
Amazon SimpleDB
Developer Guide

API Version 2009-04-15

Amazon SimpleDB: Developer Guide
Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Amazon SimpleDB Developer Guide

Welcome to Amazon SimpleDB .. 1
Introduction to Amazon SimpleDB .. 2
Amazon SimpleDB Concepts ... 5
Data Model ... 5
Operations .. 6
API Summary ... 7
Consistency .. 7
Limits .. 9
Data Set Partitioning ... 10
AWS Identity and Access Management .. 11
Using Amazon SimpleDB ... 12
Available Libraries ... 12
Making API Requests ... 13

Region Endpoints .. 13
Making REST Requests .. 13
Making SOAP Requests .. 16

Request Authentication ... 16
What Is Authentication? .. 17
Creating an AWS Account ... 17
Your AWS Security Credentials ... 18
Managing Users of Amazon SimpleDB ... 19
Using Temporary Security Credentials .. 22
HMAC-SHA Signature ... 23

Working with Domains .. 29
Creating a Domain .. 29
Verifying the Domain ... 30
Deleting a Domain ... 31

Working with Data ... 31
Putting Data into a Domain ... 31
Getting Data from a Domain .. 32
Deleting Data from a Domain .. 33

Conditionally Putting and Deleting Data ... 33
Performing a Conditional Put ... 34
Performing a Conditional Delete .. 36

Using Select to Create Amazon SimpleDB Queries ... 37
Comparison Operators .. 38
Sample Query Data Set .. 40
Simple Queries .. 41
Range Queries .. 41
Queries on Attributes with Multiple Values .. 42
Multiple Attribute Queries .. 43
Sort .. 44
Count ... 44
Select Quoting Rules ... 45

Working with Numerical Data ... 46
Negative Numbers Offsets .. 46
Zero Padding ... 47
Dates ... 47

Tuning Queries ... 48
Tuning Your Queries Using Composite Attributes .. 48
Data Set Partitioning .. 49

Working with XML-Restricted Characters ... 50
API Reference .. 51
API Usage ... 51
Common Parameters .. 54
Common Response Elements .. 56
Common Error Responses ... 57
Operations .. 57

API Version 2009-04-15
3

Amazon SimpleDB Developer Guide

BatchDeleteAttributes .. 57
BatchPutAttributes ... 60
CreateDomain ... 64
DeleteAttributes ... 65
DeleteDomain .. 70
DomainMetadata ... 72
GetAttributes ... 74
ListDomains ... 77
PutAttributes .. 78
Select .. 83

API Error Codes .. 87
Document History ... 94
Amazon SimpleDB Glossary .. 92
Index ... 96

API Version 2009-04-15
4

Amazon SimpleDB Developer Guide

Welcome to Amazon SimpleDB

This is the Developer Guide for Amazon SimpleDB.This guide provides a conceptual overview of Amazon
SimpleDB, programming reference material, and a detailed API reference. For a quick overview of Amazon
SimpleDB with code samples, go to the Amazon SimpleDB Getting Started Guide.

Amazon SimpleDB is a web service for running queries on structured data in real time.This service works
in close conjunction with Amazon Simple Storage Service (Amazon S3) and Amazon Elastic Compute
Cloud (Amazon EC2), collectively providing the ability to store, process and query data sets in the cloud.
These services are designed to make web-scale computing easier and more cost-effective for developers.

Relevant SectionsHow Do I...?

Amazon SimpleDB Detail PageLearn if Amazon SimpleDB is right for my use case

Data Model (p. 5)Learn about the Amazon SimpleDB data model

Tuning Queries (p. 48)Learn how to tune Amazon SimpleDB queries

API Reference (p. 51)Find information about Amazon SimpleDB
operations

Region Endpoints (p. 13)Find and use different Amazon SimpleDB endpoints

Amazon SimpleDB Sample Code and LibrariesFind information about Amazon SimpleDB libraries

Amazon SimpleDB ForumsGet help from other developers

API Version 2009-04-15
1

Amazon SimpleDB Developer Guide

http://docs.aws.amazon.com/AmazonSimpleDB/2009-04-15/GettingStartedGuide/
http://aws.amazon.com/simpledb/
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=189
http://developer.amazonwebservices.com/connect/forum.jspa?forumID=38

Introduction to Amazon SimpleDB

Topics

• Features (p. 2)

• How Amazon Charges for Amazon SimpleDB (p. 3)

• Viewing Your Bill (p. 4)

This introduction to Amazon SimpleDB is intended to give you a detailed summary of this web service.
After reading this section, you should have a good idea of what it offers and how it can fit in with your
business.

Traditionally, the type of functionality provided by Amazon SimpleDB has been accomplished with a
clustered relational database that requires a sizable upfront investment, brings more complexity than is
typically needed, and often requires a DBA to maintain and administer. In contrast, Amazon SimpleDB
is easy to use and provides the core functionality of a database - real-time lookup and simple querying
of structured data - without the operational complexity. Amazon SimpleDB requires no schema,
automatically indexes your data and provides a simple API for storage and access. This eliminates the
administrative burden of data modeling, index maintenance, and performance tuning. Developers gain
access to this functionality within Amazon's proven computing environment, are able to scale instantly,
and pay only for what they use.

Features
Following are some of the major Amazon SimpleDB attributes:

Features

• Simple to use—Amazon SimpleDB provides streamlined access to the lookup and query functions
that traditionally are achieved using a relational database cluster while leaving out other complex,
often-unused database operations.
The service allows you to quickly add data and easily retrieve or edit that data through a simple set of
API calls. Accessing these capabilities through a web service also eliminates the complexity of
maintaining and scaling these operations

• Flexible—With Amazon SimpleDB, it is not necessary to pre-define all of the data formats you will
need to store; simply add new attributes to your Amazon SimpleDB data set when needed, and the
system will automatically index your data accordingly.

API Version 2009-04-15
2

Amazon SimpleDB Developer Guide
Features

The ability to store structured data without first defining a schema provides developers with greater
flexibility when building applications.

• Scalable—Amazon SimpleDB allows you to easily scale your application.You can quickly create new
domains as your data grows or your request throughput increases.
Currently, you can store up to 10 GB per domain and you can create up to 250 domains.

• Fast—Amazon SimpleDB provides quick, efficient storage and retrieval of your data to support high
performance web applications.

• Reliable—The service runs within Amazon's high-availability data centers to provide strong and
consistent performance.
To prevent data from being lost or becoming unavailable, your fully indexed data is stored redundantly
across multiple servers and data centers.

• Designed for use with other Amazon Web Services—Amazon SimpleDB is designed to integrate
easily with other web-scale services such as Amazon EC2 and Amazon S3.
For example, developers can run their applications in Amazon EC2 and store their data objects in
Amazon S3. Amazon SimpleDB can then be used to query the object metadata from within the application
in Amazon EC2 and return pointers to the objects stored in Amazon S3.

• Inexpensive—Amazon SimpleDB passes on to you the financial benefits of Amazon's scale.You pay
only for resources you actually consume.
Compare this with the significant up-front expenditures traditionally required to obtain software licenses
and purchase and maintain hardware, either in-house or hosted. This frees you from many of the
complexities of capacity planning, transforms large capital expenditures into much smaller operating
costs, and eliminates the need to over-buy "safety net" capacity to handle periodic traffic spikes.

How Amazon Charges for Amazon SimpleDB
Amazon SimpleDB pricing is based on your actual usage.Your usage is measured and rounded up to
the nearest cent.

Amazon SimpleDB charges you for the following types of usage:

• Structured Data Storage—Measures the size of your billable data by adding the raw byte size of the
data you upload + 45 bytes of overhead for each item, attribute name and attribute-value pair.

• Data Transfer—Measures the amount of data transferred for every operation.
Data transferred between Amazon SimpleDB and other Amazon Web Services (e.g., Amazon S3,
Amazon EC2, Amazon SQS, and others) is free of charge.

• Machine Utilization—Measures the machine utilization of each request and charges based on the
amount of machine capacity used to complete the particular request (SELECT, GET, PUT, etc.).

Note
Amazon Web Services provides a free tier of Amazon SimpleDB usage.The free tier is a monthly
offer. Free usage does not accumulate.
Any data stored as part of the free tier program must be actively used. If a domain is not accessed
for a period of 6 months, it will be subject to removal at the discretion of Amazon Web Services.

Storage
You are charged for the amount of storage your data uses each month which can be considered an
average of the month. For example, if you use one gigabyte for the month, you are charged for one
gigabyte of storage. If you use zero gigabytes for the first half of the month and two gigabytes for the
second half, you are also charged for one gigabyte of storage.

API Version 2009-04-15
3

Amazon SimpleDB Developer Guide
How Amazon Charges for Amazon SimpleDB

Several times each day, Amazon SimpleDB measures the amount of storage used by all of the objects
in your account. Amazon SimpleDB stores this information in byte-hours and averages it with all other
recorded measurements at the end of the billing cycle.

Data Transfer
Amazon charges you for the amount of data transferred into and out of Amazon SimpleDB. For every
operation, Amazon SimpleDB monitors the amount of data sent and received and records the data. Once
per hour, the usage total is recorded to your account. This information is stored and totaled at the end of
the billing cycle.

Viewing Your Bill
You can view the charges for your current billing period at any time by going to the AWS Portal.

To view your activity

1. Log in to your AWS account.

2. Move the pointer over Your Web Services Account.

3. Click Account Activity.

A list of services to which you subscribe appears.

4. Locate the Amazon SimpleDB service.

DescriptionBilling Component

Enables you to view or change settings associated with the Amazon SimpleDB
service.

View/Edit Service Button

Shows the machine hour usage cost, current number of hours consumed,
and billing for the current cycle.

Machine Hour Usage

Shows the data transfer cost, current amount of data transferred, and billing
for the current cycle.

Data Transferred

Shows the storage usage cost, average amount of storage consumed, and
billing for the current cycle.

Storage

Shows detailed data used to calculate your bill.Usage Report

API Version 2009-04-15
4

Amazon SimpleDB Developer Guide
Data Transfer

http://aws.amazon.com

Amazon SimpleDB Concepts

Topics

• Data Model (p. 5)

• Operations (p. 6)

• API Summary (p. 7)

• Consistency (p. 7)

• Limits (p. 9)

• Data Set Partitioning (p. 10)

• AWS Identity and Access Management (p. 11)

This section describes the key concepts that you should understand before using Amazon SimpleDB.

Data Model
When using Amazon SimpleDB, you organize your structured data in domains within which you can put
data, get data, or run queries.

Domains consist of items which are described by attribute name-value pairs. For a better understanding,
consider the spreadsheet model shown in the following image.

API Version 2009-04-15
5

Amazon SimpleDB Developer Guide
Data Model

The components correspond to each part of a spreadsheet:

• Customer Account—Represented by the entire spreadsheet, it refers to the Amazon Web Services
account to which all domains are assigned.

• Domains—Represented by the domain worksheet tabs at the bottom of the spreadsheet, domains are
similar to tables that contain similar data.
You can execute queries against a domain, but cannot execute queries across different domains.

• Items—Represented by rows, items represent individual objects that contain one or more attribute
name-value pairs.

• Attributes—Represented by columns, attributes represent categories of data that can be assigned to
items.

• Values—Represented by cells, values represent instances of attributes for items. An attribute can have
multiple values.

Unlike a spreadsheet, however, multiple values can be associated with a cell. For example, an item can
have both the color value red and blue. Additionally, Amazon SimpleDB does not require the presence
of specific attributes.You can create a single domain that contains completely different product types.
For example, the following table contains clothing, automotive parts, and motorcycle parts.

ModelMakeSizeColorNameSubcat.CategoryID

Small,
Medium,
Large

SiameseCathair
Sweater

SweaterClothesItem_01

30x32,
32x32,
32x34

Paisley
Acid Wash

Designer
Jeans

PantsClothesItem_02

LargeBlue,
Yellow,
Pink

SweatpantsPantsClothesItem_03

S4AudiTurbosEngineCar PartsItem_04

S4Audi02 SensorEmissionsCar PartsItem_05

R1YamahaBlueFender
Eliminator

BodyworkMotorcycle
Parts

Item_06

Small,
Medium,
Large

BlackLeather
Pants

ClothingMotorcycle
Parts,
Clothing

Item_07

Regardless of how you store your data, Amazon SimpleDB automatically indexes your data for quick and
accurate retrieval.

Operations
The following describes components of Amazon SimpleDB operations.

• Subscriber—Any application, script, or software making a call to the Amazon SimpleDB service.
The AWS Access Key ID uniquely identifies each subscriber for billing and metering purposes.

API Version 2009-04-15
6

Amazon SimpleDB Developer Guide
Operations

• Amazon SimpleDB Request—A single web service API call and its associated data that the subscriber
sends to the Amazon SimpleDB service to perform one or more operations.

• Amazon SimpleDB Response—The response and any results returned from the Amazon SimpleDB
service to the subscriber after processing the request.
The AWS Platform handles authentication success and failure; failed requests are not sent to the
Amazon SimpleDB service.

API Summary
The Amazon SimpleDB service consists of a small group of API calls that provide the core functionality
you need to build your application. See Operations (p. 57) in the API Reference chapter for detailed
descriptions of each option.

• CreateDomain—Create domains to contain your data; you can create up to 250 domains. If you require
additional domains, go to
https://aws.amazon.com/support/createCase?type=service_limit_increase&serviceLimitIncreaseType=simpledb-domains.

• DeleteDomain—Delete any of your domains

• ListDomains—List all domains within your account

• PutAttributes—Add, modify, or remove data within your Amazon SimpleDB domains

• BatchPutAttributes—Generate multiple put operations in a single call

• DeleteAttributes—Remove items, attributes, or attribute values from your domain

• BatchDeleteAttributes—Generate multiple delete operations in a single call

• GetAttributes—Retrieve the attributes and values of any item ID that you specify

• Select—Query the specified domain using a SQL SELECT expression

• DomainMetadata—View information about the domain, such as the creation date, number of items
and attributes, and the size of attribute names and values

Consistency
Amazon SimpleDB keeps multiple copies of each domain. A successful write (using PutAttributes,
BatchPutAttributes, DeleteAttributes, BatchDeleteAttributes, CreateDomain, or DeleteDomain) guarantees
that all copies of the domain will durably persist.

Amazon SimpleDB supports two read consistency options: eventually consistent read and consistent
read.

An eventually consistent read (using Select or GetAttributes) might not reflect the results of a recently
completed write (using PutAttributes, BatchPutAttributes, DeleteAttributes, or BatchDeleteAttributes).
Consistency across all copies of the data is usually reached within a second; repeating a read after a
short time should return the updated data.

A consistent read (using Select or GetAttributes with ConsistentRead=true) returns a result that
reflects all writes that received a successful response prior to the read.

By default, GetAttributes and Select perform an eventually consistent read.

The following table describes the characteristics of eventually consistent read and consistent read.

Consistent ReadEventually Consistent Read

No stale readsStale reads possible

API Version 2009-04-15
7

Amazon SimpleDB Developer Guide
API Summary

https://aws.amazon.com/support/createCase?type=service_limit_increase&serviceLimitIncreaseType=simpledb-domains

Consistent ReadEventually Consistent Read

Potential higher read latencyLowest read latency

Potential lower read throughputHighest read throughput

Concurrent Applications
This section provides examples of eventually consistent and consistent read requests when multiple
clients are writing to the same items. Whenever you have multiple clients writing to the same items,
implement some concurrently control mechanism, such as timestamp ordering, to ensure you are getting
the data you want.

In this example, both W1 (write 1) and W2 (write 2) complete (receive a successful response from the
server) before the start of R1 (read 1) and R2 (read 2). For a consistent read, R1 and R2 both return
color = ruby. For an eventually consistent read, R1 and R2 might return color = red, color =
ruby, or no results, depending on the amount of time that has elapsed.

In the next example, W2 does not complete before the start of R1. Therefore, R1 might return color =
ruby or color = garnet for either a consistent read or an eventually consistent read. Data is distributed
among several servers. If R1 is sent to one server that does not have the W2 values, yet, then R1 returns
W1 values. Also, depending on the amount of time that has elapsed, an eventually consistent read might
return no results.

Note
If a failure occurs during the second write operation (W2), the value might change depending
on when in the operation the failure occurs.

For a consistent read, R2 returns color = garnet. For an eventually consistent read, R2 might return
color = ruby, color = garnet, or no results depending on the amount of time that has elapsed.

API Version 2009-04-15
8

Amazon SimpleDB Developer Guide
Concurrent Applications

In the last example, Client 2 submits W2 before Amazon SimpleDB completes W1, so the outcome of
the final value is unknown (color = garnet or color = brick). Any subsequent reads (consistent
read or eventually consistent) might return either value. Also, depending on the amount of time that has
elapsed, an eventually consistent read might return no results.

Limits
Following is a table that describes current limits within Amazon SimpleDB.

RestrictionParameter

10 GB per domainDomain size

1 billion attributes per domainDomain size

3-255 characters (a-z, A-Z, 0-9, '_', '-', and '.')Domain name

API Version 2009-04-15
9

Amazon SimpleDB Developer Guide
Limits

RestrictionParameter

250Domains per account

256Attribute name-value pairs per item

1024 bytesAttribute name length

1024 bytesAttribute value length

1024 bytesItem name length

All UTF-8 characters that are valid in XML documents.

Control characters and any sequences that are not valid in
XML are returned Base64-encoded. For more information,
see Working with XML-Restricted Characters (p. 50).

Attribute name, attribute value, and item
name allowed characters

256Attributes per PutAttributes
operation

256Attributes requested per Select
operation

25Items per BatchDeleteAttributes
operation

25Items per BatchPutAttributes
operation

2500Maximum items in Select response

5 secondsMaximum query execution time

20Maximum number of unique attributes
per Select expression

20Maximum number of comparisons per
Select expression

1MBMaximum response size for Select

Data Set Partitioning
Amazon SimpleDB is designed to support highly parallel applications. To improve performance, you can
partition your dataset among multiple domains to parallelize queries and have them operate on smaller
individual datasets. Although you can only execute a single query against a single domain, you can
perform aggregation of the result sets in the application layer. The following is a list of applications that
lend themselves to parallelized queries:

• Natural Partitions—The data set naturally partitions along some dimension. For example, a product
catalog might be partitioned in the "Book", "CD" and "DVD" domains. Although you can store all the
product data in a single domain, partitioning can improve overall performance.

• High Performance Application—Useful when the application requires higher throughput than a single
domain can provide.

• Large Data Set—Useful when timeout limits are reached because of the data size or query complexity.

API Version 2009-04-15
10

Amazon SimpleDB Developer Guide
Data Set Partitioning

In cases where data sets do not partition easily (e.g., logs, events, web crawler data), you can use hashing
algorithms to create a uniform distribution of items among multiple domains.

For example, you can determine the hash of an item name using a well-behaved hash function, such as
MD5 and use the last 2 bits of the resulting hash value to place each item in a specified domain.

• If last two bits equal 00, place item in Domain0

• If last two bits equal 01, place item in Domain1

• If last two bits equal 10, place item in Domain2

• If last two bits equal 11, place item in Domain3

This algorithm provides a distribution of items among domains, uniformity of which is directly controlled
by the hash function. The additional advantage of this scheme is the ease with which it can be adjusted
to partition your data among larger number of domains by considering more and more bits of the hash
value (3 bits will distribute to 8 domains, 4 bits to 16 domains and so on).

AWS Identity and Access Management
Amazon SimpleDB integrates with AWS Identity and Access Management (IAM), a service that enables
you to do the following:

• Create users and groups under your AWS account

• Easily share your AWS resources between the users in your AWS account

• Assign unique security credentials to each user

• Control each user's access to services and resources

• Get a single bill for all users in your AWS account

For example, you can use IAM to control access to a specific domain that your AWS account owns.

For general information about IAM, go to:

• Identity and Access Management (IAM)

• AWS Identity and Access Management Getting Started Guide

• Using AWS Identity and Access Management

For specific information about how you can control User access to Amazon SimpleDB, see Managing
Users of Amazon SimpleDB (p. 19).

API Version 2009-04-15
11

Amazon SimpleDB Developer Guide
AWS Identity and Access Management

http://aws.amazon.com/iam
http://docs.aws.amazon.com/IAM/latest/GettingStartedGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Using Amazon SimpleDB

Topics

• Available Libraries (p. 12)

• Making API Requests (p. 13)

• Request Authentication (p. 16)

• Working with Domains (p. 29)

• Working with Data (p. 31)

• Conditionally Putting and Deleting Data (p. 33)

• Using Select to Create Amazon SimpleDB Queries (p. 37)

• Working with Numerical Data (p. 46)

• Tuning Queries (p. 48)

• Working with XML-Restricted Characters (p. 50)

This section describes major concepts you should understand before building your Amazon SimpleDB
application.

Available Libraries
AWS provides libraries (the AWS SDKs), which include sample code, tutorials, and other resources for
software developers who prefer to build applications using language-specific APIs instead of writing their
own HTTP requests. These SDKs provide basic functions (not included in the APIs), such as request
authentication, request retries, and error handling so that it is easier to get started. AWS SDKs are
available for the following languages:

• Java

• PHP

• Python

• Ruby

• Windows and .NET

For links to the documentation for all AWS SDKs for supported languages, go to the Software Development
Kits (SDKs) section on the AWS Documentation page.

API Version 2009-04-15
12

Amazon SimpleDB Developer Guide
Available Libraries

http://aws.amazon.com/java
http://aws.amazon.com/php
http://aws.amazon.com/python
http://aws.amazon.com/ruby
http://aws.amazon.com/net
http://aws.amazon.com/documentation/

For libraries and sample code in all languages, go to Sample Code & Libraries.

Making API Requests
Topics

• Region Endpoints (p. 13)

• Making REST Requests (p. 13)

• Making SOAP Requests (p. 16)

This section describes how to make REST requests.

Region Endpoints
To improve latency and to store data in a location that meets your requirements, Amazon SimpleDB
enables you to select different region endpoints.

For information about this Amazon SimpleDB regions and endpoints, go to Regions and Endpoints in the
Amazon Web Services General Reference.

For example, to create a SimpleDB domain in Europe, you would generate a REST request similar to the
following:

https://sdb.eu-west-1.amazonaws.com/?Action=CreateDomain
&DomainName=MyDomain
&<authentication parameters>

Each Amazon SimpleDB endpoint is entirely independent. For example, if you have two domains called
"MyDomain," one in sdb.amazonaws.com and one in sdb.eu-west-1.amazonaws.com, they are completely
independent and do not share any data.

Making REST Requests
Topics

• About REST Requests (p. 13)

• Structure of a GET Request (p. 14)

• Structure of a POST Request (p. 14)

• Using Parameters with REST (p. 14)

• Sample REST Requests (p. 15)

This section provides information on making REST requests with the Amazon SimpleDB web service.

About REST Requests
For Amazon SimpleDB requests, use HTTP GET requests that are URLs with query strings, or use HTTP
POST requests with a body of query parameters.You can use either HTTPS or HTTP for your requests.
If the length of the query string that you are constructing exceeds the maximum allowed length of an
HTTP GET URL, use the HTTP POST method, instead.

The response is an XML document that conforms to a schema.

API Version 2009-04-15
13

Amazon SimpleDB Developer Guide
Making API Requests

http://aws.amazon.com/code
http://docs.aws.amazon.com/general/latest/gr/rande.html#sdb_region

Structure of a GET Request
This guide presents the Amazon SimpleDB GET requests as URLs. The URL consists of:

• Endpoint—The Amazon SimpleDB endpoints, see Regions and Endpoints.

• Action—The action you want to perform. For example, creating a new domain (CreateDomain). For a
complete list, see Operations (p. 57).

• Parameters—A set of parameters that might be specific to the operation, such as an ItemName, or
common to all operations, such as your AWSAccessKeyId.

• AWSAccessKeyId— The Access Key ID associated with your account. For more information, see
Your AWS Security Credentials (p. 18).

• Version—The current API version for Amazon SimpleDB.

• Signature—The signature authenticates your request to AWS and must be accompanied by a valid
timestamp. For information about calculating the signature value and providing the correct timestamp,
see HMAC-SHA Signature (p. 23).

• SignatureVersion—Currently for Amazon SimpleDB, this value should always be 2.

• SignatureMethod—Either HmacSHA1 or HmacSHA256 depending upon which method was used to
calculate the Signature value, see HMAC-SHA Signature (p. 23).

• Timestamp—A valid time stamp (instead of an expiration time) within 15 minutes before or after the
request, see About the Time Stamp (p. 28).

Structure of a POST Request
Amazon SimpleDB POST requests consists of:

• HTTP Headers—The following headers are required:

Content-Type: application/x-www-form-urlencoded; charset=utf-8
Host: sdb.amazonaws.com

The Host value is one of the Amazon SimpleDB endpoints, see Regions and Endpoints.

• Action—The action you want to perform. For example, creating a new domain (CreateDomain). For a
complete list, see Operations (p. 57).

• Parameters—A set of parameters that might be specific to the operation, such as an ItemName.

• AWSAccessKeyId— The Access Key ID associated with your account. For more information, see
Your AWS Security Credentials (p. 18).

• Version—The current API version for Amazon SimpleDB.

• Signature—The signature authenticates your request to AWS, see HMAC-SHA Signature (p. 23).

• SignatureVersion—Currently for Amazon SimpleDB, this value should always be 2.

• SignatureMethod—Either HmacSHA1 or HmacSHA256 depending upon which method was used to
calculate the Signature value, see HMAC-SHA Signature (p. 23).

• Timestamp—A valid time stamp (instead of an expiration time) within 15 minutes before or after the
request, see About the Time Stamp (p. 28).

Using Parameters with REST
In a REST request, each parameter is separated with an ampersand (&). The following is an example of
the DomainName parameter and ItemName parameter using the ampersand (&) separator.
DomainName=MyDomain&ItemName=Item123

API Version 2009-04-15
14

Amazon SimpleDB Developer Guide
Making REST Requests

http://docs.aws.amazon.com/general/latest/gr/rande.html#sdb_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#sdb_region

Parameters that have specific properties start with the main parameter name (such as Attribute), a
dot, a sequence number, a dot, and the property name (such as Name). For example:
&Attribute.1.Name=Color.

Note
Format the parameters as defined by the HTML 4.01 specification (section 17.13.4) for
application/x-www-form-urlencoded. Parameter names become control names, and
their values become control values.The order is not significant. However, also note that Amazon
SimpleDB is more strict than the specification about what is URL encoded.

Sample REST Requests
This section provides sample REST requests and responses.

REST Request as a URL

The following shows a REST request that puts three attributes and values for an item named Item123
into the domain named MyDomain.

Note
A valid request does not contain line breaks. The following request contains line breaks to show
each parameter clearly.

https://sdb.amazonaws.com/?Action=PutAttributes
&DomainName=MyDomain
&ItemName=Item123
&Attribute.1.Name=Color&Attribute.1.Value=Blue
&Attribute.2.Name=Size&Attribute.2.Value=Med
&Attribute.3.Name=Price&Attribute.3.Value=0014.99
&AWSAccessKeyId=your_access_key
&Version=2009-04-15
&Signature=valid_signature
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A01%3A28-07%3A00

REST Response

The following is the sample response:

<PutAttributesResponse>
 <ResponseMetadata>
 <StatusCode>Success</StatusCode>
 <RequestId>f6820318-9658-4a9d-89f8-b067c90904fc</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</PutAttributesResponse>

REST Request using HTTP POST

The following shows a REST request that puts three attributes and values for an item named Item123
into the domain named MyDomain.

Note
A valid request does not contain line breaks in the body of the request. The following request
contains line breaks to show each parameter clearly.

API Version 2009-04-15
15

Amazon SimpleDB Developer Guide
Making REST Requests

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4

POST / HTTP/1.1
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Host: sdb.amazonaws.com

Action=PutAttributes
&DomainName=MyDomain
&ItemName=Item123
&Attribute.1.Name=Color&Attribute.1.Value=Blue
&Attribute.2.Name=Size&Attribute.2.Value=Med
&Attribute.3.Name=Price&Attribute.3.Value=0014.99
&AWSAccessKeyId=your_access_key
&Version=2009-04-15
&Signature=valid_signature
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A01%3A28-07%3A00

REST Response

The following is the sample response:

<PutAttributesResponse>
 <ResponseMetadata>
 <StatusCode>Success</StatusCode>
 <RequestId>f6820318-9658-4a9d-89f8-b067c90904fc</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</PutAttributesResponse>

Making SOAP Requests
Important
As of September 1, 2011, Amazon SimpleDB no longer supports SOAP requests.

Request Authentication
Topics

• What Is Authentication? (p. 17)

• Creating an AWS Account (p. 17)

• Your AWS Security Credentials (p. 18)

• Managing Users of Amazon SimpleDB (p. 19)

• Using Temporary Security Credentials (p. 22)

• HMAC-SHA Signature (p. 23)

This section explains how Amazon SimpleDB authenticates your requests.

API Version 2009-04-15
16

Amazon SimpleDB Developer Guide
Making SOAP Requests

What Is Authentication?
Authentication is a process for identifying and verifying who is sending a request. The following diagram
shows a simplified version of an authentication process.

General Process of Authentication

The sender obtains the necessary credential.

The sender sends a request with the credential to the recipient.

The recipient uses the credential to verify the sender truly sent the request.

If yes, the recipient processes the request. If no, the recipient rejects the request and
responds accordingly.

During authentication, Amazon Web Services (AWS) verifies both the identity of the sender and whether
the sender is registered to use services offered by AWS. If either test fails, the request is not processed
further.

For further discussion of authentication, go to the techencylopedia.com entry for authentication. For
definitions of common industry terms related to authentication, go to the RSA Laboratories Glossary.

The subsequent sections describe how Amazon SimpleDB implements authentication to protect you and
your customers' data.

Creating an AWS Account
To access any web service AWS offers, you must first create an AWS account at http://aws.amazon.com.
An AWS account is simply an Amazon.com account that is enabled to use AWS products; you can use
an existing Amazon.com account login and password when creating the AWS account.

Important
If you have a personal Amazon.com account, you might want to have a separate Amazon.com
account just for your AWS activity.You could provide a new e-mail address not already in the
Amazon.com system, or provide an e-mail address for an existing Amazon.com account you
have but use a different password.You can have multiple Amazon.com accounts that use the
same e-mail address, but different passwords.

API Version 2009-04-15
17

Amazon SimpleDB Developer Guide
What Is Authentication?

http://www.techweb.com/encyclopedia/defineterm.jhtml?term=authentication&x=13&y=4
http://www.rsa.com/rsalabs/node.asp?id=2373
http://aws.amazon.com

From your AWS account you can view your AWS account activity, view usage reports, and manage your
AWS Security Credentials.

To set up a new account

1. Go to http://aws.amazon.com, and then click Sign Up.

2. Follow the on-screen instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Your AWS Security Credentials
When you create an AWS account, AWS assigns you a pair of related security credentials:

• Access Key ID (a 20-character, alphanumeric sequence)
For example: 00627471SOVYZEXAMPLE

• Secret Access Key (a 40-character sequence)
For example: 8Jhi60+EWUUbbUShTEsjTxqQtM8UKvsM6XAjdA==

These are your AWS Security Credentials.

Caution
Your Secret Access Key is a secret, which only you and AWS should know. It is important to
keep it confidential to protect your account. Store it securely in a safe place. Never include it in
your requests to AWS, and never e-mail it to anyone. Do not share it outside your organization,
even if an inquiry appears to come from AWS or Amazon.com. No one who legitimately represents
Amazon will ever ask you for your Secret Access Key.
Never embed your Secret Access Key into client-side applications.

The Access Key ID is associated with your AWS account.You include it in AWS service requests to
identify yourself as the sender of the request.

The Access Key ID is not a secret, and anyone could use your Access Key ID in requests to AWS. To
provide proof that you truly are the sender of the request, you must also include a digital signature. AWS
uses the Access Key ID in the request to look up your Secret Access Key and then calculates a digital
signature with the key. If the signature AWS calculates matches the signature you sent, the request is
considered authentic. Otherwise, the request fails authentication and is not processed. For more details,
see HMAC-SHA Signature (p. 23).

Viewing Your AWS Security Credentials
For console access, use your user name and password to sign in to the AWS Management Console
using the sign-in page. For more information about creating access keys, see How Do I Get Security
Credentials? in the AWS General Reference.

API Version 2009-04-15
18

Amazon SimpleDB Developer Guide
Your AWS Security Credentials

http://aws.amazon.com
https://console.aws.amazon.com/console/home
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_AccessingConsole.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Managing Users of Amazon SimpleDB
Topics

• Amazon Resource Names (ARNs) for Amazon SimpleDB (p. 19)

• Amazon SimpleDB Actions (p. 20)

• Amazon SimpleDB Keys (p. 20)

• Example Policies for Amazon SimpleDB (p. 20)

Amazon SimpleDB does not offer its own resource-based permissions system. However, the service now
integrates with IAM (AWS Identity and Access Management) so that you can give other Users in your
AWS Account access to Amazon SimpleDB domains within the AWS Account. For example, Joe can
create an Amazon SimpleDB domain, and then write an IAM policy specifying which Users in his AWS
Account can access that domain. Joe can't give another AWS Account (or Users in another AWS Account)
access to his AWS Account's SimpleDB domains.

Important
Aside from the integration with IAM, Amazon SimpleDB hasn't changed. Its API is not affected
by the introduction of IAM, and includes no new actions related to Users and access control.

For examples of policies that cover Amazon SimpleDB actions and resources, see Example Policies for
Amazon SimpleDB (p. 20).

Amazon Resource Names (ARNs) for Amazon SimpleDB
For Amazon SimpleDB, domains are the only resource type you can specify in a policy. The ARN format
for domains follows this format:

arn:aws:sdb:<region>:<account_ID>:domain/<domain_name>

The <region> is required and can be any of the individual Regions Amazon SimpleDB supports (e.g.,
us-east-1), or * to represent all Regions. The <region> must not be blank.

Example

Following is an ARN for a domain named Domain1 in the us-east-1 region, belonging to AWS Account
111122223333.

arn:aws:sdb:us-east-1:111122223333:domain/Domain1

Example

Following is an ARN for a domain named Domain1 in all Regions that Amazon SimpleDB supports.

arn:aws:sdb:*:111122223333:domain/Domain1

You can use * and ? wildcards in the domain name. The * represents zero or multiple characters, and ?
represents one character. For example, the following could refer to all the domains prefixed with don_.

arn:aws:sdb:*:111122223333:domain/don_*

For more information about ARNs, see ARNs.

API Version 2009-04-15
19

Amazon SimpleDB Developer Guide
Managing Users of Amazon SimpleDB

http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_Identifiers.html#Identifiers_ARNs

Amazon SimpleDB Actions
In an IAM policy, you can specify any and all actions that Amazon SimpleDB offers.You must prefix each
action name with the lowercase string sdb:. For example: sdb:GetAttributes, sdb:Select, sdb:*
(for all Amazon SimpleDB actions). For a list of the actions, see Operations (p. 57).

Amazon SimpleDB Keys
Amazon SimpleDB implements the following policy keys, but no product-specific ones. For more information
about policy keys, see Condition.

AWS-Wide Policy Keys

• aws:CurrentTime—To check for date/time conditions.

• aws:EpochTime—To check for date/time conditions using a date in epoch or UNIX time.

• aws:principaltype—To check the type of principal (user, account, federated user, etc.) for the current
request.

• aws:SecureTransport—To check whether the request was sent using SSL. For services that use
only SSL, such as Amazon RDS and Amazon Route 53, the aws:SecureTransport key has no
meaning.

• aws:SourceArn—To check the source of the request, using the Amazon Resource Name (ARN) of
the source. (This value is available for only some services. For more information, see Amazon Resource
Name (ARN) under "Element Descriptions" in the Amazon Simple Queue Service Developer Guide.)

• aws:SourceIp—To check the IP address of the requester. Note that if you use aws:SourceIp, and
the request comes from an Amazon EC2 instance, the public IP address of the instance is evaluated.

• aws:UserAgent—To check the client application that made the request.

• aws:userid—To check the user ID of the requester.

• aws:username—To check the user name of the requester, if available.

Note
Key names are case sensitive.

Example Policies for Amazon SimpleDB
This section shows several simple policies for controlling User access to Amazon SimpleDB domains.

Note
In the future, Amazon SimpleDB might add new actions that should logically be included in one
of the following policies, based on the policy’s stated goals.

Example 1: Allow a group to use any Amazon SimpleDB actions on specific domains

In this example, we create a policy that lets the group use any of the AWS Account's domains that start
with the literal string test.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"sdb:*",
 "Resource":"arn:aws:sdb:*:111122223333:domain/test*"
 }
]
}

API Version 2009-04-15
20

Amazon SimpleDB Developer Guide
Managing Users of Amazon SimpleDB

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN

Example 2: Allow a group to read data from the AWS Account's domains

In this example, we create a policy that lets the group use the GetAttributes and Select actions with
any of the AWS Account's domains.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":["sdb:GetAttributes","sdb:Select"],
 "Resource":"*"
 }
]
}

Example 3: Allow a group to list domains and get their metadata

In this example, we create a policy that lets the group use the ListDomains and DomainMetadata
actions with any of the AWS Account's domains.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":["sdb:ListDomains","sdb:DomainMetadata"],
 "Resource":"*"
 }
]
}

API Version 2009-04-15
21

Amazon SimpleDB Developer Guide
Managing Users of Amazon SimpleDB

Example 4: Allow a partner to only read data from a particular domain

There's no way to share a domain with a different AWS Account, so the partner must work with your
domain as a User within your own AWS Account.

In this example, we create an IAM User for the partner, and create a policy for the User that gives access
to the GetAttributes and Select actions only on the domain named mySDBDomain.

Note
Instead of attaching the policy to the User, you could create a group for the partner, put the User
in the group, and assign the policy to the group.

You might also want to prevent the partner from doing anything else with mySDBDomain, so we add a
statement that denies permission to any Amazon SimpleDB actions besides GetAttributes and Select.
This is only necessary if there's also a broad policy that gives the AWS Account's Users wide access to
Amazon SimpleDB and all the AWS Account's domains.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":["sdb:GetAttributes","sdb:Select"],
 "Resource":"arn:aws:sdb:*:111122223333:domain/mySDBDomain"
 },
 {
 "Effect":"Deny",
 "Action":["sdb:GetAttributes","sdb:Select"],
 "Resource":"*"
 }
]
}

Using Temporary Security Credentials
In addition to creating IAM users with their own security credentials, IAM also enables you to grant
temporary security credentials to any user to allow the user to access your AWS services and resources.
You can manage users who have AWS accounts; these users are IAM users.You can also manage users
for your system who do not have AWS accounts; these users are called federated users. Additionally,
"users" can also be applications that you create to access your AWS resources.

You can use these temporary security credentials to make requests to Amazon SimpleDB. Replace your
usual AWSAccessKeyId parameter with the one provided by IAM, add the IAM SecurityToken as a
new parameter, and sign the request with the SecretKeyId provided by IAM. If you send requests using
expired credentials Amazon SimpleDB denies the request.

For more information about IAM support for temporary security credentials, go to Granting Temporary
Access to Your AWS Resources in Using IAM.

API Version 2009-04-15
22

Amazon SimpleDB Developer Guide
Using Temporary Security Credentials

http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html

Example Using Temporary Security Credentials to Authenticate an Amazon SimpleDB
Request

The following example demonstrates the wire protocol for using temporary security credentials to
authenticate an Amazon SimpleDB request over HTTPS.

https://sdb.amazonaws.com/
?Action=GetAttributes
&AWSAccessKeyId=Access Key ID provided by AWS Security Token Service
&DomainName=MyDomain
&ItemName=JumboFez
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=Signature calculated using the SecretKeyId provided by AWS Security
 Token Service
&SecurityToken=Security Token Value

Note
AWS provides support for temporary security credentials and session tokens in the AWS SDKs
so you can implement temporary security credentials or session tokens with a specific
programming language. Each SDK has its own instructions for implementing this feature. For a
current list of AWS SDKs that support this feature, see Ways to Access the AWS Security Token
Service. Non-AWS products and services should have their own documentation about supporting
temporary credentials and session tokens, if available.

HMAC-SHA Signature
Topics

• Required Authentication Information (p. 23)

• Authentication Process (p. 24)

• Signing REST Requests (p. 25)

• About the Time Stamp (p. 28)

• Java Sample Code for Base64 Encoding (p. 28)

• Java Sample Code for Calculating HMAC-SHA1 Signatures (p. 28)

Required Authentication Information
When accessing Amazon SimpleDB using one of the AWS SDKs, the SDK handles the authentication
process for you. For a list of available AWS SDKs supporting Amazon SimpleDB, see Available
Libraries (p. 12).

However, when accessing Amazon SimpleDB using a REST request, you must provide the following
items so the request can be authenticated.

Authentication

• AWSAccessKeyId—Your AWS account is identified by your Access Key ID, which AWS uses to look
up your Secret Access Key.

• Signature—Each request must contain a valid HMAC-SHA signature, or the request is rejected.
A request signature is calculated using your Secret Access Key, which is a shared secret known only
to you and AWS.You can use HMAC-SHA1 or HMAC-SHA256 signatures.

API Version 2009-04-15
23

Amazon SimpleDB Developer Guide
HMAC-SHA Signature

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessingSTS.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessingSTS.html

• Date—Each request must contain the time stamp of the request.
Depending on the API you're using, you can provide an expiration date and time for the request instead
of or in addition to the time stamp. For details of what is required and allowed for each API, see the
authentication topic for the particular API.

Authentication Process
Following is the series of tasks required to authenticate requests to AWS using an HMAC-SHA request
signature. It is assumed you have already created an AWS account and received an Access Key ID and
Secret Access Key. For more information about those, see Creating an AWS Account (p. 17) and Your
AWS Security Credentials (p. 18).

You perform the first three tasks.

Process for Authentication:Tasks You Perform

You construct a request to AWS.

You calculate a keyed-hash message authentication code (HMAC-SHA) signature using
your Secret Access Key (for information about HMAC, go to
http://www.faqs.org/rfcs/rfc2104.html)

You include the signature and your Access Key ID in the request, and then send the request
to AWS.

API Version 2009-04-15
24

Amazon SimpleDB Developer Guide
HMAC-SHA Signature

http://www.faqs.org/rfcs/rfc2104.html

AWS performs the next three tasks.

Process for Authentication:Tasks AWS Performs

AWS uses the Access Key ID to look up your Secret Access Key.

AWS generates a signature from the request data and the Secret Access Key using the
same algorithm you used to calculate the signature you sent in the request.

If the signature generated by AWS matches the one you sent in the request, the request is
considered authentic. If the comparison fails, the request is discarded, and AWS returns an
error response.

Signing REST Requests
You can send REST requests over either HTTP or HTTPS. Regardless of which protocol you use, you
must include a signature in every REST request. This section describes how to create the signature. The
method described in the following procedure is known as signature version 2, and uses the HMAC-SHA256
signing method.

In addition to the requirements listed in Required Authentication Information (p. 23), signatures for REST
requests must also include:

• SignatureVersion—The AWS signature version, which is currently the value 2.

• SignatureMethod—Explicitly provide the signature method HmacSHA1 or HmacSHA256.

API Version 2009-04-15
25

Amazon SimpleDB Developer Guide
HMAC-SHA Signature

Caution
If you are currently using signature version 1: Version 1 is deprecated, and you should move to
signature version 2 immediately. For information about the deprecation schedule and the
differences between signature version 2 and version 1, go to Making Secure Requests to Amazon
Web Services.

To create the signature

1. Create the canonicalized query string that you need later in this procedure:

a. Sort the UTF-8 query string components by parameter name with natural byte ordering.
The parameters can come from the GET URI or from the POST body (when Content-Type is
application/x-www-form-urlencoded).

b. URL encode the parameter name and values according to the following rules:

• Do not URL encode any of the unreserved characters that RFC 3986 defines.
These unreserved characters are A-Z, a-z, 0-9, hyphen (-), underscore (_), period (.), and
tilde (~).

• Percent encode all other characters with %XY, where X and Y are hex characters 0-9 and
uppercase A-F.

• Percent encode extended UTF-8 characters in the form %XY%ZA....

• Percent encode the space character as %20 (and not +, as common encoding schemes do).

Note
Currently all AWS service parameter names use unreserved characters, so you don't
need to encode them. However, you might want to include code to handle parameter
names that use reserved characters, for possible future use.

c. Separate the encoded parameter names from their encoded values with the equals sign (=)
(ASCII character 61), even if the parameter value is empty.

d. Separate the name-value pairs with an ampersand (&) (ASCII character 38).

2. Create the string to sign according to the following pseudo-grammar (the "\n" represents an ASCII
newline character).

StringToSign = HTTPVerb + "\n" +
 ValueOfHostHeaderInLowercase + "\n" +
 HTTPRequestURI + "\n" +
 CanonicalizedQueryString <from the preceding step>

The HTTPRequestURI component is the HTTP absolute path component of the URI up to, but not
including, the query string. If the HTTPRequestURI is empty, use a forward slash (/).

3. Calculate an RFC 2104-compliant HMAC with the string you just created, your Secret Access Key
as the key, and SHA256 or SHA1 as the hash algorithm.
For more information, go to http://www.ietf.org/rfc/rfc2104.txt.

4. Convert the resulting value to base64.

5. Use the resulting value as the value of the Signature request parameter.

Important
The final signature you send in the request must be URL encoded as specified in RFC 3986 (for
more information, go to http://www.ietf.org/rfc/rfc3986.txt). If your toolkit URL encodes your final
request, then it handles the required URL encoding of the signature. If your toolkit doesn't URL
encode the final request, then make sure to URL encode the signature before you include it in

API Version 2009-04-15
26

Amazon SimpleDB Developer Guide
HMAC-SHA Signature

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1928
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1928

the request. Most importantly, make sure the signature is URL encoded only once. A common
mistake is to URL encode it manually during signature formation, and then again when the toolkit
URL encodes the entire request.

Some toolkits implement RFC 1738, which has different rules than RFC 3986 (for more information, go
to http://www.ietf.org/rfc/rfc1738.txt).

Example PutAttributes Request

https://sdb.amazonaws.com/?Action=PutAttributes
&DomainName=MyDomain
&ItemName=Item123
&Attribute.1.Name=Color&Attribute.1.Value=Blue
&Attribute.2.Name=Size&Attribute.2.Value=Med
&Attribute.3.Name=Price&Attribute.3.Value=0014.99
&Version=2009-04-15
&Timestamp=2010-01-25T15%3A01%3A28-07%3A00
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&AWSAccessKeyId=<Your AWS Access Key ID>

Following is the string to sign.

GET\n
sdb.amazonaws.com\n
/\n
AWSAccessKeyId=<Your AWS Access Key ID>
&Action=PutAttributes
&Attribute.1.Name=Color
&Attribute.1.Value=Blue
&Attribute.2.Name=Size
&Attribute.2.Value=Med
&Attribute.3.Name=Price
&Attribute.3.Value=0014.99
&DomainName=MyDomain
&ItemName=Item123
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2010-01-25T15%3A01%3A28-07%3A00
&Version=2009-04-15

Following is the signed request.

https://sdb.amazonaws.com/?Action=PutAttributes
&DomainName=MyDomain
&ItemName=Item123
&Attribute.1.Name=Color&Attribute.1.Value=Blue
&Attribute.2.Name=Size&Attribute.2.Value=Med
&Attribute.3.Name=Price&Attribute.3.Value=0014.99
&Version=2009-04-15
&Timestamp=2010-01-25T15%3A01%3A28-07%3A00
&Signature=<URLEncode(Base64Encode(Signature))>
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&AWSAccessKeyId=<Your AWS Access Key ID>

API Version 2009-04-15
27

Amazon SimpleDB Developer Guide
HMAC-SHA Signature

About the Time Stamp
The time stamp (or expiration time) you use in the request must be a dateTime object, with the complete
date plus hours, minutes, and seconds (for more information, go to
http://www.w3.org/TR/xmlschema-2/#dateTime). For example: 2010-01-31T23:59:59Z. Although it is not
required, we recommend you provide the time stamp in the Coordinated Universal Time (Greenwich
Mean Time) time zone.

If you specify a time stamp (instead of an expiration time), the request automatically expires 15 minutes
after the time stamp (in other words, AWS does not process a request if the request time stamp is more
than 15 minutes earlier than the current time on AWS servers). Make sure your server's time is set
correctly.

Important
If you are using .NET you must not send overly specific time stamps, due to different
interpretations of how extra time precision should be dropped. To avoid overly specific time
stamps, manually construct dateTime objects with no more than millisecond precision.

Java Sample Code for Base64 Encoding
HMAC-SHA request signatures must be base64 encoded. The following Java sample code shows how
to perform base64 encoding.

package amazon.webservices.common;
 /**
 * This class defines common routines for encoding * data in AWS Platform re
quests.
 */
 public class Encoding {
 /**
 * Performs base64-encoding of input bytes.
 *
 * @param rawData * Array of bytes to be encoded.
 * @return * The base64 encoded string representation of rawData.
 */
 public static String EncodeBase64(byte[] rawData) {
 return Base64.encodeBytes(rawData);
 }
 }

Java Sample Code for Calculating HMAC-SHA1 Signatures
The following Java code sample shows how to calculate an HMAC request signature.

package amazon.webservices.common;

 import java.security.SignatureException;
 import javax.crypto.Mac;
 import javax.crypto.spec.SecretKeySpec;

 /**
 * This class defines common routines for generating
 * authentication signatures for AWS Platform requests.
 */
 public class Signature {
 private static final String HMAC_SHA1_ALGORITHM = "HmacSHA1";

API Version 2009-04-15
28

Amazon SimpleDB Developer Guide
HMAC-SHA Signature

http://www.w3.org/TR/xmlschema-2/#dateTime

 /**
 * Computes RFC 2104-compliant HMAC signature.
 * * @param data
 * The data to be signed.
 * @param key
 * The signing key.
 * @return
 * The Base64-encoded RFC 2104-compliant HMAC signature.
 * @throws
 * java.security.SignatureException when signature generation fails
 */
 public static String calculateRFC2104HMAC(String data, String key)
 throws java.security.SignatureException
 {
 String result;
 try {

 // get an hmac_sha1 key from the raw key bytes
 SecretKeySpec signingKey = new SecretKeySpec(key.getBytes(), HMAC_SHA1_AL
GORITHM);

 // get an hmac_sha1 Mac instance and initialize with the signing key
 Mac mac = Mac.getInstance(HMAC_SHA1_ALGORITHM);
 mac.init(signingKey);

 // compute the hmac on input data bytes
 byte[] rawHmac = mac.doFinal(data.getBytes());

 // base64-encode the hmac
 result = Encoding.EncodeBase64(rawHmac);

 } catch (Exception e) {
 throw new SignatureException("Failed to generate HMAC : " + e.getMessage());
 }
 return result;
 }
 }

Working with Domains
This section describes how to work create, list, and delete domains.

Topics

• Creating a Domain (p. 29)

• Verifying the Domain (p. 30)

• Deleting a Domain (p. 31)

Creating a Domain
The following is an example of creating a domain using REST.

API Version 2009-04-15
29

Amazon SimpleDB Developer Guide
Working with Domains

https://sdb.amazonaws.com/
?Action=CreateDomain
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A01%3A28-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Amazon SimpleDB returns output similar to the following.

<CreateDomainResponse>
 <ResponseMetadata>
 <RequestId>2a1305a2-ed1c-43fc-b7c4-e6966b5e2727</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</CreateDomainResponse>

Verifying the Domain
The following is an example of listing domains using REST.

https://sdb.amazonaws.com/
?Action=ListDomains
&AWSAccessKeyId=[valid access key id]
&MaxNumberOfDomains=2
&NextToken=[valid next token]
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A02%3A19-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Amazon SimpleDB returns output similar to the following.

<ListDomainsResponse>
 <ListDomainsResult>
 <DomainName>MyDomain</DomainName>
 <DomainName>MyOtherDomain</DomainName>
 </ListDomainsResult>
 <ResponseMetadata>
 <RequestId>eb13162f-1b95-4511-8b12-489b86acfd28</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</ListDomainsResponse>

API Version 2009-04-15
30

Amazon SimpleDB Developer Guide
Verifying the Domain

Deleting a Domain
The following is an example of deleting a domain using REST.

https://sdb.amazonaws.com/
?Action=DeleteDomain
&AWSAccessKeyId=[valid access key id]
&DomainName=MyOtherDomain
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A02%3A20-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Amazon SimpleDB returns output similar to the following.

<DeleteDomainResponse>
 <ResponseMetadata>
 <RequestId>c522638b-31a2-4d69-b376-8c5428744704</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</DeleteDomainResponse>

Working with Data
This section describes how to create, get, and delete attributes.

For detailed information about constructing queries, see Using Select to Create Amazon SimpleDB
Queries (p. 37).

Topics

• Putting Data into a Domain (p. 31)

• Getting Data from a Domain (p. 32)

• Deleting Data from a Domain (p. 33)

Putting Data into a Domain
The following is an example of putting data into a domain using REST.

Note
When you put attributes, notice that the Replace parameter is optional, and set to false by
default. If you do not explicitly set Replace to true, a new attribute name-value pair is created
each time; even if the Name value already exists in your Amazon SimpleDB domain.

https://sdb.amazonaws.com/
?Action=PutAttributes
&DomainName=MyDomain
&ItemName=JumboFez

API Version 2009-04-15
31

Amazon SimpleDB Developer Guide
Deleting a Domain

&Attribute.1.Name=Color
&Attribute.1.Value=Blue
&Attribute.2.Name=Size
&Attribute.2.Value=Med
&Attribute.3.Name=Price
&Attribute.3.Value=0014.99
&Attribute.3.Replace=true
&AWSAccessKeyId=[valid access key id]
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A05-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Amazon SimpleDB returns output similar to the following.

<PutAttributesResponse>
 <ResponseMetadata>
 <RequestId>490206ce-8292-456c-a00f-61b335eb202b</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</PutAttributesResponse>

Note
For information on performing multiple put operations at once, see BatchPutAttributes (p. 60).

Getting Data from a Domain
The following is an example of getting data from an item using REST.

https://sdb.amazonaws.com/
?Action=GetAttributes
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&ItemName=JumboFez
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Amazon SimpleDB returns output similar to the following.

<GetAttributesResponse>
 <GetAttributesResult>
 <Attribute><Name>Color</Name><Value>Blue</Value></Attribute>
 <Attribute><Name>Size</Name><Value>Med</Value></Attribute>
 <Attribute><Name>Price</Name><Value>0014.99</Value></Attribute>
 </GetAttributesResult>
 <ResponseMetadata>
 <RequestId>b1e8f1f7-42e9-494c-ad09-2674e557526d</RequestId>

API Version 2009-04-15
32

Amazon SimpleDB Developer Guide
Getting Data from a Domain

 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</GetAttributesResponse>

Deleting Data from a Domain
The following is an example of deleting data from an item using REST.

https://sdb.amazonaws.com/
?Action=DeleteAttributes
&DomainName=MyDomain
&ItemName=JumboFez
&Attribute.1.Name=color
&Attribute.1.Value=red
&Attribute.2.Name=color
&Attribute.2.Value=brick
&Attribute.3.Name=color
&Attribute.3.Value=garnet
&AWSAccessKeyId=[valid access key id]
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Amazon SimpleDB returns output similar to the following.

<DeleteAttributesResponse>
 <ResponseMetadata>
 <RequestId>05ae667c-cfac-41a8-ab37-a9c897c4c3ca</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</DeleteAttributesResponse>

Note
For information on performing multiple delete operations at once, see
BatchDeleteAttributes (p. 57).

Conditionally Putting and Deleting Data
This section describes how to update or delete data when a specific condition is met.

Topics

• Performing a Conditional Put (p. 34)

• Performing a Conditional Delete (p. 36)

API Version 2009-04-15
33

Amazon SimpleDB Developer Guide
Deleting Data from a Domain

Performing a Conditional Put
Conditional put enables you to insert or replace values for one or more attributes of an item if the existing
value of an attribute matches a value that you specify. If the value does not match or is not present, the
insert or update is rejected with a 409 (MultiValuedAttribute, ConditionalCheckFailed) or 404
(AttributeDoesNotExist) error code.

Conditional updates are useful for preventing lost updates when different sources concurrently write to
the same item.

Note
Conditional puts can only match single-valued attributes.

Optimistic Concurrency Control
Applications can implement optimistic concurrency control (OCC) by maintaining a version number (or
timestamp) attribute as part of an item and by performing a conditional update based on the value of this
version number.

To set up optimistic concurrency control, configure each writer to specify the expected name and expected
value in put requests. If the expected value changes between the time the writer reads and writes to that
value, the writer does not perform the update. The writer can then read the update to the value and
perform another write based on the change.

Note
All writers must use conditional updates or updates can be lost

In the following example, the application does a conditional update of the item's state and sets the value
to "fuzzy" only if the value of VersionNumber is 30. If another application changes the value of
VersionNumber between this read and write, so that it is no longer 30, the updates fails.

https://sdb.amazonaws.com/
?Action=PutAttributes
&DomainName=MyDomain
&ItemName=JumboFez
&Attribute.1.Name=state
&Attribute.1.Value=fuzzy
&Attribute.1.Replace=true
&Attribute.2.Name=VersionNumber
&Attribute.2.Value=31
&Attribute.2.Replace=true
&Expected.1.Name=VersionNumber
&Expected.1.Value=30
&AWSAccessKeyId=[valid access key id]
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A05-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

If the condition is met, Amazon SimpleDB returns output similar to the following.

<PutAttributesResponse>
 <ResponseMetadata>
 <RequestId>490206ce-8292-456c-a00f-61b335eb202b</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>

API Version 2009-04-15
34

Amazon SimpleDB Developer Guide
Performing a Conditional Put

 </ResponseMetadata>
</PutAttributesResponse>

Counters
You can also use conditional puts to implement counters. For example, an application might issue a
GetAttributes call to retrieve the current page counter for a web page and write the new value using
PutAttributes only if no other host has updated the value.

To set up counters, configure each writer to specify the expected name and expected value in put requests.
If the counter value changes between the time the writer reads and writes to that value, the writer does
not update the counter. The writer can then read the counter value and perform another write based on
the change.

Note
All writers must use conditional updates or updates can be lost
When updating a counter, you can use eventually consistent or consistent reads. If a stale value
is read, the write is rejected by the system.
If a counter is updated frequently, make sure to re-read the updated counter value on failure.

In the following example, the application updates the counter if the value did not change between the
read and the write. If another application changes the value of PageHits between this read and write, so
that it is no longer 121, the updates fails.

https://sdb.amazonaws.com/
?Action=PutAttributes
&DomainName=MyDomain
&ItemName=www.fezco.com
&Attribute.1.Name=PageHits
&Attribute.1.Value=122
&Attribute.1.Replace=true
&Expected.1.Name=PageHits
&Expected.1.Value=121
&AWSAccessKeyId=[valid access key id]
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A05-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

If the condition is met, Amazon SimpleDB returns output similar to the following.

<PutAttributesResponse>
 <ResponseMetadata>
 <RequestId>490206ce-8292-456c-a00f-61b335eb202b</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</PutAttributesResponse>

Existence Check
You can use conditional puts to only put an attribute if it does not exist.

API Version 2009-04-15
35

Amazon SimpleDB Developer Guide
Performing a Conditional Put

To perform an existence check, specify expected name and set expected exists to false. If the specified
attribute does not exist, Amazon SimpleDB performs the update.

In the following example, Amazon SimpleDB creates the quantity attribute and sets its value to 144
for the PetiteFez item, if its quantity attribute does not exist.

https://sdb.amazonaws.com/
?Action=PutAttributes
&DomainName=MyDomain
&ItemName=PetiteFez
&Attribute.1.Name=quantity
&Attribute.1.Value=144
&Expected.1.Name=quantity
&Expected.1.Exists=false
&AWSAccessKeyId=[valid access key id]
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A05-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

If the condition is met, Amazon SimpleDB returns output similar to the following.

<PutAttributesResponse>
 <ResponseMetadata>
 <RequestId>490206ce-8292-456c-a00f-61b335eb202b</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</PutAttributesResponse>

Performing a Conditional Delete
Conditional delete enables you to delete an item or one or more attributes of an item if the existing value
of an attribute matches a value that you specify. If value does not match or is not present, the insert or
update is rejected with a 409 (MultiValuedAttribute, ConditionalCheckFailed) or 404 (AttributeDoesNotExist)
error code.

Note
Conditional deletes can only match single-valued attributes.

To perform a conditional delete, specify the expected name and expected value for a DeleteAttributes
operation. If the specified attribute does not exist, Amazon SimpleDB performs the delete.

In the following example, Amazon SimpleDB deletes the JumboFez product from the MyDomain domain
if the quantity of the product reaches zero.

https://sdb.amazonaws.com/
?Action=DeleteAttributes
&DomainName=MyDomain
&ItemName=JumboFez
&Expected.1.Name=quantity
&Expected.1.Value=0
&AWSAccessKeyId=[valid access key id]

API Version 2009-04-15
36

Amazon SimpleDB Developer Guide
Performing a Conditional Delete

&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A05-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

If the condition is met, Amazon SimpleDB returns output similar to the following.

<PutAttributesResponse>
 <ResponseMetadata>
 <RequestId>490206ce-8292-456c-a00f-61b335eb202b</RequestId>
 <BoxUsage>0.0000219907</BoxUsage>
 </ResponseMetadata>
</PutAttributesResponse>

Using Select to Create Amazon SimpleDB
Queries

This section describes Select, a function that takes query expressions similar to the standard SQL
SELECT statement.

Use the following format for the Select function.

select output_list
from domain_name
[where expression]
[sort_instructions]
[limit limit]

The output_list can be any of the following:

• * (all attributes)

• itemName() (the item name only)

• count(*)

• An explicit list of attributes (attribute1,..., attributeN)

DescriptionName

The domain to search.domain_name

The match expression. This rest of this section
provides examples of how to form select expressions.

expression

Sorts the results on a single attribute, in ascending or
descending order. For information on sorting results,
see Sort (p. 44).

sort_instructions

API Version 2009-04-15
37

Amazon SimpleDB Developer Guide
Using Select to Create Amazon SimpleDB Queries

DescriptionName

The limit is the maximum number of results per
page to return (default: 100, max. 2500).

Note
The total size of the response cannot exceed
1 MB. Amazon SimpleDB automatically
adjusts the number of items returned per
page to enforce this limit. For example, even
if you ask to retrieve 2500 items, but each
individual item is 10 KB in size, the system
returns 100 items and an appropriate next
token so you can get the next page of results.

limit

The expression can be any of the following:

• <select expression> intersection <select expression>

• NOT <select expression>

• (<select expression>)

• <select expression> or <select expression>

• <select expression> and <select expression>

• <simple comparison>

Note
For information on how to use quotes with Amazon SimpleDB, see Select Quoting Rules (p. 45).

Comparison Operators
Comparison operators are applied to a single attribute and are lexicographical in nature. When designing
an application, you should carefully think through storing data in its appropriate string representation. For
more information, see Working with Numerical Data (p. 46).

The following table shows all Amazon SimpleDB comparison operators.

Select ExampleDescriptionComparison
Operator

select * from mydomain where city
= 'Seattle'

select * from mydomain where city
= 'Seattle' or city = 'Portland'

Attribute value or itemName() equals the
specified constant.

=

select * from mydomain where name
!= 'John'

select * from mydomain where name
!= 'John' and name != 'Humberto'

Attribute value or itemName() does not
equal to the specified constant.

!=

select * from mydomain where
weight > '0034'

Attribute value or itemName() is greater
than the specified constant.

>

select * from mydomain where
weight >= '065'

Attribute value or itemName() is greater
than or equal to the specified constant.

>=

API Version 2009-04-15
38

Amazon SimpleDB Developer Guide
Comparison Operators

Select ExampleDescriptionComparison
Operator

select * from mydomain where
weight < '0034'

Attribute value or itemName() is less than
the specified constant.

<

select * from mydomain where year
<= '2000'

Attribute value or itemName() is less than
or equal to the specified constant.

<=

select * from mydomain where
author like 'Henry%' select * from
mydomain where keyword = 'Book'
and author like '%Miller'

Attribute value or itemName() contains the
specified constant.

The like operator can be used to evaluate
the start of a string ('string%'), the end of
a string ('%string'), or any part of a string
('%string%').

Note
Using the like operator to
evaluate the end of a string or any
part of a string is an expensive
operation. Make sure to combine
it with other predicates to reduce
number of items it has to evaluate.
To search for strings that contain
the percent sign (%), you must
escape it. For example, to search
for a string that ends in '3%', you
enter select * from mydomain
where name like '%3\%'. To
search for a string that begins with
'3%', you enter select * from
mydomain where name like
'3\%%'.To search for a string that
contains '3%', you enter select
* from mydomain where name
like '%3\%%'.

like

select * from mydomain where
author not like 'Henry%' select
* from mydomain where keyword =
'Book' and author not like
'%Miller'

Attribute value or itemName() does not
contain the specified constant.

The not like operator can be used to
evaluate the start of a string ('string%'),
the end of a string ('%string'), or any part
of a string ('%string%').

Note
Using the not like operator to
evaluate the end of a string or any
part of a string is an expensive
operation. Make sure to combine
it with other predicates to reduce
number of items it has to evaluate.

not like

select * from mydomain where year
between '1998' and '2000'

Attribute value or itemName() falls within a
range, including the start and end value.

between

API Version 2009-04-15
39

Amazon SimpleDB Developer Guide
Comparison Operators

Select ExampleDescriptionComparison
Operator

select * from mydomain where year
in('1998','2000','2003') select
* from mydomain where itemName()
in('0385333498','0802131786','B000T9886K')

Attribute value or itemName() is equal to
one of the specified constants. When used
with items, in acts as a batch get.

in

select * from mydomain where year
is null

Attribute does not exist. If an item has the
attribute with an empty string, it is not
returned.

Note
Due to performance issues, this
operator is not recommended
when most items have the
specified attribute.

is null

select * from mydomain where year
is not null

Attribute value or itemName() contains any
value.

is not null

select * from mydomain where
every(keyword) = 'Book'

select * from mydomain where
every(keyword) like '***%'

For multi-valued attributes, every attribute
value must satisfy the constraint.

Note
Due to the cost of running more
complex queries, this operator is
only recommended for
multi-valued attributes.

every()

Sample Query Data Set
The following table contains the data set used throughout this section.

RatingKeywordPagesYearAuthorTitleItem Name

5 stars

Excellent

Book

Paperback

003361959Kurt
Vonnegut

The Sirens of Titan0385333498

****Book003181934Henry MillerTropic of Cancer0802131786

4 stars

Book

Hardcover

American

003041979Tom WolfeThe Right Stuff1579124585

4 starsCD

Trance

2007Paul Van DykIn BetweenB000T9886K

3 stars

Not bad

DVD

Action

Frank
Miller

2007Zack Snyder300B00005JPLW

API Version 2009-04-15
40

Amazon SimpleDB Developer Guide
Sample Query Data Set

RatingKeywordPagesYearAuthorTitleItem Name

*****2002Thievery
Corporation

Heaven's Gonna Burn
Your Eyes

B000SF3NGK

Simple Queries
This section shows simple queries and their results.

Note
To view the source data for the queries, see Sample Query Data Set (p. 40).

The following table shows some simple queries, how they are interpreted, and the results they return
from the sample dataset.

ResultDescriptionSelect Expression

1579124585Retrieves all items where the attribute "Title" equals
"The Right Stuff".

select * from mydomain
where Title = 'The Right
Stuff'

B000T9886K,
B00005JPLW,
B000SF3NGK

Retrieves all items where "Year" is greater than
"1985".

Although this looks like a numerical comparison, it
is lexicographical. Because the calendar won't
change to five digits for nearly 8,000 years, "Year"
is not zero padded.

select * from mydomain
where Year > '1985'

0385333498,
1579124585,
0802131786,
B000SF3NGK

Retrieves all items that have at least a 4 star (****)
rating.

The prefix comparison is case-sensitive and exact
and does not match attributes that only have the
"4 star" value, such as item B000T9886K.

select * from mydomain
where Rating like '****%'

1579124585,
0802131786,

Retrieves all items that have less than 320 pages.

This attribute is zero padded in the data set and
the select expression, which allows for proper
lexicographical comparison between the strings.
Items without this attribute are not considered.

select * from mydomain
where Pages < '00320'

Range Queries
Amazon SimpleDB enables you to execute more than one comparison against attribute values within the
same predicate. This is most commonly used to specify a range of values.

This section shows range queries and their results.

Note
To view the source data for the queries, see Sample Query Data Set (p. 40).

The following table shows some range queries, how they are interpreted, and the results they return from
the sample dataset.

API Version 2009-04-15
41

Amazon SimpleDB Developer Guide
Simple Queries

ResultDescriptionSelect Expression

1579124585,
B000T9886K,
B00005JPLW,
B000SF3NGK

Retrieves all items that have a "Year" value
between "1975" and "2008", excluding "1975" and
"2008".

select * from mydomain
where Year > '1975' and
Year < '2008'

1579124585,
B000T9886K,
B00005JPLW,
B000SF3NGK

Retrieves all items that have a "Year" value
between "1975" and "2008", including "1975" and
"2008".

select * from mydomain
where Year between '1975'
and '2008'

0385333498,
B00005JPLW,
B000SF3NGK

Retrieves all items that have 3 (***) or 5 (*****) star
rating

This is a discontiguous range query that consists
of two distinct values selected from the range of all
possible values for the attribute.

select * from mydomain
where Rating = '***' or
Rating = '*****'

0385333498,
0802131786,
B000T9886K,
B00005JPLW

Retrieves all items where the "Year" attribute is
either between "1950" and "1960", excluding "1950"
and "1960", or falls in the nineteen-thirties, or
equals "2007".

select * from mydomain
where (Year > '1950' and
Year < '1960') or Year
like '193%' or Year =
'2007'

Queries on Attributes with Multiple Values
One of the unique features of Amazon SimpleDB is that it allows you to associate multiple values with a
single attribute. Internet-related attributes such as tag or keyword often contain multiple values, which
are easy to support through the Amazon SimpleDB data model and query language.

Important
Each attribute is considered individually against the comparison conditions defined in the
predicate. Item names are selected if any of the values match the predicate condition.To change
this behavior, use the every() operator to return results where every attribute matches the
query expression.

This section shows queries on attributes with multiple values and their results.

Note
To view the source data for the queries, see Sample Query Data Set (p. 40).

The following table shows some queries on attributes with multiple values, how they are interpreted, and
the results they return from the sample dataset.

ResultDescriptionSelect Expression

1579124585,
0802131786,
B000T9886K

Retrieves all items with a 4 star (****) rating.

The data set has this rating stored as both "4 stars"
and "****." Amazon SimpleDB returns items that
have either or both.

select * from mydomain
where Rating = '4 stars'
or Rating = '****'

API Version 2009-04-15
42

Amazon SimpleDB Developer Guide
Queries on Attributes with Multiple Values

ResultDescriptionSelect Expression

<none>Retrieve all items that have the Keyword attribute
as both "Book" and "Hardcover."

Based on the data set, you might be surprised that
the result did not return the "1579124585" item. As
described earlier, each value is evaluated
individually against the predicate expression. Since
neither of the values satisfies both comparisons
defined in the predicate, the item name is not
selected.

To get the desired results, you can use the select
* from mydomain where Keyword = 'Book'
intersection Keyword = 'Hardcover'
expression. For more information, see Multiple
Attribute Queries (p. 43).

select * from mydomain
where Keyword = 'Book'
and Keyword = 'Hardcover'

0385333498,
0802131786

Retrieves all items where the only keyword is Book
or Paperback. If the item contains any other
keyword entries, it is not returned.

select * from mydomain
where every(keyword) in
('Book', 'Paperback')

Multiple Attribute Queries
The previous examples show how to create expressions for single predicates. The Amazon SimpleDB
query language also supports constructing expressions across multiple predicates using the intersection
operator.

Multiple attribute queries work by producing a set of item names from each predicate and applying the
intersection operator. The intersection operator only returns item names that appear in both result
sets.

This section shows multiple attribute queries and their results.

Note
To view the source data for the queries, see Sample Query Data Set (p. 40).

The following table shows some multiple attribute queries, how they are interpreted, and the results they
return from the sample dataset.

ResultDescriptionSelect Expression

0802131786,
1579124585

Retrieves all items that have a "****" Rating.select * from mydomain
where Rating = '****'

0802131786Retrieves all items that only have a "****" Rating.
Items are not returned that have a multi-valued
Rating attribute that contains any value other than
'****.'

select * from mydomain
where every(Rating) =
'****'

1579124585Retrieves all items that have a "Book" Keyword
and a "Hardcover" Keyword.

The first predicate produces 0385333498,
0802131786, and 1579124585. The second
produces 1579124585. The intersection operator
returns results that appear in both queries.

select * from mydomain
where Keyword = 'Book'
intersection Keyword =
'Hardcover'

API Version 2009-04-15
43

Amazon SimpleDB Developer Guide
Multiple Attribute Queries

Sort
Amazon SimpleDB supports sorting data on a single attribute or the item names, in ascending (default)
or descending order. This section describes how to sort the result set returned from Select.

Note
All sort operations are performed in lexicographical order.
The sort attribute must be present in at least one of the predicates of the expression.
Because returned results must contain the attribute on which you are sorting, do not use is
null on the sort attribute. For example, select * from mydomain where author is
null and title is not null order by title will succeed. However, select * from
mydomain where author is null order by title will fail because title is not
constrained by the not null predicate.
To view the source data for the queries, see Sample Query Data Set (p. 40).

The following table shows sort queries, how they are interpreted, and the results they return from the
sample dataset.

ResultDescriptionSelect Expression

0802131786,
0385333498,
1579124585

Retrieves all items released before 1980 and lists
them in ascending order.

select * from mydomain
where Year < '1980' order
by Year asc

0802131786,
0385333498,
1579124585

Same as the previous entry, with "asc" (ascending)
omitted.

select * from mydomain
where Year < '1980' order
by Year

B00005JPLW,
B000T9886K

Retrieves all items released in 2007 and sorts them
by author name in descending order.

select * from mydomain
where Year = '2007'
intersection Author is
not null order by Author
desc

InvalidSortExpression
error. See API
Error
Codes (p. 87).

Invalid because Year is not constrained by a
predicate in the where clause.

select * from mydomain
order by Year asc

0802131786,
0385333498

Retrieves two items that were released before 1980
and lists them in ascending order.

select * from mydomain
where Year < '1980' order
by Year limit 2

B00005JPLW,
B000SF3NGK,
B000T9886K

Retrieves all itemNames() that start with B000 and
lists them in ascending order.

select itemName() from
mydomain where itemName()
like 'B000%' order by
itemName()

Count
If you want to count the number of items in a result set instead of returning the items, use count(*).
Instead of returning a list of items, Amazon SimpleDB returns a single item called Domain with a Count
attribute.

API Version 2009-04-15
44

Amazon SimpleDB Developer Guide
Sort

Note
If the count request takes more than five seconds, Amazon SimpleDB returns the number of
items that it could count and a next token to return additional results. The client is responsible
for accumulating the partial counts.
If Amazon SimpleDB returns a 408 Request Timeout, please resubmit the request.
The default result limit of 100 and maximum result limit of 2500 do not apply to count(*). However,
you can restrict the maximum number of counted results using the limit clause.

The next token returned by count(*) and select are interchangeable as long as the where and order
by clauses match. For example, if you want to return the 200 items after the first 10,000 (similar to an
offset), you can perform a count with a limit clause of 10,000 and use the next token to return the next
200 items with select.

The following table shows count(*) queries and the results they return from the sample dataset.

Note
To view the source data for the queries, see Sample Query Data Set (p. 40).

ResultDescriptionSelect Expression

1Counts all items where the attribute "Title" equals
"The Right Stuff."

select count(*) from
mydomain where Title =
'The Right Stuff'

3Counts all items where "Year" is greater than
"1985."

select count(*) from
mydomain where Year >
'1985'

6Counts all items in the domain, with a limit of 500.select count(*) from
mydomain limit 500

4Counts all items in the domain, with a limit of 4.select count(*) from
mydomain limit 4

Select Quoting Rules
Attribute values must be quoted with a single or double quote. If a quote appears within the attribute
value, it must be escaped with the same quote symbol. These following two expressions are equivalent:

select * from mydomain where attr1 = 'He said, "That''s the ticket!"'
select * from mydomain where attr1 = "He said, ""That's the ticket!"""

Attribute and domain names may appear without quotes if they contain only letters, numbers, underscores
(_), or dollar symbols ($) and do not start with a number.You must quote all other attribute and domain
names with the backtick (`).

select * from mydomain where `timestamp-1` > '1194393600'

You must escape the backtick when it appears in the attribute or domain name by replacing it with two
backticks. For example, we can retrieve any items that have the attribute abc`123 set to the value 1 with
this select expression:

select * from mydomain where `abc``123` = '1'

API Version 2009-04-15
45

Amazon SimpleDB Developer Guide
Select Quoting Rules

The following is the list of reserved keywords that are valid identifiers that must be backtick quoted if used
as an attribute or domain name in the Select syntax.

• or

• and

• not

• from

• where

• select

• like

• null

• is

• order

• by

• asc

• desc

• in

• between

• intersection

• limit

• every

Working with Numerical Data
Topics

• Negative Numbers Offsets (p. 46)

• Zero Padding (p. 47)

• Dates (p. 47)

Amazon SimpleDB is a schema-less data store and everything is stored as a UTF-8 string value. This
provides application designers with the flexibility of enforcing data restrictions at the application layer
without the data store enforcing constraints.

All comparisons are performed lexicographically. As a result, we highly recommend that you use negative
number offsets, zero padding, and store dates in an appropriate format.

Negative Numbers Offsets
When choosing a numerical range, ensure that every number is positive. To do this, choose an offset
that is larger than the smallest expected negative number in your data set. For example, if the smallest
expected number in your data set is -12,000, choosing offset = 100,000 might be safe.

The following is a sample original data set.

14.58, -12536.791, 20071109, 655378.34, -23

If you apply an offset of 100,000, the following is the resulting data set.

API Version 2009-04-15
46

Amazon SimpleDB Developer Guide
Working with Numerical Data

100014.58, 87463.209, 20171109, 755378.34, 99977

Zero Padding
After all the numbers in a data set are positive, ensure they are properly represented for lexicographical
comparisons. For example, the string "10" comes before "2" in lexicographical order. If we zero pad the
numbers to five digits, "00002" comes before "00010" and are compared correctly. Additionally, the offset
is valid for numbers up to 5 digits and future numbers such as 00402 and 02987 are properly represented
in this scheme.

To determine the right number of digits for zero padding, determine the largest number in your data set
(accounting for negative number conversions), determine the offset number (maximum number of digits
for that number without a decimal point), and convert all your numbers by appending zeros to them until
they match the digit length of the offset number.

The following is sample data set with an offset applied.

100014.58, 87463.209, 20171109, 755378.34, 99977

If you zero pad the data set as well, the following is the resulting data set.

00100014.58, 00087463.209, 20171109, 00755378.34, 00099977

From this result set, the original query 'attribute' > '500' is now 'attribute' > '00100500'.

Dates
To convert dates to strings, we recommend following the ISO 8601 format, which supports lexicographical
order comparisons.

The following table describes formats for representing date-time values with differing degrees of granularity.
You must use components exactly as they are shown here and with exactly this punctuation. Note that
the "T" appears literally in the string, to indicate the beginning of the time element, as is specified in ISO
8601.

StringGranularity

YYYY

(e.g., 1997)

Year

YYYY-MM

(e.g., 1997-07)

Year and month

YYYY-MM-DD

(e.g., 1997-07-16)

Complete date

YYYY-MM-DDThh:mmTZD

(e.g., 1997-07-16T19:20+01:00)

Complete date plus
hours and minutes

YYYY-MM-DDThh:mm:ssTZD

(e.g., 1997-07-16T19:20:30+01:00)

Complete date plus
hours, minutes and
seconds

API Version 2009-04-15
47

Amazon SimpleDB Developer Guide
Zero Padding

StringGranularity

YYYY-MM-DDThh:mm:ss.sTZD

(e.g., 1997-07-16T19:20:30.45+01:00)

Complete date plus
hours, minutes, seconds
and a decimal fraction of
a second

Tuning Queries
Topics

• Tuning Your Queries Using Composite Attributes (p. 48)

• Data Set Partitioning (p. 49)

This section describes steps you can take to tune queries and your data set.

Tuning Your Queries Using Composite Attributes
Careful implementation of attributes can increase the efficiency of query operations in terms of duration
and complexity. SimpleDB indexes attributes individually. In some cases, a query contains predicates on
more than one attribute, and the combined selectivity of the predicates is significantly higher than the
selectivity of each individual predicate. When this happens, the query retrieves a lot of data, and then
removes most of the data to generate the result, which can degrade performance. If you find your queries
using this pattern, you can implement composite attributes to improve your queries' performance.

The following example retrieves many books and many book prices before returning the requested result
of books priced under nine dollars.

select * from myDomain where Type = 'Book' and Price < '9'

A composite attribute provides a more efficient way to handle this query. Assuming the attribute Type is
a fixed four character string, a new composite attribute of TypePrice allows you to write a single predicate
query.

select * from myDomain where TypePrice > 'Book' and TypePrice < 'Book9'

Performance for a multi-predicate query can also degrade if it uses an order by clause and the sorted
attribute is constrained by a non-selective predicate. A typical example uses not null. For example, a
table contains user names, billing timestamps, and a variety of other attributes.You want to get the latest
100 billing times for a user. A typical approach for this query leverages the index on the user_id attribute,
retrieving all the records with the user's ID value, filtering the ones with correct values for the billing time,
and then sorting the records and filtering out the top 100. The following example retrieves the latest 100
billing times for a user.

select * from myDomain where user_id = '1234' and bill_time is not null order
by bill_time limit 100

However, if the predicate on user_id is not selective (i.e. many items exist in the domain for the user_id
value 1234), then the SimpleDB query processor could avoid dynamically sorting a very large number

API Version 2009-04-15
48

Amazon SimpleDB Developer Guide
Tuning Queries

of records and scan the index on bill_time, instead. For this execution strategy, SimpleDB discards
all the records not belonging to user_id value 1234.

A composite attribute provides a more efficient way to handle this query, too.You can combine the
user_id and bill_time values into a composite value, and then query for items with that value. The
way you combine must depend on your data. In our example, bill_time may be a single string or may be
missing, and the user_id attribute is a single four character string. We combine them by concatenating
their texts; but if bill_time is missing, the missing data propagates and the concatenation is also missing.
The following query would efficiently seek the billing times for a user by querying only that composite
attribute.

select * from myDomain where user_id_bill_time like '1234%' order by
user_id_bill_time limit 100

If user_id is a variable length field (not a fixed number of characters for the value), consider using a
separator when combining it with bill_time in the user_id_bill_time composite attribute. For
example, the following attribute assignment uses the vertical bar separator character (|) for a user_id
that is six characters long:user_id_bill_time = 123456|1305914378.The following select example
only gets the attributes with user_id =1234 in the composite attribute, and does not get the attributes
for the six character user_id.

select * from myDomain where user_id_bill_time like '1234|%' order by
user_id_bill_time limit 100

The composite attribute technique is described further in the "Query performance optimization" section
at Building for Performance and Reliability with Amazon SimpleDB.

Data Set Partitioning
Amazon SimpleDB allows up to 250 domains per subscriber.You can partition your data set among
multiple domains to parallelize queries and operate on smaller data sets. Although you can only execute
a single query against a single domain, you can aggregate result sets in the application layer.

Note
If you require additional domains, go to
https://aws.amazon.com/support/createCase?type=service_limit_increase&serviceLimitIncreaseType=simpledb-domains.

You might choose to partition data sets across a natural dimension (e.g., product type, country). For
example, you can keep a product catalog in a single domain, but it might be more efficient to partition it
into "Book," "CD," and "DVD" domains. Additionally, you might need to partition data sets because your
data requires higher throughput than a single domain, or the data set is very large and queries hit the
timeout limit.

In some cases, data sets do not naturally present themselves well for partitioning (e.g., logs, events, or
web-crawler data) and you might use a hashing algorithm to create a uniform distribution of items among
multiple domains. For example, you could partition a data set into four different domains, determine the
hash of items using a hash function such as MD5, and use the last two digits to place each item in the
specified domain:

• Last two bits equal to 00: places item in Domain0

• Last two bits equal to 01: places item in Domain1

• Last two bits equal to 10: places item in Domain2

• Last two bits equal to 11: places item in Domain3

API Version 2009-04-15
49

Amazon SimpleDB Developer Guide
Data Set Partitioning

http://aws.amazon.com/articles/1394
https://aws.amazon.com/support/createCase?type=service_limit_increase&serviceLimitIncreaseType=simpledb-domains

The additional advantage of this scheme is the ease with which it can be adjusted to partition your data
across a larger number of domains by considering more and more bits of the hash value (3 bits distributes
to 8 domains, 4 bits to 16 domains and so on).

Working with XML-Restricted Characters
You can store data in Amazon SimpleDB through the REST interface. All results are returned in XML
documents.

XML does not support certain Unicode characters (the NUL character, anything in XML's RestrictedChar
category, and permanently undefined Unicode characters). However, you can accidentally send them
through the REST API. For more information about these characters, go to section 2.2 of the XML 1.1
specification.

To ensure that you can read all the data you sent via REST, if a response contains invalid XML characters,
Amazon SimpleDB automatically Base64-encodes the UTF-8 octets of the text.

When a returned element is Base64-encoded, its encoding element is set to base64. The following
example shows Base64-encoded results from a GetAttributes operation.

<GetAttributesResponse xmlns="http://sdb.amazonaws.com/doc/2009-04-15/">
 <GetAttributesResult>
 <Attribute>
 <Name>...</Name>
 <Value encoding="base64">...</Value>
 </Attribute>
 <Attribute>
 <Name encoding="base64">...</Name>
 <Value encoding="base64">...</Value>
 </Attribute>
 </GetAttributesResult>
 </GetAttributesResponse>

The following example shows a Base64-encoded result from a Select operation.

<SelectResponse xmlns="http://sdb.amazonaws.com/doc/2009-04-15/">
 <SelectResult>
 <Item>
 <Name>...</Name>
 <Attribute>
 <Name>...</Name>
 <Value encoding="base64">...</Value>
 </Attribute>
 <Attribute>
 <Name encoding="base64">...</Name>
 <Value encoding="base64">...</Value>
 </Attribute>
 </Item>
 </SelectResult>
 </SelectResponse>

When designing your application, make sure to scrub any data for invalid characters or design your
application to handle Base64-encoded results.

API Version 2009-04-15
50

Amazon SimpleDB Developer Guide
Working with XML-Restricted Characters

http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/

API Reference

Topics

• API Usage (p. 51)

• Common Parameters (p. 54)

• Common Response Elements (p. 56)

• Common Error Responses (p. 57)

• Operations (p. 57)

This chapter contains detailed descriptions of all Amazon SimpleDB operations, their request parameters,
their response elements, any special errors, and examples of requests and responses. All sample requests
and responses are shown in a protocol-neutral format that displays the common elements for REST
requests.

Important
As of September 1, 2011, Amazon SimpleDB no longer supports SOAP requests.

API Usage
This section provides a high-level overview of the Amazon SimpleDB API. It describes API conventions,
API versioning used to minimize the impact of service changes, and API-specific information for making
REST requests.

API Conventions

Overview
This topic discusses the conventions used in the Amazon SimpleDB API reference. This includes
terminology, notation, and any abbreviations used to describe the API.

The API reference is broken down into a collection of Actions and Data Types.

API Version 2009-04-15
51

Amazon SimpleDB Developer Guide
API Usage

Actions
Actions encapsulate the possible interactions with Amazon SimpleDB. These can be viewed as remote
procedure calls and consist of a request and response message pair. Requests must be signed, allowing
Amazon SimpleDB to authenticate the caller.

Data Types
Values provided as parameters to the various operations must be of the indicated type. Standard XSD
types (like string, boolean, int) are prefixed with xsd:. Complex types defined by the Amazon SimpleDB
WSDL are prefixed with sdb:.

WSDL Location and API Version
The Amazon SimpleDB API is published through a Web Services Description Language (WSDL) and an
XML schema document. The version of the Amazon SimpleDB API supported with this document is
2009-04-15.

The Amazon SimpleDB WSDL is located at:
http://sdb.amazonaws.com/doc/2009-04-15/AmazonSimpleDB.wsdl.

The Amazon SimpleDB schema is located at:
http://sdb.amazonaws.com/doc/2009-04-15/AmazonSimpleDB.xsd.

Some libraries can generate code directly from the WSDL. Other libraries require a little more work on
your part.

API Versions
All Amazon SimpleDB API operations are versioned. This minimizes the impact of API changes on client
software by sending back a response that the client can process. New versions are designed to be
backward-compatible with older API revisions. However, there might be occasions where an incompatible
API change is required. Additionally, newer API responses might include additional fields and, depending
on how the client software is written, it might not be able to handle additional fields. Including a version
in the request guarantees that it will always be sent a response that it expects.

Each API revision is assigned a version in date form. This version is included in the request as a version
parameter when using REST. The response returned by Amazon SimpleDB honors the version included
in the request. Fields introduced in a later API version are not returned in the response.

The WSDL for each supported API version is available using the following URI format:

http://sdb.amazonaws.com/doc/<api-version>/AmazonSimpleDB.wsdl

Specifying the API Version
For all requests, you must explicitly request the API version you want to use. Specifying the version
ensures that the service does not return response elements that your application is not designed to handle.

In REST requests, you include the Version parameter.

http://sdb.amazonaws.com
?Action=CreateDomain
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain

API Version 2009-04-15
52

Amazon SimpleDB Developer Guide
WSDL Location and API Version

http://sdb.amazonaws.com/doc/2009-04-15/AmazonSimpleDB.wsdl
http://sdb.amazonaws.com/doc/2009-04-15/AmazonSimpleDB.xsd

&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A01%3A28-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

API Error Retries
This section describes how to handle client and server errors.

Note
For information on specific error messages, see API Error Codes (p. 87)

Client Errors
REST client errors are indicated by a 4xx HTTP response code.

Do not retry client errors. Client errors indicate that Amazon SimpleDB found a problem with the client
request and the application should address the issue before submitting the request again.

Server Errors
For server errors, you should retry the original request.

REST server errors are indicated by a 5xx HTTP response code.

Retries and Exponential Backoff
Numerous components on a network, such as DNS servers, switches, load-balancers, and others can
generate errors anywhere in the life of a given request.

The usual technique for dealing with these error responses in a networked environment is to implement
retries in the client application. This technique increases the reliability of the application and reduces
operational costs for the developer.

You should retry original requests that receive server errors (5xx). However, client errors (4xx) indicate
you need to revise the request itself to correct the problem before trying again.

In addition to simple retries, we recommend using an exponential backoff algorithm for better flow control.
The concept behind exponential backoff is to use progressively longer waits between retries for consecutive
error responses. For example, up to 400 milliseconds before the first retry, up to 1600 milliseconds before
the second, up to 6400 milliseconds before third, and so on.

Following is a workflow showing retry logic. The workflow logic first determines if the error is a server
error (5xx). Then, if the error is a server error, the code retries the original request.

currentRetry = 0
DO
 execute Amazon SimpleDB request
 IF status = success
 set retry to false
 ELSE IF status = server error (5xx)
 set retry to true
 currentRetry = currentRetry + 1
 wait for a random delay between 0 and (4^currentRetry * 100) milliseconds
 ELSE

API Version 2009-04-15
53

Amazon SimpleDB Developer Guide
API Error Retries

 set retry to false and fix client error (4xx)
WHILE (retry = true AND currentRetry < MaxNumberOfRetries) // limit retries

Following is a snippet of Java code that implements the logic and exponential backoff.

 boolean shouldRetry = true;
 int retries = 0;
 do {
 try {
 /* Submit request to Amazon SimpleDB*/
 if (status == HttpStatus.SC_OK) {
 shouldRetry = false;
 /* Process successful response from Amazon SimpleDB */
 } else {
 if (status == HttpStatus.SC_INTERNAL_SERVER_ERROR
 || status == HttpStatus.SC_SERVICE_UNAVAILABLE) {
 shouldRetry = true;
 long delay = (long) (Math.random() * (Math.pow(4, retries++) * 100L));
 try {
 Thread.sleep(delay);
 } catch (InterruptedException iex){
 log.error("Caught InterruptedException exception", iex);
 }
 } else {
 shouldRetry = false;
 /* Process 4xx (Client) error */
 }
 }
 } catch (IOException ioe) {
 log.error("Caught IOException exception", ioe);
 } catch (Exception e) {
 log.error("Caught Exception", e);
 } finally {
 /* Perform clean-up as necessary */
 }
 } while (shouldRetry && retries < MAX_NUMBER_OF_RETRIES);

The AWS SDKs that support Amazon SimpleDB implement retries and exponential backoff. For example,
to download Java code that implements the exponential backoff algorithm, see the AWS SDK for Java.

Common Parameters
This section describes parameters used by Amazon SimpleDB operations.

Some parameters are required by all operations and are not repeated in the documentation unless the
usage is unique for that operation. Other parameters are conditional which indicates they are required
for some operations and optional for others.

API Version 2009-04-15
54

Amazon SimpleDB Developer Guide
Common Parameters

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1132

Request Parameters

TypeDescriptionName

RequiredName of the action.Action

ConditionalName of attribute associated with an
item. Required by PutAttributes and
BatchPutAttributes. Optional for
DeleteAttributes and
BatchDeleteAttributes.

Attribute.X.Name (REST)

ConditionalValue of attribute associated with an
item. Required by PutAttributes and
BatchPutAttributes. Optional for
DeleteAttributes and
BatchDeleteAttributes.

Attribute.X.Value (REST)

OptionalFlag to specify whether to replace the
attribute/value or to add a new
attribute/value. Used by
PutAttributes and
BatchPutAttributes. The default
setting is false.

Attribute.X.Replace (REST)

ConditionalName of attribute to return. Optional for
GetAttributes.

AttributeName

RequiredFor more information, see Request
Authentication (p. 16).

AWSAccessKeyId

RequiredName of the domain used in the
operation.

DomainName

ConditionalUnique identifier of an item. Required by
PutAttributes,
BatchPutAttributes,
GetAttributes, DeleteAttributes,
and BatchDeleteAttributes.

ItemName

OptionalThe maximum number of domain names
you want returned. Used by
ListDomains. The range is 1 to 100.
The default setting is 100.

MaxNumberOfDomains

OptionalMaximum number of items to return in
the response. The range is 1 to 2500.
The default setting is 100.

MaxNumberOfItems

OptionalString that tells Amazon SimpleDB
where to start the next list of domain or
item names. Used by ListDomains and
GetAttributes.

NextToken

OptionalString that specifies the query that is
executed against the domain.

SelectExpression

RequiredFor more information, see Signing REST
Requests (p. 25).

Signature

API Version 2009-04-15
55

Amazon SimpleDB Developer Guide
Request Parameters

TypeDescriptionName

ConditionalRequired when you use signature
version 2 with REST requests. For more
information, see Signing REST
Requests (p. 25).

SignatureMethod

RequiredFor more information, see Signing REST
Requests (p. 25).

SignatureVersion

RequiredFor more information, see Request
Authentication (p. 16).

Timestamp

RequiredVersion of the API. The version of the
API described in this document is
2009-04-15.

Version

Request Parameter Formats
The following are specifications for Amazon SimpleDB user data:

User Data Specifications

• Domain names—Allowed characters are a-z, A-Z, 0-9, '_', '-', and '.' .
Domain names can be between 3 and 255 characters long.

• Item names, attribute names, and attribute values—Allowed characters are all UTF-8 characters
valid in XML documents.
Control characters and any sequences that are not valid in XML are returned Base64-encoded. For
more information, see Working with XML-Restricted Characters (p. 50).

Quotes and escape characters
User data in query expressions must be enclosed in single quotes. If a single quote is used within the
user data, it must be escaped using a backslash. If a backslash is used within user data, it must be
escaped as well. Examples:

Escaped StringOriginal String

'John\'s AWS account''John's AWS account'

'c:\\path\\constant'c:\path\constant

Common Response Elements
DescriptionName

A unique ID for tracking the request.RequestId

The measure of machine utilization for this request. This does not
include storage or transfer usage.

BoxUsage

API Version 2009-04-15
56

Amazon SimpleDB Developer Guide
Request Parameter Formats

Common Error Responses
Request authentication errors are described in API Error Codes (p. 87). All other errors are listed with
the appropriate operations.

Operations
Topics

• BatchDeleteAttributes (p. 57)

• BatchPutAttributes (p. 60)

• CreateDomain (p. 64)

• DeleteAttributes (p. 65)

• DeleteDomain (p. 70)

• DomainMetadata (p. 72)

• GetAttributes (p. 74)

• ListDomains (p. 77)

• PutAttributes (p. 78)

• Select (p. 83)

BatchDeleteAttributes

Description
Performs multiple DeleteAttributes operations in a single call, which reduces round trips and latencies.
This enables Amazon SimpleDB to optimize requests, which generally yields better throughput.

Note
If you specify BatchDeleteAttributes without attributes or values, all the attributes for the
item are deleted.
BatchDeleteAttributes is an idempotent operation; running it multiple times on the same
item or attribute doesn't result in an error.
The BatchDeleteAttributes operation succeeds or fails in its entirety. There are no partial
deletes.
You can execute multiple BatchDeleteAttributes operations and other operations in parallel.
However, large numbers of concurrent BatchDeleteAttributes calls can result in Service
Unavailable (503) responses.
This operation is vulnerable to exceeding the maximum URL size when making a REST request
using the HTTP GET method.
This operation does not support conditions using Expected.Name, Expected.Value, or
Expected.Exists.

The following limitations are enforced for this operation:

• 1 MB request size

• 25 item limit per BatchDeleteAttributes operation

API Version 2009-04-15
57

Amazon SimpleDB Developer Guide
Common Error Responses

Request Parameters

RequiredDescriptionName

YesThe name of the item.

Type: String.

Default: None.

Item.Y.ItemName

NoThe name of the attribute for the specified
item. Y or X can be any positive integer or
0. If you specify BatchDeleteAttributes
without attribute names or values, all the
attributes for the item are deleted.

Type: String.

Default: None.

Item.Y.Attribute.X.Name

YesThe value of the attribute for the specified
item. Y or X can be any positive integer or
0. If an attribute value is specified, then the
corresponding attribute name is required.

Type: String.

Default: None.

Item.Y.Attribute.X.Value

YesThe name of the domain in which to perform
the operation.

Type: String

Default: None.

DomainName

Response Elements
See Common Response Elements (p. 56).

Special Errors

DescriptionError

Attribute ("+ name + ") does not exist.AttributeDoesNotExist

Item item_name was specified more than once.DuplicateItemName

Value (" + value + ") for parameter Name is invalid.The
empty string is an illegal attribute name.

InvalidParameterValue

Value (" + value + ") for parameter Name is invalid.Value
exceeds maximum length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter Item is invalid. Value
exceeds max length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter Value is invalid.Value
exceeds maximum length of 1024.

InvalidParameterValue

API Version 2009-04-15
58

Amazon SimpleDB Developer Guide
BatchDeleteAttributes

DescriptionError

Parameter (" + parameterName +") is only supported in
WSDL version 2009-04-15 or beyond. Please upgrade
to new version.

InvalidWSDLVersion

The request must contain the parameter DomainName.MissingParameter

The request must contain the parameter ItemName.MissingParameter

The request must contain the attribute Name, if an
attribute Value is specified.

MissingParameter

The specified domain does not exist.NoSuchDomain

Too many items in a single call. Up to 25 items per call
allowed.

NumberSubmittedItemsExceeded

Too many attributes for item itemName in a single call.
Up to 256 attributes per call allowed.

NumberSubmittedAttributesExceeded

Examples

Sample Request

In this example, the Jumbo Fez and Petite Fez have sold out in several colors. The following sample
deletes the red, brick, and garnet values from the color attribute of the JumboFez item, and the
pink and fuchsia values from the color attribute of the PetiteFez item.

https://sdb.amazonaws.com/
?Action=BatchDeleteAttributes
&Item.1.ItemName=JumboFez
&Item.1.Attribute.1.name=color&
&Item.1.Attribute.1.value=red&
&Item.1.Attribute.2.name=color&
&Item.1.Attribute.2.value=brick&
&Item.1.Attribute.3.name=color&
&Item.1.Attribute.3.value=garnet&
&Item.2.ItemName=PetiteFez
&Item.2.Attribute.1.name=color&
&Item.2.Attribute.1.value=pink&
&Item.2.Attribute.2.name=color&
&Item.2.Attribute.2.value=fuchsia&
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<BatchDeleteAttributesResponse">

API Version 2009-04-15
59

Amazon SimpleDB Developer Guide
BatchDeleteAttributes

<ResponseMetadata>
<RequestId>05ae667c-cfac-41a8-ab37-a9c897c4c3ca</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</BatchDeleteAttributesResponse>

Related Actions
• DeleteAttributes (p. 65)

• GetAttributes (p. 74)

BatchPutAttributes

Description
With the BatchPutAttributes operation, you can perform multiple PutAttribute operations in a
single call. This helps you yield savings in round trips and latencies, and enables Amazon SimpleDB to
optimize requests, which generally yields better throughput.

You can specify attributes and values for items using a combination of the Item.Y.Attribute.X.Name
and Item.Y.Attribute.X.Value parameters. To specify attributes and values for the first item, you
use Item.1.Attribute.1.Name and Item.1.Attribute.1.Value for the first attribute,
Item.1.Attribute.2.Name and Item.1.Attribute.2.Value for the second attribute, and so on.

To specify attributes and values for the second item, you use Item.2.Attribute.1.Name and
Item.2.Attribute.1.Value for the first attribute, Item.2.Attribute.2.Name and
Item.2.Attribute.2.Value for the second attribute, and so on.

Amazon SimpleDB uniquely identifies attributes in an item by their name/value combinations. For example,
a single item can have the attributes { "first_name", "first_value" } and { "first_name",
second_value" }. However, it cannot have two attribute instances where both the
Item.Y.Attribute.X.Name and Item.Y.Attribute.X.Value are the same.

Optionally, you can supply the Replace parameter for each individual attribute. Setting this value to true
causes the new attribute value to replace the existing attribute value(s) if any exist. Otherwise, Amazon
SimpleDB simply inserts the attribute values. For example, if an item has the attributes { 'a', '1' },
{ 'b', '2'}, and { 'b', '3' } and the requester calls BatchPutAttributes using the attributes
{ 'b', '4' } with the Replace parameter set to true, the final attributes of the item are changed to
{ 'a', '1' } and { 'b', '4' }. This occurs because the new 'b' attribute replaces the old value.

Note
You cannot specify an empty string as an item or attribute name.
The BatchPutAttributes operation succeeds or fails in its entirety.There are no partial puts.
You can execute multiple BatchPutAttributes operations and other operations in parallel.
However, large numbers of concurrent BatchPutAttributes calls can result in Service
Unavailable (503) responses.
This operation is vulnerable to exceeding the maximum URL size when making a REST request
using the HTTP GET method.
This operation does not support conditions using Expected.Name, Expected.Value, or
Expected.Exists.

The following limitations are enforced for this operation:

• 256 attribute name-value pairs per item

• 1 MB request size

API Version 2009-04-15
60

Amazon SimpleDB Developer Guide
BatchPutAttributes

• 1 billion attributes per domain

• 10 GB of total user data storage per domain

• 25 item limit per BatchPutAttributes operation

Request Parameters

RequiredDescriptionName

YesThe name of the item.

Type: String.

Default: None.

Item.Y.ItemName

YesThe name of the attribute for the specified
item.Y or X can be any positive integer or
0.

Type: String.

Default: None.

Item.Y.Attribute.X.Name

YesThe value of the attribute for the specified
item.Y or X can be any positive integer or
0.

Type: String.

Default: None.

Item.Y.Attribute.X.Value

NoFlag to specify whether to replace the
Attribute/Value or to add a new
Attribute/Value. The replace parameter is
more resource intensive than non-replace
operations and is not recommended unless
required.Y or X can be any positive integer
or 0.

To reduce the request size and latencies,
we recommend that you do not specify this
request parameter at all.

Type: Boolean.

Default: false.

Item.Y.Attribute.X.Replace

YesThe name of the domain in which to perform
the operation.

Type: String

Default: None.

DomainName

Note
When using eventually consistent reads, a GetAttributes (p. 74) or Select (p. 83) request (read)
immediately after a DeleteAttributes (p. 65) or PutAttributes (p. 78) request (write) might not
return the updated data. Some items might be updated before others, despite the fact that the
operation never partially succeeds. A consistent read always reflects all writes that received a
successful response prior to the read. For more information, see Consistency (p. 7).

API Version 2009-04-15
61

Amazon SimpleDB Developer Guide
BatchPutAttributes

Response Elements
See Common Response Elements (p. 56).

Special Errors

DescriptionError

Item item_name was specified more than once.DuplicateItemName

Value value for parameter Name is invalid. Value
exceeds maximum length of 1024.

InvalidParameterValue

Value value for parameter Value is invalid. Value
exceeds maximum length of 1024.

InvalidParameterValue

Value value for parameter Item is invalid. Value
exceeds max length of 1024.

InvalidParameterValue

Value value for parameter Replace is invalid. The
Replace flag should be either true or false.

InvalidParameterValue

The request must contain the parameter DomainName.MissingParameter

The request must contain the parameter ItemName.MissingParameter

Attribute.Value missing for
Attribute.Name=attribute_name.

MissingParameter

Attribute.Name missing for
Attribute.Value=attribute_name.

MissingParameter

No attributes for item item_name.MissingParameter

The specified domain does not exist.NoSuchDomain

Too many attributes in this item.NumberItemAttributesExceeded

Too many attributes in this domain.NumberDomainAttributesExceeded

Too many bytes in this domain.NumberDomainBytesExceeded

Too many items in a single call. Up to 25 items per call
allowed.

NumberSubmittedItemsExceeded

Too many attributes for item itemName in a single call.
Up to 256 attributes per call allowed.

NumberSubmittedAttributesExceeded

Examples

Sample Request

The following example uses BatchPutAttributes on Shirt1, which has attributes (Color=Blue),
(Size=Med), and (Price=0014.99) in MyDomain. If Shirt1 already had the Price attribute, this
operation would replace the values for that attribute. Otherwise, a new (additional) Price attribute is
created with the value 0014.99.

The example also uses BatchPutAttributes on Shirt2 which has attributes (Color=Red),
(Size=Large), and (Price=0019.99).

API Version 2009-04-15
62

Amazon SimpleDB Developer Guide
BatchPutAttributes

https://sdb.amazonaws.com/
?Action=BatchPutAttributes
&Item.1.ItemName=Shirt1
&Item.1.Attribute.1.Name=Color
&Item.1.Attribute.1.Value=Blue
&Item.1.Attribute.2.Name=Size
&Item.1.Attribute.2.Value=Med
&Item.1.Attribute.3.Name=Price
&Item.1.Attribute.3.Value=0014.99
&Item.1.Attribute.3.Replace=true
&Item.2.ItemName=Shirt2
&Item.2.Attribute.1.Name=Color
&Item.2.Attribute.1.Value=Red
&Item.2.Attribute.2.Name=Size
&Item.2.Attribute.2.Value=Large
&Item.2.Attribute.3.Name=Price
&Item.2.Attribute.3.Value=0019.99
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2009-01-12T15%3A03%3A05-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<BatchPutAttributesResponse>
<ResponseMetadata>

<RequestId>490206ce-8292-456c-a00f-61b335eb202b</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</BatchPutAttributesResponse>

Related Actions
• PutAttributes (p. 78)

• DeleteAttributes (p. 65)

• GetAttributes (p. 74)

API Version 2009-04-15
63

Amazon SimpleDB Developer Guide
BatchPutAttributes

CreateDomain

Description
The CreateDomain operation creates a new domain. The domain name must be unique among the
domains associated with the Access Key ID provided in the request.The CreateDomain operation might
take 10 or more seconds to complete.

Note
CreateDomain is an idempotent operation; running it multiple times using the same domain
name will not result in an error response.
You can create up to 250 domains per account.
If you require additional domains, go to
https://aws.amazon.com/support/createCase?type=service_limit_increase&serviceLimitIncreaseType=simpledb-domains.

Request Parameters

RequiredDescriptionName

YesThe name of the domain to create.The name
can range between 3 and 255 characters and
can contain the following characters: a-z, A-Z,
0-9, '_', '-', and '.'.

Type: String

DomainName

Response Elements
See Common Response Elements (p. 56).

Special Errors

DescriptionError

Value (" + value + ") for parameter DomainName is invalid.InvalidParameterValue

The request must contain the parameter DomainName.MissingParameter

Number of domains limit exceeded.NumberDomainsExceeded

Examples

Sample Request

https://sdb.amazonaws.com/
?Action=CreateDomain
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A01%3A28-07%3A00

API Version 2009-04-15
64

Amazon SimpleDB Developer Guide
CreateDomain

https://aws.amazon.com/support/createCase?type=service_limit_increase&serviceLimitIncreaseType=simpledb-domains

&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<CreateDomainResponse>
<ResponseMetadata>

<RequestId>2a1305a2-ed1c-43fc-b7c4-e6966b5e2727</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</CreateDomainResponse>

Related Actions
• DeleteDomain (p. 70)

• ListDomains (p. 77)

DeleteAttributes

Description
Deletes one or more attributes associated with the item. If all attributes of an item are deleted, the item
is deleted.

Note
If you specify DeleteAttributes without attributes or values, all the attributes for the item are
deleted.
Unless you specify conditions, the DeleteAttributes is an idempotent operation; running it
multiple times on the same item or attribute does not result in an error response.
Conditional deletes are useful for only deleting items and attributes if specific conditions are met.
If the conditions are met, Amazon SimpleDB performs the delete. Otherwise, the data is not
deleted.
When using eventually consistent reads, a GetAttributes (p. 74) or Select (p. 83) request (read)
immediately after a DeleteAttributes (p. 65) or PutAttributes (p. 78) request (write) might not
return the updated data. A consistent read always reflects all writes that received a successful
response prior to the read. For more information, see Consistency (p. 7).
You can perform the expected conditional check on one attribute per operation.

Request Parameters

RequiredDescriptionName

YesThe name of the item.

Type: String

ItemName

NoThe name of the attribute. X can be any
positive integer or 0. If you specify
DeleteAttributes without attribute names
or values, all the attributes for the item are
deleted.

Type: String

Attribute.X.Name

API Version 2009-04-15
65

Amazon SimpleDB Developer Guide
DeleteAttributes

RequiredDescriptionName

NoThe name of the attribute value (for
multi-valued attributes). X can be any
positive integer or 0. If an attribute value is
specified, then the corresponding attribute
name is required.

Type: String

Attribute.X.Value

YesThe name of the domain in which to perform
the operation.

Type: String

DomainName

ConditionalName of the attribute to check.

Type: String.

Conditions: Must be used with the expected
value or expected exists parameter.

When used with the expected value
parameter, you specify the value to check.

When expected exists is set to true and it
is used with the expected value parameter,
it performs similarly to just using the
expected value parameter. When expected
exists is set to false, the operation is
performed if the expected attribute is not
present.

Can only be used with single-valued
attributes.

Expected.Name

ConditionalValue of the attribute to check.

Type: String.

Conditions: Must be used with the expected
name parameter. Can be used with the
expected exists parameter if that parameter
is set to true.

Can only be used with single-valued
attributes.

Expected.Value

ConditionalFlag to test the existence of an attribute while
performing conditional updates.

Type: Boolean.

Conditions: Must be used with the expected
name parameter. When set to true, this
must be used with the expected value
parameter. When set to false, this cannot
be used with the expected value parameter.

Can only be used with single-valued
attributes.

Expected.Exists

Response Elements
See Common Response Elements (p. 56).

API Version 2009-04-15
66

Amazon SimpleDB Developer Guide
DeleteAttributes

Special Errors

DescriptionError

Attribute ("+ name + ") does not exist.AttributeDoesNotExist

Conditional check failed. Attribute (" + name + ") value exists.ConditionalCheckFailed

Conditional check failed. Attribute ("+ name +") value is ("+
value +") but was expected ("+ expValue +").

ConditionalCheckFailed

Expected.Exists=false and Expected.Value cannot
be specified together.

ExistsAndExpectedValue

If Expected.Exists=true or unspecified, then
Expected.Value has to be specified.

IncompleteExpectedExpression

Value (" + value + ") for parameter Expected.Exists is
invalid. Expected.Exists should be either true or false.

InvalidParameterValue

Value (" + value + ") for parameter Name is invalid.The empty
string is an illegal attribute name.

InvalidParameterValue

Value (" + value + ") for parameter Name is invalid. Value
exceeds maximum length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter Value is invalid. Value
exceeds maximum length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter Item is invalid. Value
exceeds max length of 1024.

InvalidParameterValue

Parameter (" + parameterName +") is only supported in WSDL
version 2009-04-15 or beyond. Please upgrade to new
version.

InvalidWSDLVersion

The request must contain the parameter DomainName.MissingParameter

The request must contain the parameter ItemName.MissingParameter

The request must contain the attribute Name, if an attribute
Value is specified.

MissingParameter

Only one Exists condition can be specified.MultipleExistsConditions

Only one Expected.Name can be specified.MultipleExpectedNames

Only one Expected.Value can be specified.MultipleExpectedValues

Attribute (" + name + ") is multi-valued. Conditional check can
only be performed on a single-valued attribute.

MultiValuedAttribute

The specified domain does not exist.NoSuchDomain

Examples

Sample Request

In this example, the Jumbo Fez has sold out in several colors. The following deletes the red, brick, and
garnet values from the color attribute of the JumboFez item.

API Version 2009-04-15
67

Amazon SimpleDB Developer Guide
DeleteAttributes

https://sdb.amazonaws.com/
?Action=DeleteAttributes
&Attribute.1.Name=color
&Attribute.1.Value=red
&Attribute.2.Name=color
&Attribute.2.Value=brick
&Attribute.3.Name=color
&Attribute.3.Value=garnet
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&ItemName=JumboFez
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<DeleteAttributesResponse">
<ResponseMetadata>

<RequestId>05ae667c-cfac-41a8-ab37-a9c897c4c3ca</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</DeleteAttributesResponse>

Sample Request

In this example, the Micro Fez has sold out. The following deletes the Micro Fez if the quantity reaches
0

Note
For more examples of conditional operations, see Conditionally Putting and Deleting Data (p. 33).

https://sdb.amazonaws.com/
?Action=DeleteAttributes
&ItemName=MicroFez
&Expected.Name=quantity
&Expected.Value=0
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<DeleteAttributesResponse>
<ResponseMetadata>

<RequestId>05ae667c-cfac-41a8-ab37-a9c897c4c3ca</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

API Version 2009-04-15
68

Amazon SimpleDB Developer Guide
DeleteAttributes

</ResponseMetadata>
</DeleteAttributesResponse>

Related Actions
• BatchDeleteAttributes (p. 57)

• GetAttributes (p. 74)

• PutAttributes (p. 78)

API Version 2009-04-15
69

Amazon SimpleDB Developer Guide
DeleteAttributes

DeleteDomain

Description
The DeleteDomain operation deletes a domain. Any items (and their attributes) in the domain are deleted
as well. The DeleteDomain operation might take 10 or more seconds to complete.

Note
Running DeleteDomain on a domain that does not exist or running the function multiple times
using the same domain name will not result in an error response.

Request Parameters

RequiredDescriptionName

YesThe name of the domain to delete.

Type: String

DomainName

Response Elements
See Common Response Elements (p. 56).

Special Errors

DescriptionError

The request must contain the parameter DomainName.MissingParameter

Examples

Sample Request

https://sdb.amazonaws.com/
?Action=DeleteDomain
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A02%3A20-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<DeleteDomainResponse>
<ResponseMetadata>

<RequestId>c522638b-31a2-4d69-b376-8c5428744704</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

API Version 2009-04-15
70

Amazon SimpleDB Developer Guide
DeleteDomain

</ResponseMetadata>
</DeleteDomainResponse>

Related Actions
• CreateDomain (p. 64)

• ListDomains (p. 77)

API Version 2009-04-15
71

Amazon SimpleDB Developer Guide
DeleteDomain

DomainMetadata

Description
Returns information about the domain, including when the domain was created, the number of items and
attributes, and the size of attribute names and values.

Request Parameters

RequiredDescriptionName

YesThe name of the domain for which to display
metadata.

Type: String

DomainName

Response Elements

DescriptionName

The data and time when metadata was calculated
in Epoch (UNIX) time.

Timestamp

The number of all items in the domain.ItemCount

The number of all attribute name/value pairs in the
domain.

AttributeValueCount

The number of unique attribute names in the
domain.

AttributeNameCount

The total size of all item names in the domain, in
bytes.

ItemNamesSizeBytes

The total size of all attribute values, in bytes.AttributeValuesSizeBytes

The total size of all unique attribute names, in
bytes.

AttributeNamesSizeBytes

Special Errors

DescriptionError

The request must contain the parameter DomainName.MissingParameter

The specified domain does not exist.NoSuchDomain

API Version 2009-04-15
72

Amazon SimpleDB Developer Guide
DomainMetadata

Examples

Sample Request

https://sdb.amazonaws.com/
?Action=DomainMetadata
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<DomainMetadataResponse>
<DomainMetadataResult>

<ItemCount>195078</ItemCount>
<ItemNamesSizeBytes>2586634</ItemNamesSizeBytes>
<AttributeNameCount >12</AttributeNameCount >
<AttributeNamesSizeBytes>120</AttributeNamesSizeBytes>
<AttributeValueCount>3690416</AttributeValueCount>
<AttributeValuesSizeBytes>50149756</AttributeValuesSizeBytes>
<Timestamp>1225486466</Timestamp>

</DomainMetadataResult>
<ResponseMetadata>

<RequestId>b1e8f1f7-42e9-494c-ad09-2674e557526d</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</DomainMetadataResponse>

Related Actions
• CreateDomain (p. 64)

• ListDomains (p. 77)

API Version 2009-04-15
73

Amazon SimpleDB Developer Guide
DomainMetadata

GetAttributes

Description
Returns all of the attributes associated with the item. Optionally, the attributes returned can be limited to
one or more specified attribute name parameters.

Amazon SimpleDB keeps multiple copies of each domain. When data is written or updated, all copies of
the data are updated. However, it takes time for the update to propagate to all storage locations. The
data will eventually be consistent, but an immediate read might not show the change. If eventually
consistent reads are not acceptable for your application, use ConsistentRead. Although this operation
might take longer than a standard read, it always returns the last updated value.

Note
If the item does not exist on the replica that was accessed for this operation, an empty set is
returned.
If you specify GetAttributes without any attribute names, all the attributes for the item are
returned.

Request Parameters

RequiredDescriptionName

YesThe name of the item.ItemName

NoThe name of the attribute.AttributeName

YesThe name of the domain in which to perform
the operation.

Type: String

DomainName

NoWhen set to true, ensures that the most
recent data is returned. For more information,
see Consistency (p. 7)

Type: Boolean

Default: false

ConsistentRead

Response Elements

DescriptionName

The name of the attribute and value.<Attribute><Name>... </Name><Value>...
</Value></Attribute>

Special Errors

DescriptionError

Value (" + value + ") for parameter Name is invalid. Value
exceeds maximum length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter Item is invalid. Value
exceeds max length of 1024.

InvalidParameterValue

API Version 2009-04-15
74

Amazon SimpleDB Developer Guide
GetAttributes

DescriptionError

Value (" + value + ") for parameter ConsistentRead is invalid.
The ConsistentRead flag should be either true or false.

InvalidParameterValue

The request must contain the parameter DomainName.MissingParameter

The request must contain the parameter ItemName.MissingParameter

The specified domain does not exist.NoSuchDomain

Examples

Sample Request

https://sdb.amazonaws.com/
?Action=GetAttributes
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&ItemName=Item123
&ConsistentRead=true
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<GetAttributesResponse>
<GetAttributesResult>

<Attribute><Name>Color</Name><Value>Blue</Value></Attribute>
<Attribute><Name>Size</Name><Value>Med</Value></Attribute>
<Attribute><Name>Price</Name><Value>14</Value></Attribute>

</GetAttributesResult>
<ResponseMetadata>

<RequestId>b1e8f1f7-42e9-494c-ad09-2674e557526d</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</GetAttributesResponse>

Sample Request

https://sdb.amazonaws.com/
?Action=GetAttributes
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&ItemName=Item123
&AttributeName.0=Color
&AttributeName.1=Size
&SignatureVersion=2

API Version 2009-04-15
75

Amazon SimpleDB Developer Guide
GetAttributes

&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A07-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<GetAttributesResponse>
<GetAttributesResult>

<Attribute><Name>Color</Name><Value>Blue</Value></Attribute>
<Attribute><Name>Size</Name><Value>Med</Value></Attribute>

</GetAttributesResult>
<ResponseMetadata>

<RequestId>b1e8f1f7-42e9-494c-ad09-2674e557526d</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</GetAttributesResponse>

Related Actions
• DeleteAttributes (p. 65)

• PutAttributes (p. 78)

API Version 2009-04-15
76

Amazon SimpleDB Developer Guide
GetAttributes

ListDomains

Description
The ListDomains operation lists all domains associated with the Access Key ID. It returns domain names
up to the limit set by MaxNumberOfDomains. A NextToken is returned if there are more than
MaxNumberOfDomains domains. Calling ListDomains successive times with the NextToken returns
up to MaxNumberOfDomains more domain names each time.

Request Parameters

RequiredDescriptionName

NoThe maximum number of domain names you
want returned.

Type: String

The range is 1 to 100.

The default setting is 100.

MaxNumberOfDomains

NoString that tells Amazon SimpleDB where to
start the next list of domain names.

NextToken

Response Elements

DescriptionName

Domain names that match the expression.DomainName

An opaque token indicating that there are more than
MaxNumberOfDomains domains still available.

NextToken

Special Errors

DescriptionError

Value (" + value + ") for parameter MaxNumberOfDomains
is invalid. MaxNumberOfDomains must be between 1 and
100.

InvalidParameterValue

The specified next token is not valid.InvalidNextToken

Examples

Sample Request

https://sdb.amazonaws.com/
?Action=ListDomains
&AWSAccessKeyId=[valid access key id]
&MaxNumberOfDomains=2

API Version 2009-04-15
77

Amazon SimpleDB Developer Guide
ListDomains

&NextToken=[valid next token]
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A02%3A19-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<ListDomainsResponse>
<ListDomainsResult>

<DomainName>Domain1-200706011651</DomainName>
<DomainName>Domain2-200706011652</DomainName>
<NextToken>TWV0ZXJpbmdUZXN0RG9tYWluMS0yMDA3MDYwMTE2NTY=</NextToken>

</ListDomainsResult>
<ResponseMetadata>

<RequestId>eb13162f-1b95-4511-8b12-489b86acfd28</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</ListDomainsResponse>

Related Actions
• CreateDomain (p. 64)

• DeleteDomain (p. 70)

PutAttributes

Description
The PutAttributes operation creates or replaces attributes in an item.You specify new attributes using
a combination of the Attribute.X.Name and Attribute.X.Value parameters.You specify the first
attribute by the parameters Attribute.1.Name and Attribute.1.Value, the second attribute by the
parameters Attribute.2.Name and Attribute.2.Value, and so on.

Attributes are uniquely identified in an item by their name/value combination. For example, a single item
can have the attributes { "first_name", "first_value" } and { "first_name",
second_value" }. However, it cannot have two attribute instances where both the Attribute.X.Name
and Attribute.X.Value are the same.

Optionally, the requester can supply the Replace parameter for each individual attribute. Setting this
value to true causes the new attribute value to replace the existing attribute value(s). For example, if an
item has the attributes { 'a', '1' }, { 'b', '2'} and { 'b', '3' } and the requester calls
PutAttributes using the attributes { 'b', '4' } with the Replace parameter set to true, the final
attributes of the item are changed to { 'a', '1' } and { 'b', '4' }, which replaces the previous
values of the 'b' attribute with the new value.

Conditional updates are useful for ensuring multiple processes do not overwrite each other. To prevent
this from occurring, you can specify the expected attribute name and value. If they match, Amazon
SimpleDB performs the update. Otherwise, the update does not occur.

API Version 2009-04-15
78

Amazon SimpleDB Developer Guide
PutAttributes

Note
Using PutAttributes to replace attribute values that do not exist will not result in an error
response.
You cannot specify an empty string as an attribute name.
When using eventually consistent reads, a GetAttributes (p. 74) or Select (p. 83) request (read)
immediately after a DeleteAttributes (p. 65) or PutAttributes (p. 78) request (write) might not
return the updated data. A consistent read always reflects all writes that received a successful
response prior to the read. For more information, see Consistency (p. 7).
You can perform the expected conditional check on one attribute per operation.

The following limitations are enforced for this operation:

• 256 total attribute name-value pairs per item

• One billion attributes per domain

• 10 GB of total user data storage per domain

Request Parameters

RequiredDescriptionName

YesThe name of the attribute. X can be any
positive integer or 0.

Type: String.

Attribute.X.Name

YesThe value of the attribute. X can be any
positive integer or 0.

Type: String.

Attribute.X.Value

YesThe name of the item.

Type: String.

ItemName

NoFlag to specify whether to replace the
Attribute/Value or to add a new
Attribute/Value. X can be any positive integer
or 0.

Type: Boolean.

Default: false.

Attribute.X.Replace

YesThe name of the domain in which to perform
the operation.

Type: String

DomainName

API Version 2009-04-15
79

Amazon SimpleDB Developer Guide
PutAttributes

RequiredDescriptionName

ConditionalName of the attribute to check.

Type: String.

Conditions: Must be used with the expected
value or expected exists parameter.

When used with the expected value
parameter, you specify the value to check.

When expected exists is set to true and it
is used with the expected value parameter,
it performs similarly to just using the
expected value parameter. When expected
exists is set to false, the operation is
performed if the expected attribute is not
present.

Can only be used with single-valued
attributes.

Expected.Name

ConditionalValue of the attribute to check.

Type: String.

Conditions: Must be used with the expected
name parameter. Can be used with the
expected exists parameter if that parameter
is set to true.

Can only be used with single-valued
attributes.

Expected.Value

ConditionalFlag to test the existence of an attribute while
performing conditional updates.

Type: Boolean.

Conditions: Must be used with the expected
name parameter. When set to true, this
must be used with the expected value
parameter. When set to false, this cannot
be used with the expected value parameter.

Can only be used with single-valued
attributes.

Expected.Exists

Response Elements
See Common Response Elements (p. 56).

Special Errors

DescriptionError

Attribute ("+ name + ") does not existAttributeDoesNotExist

Conditional check failed. Attribute (" + name + ") value exists.ConditionalCheckFailed

Conditional check failed. Attribute ("+ name +") value is ("+
value +") but was expected ("+ expValue +")

ConditionalCheckFailed

API Version 2009-04-15
80

Amazon SimpleDB Developer Guide
PutAttributes

DescriptionError

Expected.Exists=false and Expected.Value cannot be
specified together

ExistsAndExpectedValue

If Expected.Exists=true or unspecified, then Expected.Value
has to be specified

IncompleteExpectedExpression

Value (" + value + ") for parameter Expected.Exists is invalid.
Expected.Exists should be either true or false.

InvalidParameterValue

Value (" + value + ") for parameter Name is invalid.The empty
string is an illegal attribute name

InvalidParameterValue

Value (" + value + ") for parameter Value is invalid. Value
exceeds maximum length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter Name is invalid. Value
exceeds maximum length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter Value is invalid. Value
exceeds maximum length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter Item is invalid. Value
exceeds max length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter Replace is invalid. The
Replace flag should be either true or false.

InvalidParameterValue

Parameter (" + parameterName +") is only supported in WSDL
version 2009-04-15 or beyond. Please upgrade to new version

InvalidWSDLVersion

The request must contain the parameter NameMissingParameter

The request must contain the parameter DomainName.MissingParameter

The request must contain the parameter ItemName.MissingParameter

Attribute.Value missing for
Attribute.Name='<attribute name>'.

MissingParameter

Attribute.Name missing for
Attribute.Value='<attribute value>'.

MissingParameter

Only one Exists condition can be specifiedMultipleExistsConditions

Only one Expected.Name can be specifiedMultipleExpectedNames

Only one Expected.Value can be specifiedMultipleExpectedValues

Attribute (" + name + ") is multi-valued. Conditional check can
only be performed on a single-valued attribute

MultiValuedAttribute

The specified domain does not exist.NoSuchDomain

Too many attributes in this item.NumberItemAttributesExceeded

Too many attributes in this domain.NumberDomainAttributesExceeded

Too many bytes in this domain.NumberDomainBytesExceeded

API Version 2009-04-15
81

Amazon SimpleDB Developer Guide
PutAttributes

Examples

Sample Request

The following example uses PutAttributes on Item123, which has attributes (Color=Blue),
(Size=Med), and (Price=0014.99) in MyDomain. If Item123 already had the Price attribute, this
operation would replace the values for that attribute.

https://sdb.amazonaws.com/
?Action=PutAttributes
&Attribute.1.Name=Color
&Attribute.1.Value=Blue
&Attribute.2.Name=Size
&Attribute.2.Value=Med
&Attribute.3.Name=Price
&Attribute.3.Value=0014.99
&Attribute.3.Replace=true
&AWSAccessKeyId=[valid access key id]
&DomainName=MyDomain
&ItemName=Item123
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A05-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<PutAttributesResponse>
<ResponseMetadata>

<RequestId>490206ce-8292-456c-a00f-61b335eb202b</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</PutAttributesResponse>

Sample Request

The following example uses conditional updates to ensure that multiple processes do not overwrite each
other’s settings. For example, if two people are buying the JumboFez item at the same time, the following
ensures that the inventory is decremented correctly.

Note
For more examples of conditional operations, see Conditionally Putting and Deleting Data (p. 33).

https://sdb.amazonaws.com/
?Action=PutAttributes
&DomainName=MyDomain
&ItemName=JumboFez
&Attribute.1.Name=quantity
&Attribute.1.Value=14
&Attribute.1.Replace=true
&Expected.Name=quantity

API Version 2009-04-15
82

Amazon SimpleDB Developer Guide
PutAttributes

&Expected.Value=15
&AWSAccessKeyId=[valid access key id]
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A05-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

If the update condition is met, Amazon SimpleDB returns output similar to the following.

<PutAttributesResponse>
<ResponseMetadata>

<RequestId>490206ce-8292-456c-a00f-61b335eb202b</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</PutAttributesResponse>

In this example, one of the servers updates the value and the other receives an error. The server that
receives the error resubmits the request specifying a value of 13 and an expected value of 14, ensuring
that the inventory is correctly set.

Related Actions
• DeleteAttributes (p. 65)

• GetAttributes (p. 74)

Select

Description
The Select operation returns a set of Attributes for ItemNames that match the select expression.
Select is similar to the standard SQL SELECT statement.

Amazon SimpleDB keeps multiple copies of each domain. When data is written or updated, all copies of
the data are updated. However, it takes time for the update to propagate to all storage locations. The
data will eventually be consistent, but an immediate read might not show the change. If eventually
consistent reads are not acceptable for your application, use ConsistentRead. Although this operation
might take longer than a standard read, it always returns the last updated value.

The total size of the response cannot exceed 1 MB. Amazon SimpleDB automatically adjusts the number
of items returned per page to enforce this limit. For example, even if you ask to retrieve 2500 items, but
each individual item is 10 KB in size, the system returns 100 items and an appropriate next token so you
can get the next page of results.

For information on how to construct select expressions, see Using Select to Create Amazon SimpleDB
Queries (p. 37).

Note
Operations that run longer than 5 seconds return a time-out error response or a partial or empty
result set. Partial and empty result sets contain a NextToken value, which allows you to continue
the operation from where it left off.

API Version 2009-04-15
83

Amazon SimpleDB Developer Guide
Select

Responses larger than one megabyte return a partial result set.
Your application should not excessively retry queries that return QueryTimeout errors. If you
receive too many QueryTimeout errors, reduce the complexity of your query expression.
When designing your application, keep in mind that Amazon SimpleDB does not guarantee how
attributes are ordered in the returned response.
For information about limits that affect Select, see Limits (p. 9).
The select operation is case-sensitive.

Request Parameters

RequiredDescriptionName

YesThe expression used to query the domain.

Type: String

Default: None

SelectExpression

NoWhen set to true, ensures that the most
recent data is returned. For more information,
see Consistency (p. 7)

Type: Boolean

Default: false

ConsistentRead

NoString that tells Amazon SimpleDB where to
start the next list of ItemNames.

Type: String

Default: None

NextToken

Response Elements

DescriptionName

Item names that match the select expression.<Item><Name>... </Name></Item>

The name and value of the attribute.<Attribute> <Name>...</Name>
<Value>...</Value> </Attribute>

An opaque token indicating that more than
MaxNumberOfItems matched, the response size
exceeded 1 megabyte, or the execution time
exceeded 5 seconds.

NextToken

Special Errors

DescriptionError

Value (" + value + ") for parameter MaxNumberOfItems is
invalid. MaxNumberOfItems must be between 1 and 2500.

InvalidParameterValue

Value (" + value + ") for parameter AttributeName is invalid.
Value exceeds maximum length of 1024.

InvalidParameterValue

Value (" + value + ") for parameter ConsistentRead is invalid.
The ConsistentRead flag should be either true or false.

InvalidParameterValue

API Version 2009-04-15
84

Amazon SimpleDB Developer Guide
Select

DescriptionError

The specified next token is not valid.InvalidNextToken

Too many predicates in the query expression.InvalidNumberPredicates

Too many value tests per predicate in the query expression.InvalidNumberValueTests

The specified query expression syntax is not valid.InvalidQueryExpression

The sort attribute must be present in at least one of the
predicates, and the predicate cannot contain the is null
operator.

InvalidSortExpression

The request must contain the parameter DomainName.MissingParameter

The specified domain does not exist.NoSuchDomain

A timeout occurred when attempting to query domain <domain
name> with query expression <query expression>. BoxUsage
[<box usage value>]"

QueryTimeout

Too many attributes requested.TooManyRequestedAttributes

Examples

Sample Request

https://sdb.amazonaws.com/
?Action=Select
&AWSAccessKeyId=[valid access key id]
&NextToken=[valid next token]
&SelectExpression=select%20Color%20from%20MyDomain%20where%20Col
or%20like%20%27Blue%25%27
&ConsistentRead=true
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-01-25T15%3A03%3A09-07%3A00
&Version=2009-04-15
&Signature=[valid signature]

Sample Response

<SelectResponse>
<SelectResult>

<Item>
<Name>Item_03</Name>
<Attribute><Name>Category</Name><Value>Clothes</Value></Attribute>
<Attribute><Name>Subcategory</Name><Value>Pants</Value></Attribute>
<Attribute><Name>Name</Name><Value>Sweatpants</Value></Attribute>
<Attribute><Name>Color</Name><Value>Blue</Value></Attribute>
<Attribute><Name>Color</Name><Value>Yellow</Value></Attribute>
<Attribute><Name>Color</Name><Value>Pink</Value></Attribute>

API Version 2009-04-15
85

Amazon SimpleDB Developer Guide
Select

<Attribute><Name>Size</Name><Value>Large</Value></Attribute>
</Item>
<Item>
<Name>Item_06</Name>
<Attribute><Name>Category</Name><Value>Motorcycle Parts</Value></Attribute>

<Attribute><Name>Subcategory</Name><Value>Bodywork</Value></Attribute>
<Attribute><Name>Name</Name><Value>Fender Eliminator</Value></Attribute>

<Attribute><Name>Color</Name><Value>Blue</Value></Attribute>
<Attribute><Name>Make</Name><Value>Yamaha</Value></Attribute>
<Attribute><Name>Model</Name><Value>R1</Value></Attribute>

</Item>
</SelectResult>
<ResponseMetadata>

<RequestId>b1e8f1f7-42e9-494c-ad09-2674e557526d</RequestId>
<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>
</SelectResponse>

API Version 2009-04-15
86

Amazon SimpleDB Developer Guide
Select

API Error Codes

Topics

• About Response Code 503 (p. 87)

• Amazon SimpleDB Error Codes (p. 87)

There are two types of error codes, client and server.

Client error codes are generally caused by the client and might be an authentication failure or an invalid
domain; these errors are accompanied by a 4xx HTTP response code.

Server error codes are generally caused by a server-side issue and a large volume of server error codes
should be reported to Amazon Web Services (including the request ID and the time when the request
was issued); these errors are accompanied by a 5xx HTTP response code.

About Response Code 503
Typically, a large volume of server error codes (5xx) should be reported to Amazon Web Services with
one exception: response code 503. A response code 503 indicates that applications are submitting too
many requests to Amazon SimpleDB in a very brief span of time. So, while other server error codes (5xx)
indicate a distinct server problem, a 503 response code does not indicate a problem with Amazon
SimpleDB, specifically, and should be resolved on the client side.

To resolve response code 503, implement request retries in the client application with exponential backoff.
For details, see API Error Retries (p. 53). Or, split your domain into multiple shards to achieve better
parallelism and higher throughput, see Partitioning Your Dataset to Improve Query Performance.

Amazon SimpleDB Error Codes
The following table lists all Amazon SimpleDB error codes.

HTTP Status
Code

DescriptionError

403 ForbiddenAccess to the resource " +
resourceName + " is denied.

AccessFailure

API Version 2009-04-15
87

Amazon SimpleDB Developer Guide
About Response Code 503

http://aws.amazon.com/articles/Amazon-SimpleDB/1232#_Toc189394138

HTTP Status
Code

DescriptionError

404 Not FoundAttribute ("+ name + ") does not existAttributeDoesNotExist

403 ForbiddenAWS was not able to validate the
provided access keys.

AuthFailure

403 ForbiddenAWS was not able to authenticate the
request: access keys are missing.

AuthMissingFailure

409 ConflictConditional check failed. Attribute (" +
name + ") value exists.

ConditionalCheckFailed

409 ConflictConditional check failed. Attribute ("+
name +") value is ("+ value +") but was
expected ("+ expValue +")

ConditionalCheckFailed

400 Bad RequestExpected.Exists=false and
Expected.Value cannot be specified
together

ExistsAndExpectedValue

400 Bad RequestThe replace flag must be specified per
attribute, not per item.

FeatureDeprecated

400 Bad RequestIf Expected.Exists=true or unspecified,
then Expected.Value has to be specified

IncompleteExpectedExpression

500 Internal Server
Error

Request could not be executed due to
an internal service error.

InternalError

400 Bad RequestThe action " + actionName + " is not
valid for this web service.

InvalidAction

400 Bad RequestThe HTTP authorization header is bad,
use " + correctFormat".

InvalidHTTPAuthHeader

400 Bad RequestThe HTTP request is invalid. Reason: "
+ reason".

InvalidHttpRequest

400 Bad RequestIllegal literal in the filter expression.InvalidLiteral

400 Bad RequestThe specified next token is not valid.InvalidNextToken

400 Bad RequestToo many predicates in the query
expression.

InvalidNumberPredicates

400 Bad RequestToo many value tests per predicate in
the query expression.

InvalidNumberValueTests

400 Bad RequestThe parameter " + param1 + " cannot be
used with the parameter " + param2".

InvalidParameterCombination

400 Bad RequestValue (" + value + ") for parameter
MaxNumberOfDomains is invalid.
MaxNumberOfDomains must be
between 1 and 100.

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter
MaxNumberOfItems is invalid.
MaxNumberOfItems must be between
1 and 2500.

InvalidParameterValue

API Version 2009-04-15
88

Amazon SimpleDB Developer Guide
Amazon SimpleDB Error Codes

HTTP Status
Code

DescriptionError

400 Bad RequestValue (" + value + ") for parameter
MaxNumberOfDomains is invalid.
MaxNumberOfDomains must be
between 1 and 100.

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter " +
paramName + " is invalid. " + reason".

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter Name
is invalid. Value exceeds maximum
length of 1024.

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter Value
is invalid. Value exceeds maximum
length of 1024.

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter
DomainName is invalid.

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter
Replace is invalid. The Replace flag
should be either true or false.

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter
Expected.Exists is invalid.
Expected.Exists should be either true
or false.

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter Name
is invalid.The empty string is an illegal
attribute name

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter Value
is invalid. Value exceeds maximum
length of 1024.

InvalidParameterValue

400 Bad RequestValue (" + value + ") for parameter
ConsistentRead is invalid. The
ConsistentRead flag should be either
true or false.

InvalidParameterValue

400 Bad RequestThe specified query expression syntax
is not valid.

InvalidQueryExpression

400 Bad RequestThe following response groups are
invalid: " + invalidRGStr.

InvalidResponseGroups

400 Bad RequestThe Web Service " + serviceName + "
does not exist.

InvalidService

400 Bad RequestThe sort attribute must be present in at
least one of the predicates, and the
predicate cannot contain the is null
operator.

InvalidSortExpression

400 Bad RequestThe URI " + requestURI + " is not valid.InvalidURI

API Version 2009-04-15
89

Amazon SimpleDB Developer Guide
Amazon SimpleDB Error Codes

HTTP Status
Code

DescriptionError

400 Bad RequestWS-Addressing parameter " +
paramName + " has a wrong value: " +
paramValue".

InvalidWSAddressingProperty

400 Bad RequestParameter (" + parameterName +") is
only supported in WSDL version
2009-04-15 or beyond. Please upgrade
to new version

InvalidWSDLVersion

400 Bad RequestNo action was supplied with this request.MissingAction

400 Bad RequestThe request must contain the specified
missing parameter.

MissingParameter

400 Bad RequestThe request must contain the parameter
" + paramName".

MissingParameter

400 Bad RequestThe request must contain the parameter
ItemName.

MissingParameter

400 Bad RequestThe request must contain the parameter
DomainName.

MissingParameter

400 Bad RequestAttribute.Value missing for
Attribute.Name='name'.

MissingParameter

400 Bad RequestAttribute.Name missing for
Attribute.Value='value'.

MissingParameter

400 Bad RequestNo attributes for item ='" + itemName +
"'.

MissingParameter

400 Bad RequestThe request must contain the parameter
Name

MissingParameter

400 Bad RequestWS-Addressing is missing a required
parameter (" + paramName + ")".

MissingWSAddressingProperty

400 Bad RequestOnly one Exists condition can be
specified

MultipleExistsConditions

400 Bad RequestOnly one Expected.Name can be
specified

MultipleExpectedNames

400 Bad RequestOnly one Expected.Value can be
specified

MultipleExpectedValues

409 ConflictAttribute (" + name + ") is multi-valued.
Conditional check can only be performed
on a single-valued attribute

MultiValuedAttribute

400 Bad RequestThe specified domain does not exist.NoSuchDomain

400 Bad RequestThe requested version (" + version + ")
of service " + service + " does not exist.

NoSuchVersion

401 UnauthorizedFeature " + feature + " is not yet
available".

NotYetImplemented

API Version 2009-04-15
90

Amazon SimpleDB Developer Guide
Amazon SimpleDB Error Codes

HTTP Status
Code

DescriptionError

409 ConflictThe domain limit was exceeded.NumberDomainsExceeded

409 ConflictToo many attributes in this domain.NumberDomainAttributes

Exceeded

409 ConflictToo many bytes in this domain.NumberDomainBytesExceeded

409 ConflictToo many attributes in this item.NumberItemAttributes

Exceeded

409 ConflictToo many attributes in a single call.NumberSubmitted

AttributesExceeded

409 ConflictToo many attributes for item itemName
in a single call. Up to 256 attributes per
call allowed.

NumberSubmittedAttributesExceeded

409 ConflictToo many items in a single call. Up to
25 items per call allowed.

NumberSubmittedItemsExceeded

400 Bad RequestRequest has expired. " + paramType +
" date is " + date".

RequestExpired

408 Request
Timeout

A timeout occurred when attempting to
query domain <domain name> with
query expression <query expression>.
BoxUsage [<box usage value>]".

QueryTimeout

503 Service
Unavailable

Service Amazon SimpleDB is busy
handling other requests, likely due to too
many simultaneous requests. Consider
reducing the frequency of your requests,
and try again. See About Response
Code 503 (p. 87).

ServiceUnavailable

400 Bad RequestToo many attributes requested.TooManyRequestedAttributes

400 Bad RequestThe requested HTTP verb is not
supported: " + verb".

UnsupportedHttpVerb

400 Bad RequestThe specified next token is no longer
supported. Please resubmit your query.

UnsupportedNextToken

400 Bad RequestThe URI exceeded the maximum limit
of "+ maxLength".

URITooLong

API Version 2009-04-15
91

Amazon SimpleDB Developer Guide
Amazon SimpleDB Error Codes

Amazon SimpleDB Glossary

account AWS account associated with a particular developer.

attribute Similar to columns on a spreadsheet, attributes represent categories of data that
can be assigned to items.

consistent read A consistent read (using Select or GetAttributes with ConsistentRead=true) returns
a result that reflects all writes that received a successful response prior to the
read.

domain All Amazon SimpleDB information is stored in domains. Domains are similar to
tables that contain similar data.You can execute queries against a domain, but
cannot execute joins between domains.

The name of the domain must be unique within the customer account.

eventually consistent read An eventually consistent read (using Select or GetAttributes) might not reflect the
results of a recently completed write (using PutAttributes, BatchPutAttributes,
DeleteAttributes). Consistency is usually reached within a second; repeating a
read after a short time should return the updated data.

exponential backoff A strategy for reducing the load on the system and increasing the likelihood of
repeated requests succeeding by incrementally decreasing the rate at which
retries are executed. For example, client applications might wait up to 400
milliseconds before attempting the first retry, up to 1600 milliseconds before the
second, up to 6400 milliseconds (6.4 seconds) before the third, and so on.

items Similar to rows on a spreadsheet, items represent individual objects that contain
one or more value-attribute pairs

item name An identifier for an item. The identifier must be unique within the domain.

machine utilization Charges based on the amount of machine capacity used to complete the particular
request (SELECT, GET, PUT, etc.), normalized to the hourly capacity of a circa
2007 1.7 GHz Xeon processor. Machine Utilization is measured in Machine Hour
increments.

multi-valued attribute An attribute with more than one value.

network partition A rare error condition where some Amazon SimpleDB computers cannot contact
each other, but all other components are operating correctly. Normally this is
repaired within seconds or minutes.

single-valued attribute An attribute with one value.

API Version 2009-04-15
92

Amazon SimpleDB Developer Guide

value Similar to cells on a spreadsheet, values represent instances of attributes for an
item. An attribute might have multiple values.

API Version 2009-04-15
93

Amazon SimpleDB Developer Guide

Document History

The following table describes the documentation for this release of Amazon SimpleDB.

Relevant Dates to this History:

• API version: 2009-04-15

• Lastest document update: April 12, 2012

Date ChangedDescriptionChange

April 12, 2012The Note in the Select operation description was incorrect and
has been removed. For more information, see Select (p. 83).

Removed incorrect
note.

February 20,
2012

Added instructions for handling server response code 503. For
more information, see About Response Code 503 (p. 87).

Added handling
response code 503
information.

February 20,
2012

Added instructions for forming HTTP POST requests. For more
information, see Making REST Requests (p. 13).

Added HTTP POST
request information

February 20,
2012

Revised AWS version 2 signing instructions. For more
information, see HMAC-SHA Signature (p. 23).

Revised AWS version
2 signing information

01 Sept 2011Amazon SimpleDB now supports the AWS Security Token
Service. For more information, see Using Temporary Security
Credentials (p. 22).

Support for AWS
Security Token
Service

01 Sept 2011Amazon SimpleDB no longer supports requests using SOAP.SOAP support
deprecated

20 May 2011A section was added to the Tuning Queries topic covering the
use of composite attributes to improve query performance. For
more information see Tuning Your Queries Using Composite
Attributes (p. 48).

New Tuning Queries
section in
documentation

02 March 2011This service's endpoint information is now located in the
Amazon Web Services General Reference. For more
information, go to Regions and Endpoints in the Amazon Web
Services General Reference.

New link

API Version 2009-04-15
94

Amazon SimpleDB Developer Guide

http://docs.aws.amazon.com/general/latest/gr/index.html?rande.html
http://docs.aws.amazon.com/general/latest/gr/index.html?rande.html

Date ChangedDescriptionChange

03 December
2010

Amazon SimpleDB can now perform multiple delete operations
at once. For more information, see
BatchDeleteAttributes (p. 57).

BatchDeleteAttributes

28 April 2010Amazon SimpleDB now supports the Asia Pacific (Singapore)
Region. For more information, see Region Endpoints (p. 13).

Asia Pacific Region

24 February
2010

GetAttributes and Select can now perform consistent reads,
which always return the most recently written data. For more
information, see Consistency (p. 7).

Consistent read

24 February
2010

Amazon SimpleDB now supports conditional put, which enables
you to perform a put if a specific condition is met. For more
information, see Conditionally Putting and Deleting Data (p. 33)
and PutAttributes (p. 78).

Conditional put

24 February
2010

Amazon SimpleDB now supports conditional delete, which
enables you to delete data if a specific condition is met. For
more information, see Conditionally Putting and Deleting
Data (p. 33) and DeleteAttributes (p. 65).

Conditional delete

23 September
2009

Amazon SimpleDB is now available in Europe. For more
information, see Region Endpoints (p. 13).

New Data Center in
Europe

18 May 2009You can now search whether attribute values contain a
specified string using like. For more information, see
Comparison Operators (p. 38).

contains

18 May 2009Select can now use where and order by with itemNames().
For more information, see Comparison Operators (p. 38).

Sort and Execute
Queries by
itemName()

18 May 2009Sort can now be applied to expressions that contain the is
null predicate operator, as long as is null is not applied
to the attribute that being sorted on. For more information about
Select, see Sort (p. 44).

IS NULL Sort

18 May 2009Select can now return up to 2500 items. For more information
about Select, see Limits (p. 9).

Increased Item Limit

18 May 2009Amazon SimpleDB replaced Query and
QueryWithAttributes with Select, a query function that
is similar to the standard SQL SELECT statement. For more
information, see Using Select to Create Amazon SimpleDB
Queries (p. 37).

Query and
QueryWithAttributes
Deprecated

18 May 2009All requests to Amazon SimpleDB must be made over SSL
(https://). For more information, see Request
Authentication (p. 16).

SSL Required

API Version 2009-04-15
95

Amazon SimpleDB Developer Guide

Index
A
Access Key ID, 6, 64, 77
access keys, 64, 77

operations, 6
access management, 11
AccessFailure, 87
Action, 55
Amazon SimpleDB, 19
API

BatchDeleteAttributes, 57
BatchPutAttributes, 60
common errors, 57
conventions, 52
CreateDomain, 64
data types, 52
DeleteAttributes, 65
DeleteDomain, 70
DomainMetadata, 72
error codes, 87
errors, 53
escaping, 56
GetAttributes, 74
ListDomains, 77
parameter formats, 56
parameters, 54
PutAttributes, 78
quotes, 56
reference, 12, 51
response elements, 56
Select, 83
summary, 7
versioning, 52
WSDL, 52

ARNs
for Amazon SimpleDB, 19

Asia, 13
Attribute.X.Name, 55, 58, 61, 65, 79
Attribute.X.Value, 55, 58, 61, 65, 79
AttributeName, 74
attributes

delete, 65
get, 74
put, 57, 60, 78

AttributeValue, 74
authentication

process, 23
REST, 25
signature version 2, 25
summary, 23

AuthFailure, 87
AuthMissingFailure , 87
AWSAccessKeyId, 55

B
BatchDeleteAttributes, 57
BatchPutAttributes, 60
bill, 4
BoxUsage, 56

C
calls, 51
charges, 3
concepts, 5

consistent read, 7
data model, 5
eventually consistent, 7
limits, 9
operations, 6

conventions, 52
cost, 3
CreateDomain, 64

D
data model

concepts, 5
data set partitioning, 10
data transfer

charges, 3
report, 4

data types, 52
DeleteAttributes, 65
DeleteDomain, 70
DomainMetadata, 72
DomainName, 55, 64, 70, 84
domains, 5

creating, 64
deleting, 70
listing, 77
partitioning, 10

E
endpoints, 13
error codes, 87
errors

AccessFailure , 87
AuthMissingFailure , 87
client, 53, 87
common responses, 57
FeatureDeprecated, 87
InternalError, 87
InvalidAction, 87
InvalidHTTPAuthHeader, 87
InvalidHttpRequest, 87
InvalidNextToken, 77, 84, 87
InvalidNumberPredicates, 84, 87
InvalidNumberValueTests, 84, 87
InvalidParameterCombination, 87
InvalidParameterValue, 58, 62, 64, 67, 74, 77, 80,
84, 87

API Version 2009-04-15
96

Amazon SimpleDB Developer Guide

InvalidQueryExpression, 84
InvalidResponseGroups, 87
InvalidService, 87
InvalidURI, 87
InvalidWSAddressingProperty, 87
MissingAction, 87
MissingParameter, 58, 62, 64, 67, 70, 72, 74, 77, 80,
84
MissingWSAddressingProperty, 87
NoSuchDomain, 58, 62, 67, 72, 74, 80, 84, 87
NoSuchVersion, 87
NotYetImplemented, 87
NumberDomainAttributesExceeded, 58, 62, 80, 87
NumberDomainBytesExceeded, 58, 62, 80, 87
NumberDomainsExceeded, 64, 87
NumberItemAttributesExceeded, 58, 62, 80, 87
QueryTimeout, 84, 87
RequestExpired, 87
retries, 53
server, 53, 53, 87
ServiceOverload, 87
ServiceUnavailable, 87
UnsupportedHttpVerb, 87
URITooLong, 87

escaping, 56
Europe, 13
eventually consistent, 58, 65

concepts, 7
exponential backoff, 53

F
FeatureDeprecated, 87
features, 2
functions, 51

G
GetAttributes, 74

I
identity management, 11
InternalError , 87
InvalidAction, 87
InvalidHTTPAuthHeader, 87
InvalidHttpRequest, 87
InvalidNextToken, 77, 84, 87
InvalidNumberPredicates, 84, 87
InvalidNumberValueTests, 84, 87
InvalidParameterCombination, 87
InvalidParameterValue, 58, 62, 64, 67, 74, 77, 80, 84,
87
InvalidQueryExpression, 84
InvalidResponseGroups, 87
InvalidService, 87
InvalidSortExpression, 84, 87
InvalidURI, 87
InvalidWSAddressingProperty, 87

invoice, 4
Item.Y.Attribute.X.Name, 58, 61
Item.Y.Attribute.X.Replace, 61
Item.Y.Attribute.X.Value, 58, 61
Item.Y.ItemName, 58, 61
ItemName, 58, 61, 65, 74, 79
items, querying, 83

L
limits

concepts, 9
ListDomains, 77
locations

data, 13

M
machine utilization, 56

charges, 3
report, 4

MaxNumberOfDomains, 55, 77
MaxNumberOfItems, 55, 84
metadata

get, 72
MissingAction, 87
MissingParameter, 58, 62, 64, 67, 70, 72, 74, 80, 84
MissingWSAddressingProperty, 87
model, data, 5
multi-valued attribute, 58, 65

N
network partition, 7
NextToken, 55, 77, 84
NoSuchDomain, 58, 62, 67, 72, 74, 80, 84, 87
NoSuchVersion, 87
NotYetImplemented, 87
NumberDomainAttributesExceeded, 58, 62, 80, 87
NumberDomainBytesExceeded, 58, 62, 80, 87
NumberDomainsExceeded, 64, 87
NumberItemAttributesExceeded, 58, 62, 80, 87

O
operations, 6, 51

P
parameters, 54

Attribute.X.Name, 58, 61, 65, 79
Attribute.X.Value, 58, 61, 65, 79
AttributeName, 74
AttributeValue, 74
DomainName, 64, 70, 84
formats, 56
ItemName, 58, 61, 65, 74, 79
MaxNumberOfDomains, 77
MaxNumberOfItems, 84
NextToken, 77, 84

API Version 2009-04-15
97

Amazon SimpleDB Developer Guide

Replace, 61, 79
partitioning

domains, 10
policies

examples, 20
pricing, 3
programmer reference, 12
PutAttributes, 78

Q
QueryExpression, 55
QueryTimeout, 84, 87
quotes, 56

R
receipt, 4
Replace, 55, 61, 79
RequestExpired, 87
RequestId, 56
requests

authentication, 16
BatchDeleteAttributes, 57
BatchPutAttributes, 60
CreateDomain, 64
DeleteAttributes, 65
DeleteDomain, 70
DomainMetadata, 72
GetAttributes, 74
ListDomains, 77
PutAttributes, 78
REST, 13

parameters, 14
sample, 15

Select, 83
SOAP, 16

responses, 56
REST

authentication, 25
requests, 13

parameters, 14
sample, 15

restrictions, 9
retries, 53

S
scale out model, 10
Secret Access Key, 6, 64, 77
security credentials

temporary, 22
Select, 83
server errors, 53
ServiceOverload, 87
ServiceUnavailable, 87
Signature, 55
signature version 2, 25
SignatureMethod, 55

SignatureVersion, 55
SOAP

requests, 16
spreadsheet, 5
storage

charges, 3
report, 4

structured data, 5

T
temporary security credentials, 22
Timestamp, 55
types, 52

U
United States, 13
UnsupportedHttpVerb, 87
URITooLong, 87
usage report, 4

V
Version, 55
versioning, 52

W
WSDL, 52, 52
WSDL versioning, 52

API Version 2009-04-15
98

Amazon SimpleDB Developer Guide

	Amazon SimpleDB
	Welcome to Amazon SimpleDB
	Introduction to Amazon SimpleDB
	Features
	How Amazon Charges for Amazon SimpleDB
	Storage
	Data Transfer

	Viewing Your Bill

	Amazon SimpleDB Concepts
	Data Model
	Operations
	API Summary
	Consistency
	Concurrent Applications

	Limits
	Data Set Partitioning
	AWS Identity and Access Management

	Using Amazon SimpleDB
	Available Libraries
	Making API Requests
	Region Endpoints
	Making REST Requests
	About REST Requests
	Structure of a GET Request
	Structure of a POST Request
	Using Parameters with REST
	Sample REST Requests
	REST Request as a URL
	REST Response
	REST Request using HTTP POST
	REST Response

	Making SOAP Requests

	Request Authentication
	What Is Authentication?
	Creating an AWS Account
	Your AWS Security Credentials
	Viewing Your AWS Security Credentials

	Managing Users of Amazon SimpleDB
	Amazon Resource Names (ARNs) for Amazon SimpleDB
	Amazon SimpleDB Actions
	Amazon SimpleDB Keys
	Example Policies for Amazon SimpleDB

	Using Temporary Security Credentials
	HMAC-SHA Signature
	Required Authentication Information
	Authentication Process
	Signing REST Requests
	About the Time Stamp
	Java Sample Code for Base64 Encoding
	Java Sample Code for Calculating HMAC-SHA1 Signatures

	Working with Domains
	Creating a Domain
	Verifying the Domain
	Deleting a Domain

	Working with Data
	Putting Data into a Domain
	Getting Data from a Domain
	Deleting Data from a Domain

	Conditionally Putting and Deleting Data
	Performing a Conditional Put
	Optimistic Concurrency Control
	Counters
	Existence Check

	Performing a Conditional Delete

	Using Select to Create Amazon SimpleDB Queries
	Comparison Operators
	Sample Query Data Set
	Simple Queries
	Range Queries
	Queries on Attributes with Multiple Values
	Multiple Attribute Queries
	Sort
	Count
	Select Quoting Rules

	Working with Numerical Data
	Negative Numbers Offsets
	Zero Padding
	Dates

	Tuning Queries
	Tuning Your Queries Using Composite Attributes
	Data Set Partitioning

	Working with XML-Restricted Characters

	API Reference
	API Usage
	API Conventions
	Overview
	Actions
	Data Types

	WSDL Location and API Version
	API Versions
	Specifying the API Version

	API Error Retries
	Client Errors
	Server Errors
	Retries and Exponential Backoff

	Common Parameters
	Request Parameters
	Request Parameter Formats
	Quotes and escape characters

	Common Response Elements
	Common Error Responses
	Operations
	BatchDeleteAttributes
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	BatchPutAttributes
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	CreateDomain
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	DeleteAttributes
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response
	Sample Request
	Sample Response

	Related Actions

	DeleteDomain
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	DomainMetadata
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	GetAttributes
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response
	Sample Request
	Sample Response

	Related Actions

	ListDomains
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	PutAttributes
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response
	Sample Request
	Sample Response

	Related Actions

	Select
	Description
	Request Parameters
	Response Elements
	Special Errors
	Examples
	Sample Request
	Sample Response

	API Error Codes
	About Response Code 503
	Amazon SimpleDB Error Codes

	Amazon SimpleDB Glossary
	Document History
	Index

