Эта статья входит в число хороших статей

Меркурий

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Меркурий (планета)»)
Перейти к: навигация, поиск
Меркурий Mercury symbol.svg
Mercury in color - Prockter07 centered.jpg
Меркурий (снимок «Мессенджера»), у правого края в южном полушарии виден кратер Толстой
Mercury-real color.jpg
Меркурий в натуральном цвете (снимок «Маринера-10»)
Орбитальные характеристики[1]

Эпоха: J2000.0

Перигелий

46 001 009 км
0,30749951 а. е.

Афелий

69 817 445 км
0,46670079 а. е.

Эксцентриситет орбиты (e)

0,20563593

Сидерический период обращения

87,969 дней[2]

Синодический период обращения

115,88 дней[2]

Орбитальная скорость (v)

47,36 км/с (средняя)[2]

Средняя аномалия (Mo)

174,795884°

Наклонение (i)

7,00° относительно плоскости эклиптики
3,38° относительно солнечного экватора
6,34° отн. инвариантной плоскости[3]

Долгота восходящего узла (Ω)

48,33167°[2]

Аргумент перицентра (ω)

29,124279°

Чей спутник

Солнце

Спутники

нет

Физические характеристики[1]
Полярное сжатие

0

Экваториальный радиус

2439,7 км[2]

Полярный радиус

2439,7 км[2]

Средний радиус

2439,7 ± 1,0 км (0,3829 земного)[2]

Окружность большого круга

15 329,1 км

Площадь поверхности (S)

7,48·107 км²
0,147 земной

Объём (V)

6,083·1010 км³
0,056 земного[2]

Масса (m)

3,33022·1023 кг
0,055274 земной[4][5]

Средняя плотность (ρ)

5,427 г/см³
0,984 земной[2]

Ускорение свободного падения на экваторе (g)

3,7 м/с²
0,377 g[2]

Первая космическая скорость (v1)

3,1 км/с

Вторая космическая скорость (v2)

4,25 км/с

Экваториальная скорость вращения

10,892 км/ч (3,026 м/с) (на экваторе)

Период вращения (T)

58,646 дней (1407,5 часов)[2]

Наклон оси

2,11′ ± 0,1′[6]

Прямое восхождение северного полюса (α)

18 ч 44 мин 2 с
281,01°[2]

Склонение северного полюса (δ)

61,45°[2]

Альбедо

0,068 (Бонд)[2][7]
0,142 (геометрическое)[2][7]

Видимая звёздная величина

от −2,6m[8] до 5,7m[2][9]

Угловой диаметр

4,5" – 13"[2]

Температура
 
мин. сред. макс.
0°N, 0°W[10]
100 K
(−173 °C)
340 К
(67 °C)
700 К[11]
(427 °C)
85°N, 0°W[10]
80 К
(−193 °C)
200 К
(−73 °C)
380 К
(107 °C)
Атмосфера[2]
Атмосферное давление

~10−15 бар[2]

Состав:
42,0 % кислород
29,0 % натрий
22,0 % водород
6,0 % гелий
0,5 % калий
0,5 % остальные (вода, углекислый газ, азот, аргон, ксенон, криптон, неон, кальций, магний)[2][5]
Информация в Викиданных

Мерку́рий — самая близкая к Солнцу планета Солнечной системы[12]. Планета названа в честь древнеримского бога торговли — быстроногого Меркурия, поскольку она движется по небесной сфере быстрее других планет.

Общие сведения[править | править вики-текст]

Среднее расстояние Меркурия от Солнца чуть меньше 58 млн км. (57,91 млн км.)[13][14]. Планета обращается вокруг Солнца за 88 земных суток. Видимая звёздная величина Меркурия колеблется от −1,9[2] до 5,5, но его нелегко заметить из-за близости к Солнцу.

Меркурий относится к планетам земной группы. По своим физическим характеристикам Меркурий напоминает Луну. У него нет естественных спутников, но есть очень разрежённая атмосфера. Планета обладает крупным железным ядром[15], являющимся источником магнитного поля, напряжённость которого составляет 0,01 от земного магнитного поля[16]. Ядро Меркурия составляет 83 % от всего объёма планеты[17][18]. Температура на поверхности Меркурия колеблется от 90 до 700 К (от −180 до +430 °C). Солнечная сторона нагревается гораздо больше, чем полярные области и обратная сторона планеты.

Сравнительные размеры планет земной группы (слева направо: Меркурий, Венера, Земля, Марс)

Радиус Меркурия составляет всего 2439,7 ± 1,0 км[2], что меньше радиуса спутника Юпитера Ганимеда и спутника Сатурна Титана. Масса планеты равна 3,3·1023 кг. Средняя плотность Меркурия довольно велика — 5,43 г/см³, что лишь незначительно меньше плотности Земли. Учитывая, что Земля намного больше по размерам, значение плотности Меркурия указывает на повышенное содержание в его недрах металлов. Ускорение свободного падения на Меркурии равно 3,70 м/с²[1]. Вторая космическая скорость — 4,25 км/с[1]. Несмотря на меньший радиус, Меркурий всё же превосходит по массе такие спутники планет-гигантов, как Ганимед и Титан.

О планете пока известно сравнительно немного. Только в 2009 году учёные составили первую полную карту Меркурия, используя снимки аппаратов «Маринер-10» и «Мессенджер»[19].

После лишения Плутона в 2006 году статуса планеты к Меркурию перешло звание самой маленькой планеты Солнечной системы.

Астрономия[править | править вики-текст]

Астрономические характеристики[править | править вики-текст]

Видимая звёздная величина Меркурия колеблется от −1.9m до 5,5m[2], но его нелегко заметить по причине небольшого углового расстояния от Солнца (максимум 28,3°)[20].

Наиболее благоприятные условия для наблюдения Меркурия — в низких широтах и вблизи экватора: это связано с тем, что продолжительность сумерек там наименьшая. В средних широтах найти Меркурий гораздо труднее и возможно только в период наилучших элонгаций. В высоких широтах планету практически никогда нельзя увидеть на тёмном ночном небе: Меркурий виден в течение очень небольшого промежутка времени после наступления сумерек[21].

Меркурий на звёздном небе (вверху, над Луной и Венерой), Паранальская обсерватория

Наиболее благоприятные условия для наблюдения Меркурия в средних широтах обоих полушарий складываются около равноденствий (продолжительность сумерек при этом минимальная). Оптимальным временем для наблюдений планеты являются утренние или вечерние сумерки в периоды его элонгаций (периодов максимального удаления Меркурия от Солнца на небе, наступающих несколько раз в год).

Астрономический символ Меркурия представляет собой стилизованное изображение крылатого шлема бога Меркурия с его кадуцеем.

Небесная механика Меркурия[править | править вики-текст]

Меркурий обращается по своей орбите вокруг Солнца с периодом около 88 земных суток. Продолжительность одних звёздных суток на Меркурии составляет 58,65 земных[22], а солнечных — 176 земных[4]. Меркурий движется вокруг Солнца по довольно сильно вытянутой эллиптической орбите (эксцентриситет 0,205) на среднем расстоянии 57,91 млн км (0,387 а. е.). В перигелии Меркурий находится в 45,9 млн км от Солнца (0,3 а. е.), в афелии — в 69,7 млн км (0,46 а. е.), таким образом, в перигелии Меркурий более чем в полтора раза ближе к Солнцу, чем в афелии. Наклон орбиты к плоскости эклиптики равен 7°. На один оборот по орбите Меркурий затрачивает 87,97 земных суток. Средняя скорость движения планеты по орбите — 48 км/с. Расстояние от Меркурия до Земли меняется от 82 до 217 млн км[23]. Поэтому при наблюдении с Земли, Меркурий за несколько дней изменяет своё положение относительно Солнца от запада (утренняя видимость) к востоку (вечерняя видимость).

Астрономы долгое время считали, что Меркурий постоянно обращён к Солнцу одной и той же стороной, и один оборот вокруг оси занимает у него те же 87,97 земных суток. Наблюдения деталей на поверхности Меркурия не противоречили этому. Данное заблуждение было связано с тем, что наиболее благоприятные условия для наблюдения Меркурия повторяются через период, примерно равный четырёхкратному периоду вращения Меркурия (352 суток), поэтому в различное время наблюдался приблизительно один и тот же участок поверхности планеты. Истина раскрылась только в середине 1960-х годов, когда была проведена радиолокация Меркурия.

Оказалось, что меркурианские звёздные сутки равны 58,65 земных суток, то есть 2/3 меркурианского года[22]. Такое соотношение периодов вращения вокруг оси и обращения Меркурия вокруг Солнца является уникальным для Солнечной системы явлением. Оно, предположительно, объясняется тем, что приливное воздействие Солнца отбирало момент количества движения и тормозило вращение, которое было первоначально более быстрым, до тех пор, пока оба периода не оказались связаны целочисленным отношением[24]. В результате за один меркурианский год Меркурий успевает повернуться вокруг своей оси на полтора оборота. То есть если в момент прохождения Меркурием перигелия определённая точка его поверхности обращена точно к Солнцу, то при следующем прохождении перигелия к Солнцу будет обращена в точности противоположная точка поверхности, а ещё через один меркурианский год Солнце снова вернётся в зенит над первой точкой. В результате солнечные сутки на Меркурии длятся два меркурианских года или трое меркурианских звёздных суток[4].

В результате такого движения планеты на ней можно выделить «горячие долготы» — два противоположных меридиана, которые попеременно обращены к Солнцу во время прохождения Меркурием перигелия, и на которых из-за этого бывает особенно горячо даже по меркурианским меркам[25].

На Меркурии нет смены времён года, как на Земле. Это происходит из-за того, что ось вращения планеты почти перпендикулярна к плоскости орбиты. Как следствие, рядом с полюсами есть области, которые солнечные лучи не освещают. Исследования, проведённые с помощью радиотелескопа в Аресибо, позволяет предположить, что в этой холодной и тёмной зоне существуют ледники. Слой водяного льда может достигать 2 м и покрыт слоем пыли[26].

Комбинация осевого и орбитального движений планеты порождает ещё одно интересное явление. Скорость вращения планеты вокруг оси — величина практически постоянная, в то время как скорость орбитального движения постоянно изменяется. На участке орбиты вблизи перигелия в течение примерно 8 суток угловая скорость орбитального движения превышает угловую скорость вращательного движения. В результате Солнце на небосводе Меркурия останавливается и начинает двигаться в обратном направлении — с запада на восток. Этот эффект иногда называют[кто?] эффектом Иисуса Навина, по имени Иисуса Навина, который, согласно Библии, однажды остановил движение Солнца (Нав. 10:12—13). Для наблюдателя на долготах, отстоящих на 90° от «горячих долгот», Солнце при этом восходит (или заходит) дважды.

Интересно также, что, хотя ближайшими по расположению орбит к Земле являются Марс и Венера, Меркурий в среднем чаще[источник не указан 1306 дней] других является ближайшей к Земле планетой (поскольку другие планеты отдаляются в большей степени, не будучи столь «привязанными» к Солнцу).

Прохождение Меркурия по диску Солнца[править | править вики-текст]

Прохождение Меркурия по диску Солнца — довольно редкое астрономическое явление, однако, оно случается намного чаще, чем например прохождения Венеры, поскольку Меркурий находится ближе к Солнцу и меркурианский год короче.

Возможно также одновременное прохождение по диску Солнца и Венеры одновременно с Меркурием, но такое событие бывает исключительно редко. Ближайший совместный транзит Венеры и Меркурия будет 26 июля 69 163 года, следующий — в 224 508 году. Предыдущий одновременный транзит был более 350 тысяч лет назад, в 373 173 году до н. э. В 13 425 году н. э. будет транзит Меркурия и Венеры с разницей в 16 часов.

Прохождение Меркурия по диску Солнца 8 ноября 2006 года. Меркурий виден как маленькая точка чуть ниже центра фотографии

Прохождение Меркурия может произойти и в момент солнечного затмения. Подобное крайне редкое совпадение случится 30 мая 6757 года[27].

Продолжительность прохождения Меркурия по диску Солнца обычно длится 5 часов.

7 апреля 2094 года в 10.45 по всемирному времени Меркурий пройдёт по диску Юпитера.

Аномальная прецессия орбиты[править | править вики-текст]

Прецессия орбиты Меркурия. Скорость прецессии для наглядности рисунка увеличена по сравнению с действительной.

Меркурий находится близко к Солнцу, поэтому эффекты общей теории относительности проявляются в его движении в наибольшей мере среди всех планет Солнечной системы. Уже в 1859 году французский математик и астроном Урбен Леверье сообщил, что существует медленная прецессия перигелия Меркурия, которая не может быть полностью объяснена на основе расчёта влияния известных планет согласно ньютоновской механике.

Прецессия перигелия Меркурия составляет 574,10 ± 0,65″ (угловых секунд) за столетие в гелиоцентрической системе координат, или 5600 угловых секунд за столетие в геоцентрической системе координат. Расчёт влияния всех других небесных тел на Меркурий согласно ньютоновской механике даёт прецессию соответственно 531,63 ± 0,69 и 5557 угловых секунд за столетие[28]. Пытаясь объяснить наблюдаемый эффект, Леверье предположил, что существует ещё одна планета (или, возможно, пояс небольших астероидов), орбита которой расположена ближе к Солнцу, чем у Меркурия, и которая вносит возмущающее влияние[29] (другие объяснения рассматривали неучтённое полярное сжатие Солнца). Благодаря ранее достигнутым успехам в поисках Нептуна с учётом его влияния на орбиту Урана данная гипотеза стала популярной, и искомая гипотетическая планета даже получила название — Вулкан. Однако эта планета так и не была обнаружена[30].

Так как ни одно из этих объяснений не выдержало проверки наблюдениями, некоторые физики начали выдвигать более радикальные гипотезы, что необходимо изменять сам закон тяготения, например, менять в нём показатель степени или добавлять в потенциал члены, зависящие от скорости тел[31]. Однако большинство таких попыток оказались противоречивыми. В начале XX века общая теория относительности дала объяснение наблюдаемой прецессии. Эффект очень мал: релятивистская «добавка» составляет всего 42,98 угловой секунды за век, что составляет 1/130 (0,77 %) от общей скорости прецессии, так что потребуется по меньшей мере 12 млн оборотов Меркурия вокруг Солнца, чтобы перигелий вернулся в положение, предсказанное классической теорией. Подобное, но меньшее смещение существует и для других планет — 8,62 угловой секунды за век для Венеры, 3,84 для Земли, 1,35 для Марса, а также астероидов — 10,05 для Икара[32][33].

Планетология[править | править вики-текст]

Магнитное поле[править | править вики-текст]

Меркурий обладает магнитным полем, напряжённость которого, по результатам измерения «Маринера-10», примерно в 100 раз меньше земного и составляет ~300 нТл[2]. Магнитное поле Меркурия имеет дипольную структуру[34] и в высшей степени симметрично[35], а его ось всего на 10 градусов отклоняется от оси вращения планеты[36], что налагает существенное ограничение на круг теорий, объясняющих его происхождение[35]. Магнитное поле Меркурия, возможно, образуется в результате эффекта динамо, то есть так же, как и на Земле[37][38]. Этот эффект является результатом циркуляции вещества в жидком ядре планеты. Из-за выраженного эксцентриситета планеты возникает чрезвычайно сильный приливный эффект. Он поддерживает ядро в жидком состоянии, что необходимо для проявления «эффекта динамо»[39]. В 2015 году ученые из США, Канады и России оценили нижнюю границу среднего возраста магнитного поля Меркурия в 3,7-3,9 миллиарда лет[40][41].

График, показывающий относительную напряжённость магнитного поля Меркурия

Магнитное поле Меркурия достаточно сильное, чтобы влиять на движение солнечного ветра вокруг планеты, создавая магнитосферу. Магнитосфера планеты, хотя и настолько мала, что может поместиться внутри Земли[34], достаточно мощная, чтобы захватить заряженные частицы (плазму) солнечного ветра. Результаты наблюдений, полученные «Маринером-10», указывают на существование низкоэнергетической плазмы в магнитосфере с ночной стороны планеты. В «подветренном» хвосте магнитосферы были обнаружены всплески высокоэнергетических частиц, что указывает на динамические качества магнитосферы планеты[34].

Во время второго пролёта мимо планеты 6 октября 2008 года «Мессенджер» обнаружил, что магнитное поле Меркурия может иметь значительное количество «окон» — зон со сниженной напряженностью магнитного поля. Приборы космического аппарата обнаружили явление магнитных вихрей — сплетённых узлов магнитного поля, соединяющих аппарат с магнитным полем планеты. Вихрь достигал 800 км в поперечнике, что составляет треть радиуса планеты. Такая вихревая форма магнитного поля порождается солнечным ветром. Так как солнечный ветер обтекает магнитное поле планеты, силовые линии магнитного поля связываются с плазмой солнечного ветра и увлекаются им, завиваясь в вихреподобные структуры. Эти вихри магнитного поля формируют «окна» в планетарном магнитном щите, через которые заряженные частицы солнечного ветра проникают сквозь него и достигают поверхности Меркурия[42]. Процесс связи планетного и межпланетного магнитных полей, названный магнитным пересоединением, — обычное явление в космосе. Оно наблюдается и в магнитосфере Земли, при этом возникают магнитные вихри. Однако, по наблюдениям «Мессенджера», частота присоединения магнитного поля к плазме солнечного ветра в магнитосфере Меркурия в 10 раз выше.

Атмосфера[править | править вики-текст]

При пролёте космического аппарата «Маринер-10» мимо Меркурия было установлено наличие у планеты предельно разрежённой атмосферы, давление которой в 5·1011 раз меньше давления земной атмосферы. В таких условиях атомы чаще сталкиваются с поверхностью планеты, чем друг с другом. Атмосферу составляют атомы, захваченные из солнечного ветра или выбитые солнечным ветром с поверхности, — гелий, натрий, кислород, калий, аргон, водород. Среднее время жизни отдельного атома в атмосфере — около 200 суток.

Водород и гелий, вероятно, поступают на планету с солнечным ветром, диффундируя в её магнитосферу, и затем уходят обратно в космос. Радиоактивный распад элементов в коре Меркурия является другим источником гелия, и аргона-40, образующегося в результате распада слаборадиоактивного природного изотопа калия-40. Присутствуют водяные пары, выделяющиеся в результате ряда процессов, таких как удары комет о поверхность планеты, образование воды из водорода солнечного ветра и кислорода, содержащегося в оксидах пород и минералов, сублимация льда, который, возможно, находится в постоянно затенённых полярных кратерах. Нахождение значительного числа связанных с водой ионов, таких как O+, OH и H2O+, стало неожиданностью для исследователей[43][44].

Концентрация натрия в атмосфере Меркурия. (АМС «Мессенджер», 14 января, 2008 год).

Так как значительное число этих ионов было найдено в окружающем Меркурий космосе, учёные предположили, что они образовались из молекул воды, разрушенных на поверхности или в экзосфере планеты солнечным ветром[45][46].

5 февраля 2008 года группа астрономов из Бостонского университета под руководством Джеффри Бомгарднера объявила об открытии у Меркурия кометоподобного хвоста длиной более 2,5 млн км. Обнаружили его при наблюдениях с наземных обсерваторий в дублетной спектральной линии натрия. До этого было известно о хвосте длиной не более 40 тыс. км. Первое изображение хвоста этой группой было получено в июне 2006 года с помощью 3,7-метрового телескопа Военно-воздушных сил США на горе Халеакала (Гавайи), а затем использовали ещё три меньших инструмента: один на Халеакала и два на обсерватории Макдональд (штат Техас). Телескоп с 4-дюймовой апертурой (100 мм) использовался для создания изображения с большим полем зрения. Изображение длинного хвоста Меркурия было получено в мае 2007 года Джоди Вилсоном (старший научный сотрудник) и Карлом Шмидтом (аспирант)[47]. Видимая угловая длина хвоста для наблюдателя с Земли составляет порядка 3°.

Новые данные о хвосте Меркурия появились после второго и третьего пролёта АМС «Мессенджер» в начале ноября 2009 года[48]. На основе этих данных сотрудники НАСА смогли предложить модель данного явления[49].

Геология Меркурия[править | править вики-текст]

Гипотезы образования Меркурия[править | править вики-текст]

Основной гипотезой появления Меркурия и других планет является небулярная гипотеза.

С XIX века существует гипотеза, что Меркурий в прошлом был спутником планеты Венеры, а впоследствии был ею «потерян»[4]. В 1976 году Том ван Фландерн и К. Р. Харрингтон на основании математических расчётов показали, что эта гипотеза хорошо объясняет большую вытянутость (эксцентриситет) орбиты Меркурия, его резонансный характер обращения вокруг Солнца и потерю вращательного момента как у Меркурия, так и у Венеры (у последней также — приобретение вращения, обратного обычному в Солнечной системе)[50][51]. Согласно другой модели на заре формирования Солнечной системы прото-Меркурий почти по касательной столкнулся с прото-Венерой, в результате чего значительные части мантии и коры раннего Меркурия были рассеяны в окружающее пространство и потом собраны Венерой[52].

Сейчас есть несколько версий происхождения относительно большого внутреннего ядра Меркурия. Самая распространённая из них говорит, что первоначально отношение массы металлов к массе силикатных пород у этой планеты было близким к обычному для твёрдых тел Солнечной системы (внутренних планет и самых распространённых метеоритов — хондритов). При этом масса Меркурия превышала нынешнюю приблизительно в 2,25 раз. Затем, согласно этой версии, он столкнулся с планетезималью массой около 1/6 его собственной массы на скорости ~20 км/с. Большую часть коры и верхнего слоя мантии унесло в космическое пространство, где они и рассеялись. А ядро планеты, состоящее из более тяжёлых элементов, сохранилось[53].

По другой гипотезе, Меркурий сформировался в уже крайне обеднённой лёгкими элементами внутренней части протопланетного диска, откуда они были выметены давлением солнечного излучения и солнечным ветром во внешние области Солнечной системы.

Геологическая история[править | править вики-текст]

Как и у Земли, Луны и Марса, геологическая история Меркурия разделена на периоды (понятие эр используется только для Земли). Это деление установлено по относительному возрасту деталей рельефа планеты. Их абсолютный возраст, измеряемый в годах и оцениваемый по концентрации кратеров, известен с низкой точностью. Эти периоды названы по именам характерных кратеров. Их последовательность (от более ранних к более поздним, с датировками начала): дотолстовский (~4,5 млрд лет назад), толстовский (4,20–3,80 млрд лет назад), калорский (3,87–3,75 млрд лет назад), мансурский (3,24–3,11 млрд лет назад) и койперский (2,2–1,25 млрд лет назад)[54][55][56].

После формирования Меркурия 4,6 млрд лет назад происходила интенсивная бомбардировка планеты астероидами и кометами. Последняя сильная бомбардировка планеты окончилась 3,8 млрд лет назад.

Вулканическая активность, вероятно, была характерна для молодого Меркурия[57]. Часть регионов, например, равнина Жары, была покрыта лавой. Это приводило к образованию гладких равнин внутри кратеров, наподобие лунных морей, но сложенных светлыми породами. Вулканизм на Меркурии закончился, когда толщина коры увеличилась настолько, что лава уже не могла изливаться на поверхность планеты. Это, вероятно, произошло в первые 700—800 млн лет его истории.

В дальнейшем, когда Меркурий остывал от извержений лавы, объем его уменьшался, и каменная оболочка, остывшая и затвердевшая раньше, чем недра, вынуждена была сжиматься. Это приводило к растрескиванию внешней каменной коры планеты и наползанию одного края на другой с образованием своего рода «чешуи», в которой один слой пород надвинут на другой. Верхний слой, надвинувшийся на более низкий, приобретал выпуклый профиль, напоминая застывшую каменную волну. Следы таких движений до сих пор отчетливо видны на поверхности Меркурия в виде уступов высотой в несколько километров, имеющих извилистую форму и протяженность в сотни километров. Такое сжатие коры планеты безусловно сопровождалось сильными землетрясениями[58].

Все последующие изменения рельефа обусловлены ударами о поверхность планеты внешних космических тел.

Геология и внутреннее строение[править | править вики-текст]

До недавнего времени предполагалось, что в недрах Меркурия находится твёрдое металлическое ядро радиусом 1800—1900 км, содержащее 60 % массы планеты, так как КА «Маринер-10» обнаружил слабое магнитное поле, и считалось, что планета с таким малым размером не может иметь жидкого металлического ядра. Но в 2007 году группа Жана-Люка Марго подвела итоги пятилетних радарных наблюдений за Меркурием, в ходе которых были замечены вариации вращения планеты, слишком большие для модели недр планеты с твёрдым ядром. Поэтому сегодня можно с высокой долей уверенности говорить, что ядро планеты именно жидкое[59][60].

Ядро окружено силикатной мантией толщиной 500—600 км[39][61]. Согласно данным «Маринера-10» и наблюдениям с Земли толщина коры планеты составляет от 100 до 300 км[62].

Жидкое железно-никелевое ядро Меркурия составляет около 3/4 его диаметра, что примерно равно размеру Луны. Оно очень массивное по сравнению с ядром других планет.

Строение Меркурия. Схема:
1. Кора, толщина — 100—300 км.
2. Мантия, толщина — 600 км.
3. Ядро, радиус — 1800 км.

Концентрация железа в ядре Меркурия выше, чем у любой другой планеты Солнечной системы. Было предложено несколько теорий для объяснения этого факта. Согласно наиболее широко поддерживаемой в научном сообществе теории, Меркурий изначально имел такое же соотношение металла и силикатов, как в обычном метеорите, имея массу в 2,25 раза больше, чем сейчас[63]. Однако в начале истории Солнечной системы в Меркурий ударилось планетоподобное тело, имеющее в 6 раз меньшую массу и несколько сот километров в поперечнике. В результате удара от планеты отделилась большая часть изначальной коры и мантии, из-за чего относительная доля ядра в составе планеты увеличилась. Подобная гипотеза, известная как теория гигантского столкновения, была предложена и для объяснения формирования Луны[63]. Однако этой версии противоречат первые данные исследования элементного состава поверхности Меркурия с помощью гамма-спектрометра АМС «Мессенджер», который даёт возможность измерить содержание радиоактивных изотопов: оказалось, что на Меркурии много летучего элемента калия (по сравнению с более тугоплавкими ураном и торием), что не согласуется с высокими температурами, неизбежными при столкновении[64]. Поэтому предполагается, что элементный состав Меркурия соответствует первичному элементному составу материала, из которого он сформировался, близкому к энстатитовым хондритам и безводным кометным частицам, хотя содержание железа в исследованных к настоящему времени энстатитовых хондритах недостаточно для объяснения высокой средней плотности Меркурия[65].

Поверхность[править | править вики-текст]

Гигантский уступ Дискавери длиной 350 км и высотой 3 км образовался при надвигании верхних слоев коры Меркурия в результате деформации коры при остывании ядра

Поверхность Меркурия во многом напоминает лунную — она сильно кратерирована. Плотность кратеров на поверхности различна на разных участках. От молодых кратеров, как и у кратеров на Луне в разные стороны тянутся светлые лучи. Предполагается, что более густо усеянные кратерами участки являются более древними, а менее густо усеянные — более молодыми, образовавшимися при затоплении лавой более старой поверхности. В то же время крупные кратеры встречаются на Меркурии реже, чем на Луне. Самый большой кратер на Меркурии — бассейн равнины Жары (1525×1315 км). Среди кратеров с собственным именем первое место занимает вдвое меньший кратер Рембрандт, его поперечник составляет 716 км[66][67]. Однако сходство Меркурия и Луны неполное — на Меркурии существуют образования, которые на Луне не встречаются.

Важным различием гористых ландшафтов Меркурия и Луны является присутствие на Меркурии многочисленных зубчатых откосов, простирающихся на сотни километров, — уступов (эскарпов). Изучение их структуры показало, что они образовались при сжатии, сопровождавшем остывание планеты, в результате которого площадь поверхности Меркурия уменьшилась на 1 %. Наличие на поверхности Меркурия хорошо сохранившихся больших кратеров говорит о том, что в течение последних 3—4 млрд лет там не происходило в широких масштабах движение участков коры, а также отсутствовала эрозия поверхности, последнее почти полностью исключает возможность существования в истории Меркурия сколько-нибудь существенной атмосферы.

Благодаря зонду «Мессенджер», заснявшему всю поверхность Меркурия, выявлено, что она однородна. Этим Меркурий не схож с Луной или Марсом, у которых одно полушарие резко отличается от другого[35]. Самая высокая точка на Меркурии (+4,48 километра над средним уровнем) расположена к югу от экватора в одной из старейших областей на планете, а самая низкая точка (-5,38 километра ниже среднего уровня) находится на дне Рахманиновского бассейна, окруженного двойным кольцом загадочных гор, которые по предположению ученых являются одними из последних вулканических проявлений на планете[68].

Первые данные исследования элементного состава поверхности с помощью рентгенофлуоресцентного спектрометра аппарата «Мессенджер» показали, что она бедна алюминием и кальцием по сравнению с плагиоклазовым полевым шпатом, характерным для материковых областей Луны. В то же время поверхность Меркурия сравнительно бедна титаном и железом и богата магнием, занимая промежуточное положение между типичными базальтами и ультраосновными горными породами типа земных коматиитов. Обнаружено также относительное изобилие серы, что предполагает восстановительные условия при формировании поверхности планеты[65].

Кратеры[править | править вики-текст]

Кратеры на Меркурии варьируют от маленьких впадин, имеющих форму чаши, до многокольцевых ударных кратеров, имеющих в поперечнике сотни километров. Они находятся на разных стадиях разрушения. Есть относительно хорошо сохранившиеся кратеры с длинными лучами вокруг них, которые образовались в результате выброса вещества в момент удара. Некоторые кратеры разрушены очень сильно. Меркурианские кратеры отличаются от лунных меньшим размером окружающего ореола выбросов, из-за большей силы тяжести на Меркурии[55].

Поверхность напоминает лунную (снимок АМС «Мессенджер»)

Одна из самых заметных деталей поверхности Меркурия — равнина Жары (лат. Caloris Planitia). Она получила такое название потому, что расположена вблизи одной из «горячих долгот». Эта лавовая равнина заполняет кратер (импактный бассейн) размером 1525×1315 км — крупнейший на планете. Его вал местами (горы Жары) превышает 2 км. В центре равнины находится своеобразная система борозд, получившая название Пантеон[66][67] (неофициальное название — «Паук»).

Радиолокационное изображение кратеров северного полюса Меркурия

Вероятно, тело, при ударе которого образовался кратер, имело поперечник не менее 100 км. Удар был настолько сильным, что сейсмические волны, прошли всю планету насквозь и, сфокусировавшись в противоположной точке поверхности, привели к образованию здесь своеобразного пересечённого «хаотического» ландшафта.

Кратер Койпер (чуть ниже центра) (снимок АМС «Мессенджер»)

Самый яркий участок поверхности Меркурия — 60-километровый кратер Койпер. Вероятно, это один из наиболее молодых крупных кратеров планеты[69].

В 2012 году ученые обнаружили ещё одну интересную последовательность кратеров на поверхности Меркурия. Их конфигурация напоминает лицо Микки Мауса[70]. Возможно, в будущем и эта цепь кратеров получит своё название.

Особенности номенклатуры[править | править вики-текст]

Правила именования деталей рельефа Меркурия утверждены на XV Генеральной ассамблее Международного астрономического союза в 1973 году[4][71]:

Маленький кратер Хун Каль (указан стрелкой), служащий точкой привязки системы долгот Меркурия. Фото АМС «Маринер-10»
  • Крупнейший объект на поверхности Меркурия, диаметром около 1500 км, назван равниной Жары, поскольку она располагается на одном из двух меридианов, где температура достигает рекордных значений. Это многокольцевая структура ударного происхождения, залитая застывшей лавой. Другая равнина, находящаяся в области минимальных температур, у северного полюса, названа Северной равниной. Остальные подобные формирования получили название планеты Меркурий или аналога римского бога Меркурия в языках разных народов мира. Например: равнина Суйсей (планета Меркурий по-японски) и равнина Будх (планета Меркурий на хинди), равнина Собкоу (планета Меркурий у древних египтян), равнина Одина (скандинавского бога) и равнина Тир (древнее персидское название Меркурия)[72][71].
  • Кратеры Меркурия (за двумя исключениями) получают название в честь известных людей в гуманитарной сфере деятельности (архитекторы, музыканты, писатели, поэты, философы, фотографы, художники)[71]. Например: Барма, Белинский, Глинка, Гоголь, Державин, Лермонтов, Мусоргский, Пушкин, Репин, Рублёв, Стравинский, Суриков, Тургенев, Феофан Грек (Theophanes), Фет, Чайковский, Чехов. Исключение составляют два кратера: Койпер по имени одного из главных разработчиков проекта «Маринер-10» и Хун Каль, что означает число «20» на языке народа майя, который использовал двадцатеричную систему счисления. Последний кратер находится у экватора на меридиане 20° западной долготы и был избран в качестве удобного ориентира для отсчёта в системе координат поверхности Меркурия. Первоначально кратерам большего размера присваивались имена знаменитостей, которые, по мнению МАС, имели соответственно большее значение в мировой культуре. Чем крупнее кратер — тем сильнее влияние личности на современный мир[73][74]. В первую пятёрку вошли Бетховен (диаметром 643 км), Достоевский (430 км), Шекспир (400 км), Толстой (355 км) и Рафаэль. Спустя 30 лет, когда «Мессенджер» заснял ранее неизвестные области планеты, на первое по размеру место вышел 715-километровый кратер, получивший имя Рембрандт.
  • Цепочки кратеров получают названия в честь крупных радиообсерваторий, как признание значения метода радиолокации в исследовании планеты. Например, цепочка Хайстек (радиотелескоп в США)[72][71].
  • Уступы (эскарпы) получают названия кораблей исследователей, вошедших в историю, поскольку бог Меркурий/Гермес считался покровителем путешественников. Например: Бигль, Заря, Санта-Мария, Фрам, Восток, Мирный[71][74].
  • Горы получают названия от слова «жара» на разных языках, а гряды именуются в честь астрономов, исследовавших Меркурий. По состоянию на 2015 год на Меркурии наименована одна горная система (горы Жары) и две гряды: гряда Антониади и гряда Скиапарелли.
  • Долины называют именами заброшенных древних поселений (например, долина Ангкор).
  • Борозды называют в честь великих архитектурных сооружений. Единственный пока пример — борозды Пантеон на равнине Жары.

Природные условия на Меркурии[править | править вики-текст]

Близость к Солнцу и довольно медленное вращение планеты, а также крайне разрежённая атмосфера приводят к тому, что на Меркурии наблюдаются самые резкие перепады температур в Солнечной системе. Этому способствует также рыхлая поверхность Меркурия, которая плохо проводит тепло (а при практически отсутствующей атмосфере тепло может передаваться вглубь только за счёт теплопроводности). Поверхность планеты быстро нагревается и остывает, но уже на глубине в 1 м суточные колебания перестают ощущаться, а температура становится стабильной, равной приблизительно +75 °C[75].

Рассвет на Меркурии в представлении художника

Средняя температура его дневной поверхности равна 623 К (349,9 °C), ночной — всего 103 К (−170,2 °C). Минимальная температура на Меркурии равна 90 К (−183,2 °C), а максимум, достигаемый в полдень на «горячих долготах» при нахождении планеты близ перигелия, — 700 К (426,9 °C).[76]

Несмотря на такие условия, в последнее время появились предположения о том, что на поверхности Меркурия может существовать лёд. Радарные исследования приполярных областей планеты показали наличие там участков деполяризации от 50 до 150 км, наиболее вероятным кандидатом отражающего радиоволны вещества может являться обычный водяной лёд.[4][77] Поступая на поверхность Меркурия при ударах о неё комет, вода испаряется и путешествует по планете, пока не замёрзнет в полярных областях на дне глубоких кратеров, куда никогда не заглядывает Солнце, и где лёд может сохраняться практически неограниченно долго.

Небо на Меркурии[править | править вики-текст]

Небо на Меркурии черно и днем, и ночью. Ведь Меркурий окружен так называемой экзосферой — пространством настолько разреженным, что составляющие его нейтральные атомы практически никогда не сталкиваются.

« Самым впечатляющим зрелищем на меркурианском небосводе является Солнце. Там оно выглядит в 2—3 раза большим, чем на земном небе. Особенности сочетания скоростей вращения планеты вокруг своей оси и вокруг Солнца, а так-же сильная вытянутость ее орбиты приводят к тому, что видимое перемещение Солнца по черному меркурианскому небу совсем не такое, как на Земле. При этом путь Солнца выглядит неодинаково на разных долготах планеты. Так, в районах меридианов 0 и 180° з. д. рано утром в восточной части неба над горизонтом воображаемый наблюдатель мог бы увидеть «маленькое» (но в 2 раза большее, чем на небе Земли), очень быстро поднимающееся над горизонтом Светило, скорость которого по мере приближения к зениту постепенно замедляется, а само оно становится ярче и жарче, увеличиваясь в размерах в 1,5 раза — это Меркурий подходит по своей сильно вытянутой орбите ближе к Солнцу. Едва пройдя точку зенита, Солнце замирает, немного пятится назад в течение 2—3 земных суток, еще раз замирает, а затем начинает уходить вниз со все возрастающей скоростью и заметно уменьшаясь в размерах — это Меркурий отдаляется от Солнца, уходя в вытянутую часть своей орбиты — и с большой скоростью скрывается за горизонтом на западе.

Георгий Бурба, «И больше года длится день», журнал «Вокруг Света», 2003-й год

»

[78]

Совсем по-другому выглядит дневной ход Солнца вблизи 90 и 270° з. д. Здесь оно выписывает просто уникальные траектории — за сутки происходит по три восхода и по три заката. Утром из-за горизонта на востоке очень медленно появляется ослепительный светящийся диск громадного размера (в 3 раза больше, чем на земном небосводе), он немного поднимается над горизонтом, останавливается, а затем идет вниз и ненадолго скрывается за горизонтом. Вскоре следует повторный восход, после которого Солнце начинает медленно ползти по небу вверх, постепенно ускоряя свой бег и при этом быстро уменьшаясь в размерах и тускнея. Точку зенита это «маленькое» Солнце пролетает на большой скорости, а потом замедляет свой ход, растет в размерах и медленно скрывается за вечерним горизонтом. Вскоре после первого заката Солнце поднимается вновь на небольшую высоту, ненадолго застывает на месте, а затем снова опускается к горизонту и заходит окончательно.

Такие особенности солнечного хода происходят оттого, что на коротком отрезке орбиты при прохождении перигелия (минимального расстояния от Солнца) угловая скорость движения Меркурия по орбите вокруг Солнца становится больше, чем угловая скорость его вращения вокруг оси, что приводит к перемещению Солнца на небосводе планеты в течение короткого промежутка времени (около двух земных суток) вспять его обычному ходу. А вот звезды на небе Меркурия перемещаются втрое быстрее, чем Солнце. Звезда, появившаяся одновременно с Солнцем над утренним горизонтом, зайдет на западе еще до полудня, то есть раньше, чем Солнце доберется до зенита, и успеет еще раз взойти на востоке, пока Солнце не село.

Историография[править | править вики-текст]

Древние и средневековые наблюдения[править | править вики-текст]

Модель движения Меркурия, предложенная Ибн аш-Шатиром

Наиболее раннее известное наблюдение Меркурия было зафиксировано в таблицах «Муль апин» (сборник вавилонских астрологических таблиц). Это наблюдение, скорее всего, было выполнено ассирийскими астрономами примерно в XIV веке до н. э.[79] Шумерское название, используемое для обозначения Меркурия в таблицах «Муль апин», может быть транскрибировано в виде UDU.IDIM.GU\U4.UD («прыгающая планета»)[80]. Первоначально планету ассоциировали с богом Нинуртой[81], а в более поздних записях её называют «Набу» в честь бога мудрости и писцового искусства[82].

В Древней Греции во времена Гесиода планету знали под именами Στίλβων («Стилбон») и Ἑρμάων («Гермаон»)[83]. Название «Гермаон» является формой имени бога Гермеса[84]. Позже греки стали называть планету «Аполлон».

Существует гипотеза, что название «Аполлон» соответствовало видимости на утреннем небе, а «Гермес» («Гермаон») на вечернем[85][86]. Римляне назвали планету в честь быстроногого бога торговли Меркурия, который эквивалентен греческому богу Гермесу, за то, что он перемещается по небу быстрее остальных планет[87][88]. Римский астроном Клавдий Птолемей, живший в Египте, написал о возможности прохождения планеты по диску Солнца в своей работе «Гипотезы о планетах». Он предположил, что такое прохождение никогда не наблюдалось потому, что Меркурий слишком мал для наблюдения или потому, что это явление случается нечасто[89].

В Древнем Китае Меркурий назывался Чэнь-син (辰星), «Утренняя звезда». Он ассоциировался с направлением на север, чёрным цветом и элементом воды в У-син[90]. По данным «Ханьшу», синодический период Меркурия китайскими учёными признавался равным 115,91 дней, а по данным «Хоу Ханьшу» — 115,88 дней[91]. В современной китайской, корейской, японской и вьетнамской культурах планета стала называться «Водяная звезда» (水星).

Индийская мифология использовала для Меркурия имя Будха (санскр. बुधः). Этот бог, сын Сомы, был главенствующим по средам. В германском язычестве бог Один также ассоциировался с планетой Меркурий и со средой[92]. Индейцы майя представляли Меркурий как сову (или, возможно, как четыре совы, причём две соответствовали утреннему появлению Меркурия, а две — вечернему), которая была посланником загробного мира[93]. На иврите Меркурий был назван «Коха́в Хама́» (ивр.כוכב חמה‏‎, «Солнечная планета»)[94].

В средневековой арабской астрономии астроном из Андалусии Аз-Заркали описал деферент геоцентрической орбиты Меркурия как овал наподобие яйца или кедрового ореха. Тем не менее, эта догадка не оказала влияния на его астрономическую теорию и его астрономические вычисления[95][96]. В XII веке Ибн Баджа наблюдал две планеты в виде пятен на поверхности Солнца. Позднее астрономом марагинской обсерватории Аш-Ширази было высказано предположение, что его предшественником наблюдалось прохождение Меркурия и (или) Венеры[97]. В Индии астроном кералийской школы Нилаканса Сомаяджи (англ.) в XV веке разработал частично гелиоцентрическую планетарную модель, в которой Меркурий вращался вокруг Солнца, которое, в свою очередь, вращалось вокруг Земли. Эта система была похожа на систему Тихо Браге, разработанную в XVI веке[98].

Средневековые наблюдения Меркурия в северных частях Европы затруднялись тем, что планета всегда наблюдается в заре — утренней или вечерней — на фоне сумеречного неба и довольно низко над горизонтом (особенно в северных широтах). Период его наилучшей видимости (элонгация) наступает несколько раз в году (продолжаясь около 10 дней). Даже в эти периоды увидеть Меркурий невооружённым глазом непросто (относительно неяркая звёздочка на довольно светлом фоне неба). Существует история о том, что Николай Коперник, наблюдавший астрономические объекты в условиях северных широт и туманного климата Прибалтики, сожалел, что за всю жизнь так и не увидел Меркурий. Эта легенда сложилась исходя из того, что в работе Коперника «О вращениях небесных сфер» не приводится ни одного примера наблюдений Меркурия, однако он описал планету, используя результаты наблюдений других астрономов. Как он сам сказал, Меркурий всё-таки можно «изловить» с северных широт, проявив терпение и хитрость. Следовательно, Коперник вполне мог наблюдать Меркурий и наблюдал его, но описание планеты делал по чужим результатам исследований[99].

Новое Время. Наблюдения с помощью оптических телескопов[править | править вики-текст]

Первое телескопическое наблюдение Меркурия было сделано Галилео Галилеем в начале XVII века. Хотя он наблюдал фазы Венеры, его телескоп не был достаточно мощным, чтобы наблюдать фазы Меркурия. 7 ноября 1631 года Пьер Гассенди сделал первое телескопическое наблюдение прохождения планеты по диску Солнца[100]. Момент прохождения был вычислен до этого Иоганном Кеплером. В 1639 году Джованни Зупи с помощью телескопа открыл, что орбитальные фазы Меркурия подобны фазам Луны и Венеры. Наблюдения окончательно продемонстрировали, что Меркурий обращается вокруг Солнца[22].

Очень редко случается покрытие одной планетой диска другой, наблюдаемое с Земли. Венера покрывает Меркурий раз в несколько столетий, и это событие наблюдалось только один раз в истории — 28 мая 1737 года Джоном Бевисом в Королевской Гринвичской обсерватории[101]. Следующее покрытие Венерой Меркурия будет 3 декабря 2133 года[102].

Трудности, сопровождающие наблюдение Меркурия, привели к тому, что он долгое время был изучен хуже остальных планет. В 1800 году Иоганн Шрётер, наблюдавший детали поверхности Меркурия, объявил о том, что наблюдал на ней горы высотой 20 км. Фридрих Бессель, используя зарисовки Шрётера, ошибочно определил период вращения вокруг своей оси в 24 часа и наклон оси в 70°[103]. В 1880-х годах Джованни Скиапарелли картографировал планету более точно и предположил, что период вращения составляет 88 дней и совпадает с сидерическим периодом обращения вокруг Солнца из-за приливных сил[104]. Работа по картографированию Меркурия была продолжена Эженом Антониади, который в 1934 году выпустил книгу, где были представлены старые карты и его собственные наблюдения[34]. Многие детали поверхности Меркурия получили своё название согласно картам Антониади[105].

Итальянский астроном Джузеппе Коломбо (англ.) заметил, что период вращения составляет 2/3 от сидерического периода обращения Меркурия, и предположил, что эти периоды попадают в резонанс 3:2[106]. Данные с «Маринера-10» впоследствии подтвердили эту точку зрения[107]. Это не означает, что карты Скиапарелли и Антониади неверны. Просто астрономы видели одни и те же детали планеты каждый второй оборот её вокруг Солнца, заносили их в карты и игнорировали наблюдения в то время, когда Меркурий был обращён к Солнцу другой стороной, так как из-за геометрии орбиты в это время условия для наблюдения были плохими[103].

Близость Солнца создаёт некоторые проблемы и для телескопического изучения Меркурия. Так, например, телескоп «Хаббл» никогда не использовался и не будет использоваться для наблюдения этой планеты. Его устройство не позволяет проводить наблюдения близких к Солнцу объектов — при попытке сделать это аппаратура получит необратимые повреждения[108].

Новейшее Время. Исследования Меркурия радиотелескопами и космическими аппаратами[править | править вики-текст]

Снимок участка поверхности Меркурия, полученный АМС «Мессенджер». В правом нижнем углу — часть кратера Sveinsdóttir с темнеющим в нём уступом Бигль
Первые изображения Меркурия с высоким разрешением, полученные АМС «Мессенджер», 22 января 2008

Меркурий — наименее изученная планета земной группы. К телескопическим методам его изучения в XX веке добавились радиоастрономические, радиолокационные и исследования с помощью космических аппаратов. Радиоастрономические измерения Меркурия были впервые проведены в 1961 году Ховардом, Барреттом и Хэддоком с помощью рефлектора с двумя установленными на нём радиометрами[109]. К 1966 году на основе накопленных данных получены неплохие оценки температуры поверхности Меркурия: 600 К в подсолнечной точке и 150 К на неосвещённой стороне. Первые радиолокационные наблюдения были проведены в июне 1962 года группой В. А. Котельникова в ИРЭ, они выявили сходство отражательных свойств Меркурия и Луны. В 1965 году подобные наблюдения на радиотелескопе в Аресибо позволили получить оценку периода вращения Меркурия: 59 дней[110].

Развитие электроники и информатики сделало возможным наземные наблюдения Меркурия с помощью приёмников излучения ПЗС и последующую компьютерную обработку снимков. Одним из первых серии наблюдений Меркурия с ПЗС-приёмниками осуществил в 19952002 годах Йохан Варелл в обсерватории на острове Ла Пальма на полуметровом солнечном телескопе[уточнить]. Варелл выбирал лучшие из снимков, не используя компьютерное сведе́ние. Сведение начали применять в Абастуманской астрофизической обсерватории к сериям фотографий Меркурия, полученным 3 ноября 2001 года, а также в обсерватории Скинакас Ираклионского университета к сериям от 1—2 мая 2002 года; для обработки результатов наблюдений применили метод корреляционного совмещения. Полученное разрешённое изображение планеты обладало сходством с фотомозаикой «Маринера-10», очертания небольших образований размерами 150—200 км повторялись. Так была составлена карта Меркурия для долгот 210—350°[111].

Маринер-10 — первый космический аппарат, достигший Меркурия

Отправить космический аппарат на Меркурий крайне сложно.[112] Сначала нужно затормозить аппарат, чтобы он вышел на высокоэллиптическую орбиту, а как только он приблизится к Меркурию — дать импульс, чтобы выйти на орбиту планеты. За время полёта накопится немалая скорость, и, с учётом слабого притяжения Меркурия, на второй манёвр нужно много топлива. Поэтому Меркурий исследовали только два космических аппарата. Первым был «Маринер-10», который в 19741975 годах трижды пролетел мимо планеты; максимальное сближение составляло 320 км. В результате было получено несколько тысяч снимков, покрывающих примерно 45 % поверхности. Дальнейшие исследования с Земли показали возможность существования водяного льда в полярных кратерах.

Второй стала миссия НАСА под названием «Мессенджер». Аппарат был запущен 3 августа 2004 года, а в январе 2008 года впервые совершил облёт Меркурия. 17 марта 2011 года, совершив ряд гравитационных манёвров вблизи Меркурия, Земли и Венеры, зонд «Мессенджер» вышел на орбиту Меркурия. Предполагалось, что с помощью аппаратуры, установленной на нём, зонд сможет исследовать ландшафт планеты, состав её атмосферы и поверхности; также оборудование «Мессенджера» позволит вести исследования энергичных частиц и плазмы.[113].

17 июня 2011 года стало известно, что, по данным первых исследований, проведённых КА «Мессенджер», магнитное поле планеты не симметрично относительно полюсов; таким образом, северного и южного полюса Меркурия достигает различное количество частиц солнечного ветра. Также был проведён анализ распространённости химических элементов на планете.[114] В 2015 году зонд «Мессенджер» упал на Меркурий, предположительно образовав пятнадцатиметровый кратер.

Перспективы

Европейским космическим агентством (ESA) совместно с японским агентством аэрокосмических исследований (JAXA) разрабатывается миссия «Бепи Коломбо», состоящая из двух космических аппаратов: Mercury Planetary Orbiter (MPO) и Mercury Magnetospheric Orbiter (MMO). Европейский аппарат MPO будет исследовать поверхность Меркурия и его глубины, в то время как японский MMO будет наблюдать за магнитным полем и магнитосферой планеты. Запуск BepiColombo планируется на 2017 год, а в 2024 году он выйдет на орбиту вокруг Меркурия[115], где и разделится на две составляющие.

Россия планирует[источник не указан 612 дней] отправить на планету первую посадочную станцию «Меркурий-П». Реализация проекта планировалась на 2019 год, но была значительно отодвинута.

Меркурий в оккультизме[править | править вики-текст]

В оккультизме Меркурий соотносится со сфирой Ход. (См. также Халдейский ряд)[116].

Меркурий в искусстве[править | править вики-текст]

Планета Меркурий фигурирует в ряде художественных произведений, в литературе, кино и мультипликации.

Примечания[править | править вики-текст]

  1. 1 2 3 4 Solar System Exploration: Planets: Mercury: Facts & Figures. Проверено 17 июня 2014. Архивировано из первоисточника 17 июня 2014.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 David R. Williams. Mercury Fact Sheet (англ.). NASA (9 May 2014). Проверено 18 июня 2014. Архивировано из первоисточника 17 июня 2014.
  3. The MeanPlane (Invariable plane) of the Solar System passing through the barycenter (3 апреля 2009). Проверено 3 апреля 2009. Архивировано из первоисточника 20 января 2013.
  4. 1 2 3 4 5 6 С. А. Язев. Лекции о Солнечной системе: Учебное пособие. — СПб: Лань, С. 45-56, 2011. ISBN 978-5-8114-1253-2
  5. 1 2 Проект «Исследование Солнечной системы», Меркурий
  6. Margot, L.J.; Peale, S. J.; Jurgens, R. F.; Slade, M. A.; Holin, I. V. (2007). «Large Longitude Libration of Mercury Reveals a Molten Core». Science 316 (5825): 710–714. DOI:10.1126/science.1140514. PMID 17478713. Bibcode2007Sci...316..710M.
  7. 1 2 Mallama, A.; Wang, D.; Howard, R.A. (2002). «Photometry of Mercury from SOHO/LASCO and Earth». Icarus 155 (2): 253–264. DOI:10.1006/icar.2001.6723. Bibcode2002Icar..155..253M.
  8. Mallama, A. (2011). «Planetary magnitudes». Sky and Telescope 121(1): 51–56.
  9. Espenak, Fred Twelve Year Planetary Ephemeris: 1995–2006. NASA Reference Publication 1349. NASA (July 25, 1996). Проверено 23 мая 2008. Архивировано из первоисточника 16 октября 2012.
  10. 1 2 (19 February 1999) «Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits». Icarus 141: 179–193. DOI:10.1006/icar.1999.6175. Bibcode1999Icar..141..179V. Figure 3 with the "TWO model"; Figure 5 for pole.
  11. ESA Science & Technology: Background Science (англ.). Европейское космическое агентство. Проверено 20 марта 2009. Архивировано из первоисточника 22 мая 2012.
  12. Серафимов В. В. Планеты // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  13. уточненные значения далее идут из открытых источников NASA Goddard Space Flight Center на 2000 г.
  14. Сколько километров до Солнца? | Вопрос-ответ | Вокруг Света
  15. существует ещё одна теория строения ядра; см. Геология и внутреннее строение
  16. C. T. Russell and J. G. Luhmann. Mercury: magnetic field and magnetosphere. Проверено 16 марта 2007. Архивировано из первоисточника 22 мая 2012.
  17. Mercury Gets a Dose of Extra Iron, scienceNOW (21.03.2012). (англ.)
  18. Астрономы увеличили железное ядро Меркурия, Lenta.ru (22.03.2012).
  19. Впервые составлена полная карта Меркурия. Lenta.ru (16 декабря 2009). Проверено 13 августа 2010. Архивировано из первоисточника 22 мая 2012.
  20. Сведения о Меркурии. Gect.ru Географический информационный проект. Проверено 15 мая 2016.
  21. Меркурий — характеристики и наблюдение. Проверено 7 июня 2011. Архивировано из первоисточника 22 мая 2012.
  22. 1 2 3 Strom Robert G. Exploring Mercury: the iron planet. — Springer, 2003. — ISBN 1-85233-731-1.
  23. Всё о Меркурии. Проверено 9 июня 2011. Архивировано из первоисточника 22 мая 2012.
  24. Кононович Э. В., Мороз В. И. Общий курс астрономии: учебное пособие. — Москва: Едиториал УРСС, 2004. — P. 306. — 544 p. — ISBN 5-354-00866-2.
  25. Алексей Левин. Меркурий — планета ближайшая к Солнцу. журнал «Популярная механика». Проверено 3 марта 2011. Архивировано из первоисточника 22 мая 2012.
  26. Philippe Blondel, John W. Mason. Solar System Update. Springer-Verlag 2006. ISBN 978-3-540-26056-1
  27. Planetarium — Interactive star map and virtual sky
  28. Clemence G. M. The Relativity Effect in Planetary Motions (англ.) // Reviews of Modern Physics. — 1947. — Vol. 19. — P. 361—364. — DOI:10.1103/RevModPhys.19.361.  (Проверено 12 июня 2011)
  29. Le Verrier U. Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète (фр.) // Comptes rendus hebdomadaires des séances de l'Académie des sciences. — 1859. — Vol. 49. — P. 379—383.  (Проверено 12 июня 2011) (на стр. 383 того же издания Файе, комментируя предыдущую работу, рекомендует астрономам искать ранее не обнаруженный объект, находящийся внутри орбиты Меркурия).
  30. Baum Richard. In Search of Planet Vulcan, The Ghost in Newton's Clockwork Machine. — New York: Plenum Press, 1997. — ISBN 0-306-45567-6.
  31. А. Ф. Богородский. Всемирное тяготение. — Киев: Наукова думка, 1971. Глава 2.
  32. Gilvarry J. J. Relativity Precession of the Asteroid Icarus (англ.) // Physical Review. — 1953. — Vol. 89. — P. 1046. — DOI:10.1103/PhysRev.89.1046.  (Проверено 12 июня 2011)
  33. Anonymous. 6.2 Anomalous Precession. Reflections on Relativity. MathPages. Проверено 22 мая 2008. Архивировано из первоисточника 22 мая 2012.
  34. 1 2 3 4 Beatty J. Kelly. The New Solar System. — Cambridge University Press, 1999. — ISBN 0-52-164587-5.
  35. 1 2 3 MESSENGER Reveals More «Hidden» Territory on Mercury (англ.). Проверено 10 июня 2011. Архивировано из первоисточника 22 мая 2012.
  36. Staff. Mercury’s Internal Magnetic Field. NASA (January 30, 2008). Проверено 7 апреля 2008. Архивировано из первоисточника 22 мая 2012.
  37. Gold, Lauren. Mercury has molten core, Cornell researcher shows. Cornell University (May 3, 2007). Проверено 7 апреля 2008. Архивировано из первоисточника 22 мая 2012.
  38. Christensen U. R. A deep dynamo generating Mercury's magnetic field (англ.) // Nature. — 2006. — Vol. 444. — DOI:10.1038/nature05342. — PMID 17183319.  (Проверено 12 июня 2011)
  39. 1 2 Spohn T.; Sohl F.; Wieczerkowski K.; Conzelmann V. The interior structure of Mercury: what we know, what we expect from BepiColombo (англ.) // Planetary and Space Science. — 2001. — Vol. 49. — P. 1561—1570. — DOI:10.1016/S0032-0633(01)00093-9.  (Проверено 12 июня 2011)
  40. Планетологи оценили возраст магнитного поля Меркурия / Томский Обзор
  41. Планетологи оценили возраст магнитного поля Меркурия: Космос: Наука и техника: Lenta.ru
  42. Steigerwald, Bill. Magnetic Tornadoes Could Liberate Mercury’s Tenuous Atmosphere. NASA Goddard Space Flight Center (June 2, 2009). Проверено 18 июля 2009. Архивировано из первоисточника 22 мая 2012.
  43. Hunten, D. M.; Shemansky, D. E.; Morgan, T. H. The Mercury atmosphere // Mercury. — University of Arizona Press, 1988. — ISBN 0-8165-1085-7.
  44. Lakdawalla, Emily. MESSENGER Scientists 'Astonished' to Find Water in Mercury's Thin Atmosphere (July 3, 2008). Проверено 18 мая 2009. Архивировано из первоисточника 20 января 2013.
  45. Zurbuchen T. H. et al. MESSENGER Observations of the Composition of Mercury’s Ionized Exosphere and Plasma Environment // Science. — 2008. — Vol. 321. — P. 90—92. — DOI:10.1126/science.1159314. — PMID 18599777.  (Проверено 12 июня 2011)
  46. Instrument Shows What Planet Mercury Is Made Of. University of Michigan (June 30, 2008). Проверено 18 мая 2009. Архивировано из первоисточника 22 мая 2012.
  47. Boston University Astronomers Map Full Extent of Mercury’s Comet-Like Tail
  48. Hidden Territory on Mercury Revealed. Архивировано из первоисточника 22 мая 2012.
  49. MESSENGER Teleconference Multimedia Page. Проверено 10 июня 2011. Архивировано из первоисточника 22 мая 2012.
  50. Бывший спутник Венеры?
  51. Cf. R. S. Harrington, T. C. van Flandern. A Dynamical Investigation of the Conjecture that Mercury is an Escaped Satellite of Venus // Icarus 28, (1976), pp. 435—440.
  52. Lenta.ru: Наука и техника: Наука: Астрономы изучили формирование Меркурия из протопланеты
  53. Benz, W.; Slattery, W. L.; Cameron, A. G. W. Collisional stripping of Mercury's mantle (англ.). SAO/NASA ADS Astronomy Abstract Service (June 1988). doi:10.1016/0019-1035(88)90118-2. Проверено 6 декабря 2014.
  54. Tanaka K.L., Hartmann W.K. Chapter 15 – The Planetary Time Scale // The Geologic Time Scale / F. M. Gradstein, J. G. Ogg, M. D. Schmitz, G. M. Ogg. — Elsevier Science Limited, 2012. — P. 275–298. — ISBN 978-0-444-59425-9. — DOI:10.1016/B978-0-444-59425-9.00015-9
  55. 1 2 Spudis P. D. The Geological History of Mercury (англ.) // Workshop on Mercury: Space Environment, Surface, and Interior. — Chicago, 2001. — P. 100. — Bibcode2001mses.conf..100S.  (Проверено 18 июня 2014)
  56. Map of Mercury (PDF, large image). Проверено 8 июня 2011. Архивировано из первоисточника 22 мая 2012.
  57. Вулканы на Меркурии | Новости | Вокруг Света
  58. Волнения небесной тверди | Публикации | Вокруг Света
  59. Gold, Lauren. Mercury has molten core, Cornell researcher shows. Chronicle Online. Cornell University (May 3, 2007). Проверено 12 мая 2008. Архивировано из первоисточника 22 мая 2012.
  60. Finley, Dave. Mercury's Core Molten, Radar Study Shows. National Radio Astronomy Observatory (May 3, 2007). Проверено 12 мая 2008. Архивировано из первоисточника 22 мая 2012.
  61. Gallant, R. 1986. The National Geographic Picture Atlas of Our Universe. — 2nd edition. — National Geographic Society.
  62. Anderson J. D. et al. Shape and Orientation of Mercury from Radar Ranging Data (англ.) // Icarus. — Academic Press, 1996. — Vol. 124. — P. 690—697. — DOI:10.1006/icar.1996.0242.  (Проверено 12 июня 2011)
  63. 1 2 Benz W., Slattery W. L., Cameron A. G. W. Collisional stripping of Mercury’s mantle (англ.) // Icarus. — 1988. — Vol. 74. — P. 516—528. — DOI:10.1016/0019-1035(88)90118-2.  (Проверено 12 июня 2011)
  64. Patrick N. Peplowski et al. Radioactive Elements on Mercury’s Surface from MESSENGER: Implications for the Planet’s Formation and Evolution (англ.) // [[Science (журнал)|Science]]. — 2011. — Vol. 333. — P. 1850—1852. — DOI:10.1126/science.1211576.
  65. 1 2 Larry R. Nittler et al. The Major-Element Composition of Mercury’s Surface from MESSENGER X-ray Spectrometry (англ.) // Science. — 2011. — Vol. 333. — P. 1847—1850. — DOI:10.1126/science.1211567.
  66. 1 2 Fassett C. I., Head J. W., Blewett D. T., Chapman C. R., Dickson J. L., Murchie S. L., Solomon S. C., Watters T. R. (August 2009). «Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits». Earth and Planetary Science Letters 285 (3–4): 297–308. DOI:10.1016/j.epsl.2009.05.022. Bibcode2009E&PSL.285..297F. (мини-версия, Bibcode2009LPI....40.1899F)
  67. 1 2 Fassett C. I., Head J. W., Baker D. M. H., Zuber M. T., Smith D. E., Neumann G. A., Solomon S. C., Klimczak C., Strom R. G., Chapman C. R., Prockter L. M., Phillips R. J., Oberst J., Preusker F. (October 2012). «Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data». Journal of Geophysical Research 117 (E12). DOI:10.1029/2012JE004154. Bibcode2012JGRE..117.0L08F.
  68. First Global Topographic Model of Mercury (англ.). Проверено 7 мая 2016.
  69. R. A. De Hon, D. H. Scott, J. R. Underwood Jr. Geologic Map of the Kuiper (H-6) Quadrangle of Mercury (1981). Архивировано из первоисточника 22 мая 2012.
  70. На Меркурии нашли «отпечаток» Микки Мауса // extrafast.ru
  71. 1 2 3 4 5 Categories for Naming Features on Planets and Satellites (англ.). Gazetteer of Planetary Nomenclature. International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (WGPSN). Проверено 18 июня 2014. Архивировано из первоисточника 15 мая 2013.
  72. 1 2 Ж. Ф. Родионова. «Карты Меркурия». msu.ru. Проверено 7 декабря 2011. Архивировано из первоисточника 22 мая 2012.
  73. Н. Колдер. Комета надвигается. — 2-е изд. — М.: Мир, 1984. — 176 с.
  74. 1 2 Бурба Г. А. Инопланетные святцы // Вокруг Света. — 2010. — № 1 (2832). Архивировано из первоисточника 22 мая 2012.
  75. Что есть что. Планеты. Меркурий. — Москва: Слово/Slovo, 2000.
  76. Background Science. BepiColombo. European Space Agency (August 6, 2010). Проверено 6 августа 2010. Архивировано из первоисточника 22 мая 2012.
  77. Slade M. A., Butler B. J., Muhleman D. O. Mercury radar imaging — Evidence for polar ice (англ.) // Science. — 1992. — Vol. 258. — P. 635—640. — DOI:10.1126/science.258.5082.635. — PMID 17748898.  (Проверено 12 июня 2011)
  78. И дольше года длится день | Публикации | Вокруг Света
  79. Schaefer B. E. The Latitude and Epoch for the Origin of the Astronomical Lore in Mul.Apin (англ.) // American Astronomical Society Meeting 210, #42.05. — American Astronomical Society, 2007. — Vol. 38. — P. 157.  (Проверено 12 июня 2011)
  80. Hunger H., Pingree D. MUL.APIN: An Astronomical Compendium in Cuneiform (нем.) // Archiv für Orientforschung. — Austria: Verlag Ferdinand Berger & Sohne Gesellschaft MBH, 1989. — Vol. 24. — P. 146.
  81. Куртик Г. Е. Звездное небо древней Месопотамии. — СПб.: Алетейя, 2007. — С. 543—545. — ISBN 978-5-903354-36-8.
  82. Staff. MESSENGER: Mercury and Ancient Cultures. NASA JPL (2008). Проверено 7 апреля 2008. Архивировано из первоисточника 22 мая 2012.
  83. H. G. Liddell and R. Scott. Greek-English Lexicon, with a Revised Supplement. — 9th. — Oxford: Clarendon Press, 1996. — P. 690 and 1646. — ISBN 0-19-864226-1.
  84. В.Н. Ярхо Ватиканский аноним. О невероятном. (англ.) // Вестник древней истории. — 1992.  (Проверено 7 июля 2011)
  85. Меркурий. Проверено 11 июля 2007. Архивировано из первоисточника 22 мая 2012.
  86. Меркурий - Сосед солнца. Проверено 11 июля 2007. Архивировано из первоисточника 22 мая 2012.
  87. Dunne, J. A. and Burgess, E. Chapter One // The Voyage of Mariner 10 — Mission to Venus and Mercury. — NASA History Office, 1978.
  88. Antoniadi Eugène Michel. The Planet Mercury. — Shaldon, Devon: Keith Reid Ltd, 1974. — P. 9—11. — ISBN 0-90-409402-2.
  89. Goldstein B. R. The Pre-telescopic Treatment of the Phases and Apparent Size of Venus (англ.) // Journal for the History of Astronomy. — 1996. — P. 1.  (Проверено 12 июня 2011)
  90. Kelley David H. Exploring Ancient Skies: An Encyclopedic Survey of Archaeoastronomy. — Birkhäuser, 2004. — ISBN 0-38-795310-8.
  91. Духовная культура Китая: энциклопедия. Т. 5. — М.: Вост. лит., 2009. — С. 104.
  92. Bakich Michael E. The Cambridge Planetary Handbook. — Cambridge University Press, 2000. — ISBN 0-52-163280-3.
  93. Milbrath Susan. Star Gods of the Maya: Astronomy in Art, Folklore and Calendars. — University of Texas Press, 1999. — ISBN 0-29-275226-1.
  94. Морское чудовище в небе. Центральный совет евреев в Германии (29 января 2010). Проверено 2 марта 2011.
  95. Samsó J., Mielgo H. Ibn al-Zarqālluh on Mercury (англ.) // Journal for the History of Astronomy. — 1994. — Vol. 25. — P. 289—96 [292].  (Проверено 12 июня 2011)
  96. Hartner W. The Mercury Horoscope of Marcantonio Michiel of Venice (англ.) // Vistas in Astronomy. — 1955. — Vol. 1. — P. 84—138 [118—122].
  97. Ansari, S. M. Razaullah (2002). "History of oriental astronomy: proceedings of the joint discussion-17 at the 23rd General Assembly of the International Astronomical Union, organised by the Commission 41 (History of Astronomy), held in Kyoto, August 25—26, 1997"., Springer. 
  98. Ramasubramanian K., Srinivas M. S., Sriram M. S. Modification of the Earlier Indian Planetary Theory by the Kerala Astronomers (c. 1500 AD) and the Implied Heliocentric Picture of Planetary Motion (англ.) // Current Science. — 1994. — Vol. 66. — P. 784—790.  (Проверено 12 июня 2011)
  99. Николай Коперник и Меркурий. Проверено 10 июня 2011. Архивировано из первоисточника 22 мая 2012.
  100. Прохождения планет через диск Солнца // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  101. Sinnott R. W., Meeus J. John Bevis and a Rare Occultation (англ.) // Sky and Telescope. — 1986. — Vol. 72. — P. 220.
  102. Ferris Timothy. Seeing in the Dark: How Amateur Astronomers. — Simon and Schuster, 2003. — ISBN 0-68-486580-7.
  103. 1 2 Colombo G., Shapiro I. I. The Rotation of the Planet Mercury (англ.) // SAO Special Report #188R. — 1965. — Vol. 188.
  104. Holden E. S. Announcement of the Discovery of the Rotation Period of Mercury, by Professor Schiaparelli (англ.) // Publications of the Astronomical Society of the Pacific. — 1890. — Vol. 2. — P. 79. — DOI:10.1086/120099.  (Проверено 12 июня 2011)
  105. Merton E. Davies, et al. Surface Mapping // Atlas of Mercury. — NASA Office of Space Sciences, 1978.
  106. Colombo G. Rotational Period of the Planet Mercury (англ.) // Nature. — 1965. — Vol. 208. — P. 575. — DOI:10.1038/208575a0.  (Проверено 12 июня 2011)
  107. Davies, Merton E. et al. Mariner 10 Mission and Spacecraft. SP-423 Atlas of Mercury. NASA JPL (октябрь 1976). Проверено 7 апреля 2008. Архивировано из первоисточника 22 мая 2012.
  108. Interesting Facts About Mercury. Universe Today (англ.). Архивировано из первоисточника 22 мая 2012.
  109. Howard III W. E., Barrett A. H., Haddock F. T. Measurement of Microwave Radiation from the Planet Mercury (англ.) // Astrophysical Journal. — 1962. — Vol. 136. — P. 995—1004.
  110. Кузьмин А. Д. Результаты радионаблюдений Меркурия, Венеры и Марса (рус.) // УФН. — 1966. — Т. 90, вып. 10. — С. 303—314.
  111. Ксанфомалити Л. В. Неизвестный Меркурий // В мире науки. — 2008. — № 2.  (Проверено 12 июня 2011)
  112. Знакомство и прощание с Меркурием / Geektimes
  113. «Мессенджер» вышел на орбиту Меркурия. Лента.ру (18 марта 2011). Проверено 18 марта 2011. Архивировано из первоисточника 22 мая 2012.
  114. «Мессенджер» собрал информацию о ямах на Меркурии. Лента.ру (17 июня 2011). Проверено 17 июня 2011. Архивировано из первоисточника 22 мая 2012.
  115. BEPICOLOMBO LAUNCH MOVED TO 2017 // ESA, 30 March 2015
  116. Регарди И. Глава третья. Сефирот // Гранатовый сад. — М.: Энигма, 2005. — 304 с. — ISBN 5-94698-044-0.

Литература[править | править вики-текст]

  • Бурба Г.А. Номенклатура деталей рельефа Меркурия. — М.: Наука, 1982. — 56 с.

Ссылки[править | править вики-текст]