\n\n' +
 JSON.stringify(record),
 TopicArn: SNS_TOPIC_ARN
 }, publishComplete);
 },
 next
);
 }
], function (err) {
 if (err) {
 console.error('Failed to publish notifications: ', err);
 } else {
 console.log('Successfully published all notifications.');
 }

220

AWS Lambda Developer Guide
Tutorial

 callback(null,"message");
 });
};

Note
The code sample is compliant with the Node.js runtime v4.3. For more information, see
Programming Model (Node.js) (p. 9)

2. Save the file as CloudTrailEventProcessing.js.

3. Zip the CloudTrailEventProcessing.js file as CloudTrailEventProcessing.zip.

Note
We're using Node.js in this tutorial example, but you can author your Lambda functions in
Java or Python too.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 221)

Step 2.2: Create the Execution Role (IAM Role)

Now you create an IAM role (execution role) that you specify when creating your Lambda function. This
role has a permissions policy that grant the necessary permissions that your Lambda function needs,
such as permissions to write CloudWatch logs, permissions to read CloudTrail log objects from an S3
bucket, and permissions to publish events to your SNS topic when your Lambda function finds specific
API calls in the CloudTrail records.

For more information about the execution role, see Manage Permissions: Using an IAM Role
(Execution Role) (p. 155).

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Create a managed policy and attach it to the IAM role. In this step, you modify an existing AWS
Managed Policy, save it using a different name, and then attach the permissions policy to an IAM
role that you create.

a. In the navigation pane of the IAM console, choose Policies, and then choose Create Policy.

b. Next to Copy an AWS Managed Policy, choose Select.

c. Next to AWSLambdaExecute, choose Select.

d. Copy the following policy into the Policy Document, replacing the existing policy, and then
update the policy with the ARN of the Amazon SNS topic that you created.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:*"
],
 "Resource": "arn:aws:logs:*:*:*"
 },

221

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Lambda Developer Guide
Tutorial

 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::examplebucket/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "your sns topic ARN"
 }
]
}

3. Note the permissions policy name because you will use it in the next step.

4. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role and then attach the permissions policy you just created to the role. As
you follow the steps to create a role, note the following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-
cloudtrail-execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda.

• In Attach Policy, choose the policy you created in the previous step.

Next Step

Step 2.3: Create the Lambda Function and Test It Manually (p. 222)

Step 2.3: Create the Lambda Function and Test It Manually

In this section, you do the following:

• Create a Lambda function by uploading the deployment package.

• Test the Lambda function by invoking it manually.

In this step, you use a sample S3 event that identifies your bucket name and the sample object
(that is, an example CloudTrail log). In the next section you configure your S3 bucket notification to
publish object-created events and test the end-to-end experience.

Step 2.3.1: Create the Lambda Function (Upload the Deployment Package)

In this step, you upload the deployment package using the AWS CLI and provide configuration
information when you create the Lambda function. At the command prompt, run the following Lambda
CLI create-function command using the adminuser profile.

Note
You need to update the command by providing the .zip file path (//file-path/
CloudTrailEventProcessing.zip \) and the execution role ARN (execution-role-
arn). If you used the sample code provided earlier in this tutorial, set the --runtime
parameter value to node.js.
You can author your Lambda functions in Java or Python too. If you use another language,
change the --runtime parameter value to java8 or python2.7 as needed.

222

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Tutorial

$ aws lambda create-function \
--region us-west-2 \
--function-name CloudTrailEventProcessing \
--zip-file fileb://file-path/CloudTrailEventProcessing.zip \
--role execution-role-arn \
--handler CloudTrailEventProcessing.handler \
--runtime nodejs4.3 \
--profile adminuser \
--timeout 10 \
--memory-size 1024

Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and then
specify the bucket and object name in the preceding command. You need to replace the --zip-file
parameter by the --code parameter as shown:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

Note
You can create the Lambda function using the AWS Lambda console, in which case note
the value of the create-function AWS CLI command parameters. You provide the same
values in the console.

Step 2.3.2: Test the Lambda Function (Invoke Manually)

In this section, you invoke the Lambda function manually using sample Amazon S3 event data.
When the Lambda function executes, it reads the S3 object (a sample CloudTrail log) from the
bucket identified in the S3 event data, and then it publishes an event to your SNS topic if the
sample CloudTrail log reports use a specific API. For this tutorial, the API is the SNS API used to
create a topic. That is, the CloudTrail log reports a record identifying sns.amazonaws.com as the
eventSource, and CreateTopic as the eventName.

1. Save the following sample CloudTrail log to a file (ExampleCloudTrailLog.json).

Note
Note that one of events in this log has sns.amazonaws.com as the eventSource and
CreateTopic as the eventName. Your Lambda function reads the logs and if it finds an
event of this type, it publishes the event to the Amazon SNS topic that you created and
then you receive one email when you invoke the Lambda function manually.

{
 "Records":[
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"Root",
 "principalId":"account-id",
 "arn":"arn:aws:iam::account-id:root",
 "accountId":"account-id",
 "accessKeyId":"access-key-id",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"2015-01-24T22:41:54Z"
 }
 }

223

AWS Lambda Developer Guide
Tutorial

 },
 "eventTime":"2015-01-24T23:26:50Z",
 "eventSource":"sns.amazonaws.com",
 "eventName":"CreateTopic",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"205.251.233.176",
 "userAgent":"console.amazonaws.com",
 "requestParameters":{
 "name":"dropmeplease"
 },
 "responseElements":{
 "topicArn":"arn:aws:sns:us-west-2:account-id:exampletopic"
 },
 "requestID":"3fdb7834-9079-557e-8ef2-350abc03536b",
 "eventID":"17b46459-dada-4278-b8e2-5a4ca9ff1a9c",
 "eventType":"AwsApiCall",
 "recipientAccountId":"account-id"
 },
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"Root",
 "principalId":"account-id",
 "arn":"arn:aws:iam::account-id:root",
 "accountId":"account-id",
 "accessKeyId":"access-key-id",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"2015-01-24T22:41:54Z"
 }
 }
 },
 "eventTime":"2015-01-24T23:27:02Z",
 "eventSource":"sns.amazonaws.com",
 "eventName":"GetTopicAttributes",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"205.251.233.176",
 "userAgent":"console.amazonaws.com",
 "requestParameters":{
 "topicArn":"arn:aws:sns:us-west-2:account-id:exampletopic"
 },
 "responseElements":null,
 "requestID":"4a0388f7-a0af-5df9-9587-c5c98c29cbec",
 "eventID":"ec5bb073-8fa1-4d45-b03c-f07b9fc9ea18",
 "eventType":"AwsApiCall",
 "recipientAccountId":"account-id"
 }
]
}

2. Run the gzip command to create a .gz file from the preceding source file.

$ gzip ExampleCloudTrailLog.json

This creates ExampleCloudTrailLog.json.gz file.

3. Upload the ExampleCloudTrailLog.json.gz file to the examplebucket that you specified in
the CloudTrail configuration.

224

AWS Lambda Developer Guide
Tutorial

This object is specified in the sample Amazon S3 event data that we use to manually invoke the
Lambda function.

4. Save the following JSON (an example S3 event) in a file, input.txt. Note the bucket name and
the object key name values.

You provide this sample event when you invoke your Lambda function. For more information about
the S3 event structure, see Event Message Structure in the Amazon Simple Storage Service
Developer Guide.

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-west-2",
 "eventTime":"1970-01-01T00:00:00.000Z",
 "eventName":"ObjectCreated:Put",
 "userIdentity":{
 "principalId":"AIDAJDPLRKLG7UEXAMPLE"
 },
 "requestParameters":{
 "sourceIPAddress":"127.0.0.1"
 },
 "responseElements":{
 "x-amz-request-id":"C3D13FE58DE4C810",
 "x-amz-id-2":"FMyUVURIY8/IgAtTv8xRjskZQpcIZ9KG4V5Wp6S7S/
JRWeUWerMUE5JgHvANOjpD"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"testConfigRule",
 "bucket":{
 "name":"your bucket name",
 "ownerIdentity":{
 "principalId":"A3NL1KOZZKExample"
 },
 "arn":"arn:aws:s3:::mybucket"
 },
 "object":{
 "key":"ExampleCloudTrailLog.json.gz",
 "size":1024,
 "eTag":"d41d8cd98f00b204e9800998ecf8427e",
 "versionId":"096fKKXTRTtl3on89fVO.nfljtsv6qko"
 }
 }
 }
]
}

5. In the AWS Management Console, invoke the function manually using sample Amazon S3 event
data. For instructions, see the Getting Started exercise Step 2.2: Invoke the Lambda Function
Manually and Verify Results, Logs, and Metrics (p. 167). In the console, use the following sample
Amazon S3 event data.

Note
We recommend that you invoke the function using the console because the console
UI provides a user-friendly interface for reviewing the execution results, including the
execution summary, logs written by your code, and the results returned by the function

225

http://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html

AWS Lambda Developer Guide
Tutorial

(because the console always performs synchronous execution—invokes the Lambda
function using the RequestResponse invocation type).

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-west-2",
 "eventTime":"1970-01-01T00:00:00.000Z",
 "eventName":"ObjectCreated:Put",
 "userIdentity":{
 "principalId":"AIDAJDPLRKLG7UEXAMPLE"
 },
 "requestParameters":{
 "sourceIPAddress":"127.0.0.1"
 },
 "responseElements":{
 "x-amz-request-id":"C3D13FE58DE4C810",
 "x-amz-id-2":"FMyUVURIY8/IgAtTv8xRjskZQpcIZ9KG4V5Wp6S7S/
JRWeUWerMUE5JgHvANOjpD"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"testConfigRule",
 "bucket":{
 "name":"your bucket name",
 "ownerIdentity":{
 "principalId":"A3NL1KOZZKExample"
 },
 "arn":"arn:aws:s3:::mybucket"
 },
 "object":{
 "key":"ExampleCloudTrailLog.json.gz",
 "size":1024,
 "eTag":"d41d8cd98f00b204e9800998ecf8427e",
 "versionId":"096fKKXTRTtl3on89fVO.nfljtsv6qko"
 }
 }
 }
]
}

6. Execute the following AWS CLI command to invoke the function manually using the adminuser
profile.

$ aws lambda invoke-async \
 --function-name CloudTrailEventProcessing \
 --region us-west-2 \
 --invoke-args /filepath/input.txt \
 --debug \
--profile adminuser

Because your example log object has an event record showing the SNS API to call to create
a topic, the Lambda function posts that event to your SNS topic, and you should get an email
notification.

226

AWS Lambda Developer Guide
Tutorial

You can monitor the activity of your Lambda function by using CloudWatch metrics and logs.
For more information about CloudWatch monitoring, see Troubleshooting and Monitoring AWS
Lambda Functions with Amazon CloudWatch (p. 107).

7. (Optional) Manually invoke the Lambda function using AWS CLI as follows:

a. Save the JSON from Step 2 earlier in this procedure to a file called input.txt.

b. Execute the following invoke command:

$ aws lambda invoke \
--invocation-type Event \
--function-name CloudTrailEventProcessing \
--region us-west-2 \
--payload file://file-path/input.txt \
--profile adminuser
outputfile.txt

Note
In this tutorial example, the message is saved in the outputfile.txt file. If you
request synchronous execution (RequestResponse as the invocation type), the
function returns the string message in the response body.
For Node.js, it could be one of the following (whatever one you specify in the code):
context.succeed("message")
context.fail("message")
context.done(null, "message)
For Python or Java, it is the message in the return statement:
return "message"

Next Step

Step 3: Add Event Source (Configure Amazon S3 to Publish Events) (p. 227)

Step 3: Add Event Source (Configure Amazon S3 to Publish
Events)

In this section, you add the remaining configuration so Amazon S3 can publish object-created events to
AWS Lambda and invoke your Lambda function. You will do the following:

• Add permissions to the Lambda function's access policy to allow Amazon S3 to invoke the function.

• Add notification configuration to your source bucket. In the notification configuration, you provide the
following:

• Event type for which you want Amazon S3 to publish events. For this tutorial, you specify the
s3:ObjectCreated:* event type.

• Lambda function to invoke.

Step 3.1: Add Permissions to the Lambda Function's Access Permissions
Policy

1. Run the following Lambda CLI add-permission command to grant Amazon S3 service principal
(s3.amazonaws.com) permissions to perform the lambda:InvokeFunction action. Note that
permission is granted to Amazon S3 to invoke the function only if the following conditions are met:

• An object-created event is detected on a specific bucket.

227

AWS Lambda Developer Guide
Tutorial

• The bucket is owned by a specific AWS account. If a bucket owner deletes a bucket, some
other AWS account can create a bucket with the same name. This condition ensures that only a
specific AWS account can invoke your Lambda function.

$ aws lambda add-permission \
--function-name CloudTrailEventProcessing \
--region us-west-2 \
--statement-id Id-1 \
--action "lambda:InvokeFunction" \
--principal s3.amazonaws.com \
--source-arn arn:aws:s3:::examplebucket \
--source-account examplebucket-owner-account-id \
--profile adminuser

2. Verify the function's access policy by running the AWS CLI get-policy command.

$ aws lambda get-policy \
--function-name function-name \
--profile adminuser

Step 3.2: Configure Notification on the Bucket

Add notification configuration on the examplebucket to request Amazon S3 to publish object-created
events to Lambda. In the configuration, you specify the following:

• Event type – For this tutorial, these can be any event types that create objects.

• Lambda function ARN – This is your Lambda function that you want Amazon S3 to invoke. The ARN
is of the following form:

arn:aws:lambda:aws-region:account-id:function:function-name

For example, the function CloudTrailEventProcessing created in us-west-2 region has the
following ARN:

arn:aws:lambda:us-west-2:account-id:function:CloudTrailEventProcessing

For instructions on adding notification configuration to a bucket, see Enabling Event Notifications in the
Amazon Simple Storage Service Console User Guide.

Step 3.3: Test the Setup

You're all done! Now you can test the setup as follows:

1. Perform some action in your AWS account. For example, add another topic in the Amazon SNS
console.

2. You receive an email notification about this event.

3. AWS CloudTrail creates a log object in your bucket.

4. If you open the log object (.gz file), the log shows the CreateTopic SNS event.

5. For each object AWS CloudTrail creates, Amazon S3 invokes your Lambda function by passing in
the log object as event data.

6. Lambda executes your function. The function parses the log, finds a CreateTopic SNS event, and
then you receive an email notification.

228

http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html

AWS Lambda Developer Guide
Tutorial

You can monitor the activity of your Lambda function by using CloudWatch metrics and logs. For
more information about CloudWatch monitoring, see Troubleshooting and Monitoring AWS Lambda
Functions with Amazon CloudWatch (p. 107).

Step 4: Deploy With AWS SAM and AWS CloudFormation
In the previous section, you used AWS Lambda APIs to create and update a Lambda function by
providing a deployment package as a ZIP file. However, this mechanism may not be convenient
for automating deployment steps for functions, or coordinating deployments and updates to other
elements of a serverless application, like event sources and downstream resources.

You can use AWS CloudFormation to easily specify, deploy, and configure serverless applications.
AWS CloudFormation is a service that helps you model and set up your Amazon Web Services
resources so that you can spend less time managing those resources and more time focusing on
your applications that run in AWS. You create a template that describes all the AWS resources that
you want (like Lambda functions and DynamoDB tables), and AWS CloudFormation takes care of
provisioning and configuring those resources for you.

In addition, you can use the AWS Serverless Application Model to express resources that comprise the
serverless application. These resource types, such as Lambda functions and APIs, are fully supported
by AWS CloudFormation and make it easier for you to define and deploy your serverless application.

For more information, see Deploying Lambda-based Applications (p. 139).

Specification for Amazon API Gateway Application

The following contains the SAM template for this application. Copy the text below to a .yaml file and
save it next to the ZIP package you created in the previous section.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Parameters:
 NotificationEmail:
 Type: String
Resources:
 CloudTrailEventProcessing:
 Type: AWS::Serverless::Function
 Properties:
 Handler: CloudTrailEventProcessing.handler
 Runtime: nodejs4.3
 Timeout: 10
 MemorySize: 1024
 Policies:
 - Effect: Allow

229

AWS Lambda Developer Guide
Amazon SNS

 Action: s3:GetObject
 Resource: !Sub 'arn:aws:s3:::${Bucket}/*'
 - Effect: Allow
 Action: sns:Publish
 Resource: !Ref Topic
 Events:
 PhotoUpload:
 Type: S3
 Properties:
 Bucket: !Ref Bucket
 Events: s3:ObjectCreated:*
 Environment:
 Variables:
 SNS_TOPIC_ARN: !Ref Topic

 Bucket:
 Type: AWS::S3::Bucket

 Trail:
 Type: AWS::CloudTrail::Trail
 Properties:
 IsLogging: true
 S3BucketName: !Ref Bucket

 Topic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 - Protocol: email
 Endpoint: !Ref NotificationEmail

Deploying the Serverless Application

For information on how to package and deploy your serverless application using the package and
deploy commands, see Packaging and Deployment (p. 145).

Using AWS Lambda with Amazon SNS from
Different Accounts

In order to perform cross account Amazon SNS deliveries to Lambda, you need to authorize your
Lambda function to be invoked from Amazon SNS. In turn, Amazon SNS needs to allow the Lambda
account to subscribe to the Amazon SNS topic. For example, if the Amazon SNS topic is in account
A and the Lambda function is in account B, both accounts must grant permissions to the other to
access their respective resources. Since not all the options for setting up cross-account permissions
are available from the AWS console, you use the AWS CLI to set up the entire process.

For a tutorial that walks you through an example setup, see Tutorial: Using AWS Lambda with Amazon
SNS (p. 230).

Tutorial: Using AWS Lambda with Amazon SNS
In this tutorial, you create a Lambda function in one AWS account to subscribe to an Amazon SNS
topic in a separate AWS account.

The tutorial is divided into three main sections:

230

AWS Lambda Developer Guide
Tutorial

• First, you perform the necessary setup to create a Lambda function.

• Second, you create an Amazon SNS topic in a separate AWS account.

• Third, you grant permissions from each account in order for the Lambda function to subscribe to the
Amazon SNS topic. Then, you test the end-to-end setup.

Important
This tutorial assumes that you create these resources in the us-east-1 region.

In this tutorial, you use the AWS Command Line Interface to perform AWS Lambda operations such as
creating a Lambda function, creating an Amazon SNS topic and granting permissions to allow these
two resources to access each other.

Next Step
Step 1: Prepare (p. 231)

Step 1: Prepare

• Sign up for an AWS account and create an administrator user in the account (called adminuser).

• Install and set up the AWS CLI.

For instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Next Step

Step 2: Create a Lambda Function (p. 231)

Step 2: Create a Lambda Function
In this section, you do the following:

• Create a Lambda function deployment package using the sample code provided. The sample
Lambda function code that you'll use to subscribe to an Amazon SNS topic is provided in various
languages. Select one of the languages and follow the corresponding instructions to create a
deployment package.

• Create an IAM role (execution role). At the time you upload the deployment package, you need to
specify an IAM role (execution role) that Lambda can assume to execute the function on your behalf.

Topics

• Step 2.1: Create a Lambda Function Deployment Package (p. 231)

• Step 2.2: Create the Execution Role (IAM Role) (p. 233)

Step 2.1: Create a Lambda Function Deployment Package

From the Filter View list, choose the language you want to use for your Lambda function. The
appropriate section appears with code and specific instructions for creating a deployment package.

Node.js

1. Open a text editor, and then copy the following code.

console.log('Loading function');

231

AWS Lambda Developer Guide
Tutorial

exports.handler = function(event, context, callback) {
// console.log('Received event:', JSON.stringify(event, null, 4));

 var message = event.Records[0].Sns.Message;
 console.log('Message received from SNS:', message);
 callback(null, "Success");
};

Note
The code sample is compliant with the Node.js runtime v4.3. For more information, see
Programming Model (Node.js) (p. 9)

2. Save the file as index.js.

3. Zip the index.js file as LambdaWithSNS.zip.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 233)

Java

Open a text editor, and then copy the following code.

package example;

import java.text.SimpleDateFormat;
import java.util.Calendar;

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.events.SNSEvent;

public class LogEvent implements RequestHandler<SNSEvent, Object> {
 public Object handleRequest(SNSEvent request, Context context){
 String timeStamp = new SimpleDateFormat("yyyy-MM-
dd_HH:mm:ss").format(Calendar.getInstance().getTime());
 context.getLogger().log("Invocation started: " + timeStamp);

 context.getLogger().log(request.getRecords().get(0).getSNS().getMessage());

 timeStamp = new SimpleDateFormat("yyyy-MM-
dd_HH:mm:ss").format(Calendar.getInstance().getTime());
 context.getLogger().log("Invocation completed: " + timeStamp);
 return null;
 }
}

Using the preceding code (in a file named LambdaWithSNS.java), create a deployment package.
Make sure that you add the following dependencies:

• aws-lambda-java-core

• aws-lambda-java-events

For more information, see Programming Model for Authoring Lambda Functions in Java (p. 21).

232

AWS Lambda Developer Guide
Tutorial

Your deployment package can be a .zip file or a standalone .jar. You can use any build and packaging
tool you are familiar with to create a deployment package. For examples of how to use the Maven build
tool to create a standalone .jar, see Creating a .jar Deployment Package Using Maven without any IDE
(Java) (p. 62) and Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java) (p. 65).
For an example of how to use the Gradle build tool to create a .zip file, see Creating a .zip Deployment
Package (Java) (p. 67).

After you verify that your deployment package is created, go to the next step to create an IAM role
(execution role). You specify this role at the time you create your Lambda function.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 233)

Python

1. Open a text editor, and then copy the following code.

from __future__ import print_function
import json
print('Loading function')

def lambda_handler(event, context):
 #print("Received event: " + json.dumps(event, indent=2))
 message = event['Records'][0]['Sns']['Message']
 print("From SNS: " + message)
 return message

2. Save the file as lambda_handler.py.

3. Zip the lambda_handler.py file as LambdaWithSNS.zip.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 233)

Step 2.2: Create the Execution Role (IAM Role)

In this section, you create an IAM role using the following predefined role type and access policy:

• AWS service role of the type AWS Lambda – This role grants AWS Lambda permissions to assume
the role.

• AWSLambdaBasicExecutionRole – This is the access permissions policy that you attach to the
role.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedure to create the IAM role.

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-sns-
execution-role).

233

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Tutorial

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

• In Attach Policy, choose AWSLambdaBasicExecutionRole. The permissions in this policy are
sufficient for the Lambda function in this tutorial.

3. Write down the role ARN. You will need it in the next step when you create your Lambda function.

Step 3: Set Up Cross-Account Permissions

In this section, you use CLI commands to set permissions across the Lambda function account and the
Amazon SNS topic account and then test the subscription.

1. From account A, create the Amazon SNS topic:

aws sns create-topic \
 --name lambda-x-account

Note the topic arn that is returned by the command. You will need it when you add permissions to
the Lambda function to subscribe to the topic.

2. From account B, create the Lambda function. For the runtime parameter, select either nodejs4.3,
python2.7 or java8, depending on the code sample you selected when you created your
deployment package.

aws lambda create-function \
 --function-name SNS-X-Account \
 --runtime runtime language \
 --role role arn \
 --handler index.handler \
 --description "SNS X Account Test Function" \
 --timeout 60 \
 --memory-size 128 \
 --zip-file fileb://path/LambdaWithSNS.zip

Note the function arn that is returned by the command. You will need it when you add permissions to
allow Amazon SNS to invoke your function.

3. From account A add permission to account B to subscribe to the topic:

aws sns add-permission \
 --region us-east-1 \
 --topic-arn Amazon SNS topic arn \
 --label lambda-access \
 --aws-account-id B \
 --action-name Subscribe ListSubscriptionsByTopic Receive

4. From account B add the Lambda permission to allow invocation from Amazon SNS:

aws lambda add-permission \
 --function-name SNS-X-Account \
 --statement-id sns-x-account \
 --action "lambda:InvokeFunction" \
 --principal sns.amazonaws.com \
 --source-arn Amazon SNS topic arn

234

AWS Lambda Developer Guide
Tutorial

In response, Lambda returns the following JSON code. The Statement value is a JSON string
version of the statement added to the Lambda function policy:

{
 "Statement": "{\"Condition\":{\"ArnLike\":{\"AWS:SourceArn\":
\"arn:aws:lambda:us-east-1:B:function:SNS-X-Account\"}},\"Action
\":[\"lambda:InvokeFunction\"],\"Resource\":\"arn:aws:lambda:us-
east-1:A:function:SNS-X-Account\",\"Effect\":\"Allow\",\"Principal\":
{\"Service\":\"sns.amazonaws.com\"},\"Sid\":\"sns-x-account1\"}"
}

Note
Do not use the --source-account parameter to add a source account to the Lambda policy
when adding the policy. Source account is not supported for Amazon SNS event sources
and will result in access being denied. This has no security impact as the source account is
included in the source ARN.

5. From account B subscribe the Lambda function to the topic:

aws sns subscribe \
 --topic-arn Amazon SNS topic arn \
 --protocol lambda \
 --notification-endpoint arn:aws:lambda:us-east-1:B:function:SNS-X-
Account

You should see JSON output similar to the following:

{
 "SubscriptionArn": "arn:aws:sns:us-east-1:A:lambda-x-
account:5d906xxxx-7c8x-45dx-a9dx-0484e31c98xx"
}

6. From account A you can now test the subscription. Type "Hello World" into a text file and save it as
message.txt. Then run the following command:

aws sns publish \
 --topic-arn arn:aws:sns:us-east-1:A:lambda-x-account \
 --message file://message.txt \
 --subject Test

This will return a message id with a unique identifier, indicating the message has been accepted by
the Amazon SNS service. Amazon SNS will then attempt to deliver it to the topic's subscribers.

Note
Alternatively, you could supply a JSON string directly to the message parameter, but using a
text file allows for line breaks in the message.

For more information on Amazon SNS, see What is Amazon Simple Notification Service?

235

http://docs.aws.amazon.com/sns/latest/dg/

AWS Lambda Developer Guide
Amazon API Gateway

Using AWS Lambda with Amazon API Gateway
(On-Demand Over HTTPS)

You can invoke AWS Lambda functions over HTTPS. You can do this by defining a custom REST
API and endpoint using Amazon API Gateway, and then mapping individual methods, such as
GET and PUT, to specific Lambda functions. Alternatively, you could add a special method named
ANY to map all supported methods (GET, POST, PATCH, DELETE) to your Lambda function. When
you send an HTTPS request to the API endpoint, the Amazon API Gateway service invokes the
corresponding Lambda function. For more information about the ANY method, see Step 3: Create a
Simple Microservice using Lambda and API Gateway (p. 171).

Amazon API Gateway also adds a layer between your application users and your app logic that
enables the following:

• Ability to throttle individual users or requests.

• Protect against Distributed Denial of Service attacks.

• Provide a caching layer to cache response from your Lambda function.

Note the following about how the Amazon API Gateway and AWS Lambda integration works:

• Push-event model – This is a model (see Event Source Mapping (p. 120)), where Amazon API
Gateway invokes the Lambda function by passing data in the request body as parameter to the
Lambda function.

• Synchronous invocation – The Amazon API Gateway can invoke the Lambda function and get a
response back in real time by specifying RequestResponse as the invocation type. For information
about invocation types, see Invocation Types (p. 4).

• Event structure – The event your Lambda function receives is the body from the HTTPS request
that Amazon API Gateway receives and your Lambda function is the custom code written to process
the specific event type.

Note that there are two types of permissions policies that you work with when you set up the end-to-
end experience:

• Permissions for your Lambda function – Regardless of what invokes a Lambda function, AWS
Lambda executes the function by assuming the IAM role (execution role) that you specify at the time
you create the Lambda function. Using the permissions policy associated with this role, you grant
your Lambda function the permissions that it needs. For example, if your Lambda function needs to
read an object, you grant permissions for the relevant Amazon S3 actions in the permissions policy.
For more information, see Manage Permissions: Using an IAM Role (Execution Role) (p. 155).

• Permission for Amazon API Gateway to invoke your Lambda function – Amazon API Gateway
cannot invoke your Lambda function without your permission. You grant this permission via the
permission policy associated with the Lambda function.

For a tutorial that walks you through an example setup, see Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS) (p. 236).

Using AWS Lambda with Amazon API Gateway
(On-Demand Over HTTPS)
In this example you create a simple API (DynamoDBOperations) using Amazon API Gateway. An
Amazon API Gateway is a collection of resources and methods. For this tutorial, you create one

236

https://aws.amazon.com/api-gateway/

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

resource (DynamoDBManager) and define one method (POST) on it. The method is backed by a
Lambda function (LambdaFunctionForAPIGateway). That is, when you invoke the method through
an HTTPS endpoint, Amazon API Gateway invokes the Lambda function.

The POST method on the DynamoDBManager resource supports the following DynamoDB operations:

• Create, update, and delete an item.

• Read an item.

• Scan an item.

• Other operations (echo, ping), not related to DynamoDB, that you can use for testing.

The request payload you send in the POST request identifies the DynamoDB operation and provides
necessary data. For example:

• The following is a sample request payload for a DynamoDB put item operation:

{
 "operation": "create",
 "tableName": "LambdaTable",
 "payload": {
 "Item": {
 "Id": "1",
 "name": "Bob"
 }
 }
}

• The following is a sample request payload for a DynamoDB read item operation:

{
 "operation": "read",
 "tableName": "LambdaTable",
 "payload": {
 "Key": {
 "Id": "1"
 }
 }
}

• The following is a sample request payload for a the echo operation. You will then send HTTPS PUT
request to the endpoint, using the following data in the request body.

{
 "operation": "echo",
 "payload": {
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
 }
}

You can also create and manage API endpoints from the AWS Lambda console. For example, search
for the microservice in the blueprints. This tutorial does not use the console, instead it uses AWS CLI
to provide you with more details of how the API works.

237

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

Note
API Gateway offers advanced capabilities, such as:

• Pass through the entire request – A Lambda function can receive the entire HTTP
request (instead of just the request body) and set the HTTP response (instead of just the
response body) using the AWS_PROXY integration type.

• Catch-all methods – Map all methods of an API resource to a single function with a single
mapping, using the ANY catch-all method.

• Catch-all resources – Map all sub-paths of a resource to a Lambda function without any
additional configuration using the new path parameter ({proxy+}).

To learn more about these API Gateway features, see Configure Proxy Integration for a Proxy
Resource.

Next Step

Step 1: Prepare (p. 238)

Step 1: Prepare

Make sure you have completed the following steps:

• Signed up for an AWS account and created an administrator user in the account.

• Installed and set up the AWS CLI.

For instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Important
This example uses the us-east-1 region to create an API using Amazon API Gateway and a
Lambda function.

Next Step

Step 2: Create a Lambda Function and Test It Manually (p. 238)

Step 2: Create a Lambda Function and Test It Manually

In this section, you do the following:

• Create a Lambda function deployment package using the sample code provided.

• Create an IAM role (execution role). At the time you upload the deployment package, you need to
specify an IAM role (execution role) that Lambda can assume to execute the function on your behalf.

• Create the Lambda function and then test it manually.

Topics

• Step 2.1: Create a Deployment Package (p. 238)

• Step 2.2: Create the Execution Role (IAM Role) (p. 241)

• Step 2.3: Create the Lambda Function and Test It Manually (p. 242)

Step 2.1: Create a Deployment Package

From the Filter View list, choose the language you want to use for your Lambda function. The
appropriate section appears with code and specific instructions for creating a deployment package.

238

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

Node.js

Follow the instructions to create a AWS Lambda function deployment package.

1. Open a text editor, and then copy the following code.

console.log('Loading function');

var AWS = require('aws-sdk');
var dynamo = new AWS.DynamoDB.DocumentClient();

/**
 * Provide an event that contains the following keys:
 *
 * - operation: one of the operations in the switch statement below
 * - tableName: required for operations that interact with DynamoDB
 * - payload: a parameter to pass to the operation being performed
 */
exports.handler = function(event, context, callback) {
 //console.log('Received event:', JSON.stringify(event, null, 2));

 var operation = event.operation;

 if (event.tableName) {
 event.payload.TableName = event.tableName;
 }

 switch (operation) {
 case 'create':
 dynamo.put(event.payload, callback);
 break;
 case 'read':
 dynamo.get(event.payload, callback);
 break;
 case 'update':
 dynamo.update(event.payload, callback);
 break;
 case 'delete':
 dynamo.delete(event.payload, callback);
 break;
 case 'list':
 dynamo.scan(event.payload, callback);
 break;
 case 'echo':
 callback(null, "Success");
 break;
 case 'ping':
 callback(null, "pong");
 break;
 default:
 callback('Unknown operation: ${operation}');
 }
};

Note
The code sample is compliant with the Node.js runtime v4.3. For more information, see
Programming Model (Node.js) (p. 9)

2. Save the file as LambdaFunctionOverHttps.js.

239

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

3. Zip the LambdaFunctionOverHttps.js file as LambdaFunctionOverHttps.zip.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 241)

Python

Follow the instructions to create AWS Lambda function deployment package.

1. Open a text editor, and then copy the following code.

from __future__ import print_function

import boto3
import json

print('Loading function')

def handler(event, context):
 '''Provide an event that contains the following keys:

 - operation: one of the operations in the operations dict below
 - tableName: required for operations that interact with DynamoDB
 - payload: a parameter to pass to the operation being performed
 '''
 #print("Received event: " + json.dumps(event, indent=2))

 operation = event['operation']

 if 'tableName' in event:
 dynamo = boto3.resource('dynamodb').Table(event['tableName'])

 operations = {
 'create': lambda x: dynamo.put_item(**x),
 'read': lambda x: dynamo.get_item(**x),
 'update': lambda x: dynamo.update_item(**x),
 'delete': lambda x: dynamo.delete_item(**x),
 'list': lambda x: dynamo.scan(**x),
 'echo': lambda x: x,
 'ping': lambda x: 'pong'
 }

 if operation in operations:
 return operations[operation](event.get('payload'))
 else:
 raise ValueError('Unrecognized operation "{}"'.format(operation))

2. Save the file as LambdaFunctionOverHttps.py.

3. Zip the LambdaFunctionOverHttps.py file as LambdaFunctionOverHttps.zip.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 241)

240

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

Step 2.2: Create the Execution Role (IAM Role)

In this section, you create an IAM role using the following predefined role type:

• AWS service role of the type AWS Lambda – This role grants AWS Lambda permissions to assume
the role.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedure to create the IAM role.

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-
gateway-execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

• You create an IAM role without attaching a permissions policy in the console. After you create
the role, you update the role, and then attach the following permissions policy to the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1428341300017",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "",
 "Resource": "*",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Effect": "Allow"
 }
]
}

3. Write down the role ARN (Amazon Resource Name). You need it in the next step when you create
your Lambda function.

241

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

Next Step

Step 2.3: Create the Lambda Function and Test It Manually (p. 242)

Step 2.3: Create the Lambda Function and Test It Manually

In this section, you do the following:

• Create a Lambda function by uploading the deployment package.

• Test the Lambda function by invoking it manually and passing sample event data.

Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)

In this step, you upload the deployment package using the AWS CLI.

At the command prompt, run the following Lambda CLI create-function command using the
adminuser profile.

You need to update the command by providing the .zip file path and the execution role ARN. The --
runtime parameter value can be python2.7, nodejs4.3, or java8, depending on the language you
used to author your code.

$ aws lambda create-function \
--region us-east-1 \
--function-name LambdaFunctionOverHttps \
--zip-file fileb://file-path/LambdaFunctionOverHttps.zip \
--role execution-role-arn \
--handler LambdaFunctionOverHttps.handler \
--runtime runtime-value \
--profile adminuser

Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and then
specify the bucket and object name in the preceding command. You need to replace the --zip-file
parameter by the --code parameter, as shown following:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

Note
You can create the Lambda function using the AWS Lambda console, in which case note
the value of the create-function AWS CLI command parameters. You provide the same
values in the console UI.

Step 2.3.2: Test the Lambda Function (Invoke Manually)

Invoke the function manually using the sample event data. We recommend that you invoke the function
using the console because the console UI provides a user-friendly interface for reviewing the execution
results, including the execution summary, logs written by your code, and the results returned by the
function (because the console always performs synchronous execution—invokes the Lambda function
using the RequestResponse invocation type).

To test the Lambda function (AWS Management Console)

1. Follow the steps in the Getting Started exercise to create and invoke the Lambda function at Step
2.2: Invoke the Lambda Function Manually and Verify Results, Logs, and Metrics (p. 167). For the
sample event for testing, choose Hello World in Sample event template, and then replace the
data using the following:

242

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

{
 "operation": "echo",
 "payload": {
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
 }
}

2. To test one of the dynamo operations, such as read, change the input data to the following:

{
 "operation": "read",
 "tableName": "the name of your stream table"
 "payload": {
 "Key": {
 "the primary key of the table": "the value of the key"
 }
 }
}

3. Verify the results in the console.

To test the Lambda function (AWS CLI)

1. Copy the following JSON into a file and save it as input.txt.

{
 "operation": "echo",
 "payload": {
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
 }
}

2. Execute the following invoke command:

$ aws lambda invoke \
--invocation-type Event \
--function-name LambdaFunctionOverHttps \
--region us-west-2 \
--payload file://file-path/input.txt \
--profile adminuser
outputfile.txt

Note
In this tutorial example, the message is saved in the outputfile.txt file if you request
synchronous execution (RequestResponse as the invocation type). The function returns
the string message in the response body. If you use the Event invocation type, no
message is returned to the output file. In either case, the outputfile.txt parameter is
required.
For Node.js, it could be one of the following (whatever one you specify in the code):
context.succeed("message")
context.fail("message")
context.done(null, "message)
For Python or Java, it is the message in the return statement:

243

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

return "message"

Next Step

Step 3: Create an API Using Amazon API Gateway and Test It (p. 244)

Step 3: Create an API Using Amazon API Gateway and Test It

In this step, you associate your Lambda function with a method in the API that you created using
Amazon API Gateway and test the end-to-end experience. That is, when an HTTPS request is sent to
an API method, Amazon API Gateway invokes your Lambda function.

First, you create an API (DynamoDBOperations) using Amazon API Gateway with one resource
(DynamoDBManager) and one method (POST). You associate the POST method with your Lambda
function. Then, you test the end-to-end experience.

Step 3.1: Create the API

Run the following create-rest-api command to create the DynamoDBOperations API for this
tutorial.

$ aws apigateway create-rest-api \
--name DynamoDBOperations

The following is an example response:

{
 "name": "DynamoDBOperations",
 "id": "api-id",
 "createdDate": 1447724091
}

Note the API ID.

You also need the ID of the API root resource. To get the ID, run the get-resources command.

$ aws apigateway get-resources \
--rest-api-id api-id

The following is example response (at this time you only have the root resource, but you add more
resources in the next step):

{
 "items": [
 {
 "path": "/",
 "id": "root-id"
 }
]
}

Step 3.2: Create a Resource (DynamoDBManager) in the API

Run the following create-resource command to create a resource (DynamoDBManager) in the API
that you created in the preceding section.

244

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

$ aws apigateway create-resource \
--rest-api-id api-id \
--parent-id root-id \
--path-part DynamoDBManager

The following is an example response:

{
 "path": "/DynamoDBManager",
 "pathPart": "DynamoDBManager",
 "id": "resource-id",
 "parentId": "root-id"
}

Note the ID in the response. This is the ID of the resource (DynamoDBManager) that you created.

Step 3.3: Create Method (POST) on the Resource

Run the following put-method command to create a method (POST) on the resource
(DynamoDBManager) in your API (DynamoDBOperations).

$ aws apigateway put-method \
--rest-api-id api-id \
--resource-id resource-id \
--http-method POST \
--authorization-type NONE

We specify NONE for the --authorization-type parameter, which means that unauthenticated
requests for this method are supported. This is fine for testing but in production you should use either
the key-based or role-base authentication.

The following is an example response:

{
 "apiKeyRequired": false,
 "httpMethod": "POST",
 "authorizationType": "NONE"
}

Step 3.4: Set the Lambda Function as the Destination for the POST Method

Run the following command to set the Lambda function as the integration point for the POST method
(this is the method Amazon API Gateway invokes when you make an HTTPS request for the POST
method endpoint).

$ aws apigateway put-integration \
--rest-api-id api-id \
--resource-id resource-id \
--http-method POST \
--type AWS \
--integration-http-method POST \
--uri arn:aws:apigateway:aws-region:lambda:path/2015-03-31/functions/
arn:aws:lambda:aws-region:aws-acct-id:function:your-lambda-function-name/
invocations

245

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

Note

• --rest-api-id is the ID of the API (DynamoDBOperations) that you created in Amazon
API Gateway.

• --resource-id is the resource ID of the resource (DynamoDBManager) you created in the
API

• --http-method is the API Gateway method and --integration-http-method is the
method that API Gateway uses to communicate with AWS Lambda.

• --uri is unique identifier for the endpoint to which Amazon API Gateway can send request.

The following is an example response:

{
 "httpMethod": "POST",
 "type": "AWS",
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:aws-acct-id:function:LambdaFunctionForAPIGateway/
invocations",
 "cacheNamespace": "resource-id"
}

Set content-type of the POST method response and integration response to JSON as follows:

• Run the following command to set the POST method response to JSON. This is the response type
that your API method returns.

$ aws apigateway put-method-response \
--rest-api-id api-id \
--resource-id resource-id \
--http-method POST \
--status-code 200 \
--response-models "{\"application/json\": \"Empty\"}"

• Run the following command to set the POST method integration response to JSON. This is the
response type that Lambda function returns.

$ aws apigateway put-integration-response \
--rest-api-id api-id \
--resource-id resource-id \
--http-method POST \
--status-code 200 \
--response-templates "{\"application/json\": \"\"}"

Step 3.5: Deploy the API

In this step, you deploy the API that you created to a stage called prod.

$ aws apigateway create-deployment \
--rest-api-id api-id \
--stage-name prod

The following is an example response:

246

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

{
 "id": "deployment-id",
 "createdDate": 1447726017
}

Step 3.6: Grant Permissions that Allows Amazon API Gateway to Invoke the
Lambda Function

Now that you have an API created using Amazon API Gateway and you've deployed it, you can test.
First, you need to add permissions so that Amazon API Gateway can invoke your Lambda function
when you send HTTPS request to the POST method.

To do this, you need to add a permissions to the permissions policy associated with your Lambda
function. Run the following add-permission AWS Lambda command to grant the Amazon API
Gateway service principal (apigateway.amazonaws.com) permissions to invoke your Lambda
function (LambdaFunctionForAPIGateway).

$ aws lambda add-permission \
--function-name LambdaFunctionOverHttps \
--statement-id apigateway-test-2 \
--action lambda:InvokeFunction \
--principal apigateway.amazonaws.com \
--source-arn "arn:aws:execute-api:us-east-1:aws-acct-id:api-id/*/POST/
DynamoDBManager"

You must grant this permission to enable testing (if you go to the Amazon API Gateway and choose
Test to test the API method, you need this permission). Note the --source-arn specifies a wildcard
character (*) as the stage value (indicates testing only). This allows you to test without deploying the
API.

Now, run the same command again, but this time you grant to your deployed API permissions to invoke
the Lambda function.

$ aws lambda add-permission \
--function-name LambdaFunctionOverHttps \
--statement-id apigateway-prod-2 \
--action lambda:InvokeFunction \
--principal apigateway.amazonaws.com \
--source-arn "arn:aws:execute-api:us-east-1:aws-acct-id:api-id/prod/POST/
DynamoDBManager"

You grant this permission so that your deployed API has permissions to invoke the Lambda function.
Note that the --source-arn specifies a prod which is the stage name we used when deploying the
API.

Step 3.7: Test Sending an HTTPS Request

In this step, you are ready to send an HTTPS request to the POST method endpoint. You can use either
Curl or a method (test-invoke-method) provided by Amazon API Gateway.

If you want to test operations that your Lambda function supports on a DynamoDB table, first you need
to create a table in Amazon DynamoDB LambdaTable (Id), where Id is the hash key of string type.

If you are testing the echo and ping operations that your Lambda function supports, you don't need to
create the DynamoDB table.

247

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

You can use Amazon API Gateway CLI commands to send an HTTPS POST request to the resource
(DynamoDBManager) endpoint. Because you deployed your Amazon API Gateway, you can use Curl
to invoke the methods for the same operation.

The Lambda function supports using the create operation to create an item in your DynamoDB table.
To request this operation, use the following JSON:

{
 "operation": "create",
 "tableName": "LambdaTable",
 "payload": {
 "Item": {
 "Id": "foo",
 "number": 5
 }
 }
}

Run the test-invoke-method Amazon API Gateway command to send an HTTPS POST method
request to the resource (DynamoDBManager) endpoint with the preceding JSON in the request body.

$ aws apigateway test-invoke-method \
--rest-api-id api-id \
--resource-id resource-id \
--http-method POST \
--path-with-query-string "" \
--body "{\"operation\":\"create\",\"tableName\":\"LambdaTable\",\"payload\":
{\"Item\":{\"Id\":\"1\",\"name\":\"Bob\"}}}"

Or, you can use the following Curl command:

curl -X POST -d "{\"operation\":\"create\",\"tableName\":\"LambdaTable
\",\"payload\":{\"Item\":{\"Id\":\"1\",\"name\":\"Bob\"}}}" https://api-
id.execute-api.aws-region.amazonaws.com/prod/DynamoDBManager

To send request for the echo operation that your Lambda function supports, you can use the following
request payload:

{
 "operation": "echo",
 "payload": {
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
 }
}

Run the test-invoke-method Amazon API Gateway CLI command to send an HTTPS POST method
request to the resource (DynamoDBManager) endpoint using the preceding JSON in the request body.

$ aws apigateway test-invoke-method \
--rest-api-id api-id \
--resource-id resource-id \
--http-method POST \
--path-with-query-string "" \

248

AWS Lambda Developer Guide
Using AWS Lambda with Amazon API
Gateway (On-Demand Over HTTPS)

--body "{\"operation\":\"echo\",\"payload\":{\"somekey1\":\"somevalue1\",
\"somekey2\":\"somevalue2\"}}"

Or, you can use the following Curl command:

curl -X POST -d "{\"operation\":\"echo\",\"payload\":{\"somekey1\":
\"somevalue1\",\"somekey2\":\"somevalue2\"}}" https://api-id.execute-
api.region.amazonaws.com/prod/DynamoDBManager

Step 4: Deploy With AWS SAM and AWS CloudFormation

In the previous section, you used AWS Lambda APIs to create and update a Lambda function by
providing a deployment package as a ZIP file. However, this mechanism may not be convenient
for automating deployment steps for functions, or coordinating deployments and updates to other
elements of a serverless application, like event sources and downstream resources.

You can use AWS CloudFormation to easily specify, deploy, and configure serverless applications.
AWS CloudFormation is a service that helps you model and set up your Amazon Web Services
resources so that you can spend less time managing those resources and more time focusing on
your applications that run in AWS. You create a template that describes all the AWS resources that
you want (like Lambda functions and DynamoDB tables), and AWS CloudFormation takes care of
provisioning and configuring those resources for you.

In addition, you can use the AWS Serverless Application Model to express resources that comprise the
serverless application. These resource types, such as Lambda functions and APIs, are fully supported
by AWS CloudFormation and make it easier for you to define and deploy your serverless application.

For more information, see Deploying Lambda-based Applications (p. 139).

Specification for Amazon API Gateway Application

The following contains the SAM template for this application. Copy the text below to a .yaml file and
save it next to the ZIP package you created previously.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 LambdaFunctionOverHttps:
 Type: AWS::Serverless::Function
 Properties:
 Handler: LambdaFunctionOverHttps.handler
 Runtime: nodejs4.3
 Policies: AmazonDynamoDBFullAccess
 Events:
 HttpPost:
 Type: Api
 Properties:
 Path: 'DynamoDBOperations/DynamoDBManager'
 Method: post

Deploying the Serverless Application

For information on how to package and deploy your serverless application using the package and
deploy commands, see Packaging and Deployment (p. 145).

249

AWS Lambda Developer Guide
Mobile Backend (Android)

Using AWS Lambda as Mobile Application
Backend (Custom Event Source: Android)

You can use AWS Lambda to host backend logic for mobile applications. That is, some of your
mobile app code can be run as Lambda functions. This allows you to put minimal logic in the mobile
application itself making it easy to scale and update (for example, you only apply code updates to the
Lambda function, instead of having to deploy code updates in your app clients).

After you create the Lambda function, you can invoke it from your mobile app using AWS Mobile SDKs,
such as the AWS SDK for Android. For more information, see Tools for Amazon Web Services.

Note
You can also invoke your Lambda function over HTTP using Amazon API Gateway (instead
of using any of the AWS SDKs). Amazon API Gateway adds an additional layer between your
mobile users and your app logic that enable the following:

• Ability to throttle individual users or requests.

• Protect against Distributed Denial of Service attacks.

• Provide a caching layer to cache response from your Lambda function.

Note the following about how the mobile application and AWS Lambda integration works:

• Push-event model – This is a model (see Event Source Mapping (p. 120)), where the app invokes
the Lambda function by passing the event data as parameter.

• Synchronous or asynchronous invocation – The app can invoke the Lambda function and get
a response back in real time by specifying RequestResponse as the invocation type (or use the
Event invocation type for asynchronous invocation). For information about invocation types, see
Manage Permissions: Using a Lambda Function Policy (p. 156).

• Event structure – The event your Lambda function receives is defined by your application, and your
Lambda function is the custom code written to process the specific event type.

Note that there are two types of permissions policies that you work with in setting the end-to-end
experience:

• Permissions for your Lambda function – Regardless of what invokes a Lambda function, AWS
Lambda executes the function by assuming the IAM role (execution role) that you specify at the time
you create the Lambda function. Using the permissions policy associated with this role, you grant
your Lambda function the permissions that it needs. For example, if your Lambda function needs to
read an object, you grant permissions for the relevant Amazon S3 actions in the permissions policy.
For more information, see Manage Permissions: Using an IAM Role (Execution Role) (p. 155).

• Permissions for the mobile app to invoke your Lambda function – The application must have
valid security credentials and permissions to invoke a Lambda function. For mobile applications, you
can use the Amazon Cognito service to manage user identities, authentication, and permissions.

The following diagram illustrates the application flow (the illustration assumes a mobile app using AWS
Mobile SDK for Android to make the API calls):

250

https://aws.amazon.com/tools/

AWS Lambda Developer Guide
Tutorial

1. The mobile application sends a request to Amazon Cognito with an identity pool ID in the request
(you create the identity pool as part the setup).

2. Amazon Cognito returns temporary security credentials back to the application.

Amazon Cognito assumes the role associated with the identity pool to generate temporary
credentials. What the application can do using the credentials is limited to the permissions defined
in the permissions policy associated with the role Amazon Cognito used in obtaining the temporary
credential.

Note
The AWS SDK can cache the temporary credentials so that the application does not send a
request to Amazon Cognito each time it needs to invoke a Lambda function.

3. The mobile application invokes the Lambda function using temporary credentials (Cognito Identity).

4. AWS Lambda assumes the execution role to execute your Lambda function on your behalf.

5. The Lambda function executes.

6. AWS Lambda returns results to the mobile application, assuming the app invoked the Lambda
function using the RequestResponse invocation type (synchronous invocation).

For a tutorial that walks you through an example setup, see Tutorial: Using AWS Lambda as Mobile
Application Backend (p. 251).

Tutorial: Using AWS Lambda as Mobile Application
Backend
In this tutorial, you create a simple Android mobile application. The primary purpose of this tutorial is
to show you how to hook up various components to enable an Android mobile application to invoke a
Lambda function and process response. The app itself is simple, we will assume following:

• The sample mobile application will generate event data consisting of a name (first name and last
name) in this format:

{ firstName: 'value1', lastName: 'value2' }

251

AWS Lambda Developer Guide
Tutorial

• You use Lambda function to process the event. That is, the app (using the AWS Mobile SDK for
Android) invokes a Lambda function (ExampleAndroidEventProcessor) by passing the event
data to it. The Lambda function in this tutorial does the following:

• Logs incoming event data to Amazon CloudWatch Logs.

• Upon successful execution, returns a simple string in the response body. Your mobile app displays
the message using the Android Toast class.

Note
The way that the mobile application invokes a Lambda function as shown in this tutorial is
an example of the AWS Lambda request-response model in which an application invokes
a Lambda function and then receives a response in real time. For more information,
see Programming Model (p. 8).

Implementation Summary

The tutorial is divided into two main sections:

• First, you perform the necessary setup to create a Lambda function and test it by invoking it
manually using sample event data (you don't need mobile app to test your Lambda function).

• Second, you create an Amazon Cognito identity pool to manage authentication and permissions, and
create the example Android application. Then, you run the application and it invokes the Lambda
function. You can then verify the end-to-end experience. In this tutorial example:

• You use the Amazon Cognito service to manage user identities, authentication, and permissions.
The mobile application must have valid security credentials and permissions to invoke a Lambda
function. As part of the application setup, you create an Amazon Cognito identity pool to store user
identities and define permissions. For more information, see Amazon Cognito

• This mobile application does not require its users to log in. A mobile application can require its
users to log in using public identity providers such as Amazon and Facebook. The scope of this
tutorial is limited and assumes that the mobile application users are unauthenticated. Therefore,
when you configure Amazon Cognito identity pool you will do the following:

• Enable access for unauthenticated identities.

Amazon Cognito provides a unique identifier and temporary AWS credentials for these users to
invoke the Lambda function.

• In the access permissions policy associated with the IAM role for unauthenticated users, add
permissions to invoke the Lambda function. An identity pool has two associated IAM roles,
one for authenticated and one for unauthenticated application users. In this example, Amazon
Cognito assumes the role for unauthenticated users to obtain temporary credentials. When the
app uses these temporary credentials to invoke your Lambda function, it can do so only if has
necessary permissions (that is, credentials may be valid, but you also need permissions). You
do this by updating the permissions policy that Amazon Cognito uses to obtain the temporary
credentials.

The following diagram illustrates the application flow:

252

https://aws.amazon.com/cognito/

AWS Lambda Developer Guide
Tutorial

Now you are ready to start the tutorial.

Next Step
Step 1: Prepare (p. 253)

Step 1: Prepare
Make sure you have completed the following steps:

• Signed up for an AWS account and created an administrator user in the account.

• Installed and set up the AWS CLI.

For instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Note
The tutorial creates a Lambda function and an Amazon Cognito identity pool in the us-
east-1 region. If you want to use a different AWS region, you must create these resources in
the same region. You also need to update the example mobile application code by providing
the specific region that you want to use.

Next Step

Step 2: Create the Lambda Function and Invoke It Manually (Using Sample Event Data) (p. 253)

Step 2: Create the Lambda Function and Invoke It Manually
(Using Sample Event Data)
In this section, you do the following:

• Create a Lambda function deployment package using the sample code provided. The sample
Lambda function code to process your mobile application events is provided in various languages.
Select one of the languages and follow the corresponding instructions to create a deployment
package.

Note
To see more examples of using other AWS services within your function, including calling
other Lambda functions, see AWS SDK for JavaScript

253

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/frames.html

AWS Lambda Developer Guide
Tutorial

• Create an IAM role (execution role). At the time you upload the deployment package, you need
to specify an IAM role (execution role). This is the role that AWS Lambda assumes to invoke your
Lambda function on your behalf.

• Create the Lambda function by uploading the deployment package, and then test it by invoking it
manually using sample event data.

Topics

• Step 2.1: Create a Deployment Package (p. 254)

• Step 2.2: Create the Execution Role (IAM Role) (p. 256)

• Step 2.3: Create the Lambda Function and Invoke It Manually (Using Sample Event
Data) (p. 257)

Step 2.1: Create a Deployment Package

From the Filter View list, choose the language you want to use for your Lambda function. The
appropriate section appears with code and specific instructions for creating a deployment package.

Node.js

Follow the instructions to create a AWS Lambda function deployment package.

1. Open a text editor, and then copy the following code.

exports.handler = function(event, context, callback) {
 console.log("Received event: ", event);
 callback(null, "message");
}

Note
The code sample is compliant with the Node.js runtime v4.3. For more information, see
Programming Model (Node.js) (p. 9)

2. Save the file as AndroidBackendLambdaFunction.js.

3. Zip the AndroidBackendLambdaFunction.js file as
AndroidBackendLambdaFunction.zip.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 256)

Java

Use the following Java code to create your Lambda function (AndroidBackendLambdaFunction).
The code receives Android app event data as the first parameter to the handler. Then, the code
processes event data (for illustration this code writes some of the event data to CloudWatch Logs and
returns a string in response).

In the code, the handler (myHandler) uses the RequestClass and ResponseClass types for the
input and output. The code provides implementation for these types.

Important
You use the same classes (POJOs) to handle the input and output data when you create the
sample mobile application in the next section.

package example;

254

AWS Lambda Developer Guide
Tutorial

import com.amazonaws.services.lambda.runtime.Context;

public class HelloPojo {

 // Define two classes/POJOs for use with Lambda function.
 public static class RequestClass {
 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public RequestClass(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public RequestClass() {
 }
 }

 public static class ResponseClass {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass() {
 }

 }

 public static ResponseClass myHandler(RequestClass request, Context
 context){
 String greetingString = String.format("Hello %s, %s.",
 request.firstName, request.lastName);

255

AWS Lambda Developer Guide
Tutorial

 context.getLogger().log(greetingString);
 return new ResponseClass(greetingString);
 }
}

Save the preceding code in a file (HelloPojo.java). Your can now create a deployment package.
You need to include the following dependency:

• aws-lambda-java-core

Your deployment package can be a .zip file or a standalone .jar. You can use any build and packaging
tool you are familiar with to create a deployment package. For examples of how to use the Maven build
tool to create a standalone .jar, see Creating a .jar Deployment Package Using Maven without any IDE
(Java) (p. 62) and Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java) (p. 65).
For an example of how to use the Gradle build tool to create a .zip file, see Creating a .zip Deployment
Package (Java) (p. 67).

After you verify that your deployment package (lambda-java-example-1.0-SNAPSHOT.jar) is
created, go to the next section to create an IAM role (execution role). You specify the role when you
create your Lambda function.

Next Step

Step 2.2: Create the Execution Role (IAM Role) (p. 256)

Step 2.2: Create the Execution Role (IAM Role)

In this section, you create an IAM role using the following predefined role type and access policy:

• AWS service role of the type AWS Lambda – This role grants AWS Lambda permissions to assume
the role.

• AWSLambdaBasicExecute – This is the access permissions policy that you attach to the role.
This Lambda function only writes logs to CloudWatch Logs. So it only needs permission for specific
CloudWatch actions. This policy provides these permissions.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedure to create the IAM role.

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-
android-execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

• In Attach Policy, choose AWSLambdaBasicExecute. The permissions in this policy are
sufficient for the Lambda function in this tutorial.

3. Write down the role ARN. You will need it in the next step when you create your Lambda function.

256

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Tutorial

Next Step

Step 2.3: Create the Lambda Function and Invoke It Manually (Using Sample Event Data) (p. 257)

Step 2.3: Create the Lambda Function and Invoke It Manually (Using Sample
Event Data)

In this section, you do the following:

• Create a Lambda function, by uploading the deployment package.

• Test the Lambda function by invoking it manually. Instead of creating an event source, you use
sample event data. In the next section, you create an Android mobile app and test the end-to-end
experience.

Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)

In this step, you upload the deployment package using the AWS CLI.

At the command prompt, run the following Lambda CLI create-function command using the
adminuser profile.

You need to update the command by providing the .zip file path and the execution role ARN. The --
runtime parameter value can be nodejs4.3, or java8, depending on the language you chose to
author your code.

$ aws lambda create-function \
--region us-east-1 \
--function-name AndroidBackendLambdaFunction \
--zip-file fileb://file-path-to-jar-or-zip-deployment-package \
--role execution-role-arn \
--handler handler-name \
--runtime runtime-value \
--profile adminuser

Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and then
specify the bucket and object name in the preceding command. You need to replace the --zip-file
parameter by the --code parameter, as shown following:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

Note
You can create the Lambda function using the AWS Lambda console, in which case note
the value of the create-function AWS CLI command parameters. You provide the same
values in the console UI.

Step 2.3.2: Test the Lambda Function (Invoke Manually)

Invoke the function manually using the sample event data. We recommend that you invoke the function
using the console because the console UI provides a user-friendly interface for reviewing the execution
results, including the execution summary, logs written by your code, and the results returned by the
function (because the console always performs synchronous execution—invokes the Lambda function
using the RequestResponse invocation type).

To test the Lambda function (AWS Management Console)

1. Follow the steps in the Getting Started exercise to create and invoke the Lambda function at Step
2.2: Invoke the Lambda Function Manually and Verify Results, Logs, and Metrics (p. 167). After

257

AWS Lambda Developer Guide
Tutorial

you choose the Lambda function, choose Configure test event from the Actions menu to specify
the following sample event data:

{ "firstName": "first-name", "lastName": "last-name" }

2. Verify the results in the console.

• Execution result should be Succeeded with the following return value:

{
 "greetings": "Hello first-name, last-name."
}

• Review the Summary and the Log output sections.

To test the Lambda function (AWS CLI)

1. Save the following sample event JSON in a file, input.txt.

{ "firstName": "first-name", "lastName": "last-name" }

2. Execute the following invoke command:

$ aws lambda invoke \
--invocation-type Event \
--function-name AndroidBackendLambdaFunction \
--region us-east-1 \
--payload file://file-path/input.txt \
--profile adminuser
outputfile.txt

Note
In this tutorial example, the message is saved in the outputfile.txt file. If you request
synchronous execution (RequestResponse as the invocation type), the function returns
the string message in the response body.
For Node.js, it could be one of the following (whatever one you specify in the code):
context.succeed("message")
context.fail("message")
context.done(null, "message)
For Java, it is the message in the return statement:
return "message"

Next Step

Step 3: Create an Amazon Cognito Identity Pool (p. 258)

Step 3: Create an Amazon Cognito Identity Pool

In this section, you create an Amazon Cognito identity pool. The identity pool has two IAM
roles. You update the IAM role for unauthenticated users and grant permissions to execute the
AndroidBackendLambdaFunction Lambda function.

For more information about IAM roles, see IAM Roles in the IAM User Guide. For more information
about Amazon Cognito services, see the Amazon Cognito product detail page.

258

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://aws.amazon.com/cognito/

AWS Lambda Developer Guide
Tutorial

To create an identity pool

1. Using the IAM User Sign-In URL, sign in to the Amazon Cognito console as adminuser.

2. Create a new identity pool called JavaFunctionAndroidEventHandlerPool. Before you follow
the procedure to create an identity pool, note the following:

• The identity pool you are creating must allow access to unauthenticated identities because
our example mobile application does not require a user log in (the application users are
unauthenticated). Therefore, make sure to select the Enable access to unauthenticated
identities option.

• The unauthenticated application users need permission to invoke the Lambda function. To
enable this, you will add the following statement to the permission policy associated with the
unauthenticated identities (it allows permission for the for the lambda:InvokeFunction action
on the specific Lambda function (you must update the resource ARN by providing your account
ID).

{
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-east-1:account-
id:function:AndroidBackendLambdaFunction"
]
}

The resulting policy will be as follows:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "mobileanalytics:PutEvents",
 "cognito-sync:*"
],
 "Resource":[
 "*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "lambda:invokefunction"
],
 "Resource":[
 "arn:aws:lambda:us-east-1:account-
id:function:AndroidBackendLambdaFunction"
]
 }
]
}

259

AWS Lambda Developer Guide
Tutorial

Note
You can update policy at the time of creating the identity pool. You can also update the
policy after you create the identity pool, in which case make sure you write down the
IAM role name for the unauthenticated users from the Amazon Cognito console. Then,
go to the IAM console and search for the specific role and edit the access permissions
policy.

For instructions about how to create an identity pool, log in to the Amazon Cognito console and
follow the New Identity Pool wizard.

3. Note down the identity pool ID. You specify this ID in your mobile application you create in the next
section. The app uses this ID when it sends request to Amazon Cognito to request for temporary
security credentials.

Next Step

Step 4: Create a Mobile Application for Android (p. 260)

Step 4: Create a Mobile Application for Android

Now you can create a simple Android mobile application that generates events and invokes Lambda
functions by passing the event data as parameters.

The following instructions have been verified using Android studio.

1. Create a new Android project called AndroidEventGenerator using the following configuration:

• Select the Phone and Tablet platform.

• Choose Blank Activity.

2. In the build.gradle (Module:app) file, add the following in the dependencies section:

compile 'com.amazonaws:aws-android-sdk-core:2.2.+'
compile 'com.amazonaws:aws-android-sdk-lambda:2.2.+'

3. Build the project so that the required dependencies are downloaded, as needed.

4. In the Android application manifest (AndroidManifest.xml), add the following permissions so
that your application can connect to the Internet. You can add them just before the </manifest>
end tag.

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

5. In MainActivity, add the following imports:

import com.amazonaws.mobileconnectors.lambdainvoker.*;
import com.amazonaws.auth.CognitoCachingCredentialsProvider;
import com.amazonaws.regions.Regions;

6. In the package section, add the following two classes (RequestClass and ResponseClass).
Note that the POJO is same as the POJO you created in your Lambda function in the preceding
section.

• RequestClass. The instances of this class act as the POJO (Plain Old Java Object) for event
data which consists of first and last name. If you are using Java example for your Lambda

260

https://console.aws.amazon.com/cognito/home

AWS Lambda Developer Guide
Tutorial

function you created in the preceding section, this POJO is same as the POJO you created in
your Lambda function code.

package com.example....lambdaeventgenerator;
public class RequestClass {
 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public RequestClass(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public RequestClass() {
 }
}

• ResponseClass

package com.example....lambdaeventgenerator;
public class ResponseClass {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass() {
 }
}

261

AWS Lambda Developer Guide
Tutorial

7. In the same package, create interface called MyInterface for invoking the
AndroidBackendLambdaFunction Lambda function.

Note
The @LambdaFunction annotation in the code maps the specific client method to the
same-name Lambda function. For more information about this annotation, see AWS
Lambda in the AWS Mobile SDK for Android Developer Guide.

package com.example.....lambdaeventgenerator;
import com.amazonaws.mobileconnectors.lambdainvoker.LambdaFunction;
public interface MyInterface {

 /**
 * Invoke the Lambda function "AndroidBackendLambdaFunction".
 * The function name is the method name.
 */
 @LambdaFunction
 ResponseClass AndroidBackendLambdaFunction(RequestClass request);

}

8. To keep the application simple, we are going to add code to invoke the Lambda function in the
onCreate() event handler. In MainActivity, add the following code toward the end of the
onCreate() code.

// Create an instance of CognitoCachingCredentialsProvider
CognitoCachingCredentialsProvider cognitoProvider = new
 CognitoCachingCredentialsProvider(
 this.getApplicationContext(), "identity-pool-id",
 Regions.US_WEST_2);

// Create LambdaInvokerFactory, to be used to instantiate the Lambda
 proxy.
LambdaInvokerFactory factory = new
 LambdaInvokerFactory(this.getApplicationContext(),
 Regions.US_WEST_2, cognitoProvider);

// Create the Lambda proxy object with a default Json data binder.
// You can provide your own data binder by implementing
// LambdaDataBinder.
final MyInterface myInterface = factory.build(MyInterface.class);

RequestClass request = new RequestClass("John", "Doe");
// The Lambda function invocation results in a network call.
// Make sure it is not called from the main thread.
new AsyncTask<RequestClass, Void, ResponseClass>() {
 @Override
 protected ResponseClass doInBackground(RequestClass... params) {
 // invoke "echo" method. In case it fails, it will throw a
 // LambdaFunctionException.
 try {
 return myInterface.AndroidBackendLambdaFunction(params[0]);
 } catch (LambdaFunctionException lfe) {
 Log.e("Tag", "Failed to invoke echo", lfe);
 return null;
 }
 }

262

http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/lambda.html
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/lambda.html

AWS Lambda Developer Guide
Scheduled Events

 @Override
 protected void onPostExecute(ResponseClass result) {
 if (result == null) {
 return;
 }

 // Do a toast
 Toast.makeText(MainActivity.this, result.getGreetings(),
 Toast.LENGTH_LONG).show();
 }
}.execute(request);

9. Run the code and verify it as follows:

• The Toast.makeText() displays the response returned.

• Verify that CloudWatch Logs shows the log created by the Lambda function. It should show the
event data (first name and last name). You can also verify this in the AWS Lambda console.

Using AWS Lambda with Scheduled Events
You can create a Lambda function and direct AWS Lambda to execute it on a regular schedule. You
can specify a fixed rate (for example, execute a Lambda function every hour or 15 minutes), or you can
specify a Cron expression. For more information on expressions schedules, see Schedule Expressions
Using Rate or Cron (p. 267).

This functionality is available when you create a Lambda function using the AWS Lambda console or
the AWS CLI. To configure it using the AWS CLI, see Run an AWS Lambda Function on a Schedule
Using the AWS CLI. The console provides the CloudWatch Events - Schedule as an event source. At
the time of creating a Lambda function, you choose this event source and specify a time interval.

If you have made any manual changes to the permissions on your function, you may need to reapply
the scheduled event access to your function. You can do that by using the following CLI command.

aws lambda add-permission \
 --statement-id 'statement id' \
 --action 'lambda:InvokeFunction' \
 --principal events.amazonaws.com \
 --source-arn arn:aws:events:region:account-id:rule/rule_name
 --function-name function:MyFunction
 --region region

Note
Each AWS account can have up to 50 unique event sources of the CloudWatch Events
- Schedule source type. Each of these can be the event source for up to five Lambda
functions. That is, you can have up to 250 Lambda functions that can be executing on a
schedule in your AWS account.

The console also provides a blueprint (lambda-canary) that uses the CloudWatch Events - Schedule
source type. Using this blueprint, you can create a sample Lambda function and test this feature. The
example code that the blueprint provides checks for the presence of a specific webpage and specific
text string on the webpage. If either the webpage or the text string is not found, the Lambda function
throws an error.

For a tutorial that walks you through an example setup, see Tutorial: Using AWS Lambda with
Scheduled Events (p. 264).

263

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/RunLambdaSchedule.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/RunLambdaSchedule.html

AWS Lambda Developer Guide
Tutorial

Tutorial: Using AWS Lambda with Scheduled Events
In this tutorial, you do the following:

• Create a Lambda function using the lambda-canary blueprint. You configure the Lambda function
to run every minute. Note that if the function returns an error, AWS Lambda logs error metrics to
CloudWatch.

• Configure a CloudWatch alarm on the Errors metric of your Lambda function to post a message to
your Amazon SNS topic when AWS Lambda emits error metrics to CloudWatch. You subscribe to
the Amazon SNS topics to get email notification. In this tutorial, you do the following to set this up:

• Create an Amazon SNS topic.

• Subscribe to the topic so you can get email notifications when a new message is posted to the
topic.

• In Amazon CloudWatch, set an alarm on the Errors metric of your Lambda function to publish a
message to your SNS topic when errors occur.

Next Step

Step 1: Create a Lambda Function (p. 264)

Step 1: Create a Lambda Function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.

3. In Select blueprint, choose the lambda-canary blueprint.

4. In Configure triggers:

• Choose CloudWatch Events - Schedule.

• In Rule name, type a name (for example, CheckWebsiteScheduledEvent).

• In Rule description, type a description (for example, CheckWebsiteScheduledEvent
trigger).

• In Schedule expression, specify rate(1 minute). Note that you can specify the value as a
rate or in the cron expression format. All schedules use the UTC time zone, and the minimum
precision for schedules is one minute.

Note
When setting a rate expression, the first execution is immediate and subsequent
executions occur based on the rate schedule. In the preceding example, the
subsequent execution rate would be every minute.

For more information on expressions schedules, see Schedule Expressions Using Rate or
Cron (p. 267).

• In Enable trigger, we recommend that you leave the trigger in a disabled state until you have
tested it.

• Choose Next.

5. In Configure function, do the following:

• Specify your Lambda function name (for example, CheckWebsitePeriodically).

• In Runtime, specify Python 2.7 or Node.js4.3, depending on your preferred language.

264

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

AWS Lambda Developer Guide
Tutorial

• Review the code provided by the template. Later in this tutorial, you will update the function
code so that the function will return an error. You can either specify a non-existing URL or
replace search text to a string that is not on the page.

• In Role*, choose Create new role from template(s).

• In Role name, type a name for the role.

• In Policy templates, Lambda provides a list of optional, additional templates that extend
the basic Lambda permissions. For the purpose of this tutorial, you can leave this field blank
because your Lambda function already has the basic execution permission it needs.

• In Advanced settings, leave the default configurations and choose Next.

6. In Review, review the configuration and then choose Create Function.

Next Step

Step 2: Test the Lambda Function (Using a Sample Test Event) (p. 265)

Step 2: Test the Lambda Function (Using a Sample Test
Event)

1. Choose the function you created in the previous step and then choose Test.

2. On the Input sample event page, choose Scheduled Event in the Sample event list.

Note the event time in the sample event. This value will be different when AWS Lambda
invokes the function at scheduled intervals. The sample Lambda function code logs this time to
CloudWatch Logs.

3. Choose Save and test and verify that the Execution result section shows success.

Next Step

Step 3: Create an Amazon SNS Topic and Subscribe to It (p. 265)

Step 3: Create an Amazon SNS Topic and Subscribe to It

1. Create an SNS topic using the Amazon SNS console. For instructions, see Create a Topic in the
Amazon Simple Notification Service Developer Guide.

2. Subscribe to the topic. For this exercise, use email as the communication protocol. For
instructions, see Subscribe to a Topic in the Amazon Simple Notification Service Developer
Guide.

You use this Amazon SNS topic in the next step when you configure a CloudWatch alarm so that when
AWS Lambda emits an error the alarm will publish a notification to this topic.

Next Step

Step 4: Configure a CloudWatch Alarm (p. 265)

Step 4: Configure a CloudWatch Alarm
To configure a CloudWatch alarm, follow the instructions at Create Alarm in the Amazon CloudWatch
User Guide. As you follow the steps, note the following:

• In Create Alarm (1. Select Metric step), choose Lambda Metrics, and then choose the Errors
(Metric Name is Errors) for the Lambda function you created. Also, on the statistics drop-down,
change the settings from Average to Sum statistics.

265

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ConsoleAlarms.html

AWS Lambda Developer Guide
Tutorial

• In Create Alarm (2. Define Metric step), set the alarm threshold to Whenever: Errors is >= 1 and
select your Amazon SNS topic from the Send notification to: list.

Next Step

Step 5: Test the Lambda Function Again (p. 266)

Step 5: Test the Lambda Function Again
Now test the Lambda function again. This time, update the code by specifying either a non-existing
webpage URL or a text string. This causes the function to return an error that AWS Lambda sends to
CloudWatch error metrics. CloudWatch posts this message to the Amazon SNS topic and you get an
email notification.

Step 6: Deploy With AWS SAM and AWS CloudFormation
In the previous section, you used AWS Lambda APIs to create and update a Lambda function by
providing a deployment package as a ZIP file. However, this mechanism may not be convenient
for automating deployment steps for functions, or coordinating deployments and updates to other
elements of a serverless application, like event sources and downstream resources.

You can use AWS CloudFormation to easily specify, deploy, and configure serverless applications.
AWS CloudFormation is a service that helps you model and set up your Amazon Web Services
resources so that you can spend less time managing those resources and more time focusing on
your applications that run in AWS. You create a template that describes all the AWS resources that
you want (like Lambda functions and DynamoDB tables), and AWS CloudFormation takes care of
provisioning and configuring those resources for you.

In addition, you can use the AWS Serverless Application Model to express resources that comprise the
serverless application. These resource types, such as Lambda functions and APIs, are fully supported
by AWS CloudFormation and make it easier for you to define and deploy your serverless application.

For more information, see Deploying Lambda-based Applications (p. 139).

Specification for Scheduled Event Application

The following contains the SAM template for this application. Copy the text below to a .yaml file and
save it next to the ZIP package you created previously.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Parameters:
 NotificationEmail:
 Type: String
Resources:
 CheckWebsitePeriodically:
 Type: AWS::Serverless::Function
 Properties:
 Handler: LambdaFunctionOverHttps.handler
 Runtime: python2.7
 Policies: AmazonDynamoDBFullAccess
 Events:
 CheckWebsiteScheduledEvent:
 Type: Schedule
 Properties:
 Schedule: rate(1 minute)

 AlarmTopic:

266

AWS Lambda Developer Guide
Tutorial

 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 - Protocol: email
 Endpoint: !Ref NotificationEmail

 Alarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmActions:
 - !Ref AlarmTopic
 ComparisonOperator: GreaterThanOrEqualToThreshold
 Dimensions:
 - Name: FunctionName
 Value: !Ref CheckWebsitePeriodically
 EvaluationPeriods: String
 MetricName: Errors
 Namespace: AWS/Lambda
 Period: '60'
 Statistic: Sum
 Threshold: '1'

Deploying the Serverless Application

For information on how to package and deploy your serverless application using the package and
deploy commands, see Packaging and Deployment (p. 145).

Schedule Expressions Using Rate or Cron
Rate expression

rate(Value Unit)

Where:

Value can be a positive integer.

Unit can be minute(s), hour(s), or day(s).

For example:

Example Cron expression

Invoke Lambda function every 5 minutes
rate(5 minutes)

Invoke Lambda function every hour
rate(1 hour)

Invoke Lambda function every seven days
rate(7 days)

Note the following:

• Rate frequencies of less than one minute are not supported.

• For a singular value the unit must be singular (for example, rate(1 day)), otherwise plural (for
example, rate(5 days)).

267

AWS Lambda Developer Guide
Tutorial

Cron expression

cron(Minutes Hours Day-of-month Month Day-of-week Year)

All fields are required and time zone is UTC only. The following table describes these fields.

Field Values Wildcards

Minutes 0-59 , - * /

Hours 0-23 , - * /

Day-of-month 1-31 , - * ? / L W

Month 1-12 or JAN-DEC , - * /

Day-of-week 1-7 or SUN-SAT , - * ? / L #

Year 1970-2199 , - * /

The following table describes the wildcard characters.

Character Definition Example

/ Specifies
increments

0/15 in the minutes field directs execution to occur every 15
minutes.

L Specifies "Last" If used in Day-of-month field, specifies last day of the
month. If used in Day-of-week field, specifies last day of the
week (Saturday).

W Specifies
Weekday

When used with a date, such as 5/W, specifies the closest
weekday to 5th day of the month. If the 5th falls on a
Saturday, execution occurs on Friday. If the 5th falls on a
Sunday, execution occurs on Monday.

Specifies the nd
or nth day of the
month

Specifying 3#2 means the second Tuesday of the month
(Tuesday is the third day of the 7-day week).

* Specifies All
values

If used in the Day-of-month field, it means all days in the
month.

? No specified value Used in conjunction with another specified value. For
example, if a specific date is specified, but you don't care
what day of the week it falls on.

- Specifies ranges 10-12 would mean 10, 11 and 12

, Specifies
additional values

SUN, MON, TUE means Sunday, Monday and Tuesday

/ Specifies
increments

5/10 means 5, 15, 25, 35, etc.

The following table lists common examples of cron expressions.

268

AWS Lambda Developer Guide
Custom User Applications

Example Cron expression

Invoke Lambda function at
10:00am (UTC) everyday cron(0 10 * * ? *)

Invoke a Lambda function
12:15pm (UTC) everyday cron(15 12 * * ? *)

Invoke Lambda function at
06:00pm (UTC) every Mon-Fri cron(0 18 ? * MON-FRI *)

Invoke Lambda function at
8:00am (UTC) every first day of
the month

cron(0 8 1 * ? *)

Invoke Lambda function every
10 min Mon-Fri cron(0/10 * ? * MON-FRI *)

Invoke Lambda function every
5 minutes Mon-Fri between
8:00am and 5:55pm (UTC)

cron(0/5 8-17 ? * MON-FRI *)

Note the following:

• Cron expressions that lead to rates faster than one minute are not supported.

• One of the day-of-month or day-of-week values must be a question mark (?).

Using AWS Lambda with Custom User
Applications

One of the use cases for using AWS Lambda is to process events generated by a user application. For
demonstration purposes, you don't need to write a user application that invokes your Lambda function.
Instead, the tutorial provided in this section provides sample event data that you can use and then you
invoke your Lambda function manually.

When a user application invokes a Lambda function, it's an example of the AWS Lambda request-
response model in which an application invokes a Lambda function and receives a response in real
time. For more information, see How It Works (p. 151).

For a tutorial that walks you through an example setup, see Tutorial: Using AWS Lambda with Custom
User Applications (p. 269).

Tutorial: Using AWS Lambda with Custom User
Applications
In this tutorial, you use the AWS CLI to create and invoke a Lambda function and explore other AWS
Lambda APIs.

You'll do the following:

• Create a Lambda function to process an event it receives as a parameter. You use the following
example Node.js code to create your Lambda function.

269

AWS Lambda Developer Guide
Tutorial

console.log('Loading function');

exports.handler = function(event, context, callback) {
 console.log('value1 =', event.key1);
 console.log('value2 =', event.key2);
 console.log('value3 =', event.key3);
 callback(null,"Success");

};

Note
The code sample is compliant with the Node.js runtime v4.3. For more information, see
Programming Model (Node.js) (p. 9)

The function is simple. It processes incoming event data by logging it (these logs are available in
Amazon CloudWatch), and in the request-response model, you can request the log data be returned
in the response.

• Simulate a user application that sends an event to your Lambda function by invoking your Lambda
function manually using the following sample event data.

{
 "key1": "value1",
 "key2": "value2",
 "key3": "value3"
}

Note
This example is similar to the Getting Started exercise (see Getting Started (p. 160)). The
difference is that the Getting Started exercise provides a console-based experience. The
console does many things for you, which simplifies the experience. When using the AWS
CLI, you get the experience of making the API calls, which can help you develop a better
understanding of the AWS Lambda operations. In addition to creating and invoking a Lambda
function, you can explore other Lambda APIs.

Next Step
Step 1: Prepare (p. 270)

Step 1: Prepare
Make sure you have completed the following steps:

• Signed up for an AWS account and created an administrator user in the account.

• Installed and set up the AWS CLI.

For instructions, see Step 1: Set Up an AWS Account and the AWS CLI (p. 160).

Next Step

Step 2: Create a Lambda Function and Invoke It Manually (p. 270)

Step 2: Create a Lambda Function and Invoke It Manually
In this section, you do the following:

270

AWS Lambda Developer Guide
Tutorial

• Create a deployment package. A deployment package is a .zip file that contains your code and any
dependencies. For this tutorial there are no dependencies, you only have a simple example code.

• Create an IAM role (execution role). At the time you upload the deployment package, you need to
specify an IAM role (execution role) that Lambda can assume to execute the function on your behalf.

You also grant this role the permissions that your Lambda function needs. The code in this tutorial
writes logs to Amazon CloudWatch Logs. So you need to grant permissions for CloudWatch actions.
For more information, see AWS Lambda Watch Logs.

• Create a Lambda function (HelloWorld) using the create-function CLI command. For more
information about the underlying API and related parameters, see CreateFunction (p. 332).

Topics

• Step 2.1: Create a Lambda Function Deployment Package (p. 271)

• Step 2.2: Create the Execution Role (IAM Role) (p. 271)

• Step 2.3: Create a Lambda Function (p. 272)

• Next Step (p. 273)

Step 2.1: Create a Lambda Function Deployment Package

Follow the instructions to create an AWS Lambda function deployment package.

1. Open a text editor, and then copy the following code.

console.log('Loading function');

exports.handler = function(event, context, callback) {
 console.log('value1 =', event.key1);
 console.log('value2 =', event.key2);
 console.log('value3 =', event.key3);
 callback(null, "Success");

};

Note
The code sample is compliant with the Node.js runtime v4.3. For more information, see
Programming Model (Node.js) (p. 9)

2. Save the file as helloworld.js.

3. Zip the helloworld.js file as helloworld.zip.

Note
To see more examples of using other AWS services within your function, including calling
other Lambda functions, see AWS SDK for JavaScript

Step 2.2: Create the Execution Role (IAM Role)

When the Lambda function in this tutorial executes, it needs permissions to write logs to Amazon
CloudWatch. You grant these permissions by creating an IAM role (execution role). AWS Lambda
assumes this role when executing your Lambda function on your behalf. In this section, you create an
IAM role using the following predefined role type and access policy:

• AWS service role of the "AWS Lambda" type. This role grants AWS Lambda permission to assume
the role.

271

https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#logs:
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/frames.html

AWS Lambda Developer Guide
Tutorial

• "AWSLambdaBasicExecutionRole" access policy that you attach to the role. This existing policy
grants permissions that include permissions for Amazon CloudWatch actions that your Lambda
function needs.

For more information about IAM roles, see IAM Roles in the IAM User Guide.

In this section, you create an IAM role using the following predefined role type and access permissions
policy:

• AWS service role of the type AWS Lambda – This role grants AWS Lambda permissions to assume
the role.

• AWSLambdaBasicExecutionRole access permissions policy that you attach to the role.

For more information about IAM roles, see IAM Roles in the IAM User Guide. Use the following
procedure to create the IAM role.

To create an IAM role (execution role)

1. Sign in to the Identity and Access Management (IAM) console at https://console.aws.amazon.com/
iam/.

2. Follow the steps in Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide to create an IAM role (execution role). As you follow the steps to create a role, note the
following:

• In Role Name, use a name that is unique within your AWS account (for example, lambda-
custom-app-execution-role).

• In Select Role Type, choose AWS Service Roles, and then choose AWS Lambda. This grants
the AWS Lambda service permissions to assume the role.

• In Attach Policy, choose AWSLambdaBasicExecutionRole.

3. Write down the role ARN. You will need it in the next step when you create your Lambda function.

Step 2.3: Create a Lambda Function

Execute the following Lambda CLI create-function command to create a Lambda function. You
provide the deployment package and IAM role ARN as parameters.

$ aws lambda create-function \
--region us-west-2 \
--function-name helloworld \
--zip-file fileb://file-path/helloworld.zip \
--role role-arn \
--handler helloworld.handler \
--runtime nodejs4.3 \
--profile adminuser

Optionally, you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and then
specify the bucket and object name in the preceding command. You need to replace the --zip-file
parameter by the --code parameter, as shown following:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

For more information, see CreateFunction (p. 332). AWS Lambda creates the function and returns
function configuration information as shown in the following example:

272

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Lambda Developer Guide
Tutorial

{
 "FunctionName": "helloworld",
 "CodeSize": 351,
 "MemorySize": 128,
 "FunctionArn": "function-arn",
 "Handler": "helloworld.handler",
 "Role": "arn:aws:iam::account-id:role/LambdaExecRole",
 "Timeout": 3,
 "LastModified": "2015-04-07T22:02:58.854+0000",
 "Runtime": "nodejs4.3",
 "Description": ""
}

Next Step

Step 3: Invoke the Lambda Function (AWS CLI) (p. 273)

Step 3: Invoke the Lambda Function (AWS CLI)

In this section, you invoke your Lambda function manually using the invoke AWS CLI command.

$ aws lambda invoke \
--invocation-type RequestResponse \
--function-name helloworld \
--region us-west-2 \
--log-type Tail \
--payload '{"key1":"value1", "key2":"value2", "key3":"value3"}' \
--profile adminuser \
outputfile.txt

If you want you can save the payload to a file (for example, input.txt) and provide the file name as a
parameter.

--payload file://input.txt \

The preceding invoke command specifies RequestResponse as the invocation type, which returns
a response immediately in response to the function execution. Alternatively, you can specify Event as
the invocation type to invoke the function asynchronously.

By specifying the --log-type parameter, the command also requests the tail end of the log produced
by the function. The log data in the response is base64-encoded as shown in the following example
response:

{
 "LogResult": "base64-encoded-log",
 "StatusCode": 200
}

On Linux and Mac, you can use the base64 command to decode the log.

$ echo base64-encoded-log | base64 --decode

The following is a decoded version of an example log.

273

AWS Lambda Developer Guide
Tutorial

START RequestId: 16d25499-d89f-11e4-9e64-5d70fce44801
2015-04-01T18:44:12.323Z 16d25499-d89f-11e4-9e64-5d70fce44801 value1 =
 value1
2015-04-01T18:44:12.323Z 16d25499-d89f-11e4-9e64-5d70fce44801 value2 =
 value2
2015-04-01T18:44:12.323Z 16d25499-d89f-11e4-9e64-5d70fce44801 value3 =
 value3
2015-04-01T18:44:12.323Z 16d25499-d89f-11e4-9e64-5d70fce44801 result:
 "value1"
END RequestId: 16d25499-d89f-11e4-9e64-5d70fce44801
REPORT RequestId: 16d25499-d89f-11e4-9e64-5d70fce44801
Duration: 13.35 ms Billed Duration: 100 ms Memory Size: 128 MB
Max Memory Used: 9 MB

For more information, see Invoke (p. 358).

Because you invoked the function using the RequestResponse invocation type, the function executes
and returns the object you passed to the context.succeed() in real time when it is called. In this
tutorial, you see the following text written to the outputfile.txt you specified in the CLI command:

"value1"

Note
You are able to execute this function because you are using the same AWS account to create
and invoke the Lambda function. However, if you want to grant cross-account permissions
to another AWS account or grant permissions to another an AWS service to execute the
function, you must add a permissions to the access permissions policy associated with the
function. The Amazon S3 tutorial, which uses Amazon S3 as the event source (see Tutorial:
Using AWS Lambda with Amazon S3 (p. 177)), grants such permissions to Amazon S3 to
invoke the function.

You can monitor the activity of your Lambda function in the AWS Lambda console.

• Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

The AWS Lambda console shows a graphical representation of some of the CloudWatch metrics in
the Cloudwatch Metrics at a glance section for your function.

• For each graph, you can also choose the logs link to view the CloudWatch logs directly.

Next Step

Step 4: Try More CLI Commands (AWS CLI) (p. 274)

Step 4: Try More CLI Commands (AWS CLI)

Step 4.1: List the Lambda Functions in Your Account

In this section, you try AWS Lambda list function operations. Execute the following AWS CLI list-
functions command to retrieve a list of functions that you uploaded.

$ aws lambda list-functions \
--max-items 10 \
--profile adminuser

274

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

AWS Lambda Developer Guide
Tutorial

To illustrate the use of pagination, the command specifies the optional --max-items
parameter to limit the number of functions returned in the response. For more information, see
ListFunctions (p. 368). The following is an example response.

{
 "Functions": [
 {
 "FunctionName": "helloworld",
 "MemorySize": 128,
 "CodeSize": 412,
 "FunctionArn": "arn:aws:lambda:us-east-1:account-
id:function:ProcessKinesisRecords",
 "Handler": "ProcessKinesisRecords.handler",
 "Role": "arn:aws:iam::account-id:role/LambdaExecRole",
 "Timeout": 3,
 "LastModified": "2015-02-22T21:03:01.172+0000",
 "Runtime": "nodejs4.3",
 "Description": ""
 },
 {
 "FunctionName": "ProcessKinesisRecords",
 "MemorySize": 128,
 "CodeSize": 412,
 "FunctionArn": "arn:aws:lambda:us-east-1:account-
id:function:ProcessKinesisRecords",
 "Handler": "ProcessKinesisRecords.handler",
 "Role": "arn:aws:iam::account-id:role/lambda-execute-test-
kinesis",
 "Timeout": 3,
 "LastModified": "2015-02-22T21:03:01.172+0000",
 "Runtime": "nodejs4.3",
 "Description": ""
 },
 ...
],
 "NextMarker": null

}

In response, Lambda returns a list of up to 10 functions. If there are more functions you can retrieve,
NextMarker provides a marker you can use in the next list-functions request; otherwise, the
value is null. The following list-functions AWS CLI command is an example that shows the --
next-marker parameter.

$ aws lambda list-functions \
--max-items 10 \
--marker value-of-NextMarker-from-previous-response \
--profile adminuser

Step 4.2: Get Metadata and a URL to Download Previously Uploaded Lambda
Function Deployment Packages

The Lambda CLI get-function command returns Lambda function metadata and a presigned URL
that you can use to download the function's .zip file (deployment package) that you uploaded to create
the function. For more information, see GetFunction (p. 349).

$ aws lambda get-function \

275

AWS Lambda Developer Guide
Tutorial

--function-name helloworld \
--region us-west-2 \
--profile adminuser

The following is an example response.

{
 "Code": {
 "RepositoryType": "S3",
 "Location": "pre-signed-url"
 },
 "Configuration": {
 "FunctionName": "helloworld",
 "MemorySize": 128,
 "CodeSize": 287,
 "FunctionArn": "arn:aws:lambda:us-west-2:account-
id:function:helloworld",
 "Handler": "helloworld.handler",
 "Role": "arn:aws:iam::account-id:role/LambdaExecRole",
 "Timeout": 3,
 "LastModified": "2015-04-07T22:02:58.854+0000",
 "Runtime": "nodejs4.3",
 "Description": ""
 }

}

If you want the function configuration information only (not the presigned URL), you can use the
Lambda CLI get-function-configuration command.

$ aws lambda get-function-configuration \
 --function-name helloworld \
 --region us-west-2 \
--profile adminuser

Next Step

Step 5: Delete the Lambda Function and IAM Role (AWS CLI) (p. 276)

Step 5: Delete the Lambda Function and IAM Role (AWS CLI)

Execute the following delete-function command to delete the helloworld function.

$ aws lambda delete-function \
 --function-name helloworld \
 --region us-west-2 \
--profile adminuser

Delete the IAM Role

After you delete the Lambda function you can also delete the IAM role you created in the IAM console.
For information about deleting a role, see Deleting Roles or Instance Profiles in the IAM User Guide.

276

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html

AWS Lambda Developer Guide

AWS Lambda@Edge (Preview)

Lambda@Edge (preview) allows you to run Lambda functions at the AWS Edge locations in response
to CloudFront events, without provisioning or managing servers, by using the AWS Lambda serverless
programming model. Before Lambda@Edge, while you could use CloudFront to deliver pages
faster, customized processing still required requests to be forwarded back to compute resources
at centralized servers. This slows down the end user experience. You can use Lambda@Edge in
response to CloudFront events and to customize content delivered through CloudFront at reduced
network latency with execution at the AWS edge locations.

Functions deployable to edge locations are written in Node.js. With Lambda@Edge, a virtually
unlimited set of solutions is available, including the following:

• Write Lambda functions to inspect cookies to rewrite URLs to different versions of a site for A/B
testing.

• Send different objects to your users based on the user-agent header (for example, send images that
have different resolutions to users based on their devices).

• Inspect headers or authorized tokens, inserting a corresponding header and allowing access control
before forwarding a request to the origin.

• Add, drop, and modify headers, and rewrite the URL path to direct users to different objects in cache.

While the runtime (nodejs4.3-edge) is the same as the standard Node environment supported in
AWS Lambda (nodejs4.3), there are some additional restrictions. For example, there are no built-
in libraries available. You can use Lambda functions to respond to four different trigger points for a
CloudFront request:

• When a request is first received from a viewer (viewer request).

• When the Lambda function receives a response from the origin (origin response).

• When the Lambda function forwards a request to the origin (origin request).

• Before the Lambda function responds to the end viewer (viewer response).

For more information about setting up CloudFront with Lambda@Edge, see Using CloudFront with
Lambda@Edge.

277

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-at-the-edge.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-at-the-edge.html

AWS Lambda Developer Guide
How It Works

How It Works
After you have identified a decision that can be made at the AWS Edge location (where all the
information needed to make the decision is available within the function and the request/response
itself), first identify which cache behaviors and at what point in the request flow (viewer request, origin
request, origin response, or viewer response) the logic applies to.

You then create a Lambda function to encapsulate the logic. Functions that run on Lambda@Edge
are written in nodejs4.3; however, instead of selecting the standard nodejs4.3 as the runtime of
your Lambda function, you must select nodejs4.3-edge. Next, you use CloudFront API operations
or the AWS Lambda console to associate the appropriate events (viewer request etc.) for a specific
CloudFront distribution to your Lambda function. This the same model as all other event sources—for
example, when triggering Lambda functions for Amazon S3 events, you associate specific events like
Amazon S3 PUT for a specific bucket. Once saved, the next time an applicable request is made to your
distribution, the function is propagated to the CloudFront edge, scaled, and executed as needed.

Authoring Functions for Lambda@Edge
The programming model for using Node.js with Lambda@Edge is the same as using Lambda in a
region. For more information, see Programming Model (Node.js) (p. 9). You can also include third-party
packages. However, when responding to request events, the request object should be returned as part
of callback so that CloudFront can modify the request. The same applies while responding to response
events. The response object should be returned.

exports.origin_response_handler = function(event, context, callback) {
 var headers = event.Records[0].cf.response.headers;
 for (var header in headers) {
 /* your custom header logic */;
 }
 callback(null, event.Records[0].cf.response);
}

exports.origin_request_handler = function(event, context, callback) {
 var request = event.Records[0].cf.request;
 request.uri = /* your custom uri logic */;
 var headers = request.headers;
 for (var header in headers) {
 /* your custom header logic */;
 }
 callback(null , event.Records[0].cf.request);
}

Note
Lambda@Edge functions will not have write access to write to the local file system, and
cannot make remote network calls to external services.

Permissions
If you are using the AWS CLI, Lambda@Edge requires an additional permission. You will need to add
the following principal to the resource policy, as shown below:

aws lambda add-permission

278

AWS Lambda Developer Guide
Testing and Debugging

 --function-name arn
 --statement-id statement-id
 --action lambda:GetFunction
 --principal edgelambda.amazonaws.com

When using the Lambda console, these permissions are added automatically.

Testing and Debugging
Lambda@Edge functions can be tested on the Lambda console with test events modeled after the
Request or Response events. For sample events, see Lambda@Edge Event Structure. However, the
testing in the console only validates logic, and does not apply service limits specific to Lambda@Edge
which come into play if your function is deployed to the AWS Edge. To avoid discrepancies in behavior
while testing in a region, ensure that your function does not make remote calls (either through the
AWS SDK or via direct http/https requests) or use environment variables, and configure the function
to approximate its eventual edge deployment by selecting 128MB and 1 second of duration. Note
that the actual duration limit during the preview is 50ms. For more information, see Lambda@Edge
Limits (p. 280). Functions running on Lambda@Edge do not have CloudWatch Logs available at
this time. However, errors in Lambda@Edge functions will appear in the corresponding CloudFront
distribution request logs.

Simple Setup
In the Lambda console:

1. Choose the cloudfront-ab-test blueprint.

2. In Triggers, choose the CloudFront distribution, cache behavior, and an event type.

• Choose CloudFront from the service list.

• Choose distribution.

• Choose cache behavior identified by the URL pattern.

With Lambda@Edge, you associate functions at the cache behavior level. To specify different
caching policies (how long to cache an object, what headers to include in the cache key, which
origin has the content) you have the following options:

• *.jpg

• *.php

• * (default)

• Choose the CloudFront event type.

3. Choose Edge-Node.js 4.3 as the runtime for your function. Edge-Node.js 4.3 is the only supported
runtime for functions that run on Lambda@Edge today.

4. Choose Create function. When the specified CloudFront distribution receives a request, the
function is propagated to the edge location, and your function will start triggering to the associated
event.

Note
Note that you need to add a special permission to allow Lambda@Edge to propagate your
functions to edge locations. When using the console, these are automatically added. If you
create your functions using the API or AWS CLI, see Permissions (p. 278).

279

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/event-structure.html

AWS Lambda Developer Guide
Lambda@Edge Limits

Lambda@Edge Limits
Due to the constrained execution environment, Lambda@Edge has additional restrictions over and
above the default Lambda limits. Functions running in Edge locations do not count against your
concurrency limit for the region. For more information, see AWS Lambda Limits (p. 285).

Item Default Limit

Max memory setting 128 MB

Maximum duration 50 ms

Size of code/dependencies that you can zip into a
deployment package (uncompressed zip/jar size)

1 MB

Maximum Global TPS 100

280

AWS Lambda Developer Guide
AWS Lambda Information in CloudTrail

Logging AWS Lambda API Calls By
Using AWS CloudTrail

AWS Lambda is integrated with AWS CloudTrail, a service that captures API calls made by or on
behalf of AWS Lambda in your AWS account and delivers the log files to an Amazon S3 bucket that
you specify. CloudTrail captures API calls made from the AWS Lambda console or from the AWS
Lambda API. Using the information collected by CloudTrail, you can determine what request was made
to AWS Lambda, the source IP address from which the request was made, who made the request,
when it was made, and so on. To learn more about CloudTrail, including how to configure and enable
it, see the AWS CloudTrail User Guide.

AWS Lambda Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to AWS Lambda actions are
tracked in log files. AWS Lambda records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

The following actions are supported:

• AddPermission (p. 322)

• CreateEventSourceMapping (p. 328)

• CreateFunction (p. 332)

(The ZipFile parameter is omitted from the CloudTrail logs for CreateFunction.)

• DeleteEventSourceMapping (p. 339)

• DeleteFunction (p. 341)

• GetEventSourceMapping (p. 347)

• GetFunction (p. 349)

• GetFunctionConfiguration (p. 352)

• GetPolicy (p. 356)

• ListEventSourceMappings (p. 366)

• ListFunctions (p. 368)

• RemovePermission (p. 376)

• UpdateEventSourceMapping (p. 380)

281

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS Lambda Developer Guide
Understanding AWS Lambda Log File Entries

• UpdateFunctionCode (p. 383)

(The ZipFile parameter is omitted from the CloudTrail logs for UpdateFunctionCode.)

• UpdateFunctionConfiguration (p. 387)

Every log entry contains information about who generated the request. The user identity information
in the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon
S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by
using Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications for CloudTrail.

You can also aggregate AWS Lambda log files from multiple AWS regions and multiple AWS accounts
into a single S3 bucket. For more information, see Working with CloudTrail Log Files.

Understanding AWS Lambda Log File Entries
CloudTrail log files contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the
public API calls.

The following example shows CloudTrail log entries for the GetFunction and DeleteFunction
actions.

{
 "Records": [
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws:iam::999999999999:user/myUserName",
 "accountId": "999999999999",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-03-18T19:03:36Z",
 "eventSource": "lambda.amazonaws.com",
 "eventName": "GetFunction",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "Python-httplib2/0.8 (gzip)",
 "errorCode": "AccessDenied",
 "errorMessage": "User: arn:aws:iam::999999999999:user/myUserName"
 is not authorized to perform: lambda:GetFunction on resource:
 arn:aws:lambda:us-west-2:999999999999:function:other-acct-function",
 "requestParameters": null,
 "responseElements": null,

282

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

AWS Lambda Developer Guide
Understanding AWS Lambda Log File Entries

 "requestID": "7aebcd0f-cda1-11e4-aaa2-e356da31e4ff",
 "eventID": "e92a3e85-8ecd-4d23-8074-843aabfe89bf",
 "eventType": "AwsApiCall",
 "recipientAccountId": "999999999999"
 },
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws:iam::999999999999:user/myUserName",
 "accountId": "999999999999",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-03-18T19:04:42Z",
 "eventSource": "lambda.amazonaws.com",
 "eventName": "DeleteFunction",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "Python-httplib2/0.8 (gzip)",
 "requestParameters": {
 "functionName": "basic-node-task"
 },
 "responseElements": null,
 "requestID": "a2198ecc-cda1-11e4-aaa2-e356da31e4ff",
 "eventID": "20b84ce5-730f-482e-b2b2-e8fcc87ceb22",
 "eventType": "AwsApiCall",
 "recipientAccountId": "999999999999"
 }
]
}

Note
The eventName may include date and version information, such as
"GetFunction20150331", but it is still referring to the same public API.

283

AWS Lambda Developer Guide

Best Practices for Working with
AWS Lambda Functions

The following are recommended best practices for using AWS Lambda:

• Write your Lambda function code in a stateless style, and ensure there is no affinity between your
code and the underlying compute infrastructure.

• Instantiate AWS clients outside the scope of the handler to take advantage of connection re-use.

• Make sure you have set +rx permissions on your files in the uploaded ZIP to ensure Lambda can
execute code on your behalf.

• Lower costs and improve performance by minimizing the use of startup code not directly related to
processing the current event.

• Use the built-in CloudWatch monitoring of your Lambda functions to view and optimize request
latencies.

• Delete old Lambda functions that you are no longer using.

284

AWS Lambda Developer Guide
List of AWS Lambda Limits

AWS Lambda Limits

This section discusses AWS Lambda limits.

Topics

• List of AWS Lambda Limits (p. 285)

• AWS Lambda Limit Errors (p. 286)

List of AWS Lambda Limits
Every Lambda function is allocated with a fixed amount of specific resources regardless of the memory
allocation, and each function is allocated with a fixed amount of code storage per function and per
account.

The following table lists the runtime resource limits for a Lambda function per invocation.

AWS Lambda Resource Limits

Resource Default Limit

Ephemeral disk capacity ("/tmp" space) 512 MB

Number of file descriptors 1,024

Number of processes and threads (combined total) 1,024

Maximum execution duration per request 300 seconds

Invoke (p. 358) request body payload size
(RequestResponse)

6 MB

Invoke (p. 358) request body payload size (Event) 128 K

Invoke (p. 358) response body payload size
(RequestResponse)

6 MB

The following table lists the Lambda account limits per region.

285

AWS Lambda Developer Guide
AWS Lambda Limit Errors

AWS Lambda Account Limits Per Region

Resource Default Limit

Concurrent executions (see Lambda Function Concurrent
Executions (p. 152)

100

To request a limit increase for concurrent execution

1. Open the AWS Support Center page, sign in, if necessary, and then click Create case.

2. Under Regarding, select Service Limit Increase.

3. Under Limit Type, select Lambda, fill in the necessary fields in the form, and then click the button
at the bottom of the page for your preferred method of contact.

Note
AWS may automatically raise the concurrent execution limit on your behalf to enable your
function to match the incoming event rate, as in the case of triggering the function from an
Amazon S3 bucket.

The following table lists service limits for deploying a Lambda function.

AWS Lambda Deployment Limits

Item Default Limit

Lambda function deployment package size (.zip/.jar file) 50 MB

Total size of all the deployment packages that can be
uploaded per region

75 GB

Size of code/dependencies that you can zip into a
deployment package (uncompressed zip/jar size)

250 MB

Total size of environment variables set 4 KB

AWS Lambda Limit Errors
Functions that exceed any of the limits listed in the previous limits tables will fail with an exceeded
limits exception. These limits are fixed and cannot be changed at this time. For example, if you
receive the exception CodeStorageExceededException or an error message similar to "Code
storage limit exceeded" from AWS Lambda, you need to reduce the size of your code storage.

To reduce the size of your code storage

1. Remove the functions that you no longer use.

2. Reduce the code size of the functions that you do not want to remove. You can find the code size
of a Lambda function by using the AWS Lambda console, the AWS Command Line Interface, or
AWS SDKs.

286

https://console.aws.amazon.com/support/home#/

AWS Lambda Developer Guide
Authentication

Authentication and Access Control
for AWS Lambda

Access to AWS Lambda requires credentials that AWS can use to authenticate your requests. Those
credentials must have permissions to access AWS resources, such as an AWS Lambda function or
an Amazon S3 bucket. The following sections provide details on how you can use AWS Identity and
Access Management (IAM) and Lambda to help secure your resources by controlling who can access
them:

• Authentication (p. 287)

• Access Control (p. 288)

Authentication
You can access AWS as any of the following types of identities:

• AWS account root user – When you sign up for AWS, you provide an email address and password
that is associated with your AWS account. These are your root credentials and they provide
complete access to all of your AWS resources.

Important
For security reasons, we recommend that you use the root credentials only to create
an administrator user, which is an IAM user with full permissions to your AWS account.
Then, you can use this administrator user to create other IAM users and roles with limited
permissions. For more information, see IAM Best Practices and Creating an Admin User
and Group in the IAM User Guide.

• IAM user – An IAM user is simply an identity within your AWS account that has specific custom
permissions (for example, permissions to create a function in Lambda). You can use an IAM user
name and password to sign in to secure AWS webpages like the AWS Management Console, AWS
Discussion Forums, or the AWS Support Center.

287

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/

AWS Lambda Developer Guide
Access Control

In addition to a user name and password, you can also generate access keys for each user. You
can use these keys when you access AWS services programmatically, either through one of the
several SDKs or by using the AWS Command Line Interface (CLI). The SDK and CLI tools use the
access keys to cryptographically sign your request. If you don’t use the AWS tools, you must sign
the request yourself. Lambda supports Signature Version 4, a protocol for authenticating inbound
API requests. For more information about authenticating requests, see Signature Version 4 Signing
Process in the AWS General Reference.

• IAM role – An IAM role is another IAM identity you can create in your account that has specific
permissions. It is similar to an IAM user, but it is not associated with a specific person. An IAM
role enables you to obtain temporary access keys that can be used to access AWS services and
resources. IAM roles with temporary credentials are useful in the following situations:

• Federated user access – Instead of creating an IAM user, you can use preexisting user identities
from AWS Directory Service, your enterprise user directory, or a web identity provider. These are
known as federated users. AWS assigns a role to a federated user when access is requested
through an identity provider. For more information about federated users, see Federated Users
and Roles in the IAM User Guide.

• Cross-account access – You can use an IAM role in your account to grant another AWS account
permissions to access your account’s resources. For an example, see Tutorial: Delegate Access
Across AWS Accounts Using IAM Roles in the IAM User Guide.

• AWS service access – You can use an IAM role in your account to grant an AWS service
permissions to access your account’s resources. For example, you can create a role that allows
Amazon Redshift to access an Amazon S3 bucket on your behalf and then load data stored in the
bucket into an Amazon Redshift cluster. For more information, see Creating a Role to Delegate
Permissions to an AWS Service in the IAM User Guide.

• Applications running on Amazon EC2 – Instead of storing access keys within the EC2 instance
for use by applications running on the instance and making AWS API requests, you can use an
IAM role to manage temporary credentials for these applications. To assign an AWS role to an
EC2 instance and make it available to all of its applications, you can create an instance profile that
is attached to the instance. An instance profile contains the role and enables programs running
on the EC2 instance to get temporary credentials. For more information, see Using Roles for
Applications on Amazon EC2 in the IAM User Guide.

Access Control
You can have valid credentials to authenticate your requests, but unless you have permissions you
cannot create or access AWS Lambda resources. For example, you must have permissions to create a
Lambda function, add an event source, and publish a version of your Lambda function.

The following sections describe how to manage permissions for AWS Lambda. We recommend that
you read the overview first.

• Overview of Managing Access Permissions to Your AWS Lambda Resources (p. 289)

288

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS Lambda Developer Guide
Overview of Managing Access

• Using Identity-Based Policies (IAM Policies) for AWS Lambda (p. 293)

• Using Resource-Based Policies for AWS Lambda (Lambda Function Policies) (p. 306)

Overview of Managing Access Permissions to
Your AWS Lambda Resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource
are governed by permissions policies. An account administrator can attach permissions policies to IAM
identities (that is, users, groups, and roles), and some services (such as AWS Lambda) also support
attaching permissions policies to resources.

Note
An account administrator (or administrator user) is a user with administrator privileges. For
more information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you decide who is getting the permissions, the resources they get
permissions for, and the specific actions that you want to allow on those resources.

Topics

• AWS Lambda Resources and Operations (p. 289)

• Understanding Resource Ownership (p. 290)

• Managing Access to Resources (p. 290)

• Specifying Policy Elements: Actions, Effects, Resources, and Principals (p. 292)

• Specifying Conditions in a Policy (p. 293)

AWS Lambda Resources and Operations

In AWS Lambda, the primary resources are a Lambda function and an event source mapping. You
create an event source mapping in the AWS Lambda pull model to associate a Lambda function with
an event source. For more information, see Event Source Mapping (p. 120).

AWS Lambda also supports additional resource types, alias and version. However, you can create
aliases and versions only in the context of an existing Lambda function. These are referred to as
subresources.

These resources and subresources have unique Amazon Resource Names (ARNs) associated with
them as shown in the following table.

Resource Type ARN Format

Function arn:aws:lambda:region:account-id:function:function-name

Function alias arn:aws:lambda:region:account-id:function:function-
name:alias-name

Function version arn:aws:lambda:region:account-id:function:function-
name:version

Event source mapping arn:aws:lambda:region:account-id:event-source-mappings:event-
source-mapping-id

289

http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Lambda Developer Guide
Understanding Resource Ownership

AWS Lambda provides a set of operations to work with the Lambda resources. For a list of available
operations, see Actions (p. 320).

Understanding Resource Ownership
A resource owner is the AWS account that created the resource. That is, the resource owner is the
AWS account of the principal entity (the root account, an IAM user, or an IAM role) that authenticates
the request that creates the resource. The following examples illustrate how this works:

• If you use the root account credentials of your AWS account to create a Lambda function, your AWS
account is the owner of the resource (in Lambda, the resource is the Lambda function).

• If you create an IAM user in your AWS account and grant permissions to create a Lambda function
to that user, the user can create a Lambda function. However, your AWS account, to which the user
belongs, owns the Lambda function resource.

• If you create an IAM role in your AWS account with permissions to create a Lambda function,
anyone who can assume the role can create a Lambda function. Your AWS account, to which the
role belongs, owns the Lambda function resource.

Managing Access to Resources
A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note
This section discusses using IAM in the context of AWS Lambda. It doesn't provide detailed
information about the IAM service. For complete IAM documentation, see What Is IAM? in
the IAM User Guide. For information about IAM policy syntax and descriptions, see AWS IAM
Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and policies
attached to a resource are referred to as resource-based policies. AWS Lambda supports both identity-
based (IAM policies) and resource-based policies.

Topics

• Identity-Based Policies (IAM Policies) (p. 290)

• Resource-Based Policies (Lambda Function Policies) (p. 291)

Identity-Based Policies (IAM Policies)

You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – An account administrator
can use a permissions policy that is associated with a particular user to grant permissions for that
user to create a Lambda function.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach an
identity-based permissions policy to an IAM role to grant cross-account permissions. For example,
the administrator in Account A can create a role to grant cross-account permissions to another AWS
account (for example, Account B) or an AWS service as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in Account A.

2. Account A administrator attaches a trust policy to the role identifying Account B as the principal
who can assume the role.

290

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS Lambda Developer Guide
Managing Access to Resources

3. Account B administrator can then delegate permissions to assume the role to any users in
Account B. Doing this allows users in Account B to create or access resources in Account A. The
principal in the trust policy can also be an AWS service principal if you want to grant an AWS
service permissions to assume the role.

For more information about using IAM to delegate permissions, see Access Management in the IAM
User Guide.

The following is an example policy that grants permissions for the lambda:ListFunctions action
on all resources. In the current implementation, Lambda doesn't support identifying specific resources
using the resource ARNs (also referred to as resource-level permissions) for some of the API actions,
so you must specify a wildcard character (*).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListExistingFunctions",
 "Effect": "Allow",
 "Action": [
 "lambda:ListFunctions"
],
 "Resource": "*"
 }
]
}

For more information about using identity-based policies with Lambda, see Using Identity-Based
Policies (IAM Policies) for AWS Lambda (p. 293). For more information about users, groups, roles,
and permissions, see Identities (Users, Groups, and Roles) in the IAM User Guide.

Resource-Based Policies (Lambda Function Policies)

Each Lambda function can have resource-based permissions policies associated with it. For Lambda,
a Lambda function is the primary resource and these policies are referred to as Lambda function
policies. You can use a Lambda function policy to grant cross-account permissions as an alternative
to using identity-based policies with IAM roles. For example, you can grant Amazon S3 permissions to
invoke your Lambda function by simply adding permissions to the Lambda function policy instead of
creating an IAM role.

Important
Lambda function policies are primarily used when you are setting up an event source in AWS
Lambda to grant a service or an event source permissions to invoke your Lambda function
(see Invoke (p. 358)). An exception to this is when an event source (for example, Amazon
DynamoDB or Amazon Kinesis) uses the pull model, where permissions are managed
in the Lambda function execution role instead. For more information, see Event Source
Mapping (p. 120).

The following is an example Lambda function policy that has one statement. The statement allows
the Amazon S3 service principal permission for the lambda:InvokeFunction action on a Lambda
function called HelloWorld. The condition ensures that the bucket where the event occurred is owned
by the same account that owns the Lambda function.

{
 "Policy":{

291

http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

AWS Lambda Developer Guide
Specifying Policy Elements: Actions,
Effects, Resources, and Principals

 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"s3.amazonaws.com"
 },
 "Action":"lambda:InvokeFunction",
 "Resource":"arn:aws:lambda:region:account-
id:function:HelloWorld",
 "Sid":"65bafc90-6a1f-42a8-a7ab-8aa9bc877985",
 "Condition":{
 "StringEquals":{
 "AWS:SourceAccount":"account-id"
 },
 "ArnLike":{
 "AWS:SourceArn":"arn:aws:s3:::ExampleBucket"
 }
 }
 }
]
 }
}

For more information about using resource-based policies with Lambda, see Using Resource-Based
Policies for AWS Lambda (Lambda Function Policies) (p. 306). For additional information about using
IAM roles (identity-based policies) as opposed to resource-based policies, see How IAM Roles Differ
from Resource-based Policies in the IAM User Guide.

Specifying Policy Elements: Actions, Effects,
Resources, and Principals
For each AWS Lambda resource (see AWS Lambda Resources and Operations (p. 289)), the
service defines a set of API operations (see Actions (p. 320)). To grant permissions for these API
operations, Lambda defines a set of actions that you can specify in a policy. Note that, performing
an API operation can require permissions for more than one action. When granting permissions for
specific actions, you also identify the resource on which the actions are allowed or denied.

The following are the most basic policy elements:

• Resource – In a policy, you use an Amazon Resource Name (ARN) to identify the resource to which
the policy applies. For more information, see AWS Lambda Resources and Operations (p. 289).

• Action – You use action keywords to identify resource operations that you want to allow or deny.
For example, the lambda:InvokeFunction permission allows the user permissions to perform the
AWS Lambda Invoke operation.

• Effect – You specify the effect when the user requests the specific action—this can be either allow
or deny. If you don't explicitly grant access to (allow) a resource, access is implicitly denied. You
can also explicitly deny access to a resource, which you might do to make sure that a user cannot
access it, even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other entity
that you want to receive permissions (applies to resource-based policies only).

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM
User Guide.

292

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS Lambda Developer Guide
Specifying Conditions in a Policy

For a table showing all of the AWS Lambda API actions and the resources that they apply to, see
Lambda API Permissions: Actions, Resources, and Conditions Reference (p. 310).

Specifying Conditions in a Policy
When you grant permissions, you can use the IAM policy language to specify the conditions when a
policy should take effect. For example, you might want a policy to be applied only after a specific date.
For more information about specifying conditions in a policy language, see Condition in the IAM User
Guide.

To express conditions, you use predefined condition keys. There are no condition keys specific
to Lambda. However, there are AWS-wide condition keys that you can use as appropriate. For a
complete list of AWS-wide keys, see Available Keys for Conditions in the IAM User Guide.

Using Identity-Based Policies (IAM Policies) for
AWS Lambda

This topic provides examples of identity-based policies in which an account administrator can attach
permissions policies to IAM identities (that is, users, groups, and roles).

Important
We recommend that you first review the introductory topics that explain the basic concepts
and options available for you to manage access to your AWS Lambda resources. For
more information, see Overview of Managing Access Permissions to Your AWS Lambda
Resources (p. 289).

The sections in this topic cover the following:

• Permissions Required to Use the AWS Lambda Console (p. 294)

• AWS Managed (Predefined) Policies for AWS Lambda (p. 294)

• Customer Managed Policy Examples (p. 295)

The following shows an example of a permissions policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateFunctionPermissions",
 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction"
],
 "Resource": "*"
 },
 {
 "Sid": "PermissionToPassAnyRole",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],

293

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

AWS Lambda Developer Guide
Permissions Required to Use the AWS Lambda Console

 "Resource": "arn:aws:iam::account-id:role/*"
 }
]
}

The policy has two statements:

• The first statement grants permissions for the AWS Lambda action (lambda:CreateFunction) on
a resource by using the Amazon Resource Name (ARN) for the Lambda function. Currently, AWS
Lambda doesn't support permissions for this particular action at the resource-level. Therefore, the
policy specifies a wildcard character (*) as the Resource value.

• The second statement grants permissions for the IAM action (iam:PassRole) on IAM roles. The
wildcard character (*) at the end of the Resource value means that the statement allows permission
for the iam:PassRole action on any IAM role. To limit this permission to a specific role, replace the
wildcard character (*) in the resource ARN with the specific role name.

The policy doesn't specify the Principal element because in an identity-based policy you don't
specify the principal who gets the permission. When you attach policy to a user, the user is the implicit
principal. When you attach a permission policy to an IAM role, the principal identified in the role's trust
policy gets the permissions.

For a table showing all of the AWS Lambda API actions and the resources that they apply to,
see Lambda API Permissions: Actions, Resources, and Conditions Reference (p. 310).

Permissions Required to Use the AWS Lambda
Console
The AWS Lambda console provides an integrated environment for you to create and manage Lambda
functions. The console provides many features and workflows that often require permissions to
create a Lambda function in addition to the API-specific permissions documented in the Lambda
API Permissions: Actions, Resources, and Conditions Reference (p. 310). For more information
about these additional console permissions, see Permissions Required to Use the AWS Lambda
Console (p. 298).

AWS Managed (Predefined) Policies for AWS
Lambda

AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. Managed policies grant necessary permissions for common use cases so
you can avoid having to investigate what permissions are needed. For more information, see AWS
Managed Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
AWS Lambda and are grouped by use case scenario:

• AWSLambdaReadOnlyAccess – Grants read-only access to AWS Lambda resources. Note that
this policy doesn't grant permission for the lambda:InvokeFunction action. If you want a user to
invoke a Lambda function, you can also attach the AWSLambdaRole AWS managed policy.

• AWSLambdaFullAccess – Grants full access to AWS Lambda resources.

• AWSLambdaRole – Grants permissions to invoke any Lambda function.

294

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS Lambda Developer Guide
Customer Managed Policy Examples

Note
You can review these permissions policies by signing in to the IAM console and searching for
specific policies there.

In addition, there are other AWS-managed policies that are suitable for use with IAM role (execution
role) you specify at the time of creating a Lambda function. For more information, see AWS Lambda
Permissions Model (p. 155).

You can also create your own custom IAM policies to allow permissions for AWS Lambda API actions
and resources. You can attach these custom policies to the IAM users or groups that require those
permissions or to custom execution roles (IAM roles) that you create for your Lambda functions.

Customer Managed Policy Examples
The examples in this section provide a group of sample policies that you can attach to a user. If you
are new to creating policies, we recommend that you first create an IAM user in your account and
attach the policies to the user in sequence, as outlined in the steps in this section.

You can use the console to verify the effects of each policy as you attach the policy to the user. Initially,
the user doesn't have permissions and the user won't be able to do anything in the console. As you
attach policies to the user, you can verify that the user can perform various actions in the console.

We recommend that you use two browser windows: one to create the user and grant permissions,
and the other to sign in to the AWS Management Console using the user's credentials and verify
permissions as you grant them to the user.

For examples that show how to create an IAM role that you can use as an execution role for your
Lambda function, see Creating IAM Roles in the IAM User Guide.

Example Steps

• Step 1: Create an IAM User (p. 295)

• Step 2: Allow a User to List Lambda Functions (p. 295)

• Step 3: Allow a User to View Details of a Lambda Function (p. 296)

• Step 4: Allow a User to Invoke a Lambda Function (p. 296)

• Step 5: Allow a User to Monitor a Lambda Function and View CloudWatch Logs (p. 297)

• Step 6: Allow a User to Create a Lambda Function (p. 297)

Step 1: Create an IAM User

First, you need to create an IAM user, add the user to an IAM group with administrative permissions,
and then grant administrative permissions to the IAM user that you created. You can then access AWS
using a special URL and that IAM user's credentials.

For instructions, see Creating Your First IAM User and Administrators Group in the IAM User Guide.

Step 2: Allow a User to List Lambda Functions

An IAM user in your account must have permissions for the lambda:ListFunctions action before
the user can see anything in the console. When you grant these permissions, the console can show
the list of Lambda functions in the AWS account created in the specific AWS Region the user belongs
to.

{
 "Version": "2012-10-17",

295

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

AWS Lambda Developer Guide
Customer Managed Policy Examples

 "Statement": [
 {
 "Sid": "ListExistingFunctions",
 "Effect": "Allow",
 "Action": [
 "lambda:ListFunctions"
],
 "Resource": "*"
 }
]
}

Step 3: Allow a User to View Details of a Lambda Function

A user can select a Lambda function and view details of the function (such as aliases, versions, and
other configuration information), provided that the user has permissions for the following AWS Lambda
actions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DisplayFunctionDetailsPermissions",
 "Effect": "Allow",
 "Action": [
 "lambda:ListVersionsByFunction",
 "lambda:ListAliases",
 "lambda:GetFunction",
 "lambda:GetFunctionConfiguration",
 "lambda:ListEventSourceMappings",
 "lambda:GetPolicy"
],
 "Resource": "*"
 }
]
}

Step 4: Allow a User to Invoke a Lambda Function

If you want to allow a user permissions to manually invoke a function, you need to grant permissions
for the lambda:InvokeFunction action, as shown following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "InvokePermission",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "*"
 }
]
}

296

AWS Lambda Developer Guide
Customer Managed Policy Examples

Step 5: Allow a User to Monitor a Lambda Function and View
CloudWatch Logs
When a user invokes a Lambda function, AWS Lambda executes it and returns results. The user
needs additional permissions to monitor the Lambda function.

To enable the user to see the Lambda function's CloudWatch metrics on the console's Monitoring tab,
or on the grid view on the console home page, you must grant the following permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchPermission",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetMetricStatistics"
],
 "Resource": "*"
 }
]
}

To enable a user to click the links to CloudWatch Logs in the AWS Lambda console and view log
output in CloudWatch Logs, you must grant the following permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchLogsPerms",
 "Effect": "Allow",
 "Action": [
 "cloudwatchlog:DescribeLogGroups",
 "cloudwatchlog:DescribeLogStreams",
 "cloudwatchlog:GetLogEvents"

],
 "Resource": "arn:aws:logs:region:account-id:log-group:/aws/
lambda/*"
 }
]
}

Step 6: Allow a User to Create a Lambda Function
If you want a user to be able to create a Lambda function, you must grant the following permissions.
The permissions for IAM-related actions are required because when a user creates a Lambda function,
the user needs to select an IAM execution role, which AWS Lambda assumes to execute the Lambda
function.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListExistingRolesAndPolicies",

297

AWS Lambda Developer Guide
Console Permissions

 "Effect": "Allow",
 "Action": [
 "iam:ListRolePolicies",
 "iam:ListRoles"
],
 "Resource": "*"
 },
 {
 "Sid": "CreateFunctionPermissions",
 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction"
],
 "Resource": "*"
 },
 {
 "Sid": "PermissionToPassAnyRole",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::account-id:role/*"
 }
]
}

If you want a user to be able to create an IAM role when the user is creating a Lambda function, the
user needs permissions to perform the iam:PutRolePolicy action, as shown following:

{
 "Sid": "CreateARole",
 "Effect": "Allow",
 "Action": [
 "iam:PutRolePolicy"
],
 "Resource": "arn:aws:iam::account-id:role/*"
}

Important
Each IAM role has a permissions policy attached to it, which grants specific permissions to the
role. Regardless of whether the user creates a new role or uses an existing role, the user must
have permissions for all of the actions granted in the permissions policy associated with the
role. You must grant the user additional permissions accordingly.

Permissions Required to Use the AWS Lambda
Console
To take advantage of the integrated experience provided by the AWS Lambda console, a user must
often have more permissions than the API-specific permissions described in the references table,
depending on what you want the user to be able to do. For more information about Lambda API
operations, see Lambda API Permissions: Actions, Resources, and Conditions Reference (p. 310).

For example, suppose you allow an IAM user in your account permissions to create a Lambda function
to process Amazon S3 object-created events. To enable the user to configure Amazon S3 as the event
source, the console drop-down list will display a list of your buckets. However, the console can show
the bucket list only if the signed-in user has permissions for the relevant Amazon S3 actions.

298

AWS Lambda Developer Guide
Console Permissions

The following sections describe required additional permissions for different integration points. For
information about integration points, see How It Works (p. 151).

If you are new to managing permissions, we recommend that you start with the example walkthrough
where you create an IAM user, grant the user incremental permissions, and verify the permissions
work using the AWS Lambda console (see Customer Managed Policy Examples (p. 295)).

Topics

• Amazon API Gateway (p. 299)

• Amazon CloudWatch Events (p. 300)

• Amazon CloudWatch Logs (p. 297)

• Amazon Cognito (p. 301)

• Amazon DynamoDB (p. 302)

• Amazon Kinesis Streams (p. 303)

• Amazon S3 (p. 304)

• Amazon SNS (p. 304)

• AWS IoT (p. 305)

Note
All of these permissions policies grant the specific AWS services permissions to invoke a
Lambda function. The user who is configuring this integration must have permissions to invoke
the Lambda function. Otherwise, the user can't set the configuration. You can attach the
AWSLambdaRole AWS managed (predefined) permissions policy to the user to provide these
permissions.

Amazon API Gateway

When you configure an API endpoint in the console, the console makes several API Gateway API
calls. These calls require permissions for the apigateway:* action, as shown following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ApiGatewayPermissions",
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": "*"
 },
 {
 "Sid": "AddPermissionToFunctionPolicy",
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:RemovePermission",
 "lambda:GetPolicy"
],
 "Resource": "arn:aws:lambda:region:account-id:function:*"
 },
 {
 "Sid": "ListEventSourcePerm",
 "Effect": "Allow",
 "Action": [

299

AWS Lambda Developer Guide
Console Permissions

 "lambda:ListEventSourceMappings"
],
 "Resource": "*"
 }
]
}

Amazon CloudWatch Events
You can schedule when to invoke a Lambda function. After you select an existing CloudWatch Events
rule (or create a new one), AWS Lambda creates a new target in CloudWatch that invokes your
Lambda function. For target creation to work, you need to grant the following additional permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EventPerms",
 "Effect": "Allow",
 "Action": [
 "events:PutRule",
 "events:ListRules",
 "events:ListRuleNamesByTarget",
 "events:PutTargets",
 "events:RemoveTargets",
 "events:DescribeRule",
 "events:TestEventPattern",
 "events:ListTargetsByRule",
 "events:DeleteRule"

],
 "Resource": "arn:aws:events:region:account-id:*"
 },
 {
 "Sid": "AddPermissionToFunctionPolicy",
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:RemovePermission",
 "lambda:GetPolicy"
],
 "Resource": "arn:aws:lambda:region:account-id:function:*"
 }
]
}

Amazon CloudWatch Logs
You can have the Amazon CloudWatch Logs service publish events and invoke your Lambda function.
When you configure this service as an event source, the console lists log groups in your account.
For this listing to occur, you need to grant the logs:DescribeLogGroups permissions, as shown
following:

{
 "Version": "2012-10-17",
 "Statement": [
 {

300

AWS Lambda Developer Guide
Console Permissions

 "Sid": "CloudWatchLogsPerms",
 "Effect": "Allow",
 "Action": [
 "logs:FilterLogEvents",
 "logs:DescribeLogGroups",
 "logs:PutSubscriptionFilter",
 "logs:DescribeSubscriptionFilters",
 "logs:DeleteSubscriptionFilter",
 "logs:TestMetricFilter"
],
 "Resource": "arn:aws:logs:region:account-id:*"
 },
 {
 "Sid": "AddPermissionToFunctionPolicy",
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:RemovePermission",
 "lambda:GetPolicy"
],
 "Resource": "arn:aws:lambda:region:account-id:function:*"
 },
 {
 "Sid": "ListEventSourceMappingsPerms",
 "Effect": "Allow",
 "Action": [
 "lambda:ListEventSourceMappings"
],
 "Resource": "*"
 }
]
}

Note
The additional permissions shown are required for managing subscription filters.

Amazon Cognito

The console lists identity pools in your account. After you select a pool, you can configure the pool to
have the Cognito sync trigger as the event source type. To do this, you need to grant the following
additional permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CognitoPerms1",
 "Effect": "Allow",
 "Action": [
 "cognito-identity:ListIdentityPools"
],
 "Resource": [
 "arn:aws:cognito-identity:region:account-id:*"
]
 },
 {
 "Sid": "CognitoPerms2",
 "Effect": "Allow",

301

AWS Lambda Developer Guide
Console Permissions

 "Action": [
 "cognito-sync:GetCognitoEvents",
 "cognito-sync:SetCognitoEvents"
],
 "Resource": [
 "arn:aws:cognito-sync:region:account-id:*"
]
 },
 {
 "Sid": "AddPermissionToFunctionPolicy",
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:RemovePermission",
 "lambda:GetPolicy"
],
 "Resource": "arn:aws:lambda:region:account-id:function:*"
 },
 {
 "Sid": "ListEventSourcePerms",
 "Effect": "Allow",
 "Action": [
 "lambda:ListEventSourceMappings"
],
 "Resource": "*"
 }
]
}

Amazon DynamoDB
The console lists all of the tables in your account. After you select a table, the console checks to see
if a DynamoDB stream exists for that table. If not, it creates the stream. If you want the user to be able
to configure a DynamoDB stream as an event source for a Lambda function, you need to grant the
following additional permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DDBpermissions1",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeStream",
 "dynamodb:DescribeTable",
 "dynamodb:UpdateTable"
],
 "Resource": "arn:aws:dynamodb:region:account-id:table/*"
 },
 {
 "Sid": "DDBpermissions2",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ListStreams",
 "dynamodb:ListTables"
],
 "Resource": "*"
 },

302

AWS Lambda Developer Guide
Console Permissions

 {
 "Sid": "LambdaGetPolicyPerm",
 "Effect": "Allow",
 "Action": [
 "lambda:GetPolicy"
],
 "Resource": "arn:aws:lambda:region:account-id:function:*"
 },
 {
 "Sid": "LambdaEventSourcePerms",
 "Effect": "Allow",
 "Action": [
 "lambda:CreateEventSourceMapping",
 "lambda:DeleteEventSourceMapping",
 "lambda:GetEventSourceMapping",
 "lambda:ListEventSourceMappings",
 "lambda:UpdateEventSourceMapping"
],
 "Resource": "*"
 }
]
}

Important
For a Lambda function to read from a DynamoDB stream, the execution role associated with
the Lambda function must have the correct permissions. Therefore, the user must also have
the same permissions before you can grant the permissions to the execution role. You can
grant these permissions by attaching the AWSLambdaDynamoDBExecutionRole predefined
policy, first to the user and then to the execution role.

Amazon Kinesis Streams
The console lists all Amazon Kinesis streams in your account. After you select a stream, the console
creates event source mappings in AWS Lambda. For this to work, you need to grant the following
additional permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PermissionForDescribeStream",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/*"
 },
 {
 "Sid": "PermissionForListStreams",
 "Effect": "Allow",
 "Action": [
 "kinesis:ListStreams"
],
 "Resource": "*"
 },
 {
 "Sid": "PermissionForGetFunctionPolicy",
 "Effect": "Allow",

303

AWS Lambda Developer Guide
Console Permissions

 "Action": [
 "lambda:GetPolicy"
],
 "Resource": "arn:aws:lambda:region:account-id:function:*"
 },
 {
 "Sid": "LambdaEventSourcePerms",
 "Effect": "Allow",
 "Action": [
 "lambda:CreateEventSourceMapping",
 "lambda:DeleteEventSourceMapping",
 "lambda:GetEventSourceMapping",
 "lambda:ListEventSourceMappings",
 "lambda:UpdateEventSourceMapping"
],
 "Resource": "*"
 }
]
}

Amazon S3

The console prepopulates the list of buckets in the AWS account and finds the bucket location for
each bucket. When you configure Amazon S3 as an event source, the console updates the bucket
notification configuration. For this to work, you need to grant the following additional permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3Permissions",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetBucketNotification",
 "s3:PutBucketNotification",
 "s3:ListAllMyBuckets"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AddPermissionToFunctionPolicy",
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:RemovePermission"
],
 "Resource": "arn:aws:lambda:region:account-id:function:*"
 }
]
}

Amazon SNS

The console lists Amazon Simple Notification Service (Amazon SNS) topics in your account. After you
select a topic, AWS Lambda subscribes your Lambda function to that Amazon SNS topic. For this
work, you need to grant the following additional permissions:

304

AWS Lambda Developer Guide
Console Permissions

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SNSPerms",
 "Effect": "Allow",
 "Action": [
 "sns:ListSubscriptions",
 "sns:ListSubscriptionsByTopic",
 "sns:ListTopics",
 "sns:Subscribe",
 "sns:Unsubscribe"
],
 "Resource": "arn:aws:sns:region:account-id:*"
 },
 {
 "Sid": "AddPermissionToFunctionPolicy",
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:RemovePermission",
 "lambda:GetPolicy"
],
 "Resource": "arn:aws:lambda:region:account-id:function:*"
 },
 {
 "Sid": "LambdaListESMappingsPerms",
 "Effect": "Allow",
 "Action": [
 "lambda:ListEventSourceMappings"
],
 "Resource": "*"
 }
]
}

AWS IoT

The console lists all of the AWS IoT rules. After you select a rule, the console populates the rest of the
information associated with that rule in the user interface. If you select an existing rule, the console
updates it with information so that events are sent to AWS Lambda. You can also create a new rule. To
do these things, the user must have the following additional permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IoTperms",
 "Effect": "Allow",
 "Action": [
 "iot:GetTopicRule",
 "iot:CreateTopicRule",
 "iot:ReplaceTopicRule"
],
 "Resource": "arn:aws:iot:region:account-id:*"
 },
 {

305

AWS Lambda Developer Guide
Using Resource-Based Policies

(Lambda Function Policies)

 "Sid": "IoTlistTopicRulePerms",
 "Effect": "Allow",
 "Action": [
 "iot:ListTopicRules"
],
 "Resource": "*"
 },
 {
 "Sid": "LambdaPerms",
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:RemovePermission",
 "lambda:GetPolicy"
],
 "Resource": "arn:aws:lambda:region:account-id:function:*"
 }
]
}

Using Resource-Based Policies for AWS Lambda
(Lambda Function Policies)

A Lambda function is one of the resources in AWS Lambda. You can add permissions to the policy
associated with a Lambda function. Permissions policies attached to Lambda functions are referred to
as resource-based policies (or Lambda function policies in Lambda). You use Lambda function policies
to manage Lambda function invocation permissions (see Invoke (p. 358)).

Important
Before you create resource-based policies, we recommend that you first review the
introductory topics that explain the basic concepts and options available for you to manage
access to your AWS Lambda resources. For more information, see Overview of Managing
Access Permissions to Your AWS Lambda Resources (p. 289).

Lambda function policies are primarily used when you are setting up an event source in AWS
Lambda to grant a service or an event source permissions to invoke your Lambda function (see
Invoke (p. 358)). An exception to this is when an event source (for example, Amazon DynamoDB
or Amazon Kinesis) uses the pull model, where permissions are managed in the Lambda function
execution role instead. For more information, see Event Source Mapping (p. 120).

Lambda function policies also make it easy to grant cross-account permissions to invoke your
Lambda function. Suppose you want to grant cross-account permissions (for example, permissions to
Amazon S3) to invoke your Lambda function. Instead of creating an IAM role to grant cross-account
permissions, you can add the relevant permissions in a Lambda function policy.

Note
If the custom application and the Lambda function it invokes belong to the same AWS
account, you don't need to grant explicit permissions using the policy attached to the Lambda
function.

AWS Lambda provides the following API operations to manage a permissions policy associated with a
Lambda function:

• AddPermission (p. 322)

• GetPolicy (p. 356)

306

AWS Lambda Developer Guide
Allow Amazon S3 to Invoke a Lambda Function

• RemovePermission (p. 376)

Note
The AWS Lambda console is the easiest way to manage event sources and their permissions
in a Lambda function policy. If the AWS service console for the event source supports
configuring event source mapping, you can use that console too. As you configure new event
sources or modify existing event sources, the console automatically modifies the permissions
policy associated with the Lambda function.

The console doesn't support directly modifying permissions in a function policy. You must use either
the AWS CLI or the AWS SDKs. The following are AWS CLI examples of the API operations listed
earlier in this topic:

Examples

• Example 1: Allow Amazon S3 to Invoke a Lambda Function (p. 307)

• Example 2: Allow Amazon API Gateway to Invoke a Lambda Function (p. 308)

• Example 3: Allow a User Application Created by Another AWS Account to Invoke a Lambda
Function (Cross-Account Scenario) (p. 309)

• Example 4: Retrieve a Lambda Function Policy (p. 309)

• Example 5: Remove Permissions from a Lambda Function Policy (p. 309)

• Example 6: Working with Lambda Function Versioning, Aliases, and Permissions (p. 310)

Example 1: Allow Amazon S3 to Invoke a Lambda
Function
To grant Amazon S3 permission to invoke a Lambda function, you configure permissions as follows:

• Specify s3.amazonaws.com as the principal value.

• Specify lambda:InvokeFunction as the action for which you are granting permissions.

To ensure that the event is generated from a specific bucket that is owned by a specific AWS account,
you also specify the following:

• Specify the bucket ARN as the source-arn value to restrict events from a specific bucket.

• Specify the AWS account ID that owns the bucket, to ensure that the named bucket is owned by the
account.

The following example AWS CLI command adds a permission to the helloworld Lambda function
policy granting Amazon S3 permissions to invoke the function.

aws lambda add-permission \
--region us-west-2 \
--function-name helloworld \
--statement-id 1 \
--principal s3.amazonaws.com \
--action lambda:InvokeFunction \
--source-arn arn:aws:s3:::examplebucket \
--source-account 111111111111 \
--profile adminuser

The example assumes that the adminuser (who has full permissions) is adding this permission.
Therefore, the --profile parameter specifies the adminuser profile.

307

AWS Lambda Developer Guide
Allow Amazon API Gateway to Invoke a Lambda Function

In response, AWS Lambda returns the following JSON code. The Statement value is a JSON string
version of the statement added to the Lambda function policy.

{
 "Statement": "{\"Condition\":{\"StringEquals\":{\"AWS:SourceAccount\":
\"111111111111\"},
 \"ArnLike\":{\"AWS:SourceArn\":
\"arn:aws:s3:::examplebucket\"}},
 \"Action\":[\"lambda:InvokeFunction\"],
 \"Resource\":\"arn:aws:lambda:us-
west-2:111111111111:function:helloworld\",
 \"Effect\":\"Allow\",\"Principal\":{\"Service\":
\"s3.amazonaws.com\"},
 \"Sid\":\"1\"}"
}

For information about the push model, see Event Source Mapping (p. 120).

Example 2: Allow Amazon API Gateway to Invoke a
Lambda Function
To grant permissions to allow Amazon API Gateway to invoke a Lambda function, do the following:

• Specify apigateway.amazonaws.com as the principal value.

• Specify lambda:InvokeFunction as the action for which you are granting permissions.

• Specify the API Gateway endpoint ARN as the source-arn value.

The following example AWS CLI command adds a permission to the helloworld Lambda function
policy granting API Gateway permissions to invoke the function.

aws lambda add-permission \
--region us-west-2 \
--function-name helloworld \
--statement-id 5 \
--principal apigateway.amazonaws.com \
--action lambda:InvokeFunction \
--source-arn arn:aws:execute-api:region:account-id:api-id/stage/method/
resource-path \
--profile adminuser

In response, AWS Lambda returns the following JSON code. The Statement value is a JSON string
version of the statement added to the Lambda function policy.

{
 "Statement": "{\"Condition\":{\"ArnLike\":{\"AWS:SourceArn\":
\"arn:aws:apigateway:us-east-1::my-api-id:/test/petstorewalkthrough/pets\"}},
 \"Action\":[\"lambda:InvokeFunction\"],
 \"Resource\":\"arn:aws:lambda:us-west-2:account-
id:function:helloworld\",
 \"Effect\":\"Allow\",
 \"Principal\":{\"Service\":\"apigateway.amazonaws.com\"},

308

AWS Lambda Developer Guide
Cross-Account Scenario

 \"Sid\":\"5\"}"
}

Example 3: Allow a User Application Created by
Another AWS Account to Invoke a Lambda Function
(Cross-Account Scenario)
To grant permissions to another AWS account (that is, to create a cross-account scenario), you specify
the AWS account ID as the principal value as shown in the following AWS CLI command:

aws lambda add-permission \
--region us-west-2 \
--function-name helloworld \
--statement-id 3 \
--principal 111111111111 \
--action lambda:InvokeFunction \
--profile adminuser

In response, AWS Lambda returns the following JSON code. The Statement value is a JSON string
version of the statement added to the Lambda function policy.

{
 "Statement": "{\"Action\":[\"lambda:InvokeFunction\"],
 \"Resource\":\"arn:aws:lambda:us-west-2:account-
id:function:helloworld\",
 \"Effect\":\"Allow\",
 \"Principal\":{\"AWS\":\"account-id\"},
 \"Sid\":\"3\"}"
}

Example 4: Retrieve a Lambda Function Policy
To retrieve your Lambda function policy, you use the get-policy command:

aws lambda get-policy \
--function-name example \
--profile adminuser

Example 5: Remove Permissions from a Lambda
Function Policy
To remove permissions from your Lambda function policy, you use the remove-permission
command, specifying the function name and statement ID:

aws lambda remove-permission \
--function-name example \
--statement-id 1 \
--profile adminuser

309

AWS Lambda Developer Guide
Working with Lambda Function

Versioning, Aliases, and Permissions

Example 6: Working with Lambda Function
Versioning, Aliases, and Permissions
For more information about permissions policies for Lambda function versions and aliases, see
Versioning, Aliases, and Resource Policies (p. 85).

Lambda API Permissions: Actions, Resources,
and Conditions Reference

When you are setting up Access Control (p. 288) and writing permissions policies that you can
attach to an IAM identity (identity-based policies), you can use the following table as a reference. The
list includes each AWS Lambda API operation, the corresponding actions for which you can grant
permissions to perform the action, and the AWS resource for which you can grant the permissions.
You specify the actions in the policy's Action field, and you specify the resource value in the policy's
Resource field.

Note
Permissions for the AWS Lambda Invoke API in the following table can also be granted by
using resource-based policies. For more information, see Using Resource-Based Policies for
AWS Lambda (Lambda Function Policies) (p. 306).

You can use AWS-wide condition keys in your AWS Lambda policies to express conditions. For a
complete list of AWS-wide keys, see Available Keys for Conditions in the IAM User Guide.

Note
To specify an action, use the lambda: prefix followed by the API operation name (for
example, lambda:CreateFunction).

AWS Lambda API and Required Permissions for Actions

AddPermission (p. 322)
Action(s): lambda:AddPermission

Resource: arn:aws:lambda:region:account-id:?/*

CreateEventSourceMapping (p. 328)
Action(s): lambda:CreateEventSourceMapping

Resource: arn:aws:lambda:region:account-id:?

CreateFunction (p. 332)
Action(s): lambda:CreateFunction

Resource: arn:aws:lambda:region:account-id:?

DeleteEventSourceMapping (p. 339)
Action(s): lambda:DeleteEventSourceMapping

Resource: arn:aws:lambda:region:account-id:?

DeleteFunction (p. 341)
Action(s): lambda:DeleteFunction,

Resource: arn:aws:lambda:region:account-id:?

GetEventSourceMapping (p. 347)
Action(s): lambda:GetEventSourceMapping

310

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

AWS Lambda Developer Guide
Policy Templates

Resource: arn:aws:lambda:region:account-id:?

GetFunction (p. 349)
Action(s): lambda:GetFunction

Resource: arn:aws:lambda:region:account-id:?

GetFunctionConfiguration (p. 352)
Action(s): lambda:DescribeMountTargetSecurityGroups,

Resource: arn:aws:lambda:region:account-id:?

GetPolicy (p. 356)
Action(s): lambda:DescribeMountTargets

Resource: arn:aws:lambda:region:account-id:?

Invoke (p. 358)
Action(s): lambda:DescribeTags

Resource: arn:aws:lambda:region:account-id:?

InvokeAsync (p. 362)
Action(s): lambda:ModifyMountTargetSecurityGroups

Resource: arn:aws:lambda:region:account-id:?

ListEventSourceMappings (p. 366)
Action(s): lambda:ListEventSourceMappings

Resource: arn:aws:lambda:region:account-id:?

ListFunctions (p. 368)
Action(s): lambda:ListFunctions

Resource: arn:aws:lambda:region:account-id:?

RemovePermission (p. 376)
Action(s): lambda:RemovePermission

Resource: arn:aws:lambda:region:account-id:?

UpdateEventSourceMapping (p. 380)
Action(s): lambda:UpdateEventSourceMapping

Resource: arn:aws:lambda:region:account-id:?

UpdateFunctionCode (p. 383)
Action(s): lambda:UpdateFunctionCode

Resource: arn:aws:lambda:region:account-id:?

UpdateFunctionConfiguration (p. 387)
Action(s): lambda:UpdateFunctionConfiguration

Resource: arn:aws:lambda:region:account-id:?

Policy Templates
When you create an AWS Lambda function in the console using one of the blueprints, Lambda allows
you to create a role for your function from a list of Lambda policy templates.

By selecting one of these templates, your Lambda function automatically creates the role with the
requisite permissions attached to that policy.

311

AWS Lambda Developer Guide
Basic: 'Basic Lambda Permissions'

The following lists the permissions that are applied to each policy template in the Policy templates
list. The policy templates are named after the blueprints to which they correspond. Lambda will
automatically populate the placeholder items (such as region and accountID) with the appropriate
information. For more information on creating a Lambda function using policy templates, see Step 2.1:
Create a Hello World Lambda Function (p. 164).

The following templates are automatically applied depending upon the type of Lambda function you are
creating:

Basic: 'Basic Lambda Permissions'

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"logs:CreateLogGroup",
 "Resource":"arn:aws:logs:region:accountId:*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource":[
 "arn:aws:logs:region:accountId:log-group:[[logGroups]]:*"
]
 }
]
}

VPCAccess: 'Lambda VPC Access Permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces"
],
 "Resource": "*"
 }
]
}

Kinesis: 'Lambda Kinesis stream poller permissions'

{
 "Version":"2012-10-17",
 "Statement":[

312

AWS Lambda Developer Guide
DynamoDB: 'Lambda DynamoDB

stream poller permissions'

 {
 "Effect":"Allow",
 "Action":"lambda:InvokeFunction",
 "Resource":"arn:aws:lambda:region:accountId:function:functionName*"
 },
 {
 "Effect":"Allow",
 "Action":"kinesis:ListStreams",
 "Resource":"arn:aws:kinesis:region:accountId:stream/*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "kinesis:DescribeStream",
 "kinesis:GetRecords",
 "kinesis:GetShardIterator"
],
 "Resource":"arn:aws:kinesis:region:accountId:stream/streamName"
 }
]
}

DynamoDB: 'Lambda DynamoDB stream poller
permissions'

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"lambda:InvokeFunction",
 "Resource":"arn:aws:lambda:region:accountId:function:functionName*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "dynamodb:DescribeStream",
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:ListStreams"
],
 "Resource":"arn:aws:dynamodb:region:accountId:table/tableName/
stream/*"
 }
]
}

Edge: 'Basic Edge Lambda permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

313

AWS Lambda Developer Guide
RedrivePolicySNS: ‘Dead letter queue SNS permissions’

 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 }
]
}

RedrivePolicySNS: ‘Dead letter queue SNS
permissions’

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "arn:aws:sns:region:accountId:topicName"
 }
]
}

RedrivePolicySQS: 'Dead letter queue SQS
permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sqs:SendMessage"
],
 "Resource": "arn:aws:sqs:region:accountId:queueName"
 }
]
}

The following templates are selected depending upon which blueprint you choose. You can also select
them from the dropdown to add extra permissions:

CloudFormation: 'CloudFormation stack read-only
permissions'

{

314

AWS Lambda Developer Guide
AMI: 'AMI read-only permissions'

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribeStacks"
],
 "Resource": "*"
 }
]
}

AMI: 'AMI read-only permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeImages"
],
 "Resource": "*"
 }
]
}

KMS: 'KMS decryption permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "*"
 }
]
}

S3: 'S3 object read-only permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::*"

315

AWS Lambda Developer Guide
Elasticsearch: 'Elasticsearch permissions'

 }
]
}

Elasticsearch: 'Elasticsearch permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "es:ESHttpPost"
],
 "Resource": "*"
 }
]
}

SES: 'SES bounce permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ses:SendBounce"
],
 "Resource": "*"
 }
]
}

TestHarness: 'Test Harness permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": "arn:aws:dynamodb:region:accountId:table/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "arn:aws:lambda:region:accountId:function:*"
 }

316

AWS Lambda Developer Guide
Microservice: 'Simple Microservice permissions'

]
}

Microservice: 'Simple Microservice permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"
],
 "Resource": "arn:aws:dynamodb:region:accountId:table/*"
 }
]
}

VPN: 'VPN Connection Monitor permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeRegions",
 "ec2:DescribeVpnConnections"
],
 "Resource": "*"
 }
]
}

SQS: 'SQS Poller permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

317

AWS Lambda Developer Guide
IoTButton: 'AWS IoT Button permissions'

 "sqs:DeleteMessage",
 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource":
 "arn:aws:lambda:region:accountId:function:functionName*"
 }
]
}

IoTButton: 'AWS IoT Button permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:ListSubscriptionsByTopic",
 "sns:CreateTopic",
 "sns:SetTopicAttributes",
 "sns:Subscribe",
 "sns:Publish"
],
 "Resource": "*"
 }
]
}

RekognitionNoDataAccess:'Amazon Rekognition no
data permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rekognition:CompareFaces",
 "rekognition:DetectFaces",
 "rekognition:DetectLabels"
],
 "Resource": "*"
 }
]
}

318

AWS Lambda Developer Guide
RekognitionReadOnlyAccess: 'Amazon

Rekognition read-only permissions'

RekognitionReadOnlyAccess: 'Amazon Rekognition
read-only permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rekognition:ListCollections",
 "rekognition:ListFaces",
 "rekognition:SearchFaces",
 "rekognition:SearchFacesByImage"
],
 "Resource": "*"
 }
]
}

RekognitionWriteOnlyAccess: 'Amazon Rekognition
write-only permissions'

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rekognition:CreateCollection",
 "rekognition:IndexFaces"
],
 "Resource": "*"
 }
]
}

319

AWS Lambda Developer Guide
Actions

API Reference

This section contains the AWS Lambda API Reference documentation. When making the API calls,
you will need to authenticate your request by providing a signature. AWS Lambda supports signature
version 4. For more information, see Signature Version 4 Signing Process in the Amazon Web
Services General Reference.

For an overview of the service, see What Is AWS Lambda? (p. 1). For information about how the
service works, see How It Works (p. 151).

You can use the AWS CLI to explore the AWS Lambda API. This guide provides several tutorials that
use the AWS CLI.

Topics

• Actions (p. 320)

• Data Types (p. 391)

Actions
The following actions are supported:

• AddPermission (p. 322)

• CreateAlias (p. 325)

• CreateEventSourceMapping (p. 328)

• CreateFunction (p. 332)

• DeleteAlias (p. 338)

• DeleteEventSourceMapping (p. 339)

• DeleteFunction (p. 341)

• GetAccountSettings (p. 343)

• GetAlias (p. 345)

• GetEventSourceMapping (p. 347)

• GetFunction (p. 349)

• GetFunctionConfiguration (p. 352)

• GetPolicy (p. 356)

• Invoke (p. 358)

• InvokeAsync (p. 362)

320

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS Lambda Developer Guide
Actions

• ListAliases (p. 364)

• ListEventSourceMappings (p. 366)

• ListFunctions (p. 368)

• ListVersionsByFunction (p. 370)

• PublishVersion (p. 372)

• RemovePermission (p. 376)

• UpdateAlias (p. 378)

• UpdateEventSourceMapping (p. 380)

• UpdateFunctionCode (p. 383)

• UpdateFunctionConfiguration (p. 387)

321

AWS Lambda Developer Guide
AddPermission

AddPermission
Adds a permission to the resource policy associated with the specified AWS Lambda function. You use
resource policies to grant permissions to event sources that use push model. In a push model, event
sources (such as Amazon S3 and custom applications) invoke your Lambda function. Each permission
you add to the resource policy allows an event source, permission to invoke the Lambda function.

For information about the push model, see AWS Lambda: How it Works.

If you are using versioning, the permissions you add are specific to the Lambda function version or
alias you specify in the AddPermission request via the Qualifier parameter. For more information
about versioning, see AWS Lambda Function Versioning and Aliases.

This operation requires permission for the lambda:AddPermission action.

Request Syntax

POST /2015-03-31/functions/FunctionName/policy?Qualifier=Qualifier HTTP/1.1
Content-type: application/json

{
 "Action": "string",
 "EventSourceToken": "string",
 "Principal": "string",
 "SourceAccount": "string",
 "SourceArn": "string",
 "StatementId": "string"
}

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 322)
Name of the Lambda function whose resource policy you are updating by adding a new
permission.

You can specify a function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). AWS Lambda also allows you to specify partial ARN (for example,
account-id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify
only the function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Qualifier (p. 322)
You can use this optional query parameter to describe a qualified ARN using a function version
or an alias name. The permission will then apply to the specific qualified ARN. For example, if
you specify function version 2 as the qualifier, then permission applies only when request is made
using qualified function ARN:

arn:aws:lambda:aws-region:acct-id:function:function-name:2

If you specify an alias name, for example PROD, then the permission is valid only for requests
made using the alias ARN:

arn:aws:lambda:aws-region:acct-id:function:function-name:PROD

If the qualifier is not specified, the permission is valid only when requests is made using
unqualified function ARN.

arn:aws:lambda:aws-region:acct-id:function:function-name

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (|[a-zA-Z0-9$_-]+)

322

http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
AddPermission

Request Body
The request accepts the following data in JSON format.

Action (p. 322)
The AWS Lambda action you want to allow in this statement. Each Lambda action is
a string starting with lambda: followed by the API name (see Actions) . For example,
lambda:CreateFunction. You can use wildcard (lambda:*) to grant permission for all AWS
Lambda actions.

Type: String

Pattern: (lambda:[*]|lambda:[a-zA-Z]+|[*])

Required: Yes

EventSourceToken (p. 322)
A unique token that must be supplied by the principal invoking the function. This is currently only
used for Alexa Smart Home functions.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Pattern: [a-zA-Z0-9._\-]+

Required: No

Principal (p. 322)
The principal who is getting this permission. It can be Amazon S3 service Principal
(s3.amazonaws.com) if you want Amazon S3 to invoke the function, an AWS account ID
if you are granting cross-account permission, or any valid AWS service principal such as
sns.amazonaws.com. For example, you might want to allow a custom application in another
AWS account to push events to AWS Lambda by invoking your function.

Type: String

Pattern: .*

Required: Yes

SourceAccount (p. 322)
This parameter is used for S3, SES, CloudWatch Logs and CloudWatch Rules only. The AWS
account ID (without a hyphen) of the source owner. For example, if the SourceArn identifies a
bucket, then this is the bucket owner's account ID. You can use this additional condition to ensure
the bucket you specify is owned by a specific account (it is possible the bucket owner deleted
the bucket and some other AWS account created the bucket). You can also use this condition to
specify all sources (that is, you don't specify the SourceArn) owned by a specific account.

Type: String

Pattern: \d{12}

Required: No

SourceArn (p. 322)
This is optional; however, when granting Amazon S3 permission to invoke your function, you
should specify this field with the Amazon Resource Name (ARN) as its value. This ensures that
only events generated from the specified source can invoke the function.

Important
If you add a permission for the Amazon S3 principal without providing the source ARN,
any AWS account that creates a mapping to your function ARN can send events to invoke
your Lambda function from Amazon S3.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

Required: No

StatementId (p. 322)
A unique statement identifier.

Type: String

323

http://docs.aws.amazon.com/lambda/latest/dg/API_Operations.html

AWS Lambda Developer Guide
AddPermission

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ([a-zA-Z0-9-_]+)

Required: Yes

Response Syntax

HTTP/1.1 201
Content-type: application/json

{
 "Statement": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.
The following data is returned in JSON format by the service.

Statement (p. 324)
The permission statement you specified in the request. The response returns the same as a string
using a backslash ("\") as an escape character in the JSON.

Type: String

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

PolicyLengthExceededException
Lambda function access policy is limited to 20 KB.

HTTP Status Code: 400

ResourceConflictException
The resource already exists.

HTTP Status Code: 409

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

324

AWS Lambda Developer Guide
CreateAlias

CreateAlias
Creates an alias that points to the specified Lambda function version. For more information, see
Introduction to AWS Lambda Aliases.

Alias names are unique for a given function. This requires permission for the lambda:CreateAlias
action.

Request Syntax

POST /2015-03-31/functions/FunctionName/aliases HTTP/1.1
Content-type: application/json

{
 "Description": "string",
 "FunctionVersion": "string",
 "Name": "string"
}

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 325)
Name of the Lambda function for which you want to create an alias.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Request Body
The request accepts the following data in JSON format.

Description (p. 325)
Description of the alias.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

FunctionVersion (p. 325)
Lambda function version for which you are creating the alias.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

Required: Yes

Name (p. 325)
Name for the alias you are creating.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (?!^[0-9]+$)([a-zA-Z0-9-_]+)

Required: Yes

325

http://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html

AWS Lambda Developer Guide
CreateAlias

Response Syntax

HTTP/1.1 201
Content-type: application/json

{
 "AliasArn": "string",
 "Description": "string",
 "FunctionVersion": "string",
 "Name": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

AliasArn (p. 326)
Lambda function ARN that is qualified using the alias name as the suffix. For example,
if you create an alias called BETA that points to a helloworld function version, the ARN is
arn:aws:lambda:aws-regions:acct-id:function:helloworld:BETA.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

Description (p. 326)
Alias description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

FunctionVersion (p. 326)
Function version to which the alias points.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

Name (p. 326)
Alias name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (?!^[0-9]+$)([a-zA-Z0-9-_]+)

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceConflictException
The resource already exists.

HTTP Status Code: 409

326

AWS Lambda Developer Guide
CreateAlias

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

327

AWS Lambda Developer Guide
CreateEventSourceMapping

CreateEventSourceMapping
Identifies a stream as an event source for a Lambda function. It can be either an Amazon Kinesis
stream or an Amazon DynamoDB stream. AWS Lambda invokes the specified function when records
are posted to the stream.

This association between a stream source and a Lambda function is called the event source mapping.

Important
This event source mapping is relevant only in the AWS Lambda pull model, where AWS
Lambda invokes the function. For more information, see AWS Lambda: How it Works in the
AWS Lambda Developer Guide.

You provide mapping information (for example, which stream to read from and which Lambda function
to invoke) in the request body.

Each event source, such as an Amazon Kinesis or a DynamoDB stream, can be associated with
multiple AWS Lambda function. A given Lambda function can be associated with multiple AWS event
sources.

If you are using versioning, you can specify a specific function version or an alias via the function name
parameter. For more information about versioning, see AWS Lambda Function Versioning and Aliases.

This operation requires permission for the lambda:CreateEventSourceMapping action.

Request Syntax

POST /2015-03-31/event-source-mappings/ HTTP/1.1
Content-type: application/json

{
 "BatchSize": number,
 "Enabled": boolean,
 "EventSourceArn": "string",
 "FunctionName": "string",
 "StartingPosition": "string",
 "StartingPositionTimestamp": number
}

URI Request Parameters
The request does not use any URI parameters.

Request Body
The request accepts the following data in JSON format.

BatchSize (p. 328)
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function. Your function receives an event with all the retrieved records. The default is
100 records.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

Required: No

Enabled (p. 328)
Indicates whether AWS Lambda should begin polling the event source. By default, Enabled is
true.

Type: Boolean

Required: No

328

http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
CreateEventSourceMapping

EventSourceArn (p. 328)
The Amazon Resource Name (ARN) of the Amazon Kinesis or the Amazon DynamoDB stream
that is the event source. Any record added to this stream could cause AWS Lambda to invoke your
Lambda function, it depends on the BatchSize. AWS Lambda POSTs the Amazon Kinesis event,
containing records, to your Lambda function as JSON.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

Required: Yes

FunctionName (p. 328)
The Lambda function to invoke when AWS Lambda detects an event on the stream.

You can specify the function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail).

If you are using versioning, you can also provide a qualified function ARN (ARN that is qualified
with function version or alias name as suffix). For more information about versioning, see AWS
Lambda Function Versioning and Aliases

AWS Lambda also allows you to specify only the function name with the account ID qualifier (for
example, account-id:Thumbnail).

Note that the length constraint applies only to the ARN. If you specify only the function name, it is
limited to 64 character in length.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Required: Yes

StartingPosition (p. 328)
The position in the stream where AWS Lambda should start reading. Valid only for Kinesis
streams. For more information, see ShardIteratorType in the Amazon Kinesis API Reference.

Type: String

Valid Values: TRIM_HORIZON | LATEST | AT_TIMESTAMP

Required: Yes

StartingPositionTimestamp (p. 328)
The timestamp of the data record from which to start reading. Used with shard iterator type
AT_TIMESTAMP. If a record with this exact timestamp does not exist, the iterator returned is for
the next (later) record. If the timestamp is older than the current trim horizon, the iterator returned
is for the oldest untrimmed data record (TRIM_HORIZON). Valid only for Kinesis streams.

Type: Timestamp

Required: No

Response Syntax

HTTP/1.1 202
Content-type: application/json

{
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",

329

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html#Kinesis-GetShardIterator-request-ShardIteratorType
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html#Kinesis-GetShardIterator-request-ShardIteratorType

AWS Lambda Developer Guide
CreateEventSourceMapping

 "UUID": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 202 response.
The following data is returned in JSON format by the service.

BatchSize (p. 329)
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function. Your function receives an event with all the retrieved records.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

EventSourceArn (p. 329)
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionArn (p. 329)
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

LastModified (p. 329)
The UTC time string indicating the last time the event mapping was updated.

Type: Timestamp

LastProcessingResult (p. 329)
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

State (p. 329)
The state of the event source mapping. It can be Creating, Enabled, Disabled, Enabling,
Disabling, Updating, or Deleting.

Type: String

StateTransitionReason (p. 329)
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

Type: String

UUID (p. 329)
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceConflictException
The resource already exists.

HTTP Status Code: 409

330

AWS Lambda Developer Guide
CreateEventSourceMapping

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

331

AWS Lambda Developer Guide
CreateFunction

CreateFunction
Creates a new Lambda function. The function metadata is created from the request parameters, and
the code for the function is provided by a .zip file in the request body. If the function name already
exists, the operation will fail. Note that the function name is case-sensitive.

If you are using versioning, you can also publish a version of the Lambda function you are creating
using the Publish parameter. For more information about versioning, see AWS Lambda Function
Versioning and Aliases.

This operation requires permission for the lambda:CreateFunction action.

Request Syntax

POST /2015-03-31/functions HTTP/1.1
Content-type: application/json

{
 "Code": {
 "S3Bucket": "string",
 "S3Key": "string",
 "S3ObjectVersion": "string",
 "ZipFile": blob
 },
 "DeadLetterConfig": {
 "TargetArn": "string"
 },
 "Description": "string",
 "Environment": {
 "Variables": {
 "string" : "string"
 }
 },
 "FunctionName": "string",
 "Handler": "string",
 "KMSKeyArn": "string",
 "MemorySize": number,
 "Publish": boolean,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"]
 }
}

URI Request Parameters
The request does not use any URI parameters.

Request Body
The request accepts the following data in JSON format.

Code (p. 332)
The code for the Lambda function.

Type: FunctionCode (p. 401) object

Required: Yes

332

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
CreateFunction

DeadLetterConfig (p. 332)
The parent object that contains the target Amazon Resource Name (ARN) of an Amazon SQS
queue or Amazon SNS topic.

Type: DeadLetterConfig (p. 396) object

Required: No

Description (p. 332)
A short, user-defined function description. Lambda does not use this value. Assign a meaningful
description as you see fit.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

Environment (p. 332)
The parent object that contains your environment's configuration settings.

Type: Environment (p. 397) object

Required: No

FunctionName (p. 332)
The name you want to assign to the function you are uploading. The function names appear in the
console and are returned in the ListFunctions (p. 368) API. Function names are used to specify
functions to other AWS Lambda API operations, such as Invoke (p. 358).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Required: Yes

Handler (p. 332)
The function within your code that Lambda calls to begin execution. For Node.js, it is the module-
name.export value in your function. For Java, it can be package.class-name::handler or
package.class-name. For more information, see Lambda Function Handler (Java).

Type: String

Length Constraints: Maximum length of 128.

Pattern: [^\s]+

Required: Yes

KMSKeyArn (p. 332)
The Amazon Resource Name (ARN) of the KMS key used to encrypt your function's environment
variables. If not provided, AWS Lambda will use a default service key.

Type: String

Pattern: (arn:aws:[a-z0-9-.]+:.*)|()

Required: No

MemorySize (p. 332)
The amount of memory, in MB, your Lambda function is given. Lambda uses this memory size
to infer the amount of CPU and memory allocated to your function. Your function use-case
determines your CPU and memory requirements. For example, a database operation might need
less memory compared to an image processing function. The default value is 128 MB. The value
must be a multiple of 64 MB.

Type: Integer

Valid Range: Minimum value of 128. Maximum value of 1536.

Required: No

Publish (p. 332)
This boolean parameter can be used to request AWS Lambda to create the Lambda function and
publish a version as an atomic operation.

Type: Boolean

333

http://docs.aws.amazon.com/lambda/latest/dg/java-programming-model-handler-types.html

AWS Lambda Developer Guide
CreateFunction

Required: No

Role (p. 332)
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources. For more information, see
AWS Lambda: How it Works.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: Yes

Runtime (p. 332)
The runtime environment for the Lambda function you are uploading.

To use the Node.js runtime v4.3, set the value to "nodejs4.3". To use earlier runtime (v0.10.42),
set the value to "nodejs".

Note
You can no longer create functions using the v0.10.42 runtime version as of November,
2016. Existing functions will be supported until early 2017, but we recommend you
migrate them to nodejs4.3 runtime version as soon as possible.

Type: String

Valid Values: nodejs | nodejs4.3 | java8 | python2.7 | dotnetcore1.0 |
nodejs4.3-edge

Required: Yes

Timeout (p. 332)
The function execution time at which Lambda should terminate the function. Because the
execution time has cost implications, we recommend you set this value based on your expected
execution time. The default is 3 seconds.

Type: Integer

Valid Range: Minimum value of 1.

Required: No

VpcConfig (p. 332)
If your Lambda function accesses resources in a VPC, you provide this parameter identifying the
list of security group IDs and subnet IDs. These must belong to the same VPC. You must provide
at least one security group and one subnet ID.

Type: VpcConfig (p. 405) object

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

{
 "CodeSha256": "string",
 "CodeSize": number,
 "DeadLetterConfig": {
 "TargetArn": "string"
 },
 "Description": "string",
 "Environment": {
 "Error": {
 "ErrorCode": "string",
 "Message": "string"
 },
 "Variables": {

334

http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

AWS Lambda Developer Guide
CreateFunction

 "string" : "string"
 }
 },
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "KMSKeyArn": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "Version": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"],
 "VpcId": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.
The following data is returned in JSON format by the service.

CodeSha256 (p. 334)
It is the SHA256 hash of your function deployment package.

Type: String

CodeSize (p. 334)
The size, in bytes, of the function .zip file you uploaded.

Type: Long

DeadLetterConfig (p. 334)
The parent object that contains the target Amazon Resource Name (ARN) of an Amazon SQS
queue or Amazon SNS topic.

Type: DeadLetterConfig (p. 396) object

Description (p. 334)
The user-provided description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Environment (p. 334)
The parent object that contains your environment's configuration settings.

Type: EnvironmentResponse (p. 399) object

FunctionArn (p. 334)
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

FunctionName (p. 334)
The name of the function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

335

AWS Lambda Developer Guide
CreateFunction

Handler (p. 334)
The function Lambda calls to begin executing your function.

Type: String

Length Constraints: Maximum length of 128.

Pattern: [^\s]+

KMSKeyArn (p. 334)
The Amazon Resource Name (ARN) of the KMS key used to encrypt your function's environment
variables. If empty, it means you are using the AWS Lambda default service key.

Type: String

Pattern: (arn:aws:[a-z0-9-.]+:.*)|()

LastModified (p. 334)
The time stamp of the last time you updated the function.

Type: String

MemorySize (p. 334)
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

Type: Integer

Valid Range: Minimum value of 128. Maximum value of 1536.

Role (p. 334)
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Runtime (p. 334)
The runtime environment for the Lambda function.

To use the Node.js runtime v4.3, set the value to "nodejs4.3". To use earlier runtime (v0.10.42),
set the value to "nodejs".

Type: String

Valid Values: nodejs | nodejs4.3 | java8 | python2.7 | dotnetcore1.0 |
nodejs4.3-edge

Timeout (p. 334)
The function execution time at which Lambda should terminate the function. Because the
execution time has cost implications, we recommend you set this value based on your expected
execution time. The default is 3 seconds.

Type: Integer

Valid Range: Minimum value of 1.

Version (p. 334)
The version of the Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

VpcConfig (p. 334)
VPC configuration associated with your Lambda function.

Type: VpcConfigResponse (p. 406) object

Errors

CodeStorageExceededException
You have exceeded your maximum total code size per account. Limits

HTTP Status Code: 400

336

http://docs.aws.amazon.com/lambda/latest/dg/limits.html

AWS Lambda Developer Guide
CreateFunction

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceConflictException
The resource already exists.

HTTP Status Code: 409

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

337

AWS Lambda Developer Guide
DeleteAlias

DeleteAlias
Deletes the specified Lambda function alias. For more information, see Introduction to AWS Lambda
Aliases.

This requires permission for the lambda:DeleteAlias action.

Request Syntax

DELETE /2015-03-31/functions/FunctionName/aliases/Name HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 338)
The Lambda function name for which the alias is created. Deleting an alias does not delete the
function version to which it is pointing.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Name (p. 338)
Name of the alias to delete.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (?!^[0-9]+$)([a-zA-Z0-9-_]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

338

http://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
http://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html

AWS Lambda Developer Guide
DeleteEventSourceMapping

DeleteEventSourceMapping
Removes an event source mapping. This means AWS Lambda will no longer invoke the function for
events in the associated source.

This operation requires permission for the lambda:DeleteEventSourceMapping action.

Request Syntax

DELETE /2015-03-31/event-source-mappings/UUID HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

UUID (p. 339)
The event source mapping ID.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 202
Content-type: application/json

{
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",
 "UUID": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 202 response.
The following data is returned in JSON format by the service.

BatchSize (p. 339)
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function. Your function receives an event with all the retrieved records.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

EventSourceArn (p. 339)
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionArn (p. 339)
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

339

AWS Lambda Developer Guide
DeleteEventSourceMapping

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

LastModified (p. 339)
The UTC time string indicating the last time the event mapping was updated.

Type: Timestamp

LastProcessingResult (p. 339)
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

State (p. 339)
The state of the event source mapping. It can be Creating, Enabled, Disabled, Enabling,
Disabling, Updating, or Deleting.

Type: String

StateTransitionReason (p. 339)
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

Type: String

UUID (p. 339)
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

340

AWS Lambda Developer Guide
DeleteFunction

DeleteFunction
Deletes the specified Lambda function code and configuration.

If you are using the versioning feature and you don't specify a function version in your
DeleteFunction request, AWS Lambda will delete the function, including all its versions, and any
aliases pointing to the function versions. To delete a specific function version, you must provide the
function version via the Qualifier parameter. For information about function versioning, see AWS
Lambda Function Versioning and Aliases.

When you delete a function the associated resource policy is also deleted. You will need to delete the
event source mappings explicitly.

This operation requires permission for the lambda:DeleteFunction action.

Request Syntax

DELETE /2015-03-31/functions/FunctionName?Qualifier=Qualifier HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 341)
The Lambda function to delete.

You can specify the function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). If you are using versioning, you can also provide a qualified function
ARN (ARN that is qualified with function version or alias name as suffix). AWS Lambda also
allows you to specify only the function name with the account ID qualifier (for example, account-
id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify only the
function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Qualifier (p. 341)
Using this optional parameter you can specify a function version (but not the $LATEST version) to
direct AWS Lambda to delete a specific function version. If the function version has one or more
aliases pointing to it, you will get an error because you cannot have aliases pointing to it. You
can delete any function version but not the $LATEST, that is, you cannot specify $LATEST as the
value of this parameter. The $LATEST version can be deleted only when you want to delete all the
function versions and aliases.

You can only specify a function version, not an alias name, using this parameter. You cannot
delete a function version using its alias.

If you don't specify this parameter, AWS Lambda will delete the function, including all of its
versions and aliases.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (|[a-zA-Z0-9$_-]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 204

341

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
DeleteFunction

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceConflictException
The resource already exists.

HTTP Status Code: 409

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

342

AWS Lambda Developer Guide
GetAccountSettings

GetAccountSettings
Returns a customer's account settings.

You can use this operation to retrieve Lambda limits information, such as code size and concurrency
limits. For more information about limits, see AWS Lambda Limits. You can also retrieve resource
usage statistics, such as code storage usage and function count.

Request Syntax

GET /2016-08-19/account-settings/ HTTP/1.1

URI Request Parameters
The request does not use any URI parameters.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "AccountLimit": {
 "CodeSizeUnzipped": number,
 "CodeSizeZipped": number,
 "ConcurrentExecutions": number,
 "TotalCodeSize": number
 },
 "AccountUsage": {
 "FunctionCount": number,
 "TotalCodeSize": number
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

AccountLimit (p. 343)
Provides limits of code size and concurrency associated with the current account and region.

Type: AccountLimit (p. 393) object

AccountUsage (p. 343)
Provides code size usage and function count associated with the current account and region.

Type: AccountUsage (p. 394) object

Errors

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

343

http://docs.aws.amazon.com/lambda/latest/dg/limits.html

AWS Lambda Developer Guide
GetAccountSettings

TooManyRequestsException

HTTP Status Code: 429

344

AWS Lambda Developer Guide
GetAlias

GetAlias
Returns the specified alias information such as the alias ARN, description, and function version it is
pointing to. For more information, see Introduction to AWS Lambda Aliases.

This requires permission for the lambda:GetAlias action.

Request Syntax

GET /2015-03-31/functions/FunctionName/aliases/Name HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 345)
Function name for which the alias is created. An alias is a subresource that exists only in the
context of an existing Lambda function so you must specify the function name.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Name (p. 345)
Name of the alias for which you want to retrieve information.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (?!^[0-9]+$)([a-zA-Z0-9-_]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "AliasArn": "string",
 "Description": "string",
 "FunctionVersion": "string",
 "Name": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

AliasArn (p. 345)
Lambda function ARN that is qualified using the alias name as the suffix. For example,
if you create an alias called BETA that points to a helloworld function version, the ARN is
arn:aws:lambda:aws-regions:acct-id:function:helloworld:BETA.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

345

http://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html

AWS Lambda Developer Guide
GetAlias

Description (p. 345)
Alias description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

FunctionVersion (p. 345)
Function version to which the alias points.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

Name (p. 345)
Alias name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (?!^[0-9]+$)([a-zA-Z0-9-_]+)

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

346

AWS Lambda Developer Guide
GetEventSourceMapping

GetEventSourceMapping
Returns configuration information for the specified event source mapping (see
CreateEventSourceMapping (p. 328)).

This operation requires permission for the lambda:GetEventSourceMapping action.

Request Syntax

GET /2015-03-31/event-source-mappings/UUID HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

UUID (p. 347)
The AWS Lambda assigned ID of the event source mapping.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",
 "UUID": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

BatchSize (p. 347)
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function. Your function receives an event with all the retrieved records.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

EventSourceArn (p. 347)
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionArn (p. 347)
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

347

AWS Lambda Developer Guide
GetEventSourceMapping

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

LastModified (p. 347)
The UTC time string indicating the last time the event mapping was updated.

Type: Timestamp

LastProcessingResult (p. 347)
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

State (p. 347)
The state of the event source mapping. It can be Creating, Enabled, Disabled, Enabling,
Disabling, Updating, or Deleting.

Type: String

StateTransitionReason (p. 347)
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

Type: String

UUID (p. 347)
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

348

AWS Lambda Developer Guide
GetFunction

GetFunction
Returns the configuration information of the Lambda function and a presigned URL link to the .zip file
you uploaded with CreateFunction (p. 332) so you can download the .zip file. Note that the URL is valid
for up to 10 minutes. The configuration information is the same information you provided as parameters
when uploading the function.

Using the optional Qualifier parameter, you can specify a specific function version for which you
want this information. If you don't specify this parameter, the API uses unqualified function ARN which
return information about the $LATEST version of the Lambda function. For more information, see AWS
Lambda Function Versioning and Aliases.

This operation requires permission for the lambda:GetFunction action.

Request Syntax

GET /2015-03-31/functions/FunctionName?Qualifier=Qualifier HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 349)
The Lambda function name.

You can specify a function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). AWS Lambda also allows you to specify a partial ARN (for example,
account-id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify
only the function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Qualifier (p. 349)
Using this optional parameter to specify a function version or an alias name. If you specify function
version, the API uses qualified function ARN for the request and returns information about the
specific Lambda function version. If you specify an alias name, the API uses the alias ARN and
returns information about the function version to which the alias points. If you don't provide this
parameter, the API uses unqualified function ARN and returns information about the $LATEST
version of the Lambda function.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (|[a-zA-Z0-9$_-]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "Code": {
 "Location": "string",
 "RepositoryType": "string"
 },
 "Configuration": {

349

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
GetFunction

 "CodeSha256": "string",
 "CodeSize": number,
 "DeadLetterConfig": {
 "TargetArn": "string"
 },
 "Description": "string",
 "Environment": {
 "Error": {
 "ErrorCode": "string",
 "Message": "string"
 },
 "Variables": {
 "string" : "string"
 }
 },
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "KMSKeyArn": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "Version": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"],
 "VpcId": "string"
 }
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

Code (p. 349)
The object for the Lambda function location.

Type: FunctionCodeLocation (p. 402) object

Configuration (p. 349)
A complex type that describes function metadata.

Type: FunctionConfiguration (p. 403) object

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

350

AWS Lambda Developer Guide
GetFunction

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

351

AWS Lambda Developer Guide
GetFunctionConfiguration

GetFunctionConfiguration
Returns the configuration information of the Lambda function. This the same information you provided
as parameters when uploading the function by using CreateFunction (p. 332).

If you are using the versioning feature, you can retrieve this information for a specific function version
by using the optional Qualifier parameter and specifying the function version or alias that points to
it. If you don't provide it, the API returns information about the $LATEST version of the function. For
more information about versioning, see AWS Lambda Function Versioning and Aliases.

This operation requires permission for the lambda:GetFunctionConfiguration operation.

Request Syntax

GET /2015-03-31/functions/FunctionName/configuration?Qualifier=Qualifier
 HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 352)
The name of the Lambda function for which you want to retrieve the configuration information.

You can specify a function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). AWS Lambda also allows you to specify a partial ARN (for example,
account-id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify
only the function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Qualifier (p. 352)
Using this optional parameter you can specify a function version or an alias name. If you specify
function version, the API uses qualified function ARN and returns information about the specific
function version. If you specify an alias name, the API uses the alias ARN and returns information
about the function version to which the alias points.

If you don't specify this parameter, the API uses unqualified function ARN, and returns information
about the $LATEST function version.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (|[a-zA-Z0-9$_-]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "CodeSha256": "string",
 "CodeSize": number,
 "DeadLetterConfig": {
 "TargetArn": "string"
 },

352

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
GetFunctionConfiguration

 "Description": "string",
 "Environment": {
 "Error": {
 "ErrorCode": "string",
 "Message": "string"
 },
 "Variables": {
 "string" : "string"
 }
 },
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "KMSKeyArn": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "Version": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"],
 "VpcId": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

CodeSha256 (p. 352)
It is the SHA256 hash of your function deployment package.

Type: String

CodeSize (p. 352)
The size, in bytes, of the function .zip file you uploaded.

Type: Long

DeadLetterConfig (p. 352)
The parent object that contains the target Amazon Resource Name (ARN) of an Amazon SQS
queue or Amazon SNS topic.

Type: DeadLetterConfig (p. 396) object

Description (p. 352)
The user-provided description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Environment (p. 352)
The parent object that contains your environment's configuration settings.

Type: EnvironmentResponse (p. 399) object

FunctionArn (p. 352)
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

353

AWS Lambda Developer Guide
GetFunctionConfiguration

FunctionName (p. 352)
The name of the function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Handler (p. 352)
The function Lambda calls to begin executing your function.

Type: String

Length Constraints: Maximum length of 128.

Pattern: [^\s]+

KMSKeyArn (p. 352)
The Amazon Resource Name (ARN) of the KMS key used to encrypt your function's environment
variables. If empty, it means you are using the AWS Lambda default service key.

Type: String

Pattern: (arn:aws:[a-z0-9-.]+:.*)|()

LastModified (p. 352)
The time stamp of the last time you updated the function.

Type: String

MemorySize (p. 352)
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

Type: Integer

Valid Range: Minimum value of 128. Maximum value of 1536.

Role (p. 352)
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Runtime (p. 352)
The runtime environment for the Lambda function.

To use the Node.js runtime v4.3, set the value to "nodejs4.3". To use earlier runtime (v0.10.42),
set the value to "nodejs".

Type: String

Valid Values: nodejs | nodejs4.3 | java8 | python2.7 | dotnetcore1.0 |
nodejs4.3-edge

Timeout (p. 352)
The function execution time at which Lambda should terminate the function. Because the
execution time has cost implications, we recommend you set this value based on your expected
execution time. The default is 3 seconds.

Type: Integer

Valid Range: Minimum value of 1.

Version (p. 352)
The version of the Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

VpcConfig (p. 352)
VPC configuration associated with your Lambda function.

Type: VpcConfigResponse (p. 406) object

354

AWS Lambda Developer Guide
GetFunctionConfiguration

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

355

AWS Lambda Developer Guide
GetPolicy

GetPolicy
Returns the resource policy associated with the specified Lambda function.

If you are using the versioning feature, you can get the resource policy associated with the specific
Lambda function version or alias by specifying the version or alias name using the Qualifier
parameter. For more information about versioning, see AWS Lambda Function Versioning and Aliases.

For information about adding permissions, see AddPermission (p. 322).

You need permission for the lambda:GetPolicy action.

Request Syntax

GET /2015-03-31/functions/FunctionName/policy?Qualifier=Qualifier HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 356)
Function name whose resource policy you want to retrieve.

You can specify the function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). If you are using versioning, you can also provide a qualified function
ARN (ARN that is qualified with function version or alias name as suffix). AWS Lambda also
allows you to specify only the function name with the account ID qualifier (for example, account-
id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify only the
function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Qualifier (p. 356)
You can specify this optional query parameter to specify a function version or an alias name in
which case this API will return all permissions associated with the specific qualified ARN. If you
don't provide this parameter, the API will return permissions that apply to the unqualified function
ARN.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (|[a-zA-Z0-9$_-]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "Policy": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

356

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
GetPolicy

The following data is returned in JSON format by the service.

Policy (p. 356)
The resource policy associated with the specified function. The response returns the same as a
string using a backslash ("\") as an escape character in the JSON.

Type: String

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

357

AWS Lambda Developer Guide
Invoke

Invoke
Invokes a specific Lambda function. For an example, see Create the Lambda Function and Test It
Manually.

If you are using the versioning feature, you can invoke the specific function version by providing
function version or alias name that is pointing to the function version using the Qualifier parameter
in the request. If you don't provide the Qualifier parameter, the $LATEST version of the Lambda
function is invoked. Invocations occur at least once in response to an event and functions must be
idempotent to handle this. For information about the versioning feature, see AWS Lambda Function
Versioning and Aliases.

This operation requires permission for the lambda:InvokeFunction action.

Request Syntax

POST /2015-03-31/functions/FunctionName/invocations?Qualifier=Qualifier
 HTTP/1.1
X-Amz-Invocation-Type: InvocationType
X-Amz-Log-Type: LogType
X-Amz-Client-Context: ClientContext

Payload

URI Request Parameters
The request requires the following URI parameters.

ClientContext (p. 358)
Using the ClientContext you can pass client-specific information to the Lambda function you
are invoking. You can then process the client information in your Lambda function as you choose
through the context variable. For an example of a ClientContext JSON, see PutEvents in the
Amazon Mobile Analytics API Reference and User Guide.

The ClientContext JSON must be base64-encoded.

FunctionName (p. 358)
The Lambda function name.

You can specify a function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). AWS Lambda also allows you to specify a partial ARN (for example,
account-id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify
only the function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

InvocationType (p. 358)
By default, the Invoke API assumes RequestResponse invocation type. You can optionally
request asynchronous execution by specifying Event as the InvocationType. You can also use
this parameter to request AWS Lambda to not execute the function but do some verification, such
as if the caller is authorized to invoke the function and if the inputs are valid. You request this by
specifying DryRun as the InvocationType. This is useful in a cross-account scenario when you
want to verify access to a function without running it.

Valid Values: Event | RequestResponse | DryRun

LogType (p. 358)
You can set this optional parameter to Tail in the request only if you specify the
InvocationType parameter with value RequestResponse. In this case, AWS Lambda returns
the base64-encoded last 4 KB of log data produced by your Lambda function in the x-amz-log-
result header.

358

http://docs.aws.amazon.com/lambda/latest/dg/with-dynamodb-create-function.html#with-dbb-invoke-manually
http://docs.aws.amazon.com/lambda/latest/dg/with-dynamodb-create-function.html#with-dbb-invoke-manually
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/mobileanalytics/latest/ug/PutEvents.html

AWS Lambda Developer Guide
Invoke

Valid Values: None | Tail

Qualifier (p. 358)
You can use this optional parameter to specify a Lambda function version or alias name. If you
specify a function version, the API uses the qualified function ARN to invoke a specific Lambda
function. If you specify an alias name, the API uses the alias ARN to invoke the Lambda function
version to which the alias points.

If you don't provide this parameter, then the API uses unqualified function ARN which results in
invocation of the $LATEST version.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (|[a-zA-Z0-9$_-]+)

Request Body
The request accepts the following data in JSON format.

Payload (p. 358)
JSON that you want to provide to your Lambda function as input.

Type: Binary data object

Required: No

Response Syntax

HTTP/1.1 StatusCode
X-Amz-Function-Error: FunctionError
X-Amz-Log-Result: LogResult

Payload

Response Elements

If the action is successful, the service sends back the following HTTP response.

StatusCode (p. 359)
The HTTP status code will be in the 200 range for successful request. For the RequestResonse
invocation type this status code will be 200. For the Event invocation type this status code will be
202. For the DryRun invocation type the status code will be 204.

The response returns the following HTTP headers.

FunctionError (p. 359)
Indicates whether an error occurred while executing the Lambda function. If an error occurred
this field will have one of two values; Handled or Unhandled. Handled errors are errors that are
reported by the function while the Unhandled errors are those detected and reported by AWS
Lambda. Unhandled errors include out of memory errors and function timeouts. For information
about how to report an Handled error, see Programming Model.

LogResult (p. 359)
It is the base64-encoded logs for the Lambda function invocation. This is present only if the
invocation type is RequestResponse and the logs were requested.

The response returns the following as the HTTP body.

<varlistentry> Payload (p. 359)

359

http://docs.aws.amazon.com/lambda/latest/dg/programming-model.html

AWS Lambda Developer Guide
Invoke

It is the JSON representation of the object returned by the Lambda function. This is present only if the
invocation type is RequestResponse.

In the event of a function error this field contains a message describing the error. For the Handled
errors the Lambda function will report this message. For Unhandled errors AWS Lambda reports the
message.

</varlistentry>

Errors

EC2AccessDeniedException

HTTP Status Code: 502

EC2ThrottledException
AWS Lambda was throttled by Amazon EC2 during Lambda function initialization using the
execution role provided for the Lambda function.

HTTP Status Code: 502

EC2UnexpectedException
AWS Lambda received an unexpected EC2 client exception while setting up for the Lambda
function.

HTTP Status Code: 502

ENILimitReachedException
AWS Lambda was not able to create an Elastic Network Interface (ENI) in the VPC, specified as
part of Lambda function configuration, because the limit for network interfaces has been reached.

HTTP Status Code: 502

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

InvalidRequestContentException
The request body could not be parsed as JSON.

HTTP Status Code: 400

InvalidSecurityGroupIDException
The Security Group ID provided in the Lambda function VPC configuration is invalid.

HTTP Status Code: 502

InvalidSubnetIDException
The Subnet ID provided in the Lambda function VPC configuration is invalid.

HTTP Status Code: 502

InvalidZipFileException
AWS Lambda could not unzip the function zip file.

HTTP Status Code: 502

KMSAccessDeniedException
Lambda was unable to decrypt the environment variables because KMS access was denied.
Check the Lambda function's KMS permissions.

HTTP Status Code: 502

KMSDisabledException
Lambda was unable to decrypt the environment variables because the KMS key used is disabled.
Check the Lambda function's KMS key settings.

HTTP Status Code: 502

KMSInvalidStateException
Lambda was unable to decrypt the environment variables because the KMS key used is in an
invalid state for Decrypt. Check the function's KMS key settings.

360

AWS Lambda Developer Guide
Invoke

HTTP Status Code: 502

KMSNotFoundException
Lambda was unable to decrypt the environment variables because the KMS key was not found.
Check the function's KMS key settings.

HTTP Status Code: 502

RequestTooLargeException
The request payload exceeded the Invoke request body JSON input limit. For more information,
see Limits.

HTTP Status Code: 413

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

SubnetIPAddressLimitReachedException
AWS Lambda was not able to set up VPC access for the Lambda function because one or more
configured subnets has no available IP addresses.

HTTP Status Code: 502

TooManyRequestsException

HTTP Status Code: 429

UnsupportedMediaTypeException
The content type of the Invoke request body is not JSON.

HTTP Status Code: 415

361

http://docs.aws.amazon.com/lambda/latest/dg/limits.html

AWS Lambda Developer Guide
InvokeAsync

InvokeAsync
Important
This API is deprecated. We recommend you use Invoke API (see Invoke (p. 358)).

Submits an invocation request to AWS Lambda. Upon receiving the request, Lambda executes the
specified function asynchronously. To see the logs generated by the Lambda function execution, see
the CloudWatch Logs console.

This operation requires permission for the lambda:InvokeFunction action.

Request Syntax

POST /2014-11-13/functions/FunctionName/invoke-async/ HTTP/1.1

InvokeArgs

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 362)
The Lambda function name.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Request Body
The request accepts the following data in JSON format.

InvokeArgs (p. 362)
JSON that you want to provide to your Lambda function as input.

Type: Binary data object

Required: Yes

Response Syntax

HTTP/1.1 Status

Response Elements

If the action is successful, the service sends back the following HTTP response.

Status (p. 362)
It will be 202 upon success.

Errors

InvalidRequestContentException
The request body could not be parsed as JSON.

HTTP Status Code: 400

362

AWS Lambda Developer Guide
InvokeAsync

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

Example

Invoke a Lambda function
The following example uses a POST request to invoke a Lambda function.

Sample Request

POST /2014-11-13/functions/helloworld/invoke-async/ HTTP/1.1
[input json]

Sample Response

HTTP/1.1 202 Accepted

x-amzn-requestid: f037bc5c-5a08-11e4-b02e-af446c3f9d0d
content-length: 0
connection: keep-alive
date: Wed, 22 Oct 2014 16:31:55 GMT
content-type: application/json

363

AWS Lambda Developer Guide
ListAliases

ListAliases
Returns list of aliases created for a Lambda function. For each alias, the response includes information
such as the alias ARN, description, alias name, and the function version to which it points. For more
information, see Introduction to AWS Lambda Aliases.

This requires permission for the lambda:ListAliases action.

Request Syntax

GET /2015-03-31/functions/FunctionName/aliases?
FunctionVersion=FunctionVersion&Marker=Marker&MaxItems=MaxItems HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 364)
Lambda function name for which the alias is created.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

FunctionVersion (p. 364)
If you specify this optional parameter, the API returns only the aliases that are pointing to the
specific Lambda function version, otherwise the API returns all of the aliases created for the
Lambda function.

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

Marker (p. 364)
Optional string. An opaque pagination token returned from a previous ListAliases operation. If
present, indicates where to continue the listing.

MaxItems (p. 364)
Optional integer. Specifies the maximum number of aliases to return in response. This parameter
value must be greater than 0.

Valid Range: Minimum value of 1. Maximum value of 10000.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "Aliases": [
 {
 "AliasArn": "string",
 "Description": "string",
 "FunctionVersion": "string",
 "Name": "string"
 }
],
 "NextMarker": "string"

364

http://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html

AWS Lambda Developer Guide
ListAliases

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

Aliases (p. 364)
A list of aliases.

Type: array of AliasConfiguration (p. 395) objects

NextMarker (p. 364)
A string, present if there are more aliases.

Type: String

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

365

AWS Lambda Developer Guide
ListEventSourceMappings

ListEventSourceMappings
Returns a list of event source mappings you created using the CreateEventSourceMapping (see
CreateEventSourceMapping (p. 328)).

For each mapping, the API returns configuration information. You can optionally specify filters to
retrieve specific event source mappings.

If you are using the versioning feature, you can get list of event source mappings for a specific Lambda
function version or an alias as described in the FunctionName parameter. For information about the
versioning feature, see AWS Lambda Function Versioning and Aliases.

This operation requires permission for the lambda:ListEventSourceMappings action.

Request Syntax

GET /2015-03-31/event-source-mappings/?
EventSourceArn=EventSourceArn&FunctionName=FunctionName&Marker=Marker&MaxItems=MaxItems
 HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

EventSourceArn (p. 366)
The Amazon Resource Name (ARN) of the Amazon Kinesis stream. (This parameter is optional.)

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionName (p. 366)
The name of the Lambda function.

You can specify the function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). If you are using versioning, you can also provide a qualified function
ARN (ARN that is qualified with function version or alias name as suffix). AWS Lambda also
allows you to specify only the function name with the account ID qualifier (for example, account-
id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify only the
function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Marker (p. 366)
Optional string. An opaque pagination token returned from a previous
ListEventSourceMappings operation. If present, specifies to continue the list from where the
returning call left off.

MaxItems (p. 366)
Optional integer. Specifies the maximum number of event sources to return in response. This
value must be greater than 0.

Valid Range: Minimum value of 1. Maximum value of 10000.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

366

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
ListEventSourceMappings

{
 "EventSourceMappings": [
 {
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",
 "UUID": "string"
 }
],
 "NextMarker": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

EventSourceMappings (p. 366)
An array of EventSourceMappingConfiguration objects.

Type: array of EventSourceMappingConfiguration (p. 400) objects

NextMarker (p. 366)
A string, present if there are more event source mappings.

Type: String

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

367

AWS Lambda Developer Guide
ListFunctions

ListFunctions
Returns a list of your Lambda functions. For each function, the response includes the function
configuration information. You must use GetFunction (p. 349) to retrieve the code for your function.

This operation requires permission for the lambda:ListFunctions action.

If you are using versioning feature, the response returns list of $LATEST versions of your functions.
For information about the versioning feature, see AWS Lambda Function Versioning and Aliases.

Request Syntax

GET /2015-03-31/functions/?Marker=Marker&MaxItems=MaxItems HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

Marker (p. 368)
Optional string. An opaque pagination token returned from a previous ListFunctions operation.
If present, indicates where to continue the listing.

MaxItems (p. 368)
Optional integer. Specifies the maximum number of AWS Lambda functions to return in response.
This parameter value must be greater than 0.

Valid Range: Minimum value of 1. Maximum value of 10000.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "Functions": [
 {
 "CodeSha256": "string",
 "CodeSize": number,
 "DeadLetterConfig": {
 "TargetArn": "string"
 },
 "Description": "string",
 "Environment": {
 "Error": {
 "ErrorCode": "string",
 "Message": "string"
 },
 "Variables": {
 "string" : "string"
 }
 },
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "KMSKeyArn": "string",
 "LastModified": "string",

368

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
ListFunctions

 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "Version": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"],
 "VpcId": "string"
 }
 }
],
 "NextMarker": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

Functions (p. 368)
A list of Lambda functions.

Type: array of FunctionConfiguration (p. 403) objects

NextMarker (p. 368)
A string, present if there are more functions.

Type: String

Errors

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

369

AWS Lambda Developer Guide
ListVersionsByFunction

ListVersionsByFunction
List all versions of a function. For information about the versioning feature, see AWS Lambda Function
Versioning and Aliases.

Request Syntax

GET /2015-03-31/functions/FunctionName/versions?
Marker=Marker&MaxItems=MaxItems HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 370)
Function name whose versions to list. You can specify a function name (for example,
Thumbnail) or you can specify Amazon Resource Name (ARN) of the function (for example,
arn:aws:lambda:us-west-2:account-id:function:ThumbNail). AWS Lambda also
allows you to specify a partial ARN (for example, account-id:Thumbnail). Note that the
length constraint applies only to the ARN. If you specify only the function name, it is limited to 64
character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Marker (p. 370)
Optional string. An opaque pagination token returned from a previous
ListVersionsByFunction operation. If present, indicates where to continue the listing.

MaxItems (p. 370)
Optional integer. Specifies the maximum number of AWS Lambda function versions to return in
response. This parameter value must be greater than 0.

Valid Range: Minimum value of 1. Maximum value of 10000.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "NextMarker": "string",
 "Versions": [
 {
 "CodeSha256": "string",
 "CodeSize": number,
 "DeadLetterConfig": {
 "TargetArn": "string"
 },
 "Description": "string",
 "Environment": {
 "Error": {
 "ErrorCode": "string",
 "Message": "string"

370

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
ListVersionsByFunction

 },
 "Variables": {
 "string" : "string"
 }
 },
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "KMSKeyArn": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "Version": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"],
 "VpcId": "string"
 }
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

NextMarker (p. 370)
A string, present if there are more function versions.

Type: String

Versions (p. 370)
A list of Lambda function versions.

Type: array of FunctionConfiguration (p. 403) objects

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

371

AWS Lambda Developer Guide
PublishVersion

PublishVersion
Publishes a version of your function from the current snapshot of $LATEST. That is, AWS Lambda
takes a snapshot of the function code and configuration information from $LATEST and publishes a
new version. The code and configuration cannot be modified after publication. For information about
the versioning feature, see AWS Lambda Function Versioning and Aliases.

Request Syntax

POST /2015-03-31/functions/FunctionName/versions HTTP/1.1
Content-type: application/json

{
 "CodeSha256": "string",
 "Description": "string"
}

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 372)
The Lambda function name. You can specify a function name (for example, Thumbnail) or you
can specify Amazon Resource Name (ARN) of the function (for example, arn:aws:lambda:us-
west-2:account-id:function:ThumbNail). AWS Lambda also allows you to specify a partial
ARN (for example, account-id:Thumbnail). Note that the length constraint applies only to the
ARN. If you specify only the function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Request Body
The request accepts the following data in JSON format.

CodeSha256 (p. 372)
The SHA256 hash of the deployment package you want to publish. This provides validation on
the code you are publishing. If you provide this parameter value must match the SHA256 of the
$LATEST version for the publication to succeed.

Type: String

Required: No

Description (p. 372)
The description for the version you are publishing. If not provided, AWS Lambda copies the
description from the $LATEST version.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

372

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
PublishVersion

{
 "CodeSha256": "string",
 "CodeSize": number,
 "DeadLetterConfig": {
 "TargetArn": "string"
 },
 "Description": "string",
 "Environment": {
 "Error": {
 "ErrorCode": "string",
 "Message": "string"
 },
 "Variables": {
 "string" : "string"
 }
 },
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "KMSKeyArn": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "Version": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"],
 "VpcId": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.
The following data is returned in JSON format by the service.

CodeSha256 (p. 372)
It is the SHA256 hash of your function deployment package.

Type: String

CodeSize (p. 372)
The size, in bytes, of the function .zip file you uploaded.

Type: Long

DeadLetterConfig (p. 372)
The parent object that contains the target Amazon Resource Name (ARN) of an Amazon SQS
queue or Amazon SNS topic.

Type: DeadLetterConfig (p. 396) object

Description (p. 372)
The user-provided description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Environment (p. 372)
The parent object that contains your environment's configuration settings.

Type: EnvironmentResponse (p. 399) object

373

AWS Lambda Developer Guide
PublishVersion

FunctionArn (p. 372)
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

FunctionName (p. 372)
The name of the function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Handler (p. 372)
The function Lambda calls to begin executing your function.

Type: String

Length Constraints: Maximum length of 128.

Pattern: [^\s]+

KMSKeyArn (p. 372)
The Amazon Resource Name (ARN) of the KMS key used to encrypt your function's environment
variables. If empty, it means you are using the AWS Lambda default service key.

Type: String

Pattern: (arn:aws:[a-z0-9-.]+:.*)|()

LastModified (p. 372)
The time stamp of the last time you updated the function.

Type: String

MemorySize (p. 372)
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

Type: Integer

Valid Range: Minimum value of 128. Maximum value of 1536.

Role (p. 372)
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Runtime (p. 372)
The runtime environment for the Lambda function.

To use the Node.js runtime v4.3, set the value to "nodejs4.3". To use earlier runtime (v0.10.42),
set the value to "nodejs".

Type: String

Valid Values: nodejs | nodejs4.3 | java8 | python2.7 | dotnetcore1.0 |
nodejs4.3-edge

Timeout (p. 372)
The function execution time at which Lambda should terminate the function. Because the
execution time has cost implications, we recommend you set this value based on your expected
execution time. The default is 3 seconds.

Type: Integer

Valid Range: Minimum value of 1.

Version (p. 372)
The version of the Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

374

AWS Lambda Developer Guide
PublishVersion

Pattern: (\$LATEST|[0-9]+)

VpcConfig (p. 372)
VPC configuration associated with your Lambda function.

Type: VpcConfigResponse (p. 406) object

Errors

CodeStorageExceededException
You have exceeded your maximum total code size per account. Limits

HTTP Status Code: 400

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

375

http://docs.aws.amazon.com/lambda/latest/dg/limits.html

AWS Lambda Developer Guide
RemovePermission

RemovePermission
You can remove individual permissions from an resource policy associated with a Lambda function by
providing a statement ID that you provided when you added the permission.

If you are using versioning, the permissions you remove are specific to the Lambda function version or
alias you specify in the AddPermission request via the Qualifier parameter. For more information
about versioning, see AWS Lambda Function Versioning and Aliases.

Note that removal of a permission will cause an active event source to lose permission to the function.

You need permission for the lambda:RemovePermission action.

Request Syntax

DELETE /2015-03-31/functions/FunctionName/policy/StatementId?
Qualifier=Qualifier HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 376)
Lambda function whose resource policy you want to remove a permission from.

You can specify a function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). AWS Lambda also allows you to specify a partial ARN (for example,
account-id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify
only the function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Qualifier (p. 376)
You can specify this optional parameter to remove permission associated with a specific function
version or function alias. If you don't specify this parameter, the API removes permission
associated with the unqualified function ARN.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (|[a-zA-Z0-9$_-]+)

StatementId (p. 376)
Statement ID of the permission to remove.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ([a-zA-Z0-9-_]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

376

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
RemovePermission

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

377

AWS Lambda Developer Guide
UpdateAlias

UpdateAlias
Using this API you can update the function version to which the alias points and the alias description.
For more information, see Introduction to AWS Lambda Aliases.

This requires permission for the lambda:UpdateAlias action.

Request Syntax

PUT /2015-03-31/functions/FunctionName/aliases/Name HTTP/1.1
Content-type: application/json

{
 "Description": "string",
 "FunctionVersion": "string"
}

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 378)
The function name for which the alias is created.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Name (p. 378)
The alias name.

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (?!^[0-9]+$)([a-zA-Z0-9-_]+)

Request Body
The request accepts the following data in JSON format.

Description (p. 378)
You can change the description of the alias using this parameter.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

FunctionVersion (p. 378)
Using this parameter you can change the Lambda function version to which the alias points.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{

378

http://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html

AWS Lambda Developer Guide
UpdateAlias

 "AliasArn": "string",
 "Description": "string",
 "FunctionVersion": "string",
 "Name": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

AliasArn (p. 378)
Lambda function ARN that is qualified using the alias name as the suffix. For example,
if you create an alias called BETA that points to a helloworld function version, the ARN is
arn:aws:lambda:aws-regions:acct-id:function:helloworld:BETA.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

Description (p. 378)
Alias description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

FunctionVersion (p. 378)
Function version to which the alias points.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

Name (p. 378)
Alias name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (?!^[0-9]+$)([a-zA-Z0-9-_]+)

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

379

AWS Lambda Developer Guide
UpdateEventSourceMapping

UpdateEventSourceMapping
You can update an event source mapping. This is useful if you want to change the parameters of the
existing mapping without losing your position in the stream. You can change which function will receive
the stream records, but to change the stream itself, you must create a new mapping.

If you are using the versioning feature, you can update the event source mapping to map to a specific
Lambda function version or alias as described in the FunctionName parameter. For information about
the versioning feature, see AWS Lambda Function Versioning and Aliases.

If you disable the event source mapping, AWS Lambda stops polling. If you enable again, it will resume
polling from the time it had stopped polling, so you don't lose processing of any records. However, if
you delete event source mapping and create it again, it will reset.

This operation requires permission for the lambda:UpdateEventSourceMapping action.

Request Syntax

PUT /2015-03-31/event-source-mappings/UUID HTTP/1.1
Content-type: application/json

{
 "BatchSize": number,
 "Enabled": boolean,
 "FunctionName": "string"
}

URI Request Parameters
The request requires the following URI parameters.

UUID (p. 380)
The event source mapping identifier.

Request Body
The request accepts the following data in JSON format.

BatchSize (p. 380)
The maximum number of stream records that can be sent to your Lambda function for a single
invocation.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

Required: No

Enabled (p. 380)
Specifies whether AWS Lambda should actively poll the stream or not. If disabled, AWS Lambda
will not poll the stream.

Type: Boolean

Required: No

FunctionName (p. 380)
The Lambda function to which you want the stream records sent.

You can specify a function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). AWS Lambda also allows you to specify a partial ARN (for example,
account-id:Thumbnail).

If you are using versioning, you can also provide a qualified function ARN (ARN that is qualified
with function version or alias name as suffix). For more information about versioning, see AWS
Lambda Function Versioning and Aliases

380

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
UpdateEventSourceMapping

Note that the length constraint applies only to the ARN. If you specify only the function name, it is
limited to 64 character in length.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Required: No

Response Syntax

HTTP/1.1 202
Content-type: application/json

{
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",
 "UUID": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 202 response.
The following data is returned in JSON format by the service.

BatchSize (p. 381)
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function. Your function receives an event with all the retrieved records.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

EventSourceArn (p. 381)
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionArn (p. 381)
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

LastModified (p. 381)
The UTC time string indicating the last time the event mapping was updated.

Type: Timestamp

LastProcessingResult (p. 381)
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

State (p. 381)
The state of the event source mapping. It can be Creating, Enabled, Disabled, Enabling,
Disabling, Updating, or Deleting.

381

AWS Lambda Developer Guide
UpdateEventSourceMapping

Type: String

StateTransitionReason (p. 381)
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

Type: String

UUID (p. 381)
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceConflictException
The resource already exists.

HTTP Status Code: 409

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

382

AWS Lambda Developer Guide
UpdateFunctionCode

UpdateFunctionCode
Updates the code for the specified Lambda function. This operation must only be used on an existing
Lambda function and cannot be used to update the function configuration.

If you are using the versioning feature, note this API will always update the $LATEST version of your
Lambda function. For information about the versioning feature, see AWS Lambda Function Versioning
and Aliases.

This operation requires permission for the lambda:UpdateFunctionCode action.

Request Syntax

PUT /2015-03-31/functions/FunctionName/code HTTP/1.1
Content-type: application/json

{
 "Publish": boolean,
 "S3Bucket": "string",
 "S3Key": "string",
 "S3ObjectVersion": "string",
 "ZipFile": blob
}

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 383)
The existing Lambda function name whose code you want to replace.

You can specify a function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). AWS Lambda also allows you to specify a partial ARN (for example,
account-id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify
only the function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Request Body
The request accepts the following data in JSON format.

Publish (p. 383)
This boolean parameter can be used to request AWS Lambda to update the Lambda function and
publish a version as an atomic operation.

Type: Boolean

Required: No

S3Bucket (p. 383)
Amazon S3 bucket name where the .zip file containing your deployment package is stored. This
bucket must reside in the same AWS Region where you are creating the Lambda function.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 63.

Pattern: ^[0-9A-Za-z\.\-_]*(?<!\.)$

Required: No

383

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
UpdateFunctionCode

S3Key (p. 383)
The Amazon S3 object (the deployment package) key name you want to upload.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No

S3ObjectVersion (p. 383)
The Amazon S3 object (the deployment package) version you want to upload.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No

ZipFile (p. 383)
The contents of your zip file containing your deployment package. If you are using the web API
directly, the contents of the zip file must be base64-encoded. If you are using the AWS SDKs or
the AWS CLI, the SDKs or CLI will do the encoding for you. For more information about creating
a .zip file, see Execution Permissions in the AWS Lambda Developer Guide.

Type: Base64-encoded binary data object

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "CodeSha256": "string",
 "CodeSize": number,
 "DeadLetterConfig": {
 "TargetArn": "string"
 },
 "Description": "string",
 "Environment": {
 "Error": {
 "ErrorCode": "string",
 "Message": "string"
 },
 "Variables": {
 "string" : "string"
 }
 },
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "KMSKeyArn": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "Version": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"],
 "VpcId": "string"
 }

384

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role.html

AWS Lambda Developer Guide
UpdateFunctionCode

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

CodeSha256 (p. 384)
It is the SHA256 hash of your function deployment package.

Type: String

CodeSize (p. 384)
The size, in bytes, of the function .zip file you uploaded.

Type: Long

DeadLetterConfig (p. 384)
The parent object that contains the target Amazon Resource Name (ARN) of an Amazon SQS
queue or Amazon SNS topic.

Type: DeadLetterConfig (p. 396) object

Description (p. 384)
The user-provided description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Environment (p. 384)
The parent object that contains your environment's configuration settings.

Type: EnvironmentResponse (p. 399) object

FunctionArn (p. 384)
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

FunctionName (p. 384)
The name of the function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Handler (p. 384)
The function Lambda calls to begin executing your function.

Type: String

Length Constraints: Maximum length of 128.

Pattern: [^\s]+

KMSKeyArn (p. 384)
The Amazon Resource Name (ARN) of the KMS key used to encrypt your function's environment
variables. If empty, it means you are using the AWS Lambda default service key.

Type: String

Pattern: (arn:aws:[a-z0-9-.]+:.*)|()

LastModified (p. 384)
The time stamp of the last time you updated the function.

Type: String

MemorySize (p. 384)
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

385

AWS Lambda Developer Guide
UpdateFunctionCode

Type: Integer

Valid Range: Minimum value of 128. Maximum value of 1536.

Role (p. 384)
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Runtime (p. 384)
The runtime environment for the Lambda function.

To use the Node.js runtime v4.3, set the value to "nodejs4.3". To use earlier runtime (v0.10.42),
set the value to "nodejs".

Type: String

Valid Values: nodejs | nodejs4.3 | java8 | python2.7 | dotnetcore1.0 |
nodejs4.3-edge

Timeout (p. 384)
The function execution time at which Lambda should terminate the function. Because the
execution time has cost implications, we recommend you set this value based on your expected
execution time. The default is 3 seconds.

Type: Integer

Valid Range: Minimum value of 1.

Version (p. 384)
The version of the Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

VpcConfig (p. 384)
VPC configuration associated with your Lambda function.

Type: VpcConfigResponse (p. 406) object

Errors

CodeStorageExceededException
You have exceeded your maximum total code size per account. Limits

HTTP Status Code: 400

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

386

http://docs.aws.amazon.com/lambda/latest/dg/limits.html

AWS Lambda Developer Guide
UpdateFunctionConfiguration

UpdateFunctionConfiguration
Updates the configuration parameters for the specified Lambda function by using the values provided
in the request. You provide only the parameters you want to change. This operation must only be used
on an existing Lambda function and cannot be used to update the function's code.

If you are using the versioning feature, note this API will always update the $LATEST version of your
Lambda function. For information about the versioning feature, see AWS Lambda Function Versioning
and Aliases.

This operation requires permission for the lambda:UpdateFunctionConfiguration action.

Request Syntax

PUT /2015-03-31/functions/FunctionName/configuration HTTP/1.1
Content-type: application/json

{
 "DeadLetterConfig": {
 "TargetArn": "string"
 },
 "Description": "string",
 "Environment": {
 "Variables": {
 "string" : "string"
 }
 },
 "Handler": "string",
 "KMSKeyArn": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"]
 }
}

URI Request Parameters
The request requires the following URI parameters.

FunctionName (p. 387)
The name of the Lambda function.

You can specify a function name (for example, Thumbnail) or you can specify Amazon
Resource Name (ARN) of the function (for example, arn:aws:lambda:us-west-2:account-
id:function:ThumbNail). AWS Lambda also allows you to specify a partial ARN (for example,
account-id:Thumbnail). Note that the length constraint applies only to the ARN. If you specify
only the function name, it is limited to 64 character in length.

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Request Body
The request accepts the following data in JSON format.

387

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS Lambda Developer Guide
UpdateFunctionConfiguration

DeadLetterConfig (p. 387)
The parent object that contains the target Amazon Resource Name (ARN) of an Amazon SQS
queue or Amazon SNS topic.

Type: DeadLetterConfig (p. 396) object

Required: No

Description (p. 387)
A short user-defined function description. AWS Lambda does not use this value. Assign a
meaningful description as you see fit.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

Environment (p. 387)
The parent object that contains your environment's configuration settings.

Type: Environment (p. 397) object

Required: No

Handler (p. 387)
The function that Lambda calls to begin executing your function. For Node.js, it is the module-
name.export value in your function.

Type: String

Length Constraints: Maximum length of 128.

Pattern: [^\s]+

Required: No

KMSKeyArn (p. 387)
The Amazon Resource Name (ARN) of the KMS key used to encrypt your function's environment
variables. If you elect to use the AWS Lambda default service key, pass in an empty string ("") for
this parameter.

Type: String

Pattern: (arn:aws:[a-z0-9-.]+:.*)|()

Required: No

MemorySize (p. 387)
The amount of memory, in MB, your Lambda function is given. AWS Lambda uses this memory
size to infer the amount of CPU allocated to your function. Your function use-case determines
your CPU and memory requirements. For example, a database operation might need less memory
compared to an image processing function. The default value is 128 MB. The value must be a
multiple of 64 MB.

Type: Integer

Valid Range: Minimum value of 128. Maximum value of 1536.

Required: No

Role (p. 387)
The Amazon Resource Name (ARN) of the IAM role that Lambda will assume when it executes
your function.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

Runtime (p. 387)
The runtime environment for the Lambda function.

To use the Node.js runtime v4.3, set the value to "nodejs4.3". To use earlier runtime (v0.10.42),
set the value to "nodejs".

Note
You can no longer downgrade to the v0.10.42 runtime version. This version will no longer
be supported as of early 2017.

388

AWS Lambda Developer Guide
UpdateFunctionConfiguration

Type: String

Valid Values: nodejs | nodejs4.3 | java8 | python2.7 | dotnetcore1.0 |
nodejs4.3-edge

Required: No

Timeout (p. 387)
The function execution time at which AWS Lambda should terminate the function. Because the
execution time has cost implications, we recommend you set this value based on your expected
execution time. The default is 3 seconds.

Type: Integer

Valid Range: Minimum value of 1.

Required: No

VpcConfig (p. 387)
If your Lambda function accesses resources in a VPC, you provide this parameter identifying the
list of security group IDs and subnet IDs. These must belong to the same VPC. You must provide
at least one security group and one subnet ID.

Type: VpcConfig (p. 405) object

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "CodeSha256": "string",
 "CodeSize": number,
 "DeadLetterConfig": {
 "TargetArn": "string"
 },
 "Description": "string",
 "Environment": {
 "Error": {
 "ErrorCode": "string",
 "Message": "string"
 },
 "Variables": {
 "string" : "string"
 }
 },
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "KMSKeyArn": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number,
 "Version": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "SubnetIds": ["string"],
 "VpcId": "string"
 }

389

AWS Lambda Developer Guide
UpdateFunctionConfiguration

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

CodeSha256 (p. 389)
It is the SHA256 hash of your function deployment package.

Type: String

CodeSize (p. 389)
The size, in bytes, of the function .zip file you uploaded.

Type: Long

DeadLetterConfig (p. 389)
The parent object that contains the target Amazon Resource Name (ARN) of an Amazon SQS
queue or Amazon SNS topic.

Type: DeadLetterConfig (p. 396) object

Description (p. 389)
The user-provided description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Environment (p. 389)
The parent object that contains your environment's configuration settings.

Type: EnvironmentResponse (p. 399) object

FunctionArn (p. 389)
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

FunctionName (p. 389)
The name of the function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Handler (p. 389)
The function Lambda calls to begin executing your function.

Type: String

Length Constraints: Maximum length of 128.

Pattern: [^\s]+

KMSKeyArn (p. 389)
The Amazon Resource Name (ARN) of the KMS key used to encrypt your function's environment
variables. If empty, it means you are using the AWS Lambda default service key.

Type: String

Pattern: (arn:aws:[a-z0-9-.]+:.*)|()

LastModified (p. 389)
The time stamp of the last time you updated the function.

Type: String

MemorySize (p. 389)
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

390

AWS Lambda Developer Guide
Data Types

Type: Integer

Valid Range: Minimum value of 128. Maximum value of 1536.

Role (p. 389)
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Runtime (p. 389)
The runtime environment for the Lambda function.

To use the Node.js runtime v4.3, set the value to "nodejs4.3". To use earlier runtime (v0.10.42),
set the value to "nodejs".

Type: String

Valid Values: nodejs | nodejs4.3 | java8 | python2.7 | dotnetcore1.0 |
nodejs4.3-edge

Timeout (p. 389)
The function execution time at which Lambda should terminate the function. Because the
execution time has cost implications, we recommend you set this value based on your expected
execution time. The default is 3 seconds.

Type: Integer

Valid Range: Minimum value of 1.

Version (p. 389)
The version of the Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

VpcConfig (p. 389)
VPC configuration associated with your Lambda function.

Type: VpcConfigResponse (p. 406) object

Errors

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 404

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException

HTTP Status Code: 429

Data Types
The following data types are supported:

391

AWS Lambda Developer Guide
Data Types

• AccountLimit (p. 393)

• AccountUsage (p. 394)

• AliasConfiguration (p. 395)

• DeadLetterConfig (p. 396)

• Environment (p. 397)

• EnvironmentError (p. 398)

• EnvironmentResponse (p. 399)

• EventSourceMappingConfiguration (p. 400)

• FunctionCode (p. 401)

• FunctionCodeLocation (p. 402)

• FunctionConfiguration (p. 403)

• VpcConfig (p. 405)

• VpcConfigResponse (p. 406)

392

AWS Lambda Developer Guide
AccountLimit

AccountLimit
Provides limits of code size and concurrency associated with the current account and region.

Contents

CodeSizeUnzipped
Size, in bytes, of code/dependencies that you can zip into a deployment package (uncompressed
zip/jar size) for uploading. The default limit is 250 MB.

Type: Long

Required: No

CodeSizeZipped
Size, in bytes, of a single zipped code/dependencies package you can upload for your Lambda
function(.zip/.jar file). Try using Amazon S3 for uploading larger files. Default limit is 50 MB.

Type: Long

Required: No

ConcurrentExecutions
Number of simultaneous executions of your function per region. For more information or to request
a limit increase for concurrent executions, see Lambda Function Concurrent Executions. The
default limit is 100.

Type: Integer

Required: No

TotalCodeSize
Maximum size, in megabytes, of a code package you can upload per region. The default size is 75
GB.

Type: Long

Required: No

393

http://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html

AWS Lambda Developer Guide
AccountUsage

AccountUsage
Provides code size usage and function count associated with the current account and region.

Contents

FunctionCount
The number of your account's existing functions per region.

Type: Long

Required: No

TotalCodeSize
Total size, in bytes, of the account's deployment packages per region.

Type: Long

Required: No

394

AWS Lambda Developer Guide
AliasConfiguration

AliasConfiguration
Provides configuration information about a Lambda function version alias.

Contents

AliasArn
Lambda function ARN that is qualified using the alias name as the suffix. For example,
if you create an alias called BETA that points to a helloworld function version, the ARN is
arn:aws:lambda:aws-regions:acct-id:function:helloworld:BETA.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

Required: No

Description
Alias description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

FunctionVersion
Function version to which the alias points.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

Required: No

Name
Alias name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: (?!^[0-9]+$)([a-zA-Z0-9-_]+)

Required: No

395

AWS Lambda Developer Guide
DeadLetterConfig

DeadLetterConfig
The parent object that contains the target Amazon Resource Name (ARN) of an Amazon SQS queue
or Amazon SNS topic.

Contents

TargetArn
The Amazon Resource Name (ARN) of an Amazon SQS queue or Amazon SNS topic you specify
as your Dead Letter Queue (DLQ).

Type: String

Pattern: (arn:aws:[a-z0-9-.]+:.*)|()

Required: No

396

AWS Lambda Developer Guide
Environment

Environment
The parent object that contains your environment's configuration settings.

Contents

Variables
The key-value pairs that represent your environment's configuration settings. The value you
specify cannot contain a ",".

Type: String to String map

Pattern: [^,]*

Required: No

397

AWS Lambda Developer Guide
EnvironmentError

EnvironmentError
The parent object that contains error information associated with your configuration settings.

Contents

ErrorCode
The error code returned by the environment error object.

Type: String

Required: No

Message
The message returned by the environment error object.

Type: String

Required: No

398

AWS Lambda Developer Guide
EnvironmentResponse

EnvironmentResponse
The parent object returned that contains your environment's configuration settings or any error
information associated with your configuration settings.

Contents

Error
The parent object that contains error information associated with your configuration settings.

Type: EnvironmentError (p. 398) object

Required: No

Variables
The key-value pairs returned that represent your environment's configuration settings or error
information.

Type: String to String map

Pattern: [^,]*

Required: No

399

AWS Lambda Developer Guide
EventSourceMappingConfiguration

EventSourceMappingConfiguration
Describes mapping between an Amazon Kinesis stream and a Lambda function.

Contents

BatchSize
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function. Your function receives an event with all the retrieved records.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

Required: No

EventSourceArn
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

Required: No

FunctionArn
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

Required: No

LastModified
The UTC time string indicating the last time the event mapping was updated.

Type: Timestamp

Required: No

LastProcessingResult
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

Required: No

State
The state of the event source mapping. It can be Creating, Enabled, Disabled, Enabling,
Disabling, Updating, or Deleting.

Type: String

Required: No

StateTransitionReason
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

Type: String

Required: No

UUID
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Required: No

400

AWS Lambda Developer Guide
FunctionCode

FunctionCode
The code for the Lambda function.

Contents

S3Bucket
Amazon S3 bucket name where the .zip file containing your deployment package is stored. This
bucket must reside in the same AWS region where you are creating the Lambda function.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 63.

Pattern: ^[0-9A-Za-z\.\-_]*(?<!\.)$

Required: No

S3Key
The Amazon S3 object (the deployment package) key name you want to upload.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No

S3ObjectVersion
The Amazon S3 object (the deployment package) version you want to upload.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No

ZipFile
The contents of your zip file containing your deployment package. If you are using the web API
directly, the contents of the zip file must be base64-encoded. If you are using the AWS SDKs or
the AWS CLI, the SDKs or CLI will do the encoding for you. For more information about creating
a .zip file, see Execution Permissions in the AWS Lambda Developer Guide.

Type: Base64-encoded binary data object

Required: No

401

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role.html

AWS Lambda Developer Guide
FunctionCodeLocation

FunctionCodeLocation
The object for the Lambda function location.

Contents

Location
The presigned URL you can use to download the function's .zip file that you previously uploaded.
The URL is valid for up to 10 minutes.

Type: String

Required: No

RepositoryType
The repository from which you can download the function.

Type: String

Required: No

402

AWS Lambda Developer Guide
FunctionConfiguration

FunctionConfiguration
A complex type that describes function metadata.

Contents

CodeSha256
It is the SHA256 hash of your function deployment package.

Type: String

Required: No

CodeSize
The size, in bytes, of the function .zip file you uploaded.

Type: Long

Required: No

DeadLetterConfig
The parent object that contains the target Amazon Resource Name (ARN) of an Amazon SQS
queue or Amazon SNS topic.

Type: DeadLetterConfig (p. 396) object

Required: No

Description
The user-provided description.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

Environment
The parent object that contains your environment's configuration settings.

Type: EnvironmentResponse (p. 399) object

Required: No

FunctionArn
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern: arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-
]+(:(\$LATEST|[a-zA-Z0-9-]+))?

Required: No

FunctionName
The name of the function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Pattern: (arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?
([a-zA-Z0-9-_]+)(:(\$LATEST|[a-zA-Z0-9-_]+))?

Required: No

Handler
The function Lambda calls to begin executing your function.

Type: String

Length Constraints: Maximum length of 128.

Pattern: [^\s]+

Required: No

KMSKeyArn
The Amazon Resource Name (ARN) of the KMS key used to encrypt your function's environment
variables. If empty, it means you are using the AWS Lambda default service key.

403

AWS Lambda Developer Guide
FunctionConfiguration

Type: String

Pattern: (arn:aws:[a-z0-9-.]+:.*)|()

Required: No

LastModified
The time stamp of the last time you updated the function.

Type: String

Required: No

MemorySize
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

Type: Integer

Valid Range: Minimum value of 128. Maximum value of 1536.

Required: No

Role
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

Runtime
The runtime environment for the Lambda function.

To use the Node.js runtime v4.3, set the value to "nodejs4.3". To use earlier runtime (v0.10.42),
set the value to "nodejs".

Type: String

Valid Values: nodejs | nodejs4.3 | java8 | python2.7 | dotnetcore1.0 |
nodejs4.3-edge

Required: No

Timeout
The function execution time at which Lambda should terminate the function. Because the
execution time has cost implications, we recommend you set this value based on your expected
execution time. The default is 3 seconds.

Type: Integer

Valid Range: Minimum value of 1.

Required: No

Version
The version of the Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: (\$LATEST|[0-9]+)

Required: No

VpcConfig
VPC configuration associated with your Lambda function.

Type: VpcConfigResponse (p. 406) object

Required: No

404

AWS Lambda Developer Guide
VpcConfig

VpcConfig
If your Lambda function accesses resources in a VPC, you provide this parameter identifying the list
of security group IDs and subnet IDs. These must belong to the same VPC. You must provide at least
one security group and one subnet ID.

Contents

SecurityGroupIds
A list of one or more security groups IDs in your VPC.

Type: array of Strings

Array Members: Maximum number of 5 items.

Required: No

SubnetIds
A list of one or more subnet IDs in your VPC.

Type: array of Strings

Array Members: Maximum number of 16 items.

Required: No

405

AWS Lambda Developer Guide
VpcConfigResponse

VpcConfigResponse
VPC configuration associated with your Lambda function.

Contents

SecurityGroupIds
A list of security group IDs associated with the Lambda function.

Type: array of Strings

Array Members: Maximum number of 5 items.

Required: No

SubnetIds
A list of subnet IDs associated with the Lambda function.

Type: array of Strings

Array Members: Maximum number of 16 items.

Required: No

VpcId
The VPC ID associated with you Lambda function.

Type: String

Required: No

406

AWS Lambda Developer Guide

Document History

The following table describes the important changes to the AWS Lambda Developer Guide.

Relevant Dates to this History:

• Current product version: 2015-03-31

• Last documentation update: November 30, 2016

Change Description Date

Introduced AWS
Lambda support for
the .NET runtime,
Lambda@Edge
(Preview), Dead Letter
Queues and automated
deployment of
serverless applications.

AWS Lambda introduces the following features in this
release.

• AWS Lambda added support for C#. For more information,
see Programming Model for Authoring Lambda Functions
in C# (p. 46).

• Lambda@Edge (Preview) allows you to run Lambda
functions at the AWS Edge locations in response to
CloudFront events. For more information, see AWS
Lambda@Edge (Preview) (p. 277).

• Added a tutorial for automating deployment of serverless
applications using AWS CodePipeline, AWS CodeBuild
and AWS CloudFormation. For more information,
see Automating Deployment of Lambda-based
Applications (p. 147).

• Updated Troubleshooting and Monitoring AWS Lambda
Functions with Amazon CloudWatch (p. 107) to include a
section on Dead Letter Queues (p. 113), which you can
configure to retrieve information on failed asynchronous
invocations of Lambda functions.

In this
release

AWS Lambda adds
Amazon Lex as a
supported event
source.

Using Lambda and Amazon Lex, you can quickly build chat
bots for various services like Slack and Facebook. For more
information, see Amazon Lex (p. 129).

November
30, 2016

US West (N. California)
Region

AWS Lambda is now available in the US West (N. California)
Region. For more information about Lambda regions and
endpoints, see Regions and Endpoints in the AWS General
Reference.

November
21, 2016

407

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

AWS Lambda Developer Guide

Change Description Date

Introduced the AWS
Serverless Application
Model for creating and
deploying Lambda-
based applications
and using environment
variables for Lambda
function configuration
settings.

AWS Lambda introduces the following features in this
release.

• AWS Serverless Application Model: You can now use the
AWS SAM to define the syntax for expressing resources
within a serverless application. In order to deploy your
application, simply specify the resources you need as part
of your application, along with their associated permissions
policies in a AWS CloudFormation template file (written
in either JSON or YAML), package your deployment
artifacts, and deploy the template. For more information,
see Deploying Lambda-based Applications (p. 139).

• Environment variables: You can use environment variables
to specify configuration settings for your Lambda function
outside of your function code. For more information, see
Environment Variables (p. 89).

November
18, 2016

Added a tutorial under
Getting Started (p. 160)
for creating an Amazon
API Gateway endpoint
using the Lambda
console

The tutorial instructs how to seamlessly integrate a Lambda
function with an API via new features introduced in Configure
Proxy Integration for a Proxy Resource. For more information,
see Step 3: Create a Simple Microservice using Lambda and
API Gateway (p. 171).

August 29,
2016

Asia Pacific (Seoul)
Region

AWS Lambda is now available in the Asia Pacific (Seoul)
Region. For more information about Lambda regions and
endpoints, see Regions and Endpoints in the AWS General
Reference.

August 29,
2016

Asia Pacific (Sydney)
Region

Lambda is now available in the Asia Pacific (Sydney) Region.
For more information about Lambda regions and endpoints,
see Regions and Endpoints in the AWS General Reference.

June 23,
2016

Updates to the Lambda
console

The Lambda console has been updated to simplify the role-
creation process. For more information, see Step 2.1: Create
a Hello World Lambda Function (p. 164).

June 23,
2016

AWS Lambda now
supports Node.js
runtime v4.3

AWS Lambda added support for Node.js runtime v4.3. For
more information, see Programming Model (Node.js) (p. 9).

April 07,
2016

EU (Frankfurt) region Lambda is now available in the EU (Frankfurt) region. For
more information about Lambda regions and endpoints, see
Regions and Endpoints in the AWS General Reference.

March 14,
2016

VPC support You can now configure a Lambda function to access
resources in your VPC. For more information, see
Configuring a Lambda Function to Access Resources
in an Amazon VPC (p. 96). For example walkthroughs,
see Tutorials: Configuring a Lambda Function to Access
Resources in an Amazon VPC (p. 98).

February
11, 2016

408

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

AWS Lambda Developer Guide

Change Description Date

Content reorganization The reorganized content now provides the following:

• Getting Started (p. 160) – Contains a console-based
exercise in which you create a Hello World Lambda
function. You explore the AWS Lambda console features,
including blueprints that enable you to create Lambda
functions with just a few clicks.

• Use Cases (p. 175) – Provides examples of how to use
AWS Lambda with other AWS services or your custom
applications as event sources, invoke over HTTPS, and
set up AWS Lambda to invoke your Lambda function at
scheduled interval.

• Programming Model (p. 8) – Explains programming
model core concepts and describes language-specific
details. Regardless of the language you choose, there is a
common pattern to writing code for a Lambda function.

• Creating a Deployment Package (p. 56) – Explains how
to create deployment packages for Lambda function code
that is authored in languages supported by AWS Lambda
(Python, Java, and Node.js).

December
9, 2015

AWS Lambda runtime
has been updated.

AWS Lambda runtime has been updated with the following
SDK and Linux kernel versions in this release:

• AWS SDK for JavaScript: 2.2.12

• Boto SDK: 1.2.1

• Linux kernel version: 3.14.48-33.39.amzn1.x86_6.

For more information, see Lambda Execution Environment
and Available Libraries (p. 157).

November
4, 2015

Versioning support,
Python for developing
code for Lambda
functions, scheduled
events, and increase in
execution time

AWS Lambda introduces the following features in this
release.

• Python: You can now develop your Lambda function code
using Python. For more information, see Programming
Model (p. 8).

• Versioning: You can maintain one or more versions of
your Lambda function. Versioning allows you to control
which Lambda function version is executed in different
environments (for example, development, testing, or
production). For more information, see AWS Lambda
Function Versioning and Aliases (p. 72).

• Scheduled events: You can also set up AWS Lambda
to invoke your code on a regular, scheduled basis using
the AWS Lambda console. You can specify a fixed rate
(number of hours, days, or weeks) or you can specify a
cron expression. For an example, see Using AWS Lambda
with Scheduled Events (p. 263).

• Increase in execution time: You can now set up your
Lambda functions to run for up to five minutes allowing
longer running functions such as large volume data
ingestion and processing jobs.

October
08, 2015

409

AWS Lambda Developer Guide

Change Description Date

Two new walkthroughs The following new walkthroughs are added. They both use
Java Lambda function.

Tutorial: Using AWS Lambda with Amazon
DynamoDB (p. 204)

Using AWS Lambda as Mobile Application Backend (Custom
Event Source: Android) (p. 250)

August 27,
2015

Support for DynamoDB
Streams

DynamoDB Streams is now generally available and you
can use it in all the regions where DynamoDB is available.
You can enable DynamoDB Streams for your table and use
a Lambda function as a trigger for the table. Triggers are
custom actions you take in response to updates made to the
DynamoDB table. For an example walkthrough, see Tutorial:
Using AWS Lambda with Amazon DynamoDB (p. 204) .

July 14,
2015

AWS Lambda now
supports invoking
Lambda functions
with REST-compatible
clients.

Until now, to invoke your Lambda function from your web,
mobile, or IoT application you needed the AWS SDKs (for
example, AWS SDK for Java, AWS SDK for Android, or
AWS SDK for iOS). Now, AWS Lambda supports invoking
a Lambda function with REST-compatible clients through
a customized API that you can create using Amazon API
Gateway. You can send requests to your Lambda function
endpoint URL. You can configure security on the endpoint
to allow open access, leverage AWS Identity and Access
Management (IAM) to authorize access, or use API keys to
meter access to your Lambda functions by others.

For an example Getting Started exercise, see Using AWS
Lambda with Amazon API Gateway (On-Demand Over
HTTPS) (p. 236).

For more information about the Amazon API Gateway, see
https://aws.amazon.com/api-gateway/.

July 09,
2015

The AWS Lambda
console now provides
blueprints to easily
create Lambda
functions and test
them.

AWS Lambda console provides a set of blueprints. Each
blueprint provides a sample event source configuration and
sample code for your Lambda function that you can use to
easily create Lambda-based applications. All of the AWS
Lambda Getting Started exercises now use the blueprints.
For more information, see Getting Started (p. 160).

In this
release

AWS Lambda now
supports Java to author
your Lambda functions.

You can now author Lambda code in Java. For more
information, see Programming Model (p. 8).

June 15,
2015

AWS Lambda now
supports specifying an
Amazon S3 object as
the function .zip when
creating or updating a
Lambda function.

You can upload a Lambda function deployment package (.zip
file) to an Amazon S3 bucket in the same region where you
want to create a Lambda function. Then, you can specify the
bucket name and object key name when you create or update
a Lambda function.

May 28,
2015

410

https://aws.amazon.com/api-gateway/

AWS Lambda Developer Guide

Change Description Date

AWS Lambda now
generally available
with added support for
mobile backends

AWS Lambda is now generally available for production
use. The release also introduces new features that make
it easier to build mobile, tablet, and Internet of Things (IoT)
backends using AWS Lambda that scale automatically
without provisioning or managing infrastructure. AWS
Lambda now supports both real-time (synchronous) and
asynchronous events. Additional features include easier
event source configuration and management. The permission
model and the programming model have been simplified
by the introduction of resource policies for your Lambda
functions.

The documentation has been updated accordingly. For
information, see the following topics:

How It Works (p. 151)

Getting Started (p. 160)

AWS Lambda

April 9,
2015

Preview release Preview release of the AWS Lambda Developer Guide. November
13, 2014

411

https://aws.amazon.com/lambda/

AWS Lambda Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

412

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	AWS Lambda
	Table of Contents
	What Is AWS Lambda?
	When Should I Use AWS Lambda?
	Are You a First-time User of AWS Lambda?

	Lambda Functions
	Compute Requirements – Lambda Function Configuration
	Invocation Types
	Introduction: Building Lambda Functions
	Authoring Code for Your Lambda Function
	Deploying Code and Creating a Lambda Function
	Creating a Deployment Package – Organizing Code and Dependencies
	Uploading a Deployment Package – Creating a Lambda Function
	Testing a Lambda Function

	Monitoring and Troubleshooting
	AWS Lambda-Based Application Examples
	Related Topics
	Programming Model
	Programming Model (Node.js)
	Lambda Function Handler (Node.js)
	Example
	Using the Callback Parameter

	The Context Object (Node.js)
	Example
	The Context Object Methods (Node.js)
	context.getRemainingTimeInMillis()

	The Context Object Properties (Node.js)

	Logging (Node.js)
	Finding Logs

	Exceptions (Node.js)
	Using the Earlier Node.js Runtime v0.10.42
	The Context Methods in Node.js Runtime v0.10.42
	context.succeed()
	context.fail()
	context.done()

	Transitioning Lambda Function Code to Node.js Runtime v4.3

	Programming Model for Authoring Lambda Functions in Java
	Lambda Function Handler (Java)
	Handler Overload Resolution
	Additional Information
	Handler Input/Output Types (Java)
	Handler Input/Output: String Type
	Handler Input/Output: POJO Type
	Example: Using POJOs for Handler Input/Output (Java)
	Example: Using Stream for Handler Input/Output (Java)

	Leveraging Predefined Interfaces for Creating Handler (Java)
	Example 1: Creating Handler with Custom POJO Input/Output (Leverage the RequestHandler Interface)
	Example 2: Creating Handler with Stream Input/Output (Leverage the RequestStreamHandler Interface)

	The Context Object (Java)
	Example: Using Context Object (Java)

	Logging (Java)
	How to Find Logs
	Logging Examples (Java)
	Example 1: Writing Logs Using Log4J (Java)
	Example 2: Writing Logs Using LambdaLogger (Java)

	Exceptions (Java)

	Programming Model for Authoring Lambda Functions in Python
	Lambda Function Handler (Python)
	The Context Object (Python)
	Example
	The Context Object Methods (Python)
	The Context Object Attributes (Python)

	Logging (Python)
	Finding Logs

	Exceptions (Python)

	Programming Model for Authoring Lambda Functions in C#
	Lambda Function Handler (C#)
	Handling Streams
	Handling Standard Data Types
	Handler Signatures
	Lambda Function Handler Restrictions
	Using Async in C# Functions with AWS Lambda

	The Context Object (C#)
	Logging (C#)
	How to Find Logs

	Exceptions (C#)

	Creating a Deployment Package
	Creating a Deployment Package (Node.js)
	Creating a Deployment Package (C#)
	.NET Core CLI
	Before You Begin
	Create a .NET Project
	Using a Serializer
	Create the Deployment Package

	AWS Toolkit for Visual Studio
	Step 1: Create and Build a Project

	Creating a Deployment Package (Java)
	Creating a .jar Deployment Package Using Maven without any IDE (Java)
	Before You Begin
	Project Structure Overview
	Step 1: Create Project
	Step 2: Build Project (Create Deployment Package)

	Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java)
	Before You Begin
	Step 1: Create and Build a Project

	Creating a .zip Deployment Package (Java)
	Before You Begin
	Example 1: Creating .zip Using Gradle and the Maven Central Repository
	Example 2: Creating .zip Using Gradle Using Local Jars

	Authoring Lambda Functions Using Eclipse IDE and AWS SDK Plugin (Java)

	Creating a Deployment Package (Python)
	Create Deployment Package Using a Python Environment Created with Virtualenv

	AWS Lambda Function Versioning and Aliases
	Introduction to AWS Lambda Versioning
	Creating a Lambda Function (the $LATEST version)
	Publishing a Lambda Function Version
	Updating Lambda Function Code and Configuration
	Deleting a Lambda Function and a Specific Version
	Related Topics

	Introduction to AWS Lambda Aliases
	Example: Using Aliases to Manage Lambda Function Versions
	Related Topics
	Tutorial: Using AWS Lambda Aliases
	Granting Permissions in a Push Model

	Versioning, Aliases, and Resource Policies
	Managing Versioning Using the AWS Management Console, the AWS CLI, or Lambda APIs

	Environment Variables
	Setting Up
	Rules for Naming Environment Variables
	Environment Variables and Function Versioning
	Environment Variable Encryption
	Storing Sensitive Information
	Error scenarios
	Next Step

	Create a Lambda Function Using Environment Variables
	Step 1: Prepare
	Step 2: Set Up the Lambda Environment
	Step 2.1: Create the Deployment Package
	Step 2.2: Create an Execution Role
	Step 2.3 Create the Lambda function and Test It

	Create a Lambda Function Using Environment Variables To Store Sensitive Information
	Step 1: Create the Lambda Function

	Configuring a Lambda Function to Access Resources in an Amazon VPC
	Configuring a Lambda Function for Amazon VPC Access
	Internet Access for Lambda Functions
	Guidelines for Setting Up VPC-Enabled Lambda Functions
	Tutorials: Configuring a Lambda Function to Access Resources in an Amazon VPC
	Tutorial: Configuring a Lambda Function to Access Amazon ElastiCache in an Amazon VPC
	Step 1: Create an ElastiCache Cluster
	Step 2: Create a Lambda Function
	Step 2.1: Create a Deployment Package
	Python

	Step 2.2: Create the Execution Role (IAM Role)
	Step 2.3: Create the Lambda Function (Upload the Deployment Package)

	Step 3: Test the Lambda Function (Invoke Manually)

	Tutorial: Configuring a Lambda Function to Access Amazon RDS in an Amazon VPC
	Step 1: Create an Amazon RDS MySQL Instance and ExampleDB Database
	Step 2: Create a Lambda Function
	Step 2.1: Create a Deployment Package
	Python

	Step 2.2: Create the Execution Role (IAM Role)
	Step 2.3: Create the Lambda Function (Upload the Deployment Package)

	Step 3: Test the Lambda Function (Invoke Manually)

	Troubleshooting and Monitoring AWS Lambda Functions with Amazon CloudWatch
	AWS Lambda Troubleshooting Scenarios
	Troubleshooting Scenario 1: Lambda Function Not Working as Expected
	Troubleshooting Scenario 2: Increased Latency in Lambda Function Execution

	Accessing Amazon CloudWatch Metrics for AWS Lambda
	Accessing Amazon CloudWatch Logs for AWS Lambda
	AWS Lambda Metrics
	AWS Lambda CloudWatch Metrics
	AWS Lambda CloudWatch Dimensions

	Dead Letter Queues

	Building applications with AWS Lambda
	Example 1: Amazon S3 Pushes Events and Invokes a Lambda Function
	Example 2: AWS Lambda Pulls Events from an Amazon Kinesis Stream and Invokes a Lambda Function
	Example 3: Custom Application Publishes Events and Invokes a Lambda Function
	Event Source Mapping
	Event Source Mapping for AWS Services
	Event Source Mapping for AWS Stream-based Services
	Event Source Mapping for Custom Applications

	Supported Event Sources
	Amazon S3
	Amazon DynamoDB
	Amazon Kinesis Streams
	Amazon Simple Notification Service
	Amazon Simple Email Service
	Amazon Cognito
	AWS CloudFormation
	Amazon CloudWatch Logs
	Amazon CloudWatch Events
	AWS CodeCommit
	Scheduled Events (powered by Amazon CloudWatch Events)
	AWS Config
	Amazon Echo
	Amazon Lex
	Amazon API Gateway
	Other Event Sources: Invoking a Lambda Function On Demand
	Sample Events Published by Event Sources

	Deploying Lambda-based Applications
	Deploying Serverless Applications Using AWS CloudFormation
	Using the AWS Serverless Application Model (AWS SAM)
	Serverless Resources Within AWS CloudFormation
	Lambda function
	SimpleTable
	Events
	API
	Permissions

	Next Step

	Create Your Own Serverless Application
	Packaging and Deployment
	Packaging
	Deployment
	Exporting a Serverless Application

	Automating Deployment of Lambda-based Applications
	Building a Pipeline for Your Serverless Application
	Step 1: Set Up Your Repository
	Step 2: Create Your Pipeline
	Step 3: Complete Your Beta Deployment Stage

	AWS Lambda: How It Works
	How Does AWS Lambda Run My Code? The Container Model
	Lambda Function Concurrent Executions
	Request Rate
	Safety Limit

	Retries on Errors
	AWS Lambda Permissions Model
	Manage Permissions: Using an IAM Role (Execution Role)
	Manage Permissions: Using a Lambda Function Policy

	Lambda Execution Environment and Available Libraries
	Environment Variables Available to Lambda Functions

	Getting Started
	Step 1: Set Up an AWS Account and the AWS CLI
	Step 1.1: Set Up an AWS Account and Create an Administrator User
	Sign up for AWS
	Create an IAM User
	Next Step

	Step 1.2: Set Up the AWS Command Line Interface (AWS CLI)

	Step 2: Create a HelloWorld Lambda Function and Explore the Console
	Preparing for the Getting Started
	Step 2.1: Create a Hello World Lambda Function
	Step 2.2: Invoke the Lambda Function Manually and Verify Results, Logs, and Metrics
	Step 2.3: (Optional) Create a Lambda Function Authored in Java
	Step 2.4: (Optional) Create a Lambda Function Authored in C#

	Step 3: Create a Simple Microservice using Lambda and API Gateway
	Next Step
	Step 3.1: Create an API Using Amazon API Gateway
	Next Step

	Step 3.2: Test Sending an HTTPS Request
	Step 3.3: (Optional) Try Other Blueprints
	What's Next?

	Examples of How to Use AWS Lambda
	Using AWS Lambda with Amazon S3
	Tutorial: Using AWS Lambda with Amazon S3
	Implementation Summary
	Next Step
	Step 1: Prepare
	Step 1.1: Sign Up for AWS and Set Up the AWS CLI
	Step 1.2: Create Buckets and Upload a Sample Object
	Next Step

	Step 2: Create a Lambda Function and Invoke It Manually (Using Sample Event Data)
	Step 2.1: Create a Deployment Package
	Node.js
	Next Step

	Java
	Next Step

	Python
	Next Step

	Step 2.2: Create the Execution Role (IAM Role)
	Next Step

	Step 2.3: Create the Lambda Function and Test It Manually
	Step 2.3.1: Create the Lambda Function (Upload the Deployment Package)
	Step 2.3.2: Test the Lambda Function (Invoke Manually)
	Next Step

	Step 3: Add an Event Source (Configure Amazon S3 to Publish Events)
	Step 3.1: Add Permissions to the Lambda Function's Access Permissions Policy
	Step 3.2: Configure Notification on the Bucket
	Step 3.3: Test the Setup

	Step 4: Deploy With AWS SAM and AWS CloudFormation
	Specification for Amazon S3 Thumbnail Application
	Deploying the Serverless Application

	Using AWS Lambda with Amazon Kinesis
	Tutorial: Using AWS Lambda with Amazon Kinesis
	Next Step
	Step 1: Prepare
	Next Step

	Step 2: Create a Lambda Function and Invoke It Manually (Using Sample Event Data)
	Step 2.1: Create a Deployment Package
	Node.js
	Next Step

	Java
	Next Step

	C#
	Next Step

	Python
	Next Step

	Step 2.2: Create the Execution Role (IAM Role)
	Next Step

	Step 2.3: Create the Lambda Function and Test It Manually
	Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)
	Step 2.3.2: Test the Lambda Function (Invoke Manually)
	Next Step

	Step 3: Add an Event Source (Create an Amazon Kinesis Stream and Associate It with Your Lambda Function)
	Step 3.1: Create an Amazon Kinesis Stream
	Step 3.2: Add an Event Source in AWS Lambda
	Step 3.3: Test the Setup

	Step 4: Deploy With AWS SAM and AWS CloudFormation
	Specification for Amazon Kinesis Application
	Deploying the Serverless Application

	Using AWS Lambda with Amazon DynamoDB
	Tutorial: Using AWS Lambda with Amazon DynamoDB
	Next Step
	Step 1: Prepare
	Next Step

	Step 2: Create a Lambda Function and Invoke It Manually (Using Sample Event Data)
	Step 2.1: Create a Lambda Function Deployment Package
	Node.js
	Next Step

	Java
	Next Step

	C#
	Next Step

	Python
	Next Step

	Step 2.2: Create the Execution Role (IAM Role)
	Next Step

	Step 2.3: Create the Lambda Function and Test It Manually
	Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)
	Step 2.3.2: Test the Lambda Function (Invoke Manually)
	Next Step

	Step 3: Add an Event Source (Create a DynamoDB Stream and Associate It with Your Lambda Function)
	Step 3.1: Create a DynamoDB Table with a Stream Enabled
	Step 3.2: Add an Event Source in AWS Lambda
	Step 3.3: Test the Setup

	Step 4: Deploy With AWS SAM and AWS CloudFormation
	Specification for DynamoDB Application
	Deploying the Serverless Application

	Using AWS Lambda with AWS CloudTrail
	Tutorial: Using AWS Lambda with AWS CloudTrail
	Implementation Summary
	Next Step
	Step 1: Prepare
	Step 1.1: Sign Up for AWS and Set Up the AWS CLI
	Step 1.2: Turn on CloudTrail
	Step 1.3: Create an SNS Topic and Subscribe to the Topic
	Next Step

	Step 2: Create a Lambda Function and Invoke It Manually (Using Sample Event Data)
	Step 2.1: Create a Deployment Package
	Node.js
	Next Step

	Step 2.2: Create the Execution Role (IAM Role)
	Next Step

	Step 2.3: Create the Lambda Function and Test It Manually
	Step 2.3.1: Create the Lambda Function (Upload the Deployment Package)
	Step 2.3.2: Test the Lambda Function (Invoke Manually)
	Next Step

	Step 3: Add Event Source (Configure Amazon S3 to Publish Events)
	Step 3.1: Add Permissions to the Lambda Function's Access Permissions Policy
	Step 3.2: Configure Notification on the Bucket
	Step 3.3: Test the Setup

	Step 4: Deploy With AWS SAM and AWS CloudFormation
	Specification for Amazon API Gateway Application
	Deploying the Serverless Application

	Using AWS Lambda with Amazon SNS from Different Accounts
	Tutorial: Using AWS Lambda with Amazon SNS
	Next Step
	Step 1: Prepare
	Next Step

	Step 2: Create a Lambda Function
	Step 2.1: Create a Lambda Function Deployment Package
	Node.js
	Next Step

	Java
	Next Step

	Python
	Next Step

	Step 2.2: Create the Execution Role (IAM Role)

	Step 3: Set Up Cross-Account Permissions

	Using AWS Lambda with Amazon API Gateway (On-Demand Over HTTPS)
	Using AWS Lambda with Amazon API Gateway (On-Demand Over HTTPS)
	Next Step
	Step 1: Prepare
	Next Step

	Step 2: Create a Lambda Function and Test It Manually
	Step 2.1: Create a Deployment Package
	Node.js
	Next Step

	Python
	Next Step

	Step 2.2: Create the Execution Role (IAM Role)
	Next Step

	Step 2.3: Create the Lambda Function and Test It Manually
	Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)
	Step 2.3.2: Test the Lambda Function (Invoke Manually)
	Next Step

	Step 3: Create an API Using Amazon API Gateway and Test It
	Step 3.1: Create the API
	Step 3.2: Create a Resource (DynamoDBManager) in the API
	Step 3.3: Create Method (POST) on the Resource
	Step 3.4: Set the Lambda Function as the Destination for the POST Method
	Step 3.5: Deploy the API
	Step 3.6: Grant Permissions that Allows Amazon API Gateway to Invoke the Lambda Function
	Step 3.7: Test Sending an HTTPS Request

	Step 4: Deploy With AWS SAM and AWS CloudFormation
	Specification for Amazon API Gateway Application
	Deploying the Serverless Application

	Using AWS Lambda as Mobile Application Backend (Custom Event Source: Android)
	Tutorial: Using AWS Lambda as Mobile Application Backend
	Implementation Summary
	Next Step
	Step 1: Prepare
	Next Step

	Step 2: Create the Lambda Function and Invoke It Manually (Using Sample Event Data)
	Step 2.1: Create a Deployment Package
	Node.js
	Next Step

	Java
	Next Step

	Step 2.2: Create the Execution Role (IAM Role)
	Next Step

	Step 2.3: Create the Lambda Function and Invoke It Manually (Using Sample Event Data)
	Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)
	Step 2.3.2: Test the Lambda Function (Invoke Manually)
	Next Step

	Step 3: Create an Amazon Cognito Identity Pool
	Next Step

	Step 4: Create a Mobile Application for Android

	Using AWS Lambda with Scheduled Events
	Tutorial: Using AWS Lambda with Scheduled Events
	Next Step
	Step 1: Create a Lambda Function
	Next Step

	Step 2: Test the Lambda Function (Using a Sample Test Event)
	Next Step

	Step 3: Create an Amazon SNS Topic and Subscribe to It
	Next Step

	Step 4: Configure a CloudWatch Alarm
	Next Step

	Step 5: Test the Lambda Function Again
	Step 6: Deploy With AWS SAM and AWS CloudFormation
	Specification for Scheduled Event Application
	Deploying the Serverless Application

	Schedule Expressions Using Rate or Cron

	Using AWS Lambda with Custom User Applications
	Tutorial: Using AWS Lambda with Custom User Applications
	Next Step
	Step 1: Prepare
	Next Step

	Step 2: Create a Lambda Function and Invoke It Manually
	Step 2.1: Create a Lambda Function Deployment Package
	Step 2.2: Create the Execution Role (IAM Role)
	Step 2.3: Create a Lambda Function
	Next Step

	Step 3: Invoke the Lambda Function (AWS CLI)
	Next Step

	Step 4: Try More CLI Commands (AWS CLI)
	Step 4.1: List the Lambda Functions in Your Account
	Step 4.2: Get Metadata and a URL to Download Previously Uploaded Lambda Function Deployment Packages
	Next Step

	Step 5: Delete the Lambda Function and IAM Role (AWS CLI)
	Delete the IAM Role

	AWS Lambda@Edge (Preview)
	How It Works
	Authoring Functions for Lambda@Edge
	Permissions
	Testing and Debugging
	Simple Setup
	Lambda@Edge Limits

	Logging AWS Lambda API Calls By Using AWS CloudTrail
	AWS Lambda Information in CloudTrail
	Understanding AWS Lambda Log File Entries

	Best Practices for Working with AWS Lambda Functions
	AWS Lambda Limits
	List of AWS Lambda Limits
	AWS Lambda Limit Errors

	Authentication and Access Control for AWS Lambda
	Authentication
	Access Control
	Overview of Managing Access Permissions to Your AWS Lambda Resources
	AWS Lambda Resources and Operations
	Understanding Resource Ownership
	Managing Access to Resources
	Identity-Based Policies (IAM Policies)
	Resource-Based Policies (Lambda Function Policies)

	Specifying Policy Elements: Actions, Effects, Resources, and Principals
	Specifying Conditions in a Policy

	Using Identity-Based Policies (IAM Policies) for AWS Lambda
	Permissions Required to Use the AWS Lambda Console
	AWS Managed (Predefined) Policies for AWS Lambda
	Customer Managed Policy Examples
	Step 1: Create an IAM User
	Step 2: Allow a User to List Lambda Functions
	Step 3: Allow a User to View Details of a Lambda Function
	Step 4: Allow a User to Invoke a Lambda Function
	Step 5: Allow a User to Monitor a Lambda Function and View CloudWatch Logs
	Step 6: Allow a User to Create a Lambda Function

	Permissions Required to Use the AWS Lambda Console
	Amazon API Gateway
	Amazon CloudWatch Events
	Amazon CloudWatch Logs
	Amazon Cognito
	Amazon DynamoDB
	Amazon Kinesis Streams
	Amazon S3
	Amazon SNS
	AWS IoT

	Using Resource-Based Policies for AWS Lambda (Lambda Function Policies)
	Example 1: Allow Amazon S3 to Invoke a Lambda Function
	Example 2: Allow Amazon API Gateway to Invoke a Lambda Function
	Example 3: Allow a User Application Created by Another AWS Account to Invoke a Lambda Function (Cross-Account Scenario)
	Example 4: Retrieve a Lambda Function Policy
	Example 5: Remove Permissions from a Lambda Function Policy
	Example 6: Working with Lambda Function Versioning, Aliases, and Permissions

	Lambda API Permissions: Actions, Resources, and Conditions Reference
	Policy Templates
	Basic: 'Basic Lambda Permissions'
	VPCAccess: 'Lambda VPC Access Permissions'
	Kinesis: 'Lambda Kinesis stream poller permissions'
	DynamoDB: 'Lambda DynamoDB stream poller permissions'
	Edge: 'Basic Edge Lambda permissions'
	RedrivePolicySNS: ‘Dead letter queue SNS permissions’
	RedrivePolicySQS: 'Dead letter queue SQS permissions'
	CloudFormation: 'CloudFormation stack read-only permissions'
	AMI: 'AMI read-only permissions'
	KMS: 'KMS decryption permissions'
	S3: 'S3 object read-only permissions'
	Elasticsearch: 'Elasticsearch permissions'
	SES: 'SES bounce permissions'
	TestHarness: 'Test Harness permissions'
	Microservice: 'Simple Microservice permissions'
	VPN: 'VPN Connection Monitor permissions'
	SQS: 'SQS Poller permissions'
	IoTButton: 'AWS IoT Button permissions'
	RekognitionNoDataAccess:'Amazon Rekognition no data permissions'
	RekognitionReadOnlyAccess: 'Amazon Rekognition read-only permissions'
	RekognitionWriteOnlyAccess: 'Amazon Rekognition write-only permissions'

	API Reference
	Actions
	AddPermission
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	CreateAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	CreateEventSourceMapping
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	CreateFunction
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	DeleteAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	DeleteEventSourceMapping
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	DeleteFunction
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetAccountSettings
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetEventSourceMapping
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetFunction
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetFunctionConfiguration
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetPolicy
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	Invoke
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	InvokeAsync
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	Example
	Invoke a Lambda function
	Sample Request
	Sample Response

	ListAliases
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	ListEventSourceMappings
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	ListFunctions
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	ListVersionsByFunction
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	PublishVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	RemovePermission
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	UpdateAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	UpdateEventSourceMapping
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	UpdateFunctionCode
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	UpdateFunctionConfiguration
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	Data Types
	AccountLimit
	Contents

	AccountUsage
	Contents

	AliasConfiguration
	Contents

	DeadLetterConfig
	Contents

	Environment
	Contents

	EnvironmentError
	Contents

	EnvironmentResponse
	Contents

	EventSourceMappingConfiguration
	Contents

	FunctionCode
	Contents

	FunctionCodeLocation
	Contents

	FunctionConfiguration
	Contents

	VpcConfig
	Contents

	VpcConfigResponse
	Contents

	Document History
	AWS Glossary

