
SaaS Solutions on AWS
Tenant Isolation Architectures

January 2016

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 2 of 26

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for making
their own independent assessment of the information in this document and any use
of AWS’s products or services, each of which is provided “as is” without warranty of
any kind, whether express or implied. This document does not create any warranties,
representations, contractual commitments, conditions or assurances from AWS, its
affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its
customers are controlled by AWS agreements, and this document is not part of, nor
does it modify, any agreement between AWS and its customers.

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 3 of 26

Contents
Abstract 4

Introduction 4

Common Solution Components 5

Security and Networking (Tenant Isolation Modeling) 5

Identity Management, User Authentication, and Authorization 5

Monitoring, Logging, and Application Performance Management 6

Analytics 6

Configuration Management and Provisioning 7

Storage, Backup, and Restore Capabilities 8

AWS Tagging Strategy 8

Chargeback Module 9

SaaS Solutions – Tenant Isolation Architecture Patterns 11

Model # 1 – Tenant Isolation at the AWS Account Layer 12

Model # 2 – Tenant Isolation at the Amazon VPC Layer 15

Model # 3 – Tenant Isolation at Amazon VPC Subnet Layer 17

Model # 4 – Tenant Isolation at the Container Layer 18

Model # 5 – Tenant Isolation at the Application Layer 21

General Recommendations 23

Conclusion 25

Contributors 25

Further Reading 25

APN Partner Solutions 25

Notes 26

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 4 of 26

Abstract
Increasingly, the mode of delivery for enterprise solutions is turning toward the
software as a service (SaaS) model, but architecting a SaaS solution can be
challenging. There are multiple aspects that need to be taken care of, and a variety of
options for deploying SaaS solutions on AWS. This paper covers the different SaaS
deployment models and the combination of AWS services and AWS Partner Network
(APN) partner solutions that can be used to achieve a scalable, available, secure,
performant, and cost-effective SaaS offering.

AWS now offers a structured AWS SaaS Partner Program to help you build, launch,
and grow SaaS solutions on AWS. As your business evolves, AWS will be there to
provide the business and technical enablement support you need. Please review the
SaaS Partner Program website for more details.

Introduction
There are a variety of solutions that can be deployed in a SaaS model, and these
share a number of similarities and common patterns. In this paper, we will discuss:

• Common solution components – These are aspects that we recommend
handling separately from the core, solution-related functional components,
such as billing, monitoring, and analytics. We will discuss these components
in detail.

• SaaS solution - tenant isolation architecture patterns – A solution can be
deployed in multiple ways on AWS. We will discuss typical models that help
with the requirements around a multi-tenant SaaS deployment, along with
considerations for each of those cases.

This white paper focuses on the technology and architecture aspects of SaaS
deployments, and does not attempt to address business and process-related aspects,
such as software vendor licensing, SLAs, pricing models, and DevOps practice
considerations.

http://aws.amazon.com/partners/saas/

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 5 of 26

Common Solution Components
In addition to building the core functional components of your SaaS solution, we
highly recommend that you build additional supporting components that will help in
future-proofing your solution and making it easier to manage. Building additional
supporting components will also enable you to easily grow and add more tenants
over time. The following sections discuss some of the recommended supporting
components for SaaS solution setups.

Security and Networking (Tenant Isolation Modeling)
The first step in any multi-tenant system design is to define a strategy to keep the
tenants secure and isolated from one another. This may include security
considerations such as defining segregation at the network/storage layer, encrypting
data at rest or in transit, managing keys and certificates safely, and even managing
application-level security constructs. There are a number of AWS services you can
use to help address security considerations at each level, including AWS CloudHSM,
AWS CloudTrail, Amazon VPC, AWS WAF, Amazon Inspector, Amazon CloudWatch
and Amazon CloudWatch Logs. By using native AWS services such as these, you can
define a model that matches the solution’s security and networking requirements. In
addition to AWS native services, many customers also make use of APN Partner
offerings in the infrastructure security space to augment their security posture, and
add capabilities like intrusion detection systems (IDS)/intrusion prevention systems
(IPS).

Identity Management, User Authentication, and
Authorization
It’s important to decide on the strategy for authenticating and authorizing users to
manage both the AWS services and the SaaS application itself. For AWS services, you
can use AWS Identity and Access Management (IAM) users, IAM roles, Amazon
Elastic Compute Cloud (Amazon EC2) roles, social identities, directory/LDAP users,
and even federated identities using SAML-based integrations. Likewise, for your
application, you have multiple ways to authenticate users. We recommend building a
layer that supports your application authentication requirements. You might
consider Amazon Cognito-based authentication for mobile users, and you can also
look to APN Partner offerings in the identity and access control space for managing
authentication across different identity providers.

https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/vpc/
https://aws.amazon.com/waf/
https://aws.amazon.com/inspector/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/details/#log-monitoring
https://aws.amazon.com/security/partner-solutions/#infrastructure
https://aws.amazon.com/iam/
https://aws.amazon.com/cognito/
https://aws.amazon.com/security/partner-solutions/#iac

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 6 of 26

Monitoring, Logging, and Application Performance
Management
You should have monitoring enabled at multiple layers, not only to help diagnose
issues, but also to enable proactive measures to avoid issues down the road. You can
benefit from utilizing the data from Amazon CloudWatch, which enables detailed
monitoring for critical infrastructure, and lets you configure alarms to notify you of
any issues. You could also make use of AWS Config that provides you with an AWS
resource inventory, configuration history, and configuration change notifications to
enable security and governance. For application-level monitoring, you could use the
Amazon CloudWatch Logs functionality to stream the logs in real time to the service;
in addition, you can search for patterns, and you can also track the number of errors
that occur in your application logs and configure Amazon CloudWatch to send you a
notification whenever the rate of errors exceeds a threshold you specify. Many
companies also use APN Partner offerings in the logging and monitoring space to
monitor application performance aspects.

Analytics
Most SaaS solutions have a wealth of raw data, including application logs, user
access logs, and billing-related data, which generally can provide a lot of insight if
properly analyzed. In addition to batch-oriented analysis, you can do real-time
analytics to see what kind of actions are being invoked by various tenants on the
platform, or look at real-time infrastructure-related metrics to detect any unexpected
behavior and to preempt any future problems. You can use AWS services such as
Amazon Elastic MapReduce (Amazon EMR), Amazon Redshift, Amazon Kinesis,
Amazon Machine Learning, Amazon QuickSight, Amazon Simple Storage Service
(Amazon S3), and Amazon EC2 Spot Instances to build these types of capabilities.
Analytics is normally an ancillary function of a platform in the early stages, but as
soon as multiple tenants are on-boarded to a SaaS platform, analytics quickly
becomes a core function for detecting and understanding usage patterns, providing
recommendations, and driving decisions. We recommend that you plan for this layer
early in the solution development cycle. Figure 1 shows some of the AWS big data
services and their capabilities, ranging from data ingestion to storage to data
analytics/processing.

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/config/
https://aws.amazon.com/security/partner-solutions/#log-monitor
https://aws.amazon.com/elasticmapreduce/
https://aws.amazon.com/redshift/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/quicksight/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/spot/

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 7 of 26

Figure 1: AWS Big Data and Analytics Services

Configuration Management and Provisioning
AWS provides a number of possibilities for automating solution deployments. You
have the ability to bake some deployment tasks within the Amazon Machine Images
(AMIs) themselves, and you can automate more configurable or frequent changes
using various other means:

• One-time tasks like OS hardening or setting up specific versions of run-time
environments that do not change without an application re-certification process
(like a Java upgrade), or even time-consuming installations (like
middleware/database setup) can be baked into the AMI itself.

• To handle more frequently changing aspects of deployment, like code updates
from a code repository, boot-time tasks (like joining a domain/cluster), and
certain environment-specific configurations (like different parameters for
dev/test/production), you can use custom scripts in the EC2 instance’s user data
section or AWS services such as AWS CodeCommit, AWS CodePipeline, and AWS
CodeDeploy.

• For complete stack spin-up, a higher level of automation can be achieved by using
AWS CloudFormation, which gives developers and systems administrators an
easy way to create and manage a collection of related AWS resources, and enables
them to provision and update those resources in an orderly and predictable

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/cloudformation/

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 8 of 26

fashion. Depending on your requirements, AWS Elastic Beanstalk and AWS
OpsWorks can also help with quick deployments and automation.

With the right mix of segregation across different types of tasks, you can achieve the
correct balance between faster boot time (often needed for auto scaled layers) and a
configurable, automated setup (needed for flexible deployments).

Storage, Backup, and Restore Capabilities
Most AWS services have mechanisms in place to perform backup so that you can
revert to a last known stable state if any newer changes need to be backed out.
Features, including Amazon EC2 AMI creation or snapshotting (Amazon EBS,
Amazon RDS, and Amazon Redshift snapshots) can potentially support a majority of
backup requirements. However, for advanced needs, such as the need to quiesce a
file system and then take a consistent snapshot of an active database, you can use
third-party backup tools, many of which are available on AWS Marketplace.

AWS Tagging Strategy
To help you manage instances, images, and other Amazon EC2 resources, you can
assign your own metadata to each resource in the form of tags. We recommend that
you adopt a tagging strategy before you begin to roll out your SaaS solution. Each tag
consists of a key and an optional value, both of which you define. You can also have
multiple tags on a single resource. There are two main uses of tags:

1. General management of resources: Tags enable you to categorize your
AWS resources in different ways, such as by purpose, owner, or environment.
This can simplify filtering and searching across different resources. You can
also use resource groups to create a custom console that organizes and
consolidates the information you need based on your project and the
resources you use. You can also create a resource group to view resources
from different regions on the same screen, as shown in Figure 2.

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/marketplace/
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/what-are-resource-groups.html

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 9 of 26

Figure 2: AWS Resource Groups

2. Billing segregation: Tags enable cost allocation reports and allow you to
get cost segregation based on a particular business unit or environment,
depending on the tagging strategy used. This along with AWS Cost Explorer
can greatly simplify the billing data related visibility & reports.

Chargeback Module
Another important aspect of a multi-tenant system is cost segregation across tenants
based on their usage. From an AWS resources perspective, tagging can be a great
resource to help you separate out usage at a macro level. However, for most SaaS
solutions, greater controls are needed for usage monitoring, so we recommend that
you build your own custom billing module as needed.

A billing module could look like the high-level, generic example shown in Figure 3.

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-explorer-what-is.html

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 10 of 26

Figure 3: Sample Metering and Chargeback Module

• All of the resources that are launched, stopped, and terminated are tracked,
and the data is then sent to an Amazon Kinesis stream.

• Granular measurements, such as the number of API requests made or the
time taken to process any request, are tracked and the data is then fed into the
Kinesis stream in real time.

• Two types of consumer applications can process the data stored in Amazon
Kinesis:
• A consumer fleet that generates real-time metrics on how the system is

being utilized by various tenants. This may help you make decisions such
as whether to throttle a particular tenant’s usage, or perform other
corrective actions based on real-time feeds.

• A second set of a Kinesis consumer fleet could aggregate the continuous
feed and generate monthly or quarterly usage reports for billing. It could
also provide usage analytics for each tenant by processing the raw data
and storing it in Amazon Redshift. For historical data processing or
transformation, Amazon EMR can be used.

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 11 of 26

SaaS Solutions – Tenant Isolation
Architecture Patterns
There are multiple approaches to deploying a packaged solution on AWS, ranging
from a fully isolated deployment to a completely shared SaaS-type architecture, with
many other deployment options in between. In order to support any of the
deployment options, the solution or application itself should be able to support that
SaaS multi-tenancy model, which is the basic assumption we will take here before
diving deep into AWS-specific components of different deployment models.

The decision to pick a particular AWS deployment model depends on multiple
criteria, including:

• Level of segregation across tenants and deployments
• Application scalability aspects across tenant-specific stacks
• Level of tenant-specific application customizations
• Cost of deployment
• Operations and management efforts
• End-tenant metering and billing aspects

The different choices are a “Rubik’s cube” of options that impact one another in
potentially unforeseen ways. The goal of this paper is to help with these multi-
dimensional, unforeseen impacts. The following sections describe some of the SaaS
deployment models on AWS, and include a pros and cons section for each option, to
help guide you to the optimal solution given your business and technical
requirements, as below:

• Model #1 – Tenant Isolation at the AWS Account Layer

• Model #2 – Tenant Isolation at the Amazon VPC Layer

• Model #3 – Tenant Isolation at Amazon VPC Subnet Layer

• Model #4 – Tenant Isolation at the Container Layer

• Model #5 – Tenant Isolation at the Application Layer

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 12 of 26

Model # 1 – Tenant Isolation at the AWS Account Layer
In this model, all the tenants will have their individual AWS accounts and will be
isolated to an extent. In essence, this is not truly a multi-tenant SaaS solution, but
can be treated as a managed solution on AWS.

Figure 4: Tenant Isolation at AWS Account Layer

Pros:
• Tenants are completely separated out, and they do not have any overlap,

which can provide each tenant with a greater sense of security.
• Solution or general configuration customizations are easy, because every

deployment is specific to a tenant (or organization).
• It’s easy to track AWS usage, because a separate monthly bill is generated for

each tenant (or organization).

Cons:
• This option lacks the resources and cost optimizations that can be achieved by

the economies of scale provided by a multi-tenant SaaS model.
• With a large number of tenants, it can become challenging to manage separate

AWS accounts and individual tenant deployments from an operations
perspective.

• As a best practice, all the AWS account root logins should be multi-factor
authentication (MFA) enabled. With ever-increasing individual tenant
accounts, it becomes difficult to manage all the MFA devices.

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 13 of 26

Best Practices:
• Centralized operations and management – IAM supports delegating access

across AWS accounts for accounts you own using IAM roles. Using this
functionality, you can manage all tenants’ AWS accounts through your own
common AWS account by assuming roles to perform various actions (such as
launching a new stack using AWS CloudFormation or updating a security
group configuration), instead of having to log in to each AWS account
individually. You can utilize this functionality by using the AWS Management
Console, AWS Command Line Interface (AWS CLI), and the API. Figure 3
provides a snapshot of how to set this up from the AWS Management Console.

Figure 5: Cross-Account, IAM Role-based Access Setup

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-walkthrough-crossacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-walkthrough-crossacct.html
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/cli/

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 14 of 26

Figure 6: Cross-Account, IAM Role-based Access Switching

• Consolidated AWS billing – You can use the Consolidated Billing feature to
consolidate payment for multiple AWS accounts within your organization by
designating one of them to be the payer account. With Consolidated Billing,
you can see a combined view of AWS charges incurred by all accounts, and
you can get a detailed cost report for each individual AWS account associated
with your payer account.

Figure 7: AWS Consolidated Billing

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated-billing.html

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 15 of 26

• VPC peering – If you would like to have a central set of services (say, for
backup, anti-virus, OS patching, and so on), you can use a VPC peering
connection in the same AWS region between your common AWS account that
has these shared services and the respective tenant’s AWS account. However,
note that you are charged for data transfer within a VPC peering connection at
the same rate as data transfer across Availability Zones. Therefore, you should
factor this cost into the solution’s overall cost modeling exercise.

Model # 2 – Tenant Isolation at the Amazon VPC Layer
In this model, all the tenant solution deployments are in the same AWS account, but
the level of separation is at the VPC layer. For every tenant deployment, there’s a
separate VPC, which provides logical separation between tenants.

Figure 8: Tenant Isolation at VPC Layer

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 16 of 26

Pros:
• Everything is in a single account, so this model is easier to manage than a

multi-account setup.
• There’s appropriate isolation between different tenants, because each one

lives in a different VPC.
• Compared with the previous model, this model provides better economies of

scale and improved utilization of Amazon EC2 Reserved Instances, because
all reservations and volume pricing constructs are applicable on the same
AWS account. However, if Consolidated Billing is used, this model provides
no advantage over the previous model, because Consolidated Billing treats all
the accounts on the consolidated bill as one account.

Cons:
• Amazon VPC-related limits will have to be closely monitored, both from an

overall account perspective and from each tenant’s VPC perspective.
• If all the VPCs need connectivity back to an on-premises setup, then

managing individual VPN connections may become a challenge.
• Even though it’s the same account, if a shared set of services needs to be

provided (such as backups, anti-virus updates, OS updates, and so forth), then
VPC peering will need to be set up from the shared services VPC to all tenant
VPCs.

• Security groups are tied to a VPC, so depending on the deployment
architecture, you may have to create and manage multiple security groups for
each VPC.

• AWS supports tagging as described in the Amazon EC2 documentation.
However, if you need to separate usage and costs for services and resources
beyond the available tagging support, you should either build a custom
chargeback layer, or have a separate AWS account strategy to help clearly
demarcate individual tenant usage.

Best Practices:
In this setup, use tags to separate out AWS costs for each of the tenant deployments.
You can define resource groups and manage tags there, instead of managing them at
the individual resource level. Once you have defined the tagging strategy, you can
use the monthly cost allocation reports to view a breakup of AWS costs by tags and
segregate it as per your needs (see the sample report in Figure 9).

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_Resources.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 17 of 26

 Figure 9: Sample Cost Allocation Report

Model # 3 – Tenant Isolation at Amazon VPC Subnet
Layer
In this model, we will discuss the case where we have a single AWS account and a
single VPC for all tenant deployments. The isolation happens at the level of subnets,
and each tenant has their own separate version of an application or solution with no
sharing across tenants. Figure 10 illustrates this type of deployment.

Figure 10: Tenant Isolation at VPC Subnet Layer

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 18 of 26

Pros:
• You don’t need to set up VPC peering for intercommunication.
• VPN and AWS Direct Connect connectivity to a single on-premises site is

simplified, as there is a single VPC.

Cons:
• Isolation between tenants has to be managed at the subnet level, so Amazon

VPC network access control lists (NACLs) and security groups need to be
carefully managed.

• VPC limits are harder to manage as the number of tenants increases.
Furthermore, you can provision only a few subnets under the VPC CIDR
(Classless Inter-Domain Routing), depending on its size, and the CIDR cannot
be resized once created.

• Changing a VPC level setting (say, DHCP options set) affects all tenants
although they have their individual deployments.

• There are limits on the number of security groups and the number of rules per
security group at the VPC level, so managing those limits with multiple
tenants in the same VPC may be complicated.

Best Practices:
• To access public AWS service endpoints (like Amazon S3), utilize VPC

endpoints. This will scale better than routing the traffic for multiple tenants
through a network address translation (NAT) instance.

• To avoid hitting security group-related limits in a VPC:
o Consolidate security groups to stay under the limit.
o Don’t use security group cross-references; instead, refer to CIDR

ranges.

Model # 4 – Tenant Isolation at the Container Layer
With the advent of container-based deployment, it is now possible to have a single
instance and slice it for multiple tenant applications based on requirements. The
Amazon EC2 Container Service (Amazon ECS) helps easily set up and manage
Docker container-based deployments and could be used to deploy tenant-specific
solution components in individual containers. Figure 11 illustrates a scenario where
different tenants’ containers are deployed in the same VPC.

https://aws.amazon.com/directconnect/
https://aws.amazon.com/ecs/

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 19 of 26

Figure 11: Tenant Isolation at Container Layer

Pros:
• You can have a higher level of resource utilization by having a container-based

model on shared instances.
• It’s easier to manage the clusters at scale, as Amazon ECS takes away the

heavy lifting involved in terms of cluster management and general fault
tolerance.

• Simplified deployments are possible, by testing a Docker image on any
test/development environment and then using simple CLI-based options to
directly put it into production.

• Amazon ECS deploys images on your own Amazon EC2 instances, which can
be further segmented and controlled using VPC-based controls. This, along
with Docker’s own isolation model, meets the security requirements of most
multi-tenant applications.

Cons:
• You can use Amazon EC2 and VPC security groups to limit the traffic on an

Amazon EC2 instance. However, you need to manage the container
configuration to control which ports are open. Managing those aspects may
become a little tedious at scale.

• Tags do not work at the Amazon ECS task (container) level, so separating
costs based on tags will not work, and a custom billing layer will be needed.

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 20 of 26

Best Practices:
• To secure container communication beyond the controls provided by VPC

security groups, you could create a software-defined network for the
containers, using point-to-point tunneling with Generic Routing
Encapsulation (GRE) to route traffic between the container-based subnets.

• In order to architect auto scaling functionality using Amazon ECS, use a
combination of Amazon CloudWatch and AWS Lambda-based container
deployment. In this setup, an AWS Lambda function is triggered by an
Amazon CloudWatch alarm to automatically add another Amazon ECS task to
dynamically scale, as shown in Figure 12.

Figure 12: Auto scaling Architecture for Container-based Deployment

https://aws.amazon.com/lambda/

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 21 of 26

Model # 5 – Tenant Isolation at the Application Layer
This model represents a major shift from the earlier discussed models; now the
application or solution deployment is shared across different tenants. This is a
radical change and a movement toward a true multi-tenant SaaS model. However, to
achieve this model, the application itself should be designed to support multi-
tenancy. For example, if we take a typical 3-tier application with shared web and
application layers, there can be some subtle variations at the database layer (which,
for example, could be either Amazon RDS or a database on an Amazon EC2
instance):

a) Separate databases: Each tenant will have a different database for
maximum isolation. To enable the application layers to pick up the right
database upon each tenant’s request, you will need to maintain metadata in a
separate store (such as Amazon DynamoDB) where mapping of a tenant to its
database is managed.

b) Separate tables/schemas: Different database flavors have different
constructs, but another possible deployment model could be that all tenants’
data resides in the same database, but the data is tied to different schemas or
tables to provide a level of isolation.

c) Shared database, shared schema/tables: In this model, all tenants’ data
is placed together. A unique tenant ID column separates data records for each
tenant. Whenever a new tenant needs to be added to the system, a new tenant
ID is generated, additional capacity is provisioned, and traffic routing is
started to an existing or new stack.

Pros:
• You can achieve economies of scale and better resource usage and

optimization across the entire stack. As a result, this can often be the cheapest
option to operate at scale when you have shared components across the
architecture.

o For example, having a huge multi-tenant Amazon DynamoDB table
that can absorb the request spikes can be much cheaper than having
higher provisioned Amazon DynamoDB tables for individual tenants.

• It’s easy to manage and operate the stack, because it is a single deployment.
Any changes or enhancements that need to be made are rolled out at once,
rather than having to manage n different environments.

• Network connectivity is simplified, and the challenges around the VPC limits
with other models are also subdued, because it’s a single VPC deployment
(although it may be bigger in size).

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 22 of 26

• All shared services (such as patching, OS updates, and anti-virus) are also
centralized and deployed as a single unit for all the tenants.

Cons:
• Applications need to be multi-tenant aware, so existing applications may have

to be re-architected.
• Depending on certain compliance and security requirements, co-hosting

tenants with different security profiles may not be possible.

Best Practices:
To implement this model successfully, consider the following important aspects:

• Often times, different tenants have their own specific needs for certain
features or customizations:

o Try to group tenants according to their requirements; tenants with
similar needs should be put on the same deployment.

o Try to build the most asked for features in the core platform or
application itself, and avoid customizations at the tenant level for long-
term maintainability.

• Closely monitor the stack for each tenant’s activities. If necessary, you should
be able to throttle or deprioritize any particular tenant’s actions to avoid
affecting other tenants adversely.

• Ensure that you have the ability to scale the stacks up and down
automatically, to address the changing needs of the tenants on a particular
stack. This should be built into the architecture, rather than being done by
manual updates.

• Use role-based and fine-grained access controls to enable access to limit a
tenant’s access across the entire stack. Amazon DynamoDB provides fine-
grained access controls, which enable you to determine who can access
individual data items and attributes in Amazon DynamoDB tables and
indexes, and the actions that can be performed on them. Using Amazon
DynamoDB in SaaS architectures can greatly reduce complexities.

• Another important aspect to handle is the AWS cost management across
tenants according to their usage. To handle this, we recommend that you
design a custom billing layer (as explained and outlined in previous sections)
and incorporate it in the solution.

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 23 of 26

General Recommendations
Consider the following general best practices for a packaged SaaS solution design
and delivery on AWS:

• Instead of building large, monolithic application architectures, it’s often
helpful to create smaller, independent, single-responsibility services that can
be clubbed together to achieve the overall business functionality. These
smaller microservices-based architectures can be easier to manage, and can
independently scale. You could use services like Amazon ECS and AWS
Lambda to create these smaller components. AWS Simple Queue Service
(Amazon SQS) could also potentially help decouple microservices by
introducing a queuing layer in between for communication. You can also use
Amazon API Gateway to enable API-based interactions between the layers,
thereby keeping them integrated just at the interface layer. To learn more
about this microservices-based architecture pattern, see the blog post
SquirrelBin: A Serverless Microservice Using AWS Lambda.

• Build abstraction at each layer so that you can future-proof your solution, by
being able to change the underlying implementation without affecting the
public interfaces. Consider aspects such as where you want the solution to be
in next few years, and think about technology trends. For example, mobile
was not as big five years ago as it is today. Plan for the future, and design your
solution in a manner that is scalable and extensible to meet future needs.

• Define a release management process to enable frequent quality updates to
the solution. AWS CodeCommit, AWS CodePipeline, and AWS CodeDeploy
can help with this aspect of your deployment.

• Keep tenant-specific customizations to a minimum, and try to build most of
the features within the platform itself. For tenant-specific configuration
metadata, AWS DynamoDB can be useful.

• Build an API for your solution or platform if it needs to integrate with third-
party systems.

• Use IAM roles for Amazon EC2, instead of using hard-coded credentials
within various application components.

• Find ways to cost-optimize your solution. For instance, you can use Reserved
or Spot Instances, adopt AWS Lambda to design an event-driven architecture,
or use Amazon ECS to containerize smaller functional blocks.

• Utilize Auto Scaling to dynamically scale your environment up and down, as
per load.

• Benchmark application performance to right-size your Amazon EC2 instances
and their count.

• Make use of AWS Trusted Advisor recommendations to further optimize your
AWS deployment.

https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/blogs/compute/the-squirrelbin-architecture-a-serverless-microservice-using-aws-lambda/
https://aws.amazon.com/trusted-advisor/

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 24 of 26

• There are often custom capabilities that you may like to build into your
platform that could be supplied by a packaged solution from an APN
Technology Partner. Look for opportunities to pick and choose what to build
on your own, versus utilizing an existing solution. Leverage various APN
Partner solutions and offerings, and AWS Marketplace to augment the
features and functionalities provided by AWS services.

• Enroll in the AWS SaaS Partner Program to learn, build, and grow your SaaS
business on AWS.

• It’s important to ensure that your solution can be effectively managed on AWS
by your firm. Another option is to work with an AWS MSP Consulting Partner.

• Validate your operational model using the AWS operational checklist.
• Validate your security model using the AWS auditing security checklist.
• Leverage various APN Partner solutions and offerings, and AWS Marketplace

to augment the features and functionalities provided by AWS services.

http://aws.amazon.com/partners/saas/
http://aws.amazon.com/partners/managed-service/
https://media.amazonwebservices.com/AWS_Operational_Checklists.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_Auditing_Security_Checklist.pdf

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 25 of 26

Conclusion
Every packaged SaaS solution is different in nature, but they share common
ingredients. You can use the practices and architecture methodologies described in
this paper to deploy a scalable, secure, optimized SaaS solution on AWS. The paper
describes different models you can adopt. Depending on the type of SaaS solution
you’re building, using multiple models or even a hybrid approach may suit your
needs.

Contributors
The following individuals and organizations contributed to this document:

• Kamal Arora, Solutions Architect, Amazon Web Services

• Tom Laszewski, Sr. Manager, Solutions Architects, Amazon Web Services

• Matt Yanchyshyn, Sr. Manager, Solutions Architects, Amazon Web Services

Further Reading
APN Partner Solutions
In order to build out various functions in a custom SaaS solution, you will likely want
to integrate with popular ISV solutions across various functions. To make your
selection easy, the APN has developed the AWS Competency Program, designed to
highlight APN Partners who have demonstrated technical proficiency and proven
customer success in specialized solution areas. Below are some of the AWS
Competency solution pages, which you can refer to for more details:

• DevOps – https://aws.amazon.com/solutions/partners/dev-ops/
• Mobile - https://aws.amazon.com/mobile/partner-solutions/
• Security - https://aws.amazon.com/security/partner-solutions/
• Digital Media - https://aws.amazon.com/partners/competencies/digital-

media/
• Marketing & Commerce - https://aws.amazon.com/digital-

marketing/partner-solutions/
• Big Data - https://aws.amazon.com/partners/competencies/big-data/
• Storage - https://aws.amazon.com/backup-recovery/partner-solutions/

https://aws.amazon.com/partners/competencies/
https://aws.amazon.com/solutions/partners/dev-ops/
https://aws.amazon.com/mobile/partner-solutions/
https://aws.amazon.com/security/partner-solutions/
https://aws.amazon.com/partners/competencies/digital-media/
https://aws.amazon.com/partners/competencies/digital-media/
https://aws.amazon.com/digital-marketing/partner-solutions/
https://aws.amazon.com/digital-marketing/partner-solutions/
https://aws.amazon.com/partners/competencies/big-data/
https://aws.amazon.com/backup-recovery/partner-solutions/

Amazon Web Services – SaaS Solutions on AWS January 2016

Page 26 of 26

• Healthcare - https://aws.amazon.com/partners/competencies/healthcare/
• Life Sciences - https://aws.amazon.com/partners/competencies/life-

sciences/
• Microsoft Solutions -

https://aws.amazon.com/partners/competencies/microsoft/
• SAP Solutions - https://aws.amazon.com/partners/competencies/sap/
• Oracle Solutions - https://aws.amazon.com/partners/competencies/oracle/

Notes
• Details on various AWS usage and billing reports:

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-
is.html

• Amazon EC2 IAM roles:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-
amazon-ec2.html

• Auto scaling Amazon ECS services using Amazon CloudWatch and AWS
Lambda

https://aws.amazon.com/blogs/compute/scaling-amazon-ecs-services-
automatically-using-amazon-cloudwatch-and-aws-lambda/

• Working with Tag Editor-
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html

• Working with resource groups:
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/resource-
groups.html

• Backup, archive, and restore approaches on AWS –
http://d0.awsstatic.com/whitepapers/Backup_Archive_and_Restore_Approa
ches_Using_AWS.pdf

• AWS Managed Service Program -
http://aws.amazon.com/partners/managed-service/

• AWS SaaS Partner program –
http://aws.amazon.com/partners/saas/

https://aws.amazon.com/partners/competencies/healthcare/
https://aws.amazon.com/partners/competencies/life-sciences/
https://aws.amazon.com/partners/competencies/life-sciences/
https://aws.amazon.com/partners/competencies/microsoft/
https://aws.amazon.com/partners/competencies/sap/
https://aws.amazon.com/partners/competencies/oracle/
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://aws.amazon.com/blogs/compute/scaling-amazon-ecs-services-automatically-using-amazon-cloudwatch-and-aws-lambda/
https://aws.amazon.com/blogs/compute/scaling-amazon-ecs-services-automatically-using-amazon-cloudwatch-and-aws-lambda/
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/resource-groups.html
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/resource-groups.html

	Abstract
	Introduction
	Common Solution Components
	Security and Networking (Tenant Isolation Modeling)
	Identity Management, User Authentication, and Authorization
	Monitoring, Logging, and Application Performance Management
	Analytics
	Configuration Management and Provisioning
	Storage, Backup, and Restore Capabilities
	AWS Tagging Strategy
	Chargeback Module

	SaaS Solutions – Tenant Isolation Architecture Patterns
	Model # 1 – Tenant Isolation at the AWS Account Layer
	Pros:
	Cons:
	Best Practices:

	Model # 2 – Tenant Isolation at the Amazon VPC Layer
	Pros:
	Cons:
	Best Practices:

	Model # 3 – Tenant Isolation at Amazon VPC Subnet Layer
	Pros:
	Cons:
	Best Practices:

	Model # 4 – Tenant Isolation at the Container Layer
	Pros:
	Cons:
	Best Practices:

	Model # 5 – Tenant Isolation at the Application Layer
	Pros:
	Cons:
	Best Practices:

	General Recommendations
	Conclusion
	Contributors
	Further Reading
	APN Partner Solutions

	Notes

