
Amazon Kinesis Analytics
SQL Reference

Amazon Kinesis Analytics SQL Reference

Amazon Kinesis Analytics SQL Reference

Amazon Kinesis Analytics: SQL Reference
Copyright © 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any
manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other
trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to,
or sponsored by Amazon.

Amazon Kinesis Analytics SQL Reference

Table of Contents
SQL Reference ... 1
Temporal Predicates ... 2

Syntax ... 4
Example .. 4
Sample Use Case ... 5

Basic Building Blocks .. 6
Data Types .. 6
Numeric Types and Precision ... 9
Identifiers ... 10
Streaming SQL Operators .. 11

IN Operator .. 11
EXISTS Operator .. 12
Scalar Operators ... 12
Arithmetic Operators .. 12
String Operators .. 13
Date, Timestamp, and Interval Operators .. 18
Logical Operators .. 25

Functions ... 29
Standard Functions ... 30
Aggregate Functions .. 55
Analytic Functions ... 66
Unsupervised Functions/Algorithms .. 67
Windowed Aggregation on Streams ... 72
Scalar Functions ... 79
Pattern Matching Functions ... 112

Expressions and Literals ... 118
Monotonic Expressions and Operators .. 120
Condition Clause ... 122

Standard SQL Operators .. 123
CREATE statements .. 123

CREATE STREAM .. 123
CREATE FUNCTION ... 125
CREATE PUMP .. 126

INSERT ... 128
MERGE statements ... 129

Semantics .. 130
Query .. 131
SELECT statement .. 134

SELECT ALL and SELECT DISTINCT .. 136
SELECT clause ... 137
FROM clause .. 140
JOIN clause .. 142
HAVING clause ... 147
GROUP BY clause .. 148
WHERE clause ... 149
WINDOW clause (Sliding Windows) ... 152
ORDER BY clause .. 158
ROWTIME .. 160

Reserved Words and Keywords ... 163
Document History .. 167

iv

Amazon Kinesis Analytics SQL Reference

Amazon Kinesis Analytics SQL
Reference

The Amazon Kinesis Analytics SQL Reference describes the SQL structured query language
supported by Amazon Kinesis Analytics. The language is based on the SQL:2008 standard with some
extensions to accommodate the concept of streams.

This guide covers the following:

• Basic Building Blocks (p. 6) – Data Types (p. 6), Streaming SQL Operators (p. 11),
Functions (p. 29), Standard Functions (p. 30).

• Standard SQL Operators (p. 123) – CREATE statements (p. 123), SELECT statement (p. 134),
MERGE statements (p. 129).

• Operators for transforming and filtering incoming data – WHERE clause (p. 149), JOIN
clause (p. 142), GROUP BY clause (p. 148), WINDOW clause (Sliding Windows) (p. 152).

• Logical Operators (p. 25) – AS, AND, OR, etc.

1

Amazon Kinesis Analytics SQL Reference

Temporal Predicates

The following table shows a graphic representation of temporal predicates supported by standard SQL
and extensions to the SQL standard supported by Amazon Kinesis Analytics. It shows the relationships
that each predicate covers. Each relationship is represented as an upper interval and a lower interval
with the combined meaning upperInterval predicate lowerInterval evaluates to TRUE. The first 7
predicates are standard SQL. The last 10 predicates, shown in bold text, are Amazon Kinesis Analytics
extensions to the SQL standard.

PredicateCovered Relationships

CONTAINS

OVERLAPS

EQUALS

PRECEDES

SUCCEEDS

IMMEDIATELY
PRECEDES

IMMEDIATELY
SUCCEEDS

LEADS

LAGS

STRICTLY
CONTAINS

STRICTLY
OVERLAPS

STRICTLY
PRECEDES

2

Amazon Kinesis Analytics SQL Reference

PredicateCovered Relationships

STRICTLY
SUCCEEDS

STRICTLY
LEADS

STRICTLY
LAGS

IMMEDIATELY
LEADS

IMMEDIATELY
LAGS

To enable concise expressions, Amazon Kinesis Analytics also supports the following extensions:

• Optional PERIOD keyword – The PERIOD keyword can be omitted.

• Compact chaining – If two of these predicates occur back to back, separated by an AND, the AND
can be omitted provided that the right interval of the first predicate is identical to the left interval of
the second predicate.

• TSDIFF – This function takes two TIMESTAMP arguments and returns their difference in
milliseconds.

For example, you can write the following expression:

 PERIOD (s1,e1) PRECEDES PERIOD(s2,e2)
 AND PERIOD(s2, e2) PRECEDES PERIOD(s3,e3)

More concisely as follows:

(s1,e1) PRECEDES (s2,e2) PRECEDES PERIOD(s3,e3)

The following concise expression:

TSDIFF(s,e)

Means the following:

CAST((e - s) SECOND(10, 3) * 1000 AS BIGINT)

Finally, standard SQL allows the CONTAINS predicate to take a single TIMESTAMP as its right-hand
argument. For example, the following expression:

PERIOD(s, e) CONTAINS t

Is equivalent to the following:

s <= t AND t < e

3

Amazon Kinesis Analytics SQL Reference
Syntax

Syntax
Temporal predicates are integrated into a new BOOLEAN valued expression:

<period-expression> :=
 <left-period> <half-period-predicate> <right-period>

<half-period-predicate> :=
 <period-predicate> [<left-period> <half-period-predicate>]

<period-predicate> :=
 EQUALS
 | [STRICTLY] CONTAINS
 | [STRICTLY] OVERLAPS
 | [STRICTLY | IMMEDIATELY] PRECEDES
 | [STRICTLY | IMMEDIATELY] SUCCEEDS
 | [STRICTLY | IMMEDIATELY] LEADS
 | [STRICTLY | IMMEDIATELY] LAGS

<left-period> := <bounded-period>

<right-period> := <bounded-period> | <timestamp-expression>

<bounded-period> := [PERIOD] (<start-time>, <end-time>)

<start-time> := <timestamp-expression>

<end-time> := <timestamp-expression>

<timestamp-expression> :=
 an expression which evaluates to a TIMESTAMP value

where <right-period> may evaluate to a <timestamp-expression> only if
the immediately preceding <period-predicate> is [STRICTLY] CONTAINS

This Boolean expression is supported by the following builtin function:

BIGINT tsdiff(startTime TIMESTAMP, endTime TIMESTAMP)

Returns the value of (endTime - startTime) in milliseconds.

Example
The following example code records an alarm if a window is open while the air conditioning is on:

create or replace pump alarmPump stopped as
 insert into alarmStream(houseID, roomID, alarmTime, alarmMessage)
 select stream w.houseID, w.roomID, current_timestamp,
 'Window open while air conditioner is on.'
 from
 windowIsOpenEvents over (range interval '1' minute preceding) w
 join

4

Amazon Kinesis Analytics SQL Reference
Sample Use Case

 acIsOnEvents over (range interval '1' minute preceding) h
 on w.houseID = h.houseID
 where (h.startTime, h.endTime) overlaps (w.startTime, w.endTime);

Sample Use Case

The following query uses a temporal predicate to raise a fraud alarm when two people try to use the
same credit card simultaneously at two different locations:

create pump creditCardFraudPump stopped as
 insert into alarmStream
 select stream
 current_timestamp, creditCardNumber, registerID1, registerID2
 from transactionsPerCreditCard
 where registerID1 <> registerID2
 and (startTime1, endTime1) overlaps (startTime2, endTime2)
;

5

Amazon Kinesis Analytics SQL Reference
Data Types

Basic Building Blocks

The following topics discuss the basic building blocks in Amazon Kinesis Analytics that underlie its
syntax and operations:

Topics

• Data Types (p. 6)

• Numeric Types and Precision (p. 9)

• Identifiers (p. 10)

• Streaming SQL Operators (p. 11)

• Functions (p. 29)

• Expressions and Literals (p. 118)

• Monotonic Expressions and Operators (p. 120)

• Condition Clause (p. 122)

Data Types
The following table summarizes the data types supported by Amazon Kinesis Analytics.

Data Type Description Notes

BIGINT 64-bit signed integer

BINARY Binary (non character) data Substring works on BINARY.
Concatenation does not work on
BINARY.

BOOLEAN TRUE, FALSE, or NULL Evaluates to TRUE, FALSE, and
UNKNOWN.

CHAR (n) A character string of fixed
length n. Also specifiable as
CHARACTER

n must be greater than 0 and
less than 65535.

DATE A date is a calendar day (year/
month/day).

Precision is day. Range
runs from the largest value,
approximately +229 (in years) to
the smallest value, -229.

6

Amazon Kinesis Analytics SQL Reference
Data Types

Data Type Description Notes

DECIMAL

DEC

NUMERIC

A fixed point, with up to 19
significant digits.

Can be specified with DECIMAL,
DEC, or NUMERIC.

DOUBLE

DOUBLE PRECISION

A 64-bit floating point number 64-bit approx value; -1.79E+308
to 1.79E+308. Follows the ISO
DOUBLE PRECISION data
type, 53 bits are used for the
number's mantissa in scientific
notation, representing 15 digits
of precision and 8 bytes of
storage.

INTEGER

INT

32-bit signed integer. Range is
-2147483648 to 2147483647
[2**(31) to 2**(31)- 1]

INTERVAL <timeunit> [TO
<timeunit>]

Day-time intervals supported,
year-month intervals not
supported

Allowed in an expression in date
arithmetic, but cannot be used
as a datatype for a column in a
table or stream.

<timeUnit> The units of a INTERVAL value Supported units are YEAR,
MONTH, DAY, HOUR, MINUTE,
and SECOND

SMALLINT 16-bit signed integer Range is -32768 to 32767

[2**(15) to 2**(15)-1]

REAL A 32-bit floating point number Following the ISO REAL data
type, 24 bits are used for the
number's mantissa in scientific
notation, representing 7 digits of
precision and 4 bytes of storage.
The minimum value is -3.40E
+38; the maximum value is
3.40E+38.

TIME A TIME is a time in a day
(hour:minute:second).

Its precision is milliseconds;
its range is 00:00:00.000 to
23:59:59.999. Since the system
clock runs in UTC, the timezone
used for values stored in a TIME
or TIMESTAMP column is not
considered.

for values stored in a TIME or
TIMESTAMP column.

7

Amazon Kinesis Analytics SQL Reference
Data Types

Data Type Description Notes

TIMESTAMP A TIMESTAMP is a combined
DATE and TIME.

A TIMESTAMP value always
has a precision of 1 millisecond.
It has no particular timezone.
Since the system clock runs
in UTC, the timezone used
for values stored in a TIME or
TIMESTAMP column is not
considered. Its range runs from
the largest value, approximately
+229 (in years) to the smallest
value, -229. Each timestamp is
stored as a signed 64-bit integer,
with 0 representing the Unix
epoch (Jan 1, 1970 00:00am).
This means that the largest
TIMESTAMP value represents
approximately 300 million years
after 1970, and the smallest
value represents approximately
300 million years before 1970.
Following the SQL standard,
a TIMESTAMP value has an
undefined timezone.

TINYINT 8-bit signed integer Range is -128 to 127,

VARBINARY (n) Also specifiable as BINARY
VARYING

n must be greater than 0 and
less than 65535.

VARCHAR (n) Also specifiable as
CHARACTER VARYING

n must be greater than 0 and
less than 65535.

Notes

Regarding characters:

• Amazon Kinesis Analytics supports only Java single-byte CHARACTER SETs.

• Implicit type conversion is not supported. That is, characters are mutually assignable if and only if
they are taken from the same character repertoire and are values of the data types CHARACTER or
CHARACTER VARYING.

Regarding numbers:

• Numbers are mutually comparable and mutually assignable if they are values of the data types
NUMERIC, DECIMAL, INTEGER, BIGINT, SMALLINT, TINYINT, REAL, and DOUBLE PRECISION.

The following sets of data types are synonyms:

• DEC and DECIMAL

• DOUBLE PRECISION and DOUBLE

• CHARACTER and CHAR

• CHAR VARYING or CHARACTER VARYING and VARCHAR

• BINARY VARYING and VARBINARY

8

Amazon Kinesis Analytics SQL Reference
Numeric Types and Precision

• INT and INTEGER

• Binary values (data types BINARY and BINARY VARYING) are always mutually comparable and are
mutually assignable.

Regarding dates, times, and timestamps:

• Implicit type conversion is not supported (that is, datetime values are mutually assignable only if the
source and target of the assignment are both of type DATE, or both of type TIME, or both of type
TIMESTAMP).

• The Amazon Kinesis Analytics timezone is always UTC. The time functions, including the Amazon
Kinesis Analytics extension CURRENT_ROW_TIMESTAMP, return time in UTC.

Numeric Types and Precision
For DECIMAL we support a maximum of 18 digits for precision and scale.

Precision specifies the maximum number of decimal digits that can be stored in the column, both to the
right and to the left of the decimal point. You can specify precisions ranging from 1 digit to 18 digits or
use the default precision of 18 digits.

Scale specifies the maximum number of digits that can be stored to the right of the decimal point. Scale
must be less than or equal to the precision. You can specify a scale ranging from 0 digits to 18 digits,
or use the default scale of 0 digits.

Rule for Divide

Let p1, s1 be the precision and scale of the first operand, such as DECIMAL (10,1).

Let p2, s2 be the precision and scale of the second operand, such as DECIMAL (10,3).

Let p, s be the precision and scale of the result.

Let d be the number of whole digits in the result. Then, the result type is a decimal as shown following:

d = p1 - s1 + s2 D = 10 - 1 + 3

Number of whole digits in result = 6

s <= MAX (6, s1 + p2 +1) S <= MAX (6, 1 + 10 + 1)

Scale of result = 14

p = d + s Precision of result = 18

Precision and scale are capped at their maximum values (18, where scale cannot be larger than
precision).

Precedence is first giving at least the scale of the first argument (s >= s1) followed by enough whole
digits to represent the result without overflow

Rule for Multiply

Let p1, s1 be the precision and scale of the first operand DECIMAL (10,1).

Let p2, s2 be the precision and scale of the second operand DECIMAL (10,3).

9

Amazon Kinesis Analytics SQL Reference
Identifiers

Let p, s be the precision and scale of the result.

Then, the result type is a decimal as shown following:

p = p1 + p2 p = 10 + 10

Precision of result = 18

s = s1 + s2 s = 1 + 3

Scale of result = 4

Rule for Sum or Subtraction

Type-inference strategy whereby the result type of a call is the decimal sum of two exact numeric
operands where at least one of the operands is a decimal.

Let p1, s1 be the precision and scale of the first operand DECIMAL (10,1).

Let p2, s2 be the precision and scale of the second operand DECIMAL (10,3).

Let p, s be the precision and scale of the result, as shown following:

s = max(s1, s2) s = max (1,3)

Scale of result = 3

p = max(p1 - s1, p2 - s2) + s + 1 p = max(10-1,10-3) + 3 + 1

Precision of result = 11

s and p are capped at their maximum values

Identifiers
All identifiers may be up to 128 characters. Identifiers may be quoted (with case-sensitivity) by
enclosing them in double-quote marks ("), or unquoted (with implicit uppercasing before both storage
and lookup).

Unquoted identifiers must start with a letter or underscore, and be followed by letters, digits or
underscores; letters are all converted to upper case.

Quoted identifiers can contain other punctuation too (in fact, any Unicode character except control
characters: codes 0x0000 through 0x001F). You can include a double-quote in an identifier by
escaping it with another double-quote.

In the following example, a stream is created with an unquoted identifier, which is converted to upper
case before the stream definition is stored in the catalog. It can be referenced using its upper-case
name, or by an unquoted identifier which is implicitly converted to upper case.

–- Create a stream. Stream name specified without quotes,
–- which defaults to uppercase.
CREATE OR REPLACE STREAM ExampleStream (col1 VARCHAR(4));

– example 1: OK, stream name interpreted as uppercase.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO ExampleStream
 SELECT * FROM SOURCE_SQL_STRAM_001;

10

Amazon Kinesis Analytics SQL Reference
Streaming SQL Operators

– example 2: OK, stream name interpreted as uppercase.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO examplestream
 SELECT * FROM customerdata;

– example 3: Ok.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO EXAMPLESTREAM
 SELECT * FROM customerdata;

– example 2: Not found. Quoted names are case-sensitive.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "examplestream"
 SELECT * FROM customerdata;

When objects are created in Amazon Kinesis Analytics, their names are implicitly quoted, so it is easy
to create identifiers that contain lowercase characters, spaces, dashes, or other punctuation. If you
reference those objects in SQL statements, you will need to quote their names.

Reserved Words and Keywords

Certain identifiers, called keywords, have special meaning if they occur in a particular place in a
streaming SQL statement. A subset of these key words are called reserved words and may not be
used as the name of an object, unless they are quoted. For more information, see Reserved Words
and Keywords (p. 163).

Streaming SQL Operators
Subquery Operators

Operators are used in queries and subqueries to combine or test data for various properties, attributes,
or relationships.

The available operators are described in the topics that follow, grouped into the following categories:

• Scalar Operators (p. 12)

• Operator Types (p. 12)

• Precedence (p. 12)

• Arithmetic Operators (p. 12)

• String Operators (p. 13)

• (Concatenation)

• LIKE patterns

• SIMILAR TO patterns

• Date, Timestamp, and Interval Operators (p. 18)

• Logical Operators (p. 25)

• 3-state boolean logic

• Examples

IN Operator
As an operator in a condition test, IN tests a scalar or row value for membership in a list of values, a
relational expression, or a subquery.

11

Amazon Kinesis Analytics SQL Reference
EXISTS Operator

Examples:
1. --- IF column IN ('A','B','C')
2. --- IF (col1, col2) IN (
 select a, b from my_table
)

Returns TRUE if the value being tested is found in the list, in the result of evaluating the relational
expression, or in the rows returned by the subquery; returns FALSE otherwise.

Note
IN has a different meaning and use in CREATE FUNCTION (p. 125).

EXISTS Operator
Tests whether a relational expression returns any rows; returns TRUE if any row is returned, FALSE
otherwise.

Scalar Operators

Operator Types

The two general classes of scalar operators are:

• unary: A unary operator operates on only one operand. A unary operator typically appears with its
operand in this format:

operator operand

• binary: A binary operator operates on two operands. A binary operator appears with its operands in
this format:

operand1 operator operand2

A few operators that use a different format are noted specifically in the operand descriptions below.

If an operator is given a null operand, the result is almost always null (see the topic on logical operators
for exceptions).

Precedence

Streaming SQL follows the usual precedence of operators:

1. Evaluate bracketed sub-expressions.

2. Evaluate unary operators (e.g., + or -, logical NOT).

3. Evaluate multiplication and divide (* and /).

4. Evaluate addition and subtraction (+ and -) and logical combination (AND and OR).

If one of the operands is NULL, the result is also NULL If the operands are of different but comparable
types, the result will be of the type with the greatest precision. If the operands are of the same type,
the result will be of the same type as the operands. For instance 5/2 = 2, not 2.5, as 5 and 2 are both
integers.

Arithmetic Operators

12

Amazon Kinesis Analytics SQL Reference
String Operators

Operator Unary/Binary Description

+ U Identity

- U Negation

+ B Addition

- B Subtraction

* B Multiplication

/ B Division

Each of these operators works according to normal arithmetic behavior, with the following caveats:

1. If one of the operands is NULL, the result is also NULL

2. If the operands are of different but comparable types, the result will be of the type with the greatest
precision.

3. If the operands are of the same type, the result will be of the same type as the operands. For
instance 5/2 = 2, not 2.5, as 5 and 2 are both integers.

Examples

Operation Result

1 + 1 2

2.0 + 2.0 4.0

3.0 + 2 5.0

5 / 2 2

5.0 / 2 2.500000000000

5*2+2 12

String Operators
You can use string operators for streaming SQL, including concatenation and string pattern
comparison, to combine and compare strings.

Operator Unary/Binary Description Notes

|| B Concatenation Also applies to binary
types

LIKE B String pattern
comparison

<string> LIKE <like
pattern> [ESCAPE
<escape character>]

SIMILAR TO B String pattern
comparison

<string> SIMILAR TO
<similar to pattern>
[ESCAPE <escape
character>]

13

Amazon Kinesis Analytics SQL Reference
String Operators

Concatenation
This operator is used to concatenate one or more strings as shown in the following table.

Operation Result

'SQL'||'stream' Amazon Kinesis Analytics

'SQL'||''||'stream' Amazon Kinesis Analytics

'SQL'||'stream'||' Incorporated' Amazon Kinesis Analytics Incorporated

<col1>||<col2>||<col3>||<col4> <col1><col2><col3><col4>

LIKE patterns
LIKE compares a string to a string pattern. In the pattern, the characters _ (underscore) and %
(percent) have special meaning.

Character in pattern Effect

_ Matches any single character

% Matches any substring, including the empty string

<any other character> Matches only the exact same character

If either operand is NULL, the result of the LIKE operation is UNKNOWN.

To explicitly match a special character in the character string, you must specify an escape character
using the ESCAPE clause. The escape character must then precede the special character in the
pattern. The following table lists examples.

Operation Result

'a' LIKE 'a' TRUE

'a' LIKE 'A' FALSE

'a' LIKE 'b' FALSE

'ab' LIKE 'a_' TRUE

'ab' LIKE 'a%' TRUE

'ab' LIKE 'a_' ESCAPE '\' FALSE

'ab' LIKE 'a\%' ESCAPE '\' FALSE

'a_' LIKE 'a_' ESCAPE '\' TRUE

'a%' LIKE 'a\%' ESCAPE '\' TRUE

'a' LIKE 'a_' FALSE

'a' LIKE 'a%' TRUE

'abcd' LIKE 'a_' FALSE

'abcd' LIKE 'a%' TRUE

14

Amazon Kinesis Analytics SQL Reference
String Operators

Operation Result

'' LIKE '' TRUE

'1a' LIKE '_a' TRUE

'123aXYZ' LIKE '%a%' TRUE

'123aXYZ' LIKE '_%_a%_' TRUE

SIMILAR TO patterns
SIMILAR TO compares a string to a pattern. It is much like the LIKE operator, but more powerful, as
the patterns are regular expressions.

In the following SIMILAR TO table, seq means any sequence of characters explicitly specified, such as
'13aq'. Non-alphanumeric characters intended for matching must be preceded by an escape character
explicitly declared in the SIMILAR TO statement, such as '13aq\!' SIMILAR TO '13aq\!24br\!% ESCAPE
'\' (This statement is TRUE).

When a range is indicated, as when a dash is used in a pattern, the current collating sequence is
used. Typical ranges are 0-9 and a-z. PostgreSQL provides a typical discussion of pattern-matching,
including ranges.

When a line requires multiple comparisons, the innermost pattern that can be matched will be matched
first, then the "next-innermost," etc.

Expressions and matching operations that are enclosed within parentheses are evaluated before
surrounding operations are applied, again by innermost-first precedence.

Delimiter Character in pattern Effect Rule ID

parentheses () (seq) Groups the seq (used
for defining precedence
of pattern expressions)

1

brackets [] [seq] Matches any single
character in the seq

2

caret or circumflex [^seq] Matches any single
character not in the seq

3

 [seq ^ seq] Matches any single
character in seq and
not in seq

4

dash <character1>-
<character2>

Specifies a range of
characters between
character1 and
character2

(using some known
sequence like 1-9 or a-
z)

5

bar [seq seq] Matches either seq or
seq

6

asterisk seq* Matches zero or more
repetitions of seq

7

15

https://www.postgresql.org/docs/7.3/static/functions-matching.html

Amazon Kinesis Analytics SQL Reference
String Operators

Delimiter Character in pattern Effect Rule ID

plus seq+ Matches one or more
repetitions of seq

8

braces seq{<number>} Matches exactly
number repetitions of
seq

9

 seq{<low
number>,<high
number>}

Matches low number or
more repetitions of seq,
to a maximum of high
number

10

question-mark seq? Matches zero or one
instances of seq

11

underscore _ Matches any single
character

12

percent % Matches any substring,
including the empty
string

13

character <any other character> Matches only the exact
same character

14

 NULL NULL If either operand is
NULL, the result of the
SIMILAR TO operation
is UNKNOWN.

15

 Non-alphanumeric Special characters To explicitly match a
special character in the
character string,

that special character
must be preceded by
an escape character
defined using

an ESCAPE clause
specified at the end of
the pattern.

16

The following table lists examples.

Operation Result Rule

'a' SIMILAR TO 'a' TRUE 14

'a' SIMILAR TO 'A' FALSE 14

'a' SIMILAR TO 'b' FALSE 14

'ab' SIMILAR TO 'a_' TRUE 12

'ab' SIMILAR TO 'a%' TRUE 13

'a' SIMILAR TO 'a_' FALSE 12 & 14

16

Amazon Kinesis Analytics SQL Reference
String Operators

Operation Result Rule

'a' SIMILAR TO 'a%' TRUE 13

'abcd' SIMILAR TO 'a_' FALSE 12

'abcd' SIMILAR TO 'a%' TRUE 13

'' SIMILAR TO '' TRUE 14

'1a' SIMILAR TO '_a' TRUE 12

'123aXYZ' SIMILAR TO '' TRUE 14

'123aXYZ' SIMILAR TO '_%_a
%_'

TRUE 13 & 12

'xy' SIMILAR TO '(xy)' TRUE 1

'abd' SIMILAR TO '[ab][bcde]d' TRUE 2

'bdd' SIMILAR TO '[ab][bcde]d' TRUE 2

'abd' SIMILAR TO '[ab]d' FALSE 2

'cd' SIMILAR TO '[a-e]d' TRUE 2

'cd' SIMILAR TO '[a-e^c]d' FALSE 4

'cd' SIMILAR TO '[^(a-e)]d' INVALID

'yd' SIMILAR TO '[^(a-e)]d' INVALID

'amy' SIMILAR TO 'amyfred' TRUE 6

'fred' SIMILAR TO 'amyfred' TRUE 6

'mike' SIMILAR TO 'amyfred' FALSE 6

'acd' SIMILAR TO 'ab*c+d' TRUE 7 & 8

'accccd' SIMILAR TO 'ab*c+d' TRUE 7 & 8

'abd' SIMILAR TO 'ab*c+d' FALSE 7 & 8

'aabc' SIMILAR TO 'ab*c+d' FALSE

'abb' SIMILAR TO 'a(b{3})' FALSE 9

'abbb' SIMILAR TO 'a(b{3})' TRUE 9

'abbbbb' SIMILAR TO 'a(b{3})' FALSE 9

'abbbbb' SIMILAR TO 'ab{3,6}' TRUE 10

'abbbbbbbb' SIMILAR TO
'ab{3,6}'

FALSE 10

'' SIMILAR TO 'ab?' FALSE 11

'' SIMILAR TO '(ab)?' TRUE 11

'a' SIMILAR TO 'ab?' TRUE 11

17

Amazon Kinesis Analytics SQL Reference
Date, Timestamp, and Interval Operators

Operation Result Rule

'a' SIMILAR TO '(ab)?' FALSE 11

'a' SIMILAR TO 'a(b?)' TRUE 11

'ab' SIMILAR TO 'ab?' TRUE 11

'ab' SIMILAR TO 'a(b?)' TRUE 11

'abb' SIMILAR TO 'ab?' FALSE 11

'ab' SIMILAR TO 'a_' ESCAPE
'\'

FALSE 16

'ab' SIMILAR TO 'a\%'
ESCAPE '\'

FALSE 16

'a_' SIMILAR TO 'a_' ESCAPE
'\'

TRUE 16

'a%' SIMILAR TO 'a\%'
ESCAPE '\'

TRUE 16

'a(b{3})' SIMILAR TO 'a(b{3})' FALSE 16

'a(b{3})' SIMILAR TO 'a\(b\{3\}\)'
ESCAPE '\'

TRUE 16

Date, Timestamp, and Interval Operators
The arithmetic operators +, -, *, and / are binary operators.

Operator Description Notes

+ Addition interval + interval = interval

interval + datetime = datetime

datetime + interval = datetime

- Subtraction interval - interval = interval

datetime - interval = datetime

(<datetime> - <datetime>)
Date, Timestamp, and Interval
Operators (p. 18) <interval
qualifier> = interval

* Multiplication interval * numeric = interval

numeric * interval = interval

/ Division interval / numeric = interval

Examples

18

Amazon Kinesis Analytics SQL Reference
Date, Timestamp, and Interval Operators

Example Operation Result

1 INTERVAL '1' DAY +
INTERVAL '3' DAY

INTERVAL '4' DAY

2 INTERVAL '1' DAY +
INTERVAL '3 4' DAY TO
HOUR

INTERVAL '+4 04' DAY TO
HOUR

3 INTERVAL '1' DAY -
INTERVAL '3 4' DAY TO
HOUR

INTERVAL '-2 04' DAY TO
HOUR

4 INTERVAL '1' YEAR +
INTERVAL '3-4' YEAR TO
MONTH

INTERVAL '+4-04' YEAR TO
MONTH

5 2 * INTERVAL '3 4' DAY TO
HOUR

INTERVAL '6 8' DAY TO HOUR

6 INTERVAL '3 4' DAY TO
HOUR / 2

INTERVAL ' 1 14' DAY TO
HOUR

In the example 3, '3 4 DAY means 3 days and 4 hours, so the result in that row means 24 hours minus
76 hours, resulting in minus 52 hours, which is a negative 2 days and 4 hours.

Example 4 uses TO MONTH rather than TO HOUR, so the INTERVAL specified as '3-4' means 3
years and 4 months, or 40 months.

In example 6, the "/2" applies to the INTERVAL '3 4', which is 76 hours, half of which is 38, or 1 day
and 14 hours.

Further Examples of Interval Operations

Streaming SQL also supports subtracting two datetimes, giving an interval. You specify what kind of
interval you want for the result, as shown following:

(<datetime> - <datetime>) <interval qualifier>

The following examples show operations that can be useful in Amazon Kinesis Analytics applications.

19

Amazon Kinesis Analytics SQL Reference
Date, Timestamp, and Interval Operators

Example 1 – Time Difference (as minutes to the nearest second or as seconds)

 values cast ((time '12:03:34' - time '11:57:23') minute to second as
 varchar(8));
+---------+
 EXPR$0
+---------+
 +6:11
+---------+
1 row selected
............... 6 minutes, 11 seconds
or
 values cast ((time '12:03:34' - time '11:57:23') second as varchar(8));
+---------+
 EXPR$0
+---------+
 +371
+---------+
1 row selected

Example 2 – Time Difference (as minutes only)

values cast ((time '12:03:34' - time '11:57:23') minute as varchar(8));
+---------+
 EXPR$0
+---------+
 +6
+---------+
1 row selected
............... 6 minutes; seconds ignored.
values cast ((time '12:03:23' - time '11:57:23') minute as varchar(8));
+---------+
 EXPR$0
+---------+
 +6
+---------+
1 row selected
............... 6 minutes

Example 3 – Time-to-Timestamp Difference (as days to the nearest second) Invalid

values cast ((time '12:03:34'-timestamp '2004-04-29 11:57:23') day to second
 as varchar(8));
Error: From line 1, column 14 to line 1, column 79: Parameters must be of the
 same type

20

Amazon Kinesis Analytics SQL Reference
Date, Timestamp, and Interval Operators

Example 4 – Timestamp difference (as days to the nearest second)

values cast ((timestamp '2004-05-01 12:03:34' - timestamp '2004-04-29
 11:57:23') day to
 second as varchar(8));
+-----------+
 EXPR$0
+-----------+
 +2 00:06
+-----------+
1 row selected
............... 2 days, 6 minutes
............... Although "second" was specified above, the varchar(8) happens
 to allow
only room enough to show only the minutes, not the seconds.
The example below expands to varchar(11), showing the full result:
values cast ((timestamp '2004-05-01 12:03:34' - timestamp '2004-04-29
 11:57:23') day to
 second as varchar(11));
+--------------+
 EXPR$0
+--------------+
 +2 00:06:11
+--------------+
1 row selected
............... 2 days, 6 minutes, 11 seconds

Example 5 – Timestamp Difference (as days to the nearest second)

values cast ((timestamp '2004-05-01 1:03:34' - timestamp '2004-04-29
 11:57:23') day to
 second as varchar(11));
+--------------+
 EXPR$0
+--------------+
 +1 13:06:11
+--------------+
1 row selected
............... 1 day, 13 hours, 6 minutes, 11 seconds
values cast ((timestamp '2004-05-01 13:03:34' - timestamp '2004-04-29
 11:57:23') day to
 second as varchar(11));
+--------------+
 EXPR$0
+--------------+
 +2 01:06:11
+--------------+
1 row selected
............... 2 days, 1 hour, 6 minutes, 11 seconds

21

Amazon Kinesis Analytics SQL Reference
Date, Timestamp, and Interval Operators

Example 6 – Timestamp Difference (as days)

values cast ((timestamp '2004-05-01 12:03:34' - timestamp '2004-04-29
 11:57:23') day
 as varchar(8));
+---------+
 EXPR$0
+---------+
 +2
+---------+
1 row selected
............... 2 days

Example 7 – Time Difference (as days)

values cast ((date '2004-12-02 ' - date '2003-12-01 ') day as varchar(8));
Error: Illegal DATE literal '2004-12-02 ': not in format 'yyyy-MM-dd'
.............. Both date literals end with a space; disallowed.
values cast ((date '2004-12-02' - date '2003-12-01 ') day as varchar(8));
Error: Illegal DATE literal '2003-12-01 ': not in format 'yyyy-MM-dd'
.............. Second date literal still ends with a space; disallowed.
values cast ((date '2004-12-02' - date '2003-12-01') day as varchar(8));
+---------+
 EXPR$0
+---------+
 +367
+---------+
1 row selected
............... 367 days

Example 8 – Not Supported (Simple Difference of Dates)

If you don't specify "day" as the intended unit, as shown following, the subtraction is not supported.

 values cast ((date '2004-12-02' - date '2003-12-01') as varchar(8));
 Error: From line 1, column 15 to line 1, column 51:
 Cannot apply '-' to arguments of type '<DATE> - <DATE>'.
 Supported form(s): '<NUMERIC> - <NUMERIC>'
 '<DATETIME_INTERVAL> - <DATETIME_INTERVAL>'
 '<DATETIME> - <DATETIME_INTERVAL>'

Why Use "as varchar" in Conversion Examples?

The reason for using the "values cast (<expression> AS varchar(N))" syntax in the examples above
is that while the SQLline client used above (with Amazon Kinesis Analytics running) does return an
interval, JDBC does not support returning that result so as to display it. Therefore, that "values" syntax
is used to see/show it.

If you close the Amazon Kinesis Analytics (with a !kill command) or if you don't start it before running
SQLline, then you can run the sqllineEngine (rather than the sqllineClient) from the bin subdirectory
of your Amazon Kinesis Analytics home, which can show your results without the Amazon Kinesis
Analytics application or JDBC:

22

Amazon Kinesis Analytics SQL Reference
Date, Timestamp, and Interval Operators

Rules for Specifying Intervals
A Day-Time Interval Literal is a string that denotes a single interval value: for example '10' SECONDS.
Note it has two parts: the value (which must always be in single-quotes) and the qualifier (here,
SECONDS), which give the units for the value.

The qualifier takes the following form:

DAY HOUR MINUTE SECOND [TO HOUR MINUTE SECOND]

Note
YEAR TO MONTH intervals require a dash separating the values, whereas DAY TO HOUR
intervals use a space to separate the values, as seen in the 2nd, 3rd, 5th, and 6th examples in
that topic.

In addition, the leading term has to be of greater significance than the optional trailing term, so this
means you can only specify:

 DAY
 HOUR
 MINUTE
 SECOND
 DAY TO HOUR
 DAY TO MINUTE
 DAY TO SECOND
 HOUR TO MINUTE
 HOUR TO SECOND
 MINUTE TO SECOND

The easiest way to understand these may be to translate X TO Y as "Xs to the nearest Y". Hence, DAY
TO HOUR is "days to the nearest hour".

When DAY, HOUR, or MINUTE is the leading term, you can specify a precision, e.g., DAY(3) TO
HOUR, indicating the number of digits the associated field in the value can have. The maximum
precision is 10, and the default is 2. You can't specify precision for HOUR, OR MINUTE in the trailing
term - they are always of precision 2. So for example, HOUR(3) TO MINUTE is legal, HOUR TO
MINUTE(3) is not.

SECOND can also take a precision, but the way it is specified differs depending on whether it is the
leading or trailing field.

• If SECOND is the leading field, you can specify the digits before and after the decimal point.
For example, SECOND(3,3) would allow you to specify up to 999.999 seconds. The default is
(2,3), which is actually a deviation from the SQL:2008 spec (it should be (2,6), but we only have
millisecond precision).

• If SECOND is the trailing field, you can only specify precision for the fractional seconds, that is,
the part shown after the seconds' decimal point below. For example, SECOND(3) would indicate
milliseconds. The default is 3 digits after the decimal point, but as above this is a deviation from the
standard of 6.

As for the value, it takes the general form of:

 [+-]'[+-]DD HH:MM:SS.SSS'

Where DD are digits indicating days, HH hours, MM minutes, and SS.SSS is seconds (adjust the
number of digits appropriately if precision is explicitly specified).

23

Amazon Kinesis Analytics SQL Reference
Date, Timestamp, and Interval Operators

Not all values have to include all fields—you can trim from both front or back, but not from in the
middle. So you could make it 'DD HH' or 'MM:SS.SSS', but not 'DD MM'.

However you write it, though, the value must match the qualifier, as shown following:

INTERVAL '25 3' DAY to HOUR ------> legal
INTERVAL '3:45:04.0' DAY TO HOUR --> illegal

As stated in the SQL spec, if the precision is not explicitly specified, it is implied to be 2. Thus:

• INTERVAL '120' MINUTE is an illegal interval. The legal form for the desired interval is INTERVAL
'120' MINUTE(2)

and

• INTERVAL '120' SECOND is not legal. The legal form for the desired interval is INTERVAL '120'
SECOND(3).

 values INTERVAL '120' MINUTE(2);
 Error: From line 1, column 8 to line 1, column 31:
 Interval field value 120 exceeds precision of
 MINUTE(2) field
 values INTERVAL '120' MINUTE(3);
 Conversion not supported

Also, if HOUR, MINUTE, or SECOND are not the leading field, they must fall in the following ranges
(taken from Table 6 in topic 4.6.3 of the SQL:2008 foundation spec), as shown following:

 HOUR: 0-23
 MINUTE: 0-59
 SECOND: 0-59.999

Year-month intervals are similar, except that the qualifiers are as shown following:

 YEAR
 MONTH
 YEAR TO MONTH

Precision can be specified just as with DAY and HOUR, and the max of 10 and default of 2 is the
same.

The value format for year-month is: 'YY-MM'. If MONTH is the trailing field, it must fall in the range
0-11.

<interval qualifier> := <start field> TO <end field> <single datetime field>

<start field> := <non-second primary datetime field> [<left paren> <interval
 leading field precision> <right paren>]

<end field> := <non-second primary datetime field> SECOND [<left paren>
 <interval fractional seconds precision> <right paren>]

<single datetime field> := <non-second primary datetime field> [<left paren>
 <interval leading field precision> <right paren>]

24

Amazon Kinesis Analytics SQL Reference
Logical Operators

 SECOND [<left paren> <interval leading field precision>
 [<comma> <interval fractional seconds precision>] <right
 paren>]
<primary datetime field> := <non-second primary datetime field> SECOND
<non-second primary datetime field> := YEAR MONTH DAY HOUR MINUTE
<interval fractional seconds precision> := <unsigned integer>
<interval leading field precision> := <unsigned integer>

Logical Operators
Logical operators let you establish conditions and test their results.

Operator Unary/Binary Description Operands

NOT U Logical negation Boolean

AND B Conjunction Boolean

OR B Disjunction Boolean

IS B Logical assertion Boolean

IS NOT UNKNOWN U Negated unknown
comparison:

<expr> IS NOT
UNKNOWN

Boolean

IS NULL U Null comparison:

<expr> IS NULL

Any

IS NOT NULL U Negated null
comparison:

<expr> IS NOT NULL

Any

= B Equality Any

!= B Inequality Any

<> B Inequality Any

> B Greater than Ordered types
(Numeric, String, Date,
Time)

>= B Greater than or equal
to (not less than)

Ordered types

< B Less than Ordered types

<= B Less than or equal to
(not more than)

Ordered types

BETWEEN Ternary Range comparison:

col1 BETWEEN expr1
AND expr2

Ordered types

IS DISTINCT FROM B Distinction Any

25

Amazon Kinesis Analytics SQL Reference
Logical Operators

Operator Unary/Binary Description Operands

IS NOT DISTINCT
FROM

B Negated distinction Any

Three State Boolean Logic

SQL boolean values have three possible states rather than the usual two: TRUE, FALSE, and
UNKNOWN, the last of which is equivalent to a boolean NULL. TRUE and FALSE operands generally
function according to normal two-state boolean logic, but additional rules apply when pairing them with
UNKNOWN operands, as the tables that follow will show.

Note
UNKOWN represents "maybe TRUE, maybe FALSE" or, to put it another way, "not definitely
TRUE and not definitely FALSE." This understanding may help you clarify why some of the
expressions in the tables evaluate as they do.

Negation (NOT)

Operation Result

NOT TRUE FALSE

NOT FALSE TRUE

NOT UNKNOWN UNKNOWN

Conjunction (AND)

Operation Result

TRUE AND TRUE TRUE

TRUE AND FALSE FALSE

TRUE AND UNKNOWN UNKNOWN

FALSE AND TRUE FALSE

FALSE AND FALSE FALSE

FALSE AND UNKNOWN FALSE

UNKNOWN AND TRUE UNKNOWN

UNKNOWN AND FALSE FALSE

UNKNOWN AND UNKNOWN UNKNOWN

Disjunction (OR)

Operation Result

TRUE OR TRUE TRUE

TRUE OR FALSE TRUE

TRUE OR UNKNOWN TRUE

26

Amazon Kinesis Analytics SQL Reference
Logical Operators

Operation Result

FALSE OR TRUE TRUE

FALSE OR FALSE FALSE

FALSE OR UNKNOWN UNKNOWN

UNKNOWN OR TRUE TRUE

UNKNOWN OR FALSE UNKNOWN

UNKNOWN OR UNKNOWN UNKNOWN

Assertion (IS)

Operation Result

TRUE IS TRUE TRUE

TRUE IS FALSE FALSE

TRUE IS UNKNOWN FALSE

FALSE IS TRUE FALSE

FALSE IS FALSE TRUE

FALSE IS UNKNOWN FALSE

UNKNOWN IS TRUE FALSE

UNKNOWN IS FALSE FALSE

UNKNOWN IS UNKNOWN TRUE

IS NOT UNKNOWN

Operation Result

TRUE IS NOT UNKNOWN TRUE

FALSE IS NOT UNKNOWN TRUE

UNKNOWN IS NOT UNKNOWN FALSE

IS NOT UNKNOWN is a special operator in and of itself. The expression "x IS NOT UNKNOWN" is
equivalent to "(x IS TRUE) OR (x IS FALSE)", not "x IS (NOT UNKNOWN)". Thus, substituting in the
table above:

x Operation Result Result of
substituting
for x in "(x IS
TRUE) OR (x IS
FALSE)"

TRUE TRUE IS NOT
UNKNOWN

TRUE becomes "(TRUE IS TRUE)
OR (TRUE IS

27

Amazon Kinesis Analytics SQL Reference
Logical Operators

x Operation Result Result of
substituting
for x in "(x IS
TRUE) OR (x IS
FALSE)"

FALSE)" -- hence
TRUE

FALSE FALSE IS NOT
UNKNOWN

TRUE becomes "(FALSE IS
TRUE) OR
(FALSE IS
FALSE)" -- hence
TRUE

UNKNOWN UNKNOWN IS
NOT UNKNOWN

FALSE becomes "(UNKNOWN
IS TRUE) OR
(UNKNOWN IS
FALSE)" -- hence
FALSE,

since UNKNOWN
is neither TRUE
not FALSE

Since IS NOT UNKNOWN is a special operator, the operations above are not transitive around the
word IS:

Operation Result

NOT UNKNOWN IS TRUE FALSE

NOT UNKNOWN IS FALSE FALSE

NOT UNKNOWN IS UNKNOWN TRUE

IS NULL and IS NOT NULL

Operation Result

UNKNOWN IS NULL TRUE

UNKNOWN IS NOT NULL FALSE

NULL IS NULL TRUE

NULL IS NOT NULL FALSE

IS DISTINCT FROM and IS NOT DISTINCT FROM

Operation Result

UNKNOWN IS DISTINCT FROM TRUE TRUE

UNKNOWN IS DISTINCT FROM FALSE TRUE

UNKNOWN IS DISTINCT FROM UNKNOWN FALSE

28

Amazon Kinesis Analytics SQL Reference
Functions

Operation Result

UNKNOWN IS NOT DISTINCT FROM TRUE FALSE

UNKNOWN IS NOT DISTINCT FROM FALSE FALSE

UNKNOWN IS NOT DISTINCT FROM
UNKNOWN

TRUE

Informally, "x IS DISTINCT FROM y" is similar to "x <> y", except that it is true even when either x or
y (but not both) is NULL. DISTINCT FROM is the opposite of identical, whose usual meaning is that a
value (true, false, or unknown) is identical to itself, and distinct from every other value. The IS and IS
NOT operators treat UNKOWN in a special way, because it represents "maybe TRUE, maybe FALSE".

Other Logical Operators
For all other operators, passing a NULL or UNKNOWN operand will cause the result to be UNKNOWN
(which is the same as NULL).

Examples

Operation Result

TRUE AND CAST(NULL AS BOOLEAN) UNKNOWN

FALSE AND CAST(NULL AS BOOLEAN) FALSE

1 > 2 FALSE

1 < 2 TRUE

'foo' = 'bar' FALSE

'foo' <> 'bar' TRUE

'foo' <= 'bar' FALSE

'foo' <= 'bar' TRUE

3 BETWEEN 1 AND 5 TRUE

1 BETWEEN 3 AND 5 FALSE

3 BETWEEN 3 AND 5 TRUE

5 BETWEEN 3 AND 5 TRUE

1 IS DISTINCT FROM 1.0 FALSE

CAST(NULL AS INTEGER) IS NOT DISTINCT
FROM CAST (NULL AS INTEGER)

TRUE

Functions
The topics in this section describe functions supported by streaming SQL.

Topics

• Standard Functions (p. 30)

29

Amazon Kinesis Analytics SQL Reference
Standard Functions

• Aggregate Functions (p. 55)

• Analytic Functions (p. 66)

• Functions that Implement Unsupervised Machine Learning Algorithms (p. 67)

• Windowed Aggregation on Streams (p. 72)

• Scalar Functions (p. 79)

• Pattern Matching Functions (p. 112)

Standard Functions
The tables in this section describe the standard functions for Amazon Kinesis Analytics streaming SQL.

Topics

• Datetime Conversion Functions (p. 30)

• ANY (p. 40)

• EVERY (p. 40)

• EXP_AVG (p. 41)

• FIRST_VALUE (p. 41)

• FIXED_COLUMN_LOG_PARSE (p. 41)

• Group Rank (p. 42)

• LAST_VALUE (p. 44)

• Monotonic Function (p. 44)

• NTH_VALUE (p. 45)

• SYS_LOG_PARSE (p. 45)

• VARIABLE_COLUMN_LOG_PARSE (p. 46)

• W3C_LOG_PARSE (p. 47)

Datetime Conversion Functions
You specify date and time formats using patterned letters. Date and time pattern strings use unquoted
letters from 'A' to 'Z' and from 'a' to 'z', with each letter representing a formatting element.

For more information, see Class SimpleDateFormat on the Oracle website.

Note
If you include other characters, they will be incorporated into the output string during
formatting or compared to the input string during parsing.

The pattern letters in the following table are defined (all other characters from 'A' to 'Z' and from 'a' to 'z'
are reserved).

Letter Date or Time
Component

Presentation Examples

y Year Year yyyy; yy 2018;18

Y Week year Year YYYY; YY 2009; 09

M Month in year Month MMM;MM;MM
July; Jul; 07

w Week in year Number ww; 27

W Week in month Number W 2

30

http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

Amazon Kinesis Analytics SQL Reference
Standard Functions

Letter Date or Time
Component

Presentation Examples

D Day in year Number DDD 321

d Day in month Number dd 10

F Day of week in month Number F 2

E Day name in week Text Tuesday; Tue

u Day number of week
(1 = Monday, ..., 7 =
Sunday)

Number 1

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone Pacific Standard
Time; PST; GMT-08:00

Z Time zone RFC 822 time zone -0800

X Time zone ISO 8601 time zone -08; -0800; -08:00

You determine the exact presentation by repeating pattern letters, along the lines of YYYY.

Text

If the number of repeated pattern letters is 4 or more, the full form is used; otherwise a short or
abbreviated form is used if available. For parsing, both forms are accepted, independent of the number
of pattern letters.

Number

For formatting, the number of pattern letters is the minimum number of digits, and shorter numbers are
zero-padded to this amount. For parsing, the number of pattern letters is ignored unless it's needed to
separate two adjacent fields.

Year

If the formatter's Calendar is the Gregorian calendar, the following rules are applied.

• For formatting, if the number of pattern letters is 2, the year is truncated to 2 digits; otherwise it is
interpreted as a number.

• For parsing, if the number of pattern letters is more than 2, the year is interpreted literally, regardless
of the number of digits. So using the pattern "MM/dd/yyyy", "01/11/12" parses to Jan 11, 12 A.D.

31

Amazon Kinesis Analytics SQL Reference
Standard Functions

For parsing with the abbreviated year pattern ("y" or "yy"), SimpleDateFormat must interpret the
abbreviated year relative to some century. It does this by adjusting dates to be within 80 years before
and 20 years after the time the SimpleDateFormat instance is created. For example, using a pattern
of "MM/dd/yy" and a SimpleDateFormat instance created on Jan 1, 2018, the string "01/11/12" would
be interpreted as Jan 11, 2012 while the string "05/04/64" would be interpreted as May 4, 1964. During
parsing, only strings consisting of exactly two digits, as defined by Character.isDigit(char), will be
parsed into the default century. Any other numeric string, such as a one digit string, a three or more
digit string, or a two digit string that isn't all digits (for example, "-1"), is interpreted literally. So "01/02/3"
or "01/02/003" are parsed, using the same pattern, as Jan 2, 3 AD. Likewise, "01/02/-3" is parsed as
Jan 2, 4 BC.

Otherwise, calendar system specific forms are applied. For both formatting and parsing, if the number
of pattern letters is 4 or more, a calendar specific long form is used. Otherwise, a calendar specific
short or abbreviated form is used.

Char To Timestamp(Sys)

The Char to Timestamp function is one of the most frequently-used system functions, because it
lets you create a timestamp out of any correctly formatted input string. Using this function, you can
specify which parts of the timestamp string you wish to use in subsequent processing, and create a
TIMESTAMP value containing only those. To do so, you specify a template that identifies the parts of
the timestamp you want. For example, to use only year and month, you would specify 'yyyy-MM'.

The input date-time string can contain any parts of a full timestamp ('yyyy-MM-dd hh:mm:ss'). If all
these elements are present in your input string, and 'yyyy-MM-dd hh:mm:ss' is the template you supply,
then the input-string elements are interpreted in that order as year, month, day, hour, minute, and
seconds, such as in '2009-09-16 03:15:24'. The yyyy cannot be uppercase; the hh can be uppercase to
mean using a 24-hour clock.

For the full range of valid specifiers, see Class SimpleDateFormat on the Oracle website.

CHAR_TO_TIMESTAMP uses the template you specify as a parameter in the function call. The
template causes the TIMESTAMP result to use only the parts of the input-date-time value that
you specified in the template. Those fields in the resulting TIMESTAMP contain the corresponding
data taken from your input-date-time string. Fields not specified in your template will use default
values (see below). The format of the template used by CHAR_TO_TIMESTAMP is defined by
the Class SimpleDateFormat on the Oracle website. For more information, see Date and Time
Patterns (p. 107).

The function-call syntax is as follows:

CHAR_TO_TIMESTAMP('<format_string>','<input_date_time_string>')

Where <format_ string> is the template you specify for the parts of <date_time_string> you want, and
<input_date_time_string> is the original string that is being converted to a TIMESTAMP result.

Note that each string must be enclosed in single quotes and each element of the
<input_date_time_string> must be in the range for its corresponding element in the template, otherwise
no result is returned.

For example, the input-string-element whose position corresponds with MM must be an integer from
1 to 12, because anything else does not represent a valid month. Similarly, the input-string-element
whose position corresponds with dd must be an integer from 1 to 31, because anything else does not
represent a valid day. (However, if MM is 2, dd cannot be 30 or 31, because February never has such
days.)

For hours, minutes, or seconds, the default starting value is zero, so when those specifiers are omitted
from the template, zeroes are substituted. For months or days, the default starting value substituted for
the omitted parts is 01.

32

http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

Amazon Kinesis Analytics SQL Reference
Standard Functions

For example, using '2009-09-16 03:15:24' as your input string, you can obtain a TIMESTAMP
containing only the date, with zeros for the other fields such as hours, minutes, or seconds.

 CHAR_TO_TIMESTAMP('yyyy-MM-dd','2009-09-16 03:15:24').

The result would is TIMESTAMP 2009-09-16 00:00:00.

If the call had kept hours and minutes in the template while omitting months, days, and seconds, as
illustrated in the following call.

--- --- CHAR_TO_TIMESTAMP('yyyy-hh-mm','2009-09-16 03:15:24')

Then, the resulting TIMESTAMP would be 2009-01-01 03:15:00.

Template Strings to Create Specific Output Timestamps (p. 35) shows further illustrative examples
of templates and input strings used to create the indicated output TIMESTAMPs.

Note
Input string MUST use the form 'yyyy-MM-dd hh:mm:ss' or a subset or reordering thereof. As
a result, using an input string like 'Wednesday, 16 September 2009 03:15:24' will NOT work,
meaning that no output will result.

About Delimiters and Values

Delimiters in the template must match those in the input string and values in the input string must be
acceptable for the template specifiers to which they correspond.

As a general convention, a colon is used to separate hours from minutes, and minutes from seconds.
Similarly, the general convention is to use a dash or slash to separate years from months and months
from days.

For example, the following template has values that line up correctly with the input string.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh:mm:ss','09/16/11 03:15:24'));
'EXPR$0'
'2011-09-16 03:15:24'
1 row selected

If values in the input string are not acceptable for the template specifiers to which they correspond, the
result fails, as in the following example.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh:mm:ss','2009/09/16 03:15:24'));
'EXPR$0'
No rows selected

This example returns no rows because 2009 is not an acceptable value for months, which is the first
specifier (MM) in the template.

Omissions in the supplied string can cause the template value 'yyyy' to produce logical but unintended
or unexpected results. The following examples each return an erroneous year, but one that derives
directly from the first element in the supplied string.

 VALUES(CHAR_TO_TIMESTAMP('yyyy','09-16 03:15'));
'EXPR$0'
'0009-01-01 00:00:00'
1 row selected
VALUES(CHAR_TO_TIMESTAMP('yyyy','16 03:15'));
'EXPR$0'
'0016-01-01 00:00:00'

33

Amazon Kinesis Analytics SQL Reference
Standard Functions

1 row selected

Examples Using Templates to Create TIMESTAMPS

The order of the template must match the input string. That means that you cannot specify "hh" after
"yyyy" and expect the method to find the hour automatically. For example, the following template
specifies years first, then hours, then minutes, and returns an erroneous result.

 values (CHAR_TO_TIMESTAMP('yyyy-hh-mm','2009-09-16 03:15:24'));
'EXPR$0'
'2009-01-01 09:16:00'
1 row selected

Since the specifiers for months and days are not present in the template, their values in the input string
were ignored, with 01 substituted for both values in the output TIMESTAMP. The template specified
hours and minutes as the second and third input values, so 09 became the hours and 16 became the
minutes. No specifier was present for seconds, so 00 was used.

The years specifier can be alone or after a delimiter matching the input string shows the end of the
years specifier, with one of the hours:minutes:seconds specifiers.

values (CHAR_TO_TIMESTAMP('yyyy','2009-09-16 03:15:24'));
'EXPR$0'
'2009-01-01 00:00:00'
1 row selected

In contrast, the template below fails because it has a space-as-delimiter before the "hh" rather than the
dash delimiter used in the input string's date specification.

 values (CHAR_TO_TIMESTAMP('yyyy hh','2009-09-16 03:15:24'));
 'EXPR$0'
 No rows selected

The four templates below work because they use the same delimiter to separate the years specifier
from the next specifier as is used in the input string's date specification (dash in the first case, space in
the second, slash in the third, and dash in the fourth).

values (CHAR_TO_TIMESTAMP('yyyy-hh','2009-09-16 03:15:24'));
'EXPR$0'
'2009-01-01 09:00:00'
1 row selected
values (CHAR_TO_TIMESTAMP('yyyy hh','2009 09 16 03:15:24'));
'EXPR$0'
'2009-01-01 09:00:00'
1 row selected
values (CHAR_TO_TIMESTAMP('yyyy/hh','2009/09/16 03:15:24'));
'EXPR$0'
'2009-01-01 09:00:00'
1 row selected
values (CHAR_TO_TIMESTAMP('yyyy-mm','2009-09-16 03:15:24'));
'EXPR$0'
'2009-01-01 00:09:00'
1 row selected

However, if the template specifies months (MM), it cannot then specify hours, minutes, or seconds
unless days are also specified.

34

Amazon Kinesis Analytics SQL Reference
Standard Functions

Template Strings to Create Specific Output Timestamps

Template Input String Output TIMESTAMP Notes

'yyyy-MM-dd
hh:mm:ss'

'2009-09-16
03:15:24'

'2009-09-16
03:15:24'

'yyyy-mm' '2011-02-08
07:23:19'

'2011-01-01
00:02:00'

The template above
specifies only year first
and minutes second,
so the second element
in the input string ("02")
is used as minutes.
Default values are
used for Month and
Day ("01") and for
hours and seconds
("00").

'MMM dd, yyyy' 'March 7, 2010' '2010-03-07
00:00:00'

MMM in the template
above matches
"March"; the template's
'comma space'
matches the input
string.

If the template lacks
the comma, so must
the input string, or
there is no output;

If the input string lacks
the comma, so must
the template.

'MMM dd,' 'March 7, 2010' '1970-03-07
00:00:00'

Note that the template
above doesn't use
a year specifier,
causing the output
TIMESTAMP to use
the earliest year in this
epoch, 1970.

'MMM dd,y' 'March 7, 2010' '2010-03-07
00:00:00'

Using the template
above, if the input
string were 'March
7, 10', the output
TIMESTAMP would be
'0010-03-07 00:00:00'.

'M-d' '2-8' '1970-02-08
00:00:00'

Absent a yyyy specifier
in the template, as
above, the earliest year
in this epoch (1970) is
used.

An input string of '2–
8#2011' would give
the same result; using

35

Amazon Kinesis Analytics SQL Reference
Standard Functions

Template Input String Output TIMESTAMP Notes

'2011–2#8' would give
no result because 2011
is not a valid month.

'MM-dd-yyyy' '06-23-2011
10:11:12'

'2011-06-23
00:00:00'

Dashes as delimiters
(as above) are fine, if
template and input both
use them in the same
positions. Since the
template omits hours,
minutes, and seconds,
zeroes are used in the
output TIMESTAMP.

'dd-MM-yy
hh:mm:ss'

'23-06-11
10:11:12'

'2011-06-23
10:11:12'

You can have the
specifiers in any
order as long as that
order matches the
meaning of the input
string you supply.
The template and
input string of the next
example below have
the same meaning
(and the same output
TIMESTAMP) as this
example, but they
specify months before
days and seconds
before hours.

'MM-dd-yy
ss:hh:mm'

'06-23-11
12:10:11'

'2011-06-23
10:11:12'

In the template used
above, the order of
the month and day
specifiers is reversed
from the example
just above, and the
specifier for seconds
is before hours instead
of after minutes; but
because the input
string also puts months
before days and
seconds before hours,
the meaning (and the
output TIMESTAMP)
is the same as the
example ABOVE.

36

Amazon Kinesis Analytics SQL Reference
Standard Functions

Template Input String Output TIMESTAMP Notes

'yy-dd-MM
ss:hh:mm'

'06-23-11
12:10:11'

'2006-11-23
10:11:12'

The template used
above reverses
(compared to the prior
example above) the
years and months
specifiers, while the
input string remains the
same. In this case, the
output TIMESTAMP
uses the first element
of the input string as
the years, the second
as the days, and the
third as the months.

'dd-MM-yy hh:mm' '23-06-11
10:11:12'

'2011-06-23
10:11:00'

With seconds omitted
in the template, as
above, the output
TIMESTAMP uses
00 seconds. Any
number of y specifiers
produces the same
result; but if the input
string inadvertently
uses a 1 instead of
11 for the year, as in
'23-06-1 10:11:12',
then the output
TIMESTAMP becomes
'0001-06-23 10:11:00'.

'MM/dd/yy
hh:mm:ss'

'12/19/11
10:11:12'

'12/19/11
12:11:12'

'2011-12-19
10:11:12'

'12/19/11
00:11:12'

Slashes as delimiters
are fine, if template
and input both use
them in the same
positions, as above.
Using specifier hh,
input times of 12:11:10
and 00:11:10 have the
same meaning as a
time in the morning.

37

Amazon Kinesis Analytics SQL Reference
Standard Functions

Template Input String Output TIMESTAMP Notes

'MM/dd/yy
HH:mm:ss'

'12/19/11
12:59:59'

'12/19/11
21:08:07'

'2011-12-19
00:11:12'

'2011-12-19
12:11:12'

'2011-12-19
12:59:59'

'2011-12-19
21:08:07'

The input-string
values '2011-12-19
00:11:12' or
'2011-12-19
12:11:12' would
fail with this template
because '2011' is not
a month, as required/
expected by the
template-string 'MM/
dd/yy HH:mm:ss'.

However, changing the
template gives useful
output:

values(cast(CHAR_TO_TIMESTAMP('y/
MM/dd HH:mm:ss',
 '2011/12/19
 00:11:12') as
varchar(19)));
'EXPR$0'
'2011-12-19
 00:11:12'

1 row selected

'12/19/11
00:11:12' would
fail with the above
template ('y/MM/
dd'), since 19 is
not a valid month;
supplying '12/11/19
00:11:12' works.

'2011-12-19
12:11:12' would
fail as input because
dashes don't
match the slashes
in the template,
'2011/12/19
12:11:12' works.

Note that for times
after 12 noon (that
is, for afternoon and
evening times), the
hours specifier must be
HH instead of hh, and
the input string must
specify the afternoon
or evening hour in 24-

38

Amazon Kinesis Analytics SQL Reference
Standard Functions

Template Input String Output TIMESTAMP Notes

hour clock time, hours
running from 00 to 23.

Using specifier HH,
input times of 12:11:10
and 00:11:10 have
different meanings,
the first as a time in
the afternoon and the
second as a time in the
morning.

Using the specifier hh,
the times from 12:00
through 11:59:59 are
morning times:

• Given the specifiers
hh:mm:ss, the output
TIMESTAMP will
include '00:09:08'
in the morning for
both input string
'12:09:08' and input
string '00:09:08';
whereas,

• Given the specifiers
HH:mm:ss, the
output TIMESTAMP
for input string
'00:09:08' in the
morning will include
'00:09:08'

and the output
TIMESTAMP
for input string
'12:09:08' in the
afternoon will include
'12:09:08'.

CHAR_TO_DATE

Converts a string to a date, according to the specified format string.

CHAR_TO_DATE(format,dateString);

CHAR_TO_TIME

Converts a string to a date, according to the specified format string

CHAR_TO_TIME(format,dateString);

39

Amazon Kinesis Analytics SQL Reference
Standard Functions

DATE_TO_CHAR

The DATE_TO_CHAR converts a date to a string.

DATE_TO_CHAR(format,d);

Where d is a date that will be converted to a string.

TIME_TO_CHAR

Uses a format string to format a time. Returns the formatted time or portion of a time as a string.

TIME_TO_CHAR(format,time);

TIMESTAMP_TO_CHAR

Uses a format string to format a timestamp as char. Returns the timestamp as a string.

TIMESTAMP_TO_CHAR(format,ts);

Where ts is timestamp.

ANY

ANY (<boolean_expression>)

ANY returns true if the supplied boolean_expression is true in any of the selected rows. Returns false if
the supplied boolean_expression is true in none of the selected rows.

Example

The following SQL snippet returns 'true' if the price for any ticker in the stream of trades is below 1.
Returns 'false' if every price in the stream is 1 or greater.

 SELECT STREAM ANY (price < 1) FROM trades
 GROUP BY (FLOOR trades.rowtime to hour)

EVERY

EVERY (<boolean_expression>)

EVERY returns true if the supplied boolean_expression is true in all of the selected rows. Returns false
if the supplied boolean_expression is false in any of the selected rows.

Example

The following SQL snippet returns 'true' if the price for every ticker in the stream of trades is below 1.
Returns 'false' if any price is 1 or greater.

 SELECT STREAM EVERY (price < 1) FROM trades
 GROUP BY (FLOOR trades.rowtime to hour)

40

Amazon Kinesis Analytics SQL Reference
Standard Functions

EXP_AVG

EXP_AVG (expression, <time-interval>)

EXP_AVG returns an exponentially-weighted average (exponential moving average) of a stream of
value expressions selected in a specified time window. EXP_AVG divides the specified window into
intervals based on the value of <time-interval>. The values of the specified expression are weighted
the most heavily for the most recent time-intervals and exponentially less heavily for earlier intervals.

Example

This example creates an exponentially-weighted average of the price of each stock ticker over a 30-
second window such that the prices (for that ticker symbol) in the most recent 10-second subwindow
carry double the weight of the prices in the middle 10-second subwindow and four times the weight of
the prices in the oldest 10-second subwindow.

select stream t.rowtime, ticker, price,
exp_avg(price, INTERVAL '10' SECOND) over w as avgPrice
from t
window w as (partition by ticker range interval '30' second preceding);

In this example, 10 seconds is the half-life of the decay function, that is, the period over which the
weights applied to the prices being averaged decrease by a factor of two. In other words, the older
one will be given half as much weight as the newer one. It is specified as the time_interval in the call to
EXP_AVG as interval '10' second .

FIRST_VALUE

FIRST_VALUE(<value-expression>) <null treatment> OVER <window-specification>

FIRST_VALUE returns the evaluation of the <value expression> from the first row that qualifies
for the aggregate. FIRST_VALUE requires the OVER clause, and is considered an Analytic
Functions (p. 66). FIRST_VALUE has a null treatment option defined in the following table.

Null treatment option Effect

FIRST_VALUE(x) IGNORE NULLS OVER
<window-specification>

Returns first non null value of x in <window-
specification>

FIRST_VALUE(x) RESPECT NULLS OVER
<window-specification>

Returns first value, including null of x in <window-
specification>

FIRST_VALUE(x) OVER <window-specification> Returns first value, including null of x in <window-
specification>

FIXED_COLUMN_LOG_PARSE

Parses fixed-width fields and automatically converts them to the given SQL types.

FIXED_COLUMN_LOG_PARSE (<string value expression>, <column description
 string expression>)
 <column description string expression> := '<column description> [,...]'
 <column description> :=
 <identifier> TYPE <data type> [NOT NULL]

41

https://en.wikipedia.org/wiki/Moving_average

Amazon Kinesis Analytics SQL Reference
Standard Functions

 START <numeric value expression> [FOR <numeric constant expression>]

Starting position of column is 0. Column specifications for types DATE,TIME and TIMESTAMP support
a format parameter allowing the user to specify exact time component layout. The parser uses the
Java class java.lang.SimpleDateFormat to parse the strings for types DATE, TIME and TIMESTAMP.
The Date and Time Patterns (p. 107) topic gives a full description and examples of timestamp format
strings. The following is an example of a column definition with a format string:

"name" TYPE TIMESTAMP 'dd/MMM/yyyy:HH:mm:ss'

Related Topics

REGEX_LOG_PARSE (p. 112)

Group Rank

This function applies a RANK() function to logical groups of rows and optionally delivers the group in
sorted order.

Applications of Group_Rank include the following:

• To sort results of a streaming GROUP BY.

• To determine a relationship within the results of a group.

Group Rank can do the following actions:

• Apply Rank to a specified input column.

• Supply either sorted or non-sorted output.

• Enable the user to specify a period of inactivity for data flush.

SQL Declarations

The functional attributes and DDL are described in the topics that follow.

Functional attributes for Group_Rank

This function acts as follows:

• Gathers rows until either a rowtime change is detected or a specified idle-time limit is exceeded.

• Accepts any streaming rowset.

• Uses any column with a basic SQL data type of INTEGER, CHAR, VARCHAR as the column by
which to do the ranking

• Orders the output rows either in the order received or in ascending or descending order of values in
the selected column.

DDL for Group_Rank

 group_rank(c cursor, rankByColumnName VARCHAR(128),
 rankOutColumnName VARCHAR(128), sortOrder VARCHAR(10), outputOrder
 VARCHAR(10),
 maxIdle INTEGER, outputMax INTEGER)
 returns table(c.*, "groupRank" INTEGER)

42

http://docs.oracle.com/javase/1.5.0/docs/api/java/text/SimpleDateFormat.html

Amazon Kinesis Analytics SQL Reference
Standard Functions

The parameters to the function are listed in the following table.

c CURSOR to Streaming Result Set

rankByColumnName String naming the column to use for ranking the
group

rankOutColumnName String naming the column to use for returning the
rank.

This string must match the name of the
groupRank column in RETURNS clause of the
CREATE FUNCTION statement.

sortOrder Controls ordering of rows for rank assignment.

Valid values are:

• 'asc' - Ascending based on rank.

• 'desc' - Descending based on the rank.

outputOrder Controls ordering of output. Valid values are:

• 'asc' - Ascending based on rank.

• 'desc' - Descending based on the rank.

maxIdle Time limit in milliseconds for holding a group for
ranking.

When maxIdle expires the current group is
released to the stream. A value of zero indicates
no idle time out.

outputMax Maximum number of rows the function will output
in a given group.

A value of 0 indicates no limit.

Example of Group_Rank Use

SELECT STREAM
 pageId, COUNT(*) AS hitCount
 FROM AccessStream AS S
 GROUP BY
 FLOOR(S.ROWTIME TO MINUTE), pageId;
 SELECT STREAM "pageId", "hitCount", "groupRank"
 FROM (TABLE(group_rank(CURSOR(SELECT STREAM "pageId", "hitCount"
 FROM pageCounts1Min),
 'hitCount', 'groupRank', 'desc', 'asc', 10, 5)));

Sample Input

pageId hitCount
condo 51
auto 25
books 200
CDs 202

43

Amazon Kinesis Analytics SQL Reference
Standard Functions

DVDs 1000
Games 500

Sample output

pageId hitCount groupRank
DVDs 1000 1
Games 500 2
CDs 202 3
books 200 4
Condo 51 5

Operational Overview

Rows are buffered from the input cursor for each group (that is, rows with the same rowtimes). Ranking
of the rows is done either after the arrival of a row with a different rowtime (or when the idle timeout
occurs). Rows continue to be read while ranking is performed on the group of rows with the same
rowtime.

The outputMax parameter specifies the maximum number of rows to be returned for each group after
ranks are assigned.

By default, group_rank supports column pass through, as the example illustrates by using c.* as the
standard shortcut directing pass through of all input columns in the order presented. You can, instead,
name a subset using the notation "c.columName", allowing you to reorder the columns. However, using
specific column names ties the UDX to a very specific input set while using the c.* notation allows the
UDX to handle any input set

The rankOutColumnName parameter specifies the output column used to return ranks. This column
name must match the column name specified in the RETURNS clause of the CREATE FUNCTION
statement.

LAST_VALUE

LAST_VALUE (<value-expression>) OVER <window-specification>

LAST_VALUE returns the evaluation of the <value expression> from the last row that qualifies for the
aggregate.

Null Treatment Option Effect

LAST_VALUE(x) IGNORE NULLS OVER
<window-specification>

Returns last non null value of x in <window-
specification>

LAST_VALUE(x) RESPECT NULLS OVER
<window-specification>

Returns last value, including null of x in <window-
specification>

LAST_VALUE(x) OVER <window-specification> Returns last value, including null of x in <window-
specification>

Monotonic Function

MONOTONIC(<expression>)

44

Amazon Kinesis Analytics SQL Reference
Standard Functions

Streaming GROUP BY requires that at least one of the grouped expressions be monotonic and non-
constant. The only column known in advance to be monotonic is ROWTIME. For more information, see
Monotonic Expressions and Operators (p. 120).

The MONOTONIC function allows you to declare that a given expression is monotonic, enabling a
streaming GROUP BY to use that expression as a key.

The MONOTONIC function evaluates its argument and returns the result (as the same type as its
argument).

By enclosing an expression in MONOTONIC, you are asserting that values of that expression are
either non-increasing or non-decreasing and never change direction. For example, if you have a
stream LINEITEMS consisting of the line items of orders, and you wrote MONOTONIC(orderId), you
are asserting that line items are consecutive in the stream. It would be OK if there were line items for
order 1000, followed by line items for order 1001, followed by line items for order 1005. It would be
illegal if there were then a line item for order 1001 (that is, the line item sequence became 1000, 1001,
1005, 1001). Similarly, a line item sequence of 987, 974, 823 would be legal, but the following line item
sequences would be illegal:

• 987, 974, 823, 973

• 987, 974, 823, 1056

An expression declared monotonic can decrease, or even have arbitrary order.

For example the strings in following sequence are neither ascending nor descending, since "F"
alphabetically precedes the other first letters.

Note that the definition of MONOTONIC is precisely what is needed for GROUP BY to make progress.

If an expression declared monotonic is not monotonic (that is, if the assertion is not valid for the actual
data) then Amazon Kinesis Analytics behavior is unspecified.

In other words, if you are certain that an expression is monotonic, you can use this MONOTONIC
function to enable Amazon Kinesis Analytics to treat the expression as monotonic.

However, if you are mistaken and the values resulting from evaluating the expression change from
ascending to descending or from descending to ascending, unexpected results may arise. Amazon
Kinesis Analytics streaming SQL will take you at your word and operate on your assurance that the
expression is monotonic. But if in fact it is not monotonic, the resulting Amazon Kinesis Analytics
behavior cannot be determined in advance, and so results may not be as expected or desired.

NTH_VALUE

NTH_VALUE(x, n) [<from first or last>] [<null treatment>] over w

Where:

<null treatment> := RESPECT NULLS | IGNORE NULL

<from first or last> := FROM FIRST | FROM LAST

NTH_VALUE returns the nth value of x from the first or last value in the window. Default is first. If <null
treatment> is set to IGNORE NULLS, then function will skip over nulls while counting.

If there aren't enough rows in the window to reach nth value, the function returns NULL.

SYS_LOG_PARSE
Parses the standard syslog format:

45

Amazon Kinesis Analytics SQL Reference
Standard Functions

 Mon DD HH:MM:SS server message

SYS_LOG_PARSE processes entries commonly found in UNIX/Linux system logs. System log entries
start with a timestamp and are followed with a free form text field. SYS_LOG_PARSE output consists
of two columns. The first column is named "COLUMN1" and is SQL data type TIMESTAMP. The
second column is named "COLUMN2" and is SQL type VARCHAR().

Note
For more information about SYSLOG, see IETF RFC3164. For more information about date-
time patterns and matching, see Date and Time Patterns (p. 107).

VARIABLE_COLUMN_LOG_PARSE

 VARIABLE_COLUMN_LOG_PARSE(
 <character-expression>, <columns>, <delimiter-string>
 [, <escape-string>, <quote-string>])
 <columns> := <number of columns> | <list of columns>
 <number of columns> := <numeric value expression>
 <list of columns> := '<column description>[, ...]'
 <column description> := <identifier> TYPE <data type> [NOT NULL]
 <delimiter string> := <character-expression>
 <escape-string> := <character-expression>
 <quote-string> := '<begin quote character> [<end quote character>]'

VARIABLE_COLUMN_LOG_PARSE splits an input string (its first argument, <character-expression>)
into fields separated by a delimiter character or delimiter string. Thus it handles comma-separated
values or tab-separated values. It can be combined with FIXED_COLUMN_LOG_PARSE (p. 41) to
handle something like maillog, where some fields are fixed-length and others are variable-length.

Note
Parsing of binary files is not supported.

The arguments <escape-string> and <quote-string> are optional. Specifying an <escape-string> allows
the value of a field to contain an embedded delimiter. As a simple example, if the <delimiter-string>
specified a comma, and the <escape-string> specified a backslash, then an input of "a,b' would be split
into two fields "a" and "b", but an input of "a\,b" would result in a single field "a,b".

Since Amazon Kinesis Analytics supports Expressions and Literals (p. 118), a tab can also be a
delimiter, specified using a unicode escape, e.g., u&'\0009', which is a string consisting only of a tab
character.

Specifying a <quote-string> is another way to hide an embedded delimiter. The <quote-string> should
be a one or two character expression: the first is used as the <begin quote character> character; the
second, if present, is used as the <end quote character> character. If only one character is supplied, it
is used as both to begin and to end quoted strings. When the input includes a quoted string, that is, a
string enclosed in the characters specified as <quote-string>, then that string appears in one field, even
if it contains a delimiter.

Note that the <begin quote character> and <end quote character> are single characters and can be
different. The <begin quote character> can be used to start and end the quoted string, or the <begin
quote character> can start the quoted string and the <end quote character> used to end that quoted
string.

When a list of columns <list of columns> is supplied as the second parameter <columns>, the column
specifications (<column description>) for types DATE, TIME, and TIMESTAMP support a format
parameter allowing the user to specify exact time component layout. The parser uses the Java class

46

https://tools.ietf.org/html/rfc3164

Amazon Kinesis Analytics SQL Reference
Standard Functions

java.lang.SimpleDateFormat to parse the strings for those types. Date and Time Patterns (p. 107)
gives a full description of timestamp format strings, with examples. The following is an example of a
column definition with a format string:

 "name" TYPE TIMESTAMP 'dd/MMM/yyyy:HH:mm:ss'

By default, the output columns are named COLUMN1, COLUMN2, COLUMN3, etc., each of SQL data
type VARCHAR(1024).

W3C_LOG_PARSE

 W3C_LOG_PARSE(<character-expression>, <format-string>)
 <format-string> := '<predefined-format> | <custom-format>'
 <predefined format> :=
 COMMON
 | COMMON WITH VHOST
 | NCSA EXTENDED
 | REFERER
 | AGENT
 | IIS
 <custom-format> := [an Apache log format specifier]

W3C Predefined Formats

Specifying the following W3C-predefined-format names summarizes using the format specifiers
indicated, as shown in the following statement:

 select stream W3C_LOG_PARSE(message, 'COMMON') r from w3ccommon t;

Format Name W3C Name Format Specifiers

COMMON Common Log Format (CLF) %h %l %u %t "%r" %>s %b

COMMON WITH VHOST Common Log Format with
Virtual Host

%v %h %l %u %t "%r" %>s %b

NCSA EXTENDED NCSA extended/combined log
format

%h %l %u %t "%r" %>s %b
"%[Referer]i" "%[User-agent]i"

REFERER Referer log format %[Referer]i ---> %U

AGENT Agent (Browser) log format %[User-agent]i

W3C Format Specifiers

The format specifiers are listed below. W3C_LOG_PARSE automatically detects these specifiers
and output records with one column for each specifier. The column's type is automatically chosen
based on the possible outputs of the specifier. For example, %b represents the number of bytes
sent in processing an HTTP request, so the column type is numeric. For %B, however, zero bytes is
represented by a dash - forcing the column type to be text. Note A explains what the "..." and "<" or ">"
markings shown in the specifier table mean.

The following table lists W3C format specifiers alphabetically by command.

47

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Amazon Kinesis Analytics SQL Reference
Standard Functions

Format Specifier Explanation

% The percent sign (Apache 2.0.44 and later)

%...a Remote IP-address

%...A Local IP-address

%...B Size of response in bytes, excluding HTTP
headers.

%...b Size of response in bytes, excluding HTTP
headers, in CLF format, which means that when
no bytes are sent, uses a '-' rather than a 0.

%...[Customerdata]C The contents of cookie Customerdata in the
request sent to the server.

%...D The time taken to serve the request, in
microseconds.

%...[CUSTOMERDATA]e The contents of the environment variable
CUSTOMERDATA

%...f Filename

%...h Remote host

%...H The request protocol

%...[Customerdata]i The contents of Customerdata: header line(s) in
the request sent to the server.

%...l Remote logname (from identd, if supplied)

%...m The request method

%...[Customerdata]n The contents of note Customerdata from another
module.

%...[Customerdata]o The contents of Customerdata: header line(s) in
the reply.

%...p The canonical port of the server serving the
request

%...P The process ID of the child that serviced the
request.

%...[format]P The process ID or thread id of the child that
serviced the request. Valid formats are pid and
tid. (Apache 2.0.46 and later)

%...q The query string (prepended with a ? if a query
string exists, otherwise an empty string)

%...r First line of request

%...s Status. For requests that got internally redirected,
this is the status of the *original* request ---
%...>s for the last.

48

Amazon Kinesis Analytics SQL Reference
Standard Functions

Format Specifier Explanation

%...t Time, in common log format time format
(standard English format)

%...[format]t The time, in the form given by format, which
should be in strimmer(3) format. (potentially
localized)

%...T The time taken to serve the request, in seconds.

%...u Remote user (from auth; may be bogus if return
status (%s) is 401)

%...U The URL path requested, not including any query
string.

%...v The canonical ServerName of the server serving
the request.

%...V The server name according to the
UseCanonicalName setting.

%...X Connection status when response is completed

X = connection aborted before the response
completed.

+ = connection may be kept alive after the
response is sent.

- = connection will be closed after the response is
sent.

(The %..X directive was %...c in late versions of
Apache 1.3,

but this conflicted with the historical ssl %...[var]c
syntax.)

:%...I: Bytes received, including request and headers,
cannot be zero. You need to enable mod_logio to
use this.

:%...O: Bytes sent, including headers, cannot be zero.
You need to enable mod_logio to use this.

Note
Some W3C format specifiers are shown as containing a "..." indication or a "<" or ">", which
are optional controls on suppressing or redirecting the output of that specifier. The "..." can
either be empty (as in the COMMON specification "\%h %u %r \%s %b") or it can indicate
conditions for including the item. The conditions are a list of HTTP status codes, possibly
preceded by "!", and if the specified condition is not met, then the column or field returned
shows "-".
For example, as described in the Apache documentation, specifying "%400,501[User-agent]i"
will log the User-agent only on 400 errors and 501 errors (Bad Request, Not Implemented).
Similarly, "%!200,304,302[Referer]i" will log the Referer: on all requests that fail to return some
sort of normal status.

49

http://httpd.apache.org/docs/2.0/mod/mod_logio.html
http://httpd.apache.org/docs/2.0/mod/mod_logio.html
http://httpd.apache.org/docs/2.0/mod/mod_log_config.html

Amazon Kinesis Analytics SQL Reference
Standard Functions

The modifiers "<" and ">" can be used to choose whether the original or final (respectively)
request should be consulted when a request has been internally redirected. By default, the
% directives %s, %U, %T, %D, and %r look at the original request while all others look at
the final request. So for example, %>s can be used to record the final status of the request
and %<u can be used to record the original authenticated user on a request that is internally
redirected to an unauthenticated resource.
For security reasons, starting with Apache 2.0.46, non-printable and other special characters
are escaped mostly by using \xhh sequences, where hh stands for the hexadecimal
representation of the raw byte. Exceptions from this rule are " and \ which are escaped by
prepending a backslash, and all white space characters which are written in their C-style
notation (\n, \t etc). In httpd 2.0 versions prior to 2.0.46, no escaping was performed on the
strings from %...r, %...i and %...o, so great care was needed when dealing with raw log files,
since clients could have inserted control characters into the log.
Also, in httpd 2.0, the B format strings represent simply the size in bytes of the HTTP
response (which will differ, for instance, if the connection is aborted, or if SSL is used). For
the actual number of bytes sent over the network to the client, use the %O format provided by
mod_logio.

W3C Format Specifiers by Function or Category

The categories are bytes sent, connection status, content of environmental variable, filename, host,
IP, notes, protocol, query string, replies, requests, and time. For the markings "..." or "<" or "<", see the
previous note.

Function or Category W3C Format Specifiers

Bytes sent, excluding HTTP headers

with a "0" when no bytes are sent %...B

with a "-" (CLF format) when no bytes are sent %...b

Bytes received, including request and headers,
cannot be zero

Must enable mod_logio to use this.

:% ... I:

Bytes sent, including headers, cannot be zero

Must enable mod_logio to use this.

:%... O:

Connection status when response is completed

Connection aborted before the response
completed

X

Connection may be kept alive after the response
is sent

+

Connection will be closed after the response is
sent

-

Note
The %..X directive was %...c in late versions of Apache 1.3, but this conflicted with the
historical ssl %...[var]c syntax.

Environment variable CUSTOMERDATA

contents %...[CUSTOMERDATA]e

Filename %...f

50

http://httpd.apache.org/docs/2.0/mod/mod_logio.html
http://httpd.apache.org/docs/2.0/mod/mod_logio.html
http://httpd.apache.org/docs/2.0/mod/mod_logio.html

Amazon Kinesis Analytics SQL Reference
Standard Functions

Function or Category W3C Format Specifiers

Host (remote) %...h

Protocol %...H

IP addresses

Remote %...a

Local %...A

Notes

Contents of note Customerdata from another
module

%...[Customerdata]n

Protocol (request) %...H

Query string

Note
If query exists, prepended with a ?
If not, the empty string.

%...q

Replies

Contents of Customerdata (header lines in the
reply)

%...[Customerdata]o

The W3C format specifiers for the response and time categories are listed following table.

Function or Category W3C Format Specifiers

Requests

Canonical port of the server serving the request %...p

Contents of cookie Customerdata in the request
sent to server

%... [Customerdata]C

Contents of BAR:header line(s) %... [BAR]i

First line sent: %...r

Microseconds taken to serve a request %...D

Protocol %...H

Process ID of the child that serviced the request %...P

Process ID or thread id of the child that serviced
the request.

Valid formats are pid and tid. (Apache 2.0.46 and
later)

%...[format]P

Remote logname (from identd, if supplied) %...l

Remote user: (from auth; may be bogus if return
status (%s) is 401)

%...u

51

Amazon Kinesis Analytics SQL Reference
Standard Functions

Function or Category W3C Format Specifiers

Server (canonical ServerName) serving the
request

%...v

Server name by the UseCanonicalName setting %...V

Request method %...m

Return status %s

Seconds taken to serve the request %...T

Status of the *original* request that was internally
redirected

%...s

Status of the last request %...>s

URL path requested, not including any query
string

%...U

Time

Common log format time format (standard
English format)

%...t

Time in strftime(3) format, potentially localized %...[format]t

Seconds taken to serve the request %...T

W3C Examples

W3C_LOG_PARSE supports access to logs generated by W3C-compliant applications like the Apache
web server, producing output rows with one column for each specifier. The data types are derived from
the log entry description specifiers listed in the Apache mod_log_config specification.

Example 1

The input in this example is taken from an Apache log file and is representative of the COMMON log
format.

Input

(192.168.254.30 - John [24/May/2004:22:01:02 -0700]
 "GET /icons/apache_pb.gif HTTP/1.1" 304 0),
(192.168.254.30 - Jane [24/May/2004:22:01:02 -0700]
 "GET /icons/small/dir.gif HTTP/1.1" 304 0);

DDL

CREATE OR REPLACE PUMP weblog AS
 SELECT STREAM
 l.r.COLUMN1,
 l.r.COLUMN2,
 l.r.COLUMN3,
 l.r.COLUMN4,
 l.r.COLUMN5,
 l.r.COLUMN6,

52

http://httpd.apache.org/docs/2.0/mod/mod_log_config.html?#formats

Amazon Kinesis Analytics SQL Reference
Standard Functions

 l.r.COLUMN7
 FROM (SELECT STREAM W3C_LOG_PARSE(message, 'COMMON')
 FROM "weblog_read) AS l(r);

Output

 192.168.254.30 - John [24/May/2004:22:01:02 -0700] GET /icons/
apache_pb.gif HTTP/1.1 304 0
 192.168.254.30 - Jane [24/May/2004:22:01:02 -0700] GET /icons/small/
dir.gif HTTP/1.1 304 0

The specification of COMMON in the FROM clause means the Common Log Format (CLF), which
uses the specifiers %h %l %u %t "%r" %>s %b.

The W3C-predefined formats shows the COMMON and other predefined specifier sets.

The specification of COMMON in the FROM clause means the Common Log Format (CLF), which
uses the specifiers %h %l %u %t "%r" %>s %b.

The table below, Specifiers used by the Common Log Format, describes the specifiers used by
COMMON in the FROM clause.

Specifiers Used by the Common Log Format

Output Column Format Specifier Returns

COLUMN1 %h The IP address of the remote
host

COLUMN2 %l The remote logname

COLUMN3 %u The remote user

COLUMN4 %t The time

COLUMN5 "%r" The first line of the request

COLUMN6 %>s The status: For internally
redirected requests,

the status of the *original*
request

--- %...>s for the last.

COLUMN7 %b The number of bytes sent,
excluding HTTP headers

Example 2

The DDL in this example shows how to rename output columns and filter out unneeded columns.

DDL

 CREATE OR REPLACE VIEW "Schema1".weblogreduced AS

53

http://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-w3c-log-parse.html#sql-reference-w3c-log-parse-predefined

Amazon Kinesis Analytics SQL Reference
Standard Functions

 SELECT STREAM CAST(s.COLUMN3 AS VARCHAR(5)) AS LOG_USER,
 CAST(s.COLUMN1 AS VARCHAR(15)) AS ADDRESS,
 CAST(s.COLUMN4 AS VARCHAR(30)) as TIME_DATES
 FROM "Schema1".weblog s;

Output

 +----------+-----------------+--------------------------------+
 | LOG_USER | ADDRESS | TIME_DATES |
 | | | |
 +----------+-----------------+--------------------------------+
 | Jane | 192.168.254.30 | [24/May/2004:22:01:02 -0700] |
 | | | |
 | John | 192.168.254.30 | [24/May/2004:22:01:02 -0700] |
 +----------+-----------------+--------------------------------+

W3C Customized Formats

The same results would be created by naming the specifiers directly rather than using the "COMMON"
name, as shown following:

 CREATE OR REPLACE FOREIGN STREAM schema1.weblog
 SERVER logfile_server
 OPTIONS (LOG_PATH '/path/to/logfile',
 ENCODING 'UTF-8',
 SLEEP_INTERVAL '10000',
 MAX_UNCHANGED_STATS '10',
 PARSER 'W3C',
 PARSER_FORMAT '%h %l %u %t \"%r\" %>s %b');
 or
 CREATE FOREIGN STREAM "Schema1".weblog_read
 SERVER "logfile_server"
 OPTIONS (log_path '/path/to/logfile',
 encoding 'UTF-8',
 sleep_interval '10000',
 max_unchanged_stats '10');
 CREATE OR REPLACE VIEW "Schema1".weblog AS
 SELECT STREAM
 l.r.COLUMN1,
 l.r.COLUMN2,
 l.r.COLUMN3,
 l.r.COLUMN4,
 l.r.COLUMN5,
 l.r.COLUMN6
 FROM (SELECT STREAM W3C_LOG_PARSE(message, '%h %l %u %t \"%r\" %>s
 %b')
 FROM "Schema1".weblog_read) AS l(r);

Note
If you change %t to [%t], the date column contains the following:

 24/May/2004:22:01:02 -0700

(instead of [24/May/2004:22:01:02 -0700])

54

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

Aggregate Functions
Instead of returning a result calculated from a single row, an aggregate function returns a result
calculated from aggregated data contained in a finite set of rows, or from information about a finite set
of rows. An aggregate function may appear in any of the following:

• <selection list> portion of a SELECT clause (p. 137)

• ORDER BY clause (p. 158)

• HAVING clause (p. 147)

An aggregate function is different from Analytic Functions (p. 66), which are always evaluated
relative to a window that must be specified, and so they can't appear in a HAVING clause. Other
differences are described in the table later in this topic.

Aggregate functions operate slightly differently in aggregate queries on tables than when you use them
in aggregate queries on streams, as follows. If an aggregate query on tables contains a GROUP BY
clause, the aggregate function returns one result per group in the set of input rows. Lacking an explicit
GROUP BY clause is equivalent to GROUP BY (), and returns only one result for the entire set of input
rows.

On streams, an aggregate query must contain an explicit GROUP BY clause on a monotonic
expression based on rowtime. Without one, the sole group is the whole stream, which never ends,
preventing any result from being reported. Adding a GROUP BY clause based on a monotonic
expression breaks the stream into finite sets of rows, contiguous in time, and each such set can then
be aggregated and reported.

Whenever a row arrives that changes the value of the monotonic grouping expression, a new group is
started and the previous group is considered complete. Then, the Amazon Kinesis Analytics application
outputs the value of the aggregate functions. Note that the GROUP BY clause may also include other
non-monotonic expressions, in which case more than one result per set of rows may be produced.

Performing an aggregate query on streams is often referred to as streaming aggregation, as distinct
from the windowed aggregation discussed in Analytic Functions (p. 66) and Windowed Aggregation
on Streams (p. 72). For more information about stream-to-stream joins, see JOIN clause (p. 142).

If an input row contains a null in a column used as an input to a data analysis function, the data
analysis function ignores the row (except for COUNT).

Differences Between Aggregate and Analytic Functions

Function Type Outputs Rows or Windows
Used

Notes

Aggregate Functions One output row per
group of input rows.

All output columns are
calculated over the
same window or same
group of rows.

COUNT DISTINCT
is not allowed in
streaming aggregation.
Statements of the
following type are not
allowed:

SELECT
COUNT(DISTINCT
x) ... FROM ... GROUP
BY ...

Analytic
Functions (p. 66)

One output row for
each input row.

Each output column
may be calculated

COUNT DISTINCT
can't be used
as Analytic

55

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

Function Type Outputs Rows or Windows
Used

Notes

using a different
window or partition.

Functions (p. 66)
or in windowed
aggregation.

Streaming Aggregation and Rowtime Bounds
Normally, an aggregate query generates a result when a row arrives that changes the value of the
monotonic expression in the GROUP BY. For example, if the query is grouped by FLOOR(rowtime TO
MINUTE), and the rowtime of the current row is 9:59.30, then a new row with a rowtime of 10:00.00
will trigger the result.

Alternately, a rowtime bound can be used to advance the monotonic expression and enable the query
to return a result. For example, if the query is grouped by FLOOR(rowtime TO MINUTE), and the
rowtime of the current row is 9:59.30, then an incoming rowtime bound of 10:00.00 will also trigger the
result.

Aggregate Function List
Amazon Kinesis Analytics supports the following aggregate functions:

• AVG (p. 59)

• COUNT (p. 60)

• MAX (p. 62)

• MIN (p. 62)

• SUM (p. 63)

• STDDEV_POP (p. 64)

• STDDEV_SAMP (p. 64)

• VAR_POP (p. 64)

• VAR_SAMP (p. 65)

For more information, see Statistical Variance and Deviation Functions (p. 63).

The following SQL uses the AVG aggregate function as part of a query to find the average age of all
employees:

SELECT
 AVG(AGE) AS AVERAGE_AGE
FROM SALES.EMPS;

Result:

AVERAGE_AGE

38

To find the average age of employees in each department, we can add an explicit GROUP BY clause
to the query:

SELECT

56

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

 DEPTNO,
 AVG(AGE) AS AVERAGE_AGE
FROM SALES.EMPS
GROUP BY DEPTNO;

Returns:

DEPTNO AVERAGE_AGE

10 30

20 25

30 40

40 57

Examples of Aggregate Queries on Streams (Streaming
Aggregation)

For this example, assume that the data in the following table is flowing through the stream called
WEATHERSTREAM.

ROWTIME CITY TEMP

2018-11-01 01:00:00.0 Denver 29

2018-11-01 01:00:00.0 Anchorage 2

2018-11-01 06:00:00.0 Miami 65

2018-11-01 07:00:00.0 Denver 32

2018-11-01 09:00:00.0 Anchorage 9

2018-11-01 13:00:00.0 Denver 50

2018-11-01 17:00:00.0 Anchorage 10

2018-11-01 18:00:00.0 Miami 71

2018-11-01 19:00:00.0 Denver 43

2018-11-02 01:00:00.0 Anchorage 4

2018-11-02 01:00:00.0 Denver 39

2018-11-02 07:00:00.0 Denver 46

2018-11-02 09:00:00.0 Anchorage 3

2018-11-02 13:00:00.0 Denver 56

2018-11-02 17:00:00.0 Anchorage 2

2018-11-02 19:00:00.0 Denver 50

2018-11-03 01:00:00.0 Denver 36

2018-11-03 01:00:00.0 Anchorage 1

57

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

If you want to find the minimum and maximum temperature recorded anywhere each day (globally
regardless of city), the minimum and maximum temperature can be calculated using the aggregate
functions MIN and MAX respectively. To indicate that we want this information on a per-day basis (and
to provide a monotonic expression as the argument of the GROUP BY clause), we use the FLOOR
function to round each row's rowtime down to the nearest day:

SELECT STREAM
 FLOOR(WEATHERSTREAM.ROWTIME to DAY) AS FLOOR_DAY,
 MIN(TEMP) AS MIN_TEMP,
 MAX(TEMP) AS MAX_TEMP
FROM WEATHERSTREAM
GROUP BY FLOOR(WEATHERSTREAM.ROWTIME TO DAY);

The result of the aggregate query is shown in the following table.

FLOOR_DAY MIN_TEMP MAX_TEMP

2018-11-01 00:00:00.0 2 71

2018-11-02 00:00:00.0 2 56

There is no row for 2018-11-03, even though the example data does include temperature
measurements on that day. This is because the rows for 2018-11-03 cannot be aggregated until all
rows for that day are known to have arrived, and that will only happen when either a row with a rowtime
of 2018-11-04 00:00:00.0 (or later) or a rowtime bound of 2018-11-04 00:00:00.0 (or later) arrives. If
and when either did arrive, the next result would be as described in the following table.

FLOOR_DAY MIN_TEMP MAX_TEMP

2018-11-03 00:00:00.0 1 36

Let's say that instead of finding the global minimum and maximum temperatures each day, we want
to find the minimum, maximum, and average temperature for each city each day. To do this, we use
the SUM and COUNT aggregate functions to compute the average, and add CITY to the GROUP BY
clause, as shown following:

SELECT STREAM
 FLOOR(WEATHERSTREAM.ROWTIME TO DAY) AS FLOOR_DAY,
 CITY,
 MIN(TEMP) AS MIN_TEMP,
 MAX(TEMP) AS MAX_TEMP,
 SUM(TEMP)/COUNT(TEMP) AS AVG_TEMP
FROM WEATHERSTREAM
GROUP BY FLOOR(WEATHERSTREAM.ROWTIME TO DAY), CITY;

The result of the aggregate query is shown in the following table.

FLOOR_DAY CITY MIN_TEMP MAX_TEMP AVG_TEMP

2018-11-01
00:00:00.0

Anchorage 2 10 7

2018-11-01
00:00:00.0

Denver 29 50 38

58

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

FLOOR_DAY CITY MIN_TEMP MAX_TEMP AVG_TEMP

2018-11-01
00:00:00.0

Miami 65 71 68

2018-11-02
00:00:00.0

Anchorage 2 4 3

2018-11-02
00:00:00.0

Denver 39 56 47

In this case, the arrival of rows for a new day's temperature measurements triggers the aggregation
of the previous day's data, grouped by CITY, which then results in one row being produced per city
included in the day's measurements.

Here again, a rowtime bound 2018-11-04 00:00:00.0 could be used to prompt a result for 2018-11-03
prior to any actual measurements for 2018-11-04 coming in is shown in the following table.

FLOOR_DAY CITY MIN_TEMP MAX_TEMP AVG_TEMP

2018-11-03
00:00:00.0

Anchorage 1 1 1

2018-11-03
00:00:00.0

Denver 36 36 36

AVG

AVG ([DISTINCT ALL] <number-expression>) [OVER <window-specification>]

AVG returns the average of all the value expressions evaluated for each row in the aggregation.
When used without the OVER clause, AVG is considered an Aggregate Functions (p. 55). When
used with the OVER clause, it is an Analytic Functions (p. 66). (For exponential averaging, see
EXP_AVG (p. 41).)

If DISTINCT is specified, only rows that match the <value expression> and have unique values qualify.
If ALL is specified, all rows qualify. If neither DISTINCT nor ALL is specified, the behavior defaults to
ALL.

When used as an Analytic Functions (p. 66), AVG will return null if the window being evaluated
contains no rows, or if all rows contain null values. This will also be the result in the case of a
PARTITION BY for which the partition within the window matching the input row contains no rows or all
rows are null.

Otherwise AVG ignores null values. AVG of 1, 2, 3 is 2. AVG of 1,null, 2, null, 3, null is also 2 - the null
values aren't counted as part of the total or in the count of rows. So AVG(x) is the same as SUM(x) /
COUNT(x).

Example

This example shows the difference between AVG(ALL pct_free), which is calculated as (71 * 10 + 1 *
0)/72 = 9.86, and AVG(DISTINCT pct_free), which is calculated as (10 + 0)/2 = 5.

 Select Stream pct_free, count(*) from test1 group by pct_free;
+-----------+---------+

59

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

 PCT_FREE EXPR$1
+-----------+---------+
 10.0 71
 0.0 1
+-----------+---------+
2 rows selected (0.672 seconds)
 Select Stream avg(all pct_free) as avg_all from test1;
+-------------------+
 AVG_ALL
+-------------------+
 9.86111111111111
+-------------------+
1 row selected (0.438 seconds)
 Select Stream avg(distinct pct_free) as avg_distinct from test1;
+---------------+
 AVG_DISTINCT
+---------------+
 5.0
+---------------+
1 row selected (0.516 seconds)

Limitations

AVG is only supported on numeric types.

Note
Amazon Kinesis Analytics does not support AVG applied to interval types. This is a departure
from the SQL:2008 standard.

COUNT

First form is as follows:

COUNT([DISTINCT | ALL] <value-expression>) [OVER <window-specification>]

Regarding DISTINCT, see Limitations, later in this topic.

Second form is as follows:

COUNT (*) [OVER <window-specification>]

The COUNT function returns the number of qualifying rows in the aggregation. When used without the
OVER clause, COUNT is considered an Aggregate Functions (p. 55), as shown following:

COUNT(<value-expression>)
COUNT(ALL <value-expression>)
COUNT(DISTINCT <value-expression>)

When used with the OVER clause, it is an Analytic Functions (p. 66), as shown following:

COUNT(<value-expression>) OVER (<window-specification>)
COUNT(ALL <value-expression>) OVER (<window-specification>)

In all the above forms of the COUNT function, only rows where the <value_expression> is not NULL
are counted. If ALL is specified, all such rows are counted. Since ALL is assumed by default, the first
two above are equivalent.

60

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

If DISTINCT is specified, only distinct values of <value expression> are counted.

When used as an Analytic Functions (p. 66), COUNT will return zero if the window being evaluated
contains no rows. In the case of a PARTITION BY, COUNT will return zero if the partition within the
window matching the input row contains no rows.

In the second form, COUNT(*), all rows qualify.

Limitations

Amazon Kinesis Analytics does not support the FILTER clause of the COUNT function, nor the use of
COUNT DISTINCT in either Aggregate Functions (p. 55), Analytic Functions (p. 66), or as an
analytic function. These are departures from the SQL:2008 standard.

COUNT_DISTINCT_ITEMS_TUMBLING Function

Returns a count of the number of distinct items in the specified in-application stream column over a
tumbling window. The resulting count is approximate, the function uses the HyperLogLog algorithm.
For more information, see HyperLogLog on the Wikipedia website. Note that when there are less than
or equal to 10,000 items in the window, the function returns an exact count.

Note
Getting an exact count of the number of distinct items can be inefficient and costly. Therefore,
this function approximates the count. For example, if there are 100,000 distinct items, the
algorithm may return 99,700. If cost and efficiency is not a consideration, you can write your
own SELECT statement to get the exact count. For example:

CREATE OR REPLACE STREAM output_stream (ticker_symbol VARCHAR(4),
 unique_count BIGINT);

CREATE OR REPLACE PUMP stream_pump AS
INSERT INTO output_stream
SELECT STREAM ticker_symbol, COUNT(distinct_stream.price) AS
 unique_count
FROM (
 SELECT STREAM DISTINCT rowtime as window_time, ticker_symbol,
 sector, CHANGE, price,
 FLOOR((source_sql_stream_001.rowtime - TIMESTAMP
 '1970-01-01 00:00:00') SECOND / 5 TO SECOND)
 FROM source_sql_stream_001) as distinct_stream
GROUP BY ticker_symbol,
 FLOOR((distinct_stream.window_time - TIMESTAMP '1970-01-01
 00:00:00') SECOND / 5 TO SECOND);

This SELECT statement returns an exact count of the number of distinct rows for each ticker
symbol in a five second tumbling window. The SELECT statement uses all of the columns
(except ROWTIME) in determining the uniqueness.

The function operates on a tumbling window. You specify the size of the tumbling window as a
parameter.

For an example, see Count Distinct Values.

Syntax

COUNT_DISTINCT_ITEMS_TUMBLING (

61

https://en.wikipedia.org/wiki/HyperLogLog
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/count-distinct-items-example.html

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

 in-application-stream Pointer,
 'columnName',
 windowSize
)

Parameters

The following sections describe the parameters.

in-application-streamPointer

Using this parameter, you provide a pointer to an in-application stream. You can set a pointer using the
CURSOR function. For example, the following statement sets a pointer to InputStream.

CURSOR(SELECT STREAM * FROM InputStream)

columnName

Column name in your in-application stream that you want the function to use to count distinct values.
Note the following about the column name:

• Must appear in single quotation marks ('). For example, 'column1'.

windowSize

Size of the tumbling window in seconds. The size should be at least 1 second and should not exceed 1
hour = 3600 seconds.

MAX

 MAX ([DISTINCT | ALL] <value-expression>) [OVER <window-specification>]

MAX returns the maximum value of all the value expressions evaluated for each row in
the aggregation. When used without the OVER clause, MAX is considered an Aggregate
Functions (p. 55). When used with the OVER clause, it is an Analytic Functions (p. 66).

For string values, MAX is determined by which string is last in the collating sequence.

When used as an Analytic Functions (p. 66), MAX will return null if the window being evaluated (or
in the case of a PARTITION BY, the partition within the window matching the input row) contains no
rows.

MIN

 MIN ([DISTINCT | ALL] <value-expression>) [OVER <window-specification>]

MIN returns the minimum value of all the value expressions evaluated for each row in the aggregation.
When used without the OVER clause, MIN is considered an Aggregate Functions (p. 55). When
used with the OVER clause, it is an Analytic Functions (p. 66).

For string values, MIN is determined by which string is first in the collating sequence.

When used as an Analytic Functions (p. 66), MIN will return null if the window being evaluated (or in
the case of a PARTITION BY, the partition within the window matching the input row) contains no rows.

62

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

SUM

SUM ([DISTINCT | ALL] <number-expression>) [OVER <window-specification>]

SUM returns the sum of all the value expressions evaluated for each row in the aggregation. When
used without the OVER clause, SUM is considered an Aggregate Functions (p. 55). When used with
the OVER clause, it is an Analytic Functions (p. 66).

If DISTINCT is specified, only distinct row values qualify. If ALL is specified, all rows qualify. If neither
DISTINCT nor ALL is specified, the behavior defaults to ALL.

When used as an Analytic Functions (p. 66), SUM will return null if the window being evaluated (or
in the case of a PARTITION BY, the partition within the window matching the input row) contains no
rows.

Examples

The following example shows the difference between SUM(ALL value) and SUM(DISTINCT value);
note how SUM(ALL value) returns 710 (71 rows with a value of 10 plus 1 row with a value of 0)
whereas SUM(DISTINCT value) returns just 10 (10 + 0) as there are only two distinct values for
PCT_FREE.

 Select Stream pct_free, count(*) from test1 group by pct_free;
+-----------+---------+
| PCT_FREE | EXPR$1 |
+-----------+---------+
| 10.0 | 71 |
| 0.0 | 1 |
+-----------+---------+
2 rows selected (0.453 seconds)
 Select Stream sum(all pct_free) as sum_all from test1;
+----------+
| SUM_ALL |
+----------+
| 710.0 |
+----------+
1 row selected (0.391 seconds)
Select Stream sum(distinct pct_free) as sum_distinct from test1;
+---------------+
| SUM_DISTINCT |
+---------------+
| 10.0 |
+---------------+
1 row selected (0.422 seconds)

SUM is only supported on numeric types.

Limitation

Amazon Kinesis Analytics streaming SQL does not support SUM applied to interval types. This is a
departure from the SQL:2008 standard.

Statistical Variance and Deviation Functions
Each of these functions takes a set of numbers, ignores nulls, and can be used as either an Aggregate
Functions (p. 55) or an Analytic Functions (p. 66).

The relationships among these functions are described in the following table.

63

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

Function purpose Function name Formula Comments

Population variance VAR_POP (p. 64)(expr) (SUM(expr*expr) -
SUM(expr)*SUM(expr) /
COUNT(expr)) /
COUNT(expr)

Applied to an empty
set, it returns null.

Population standard
deviation

STDDEV_POP (p. 64) Square root of the
population variance
(VAR_POP).

When VAR_POP
returns null,
STDDEV_POP returns
null.

Sample variance VAR_SAMP (p. 65) (SUM(expr*expr) -
SUM(expr)*SUM(expr) /
COUNT(expr)) /
(COUNT(expr)#1)

Applied to an empty
set, it returns null.

Applied to an input
set of one element,
VAR_SAMP returns
null.

Sample standard
deviation

STDDEV_SAMP (p. 64)
(expr)

Square root of the
sample variance
(VAR_SAMP).

Applied to only 1
row of input data,
STDDEV_SAMP
returns null.

STDDEV_POP

Returns the square root of the VAR_POP (p. 64) population variance for <number expression>,
evaluated for each row remaining in the group.

 STDDEV_POP ([DISTINCT | ALL] number-expression)

Where ALL includes (and DISTINCT excludes) duplicate values in the input set. ALL is the default.
When the input set has no non-null data, STDDEV_POP returns NULL.

See also STDDEV_SAMP (p. 64) sample standard deviation, VAR_SAMP (p. 65), and
VAR_POP (p. 64).

STDDEV_SAMP

Returns the statistical standard deviation of all values in number-expression, evaluated for each row
remaining in the group and defined as the square root of the VAR_SAMP (p. 65).

 STDDEV_SAMP ([DISTINCT | ALL] number-expression)

Where ALL includes (and DISTINCT excludes) duplicate values in the input set. ALL is the default.
When the input set has no non-null data, STDDEV_SAMP returns NULL.

STD_DEV is an alias of STDDEV_SAMP.

See also STDDEV_POP (p. 64)population standard deviation, VAR_SAMP (p. 65), and
VAR_POP (p. 64).

VAR_POP

Returns the population variance of a non-null set of numbers (nulls being ignored)

64

Amazon Kinesis Analytics SQL Reference
Aggregate Functions

 VAR_POP ([DISTINCT | ALL] number-expression)

Where ALL includes (and DISTINCT excludes) duplicate values in the input set. ALL is the default.
When the input set has no non-null data, VAR_POP returns NULL.

VAR_POP uses the following calculation:

• (SUM(expr*expr) - SUM(expr)*SUM(expr) / COUNT(expr)) / COUNT(expr)

In other words, for a given set of non-null values, using S1 as the sum of the values and S2 as the sum
of the squares of the values, VAR_POP returns the result (S2-S1*S1/N)/N.

You can use VAR_POP as either an aggregate and analytic function. Applied to an empty set, it
returns null.

See also VAR_SAMP (p. 65) sample variance, STDDEV_POP (p. 64), and
STDDEV_SAMP (p. 64).

VAR_SAMP

Returns the sample variance of a non-null set of numbers (nulls being ignored),

 VAR_SAMP ([DISTINCT | ALL] number-expression)

Where ALL includes (and DISTINCT excludes) duplicate values in the input set. ALL is the default.
When the input set has no non-null data, VAR_SAMP returns NULL.

VAR_SAMP uses the following calculation:

• (SUM(expr*expr) - SUM(expr)*SUM(expr) / COUNT(expr)) / (COUNT(expr)-1)

In other words, for a given set of non-null values, using S1 as the sum of the values and S2 as the sum
of the squares of the values, VAR_POP returns the result (S2-S1*S1/N)/(N-1).

You can use VAR_SAMP as either an aggregate and analytic function. Applied to an empty set, it
returns null. Given an input set of one element, VAR_SAMP returns null.

See also VAR_POP (p. 64) population variance, STDDEV_POP (p. 64), and
STDDEV_SAMP (p. 64).

TOP_K_ITEMS_TUMBLING Function
Returns the most frequently occurring values in the specified in-application stream column over a
tumbling window. This can be used to find trending (most popular) values in a specified column.

For example, the Getting Started exercise uses a demo stream that provides continuous stock price
updates (ticker_symbol, price, change, and other columns). Suppose you want to find the three most
frequently traded stocks in each 1-minute tumbling window. You can use this function to find those
ticker symbols.

Note
Counting each incoming record on your streaming source is not efficient, therefore the
function approximates the most frequently occurring values. For example, when seeking the
three most traded stocks, the function may return three of the five most traded stocks.

The function operates on a tumbling window. You specify the window size as a parameter.

For a sample application with step-by-step instructions, see Most Frequently Occurring Values.

65

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/top-k-example.html

Amazon Kinesis Analytics SQL Reference
Analytic Functions

Syntax

TOP_K_ITEMS_TUMBLING (
 in-application-streamPointer,
 'columnName',
 K,
 windowSize,
)

Parameters

The following sections describe the parameters.

in-application-streamPointer

Pointer to an in-application stream. You can set a pointer using the CURSOR function. For example,
the following statement sets a pointer to InputStream.

CURSOR(SELECT STREAM * FROM InputStream)

columnName

Column name in your in-application stream that you want to use to compute the topK values. Note the
following about the column name:

• Must appear in single quotation marks ('). For example, 'column1'.

K

Using this parameter, you specify how many of the most frequently occurring values from a specific
column you want returned. The value K should be at least 1 and cannot exceed 100,000.

windowSize

Size of the tumbling window in seconds. The size should be at least 1 second and should not exceed 1
hour = 3600 seconds.

Analytic Functions
An analytic function is one that returns a result calculated from data in (or about) a finite set of rows
identified by a SELECT clause (p. 137) or in the ORDER BY clause (p. 158).

The list of analytic functions that Amazon Kinesis Analytics supports appears below. The SELECT
topic explains the order-by clause, showing the order-by chart, as well as the windowing clause (and
window-specification chart). To see where an order-by clause is used in Select statements, see the
Select chart in the SELECT topic of this guide.

1. Analytic functions must specify a window. Since there are a few restrictions on window
specifications, and a few differences between specifying windows for windowed aggregation
and windowed join, please see Allowed and Disallowed Window Specifications (p. 155) for
explanations.

2. Analytic functions may only appear in the <selection list> portion of a SELECT clause or in the
ORDER BY clause.

3. The list of analytic functions that Amazon Kinesis Analytics supports appears below. The SELECT
topic explains the order-by clause, showing the order-by chart, as well as the windowing clause (and

66

Amazon Kinesis Analytics SQL Reference
Unsupervised Functions/Algorithms

window-specification chart). To see where an order-by clause is used in Select statements, see the
Select chart in the SELECT topic of this guide.

Other differences are described in the table later in this topic.

Performing queries using analytic functions is commonly referred to as windowed aggregation
(discussed below), as distinct from Aggregate Functions (p. 55).

Because of the presence of the window specification, queries that use analytic functions produce
results in a different manner than do aggregate queries. For each row in the input set, the window
specification identifies a different set of rows on which the analytic function operates. If the window
specification also includes a PARTITION BY clause, then the only rows in the window that will be
considered in producing a result will be those that share the same partition as the input row.

If an input row contains a null in a column used as an input to an analytic function, the analytic function
ignores the row, except for COUNT, which does count rows with null values. In cases where the
window (or in the case of a PARTITION BY, a partition within the window) contains no rows, an analytic
function will return null. The exception to this is COUNT, which returns zero.

Differences Between Aggregate and Analytic Functions

Function Type Outputs Rows or Windows
Used

Notes

Aggregate
Functions (p. 55)

One output row per
group of input rows.

All output columns are
calculated over the
same window or same
group of rows.

COUNT DISTINCT
is not allowed
in Aggregate
Functions (p. 55).
Statements of the
following type are not
allowed:

SELECT
COUNT(DISTINCT
x) ... FROM ... GROUP
BY ...

Analytic Functions One output row for
each input row.

Each output column
may be calculated
using a different
window or partition.

COUNT DISTINCT
can't be used as
analytic functions or in
windowed aggregation.

Related Topics

• Windowed Aggregation on Streams (p. 72)

• SELECT statement (p. 134)

• SELECT clause (p. 137)

Functions that Implement Unsupervised Machine
Learning Algorithms
Amazon Kinesis Analytics provides the following unsupervised functions that you might find useful in
streaming analytics:

Topics

67

Amazon Kinesis Analytics SQL Reference
Unsupervised Functions/Algorithms

• RANDOM_CUT_FOREST Function (p. 68)

RANDOM_CUT_FOREST Function

Detects anomalies in your data stream. A record is an anomaly if it is distant from other records.

Note
The RANDOM_CUT_FOREST function's ability to detect anomalies is application-dependent. To
cast your business problem so that it can be solved with this function requires domain
expertise. For example, determining which combination of columns in your input stream
to pass to the function and potentially normalize the data. For more information, see
inputStream (p. 69).

A stream record can have non-numeric columns, but the function uses only numeric columns to assign
an anomaly score. A record can have one or more numeric columns. The algorithm uses all of the
numeric data in computing an anomaly score. If a record has n numeric columns, the underlying
algorithm assumes each record is a point in n-dimensional space. A point in n-dimensional space that
is distant from other points receives a higher anomaly score.

The algorithm accepts the DOUBLE, INTEGER, FLOAT, TINYINT, SMALLINT, REAL, and BIGINT data
types.

Note
DECIMAL is not a supported type. Use DOUBLE instead.

The following is an example of anomaly detection. The diagram shows three clusters and a few
anomalies randomly interjected. The red squares show the records that received the highest anomaly
score according to the RANDOM_CUT_FOREST function. The blue diamonds represent the remaining
records. Note how the highest scoring records tend to be outside the clusters.

For a sample application with step-by-step instructions, see Detect Anomalies.

68

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/app-anomaly-detection.html

Amazon Kinesis Analytics SQL Reference
Unsupervised Functions/Algorithms

Syntax

RANDOM_CUT_FOREST (inputStream,
 numberOfTrees,
 subSampleSize,
 timeDecay,
 shingleSize)

Parameters

The following sections describe the parameters.

inputStream

Pointer to your input stream. You set a pointer using the CURSOR function. For example, the following
statements sets a pointer to InputStream.

CURSOR(SELECT STREAM * FROM InputStream)
CURSOR(SELECT STREAM IntegerColumnX, IntegerColumnY FROM InputStream)
-– Perhaps normalize the column X value.
CURSOR(SELECT STREAM IntegerColumnX / 100, IntegerColumnY FROM InputStream)
–- Combine columns before passing to the function.
CURSOR(SELECT STREAM IntegerColumnX - IntegerColumnY FROM InputStream)

The CURSOR function is the only required parameter for the RANDOM_CUT_FOREST function. The
function assumes the following default values for the other parameters:

numberOfTrees = 100

subSampleSize = 256

timeDecay = 100,000

shingleSize = 1

When using this function, your input stream can have up to 30 numeric columns.

numberOfTrees

Using this parameter, you specify the number of random cut trees in the forest.

Note
By default, the algorithm constructs a number of trees, each constructed using a given number
of sample records (see subSampleSize later in this list) from the input stream. The algorithm
uses each tree to assign an anomaly score. The average of all these scores is the final
anomaly score.

The default value for numberOfTrees is 100. You can set this value between 1 and 1,000 (inclusive).
By increasing the number of trees in the forest, you can get a better estimate of the anomaly score, but
this also increases the running time.

subSampleSize

Using this parameter, you can specify the size of the random sample that you want the algorithm to use
when constructing each tree. Each tree in the forest is constructed with a (different) random sample of
records. The algorithm uses each tree to assign an anomaly score.

69

Amazon Kinesis Analytics SQL Reference
Unsupervised Functions/Algorithms

The default value for subSampleSize is 256. You can set this value between 10 and 1,000
(inclusive).

Note that the subSampleSize must be less than the timeDecay parameter (which is set to 100,000
by default). Increasing the sample size provides each tree a larger view of the data, but also increases
the running time.

timeDecay

The timeDecay parameter allows you to specify how much of the recent past to consider when
computing an anomaly score. This is because data streams naturally evolve over time. For example,
an eCommerce website’s revenue may continuously increase, or global temperatures may rise over
time. In such situations, we want an anomaly to be flagged relative to recent data, as opposed to data
from the distant past.

The default value is 100,000 records (or 100,000 shingles if shingling is used, as described in the
following section). You can set this value between 1 and the maximum integer (that is, 2147483647).
The algorithm exponentially decays the importance of older data.

If you choose the timeDecay default of 100,000, the anomaly detection algorithm does the following:

• Uses only the most recent 100,000 records in the calculations (and ignores older records).

• Within the most recent 100,000 records, assigns exponentially more weight to recent records and
less to older records in anomaly detection calculations.

The timeDecay parameter determines the maximum quantity of recent records kept in the working set
of the anomaly detection algorithm. Smaller timeDecay values are desirable if the data is changing
rapidly. The best timeDecay value is application-dependent.

shingleSize

The explanation given here is for a one-dimensional stream (that is, a stream with one numeric
column), but it can also be used for multi-dimensional streams.

A shingle is a consecutive sequence of the most recent records. For example, a shingleSize of
10 at time t corresponds to a vector of the last 10 records received up to and including time t. The
algorithm treats this sequence as a vector over the last shingleSize number of records.

If data is arriving uniformly in time, a shingle of size 10 at time t corresponds to the data received at
time t-9, t-8,…,t. At time t+1, the shingle slides over one unit and consists of data from time t-8,t-7, …,
t, t+1. These shingled records gathered over time correspond to a collection of 10-dimensional vectors
over which the anomaly detection algorithm runs.

The intuition is that a shingle captures the shape of the recent past. Your data may have a typical
shape. For example, if your data is collected hourly, a shingle of size 24 may capture the daily rhythm
of your data.

The default shingleSize is one record (because shingle size is data dependent). You can set this
value between 1 and 30 (inclusive).

Note the following about setting the shingleSize:

• If you set the shingleSize too small, the algorithm will be more susceptible to minor fluctuations in
the data, leading to high-anomaly scores for records that are not anomalous.

• If you set the shingleSize too large, it may take more time to detect anomalous records because
there are more records in the shingle that are not anomalous. It may also take more time to
determine that the anomaly has ended.

70

Amazon Kinesis Analytics SQL Reference
Unsupervised Functions/Algorithms

• Identifying the right shingle size is application-dependent. Experiment with different shingle sizes to
ascertain the effect.

The following example illustrates how you can catch anomalies when you monitor the records with
the highest anomaly score. In this particular example, the two highest anomaly scores also signal the
beginning and end of an artificially injected anomaly.

Consider this stylized one-dimensional stream represented as a sine wave, intended to capture a
circadian rhythm. This curve illustrates the typical number of orders that an eCommerce site receives
per hour, the number of users logged into a server, the number of ad clicks received per hour, etc. A
severe dip of 20 consecutive records is artificially injected in the middle of the plot.

We ran the RANDOM_CUT_FOREST function with a shingle size of four records. The result is shown
below. The red line shows the anomaly score. Note that the beginning and the end of the anomaly
received high scores.

71

Amazon Kinesis Analytics SQL Reference
Windowed Aggregation on Streams

When you use this function, we recommend that you investigate the highest scoring points as potential
anomalies.

For more information, see the Robust Random Cut Forest Based Anomaly Detection On Streams white
paper at the Journal of Machine Learning Research website.

Windowed Aggregation on Streams
To illustrate how windowed aggregation on works on streams, assume the data in the following table is
flowing through a stream called WEATHERSTREAM.

ROWTIME CITY TEMP

2018-11-01 01:00:00.0 Denver 29

2018-11-01 01:00:00.0 Anchorage 2

2018-11-01 06:00:00.0 Miami 65

2018-11-01 07:00:00.0 Denver 32

2018-11-01 09:00:00.0 Anchorage 9

72

http://jmlr.org/proceedings/papers/v48/guha16.pdf

Amazon Kinesis Analytics SQL Reference
Windowed Aggregation on Streams

ROWTIME CITY TEMP

2018-11-01 13:00:00.0 Denver 50

2018-11-01 17:00:00.0 Anchorage 10

2018-11-01 18:00:00.0 Miami 71

2018-11-01 19:00:00.0 Denver 43

2018-11-02 01:00:00.0 Anchorage 4

2018-11-02 01:00:00.0 Denver 39

2018-11-02 07:00:00.0 Denver 46

2018-11-02 09:00:00.0 Anchorage 3

2018-11-02 13:00:00.0 Denver 56

2018-11-02 17:00:00.0 Anchorage 2

2018-11-02 19:00:00.0 Denver 50

2018-11-03 01:00:00.0 Denver 36

2018-11-03 01:00:00.0 Anchorage 1

Let's say we want to find the minimum and maximum temperature recorded in the 24-hour period prior
to any given reading, globally, regardless of city. To do this, we define a window of RANGE INTERVAL
'1' DAY PRECEDING, and use it in the OVER clause for the MIN and MAX analytic functions:

 SELECT STREAM
 ROWTIME,
 MIN(TEMP) OVER W1 AS WMIN_TEMP,
 MAX(TEMP) OVER W1 AS WMAX_TEMP
 FROM WEATHERSTREAM
 WINDOW W1 AS (
 RANGE INTERVAL '1' DAY PRECEDING
);

Results

ROWTIME WMIN_TEMP WMAX_TEMP

2018-11-01 01:00:00.0 29 29

2018-11-01 01:00:00.0 2 29

2018-11-01 06:00:00.0 2 65

2018-11-01 07:00:00.0 2 65

2018-11-01 09:00:00.0 2 65

2018-11-01 13:00:00.0 2 65

2018-11-01 17:00:00.0 2 65

2018-11-01 18:00:00.0 2 71

73

Amazon Kinesis Analytics SQL Reference
Windowed Aggregation on Streams

ROWTIME WMIN_TEMP WMAX_TEMP

2018-11-01 19:00:00.0 2 71

2018-11-02 01:00:00.0 2 71

2018-11-02 01:00:00.0 2 71

2018-11-02 07:00:00.0 4 71

2018-11-02 09:00:00.0 3 71

2018-11-02 13:00:00.0 3 71

2018-11-02 17:00:00.0 2 71

2018-11-02 19:00:00.0 2 56

2018-11-03 01:00:00.0 2 56

2018-11-03 01:00:00.0 1 56

Now, let's assume we want to find the minimum, maximum, and average temperature recorded in the
24 hour period prior to any given reading, broken down by city. To do this, we add a PARTITION BY
clause on CITY to the window specification, and add the AVG analytic function over the same window
to the selection list:

 SELECT STREAM
 ROWTIME,
 CITY,
 MIN(TEMP) over W1 AS WMIN_TEMP,
 MAX(TEMP) over W1 AS WMAX_TEMP,
 AVG(TEMP) over W1 AS WAVG_TEMP
 FROM AGGTEST.WEATHERSTREAM
 WINDOW W1 AS (
 PARTITION BY CITY
 RANGE INTERVAL '1' DAY PRECEDING
);

Results

ROWTIME CITY WMIN_TEMP WMAX_TEMP WAVG_TEMP

2018-11-01
01:00:00.0

Denver 29 29 29

2018-11-01
01:00:00.0

Anchorage 2 2 2

2018-11-01
06:00:00.0

Miami 65 65 65

2018-11-01
07:00:00.0

Denver 29 32 30

2018-11-01
09:00:00.0

Anchorage 2 9 5

74

Amazon Kinesis Analytics SQL Reference
Windowed Aggregation on Streams

ROWTIME CITY WMIN_TEMP WMAX_TEMP WAVG_TEMP

2018-11-01
13:00:00.0

Denver 29 50 37

2018-11-01
17:00:00.0

Anchorage 2 10 7

2018-11-01
18:00:00.0

Miami 65 71 68

2018-11-01
19:00:00.0

Denver 29 50 38

2018-11-02
01:00:00.0

Anchorage 2 10 6

2018-11-02
01:00:00.0

Denver 29 50 38

2018-11-02
07:00:00.0

Denver 32 50 42

2018-11-02
09:00:00.0

Anchorage 3 10 6

2018-11-02
13:00:00.0

Denver 39 56 46

2018-11-02
17:00:00.0

Anchorage 2 10 4

2018-11-02
19:00:00.0

Denver 39 56 46

2018-11-03
01:00:00.0

Denver 36 56 45

2018-11-03
01:00:00.0

Anchorage 1 4 2

Examples of Rowtime Bounds and Windowed Aggregation

This is an example of a windowed aggregate query:

 SELECT STREAM ROWTIME, ticker, amount, SUM(amount)
 OVER (
 PARTITION BY ticker
 RANGE INTERVAL '1' HOUR PRECEDING)
 AS hourlyVolume
 FROM Trades

Because this is a query on a stream, rows pop out of this query as soon as they go in. For example,
given the inputs:

Trades: IBM 10 10 10:00:00
Trades: ORCL 20 10:10:00
Trades.bound: 10:15:00
Trades: ORCL 15 10:25:00

75

Amazon Kinesis Analytics SQL Reference
Windowed Aggregation on Streams

Trades: IBM 30 11:05:00
Trades.bound: 11:10:00

In this example, the output is as follows:

Trades: IBM 10 10 10:00:00
Trades: ORCL 20 20 10:10:00
Trades.bound: 10:15:00
Trades: ORCL 15 35 10:25:00
Trades: IBM 30 30 11:05:00
Trades.bound: 11:10:00

The rows still hang around behind the scenes for an hour, and thus the second ORCL row output has
a total of 35; but the original IBM trade falls outside the "hour preceding" window, and so is excluded
from the IBM sum.

Syntax Chart for Windowed Aggregation

(To see where windowed-aggregation fits into a SELECT statement, see the topic SELECT
statement (p. 134) in this guide.)

76

Amazon Kinesis Analytics SQL Reference
Windowed Aggregation on Streams

Interval Clause

77

Amazon Kinesis Analytics SQL Reference
Windowed Aggregation on Streams

Example

Some business problems seem to need totals over the whole history of a stream, but this is usually not
practical to compute. However, such business problems are often solvable by looking at the last day,
the last hour, or the last N records. Sets of such records are called windowed aggregates.

They are easy to compute in a stream database, and can be expressed in ANSI (SQL:2008) standard
SQL as follows:

 SELECT STREAM ticker,

 avg(price OVER lastHour AS avgPrice,

78

Amazon Kinesis Analytics SQL Reference
Scalar Functions

 max(price) OVER lastHour AS maxPrice
 FROM Bids
 WINDOW lastHour AS (
 PARTITION BY ticker
 RANGE INTERVAL '1' HOUR PRECEDING)

Note
The Interval_clause must be of one of the following appropriate types:

• Integer literal with ROWS

• Numeric value for RANGE over a numeric column

• INTERVAL for a RANGE over a date/time/timestamp

Scalar Functions
Scalar functions are single-row functions (that is, they produce a single result for each input row to a
query). The following scalar functions are available in streaming SQL:

Topics

• ABS (p. 79)

• CAST (p. 80)

• CEIL / CEILING (p. 95)

• CHAR_LENGTH / CHARACTER_LENGTH (p. 96)

• COALESCE (p. 97)

• EXP (p. 97)

• EXTRACT (p. 98)

• FLOOR (p. 99)

• INITCAP (p. 100)

• LN (p. 100)

• LOG10 (p. 100)

• LOWER (p. 101)

• MOD (p. 101)

• NULLIF (p. 102)

• OVERLAY (p. 102)

• POSITION (p. 103)

• POWER (p. 104)

• SUBSTRING (p. 104)

• TRIM (p. 105)

• UPPER (p. 106)

• Date and Time Functions (p. 106)

ABS

Returns the absolute value of the input argument. Returns null if the input argument is null.

ABS (<numeric-expression> <interval-expression>
)

79

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Examples

Function Result

ABS(2.0) 2.0

ABS(-1.0) 1.0

ABS(0) 0

ABS(-3 * 3) 9

ABS(INTERVAL '-3 4:20' DAY TO MINUTE) INTERVAL '3 4:20' DAY TO MINUTE

If you use cast as VARCHAR in SQLline to show the output, the value is returned as +3 04:20.

 values(cast(ABS(INTERVAL '-3 4:20' DAY TO MINUTE) AS VARCHAR(8)));
 +-----------+
 EXPR$0
 +-----------+
 +3 04:20
 +-----------+
 1 row selected

CAST
CAST lets you convert one value expression or data type to another value expression or data type.

CAST (<cast-operand> AS <cast-target>)
 <cast-operand> := <value-expression>
 <cast-target> := <data-type>

Valid Conversions

Using CAST with source operands of the types listed in the first column below can create cast target
types as listed in the second column, without restriction. Other target types are not supported.

Source Operand Types Target Operand Types

Any numeric type (NUMERIC, DECIMAL,
SMALLINT, INTEGER, BIGINT, REAL,
DOUBLE)

VARCHAR, CHAR, or any numeric type (See
Note A.)

VARCHAR, CHAR All of the above, plus, DATE, TIME,
TIMESTAMP, DAY-TIME INTERVAL, BOOLEAN

DATE DATE, VARCHAR, CHAR, TIMESTAMP

TIME TIME, VARCHAR, CHAR, TIMESTAMP

TIMESTAMP TIME, VARCHAR, CHAR, TIMESTAMP, DATE

DAY-TIME INTERVAL DAY-TIME INTERVAL, BIGINT, DECIMAL,
CHAR, VARCHAR

BOOLEAN VARCHAR, CHAR, BOOLEAN

BINARY, VARBINARY BINARY, VARBINARY

80

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Examples

2.1 DATE to CHAR/VARCHAR

+-------------+
| EXPR$0 |
+-------------+
| 2008-08-23 |
+-------------+
1 row selected

(Note that if an inadequate output specification is supplied, no rows are selected:

values(cast(date'2008-08-23' as varchar(9)));
'EXPR$0'
No rows selected

(Because the date literal requires 10 characters)

In the next case, the date is blank-padded on the right (because of the semantics of the CHAR
datatype):

+----------------------------+
| EXPR$0 |
+----------------------------+
| 2008-08-23 |
+----------------------------+
1 row selected

REAL to INTEGER

The real (NUMERIC or DECIMAL) is rounded by the cast:

+---------+
| EXPR$0 |
+---------+
| -2 |
+---------+
1 row selected

STRING to TIMESTAMP

There are two ways to convert a string to a timestamp. The first uses CAST, as shown in the next topic.
The other uses Char To Timestamp(Sys) (p. 32).

Using CAST to Convert a String to a Timestamp

The example below illustrates this method for conversion:

'EXPR$0'
'2007-02-19 21:23:45'
1 row selected

81

Amazon Kinesis Analytics SQL Reference
Scalar Functions

If the input string lacks any one of the six fields (year, month, day, hours, minutes, seconds), or uses
any delimiters different from those shown above, CAST will not return a value. (Fractional seconds are
disallowed.)

If the input string is thus not in the appropriate format to be CAST, then to convert the string to a
timestamp, you must use the CHAR_TO_TIMESTAMP method.

Using CHAR_TO_TIMESTAMP to convert a String to a Timestamp

When the input string is not in the appropriate format to be CAST, you can use the
CHAR_TO_TIMESTAMP method. It has the additional advantage that you can specify which parts
of the timestamp string you wish to use in subsequent processing, and create a TIMESTAMP value
containing only those. To do so, you specify a template that identifies which parts you want, such as
'yyyy-MM' to use only the year and month parts.

The input-date-time string-to-be-converted can contain all or any parts of a full timestamp, that is,
values for any or all of the standard elements ('yyyy-MM-dd hh:mm:ss'). If all these elements are
present in your input string, and 'yyyy-MM-dd hh:mm:ss' is the template you supply, then the input-
string elements are interpreted in that order as year, month, day, hour, minute, and seconds, such as
in '2009-09-16 03:15:24'. The yyyy cannot be uppercase; the hh can be uppercase to mean using a 24-
hour clock. For many examples of valid specifiers, see the table and examples later in this topic. For
the full range of valid specifiers, see Class SimpleDateFormat on the Oracle website.

CHAR_TO_TIMESTAMP uses the template you specify as a parameter in the function call. The
template causes the TIMESTAMP result to use only the parts of the input-date-time value that you
specified in the template. Those fields in the resulting TIMESTAMP will then contain the corresponding
data taken from your input-date-time string; fields not specified in your template will use default
values (see below). The format of the template used by CHAR_TO_TIMESTAMP is defined by
Class SimpleDateFormat, at which link all the specifiers are listed, some with examples. For more
information, see Date and Time Patterns (p. 107).

The function-call syntax is as follows:

 CHAR_TO_TIMESTAMP('<format_string>','<input_date_time_string>')

Where <format_ string> is the template you specify for the parts of <date_time_string> you want, and
<input_date_time_string> is the original string that is being converted to a TIMESTAMP result.

Each string must be enclosed in single quotes, and each element of the <input_date_time_string> must
be in the range for its corresponding element in the template. Otherwise, no result is returned.

Example 1

• The input-string-element whose position corresponds with MM must be an integer from 1 to 12,
because anything else does not represent a valid month.

• The input-string-element whose position corresponds with dd must be an integer from 1 to 31,
because anything else does not represent a valid day.

• However, if MM is 2, dd cannot be 30 or 31, because February never has such days.

However, for months or days, the default starting value substituted for the omitted parts is 01.

For example, using '2009-09-16 03:15:24' as your input string, you can obtain a TIMESTAMP
containing only the date, with zeros for the other fields such as hours, minutes, or seconds, by
specifying

 CHAR_TO_TIMESTAMP('yyyy-MM-dd','2009-09-16 03:15:24').

The result would be the TIMESTAMP 2009-09-16 00:00:00.

82

http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Example 2

• If the call had kept hours and minutes in the template while omitting months, days, and seconds, as
illustrated in the following call --- --- CHAR_TO_TIMESTAMP('yyyy-hh-mm','2009-09-16 03:15:24')
--- --- then the resulting TIMESTAMP would be 2009-01-01 03:15:00.

Template Input String Output TIMESTAMP Notes

'yyyy-MM-dd
hh:mm:ss'

'2009-09-16
03:15:24'

'2009-09-16
03:15:24'

Input string MUST
use the form 'yyyy-
MM-dd hh:mm:ss' or
a subset or reordering
thereof; using an input
string like 'Wednesday,
16 September 2009
03:15:24' will NOT
work, meaning that no
output will result.

'yyyy-mm' '2012-02-08
07:23:19'

'2012-01-01
00:02:00'

The template above
specifies only year first
and minutes second,
so the second element
in the input string ("02")
is used as minutes.

Default values are
used for Month and
Day ("01") and for
hours and seconds
("00").

'yyyy-ss-mm' '2012-02-08
07:23:19'

'2012-01-01
00:08:02'

The template above
specifies only year,
seconds, and minutes,
in that order, so the
second element in the
input string ("02") is
used as seconds and
the third as minutes
("08"). Default values
are used for Month
and Day ("01") and for
hours ("00").

'MMM dd, yyyy' 'March 7, 2010' '2010-03-07
00:00:00'

MMM in the template
above matches
"March"; the template's
'comma space'
matches the input
string.

--- --- If the template
lacks the comma, so
must the input string, or
there is no output;

83

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Template Input String Output TIMESTAMP Notes

--- --- If the input string
lacks the comma, so
must the template.

'MMM dd,' 'March 7, 2010' '1970-03-07
00:00:00'

Note that the template
above doesn't use
a year specifier,
causing the output
TIMESTAMP to use
the earliest year in this
epoch, 1970.

'MMM dd,y' 'March 7, 2010' '2010-03-07
00:00:00'

Using the template
above, if the input
string were 'March
7, 10', the output
TIMESTAMP would be
'0010-03-07 00:00:00'.

'M-d' '2-8' '1970-02-08
00:00:00'

Absent a yyyy specifier
in the template, as
above, the earliest year
in this epoch (1970) is
used.

An input string of
'2-8-2012' would give
the same result; using
'2012-2-8' would give
no result because 2012
is not a valid month.

'MM-dd-yyyy' '06-23-2012
10:11:12'

'2012-06-23
00:00:00'

Dashes as delimiters
(as above) are fine, if
template and input both
use them in the same
positions. Since the
template omits hours,
minutes, and seconds,
zeroes are used in the
output TIMESTAMP.

84

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Template Input String Output TIMESTAMP Notes

'dd-MM-yy
hh:mm:ss'

'23-06-11
10:11:12'

'2011-06-23
10:11:12'

You can have the
specifiers in any order
as long as that order
matches the meaning
of the input string you
supply, as above.
The template and
input string of the next
example below have
the same meaning
(and the same output
TIMESTAMP) as this
example, but they
specify months before
days and seconds
before hours.

'MM-dd-yy
ss:hh:mm'

'06-23-11
12:10:11'

'2011-06-23
10:11:12'

In the template used
above, the order of
the month and day
specifiers is reversed
from the example
just above, and the
specifier for seconds
is before hours instead
of after minutes; but
because the input
string also puts months
before days and
seconds before hours,
the meaning (and the
output TIMESTAMP)
is the same as the
example ABOVE.

'yy-dd-MM
ss:hh:mm'

'06-23-11
12:10:11'

'2006-11-23
10:11:12'

The template used
above reverses
(compared to the prior
example above) the
years and months
specifiers, while the
input string remains the
same. In this case, the
output TIMESTAMP
uses the first element
of the input string as
the years, the second
as the days, and the
third as the months.

85

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Template Input String Output TIMESTAMP Notes

'dd-MM-yy hh:mm' '23-06-11
10:11:12'

'2011-06-23
10:11:00'

With seconds omitted
in the template, as
above, the output
TIMESTAMP uses
00 seconds. Any
number of y specifiers
produces the same
result; but if the input
string inadvertently
uses a 1 instead of
11 for the year, as in
'23-06-1 10:11:12',
then the output
TIMESTAMP becomes
'0001-06-23 10:11:00'.

'MM/dd/yy
hh:mm:ss'

'12/19/11
10:11:12'

'12/19/11
12:11:10'

'2011-12-19
10:11:12'

'2011-12-19
00:11:10'

Slashes as delimiters
are fine, if template and
input both use them in
the same positions, as
above; otherwise, no
output.

Using specifier hh,
input times of 12:11:10
and 00:11:10 have the
same meaning as a
time in the morning.

86

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Template Input String Output TIMESTAMP Notes

'MM/dd/yy
HH:mm:ss'

'12/19/11
12:59:59'
'12/19/11
21:08:07'

'2011-12-19
12:59:59'
'2011-12-19
21:08:07'

The input-string values
'2011-12-19 00:11:12'
or '2011-12-19
12:11:12' would fail
with this template
because '2011' is not
a month, as required/
expected by the
template-string 'MM/dd/
yy HH:mm:ss'.

However, changing the
template gives useful
output:

values(cast(CHAR_TO_TIMESTAMP('y/
MM/dd HH:mm:ss',
 '2011/12/19
 00:11:12') as
 varchar(19)));
'EXPR$0'
'2011-12-19
 00:11:12'
1 row selected

'12/19/11
00:11:12' would
fail with the above
template ('y/MM/
dd'), since 19 is
not a valid month;
supplying '12/11/19
00:11:12' works.
'2011-12-19
12:11:12' would
fail as input because
dashes don't match
the slashes in
the template ;
'2011/12/19
12:11:12' works.

Note that for times
after 12 noon, that
is, for afternoon and
evening times, the
hours specifier must be
HH instead of hh, and
the input string must
specify the afternoon
or evening hour in 24-
hour clock time, hours
running from 00 to 23.

87

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Template Input String Output TIMESTAMP Notes

--- --- Using specifier
HH, input times
of 12:11:10 and
00:11:10 have different
meanings, the first as
a time in the afternoon
and the second as a
time in the morning.

--- --- Using the
specifier hh, the times
from 12:00 through
11:59:59 are morning
times:

--- --- Given
the specifiers
hh:mm:ss, the output
TIMESTAMP will
include '00:09:08' in the
morning for both input
string '12:09:08' and
input string '00:09:08';

--- --- whereas

--- --- Given
the specifiers
HH:mm:ss, the output
TIMESTAMP for input
string '00:09:08' in the
morning will include
'00:09:08'

--- --- and the output
TIMESTAMP for input
string '12:09:08' in the
afternoon will include
'12:09:08'.

The examples below illustrate using various templates with CHAR_TO_TIMESTAMP, including some
common misunderstandings.

 values (CHAR_TO_TIMESTAMP('yyyy-hh-mm','2009-09-16 03:15:24'));
'EXPR$0'
'2009-01-01 09:16:00'
1 row selected

Note that the fields in the input string above were used in the order given by the specifiers in the
template, as defined by the dashes-as-delimiters in both template and input string: years first, then
hours, then minutes. Since the specifiers for months and days are not present in the template, their
values in the input string were ignored, with 01 substituted for both values in the output TIMESTAMP.
The template specified hours and minutes as the second and third input values, so 09 became the
hours and 16 became the minutes. No specifier was present for seconds, so 00 was used.

88

Amazon Kinesis Analytics SQL Reference
Scalar Functions

The years specifier can be alone or, after a delimiter matching the input string shows the end of the
years specifier, with one of the hours:minutes:seconds specifiers:

values (CHAR_TO_TIMESTAMP('yyyy','2009-09-16 03:15:24'));
'EXPR$0'
'2009-01-01 00:00:00'
1 row selected
values (CHAR_TO_TIMESTAMP('yyyy hh','2009-09-16 03:15:24'));
'EXPR$0'
No rows selected

The template above fails because it has a space-as-delimiter before the "hh" rather than the dash
delimiter used in the input string's date specification;

whereas the four templates below work because they use the same delimiter to separate the years
specifier from the next specifier as is used in the input string's date specification (dash in the first case,
space in the second, slash in the third, and dash in the fourth).

values (CHAR_TO_TIMESTAMP('yyyy-hh','2009-09-16 03:15:24'));
'EXPR$0'
'2009-01-01 09:00:00'
1 row selected
values (CHAR_TO_TIMESTAMP('yyyy hh','2009 09 16 03:15:24'));
'EXPR$0'
'2009-01-01 09:00:00'
1 row selected
values (CHAR_TO_TIMESTAMP('yyyy/hh','2009/09/16 03:15:24'));
'EXPR$0'
'2009-01-01 09:00:00'
1 row selected
values (CHAR_TO_TIMESTAMP('yyyy-mm','2009-09-16 03:15:24'));
'EXPR$0'
'2009-01-01 00:09:00'
1 row selected

However, if the template specifies months (MM), it cannot then specify hours, minutes, or seconds
unless days are also specified:

Template specifying years and months only, thus omitting days/hours/minutes/seconds from the
resulting TIMESTAMP:

values (CHAR_TO_TIMESTAMP('yyyy-MM','2009-09-16 03:15:24'));
'EXPR$0'
'2009-09-01 00:00:00'
1 row selected

The next two templates fail, lacking a 'days' specifier:

values (CHAR_TO_TIMESTAMP('yyyy-MM hh','2009-09-16 03:15:24'));
'EXPR$0'
No rows selected
values (CHAR_TO_TIMESTAMP('yyyy-MM hh:','2009-09-16 03:15:24'));
'EXPR$0'
No rows selected

The next three succeed, using a 'days' specifier:

89

Amazon Kinesis Analytics SQL Reference
Scalar Functions

 values (CHAR_TO_TIMESTAMP('yyyy-MM-dd hh','2009-09-16 03:15:24'));
'EXPR$0'
'2009-09-16 03:00:00'
1 row selected

The template above, 'yyyy-MM-dd hh', specifies only hours (hh) without minutes or seconds. Since
hh is the 4th token/element of the template, its value is to be taken from the 4th token/element of the
input string '2009-09-16 03:15:24' ; and that 4th element is 03, then used as the value output for hours.
Since neither mm or ss is specified, the default or initial values defined as the starting point for mm and
ss are used, which are zeroes.

values (CHAR_TO_TIMESTAMP('yyyy-MM-dd ss','2009-09-16 03:15:24'));
'EXPR$0'
'2009-09-16 00:00:03'
1 row selected

The template above, 'yyyy-MM-dd ss', specifies that the 4th token/element of the input string is to be
used as seconds (ss). The 4th element of the input string '2009-09-16 03:15:24' is 03, which becomes
the value output for seconds as specified in the template; and since neither hh nor mm is specified in
the template, their default or initial values are used, which are zeroes.

values (CHAR_TO_TIMESTAMP('yyyy-MM-dd mm','2009-09-16 03:15:24'));
'EXPR$0'
'2009-09-16 00:03:00'
1 row selected

The template above, 'yyyy-MM-dd mm', specifies that the 4th token/element of the input string is to be
used as minutes (mm). The 4th element of the input string '2009-09-16 03:15:24' is 03, which becomes
the value output for minutes as specified in the template; and since neither hh nor ss is specified in the
template, their default or initial values are used, which are zeroes.

Further failures, lacking a 'days' specifier:

values (CHAR_TO_TIMESTAMP('yyyy-MM- mm','2009-09-16 03:15:24'));
'EXPR$0'
No rows selected
values (CHAR_TO_TIMESTAMP('yyyy-MM mm','2009-09-16 03:15:24'));
'EXPR$0'
No rows selected
values (CHAR_TO_TIMESTAMP('yyyy-MM hh','2009-09-16 03:15:24'));
'EXPR$0'
No rows selected

About Delimiters and Values

Delimiters in the template must match those in the input string; values in the input string must be
acceptable for the template specifiers to which they correspond.

As a general convention, a colon is used to separate hours from minutes, and minutes from seconds.
Similarly, the general convention is to use a dash or slash to separate years from months and months
from days. Any parallel usage seems to work, and the examples that follow illustrate this.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh:mm:ss','2009/09/16 03:15:24'));
'EXPR$0'

90

Amazon Kinesis Analytics SQL Reference
Scalar Functions

No rows selected

The example above fails because 2009 is not an acceptable value for months, which is the first
specifier (MM) in the template.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh:mm:ss','09/16/11 03:15:24'));
'EXPR$0'
'2011-09-16 03:15:24'
1 row selected

The example above succeeds because the delimiters are parallel (slashes to slashes, colons to colons)
and each value is acceptable for the corresponding specifier.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh/mm/ss','09/16/11 03/15/24'));
'EXPR$0'
'2011-09-16 03:15:24'
1 row selected

The example above succeeds because the delimiters are parallel (all slashes) and each value is
acceptable for the corresponding specifier.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh-mm-ss','09/16/11 03-15-24'));
'EXPR$0'
'2011-09-16 03:15:24'
1 row selected
values (CHAR_TO_TIMESTAMP('yyyy|MM|dd hh|mm|ss','2009|09|16 03|15|24'));
'EXPR$0'
'2009-09-16 03:15:24'
1 row selected
values (CHAR_TO_TIMESTAMP('yyyy@MM@dd hh@mm@ss','2009@09@16 03@15@24'));
'EXPR$0'
'2009-09-16 03:15:24'
1 row selected

The examples above succeed because the delimiters are parallel and the values are acceptable per
specifier.

In the following examples, note that omissions in the supplied string can cause the template value
'yyyy' to produce logical but unintended or unexpected results. The value given as the year in the
resulting TIMESTAMP value derives directly from the first element in the supplied string.

 VALUES(CHAR_TO_TIMESTAMP('yyyy','09-16 03:15'));
'EXPR$0'
'0009-01-01 00:00:00'
1 row selected
VALUES(CHAR_TO_TIMESTAMP('yyyy','16 03:15'));
'EXPR$0'
'0016-01-01 00:00:00'
1 row selected

TIMESTAMP to STRING

 values(cast(TIMESTAMP '2007-02-19 21:25:35' AS VARCHAR(25)));
'EXPR$0'

91

Amazon Kinesis Analytics SQL Reference
Scalar Functions

'2007-02-19 21:25:35'
1 row selected

Note that CAST requires a TIMESTAMP-literal to have literally the full format of 'yyyy-mm-dd
hh:mm:ss'. If any part of that full format is missing, the literal is rejected as illegal, as seen below:

 values(TIMESTAMP '2007-02-19 21:25');
Error: Illegal TIMESTAMP literal '2007-02-19 21:25':
 not in format 'yyyy-MM-dd
 HH:mm:ss' (state=,code=0)
 values(TIMESTAMP '2007-02-19 21:25:00');
'EXPR$0'
'2007-02-19 21:25:00'
1 row selected

Also, if an inadequate output specification is supplied, no rows are selected:

values(cast(TIMESTAMP '2007-02-19 21:25:35' AS VARCHAR(18)));
'EXPR$0'
No rows selected
(Because the timestamp literal requires 19 characters)

These restrictions apply similarly to CASTing to TIME or DATE types.

STRING to TIME

 values(cast(' 21:23:45.0' AS TIME));
'EXPR$0'
'21:23:45'
1 row selected

For more information, see Note A.

STRING to DATE

 values(cast('2007-02-19' AS DATE));
'EXPR$0'
'2007-02-19'
1 row selected

Note A
Note that CAST for strings requires that the string operand for casting to TIME or DATE have
the exact form required to represent a TIME or DATE, respectively.

As shown below, the cast fails if:

• the string operand includes data extraneous to the targeted type, or

• the INTERVAL operand ('day hours:minutes:seconds.milliseconds') does not include necessary
data, or

• the specified output field is too small to hold the conversion results.

 values(cast('2007-02-19 21:23:45.0' AS TIME));

92

Amazon Kinesis Analytics SQL Reference
Scalar Functions

'EXPR$0'
No rows selected

Fails because it includes date information not allowed as a TIME.

 values(cast('2007-02-19 21:23:45.0' AS DATE));
'EXPR$0'
No rows selected

Fails because it includes time information not allowed as a DATE.

 values(cast('2007-02-19 21' AS DATE));
'EXPR$0'
No rows selected

Fails because it includes time information not allowed as a DATE.

 values(cast('2009-02-28' AS DATE));
'EXPR$0'
'2009-02-28'
1 row selected

Succeeds because it includes a correct representation of date string.

 values(CAST (cast('2007-02-19 21:23:45.0' AS TIMESTAMP) AS DATE));
'EXPR$0'
'2007-02-19'
1 row selected

Succeeds because it correctly converts string to TIMESTAMP before casting to DATE.

 values(cast('21:23' AS TIME));
'EXPR$0'
No rows selected

Fails because it lacks time information (seconds) required for a TIME.

(Specifying fractional seconds is allowed but not required.)

 values(cast('21:23:34:11' AS TIME));
'EXPR$0'
No rows selected

Fails because it includes incorrect representation of fractional seconds.

 values(cast('21:23:34.11' AS TIME));
'EXPR$0'
'21:23:34'
1 row selected

Succeeds because it includes correct representation of fractional seconds.

93

Amazon Kinesis Analytics SQL Reference
Scalar Functions

 values(cast('21:23:34' AS TIME));
'EXPR$0'
'21:23:34'
1 row selected

This example succeeds because it includes correct representation of seconds without fractions of a
second.

INTERVAL to exact numerics

CAST for intervals requires that the INTERVAL operand have only one field in it, such as MINUTE,
HOUR, SECOND.

If the INTERVAL operand has more than one field, such as MINUTE TO SECOND, the cast fails, as
shown below:

 values (cast (INTERVAL '120' MINUTE(3) as decimal(4,2)));
+---------+
| EXPR$0 |
+---------+
+---------+
No rows selected

 values (cast (INTERVAL '120' MINUTE(3) as decimal(4)));
+---------+
| EXPR$0 |
+---------+
| 120 |
+---------+
1 row selected

 values (cast (INTERVAL '120' MINUTE(3) as decimal(3)));
+---------+
| EXPR$0 |
+---------+
| 120 |
+---------+
1 row selected

 values (cast (INTERVAL '120' MINUTE(3) as decimal(2)));
+---------+
| EXPR$0 |
+---------+
+---------+
No rows selected

 values cast(interval '1.1' second(1,1) as decimal(2,1));
+---------+
| EXPR$0 |
+---------+
| 1.1 |
+---------+
1 row selected

 values cast(interval '1.1' second(1,1) as decimal(1,1));
+---------+
| EXPR$0 |
+---------+

94

Amazon Kinesis Analytics SQL Reference
Scalar Functions

+---------+
No rows selected

For year, decimal fractions are disallowed as input and as output.

values cast(interval '1.1' year (1,1) as decimal(2,1));
Error: org.eigenbase.sql.parser.SqlParseException: Encountered "," at line 1,
 column 35.
Was expecting:
 ")" ... (state=,code=0)
values cast(interval '1.1' year (1) as decimal(2,1));
Error: From line 1, column 13 to line 1, column 35:
 Illegal interval literal format '1.1' for INTERVAL YEAR(1)
 (state=,code=0)
values cast(interval '1.' year (1) as decimal(2,1));
Error: From line 1, column 13 to line 1, column 34:
 Illegal interval literal format '1.' for INTERVAL YEAR(1)
 (state=,code=0)
values cast(interval '1' year (1) as decimal(2,1));
+---------+
| EXPR$0 |
+---------+
| 1.0 |
+---------+
1 row selected

For additional examples, see SQL Operators: Further examples.

Limitations

Amazon Kinesis Analytics does not support directly casting numeric values to interval values. This is
a departure from the SQL:2008 standard. The recommended way to convert a numeric to an interval
is to multiply the numeric value against a specific interval value. For example, to convert the integer
time_in_millis to a day-time interval:

time_in_millis * INTERVAL '0 00:00:00.001' DAY TO SECOND

For example:

 values cast(5000 * (INTERVAL '0 00:00:00.001' DAY TO SECOND) as
 varchar(11));
'EXPR$0'
'5000'
1 row selected

CEIL / CEILING

 CEIL | CEILING (<number-expression>)
 CEIL | CEILING (<datetime-expression> TO <time-unit>)
 CEIL | CEILING (<number-expression>)
 CEIL | CEILING (<datetime-expression> TO <[[time-unit>)

When called with a numeric argument, CEILING returns the smallest integer equal to or larger than the
input argument.

95

Amazon Kinesis Analytics SQL Reference
Scalar Functions

When called with a date, time, or timestamp expression, CEILING returns the smallest value equal to
or larger than the input, subject to the precision specified by the <time unit>.

Returns null if any input argument is null.

Examples

Function Result

CEIL(2.0) 2

CEIL(-1.0) -1

CEIL(5.2) 6

CEILING(-3.3) -3

CEILING(-3 * 3.1) -9

CEILING(TIMESTAMP '2004-09-30 13:48:23' TO
HOUR)

TIMESTAMP '2004-09-30 14:00:00'

CEILING(TIMESTAMP '2004-09-30 13:48:23' TO
MINUTE)

TIMESTAMP '2004-09-30 13:49:00'

CEILING(TIMESTAMP '2004-09-30 13:48:23' TO
DAY)

TIMESTAMP '2004-10-01 00:00:00.0'

CEILING(TIMESTAMP '2004-09-30 13:48:23' TO
YEAR)

TIMESTAMP '2005-01-01 00:00:00.0'

Notes

• CEIL and CEILING are synonyms for this function provided by the SQL:2008 standard.

• CEIL(<datetime value expression> TO <time unit>) is an Amazon Kinesis Analytics extension.

• For more information, see FLOOR (p. 99).

CHAR_LENGTH / CHARACTER_LENGTH

 CHAR_LENGTH | CHARACTER_LENGTH (<character-expression>)

Returns the length in characters of the string passed as the input argument. Returns null if input
argument is null.

Examples

CHAR_LENGTH('one') 3

CHAR_LENGTH('') 0

CHARACTER_LENGTH('fred') 4

96

Amazon Kinesis Analytics SQL Reference
Scalar Functions

CHARACTER_LENGTH(cast (null as
 varchar(16))

null

CHARACTER_LENGTH(cast ('fred' as
 char(16))

16

Limitations

Amazon Kinesis Analytics streaming SQL does not support the optional USING CHARACTERS |
OCTETS clause. This is a departure from the SQL:2008 standard.

COALESCE

COALESCE (
 <value-expression>
 {,<value-expression>}...)

The COALESCE function takes a list of expressions (all of which must be of the same type) and
returns the first non-null argument from the list. If all of the expressions are null, COALESCE returns
null.

Examples

Expression Result

COALESCE('chair') chair

COALESCE('chair', null, 'sofa') chair

COALESCE(null, null, 'sofa') sofa

COALESCE(null, 2, 5) 2

EXP

EXP (<number-expression>)

Returns the value of e (approximately 2.7182818284590455) raised to the power of the input
argument. Returns null if the input argument is null.

Examples

Function Result

EXP(1) 2.7182818284590455

EXP(0) 1.0

EXP(-1) 0.36787944117144233

EXP(10) 22026.465794806718

97

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Function Result

EXP(2.5) 12.182493960703473

EXTRACT

EXTRACT(YEAR|MONTH|DAY|HOUR|MINUTE|SECOND FROM <datetime expression>|
<interval expression>)

The EXTRACT function extracts one field from a DATE, TIME, TIMESTAMP or INTERVAL expression.
Returns BIGINT for all fields other than SECOND. For SECOND it returns DECIMAL(5,3) and includes
milliseconds.

Syntax

Examples

Function Result

EXTRACT(DAY FROM INTERVAL '2
 3:4:5.678' DAY TO SECOND)

2

EXTRACT(HOUR FROM INTERVAL '2
 3:4:5.678' DAY TO SECOND)

3

EXTRACT(MINUTE FROM INTERVAL '2
 3:4:5.678' DAY TO SECOND)

4

EXTRACT(SECOND FROM INTERVAL '2
 3:4:5.678' DAY TO SECOND)

5.678

EXTRACT(MINUTE FROM
 CURRENT_ROW_TIMESTAMP)
where CURRENT_ROW_TIMESTAMP is
 2016-09-23 04:29:26.234

29

EXTRACT (HOUR FROM
 CURRENT_ROW_TIMESTAMP)

where CURRENT_ROW_TIMESTAMP is
2016-09-23 04:29:26.234

4

Use in Function

EXTRACT can be used for conditioning data, as in the following function which returns a 30 minute
floor when CURRENT_ROW_TIMESTAMP (p. 110) is input for p_time.

CREATE or replace FUNCTION FLOOR30MIN(p_time TIMESTAMP)

98

Amazon Kinesis Analytics SQL Reference
Scalar Functions

RETURNS TIMESTAMP
CONTAINS SQL
RETURNS NULL ON NULL INPUT
RETURN floor(p_time to HOUR) + ((EXTRACT (MINUTE FROM p_time) / 30)*
 INTERVAL '30' MINUTE) ;

You would implement this function using code along the following lines:

SELECT stream FLOOR30MIN(CURRENT_ROW_TIMESTAMP) as ROWTIME , * from
 "MyStream") over (range current row) as r

Note
The code above assumes that you have previously created a stream called "MyStream."

FLOOR

FLOOR (<time-unit>)

When called with a numeric argument, FLOOR returns the largest integer equal to or smaller than the
input argument.

When called with a date, time, or timestamp expression, FLOOR returns the largest value equal to or
smaller than the input, subject to the precision specified by <time unit>.

Returns null if any input argument is null.

Examples

Function Result

FLOOR(2.0) 2

FLOOR(-1.0) -1

FLOOR(5.2) 5

FLOOR(-3.3) -4

FLOOR(-3 * 3.1) -10

FLOOR(TIMESTAMP '2004-09-30 13:48:23' TO
HOUR)

TIMESTAMP '2004-09-30 13:00:00'

FLOOR(TIMESTAMP '2004-09-30 13:48:23' TO
MINUTE)

TIMESTAMP '2004-09-30 13:48:00'

FLOOR(TIMESTAMP '2004-09-30 13:48:23' TO
DAY)

TIMESTAMP '2004-09-30 00:00:00.0'

FLOOR(TIMESTAMP '2004-09-30 13:48:23' TO
YEAR)

TIMESTAMP '2004-01-01 00:00:00.0'

Note

• FLOOR (<datetime expression> TO <timeunit>) is a Amazon Kinesis Analytics extension.

99

Amazon Kinesis Analytics SQL Reference
Scalar Functions

• For more information, see CEIL / CEILING (p. 95).

INITCAP

INITCAP (<character-expression>)

Returns a converted version of the input string such that the first character of each space-delimited
word is upper-cased, and all other characters are lower-cased.

Examples

Function Result

INITCAP('each first letter is cAPITALIZED') Each first letter is capitalized

INITCAP('') <empty string>

INITCAP(cast(null as varchar(3))) <null>

Note
The INITCAP function is not part of the SQL:2008 standard. It is an Amazon Kinesis Analytics
extension.

LN

LN (<number-expression>)

Returns the natural log (that is, the log with respect to base e) of the input argument. If the argument is
negative or 0, an exception is raised. Returns null if the input argument is null.

For more information, see LOG10 (p. 100) and EXP (p. 97).

Examples

Function Result

LN(1) 0.0

LN(10) 2.302585092994046

LN(2.5) 0.9162907318741551

LOG10

LOG10 (<number-expression>)

Returns the base 10 logarithm of the input argument. If the argument is negative or 0, an exception is
raised. Returns null if the input argument is null.

Examples

100

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Function Result

LOG10(1) 0.0

LOG10(100) 2.0

log10(cast('23' as decimal)) 1.3617278360175928

Note
LOG10 is not a SQL:2008 standard function; it is a Amazon Kinesis Analytics extension to the
standard.

LOWER

LOWER (<character-expression>)

Converts a string to all lower-case characters. Returns null if input argument is null, and the empty
string if the input argument is an empty string.

Examples

Function Result

LOWER('abcDEFghi123') abcdefghi123

MOD

MOD (<dividend>, <divisor>)
 <dividend> := <integer-expression>
 <divisor> := <integer-expression>

Returns the remainder when the first argument (the dividend is divided by the second numeric
argument (the divisor). If the divisor is zero, a divide by zero error is raised.

Examples

Function Result

MOD(4,2) 0

MOD(5,3) 2

MOD(-4,3) -1

MOD(5,12) 5

Limitations

The Amazon Kinesis Analytics MOD function only supports arguments of scale 0 (integers). This
is a departure from the SQL:2008 standard, which supports any numeric argument. Other numeric
arguments can be CAST to an integer, of course.

101

Amazon Kinesis Analytics SQL Reference
Scalar Functions

NULLIF

NULLIF (<value-expression>, <value-expression>)

Returns null if the two input arguments are equal, otherwise returns the first value. Both arguments
must be of comparable type, or an exception is raised.

Examples

Function Result

NULLIF(4,2) 4

NULLIF(4,4) <null>

NULLIF('amy','fred') amy

NULLIF('amy', cast(null as varchar(3))) amy

NULLIF(cast(null as varchar(3)),'fred') <null>

OVERLAY

 OVERLAY (<original-string>
 PLACING <replacement-string>
 FROM <start-position>
 [FOR <string-length>]
)
 <original-string> := <character-expression>
 <replacement-string> := <character-expression>
 <start-position> := <integer-expression>
 <string-length> := <integer-expression>

The OVERLAY function is used to replace a portion of the first string argument (the original string) with
the second string argument (the replacement string).

The start position indicates the character position in the original string where the replacement string
should be overlaid. The optional string length parameter determines how many characters of the
original string to replace (if not specified, it defaults to the length of the replacement string). If there are
more characters in the replacement string than are left in the original string, the remaining characters
are simply appended.

If the start position is greater than the length of the original string, the replacement string is simply
appended. If the start position is less than 1, then (1 - start position) characters of the replacement
string is prepended to the result, and the rest overlaid on the original (see examples below).

If the string length is less than zero, an exception is raised.

If any of the input arguments are null, the result is null.

Examples

Function Result

OVERLAY ('12345' PLACING 'foo' FROM 1) foo45

102

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Function Result

OVERLAY ('12345' PLACING 'foo' FROM 0) foo345

OVERLAY ('12345' PLACING 'foo' FROM -2) foo12345

OVERLAY ('12345' PLACING 'foo' FROM 4) 123foo

OVERLAY ('12345' PLACING 'foo' FROM 17) 12345foo

OVERLAY ('12345' PLACING 'foo' FROM 2 FOR
0)

1foo2345

OVERLAY ('12345' PLACING 'foo' FROM 2 FOR
2)

1foo45

OVERLAY ('12345' PLACING 'foo' FROM 2 FOR
9)

1foo

Limitations

Amazon Kinesis Analytics does not support the optional USING CHARACTERS | OCTETS clause
defined in SQL:2008; USING CHARACTERS is simply assumed. Strict SQL:2008 also requires that
a start position less than 1 return a null result, rather than the behavior described above. These are
departures from the standard.

POSITION

 POSITION (<search-string> IN <source-string>)
 search-string := <character-expression>
 source-string := <character-expression>

The POSITION function searches for the first input argument (the search string) within the second input
argument (the source string).

If the search string is found within the source string, POSITION returns the character position of the
first instance of the search string (subsequent instances are ignored). If the search string is the empty
string, POSITION returns 1.

If the search string is not found, POSITION returns 0.

If either the search string or the source string is null, POSITION returns null.

Examples

Function Result

POSITION ('findme' IN '1234findmeXXX') 5

POSITION ('findme' IN '1234not-hereXXX') 0

POSITION ('1' IN '1234567') 1

POSITION ('7' IN '1234567') 7

POSITION ('' IN '1234567') 1

Limitations

103

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Amazon Kinesis Analytics streaming SQL does not support the optional USING CHARACTERS |
OCTETS clause defined in SQL:2008; USING CHARACTERS is simply assumed. This is a departure
from the standard.

POWER

 POWER (<base>, <exponent>)
 <base> := <number-expression>
 <exponent> := <number-expression>

Returns the value of the first argument (the base) raised to the power of the second argument (the
exponent). Returns null if either the base or the exponent is null, and raises an exception if the base is
zero and the exponent is negative, or if the base is negative and the exponent is not a whole number.

Examples

Function Result

POWER(3,2) 9

POWER(-2,3) -8

POWER(4,-2) 1/16 ..or.. 0.0625

POWER(10.1,2.5) 324.19285157140644

SUBSTRING

SUBSTRING (<source-string> FROM <start-position> [FOR <string-length>])
 SUBSTRING (<source-string>, <start-position> [, <string-length>])
 <source-string> := <character-expression>
 <start-position> := <integer-expression>
 <string-length> := <integer-expression>

SUBSTRING extracts a portion of the source-string specified in the first argument, starting at start-
position.

If string-length is specified, only string-length characters are returned (if there aren't that many
characters left in the string, only the characters that are left are returned). If string-length is not
specified, it defaults to the remaining length of the input string.

If the start position is less than 1, then it is interpreted as if the start position is 1 and the string length is
reduced by (1 - start position). See examples below. If the start position is greater than the number of
characters in the string, or the length parameter is 0, the result is an empty string.

Examples

Function Result

SUBSTRING('123456789' FROM 3 FOR 4) 3456

SUBSTRING('123456789', 3, 4) 3456

SUBSTRING('123456789' FROM -1 FOR 4) 12

104

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Function Result

SUBSTRING('123456789' FROM 8 FOR 4) 89

SUBSTRING('123456789' FROM 17 FOR 4) <empty string>

SUBSTRING('123456789' FROM 6 FOR 0) <empty string>

Limitations

• Amazon Kinesis Analytics streaming SQL does not support the regular expression form of
SUBSTRING defined in SQL:2008 (that is, 'SUBSTRING ... SIMILAR ... ESCAPE').

• Additionally, Amazon Kinesis Analytics streaming SQL does not support the optional 'USING
CHARACTERS | OCTETS' clause defined in SQL:2008; USING CHARACTERS is simply assumed.

• Finally, the second form of the SUBSTRING function listed above (using commas rather than
FROM...FOR) is not part of the SQL:2008 standard; it is a Amazon Kinesis Analytics streaming SQL
extension.

TRIM

TRIM ([[<trim-specification>] [<trim-character>] FROM] <trim-source>)
 <trim-specification> := LEADING | TRAILING | BOTH
 <trim-character> := <character-expression>
 <trim-source> := <character-expression>

TRIM removes instances of the specified trim-character from the beginning and/or end of the trim-
source string as dictated by the trim-specification (that is, LEADING, TRAILING, or BOTH). If LEADING
is specified, only repetitions of the trim character at the beginning of the source string are removed.
If TRAILING is specified, only repetitions of the trim character at the end of the source string are
removed. If BOTH is specified, or the trim specifier is left out entirely, then repetitions are removed
from both the beginning and end of the source string.

If the trim-character is not explicitly specified, it defaults to the space character (' '). Only one trim
character is allowed; specifying an empty string or a string longer than one character results in an
exception.

If either input is null, null is returned.

Examples

Function Result

TRIM(' Trim front and back ') 'Trim front and back'

TRIM (BOTH FROM ' Trim front and back
 ')

'Trim front and back'

TRIM (BOTH ' ' FROM ' Trim front and
 back ')

'Trim front and back'

105

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Function Result

TRIM (LEADING 'x' FROM 'xxxTrim
 frontxxx')

'Trim frontxxx'

TRIM (TRAILING 'x' FROM
 'xxxTrimxBackxxx')

'xxxTrimxBack'

TRIM (BOTH 'y' FROM 'xxxNo y to
 trimxxx')

'xxxNo y to trimxxx'

UPPER

< UPPER (<character-expression>)

Converts a string to all upper-case characters. Returns null if the input argument is null, and the empty
string if the input argument is an empty string.

Examples

Function Result

UPPER('abcDEFghi123') ABCDEFGHI123

Date and Time Functions

The following built-in functions relate to dates and time.

Topics

• Date and Time Patterns (p. 107)

• CURRENT_DATE (p. 110)

• CURRENT_ROW_TIMESTAMP (p. 110)

• CURRENT_TIME (p. 110)

• CURRENT_TIMESTAMP (p. 111)

• LOCALTIME (p. 111)

• LOCALTIMESTAMP (p. 111)

Of these, the SQL extension CURRENT_ROW_TIMESTAMP is the most useful for a streaming
context, because it gives you information about the times of streaming data as it emerges, not just
when the query is run. This is a key difference between a streaming query and a traditional RDMS
query: streaming queries remain "open," producing more data, so the timestamp for when the query
was run does not offer good information.

LOCALTIMESTAMP, LOCALTIME, CURRENT_DATE, and CURRENT_TIMESTAMP
all produce results which are set to values at the time the query first executes. Only
CURRENT_ROW_TIMESTAMP generates a row with a unique timestamp (date and time) for each
row.

106

Amazon Kinesis Analytics SQL Reference
Scalar Functions

A query run with LOCALTIMESTAMP (or CURRENT_TIMESTAMP or CURRENT_TIME) as one of
the columns puts into all output rows the time the query is first run. If that column instead contains
CURRENT_ROW_TIMESTAMP, each output row gets a newly-calculated value of TIME representing
when that row was output.

Time Zones

Amazon Kinesis Analytics runs in UTC. As a result, all time functions return time in UTC.

Date and Time Patterns

Date and time formats are specified by date and time pattern strings. In these pattern strings, unquoted
letters from A to Z and from a to z represent components of a data or time value. If a letter or text string
is enclosed within a pair of single quotes, that letter or text is not interpreted but rather used as is, as
are all other characters in the pattern string. During printing, that letter or text is copied as is to the
output string; during parsing, they are matched against the input string. "''" represents a single quote.

The following pattern letters are defined for the indicated Date or Time Component. All other characters
from 'A' to 'Z' and from 'a' to 'z' are reserved. For an alphabetic ordering of the pattern letters, see Date
and Time Pattern Letters in Alphabetic Order (p. 109).

Date or Time
Component

Pattern Letter Presentation as text
or number

Examples

Era designator G Text (p. 108) AD

Year y Year 1996; 96

Month in year M Month July; Jul; 07

Week in year w Number 27

Week in month W Number 2

Day in year D Number 189

Day in month d Number 10

Day of week in month F Number 2

Day in week E Text (p. 108) EE=Tu; EEE=Tue;
EEEE=Tuesday

Am/pm marker a Text (p. 108) PM

Hour in day (0-23) H Number 0

Hour in day (1-24) k Number 24

Hour in am/pm (0-11) K Number 0

Hour in am/pm (1-12) h Number 12

Minute in hour m Number 30

Second in minute s Number 55

Millisecond S Number 978

Time zone z General Pacific Standard Time;
PST; GMT-08:00

Time zone Z RFC -0800

107

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Pattern letters are usually repeated, as their number determines the exact presentation:

Text

For formatting, if the number of pattern letters is 4 or more, the full form is used; otherwise a short or
abbreviated form is used if available. For parsing, both forms are accepted, independent of the number
of pattern letters.

Number

For formatting, the number of pattern letters is the minimum number of digits, and shorter numbers are
zero-padded to this amount. For parsing, the number of pattern letters is ignored unless it's needed to
separate two adjacent fields.

Year

Time zones are interpreted as text if they have names. For time zones representing a GMT offset
value, the following syntax is used:

GMTOffsetTimeZone:
GMT Sign Hours : Minutes
Sign: one of
+ -
Hours:
Digit
Digit Digit
Minutes:
Digit Digit
Digit: one of
0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format is locale
independent and digits must be taken from the Basic Latin block of the Unicode standard.

For parsing, RFC 822 time zones are also accepted.

RFC 822 time zone

For formatting, the RFC 822 4-digit time zone format is used:

RFC822TimeZone:
Sign TwoDigitHours Minutes
TwoDigitHours:
Digit Digit

TwoDigitHours must be between 00 and 23. Other definitions are as for general time zones.

For parsing, general time zones are also accepted.

SimpleDateFormat also supports ''localized date and time pattern'' strings. In these strings, the
pattern letters described above may be replaced with other, locale dependent, pattern letters.
SimpleDateFormat does not deal with the localization of text other than the pattern letters; that's up to
the client of the class.

Examples

The following examples show how date and time patterns are interpreted in the U.S. locale. The given
date and time are 2001-07-04 12:08:56 local time in the U.S. Pacific time zone.

108

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Date and Time Pattern Result

"yyyy.MM.dd G 'at' HH:mm:ss z" 2001.07.04 AD at 12:08:56 PDT

"EEE, MMM d, ''yy" Wed, Jul 4, '01

"h:mm a" 12:08 PM

"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02001.July.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss Z" Wed, 4 Jul 2001 12:08:56 -0700

"yyMMddHHmmssZ" 010704120856-0700

"yyyy-MM-dd'T'HH:mm:ss.SSSZ" 2001-07-04T12:08:56.235-0700

Date and Time Pattern Letters in Alphabetic Order

The same pattern letters shown at first, above, in Date or Time Component order are shown below in
alphabetic order for easy reference.

Pattern Letter Date or Time
Component

Presentation as text
or number

Examples

a Am/pm marker Text PM

D Day in year Number 189

d Day in month Number 10

E Day in week Text EE=Tu; EEE=Tue;
EEEE=Tuesday

F Day of week in month Number 2

G Era designator Text AD

H Hour in day (0-23) Number 0

h Hour in am/pm (1-12) Number 12

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

M Month in year Month July; Jul; 07

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

w Week in year Number 27

W Week in month Number 2

y Year Year 1996; 96

109

Amazon Kinesis Analytics SQL Reference
Scalar Functions

Pattern Letter Date or Time
Component

Presentation as text
or number

Examples

z Time zone General Pacific Standard Time;
PST; GMT-08:00

Z Time zone RFC -0800

CURRENT_DATE

Returns the current Amazon Kinesis Analytics system date when the query executes as YYYY-MM-DD
when the query executes.

For more information, see CURRENT_TIME (p. 110), CURRENT_TIMESTAMP (p. 111),
LOCALTIMESTAMP (p. 111), LOCALTIME (p. 111), and
CURRENT_ROW_TIMESTAMP (p. 110).

Example

+---------------+
| CURRENT_DATE |
+---------------+
| 2008-08-27 |
+---------------+

CURRENT_ROW_TIMESTAMP

CURRENT_ROW_TIMESTAMP is an Amazon Kinesis Analytics extension to the SQL:2008
specification. This function returns the current timestamp as defined by the environment on which the
Amazon Kinesis Analytics application is running. CURRENT_ROW_TIMESTAMP is always returned as
UTC, not the local timezone.

CURRENT_ROW_TIMESTAMP is similar to LOCALTIMESTAMP (p. 111), but returns a new
timestamp for each row in a stream.

A query run with LOCALTIMESTAMP (or CURRENT_TIMESTAMP or CURRENT_TIME) as one of the
columns puts into all output rows the time the query is first run.

If that column instead contains CURRENT_ROW_TIMESTAMP, each output row gets a newly-
calculated value of TIME representing when that row was output.

Note
CURRENT_ROW_TIMESTAMP is not defined in the SQL:2008 specification; it is an Amazon
Kinesis Analytics extension.

For more information, see CURRENT_TIME (p. 110), CURRENT_DATE (p. 110),
CURRENT_TIMESTAMP (p. 111), LOCALTIMESTAMP (p. 111), LOCALTIME (p. 111), and
CURRENT_ROW_TIMESTAMP (p. 110).

CURRENT_TIME

Returns the current Amazon Kinesis Analytics system time when the query executes. Time is in UTC,
not the local time zone.

For more information, see CURRENT_TIMESTAMP (p. 111), LOCALTIMESTAMP (p. 111),
LOCALTIME (p. 111), CURRENT_ROW_TIMESTAMP (p. 110), and CURRENT_DATE (p. 110).

Example

110

Amazon Kinesis Analytics SQL Reference
Scalar Functions

+---------------+
| CURRENT_TIME |
+---------------+
| 20:52:05 |

CURRENT_TIMESTAMP

Returns the current database system timestamp (as defined on the environment on which Amazon
Kinesis Analytics is running) as a datetime value.

For more information, see CURRENT_TIME (p. 110), CURRENT_DATE (p. 110),
LOCALTIME (p. 111), LOCALTIMESTAMP (p. 111), and
CURRENT_ROW_TIMESTAMP (p. 110).

Example

+--------------------+
| CURRENT_TIMESTAMP |
+--------------------+
| 20:52:05 |
+--------------------+

LOCALTIME

Returns the current time when the query executes as defined by the environment on which Amazon
Kinesis Analytics is running. LOCALTIME is always returned as UTC (GMT), not the local timezone.

For more information, see CURRENT_TIME (p. 110), CURRENT_DATE (p. 110),
CURRENT_TIMESTAMP (p. 111), LOCALTIMESTAMP (p. 111), and
CURRENT_ROW_TIMESTAMP (p. 110).

Example

 VALUES localtime;
+------------+
| LOCALTIME |
+------------+
| 01:11:15 |
+------------+
1 row selected (1.558 seconds)

Limitations

Amazon Kinesis Analytics does not support the optional <time precision> parameter specified in
SQL:2008. This is a departure from the SQL:2008 standard.

LOCALTIMESTAMP

Returns the current timestamp as defined by the environment on Amazon Kinesis Analytics application
is running. Time is always returned as UTC (GMT), not the local timezone.

For more information, see CURRENT_TIME (p. 110), CURRENT_DATE (p. 110),
CURRENT_TIMESTAMP (p. 111), LOCALTIME (p. 111), and
CURRENT_ROW_TIMESTAMP (p. 110).

111

Amazon Kinesis Analytics SQL Reference
Pattern Matching Functions

Example

values localtimestamp;
+--------------------------+
| LOCALTIMESTAMP |
+--------------------------+
| 2008-08-27 01:13:42.206 |
+--------------------------+
1 row selected (1.133 seconds)

Limitations

Amazon Kinesis Analytics does not support the optional <timestamp precision> parameter specified in
SQL:2008. This is a departure from the SQL:2008 standard.

Pattern Matching Functions
Amazon Kinesis Analytics features the following functions for pattern matching:

• REGEX_LOG_PARSE (p. 112) uses the default Java regular expression parser. For more
information about this parser, see Pattern in the Java Platform documentation on the Oracle website.

• FAST_REGEX_LOG_PARSER (p. 114) works similarly to the regex parser, but takes several
"shortcuts" to ensure faster results. For example, the fast regex parser stops at the first match it finds
(known as "lazy" semantics.

REGEX_LOG_PARSE

REGEX_LOG_PARSE (<character-expression>,<regex-pattern>,<columns>)<regex-
pattern> := <character-expression>[OBJECT] <columns> := <columnname>
 [<datatype>] {, <columnname> <datatype> }*

Parses a character string based on Java Regular Expression patterns as defined in
java.util.regex.pattern.

Columns are based on match groups defined in the regex-pattern. Each group defines a column,
and the groups are processed from left to right. Failure to match produces a NULL value result: If the
regular expression does not match the string passed as the first parameter, NULL is returned.

The columns returned will be COLUMN1 through COLUMNn, where n is the number of groups in the
regular expression. The columns will be of type varchar(1024).

Example 1

The following code returns two columns with zero or more of [0-9] of the string 'abcde111fghij22klm'

SELECT t.r."COLUMN1", t.r."COLUMN2" from
(values (REGEX_LOG_PARSE('abcde111fghij22klm',
 '([^0-9]*)1*([^0-9]*)2*([^0-9]*)'))) t(r);

 +----------+-----------+
 | COLUMN1 | COLUMN2 |
 +----------+-----------+
 | 111 | 22 |
 +----------+-----------+

112

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

Amazon Kinesis Analytics SQL Reference
Pattern Matching Functions

 1 row selected

Example 2

The following code returns three columns:

• one, labeled "Amount," with one or more digits

• one, labeled "Item," with one or more non-whitespace characters, followed by whitespace, followed
by one or more non-whitespace characters

• one, labeled "Ship Date," with one or more non-whitespace characters

SELECT t.r."Amount", t.r."Item", t.r."Ship Date" from
(values (REGEX_LOG_PARSE('445 light bulbs should be in the basket. The order
 will ship on 5/4/2014.', '(^(\d+) (\S+\s\S+) should be in the basket. The
 order will ship on (\S+))'))) t(r);

 +----------+-------------+-------------+
 | Amount | Item | Ship Date |
 +----------+-------------+-------------+
 | 445 | light bulbs | 5/4/2014 |
 +----------+-------------+-------------+
 1 row selected

For more information, see FAST_REGEX_LOG_PARSER (p. 114).

Quick Regex Reference

For full details on Regex, see java.util.regex.pattern

[xyz] Find single character of: x, y or z

[^abc] Find any single character except: x, y, or z

[r-z] Find any single character between r-z

[r-zR-Z] Find any single character between r-z or
R-Z

^ Start of line

$ End of line

\A Start of string

\z End of string

. Any single character

\s Find any whitespace character

\S Find any non-whitespace character

\d Find any digit

\D Find any non-digit

\w Find any word character (letter, number,
underscore)

\W Find any non-word character

\b Find any word boundary

(...) Capture everything enclosed

(x|y) Find x or y (also works with symbols such
as \d or \s)

x? Find zero or one of x (also works with symbols
such as \d or \s)

x* Find zero or more of x (also works with
symbols such as \d or \s)

x+ Find one or more of x (also works with
symbols such as \d or \s)

x{3} Find exactly 3 of x (also works with symbols
such as \d or \s)

x{3,} Find 3 or more of x (also works with
symbols such as \d or \s)

x{3,6} Find between 3 and 6 of x (also works with
symbols such as \d or \s)

113

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

Amazon Kinesis Analytics SQL Reference
Pattern Matching Functions

FAST_REGEX_LOG_PARSER

FAST_REGEX_LOG_PARSE('input_string', 'fast_regex_pattern')

The FAST_REGEX_LOG_PARSE works by first decomposing the regular expression into a series of
regular expressions, one for each expression inside a group and one for each expression outside a
group. Any fixed length portions at the start of any expressions are moved to the end of the previous
expression. If any expression is entirely fixed length, it is merged with the previous expression.
The series of expressions is then evaluated using lazy semantics with no backtracking. (In regular
expression parsing parlance, "lazy" means don't parse more than you need to at each step. "Greedy"
means parse as much as you can at each step.)

The columns returned will be COLUMN1 through COLUMNn, where n is the number of groups in the
regular expression. The columns will be of type varchar(1024). See sample usage below at First FRLP
Example and at Further FRLP Examples.

FAST_REGEX_LOG_PARSER (FRLP)

FAST_REGEX_LOG_PARSER uses a lazy search - it stops at the first match. By contrast, the
REGEX_LOG_PARSE (p. 112) is greedy unless possessive quantifiers are used.

FAST_REGEX_LOG_PARSE scans the supplied input string for all the characters specified by the
Fast Regex pattern.

• All characters in that input string must be accounted for by the characters and scan groups defined
in the Fast Regex pattern. Scan groups define the fields-or-columns resulting when a scan is
successful.

• If all characters in the input_string are accounted for when the Fast Regex pattern is applied, then
FRLP creates an output field (column) from each parenthetical expression in that Fast Regex
pattern, in left-to-right order. The first (leftmost) parenthetical expression creates the first output
field, the next (second) parenthetical expression creates the second output field, up through the last
parenthetical expression creating the last output field.

• If the input_string contains any characters not accounted for (matched) by applying Fast Regex
pattern, then FRLP returns no fields at all.

Character Class Symbols for Fast Regex

Fast Regex uses a different set of character class symbols from the regular regex parser:

Symbol or Construct Meaning

- Character range, including endpoints

[charclasses] Character class

[^ charclasses] Negated character class

| Union

& Intersection

? Zero or one occurrence

* Zero or more occurrences

+ One or more occurrences

{n} n occurrences

114

Amazon Kinesis Analytics SQL Reference
Pattern Matching Functions

Symbol or Construct Meaning

{n,} n or more occurrences

{n,m} n to m occurrences, including both

. Any single character

The empty language

@ Any string

"<Unicode string without double-quotes>" A string)

() The empty string)

(unionexp) Precedence override

< <identifier> > Named pattern

<n-m> Numerical interval

charexp:=<Unicode character> A single non-reserved character

\ <Unicode character> A single character)

We support the following POSIX standard identifiers as named patterns:

 <Digit> - "[0-9]"

 <Upper> - "[A-Z]"

 <Lower> - "[a-z]"

 <ASCII> - "[\u0000-\u007F]"

 <Alpha> - "<Lower>|<Upper>"

 <Alnum> - "<Alpha>|<Digit>"

 <Punct> - "[!\"#$%&'()*+,-./:;<=>?@[\\\]^_`{|}~]"

 <Blank> - "[\t]"

 <Space> - "[\t\n\f\r\u000B]"

 <Cntrl> - "[\u0000-\u001F\u007F]"

 <XDigit> - "0-9a-fA-F"

 <Print> - "<Alnum>|<Punct>"

 <Graph> - "<Print>"

First FRLP Example

This first example uses the Fast Regex pattern '(.*)_(._.*)_.*'

select t.r."COLUMN1", t.r."COLUMN2" from
.> (values
 (FAST_REGEX_LOG_PARSE('Mary_had_a_little_lamb', '(.*)_(._.*)_.*'))) t(r);

115

Amazon Kinesis Analytics SQL Reference
Pattern Matching Functions

+------------------------+-----------------------+
| COLUMN1 | COLUMN2 |
+------------------------+-----------------------+
| Mary_had | a_little_lamb |
+------------------------+-----------------------+
1 row selected

1. The scan of input_string ('Mary_had_a_little_lamb') begins with the 1st group defined in Fast Regex
pattern: (.*), which means "find any character 0 or more times."

'(.*)_(._.*)_.*'

2. This group specification, defining the first column to be parsed, asks the Fast Regex Log Parser
to accept input string characters starting from the input string's first character until it finds the next
group in the Fast Regex Pattern or the next literal character or string that is not inside a group (not in
parentheses). In this example, the next literal character after the first group is an underscore:

'(.*)_(._.*)_.*'

3. The parser scans each character in the input string until it finds the next specification in the Fast
Regex pattern: an underscore:

'(.*)_(._.*)_.*'

4. Group-2 thus begins with "a_l". Next, the parser needs to determine the end of this group, using the
remaining specification in the pattern:

'(.*)_(._.*)_.*'

Note
Character-strings or literals specified in the pattern but not inside a group must be found in the
input string but will not be included in any output field.
If the Fast Regex pattern had omitted the final asterisk, no results would be obtained.

Further FRLP Examples

The next example uses a "+", which means repeat the last expression 1 or more times ("*" means 0 or
more times).

Example A

In this case, the longest prefix is the first underscore. The first field/column group will match on "Mary"
and the second will not match.

select t.r."COLUMN1", t.r."COLUMN2" from
 > (values
 (FAST_REGEX_LOG_PARSE('Mary_had_a_little_lamb',
 '(.*)_+(._.*)'))) t(r);
 +----------+----------+
 | COLUMN1 | COLUMN2 |
 +----------+----------+
 +----------+----------+
 No rows selected

The preceding example returns no fields because the "+" required there be at least one more
underscore-in-a-row; and the input_string does not have that.

Example B

In the following case, the '+' is superfluous because of the lazy semantics:

116

Amazon Kinesis Analytics SQL Reference
Pattern Matching Functions

select t.r."COLUMN1", t.r."COLUMN2" from
 > (values
 (FAST_REGEX_LOG_PARSE('Mary____had_a_little_lamb',
 '(.*)_+(.*)'))) t(r);
 +-------------------------+-------------------------+
 | COLUMN1 | COLUMN2 |
 +-------------------------+-------------------------+
 | Mary | had_a_little_lamb |
 +-------------------------+-------------------------+
 1 row selected

The preceding example succeeds in returning two fields because after finding the multiple underscores
required by the "_+" specification, the group-2 specification (.*) accepts all remaining characters
in the .input_string. Underscores do not appear trailing "Mary" nor leading "had" because the "_+"
specification is not enclosed in parentheses.

As mentioned in the introduction, "lazy" in regular expression parsing parlance means don't parse more
than you need to at each step; "Greedy" means parse as much as you can at each step.

The first case in this topic, A, fails because when it gets to the first underscore, the regex processor
has no way of knowing without backtracking that it can't use the underscore to match "_+", and FRLP
doesn't backtrack, whereas REGEX_LOG_PARSE (p. 112) does.

The search directly above, B, gets turned into three searches:

(.*)_
*(.
.*)

Notice that the second field group gets split between the second and third searches, also that "_+" is
considered the same as "__*" (that is, it considers "underscore repeat-underscore-1-or-more-times" the
same as "underscore underscore repeat-underscore-0-or-more-times".)

Case A demonstrates the main difference between REGEX_LOG_PARSE and
FAST_REGEX_LOG_PARSE, because the search in A would work under REGEX_LOG_PARSE
because that function would use backtracking.

Example C

In the following example, the plus is not superfluous, because the "<Alpha> (any alphabetic char) is
fixed length thus will be used as a delimiter for the " +" search.

select t.r."COLUMN1", t.r."COLUMN2" from
.> (values
 (FAST_REGEX_LOG_PARSE('Mary____had_a_little_lamb', '(.*)_+(<Alpha>.*)')))
 t(r);
+----------------------------+----------------------------+
| COLUMN1 | COLUMN2 |
+----------------------------+----------------------------+
| Mary | had_a_little_lamb |
+----------------------------+----------------------------+
1 row selected

'(.*) +(<Alpha>.*)' gets converted into three regular expressions:
'.* '
' *<Alpha>'
'.*$'

117

Amazon Kinesis Analytics SQL Reference
Expressions and Literals

Each is matched in turn using lazy semantics.

The columns returned will be COLUMN1 through COLUMNn, where n is the number of groups in the
regular expression. The columns will be of type varchar(1024).

Expressions and Literals
Value expressions

Value expressions are defined by the following syntax:

value-expression := <character-expression > | <number-expression> |
 <datetime-expression> | <interval-expression> | <boolean-expression>

Character (string) expressions

Character expressions are defined by the following syntax:

character-expression := <character-literal>
 | <character-expression> || <character-expression>
 | <character-function> (<parameters>)

 character-literal := <quote> { <character> }* <quote>
 string-literal := <quote> { <character> }* <quote>
 character-function := CAST | COALESCE | CURRENT_PATH
 | FIRST_VALUE | INITCAP | LAST_VALUE
 | LOWER | MAX | MIN | NULLIF
 | OVERLAY | SUBSTRING| SYSTEM_USER
 | TRIM | UPPER
 | <user-defined-function>

Note that Amazon Kinesis Analytics streaming SQL supports unicode character literals, such as
u&'foo'. As in the use of regular literals, you can escape single quotes in these, such as u&'can''t'.
Unlike regular literals, you can have unicode escapes: e.g., u&'\0009' is a string consisting only of a tab
character. You can escape a \ with another \, such as u&'back\\slash'. Amazon Kinesis Analytics also
supports alternate escape characters, such as u&'!0009!!' uescape '!' is a tab character.

Numeric expressions

Numeric expressions are defined by the following syntax:

number-expression := <number-literal>
 | <number-unary-oper> <number-expression>
 | <number-expression> <number-operator> <number-expression>
 | <number-function> [(<parameters>)]
 number-literal := <UNSIGNED_INTEGER_LITERAL> | <DECIMAL_NUMERIC_LITERAL>
 | <APPROX_NUMERIC_LITERAL>

--Note: An <APPROX_NUMERIC_LITERAL> is a number in scientific notation, such
 as with an
--exponent, such as 1e2 or -1.5E-6.
number-unary-oper := + | -

118

Amazon Kinesis Analytics SQL Reference
Expressions and Literals

 number-operator := + | - | / | *

 number-function := ABS | AVG | CAST | CEIL
 | CEILING | CHAR_LENGTH
 | CHARACTER_LENGTH | COALESCE
 | COUNT | EXP | EXTRACT
 | FIRST_VALUE
 | FLOOR | LAST_VALUE
 | LN | LOG10
 | MAX | MIN | MOD
 | NULLIF
 | POSITION | POWER
 | SUM| <user-defined-function>

Date / Time expressions

Date / Time expressions are defined by the following syntax:

datetime-expression := <datetime-literal>
 | <datetime-expression> [+ | -] <number-
expression>
 | <datetime-function> [(<parameters>)]
 datetime-literal := <left_brace> { <character-literal> } *
 <right_brace>
 | <DATE> { <character-literal> } *
 | <TIME> { <character-literal> } *
 | <TIMESTAMP> { <character-literal> } *
 datetime-function := CAST | CEIL | CEILING
 | CURRENT_DATE | CURRENT_ROW_TIMESTAMP
 | CURRENT_ROW_TIMESTAMP
 | FIRST_VALUE| FLOOR
 | LAST_VALUE | LOCALTIME
 | LOCALTIMESTAMP | MAX | MIN
 | NULLIF | ROWTIME
 | <user-defined-function>
 <time unit> := YEAR | MONTH | DAY | HOUR | MINUTE | SECOND

Interval Expression

Interval expressions are defined by the following syntax:

interval-expression := <interval-literal>
 | <interval-function>
 interval-literal := <INTERVAL> (<MINUS> | <PLUS>) <QUOTED_STRING>
 <IntervalQualifier>
 IntervalQualifier := <YEAR> (<UNSIGNED_INTEGER_LITERAL>)
 | <YEAR> (<UNSIGNED_INTEGER_LITERAL>) <TO>
 <MONTH>
 | <MONTH> [(<UNSIGNED_INTEGER_LITERAL>)]
 | <DAY> [(<UNSIGNED_INTEGER_LITERAL>)]
 | <DAY> [(<UNSIGNED_INTEGER_LITERAL>)] <TO>
 { <HOUR> | <MINUTE> | <SECOND>
 [(<UNSIGNED_INTEGER_LITERAL>)] }
 | <HOUR> [(<UNSIGNED_INTEGER_LITERAL>)]
 | <HOUR> [(<UNSIGNED_INTEGER_LITERAL>)] <TO>
 { <MINUTE> | <SECOND>
 [<UNSIGNED_INTEGER_LITERAL>] }
 | <MINUTE> [(<UNSIGNED_INTEGER_LITERAL>)]

119

Amazon Kinesis Analytics SQL Reference
Monotonic Expressions and Operators

 | <MINUTE> [(<UNSIGNED_INTEGER_LITERAL>)]
 <TO>
 <SECOND>
 [(<UNSIGNED_INTEGER_LITERAL>)]
 | <SECOND> [(<UNSIGNED_INTEGER_LITERAL>)]
 interval-function := ABS | CAST | FIRST_VALUE
 | LAST_VALUE | MAX | MIN
 | NULLIF| <user-defined-function>

Boolean expression

Boolean expressions are defined by the following syntax:

boolean-expression := <boolean-literal>
 | <boolean-expression> <boolean-operator> <boolean-
expression>
 | <boolean-unary-oper> <boolean-expression>
 | <boolean-function> (<parameters>)
 | (<boolean-expression>)
 boolean-literal := TRUE | FALSE
 boolean-operator := AND | OR
 boolean-unary-oper := NOT
 boolean-function := CAST | FIRST_VALUE | LAST_VALUE
 | NULLIF | <user-defined-function>

Monotonic Expressions and Operators
Since Amazon Kinesis Analytics queries operate on infinite streams of rows, some operations are only
possible if something is known about those streams.

For example, given a stream of orders, it makes sense to ask for a stream summarizing orders by day
and product (because day is increasing) but not to ask for a stream summarizing orders by product and
shipping state. We can never complete the summary of, say Widget X to Oregon, because we never
see the 'last' order of a Widget to Oregon.

This property, of a stream being sorted by a particular column or expression, is called monotonicity.

Some time-related definitions:

• Monotonic. An expression is monotonic if it is ascending or descending. An equivalent phrasing is
"non-decreasing or non-increasing."

• Ascending. An expression e is ascending within a stream if the value of e for a given row is always
greater than or equal to the value in the previous row.

• Descending. An expression e is descending within a stream if the value of e for a given row is
always less than or equal to the value in the previous row.

• Strictly Ascending. An expression e is strictly ascending within a stream if for the value of e for a
given row is always greater than the value in the previous row.

• Strictly Descending. An expression e is strictly descending within a stream if the value of e for a
given row is always less than the value in the previous row.

• Constant. An expression e is constant within a stream if the value of e for a given row is always
equal to the value in the previous row.

Note that by this definition, a constant expression is considered monotonic.

120

Amazon Kinesis Analytics SQL Reference
Monotonic Expressions and Operators

Monotonic columns

The ROWTIME system column is ascending. The ROWTIME column is not strictly ascending: it is
acceptable for consecutive rows to have the same timestamp.

Amazon Kinesis Analytics prevents a client from inserting a row into a stream whose timestamp is less
than the previous row it wrote into the stream. Amazon Kinesis Analytics also ensures that if multiple
clients are inserting rows into the same stream, the rows are merged so that the ROWTIME column is
ascending.

Clearly it would be useful to assert, for instance, that the orderId column is ascending; or that no
orderId is ever more than 100 rows from sorted order. However, declared sort keys are not supported
in the current release.

Monotonic expressions

Amazon Kinesis Analytics can deduce that an expression is monotonic if it knows that its arguments
are monotonic. (See also the Monotonic Function (p. 44).)

Another definition:

Functions or operators that are monotonic

A function or operator is monotonic if, when applied to a strictly increasing sequence of values, it yields
a monotonic sequence of results.

For example, the FLOOR function, when applied to the ascending inputs {1.5, 3, 5, 5.8, 6.3}, yields
{1, 3, 5, 5, 6}. Note that the input is strictly ascending, but the output is merely ascending (includes
duplicate values).

Rules for deducing monotonicity

Amazon Kinesis Analytics requires that one or more grouping expressions are valid in order for a
streaming GROUP BY statement to be valid. In other cases, Amazon Kinesis Analytics may be able
to operate more efficiently if it knows about monotonicity; for example it may be able to remove entries
from a table of windowed aggregate totals if it knows that a particular key will never be seen on the
stream again.

In order to exploit monotonicity in this way, Amazon Kinesis Analytics uses a set of rules for deducing
the monotonicity of an expression. Here are the rules for deducing monotonicity:

Expression Monotonicity

c Constant

FLOOR (p. 99)(m) Same as m, but not strict

CEIL / CEILING (p. 95)(m) Same as m, but not strict

CEIL / CEILING (p. 95)(m TO timeUnit) Same as m, but not strict

FLOOR (p. 99)(m TO timeUnit) Same as m, but not strict

SUBSTRING (p. 104)(m FROM 0 FOR c) Same as m, but not strict

+ m Same as m

- m Reverse of m

m + c

c + m

Same as m

121

Amazon Kinesis Analytics SQL Reference
Condition Clause

Expression Monotonicity

m1 + m2 Same as m1, if m1 and m2 have same direction;

otherwise not monotonic

c - m Reverse of m

m * c

c * m

Same as m if c is positive;

reverse of m is c is negative; constant (0) c is 0

c / m Same as m if m is always positive or always
negative, and c and m have same sign;

reverse of m if m is always positive or always
negative, and c and m have different sign;

otherwise not monotonic

Constant

LOCALTIME (p. 111)

LOCALTIMESTAMP (p. 111)

CURRENT_ROW_TIMESTAMP (p. 110)

CURRENT_DATE (p. 110)

Ascending

Throughout the table, c is a constant, and m (also m1 and m2) is a monotonic expression.

Condition Clause
Referenced by:

• SELECT clauses: HAVING clause (p. 147), WHERE clause (p. 149), and JOIN clause (p. 142).
(See also the SELECT chart and its SELECT clause (p. 137).)

• DELETE

A condition is any value expression of type BOOLEAN, such as the following examples:

• 2<4

• TRUE

• FALSE

• expr_17 IS NULL

• NOT expr_19 IS NULL AND expr_23 < expr>29

• expr_17 IS NULL OR (NOT expr_19 IS NULL AND expr_23 < expr>29)

122

Amazon Kinesis Analytics SQL Reference
CREATE statements

Standard SQL Operators

The following topics discuss standard SQL operators:

Topics

• CREATE statements (p. 123)

• INSERT (p. 128)

• MERGE statements (p. 129)

• Query (p. 131)

• SELECT statement (p. 134)

CREATE statements
You can use the following CREATE statements with Amazon Kinesis Analytics:

• CREATE FUNCTION (p. 125)

• CREATE PUMP (p. 126)

• CREATE STREAM (p. 123)

CREATE STREAM
The CREATE STREAM statement creates a (local) stream. The name of the stream must be distinct
from the name of any other stream in the same schema. It is good practice to include a description of
the stream.

Like tables, streams have columns, and you specify the data types for these in the CREATE
STREAM statement. These should map to the data source for which you are creating the stream. For
column_name, any valid non-reserved SQL name is usable. Column values cannot be null.

• Specifying OR REPLACE re-creates the stream if it already exists, enabling a definition change for
an existing object, implicitly dropping it without first needing to use a DRP command. Using CREATE
OR REPLACE on a stream that already has data in flight kills the stream and loses all history.

• RENAME can be specified only if OR REPLACE has been specified.

• For the complete list of types and values in type_specification, such as TIMESTAMP, INTEGER, or
varchar(2), see the topic Amazon Kinesis Analytics Data Types in the Amazon Kinesis Analytics SQL
Reference Guide.

• For option_value, any string can be used.

123

Amazon Kinesis Analytics SQL Reference
CREATE STREAM

Syntax

The following are basic examples of streams defined for simple data sources. Note: All streams need
to be defined within a schema.

Simple stream for unparsed log data

124

Amazon Kinesis Analytics SQL Reference
CREATE FUNCTION

CREATE OR REPLACE STREAM logStream (
 source VARCHAR(20),
 message VARCHAR(3072))
DESCRIPTION 'Head of webwatcher stream processing';

Stream capturing sensor data from Intelligent Travel System pipeline

CREATE OR REPLACE STREAM "LaneData" (
 -- ROWTIME is time at which sensor data collected
 LDS_ID INTEGER, -- loop-detector ID
 LNAME VARCHAR(12),
 LNUM VARCHAR(4),
 OCC SMALLINT,
 VOL SMALLINT,
 SPEED DECIMAL(4,2)
) DESCRIPTION 'Conditioned LaneData for analysis queries';

Stream capturing order data from e-commerce pipeline

CREATE OR REPLACE STREAM "OrderData" (
 "key_order" BIGINT NOT NULL,
 "key_user" BIGINT,
 "country" SMALLINT,
 "key_product" INTEGER,
 "quantity" SMALLINT,
 "eur" DECIMAL(19,5),
 "usd" DECIMAL(19,5)
) DESCRIPTION 'conditioned order data, ready for analysis';

CREATE FUNCTION
Amazon Kinesis Analytics provides a number of Standard Functions (p. 30), and also allows users to
extend its capabilities by means of user-defined functions (UDFs). Amazon Kinesis Analytics supports
UDFs defined in SQL only.

User-defined functions may be invoked using either the fully-qualified name or by the function name
alone.

Values passed to (or returned from) a user-defined function or transformation must be exactly the
same data types as the corresponding parameter definitions. In other words, implicit casting is not
allowed in passing parameters to (or returning values from) a user-defined function.

User-Defined Function (UDF)

A user-defined function can implement complex calculations, taking zero or more scalar parameters
and returning a scalar result. UDFs operate like built-in functions such as FLOOR() or LOWER(). For
each occurrence of a user-defined function within a SQL statement, that UDF is called once per row
with scalar parameters: constants or column values in that row.

Syntax

 CREATE FUNCTION ''<function_name>'' (''<parameter_list>'')

125

Amazon Kinesis Analytics SQL Reference
CREATE PUMP

 RETURNS ''<data type>''
 LANGUAGE SQL
 [SPECIFIC ''<specific_function_name>'' | [NOT] DETERMINISTIC]
 CONTAINS SQL
 [READS SQL DATA]
 [MODIFIES SQL DATA]
 [RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]
 RETURN ''<SQL-defined function body>''

SPECIFIC assigns a specific function name that is unique within the application. Note that the regular
function name does not need to be unique (two or more functions may share the same name, as long
as they are distinguishable by their parameter list).

DETERMINISTIC / NOT DETERMINISTIC indicates whether a function will always return the same
result for a given set of parameter values. This may be used by your application for query optimization.

READS SQL DATA and MODIFIES SQL DATA indicate whether the function potentially reads or
modifies SQL data, respectively. If a function attempts to read data from tables or streams without
READS SQL DATA being specified, or insert to a stream or modify a table without MODIFIES SQL
DATA being specified, an exception will be raised.

RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT indicate whether the function is
defined as returning null if any of its parameters are null. If left unspecified, the default is CALLED ON
NULL INPUT.

A SQL-defined function body consists only of a single RETURN statement.

Examples

CREATE FUNCTION get_fraction(degrees DOUBLE)
 RETURNS DOUBLE
 CONTAINS SQL
 RETURN degrees - FLOOR(degrees)
;

CREATE PUMP
A pump is an Amazon Kinesis Analytics Repository Object (an extension of the SQL standard) that
provides a continuously running INSERT INTO stream SELECT ... FROM query functionality, thereby
enabling the results of a query to be continuously entered into a named stream.

You need to specify a column list for both the query and the named stream (these imply a set of
source-target pairs). The column lists need to match in terms of datatype, or the SQL validator will
reject them. (These need not list all columns in the target stream; you can set up a pump for one
column.)

For more information, see SELECT statement (p. 134).

The following code first creates and sets a schema, then creates two streams in this schema:

• "OrderDataWithCreateTime" which will serve as the origin stream for the pump.

• "OrderData" which will serve as the destination stream for the pump.

CREATE SCHEMA "Test";

126

Amazon Kinesis Analytics SQL Reference
CREATE PUMP

SET SCHEMA '"Test"';

CREATE OR REPLACE STREAM "OrderDataWithCreateTime" (
"key_order" VARCHAR(20),
"key_user" VARCHAR(20),
"key_billing_country" VARCHAR(20),
"key_product" VARCHAR(20),
"quantity" VARCHAR(20),
"eur" VARCHAR(20),
"usd" VARCHAR(20))
DESCRIPTION 'Creates origin stream for pump';

CREATE OR REPLACE STREAM "OrderData" (
"key_order" VARCHAR(20),
"key_user" VARCHAR(20),
"country" VARCHAR(20),
"key_product" VARCHAR(20),
"quantity" VARCHAR(20),
"eur" INTEGER,
"usd" INTEGER)
DESCRIPTION 'Creates destination stream for pump';

The following code uses these two streams to create a pump. Data is selected from
"OrderDataWithCreateTime" and inserted into "OrderData".

CREATE OR REPLACE PUMP "200-ConditionedOrdersPump" STOPPED AS
INSERT INTO "OrderData" (
"key_order", "key_user", "country",
"key_product", "quantity", "eur", "usd")
//note that this list matches that of the query
SELECT STREAM
"key_order", "key_user", "key_billing_country",
"key_product", "quantity", "eur", "usd"
//note that this list matches that of the insert statement
FROM "OrderDataWithCreateTime";

For more detail, see the topic In-Application Streams and Pumps in the Amazon Kinesis Analytics
Developer Guide.

Syntax

 CREATE [OR REPLACE] PUMP <qualified-pump-name> [STARTED | STOPPED]
 [DESCRIPTION '<string-literal>'] AS <streaming-
insert>

where streaming-insert is an insert statement such as:

INSERT INTO ''stream-name'' SELECT "columns" FROM <source stream>

Syntax Chart

127

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/streams-pumps.html

Amazon Kinesis Analytics SQL Reference
INSERT

INSERT
INSERT is used to insert rows into a stream. It can also be used in a pump to insert the output of one
stream into another.

Syntax

 <insert statement> :=
 INSERT [EXPEDITED]
 INTO <table-name > [(insert-column-specification)]
 < query >
 <insert-column-specification> := < simple-identifier-list >
 <simple-identifier-list> :=
 <simple-identifier> [, < simple-identifier-list >]

For a discussion of VALUES, see SELECT statement (p. 134).

Pump Stream Insert

INSERT may also be specified as part of a CREATE PUMP (p. 126) statement.

 CREATE PUMP "HighBidsPump" AS INSERT INTO "highBids" ("ticker", "shares",
 "price")
 SELECT "ticker", "shares", "price"

128

Amazon Kinesis Analytics SQL Reference
MERGE statements

 FROM SALES.bids
 WHERE "shares"*"price">100000.00

Here the results to be inserted into the "highBids" stream should come from a UNION ALL expression
that evaluates to a stream. This will create a continuously running stream insert. Rowtimes of the rows
inserted will be inherited from the rowtimes of the rows output from the select or UNION ALL. Again
rows may be initially dropped if other inserters, ahead of this inserter, have inserted rows with rowtimes
later than those initially prepared by this inserter, since the latter would then be out of time order. See
the topic CREATE PUMP (p. 126) in this guide.

MERGE statements
The MERGE statement modifies an UPDATE, along with a JOIN clause (p. 142) condition. The
JOIN condition defines how each source row matches one target row. When there is a match, the
matching target row is changed according to the UPDATE part of the merge. When there is no match,
the INSERT part of the merge is used to add a new row to the target table.

It is allowed for several source rows to match the same target row. This differs from the SQL:2008
standard, but makes more sense when the source is a stream. If the source stream contains several
rows with the same values in the ON condition, they will match the same target row, and as each
source row arrives it will update the target row with new values.

(There is no way to delete a target row. Amazon Kinesis Analytics application implements the standard
SQL:2008 MERGE statement, except for the DELETE clause).

The merge runs til the end of data of its source, so if the source is a streaming query, the merge will
run forever. A merge like this is generally run as a pump.

Note
To avoid a bug in the query planner, you must refer to a native table using a loopback alias.
This makes a native table appear to be an external table, using the SQL/MED plugin, but
pointing back to same Amazon Kinesis Analytics application instance. (Hence the name
"loopback").

MERGE and Rowtime

In a stream, ROWTIME is a special column: every row has a rowtime. In a table however, there
is no special rowtime column. A table may contain an ordinary column named ROWTIME of type
TIMESTAMP, or it may not, according to its definition (see CREATE TABLE). A merge statement can
save a value as the ROWTIME of a target row, but it must do so explicitly in the UPDATE and INSERT
clauses.

Syntax

MERGE INTO <target table> USING <source query> ON <conditions>
WHEN MATCHED THEN <merge update>
WHEN NOT MATCHED THEN <merge insert>;
where:
<conditions> = a boolean expression in columns from the target and the source
 row
<merge update> = UPDATE SET <column1> = <expr1>, ... <columnN> = <exprN>
<merge insert> = INSERT (<column1>,...<columnN>) VALUES (<expr1>,...<exprN>)
and <expr> is any scalar expression based on columns from the target and the
 source row.

129

Amazon Kinesis Analytics SQL Reference
Semantics

Diagram

Semantics
INTO

The INTO clause indicates the target table or foreign table to be updated.

USING

The USING clause indicates the source of the data to be updated or inserted. The source can be a
table, foreign table, or the result of a subquery.

ON

The ON clause indicates the condition for the MERGE statement updating or inserting rows. When
the search condition is met, Amazon Kinesis Analytics application updates the target table row with
corresponding data from the source. If the condition is not true for any rows, then Amazon Kinesis
Analytics application inserts into target table based on the corresponding source row.

WHEN MATCHED THEN

The WHEN MATCHED THEN clause indicates new column values for the target table. Amazon Kinesis
Analytics application updates columns if the ON clause is true.

WHEN NOT MATCHED THEN

The WHEN NOT MATCHED THEN clause indicates columns and values for rows to be inserted if the
ON clause is false.

Example

The following example creates a pump implementing a MERGE on a loopback table called
"LOOPBACK"."MOCHI_VIZ"."CityAttackTotals" using a query. The merge condition asks if the columns

130

Amazon Kinesis Analytics SQL Reference
Query

state and city match between the target table and the query. When the merge condition is met, the
columns state, city, value, and lastmod are updated. When the merge condition is not met, new rows
are inserted into the table.

CREATE OR REPLACE PUMP "100-persistCityAttacks" STOPPED
 DESCRIPTION 'persist city attack totals to local/loopback table'
 AS
 MERGE INTO "LOOPBACK"."MOCHI_VIZ"."CityAttackTotals" AS "CAT"
 --query:
 USING
 (SELECT STREAM
 COALESCE("region", '**') AS "state",
 "city", "totalFails", CURRENT_ROW_TIMESTAMP AS "lastmod"
 FROM "MOCHI"."SuspectLoginLocations") AS "SLL"
 --merge condition:
 ON ("CAT"."state" = "SLL"."state") AND ("CAT"."city" = "SLL"."city")
 --merge update specification:
 WHEN MATCHED THEN
 UPDATE SET
 "state" = "SLL"."state",
 "city" = "SLL"."city",
 "value" = "SLL"."totalFails",
 "lastmod" = "SLL"."lastmod"
 --merge insert specification:
 WHEN NOT MATCHED THEN
 INSERT ("state", "city", "value", "lastmod")
 VALUES ("SLL"."state", "SLL"."city", "SLL"."totalFails",
 "SLL"."lastmod");

Query
Syntax

 <query> :=
 <select>
 | <query> <set-operator> [ALL] <query>
 | VALUES <row-constructor> { , <row-constructor> }...
 | '(' <query> ')'
 <set-operator> :=
 EXCEPT
 | INTERSECT
 | UNION
 <row-constructor> :=
 [ROW] (<expression> { , <expression> }...)

131

Amazon Kinesis Analytics SQL Reference
Query

select

The select box in the chart above represents any SELECT command; that command is described in
detail on its own page.

Set operators (EXCEPT, INTERSECT, UNION)

Set operators combine rows produced by queries using set operations:

• EXCEPT returns all rows that are in the first set but not in the second

• INTERSECT returns all rows that are in both first and second sets

• UNION returns all rows that are in either set

In all cases, the two sets must have the same number of columns, and the column types must be
assignment-compatible. The column names of the resulting relation are the names of the columns of
the first query.

With the ALL keyword, the operators use the semantics of a mathematical multiset, meaning that
duplicate rows are not eliminated. For example, if a particular row occurs 5 times in the first set and 2
times in the second set, then UNION ALL will emit the row 3 + 2 = 5 times.

ALL is not currently supported for EXCEPT or INTERSECT.

All operators are left-associative, and INTERSECT has higher precedence than EXCEPT or UNION,
which have the same precedence. To override default precedence, you can use parentheses. For
example:

SELECT * FROM a
UNION
SELECT * FROM b

132

https://en.wikipedia.org/wiki/Multiset

Amazon Kinesis Analytics SQL Reference
Query

INTERSECT
SELECT * FROM c
EXCEPT
SELECT * FROM d
EXCEPT
SELECT * FROM E

is equivalent to the fully-parenthesized query

((SELECT * FROM a
 UNION
 (SELECT * FROM b
 INTERSECT
 SELECT * FROM c))
 EXCEPT
 SELECT * FROM d)
EXCEPT
SELECT * FROM e

Streaming set operators

UNION ALL is the only set operator that can be applied to streams. Both sides of the operator must be
streams; it is an error if one side is a stream and the other is a relation.

For example, the following query produces a stream of orders taken over the phone or via the web:

SELECT STREAM *
 FROM PhoneOrders
UNION ALL
SELECT STREAM *
 FROM WebOrders

Rowtime generation. The rowtime of a row emitted from streaming UNION ALL is the same as the
timestamp of the input row.

Rowtime bounds. Amazon Kinesis Analytics ensures the property, required of all streams, that the
ROWTIME column is ascending by merging the incoming rows on the basis of timestamp. If the first
set has rows timestamped 10:00 and 10:30 and the second set has only reached 10:15, Amazon
Kinesis Analytics will pause the first set, and wait for the second set to reach 10:30. It would be
advantageous, in this case, if the producer of the second set were to send a Rowtime Bound in this
guide.

VALUES operator

The VALUES operator expresses a constant relation in a query. (See also the discussion of VALUES
in the topic SELECT in this guide.)

VALUES can be used as a top-level query, as follows:

VALUES 1 + 2 > 3;
EXPR$0
======
FALSE
VALUES
 (42, 'Fred'),
 (34, 'Wilma');

133

Amazon Kinesis Analytics SQL Reference
SELECT statement

EXPR$0 EXPR$1
====== ======
 42 Fred
 34 Wilma

Note that the system has generated arbitrary column names for anonymous expressions. You can
assign column names by putting VALUES into a subquery and using an AS clause:

SELECT *
FROM (
 VALUES
 (42, 'Fred'),
 (34, 'Wilma')) AS t (age, name);
AGE NAME
=== =====
 42 Fred
 34 Wilma

SELECT statement
SELECT retrieves rows from streams. You can use SELECT as a top-level statement, or as part of a
query involving set operations, or as part of another statement, including (for example) when passed as
a query into a UDX. For examples, see the topics INSERT, IN, EXISTS, CREATE PUMP (p. 126) in
this guide.

The subclauses of the SELECT statement are described in the topics SELECT clause (p. 137),
GROUP BY clause (p. 148), Streaming GROUP BY, ORDER BY clause (p. 158), HAVING
clause (p. 147), WINDOW clause (Sliding Windows) (p. 152) and WHERE clause (p. 149) in this
guide.

Syntax

 <select> :=
 SELECT [STREAM] [DISTINCT | ALL]
 <select-clause>
 FROM <from-clause>
 [<where-clause>]
 [<group-by-clause>]
 [<having-clause>]
 [<window-clause>]
 [<order-by-clause>]

The STREAM keyword and the principle of streaming SQL

The SQL query language was designed for querying stored relations, and producing finite relational
results.

The foundation of streaming SQL is the STREAM keyword, which tells the system to compute the time
differential of a relation. The time differential of a relation is the change of the relation with respect to
time. A streaming query computes the change in a relation with respect to time, or the change in an
expression computed from several relations.

To ask for the time-differential of a relation in Amazon Kinesis Analytics, we use the STREAM keyword:

134

Amazon Kinesis Analytics SQL Reference
SELECT statement

SELECT STREAM * FROM Orders

If we start running that query at 10:00, it will produce rows at 10:15 and 10:25. At 10:30 the query is still
running, waiting for future orders:

ROWTIME orderId custName product quantity
======== ======= ========== ======= ========
10:15:00 102 Ivy Black Rice 6
10:25:00 103 John Wu Apples 3

Here, the system is saying 'At 10:15:00 I executed the query SELECT * FROM Orders and found one
row in the result that was not present at 10:14:59.999'. It generates the row with a value of 10:15:00
in the ROWTIME column because that is when the row appeared. This is the core idea of a stream: a
relation that keeps updating over time.

You can apply this definition to more complicated queries. For example, the stream

SELECT STREAM * FROM Orders WHERE quantity > 5

has a row at 10:15 but no row at 10:25, because the relation

SELECT * FROM Orders WHERE quantity > 5

goes from empty to one row when order 103 is placed at 10:15, but is not affected when order 104 is
placed at 10:25.

We can apply the same logic to queries involving any combination of SQL operators. Queries involving
JOIN, GROUP BY, subqueries, set operations UNION, INTERSECT, EXCEPT, and even qualifiers
such as IN and EXISTS, are well-defined when converted to streams. Queries combining streams and
stored relations are also well-defined.

Syntax

135

Amazon Kinesis Analytics SQL Reference
SELECT ALL and SELECT DISTINCT

SELECT ALL and SELECT DISTINCT
If the ALL keyword is specified, the query does not eliminate duplicate rows. This is the default
behavior if neither ALL nor DISTINCT is specified.

If the DISTINCT keyword is specified, a query eliminates rows that are duplicates according to the
columns in the SELECT clause.

Note that for these purposes, the value NULL is considered equal to itself and not equal to any other
value. These are the same semantics as for GROUP BY and the IS NOT DISTINCT FROM operator.

Streaming SELECT DISTINCT

SELECT DISTINCT can be used with streaming queries as long as there is a non-constant monotonic
expression in the SELECT clause. (The rationale for the non-constant monotonic expression is the

136

Amazon Kinesis Analytics SQL Reference
SELECT clause

same as for streaming GROUP BY.) Amazon Kinesis Analytics emits rows for SELECT DISTINCT as
soon as they are ready.

If ROWTIME is one of the columns in the SELECT clause, it is ignored for the purposes of duplicate-
elimination. Duplicates are eliminated on the basis of the other columns in the SELECT clause.

For example:

SELECT STREAM DISTINCT ROWTIME, prodId, FLOOR(Orders.ROWTIME TO DAY)
FROM Orders

displays the set of unique products that are ordered in any given day.

If you are doing "GROUP BY floor(ROWTIME TO MINUTE)" and there are two rows in a given minute
-- say 22:49:10 and 22:49:15 -- then the summary of those rows is going to come out timestamped
22:50:00. Why? Because that is the earliest time that row is complete.

Note: "GROUP BY ceil(ROWTIME TO MINUTE)" or "GROUP BY floor(ROWTIME TO MINUTE) -
INTERVAL '1' DAY" would give identical behavior.

It is not the value of the grouping expression that determines row completion, it's when that expression
changes value.

If you want the rowtimes of the output rows to be the time they are emitted, then in the following
example you would need to change from form 1 to use form 2 instead:

(Form 1)
 select distinct floor(s.rowtime to hour), a,b,c
 from s
(Form 2)
 select min(s.rowtime) as rowtime, floor(s.rowtime to hour), a, b, c
 from s
 group by floor(s.rowtime to hour), a, b, c

As a separate example, if you have 'FIRST_VALUE(orders.rowtime) AS rowtime' in the SELECT
clause and you have no aggregate functions, you can see the first order of each product immediately
by saying SELECT DISTINCT floor(ROWTIME TO DAY), prodId FROM orders.

SELECT clause
The <select-clause> uses the following items after the STREAM keyword:

 <select-list> :=
 <select-item> { , <select-item> }...
 <select-item> :=
 <select-expression> [[AS] <simple-identifier>]
 <simple-identifier> :=
 <identifier> | <quoted-identifier>
 <select-expression> :=
 <identifier> . * | * | <expression>

Expressions

Each of these expressions may be:

• a scalar expression

137

Amazon Kinesis Analytics SQL Reference
SELECT clause

• a call to an Aggregate Functions (p. 55), if this is an aggregating query (see GROUP BY
clause (p. 148))

• a call to an Analytic Functions (p. 66), if this is not an aggregating query

• the wildcard expression * expands to all columns of all relations in the FROM clause

• the wildcard expression alias.* expands to all columns of the relation named alias

• the ROWTIME (p. 160)

• a CASE expression (p. 138)

Each expression may be assigned an alias, using the AS column_name syntax. This is the name of
the column in the result set of this query. If this query is in the FROM clause of an enclosing query, this
will be the name that will be used to reference the column. The number of columns specified in the AS
clause of a stream reference must match the number of columns defined in the original stream.

Amazon Kinesis Analytics has a few simple rules to derive the alias of an expression that does not
have an alias. The default alias of a column expression is the name of the column: for example,
EMPS.DEPTNO is aliased DEPTNO by default. Other expressions are given an alias like EXPR$0.
You should not assume that the system will generate the same alias each time.

In a streaming query, aliasing a column AS ROWTIME has a special meaning: For more information,
see ROWTIME (p. 160).

Note
All streams have an implicit column called ROWTIME. This column may impact your use of
the syntax 'AS t(c1, c2, ...)' that is now supported by SQL:2008. Previously in a FROM clause
you could only write

SELECT ... FROM r1 AS t1 JOIN r2 as t2

but t1 and t2 would have the same columns as r1 and t2. The AS syntax enables you to rename r1's
columns by writing the following:

SELECT ... FROM r1 AS t1(a, b, c)

(r1 must have precisely 3 columns for this syntax to work).

If r1 is a stream, then ROWTIME is implicitly included, but it doesn't count as a column. As a result, if
a stream has 3 columns without including ROWTIME, you cannot rename ROWTIME by specifying 4
columns. For example, if the stream Bids has three columns, the following code is invalid.

SELECT STREAM * FROM Bids (a, b, c, d)

It is also invalid to rename another column ROWTIME, as in the following example.

SELECT STREAM * FROM Bids (ROWTIME, a, b)

because that would imply renaming another column to ROWTIME. For more information about
expressions and literals, see Expressions and Literals (p. 118).

CASE expression

The CASE expression enables you to specify a set of discrete test expressions and a specific return-
value (expression) for each such test. Each test expression is specified in a WHEN clause; each

138

Amazon Kinesis Analytics SQL Reference
SELECT clause

return-value expression is specified in the corresponding THEN clause. Multiple such WHEN-THEN
pairs can be specified.

If you specify a comparison-test-expression before the first WHEN clause, then each expression in a
WHEN clause is compared to that comparison-test-expression. The first one to match the comparison-
test-expression causes the return-value from its corresponding THEN clause to be returned. If no
WHEN clause expression matches the comparison-test-expression, the return-value is null unless an
ELSE clause is specified, in which case the return-value in that ELSE clause is returned.

If you do not specify a comparison-test-expression before the first WHEN clause, then each expression
in a WHEN clause is evaluated (left to right) and the first one to be true causes the return-value from its
corresponding THEN clause to be returned. If no WHEN clause expression is true, the return-value is
null unless an ELSE clause is specified, in which case the return-value in that ELSE clause is returned.

VALUES

VALUES uses expressions to calculate one or more row values, and is often used within a larger
command. When creating more than one row, the VALUES clause must specify the same number of
elements for every row. The resulting table-columns data-types are derived from the explicit or inferred
types of the expressions appearing in that column. VALUES is allowed syntactically wherever SELECT
is permitted. See also the discussion of VALUES as an operator, in the topic Query in this guide.

SYNTAX

VALUES (expression [, ...]) [, ...]
 [ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]

VALUES is a SQL operator, on a par with SELECT and UNION, enabling the following types of actions:

• You can write VALUES (1), (2) to return two rows each with a single anonymous column.

• You can write VALUES (1, 'a'), (2, 'b') to return two rows of two columns.

• You can name the columns using AS, as in the following example:

SELECT * FROM (VALUES (1, 'a'), (2, 'b')) AS t(x, y)

The most important use of VALUES is in an INSERT statement, to insert a single row:

 INSERT INTO emps (empno, name, deptno, gender)
 VALUES (107, 'Jane Costa', 22, 'F');

However, you can also insert multiple rows:

139

Amazon Kinesis Analytics SQL Reference
FROM clause

 INSERT INTO Trades (ticker, price, amount)
 VALUES ('MSFT', 30.5, 1000),
 ('ORCL', 20.25, 2000);

When you use VALUES in the FROM clause of a SELECT statement, the entire VALUES clause must
be enclosed in parentheses, consistent with the fact that it operates as a query, not a table expression.
For additional examples, see FROM clause (p. 140).

Note
Using INSERT with streams engages some additional considerations as to rowtimes, pumps,
and INSERT EXPEDITED. For more information, see INSERT (p. 128).

FROM clause
The FROM clause is the source of rows for a query.

 <from-clause> :=
 FROM <table-reference> { , <table-reference> }...
 <table-reference> :=
 <table-name> [<table-name>] [<correlation>]
| <joined-table>
 <table-name> := <identifier>
 <table-over> := OVER <window-specification>
 <window-specification> :=
 (<window-name>
| <query_partition_clause>
| ORDER BY <order_by_clause>
| <windowing_clause>
)
 <windowing-clause> :=
 { ROWS | RANGE }
 { BETWEEN
 { UNBOUNDED PRECEDING
 | CURRENT ROW
 | <value-expression> { PRECEDING | FOLLOWING }
 }
 AND
 { UNBOUNDED FOLLOWING
 | CURRENT ROW
 | <value-expression> { PRECEDING | FOLLOWING }
 }
 | { UNBOUNDED { PRECEDING | FOLLOWING }
 | CURRENT ROW
 | <value-expression> { PRECEDING | FOLLOWING }
 }
 }

For charts on window-specification and windowing-clause, see the WINDOW clause (Sliding
Windows) (p. 152) under the Window statement.

 <correlation> :=
 [AS] <correlation-name> ['(' <column> { , <column> }... ')']
 <joined-table> :=
 <table-reference> CROSS JOIN <table-reference>
 | <table-reference> NATURAL <join-type> JOIN <table-reference>
 | <table-reference> <join-type> JOIN <table-reference>

140

Amazon Kinesis Analytics SQL Reference
FROM clause

 [USING '(' <column> { , <column>}... ')'
 | ON <condition>
]
 <join-type> :=
 INNER
 | <outer-join-type> [OUTER]
 <outer-join-type> :=
 LEFT
 | RIGHT
 | FULL

Relations

Several types of relation can appear in a FROM clause:

• A named relation (table, stream)

• A subquery enclosed in parentheses.

• A join combining two relations (see the topic JOIN in this guide).

• A transform expression.

Subqueries are described in more detail in the topic Query in this guide.

Here are some examples of subqueries:

// set operation as subquery
// (finds how many departments have no employees)
SELECT COUNT(*)
FROM (
 SELECT deptno FROM Dept
 EXCEPT
 SELECT deptno FROM Emp);
// table-constructor as a subquery,
// combined with a regular table in a join
SELECT *
FROM Dept AS d
 JOIN (VALUES ('Fred', 10), ('Bill', 20)) AS e (name, deptno)
 ON d.deptno = e.deptno;

Unlike subqueries in other parts of the SELECT statement, such as in the WHERE clause (p. 149)
clause (WHERE Condition Clause (p. 122)), a subquery in the FROM clause cannot contain correlating
variables. For example:

// Invalid query. Dept.deptno is an illegal reference to
// a column of another table in the enclosing FROM clause.
SELECT *
FROM Dept,
 (SELECT *
 FROM Emp
 WHERE Emp.deptno = Dept.Deptno)

FROM clause with multiple relations

If a FROM clause contains multiple, comma-separated relations, the query constructs the cartesian
product of those relations; that is, it combines each row from each relation with each row from every
other relation.

141

Amazon Kinesis Analytics SQL Reference
JOIN clause

The comma in the FROM clause is therefore equivalent to the CROSS JOIN operator.

Correlation names

Each relation in the FROM clause can have a correlation name assigned using AS correlation-name.
This name is an alternative name by which the relation can be referenced in expressions throughout
the query. (Even though the relation may be a subquery or stream, it is conventionally called a 'table
alias' to distinguish it from column aliases defined in the SELECT clause.)

Without an AS clause, a named relation's name becomes its default alias. (In streaming queries, the
OVER clause does not prevent this default assignment from happening.)

An alias is necessary if a query uses the same named relation more than once, or if any of the relations
are subqueries or table expressions.

For example, in the following query, the named relation EMPS is used twice; once with its default alias
EMPS, and once with an assigned alias MANAGERS:

SELECT EMPS.NAME || ' is managed by ' || MANAGERS.NAME
FROM LOCALDB.Sales.EMPS,
 LOCALDB.Sales.EMPS AS MANAGERS
WHERE MANAGERS.EMPNO = EMPS.MGRNO

An alias can optionally be followed by a list of columns:

SELECT e.empname,
FROM LOCALDB.Sales.EMPS AS e(empname, empmgrno)

OVER clause

The OVER clause is only applicable for streaming joins. For more detail, see the topic JOIN
clause (p. 142) in this guide.

JOIN clause
Amazon Kinesis Analytics supports joining a stream with another stream and/or joining a stream with a
reference table.

Syntax Chart for the JOIN Clause

A join combines two relations according to some condition. The relation resulting from a join has the
columns of the left and right inputs to the join.

142

Amazon Kinesis Analytics SQL Reference
JOIN clause

Note

Join types

There are five types of joins:

INNER JOIN (or just JOIN) Returns all pairs of rows from left and right for
which the join condition evaluates to TRUE.

143

Amazon Kinesis Analytics SQL Reference
JOIN clause

LEFT OUTER JOIN (or just LEFT JOIN) As INNER JOIN, but rows from the left are kept
even if they do not match any rows on the right;
NULL values are generated on the right.

RIGHT OUTER JOIN (or just RIGHT JOIN) As INNER JOIN, but rows from the right are kept
even if they do not match any rows on the left;
NULL values are generated on the left for these
rows.

FULL OUTER JOIN (or just FULL JOIN) As INNER JOIN, but rows from both sides are
kept even if they do not match any rows on the
other side; NULL values are generated on the
other side for these rows.

CROSS JOIN Returns the cartesian product of the inputs: every
row from the left is paired with every row from
the right. A cross join never has an ON or USING
condition.

For information about streaming joins, see Streaming JOINs (p. 144), which includes stream-to-
stream joins and conceptual stream-to-table joins using a UDX.

The NATURAL keyword is actually a condition. It is described with ON and USING in Join Conditions
later in this topic.

Join Conditions

All types of join except CROSS JOIN accept a join condition.

There are three ways to specify a join condition:

• The ON condition evaluates a Boolean condition. It is the most general and powerful way to specify a
join condition.

• USING (column {, column }...) matches columns from left and right. For each named column, left and
right must both have a column of that name. r1 JOIN r2 USING (c1, c2) is equivalent to r1 JOIN r2
ON r1.c1 = r1.c1 AND r1.c2 = r2.c2.

• Inserting the NATURAL keyword before INNER, LEFT, RIGHT or FULL JOIN creates a condition
that matches each pair of columns that have the same name on left and right side of the join.

A WHERE clause (p. 149) (WHERE Condition Clause (p. 122)) can achieve a similar effect to ON,
except that it filters the rows after they have been emitted from the join. For an inner join, WHERE
is equivalent to ON, but for an outer join, the partially NULL rows are only generated correctly if the
condition is evaluated for each pair of candidate rows, and a WHERE clause cannot do that. For more
details, see the topic WHERE clause (p. 149) in this guide.

Join limitations

Amazon Kinesis Analytics does not support left, right or full outer join operations applied to relations.

Streaming JOINs

JOIN can be used in a streaming query provided that at least one of the relations being joined is a
stream. Streaming joins work just like regular table joins, but subject to the considerations implicit in
dealing with streams, that is, rolling windows and rowtimes:

• (a) the rowtime of the input row for which a match was not found, or

• (b) the later bound of the window of the other input stream at the point any possible match passed
out of the window.

144

Amazon Kinesis Analytics SQL Reference
JOIN clause

• For an inner join, the rowtime of an output row is the later of the rowtimes of the two input rows. This
is also true for an outer join in which matching input rows are found.

• For outer joins in which a match is not found, the rowtime of an output row is the later of the following
two times:

• Rolling windows -- A window defined on a stream is a rolling (sliding) window. As the current time
progresses, the window excludes some rows while adding others. As a result, rows output by a join
with a sliding window are generated incrementally. It is important to note that an output row is only
produced once by a match on a given pair of columns from the left and right input streams. In other
words, an output row already produced by a prior match will not be produced anew by a subsequent
identical match.

• Output rowtimes -- All output rows are produced in order of non-descending rowtime. (It is valid to
have multiple output rows with the same rowtime.)

• As a rule, the rowtime of a given output row is the rowtime at the point it was possible to calculate
the output row. In other words:

All streaming joins are implicitly windowed joins between the affected streams. If no explicit window is
specified, the window specification CURRENT ROW is used.

Stream-to-table Joins

If one of the relations is a stream and the other is a finite relation, it is referred to as a stream-table
join. For each row in the stream, the query looks up the row or rows in the table that match the join
condition. Amazon Kinesis Analytics accomplishes conceptual stream-table joins by using a UDX
named TableLookup.

For example, Orders is a stream and PriceList is a table. The effect of the join is to add price list
information to the order.

Stream-to-stream Joins

If both of the relations being joined are streams, it is referred to as a stream-stream join. Clearly it is
not practical to join the entire history of the left stream to the entire history of the right, so at least one
stream must be restricted to a time window by the use of an OVER clause.

The OVER clause defines a window of rows that are to be considered for joining at a given time.

The window can be time-based or row-based:

• A time-based window uses the RANGE keyword, and defines the window as the set of rows whose
ROWTIME column falls within a particular time interval of the query's current time.

• A row-based window uses the ROWS keyword, and defines the window as a given count of rows
before or after the row with the current timestamp.

To illustrate, let's look at an example.

SELECT STREAM ROWTIME, o.orderId, o.ROWTIME AS orderTime
FROM Shipments AS s
 JOIN Orders OVER (RANGE INTERVAL '1' HOUR PRECEDING) AS o
 ON o.orderId = s.orderId;

We have not specified an OVER clause for the Shipments stream, so at any moment in time we are
considering matching the current row of the Shipments stream against rows from the Orders stream in
the hour preceding.

Orders and Shipments inputs produce the following output:

145

Amazon Kinesis Analytics SQL Reference
JOIN clause

Orders Shipments

rowtime orderId rowtime orderId

10:00 100

10:10 101

10:20 102

10:25 103

10:30 101

10:40 104

10:45 100

10:55 103

11:05 103

11:30 104

The output rows are as follows:

rowtime orderId orderTime

10:30 101 10:10

10:45 100 10:00

10:55 103 10:25

11:05 103 10:25

11:30 104 10:40

First of all, notice that output rows have the timestamp of the Shipments.ROWTIME column, and are
sorted in that order. Order 100, 101 and 104 are each matched by a shipment within the window, and
order 103 is matched by two shipments. But order 102 is omitted, because its shipment is not made
within its one hour time window 10:20-11:20.

The window specification may also be the name of a window defined in the WINDOW clause (Sliding
Windows) (p. 152). However, windows specified by name have the same limitation as windows
specified inline: see the subtopic entitled Allowed and Disallowed Window Specifications of the
WINDOW clause topic.

Additional window limitations specific to streaming joins are as follows:

• PARTITION BY must not be present.

• ORDER BY, if present, must sort by the ROWTIME column of one of the inputs.

Rowtime generation

The timestamp of the generated row is the earliest time that rows necessary to make the match are in
both sides' windows. For example, in the previous example, the output row (10:45, 100, 10:00) could
only be made when the left window is 10:00-10:00 and the right window is 10:00-11:00. A minute

146

Amazon Kinesis Analytics SQL Reference
HAVING clause

earlier, the windows would have been 09:59-09:59 and 09:59-10:59, in which case the necessary row
would have been in the right hand window but not the left.

Rowtime bounds

Rowtime bounds received on the left and right side of the join help the join to make progress. In the
above example, the (10:30, 101, 10:10) output record can be emitted only when the order 100's
window has expired. That expiration was only evident when the (11:05, 103) row arrived in the
Shipments stream, taking the time past 11:00. If the process writing the Shipments stream had sent an
11:01 rowtime bound, the output record could have been emitted 4 minutes sooner.

Multi-way JOINs

To do a three way join, you use a joined table-reference as the table-reference in a JOIN statement.
Here, stream/table 1 (b1) relates to stream/table 2 (asks) and stream/table 2 relates to stream/table 3
(b2), on the column "ticker."

select stream * from bids over (range interval '1' hour preceding) as b1
 join asks over (range interval '2' second preceding)
 on b1."ticker" = asks."ticker"
 join bids over (range interval '3' minute preceding) as b2
 on b2."ticker" = asks."ticker";

HAVING clause
The HAVING clause in a SELECT specifies a condition to apply within a group or aggregate. In other
words, HAVING filters rows after the aggregation of the GROUP BY clause has been applied. Since
HAVING is evaluated after GROUP BY, it can only reference expressions constructed (or derivable)
from grouping keys, aggregate expressions, and constants. (These are the same rules that apply to
expressions in the SELECT clause of a GROUP BY query.) A HAVING clause must come after any
GROUP BY clause and before any ORDER BY clause. HAVING is like WHERE clause (p. 149), but
applies to groups. Results from a HAVING clause represent groupings or aggregations of original rows,
whereas results from a WHERE clause are individual original rows.

In non-streaming applications, if there is no GROUP BY clause, GROUP BY () is assumed (though
since there are no grouping expressions, expressions can consist only of constants and aggregate
expressions). In streaming queries, HAVING cannot be used without a GROUP BY clause.

WHERE and HAVING can both appear in a single SELECT statement. The WHERE selects from the
stream or table those individual rows that satisfy its condition (the WHERE-condition). The GROUP BY
criteria apply only to the rows selected by the WHERE condition.

Such a grouping, for example "GROUP BY CustomerID", can be further qualified by a HAVING-
condition, which then selects aggregations of rows satisfying its condition within the specified grouping.
For example, "GROUP BY ClientID HAVING SUM(ShipmentValue) > 3600" would select only those
clients whose various shipments that fit the WHERE criteria also had values that added up to exceed
3600.

See the WHERE clause syntax chart for the conditions, which applies to both HAVING and WHERE
clauses.

The condition must be a Boolean predicate expression. The query returns only rows for which the
predicate evaluates to TRUE.

The example below shows a streaming query that displays products for which there are more than
$1000 of orders in the past hour.

SELECT STREAM "prodId"
FROM "Orders"

147

Amazon Kinesis Analytics SQL Reference
GROUP BY clause

GROUP BY FLOOR("Orders".ROWTIME TO HOUR), "prodId"
HAVING SUM("quantity" * "price") > 1000;

GROUP BY clause
Syntax Chart for the GROUP BY Clause

(To see where this clause fits, see SELECT statement (p. 134))

For example, GROUP BY <column name-or-expression>, where:

• the expression can be an aggregate; and,

• any column name used in the GROUP BY clause must also be in the SELECT statement.

Additionally, a column that is not named in or derivable from the GROUP BY clause cannot appear in
the SELECT statement except within aggregations, such as SUM (allOrdersValue).

What derivable means is that a column specified in the GROUP BY clause enables access to the
column you want to include in the SELECT clause. If a column is derivable, the SELECT statement can
specify it even though it is not explicitly named in the GROUP BY clause.

Example: If the key to a table is in the GROUP BY clause, then any of that table's columns can appear
in the select-list because, given that key, such columns are considered accessible.

The GROUP BY clause groups selected rows based on the value of the grouping expressions,
returning a single summary row of information for each group of rows that have identical values in all
columns.

Note that for these purposes, the value NULL is considered equal to itself and not equal to any other
value. These are the same semantics as for the IS NOT DISTINCT FROM operator.

Streaming GROUP BY

GROUP BY can be used in a streaming query as long as one of the grouping expressions is a non-
constant monotonic or time-based expression. This requirement is necessary in order for Amazon
Kinesis Analytics to make progress, as explained below.

148

Amazon Kinesis Analytics SQL Reference
WHERE clause

A monotonic expression is one that always moves in the same direction: it either ascends-or-stays-
the-same, or it descends-or-stays the same; it doesn't reverse direction. It does not need to be strictly
ascending or strictly descending, that is, every value always above the previous one or every value
always below the previous one. A constant expression falls under the definition of monotonic -- it is
technically both ascending and descending -- but is clearly unsuitable for these purposes. For more
information about monotonicity, see Monotonic Expressions and Operators (p. 120).

Consider the following query:

SELECT STREAM prodId, COUNT(*)
FROM Orders
GROUP BY prodId

The query is intended to compute the number of orders for each product, as a stream. However, since
Orders is an infinite stream, Amazon Kinesis Analytics can never know that it has seen all orders for
a given product, can never complete a particular row's total, and therefore can never output a row.
Rather than allow a query that can never emit a row, the Amazon Kinesis Analytics validator rejects the
query.

The syntax for streaming GROUP BY is as follows:

GROUP BY <monotonic or time-based expression> ,

<column name-or-expression, ...>

where any column name used in the GROUP BY clause needs to be in the SELECT statement; the
expression can be an aggregate. Additionally, a column name that does not appear in the GROUP BY
clause cannot appear in the SELECT statement except within aggregations, or if, as above, access to
the column can be created from column that you specify in the GROUP BY clause.

For example, the following query, which computes the product counts per hour, uses the monotonic
expression FLOOR(Orders.ROWTIME TO HOUR) is therefore valid:

SELECT STREAM FLOOR(Orders.ROWTIME TO HOUR) AS theHour, prodId, COUNT(*)
FROM Orders
GROUP BY FLOOR(Orders.ROWTIME TO HOUR), prodId

One of the expressions in the GROUP BY must be monotonic or time-based. For example GROUP
BY FLOOR(S.ROWTIME) TO HOUR will yield one output row per hour for the previous hour's
input rows. The GROUP BY can specify additional partitioning terms. For example, GROUP BY
FLOOR(S.ROWTIME) TO HOUR, USERID will yield one output row per hour per USERID value. If
you know for a fact that an expression is monotonic, you can declare it so by using the Monotonic
Function (p. 44). If the actual data are not monotonic, the resulting system behavior is indeterminate:
results may not be as expected or desired.

See the topic Monotonic Function (p. 44) in this guide for more details.

Duplicate rowtimes can occur in a stream, and as long as the ROWTIME value is the same, the
GROUP BY operation will keep accumulating rows. In order to emit a row, the ROWTIME value has to
change at some point.

WHERE clause
The WHERE clause extracts records that meet a specified condition. The condition can be a
numeric or string comparison, or use the BETWEEN, LIKE, OR IN operators: see Streaming SQL
Operators (p. 11). Conditions can be combined using logical operators such as AND, OR, and NOT.

149

Amazon Kinesis Analytics SQL Reference
WHERE clause

The WHERE clause is like the HAVING clause (p. 147) clause. It applies to groups, that is, results
from a WHERE clause are individual original rows, whereas results from a HAVING clause represent
groupings or aggregations of original rows.

WHERE and HAVING can both appear in a single SELECT statement. The WHERE selects from the
stream or table those individual rows that satisfy its condition (the WHERE-condition). The GROUP
BY criteria apply only to the rows selected by the WHERE condition. Such a grouping, for example
"GROUP BY CustomerID", can be further qualified by a HAVING-condition, which then selects
aggregations of rows satisfying its condition within the specified grouping. For example, "GROUP
BY ClientID HAVING SUM(ShipmentValue) > 3600" would select only those clients whose various
shipments that fit the WHERE criteria also had values that added up to exceed 3600.

To see where this clause fits into the SELECT statement, see SELECT statement (p. 134).

150

Amazon Kinesis Analytics SQL Reference
WHERE clause

The condition must be a Boolean predicate expression. The query returns only rows for which the
predicate evaluates to TRUE; if the condition evaluates to NULL, the row is not emitted.

The condition in the WHERE clause cannot contain windowed aggregation expressions, because if the
where clause condition caused rows to be dropped, it would alter the contents of the window.

151

Amazon Kinesis Analytics SQL Reference
WINDOW clause (Sliding Windows)

WHERE is also discussed in the topics JOIN clause (p. 142) and HAVING clause (p. 147) in this
guide.

WINDOW clause (Sliding Windows)
The WINDOW clause allows you to define named window specifications that can be used in Analytic
Functions (p. 66) calls and streaming JOIN clauses elsewhere in the query. The windows so defined
are inherited by sub-queries of the current query.

 <window-clause> :=
 WINDOW <window-definition> { , <window-definition> }...
 <window-definition> :=
 <window-name> AS <window-specification>
 <window-specification> :=
 <window-name>
 | <query_partition_clause>
 | ORDER BY <order_by_clause>
 | <windowing_clause>
 <query_partition_clause> :=
 PARTITION BY <expression> { , <expression> }...
 | (<expression> { , <expression> }...)

Window clause and endpoints

Streaming SQL follows the SQL Standards for windows over a range. This means, for example that the
syntax

WINDOW HOUR AS (RANGE INTERVAL '1' HOUR PRECEDING)

will include the end points of the hour

To ensure that the endpoint of the previous hour is not included, you need to use the following syntax
for the window:

WINDOW HOUR AS (RANGE INTERVAL '59:59.999' MINUTE TO SECOND(3) PRECEDING);

See Allowed and Disallowed Window Specifications (p. 155) for more details.

Syntax Charts for Window Statement and Window Specification

The chart for Window Statement includes the window-specification, query-partition, and windowing-
clause charts that directly follow below it.

Window Statement

152

Amazon Kinesis Analytics SQL Reference
WINDOW clause (Sliding Windows)

Window Specification

The "window-specification" is also referenced in the stream-or-table-reference chart that appears within
the select-clause chart.

The order_by_clause chart appears after the Window examples (p. 155).

Syntax Chart for the query-partition clause

Syntax Chart for the windowing-clause

In addition to being part of the window-specification, the windowing-clause appears in the FROM
clause (p. 140) clause and the Analytic Functions (p. 66) clause of an analytic function.

153

Amazon Kinesis Analytics SQL Reference
WINDOW clause (Sliding Windows)

Note: Partitions are evaluated before windows.

 <windowing-clause> :=
 { ROWS | RANGE }
 { BETWEEN
 { UNBOUNDED PRECEDING
 | CURRENT ROW
 | <value-expression> { PRECEDING | FOLLOWING }
 }
 AND
 { UNBOUNDED FOLLOWING

154

Amazon Kinesis Analytics SQL Reference
WINDOW clause (Sliding Windows)

 | CURRENT ROW
 | <value-expression> { PRECEDING | FOLLOWING }
 }
 | { UNBOUNDED { PRECEDING | FOLLOWING }
 | CURRENT ROW
 | <value-expression> { PRECEDING | FOLLOWING }
 }
 }

Allowed and Disallowed Window Specifications

Amazon Kinesis Analytics supports nearly all windows that end with the current row.

You cannot define an infinite window, a negative-sized window, or use negative integers in the window
specification. Offset windows are currently unsupported.

• Infinite windows are windows with no bounds. Typically these point into the future, which for streams
is infinite. For example "ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING"
is not supported, because in a streaming context such a query would not produce a result, since
streams are continually expanding as new data arrives. All uses of UNBOUNDED FOLLOWING are
unsupported.

• Negative windows . For example, "ROWS BETWEEN 0 PRECEDING AND 4 PRECEDING" is
a window of negative size and is therefore illegal. Instead, you would use: "ROWS BETWEEN 4
PRECEDING AND 0 PRECEDING" in this case.

• Offset windows are windows that do not end with CURRENT ROW. These are not supported
in the current release. For example, "ROWS BETWEEN UNBOUNDED PRECEDING AND 4
FOLLOWING" is not supported. (Window spans CURRENT ROW rather than starting or ending
there.)

• Windows defined with negative integers. For example, "ROWS BETWEEN -4 PRECEDING AND
CURRENT ROW" is invalid because negative integers are disallowed.

Also, the special case of ... 0 PRECEDING (and ... 0 FOLLOWING) cannot be used for windowed
aggregation; instead, the synonym CURRENT ROW can be used.

For windowed aggregation, partitioned windows are allowed, but ORDER BY must not be present.

For windowed join, partitioned windows are NOT allowed, but ORDER BY can be present if it sorts by
the ROWTIME column of one of the inputs.

Window examples

The following examples show a sample input data set, the definitions for several windows, and the
contents of those windows at various times after 10:00, the time data starts to arrive for this example.

The windows are defined as follows:

SELECT STREAM
 ticker,
 sum(amount) OVER lastHour,
 count(*) OVER lastHour
 sum(amount) OVER lastThree
FROM Trades
WINDOW

155

Amazon Kinesis Analytics SQL Reference
WINDOW clause (Sliding Windows)

 lastHour AS (RANGE INTERVAL '1' HOUR PRECEDING),
 lastThree AS (ROWS 3 PRECEDING),
 lastZeroRows AS (ROWS CURRENT ROW),
 lastZeroSeconds AS (RANGE CURRENT ROW),
 lastTwoSameTicker AS (PARTITION BY ticker ROWS 2 PRECEDING),
 lastHourSameTicker AS (PARTITION BY ticker RANGE INTERVAL '1' HOUR
 PRECEDING)

First Example: time-based windows versus row-based windows

As shown on the right side of the figure below, the time-based lastHour window contains varying
numbers of rows, because window membership is defined by time range.

Examples of windows containing rows

The row-based lastThree window generally contains four rows: the three preceding and the current
row. However for the row 10:10 IBM, it only contains two rows, because there is no data before 10:00.

A row-based window can contain several rows whose ROWTIME value is the same, though they arrive
at different times (wall-clock times). The order of such a row in the row-based window depends on its
arrival time; indeed, the row's arrival time can determine which window includes it.

For example, the middle lastThree window in Figure 1 shows the arrival of a YHOO trade with
ROWTIME 11:15 (and the last three trades before it). However, this window excludes the next trade,
for IBM, whose ROWTIME is also 11:15 but which must have arrived later than the YHOO trade.
This 11:15 IBM trade is included in the 'next' window, as is the 11:15 YHOO trade, its immediate
predecessor.

156

Amazon Kinesis Analytics SQL Reference
WINDOW clause (Sliding Windows)

Second Example: zero width windows, row-based and time-based

Figure 2: Examples of zero-width windows shows row-based and time-based windows of zero width.
The row-based window lastZeroRows includes just the current row, and therefore always contains
precisely one row. Note that ROWS CURRENT ROW is equivalent to ROWS 0 PRECEDING.

The time-based window lastZeroSeconds contains all rows with the same timestamp, of which there
may be several. Note that RANGE CURRENT ROW is equivalent to RANGE INTERVAL '0' SECOND
PRECEDING.

Third Example: Partitioning applied to row-based and time-based windows

Figure 3 shows windows that are similar to those in Figure 1 but with a PARTITION BY clause. For
time-based window lastTwoSameTicker and the row-based window lastHourSameTicker, the window
contains rows that meet the window criteria and have the same value of the ticker column. Note:
Partitions are evaluated before windows.

157

Amazon Kinesis Analytics SQL Reference
ORDER BY clause

ORDER BY clause
A streaming query can use ORDER BY if its leading expression is time-based and monotonic. For
example, a streaming query whose leading expression is based on the ROWTIME column can use
ORDER BY to do the following operations:

• Sort the results of a streaming GROUP BY.

• Sort a batch of rows arriving within a fixed time window of a stream.

• Perform streaming ORDER BY on windowed-joins.

The "time-based and monotonic" requirement on the leading expression means that the query

SELECT STREAM DISTINCT ticker FROM trades ORDER BY ticker

will fail, but the query

SELECT STREAM DISTINCT rowtime, ticker FROM trades ORDER BY ROWTIME, ticker

will succeed.

Streaming ORDER BY sorts rows using SQL-2008 compliant syntax for the ORDER BY clause. It can
be combined with a UNION ALL statement, and can sort on expressions, such as:

158

Amazon Kinesis Analytics SQL Reference
ORDER BY clause

SELECT STREAM x, y FROM t1
UNION ALL
SELECT STREAM a, b FROM t2 ORDER BY ROWTIME, MOD(x, 5)

The ORDER BY clause can specify ascending or descending sort order, and can use column ordinals,
as well as ordinals specifying (referring to) the position of items in the select list.

Streaming ORDER BY SQL Declarations

The streaming ORDER BY clause includes the following functional attributes:

• Gathers rows until the monotonic expression in streaming ORDER BY clause does not change.

• Does not require streaming GROUP BY clause in the same statement.

• Can use any column with a basic SQL data type of TIMESTAMP, DATE, DECIMAL, INTEGER,
FLOAT, CHAR, VARCHAR.

• Does not require that columns/expressions in the ORDER BY clause be present in the SELECT list
of the statement.

• Applies all the standard SQL validation rules for ORDER BY clause.

The following query is an example of streaming ORDER BY:

SELECT STREAM state, city, SUM(amount)
FROM orders
GROUP BY FLOOR(ROWTIME TO HOUR), state, city
ORDER BY FLOOR(ROWTIME TO HOUR), state, SUM(amount)

T-sorting Stream Input

Amazon Kinesis Analytics real-time analytics use the fact that arriving data is ordered by ROWTIME.
However, sometimes data arriving from multiple sources may not be time-synchronized.

While Amazon Kinesis Analytics can sort data from individual data sources that have been
independently inserted into Amazon Kinesis Analytics application's native stream, in some cases such
data may have already combined from multiple sources (such as for efficient consumption at an earlier
stage in processing). At other times, high volume data sources could make direct insertion impossible.

In addition, an unreliable data source could block progress by forcing Amazon Kinesis Analytics
application to wait indefinitely, unable to proceed until all connected data sources deliver. In this case,
data from this source could be unsynchronized.

You can use the ORDER BY clause to resolve these issues. Amazon Kinesis Analytics uses a sliding
time-based window of incoming rows to reorder those rows by ROWTIME.

Syntax

You specify the time-based parameter for sorting and the time-based window in which the streaming
rows are to be time-sorted, using the following syntax:

 ORDER BY <timestamp_expr> WITHIN
 <interval_literal>

Restrictions

The T-sort has the following restrictions:

159

Amazon Kinesis Analytics SQL Reference
ROWTIME

• The datatype of the ORDER BY expression must be timestamp.

• The partially-ordered expression <timestamp_expr> must be present in the select list of the query
with the alias ROWTIME.

• The leading expression of the ORDER BY clause must not contain the ROWTIME function and must
not use the DESC keyword.

• The ROWTIME column needs to be fully qualified. For example:

• ORDER BY FLOOR(ROWTIME TO MINUTE), ... fails.

• ORDER BY FLOOR(s.ROWTIME TO MINUTE), ... works.

If any of these requirements are not met, the statement will fail with errors.

Additional notes:

• You cannot use incoming rowtimebounds. These are ignored by the system.

• If <timestamp_expr> evaluates to NULL, the corresponding row is discarded.

ROWTIME
ROWTIME is an operator and system column that returns the time at which a particular row of a stream
was created.

It is used in four distinct ways:

• As an operator

• As a system column of a stream

• As a column alias, to override the timestamp on the current row

• As an ordinary column in a table

For more details, see the topics Timestamp, ROWTIME, and CURRENT_ROW_TIMESTAMP (p. 110)
in this guide.

ROWTIME operator

When used in the SELECT clause of a streaming query, without being qualified by a preceding 'alias.' ,
ROWTIME is an operator that evaluates to the timestamp of the row that is just about to be generated.

Its type is always TIMESTAMP NOT NULL.

ROWTIME system column

Every stream has a ROWTIME column. To reference this column from within a query, qualify it with
the stream name (or alias). For example, the following join query returns three timestamp columns: the
system columns of its input streams, and the timestamp of the generated row.

SELECT STREAM
 o.ROWTIME AS leftRowtime,
 s.ROWTIME AS rightRowtime,
 ROWTIME AS joinRowtime
FROM Orders AS o
 JOIN Shipments OVER (RANGE INTERVAL '1' HOUR FOLLOWING) AS s
 ON o.orderId = s.orderId

leftRowtime rightRowtime joinRowtime

160

Amazon Kinesis Analytics SQL Reference
ROWTIME

=================== =================== ===================
2008-02-20 10:15:00 2008-02-20 10:30:00 2008-02-20 10:15:00
2008-02-20 10:25:00 2008-02-20 11:15:00 2008-02-20 10:25:00
2008-02-20 10:25:30 2008-02-20 11:05:00 2008-02-20 10:25:30

As it happens, leftRowtime is always equal to joinRowtime, because the join is specified such that the
output row timestamp is always equal to the ROWTIME column from the Orders stream.

It follows that every streaming query has a ROWTIME column. However, the ROWTIME column is
not returned from a top-level JDBC query unless you explicitly include it in the SELECT clause. For
example:

CREATE STREAM Orders(
 "orderId" INTEGER NOT NULL,
 "custId" INTEGER NOT NULL);
SELECT columnName
FROM ALL_STREAMS;

columnName
==========
orderId
custId

SELECT STREAM *
FROM Orders;

orderId custId
======= ======
 100 501
 101 22
 102 699

SELECT STREAM ROWTIME, *
FROM Orders;

ROWTIME orderId custId
=================== ======= ======
2008-02-20 10:15:00 100 501
2008-02-20 10:25:00 101 22
2008-02-20 10:25:30 102 699

This is mainly to ensure compatibility with JDBC: the stream Orders declares two columns, so it makes
sense that "SELECT STREAM *" should return two columns.

Setting a row's timestamp

Amazon Kinesis Analytics assigns each row of a stream a timestamp value based on the streaming
relational operators that created it. You can override that value by giving one column or expression in
the query a column alias of ROWTIME, though this is not recommended.

For example, the following query returns rows with a constant timestamp:

SELECT STREAM
 TIMESTAMP '1970-01-01 00:00:00' AS ROWTIME,
 *
FROM Orders

161

Amazon Kinesis Analytics SQL Reference
ROWTIME

In fact, it is not strictly necessary to use AS ROWTIME. A column is promoted to the row's timestamp
column if its name, derived by the usual rules for column aliases, turns out to be ROWTIME. For
example:

// s.ROWTIME implicitly becomes the timestamp of the generated row
SELECT STREAM
 o.orderId,
 s.ROWTIME
FROM Orders AS o
 JOIN Shipments OVER (RANGE INTERVAL '1' HOUR FOLLOWING) AS s
 ON o.orderId = s.orderId
// invalid, because no stream can have more than one ROWTIME column
SELECT STREAM
 o.orderId,
 o.ROWTIME,
 s.ROWTIME
FROM Orders AS o
 JOIN Shipments OVER (RANGE INTERVAL '1' HOUR FOLLOWING) AS s
 ON o.orderId = s.orderId

A word of caution. Amazon Kinesis Analytics requires that rows have ascending timestamps, and this
is difficult to achieve. Therefore overriding row timestamps is not recommended in general.

162

Amazon Kinesis Analytics SQL Reference

Reserved Words and Keywords

Reserved Words

The following is a list of reserved words in Amazon Kinesis Analytics application as of version 5.0.1.

ABS EXPLAIN PRIMARY

ALL EXP_AVG PROCEDURE

ALLOCATE EXTERNAL RANGE

ALLOW EXTRACT RANK

ALTER FALSE READS

ANALYZE FETCH REAL

AND FILTER RECURSIVE

ANY FIRST_VALUE REF

ARE FLOAT REFERENCES

ARRAY FLOOR REFERENCING

AS FOR REGR_AVGX

ASENSITIVE FOREIGN REGR_AVGY

ASYMMETRIC FREE REGR_COUNT

AT FROM REGR_INTERCEPT

ATOMIC FULL REGR_R2

AUTHORIZATION FUNCTION REGR_SLOPE

AVG FUSION REGR_SXX

BEGIN GET REGR_SXY

BETWEEN GLOBAL RELEASE

BIGINT GRANT RESPECT

BINARY GROUP RESULT

163

Amazon Kinesis Analytics SQL Reference

BIT GROUPING RETURN

BLOB HAVING RETURNS

BOOLEAN HOLD REVOKE

BOTH HOUR RIGHT

BY IDENTITY ROLLBACK

CALL IGNORE ROLLUP

CALLED IMPORT ROW

CARDINALITY IN ROWS

CASCADED INDICATOR ROW_NUMBER

CASE INITCAP SAVEPOINT

CAST INNER SCOPE

CEIL INOUT SCROLL

CEILING INSENSITIVE SEARCH

CHAR INSERT SECOND

CHARACTER INT SELECT

CHARACTER_LENGTH INTEGER SENSITIVE

CHAR_LENGTH INTERSECT SESSION_USER

CHECK INTERSECTION SET

CHECKPOINT INTERVAL SIMILAR

CLOB INTO SMALLINT

CLOSE IS SOME

CLUSTERED JOIN SORT

COALESCE LANGUAGE SPECIFIC

COLLATE LARGE SPECIFICTYPE

COLLECT LAST_VALUE SQL

COLUMN LATERAL SQLEXCEPTION

COMMIT LEADING SQLSTATE

CONDITION LEFT SQLWARNING

CONNECT LIKE SQRT

CONSTRAINT LIMIT START

CONVERT LN STATIC

CORR LOCAL STDDEV

164

Amazon Kinesis Analytics SQL Reference

CORRESPONDING LOCALTIME STDDEV_POP

COUNT LOCALTIMESTAMP STDDEV_SAMP

COVAR_POP LOWER STOP

COVAR_SAMP MATCH STREAM

CREATE MAX SUBMULTISET

CROSS MEMBER SUBSTRING

CUBE MERGE SUM

CUME_DIST METHOD SYMMETRIC

CURRENT MIN SYSTEM

CURRENT_CATALOG MINUTE SYSTEM_USER

CURRENT_DATE MOD TABLE

CURRENT_DEFAULT_TRANSFORM_GROUPMODIFIES TABLESAMPLE

CURRENT_PATH MODULE THEN

CURRENT_ROLE MONTH TIME

CURRENT_SCHEMA MULTISET TIMESTAMP

CURRENT_TIME NATIONAL TIMEZONE_HOUR

CURRENT_TIMESTAMP NATURAL TIMEZONE_MINUTE

CURRENT_TRANSFORM_GROUP_FOR_TYPENCHAR TINYINT

CURRENT_USER NCLOB TO

CURSOR NEW TRAILING

CYCLE NO TRANSLATE

DATE NODE TRANSLATION

DAY NONE TREAT

DEALLOCATE NORMALIZE TRIGGER

DEC NOT TRIM

DECIMAL NTH_VALUE TRUE

DECLARE NULL TRUNCATE

DEFAULT NULLIF UESCAPE

DELETE NUMERIC UNION

DENSE_RANK OCTET_LENGTH UNIQUE

DEREF OF UNKNOWN

DESCRIBE OLD UNNEST

165

Amazon Kinesis Analytics SQL Reference

DETERMINISTIC ON UPDATE

DISALLOW ONLY UPPER

DISCONNECT OPEN USER

DISTINCT OR USING

DOUBLE ORDER VALUE

DROP OUT VALUES

DYNAMIC OUTER VARBINARY

EACH OVER VARCHAR

ELEMENT OVERLAPS VARYING

ELSE OVERLAY VAR_POP

END PARAMETER VAR_SAMP

END-EXEC PARTITION WHEN

ESCAPE PERCENTILE_CONT WHENEVER

EVERY PERCENTILE_DISC WHERE

EXCEPT PERCENT_RANK WIDTH_BUCKET

EXEC POSITION WINDOW

EXECUTE POWER WITH

EXISTS PRECISION WITHIN

EXP PREPARE WITHOUT

YEAR

166

Amazon Kinesis Analytics SQL Reference

Document History

The following table describes the documentation for this release of Amazon Kinesis Analytics SQL
Reference.

• API version: 2015-08-14

• Latest documentation update: August 11, 2016

Change Description Date

New guide This is the first release of the
Amazon Kinesis Analytics SQL
Reference guide.

August 11, 2016

167

	Amazon Kinesis Analytics
	Table of Contents
	Amazon Kinesis Analytics SQL Reference
	Temporal Predicates
	Syntax
	Example
	Sample Use Case

	Basic Building Blocks
	Data Types
	Numeric Types and Precision
	Identifiers
	Streaming SQL Operators
	IN Operator
	EXISTS Operator
	Scalar Operators
	Arithmetic Operators
	String Operators
	Concatenation
	LIKE patterns
	SIMILAR TO patterns

	Date, Timestamp, and Interval Operators
	Further Examples of Interval Operations
	Why Use "as varchar" in Conversion Examples?
	Rules for Specifying Intervals

	Logical Operators
	Three State Boolean Logic
	Other Logical Operators

	Functions
	Standard Functions
	Datetime Conversion Functions
	Char To Timestamp(Sys)
	About Delimiters and Values
	Examples Using Templates to Create TIMESTAMPS
	Template Strings to Create Specific Output Timestamps

	CHAR_TO_DATE
	CHAR_TO_TIME
	DATE_TO_CHAR
	TIME_TO_CHAR
	TIMESTAMP_TO_CHAR

	ANY
	EVERY
	EXP_AVG
	FIRST_VALUE
	FIXED_COLUMN_LOG_PARSE
	Group Rank
	SQL Declarations
	Operational Overview

	LAST_VALUE
	Monotonic Function
	NTH_VALUE
	SYS_LOG_PARSE
	VARIABLE_COLUMN_LOG_PARSE
	W3C_LOG_PARSE
	W3C Predefined Formats
	W3C Format Specifiers
	W3C Format Specifiers by Function or Category
	W3C Examples
	Example 1
	Specifiers Used by the Common Log Format
	Example 2
	W3C Customized Formats

	Aggregate Functions
	Streaming Aggregation and Rowtime Bounds
	Aggregate Function List
	Examples of Aggregate Queries on Streams (Streaming Aggregation)
	AVG
	COUNT
	COUNT_DISTINCT_ITEMS_TUMBLING Function
	Syntax
	Parameters
	in-application-streamPointer
	columnName
	windowSize

	MAX
	MIN
	SUM
	Statistical Variance and Deviation Functions
	STDDEV_POP
	STDDEV_SAMP
	VAR_POP
	VAR_SAMP

	TOP_K_ITEMS_TUMBLING Function
	Syntax
	Parameters
	in-application-streamPointer
	columnName
	K
	windowSize

	Analytic Functions
	Functions that Implement Unsupervised Machine Learning Algorithms
	RANDOM_CUT_FOREST Function
	Syntax
	Parameters
	inputStream
	numberOfTrees
	subSampleSize
	timeDecay
	shingleSize

	Windowed Aggregation on Streams
	Scalar Functions
	ABS
	CAST
	Valid Conversions
	Examples
	2.1 DATE to CHAR/VARCHAR
	REAL to INTEGER
	STRING to TIMESTAMP

	Using CAST to Convert a String to a Timestamp
	Using CHAR_TO_TIMESTAMP to convert a String to a Timestamp
	About Delimiters and Values
	TIMESTAMP to STRING
	STRING to TIME
	STRING to DATE
	INTERVAL to exact numerics
	Limitations

	CEIL / CEILING
	CHAR_LENGTH / CHARACTER_LENGTH
	COALESCE
	EXP
	EXTRACT
	FLOOR
	INITCAP
	LN
	LOG10
	LOWER
	MOD
	NULLIF
	OVERLAY
	POSITION
	POWER
	SUBSTRING
	TRIM
	UPPER
	Date and Time Functions
	Date and Time Patterns
	Text
	Number
	Year
	RFC 822 time zone
	Examples
	Date and Time Pattern Letters in Alphabetic Order

	CURRENT_DATE
	CURRENT_ROW_TIMESTAMP
	CURRENT_TIME
	CURRENT_TIMESTAMP
	LOCALTIME
	LOCALTIMESTAMP

	Pattern Matching Functions
	REGEX_LOG_PARSE
	Quick Regex Reference

	FAST_REGEX_LOG_PARSER
	FAST_REGEX_LOG_PARSER (FRLP)
	Character Class Symbols for Fast Regex
	Further FRLP Examples
	Example A
	Example B
	Example C

	Expressions and Literals
	Monotonic Expressions and Operators
	Condition Clause

	Standard SQL Operators
	CREATE statements
	CREATE STREAM
	CREATE FUNCTION
	CREATE PUMP

	INSERT
	MERGE statements
	Semantics

	Query
	SELECT statement
	SELECT ALL and SELECT DISTINCT
	SELECT clause
	Expressions
	CASE expression
	VALUES

	FROM clause
	JOIN clause
	HAVING clause
	GROUP BY clause
	WHERE clause
	WINDOW clause (Sliding Windows)
	Allowed and Disallowed Window Specifications
	Window examples

	ORDER BY clause
	T-sorting Stream Input

	ROWTIME

	Reserved Words and Keywords
	Document History

