Portal:Energy

From Wikipedia, the free encyclopedia
Jump to: navigation, search
The Energy Portal
Crystal energy.svg

Welcome to Wikipedia's energy portal, your gateway to the subject of energy and its effects on the world around us. This portal is aimed at educating you about energy and all its uses.

Main page   Explore topics & categories   Tasks & announcements


Page contents: IntroductionEnergy newsSelected articleSelected pictureSelected biographyDid you know?QuotationsRelated portalsWikiprojectsAssociated WikimediaHelp

edit  watch  

Introduction

Susquehanna steam electric station.jpg

Energy is a property of objects and systems of objects to act against a force (to do work), explored in branches of physics such as thermodynamics. Popularly the term is most often used in the context of energy as a public technology: energy resources, their consumption, development, depletion, and conservation. Biologically, bodies rely on food for energy in the same sense as industry relies on fuels to continue functioning. Since economic activities such as manufacturing and transportation can be energy intensive, energy efficiency, energy dependence, energy security and price are key concerns. Increased awareness of the effects of global warming has led to global debate and action for the reduction of greenhouse gases emissions; like many previous energy use patterns, it is changing not due to depletion or supply constraints but due to problems with waste, extraction, or geopolitical scenarios.

First, somehow there is a movement. There happened to be a burst of motion first. Motion implies and embraces energy, includes energy in itself. That first movement is a systematic one. The energy is the “ability of that system to perform work.” After that first movement we have the energy to play with. The universe is the result of the work systematically performed by that burst of motion. Motion can be transferred, transformed and converted into different forms. Whenever we see or sense a work done that means a visible energy. From here on radiation of energy, electromagnetic radiation and so on is easy to follow.

In the context of natural science, energy can take several different forms: thermal, chemical, electrical, radiant, nuclear, etc. These are often grouped as being either kinetic energy or potential energy. Many of these forms can be readily transformed into another with the help of a device - from chemical energy to electrical energy using a battery, for example. Most energy available for human use ultimately comes from the sun, which generates it with nuclear fusion. The enormous potential for fusion and other basic nuclear reactions is expressed by the equation E = mc2.

The concepts of energy and its transformations are useful in explaining natural processes on larger scales: Meteorological phenomena like wind, rain, lightning and tornadoes all result from energy transformations brought about by solar energy on the planet. Life itself is critically dependent on biological energy transformations; organic chemical bonds are constantly broken and made to make the exchange and transformation of energy possible. Read more...


edit  watch  

Selected article

Climate Change 2007, the fourth report of the United Nations Intergovernmental Panel on Climate Change (IPCC) to evaluate the risks of global warming since 1990, is being published in sections throughout 2007. Prior to publishing, the report - which is the combined work of hundreds of experts - is reviewed by representatives from many of the world's governments.

Due to the accumulation of evidence, the report goes further than previous reports by stating that 'warming of the climate system is unequivocal'. It goes on to say that 'most of the observed increase in globally averaged temperatures since the mid-20th century is 'very likely' due to the observed increase in anthropogenic greenhouse gas concentrations'. Fossil fuel use is given as the primary source of the increase in atmospheric carbon dioxide, with the increase in methane being very likely caused by a combination of agricultural practices and fossil fuel use.

Based on an analysis of computer climate models, the report states that average surface temperatures will rise during this century, most likely between 1.1 to 4.3°C (5.2 to 11.5 °F), depending on the mitigation actions taken. Excluding the effects of ice sheet flow, they also predict a sea level rise of 18 to 26 cm (7 to 23 inches), more heat waves and more heavy rain. An increase in areas affected by droughts, in the intensity of tropical cyclones and in extreme high tides is also likely. The IPCC believe that stabilization of greenhouse gas concentrations is possible at a reasonable cost, with stabilization between 445 and 535 ppm costing less than 3% of global GDP. They do warn, however, that a 'large shift in the pattern of investment' is required. Read more...


edit  watch  

Selected picture

Polarlicht 2.jpg

Photo credit: Senior Airman Joshua Strang, United States Air Force
An aurora, caused by the release of energy as charged particles collide with atoms in the Earth's upper atmosphere.


edit  watch  

Did you know?

  • Golar Spirit (pictured) is the world's first floating storage and regasification vessel converted from a LNG carrier?
  • The scientific-technical journal Oil Shale is the only journal in the world that focuses on oil shale as a main subject?

edit  watch  

Selected biography

{{{caption}}}
William Thomson, 1st Baron Kelvin, OM, GCVO, PC, PRS, FRSE, (26 June 1824 – 17 December 1907), widely known for developing the Kelvin scale of absolute temperature measurement, was a mathematical physicist, engineer, and outstanding leader in the physical sciences of the 19th century. He did important work in the mathematical analysis of electricity and thermodynamics, and did much to unify the emerging discipline of physics in its modern form.

Born in Ireland, Thomson studied at the University of Glasgow, Scotland. On graduating, he became a mathematics teacher at the Royal Belfast Academical Institution. During his life Thomson published more than 600 scientific papers and filed over 70 patents.

As early as 1845 Thomson pointed out that the experimental results of William Snow Harris were in accordance with the laws of Coulomb. Over the period 1855 to 1867, Thomson collaborated with Peter Guthrie Tait the Treatise on Natural Philosophy that unified the various branches of physical science under the common principle of energy. His inventions included the current balance for the precise specification of the ampere, the standard unit of electric current.

In 1893, Thomson headed an international commission to decide on the design of the Niagara Falls power station. Despite his previous belief in the superiority of direct current electric power transmission, he agreed to use alternating current after seeing a Westinghouse demonstration at the Chicago World's Fair. Read more...


edit  watch  

Energy news


Wikinews on energy
Renewable energy news


edit  watch  

Quotations


edit  watch  

Related portals

edit  watch  

WikiProjects

edit  watch  

Help

Torchlight help icon.svg

Puzzled by energy?
Can't answer your question?
Don't understand the answer?


For further ideas, to leave a comment, or to learn how you can help improve and update this portal, see the talk page.

edit  watch  

Associated Wikimedia

The following Wikimedia sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wikivoyage 
Travel guides

Wiktionary 
Definitions

Wikidata 
Database

Wikispecies 
Species