
AWS Data Pipeline
Developer Guide

API Version 2012-10-29

AWS Data Pipeline Developer Guide

AWS Data Pipeline: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

AWS Data Pipeline Developer Guide

Table of Contents
What is AWS Data Pipeline? .. 1

Related Services .. 1
Accessing AWS Data Pipeline .. 2
Pricing .. 2

Data Pipeline Concepts ... 3
Pipeline Definition ... 3
Pipeline Components, Instances, and Attempts ... 4
Task Runners .. 5
Data Nodes ... 5
Databases ... 6
Activities .. 6
Preconditions ... 7

System-Managed Preconditions .. 7
User-Managed Preconditions .. 7

Resources ... 7
Resource Limits ... 8
Supported Platforms ... 8
Amazon EC2 Spot Instances with Amazon EMR Clusters and AWS Data Pipeline 8

Actions .. 9
Proactively Monitoring Pipelines .. 9

Setting Up ... 10
Sign Up for AWS .. 10
Create the Required IAM Roles (for CLI or API only) .. 10

Getting Started with AWS Data Pipeline ... 12
Create the Pipeline ... 13
Monitor the Running Pipeline .. 13
View the Output .. 14
Delete the Pipeline .. 14

Working with Pipelines ... 15
Scheduling Pipelines ... 15

Creating a Schedule Using the Console ... 15
On-demand .. 16
Time Series Style vs. Cron Style ... 17
Backfill Tasks ... 17
Maximum Resource Efficiency Using Schedules .. 18
Protecting Against Overwriting Data ... 18

Creating a Pipeline ... 18
Creating Pipelines Using Console Templates .. 18
Creating Pipelines Using the Console Manually ... 30

Viewing Your Pipelines .. 34
Interpreting Pipeline Status Codes ... 35
Interpreting Pipeline and Component Health State ... 36
Viewing Your Pipeline Definitions .. 37
Viewing Pipeline Instance Details .. 38
Viewing Pipeline Logs ... 39

Editing Your Pipeline ... 40
Limitations ... 40
Editing a Pipeline Using the Console ... 41
Editing a Pipeline Using the AWS CLI .. 41

Cloning Your Pipeline .. 42
Tagging Your Pipeline ... 42
Deactivating Your Pipeline ... 43

Deactivate Your Pipeline Using the Console ... 43
Deactivate Your Pipeline Using the AWS CLI .. 44

API Version 2012-10-29
iii

AWS Data Pipeline Developer Guide

Deleting Your Pipeline ... 44
Staging Data and Tables with Activities .. 45

Data Staging with ShellCommandActivity .. 45
Table Staging with Hive and Staging-supported Data Nodes .. 46
Table Staging with Hive and Staging-unsupported Data Nodes .. 47

Launching Resources into a VPC .. 48
Create and Configure a VPC .. 48
Set Up Connectivity Between Resources .. 49
Configure the Resource ... 50

Using Spot Instances in a Pipeline .. 51
Using Resources in Multiple Regions ... 51
Cascading Failures and Reruns .. 53

Activities .. 53
Data Nodes and Preconditions .. 53
Resources ... 53
Rerunning Cascade-Failed Objects .. 53
Cascade-Failure and Backfills ... 54

Pipeline Definition File Syntax ... 54
File Structure ... 54
Pipeline Fields .. 55
User-Defined Fields ... 56

Working with the API ... 56
Install the AWS SDK ... 56
Making an HTTP Request to AWS Data Pipeline ... 57

Controlling Access to Pipelines and Resources ... 60
IAM Policies for AWS Data Pipeline .. 61

Policy Syntax ... 61
Controlling Access to Pipelines Using Tags .. 62
Controlling Access to Pipelines Using Worker Groups .. 63

Example Policies for AWS Data Pipeline .. 64
IAM Roles .. 66

Update Existing IAM Roles for AWS Data Pipeline ... 66
Change Roles on Existing Pipelines .. 69

Tutorials .. 70
Process Data Using Amazon EMR with Hadoop Streaming ... 70

Before You Begin ... 71
Using the Console .. 71
Using the CLI ... 74

Import and Export DynamoDB Data ... 77
Part One: Import Data into DynamoDB .. 77
Part Two: Export Data from DynamoDB ... 82

Copy CSV Data from Amazon S3 to Amazon S3 ... 86
Before You Begin ... 87
Using the Console .. 88
Using the CLI ... 91

Export MySQL Data to Amazon S3 ... 96
Before You Begin ... 97
Using the Console .. 98
Using the CLI ... 101

Copy Data to Amazon Redshift ... 107
Before You Begin .. 108
Using the Console ... 109
Using the CLI ... 111

Pipeline Expressions and Functions ... 119
Simple Data Types .. 119

DateTime ... 119
Numeric ... 119

API Version 2012-10-29
iv

AWS Data Pipeline Developer Guide

Object References ... 119
Period .. 120
String .. 120

Expressions .. 120
Referencing Fields and Objects ... 120
Nested Expressions ... 121
Lists .. 121
Node Expression ... 122
Expression Evaluation .. 123

Mathematical Functions .. 123
String Functions .. 123
Date and Time Functions ... 124
Special Characters .. 128

Pipeline Object Reference .. 130
Data Nodes .. 130

DynamoDBDataNode ... 131
MySqlDataNode .. 135
RedshiftDataNode ... 139
S3DataNode ... 143
SqlDataNode .. 147

Activities .. 152
CopyActivity .. 152
EmrActivity ... 156
HadoopActivity .. 162
HiveActivity ... 168
HiveCopyActivity ... 174
PigActivity .. 179
RedshiftCopyActivity .. 187
ShellCommandActivity .. 194
SqlActivity .. 199

Resources .. 204
Ec2Resource .. 204
EmrCluster ... 210
HttpProxy ... 221

Preconditions .. 222
DynamoDBDataExists .. 223
DynamoDBTableExists ... 225
Exists .. 227
S3KeyExists ... 230
S3PrefixNotEmpty ... 232
ShellCommandPrecondition .. 234

Databases .. 237
JdbcDatabase ... 237
RdsDatabase .. 239
RedshiftDatabase .. 240

Data Formats ... 241
CSV Data Format ... 242
Custom Data Format ... 243
DynamoDBDataFormat ... 244
DynamoDBExportDataFormat .. 246
RegEx Data Format ... 247
TSV Data Format .. 249

Actions .. 250
SnsAlarm ... 250
Terminate ... 251

Schedule .. 252
Examples ... 252

API Version 2012-10-29
v

AWS Data Pipeline Developer Guide

Syntax ... 255
Utilities ... 256

ShellScriptConfig ... 257
EmrConfiguration ... 258
Property ... 261

Working with Task Runner ... 263
Task Runner on AWS Data Pipeline-Managed Resources ... 263
Executing Work on Existing Resources Using Task Runner ... 264

Installing Task Runner ... 265
(Optional) Granting Task Runner Access to Amazon RDS ... 265
Starting Task Runner ... 266
Verifying Task Runner Logging ... 267

Task Runner Threads and Preconditions .. 267
Task Runner Configuration Options ... 267
Using Task Runner with a Proxy ... 269
Task Runner and Custom AMIs .. 269

Troubleshooting .. 270
Locating Errors in Pipelines .. 270
Identifying the Amazon EMR Cluster that Serves Your Pipeline .. 271
Interpreting Pipeline Status Details .. 272
Locating Error Logs ... 273

Pipeline Logs .. 273
Hadoop Job and Amazon EMR Step Logs .. 273

Resolving Common Problems ... 273
Pipeline Stuck in Pending Status ... 274
Pipeline Component Stuck in Waiting for Runner Status .. 274
Pipeline Component Stuck in WAITING_ON_DEPENDENCIES Status 275
Run Doesn't Start When Scheduled ... 275
Pipeline Components Run in Wrong Order .. 276
EMR Cluster Fails With Error: The security token included in the request is invalid 276
Insufficient Permissions to Access Resources .. 276
Status Code: 400 Error Code: PipelineNotFoundException .. 276
Creating a Pipeline Causes a Security Token Error .. 276
Cannot See Pipeline Details in the Console .. 276
Error in remote runner Status Code: 404, AWS Service: Amazon S3 276
Access Denied - Not Authorized to Perform Function datapipeline: .. 277
Older Amazon EMR AMIs May Create False Data for Large CSV Files 277
Increasing AWS Data Pipeline Limits ... 277

Logging AWS Data Pipeline API Calls By Using AWS CloudTrail .. 278
AWS Data Pipeline Information in CloudTrail ... 278
Understanding AWS Data Pipeline Log File Entries .. 279

Limits .. 280
Account Limits .. 280
Web Service Call Limits ... 281
Scaling Considerations ... 282

AWS Data Pipeline Resources .. 283
Document History .. 284

API Version 2012-10-29
vi

AWS Data Pipeline Developer Guide
Related Services

What is AWS Data Pipeline?

AWS Data Pipeline is a web service that you can use to automate the movement and transformation of
data. With AWS Data Pipeline, you can define data-driven workflows, so that tasks can be dependent on
the successful completion of previous tasks. You define the parameters of your data transformations and
AWS Data Pipeline enforces the logic that you've set up.

The following components of AWS Data Pipeline work together to manage your data:

• A pipeline definition specifies the business logic of your data management. For more information, see
Pipeline Definition File Syntax (p. 54).

• A pipeline schedules and runs tasks. You upload your pipeline definition to the pipeline, and then activate
the pipeline. You can edit the pipeline definition for a running pipeline and activate the pipeline again for it
to take effect. You can deactivate the pipeline, modify a data source, and then activate the pipeline again.
When you are finished with your pipeline, you can delete it.

• Task Runner polls for tasks and then performs those tasks. For example, Task Runner could copy log
files to Amazon S3 and launch Amazon EMR clusters. Task Runner is installed and runs automatically on
resources created by your pipeline definitions. You can write a custom task runner application, or you can
use the Task Runner application that is provided by AWS Data Pipeline. For more information, see Task
Runners (p. 5).

For example, you can use AWS Data Pipeline to archive your web server's logs to Amazon Simple Storage
Service (Amazon S3) each day and then run a weekly Amazon EMR (Amazon EMR) cluster over those
logs to generate traffic reports. AWS Data Pipeline schedules the daily tasks to copy data and the weekly
task to launch the Amazon EMR cluster. AWS Data Pipeline also ensures that Amazon EMR waits for the
final day's data to be uploaded to Amazon S3 before it begins its analysis, even if there is an unforeseen
delay in uploading the logs.

Related Services
AWS Data Pipeline works with the following services to store data.

• Amazon DynamoDB — Provides a fully-managed NoSQL database with fast performance at a low cost.
For more information, see Amazon DynamoDB Developer Guide.

• Amazon RDS — Provides a fully-managed relational database that scales to large datasets. For more
information, see Amazon Relational Database Service Developer Guide.

API Version 2012-10-29
1

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://docs.aws.amazon.com/AmazonRDS/latest/DeveloperGuide/

AWS Data Pipeline Developer Guide
Accessing AWS Data Pipeline

• Amazon Redshift — Provides a fast, fully-managed, petabyte-scale data warehouse that makes it
easy and cost-effective to analyze a vast amount of data. For more information, see Amazon Redshift
Database Developer Guide.

• Amazon S3 — Provides secure, durable, and highly-scalable object storage. For more information, see
Amazon Simple Storage Service Developer Guide.

AWS Data Pipeline works with the following compute services to transform data.

• Amazon EC2 — Provides resizeable computing capacity—literally, servers in Amazon's data centers
—that you use to build and host your software systems. For more information, see Amazon EC2 User
Guide for Linux Instances.

• Amazon EMR — Makes it easy, fast, and cost-effective for you to distribute and process vast amounts
of data across Amazon EC2 servers, using a framework such as Apache Hadoop or Apache Spark. For
more information, see Amazon EMR Developer Guide.

Accessing AWS Data Pipeline
You can create, access, and manage your pipelines using any of the following interfaces:

• AWS Management Console— Provides a web interface that you can use to access AWS Data Pipeline.

• AWS Command Line Interface (AWS CLI) — Provides commands for a broad set of AWS services,
including AWS Data Pipeline, and is supported on Windows, Mac, and Linux. For more information
about installing the AWS CLI, see AWS Command Line Interface. For a list of commands for AWS Data
Pipeline, see datapipeline.

• AWS SDKs — Provides language-specific APIs and takes care of many of the connection details, such
as calculating signatures, handling request retries, and error handling. For more information, see AWS
SDKs.

• Query API— Provides low-level APIs that you call using HTTPS requests. Using the Query API is the
most direct way to access AWS Data Pipeline, but it requires that your application handle low-level
details such as generating the hash to sign the request, and error handling. For more information, see the
AWS Data Pipeline API Reference.

Pricing
With Amazon Web Services, you pay only for what you use. For AWS Data Pipeline, you pay for your
pipeline based on how often your activities and preconditions are scheduled to run and where they run. For
pricing information, see AWS Data Pipeline Pricing

If your AWS account is less than 12 months old, you are eligible to use the free tier. The free tier includes 3
low-frequency preconditions and 5 low-frequency activities per month at no charge. For more information,
see AWS Free Tier.

API Version 2012-10-29
2

http://docs.aws.amazon.com/redshift/latest/dg/
http://docs.aws.amazon.com/redshift/latest/dg/
http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
http://docs.aws.amazon.com/emr/latest/DeveloperGuide/
https://aws.amazon.com/cli/
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/index.html
http://aws.amazon.com/tools/#SDKs
http://aws.amazon.com/tools/#SDKs
http://docs.aws.amazon.com/datapipeline/latest/APIReference/
https://aws.amazon.com/datapipeline/pricing/
https://aws.amazon.com/free/

AWS Data Pipeline Developer Guide
Pipeline Definition

Data Pipeline Concepts

Before you begin, read about the key concepts and components for AWS Data Pipeline.

Contents

• Pipeline Definition (p. 3)

• Pipeline Components, Instances, and Attempts (p. 4)

• Task Runners (p. 5)

• Data Nodes (p. 5)

• Databases (p. 6)

• Activities (p. 6)

• Preconditions (p. 7)

• Resources (p. 7)

• Actions (p. 9)

Pipeline Definition
A pipeline definition is how you communicate your business logic to AWS Data Pipeline. It contains the
following information:

• Names, locations, and formats of your data sources

• Activities that transform the data

• The schedule for those activities

• Resources that run your activities and preconditions

• Preconditions that must be satisfied before the activities can be scheduled

• Ways to alert you with status updates as pipeline execution proceeds

From your pipeline definition, AWS Data Pipeline determines the tasks that will occur, schedules them,
and assigns them to task runners. If a task is not completed successfully, AWS Data Pipeline retries the
task according to your instructions and, if necessary, reassigns it to another task runner. If the task fails
repeatedly, you can configure the pipeline to notify you.

For example, in your pipeline definition, you might specify that log files generated by your application are
archived each month in 2013 to an Amazon S3 bucket. AWS Data Pipeline would then create 12 tasks,

API Version 2012-10-29
3

AWS Data Pipeline Developer Guide
Pipeline Components, Instances, and Attempts

each copying over a month's worth of data, regardless of whether the month contained 30, 31, 28, or 29
days.

You can create a pipeline definition in the following ways:

• Graphically, by using the AWS Data Pipeline console

• Textually, by writing a JSON file in the format used by the command line interface

• Programmatically, by calling the web service with either one of the AWS SDKs or the AWS Data Pipeline
API

A pipeline definition can contain the following types of components.

Pipeline Components

Data Nodes (p. 5)

The location of input data for a task or the location where output data is to be stored.

Activities (p. 6)

A definition of work to perform on a schedule using a computational resource and typically input and
output data nodes.

Preconditions (p. 7)

A conditional statement that must be true before an action can run.

Scheduling Pipelines (p. 15)

Defines the timing of a scheduled event, such as when an activity runs.

Resources (p. 7)

The computational resource that performs the work that a pipeline defines.

Actions (p. 9)

An action that is triggered when specified conditions are met, such as the failure of an activity.

For more information, see Pipeline Definition File Syntax (p. 54).

Pipeline Components, Instances, and Attempts
There are three types of items associated with a scheduled pipeline:

• Pipeline Components — Pipeline components represent the business logic of the pipeline and are
represented by the different sections of a pipeline definition. Pipeline components specify the data
sources, activities, schedule, and preconditions of the workflow. They can inherit properties from parent
components. Relationships among components are defined by reference. Pipeline components define
the rules of data management; they are not a to-do list.

• Instances — When AWS Data Pipeline runs a pipeline, it compiles the pipeline components to create a
set of actionable instances. Each instance contains all the information needed to perform a specific task.
The complete set of instances is the to-do list of the pipeline. AWS Data Pipeline hands the instances out
to task runners to process.

• Attempts — To provide robust data management, AWS Data Pipeline retries a failed operation. It
continues to do so until the task reaches the maximum number of allowed retry attempts. Attempt objects
track the various attempts, results, and failure reasons if applicable. Essentially, it is the instance with a

API Version 2012-10-29
4

http://docs.aws.amazon.com/datapipeline/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/datapipeline/latest/APIReference/Welcome.html

AWS Data Pipeline Developer Guide
Task Runners

counter. AWS Data Pipeline performs retries using the same resources from the previous attempts, such
as Amazon EMR clusters and EC2 instances.

Note
Retrying failed tasks is an important part of a fault tolerance strategy, and AWS Data Pipeline
pipeline definitions provide conditions and thresholds to control retries. However, too many
retries can delay detection of an unrecoverable failure because AWS Data Pipeline does not
report failure until it has exhausted all the retries that you specify. The extra retries may accrue
additional charges if they are running on AWS resources. As a result, carefully consider when it is
appropriate to exceed the AWS Data Pipeline default settings that you use to control re-tries and
related settings.

Task Runners
A task runner is an application that polls AWS Data Pipeline for tasks and then performs those tasks.

Task Runner is a default implementation of a task runner that is provided by AWS Data Pipeline. When
Task Runner is installed and configured, it polls AWS Data Pipeline for tasks associated with pipelines that
you have activated. When a task is assigned to Task Runner, it performs that task and reports its status
back to AWS Data Pipeline.

The following diagram illustrates how AWS Data Pipeline and a task runner interact to process a scheduled
task. A task is a discrete unit of work that the AWS Data Pipeline service shares with a task runner and
differs from a pipeline, which is a general definition of activities and resources that usually yields several
tasks.

There are two ways you can use Task Runner to process your pipeline:

• AWS Data Pipeline installs Task Runner for you on resources that are launched and managed by the
AWS Data Pipeline web service.

• You install Task Runner on a computational resource that you manage, such as a long-running EC2
instance, or an on-premise server.

For more information about working with Task Runner, see Working with Task Runner (p. 263).

Data Nodes
In AWS Data Pipeline, a data node defines the location and type of data that a pipeline activity uses as
input or output. AWS Data Pipeline supports the following types of data nodes:

DynamoDBDataNode (p. 131)

An DynamoDB table that contains data for HiveActivity (p. 168) or EmrActivity (p. 156) to use.

SqlDataNode (p. 147)

A SQL table and database query that represents data for a pipeline activity to use.

Note
Previously, MySqlDataNode was used but that is a deprecated data node. Please use
SqlDataNode instead.

RedshiftDataNode (p. 139)

An Amazon Redshift table that contains data for RedshiftCopyActivity (p. 187) to use.

API Version 2012-10-29
5

AWS Data Pipeline Developer Guide
Databases

S3DataNode (p. 143)

An Amazon S3 location that contains one or more files for a pipeline activity to use.

Databases
AWS Data Pipeline supports the following types of databases:

JdbcDatabase (p. 237)

A JDBC database.

RdsDatabase (p. 239)

An Amazon RDS database.

RedshiftDatabase (p. 240)

An Amazon Redshift database.

Activities
In AWS Data Pipeline, an activity is a pipeline component that defines the work to perform. AWS Data
Pipeline provides several pre-packaged activities that accommodate common scenarios, such as moving
data from one location to another, running Hive queries, and so on. Activities are extensible, so you can run
your own custom scripts to support endless combinations.

AWS Data Pipeline supports the following types of activities:

CopyActivity (p. 152)

Copies data from one location to another.

EmrActivity (p. 156)

Runs an Amazon EMR cluster.

HiveActivity (p. 168)

Runs a Hive query on an Amazon EMR cluster.

HiveCopyActivity (p. 174)

Runs a Hive query on an Amazon EMR cluster with support for advanced data filtering and support for
S3DataNode (p. 143) and DynamoDBDataNode (p. 131).

PigActivity (p. 179)

Runs a Pig script on an Amazon EMR cluster.

RedshiftCopyActivity (p. 187)

Copies data to and from Amazon Redshift tables.

ShellCommandActivity (p. 194)

Runs a custom UNIX/Linux shell command as an activity.

SqlActivity (p. 199)

Runs a SQL query on a database.

API Version 2012-10-29
6

AWS Data Pipeline Developer Guide
Preconditions

Some activities have special support for staging data and database tables. For more information, see
Staging Data and Tables with Pipeline Activities (p. 45).

Preconditions
In AWS Data Pipeline, a precondition is a pipeline component containing conditional statements that
must be true before an activity can run. For example, a precondition can check whether source data is
present before a pipeline activity attempts to copy it. AWS Data Pipeline provides several pre-packaged
preconditions that accommodate common scenarios, such as whether a database table exists, whether
an Amazon S3 key is present, and so on. However, preconditions are extensible and allow you to run your
own custom scripts to support endless combinations.

There are two types of preconditions: system-managed preconditions and user-managed preconditions.
System-managed preconditions are run by the AWS Data Pipeline web service on your behalf and do not
require a computational resource. User-managed preconditions only run on the computational resource that
you specify using the runsOn or workerGroup fields. The workerGroup resource is derived from the activity
that uses the precondition.

System-Managed Preconditions
DynamoDBDataExists (p. 223)

Checks whether data exists in a specific DynamoDB table.

DynamoDBTableExists (p. 225)

Checks whether a DynamoDB table exists.

S3KeyExists (p. 230)

Checks whether an Amazon S3 key exists.

S3PrefixNotEmpty (p. 232)

Checks whether an Amazon S3 prefix is empty.

User-Managed Preconditions
Exists (p. 227)

Checks whether a data node exists.

ShellCommandPrecondition (p. 234)

Runs a custom Unix/Linux shell command as a precondition.

Resources
In AWS Data Pipeline, a resource is the computational resource that performs the work that a pipeline
activity specifies. AWS Data Pipeline supports the following types of resources:

Ec2Resource (p. 204)

An EC2 instance that performs the work defined by a pipeline activity.

API Version 2012-10-29
7

AWS Data Pipeline Developer Guide
Resource Limits

EmrCluster (p. 210)

An Amazon EMR cluster that performs the work defined by a pipeline activity, such as
EmrActivity (p. 156).

Resources can run in the same region with their working data set, even a region different than AWS Data
Pipeline. For more information, see Using a Pipeline with Resources in Multiple Regions (p. 51).

Resource Limits
AWS Data Pipeline scales to accommodate a huge number of concurrent tasks and you can configure it
to automatically create the resources necessary to handle large workloads. These automatically-created
resources are under your control and count against your AWS account resource limits. For example, if
you configure AWS Data Pipeline to create a 20-node Amazon EMR cluster automatically to process data
and your AWS account has an EC2 instance limit set to 20, you may inadvertently exhaust your available
backfill resources. As a result, consider these resource restrictions in your design or increase your account
limits accordingly. For more information about service limits, see AWS Service Limits in the AWS General
Reference.

Note
The limit is 1 instance per Ec2Resource component object

Supported Platforms
Pipelines can launch your resources into the following platforms:

EC2-Classic

Your resources run in a single, flat network that you share with other customers.

EC2-VPC

Your resources run in a virtual private cloud (VPC) that's logically isolated to your AWS account.

Your AWS account is capable of launching resources either into both platforms or only into EC2-VPC, on a
region by region basis. For more information, see Supported Platforms in the Amazon EC2 User Guide for
Linux Instances.

If your AWS account supports only EC2-VPC, we create a default VPC for you in each AWS region. By
default, we launch your resources into a default subnet of your default VPC. Alternatively, you can create
a nondefault VPC and specify one of its subnets when you configure your resources, and then we'll launch
your resources into the specified subnet of the nondefault VPC.

When you launch an instance into a VPC, you must specify a security group created specifically for that
VPC. You can't specify a security group that you created for EC2-Classic when you launch an instance
into a VPC. In addition, you must use the security group ID and not the security group name to identify a
security group for a VPC.

For more information about using a VPC with AWS Data Pipeline, see Launching Resources for Your
Pipeline into a VPC (p. 48).

Amazon EC2 Spot Instances with Amazon EMR
Clusters and AWS Data Pipeline
Pipelines can use Amazon EC2 Spot Instances for the task nodes in their Amazon EMR cluster resources.
By default, pipelines use on-demand EC2 instances. Spot Instances let you bid on spare EC2 instances

API Version 2012-10-29
8

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html

AWS Data Pipeline Developer Guide
Actions

and run them whenever your bid exceeds the current Spot Price, which varies in real-time based on supply
and demand. The Spot Instance pricing model complements the on-demand and Reserved Instance pricing
models, potentially providing the most cost-effective option for obtaining compute capacity, depending on
your application. For more information, see the Amazon EC2 Spot Instances product page.

When you use Spot Instances, AWS Data Pipeline submits your Spot Instance bid to Amazon EMR when
your cluster is launched. After your bid succeeds, Amazon EMR automatically allocates the cluster's work
to the number of Spot Instance task nodes that you define using the taskInstanceCount field. AWS Data
Pipeline limits Spot Instances for task nodes to ensure that on-demand core nodes are available to run your
pipeline if you don't successfully bid on a Spot Instance.

You can edit a failed or completed pipeline resource instance to add Spot Instances; when the pipeline re-
launches the cluster, it uses Spot Instances for the task nodes.

Spot Instances Considerations

When you use Spot Instances with AWS Data Pipeline, the following considerations apply:

• Spot Instances can terminate at any time if you lose the bid. However, you do not lose your data because
AWS Data Pipeline employs clusters with core nodes that are always on-demand instances and not
subject to bid-related termination.

• Spot Instances can take more time to start due to the bidding and termination process; therefore, a Spot
Instance-based pipeline could run more slowly than an equivalent on-demand instance pipeline.

• Your cluster might not run if you do not receive your Spot Instances, such as when your bid price is too
low. For more information, see Troubleshooting Spot Instances in the Amazon EMR Developer Guide.

Actions
AWS Data Pipeline actions are steps that a pipeline component takes when certain events occur, such as
success, failure, or late activities. The event field of an activity refers to an action, such as a reference to
Terminate in the onLateAction field of EmrActivity. AWS Data Pipeline supports the following actions:

SnsAlarm (p. 250)

An action that sends an Amazon SNS notification to a topic based on certain events.

Terminate (p. 251)

An action that triggers the cancellation of a pending or unfinished activity, resource, or data node.

Even though the AWS Data Pipeline console and CLI convey pipeline status information, AWS Data
Pipeline relies on Amazon SNS notifications as the primary way to indicate the status of pipelines and their
components in an unattended manner. For more information, see Amazon Simple Notification Service
(Amazon SNS).

Proactively Monitoring Pipelines
The best way to detect problems is to monitor your pipelines proactively from the start. You can configure
pipeline components to inform you of certain situations or events, such as when a pipeline component fails
or doesn't begin by its scheduled start time. AWS Data Pipeline makes it easy to configure notifications by
providing event fields on pipeline components that you can associate with Amazon SNS notifications, such
as onSuccess, OnFail, and onLateAction.

API Version 2012-10-29
9

http://aws.amazon.com/ec2/spot-instances/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/TroubleshootingSpotInstances.html
http://aws.amazon.com/sns/
http://aws.amazon.com/sns/

AWS Data Pipeline Developer Guide
Sign Up for AWS

Setting Up for AWS Data Pipeline

Before you use AWS Data Pipeline for the first time, complete the following tasks.

Tasks

• Sign Up for AWS (p. 10)

• Create the Required IAM Roles (for CLI or API only) (p. 10)

After you complete these tasks, you can start using AWS Data Pipeline. For a basic tutorial, see Getting
Started with AWS Data Pipeline (p. 12).

Sign Up for AWS
When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for all
services in AWS, including AWS Data Pipeline. You are charged only for the services that you use. For
more information about AWS Data Pipeline usage rates, see AWS Data Pipeline.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Create the Required IAM Roles (for CLI or API only)
AWS Data Pipeline requires IAM roles to determine what actions your pipelines can perform and what
resources it can access. Additionally, when your pipeline creates a resource, such as an EC2 instance or
EMR cluster, IAM roles determine what actions your applications can perform and what resources they can
access.

The AWS Data Pipeline console creates the following roles for you:

API Version 2012-10-29
10

http://aws.amazon.com/datapipeline/
https://aws.amazon.com/

AWS Data Pipeline Developer Guide
Create the Required IAM Roles (for CLI or API only)

• DataPipelineDefaultRole - Grants AWS Data Pipeline access to your AWS resources

• DataPipelineDefaultResourceRole - Grants the applications on your EC2 instances access to your
AWS resources

If you have used AWS Data Pipeline previously and have existing versions of these IAM roles, you
might need to update them. For more information, see Update Existing IAM Roles for AWS Data
Pipeline (p. 66).

If you are using a CLI or an API and you have not used the AWS Data Pipeline console to create a pipeline
previously, you must create these roles manually using AWS Identity and Access Management (IAM).

To manually create the required IAM roles

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Create the DataPipelineDefaultRole role as follows:

a. In the navigation pane, click Roles, and then click Create New Role.

b. On the Set Role Name page, enter DataPipelineDefaultRole as the role name.

c. On the Select Role Type page, under AWS Service Roles, click Select in the row for AWS Data
Pipeline.

d. On the Attach Policy page, click the box next to the AWSDataPipelineRole policy, and then click
Next Step.

e. On the Review page, click Create Role.

3. Create the DataPipelineDefaultResourceRole role as follows:

a. In the navigation pane, click Roles, and then click Create New Role.

b. On the Set Role Name page, enter DataPipelineDefaultResourceRole as the role name.

c. On the Select Role Type page, under AWS Service Roles, click Select in the row for Amazon
EC2 Role for Data Pipeline.

d. On the Attach Policy page, click the box next to the AmazonEC2RoleforDataPipelineRole
policy, and then click Next Step.

e. On the Review page, click Create Role.

Alternatively, you can create and use custom roles. For an example of how to specify custom roles for an
EmrCluster object, see Specify custom IAM roles (p. 212).

API Version 2012-10-29
11

https://console.aws.amazon.com/iam/

AWS Data Pipeline Developer Guide

Getting Started with AWS Data
Pipeline

AWS Data Pipeline helps you sequence, schedule, run, and manage recurring data processing workloads
reliably and cost-effectively. This service makes it easy for you to design extract-transform-load (ETL)
activities using structured and unstructured data, both on-premises and in the cloud, based on your
business logic.

To use AWS Data Pipeline, you create a pipeline definition that specifies the business logic for your data
processing. A typical pipeline definition consists of activities (p. 6) that define the work to perform, data
nodes (p. 5) that define the location and type of input and output data, and a schedule (p. 15) that
determines when the activities are performed.

In this tutorial, you run a shell command script that counts the number of GET requests in Apache web
server logs. This pipeline runs every 15 minutes for an hour, and writes output to Amazon S3 on each
iteration.

Prerequisites

Before you begin, complete the tasks in Setting Up for AWS Data Pipeline (p. 10).

Pipeline Objects

The pipeline uses the following objects:

ShellCommandActivity (p. 194)

Reads the input log file and counts the number of errors.

S3DataNode (p. 143) (input)

The S3 bucket that contains the input log file.

S3DataNode (p. 143) (output)

The S3 bucket for the output.

Ec2Resource (p. 204)

The compute resource that AWS Data Pipeline uses to perform the activity.

Note that if you have a large amount of log file data, you can configure your pipeline to use an EMR
cluster to process the files instead of an EC2 instance.

API Version 2012-10-29
12

AWS Data Pipeline Developer Guide
Create the Pipeline

Schedule (p. 252)

Defines that the activity is performed every 15 minutes for an hour.

Tasks

• Create the Pipeline (p. 13)

• Monitor the Running Pipeline (p. 13)

• View the Output (p. 14)

• Delete the Pipeline (p. 14)

Create the Pipeline
The quickest way to get started with AWS Data Pipeline is to use a pipeline definition called a template.

To create the pipeline

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. From the navigation bar, select a region. You can select any region that's available to you, regardless
of your location. Many AWS resources are specific to a region, but AWS Data Pipeline enables you to
use resources that are in a different region than the pipeline.

3. The first screen that you see depends on whether you've created a pipeline in the current region.

a. If you haven't created a pipeline in this region, the console displays an introductory screen.
Choose Get started now.

b. If you've already created a pipeline in this region, the console displays a page that lists your
pipelines for the region. Choose Create new pipeline.

4. In Name, enter a name for your pipeline.

5. (Optional) In Description, enter a description for your pipeline.

6. For Source, select Build using a template, and then select the following template: Getting Started
using ShellCommandActivity.

7. Under the Parameters section, which opened when you selected the template, leave S3 input folder
and Shell command to run with their default values. Click the folder icon next to S3 output folder,
select one of your buckets or folders, and then click Select.

8. Under Schedule, leave the default values. When you activate the pipeline the pipeline runs start, and
then continue every 15 minutes for an hour.

If you prefer, you can select Run once on pipeline activation instead.

9. Under Pipeline Configuration, leave logging enabled. Choose the folder icon under S3 location for
logs, select one of your buckets or folders, and then choose Select.

If you prefer, you can disable logging instead.

10. Under Security/Access, leave IAM roles set to Default.

11. Click Activate.

If you prefer, you can choose Edit in Architect to modify this pipeline. For example, you can add
preconditions.

Monitor the Running Pipeline
After you activate your pipeline, you are taken to the Execution details page where you can monitor the
progress of your pipeline.

API Version 2012-10-29
13

https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
View the Output

To monitor the progress of your pipeline

1. Click Update or press F5 to update the status displayed.

Tip
If there are no runs listed, ensure that Start (in UTC) and End (in UTC) cover the scheduled
start and end of your pipeline, and then click Update.

2. When the status of every object in your pipeline is FINISHED, your pipeline has successfully completed
the scheduled tasks.

3. If your pipeline doesn't complete successfully, check your pipeline settings for issues. For more
information about troubleshooting failed or incomplete instance runs of your pipeline, see Resolving
Common Problems (p. 273).

View the Output
Open the Amazon S3 console and navigate to your bucket. If you ran your pipeline every 15 minutes for an
hour, you'll see four time-stamped subfolders. Each subfolder contains output in a file named output.txt.
Because we ran the script on the same input file each time, the output files are identical.

Delete the Pipeline
To stop incurring charges, delete your pipeline. Deleting your pipeline deletes the pipeline definition and all
associated objects.

To delete your pipeline

1. On the List Pipelines page, select your pipeline.

2. Click Actions, and then choose Delete.

3. When prompted for confirmation, choose Delete.

If you are finished with the output from this tutorial, delete the output folders from your Amazon S3 bucket.

API Version 2012-10-29
14

AWS Data Pipeline Developer Guide
Scheduling Pipelines

Working with Pipelines

You can administer, create, and modify pipelines using the AWS Data Pipeline console, an AWS SDK,
or the command line interface (CLI). The following sections introduce fundamental AWS Data Pipeline
concepts and show you how to work with pipelines.

Important
Before you begin, see Setting Up for AWS Data Pipeline (p. 10).

Contents

• Scheduling Pipelines (p. 15)

• Creating a Pipeline (p. 18)

• Viewing Your Pipelines (p. 34)

• Editing Your Pipeline (p. 40)

• Cloning Your Pipeline (p. 42)

• Tagging Your Pipeline (p. 42)

• Deactivating Your Pipeline (p. 43)

• Deleting Your Pipeline (p. 44)

• Staging Data and Tables with Pipeline Activities (p. 45)

• Launching Resources for Your Pipeline into a VPC (p. 48)

• Using Amazon EC2 Spot Instances in a Pipeline (p. 51)

• Using a Pipeline with Resources in Multiple Regions (p. 51)

• Cascading Failures and Reruns (p. 53)

• Pipeline Definition File Syntax (p. 54)

• Working with the API (p. 56)

Scheduling Pipelines
In AWS Data Pipeline, a schedule defines the timing of a scheduled event, such as when an activity runs.
AWS Data Pipeline exposes this functionality through the Schedule (p. 252) pipeline component.

Creating a Schedule Using the Console
The AWS Data Pipeline console allows you to schedule and create pipelines. This is useful for testing and
prototyping pipelines before establishing them for production workloads.

The Create Pipeline section has the following fields:

API Version 2012-10-29
15

AWS Data Pipeline Developer Guide
On-demand

Field Action

Name Enter a name for the pipeline.

Description (Optional) Enter a description for the pipeline.

The Schedule section has the following fields:

Field Action

Run • Choose on activation to run the pipeline as an on-demand pipeline. This will
create a pipeline that can be run when it is activated.

Run every Enter a period for every pipeline run.

Starting Enter a time and date for the pipeline to start. Alternatively, your start date and time
are automatically selected at pipeline activation.

Ending Enter a time and date for the pipeline to end. If you select never, your pipeline
continues to execute indefinitely.

The IAM Roles & Permissions section has the following options:

Field Action

Default Choose this to have AWS Data Pipeline determine the roles for you.

Custom Choose this to designate your own IAM roles. If you select this option, you can
choose the following roles:

• Pipeline role—the role that determines what AWS Data Pipeline can do with
resources in the account.

• EC2 instance role—the role that controls what Amazon EC2 applications can do
with resources in the account.

On-demand
Note
You can find the Default object on the Architect page in the Other section.

AWS Data Pipeline offers an on-demand schedule type, which gives the option for a pipeline to be run on
pipeline activation. The pipeline will be run once in response to an activation request.

On-demand pipelines only require the schedule type to be set to ondemand on the default object. On-
demand pipelines require that you not use a schedule object and they do not allow for multiple schedules.
The maximum number of concurrent executions of an on-demand pipeline can be configured using the slot
maxActiveInstances in the Default object. The default value for this slot is 1 for on-demand pipelines and
can have a maximum value of 5.

The following Default object will use on-demand scheduling:

{
 "name": "Default",
 "resourceRole": "DataPipelineDefaultResourceRole",
 "role": "DataPipelineDefaultRole",
 "scheduleType": "ondemand"

API Version 2012-10-29
16

AWS Data Pipeline Developer Guide
Time Series Style vs. Cron Style

}

Time Series Style vs. Cron Style
AWS Data Pipeline offers two types of periodic pipeline component scheduling: time series style scheduling
and cron style scheduling. The schedule type allows you to specify whether the pipeline component
instances should start at the beginning of the interval (also known as the period) or at the end of the
interval. Time series style scheduling means instances are scheduled at the end of each interval and cron
style scheduling means instances are scheduled at the beginning of each interval. For example, using time
series style scheduling, if the start time is 22:00 UTC and the interval/period is set to 30 minutes, then the
pipeline component instance's first run starts at 22:30 UTC, not 22:00 UTC. If you want the instance to run
at the beginning of the period/interval, such as 22:00 UTC, use cron style scheduling instead.

Note
The minimum scheduling interval is 15 minutes.

Note
You can find the Default object on the Architect page in the Other section.

The following is a Default object for cron style pipelines:

{
 "name": "Default",
 "resourceRole": "DataPipelineDefaultResourceRole",
 "role": "DataPipelineDefaultRole",
 "scheduleType": "cron"
}

The following is a Default object for time series style pipelines:

{
 "name": "Default",
 "resourceRole": "DataPipelineDefaultResourceRole",
 "role": "DataPipelineDefaultRole",
 "scheduleType": "timeseries"
}

Resources Ignore Schedule Type

AWS Data Pipeline creates activity and data node instances at the beginning or end of the schedule
interval depending on the pipeline's schedule type setting (time series style scheduling or cron style
scheduling). However, AWS Data Pipeline creates Resource instances, such as EC2Resource and
EmrCluster, at the beginning of the interval regardless of the pipeline schedule type and sets them to the
WAITING_ON_DEPENDENCIES status. The actual underlying resources are not instantiated until an
associated activity is scheduled.

Backfill Tasks
When you define a pipeline with a scheduled start time for the past, AWS Data Pipeline backfills the tasks
in the pipeline. In that situation, AWS Data Pipeline immediately runs many instances of the tasks in the
pipeline to catch up to the number of times those tasks would have run between the scheduled start time
and the current time. When this happens, you see pipeline component instances running back-to-back at
a greater frequency than the period value that you specified when you created the pipeline. AWS Data
Pipeline returns your pipeline to the defined period only when it catches up to the number of past runs.

To minimize backfills in your development and testing phases, use a relatively short interval for
startDateTime..endDateTime.

API Version 2012-10-29
17

AWS Data Pipeline Developer Guide
Maximum Resource Efficiency Using Schedules

AWS Data Pipeline attempts to prevent accidental backfills by blocking pipeline activation if the pipeline
component scheduledStartTime is earlier than 1 day ago.

To get your pipeline to launch immediately, set Start Date Time to a date one day in the past. AWS Data
Pipeline starts launching the "past due" runs immediately in an attempt to address what it perceives as a
backlog of work. This backfilling means you don't have to wait an hour to see AWS Data Pipeline launch its
first cluster.

Maximum Resource Efficiency Using Schedules
AWS Data Pipeline allows you to maximize the efficiency of resources by supporting different schedule
periods for a resource and an associated activity.

For example, consider an activity with a 20-minute schedule period. If the activity's resource were also
configured for a 20-minute schedule period, AWS Data Pipeline would create three instances of the
resource in an hour and consume triple the resources necessary for the task.

Instead, AWS Data Pipeline lets you configure the resource with a different schedule; for example, a one-
hour schedule. When paired with an activity on a 20-minute schedule, AWS Data Pipeline creates only one
resource to service all three instances of the activity in an hour, thus maximizing usage of the resource.

Protecting Against Overwriting Data
Consider a recurring import job using AWS Data Pipeline that runs multiple times per day and routes
the output to the same Amazon S3 location for each run. You could accidentally overwrite your output
data, unless you use a date-based expression. A date-based expression such as s3://myBucket/
#{@scheduledStartTime} for your S3Output.DirectoryPath can specify a separate directory path for each
period. For more information, see Schedule (p. 252).

Creating a Pipeline
AWS Data Pipeline provides several ways for you to create pipelines:

• Use the console with a template provided for your convenience. For more information, see Creating
Pipelines Using Console Templates (p. 18).

• Use the console to manually add individual pipeline objects. For more information, see Creating Pipelines
Using the Console Manually (p. 30).

• Use the AWS Command Line Interface (CLI) with a pipeline definition file in JSON format.

• Use an AWS SDK with a language-specific API. For more information, see Working with the
API (p. 56).

Creating Pipelines Using Console Templates
The AWS Data Pipeline console provides several pre-configured pipeline definitions, known as templates.
You can use templates to get started with AWS Data Pipeline quickly. You can also create templates
with parameterized values. This allows you to specify pipeline objects with parameters and pre-defined
attributes. You can then use a tool to create values for a specific purpose within the pipeline. This allows
you to reuse pipeline definitions with different values. For more information, see Creating a Pipeline Using
Parameterized Templates (p. 27).

Initialize, Create, and Schedule a Pipeline
The AWS Data Pipeline console Create Pipeline page allows you to create and schedule a pipeline easily.

API Version 2012-10-29
18

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

To create and schedule a pipeline

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. Click either Get started now or Create Pipeline.

3. Enter a pipeline name and an optional description for the pipeline.

4. Choose Build using Architect to interactively create and edit nodes in a pipeline definition or
Build using a template to select a template. For more information about templates, see Choose a
Template (p. 19).

If you use choose to use a template, the console displays a form that is specific to that template under
Parameters. Complete the form as appropriate.

5. Choose whether to run the pipeline once on activation or on a schedule.

If you choose to run the pipeline on a schedule:

a. For Run every, choose a period for the pipeline. The start and end time must define an interval
that's long enough to accommodate this period.

b. Choose a Starting time. If you choose on pipeline activation, the pipeline uses the current
activation time.

c. Choose an Ending time. If you choose never, the pipeline runs indefinitely.

6. Select an option for IAM Roles. If you select Default, Amazon DevPay assigns its own default roles.
You can optionally select Custom to choose other roles available to your account.

7. Click either Edit in Architect or Activate.

Choose a Template

When you choose a template, the pipeline create page populates with the parameters specified in the
pipeline definition, such as custom Amazon S3 directory paths, Amazon EC2 key pair names, database
connection strings, and so on. You can provide this information at pipeline creation and activation. The
following templates available in the console are also available for download from the Amazon S3 bucket:
s3://datapipeline-us-east-1/templates/.

Templates

• Getting Started Using ShellCommandActivity (p. 19)

• Run AWS CLI Command (p. 20)

• Export DynamoDB Table to S3 (p. 20)

• Import DynamoDB Backup Data from S3 (p. 20)

• Run Job on an Elastic MapReduce Cluster (p. 20)

• Full Copy of RDS MySQL Table to S3 (p. 21)

• Incremental Copy of RDS MySQL Table to S3 (p. 21)

• Load S3 Data into RDS MySQL Table (p. 21)

• Full copy of RDS MySQL table to Redshift (p. 26)

• Incremental copy of RDS MySQL table to Redshift (p. 26)

• Load Data from S3 Into Redshift (p. 27)

Getting Started Using ShellCommandActivity

The Getting Started using ShellCommandActivity template runs a shell command script to count the
number of GET requests in a log file. The output is written in a time-stamped Amazon S3 location on every
scheduled run of the pipeline.

API Version 2012-10-29
19

https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

The template uses the following pipeline objects:

• ShellCommandActivity

• S3InputNode

• S3OutputNode

• Ec2Resource

Run AWS CLI Command

This template runs a user-specified AWS CLI command at scheduled intervals.

Export DynamoDB Table to S3

The Export DynamoDB table to S3 template schedules an Amazon EMR cluster to export data from a
DynamoDB table to an Amazon S3 bucket. This template uses an Amazon EMR cluster, which will be sized
proportional to the value of the throughput available to the DynamoDB table. Although, you can increase
IOPs on a table, this may incur additional costs while importing and exporting. Previously, export used a
HiveActivity but now uses native MapReduce.

The template uses the following pipeline objects:

• EmrActivity (p. 156)

• EmrCluster (p. 210)

• DynamoDBDataNode (p. 131)

• S3DataNode (p. 143)

Import DynamoDB Backup Data from S3

The Import DynamoDB backup data from S3 template schedules an Amazon EMR cluster to load
a previously created DynamoDB backup in Amazon S3 to a DynamoDB table. Existing items in the
DynamoDB table will be updated with those from the backup data and new items will be added to the
table. This template uses an Amazon EMR cluster, which will be sized proportional to the value of the
throughput available to the DynamoDB table. Although, you can increase IOPs on a table, this may incur
additional costs while importing and exporting. Previously, import used a HiveActivity but now uses native
MapReduce.

The template uses the following pipeline objects:

• EmrActivity (p. 156)

• EmrCluster (p. 210)

• DynamoDBDataNode (p. 131)

• S3DataNode (p. 143)

• S3PrefixNotEmpty (p. 232)

Run Job on an Elastic MapReduce Cluster

The Run Job on an Elastic MapReduce Cluster template launches an Amazon EMR cluster based on the
parameters provided and starts running steps based on the specified schedule. Once the job completes,
the EMR cluster is terminated. Optional bootstrap actions can be specified to install additional software or
to change application configuration on the cluster.

The template uses the following pipeline objects:

API Version 2012-10-29
20

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

• EmrActivity (p. 156)

• EmrCluster (p. 210)

Full Copy of RDS MySQL Table to S3
The Full Copy of RDS MySQL Table to S3 template copies an entire Amazon RDS MySQL table and
stores the output in an Amazon S3 location. The output is stored as a CSV file in a timestamped subfolder
under the specified Amazon S3 location.

The template uses the following pipeline objects:

• CopyActivity (p. 152)

• Ec2Resource (p. 204)

• SqlDataNode (p. 147)

• S3DataNode (p. 143)

Incremental Copy of RDS MySQL Table to S3
The Incremental Copy of RDS MySQL Table to S3 template does an incremental copy of the data from
an Amazon RDS MySQL table and stores the output in an Amazon S3 location. The RDS MySQL table
must have a Last Modified column. This template will copy changes that are made to the table between
scheduled intervals starting from the scheduled start time. The schedule type is time series (p. 17) so if
a copy was scheduled for a certain hour, Data Pipeline will copy the table rows which have a Last Modified
timestamp that falls within the hour. Physical deletes to the table will not be copied. The output will be
written in a timestamped subfolder under the Amazon S3 location on every scheduled run.

The template uses the following pipeline objects:

• CopyActivity (p. 152)

• Ec2Resource (p. 204)

• SqlDataNode (p. 147)

• S3DataNode (p. 143)

Load S3 Data into RDS MySQL Table
The Load S3 Data into RDS MySQL Table template schedules an Amazon EC2 instance to copy the CSV
file from the Amazon Amazon S3 file path specified below to an Amazon RDS MYSQL table. The CSV file
should not have a header row. The template updates existing entries in the RDS MySQL table with those
in the Amazon S3 data and adds new entries from the Amazon S3 data to the RDS MySQL table. You can
load the data into an existing table or provide an SQL query to create a new table.

The template uses the following pipeline objects:

• CopyActivity (p. 152)

• Ec2Resource (p. 204)

• SqlDataNode (p. 147)

• S3DataNode (p. 143)

Amazon RDS to Redshift Templates
The following two templates copy tables from RDS MySQL to Redshift using a translation script, which
creates a Redshift table using the source table schema with the following caveats:

API Version 2012-10-29
21

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

• If a distribution key is not specified, the first primary key from the RDS table is set as the distribution key.

• You cannot skip a column that is present in RDS MySQL table when you are doing a copy to Redshift.

• You can optional providing a RDS MySQL to Redshift column data type mapping as one of the
parameters in the template. If this is specified the script will use this to create the Redshift table.

If the Overwrite_Existing Redshift insert mode is being used:

• If a distribution key is not provided, a primary key on the RDS MySQL table will be used.

• If there are composite primary keys on the table, the first one will be used as the distribution key if the
distribution key is not provided. Only the first composite key is set as the primary key in the Redshift
table.

• If a distribution key is not provided and there is no primary key on the RDS MySQL table, the copy
operation will fail.

For more information about Redshift, see the following topics:

• Amazon Redshift Cluster and Amazon RDS Security Groups

• Redshift COPY

• Distribution styles and DISTKEY examples

• Sort Keys

The following table describes how the script translates the data types:

Data Type Translations Between MySQL and Redshift

MySQL Data Type Redshift Data Type Notes

TINYINT,

TINYINT (size)

SMALLINT MySQL: -128 to 127. The
maximum number of digits may
be specified in parenthesis

Redshift: INT2. Signed two-byte
integer

TINYINT UNSIGNED,

TINYINT (size) UNSIGNED

SMALLINT MySQL: 0 to 255 UNSIGNED.
The maximum number of digits
may be specified in parenthesis

Redshift: INT2. Signed two-byte
integer

SMALLINT,

SMALLINT(size)

SMALLINT MySQL: -32768 to 32767 normal.
The maximum number of digits
may be specified in parenthesis.

Redshift: INT2. Signed two-byte
integer

SMALLINT UNSIGNED,

SMALLINT(size) UNSIGNED,

INTEGER MySQL: 0 to 65535 UNSIGNED*.
The maximum number of digits
may be specified in parenthesis

Redshift: INT4. Signed four-byte
integer

API Version 2012-10-29
22

http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-security-groups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html
http://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html
http://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html
http://docs.aws.amazon.com/redshift/latest/dg/c_Distribution_examples.html
http://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

MySQL Data Type Redshift Data Type Notes

MEDIUMINT,

MEDIUMINT(size)

INTEGER MySQL: -8388608 to 8388607.
The maximum number of digits
may be specified in parenthesis

Redshift: INT4. Signed four-byte
integer

MEDIUMINT UNSIGNED,

MEDIUMINT(size)

UNSIGNED

INTEGER MySQL: 0 to 16777215. The
maximum number of digits may
be specified in parenthesis

Redshift: INT4. Signed four-byte
integer

INT,

INT(size)

INTEGER MySQL: -2147483648 to
2147483647

Redshift: INT4. Signed four-byte
integer

INT UNSIGNED,

INT(size) UNSIGNED

BIGINT MySQL: 0 to 4294967295

Redshift: INT8. Signed eight-byte
integer

BIGINT

BIGINT(size)

BIGINT Redshift: INT8. Signed eight-byte
integer

BIGINT UNSIGNED

BIGINT(size) UNSIGNED

VARCHAR(20*4) MySQL: 0 to
18446744073709551615

Redshift: No native equivalent, so
using char array.

FLOAT

FLOAT(size,d)

FLOAT(size,d) UNSIGNED

REAL The maximum number of digits
may be specified in the size
parameter. The maximum
number of digits to the right of the
decimal point is specified in the d
parameter.

Redshift: FLOAT4

DOUBLE(size,d) DOUBLE PRECISION The maximum number of digits
may be specified in the size
parameter. The maximum
number of digits to the right of the
decimal point is specified in the d
parameter.

Redshift: FLOAT8

API Version 2012-10-29
23

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

MySQL Data Type Redshift Data Type Notes

DECIMAL(size,d) DECIMAL(size,d) A DOUBLE stored as a string,
allowing for a fixed decimal
point. The maximum number of
digits may be specified in the
size parameter. The maximum
number of digits to the right of the
decimal point is specified in the d
parameter.

Redshift: No native equivalent.

CHAR(size) VARCHAR(size*4) Holds a fixed length string, which
can contain letters, numbers, and
special characters. The fixed size
is specified as the parameter in
parenthesis. Can store up to 255
characters.

Right padded with spaces.

Redshift: CHAR data type does
not support multibyte character
so VARCHAR is used.

The maximum number of bytes
per character is 4 according
to RFC3629, which limits the
character table to U+10FFFF.

VARCHAR(size) VARCHAR(size*4) Can store up to 255 characters.

VARCHAR does not support
the following invalid UTF-8 code
points: 0xD800 - 0xDFFF, (Byte
sequences: ED A0 80 - ED BF
BF), 0xFDD0 - 0xFDEF, 0xFFFE,
and 0xFFFF, (Byte sequences:
EF B7 90 - EF B7 AF, EF BF BE,
and EF BF BF)

TINYTEXT VARCHAR(255*4) Holds a string with a maximum
length of 255 characters

TEXT VARCHAR(max) Holds a string with a maximum
length of 65,535 characters.

MEDIUMTEXT VARCHAR(max) 0 to 16,777,215 Chars

LONGTEXT VARCHAR(max) 0 to 4,294,967,295 Chars

BOOLEAN

BOOL

TINYINT(1)

BOOLEAN MySQL: These types are
synonyms for TINYINT(1). A
value of zero is considered false.
Nonzero values are considered
true.

BINARY[(M)] varchar(255) M is 0 to 255 bytes, FIXED

API Version 2012-10-29
24

http://tools.ietf.org/html/rfc3629
http://dev.mysql.com/doc/refman/5.0/en/integer-types.html

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

MySQL Data Type Redshift Data Type Notes

VARBINARY(M) VARCHAR(max) 0 to 65,535 bytes

TINYBLOB VARCHAR(255) 0 to 255 bytes

BLOB VARCHAR(max) 0 to 65,535 bytes

MEDIUMBLOB VARCHAR(max) 0 to 16,777,215 bytes

LONGBLOB VARCHAR(max) 0 to 4,294,967,295 bytes

ENUM VARCHAR(255*2) The limit is not on the length of
the literal enum string, but rather
on the table definition for number
of enum values.

SET VARCHAR(255*2) Like enum.

DATE DATE (YYYY-MM-DD)

"1000-01-01" to "9999-12-31"

TIME VARCHAR(10*4) (hh:mm:ss)

"-838:59:59" to "838:59:59"

DATETIME TIMESTAMP (YYYY-MM-DD hh:mm:ss)

1000-01-01 00:00:00" to
"9999-12-31 23:59:59"

TIMESTAMP TIMESTAMP (YYYYMMDDhhmmss)

19700101000000 to 2037+

YEAR VARCHAR(4*4) (YYYY)

1900 to 2155

column SERIAL ID generation / This attribute is
not needed for an OLAP data
warehouse since this column is
copied.

SERIAL keyword is not added
while translating.

SERIAL is in fact an entity
named SEQUENCE. It exists
independently on the rest of your
table.

column GENERATED BY
DEFAULT

equivalent to:

CREATE SEQUENCE name;
CREATE TABLE table (column
INTEGER NOT NULL DEFAULT
nextval(name));

API Version 2012-10-29
25

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

MySQL Data Type Redshift Data Type Notes

column BIGINT UNSIGNED
NOT NULL AUTO_INCREMENT
UNIQUE

ID generation / This attribute
is not needed for OLAP data
warehouse since this column is
copied.

So SERIAL keyword is not added
while translating.

SERIAL is in fact an entity
named SEQUENCE. It exists
independently on the rest of your
table.

column GENERATED BY
DEFAULT

equivalent to:

CREATE SEQUENCE name;
CREATE TABLE table (column
INTEGER NOT NULL DEFAULT
nextval(name));

ZEROFILL ZEROFILL keyword is not added
while translating.

INT UNSIGNED ZEROFILL NOT
NULL

ZEROFILL pads the displayed
value of the field with zeros up
to the display width specified in
the column definition. Values
longer than the display width
are not truncated. Note that
usage of ZEROFILL also implies
UNSIGNED.

Full copy of RDS MySQL table to Redshift

The Full copy of RDS MySQL table to Redshift template copies the entire Amazon RDS MySQL table
to a Redshift table by staging data in an Amazon S3 folder. The Amazon S3 staging folder must be in the
same region as the Redshift cluster. A Redshift table will be created with the same schema as the source
RDS MySQL table if it does not already exist. Please provide any RDS MySQL to Redshift column data
type overrides you would like to apply during Redshift table creation.

The template uses the following pipeline objects:

• CopyActivity

• RedshiftCopyActivity

• S3DataNode

• SqlDataNode

• RedshiftDataNode

• RedshiftDatabase

Incremental copy of RDS MySQL table to Redshift

The Incremental copy of RDS MySQL table to Redshift template copies data from a Amazon RDS
MySQL table to a Redshift table by staging data in an Amazon S3 folder. The Amazon S3 staging folder
must be in the same region as the Redshift cluster. Data Pipeline uses a translation script to create a
Redshift table with the same schema as the source RDS MySQL table if it does not already exist. You
must provide any RDS MySQL to Redshift column data type overrides you would like to apply during
Redshift table creation. This template will copy changes that are made to the RDS MySQL table between

API Version 2012-10-29
26

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

scheduled intervals starting from the scheduled start time. Physical deletes to the RDS MySQL table will
not be copied. You must provide the column name that stores the last modified time value.

The template uses the following pipeline objects:

• RDSToS3CopyActivity

• CopyActivity

• RedshiftCopyActivity

• S3DataNode

• SqlDataNode

• RedshiftDataNode

• RedshiftDatabase

Load Data from S3 Into Redshift
The Load data from S3 into Redshift template copies data from an Amazon S3 folder into a Redshift
table. You can load the data into an existing table or provide a SQL query to create the table. The data
is copied based on the Redshift COPY options provided below. The Redshift table must have the same
schema as the data in Amazon S3.

The template uses the following pipeline objects:

• CopyActivity

• RedshiftCopyActivity

• S3DataNode

• SqlDataNode

• RedshiftDataNode

• RedshiftDatabase

• Ec2Resource

Creating a Pipeline Using Parameterized Templates
You can use a parameterized template to customize a pipeline definition. This enables you to create a
common pipeline definition but provide different parameters when you add the pipeline definition to a new
pipeline.

Contents

• Add myVariables to the Pipeline Definition (p. 27)

• Define Parameter Objects (p. 28)

• Define Parameter Values (p. 30)

• Submitting the Pipeline Definition (p. 30)

Add myVariables to the Pipeline Definition

When you create the pipeline definition file, specify variables using the following syntax: #{myVariable}. It
is required that the variable is prefixed by my. For example, the following pipeline definition file, pipeline-
definition.json, includes the following variables: myShellCmd, myS3InputLoc, and myS3OutputLoc.

Note
A pipeline definition has an upper limit of 50 parameters.

{

API Version 2012-10-29
27

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

 "objects": [
 {
 "id": "ShellCommandActivityObj",
 "input": {
 "ref": "S3InputLocation"
 },
 "name": "ShellCommandActivityObj",
 "runsOn": {
 "ref": "EC2ResourceObj"
 },
 "command": "#{myShellCmd}",
 "output": {
 "ref": "S3OutputLocation"
 },
 "type": "ShellCommandActivity",
 "stage": "true"
 },
 {
 "id": "Default",
 "scheduleType": "CRON",
 "failureAndRerunMode": "CASCADE",
 "schedule": {
 "ref": "Schedule_15mins"
 },
 "name": "Default",
 "role": "DataPipelineDefaultRole",
 "resourceRole": "DataPipelineDefaultResourceRole"
 },
 {
 "id": "S3InputLocation",
 "name": "S3InputLocation",
 "directoryPath": "#{myS3InputLoc}",
 "type": "S3DataNode"
 },
 {
 "id": "S3OutputLocation",
 "name": "S3OutputLocation",
 "directoryPath": "#{myS3OutputLoc}/#{format(@scheduledStartTime, 'YYYY-MM-dd-HH-mm-
ss')}",
 "type": "S3DataNode"
 },
 {
 "id": "Schedule_15mins",
 "occurrences": "4",
 "name": "Every 15 minutes",
 "startAt": "FIRST_ACTIVATION_DATE_TIME",
 "type": "Schedule",
 "period": "15 Minutes"
 },
 {
 "terminateAfter": "20 Minutes",
 "id": "EC2ResourceObj",
 "name": "EC2ResourceObj",
 "instanceType":"t1.micro",
 "type": "Ec2Resource"
 }
]
}

Define Parameter Objects

You can create a separate file with parameter objects that defines the variables in your pipeline definition.
For example, the following JSON file, parameters.json, contains parameter objects for the myShellCmd,
myS3InputLoc, and myS3OutputLoc variables from the example pipeline definition above.

API Version 2012-10-29
28

AWS Data Pipeline Developer Guide
Creating Pipelines Using Console Templates

{
 "parameters": [
 {
 "id": "myShellCmd",
 "description": "Shell command to run",
 "type": "String",
 "default": "grep -rc \"GET\" ${INPUT1_STAGING_DIR}/* > ${OUTPUT1_STAGING_DIR}/
output.txt"
 },
 {
 "id": "myS3InputLoc",
 "description": "S3 input location",
 "type": "AWS::S3::ObjectKey",
 "default": "s3://us-east-1.elasticmapreduce.samples/pig-apache-logs/data"
 },
 {
 "id": "myS3OutputLoc",
 "description": "S3 output location",
 "type": "AWS::S3::ObjectKey"
 }
]
}

Note
You could add these objects directly to the pipeline definition file instead of using a separate file.

The following table describes the attributes for parameter objects.

Parameter Attributes

Attribute Type Description

id String The unique identifier of the
parameter. To mask the value
while it is typed or displayed, add
an asterisk ('*') as a prefix. For
example, *myVariable—. Notes
that this also encrypts the value
before it is stored by AWS Data
Pipeline.

description String A description of the parameter.

type String, Integer, Double, or
AWS::S3::ObjectKey

The parameter type that defines
the allowed range of input values
and validation rules. The default
is String.

optional Boolean Indicates whether the parameter
is optional or required. The
default is false.

allowedValues List of Strings Enumerates all permitted values
for the parameter.

default String The default value for the
parameter. If you specify a
value for this parameter using
parameter values, it overrides the
default value.

API Version 2012-10-29
29

AWS Data Pipeline Developer Guide
Creating Pipelines Using the Console Manually

Attribute Type Description

isArray Boolean Indicates whether the parameter
is an array.

Define Parameter Values

You can create a separate file to define your variables using parameter values. For example, the following
JSON file, file://values.json, contains the value for myS3OutputLoc variable from the example pipeline
definition above.

{
 "values":
 {
 "myS3OutputLoc": "myOutputLocation"
 }
}

Submitting the Pipeline Definition

When you submit your pipeline definition, you can specify parameters, parameter objects, and parameter
values. For example, you can use the put-pipeline-definition AWS CLI command as follows:

$ aws datapipeline put-pipeline-definition --pipeline-id id --pipeline-definition
 file://pipeline-definition.json \
--parameter-objects file://parameters.json --parameter-values-uri file://values.json

Note
A pipeline definition has an upper limit of 50 parameters. The size of the file for parameter-
values-uri has an upper limit of 15kB.

Creating Pipelines Using the Console Manually
You can create a pipeline using the AWS Data Pipeline console without the assistance of templates. The
example pipeline uses AWS Data Pipeline to copy a CSV from one Amazon S3 bucket to another on a
schedule.

Prerequisites

An Amazon S3 bucket for the file copy source and destination used in the procedure. For more information,
see Create a Bucket in the Amazon Simple Storage Service Getting Started Guide.

Tasks

• Create the Pipeline Definition (p. 30)

• Define Activities (p. 31)

• Configure the Schedule (p. 32)

• Configure Data Nodes (p. 32)

• Configure Resources (p. 33)

• Validate and Save the Pipeline (p. 33)

• Activate the Pipeline (p. 33)

Create the Pipeline Definition
Complete the initial pipeline creation screen to create the pipeline definition.

API Version 2012-10-29
30

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/put-pipeline-definition.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

AWS Data Pipeline Developer Guide
Creating Pipelines Using the Console Manually

To create your pipeline definition

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. Click Get started now (if this is your first pipeline) or Create new pipeline.

3. In Name, enter a name for the pipeline (for example, CopyMyS3Data).

4. In Description, enter a description.

5. Choose a pipeline definition Source. You can use a template, import an existing JSON-based pipeline
definition from your local file system or an Amazon S3 bucket, or create a pipeline interactively on the
Architect page.

Templates provide common scenarios encountered in Data Pipeline. You can customize a template to
fit your needs by filling out the associated parameter values.

Note
If your existing pipeline definition contains more than one schedule, the schedule will not be
visible in the create pipeline page but you can continue to the Architect page to view your
schedules.

6. In Pipeline Configuration, if you choose to enable logging, select a bucket in Amazon S3 to store logs
for this pipeline.

7. Leave the Schedule fields set to their default values.

8. Leave IAM roles set to Default.

Alternatively, if you created your own IAM roles and would like to use them, click Custom and select
them from the Pipeline role and EC2 instance role lists.

9. Click Create.

Define Activities

Add Activity objects to your pipeline definition. When you define an Activity object, you must also define
the objects that AWS Data Pipeline needs to perform this activity.

To define activities for your pipeline

1. On the pipeline page, click Add activity.

2. From the Activities pane, in Name, enter a name for the activity (for example, copy-myS3-data).

3. In Type, select CopyActivity.

4. In Schedule, select Create new: Schedule.

5. In Input, select Create new: DataNode.

6. In Output, select Create new: DataNode.

7. In Add an optional field, select RunsOn.

8. In Runs On, select Create new: Resource.

9. In the left pane, separate the icons by dragging them apart.

This is a graphical representation of the pipeline. The arrows indicate the connection between the
various objects. Your pipeline should look similar to the following image.

API Version 2012-10-29
31

https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
Creating Pipelines Using the Console Manually

Configure the Schedule

Configure the run date and time for your pipeline. Note that AWS Data Pipeline supports the date and time
expressed in "YYYY-MM-DDTHH:MM:SS" format in UTC/GMT only.

To configure the run date and time for your pipeline

1. On the pipeline page, in the right pane, expand the Schedules pane.

2. Enter a schedule name for this activity (for example, copy-myS3-data-schedule).

3. In Start Date Time, select the date from the calendar, and then enter the time to start the activity.

4. In Period, enter the duration for the activity (for example, 1), and then select the period category (for
example, Days).

5. (Optional) To specify the date and time to end the activity, in Add an optional field, select End Date
Time, and enter the date and time.

To get your pipeline to launch immediately, set Start Date Time to a date one day in the past. AWS
Data Pipeline then starts launching the "past due" runs immediately in an attempt to address what it
perceives as a backlog of work. This backfilling means you don't have to wait an hour to see AWS Data
Pipeline launch its first cluster.

Configure Data Nodes

Configure the input and the output data nodes for your pipeline.

To configure the input and output data nodes of your pipeline

1. On the pipeline page, in the right pane, click DataNodes.

2. Under DefaultDataNode1, in Name, enter a name for the Amazon S3 bucket to use as your input node
(for example, MyS3Input).

3. In Type, select S3DataNode.

4. In Schedule, select copy-myS3-data-schedule.

5. In Add an optional field, select File Path.

6. In File Path, enter the path to your Amazon S3 bucket (for example, s3://my-data-pipeline-input/
data).

7. Under DefaultDataNode2, in Name, enter a name for the Amazon S3 bucket to use as your output
node (for example, MyS3Output).

API Version 2012-10-29
32

AWS Data Pipeline Developer Guide
Creating Pipelines Using the Console Manually

8. In Type, select S3DataNode.

9. In Schedule, select copy-myS3-data-schedule.

10. In Add an optional field, select File Path.

11. In File Path, enter the path to your Amazon S3 bucket (for example, s3://my-data-pipeline-output/
data).

Configure Resources

Configure the resource that AWS Data Pipeline must use to perform the copy activity, an EC2 instance.

To configure an EC2 instance for your pipeline

1. On the pipeline page, in the right pane, click Resources.

2. In Name, enter a name for your resource (for example, CopyDataInstance).

3. In Type, select Ec2Resource.

4. [EC2-VPC] In Add an optional field, select Subnet Id.

5. [EC2-VPC] In Subnet Id, enter the ID of the subnet.

6. In Schedule, select copy-myS3-data-schedule.

7. Leave Role and Resource Role set to their default values.

Alternatively, if you created your own IAM roles and would like to use them, click Custom and select
them from the Pipeline role and EC2 instance role lists.

Validate and Save the Pipeline

You can save your pipeline definition at any point during the creation process. As soon as you save your
pipeline definition, AWS Data Pipeline looks for syntax errors and missing values in your pipeline definition.
If your pipeline is incomplete or incorrect, AWS Data Pipeline generates validation errors and warnings.
Warning messages are informational only, but you must fix any error messages before you can activate
your pipeline.

To save and validate your pipeline

1. Choose Save pipeline.

2. AWS Data Pipeline validates your pipeline definition and returns either success or error or warning
messages. If you get an error message, choose Close and then, in the right pane, choose Errors/
Warnings.

3. The Errors/Warnings pane lists the objects that failed validation. Choose the plus (+) sign next to the
object names and look for an error message in red.

4. When you see an error message, go to the specific object pane where you see the error and fix it. For
example, if you see an error message in the DataNodes object, go to the DataNodes pane to fix the
error.

5. After you fix the errors listed in the Errors/Warnings pane, choose Save Pipeline.

6. Repeat the process until your pipeline validates successfully.

Activate the Pipeline

Activate your pipeline to start creating and processing runs. The pipeline starts based on the schedule and
period in your pipeline definition.

API Version 2012-10-29
33

AWS Data Pipeline Developer Guide
Viewing Your Pipelines

Important
If activation succeeds, your pipeline is running and might incur usage charges. For more
information, see AWS Data Pipeline pricing. To stop incurring usage charges for AWS Data
Pipeline, delete your pipeline.

To activate your pipeline

1. Choose Activate.

2. In the confirmation dialog box, choose Close.

Viewing Your Pipelines
You can view your pipelines using the console or the command line interface (CLI).

To view your pipelines using the console

Open the AWS Data Pipeline console. If you have created any pipelines in that region, the console displays
them in a list. Otherwise, you see a welcome screen.

To view information about a pipeline, click the arrow. The console displays information about the schedule,
activities, and tags for the pipeline. For more information about the health status, see Interpreting Pipeline
and Component Health State (p. 36).

To view your pipelines using the AWS CLI

Use the following list-pipelines command to list your pipelines:

aws datapipeline list-pipelines

API Version 2012-10-29
34

http://aws.amazon.com/datapipeline/pricing
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/list-pipelines.html

AWS Data Pipeline Developer Guide
Interpreting Pipeline Status Codes

Interpreting Pipeline Status Codes
The status levels displayed in the AWS Data Pipeline console and CLI indicate the condition of a pipeline
and its components. The pipeline status is simply an overview of a pipeline; to see more information, view
the status of individual pipeline components.

A pipeline has a SCHEDULED status if it is ready (the pipeline definition passed validation), currently
performing work, or finished performing work. A pipeline has a PENDING status if it is not activated or not
able to perform work (for example, the pipeline definition failed validation.)

A pipeline is considered inactive if its status is PENDING, INACTIVE, or FINISHED. Inactive pipelines incur a
charge (for more information, see Pricing).

Status Codes

ACTIVATING

The component or resource is being started, such as an EC2 instance.

CANCELED

The component was canceled by a user or AWS Data Pipeline before it could run. This can happen
automatically when a failure occurs in a different component or resource that this component depends
on.

CASCADE_FAILED

The component or resource was canceled as a result of a cascade failure from one of its
dependencies, but the component was probably not the original source of the failure.

DEACTIVATING

The pipeline is being deactivated.

FAILED

The component or resource encountered an error and stopped working. When a component or
resource fails, it can cause cancelations and failures to cascade to other components that depend on it.

FINISHED

The component completed its assigned work.

INACTIVE

The pipeline was deactivated.

PAUSED

The component was paused and is not currently performing its work.

PENDING

The pipeline is ready to be activated for the first time.

RUNNING

The resource is running and ready to receive work.

SHUTTING_DOWN

The resource is shutting down after successfully completing its work.

SKIPPED

The component skipped intervals of execution after the pipeline was activated using a timestamp that
is later than the current schedule.

API Version 2012-10-29
35

https://aws.amazon.com/datapipeline/pricing

AWS Data Pipeline Developer Guide
Interpreting Pipeline and Component Health State

TIMEDOUT

The resource exceeded the terminateAfter threshold and was stopped by AWS Data Pipeline.
After the resource reaches this status, AWS Data Pipeline ignores the actionOnResourceFailure,
retryDelay, and retryTimeout values for that resource. This status applies only to resources.

VALIDATING

The pipeline definition is being validated by AWS Data Pipeline.

WAITING_FOR_RUNNER

The component is waiting for its worker client to retrieve a work item. The component and worker client
relationship is controlled by the runsOn or workerGroup fields defined by that component.

WAITING_ON_DEPENDENCIES

The component is verifying that its default and user-configured preconditions are met before
performing its work.

Interpreting Pipeline and Component Health State
Each pipeline and component within that pipeline returns a health status of HEALTHY, ERROR, "-", No
Completed Executions, or No Health Information Available. A pipeline only has a health state after a
pipeline component has completed its first execution or if component preconditions have failed. The health
status for components aggregates into a pipeline health status in that error states are visible first when you
view your pipeline execution details.

Pipeline Health States

HEALTHY

The aggregate health status of all components is HEALTHY. This means at least one component must
have successfully completed. You can click on the HEALTHY status to see the most recent successfully-
completed pipeline component instance on the Execution Details page.

ERROR

At least one component in the pipeline has a health status of ERROR. You can click on the ERROR status
to see the most recent failed pipeline component instance on the Execution Details page.

No Completed Executions or No Health Information Available.

No health status was reported for this pipeline.

Note
While components update their health status almost immediately, it may take up to five minutes for
a pipeline health status to update.

Component Health States

HEALTHY

A component (Activity or DataNode) has a health status of HEALTHY if it has completed a successful
execution where it was marked with a status of FINISHED or MARK_FINISHED. You can click on the
name of the component or the HEALTHY status to see the most recent successfully-completed pipeline
component instances on the Execution Details page.

ERROR

An error occurred at the component level or one of its preconditions failed. Statuses of FAILED,
TIMEOUT, or CANCELED trigger this error. You can click on the name of the component or the ERROR
status to see the most recent failed pipeline component instance on the Execution Details page.

API Version 2012-10-29
36

AWS Data Pipeline Developer Guide
Viewing Your Pipeline Definitions

No Completed Executions or No Health Information Available

No health status was reported for this component.

Viewing Your Pipeline Definitions
Use the AWS Data Pipeline console or the command line interface (CLI) to view your pipeline definition.
The console shows a graphical representation, while the CLI prints a pipeline definition file, in JSON
format. For information about the syntax and usage of pipeline definition files, see Pipeline Definition File
Syntax (p. 54).

To view a pipeline definition using the console

1. On the List Pipelines page, click the Pipeline ID for the desired pipeline, which displays the pipeline
Architect page.

2. On the pipeline Architect page, click the object icons in the design pane to expand the corresponding
section in the right pane.

Alternatively, expand one of the sections in the right pane to view its objects and their associated
fields.

3. If your pipeline definition graph does not fit in the design pane, use the pan buttons on the right side of
the design pane to slide the canvas.

4. You can also view the entire text pipeline definition by clicking Export. A dialog appears with the JSON
pipeline definition.

If you are using the CLI, it's a good idea to retrieve the pipeline definition before you submit modifications,
because it's possible that another user or process changed the pipeline definition after you last worked with
it. By downloading a copy of the current definition and using that as the basis for your modifications, you
can be sure that you are working with the most recent pipeline definition. It's also a good idea to retrieve the
pipeline definition again after you modify it, so that you can ensure that the update was successful.

If you are using the CLI, you can get two different versions of your pipeline. The active version is the
pipeline that is currently running. The latest version is a copy that's created when you edit a running
pipeline. When you upload the edited pipeline, it becomes the active version and the previous active
version is no longer available.

To get a pipeline definition using the AWS CLI

To get the complete pipeline definition, use the get-pipeline-definition command. The pipeline definition is
printed to standard output (stdout).

The following example gets the pipeline definition for the specified pipeline.

aws datapipeline get-pipeline-definition --pipeline-id df-00627471SOVYZEXAMPLE

To retrieve a specific version of a pipeline, use the --version option. The following example retrieves the
active version of the specified pipeline.

API Version 2012-10-29
37

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/get-pipeline-definition.html

AWS Data Pipeline Developer Guide
Viewing Pipeline Instance Details

aws datapipeline get-pipeline-definition --version active --id df-00627471SOVYZEXAMPLE

Viewing Pipeline Instance Details
You can monitor the progress of your pipeline. For more information about instance status, see Interpreting
Pipeline Status Details (p. 272). For more information about troubleshooting failed or incomplete instance
runs of your pipeline, see Resolving Common Problems (p. 273).

To monitor the progress of a pipeline using the console

1. On the List Pipelines page, in the Pipeline ID column, click the arrow for your pipeline and click View
execution details.

2. The Execution details page lists the name, type, status, and schedule information of each
component.

You can then click on the arrow for each component name to view dependency information for that
component.

In the inline summary, you can view instance details, re-run an activity, mark it as FINISHED, or explore
the dependency chain.

Note
If you do not see runs listed, check when your pipeline was scheduled. Either change End (in
UTC) to a later date or change Start (in UTC) an earlier date, and then click Update.

3. If the Status column of all components in your pipeline is FINISHED, your pipeline has successfully
completed the activity. You should receive an email about the successful completion of this task, to the
account that you specified to receive Amazon SNS notifications.

You can also check the content of your output data node.

4. If the Status column of any component in your pipeline is not FINISHED, either your pipeline is waiting
for some dependency or it has failed. To troubleshoot failed or the incomplete instance runs, use the
following procedure.

5. Click the triangle next to an component or activity.

If the status of the instance is FAILED, the Attempts box has an Error Message indicating the reason
for failure under the latest attempt. For example, Status Code: 403, AWS Service: Amazon S3, AWS

API Version 2012-10-29
38

AWS Data Pipeline Developer Guide
Viewing Pipeline Logs

Request ID: 1A3456789ABCD, AWS Error Code: null, AWS Error Message: Forbidden. You can
also click on More... in the Details column to view the instance details of this attempt.

6. To take an action on your incomplete or failed component, click an action button (Rerun, Mark
Finished, or Cancel).

To monitor the progress of a pipeline using the AWS CLI

To retrieve pipeline instance details, such as a history of the times that a pipeline has run, use the list-runs
command. This command enables you to filter the list of runs returned based on either their current status
or the date-range in which they were launched. Filtering the results is useful because, depending on the
pipeline's age and scheduling, the run history can be very large.

The following example retrieves information for all runs.

aws datapipeline list-runs --pipeline-id df-00627471SOVYZEXAMPLE

The following example retrieves information for all runs that have completed.

aws datapipeline list-runs --pipeline-id df-00627471SOVYZEXAMPLE --status finished

The following example retrieves information for all runs launched in the specified time frame.

aws datapipeline list-runs --pipeline-id df-00627471SOVYZEXAMPLE --start-interval
 "2013-09-02","2013-09-11"

Viewing Pipeline Logs
Pipeline-level logging is supported at pipeline creation by specifying an Amazon S3 location in either the
console or with a pipelineLogUri in the default object in SDK/CLI. The directory structure for each pipeline
within that URI is like the following:

pipelineId
 -componentName
 -instanceId
 -attemptId

For pipeline, df-00123456ABC7DEF8HIJK, the directory structure looks like:

df-00123456ABC7DEF8HIJK
 -ActivityId_fXNzc
 -@ActivityId_fXNzc_2014-05-01T00:00:00
 -@ActivityId_fXNzc_2014-05-01T00:00:00_Attempt=1

For ShellCommandActivity, logs for stderr and stdout associated with these activities are stored in the
directory for each attempt.

For resources like, EmrCluster, where an emrLogUri is set, that value takes precedence. Otherwise,
resources (including TaskRunner logs for those resources) will follow the above pipeline logging structure.
You may view these logs for each component in the Execution Details page for your pipeline by viewing a
components details and clicking on the link for logs:

API Version 2012-10-29
39

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/list-runs.html

AWS Data Pipeline Developer Guide
Editing Your Pipeline

You can also view logs for each attempt. For example, to view logs for a HadoopActivity, you can click the
pipeline Attempts tab for your activity. Hadoop Logs gives the logs created by Hadoop jobs.

Editing Your Pipeline
If you need to change some aspect of one of your pipelines, you can update its pipeline definition. After
you change a pipeline that is running, you must re-activate the pipeline for your changes to take effect. In
addition, you can re-run one or more pipeline components.

Contents

• Limitations (p. 40)

• Editing a Pipeline Using the Console (p. 41)

• Editing a Pipeline Using the AWS CLI (p. 41)

Limitations
Before you activate a pipeline, you can make any changes to it. After you activate a pipeline, you can edit
the pipeline with the following restrictions. The changes you make apply to new runs of the pipeline objects
after you save them and then activate the pipeline again.

• You can't remove an object

• You can't change the schedule period of an existing object

• You can't add, delete, or modify reference fields in an existing object

• You can't reference an existing object in an output field of a new object

• You can't change the scheduled start date of an object (instead, activate the pipeline with a specific date
and time)

API Version 2012-10-29
40

AWS Data Pipeline Developer Guide
Editing a Pipeline Using the Console

Editing a Pipeline Using the Console
You can edit a pipeline using the AWS Management Console.

To edit a pipeline using the console

1. On the List Pipelines page, check the Pipeline ID and Name columns for your pipeline, and then click
your Pipeline ID.

2. To complete or modify your pipeline definition:

a. On the pipeline (Architect) page, click the object panes in the right pane and finish defining
the objects and fields of your pipeline definition. If you are modifying an active pipeline, some
fields are grayed out and can't be modified. It might be easier to clone the pipeline and edit the
copy, depending on the changes you need to make. For more information, see Cloning Your
Pipeline (p. 42).

b. Click Save pipeline. If there are validation errors, fix them and save the pipeline again.

3. After you've saved your pipeline definition with no validation errors, click Activate.

4. In the List Pipelines page, check whether your newly-created pipeline is listed and the Schedule
State column displays SCHEDULED.

5. After editing an active pipeline, you might decide to rerun one or more pipeline components.

On the List Pipelines page, in the detail dropdown of your pipeline, click View execution details.

a. On the Execution details page, choose a pipeline component dropdown from the list to view the
details for a component.

b. Click Rerun.

c. At the confirmation prompt, click Continue.

The changed pipeline component and any dependencies will change status. For example,
resources change to the CREATING status and activities change to the WAITING_FOR_RUNNER status.

Editing a Pipeline Using the AWS CLI
You can edit a pipeline using the command line tools.

First, download a copy of the current pipeline definition using the get-pipeline-definition command. By doing
this, you can be sure that you are modifying the most recent pipeline definition. The following example uses
prints the pipeline definition to standard output (stdout).

aws datapipeline get-pipeline-definition --pipeline-id df-00627471SOVYZEXAMPLE

Save the pipeline definition to a file and edit it as needed. Update your pipeline definition using the put-
pipeline-definition command. The following example uploads the updated pipeline definition file.

aws datapipeline put-pipeline-definition --pipeline-id df-00627471SOVYZEXAMPLE

You can retrieve the pipeline definition again using the get-pipeline-definition command to ensure that
the update was successful. To activate the pipeline, use the following activate-pipeline command:

aws datapipeline activate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE

If you prefer, you can activate the pipeline from a specific date and time, using the --start-timestamp
option as follows:

API Version 2012-10-29
41

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/get-pipeline-definition.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/put-pipeline-definition.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/put-pipeline-definition.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/activate-pipeline.html

AWS Data Pipeline Developer Guide
Cloning Your Pipeline

aws datapipeline activate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE --start-
timestamp YYYY-MM-DDTHH:MM:SSZ

To re-run one or more pipeline components, use the set-status command.

Cloning Your Pipeline
Cloning makes a copy of a pipeline and allows you to specify a name for the new pipeline. You can clone
a pipeline that is in any state, even if it has errors; however, the new pipeline remains in the PENDING
state until you manually activate it. For the new pipeline, the clone operation uses the latest version of the
original pipeline definition rather than the active version. In the clone operation, the full schedule from the
original pipeline is not copied into the new pipeline, only the period setting.

Note
You can't clone a pipeline using the command line interface (CLI).

To clone a pipeline using the console

1. In the List Pipelines page, select the pipeline to clone.

2. Click Actions, and then click Clone.

3. In the Clone a Pipeline dialog box, enter a name for the new pipeline and click Clone.

4. In the Schedule pane, specify a schedule for the new pipeline.

5. To activate the new pipeline, click Actions, and then click Activate.

Tagging Your Pipeline
Tags are case-sensitive key/value pairs that consist of a key and an optional value, both defined by the
user. You can apply up to 10 tags to each pipeline. Tag keys must be unique for each pipeline. If you add a
tag with a key that is already associated with the pipeline, it updates the value of that tag.

Applying a tag to a pipeline also propagates the tags to its underlying resources (for example, EMR clusters
and EC2 instances). However, it does not apply these tags to resources in a FINISHED or otherwise
terminated state.

When you are finished with a tag, you can remove it from your pipeline.

To tag your pipeline using the console

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. On the List Pipelines page, in the Pipeline ID column, click the expand arror next to your pipeline,
and then click View all/Edit under Tags.

3. In the View all / Edit dialog box, do the following:

a. Specify a key and a value for each tag that you'd like to add.

b. Click the remove icon of any tags that you'd like to remove.

c. Click Save.

To tag your pipeline using the AWS CLI

To add tags to a new pipeline, add the --tags option to your create-pipeline command. For example, the
following option creates a pipeline with two tags, an environment tag with a value of production, and an
owner tag with a value of sales.

API Version 2012-10-29
42

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/set-status.html
https://console.aws.amazon.com/datapipeline/
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/create-pipeline.html

AWS Data Pipeline Developer Guide
Deactivating Your Pipeline

--tags key=environment,value=production key=owner,value=sales

To add tags to an existing pipeline, use the add-tags command as follows:

aws datapipeline add-tags --pipeline-id df-00627471SOVYZEXAMPLE --tags
 key=environment,value=production key=owner,value=sales

To remove tags from an existing pipeline, use the remove-tags command as follows:

aws datapipeline remove-tags --pipeline-id df-00627471SOVYZEXAMPLE --tag-keys environment
 owner

Deactivating Your Pipeline
Deactivating a running pipeline pauses the pipeline execution. To resume pipeline execution, you can
activate the pipeline. This enables you to make changes. For example, if you are writing data to a database
that is scheduled to undergo maintenance, you can deactivate the pipeline, wait for the maintenance to
complete, and then activate the pipeline.

When you deactivate a pipeline, you can specify what happens to running activities. By default, these
activities are canceled immediately. Alternatively, you can have AWS Data Pipeline wait until the activities
finish before deactivating the pipeline.

When you activate a deactivated pipeline, you can specify when it resumes. For example, using the AWS
Management Console, you can resume after the last completed run, from the current time, or from a
specified date and time. Using the AWS CLI or the API, the pipeline resumes from the last completed
execution by default, or you can specify the date and time to resume the pipeline.

Contents

• Deactivate Your Pipeline Using the Console (p. 43)

• Deactivate Your Pipeline Using the AWS CLI (p. 44)

Deactivate Your Pipeline Using the Console
Use the following procedure to deactivate a running pipeline.

To deactivate a pipeline

1. In the List Pipelines page, select the pipeline to deactivate.

2. Click Actions, and then click Deactivate.

3. In the Deactivate a Pipeline dialog box, select an option, and then click Deactivate.

4. When prompted for confirmation, click Deactivate.

When you are ready to resume the pipeline runs, use the following procedure to activate the deactivated
pipeline.

To activate a pipeline

1. In the List Pipelines page, select the pipeline to activate.

API Version 2012-10-29
43

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/add-tags.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/remove-tags.html

AWS Data Pipeline Developer Guide
Deactivate Your Pipeline Using the AWS CLI

2. Click Actions, and then click Activate.

3. In the Activate a Pipeline dialog box, select an option, and then choose Activate.

Deactivate Your Pipeline Using the AWS CLI
Use the following deactivate-pipeline command to deactivate a pipeline:

aws datapipeline deactivate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE

To deactivate the pipeline only after all running activities finish, add the --no-cancel-active option, as
follows:

aws datapipeline deactivate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE --no-cancel-
active

When you are ready, you can resume the pipeline execution where it left off using the following activate-
pipeline command:

aws datapipeline activate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE

To start the pipeline from a specific date and time, add the --start-timestamp option, as follows:

aws datapipeline activate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE --start-
timestamp YYYY-MM-DDTHH:MM:SSZ

Deleting Your Pipeline
When you no longer require a pipeline, such as a pipeline created during application testing, you should
delete it to remove it from active use. Deleting a pipeline puts it into a deleting state. When the pipeline is
in the deleted state, its pipeline definition and run history are gone. Therefore, you can no longer perform
operations on the pipeline, including describing it.

Important
You can't restore a pipeline after you delete it, so be sure that you won't need the pipeline in the
future before you delete it.

To delete a pipeline using the console

1. In the List Pipelines page, select the pipeline.

2. Click Actions, and then click Delete.

3. When prompted for confirmation, click Delete.

To delete a pipeline using the AWS CLI

To delete a pipeline, use the delete-pipeline command. The following command deletes the specified
pipeline.

aws datapipeline delete-pipeline --pipeline-id df-00627471SOVYZEXAMPLE

API Version 2012-10-29
44

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/deactivate-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/activate-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/activate-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/delete-pipeline.html

AWS Data Pipeline Developer Guide
Staging Data and Tables with Activities

Staging Data and Tables with Pipeline Activities
AWS Data Pipeline can stage input and output data in your pipelines to make it easier to use certain
activities, such as ShellCommandActivity and HiveActivity. Data staging is when AWS Data Pipeline
copies data from the input data node to the resource executing the activity, and similarly from the resource
to the output data node. The staged data on the Amazon EMR or Amazon EC2 resource is available by
using special variables in the activity's shell commands or hive scripts. Table staging is similar to data
staging, except the staged data takes the form of database tables, specifically. AWS Data Pipeline supports
the following staging scenarios:

• Data staging with ShellCommandActivity

• Table staging with Hive and staging-supported data nodes

• Table staging with Hive and staging-unsupported data nodes

Note
Staging only functions when the stage field is set to true on an activity, such as
ShellCommandActivity. For more information, see ShellCommandActivity (p. 194).

In addition, data nodes and activities can relate in four ways:

Staging data locally on a resource

The input data automatically copies into the resource local file system. Output data automatically
copies from the resource local file system to the output data node. For example, when you configure
ShellCommandActivity inputs and outputs with staging = true, the input data is available as
INPUTx_STAGING_DIR and output data is available as OUTPUTx_STAGING_DIR, where x is the
number of input or output.

Staging input and output definitions for an activity

The input data format (column names and table names) automatically copies into the activity's
resource. For example, when you configure HiveActivity with staging = true. The data format
specified on the input S3DataNode is used to stage the table definition from the Hive table.

Staging not enabled

The input and output objects and their fields are available for the activity, but the data itself is not. For
example, EmrActivity by default or when you configure other activities with staging = false. In this
configuration, the data fields are available for the activity to make a reference to them using the AWS
Data Pipeline expression syntax, and this only occurs when the dependency is satisfied. This serves as
dependency checking only. Code in the activity is responsible for copying the data from the input to the
resource running the activity

Dependency relationship between objects

There is a depends-on relationship between two objects, which results in a similar situation to when
staging is not enabled. This causes a data node or activity to act as a precondition for the execution of
another activity.

Data Staging with ShellCommandActivity
Consider a scenario using a ShellCommandActivity with S3DataNode objects as data input and
output. AWS Data Pipeline automatically stages the data nodes to make them accessible to the shell
command as if they were local file folders using the environment variables ${INPUT1_STAGING_DIR} and
${OUTPUT1_STAGING_DIR} as shown in the following example. The numeric portion of the variables named
INPUT1_STAGING_DIR and OUTPUT1_STAGING_DIR increment depending on the number of data nodes your
activity references.

API Version 2012-10-29
45

AWS Data Pipeline Developer Guide
Table Staging with Hive and Staging-supported Data Nodes

Note
This scenario only works as described if your data inputs and outputs are S3DataNode objects.
Additionally, output data staging is allowed only when directoryPath is set on the output
S3DataNode object.

{
 "id": "AggregateFiles",
 "type": "ShellCommandActivity",
 "stage": "true",
 "command": "cat ${INPUT1_STAGING_DIR}/part* > ${OUTPUT1_STAGING_DIR}/aggregated.csv",
 "input": {
 "ref": "MyInputData"
 },
 "output": {
 "ref": "MyOutputData"
 }
},
{
 "id": "MyInputData",
 "type": "S3DataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "filePath": "s3://my_bucket/source/#{format(@scheduledStartTime,'YYYY-MM-dd_HHmmss')}/
items"
 }
},
{
 "id": "MyOutputData",
 "type": "S3DataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "directoryPath": "s3://my_bucket/destination/#{format(@scheduledStartTime,'YYYY-MM-
dd_HHmmss')}"
 }
},
...

Table Staging with Hive and Staging-supported Data
Nodes
Consider a scenario using a HiveActivity with S3DataNode objects as data input and output. AWS
Data Pipeline automatically stages the data nodes to make them accessible to the Hive script as if they
were Hive tables using the variables ${input1} and ${output1} as shown in the following example
HiveActivity. The numeric portion of the variables named input and output increment depending on the
number of data nodes your activity references.

Note
This scenario only works as described if your data inputs and outputs are S3DataNode or
MySqlDataNode objects. Table staging is not supported for DynamoDBDataNode.

{
 "id": "MyHiveActivity",
 "type": "HiveActivity",
 "schedule": {
 "ref": "MySchedule"
 },
 "runsOn": {
 "ref": "MyEmrResource"

API Version 2012-10-29
46

AWS Data Pipeline Developer Guide
Table Staging with Hive and

Staging-unsupported Data Nodes

 },
 "input": {
 "ref": "MyInputData"
 },
 "output": {
 "ref": "MyOutputData"
 },
 "hiveScript": "INSERT OVERWRITE TABLE ${output1} select * from ${input1};"
},
{
 "id": "MyInputData",
 "type": "S3DataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "directoryPath": "s3://test-hive/input"
 }
},
{
 "id": "MyOutputData",
 "type": "S3DataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "directoryPath": "s3://test-hive/output"
 }
},
...

Table Staging with Hive and Staging-unsupported
Data Nodes
Consider a scenario using a HiveActivity with DynamoDBDataNode as data input and an S3DataNode
object as the output. No data staging is available for DynamoDBDataNode, therefore you must first manually
create the table within your hive script, using the variable name #{input.tableName} to refer to the
DynamoDB table. Similar nomenclature applies if the DynamoDB table is the output, except you use
variable #{output.tableName}. Staging is available for the output S3DataNode object in this example,
therefore you can refer to the output data node as ${output1}.

Note
In this example, the table name variable has the # (hash) character prefix because AWS Data
Pipeline uses expressions to access the tableName or directoryPath. For more information about
how expression evaluation works in AWS Data Pipeline, see Expression Evaluation (p. 123).

{
 "id": "MyHiveActivity",
 "type": "HiveActivity",
 "schedule": {
 "ref": "MySchedule"
 },
 "runsOn": {
 "ref": "MyEmrResource"
 },
 "input": {
 "ref": "MyDynamoData"
 },
 "output": {
 "ref": "MyS3Data"
 },
 "hiveScript": "-- Map DynamoDB Table
SET dynamodb.endpoint=dynamodb.us-east-1.amazonaws.com;

API Version 2012-10-29
47

AWS Data Pipeline Developer Guide
Launching Resources into a VPC

SET dynamodb.throughput.read.percent = 0.5;
CREATE EXTERNAL TABLE dynamodb_table (item map<string,string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "#{input.tableName}");
INSERT OVERWRITE TABLE ${output1} SELECT * FROM dynamodb_table;"
},
{
 "id": "MyDynamoData",
 "type": "DynamoDBDataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "tableName": "MyDDBTable"
},
{
 "id": "MyS3Data",
 "type": "S3DataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "directoryPath": "s3://test-hive/output"
 }
},
...

Launching Resources for Your Pipeline into a VPC
Pipelines can launch Amazon EC2 instances and Amazon EMR clusters into a virtual private cloud (VPC).
First, create a VPC and subnets using Amazon VPC and configure the VPC so that instances in the
VPC can access Amazon S3. Next, set up a security group that grants Task Runner access to your data
sources. Finally, specify a subnet from the VPC when you configure your instances and clusters and when
you create your data sources.

Note that if you have a default VPC in a region, it's already configured to access other AWS services. When
you launch a resource, we'll automatically launch it into your default VPC.

For more information about VPCs, see the Amazon VPC User Guide.

Contents

• Create and Configure a VPC (p. 48)

• Set Up Connectivity Between Resources (p. 49)

• Configure the Resource (p. 50)

Create and Configure a VPC
A VPC that you create must have a subnet, an Internet gateway, and a route table for the subnet with a
route to the Internet gateway so that instances in the VPC can access Amazon S3. (If you have a default
VPC, it is already configured this way.) The easiest way to create and configure your VPC is to use the
VPC wizard, as shown in the following procedure.

To create and configure your VPC using the VPC wizard

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. From the navigation bar, use the region selector to select the region for your VPC. You'll launch all
instances and clusters into this VPC, so select the region that makes sense for your pipeline.

API Version 2012-10-29
48

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/
https://console.aws.amazon.com/vpc/

AWS Data Pipeline Developer Guide
Set Up Connectivity Between Resources

3. Click VPC Dashboard in the navigation pane.

4. Locate the Your Virtual Private Cloud area of the dashboard and click Get started creating a VPC, if
you have no VPC resources, or click Start VPC Wizard.

5. Select the first option, VPC with a Single Public Subnet Only, and then click Continue.

6. The confirmation page shows the CIDR ranges and settings that you've chosen. Verify that Enable
DNS hostnames is Yes. Make any other changes that you need, and then click Create VPC to create
your VPC, subnet, Internet gateway, and route table.

7. After the VPC is created, click Your VPCs in the navigation pane and select your VPC from the list.

• On the Summary tab, make sure that both DNS resolution and DNS hostnames are yes.

• Click the identifier for the DHCP options set. Make sure that domain-name-servers is
AmazonProvidedDNS and domain-name is ec2.internal for the US East (N. Virginia) region and
region-name.compute.internal for all other regions. Otherwise, create a new options set with these
settings and associate it with the VPC. For more information, see Working with DHCP Options Sets
in the Amazon VPC User Guide.

If you prefer to create the VPC, subnet, Internet gateway, and route table manually, see Creating a VPC
and Adding an Internet Gateway to Your VPC in the Amazon VPC User Guide.

Set Up Connectivity Between Resources
Security groups act as a virtual firewall for your instances to control inbound and outbound traffic. You must
grant Task Runner access to your data sources.

For more information about security groups, see Security Groups for Your VPC in the Amazon VPC User
Guide.

First, identify the security group or IP address used by the resource running Task Runner.

• If your resource is of type EmrCluster (p. 210), Task Runner runs on the cluster by default. We create
security groups named ElasticMapReduce-master and ElasticMapReduce-slave when you launch the
cluster. You'll need the IDs of these security groups later on.

To get the IDs of the security groups for a cluster in a VPC

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, click Security Groups.

3. If you have a lengthy list of security groups, you can click the Name column to sort your security
groups by name. (If you don't see a Name column, click the Show/Hide Columns icon, and then
click Name.)

4. Note the IDs of the ElasticMapReduce-master and ElasticMapReduce-slave security groups.

• If your resource is of type Ec2Resource (p. 204), Task Runner runs on the EC2 instance by default.
Create a security group for the VPC and specify it when you launch the EC2 instance. You'll need the ID
of this security group later on.

To create a security group for an EC2 instance in a VPC

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, click Security Groups.

3. Click Create Security Group.

4. Specify a name and description for the security group.

5. Select your VPC from the list, and then click Create.

6. Note the ID of the new security group.

API Version 2012-10-29
49

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_DHCP_Options.html#DHCPOptionSet
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#Create-VPC
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#Create-VPC
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

AWS Data Pipeline Developer Guide
Configure the Resource

• If you are running Task Runner on your own computer, note its public IP address, in CIDR notation. If the
computer is behind a firewall, note the entire address range of its network. You'll need this address later
on.

Next, create rules in the resource security groups that allow inbound traffic for the data sources Task
Runner must access. For example, if Task Runner must access a Amazon Redshift cluster, the security
group for the Amazon Redshift cluster must allow inbound traffic from the resource.

To add a rule to the security group for an RDS database

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, click Instances.

3. Click the details icon for the DB instance. Under Security and Network, click the link to the security
group, which takes you to the Amazon EC2 console. If you're using the old console design for security
groups, switch to the new console design by clicking the icon that's displayed at the top of the console
page.

4. From the Inbound tab, click Edit and then click Add Rule. Specify the database port that you used
when you launched the DB instance. Start typing the ID of the security group or IP address used by the
resource running Task Runner in Source.

5. Click Save.

To add a rule to the security group for a Amazon Redshift cluster

1. Open the Amazon Redshift console at https://console.aws.amazon.com/redshift/.

2. In the navigation pane, click Clusters.

3. Click the details icon for the cluster. Under Cluster Properties, note the name or ID of the security
group, and then click View VPC Security Groups, which takes you to the Amazon EC2 console. If
you're using the old console design for security groups, switch to the new console design by clicking
the icon that's displayed at the top of the console page.

4. Select the security group for the cluster.

5. From the Inbound tab, click Edit and then click Add Rule. Specify the type, protocol, and port range.
Start typing the ID of the security group or IP address used by the resource running Task Runner in
Source.

6. Click Save.

Configure the Resource
To launch a resource into a subnet of a nondefault VPC or a nondefault subnet of a default VPC, you must
specify the subnet using the subnetId field when you configure the resource. If you have a default VPC and
you don't specify subnetId, we'll launch the resource into the default subnet of the default VPC.

Example EmrCluster

The following example object launches an Amazon EMR cluster into a nondefault VPC.

{
 "id" : "MyEmrCluster",
 "type" : "EmrCluster",
 "keyPair" : "my-key-pair",
 "masterInstanceType" : "m1.xlarge",
 "coreInstanceType" : "m1.small",
 "coreInstanceCount" : "10",
 "taskInstanceType" : "m1.small",

API Version 2012-10-29
50

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/redshift/

AWS Data Pipeline Developer Guide
Using Spot Instances in a Pipeline

 "taskInstanceCount": "10",
 "subnetId": "subnet-12345678"
}

For more information, see EmrCluster (p. 210).

Example Ec2Resource

The following example object launches an EC2 instance into a nondefault VPC. Notice that you must
specify security groups for an instance in a nondefault VPC using their IDs, not their names.

{
 "id" : "MyEC2Resource",
 "type" : "Ec2Resource",
 "actionOnTaskFailure" : "terminate",
 "actionOnResourceFailure" : "retryAll",
 "maximumRetries" : "1",
 "role" : "test-role",
 "resourceRole" : "test-role",
 "instanceType" : "m1.medium",
 "securityGroupIds" : "sg-12345678",
 "subnetId": "subnet-1a2b3c4d",
 "associatePublicIpAddress": "true",
 "keyPair" : "my-key-pair"
}

For more information, see Ec2Resource (p. 204).

Using Amazon EC2 Spot Instances in a Pipeline
Pipelines can use Amazon EC2 Spot Instances for the task nodes in their Amazon EMR cluster resources.
By default, pipelines use on-demand Amazon EC2 instances. Spot Instances let you bid on spare Amazon
EC2 instances and run them whenever your bid exceeds the current Spot Price, which varies in real-
time based on supply and demand. The Spot Instance pricing model complements the on-demand and
Reserved Instance pricing models, potentially providing the most cost-effective option for obtaining
compute capacity, depending on your application. For more information, see Amazon EC2 Spot Instances
on the Amazon EC2 Product Page.

To use Spot Instances in your pipeline

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. Open your pipeline in Architect.

3. In the Resources pane, go to the EMR cluster. In Add an optional field, select Task Instance Bid
Price. Set Task Instance Bid Price to your Spot Instance bid price. This is the maximum dollar
amount for your bid, and is a decimal value between 0 and 20.00 exclusive.

For more information, see EmrCluster (p. 210).

Using a Pipeline with Resources in Multiple Regions
By default, the Ec2Resource and EmrCluster resources run in the same region as AWS Data Pipeline,
however AWS Data Pipeline supports the ability to orchestrate data flows across multiple regions, such as
running resources in one region that consolidate input data from another region. By allowing resources to

API Version 2012-10-29
51

http://aws.amazon.com/ec2/spot-instances/
https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
Using Resources in Multiple Regions

run a specified region, you also have the flexibility to co-locate your resources with their dependent data
sets and maximize performance by reducing latencies and avoiding cross-region data transfer charges.
You can configure resources to run in a different region than AWS Data Pipeline by using the region field
on Ec2Resource and EmrCluster.

The following example pipeline JSON file shows how to run an EmrCluster resource in the EU (Ireland)
region, assuming that a large amount of data for the cluster to work on exists in the same region. In this
example, the only difference from a typical pipeline is that the EmrCluster has a region field value set to
eu-west-1.

{
 "objects": [
 {
 "id": "Hourly",
 "type": "Schedule",
 "startDateTime": "2014-11-19T07:48:00",
 "endDateTime": "2014-11-21T07:48:00",
 "period": "1 hours"
 },
 {
 "id": "MyCluster",
 "type": "EmrCluster",
 "masterInstanceType": "m3.medium",
 "region": "eu-west-1",
 "schedule": {
 "ref": "Hourly"
 }
 },
 {
 "id": "MyEmrActivity",
 "type": "EmrActivity",
 "schedule": {
 "ref": "Hourly"
 },
 "runsOn": {
 "ref": "MyCluster"
 },
 "step": "/home/hadoop/contrib/streaming/hadoop-streaming.jar,-input,s3n://
elasticmapreduce/samples/wordcount/input,-output,s3://eu-west-1-bucket/wordcount/output/
#{@scheduledStartTime},-mapper,s3n://elasticmapreduce/samples/wordcount/wordSplitter.py,-
reducer,aggregate"
 }
]
}

The following table lists the regions that you can choose and the associated region codes to use in the
region field:

Region Name Region Code

US East (N. Virginia) us-east-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

EU (Ireland) eu-west-1

EU (Frankfurt) eu-central-1

Asia Pacific (Singapore) ap-southeast-1

API Version 2012-10-29
52

AWS Data Pipeline Developer Guide
Cascading Failures and Reruns

Region Name Region Code

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

South America (São Paulo) sa-east-1

Cascading Failures and Reruns
AWS Data Pipeline allows you to configure the way pipeline objects behave when a dependency fails or is
canceled by a user. You can ensure that failures cascade to other pipeline objects (consumers), to prevent
indefinite waiting. All activities, data nodes, and preconditions have a field named failureAndRerunMode
with a default value of none. To enable cascading failures, set the failureAndRerunMode field to cascade.

When this field is enabled, cascade failures occur if a pipeline object is blocked in the
WAITING_ON_DEPENDENCIES state and any dependencies have failed with no pending command. During a
cascade failure, the following events occur:

• When an object fails, its consumers are set to CASCADE_FAILED and both the original object and its
consumers' preconditions are set to CANCELED.

• Any objects that are already FINISHED, FAILED, or CANCELED are ignored.

Cascade failure does not operate on a failed object's dependencies (upstream), except for preconditions
associated with the original failed object. Pipeline objects affected by a cascade failure may trigger any
retries or post-actions, such as onFail.

The detailed effects of a cascading failure depend on the object type.

Activities
An activity changes to CASCADE_FAILED if any of its dependencies fail, and it subsequently triggers a
cascade failure in the activity's consumers. If a resource fails that the activity depends on, the activity is
CANCELED and all its consumers change to CASCADE_FAILED.

Data Nodes and Preconditions
If a data node is configured as the output of an activity that fails, the data node changes to the
CASCADE_FAILED state. The failure of a data node propagates to any associated preconditions, which
change to the CANCELED state.

Resources
If the objects that depend on a resource are in the FAILED state and the resource itself is in the
WAITING_ON_DEPENDENCIES state, then the resource changes to the FINISHED state.

Rerunning Cascade-Failed Objects
By default, rerunning any activity or data node only reruns the associated resource. However, setting the
failureAndRerunMode field to cascade on a pipeline object allows a rerun command on a target object to
propagate to all consumers, under the following conditions:

API Version 2012-10-29
53

AWS Data Pipeline Developer Guide
Cascade-Failure and Backfills

• The target object's consumers are in the CASCADE_FAILED state.

• The target object's dependencies have no rerun commands pending.

• The target object's dependencies are not in the FAILED, CASCADE_FAILED, or CANCELED state.

If you attempt to rerun a CASCADE_FAILED object and any of its dependencies are FAILED, CASCADE_FAILED,
or CANCELED, the rerun will fail and return the object to the CASCADE_FAILED state. To successfully rerun the
failed object, you must trace the failure up the dependency chain to locate the original source of failure and
rerun that object instead. When you issue a rerun command on a resource, you also attempt to rerun any
objects that depend on it.

Cascade-Failure and Backfills
If you enable cascade failure and have a pipeline that creates many backfills, pipeline runtime errors can
cause resources to be created and deleted in rapid succession without performing useful work. AWS Data
Pipeline attempts to alert you about this situation with the following warning message when you save a
pipeline: Pipeline_object_name has 'failureAndRerunMode' field set to 'cascade' and you are
about to create a backfill with scheduleStartTime start_time. This can result in rapid

creation of pipeline objects in case of failures. This happens because cascade failure can
quickly set downstream activities as CASCADE_FAILED and shutdown EMR clusters and EC2 resources that
are no longer needed. We recommended that you test pipelines with short time ranges to limit the effects of
this situation.

Pipeline Definition File Syntax
The instructions in this section are for working manually with pipeline definition files using the AWS Data
Pipeline command line interface (CLI). This is an alternative to designing a pipeline interactively using the
AWS Data Pipeline console.

You can manually create pipeline definition files using any text editor that supports saving files using the
UTF-8 file format and submit the files using the AWS Data Pipeline command line interface.

AWS Data Pipeline also supports a variety of complex expressions and functions within pipeline definitions.
For more information, see Pipeline Expressions and Functions (p. 119).

File Structure
The first step in pipeline creation is to compose pipeline definition objects in a pipeline definition file. The
following example illustrates the general structure of a pipeline definition file. This file defines two objects,
which are delimited by '{' and '}', and separated by a comma.

In the following example, the first object defines two name-value pairs, known as fields. The second object
defines three fields.

{
 "objects" : [
 {
 "name1" : "value1",
 "name2" : "value2"
 },
 {
 "name1" : "value3",
 "name3" : "value4",
 "name4" : "value5"

API Version 2012-10-29
54

AWS Data Pipeline Developer Guide
Pipeline Fields

 }
]
}

When creating a pipeline definition file, you must select the types of pipeline objects that you'll need, add
them to the pipeline definition file, and then add the appropriate fields. For more information about pipeline
objects, see Pipeline Object Reference (p. 130).

For example, you could create a pipeline definition object for an input data node and another for the output
data node. Then create another pipeline definition object for an activity, such as processing the input data
using Amazon EMR.

Pipeline Fields
After you know which object types to include in your pipeline definition file, you add fields to the definition of
each pipeline object. Field names are enclosed in quotes, and are separated from field values by a space,
a colon, and a space, as shown in the following example.

"name" : "value"

The field value can be a text string, a reference to another object, a function call, an expression, or an
ordered list of any of the preceding types. for more information about the types of data that can be used for
field values, see Simple Data Types (p. 119) . For more information about functions that you can use to
evaluate field values, see Expression Evaluation (p. 123).

Fields are limited to 2048 characters. Objects can be 20 KB in size, which means that you can't add many
large fields to an object.

Each pipeline object must contain the following fields: id and type, as shown in the following example.
Other fields may also be required based on the object type. Select a value for id that's meaningful to
you, and is unique within the pipeline definition. The value for type specifies the type of the object.
Specify one of the supported pipeline definition object types, which are listed in the topic Pipeline Object
Reference (p. 130).

{
 "id": "MyCopyToS3",
 "type": "CopyActivity"
}

For more information about the required and optional fields for each object, see the documentation for the
object.

To include fields from one object in another object, use the parent field with a reference to the object. For
example, object "B" includes its fields, "B1" and "B2", plus the fields from object "A", "A1" and "A2".

{
 "id" : "A",
 "A1" : "value",
 "A2" : "value"
},
{
 "id" : "B",
 "parent" : {"ref" : "A"},
 "B1" : "value",
 "B2" : "value"
}

API Version 2012-10-29
55

AWS Data Pipeline Developer Guide
User-Defined Fields

You can define common fields in an object with the ID "Default". These fields are automatically included in
every object in the pipeline definition file that doesn't explicitly set its parent field to reference a different
object.

{
 "id" : "Default",
 "onFail" : {"ref" : "FailureNotification"},
 "maximumRetries" : "3",
 "workerGroup" : "myWorkerGroup"
}

User-Defined Fields
You can create user-defined or custom fields on your pipeline components and refer to them
with expressions. The following example shows a custom field named myCustomField and
my_customFieldReference added to an S3DataNode object:

{
 "id": "S3DataInput",
 "type": "S3DataNode",
 "schedule": {"ref": "TheSchedule"},
 "filePath": "s3://bucket_name",
 "myCustomField": "This is a custom value in a custom field.",
 "my_customFieldReference": {"ref":"AnotherPipelineComponent"}
 },

A user-defined field must have a name prefixed with the word "my" in all lower-case letters, followed by a
capital letter or underscore character. Additionally, a user-defined field can be a string value such as the
preceding myCustomField example, or a reference to another pipeline component such as the preceding
my_customFieldReference example.

Note
On user-defined fields, AWS Data Pipeline only checks for valid references to other pipeline
components, not any custom field string values that you add.

Working with the API
Note
If you are not writing programs that interact with AWS Data Pipeline, you do not need to install any
of the AWS SDKs. You can create and run pipelines using the console or command-line interface.
For more information, see Setting Up for AWS Data Pipeline (p. 10)

The easiest way to write applications that interact with AWS Data Pipeline or to implement a custom Task
Runner is to use one of the AWS SDKs. The AWS SDKs provide functionality that simplify calling the web
service APIs from your preferred programming environment. For more information, see Install the AWS
SDK (p. 56).

Install the AWS SDK
The AWS SDKs provide functions that wrap the API and take care of many of the connection details, such
as calculating signatures, handling request retries, and error handling. The SDKs also contain sample code,
tutorials, and other resources to help you get started writing applications that call AWS. Calling the wrapper
functions in an SDK can greatly simplify the process of writing an AWS application. For more information
about how to download and use the AWS SDKs, go to Sample Code & Libraries.

AWS Data Pipeline support is available in SDKs for the following platforms:

API Version 2012-10-29
56

http://aws.amazon.com/code

AWS Data Pipeline Developer Guide
Making an HTTP Request to AWS Data Pipeline

• AWS SDK for Java

• AWS SDK for Node.js

• AWS SDK for PHP

• AWS SDK for Python (Boto)

• AWS SDK for Ruby

• AWS SDK for .NET

Making an HTTP Request to AWS Data Pipeline
For a complete description of the programmatic objects in AWS Data Pipeline, see the AWS Data Pipeline
API Reference.

If you don't use one of the AWS SDKs, you can perform AWS Data Pipeline operations over HTTP using
the POST request method. The POST method requires you to specify the operation in the header of the
request and provide the data for the operation in JSON format in the body of the request.

HTTP Header Contents

AWS Data Pipeline requires the following information in the header of an HTTP request:

• host The AWS Data Pipeline endpoint.

For information about endpoints, see Regions and Endpoints.

• x-amz-date You must provide the time stamp in either the HTTP Date header or the AWS x-amz-date
header. (Some HTTP client libraries don't let you set the Date header.) When an x-amz-date header is
present, the system ignores any Date header during the request authentication.

The date must be specified in one of the following three formats, as specified in the HTTP/1.1 RFC:

• Sun, 06 Nov 1994 08:49:37 GMT (RFC 822, updated by RFC 1123)

• Sunday, 06-Nov-94 08:49:37 GMT (RFC 850, obsoleted by RFC 1036)

• Sun Nov 6 08:49:37 1994 (ANSI C asctime() format)

• Authorization The set of authorization parameters that AWS uses to ensure the validity and authenticity
of the request. For more information about constructing this header, go to Signature Version 4 Signing
Process.

• x-amz-target The destination service of the request and the operation for the data, in the format:
<<serviceName>>_<<API version>>.<<operationName>>

For example, DataPipeline_20121129.ActivatePipeline

• content-type Specifies JSON and the version. For example, Content-Type: application/x-amz-
json-1.0

The following is an example header for an HTTP request to activate a pipeline.

POST / HTTP/1.1
host: https://datapipeline.us-east-1.amazonaws.com
x-amz-date: Mon, 12 Nov 2012 17:49:52 GMT
x-amz-target: DataPipeline_20121129.ActivatePipeline
Authorization: AuthParams
Content-Type: application/x-amz-json-1.1
Content-Length: 39
Connection: Keep-Alive

API Version 2012-10-29
57

http://aws.amazon.com/java
http://aws.amazon.com/sdkfornodejs
http://aws.amazon.com/sdkforphp
http://aws.amazon.com/sdkforpython
http://aws.amazon.com/sdkforruby
http://aws.amazon.com/net
http://docs.aws.amazon.com/datapipeline/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/datapipeline/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS Data Pipeline Developer Guide
Making an HTTP Request to AWS Data Pipeline

HTTP Body Content

The body of an HTTP request contains the data for the operation specified in the header of the HTTP
request. The data must be formatted according to the JSON data schema for each AWS Data Pipeline API.
The AWS Data Pipeline JSON data schema defines the types of data and parameters (such as comparison
operators and enumeration constants) available for each operation.

Format the Body of an HTTP request

Use the JSON data format to convey data values and data structure, simultaneously. Elements can be
nested within other elements by using bracket notation. The following example shows a request for putting
a pipeline definition consisting of three objects and their corresponding slots.

{
 "pipelineId": "df-00627471SOVYZEXAMPLE",
 "pipelineObjects":
 [
 {"id": "Default",
 "name": "Default",
 "slots":
 [
 {"key": "workerGroup",
 "stringValue": "MyWorkerGroup"}
]
 },
 {"id": "Schedule",
 "name": "Schedule",
 "slots":
 [
 {"key": "startDateTime",
 "stringValue": "2012-09-25T17:00:00"},
 {"key": "type",
 "stringValue": "Schedule"},
 {"key": "period",
 "stringValue": "1 hour"},
 {"key": "endDateTime",
 "stringValue": "2012-09-25T18:00:00"}
]
 },
 {"id": "SayHello",
 "name": "SayHello",
 "slots":
 [
 {"key": "type",
 "stringValue": "ShellCommandActivity"},
 {"key": "command",
 "stringValue": "echo hello"},
 {"key": "parent",
 "refValue": "Default"},
 {"key": "schedule",
 "refValue": "Schedule"}

]
 }
]
}

Handle the HTTP Response

Here are some important headers in the HTTP response, and how you should handle them in your
application:

API Version 2012-10-29
58

AWS Data Pipeline Developer Guide
Making an HTTP Request to AWS Data Pipeline

• HTTP/1.1—This header is followed by a status code. A code value of 200 indicates a successful
operation. Any other value indicates an error.

• x-amzn-RequestId—This header contains a request ID that you can use if you need
to troubleshoot a request with AWS Data Pipeline. An example of a request ID is
K2QH8DNOU907N97FNA2GDLL8OBVV4KQNSO5AEMVJF66Q9ASUAAJG.

• x-amz-crc32—AWS Data Pipeline calculates a CRC32 checksum of the HTTP payload and returns this
checksum in the x-amz-crc32 header. We recommend that you compute your own CRC32 checksum
on the client side and compare it with the x-amz-crc32 header; if the checksums do not match, it might
indicate that the data was corrupted in transit. If this happens, you should retry your request.

AWS SDK users do not need to manually perform this verification, because the SDKs compute the
checksum of each reply from Amazon DynamoDB and automatically retry if a mismatch is detected.

Sample AWS Data Pipeline JSON Request and Response

The following examples show a request for creating a new pipeline. Then it shows the AWS Data Pipeline
response, including the pipeline identifier of the newly created pipeline.

HTTP POST Request

POST / HTTP/1.1
host: https://datapipeline.us-east-1.amazonaws.com
x-amz-date: Mon, 12 Nov 2012 17:49:52 GMT
x-amz-target: DataPipeline_20121129.CreatePipeline
Authorization: AuthParams
Content-Type: application/x-amz-json-1.1
Content-Length: 50
Connection: Keep-Alive

{"name": "MyPipeline",
 "uniqueId": "12345ABCDEFG"}

AWS Data Pipeline Response

HTTP/1.1 200
x-amzn-RequestId: b16911ce-0774-11e2-af6f-6bc7a6be60d9
x-amz-crc32: 2215946753
Content-Type: application/x-amz-json-1.0
Content-Length: 2
Date: Mon, 16 Jan 2012 17:50:53 GMT

{"pipelineId": "df-00627471SOVYZEXAMPLE"}

API Version 2012-10-29
59

AWS Data Pipeline Developer Guide

Controlling Access to Pipelines and
Resources

Your security credentials identify you to services in AWS and grant you unlimited use of your AWS
resources, such as your AWS Data Pipeline pipelines. You can use features of AWS Data Pipeline and
AWS Identity and Access Management (IAM) to allow AWS Data Pipeline and other users to access your
AWS Data Pipeline resources without sharing your security credentials.

Organizations can share access to pipelines so that the individuals in that organization can develop and
maintain them collaboratively. However, for example, it might be necessary to do the following:

• Control which IAM users can access specific pipelines

• Protect a production pipeline from being edited by mistake

• Allow an auditor to have read-only access to pipelines, but prevent them from making changes

AWS Data Pipeline integrates with AWS Identity and Access Management (IAM), a service that enables
you to do the following:

• Create users and groups under your AWS account

• Easily share your AWS resources between the users in your AWS account

• Assign unique security credentials to each user

• Control each user's access to services and resources

• Get a single bill for all users in your AWS account

By using IAM with AWS Data Pipeline, you can control whether users in your organization can perform
a task using specific API actions and whether they can use specific AWS resources. You can use IAM
policies based on pipeline tags and worker groups to share your pipelines with other users and control the
level of access they have.

Contents

• IAM Policies for AWS Data Pipeline (p. 61)

• Example Policies for AWS Data Pipeline (p. 64)

API Version 2012-10-29
60

AWS Data Pipeline Developer Guide
IAM Policies for AWS Data Pipeline

• IAM Roles for AWS Data Pipeline (p. 66)

IAM Policies for AWS Data Pipeline
By default, IAM users don't have permission to create or modify AWS resources. To allow IAM users
to create or modify resources and perform tasks, you must create IAM policies that grant IAM users
permission to use the specific resources and API actions they'll need, and then attach those policies to the
IAM users or groups that require those permissions.

When you attach a policy to a user or group of users, it allows or denies the users permission to perform
the specified tasks on the specified resources. For general information about IAM policies, see Permissions
and Policies in the IAM User Guide guide. For more information about managing and creating custom IAM
policies, see Managing IAM Policies.

Contents

• Policy Syntax (p. 61)

• Controlling Access to Pipelines Using Tags (p. 62)

• Controlling Access to Pipelines Using Worker Groups (p. 63)

Policy Syntax
An IAM policy is a JSON document that consists of one or more statements. Each statement is structured
as follows:

{
 "Statement":[{
 "Effect":"effect",
 "Action":"action",
 "Resource":"*",
 "Condition":{
 "condition":{
 "key":"value"
 }
 }
 }
]
}

The following elements make up a policy statement:

• Effect: The effect can be Allow or Deny. By default, IAM users don't have permission to use resources
and API actions, so all requests are denied. An explicit allow overrides the default. An explicit deny
overrides any allows.

• Action: The action is the specific API action for which you are granting or denying permission. For a list
of actions for AWS Data Pipeline, see Actions in the AWS Data Pipeline API Reference.

• Resource: The resource that's affected by the action. The only valid value here is "*".

• Condition: Conditions are optional. They can be used to control when your policy will be in effect.

AWS Data Pipeline implements the AWS-wide context keys (see Available Keys for Conditions), plus the
following service-specific keys.

• datapipeline:PipelineCreator — To grant access to the user that created the pipeline. For an
example, see Grant the pipeline owner full access (p. 65).

• datapipeline:Tag — To grant access based on pipeline tagging. For more information, see
Controlling Access to Pipelines Using Tags (p. 62).

API Version 2012-10-29
61

http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/datapipeline/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#AvailableKeys

AWS Data Pipeline Developer Guide
Controlling Access to Pipelines Using Tags

• datapipeline:workerGroup — To grant access based on the name of the worker group. For more
information, see Controlling Access to Pipelines Using Worker Groups (p. 63).

Controlling Access to Pipelines Using Tags
You can create IAM policies that reference the tags for your pipeline. This enables you to use pipeline
tagging to do the following:

• Grant read-only access to a pipeline

• Grant read/write access to a pipeline

• Block access to a pipeline

For example, suppose that a manager has two pipeline environments, production and development, and
an IAM group for each environment. For pipelines in the production environment, the manager grants read/
write access to users in the production IAM group, but grants read-only access to users in the developer
IAM group. For pipelines in the development environment, the manager grants read/write access to both
the production and developer IAM groups.

To achieve this scenario, the manager tags the production pipelines with the "environment=production"
tag and attaches the following policy to the developer IAM group. The first statement grants read-only
access to all pipelines. The second statement grants read/write access to pipelines that do not have an
"environment=production" tag.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "datapipeline:Describe*",
 "datapipeline:ListPipelines",
 "datapipeline:GetPipelineDefinition",
 "datapipeline:QueryObjects"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "datapipeline:*",
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {"datapipeline:Tag/environment": "production"}
 }
 }
]
}

In addition, the manager attaches the following policy to the production IAM group. This statement grants
full access to all pipelines.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "datapipeline:*",
 "Resource": "*"
 }

API Version 2012-10-29
62

AWS Data Pipeline Developer Guide
Controlling Access to Pipelines Using Worker Groups

]
}

For more examples, see Grant users read-only access based on a tag (p. 64) and Grant users full
access based on a tag (p. 65).

Controlling Access to Pipelines Using Worker Groups
You can create IAM policies that make reference worker group names.

For example, suppose that a manager has two pipeline environments, production and development, and
an IAM group for each environment. The manager has three database servers with task runners configured
for production, pre-production, and developer environments, respectively. The manager wants to ensure
that users in the production IAM group can create pipelines that push tasks to production resources, and
that users in the development IAM group can create pipelines that push tasks to both pre-production and
developer resources.

To achieve this scenario, the manager installs task runner on the production resources with production
credentials, and sets workerGroup to "prodresource". In addition, the manager installs task runner on
the development resources with development credentials, and sets workerGroup to "pre-production" and
"development". The manager attaches the following policy to the developer IAM group to block access
to "prodresource" resources. The first statement grants read-only access to all pipelines. The second
statement grants read/write access to pipelines when the name of the worker group has a prefix of "dev" or
"pre-prod".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "datapipeline:Describe*",
 "datapipeline:ListPipelines",
 "datapipeline:GetPipelineDefinition",
 "datapipeline:QueryObjects"
],
 "Resource": "*"
 },
 {
 "Action": "datapipeline:*",
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "datapipeline:workerGroup": ["dev*","pre-prod*"]
 }
 }
 }
]
}

In addition, the manager attaches the following policy to the production IAM group to grant access to
"prodresource" resources. The first statement grants read-only access to all pipelines. The second
statement grants read/write access when the name of the worker group has a prefix of "prod".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

API Version 2012-10-29
63

AWS Data Pipeline Developer Guide
Example Policies for AWS Data Pipeline

 "Action": [
 "datapipeline:Describe*",
 "datapipeline:ListPipelines",
 "datapipeline:GetPipelineDefinition",
 "datapipeline:QueryObjects"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "datapipeline:*",
 "Resource": "*",
 "Condition": {
 "StringLike": {"datapipeline:workerGroup": "prodresource*"}
 }
 }
]
}

Example Policies for AWS Data Pipeline
The following examples demonstrate how to grant users full or restricted access to pipelines.

• 1: Grant users read-only access based on a tag (p. 64)

• 2: Grant users full access based on a tag (p. 65)

• 3: Grant the pipeline owner full access (p. 65)

• 4: Grant users access to the AWS Data Pipeline console (p. 65)

Example 1: Grant users read-only access based on a tag

The following policy allows users to use the read-only AWS Data Pipeline API actions, but only with
pipelines that have the tag "environment=production".

Note
The ListPipelines API action does not suppport tab-based authorization.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "datapipeline:Describe*",
 "datapipeline:GetPipelineDefinition",
 "datapipeline:ValidatePipelineDefinition",
 "datapipeline:QueryObjects"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "datapipeline:Tag/environment": "production"
 }
 }
 }
]
}

API Version 2012-10-29
64

AWS Data Pipeline Developer Guide
Example Policies for AWS Data Pipeline

Example 2: Grant users full access based on a tag

The following policy allows users to use all AWS Data Pipeline API actions, with the exception of
ListPipelines, but only with pipelines that have the tag "environment=test".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "datapipeline:*"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "datapipeline:Tag/environment": "test"
 }
 }
 }
]
}

Example 3: Grant the pipeline owner full access

The following policy allows users to use all the AWS Data Pipeline API actions, but only with their own
pipelines.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "datapipeline:*"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "datapipeline:PipelineCreator": "${aws:userid}"
 }
 }
 }
]
}

Example 4: Grant users access to the AWS Data Pipeline console

The following policy allows users to create and manage a pipeline using the AWS Data Pipeline console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:*",
 "datapipeline:*",

API Version 2012-10-29
65

AWS Data Pipeline Developer Guide
IAM Roles

 "dynamodb:DescribeTable",
 "elasticmapreduce:AddJobFlowSteps",
 "elasticmapreduce:ListInstance*",
 "iam:AddRoleToInstanceProfile",
 "iam:CreateInstanceProfile",
 "iam:GetInstanceProfile",
 "iam:GetRole",
 "iam:ListInstanceProfiles",
 "iam:ListInstanceProfilesForRole",
 "iam:ListRoles",
 "iam:PassRole",
 "rds:DescribeDBInstances",
 "rds:DescribeDBSecurityGroups",
 "redshift:DescribeClusters",
 "redshift:DescribeClusterSecurityGroups",
 "s3:List*",
 "sns:ListTopics"
],
 "Resource": "*"
 }
]
}

IAM Roles for AWS Data Pipeline
AWS Data Pipeline requires IAM roles to determine what actions your pipelines can perform and what
resources it can access. Additionally, when a pipeline creates a resource, such as an EC2 instance or
EMR cluster, IAM roles determine what actions your applications can perform and what resources they can
access.

The AWS Data Pipeline console creates the following roles for you:

• DataPipelineDefaultRole - Grants AWS Data Pipeline access to your AWS resources

• DataPipelineDefaultResourceRole - Grants your applications access to your AWS resources

If you are using a CLI or an API and you have not used the AWS Data Pipeline console to create a pipeline
previously, you must create these roles manually using AWS Identity and Access Management (IAM). For
more information, see Create the Required IAM Roles (for CLI or API only) (p. 10).

Alternatively, you can create custom roles. For an example of how to specify these roles for an EmrCluster
object, see Specify custom IAM roles (p. 212).

Update Existing IAM Roles for AWS Data Pipeline
If the DataPipelineDefaultRole and DataPipelineDefaultResourceRole roles were created using inline
policies instead of managed policies, the AWS account owner can update them to use managed policies.
After you update your roles to use an AWS managed policy, they will receive future updates automatically.

Use the following procedure to update the DataPipelineDefaultRole and
DataPipelineDefaultResourceRole roles.

To update your existing IAM roles using managed policies

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Update the DataPipelineDefaultRole role as follows:

a. In the navigation pane, click Roles, and then click the row for the DataPipelineDefaultRole role.

API Version 2012-10-29
66

https://console.aws.amazon.com/iam/

AWS Data Pipeline Developer Guide
Update Existing IAM Roles for AWS Data Pipeline

b. Under Permissions, click Remove Policy for the inline policy. When prompted for confirmation,
click Remove.

c. Under Permissions, click Attach Policy.

d. On the Attach Policy page, click the box next to the AWSDataPipelineRole policy, and then click
Attach Policy.

3. Update the DataPipelineDefaultResourceRole role as follows:

a. In the navigation pane, click Roles, and then click the row for the
DataPipelineDefaultResourceRole role

b. Under Permissions, click Remove Policy for the inline policy. When prompted for confirmation,
click Remove.

c. Under Permissions, click Attach Policy.

d. On the Attach Policy page, click the box next to the AmazonEC2RoleforDataPipelineRole
policy, and then click Attach Policy.

If you prefer to maintain the inline policy yourself, you can do so as follows.

To update your existing IAM roles using inline policies

1. Update DataPipelineDefaultRole to use the following policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "cloudwatch:*",
 "datapipeline:DescribeObjects",
 "datapipeline:EvaluateExpression",
 "dynamodb:BatchGetItem",
 "dynamodb:DescribeTable",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateTable",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CancelSpotInstanceRequests",
 "ec2:CreateSecurityGroup",
 "ec2:CreateTags",
 "ec2:DeleteTags",
 "ec2:Describe*",
 "ec2:ModifyImageAttribute",
 "ec2:ModifyInstanceAttribute",
 "ec2:RequestSpotInstances",
 "ec2:RunInstances",
 "ec2:StartInstances",
 "ec2:StopInstances",
 "ec2:TerminateInstances",
 "elasticmapreduce:*",
 "iam:GetInstanceProfile",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListInstanceProfiles",
 "iam:ListRolePolicies",
 "iam:PassRole",
 "rds:DescribeDBInstances",
 "rds:DescribeDBSecurityGroups",
 "redshift:DescribeClusters",
 "redshift:DescribeClusterSecurityGroups",

API Version 2012-10-29
67

AWS Data Pipeline Developer Guide
Update Existing IAM Roles for AWS Data Pipeline

 "s3:CreateBucket",
 "s3:DeleteObject",
 "s3:Get*",
 "s3:List*",
 "s3:Put*",
 "sdb:BatchPutAttributes",
 "sdb:Select*",
 "sns:GetTopicAttributes",
 "sns:ListTopics",
 "sns:Publish",
 "sns:Subscribe",
 "sns:Unsubscribe"
],
 "Resource": ["*"]
 }]
}

2. Update DataPipelineDefaultRole to use the following trusted entities list:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "elasticmapreduce.amazonaws.com",
 "datapipeline.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

3. Update DataPipelineDefaultResourceRole to use the following policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "cloudwatch:*",
 "datapipeline:*",
 "dynamodb:*",
 "ec2:Describe*",
 "elasticmapreduce:AddJobFlowSteps",
 "elasticmapreduce:Describe*",
 "elasticmapreduce:ListInstance*",
 "rds:Describe*",
 "redshift:DescribeClusters",
 "redshift:DescribeClusterSecurityGroups",
 "s3:*",
 "sdb:*",
 "sns:*",
 "sqs:*"
],
 "Resource": ["*"]
 }]
}

4. Update DataPipelineDefaultResourceRole to use the following trusted entities list:

{

API Version 2012-10-29
68

AWS Data Pipeline Developer Guide
Change Roles on Existing Pipelines

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "ec2.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Change Roles on Existing Pipelines
If you have a custom role and you would like to change roles for existing pipelines by editing the pipeline in
the AWS Data Pipeline console:

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. Select the pipeline you desire to edit by clicking the pipeline ID.

3. Choose Edit Pipeline.

4. Choose the Others dropdown and enter the appropriate Role and Resource Role.

API Version 2012-10-29
69

https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
Process Data Using Amazon EMR with Hadoop Streaming

Tutorials

The following tutorials walk you step-by-step through the process of creating and using pipelines with AWS
Data Pipeline.

Tutorials

• Process Data Using Amazon EMR with Hadoop Streaming (p. 70)

• Import and Export DynamoDB Data Using AWS Data Pipeline (p. 77)

• Copy CSV Data Between Amazon S3 Buckets Using AWS Data Pipeline (p. 86)

• Export MySQL Data to Amazon S3 Using AWS Data Pipeline (p. 96)

• Copy Data to Amazon Redshift Using AWS Data Pipeline (p. 107)

Process Data Using Amazon EMR with Hadoop
Streaming

You can use AWS Data Pipeline to manage your Amazon EMR clusters. With AWS Data Pipeline you
can specify preconditions that must be met before the cluster is launched (for example, ensuring that
today's data been uploaded to Amazon S3), a schedule for repeatedly running the cluster, and the cluster
configuration to use. The following tutorial walks you through launching a simple cluster.

In this tutorial, you create a pipeline for a simple Amazon EMR cluster to run a pre-existing Hadoop
Streaming job provided by Amazon EMR and send an Amazon SNS notification after the task completes
successfully. You use the Amazon EMR cluster resource provided by AWS Data Pipeline for this task. The
sample application is called WordCount, and can also be run manually from the Amazon EMR console.
Note that clusters spawned by AWS Data Pipeline on your behalf are displayed in the Amazon EMR
console and are billed to your AWS account.

Pipeline Objects

The pipeline uses the following objects:

EmrActivity (p. 156)

Defines the work to perform in the pipeline (run a pre-existing Hadoop Streaming job provided by
Amazon EMR).

API Version 2012-10-29
70

AWS Data Pipeline Developer Guide
Before You Begin

EmrCluster (p. 210)

Resource AWS Data Pipeline uses to perform this activity.

A cluster is a set of Amazon EC2 instances. AWS Data Pipeline launches the cluster and then
terminates it after the task finishes.

Schedule (p. 252)

Start date, time, and the duration for this activity. You can optionally specify the end date and time.

SnsAlarm (p. 250)

Sends an Amazon SNS notification to the topic you specify after the task finishes successfully.

Contents

• Before You Begin (p. 71)

• Launch a Cluster Using the AWS Data Pipeline Console (p. 71)

• Launch a Cluster Using the Command Line (p. 74)

Before You Begin
Be sure you've completed the following steps.

• Complete the tasks in Setting Up for AWS Data Pipeline (p. 10).

• (Optional) Set up a VPC for the cluster and a security group for the VPC. For more information, see
Launching Resources for Your Pipeline into a VPC (p. 48).

• Create a topic for sending email notification and make a note of the topic Amazon Resource Name
(ARN). For more information, see Create a Topic in the Amazon Simple Notification Service Getting
Started Guide.

Launch a Cluster Using the AWS Data Pipeline
Console
You can create a pipeline to launch a cluster to analyze web logs or perform analysis of scientific data.

Tasks

• Create the Pipeline (p. 71)

• Save and Validate Your Pipeline (p. 73)

• Activate Your Pipeline (p. 74)

• Monitor the Pipeline Runs (p. 74)

• (Optional) Delete Your Pipeline (p. 74)

Create the Pipeline

First, create the pipeline.

To create your pipeline

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. The first screen that you see depends on whether you've created a pipeline in the current region.

API Version 2012-10-29
71

http://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html
https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
Using the Console

a. If you haven't created a pipeline in this region, the console displays an introductory screen.
Choose Get started now.

b. If you've already created a pipeline in this region, the console displays a page that lists your
pipelines for the region. Choose Create new pipeline.

3. In Name, enter a name for your pipeline.

4. (Optional) In Description, enter a description for your pipeline.

5. For Source, select Build using Architect.

6. Under Schedule, choose on pipeline activation.

7. Under Pipeline Configuration, leave logging enabled. Choose the folder icon under S3 location for
logs, select one of your buckets or folders, and then choose Select.

If you prefer, you can disable logging instead.

8. Under Security/Access, leave IAM roles set to Default.

9. Click Edit in Architect.

Next, add an activity to your pipeline definition. This also defines the other objects that AWS Data Pipeline
must use to perform this activity.

To configure the activity

1. Click Add activity.

2. In the Activities pane:

a. In the Name field, enter the name for the activity (for example, MyEMRActivity).

b. From Type, select EmrActivity.

c. In Step, enter:

/home/hadoop/contrib/streaming/hadoop-streaming.jar,-input,s3n://elasticmapreduce/
samples/wordcount/input,-output,s3://example-bucket/wordcount/output/
#{@scheduledStartTime},-mapper,s3n://elasticmapreduce/samples/wordcount/
wordSplitter.py,-reducer,aggregate

d. In Add an optional field, select Runs On. Set the value to Create new: EmrCluster.

e. In Add an optional field, select On Success. Set the value to Create new: Action.

Next, configure the resource that AWS Data Pipeline uses to perform the Amazon EMR job.

API Version 2012-10-29
72

AWS Data Pipeline Developer Guide
Using the Console

To configure the resource

1. In the right pane, choose Resources.

2. In the Name field, enter the name for your Amazon EMR cluster (for example, MyEMRCluster).

3. Leave Type set to EmrCluster.

4. [EC2-VPC] (Optional) From Add an optional field, select Subnet Id. Set the value to the ID of the
subnet.

5. (Optional) From Add an optional field, select Enable Debugging. Set the value to true.

Note
This option can incur extra costs because of log data storage. Use this option selectively, such
as for prototyping and troubleshooting.

6. (Optional) In the right pane, choose Others. Under Default, from Add an optional field, select
Pipeline Log Uri. Set the value to an Amazon S3 bucket for the Amazon EMR logs. For example,
s3://examples-bucket/emrlogs.

Note
This option can incur extra costs because of log file storage. Use this option selectively, such
as for prototyping and troubleshooting.

Next, configure the Amazon SNS notification action that AWS Data Pipeline performs after the Amazon
EMR job finishes successfully.

To configure the notification action

1. In the right pane, click Others.

2. Under DefaultAction1, do the following:

a. Enter the name for your notification (for example, MyEMRJobNotice).

b. From Type, select SnsAlarm.

c. In the Subject field, enter the subject line for your notification.

d. In the Topic Arn field, enter the ARN of your topic (see Create a Topic).

e. In Message, enter the message content.

f. Leave Role set to the default value.

Save and Validate Your Pipeline
You can save your pipeline definition at any point during the creation process. As soon as you save your
pipeline definition, AWS Data Pipeline looks for syntax errors and missing values in your pipeline definition.
If your pipeline is incomplete or incorrect, AWS Data Pipeline generates validation errors and warnings.
Warning messages are informational only, but you must fix any error messages before you can activate
your pipeline.

To save and validate your pipeline

1. Choose Save pipeline.

2. AWS Data Pipeline validates your pipeline definition and returns either success or error or warning
messages. If you get an error message, choose Close and then, in the right pane, choose Errors/
Warnings.

3. The Errors/Warnings pane lists the objects that failed validation. Choose the plus (+) sign next to the
object names and look for an error message in red.

4. When you see an error message, go to the specific object pane where you see the error and fix it. For
example, if you see an error message in the DataNodes object, go to the DataNodes pane to fix the
error.

API Version 2012-10-29
73

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

AWS Data Pipeline Developer Guide
Using the CLI

5. After you fix the errors listed in the Errors/Warnings pane, choose Save Pipeline.

6. Repeat the process until your pipeline validates successfully.

Activate Your Pipeline
Activate your pipeline to start creating and processing runs. The pipeline starts based on the schedule and
period in your pipeline definition.

Important
If activation succeeds, your pipeline is running and might incur usage charges. For more
information, see AWS Data Pipeline pricing. To stop incurring usage charges for AWS Data
Pipeline, delete your pipeline.

To activate your pipeline

1. Choose Activate.

2. In the confirmation dialog box, choose Close.

Monitor the Pipeline Runs
After you activate your pipeline, you are taken to the Execution details page where you can monitor the
progress of your pipeline.

To monitor the progress of your pipeline runs

1. Choose Update or press F5 to update the status displayed.

Tip
If there are no runs listed, ensure that Start (in UTC) and End (in UTC) cover the scheduled
start and end of your pipeline, and then choose Update.

2. When the status of every object in your pipeline is FINISHED, your pipeline has successfully completed
the scheduled tasks. If you created an SNS notification, you should receive email about the successful
completion of this task.

3. If your pipeline doesn't complete successfully, check your pipeline settings for issues. For more
information about troubleshooting failed or incomplete instance runs of your pipeline, see Resolving
Common Problems (p. 273).

(Optional) Delete Your Pipeline
To stop incurring charges, delete your pipeline. Deleting your pipeline deletes the pipeline definition and all
associated objects.

To delete your pipeline

1. On the List Pipelines page, select your pipeline.

2. Click Actions, and then choose Delete.

3. When prompted for confirmation, choose Delete.

Launch a Cluster Using the Command Line
If you regularly run an Amazon EMR cluster to analyze web logs or perform analysis of scientific data, you
can use AWS Data Pipeline to manage your Amazon EMR clusters. With AWS Data Pipeline, you can
specify preconditions that must be met before the cluster is launched (for example, ensuring that today's

API Version 2012-10-29
74

http://aws.amazon.com/datapipeline/pricing

AWS Data Pipeline Developer Guide
Using the CLI

data been uploaded to Amazon S3.) This tutorial walks you through launching a cluster that can be a model
for a simple Amazon EMR-based pipeline, or as part of a more involved pipeline.

Prerequisites

Before you can use the CLI, you must complete the following steps:

1. Install and configure a command line interface (CLI). For more information, see Accessing AWS Data
Pipeline (p. 2).

2. Ensure that the IAM roles named DataPipelineDefaultRole and DataPipelineDefaultResourceRole
exist. The AWS Data Pipeline console creates these roles for you automatically. If you haven't used
the AWS Data Pipeline console at least once, then you must create these roles manually. For more
information, see IAM Roles for AWS Data Pipeline (p. 66).

Tasks

• Creating the Pipeline Definition File (p. 75)

• Uploading and Activating the Pipeline Definition (p. 76)

• Monitor the Pipeline Runs (p. 77)

Creating the Pipeline Definition File

The following code is the pipeline definition file for a simple Amazon EMR cluster that runs an existing
Hadoop streaming job provided by Amazon EMR. This sample application is called WordCount, and you
can also run it using the Amazon EMR console.

Copy this code into a text file and save it as MyEmrPipelineDefinition.json. You should replace the
Amazon S3 bucket location with the name of an Amazon S3 bucket that you own. You should also replace
the start and end dates. To launch clusters immediately, set startDateTime to a date one day in the past
and endDateTime to one day in the future. AWS Data Pipeline then starts launching the "past due" clusters
immediately in an attempt to address what it perceives as a backlog of work. This backfilling means you
don't have to wait an hour to see AWS Data Pipeline launch its first cluster.

{
 "objects": [
 {
 "id": "Hourly",
 "type": "Schedule",
 "startDateTime": "2012-11-19T07:48:00",
 "endDateTime": "2012-11-21T07:48:00",
 "period": "1 hours"
 },
 {
 "id": "MyCluster",
 "type": "EmrCluster",
 "masterInstanceType": "m1.small",
 "schedule": {
 "ref": "Hourly"
 }
 },
 {
 "id": "MyEmrActivity",
 "type": "EmrActivity",
 "schedule": {
 "ref": "Hourly"
 },
 "runsOn": {
 "ref": "MyCluster"
 },

API Version 2012-10-29
75

AWS Data Pipeline Developer Guide
Using the CLI

 "step": "/home/hadoop/contrib/streaming/hadoop-streaming.jar,-input,s3n://
elasticmapreduce/samples/wordcount/input,-output,s3://myawsbucket/wordcount/output/
#{@scheduledStartTime},-mapper,s3n://elasticmapreduce/samples/wordcount/wordSplitter.py,-
reducer,aggregate"
 }
]
}

This pipeline has three objects:

• Hourly, which represents the schedule of the work. You can set a schedule as one of the fields on an
activity. When you do, the activity runs according to that schedule, or in this case, hourly.

• MyCluster, which represents the set of Amazon EC2 instances used to run the cluster. You can
specify the size and number of EC2 instances to run as the cluster. If you do not specify the number of
instances, the cluster launches with two, a master node and a task node. You can specify a subnet to
launch the cluster into. You can add additional configurations to the cluster, such as bootstrap actions to
load additional software onto the Amazon EMR-provided AMI.

• MyEmrActivity, which represents the computation to process with the cluster. Amazon EMR supports
several types of clusters, including streaming, Cascading, and Scripted Hive. The runsOn field refers
back to MyCluster, using that as the specification for the underpinnings of the cluster.

Uploading and Activating the Pipeline Definition
You must upload your pipeline definition and activate your pipeline. In the following example commands,
replace pipeline_name with a label for your pipeline and pipeline_file with the fully-qualified path for the
pipeline definition .json file.

AWS CLI

To create your pipeline definition and activate your pipeline, use the following create-pipeline command.
Note the ID of your pipeline, because you'll use this value with most CLI commands.

aws datapipeline create-pipeline --name pipeline_name --unique-id token
{
 "pipelineId": "df-00627471SOVYZEXAMPLE"
}

To upload your pipeline definition, use the following put-pipeline-definition command.

aws datapipeline put-pipeline-definition --pipeline-id df-00627471SOVYZEXAMPLE --pipeline-
definition file://MyEmrPipelineDefinition.json

If you pipeline validates successfully, the validationErrors field is empty. You should review any
warnings.

To activate your pipeline, use the following activate-pipeline command.

aws datapipeline activate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE

You can verify that your pipeline appears in the pipeline list using the following list-pipelines command.

aws datapipeline list-pipelines

AWS Data Pipeline CLI

To upload your pipeline definition and activate your pipeline in a single step, use the following command.

API Version 2012-10-29
76

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/create-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/put-pipeline-definition.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/activate-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/list-pipelines.html

AWS Data Pipeline Developer Guide
Import and Export DynamoDB Data

datapipeline --create pipeline_name --put pipeline_file --activate --force

If your pipeline validates successfully, the command displays the following message. Note the ID of your
pipeline, because you'll use this value with most AWS Data Pipeline CLI commands.

Pipeline with name pipeline_name and id pipeline_id created.
Pipeline definition pipeline_file uploaded.
Pipeline activated.

If the command fails, you'll see an error message. For information, see Troubleshooting (p. 270).

You can verify that your pipeline appears in the pipeline list using the following command.

datapipeline --list-pipelines

Monitor the Pipeline Runs
You can view clusters launched by AWS Data Pipeline using the Amazon EMR console and you can view
the output folder using the Amazon S3 console.

To check the progress of clusters launched by AWS Data Pipeline

1. Open the Amazon EMR console.

2. The clusters that were spawned by AWS Data Pipeline have a name formatted as follows: <pipeline-
identifier>_@<emr-cluster-name>_<launch-time>.

3. After one of the runs is complete, open the Amazon S3 console and check that the time-stamped
output folder exists and contains the expected results of the cluster.

Import and Export DynamoDB Data Using AWS
Data Pipeline

These tutorials demonstrate how to move schema-less data in and out of Amazon DynamoDB using AWS
Data Pipeline, which in turn employs Amazon EMR and Hive. Complete part one before you move on to
part two.

Tutorials

• Part One: Import Data into DynamoDB (p. 77)

• Part Two: Export Data from DynamoDB (p. 82)

Part One: Import Data into DynamoDB
The first part of this tutorial explains how to define an AWS Data Pipeline pipeline to retrieve data from a
tab-delimited file in Amazon S3 to populate a DynamoDB table, use a Hive script to define the necessary
data transformation steps, and automatically create an Amazon EMR cluster to perform the work.

Tasks

• Before You Begin (p. 78)

• Step 1: Create the Pipeline (p. 79)

• Step 2: Save and Validate Your Pipeline (p. 80)

• Step 3: Activate Your Pipeline (p. 80)

API Version 2012-10-29
77

AWS Data Pipeline Developer Guide
Part One: Import Data into DynamoDB

• Step 4: Monitor the Pipeline Runs (p. 81)

• Step 5: Verify the Data Import (p. 81)

• Step 6: Delete Your Pipeline (Optional) (p. 82)

Before You Begin

Be sure to complete the following steps:

• Complete the tasks in Setting Up for AWS Data Pipeline (p. 10).

• (Optional) Set up a VPC for the cluster and a security group for the VPC. For more information, see
Launching Resources for Your Pipeline into a VPC (p. 48).

• Create a topic and subscribe to receive notifications from AWS Data Pipeline regarding the status of
your pipeline components. For more information, see Create a Topic in the Amazon Simple Notification
Service Getting Started Guide.

• Create a DynamoDB table to store data. For more information, see Create a DynamoDB Table
 (p. 78).

Be aware of the following:

• Imports may overwrite data in your DynamoDB table. When you import data from Amazon S3, the import
may overwrite items in your DynamoDB table. Make sure that you are importing the right data and into
the right table. Be careful not to accidentally set up a recurring import pipeline that will import the same
data multiple times.

• Exports may overwrite data in your Amazon S3 bucket. When you export data to Amazon S3, you may
overwrite previous exports if you write to the same bucket path. The default behavior of the Export
DynamoDB to S3 template will append the job's scheduled time to the Amazon S3 bucket path, which
will help you avoid this problem.

• Import and Export jobs will consume some of your DynamoDB table's provisioned throughput capacity.
This section explains how to schedule an import or export job using Amazon EMR. The Amazon EMR
cluster will consume some read capacity during exports or write capacity during imports. You can control
the percentage of the provisioned capacity that the import/export jobs consume by with the settings
MyImportJob.myDynamoDBWriteThroughputRatio and MyExportJob.myDynamoDBReadThroughputRatio.
Be aware that these settings determine how much capacity to consume at the beginning of the import/
export process and will not adapt in real time if you change your table's provisioned capacity in the
middle of the process.

• Be aware of the costs. AWS Data Pipeline manages the import/export process for you, but you still
pay for the underlying AWS services that are being used. The import and export pipelines will create
Amazon EMR clusters to read and write data and there are per-instance charges for each node in the
cluster. You can read more about the details of Amazon EMR Pricing. The default cluster configuration
is one m1.small instance master node and one m1.xlarge instance task node, though you can change
this configuration in the pipeline definition. There are also charges for AWS Data Pipeline. For more
information, see AWS Data Pipeline Pricing and Amazon S3 Pricing.

Create a DynamoDB Table

You can create the DynamoDB table that is required for this tutorial. If you already have a DynamoDB
table, you can skip this procedure to create one.

For more information, see Working with Tables in DynamoDB in the Amazon DynamoDB Developer Guide.

To create a DynamoDB table

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

API Version 2012-10-29
78

http://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html
https://aws.amazon.com/elasticmapreduce/pricing/
https://aws.amazon.com/datapipeline/pricing/
https://aws.amazon.com/s3/pricing/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithDDTables.html
https://console.aws.amazon.com/dynamodb/

AWS Data Pipeline Developer Guide
Part One: Import Data into DynamoDB

2. Click Create Table.

3. Under Primary Key, enter a table name.

4. Enter a unique name for your table in Table Name.

5. In the Primary Key : Partition Key field, enter the string Id.

6. Click Continue to skip the optional Add Indexes page.

7. On the Provisioned Throughput Capacity page, do the following. Note that these values are small
because the sample data is small. For information about calculating the required size for your own
data, see Provisioned Throughput in Amazon DynamoDB in the Amazon DynamoDB Developer Guide.

a. In Read Capacity Units, enter 5.

b. In Write Capacity Units, enter 5.

c. Click Continue.

8. On the Throughput Alarms page, in Send notification to, enter your email address, and then click
Continue.

9. On the Review page, click Create.

Step 1: Create the Pipeline

First, create the pipeline.

To create the pipeline

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. The first screen that you see depends on whether you've created a pipeline in the current region.

a. If you haven't created a pipeline in this region, the console displays an introductory screen.
Choose Get started now.

b. If you've already created a pipeline in this region, the console displays a page that lists your
pipelines for the region. Choose Create new pipeline.

3. In Name, enter a name for your pipeline.

4. (Optional) In Description, enter a description for your pipeline.

5. For Source, select Build using a template, and then select the following template: Import
DynamoDB backup data from S3.

6. Under Parameters, set Input S3 folder to s3://elasticmapreduce/samples/Store/ProductCatalog,
which is a sample data source, and set DynamoDB table name to the name of your table.

7. Under Schedule, choose on pipeline activation.

8. Under Pipeline Configuration, leave logging enabled. Choose the folder icon under S3 location for
logs, select one of your buckets or folders, and then choose Select.

If you prefer, you can disable logging instead.

9. Under Security/Access, leave IAM roles set to Default.

10. Click Edit in Architect.

Next, configure the Amazon SNS notification actions that AWS Data Pipeline performs depending on the
outcome of the activity.

To configure the success and failure actions

1. In the right pane, click Activities.

API Version 2012-10-29
79

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
Part One: Import Data into DynamoDB

2. From Add an optional field, select On Success.

3. From the newly added On Success, select Create new: Action.

4. From Add an optional field, select On Fail.

5. From the newly added On Fail, select Create new: Action.

6. In the right pane, click Others.

7. For DefaultAction1, do the following:

a. Change the name to SuccessSnsAlarm.

b. From Type, select SnsAlarm.

c. In Topic Arn, enter the ARN of the topic that you created (see ARN resource names for Amazon
SNS.

d. Enter a subject and a message.

8. For DefaultAction2, do the following:

a. Change the name to FailureSnsAlarm.

b. From Type, select SnsAlarm.

c. In Topic Arn, enter the ARN of the topic that you created (see ARN resource names for Amazon
SNS.

d. Enter a subject and a message.

Step 2: Save and Validate Your Pipeline

You can save your pipeline definition at any point during the creation process. As soon as you save your
pipeline definition, AWS Data Pipeline looks for syntax errors and missing values in your pipeline definition.
If your pipeline is incomplete or incorrect, AWS Data Pipeline generates validation errors and warnings.
Warning messages are informational only, but you must fix any error messages before you can activate
your pipeline.

To save and validate your pipeline

1. Choose Save pipeline.

2. AWS Data Pipeline validates your pipeline definition and returns either success or error or warning
messages. If you get an error message, choose Close and then, in the right pane, choose Errors/
Warnings.

3. The Errors/Warnings pane lists the objects that failed validation. Choose the plus (+) sign next to the
object names and look for an error message in red.

4. When you see an error message, go to the specific object pane where you see the error and fix it. For
example, if you see an error message in the DataNodes object, go to the DataNodes pane to fix the
error.

5. After you fix the errors listed in the Errors/Warnings pane, choose Save Pipeline.

6. Repeat the process until your pipeline validates successfully.

Step 3: Activate Your Pipeline

Activate your pipeline to start creating and processing runs. The pipeline starts based on the schedule and
period in your pipeline definition.

Important
If activation succeeds, your pipeline is running and might incur usage charges. For more
information, see AWS Data Pipeline pricing. To stop incurring usage charges for AWS Data
Pipeline, delete your pipeline.

API Version 2012-10-29
80

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns
http://aws.amazon.com/datapipeline/pricing

AWS Data Pipeline Developer Guide
Part One: Import Data into DynamoDB

To activate your pipeline

1. Choose Activate.

2. In the confirmation dialog box, choose Close.

Step 4: Monitor the Pipeline Runs

After you activate your pipeline, you are taken to the Execution details page where you can monitor the
progress of your pipeline.

To monitor the progress of your pipeline runs

1. Choose Update or press F5 to update the status displayed.

Tip
If there are no runs listed, ensure that Start (in UTC) and End (in UTC) cover the scheduled
start and end of your pipeline, and then choose Update.

2. When the status of every object in your pipeline is FINISHED, your pipeline has successfully completed
the scheduled tasks. If you created an SNS notification, you should receive email about the successful
completion of this task.

3. If your pipeline doesn't complete successfully, check your pipeline settings for issues. For more
information about troubleshooting failed or incomplete instance runs of your pipeline, see Resolving
Common Problems (p. 273).

Step 5: Verify the Data Import

Next, verify that the data import occurred successfully using the DynamoDB console to inspect the data in
the table.

To verify the DynamoDB table

1. Open the DynamoDB console.

2. On the Tables screen, click your DynamoDB table and click Explore Table.

3. On the Browse Items tab, columns that correspond to the data input file should display, such as Id,
Price, ProductCategory, as shown in the following screen. This indicates that the import operation from
the file to the DynamoDB table occurred successfully.

API Version 2012-10-29
81

AWS Data Pipeline Developer Guide
Part Two: Export Data from DynamoDB

Step 6: Delete Your Pipeline (Optional)

To stop incurring charges, delete your pipeline. Deleting your pipeline deletes the pipeline definition and all
associated objects.

To delete your pipeline

1. On the List Pipelines page, select your pipeline.

2. Click Actions, and then choose Delete.

3. When prompted for confirmation, choose Delete.

Part Two: Export Data from DynamoDB
This is the second of a two-part tutorial that demonstrates how to bring together multiple AWS features to
solve real-world problems in a scalable way through a common scenario: moving schema-less data in and
out of DynamoDB using AWS Data Pipeline, which in turn employs Amazon EMR and Hive.

Tasks

• Before You Begin (p. 82)

• Step 1: Create the Pipeline (p. 83)

• Step 2: Save and Validate Your Pipeline (p. 85)

• Step 3: Activate Your Pipeline (p. 85)

• Step 4: Monitor the Pipeline Runs (p. 85)

• Step 5: Verify the Data Export File (p. 86)

• Step 6: Delete Your Pipeline (Optional) (p. 86)

Before You Begin

You must complete part one of this tutorial to ensure that your DynamoDB table contains the necessary
data to perform the steps in this section. For more information, see Part One: Import Data into
DynamoDB (p. 77).

Additionally, be sure you've completed the following steps:

• Complete the tasks in Setting Up for AWS Data Pipeline (p. 10).

• Create a topic and subscribe to receive notifications from AWS Data Pipeline regarding the status of
your pipeline components. For more information, see Create a Topic in the Amazon SNS Getting Started
Guide.

• Ensure that you have the DynamoDB table that was created and populated with data in part one of this
tutorial. This table will be your data source for part two of the tutorial. For more information, see Part One:
Import Data into DynamoDB (p. 77).

Be aware of the following:

• Imports may overwrite data in your DynamoDB table. When you import data from Amazon S3, the import
may overwrite items in your DynamoDB table. Make sure that you are importing the right data and into
the right table. Be careful not to accidentally set up a recurring import pipeline that will import the same
data multiple times.

• Exports may overwrite data in your Amazon S3 bucket. When you export data to Amazon S3, you may
overwrite previous exports if you write to the same bucket path. The default behavior of the Export

API Version 2012-10-29
82

http://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html

AWS Data Pipeline Developer Guide
Part Two: Export Data from DynamoDB

DynamoDB to S3 template will append the job's scheduled time to the Amazon S3 bucket path, which
will help you avoid this problem.

• Import and Export jobs will consume some of your DynamoDB table's provisioned throughput capacity.
This section explains how to schedule an import or export job using Amazon EMR. The Amazon EMR
cluster will consume some read capacity during exports or write capacity during imports. You can control
the percentage of the provisioned capacity that the import/export jobs consume by with the settings
MyImportJob.myDynamoDBWriteThroughputRatio and MyExportJob.myDynamoDBReadThroughputRatio.
Be aware that these settings determine how much capacity to consume at the beginning of the import/
export process and will not adapt in real time if you change your table's provisioned capacity in the
middle of the process.

• Be aware of the costs. AWS Data Pipeline manages the import/export process for you, but you still
pay for the underlying AWS services that are being used. The import and export pipelines will create
Amazon EMR clusters to read and write data and there are per-instance charges for each node in the
cluster. You can read more about the details of Amazon EMR Pricing. The default cluster configuration
is one m1.small instance master node and one m1.xlarge instance task node, though you can change
this configuration in the pipeline definition. There are also charges for AWS Data Pipeline. For more
information, see AWS Data Pipeline Pricing and Amazon S3 Pricing.

Step 1: Create the Pipeline

First, create the pipeline.

To create the pipeline

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. The first screen that you see depends on whether you've created a pipeline in the current region.

a. If you haven't created a pipeline in this region, the console displays an introductory screen.
Choose Get started now.

b. If you've already created a pipeline in this region, the console displays a page that lists your
pipelines for the region. Choose Create new pipeline.

3. In Name, enter a name for your pipeline.

4. (Optional) In Description, enter a description for your pipeline.

5. For Source, select Build using a template, and then select the following template: Export
DynamoDB table to S3.

6. Under Parameters, set DynamoDB table name to the name of your table. Click the folder icon next to
Output S3 folder, select one of your Amazon S3 buckets, and then click Select.

7. Under Schedule, choose on pipeline activation.

8. Under Pipeline Configuration, leave logging enabled. Choose the folder icon under S3 location for
logs, select one of your buckets or folders, and then choose Select.

If you prefer, you can disable logging instead.

9. Under Security/Access, leave IAM roles set to Default.

10. Click Edit in Architect.

API Version 2012-10-29
83

https://aws.amazon.com/elasticmapreduce/pricing/
https://aws.amazon.com/datapipeline/pricing/
https://aws.amazon.com/s3/pricing/
https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
Part Two: Export Data from DynamoDB

Next, configure the Amazon SNS notification actions that AWS Data Pipeline performs depending on the
outcome of the activity.

To configure the success, failure, and late notification actions

1. In the right pane, click Activities.

2. From Add an optional field, select On Success.

3. From the newly added On Success, select Create new: Action.

4. From Add an optional field, select On Fail.

5. From the newly added On Fail, select Create new: Action.

6. From Add an optional field, select On Late Action.

7. From the newly added On Late Action, select Create new: Action.

8. In the right pane, click Others.

9. For DefaultAction1, do the following:

a. Change the name to SuccessSnsAlarm.

b. From Type, select SnsAlarm.

c. In Topic Arn, enter the ARN of the topic that you created (see ARN resource names for Amazon
SNS.

d. Enter a subject and a message.

10. For DefaultAction2, do the following:

a. Change the name to FailureSnsAlarm.

b. From Type, select SnsAlarm.

c. In Topic Arn, enter the ARN of the topic that you created (see ARN resource names for Amazon
SNS.

d. Enter a subject and a message.

11. For DefaultAction3, do the following:

API Version 2012-10-29
84

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns

AWS Data Pipeline Developer Guide
Part Two: Export Data from DynamoDB

a. Change the name to LateSnsAlarm.

b. From Type, select SnsAlarm.

c. In Topic Arn, enter the ARN of the topic that you created (see ARN resource names for Amazon
SNS.

d. Enter a subject and a message.

Step 2: Save and Validate Your Pipeline

You can save your pipeline definition at any point during the creation process. As soon as you save your
pipeline definition, AWS Data Pipeline looks for syntax errors and missing values in your pipeline definition.
If your pipeline is incomplete or incorrect, AWS Data Pipeline generates validation errors and warnings.
Warning messages are informational only, but you must fix any error messages before you can activate
your pipeline.

To save and validate your pipeline

1. Choose Save pipeline.

2. AWS Data Pipeline validates your pipeline definition and returns either success or error or warning
messages. If you get an error message, choose Close and then, in the right pane, choose Errors/
Warnings.

3. The Errors/Warnings pane lists the objects that failed validation. Choose the plus (+) sign next to the
object names and look for an error message in red.

4. When you see an error message, go to the specific object pane where you see the error and fix it. For
example, if you see an error message in the DataNodes object, go to the DataNodes pane to fix the
error.

5. After you fix the errors listed in the Errors/Warnings pane, choose Save Pipeline.

6. Repeat the process until your pipeline validates successfully.

Step 3: Activate Your Pipeline

Activate your pipeline to start creating and processing runs. The pipeline starts based on the schedule and
period in your pipeline definition.

Important
If activation succeeds, your pipeline is running and might incur usage charges. For more
information, see AWS Data Pipeline pricing. To stop incurring usage charges for AWS Data
Pipeline, delete your pipeline.

To activate your pipeline

1. Choose Activate.

2. In the confirmation dialog box, choose Close.

Step 4: Monitor the Pipeline Runs

After you activate your pipeline, you are taken to the Execution details page where you can monitor the
progress of your pipeline.

To monitor the progress of your pipeline runs

1. Choose Update or press F5 to update the status displayed.

API Version 2012-10-29
85

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-sns
http://aws.amazon.com/datapipeline/pricing

AWS Data Pipeline Developer Guide
Copy CSV Data from Amazon S3 to Amazon S3

Tip
If there are no runs listed, ensure that Start (in UTC) and End (in UTC) cover the scheduled
start and end of your pipeline, and then choose Update.

2. When the status of every object in your pipeline is FINISHED, your pipeline has successfully completed
the scheduled tasks. If you created an SNS notification, you should receive email about the successful
completion of this task.

3. If your pipeline doesn't complete successfully, check your pipeline settings for issues. For more
information about troubleshooting failed or incomplete instance runs of your pipeline, see Resolving
Common Problems (p. 273).

Step 5: Verify the Data Export File

Next, verify that the data export occurred successfully using viewing the output file contents.

To view the export file contents

1. Open the Amazon S3 console.

2. On the Buckets pane, click the Amazon S3 bucket that contains your file output (the example pipeline
uses the output path s3://mybucket/output/MyTable) and open the output file with your preferred text
editor. The output file name is an identifier value with no extension, such as this example: ae10f955-
fb2f-4790-9b11-fbfea01a871e_000000.

3. Using your preferred text editor, view the contents of the output file and ensure that there is a data
file that corresponds to the DynamoDB source table, such as Id, Price, and ProductCategory. The
presence of this text file indicates that the export operation from DynamoDB to the output file occurred
successfully.

Step 6: Delete Your Pipeline (Optional)

To stop incurring charges, delete your pipeline. Deleting your pipeline deletes the pipeline definition and all
associated objects.

To delete your pipeline

1. On the List Pipelines page, select your pipeline.

2. Click Actions, and then choose Delete.

3. When prompted for confirmation, choose Delete.

Copy CSV Data Between Amazon S3 Buckets
Using AWS Data Pipeline

After you read What is AWS Data Pipeline? (p. 1) and decide you want to use AWS Data Pipeline to
automate the movement and transformation of your data, it is time to get started with creating data
pipelines. To help you make sense of how AWS Data Pipeline works, let’s walk through a simple task.

This tutorial walks you through the process of creating a data pipeline to copy data from one Amazon S3
bucket to another and then send an Amazon SNS notification after the copy activity completes successfully.
You use an EC2 instance managed by AWS Data Pipeline for this copy activity.

Pipeline Objects

API Version 2012-10-29
86

AWS Data Pipeline Developer Guide
Before You Begin

The pipeline uses the following objects:

CopyActivity (p. 152)

The activity that AWS Data Pipeline performs for this pipeline (copy CSV data from one Amazon S3
bucket to another).

Important
There are limitations when using the CSV file format with CopyActivity and S3DataNode. For
more information, see CopyActivity (p. 152).

Schedule (p. 252)

The start date, time, and the recurrence for this activity. You can optionally specify the end date and
time.

Ec2Resource (p. 204)

The resource (an EC2 instance) that AWS Data Pipeline uses to perform this activity.

S3DataNode (p. 143)

The input and output nodes (Amazon S3 buckets) for this pipeline.

SnsAlarm (p. 250)

The action AWS Data Pipeline must take when the specified conditions are met (send Amazon SNS
notifications to a topic after the task finishes successfully).

Contents

• Before You Begin (p. 87)

• Copy CSV Data Using the AWS Data Pipeline Console (p. 88)

• Copy CSV Data Using the Command Line (p. 91)

Before You Begin
Be sure you've completed the following steps.

• Complete the tasks in Setting Up for AWS Data Pipeline (p. 10).

• (Optional) Set up a VPC for the instance and a security group for the VPC. For more information, see
Launching Resources for Your Pipeline into a VPC (p. 48).

• Create an Amazon S3 bucket as a data source.

For more information, see Create a Bucket in the Amazon Simple Storage Service Getting Started Guide.

• Upload your data to your Amazon S3 bucket.

For more information, see Add an Object to a Bucket in the Amazon Simple Storage Service Getting
Started Guide.

• Create another Amazon S3 bucket as a data target

• Create a topic for sending email notification and make a note of the topic Amazon Resource Name
(ARN). For more information, see Create a Topic in the Amazon Simple Notification Service Getting
Started Guide.

• (Optional) This tutorial uses the default IAM role policies created by AWS Data Pipeline. If you would
rather create and configure your own IAM role policy and trust relationships, follow the instructions
described in IAM Roles for AWS Data Pipeline (p. 66).

API Version 2012-10-29
87

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
http://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html

AWS Data Pipeline Developer Guide
Using the Console

Copy CSV Data Using the AWS Data Pipeline Console
You can create and use pipelines to copy data from one Amazon S3 bucket to another.

Tasks

• Create the Pipeline (p. 88)

• Save and Validate Your Pipeline (p. 90)

• Activate Your Pipeline (p. 91)

• Monitor the Pipeline Runs (p. 91)

• (Optional) Delete Your Pipeline (p. 91)

Create the Pipeline

First, create the pipeline.

To create the pipeline

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. The first screen that you see depends on whether you've created a pipeline in the current region.

a. If you haven't created a pipeline in this region, the console displays an introductory screen.
Choose Get started now.

b. If you've already created a pipeline in this region, the console displays a page that lists your
pipelines for the region. Choose Create new pipeline.

3. In Name, enter a name for your pipeline.

4. (Optional) In Description, enter a description for your pipeline.

5. For Source, select Build using Architect.

6. Under Schedule, choose on pipeline activation.

7. Under Pipeline Configuration, leave logging enabled. Choose the folder icon under S3 location for
logs, select one of your buckets or folders, and then choose Select.

If you prefer, you can disable logging instead.

8. Under Security/Access, leave IAM roles set to Default.

9. Click Edit in Architect.

Next, define the Activity object in your pipeline definition. When you define the Activity object, you also
define the objects that AWS Data Pipeline must use to perform this activity.

To configure the activity for your pipeline

1. Click Add activity.

2. In the Activities pane:

a. In the Name field, enter a name for the activity, for example, copy-myS3-data.

b. From Type, select CopyActivity.

c. From Output, select Create new: DataNode.

d. From Schedule, select Create new: Schedule.

e. From Input, select Create new: DataNode.

f. From Add an optional field, select Runs On.

g. From the newly added Runs On, select Create new: Resource.

API Version 2012-10-29
88

https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
Using the Console

h. From Add an optional field, select On Success.

i. From the newly added On Success, select Create new: Action.

3. In the left pane, separate the icons by dragging them apart. This is a graphical representation of your
pipeline. The arrows indicate the connections between the objects.

Next, configure the input and the output data nodes for your pipeline.

To configure the input and output data nodes for your pipeline

1. In the right pane, click DataNodes.

2. For DefaultDataNode1, which represents your data source, do the following:

a. Enter a name for your input node (for example, MyS3Input).

b. From Type, select S3DataNode.

c. From Schedule, select your schedule (for example, copy-S3data-schedule).

d. From Add an optional field, select File Path.

e. In the File Path field, enter the path in Amazon S3 for your data source.

3. For DefaultDataNode2, which represents your data target, do the following:

a. Enter a name for your output node (for example, MyS3Output).

b. From Type, select S3DataNode.

c. From Schedule, select your schedule (for example, copy-S3data-schedule).

API Version 2012-10-29
89

AWS Data Pipeline Developer Guide
Using the Console

d. From Add an optional field, select File Path.

e. In the File Path field, enter the path in Amazon S3 for your data target.

Next, configure the resource AWS Data Pipeline must use to perform the copy activity.

To configure the resource

1. In the right pane, click Resources.

2. Enter a name for your resource (for example, CopyDataInstance).

3. From Type, select Ec2Resource.

4. From Schedule, select your schedule (for example, copy-S3data-schedule).

5. Leave Resource Role and Role set to their default values.

If you have created your own IAM roles, you can select them if you prefer.

6. [EC2-VPC] From Add an optional field, select Subnet Id.

7. [EC2-VPC] In Subnet Id, enter the ID of the subnet for the EC2 instance.

Next, configure the Amazon SNS notification action that AWS Data Pipeline performs after the copy activity
finishes successfully.

To configure the notification action

1. In the right pane, click Others.

2. Under DefaultAction1, do the following:

a. Enter a name for your notification (for example, CopyDataNotice).

b. From Type, select SnsAlarm.

c. In the Subject field, enter the subject line for your notification.

d. In the Topic Arn field, enter the ARN of your topic.

e. In the Message field, enter the message content.

f. Leave Role field set to the default value.

Save and Validate Your Pipeline

You can save your pipeline definition at any point during the creation process. As soon as you save your
pipeline definition, AWS Data Pipeline looks for syntax errors and missing values in your pipeline definition.
If your pipeline is incomplete or incorrect, AWS Data Pipeline generates validation errors and warnings.
Warning messages are informational only, but you must fix any error messages before you can activate
your pipeline.

To save and validate your pipeline

1. Choose Save pipeline.

2. AWS Data Pipeline validates your pipeline definition and returns either success or error or warning
messages. If you get an error message, choose Close and then, in the right pane, choose Errors/
Warnings.

3. The Errors/Warnings pane lists the objects that failed validation. Choose the plus (+) sign next to the
object names and look for an error message in red.

4. When you see an error message, go to the specific object pane where you see the error and fix it. For
example, if you see an error message in the DataNodes object, go to the DataNodes pane to fix the
error.

API Version 2012-10-29
90

AWS Data Pipeline Developer Guide
Using the CLI

5. After you fix the errors listed in the Errors/Warnings pane, choose Save Pipeline.

6. Repeat the process until your pipeline validates successfully.

Activate Your Pipeline

Activate your pipeline to start creating and processing runs. The pipeline starts based on the schedule and
period in your pipeline definition.

Important
If activation succeeds, your pipeline is running and might incur usage charges. For more
information, see AWS Data Pipeline pricing. To stop incurring usage charges for AWS Data
Pipeline, delete your pipeline.

To activate your pipeline

1. Choose Activate.

2. In the confirmation dialog box, choose Close.

Monitor the Pipeline Runs

After you activate your pipeline, you are taken to the Execution details page where you can monitor the
progress of your pipeline.

To monitor the progress of your pipeline runs

1. Choose Update or press F5 to update the status displayed.

Tip
If there are no runs listed, ensure that Start (in UTC) and End (in UTC) cover the scheduled
start and end of your pipeline, and then choose Update.

2. When the status of every object in your pipeline is FINISHED, your pipeline has successfully completed
the scheduled tasks. If you created an SNS notification, you should receive email about the successful
completion of this task.

3. If your pipeline doesn't complete successfully, check your pipeline settings for issues. For more
information about troubleshooting failed or incomplete instance runs of your pipeline, see Resolving
Common Problems (p. 273).

(Optional) Delete Your Pipeline

To stop incurring charges, delete your pipeline. Deleting your pipeline deletes the pipeline definition and all
associated objects.

To delete your pipeline

1. On the List Pipelines page, select your pipeline.

2. Click Actions, and then choose Delete.

3. When prompted for confirmation, choose Delete.

Copy CSV Data Using the Command Line
You can create and use pipelines to copy data from one Amazon S3 bucket to another.

API Version 2012-10-29
91

http://aws.amazon.com/datapipeline/pricing

AWS Data Pipeline Developer Guide
Using the CLI

Prerequisites

Before you begin, you must complete the following steps:

1. Install and configure a command line interface (CLI). For more information, see Accessing AWS Data
Pipeline (p. 2).

2. Ensure that the IAM roles named DataPipelineDefaultRole and DataPipelineDefaultResourceRole
exist. The AWS Data Pipeline console creates these roles for you automatically. If you haven't used
the AWS Data Pipeline console at least once, then you must create these roles manually. For more
information, see IAM Roles for AWS Data Pipeline (p. 66).

Tasks

• Define a Pipeline in JSON Format (p. 92)

• Upload and Activate the Pipeline Definition (p. 95)

Define a Pipeline in JSON Format
This example scenario shows how to use JSON pipeline definitions and the AWS Data Pipeline CLI to
schedule copying data between two Amazon S3 buckets at a specific time interval. This is the full pipeline
definition JSON file followed by an explanation for each of its sections.

Note
We recommend that you use a text editor that can help you verify the syntax of JSON-formatted
files, and name the file using the .json file extension.

In this example, for clarity, we skip the optional fields and show only required fields. The complete pipeline
JSON file for this example is:

{
 "objects": [
 {
 "id": "MySchedule",
 "type": "Schedule",
 "startDateTime": "2013-08-18T00:00:00",
 "endDateTime": "2013-08-19T00:00:00",
 "period": "1 day"
 },
 {
 "id": "S3Input",
 "type": "S3DataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "filePath": "s3://example-bucket/source/inputfile.csv"
 },
 {
 "id": "S3Output",
 "type": "S3DataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "filePath": "s3://example-bucket/destination/outputfile.csv"
 },
 {
 "id": "MyEC2Resource",
 "type": "Ec2Resource",
 "schedule": {
 "ref": "MySchedule"
 },
 "instanceType": "m1.medium",

API Version 2012-10-29
92

AWS Data Pipeline Developer Guide
Using the CLI

 "role": "DataPipelineDefaultRole",
 "resourceRole": "DataPipelineDefaultResourceRole"
 },
 {
 "id": "MyCopyActivity",
 "type": "CopyActivity",
 "runsOn": {
 "ref": "MyEC2Resource"
 },
 "input": {
 "ref": "S3Input"
 },
 "output": {
 "ref": "S3Output"
 },
 "schedule": {
 "ref": "MySchedule"
 }
 }
]
}

Schedule

The pipeline defines a schedule with a begin and end date, along with a period to determine how frequently
the activity in this pipeline runs.

{
 "id": "MySchedule",
 "type": "Schedule",
 "startDateTime": "2013-08-18T00:00:00",
 "endDateTime": "2013-08-19T00:00:00",
 "period": "1 day"
},

Amazon S3 Data Nodes

Next, the input S3DataNode pipeline component defines a location for the input files; in this case, an
Amazon S3 bucket location. The input S3DataNode component is defined by the following fields:

{
 "id": "S3Input",
 "type": "S3DataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "filePath": "s3://example-bucket/source/inputfile.csv"
},

Id

The user-defined name for the input location (a label for your reference only).

Type

The pipeline component type, which is "S3DataNode" to match the location where the data resides, in
an Amazon S3 bucket.

Schedule

A reference to the schedule component that we created in the preceding lines of the JSON file labeled
“MySchedule”.

API Version 2012-10-29
93

AWS Data Pipeline Developer Guide
Using the CLI

Path

The path to the data associated with the data node. The syntax for a data node is determined by its
type. For example, the syntax for an Amazon S3 path follows a different syntax that is appropriate for a
database table.

Next, the output S3DataNode component defines the output destination location for the data. It follows the
same format as the input S3DataNode component, except the name of the component and a different path
to indicate the target file.

{
 "id": "S3Output",
 "type": "S3DataNode",
 "schedule": {
 "ref": "MySchedule"
 },
 "filePath": "s3://example-bucket/destination/outputfile.csv"
},

Resource

This is a definition of the computational resource that performs the copy operation. In this example, AWS
Data Pipeline should automatically create an EC2 instance to perform the copy task and terminate the
resource after the task completes. The fields defined here control the creation and function of the EC2
instance that does the work. The EC2Resource is defined by the following fields:

{
 "id": "MyEC2Resource",
 "type": "Ec2Resource",
 "schedule": {
 "ref": "MySchedule"
 },
 "instanceType": "m1.medium",
 "role": "DataPipelineDefaultRole",
 "resourceRole": "DataPipelineDefaultResourceRole"
},

Id

The user-defined name for the pipeline schedule, which is a label for your reference only.

Type

The type of computational resource to perform work; in this case, an EC2 instance. There are other
resource types available, such as an EmrCluster type.

Schedule

The schedule on which to create this computational resource.

instanceType

The size of the EC2 instance to create. Ensure that you set the appropriate size of EC2 instance that
best matches the load of the work that you want to perform with AWS Data Pipeline. In this case, we
set an m1.medium EC2 instance. For more information about the different instance types and when to
use each one, see Amazon EC2 Instance Types topic at http://aws.amazon.com/ec2/instance-types/.

Role

The IAM role of the account that accesses resources, such as accessing an Amazon S3 bucket to
retrieve data.

API Version 2012-10-29
94

http://aws.amazon.com/ec2/instance-types/

AWS Data Pipeline Developer Guide
Using the CLI

resourceRole

The IAM role of the account that creates resources, such as creating and configuring an EC2
instance on your behalf. Role and ResourceRole can be the same role, but separately provide greater
granularity in your security configuration.

Activity

The last section in the JSON file is the definition of the activity that represents the work to perform. This
example uses CopyActivity to copy data from a CSV file in an http://aws.amazon.com/ec2/instance-types/
bucket to another. The CopyActivity component is defined by the following fields:

{
 "id": "MyCopyActivity",
 "type": "CopyActivity",
 "runsOn": {
 "ref": "MyEC2Resource"
 },
 "input": {
 "ref": "S3Input"
 },
 "output": {
 "ref": "S3Output"
 },
 "schedule": {
 "ref": "MySchedule"
 }
}

Id

The user-defined name for the activity, which is a label for your reference only.

Type

The type of activity to perform, such as MyCopyActivity.

runsOn

The computational resource that performs the work that this activity defines. In this example, we
provide a reference to the EC2 instance defined previously. Using the runsOn field causes AWS Data
Pipeline to create the EC2 instance for you. The runsOn field indicates that the resource exists in the
AWS infrastructure, while the workerGroup value indicates that you want to use your own on-premises
resources to perform the work.

Input

The location of the data to copy.

Output

The target location data.

Schedule

The schedule on which to run this activity.

Upload and Activate the Pipeline Definition

You must upload your pipeline definition and activate your pipeline. In the following example commands,
replace pipeline_name with a label for your pipeline and pipeline_file with the fully-qualified path for the
pipeline definition .json file.

API Version 2012-10-29
95

AWS Data Pipeline Developer Guide
Export MySQL Data to Amazon S3

AWS CLI

To create your pipeline definition and activate your pipeline, use the following create-pipeline command.
Note the ID of your pipeline, because you'll use this value with most CLI commands.

aws datapipeline create-pipeline --name pipeline_name --unique-id token
{
 "pipelineId": "df-00627471SOVYZEXAMPLE"
}

To upload your pipeline definition, use the following put-pipeline-definition command.

aws datapipeline put-pipeline-definition --pipeline-id df-00627471SOVYZEXAMPLE --pipeline-
definition file://MyEmrPipelineDefinition.json

If you pipeline validates successfully, the validationErrors field is empty. You should review any
warnings.

To activate your pipeline, use the following activate-pipeline command.

aws datapipeline activate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE

You can verify that your pipeline appears in the pipeline list using the following list-pipelines command.

aws datapipeline list-pipelines

AWS Data Pipeline CLI

To upload your pipeline definition and activate your pipeline in a single step, use the following command.

datapipeline --create pipeline_name --put pipeline_file --activate --force

If your pipeline validates successfully, the command displays the following message. Note the ID of your
pipeline, because you'll use this value with most AWS Data Pipeline CLI commands.

Pipeline with name pipeline_name and id pipeline_id created.
Pipeline definition pipeline_file uploaded.
Pipeline activated.

If the command fails, you'll see an error message. For information, see Troubleshooting (p. 270).

You can verify that your pipeline appears in the pipeline list using the following command.

datapipeline --list-pipelines

Export MySQL Data to Amazon S3 Using AWS
Data Pipeline

This tutorial walks you through the process of creating a data pipeline to copy data (rows) from a table
in MySQL database to a CSV (comma-separated values) file in an Amazon S3 bucket and then sending
an Amazon SNS notification after the copy activity completes successfully. You will use an EC2 instance
provided by AWS Data Pipeline for this copy activity.

Pipeline Objects

API Version 2012-10-29
96

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/create-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/put-pipeline-definition.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/activate-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/list-pipelines.html

AWS Data Pipeline Developer Guide
Before You Begin

The pipeline uses the following objects:

• CopyActivity (p. 152)

• Ec2Resource (p. 204)

• MySqlDataNode (p. 135)

• S3DataNode (p. 143)

• SnsAlarm (p. 250)

Contents

• Before You Begin (p. 97)

• Copy MySQL Data Using the AWS Data Pipeline Console (p. 98)

• Copy MySQL Data Using the Command Line (p. 101)

Before You Begin
Be sure you've completed the following steps.

• Complete the tasks in Setting Up for AWS Data Pipeline (p. 10).

• (Optional) Set up a VPC for the instance and a security group for the VPC. For more information, see
Launching Resources for Your Pipeline into a VPC (p. 48).

• Create an Amazon S3 bucket as a data output.

For more information, see Create a Bucket in Amazon Simple Storage Service Getting Started Guide.

• Create and launch a MySQL database instance as your data source.

For more information, see Launch a DB Instance in the Amazon Relational Database Service
Getting Started Guide. After you have an Amazon RDS instance, see Create a Table in the MySQL
documentation.

Note
Make a note of the user name and the password you used for creating the MySQL instance.
After you've launched your MySQL database instance, make a note of the instance's endpoint.
You'll need this information later.

• Connect to your MySQL database instance, create a table, and then add test data values to the newly
created table.

For illustration purposes, we created this tutorial using a MySQL table with the following configuration
and sample data. The following screen shot is from MySQL Workbench 5.2 CE:

API Version 2012-10-29
97

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://docs.aws.amazon.com/AmazonRDS/latest/GettingStartedGuide/LaunchDBInstance.html
http://dev.mysql.com/doc/refman/5.5/en//creating-tables.html

AWS Data Pipeline Developer Guide
Using the Console

For more information, see Create a Table in the MySQL documentation and the MySQL Workbench
product page.

• Create a topic for sending email notification and make a note of the topic Amazon Resource Name
(ARN). For more information, see Create a Topic in Amazon Simple Notification Service Getting Started
Guide.

• (Optional) This tutorial uses the default IAM role policies created by AWS Data Pipeline. If you would
rather create and configure your IAM role policy and trust relationships, follow the instructions described
in IAM Roles for AWS Data Pipeline (p. 66).

Copy MySQL Data Using the AWS Data Pipeline
Console
You can create a pipeline to copy data from a MySQL table to a file in an Amazon S3 bucket.

Tasks

• Create the Pipeline (p. 98)

• Save and Validate Your Pipeline (p. 99)

• Verify Your Pipeline Definition (p. 100)

• Activate Your Pipeline (p. 100)

• Monitor the Pipeline Runs (p. 100)

• (Optional) Delete Your Pipeline (p. 101)

Create the Pipeline

First, create the pipeline. The pipeline must be created in the same region as your target RDS instance.

To create your pipeline

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. The first screen that you see depends on whether you've created a pipeline in the current region.

a. If you haven't created a pipeline in this region, the console displays an introductory screen.
Choose Get started now.

b. If you've already created a pipeline in this region, the console displays a page that lists your
pipelines for the region. Choose Create new pipeline.

3. In Name, enter a name for your pipeline.

4. (Optional) In Description, enter a description for your pipeline.

5. For Source, select Build using a template, and then select the following template: Full copy of RDS
MySQL table to S3.

6. Under the Parameters section, which opened when you selected the template, do the following:

a. For DBInstance ID, enter the DB instance name of the Aurora DB instance you want to use to
copy data from the Aurora cluster.

To locate the endpoint details for your DB instance, see Connecting to a DB Instance Running the
MySQL Database Engine in the Amazon Relational Database Service User Guide.

b. For RDS MySQL username, enter the user name you used when you created your MySQL
database instance.

API Version 2012-10-29
98

http://dev.mysql.com/doc/refman/5.5/en//creating-tables.html
http://www.mysql.com/products/workbench/
http://www.mysql.com/products/workbench/
http://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html
https://console.aws.amazon.com/datapipeline/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

AWS Data Pipeline Developer Guide
Using the Console

c. In the RDS MySQL password field, enter the password you used when you created your DB
instance.

d. In the EC2 instance type field, enter the instance type for your EC2 instance.

e. Click the folder icon next to Output S3 folder, select one of your buckets or folders, and then click
Select.

7. Under Schedule, choose on pipeline activation.

8. Under Pipeline Configuration, leave logging enabled. Choose the folder icon under S3 location for
logs, select one of your buckets or folders, and then choose Select.

If you prefer, you can disable logging instead.

9. Under Security/Access, leave IAM roles set to Default.

10. Click Edit in Architect.

11. In the left pane, separate the icons by dragging them apart. This is a graphical representation of your
pipeline. The arrows indicate the connections between the objects.

Next, configure the database name setting, which currently is not present on the available template.

1. In the left pane, click RDSDatabase.

2. In the right pane, under the rds_mysql section, for Add an optional field... choose Database Name.

3. Type the Database Name of your target database and add optional fields.

You can configure the Amazon SNS notification action AWS Data Pipeline performs after the copy activity
finishes successfully.

To configure the Amazon SNS notification action

1. In the right pane, click Activities.

2. From Add an optional field, select On Success.

3. From the newly added On Success, select Create new: Action.

4. In the right pane, click Others.

5. Under DefaultAction1, do the following:

a. Enter a name for your notification (for example, CopyDataNotice).

b. From Type, select SnsAlarm.

c. In the Message field, enter the message content.

d. In the Subject field, enter the subject line for your notification.

e. In the Topic Arn field, enter the ARN of your topic.

f. Leave Role field set to the default value.

Save and Validate Your Pipeline

You can save your pipeline definition at any point during the creation process. As soon as you save your
pipeline definition, AWS Data Pipeline looks for syntax errors and missing values in your pipeline definition.
If your pipeline is incomplete or incorrect, AWS Data Pipeline generates validation errors and warnings.

API Version 2012-10-29
99

AWS Data Pipeline Developer Guide
Using the Console

Warning messages are informational only, but you must fix any error messages before you can activate
your pipeline.

To save and validate your pipeline

1. Choose Save pipeline.

2. AWS Data Pipeline validates your pipeline definition and returns either success or error or warning
messages. If you get an error message, choose Close and then, in the right pane, choose Errors/
Warnings.

3. The Errors/Warnings pane lists the objects that failed validation. Choose the plus (+) sign next to the
object names and look for an error message in red.

4. When you see an error message, go to the specific object pane where you see the error and fix it. For
example, if you see an error message in the DataNodes object, go to the DataNodes pane to fix the
error.

5. After you fix the errors listed in the Errors/Warnings pane, choose Save Pipeline.

6. Repeat the process until your pipeline validates successfully.

Verify Your Pipeline Definition

It is important that you verify that your pipeline was correctly initialized from your definitions before you
activate it.

To verify your pipeline definition

1. On the List Pipelines page, look for your newly-created pipeline.

AWS Data Pipeline has created a unique Pipeline ID for your pipeline definition.

The Schedule State column in the row listing your pipeline should show PENDING.

2. Choose the triangle icon next to your pipeline. A pipeline summary pane below shows the details of
your pipeline runs. Because your pipeline is not yet activated, you are not likely to see any execution
details. However, you will see the configuration of the pipeline definition.

Activate Your Pipeline

Activate your pipeline to start creating and processing runs. The pipeline starts based on the schedule and
period in your pipeline definition.

Important
If activation succeeds, your pipeline is running and might incur usage charges. For more
information, see AWS Data Pipeline pricing. To stop incurring usage charges for AWS Data
Pipeline, delete your pipeline.

To activate your pipeline

1. Choose Activate.

2. In the confirmation dialog box, choose Close.

Monitor the Pipeline Runs

After you activate your pipeline, you are taken to the Execution details page where you can monitor the
progress of your pipeline.

API Version 2012-10-29
100

http://aws.amazon.com/datapipeline/pricing

AWS Data Pipeline Developer Guide
Using the CLI

To monitor the progress of your pipeline runs

1. Choose Update or press F5 to update the status displayed.

Tip
If there are no runs listed, ensure that Start (in UTC) and End (in UTC) cover the scheduled
start and end of your pipeline, and then choose Update.

2. When the status of every object in your pipeline is FINISHED, your pipeline has successfully completed
the scheduled tasks. If you created an SNS notification, you should receive email about the successful
completion of this task.

3. If your pipeline doesn't complete successfully, check your pipeline settings for issues. For more
information about troubleshooting failed or incomplete instance runs of your pipeline, see Resolving
Common Problems (p. 273).

(Optional) Delete Your Pipeline

To stop incurring charges, delete your pipeline. Deleting your pipeline deletes the pipeline definition and all
associated objects.

To delete your pipeline

1. On the List Pipelines page, select your pipeline.

2. Click Actions, and then choose Delete.

3. When prompted for confirmation, choose Delete.

Copy MySQL Data Using the Command Line
You can create a pipeline to copy data from a MySQL table to a file in an Amazon S3 bucket.

Prerequisites

Before you begin, you must complete the following steps:

1. Install and configure a command line interface (CLI). For more information, see Accessing AWS Data
Pipeline (p. 2).

2. Ensure that the IAM roles named DataPipelineDefaultRole and DataPipelineDefaultResourceRole
exist. The AWS Data Pipeline console creates these roles for you automatically. If you haven't used
the AWS Data Pipeline console at least once, then you must create these roles manually. For more
information, see IAM Roles for AWS Data Pipeline (p. 66).

3. Set up an Amazon S3 bucket and an Amazon RDS instance. For more information, see Before You
Begin (p. 97).

Tasks

• Define a Pipeline in JSON Format (p. 101)

• Upload and Activate the Pipeline Definition (p. 106)

Define a Pipeline in JSON Format

This example scenario shows how to use JSON pipeline definitions and the AWS Data Pipeline CLI to copy
data (rows) from a table in a MySQL database to a CSV (comma-separated values) file in an Amazon S3
bucket at a specified time interval.

API Version 2012-10-29
101

AWS Data Pipeline Developer Guide
Using the CLI

This is the full pipeline definition JSON file followed by an explanation for each of its sections.

Note
We recommend that you use a text editor that can help you verify the syntax of JSON-formatted
files, and name the file using the .json file extension.

{
 "objects": [
 {
 "id": "ScheduleId113",
 "startDateTime": "2013-08-26T00:00:00",
 "name": "My Copy Schedule",
 "type": "Schedule",
 "period": "1 Days"
 },
 {
 "id": "CopyActivityId112",
 "input": {
 "ref": "MySqlDataNodeId115"
 },
 "schedule": {
 "ref": "ScheduleId113"
 },
 "name": "My Copy",
 "runsOn": {
 "ref": "Ec2ResourceId116"
 },
 "onSuccess": {
 "ref": "ActionId1"
 },
 "onFail": {
 "ref": "SnsAlarmId117"
 },
 "output": {
 "ref": "S3DataNodeId114"
 },
 "type": "CopyActivity"
 },
 {
 "id": "S3DataNodeId114",
 "schedule": {
 "ref": "ScheduleId113"
 },
 "filePath": "s3://example-bucket/rds-output/output.csv",
 "name": "My S3 Data",
 "type": "S3DataNode"
 },
 {
 "id": "MySqlDataNodeId115",
 "username": "my-username",
 "schedule": {
 "ref": "ScheduleId113"
 },
 "name": "My RDS Data",
 "*password": "my-password",
 "table": "table-name",
 "connectionString": "jdbc:mysql://your-sql-instance-name.id.region-
name.rds.amazonaws.com:3306/database-name",
 "selectQuery": "select * from #{table}",
 "type": "SqlDataNode"
 },
 {
 "id": "Ec2ResourceId116",
 "schedule": {
 "ref": "ScheduleId113"

API Version 2012-10-29
102

AWS Data Pipeline Developer Guide
Using the CLI

 },
 "name": "My EC2 Resource",
 "role": "DataPipelineDefaultRole",
 "type": "Ec2Resource",
 "resourceRole": "DataPipelineDefaultResourceRole"
 },
 {
 "message": "This is a success message.",
 "id": "ActionId1",
 "subject": "RDS to S3 copy succeeded!",
 "name": "My Success Alarm",
 "role": "DataPipelineDefaultRole",
 "topicArn": "arn:aws:sns:us-east-1:123456789012:example-topic",
 "type": "SnsAlarm"
 },
 {
 "id": "Default",
 "scheduleType": "timeseries",
 "failureAndRerunMode": "CASCADE",
 "name": "Default",
 "role": "DataPipelineDefaultRole",
 "resourceRole": "DataPipelineDefaultResourceRole"
 },
 {
 "message": "There was a problem executing #{node.name} at for period
 #{node.@scheduledStartTime} to #{node.@scheduledEndTime}",
 "id": "SnsAlarmId117",
 "subject": "RDS to S3 copy failed",
 "name": "My Failure Alarm",
 "role": "DataPipelineDefaultRole",
 "topicArn": "arn:aws:sns:us-east-1:123456789012:example-topic",
 "type": "SnsAlarm"
 }
]
}

MySQL Data Node

The input MySqlDataNode pipeline component defines a location for the input data; in this case, an
Amazon RDS instance. The input MySqlDataNode component is defined by the following fields:

{
 "id": "MySqlDataNodeId115",
 "username": "my-username",
 "schedule": {
 "ref": "ScheduleId113"
 },
 "name": "My RDS Data",
 "*password": "my-password",
 "table": "table-name",
 "connectionString": "jdbc:mysql://your-sql-instance-name.id.region-
name.rds.amazonaws.com:3306/database-name",
 "selectQuery": "select * from #{table}",
 "type": "SqlDataNode"
},

Id

The user-defined name, which is a label for your reference only.

Username

The user name of the database account that has sufficient permission to retrieve data from the
database table. Replace my-username with the name of your user account.

API Version 2012-10-29
103

AWS Data Pipeline Developer Guide
Using the CLI

Schedule

A reference to the schedule component that we created in the preceding lines of the JSON file.

Name

The user-defined name, which is a label for your reference only.

*Password

The password for the database account with the asterisk prefix to indicate that AWS Data Pipeline
must encrypt the password value. Replace my-password with the correct password for your user
account. The password field is preceded by the asterisk special character. For more information, see
Special Characters (p. 128).

Table

The name of the database table that contains the data to copy. Replace table-name with the name of
your database table.

connectionString

The JDBC connection string for the CopyActivity object to connect to the database.

selectQuery

A valid SQL SELECT query that specifies which data to copy from the database table. Note that
#{table} is an expression that re-uses the table name provided by the "table" variable in the preceding
lines of the JSON file.

Type

The SqlDataNode type, which is an Amazon RDS instance using MySQL in this example.

Note
The MySqlDataNode type is deprecated. While you can still use MySqlDataNode, we
recommend using SqlDataNode.

Amazon S3 Data Node

Next, the S3Output pipeline component defines a location for the output file; in this case a CSV file in an
Amazon S3 bucket location. The output S3DataNode component is defined by the following fields:

{
 "id": "S3DataNodeId114",
 "schedule": {
 "ref": "ScheduleId113"
 },
 "filePath": "s3://example-bucket/rds-output/output.csv",
 "name": "My S3 Data",
 "type": "S3DataNode"
},

Id

The user-defined ID, which is a label for your reference only.

Schedule

A reference to the schedule component that we created in the preceding lines of the JSON file.

filePath

The path to the data associated with the data node, which is an CSV output file in this example.

Name

The user-defined name, which is a label for your reference only.

API Version 2012-10-29
104

AWS Data Pipeline Developer Guide
Using the CLI

Type

The pipeline object type, which is S3DataNode to match the location where the data resides, in an
Amazon S3 bucket.

Resource

This is a definition of the computational resource that performs the copy operation. In this example, AWS
Data Pipeline should automatically create an EC2 instance to perform the copy task and terminate the
resource after the task completes. The fields defined here control the creation and function of the EC2
instance that does the work. The EC2Resource is defined by the following fields:

{
 "id": "Ec2ResourceId116",
 "schedule": {
 "ref": "ScheduleId113"
 },
 "name": "My EC2 Resource",
 "role": "DataPipelineDefaultRole",
 "type": "Ec2Resource",
 "resourceRole": "DataPipelineDefaultResourceRole"
},

Id

The user-defined ID, which is a label for your reference only.

Schedule

The schedule on which to create this computational resource.

Name

The user-defined name, which is a label for your reference only.

Role

The IAM role of the account that accesses resources, such as accessing an Amazon S3 bucket to
retrieve data.

Type

The type of computational resource to perform work; in this case, an EC2 instance. There are other
resource types available, such as an EmrCluster type.

resourceRole

The IAM role of the account that creates resources, such as creating and configuring an EC2
instance on your behalf. Role and ResourceRole can be the same role, but separately provide greater
granularity in your security configuration.

Activity

The last section in the JSON file is the definition of the activity that represents the work to perform. In this
case we use a CopyActivity component to copy data from a file in an Amazon S3 bucket to another file. The
CopyActivity component is defined by the following fields:

{
 "id": "CopyActivityId112",
 "input": {
 "ref": "MySqlDataNodeId115"
 },

API Version 2012-10-29
105

AWS Data Pipeline Developer Guide
Using the CLI

 "schedule": {
 "ref": "ScheduleId113"
 },
 "name": "My Copy",
 "runsOn": {
 "ref": "Ec2ResourceId116"
 },
 "onSuccess": {
 "ref": "ActionId1"
 },
 "onFail": {
 "ref": "SnsAlarmId117"
 },
 "output": {
 "ref": "S3DataNodeId114"
 },
 "type": "CopyActivity"
},

Id

The user-defined ID, which is a label for your reference only

Input

The location of the MySQL data to copy

Schedule

The schedule on which to run this activity

Name

The user-defined name, which is a label for your reference only

runsOn

The computational resource that performs the work that this activity defines. In this example, we
provide a reference to the EC2 instance defined previously. Using the runsOn field causes AWS Data
Pipeline to create the EC2 instance for you. The runsOn field indicates that the resource exists in the
AWS infrastructure, while the workerGroup value indicates that you want to use your own on-premises
resources to perform the work.

onSuccess

The SnsAlarm (p. 250) to send if the activity completes successfully

onFail

The SnsAlarm (p. 250) to send if the activity fails

Output

The Amazon S3 location of the CSV output file

Type

The type of activity to perform.

Upload and Activate the Pipeline Definition

You must upload your pipeline definition and activate your pipeline. In the following example commands,
replace pipeline_name with a label for your pipeline and pipeline_file with the fully-qualified path for the
pipeline definition .json file.

AWS CLI

API Version 2012-10-29
106

AWS Data Pipeline Developer Guide
Copy Data to Amazon Redshift

To create your pipeline definition and activate your pipeline, use the following create-pipeline command.
Note the ID of your pipeline, because you'll use this value with most CLI commands.

aws datapipeline create-pipeline --name pipeline_name --unique-id token
{
 "pipelineId": "df-00627471SOVYZEXAMPLE"
}

To upload your pipeline definition, use the following put-pipeline-definition command.

aws datapipeline put-pipeline-definition --pipeline-id df-00627471SOVYZEXAMPLE --pipeline-
definition file://MyEmrPipelineDefinition.json

If you pipeline validates successfully, the validationErrors field is empty. You should review any
warnings.

To activate your pipeline, use the following activate-pipeline command.

aws datapipeline activate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE

You can verify that your pipeline appears in the pipeline list using the following list-pipelines command.

aws datapipeline list-pipelines

AWS Data Pipeline CLI

To upload your pipeline definition and activate your pipeline in a single step, use the following command.

datapipeline --create pipeline_name --put pipeline_file --activate --force

If your pipeline validates successfully, the command displays the following message. Note the ID of your
pipeline, because you'll use this value with most AWS Data Pipeline CLI commands.

Pipeline with name pipeline_name and id pipeline_id created.
Pipeline definition pipeline_file uploaded.
Pipeline activated.

If the command fails, you'll see an error message. For information, see Troubleshooting (p. 270).

You can verify that your pipeline appears in the pipeline list using the following command.

datapipeline --list-pipelines

Copy Data to Amazon Redshift Using AWS Data
Pipeline

This tutorial walks you through the process of creating a pipeline that periodically moves data from Amazon
S3 to Amazon Redshift using either the Copy to Redshift template in the AWS Data Pipeline console, or a
pipeline definition file with the AWS Data Pipeline CLI.

Amazon S3 is a web service that enables you to store data in the cloud. For more information, see the
Amazon Simple Storage Service Console User Guide. Amazon Redshift is a data warehouse service in the
cloud. For more information, see the Amazon Redshift Cluster Management Guide.

API Version 2012-10-29
107

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/create-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/put-pipeline-definition.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/activate-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/list-pipelines.html
http://docs.aws.amazon.com/AmazonS3/latest/user-guide/
http://docs.aws.amazon.com/redshift/latest/mgmt/

AWS Data Pipeline Developer Guide
Before You Begin

Contents

• Before You Begin (p. 108)

• Copy Data to Amazon Redshift Using the AWS Data Pipeline Console (p. 109)

• Copy Data to Amazon Redshift Using the Command Line (p. 111)

Before You Begin
This tutorial has several prerequisites. After completing the following steps, you can continue the tutorial
using either the console or the CLI.

To set up for the tutorial

1. Complete the tasks in Setting Up for AWS Data Pipeline (p. 10).

2. Create a security group.

a. Open the Amazon EC2 console.

b. In the navigation pane, click Security Groups.

c. Click Create Security Group.

d. Specify a name and description for the security group.

e. [EC2-Classic] Select No VPC for VPC.

f. [EC2-VPC] Select the ID of your VPC for VPC.

g. Click Create.

3. [EC2-Classic] Create an Amazon Redshift cluster security group and specify the Amazon EC2 security
group.

a. Open the Amazon Redshift console.

b. In the navigation pane, click Security Groups.

c. Click Create Cluster Security Group.

d. In the Create Cluster Security Group dialog box, specify a name and description for the cluster
security group.

e. Click the name of the new cluster security group.

f. Click Add Connection Type.

g. In the Add Connection Type dialog box, select EC2 Security Group from Connection Type,
select the security group that you created from EC2 Security Group Name, and then click
Authorize.

4. [EC2-VPC] Create an Amazon Redshift cluster security group and specify the VPC security group.

a. Open the Amazon EC2 console.

b. In the navigation pane, click Security Groups.

c. Click Create Security Group.

d. In the Create Security Group dialog box, specify a name and description for the security group,
and select the ID of your VPC for VPC.

e. Click Add Rule. Specify the type, protocol, and port range, and start typing the ID of the security
group in Source. Select the security group that you created in the second step.

f. Click Create.

5. Select an existing Amazon Redshift database, or create a new one. The following is a summary of
the steps; for more information, see Creating a Cluster in the Amazon Redshift Cluster Management
Guide.

a. Open the Amazon Redshift console.
API Version 2012-10-29

108

http://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster

AWS Data Pipeline Developer Guide
Using the Console

b. Click Launch Cluster.

c. Provide the required details for your cluster, and then click Continue.

d. Provide the node configuration, and then click Continue.

e. On the page for additional configuration information, select the cluster security group that you
created, and then click Continue.

f. Review the specifications for your cluster, and then click Launch Cluster.

Copy Data to Amazon Redshift Using the AWS Data
Pipeline Console
You can create a pipeline to copy data from Amazon S3 to Amazon Redshift. You'll create a new table in
Amazon Redshift, and then use AWS Data Pipeline to transfer data to this table from a public Amazon S3
bucket, which contains sample input data in CSV format. The logs are saved to an Amazon S3 bucket that
you own.

Amazon S3 is a web service that enables you to store data in the cloud. For more information, see the
Amazon Simple Storage Service Console User Guide. Amazon Redshift is a data warehouse service in the
cloud. For more information, see the Amazon Redshift Cluster Management Guide.

Prerequisites

Before you start this tutorial, complete the prerequisites described in Before You Begin (p. 108).

Tasks

• Create the Pipeline (p. 109)

• Save and Validate Your Pipeline (p. 110)

• Activate Your Pipeline (p. 110)

• Monitor the Pipeline Runs (p. 110)

• (Optional) Delete Your Pipeline (p. 111)

Create the Pipeline

First, create the pipeline.

To create the pipeline

1. Open the AWS Data Pipeline console at https://console.aws.amazon.com/datapipeline/.

2. The first screen that you see depends on whether you've created a pipeline in the current region.

a. If you haven't created a pipeline in this region, the console displays an introductory screen.
Choose Get started now.

b. If you've already created a pipeline in this region, the console displays a page that lists your
pipelines for the region. Choose Create new pipeline.

3. In Name, enter a name for your pipeline.

4. (Optional) In Description, enter a description for your pipeline.

5. For Source, select Build using a template, and then select the following template: Load data from
S3 into Redshift.

6. Under Parameters, provide information about your input folder in Amazon S3 and the Amazon
Redshift database that you created.

API Version 2012-10-29
109

http://docs.aws.amazon.com/AmazonS3/latest/user-guide/
http://docs.aws.amazon.com/redshift/latest/mgmt/
https://console.aws.amazon.com/datapipeline/

AWS Data Pipeline Developer Guide
Using the Console

7. Under Schedule, choose on pipeline activation.

8. Under Pipeline Configuration, leave logging enabled. Choose the folder icon under S3 location for
logs, select one of your buckets or folders, and then choose Select.

If you prefer, you can disable logging instead.

9. Under Security/Access, leave IAM roles set to Default.

10. Click Activate.

If you prefer, you can choose Edit in Architect to modify this pipeline. For example, you can add
preconditions.

Save and Validate Your Pipeline

You can save your pipeline definition at any point during the creation process. As soon as you save your
pipeline definition, AWS Data Pipeline looks for syntax errors and missing values in your pipeline definition.
If your pipeline is incomplete or incorrect, AWS Data Pipeline generates validation errors and warnings.
Warning messages are informational only, but you must fix any error messages before you can activate
your pipeline.

To save and validate your pipeline

1. Choose Save pipeline.

2. AWS Data Pipeline validates your pipeline definition and returns either success or error or warning
messages. If you get an error message, choose Close and then, in the right pane, choose Errors/
Warnings.

3. The Errors/Warnings pane lists the objects that failed validation. Choose the plus (+) sign next to the
object names and look for an error message in red.

4. When you see an error message, go to the specific object pane where you see the error and fix it. For
example, if you see an error message in the DataNodes object, go to the DataNodes pane to fix the
error.

5. After you fix the errors listed in the Errors/Warnings pane, choose Save Pipeline.

6. Repeat the process until your pipeline validates successfully.

Activate Your Pipeline

Activate your pipeline to start creating and processing runs. The pipeline starts based on the schedule and
period in your pipeline definition.

Important
If activation succeeds, your pipeline is running and might incur usage charges. For more
information, see AWS Data Pipeline pricing. To stop incurring usage charges for AWS Data
Pipeline, delete your pipeline.

To activate your pipeline

1. Choose Activate.

2. In the confirmation dialog box, choose Close.

Monitor the Pipeline Runs

After you activate your pipeline, you are taken to the Execution details page where you can monitor the
progress of your pipeline.

API Version 2012-10-29
110

http://aws.amazon.com/datapipeline/pricing

AWS Data Pipeline Developer Guide
Using the CLI

To monitor the progress of your pipeline runs

1. Choose Update or press F5 to update the status displayed.

Tip
If there are no runs listed, ensure that Start (in UTC) and End (in UTC) cover the scheduled
start and end of your pipeline, and then choose Update.

2. When the status of every object in your pipeline is FINISHED, your pipeline has successfully completed
the scheduled tasks. If you created an SNS notification, you should receive email about the successful
completion of this task.

3. If your pipeline doesn't complete successfully, check your pipeline settings for issues. For more
information about troubleshooting failed or incomplete instance runs of your pipeline, see Resolving
Common Problems (p. 273).

(Optional) Delete Your Pipeline

To stop incurring charges, delete your pipeline. Deleting your pipeline deletes the pipeline definition and all
associated objects.

To delete your pipeline

1. On the List Pipelines page, select your pipeline.

2. Click Actions, and then choose Delete.

3. When prompted for confirmation, choose Delete.

Copy Data to Amazon Redshift Using the Command
Line
This tutorial demonstrates how to copy data from Amazon S3 to Amazon Redshift. You'll create a new table
in Amazon Redshift, and then use AWS Data Pipeline to transfer data to this table from a public Amazon
S3 bucket, which contains sample input data in CSV format. The logs are saved to an Amazon S3 bucket
that you own.

Amazon S3 is a web service that enables you to store data in the cloud. For more information, see the
Amazon Simple Storage Service Console User Guide. Amazon Redshift is a data warehouse service in the
cloud. For more information, see the Amazon Redshift Cluster Management Guide.

Prerequisites

Before you begin, you must complete the following steps:

1. Install and configure a command line interface (CLI). For more information, see Accessing AWS Data
Pipeline (p. 2).

2. Ensure that the IAM roles named DataPipelineDefaultRole and DataPipelineDefaultResourceRole
exist. The AWS Data Pipeline console creates these roles for you automatically. If you haven't used
the AWS Data Pipeline console at least once, then you must create these roles manually. For more
information, see IAM Roles for AWS Data Pipeline (p. 66).

3. Set up an Amazon Redshift database. For more information, see Before You Begin (p. 108).

Tasks

• Define a Pipeline in JSON Format (p. 112)

• Upload and Activate the Pipeline Definition (p. 117)

API Version 2012-10-29
111

http://docs.aws.amazon.com/AmazonS3/latest/user-guide/
http://docs.aws.amazon.com/redshift/latest/mgmt/

AWS Data Pipeline Developer Guide
Using the CLI

Define a Pipeline in JSON Format

This example scenario shows how to copy data from an Amazon S3 bucket to Amazon Redshift.

This is the full pipeline definition JSON file followed by an explanation for each of its sections. We
recommend that you use a text editor that can help you verify the syntax of JSON-formatted files, and name
the file using the .json file extension.

{
 "objects": [
 {
 "id": "CSVId1",
 "name": "DefaultCSV1",
 "type": "CSV"
 },
 {
 "id": "RedshiftDatabaseId1",
 "databaseName": "dbname",
 "username": "user",
 "name": "DefaultRedshiftDatabase1",
 "*password": "password",
 "type": "RedshiftDatabase",
 "clusterId": "redshiftclusterId"
 },
 {
 "id": "Default",
 "scheduleType": "timeseries",
 "failureAndRerunMode": "CASCADE",
 "name": "Default",
 "role": "DataPipelineDefaultRole",
 "resourceRole": "DataPipelineDefaultResourceRole"
 },
 {
 "id": "RedshiftDataNodeId1",
 "schedule": {
 "ref": "ScheduleId1"
 },
 "tableName": "orders",
 "name": "DefaultRedshiftDataNode1",
 "createTableSql": "create table StructuredLogs (requestBeginTime CHAR(30) PRIMARY KEY
 DISTKEY SORTKEY, requestEndTime CHAR(30), hostname CHAR(100), requestDate varchar(20));",
 "type": "RedshiftDataNode",
 "database": {
 "ref": "RedshiftDatabaseId1"
 }
 },
 {
 "id": "Ec2ResourceId1",
 "schedule": {
 "ref": "ScheduleId1"
 },
 "securityGroups": "MySecurityGroup",
 "name": "DefaultEc2Resource1",
 "role": "DataPipelineDefaultRole",
 "logUri": "s3://myLogs",
 "resourceRole": "DataPipelineDefaultResourceRole",
 "type": "Ec2Resource"
 },
 {
 "id": "ScheduleId1",
 "startDateTime": "yyyy-mm-ddT00:00:00",
 "name": "DefaultSchedule1",
 "type": "Schedule",
 "period": "period",

API Version 2012-10-29
112

AWS Data Pipeline Developer Guide
Using the CLI

 "endDateTime": "yyyy-mm-ddT00:00:00"
 },
 {
 "id": "S3DataNodeId1",
 "schedule": {
 "ref": "ScheduleId1"
 },
 "filePath": "s3://datapipeline-us-east-1/samples/hive-ads-samples.csv",
 "name": "DefaultS3DataNode1",
 "dataFormat": {
 "ref": "CSVId1"
 },
 "type": "S3DataNode"
 },
 {
 "id": "RedshiftCopyActivityId1",
 "input": {
 "ref": "S3DataNodeId1"
 },
 "schedule": {
 "ref": "ScheduleId1"
 },
 "insertMode": "KEEP_EXISTING",
 "name": "DefaultRedshiftCopyActivity1",
 "runsOn": {
 "ref": "Ec2ResourceId1"
 },
 "type": "RedshiftCopyActivity",
 "output": {
 "ref": "RedshiftDataNodeId1"
 }
 }
]
}

For more information about these objects, see the following documentation.

Objects

• Data Nodes (p. 113)

• Resource (p. 115)

• Activity (p. 116)

Data Nodes

This example uses an input data node, an output data node, and a database.

Input Data Node

The input S3DataNode pipeline component defines the location of the input data in Amazon S3 and the data
format of the input data. For more information, see S3DataNode (p. 143).

This input component is defined by the following fields:

{
 "id": "S3DataNodeId1",
 "schedule": {
 "ref": "ScheduleId1"
 },
 "filePath": "s3://datapipeline-us-east-1/samples/hive-ads-samples.csv",
 "name": "DefaultS3DataNode1",
 "dataFormat": {

API Version 2012-10-29
113

AWS Data Pipeline Developer Guide
Using the CLI

 "ref": "CSVId1"
 },
 "type": "S3DataNode"
},

id

The user-defined ID, which is a label for your reference only.

schedule

A reference to the schedule component.

filePath

The path to the data associated with the data node, which is an CSV input file in this example.

name

The user-defined name, which is a label for your reference only.

dataFormat

A reference to the format of the data for the activity to process.

Output Data Node

The output RedshiftDataNode pipeline component defines a location for the output data; in this case, a
table in an Amazon Redshift database. For more information, see RedshiftDataNode (p. 139). This output
component is defined by the following fields:

{
 "id": "RedshiftDataNodeId1",
 "schedule": {
 "ref": "ScheduleId1"
 },
 "tableName": "orders",
 "name": "DefaultRedshiftDataNode1",
 "createTableSql": "create table StructuredLogs (requestBeginTime CHAR(30) PRIMARY KEY
 DISTKEY SORTKEY, requestEndTime CHAR(30), hostname CHAR(100), requestDate varchar(20));",
 "type": "RedshiftDataNode",
 "database": {
 "ref": "RedshiftDatabaseId1"
 }
},

id

The user-defined ID, which is a label for your reference only.

schedule

A reference to the schedule component.

tableName

The name of the Amazon Redshift table.

name

The user-defined name, which is a label for your reference only.

createTableSql

A SQL expression to create the table in the database.

API Version 2012-10-29
114

AWS Data Pipeline Developer Guide
Using the CLI

database

A reference to the Amazon Redshift database.

Database

The RedshiftDatabase component is defined by the following fields. For more information, see
RedshiftDatabase (p. 240).

{
 "id": "RedshiftDatabaseId1",
 "databaseName": "dbname",
 "username": "user",
 "name": "DefaultRedshiftDatabase1",
 "*password": "password",
 "type": "RedshiftDatabase",
 "clusterId": "redshiftclusterId"
},

id

The user-defined ID, which is a label for your reference only.

databaseName

The name of the logical database.

username

The user name to connect to the database.

name

The user-defined name, which is a label for your reference only.

password

The password to connect to the database.

clusterId

The ID of the Redshift cluster.

Resource

This is a definition of the computational resource that performs the copy operation. In this example, AWS
Data Pipeline should automatically create an EC2 instance to perform the copy task and terminate the
instance after the task completes. The fields defined here control the creation and function of the instance
that does the work. For more information, see Ec2Resource (p. 204).

The Ec2Resource is defined by the following fields:

{
 "id": "Ec2ResourceId1",
 "schedule": {
 "ref": "ScheduleId1"
 },
 "securityGroups": "MySecurityGroup",
 "name": "DefaultEc2Resource1",
 "role": "DataPipelineDefaultRole",
 "logUri": "s3://myLogs",
 "resourceRole": "DataPipelineDefaultResourceRole",

API Version 2012-10-29
115

AWS Data Pipeline Developer Guide
Using the CLI

 "type": "Ec2Resource"
},

id

The user-defined ID, which is a label for your reference only.

schedule

The schedule on which to create this computational resource.

securityGroups

The security group to use for the instances in the resource pool.

name

The user-defined name, which is a label for your reference only.

role

The IAM role of the account that accesses resources, such as accessing an Amazon S3 bucket to
retrieve data.

logUri

The Amazon S3 destination path to back up Task Runner logs from the Ec2Resource.

resourceRole

The IAM role of the account that creates resources, such as creating and configuring an EC2
instance on your behalf. Role and ResourceRole can be the same role, but separately provide greater
granularity in your security configuration.

Activity

The last section in the JSON file is the definition of the activity that represents the work to perform. In this
case, we use a RedshiftCopyActivity component to copy data from Amazon S3 to Amazon Redshift. For
more information, see RedshiftCopyActivity (p. 187).

The RedshiftCopyActivity component is defined by the following fields:

{
 "id": "RedshiftCopyActivityId1",
 "input": {
 "ref": "S3DataNodeId1"
 },
 "schedule": {
 "ref": "ScheduleId1"
 },
 "insertMode": "KEEP_EXISTING",
 "name": "DefaultRedshiftCopyActivity1",
 "runsOn": {
 "ref": "Ec2ResourceId1"
 },
 "type": "RedshiftCopyActivity",
 "output": {
 "ref": "RedshiftDataNodeId1"
 }
},

id

The user-defined ID, which is a label for your reference only.

API Version 2012-10-29
116

AWS Data Pipeline Developer Guide
Using the CLI

input

A reference to the Amazon S3 source file.

schedule

The schedule on which to run this activity.

insertMode

The insert type (KEEP_EXISTING, OVERWRITE_EXISTING, or TRUNCATE).

name

The user-defined name, which is a label for your reference only.

runsOn

The computational resource that performs the work that this activity defines.

output

A reference to the Amazon Redshift destination table.

Upload and Activate the Pipeline Definition

You must upload your pipeline definition and activate your pipeline. In the following example commands,
replace pipeline_name with a label for your pipeline and pipeline_file with the fully-qualified path for the
pipeline definition .json file.

AWS CLI

To create your pipeline definition and activate your pipeline, use the following create-pipeline command.
Note the ID of your pipeline, because you'll use this value with most CLI commands.

aws datapipeline create-pipeline --name pipeline_name --unique-id token
{
 "pipelineId": "df-00627471SOVYZEXAMPLE"
}

To upload your pipeline definition, use the following put-pipeline-definition command.

aws datapipeline put-pipeline-definition --pipeline-id df-00627471SOVYZEXAMPLE --pipeline-
definition file://MyEmrPipelineDefinition.json

If you pipeline validates successfully, the validationErrors field is empty. You should review any
warnings.

To activate your pipeline, use the following activate-pipeline command.

aws datapipeline activate-pipeline --pipeline-id df-00627471SOVYZEXAMPLE

You can verify that your pipeline appears in the pipeline list using the following list-pipelines command.

aws datapipeline list-pipelines

AWS Data Pipeline CLI

To upload your pipeline definition and activate your pipeline in a single step, use the following command.

API Version 2012-10-29
117

http://docs.aws.amazon.com/cli/latest/reference/datapipeline/create-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/put-pipeline-definition.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/activate-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/datapipeline/list-pipelines.html

AWS Data Pipeline Developer Guide
Using the CLI

datapipeline --create pipeline_name --put pipeline_file --activate --force

If your pipeline validates successfully, the command displays the following message. Note the ID of your
pipeline, because you'll use this value with most AWS Data Pipeline CLI commands.

Pipeline with name pipeline_name and id pipeline_id created.
Pipeline definition pipeline_file uploaded.
Pipeline activated.

If the command fails, you'll see an error message. For information, see Troubleshooting (p. 270).

You can verify that your pipeline appears in the pipeline list using the following command.

datapipeline --list-pipelines

API Version 2012-10-29
118

AWS Data Pipeline Developer Guide
Simple Data Types

Pipeline Expressions and Functions

This section explains the syntax for using expressions and functions in pipelines, including the associated
data types.

Simple Data Types
The following types of data can be set as field values.

Types

• DateTime (p. 119)

• Numeric (p. 119)

• Object References (p. 119)

• Period (p. 120)

• String (p. 120)

DateTime
AWS Data Pipeline supports the date and time expressed in "YYYY-MM-DDTHH:MM:SS" format in UTC/
GMT only. The following example sets the startDateTime field of a Schedule object to 1/15/2012, 11:59
p.m., in the UTC/GMT timezone.

"startDateTime" : "2012-01-15T23:59:00"

Numeric
AWS Data Pipeline supports both integers and floating-point values.

Object References
An object in the pipeline definition. This can either be the current object, the name of an object defined
elsewhere in the pipeline, or an object that lists the current object in a field, referenced by the node
keyword. For more information about node, see Referencing Fields and Objects (p. 120). For more
information about the pipeline object types, see Pipeline Object Reference (p. 130).

API Version 2012-10-29
119

AWS Data Pipeline Developer Guide
Period

Period
Indicates how often a scheduled event should run. It's expressed in the format "N
[years|months|weeks|days|hours|minutes]", where N is a positive integer value.

The minimum period is 15 minutes and the maximum period is 3 years.

The following example sets the period field of the Schedule object to 3 hours. This creates a schedule that
runs every three hours.

"period" : "3 hours"

String
Standard string values. Strings must be surrounded by double quotes ("). You can use the backslash
character (\) to escape characters in a string. Multiline strings are not supported.

The following examples show examples of valid string values for the id field.

"id" : "My Data Object"

"id" : "My \"Data\" Object"

Strings can also contain expressions that evaluate to string values. These are inserted into the string, and
are delimited with: "#{" and "}". The following example uses an expression to insert the name of the current
object into a path.

"filePath" : "s3://myBucket/#{name}.csv"

For more information about using expressions, see Referencing Fields and Objects (p. 120) and
Expression Evaluation (p. 123).

Expressions
Expressions enable you to share a value across related objects. Expressions are processed by the AWS
Data Pipeline web service at runtime, ensuring that all expressions are substituted with the value of the
expression.

Expressions are delimited by: "#{" and "}". You can use an expression in any pipeline definition object
where a string is legal. If a slot is a reference or one of type ID, NAME, TYPE, SPHERE, its value is not
evaluated and used verbatim.

The following expression calls one of the AWS Data Pipeline functions. For more information, see
Expression Evaluation (p. 123).

#{format(myDateTime,'YYYY-MM-dd hh:mm:ss')}

Referencing Fields and Objects
Expressions can use fields of the current object where the expression exists, or fields of another object that
is linked by a reference.

In the following example, the filePath field references the id field in the same object to form a file name.
The value of filePath evaluates to "s3://mybucket/ExampleDataNode.csv".

API Version 2012-10-29
120

AWS Data Pipeline Developer Guide
Nested Expressions

{
 "id" : "ExampleDataNode",
 "type" : "S3DataNode",
 "schedule" : {"ref" : "ExampleSchedule"},
 "filePath" : "s3://mybucket/#{id}.csv",
 "precondition" : {"ref" : "ExampleCondition"},
 "onFail" : {"ref" : "FailureNotify"}
}

To use a field that exists on another object linked by a reference, use the node keyword. This keyword is
only available with alarm and precondition objects.

Continuing with the previous example, an expression in an SnsAlarm can refer to the date and time
range in a Schedule, because the S3DataNode references both. Specifically, FailureNotify's message
field can use the @scheduledStartTime and @scheduledEndTime runtime fields from ExampleSchedule,
because ExampleDataNode's onFail field references FailureNotify and its schedule field references
ExampleSchedule.

{
 "id" : "FailureNotify",
 "type" : "SnsAlarm",
 "subject" : "Failed to run pipeline component",
 "message": "Error for interval
 #{node.@scheduledStartTime}..#{node.@scheduledEndTime}.",
 "topicArn":"arn:aws:sns:us-east-1:28619EXAMPLE:ExampleTopic"
},

Note
You can create pipelines that have dependencies, such as tasks in your pipeline that depend
on the work of other systems or tasks. If your pipeline requires certain resources, add those
dependencies to the pipeline using preconditions that you associate with data nodes and tasks so
your pipelines are easier to debug and more resilient. Additionally, keep your dependencies within
a single pipeline when possible, because cross-pipeline troubleshooting is difficult.

Nested Expressions
AWS Data Pipeline allows you to nest values to create more complex expressions. For example, to perform
a time calculation (subtract 30 minutes from the scheduledStartTime) and format the result to use in a
pipeline definition, you could use the following expression in an activity:

#{format(minusMinutes(@scheduledStartTime,30),'YYYY-MM-dd hh:mm:ss')}

and using the node prefix if the expression is part of an SnsAlarm or Precondition:

#{format(minusMinutes(node.@scheduledStartTime,30),'YYYY-MM-dd hh:mm:ss')}

Lists
Expressions can be evaluated on lists and functions on lists. For example, assume that a list is defined like
the following: "myList":["one","two"]. If this list is used in the expression #{'this is ' + myList}, it
will evaluate to ["this is one", "this is two"]. If you have two lists, Data Pipeline will ultimately flatten
them in their evaluation. For example, if myList1 is defined as [1,2] and myList2 is defined as [3,4] then
the expression [#{myList1}, #{myList2}] will evaluate to [1,2,3,4].

API Version 2012-10-29
121

AWS Data Pipeline Developer Guide
Node Expression

Node Expression
AWS Data Pipeline uses the #{node.*} expression in either SnsAlarm or PreCondition for a back-
reference to a pipeline component's parent object. Since SnsAlarm and PreCondition are referenced from
an activity or resource with no reference back from them, node provides the way to refer to the referrer. For
example, the following pipeline definition demonstrates how a failure notification can use node to make a
reference to its parent, in this case ShellCommandActivity, and include the parent's scheduled start and
end times in the SnsAlarm message. The scheduledStartTime reference on ShellCommandActivity does not
require the node prefix because scheduledStartTime refers to itself.

Note
The fields preceded by the AT (@) sign indicate those fields are runtime fields.

{
 "id" : "ShellOut",
 "type" : "ShellCommandActivity",
 "input" : {"ref" : "HourlyData"},
 "command" : "/home/userName/xxx.sh #{@scheduledStartTime} #{@scheduledEndTime}",
 "schedule" : {"ref" : "HourlyPeriod"},
 "stderr" : "/tmp/stderr:#{@scheduledStartTime}",
 "stdout" : "/tmp/stdout:#{@scheduledStartTime}",
 "onFail" : {"ref" : "FailureNotify"},
},
{
 "id" : "FailureNotify",
 "type" : "SnsAlarm",
 "subject" : "Failed to run pipeline component",
 "message": "Error for interval #{node.@scheduledStartTime}..#{node.@scheduledEndTime}.",
 "topicArn":"arn:aws:sns:us-east-1:28619EXAMPLE:ExampleTopic"
},

AWS Data Pipeline supports transitive references for user-defined fields, but not runtime fields. A transitive
reference is a reference between two pipeline components that depends on another pipeline component
as the intermediary. The following example shows a reference to a transitive user-defined field and a
reference to a non-transitive runtime field, both of which are valid. For more information, see User-Defined
Fields (p. 56).

{
 "name": "DefaultActivity1",
 "type": "CopyActivity",
 "schedule": {"ref": "Once"},
 "input": {"ref": "s3nodeOne"},
 "onSuccess": {"ref": "action"},
 "workerGroup": "test",
 "output": {"ref": "s3nodeTwo"}
},
{
 "name": "action",
 "type": "SnsAlarm",
 "message": "S3 bucket '#{node.output.directoryPath}' succeeded at
 #{node.@actualEndTime}.",
 "subject": "Testing",
 "topicArn": "arn:aws:sns:us-east-1:28619EXAMPLE:ExampleTopic",
 "role": "DataPipelineDefaultRole"
}

API Version 2012-10-29
122

AWS Data Pipeline Developer Guide
Expression Evaluation

Expression Evaluation
AWS Data Pipeline provides a set of functions that you can use to calculate the value of a field. The
following example uses the makeDate function to set the startDateTime field of a Schedule object to
"2011-05-24T0:00:00" GMT/UTC.

"startDateTime" : "makeDate(2011,5,24)"

Mathematical Functions
The following functions are available for working with numerical values.

Function Description

+ Addition.

Example: #{1 + 2}

Result: 3

- Subtraction.

Example: #{1 - 2}

Result: -1

* Multiplication.

Example: #{1 * 2}

Result: 2

/ Division. If you divide two integers, the result is
truncated.

Example: #{1 / 2}, Result: 0

Example: #{1.0 / 2}, Result: .5

^ Exponent.

Example: #{2 ^ 2}

Result: 4.0

String Functions
The following functions are available for working with string values.

Function Description

+ Concatenation. Non-string values
are first converted to strings.

Example: #{"hel" + "lo"}

API Version 2012-10-29
123

AWS Data Pipeline Developer Guide
Date and Time Functions

Function Description

Result: "hello"

Date and Time Functions
The following functions are available for working with DateTime values. For the examples, the value of
myDateTime is May 24, 2011 @ 5:10 pm GMT.

Note
The date/time format for AWS Data Pipeline is Joda Time, which is a replacement for the Java
date and time classes. For more information, see Joda Time - Class DateTimeFormat.

Function Description

int day(DateTime myDateTime) Gets the day of the DateTime
value as an integer.

Example: #{day(myDateTime)}

Result: 24

int dayOfYear(DateTime myDateTime) Gets the day of the year of the
DateTime value as an integer.

Example:
#{dayOfYear(myDateTime)}

Result: 144

DateTime firstOfMonth(DateTime myDateTime) Creates a DateTime object for
the start of the month in the
specified DateTime.

Example:
#{firstOfMonth(myDateTime)}

Result: "2011-05-01T17:10:00z"

String format(DateTime myDateTime,String format) Creates a String object that is the
result of converting the specified
DateTime using the specified
format string.

Example:
#{format(myDateTime,'YYYY-

MM-dd HH:mm:ss z')}

Result: "2011-05-24T17:10:00
UTC"

int hour(DateTime myDateTime) Gets the hour of the DateTime
value as an integer.

Example: #{hour(myDateTime)}

Result: 17

API Version 2012-10-29
124

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

AWS Data Pipeline Developer Guide
Date and Time Functions

Function Description

DateTime makeDate(int year,int month,int day) Creates a DateTime object, in
UTC, with the specified year,
month, and day, at midnight.

Example:
#{makeDate(2011,5,24)}

Result: "2011-05-24T0:00:00z"

DateTime makeDateTime(int year,int month,int day,int

hour,int minute)

Creates a DateTime object, in
UTC, with the specified year,
month, day, hour, and minute.

Example:
#{makeDateTime(2011,5,24,14,21)}

Result: "2011-05-24T14:21:00z"

DateTime midnight(DateTime myDateTime) Creates a DateTime object for
the current midnight, relative
to the specified DateTime. For
example, where MyDateTime
is 2011-05-25T17:10:00z, the
result is as follows.

Example:
#{midnight(myDateTime)}

Result: "2011-05-25T0:00:00z"

DateTime minusDays(DateTime myDateTime,int daysToSub) Creates a DateTime object that
is the result of subtracting the
specified number of days from
the specified DateTime.

Example:
#{minusDays(myDateTime,1)}

Result: "2011-05-23T17:10:00z"

DateTime minusHours(DateTime myDateTime,int hoursToSub) Creates a DateTime object that
is the result of subtracting the
specified number of hours from
the specified DateTime.

Example:
#{minusHours(myDateTime,1)}

Result: "2011-05-24T16:10:00z"

API Version 2012-10-29
125

AWS Data Pipeline Developer Guide
Date and Time Functions

Function Description

DateTime minusMinutes(DateTime myDateTime,int minutesToSub) Creates a DateTime object that
is the result of subtracting the
specified number of minutes from
the specified DateTime.

Example:
#{minusMinutes(myDateTime,1)}

Result: "2011-05-24T17:09:00z"

DateTime minusMonths(DateTime myDateTime,int monthsToSub) Creates a DateTime object that
is the result of subtracting the
specified number of months from
the specified DateTime.

Example:
#{minusMonths(myDateTime,1)}

Result: "2011-04-24T17:10:00z"

DateTime minusWeeks(DateTime myDateTime,int weeksToSub) Creates a DateTime object that
is the result of subtracting the
specified number of weeks from
the specified DateTime.

Example:
#{minusWeeks(myDateTime,1)}

Result: "2011-05-17T17:10:00z"

DateTime minusYears(DateTime myDateTime,int yearsToSub) Creates a DateTime object that
is the result of subtracting the
specified number of years from
the specified DateTime.

Example:
#{minusYears(myDateTime,1)}

Result: "2010-05-24T17:10:00z"

int minute(DateTime myDateTime) Gets the minute of the DateTime
value as an integer.

Example:
#{minute(myDateTime)}

Result: 10

int month(DateTime myDateTime) Gets the month of the DateTime
value as an integer.

Example: #{month(myDateTime)}

Result: 5

API Version 2012-10-29
126

AWS Data Pipeline Developer Guide
Date and Time Functions

Function Description

DateTime plusDays(DateTime myDateTime,int daysToAdd) Creates a DateTime object that is
the result of adding the specified
number of days to the specified
DateTime.

Example:
#{plusDays(myDateTime,1)}

Result: "2011-05-25T17:10:00z"

DateTime plusHours(DateTime myDateTime,int hoursToAdd) Creates a DateTime object that is
the result of adding the specified
number of hours to the specified
DateTime.

Example:
#{plusHours(myDateTime,1)}

Result: "2011-05-24T18:10:00z"

DateTime plusMinutes(DateTime myDateTime,int minutesToAdd) Creates a DateTime object
that is the result of adding the
specified number of minutes to
the specified DateTime.

Example:
#{plusMinutes(myDateTime,1)}

Result: "2011-05-24 17:11:00z"

DateTime plusMonths(DateTime myDateTime,int monthsToAdd) Creates a DateTime object
that is the result of adding the
specified number of months to
the specified DateTime.

Example:
#{plusMonths(myDateTime,1)}

Result: "2011-06-24T17:10:00z"

DateTime plusWeeks(DateTime myDateTime,int weeksToAdd) Creates a DateTime object that is
the result of adding the specified
number of weeks to the specified
DateTime.

Example:
#{plusWeeks(myDateTime,1)}

Result: "2011-05-31T17:10:00z"

API Version 2012-10-29
127

AWS Data Pipeline Developer Guide
Special Characters

Function Description

DateTime plusYears(DateTime myDateTime,int yearsToAdd) Creates a DateTime object that is
the result of adding the specified
number of years to the specified
DateTime.

Example:
#{plusYears(myDateTime,1)}

Result: "2012-05-24T17:10:00z"

DateTime sunday(DateTime myDateTime) Creates a DateTime object for
the previous Sunday, relative
to the specified DateTime.
If the specified DateTime is
a Sunday, the result is the
specified DateTime.

Example:
#{sunday(myDateTime)}

Result: "2011-05-22 17:10:00
UTC"

int year(DateTime myDateTime) Gets the year of the DateTime
value as an integer.

Example: #{year(myDateTime)}

Result: 2011

DateTime yesterday(DateTime myDateTime) Creates a DateTime object for
the previous day, relative to the
specified DateTime. The result is
the same as minusDays(1).

Example:
#{yesterday(myDateTime)}

Result: "2011-05-23T17:10:00z"

Special Characters
AWS Data Pipeline uses certain characters that have a special meaning in pipeline definitions, as shown in
the following table.

Special Character Description Examples

@ Runtime field. This character is
a field name prefix for a field that
is only available when a pipeline
runs.

@actualStartTime

@failureReason

@resourceStatus

Expression. Expressions are
delimited by: "#{" and "}" and

#{format(myDateTime,'YYYY-
MM-dd hh:mm:ss')}

API Version 2012-10-29
128

AWS Data Pipeline Developer Guide
Special Characters

Special Character Description Examples

the contents of the braces are
evaluated by AWS Data Pipeline.
For more information, see
Expressions (p. 120).

s3://mybucket/#{id}.csv

* Encrypted field. This character
is a field name prefix to indicate
that AWS Data Pipeline should
encrypt the contents of this field
in transit between the console or
CLI and the AWS Data Pipeline
service.

*password

API Version 2012-10-29
129

AWS Data Pipeline Developer Guide
Data Nodes

Pipeline Object Reference

You can use the following pipeline objects and components in your pipeline definition.

Contents

• Data Nodes (p. 130)

• Activities (p. 152)

• Resources (p. 204)

• Preconditions (p. 222)

• Databases (p. 237)

• Data Formats (p. 241)

• Actions (p. 250)

• Schedule (p. 252)

• Utilities (p. 256)

Note
For an example application that uses the AWS Data Pipeline Java SDK, see Data Pipeline
DynamoDB Export Java Sample on GitHub.

The following is the object hierarchy for AWS Data Pipeline.

Data Nodes
The following are the AWS Data Pipeline data node objects:

Objects

• DynamoDBDataNode (p. 131)

• MySqlDataNode (p. 135)

• RedshiftDataNode (p. 139)

• S3DataNode (p. 143)

• SqlDataNode (p. 147)

API Version 2012-10-29
130

https://github.com/awslabs/data-pipeline-samples/tree/master/samples/DynamoDBExportJava
https://github.com/awslabs/data-pipeline-samples/tree/master/samples/DynamoDBExportJava

AWS Data Pipeline Developer Guide
DynamoDBDataNode

DynamoDBDataNode
Defines a data node using DynamoDB, which is specified as an input to a HiveActivity or EMRActivity
object.

Note
The DynamoDBDataNode object does not support the Exists precondition.

Example

The following is an example of this object type. This object references two other objects that you'd define in
the same pipeline definition file. CopyPeriod is a Schedule object and Ready is a precondition object.

{
 "id" : "MyDynamoDBTable",
 "type" : "DynamoDBDataNode",
 "schedule" : { "ref" : "CopyPeriod" },
 "tableName" : "adEvents",
 "precondition" : { "ref" : "Ready" }
}

Syntax

Required Fields Description Slot Type

tableName The Amazon DynamoDB table. String

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

API Version 2012-10-29
131

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
DynamoDBDataNode

Optional Fields Description Slot Type

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

dataFormat DataFormat for the data described by this data
node. Currently supported for HiveActivity and
HiveCopyActivity.

Reference Object,
e.g. "dataFormat":
{"ref":"myDynamoDBDataFormatId"}

dependsOn Specify dependency on another runnable object Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

readThroughputPercent Sets the rate of read operations to keep your
DynamoDB provisioned throughput rate in the
allocated range for your table. The value is a
double between .1 and 1.0, inclusively.

Double

region The code for the region where the DynamoDB
table exists. For example, us-east-1. This is
used by HiveActivity when it performs staging for
DynamoDB tables in Hive.

Enumeration

API Version 2012-10-29
132

AWS Data Pipeline Developer Guide
DynamoDBDataNode

Optional Fields Description Slot Type

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

runsOn The computational resource to run the activity or
command. For example, an Amazon EC2 instance
or Amazon EMR cluster.

Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

writeThroughputPercent Sets the rate of write operations to keep your
DynamoDB provisioned throughput rate in the
allocated range for your table. The value is a
double between .1 and 1.0, inclusively.

Double

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

API Version 2012-10-29
133

AWS Data Pipeline Developer Guide
DynamoDBDataNode

Runtime Fields Description Slot Type

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

API Version 2012-10-29
134

AWS Data Pipeline Developer Guide
MySqlDataNode

System Fields Description Slot Type

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

MySqlDataNode
Defines a data node using MySQL.

Note
The MySqlDataNode type is deprecated. We recommend that you use SqlDataNode (p. 147)
instead.

Example

The following is an example of this object type. This object references two other objects that you'd define in
the same pipeline definition file. CopyPeriod is a Schedule object and Ready is a precondition object.

{
 "id" : "Sql Table",
 "type" : "MySqlDataNode",
 "schedule" : { "ref" : "CopyPeriod" },
 "table" : "adEvents",
 "username": "user_name",
 "*password": "my_password",
 "connectionString": "jdbc:mysql://mysqlinstance-rds.example.us-
east-1.rds.amazonaws.com:3306/database_name",
 "selectQuery" : "select * from #{table} where eventTime >=
 '#{@scheduledStartTime.format('YYYY-MM-dd HH:mm:ss')}' and eventTime <
 '#{@scheduledEndTime.format('YYYY-MM-dd HH:mm:ss')}'",
 "precondition" : { "ref" : "Ready" }
}

Syntax

Required Fields Description Slot Type

table The name of the table in the MySQL database. String

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

API Version 2012-10-29
135

AWS Data Pipeline Developer Guide
MySqlDataNode

Object Invocation
Fields

Description Slot Type

users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

createTableSql A SQL create table expression that will create the
table

String

database The name of the database. Reference Object,
e.g. "database":
{"ref":"myDatabaseId"}

dependsOn Specify dependency on another runnable object Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

insertQuery A SQL statement to insert data into the table. String

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

API Version 2012-10-29
136

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
MySqlDataNode

Optional Fields Description Slot Type

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

runsOn The computational resource to run the activity or
command. For example, an Amazon EC2 instance
or Amazon EMR cluster.

Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

schemaName The name of the schema holding the table String

selectQuery A SQL statement to fetch data from the table. String

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

API Version 2012-10-29
137

AWS Data Pipeline Developer Guide
MySqlDataNode

Runtime Fields Description Slot Type

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

API Version 2012-10-29
138

AWS Data Pipeline Developer Guide
RedshiftDataNode

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• S3DataNode (p. 143)

RedshiftDataNode
Defines a data node using Amazon Redshift. RedshiftDataNode represents the properties of the data
inside a database, such as a data table, used by your pipeline.

Example

The following is an example of this object type.

{
 "id" : "MyRedshiftDataNode",
 "type" : "RedshiftDataNode",
 "database": { "ref": "MyRedshiftDatabase" },
 "tableName": "adEvents",
 "schedule": { "ref": "Hour" }
}

Syntax

Required Fields Description Slot Type

database The database on which the table resides Reference Object,
e.g. "database":
{"ref":"myRedshiftDatabaseId"}

tableName The name of the Amazon Redshift table. The table
is created if it doesn't already exist and you've
provided createTableSql.

String

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

API Version 2012-10-29
139

AWS Data Pipeline Developer Guide
RedshiftDataNode

Object Invocation
Fields

Description Slot Type

this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

createTableSql A SQL expression to create the table in the
database. We recommend that you specify the
schema where the table should be created, for
example: CREATE TABLE mySchema.myTable
(bestColumn varchar(25) primary key distkey,
numberOfWins integer sortKey). AWS Data
Pipeline runs the script in the createTableSql field
if the table, specified by tableName, does not exist
in the schema, specified by the schemaName
field. For example, if you specify schemaName
as mySchema but do not include mySchema in
the createTableSql field, the table is created in the
wrong schema (by default, it would be created in
PUBLIC). This occurs because AWS Data Pipeline
does not parse your CREATE TABLE statements.

String

dependsOn Specify dependency on another runnable object Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

API Version 2012-10-29
140

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
RedshiftDataNode

Optional Fields Description Slot Type

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

primaryKeys If you do not specify primaryKeys for a destination
table in RedShiftCopyActivity, you can specify a
list of columns using primaryKeys which will act
as a mergeKey. However, if you have an existing
primaryKey defined in a Amazon Redshift table,
this setting overrides the existing key.

String

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

runsOn The computational resource to run the activity or
command. For example, an Amazon EC2 instance
or Amazon EMR cluster.

Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

API Version 2012-10-29
141

AWS Data Pipeline Developer Guide
RedshiftDataNode

Optional Fields Description Slot Type

schemaName This optional field specifies the name of the
schema for the Amazon Redshift table. If not
specified, the schema name is PUBLIC, which is
the default schema in Amazon Redshift. For more
information, see the Amazon Redshift Database
Developer Guide.

String

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

API Version 2012-10-29
142

AWS Data Pipeline Developer Guide
S3DataNode

Runtime Fields Description Slot Type

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

S3DataNode
Defines a data node using Amazon S3. By default, the S3DataNode uses server-side encryption. If you
would like to disable this, set s3EncryptionType to NONE.

Note
When you use an S3DataNode as input to CopyActivity, only the CSV and TSV data formats are
supported.

Example

The following is an example of this object type. This object references another object that you'd define in
the same pipeline definition file. CopyPeriod is a Schedule object.

{
 "id" : "OutputData",
 "type" : "S3DataNode",
 "schedule" : { "ref" : "CopyPeriod" },
 "filePath" : "s3://myBucket/#{@scheduledStartTime}.csv"
}

API Version 2012-10-29
143

AWS Data Pipeline Developer Guide
S3DataNode

Syntax

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

compression The type of compression for the data described
by the S3DataNode. "none" is no compression
and "gzip" is compressed with the gzip algorithm.
This field is only supported for use with Amazon
Redshift and when you use S3DataNode with
CopyActivity.

Enumeration

dataFormat DataFormat for the data described by this
S3DataNode.

Reference Object,
e.g. "dataFormat":
{"ref":"myDataFormatId"}

dependsOn Specify dependency on another runnable object Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

directoryPath Amazon S3 directory path as a URI: s3://my-
bucket/my-key-for-directory. You must provide
either a filePath or directoryPath value.

String

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

filePath The path to the object in Amazon S3 as a URI, for
example: s3://my-bucket/my-key-for-file. You must
provide either a filePath or directoryPath value. Use

String

API Version 2012-10-29
144

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
S3DataNode

Optional Fields Description Slot Type

the directoryPath value to accommodate multiple
files in a directory.

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

manifestFilePath The Amazon S3 path to a manifest file in the format
supported by Amazon Redshift. AWS Data Pipeline
uses the manifest file to copy the specified Amazon
S3 files into the Amazon Redshift table. This field is
valid only when a RedShiftCopyActivity references
the S3DataNode.

String

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

runsOn The computational resource to run the activity or
command. For example, an Amazon EC2 instance
or Amazon EMR cluster.

Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

s3EncryptionType Overrides the Amazon S3 encryption type. Values
are SERVER_SIDE_ENCRYPTION or NONE.
Server-side encryption is enabled by default.

Enumeration

API Version 2012-10-29
145

AWS Data Pipeline Developer Guide
S3DataNode

Optional Fields Description Slot Type

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

API Version 2012-10-29
146

AWS Data Pipeline Developer Guide
SqlDataNode

Runtime Fields Description Slot Type

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• MySqlDataNode (p. 135)

SqlDataNode
Defines a data node using SQL.

API Version 2012-10-29
147

AWS Data Pipeline Developer Guide
SqlDataNode

Example
The following is an example of this object type. This object references two other objects that you'd define in
the same pipeline definition file. CopyPeriod is a Schedule object and Ready is a precondition object.

{
 "id" : "Sql Table",
 "type" : "SqlDataNode",
 "schedule" : { "ref" : "CopyPeriod" },
 "table" : "adEvents",
 "database":"myDataBaseName",
 "selectQuery" : "select * from #{table} where eventTime >=
 '#{@scheduledStartTime.format('YYYY-MM-dd HH:mm:ss')}' and eventTime <
 '#{@scheduledEndTime.format('YYYY-MM-dd HH:mm:ss')}'",
 "precondition" : { "ref" : "Ready" }
}

Syntax

Required Fields Description Slot Type

table The name of the table in the SQL database. String

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

createTableSql A SQL create table expression that will create the
table

String

API Version 2012-10-29
148

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
SqlDataNode

Optional Fields Description Slot Type

database The name of the database. Reference Object,
e.g. "database":
{"ref":"myDatabaseId"}

dependsOn Specify dependency on another runnable object Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

insertQuery A SQL statement to insert data into the table. String

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

runsOn The computational resource to run the activity or
command. For example, an Amazon EC2 instance
or Amazon EMR cluster.

Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

API Version 2012-10-29
149

AWS Data Pipeline Developer Guide
SqlDataNode

Optional Fields Description Slot Type

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

schemaName The name of the schema holding the table String

selectQuery A SQL statement to fetch data from the table. String

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

API Version 2012-10-29
150

AWS Data Pipeline Developer Guide
SqlDataNode

Runtime Fields Description Slot Type

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• S3DataNode (p. 143)

API Version 2012-10-29
151

AWS Data Pipeline Developer Guide
Activities

Activities
The following are the AWS Data Pipeline activity objects:

Objects

• CopyActivity (p. 152)

• EmrActivity (p. 156)

• HadoopActivity (p. 162)

• HiveActivity (p. 168)

• HiveCopyActivity (p. 174)

• PigActivity (p. 179)

• RedshiftCopyActivity (p. 187)

• ShellCommandActivity (p. 194)

• SqlActivity (p. 199)

CopyActivity
Copies data from one location to another. CopyActivity supports S3DataNode (p. 143) and
SqlDataNode (p. 147) as input and output and the copy operation is normally performed record-by-
record. However, CopyActivity provides a high-performance Amazon S3 to Amazon S3 copy when all the
following conditions are met:

• The input and output are S3DataNodes

• The dataFormat field is the same for input and output

If you provide compressed data files as input and do not indicate this using the compression field on the S3
data nodes, CopyActivity might fail. In this case, CopyActivity does not properly detect the end of record
character and the operation fails. Further, CopyActivity supports copying from a directory to another
directory and copying a file to a directory, but record-by-record copy occurs when copying a directory to a
file. Finally, CopyActivity does not support copying multipart Amazon S3 files.

CopyActivity has specific limitations to its CSV support. When you use an S3DataNode as input for
CopyActivity, you can only use a Unix/Linux variant of the CSV data file format for the Amazon S3 input
and output fields. The Unix/Linux variant requires the following:

• The separator must be the "," (comma) character.

• The records are not quoted.

• The default escape character is ASCII value 92 (backslash).

• The end of record identifier is ASCII value 10 (or "\n").

Windows-based systems typically use a different end-of-record character sequence: a carriage return and
line feed together (ASCII value 13 and ASCII value 10). You must accommodate this difference using an
additional mechanism, such as a pre-copy script to modify the input data, to ensure that CopyActivity can
properly detect the end of a record; otherwise, the CopyActivity fails repeatedly.

When using CopyActivity to export from a PostgreSQL RDS object to a TSV data format, the default
NULL character is \n.

API Version 2012-10-29
152

AWS Data Pipeline Developer Guide
CopyActivity

Example
The following is an example of this object type. This object references three other objects that you would
define in the same pipeline definition file. CopyPeriod is a Schedule object and InputData and OutputData
are data node objects.

{
 "id" : "S3ToS3Copy",
 "type" : "CopyActivity",
 "schedule" : { "ref" : "CopyPeriod" },
 "input" : { "ref" : "InputData" },
 "output" : { "ref" : "OutputData" },
 "runsOn" : { "ref" : "MyEc2Resource" }
}

Syntax

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Required Group (One
of the following is
required)

Description Slot Type

runsOn The computational resource to run the activity or
command. For example, an Amazon EC2 instance
or Amazon EMR cluster.

Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

API Version 2012-10-29
153

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
CopyActivity

Optional Fields Description Slot Type

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

dependsOn Specify dependency on another runnable object. Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

input The input data source. Reference Object,
e.g. "input":
{"ref":"myDataNodeId"}

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

output The output data source. Reference Object,
e.g. "output":
{"ref":"myDataNodeId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

API Version 2012-10-29
154

AWS Data Pipeline Developer Guide
CopyActivity

Optional Fields Description Slot Type

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

API Version 2012-10-29
155

AWS Data Pipeline Developer Guide
EmrActivity

Runtime Fields Description Slot Type

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandActivity (p. 194)

• EmrActivity (p. 156)

• Export MySQL Data to Amazon S3 Using AWS Data Pipeline (p. 96)

EmrActivity
Runs an EMR cluster.

API Version 2012-10-29
156

AWS Data Pipeline Developer Guide
EmrActivity

AWS Data Pipeline uses a different format for steps than Amazon EMR; for example, AWS Data Pipeline
uses comma-separated arguments after the JAR name in the EmrActivity step field. The following
example shows a step formatted for Amazon EMR, followed by its AWS Data Pipeline equivalent:

s3://example-bucket/MyWork.jar arg1 arg2 arg3

"s3://example-bucket/MyWork.jar,arg1,arg2,arg3"

Examples
The following is an example of this object type. This object references three other objects that you would
define in the same pipeline definition file. MyEmrCluster is an EmrCluster object and MyS3Input and
MyS3Output are S3DataNode objects.

Note
In this example, you can replace the step field with your desired cluster string, which could be a
Pig script, Hadoop streaming cluster, your own custom JAR including its parameters, or so on.

Hadoop 1.x (AMI 2.x)

{
 "id" : "MyEmrActivity",
 "type" : "EmrActivity",
 "runsOn" : { "ref" : "MyEmrCluster" },
 "preStepCommand" : "scp remoteFiles localFiles",
 "step" : ["s3://mybucket/myPath/myStep.jar,firstArg,secondArg","s3://mybucket/myPath/
myOtherStep.jar,anotherArg"],
 "postStepCommand" : "scp localFiles remoteFiles",
 "input" : { "ref" : "MyS3Input" },
 "output" : { "ref" : "MyS3Output" }
}

Hadoop 2.x (AMI 3.x)

{
 "id" : "MyEmrActivity",
 "type" : "EmrActivity",
 "runsOn" : { "ref" : "MyEmrCluster" },
 "preStepCommand" : "scp remoteFiles localFiles",
 "step" : ["s3://mybucket/myPath/myStep.jar,firstArg,secondArg,-files,s3://mybucket/
myPath/myFile.py,-input,s3://myinputbucket/path,-output,s3://myoutputbucket/path,-
mapper,myFile.py,-reducer,reducerName","s3://mybucket/myPath/myotherStep.jar,..."],
 "postStepCommand" : "scp localFiles remoteFiles",
 "input" : { "ref" : "MyS3Input" },
 "output" : { "ref" : "MyS3Output" }
}

Note
To pass arguments to an application in a step, you may need to escape the arguments that
you pass. For example, if you use script-runner.jar to run a shell script and want to pass
arguments to the script, you must escape the commas that separate them. The following step slot
illustrates how to do this:

"step" : "s3://elasticmapreduce/libs/script-runner/script-runner.jar,s3://
datapipeline/echo.sh,a\\\\,b\\\\,c"

This step uses script-runner.jar to run the echo.sh shell script and passes a, b, and c as a
single argument to the script. The first escape character is removed from the resultant argument

API Version 2012-10-29
157

AWS Data Pipeline Developer Guide
EmrActivity

so you may need to escape again. For example, if you had File\.gz as an argument in JSON,
you could escape it using File\\\\.gz. However, because the first escape is discarded, you must
use File\\\\\\\\.gz .

Syntax

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Required Group (One
of the following is
required)

Description Slot Type

runsOn EMR Cluster on which this job will run. Reference Object,
e.g. "runsOn":
{"ref":"myEmrClusterId"}

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

dependsOn Specify dependency on another runnable object. Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

API Version 2012-10-29
158

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
EmrActivity

Optional Fields Description Slot Type

input Location of the input data. Reference Object,
e.g. "input":
{"ref":"myDataNodeId"}

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

output Location of the output data. Reference Object,
e.g. "output":
{"ref":"myDataNodeId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

postStepCommand Shell scripts to be run after all steps are finished.
To specify multiple scripts, up to 255, add multiple
postStepCommand fields.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

preStepCommand Shell scripts to be run before any steps are run.
To specify multiple scripts, up to 255, add multiple
preStepCommand fields.

String

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

resizeClusterBeforeRunningResize the cluster before performing this activity to
accomodate DynamoDB tables specified as inputs
or outputs

Boolean

API Version 2012-10-29
159

AWS Data Pipeline Developer Guide
EmrActivity

Optional Fields Description Slot Type

resizeClusterMaxInstancesA limit on the maximum number of instance that
can be requested by the resize algorithm

Integer

retryDelay The timeout duration between two retry attempts. Period

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

step One or more steps for the cluster to run. To
specify multiple steps, up to 255, add multiple step
fields. Use comma-separated arguments after the
JAR name; for example, "s3://example-bucket/
MyWork.jar,arg1,arg2,arg3".

String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

API Version 2012-10-29
160

AWS Data Pipeline Developer Guide
EmrActivity

Runtime Fields Description Slot Type

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandActivity (p. 194)

• CopyActivity (p. 152)

API Version 2012-10-29
161

AWS Data Pipeline Developer Guide
HadoopActivity

• EmrCluster (p. 210)

HadoopActivity
Runs a MapReduce job on a cluster. The cluster can be an EMR cluster managed by AWS Data Pipeline
or another resource if you use TaskRunner. Use HadoopActivity when you want to run work in parallel. This
allows you to use the scheduling resources of the YARN framework or the MapReduce resource negotiator
in Hadoop 1. If you would like to run work sequentially using the Amazon EMR Step action, you can still use
EmrActivity (p. 156).

Examples
HadoopActivity using an EMR cluster managed by AWS Data Pipeline

The following HadoopActivity object uses an EmrCluster resource to run a program:

 {
 "name": "MyHadoopActivity",
 "schedule": {"ref": "ResourcePeriod"},
 "runsOn": {"ref": “MyEmrCluster”},
 "type": "HadoopActivity",
 "preActivityTaskConfig":{"ref":"preTaskScriptConfig”},
 "jarUri": "/home/hadoop/contrib/streaming/hadoop-streaming.jar",
 "argument": [
 "-files",
 “s3://elasticmapreduce/samples/wordcount/wordSplitter.py“,
 "-mapper",
 "wordSplitter.py",
 "-reducer",
 "aggregate",
 "-input",
 "s3://elasticmapreduce/samples/wordcount/input/",
 "-output",
 “s3://test-bucket/MyHadoopActivity/#{@pipelineId}/#{format(@scheduledStartTime,'YYYY-
MM-dd')}"
],
 "maximumRetries": "0",
 "postActivityTaskConfig":{"ref":"postTaskScriptConfig”},
 "hadoopQueue" : “high”
 }

Here is the corresponding MyEmrCluster, which configures the FairScheduler and queues in YARN for
Hadoop 2-based AMIs:

{
 "id" : "MyEmrCluster",
 "type" : "EmrCluster",
 "hadoopSchedulerType" : "PARALLEL_FAIR_SCHEDULING",
 “amiVersion” : “3.7.0”,
 "bootstrapAction" : ["s3://Region.elasticmapreduce/bootstrap-
actions/configure-hadoop,-z,yarn.scheduler.capacity.root.queues=low
\,high\,default,-z,yarn.scheduler.capacity.root.high.capacity=50,-
z,yarn.scheduler.capacity.root.low.capacity=10,-
z,yarn.scheduler.capacity.root.default.capacity=30”]
}

This is the EmrCluster you use to configure FairScheduler in Hadoop 1:

{
 "id": "MyEmrCluster",

API Version 2012-10-29
162

AWS Data Pipeline Developer Guide
HadoopActivity

 "type": "EmrCluster",
 "hadoopSchedulerType": "PARALLEL_FAIR_SCHEDULING",
 "amiVersion": "2.4.8",
 "bootstrapAction": "s3://Region.elasticmapreduce/bootstrap-
actions/configure-hadoop,-m,mapred.queue.names=low\\\\,high\\\\,default,-
m,mapred.fairscheduler.poolnameproperty=mapred.job.queue.name"
 }

The following EmrCluster configures CapacityScheduler for Hadoop 2-based AMIs:

{
 "id": "MyEmrCluster",
 "type": "EmrCluster",
 "hadoopSchedulerType": "PARALLEL_CAPACITY_SCHEDULING",
 "amiVersion": "3.7.0",
 "bootstrapAction": "s3://Region.elasticmapreduce/bootstrap-
actions/configure-hadoop,-z,yarn.scheduler.capacity.root.queues=low
\\\\,high,-z,yarn.scheduler.capacity.root.high.capacity=40,-
z,yarn.scheduler.capacity.root.low.capacity=60"
 }

HadoopActivity using an existing EMR cluster

In this example, you use workergroups and a TaskRunner to run a program on an existing EMR cluster.
The following pipeline definition uses HadoopActivity to:

• Run a MapReduce program only on myWorkerGroup resources. For more information about worker
groups, see Executing Work on Existing Resources Using Task Runner (p. 264).

• Run a preActivityTaskConfig and postActivityTaskConfig

{
 "objects": [
 {
 "argument": [
 "-files",
 "s3://elasticmapreduce/samples/wordcount/wordSplitter.py",
 "-mapper",
 "wordSplitter.py",
 "-reducer",
 "aggregate",
 "-input",
 "s3://elasticmapreduce/samples/wordcount/input/",
 "-output",
 "s3://test-bucket/MyHadoopActivity/#{@pipelineId}/
#{format(@scheduledStartTime,'YYYY-MM-dd')}"
],
 "id": "MyHadoopActivity",
 "jarUri": "/home/hadoop/contrib/streaming/hadoop-streaming.jar",
 "name": "MyHadoopActivity",
 "type": "HadoopActivity"
 },
 {
 "id": "SchedulePeriod",
 "startDateTime": "start_datetime",
 "name": "SchedulePeriod",
 "period": "1 day",
 "type": "Schedule",
 "endDateTime": "end_datetime"
 },
 {
 "id": "ShellScriptConfig",
 "scriptUri": "s3://test-bucket/scripts/preTaskScript.sh",

API Version 2012-10-29
163

AWS Data Pipeline Developer Guide
HadoopActivity

 "name": "preTaskScriptConfig",
 "scriptArgument": [
 "test",
 "argument"
],
 "type": "ShellScriptConfig"
 },
 {
 "id": "ShellScriptConfig",
 "scriptUri": "s3://test-bucket/scripts/postTaskScript.sh",
 "name": "postTaskScriptConfig",
 "scriptArgument": [
 "test",
 "argument"
],
 "type": "ShellScriptConfig"
 },
 {
 "id": "Default",
 "scheduleType": "cron",
 "schedule": {
 "ref": "SchedulePeriod"
 },
 "name": "Default",
 "pipelineLogUri": "s3://test-bucket/logs/2015-05-22T18:02:00.343Z642f3fe415",
 "maximumRetries": "0",
 "workerGroup": "myWorkerGroup",
 "preActivityTaskConfig": {
 "ref": "preTaskScriptConfig"
 },
 "postActivityTaskConfig": {
 "ref": "postTaskScriptConfig"
 }
 }
]
}

Syntax

Required Fields Description Slot Type

jarUri Location of a JAR in Amazon S3 or the local file
system of the cluster to run with HadoopActivity.

String

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

API Version 2012-10-29
164

AWS Data Pipeline Developer Guide
HadoopActivity

Object Invocation
Fields

Description Slot Type

schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Required Group (One
of the following is
required)

Description Slot Type

runsOn EMR Cluster on which this job will run. Reference Object,
e.g. "runsOn":
{"ref":"myEmrClusterId"}

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Optional Fields Description Slot Type

argument Arguments to pass to the JAR. String

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

dependsOn Specify dependency on another runnable object. Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

hadoopQueue The Hadoop scheduler queue name on which the
activity will be submitted.

String

input Location of the input data. Reference Object,
e.g. "input":
{"ref":"myDataNodeId"}

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

mainClass The main class of the JAR you are executing with
HadoopActivity.

String

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

API Version 2012-10-29
165

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
HadoopActivity

Optional Fields Description Slot Type

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

output Location of the output data. Reference Object,
e.g. "output":
{"ref":"myDataNodeId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

postActivityTaskConfig Post-activity configuration script to be run. This
consists of a URI of the shell script in Amazon S3
and a list of arguments.

Reference Object, e.g.
"postActivityTaskConfig":
{"ref":"myShellScriptConfigId"}

preActivityTaskConfig Pre-activity configuration script to be run. This
consists of a URI of the shell script in Amazon S3
and a list of arguments.

Reference Object, e.g.
"preActivityTaskConfig":
{"ref":"myShellScriptConfigId"}

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

API Version 2012-10-29
166

AWS Data Pipeline Developer Guide
HadoopActivity

Optional Fields Description Slot Type

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

API Version 2012-10-29
167

AWS Data Pipeline Developer Guide
HiveActivity

Runtime Fields Description Slot Type

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandActivity (p. 194)

• CopyActivity (p. 152)

• EmrCluster (p. 210)

HiveActivity
Runs a Hive query on an EMR cluster. HiveActivity makes it easier to set up an Amazon EMR activity
and automatically creates Hive tables based on input data coming in from either Amazon S3 or Amazon
RDS. All you need to specify is the HiveQL to run on the source data. AWS Data Pipeline automatically
creates Hive tables with ${input1}, ${input2}, and so on, based on the input fields in the HiveActivity

API Version 2012-10-29
168

AWS Data Pipeline Developer Guide
HiveActivity

object. For Amazon S3 inputs, the dataFormat field is used to create the Hive column names. For MySQL
(Amazon RDS) inputs, the column names for the SQL query are used to create the Hive column names.

Note
This activity uses the Hive CSV Serde.

Example

The following is an example of this object type. This object references three other objects that you would
define in the same pipeline definition file. MySchedule is a Schedule object and MyS3Input and MyS3Output
are data node objects.

{
 "name" : "ProcessLogData",
 "id" : "MyHiveActivity",
 "type" : "HiveActivity",
 "schedule" : { "ref": "MySchedule" },
 "hiveScript" : "INSERT OVERWRITE TABLE ${output1} select
 host,user,time,request,status,size from ${input1};",
 "input" : { "ref": "MyS3Input" },
 "output" : { "ref": "MyS3Output" },
 "runsOn" : { "ref": "MyEmrCluster" }
}

Syntax

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Required Group (One
of the following is
required)

Description Slot Type

hiveScript The Hive script to run. String

scriptUri The location of the Hive script to run (for example,
s3://scriptLocation).

String

API Version 2012-10-29
169

https://cwiki.apache.org/confluence/display/Hive/CSV+Serde
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
HiveActivity

Required Group (One
of the following is
required)

Description Slot Type

runsOn EMR Cluster on which this HiveActivity runs. Reference Object,
e.g. "runsOn":
{"ref":"myEmrClusterId"}

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

dependsOn Specify dependency on another runnable object. Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

hadoopQueue The Hadoop scheduler queue name on which the
job will be submitted.

String

input The input data source. Reference Object,
e.g. "input":
{"ref":"myDataNodeId"}

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

API Version 2012-10-29
170

AWS Data Pipeline Developer Guide
HiveActivity

Optional Fields Description Slot Type

output The output data source. Reference Object,
e.g. "output":
{"ref":"myDataNodeId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

postActivityTaskConfig Post-activity configuration script to be run. This
consists of a URI of the shell script in Amazon S3
and a list of arguments.

Reference Object, e.g.
"postActivityTaskConfig":
{"ref":"myShellScriptConfigId"}

preActivityTaskConfig Pre-activity configuration script to be run. This
consists of a URI of the shell script in Amazon S3
and a list of arguments.

Reference Object, e.g.
"preActivityTaskConfig":
{"ref":"myShellScriptConfigId"}

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

resizeClusterBeforeRunningResize the cluster before performing this activity to
accomodate DynamoDB tables specified as inputs
or outputs

Boolean

resizeClusterMaxInstancesA limit on the maximum number of instance that
can be requested by the resize algorithm

Integer

retryDelay The timeout duration between two retry attempts. Period

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

API Version 2012-10-29
171

AWS Data Pipeline Developer Guide
HiveActivity

Optional Fields Description Slot Type

scriptVariable Specifies script variables for Amazon EMR
to pass to Hive while running a script. For
example, the following example script
variables would pass a SAMPLE and
FILTER_DATE variable to Hive: SAMPLE=s3://
elasticmapreduce/samples/hive-ads and
FILTER_DATE=#{format(@scheduledStartTime,'YYYY-
MM-dd')}% This field accepts multiple values
and works with both script and scriptUri fields.
In addition, scriptVariable functions regardless
of whether stage is set to true or false. This field
is especially useful to send dynamic values to
Hive using AWS Data Pipeline expressions and
functions.

String

stage Determines whether staging is enabled before or
after running the script. Not permitted with Hive
11, so use an Amazon EMR AMI version 3.2.0 or
greater.

Boolean

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

API Version 2012-10-29
172

AWS Data Pipeline Developer Guide
HiveActivity

Runtime Fields Description Slot Type

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandActivity (p. 194)

• EmrActivity (p. 156)

API Version 2012-10-29
173

AWS Data Pipeline Developer Guide
HiveCopyActivity

HiveCopyActivity
Runs a Hive query on an EMR cluster. HiveCopyActivity makes it easier to copy data between
DynamoDB tables. HiveCopyActivity accepts a HiveQL statement to filter input data from DynamoDB at
the column and row level.

Example
The following example shows how to use HiveCopyActivity and DynamoDBExportDataFormat to copy data
from one DynamoDBDataNode to another, while filtering data, based on a time stamp.

{
 "objects": [
 {
 "id" : "DataFormat.1",
 "name" : "DataFormat.1",
 "type" : "DynamoDBExportDataFormat",
 "column" : "timeStamp BIGINT"
 },
 {
 "id" : "DataFormat.2",
 "name" : "DataFormat.2",
 "type" : "DynamoDBExportDataFormat"
 },
 {
 "id" : "DynamoDBDataNode.1",
 "name" : "DynamoDBDataNode.1",
 "type" : "DynamoDBDataNode",
 "tableName" : "item_mapped_table_restore_temp",
 "schedule" : { "ref" : "ResourcePeriod" },
 "dataFormat" : { "ref" : "DataFormat.1" }
 },
 {
 "id" : "DynamoDBDataNode.2",
 "name" : "DynamoDBDataNode.2",
 "type" : "DynamoDBDataNode",
 "tableName" : "restore_table",
 "region" : "us_west_1",
 "schedule" : { "ref" : "ResourcePeriod" },
 "dataFormat" : { "ref" : "DataFormat.2" }
 },
 {
 "id" : "EmrCluster.1",
 "name" : "EmrCluster.1",
 "type" : "EmrCluster",
 "schedule" : { "ref" : "ResourcePeriod" },
 "masterInstanceType" : "m1.xlarge",
 "coreInstanceCount" : "4"
 },
 {
 "id" : "HiveTransform.1",
 "name" : "Hive Copy Transform.1",
 "type" : "HiveCopyActivity",
 "input" : { "ref" : "DynamoDBDataNode.1" },
 "output" : { "ref" : "DynamoDBDataNode.2" },
 "schedule" :{ "ref" : "ResourcePeriod" },
 "runsOn" : { "ref" : "EmrCluster.1" },
 "filterSql" : "`timeStamp` > unix_timestamp(\"#{@scheduledStartTime}\", \"yyyy-MM-
dd'T'HH:mm:ss\")"
 },
 {
 "id" : "ResourcePeriod",
 "name" : "ResourcePeriod",

API Version 2012-10-29
174

AWS Data Pipeline Developer Guide
HiveCopyActivity

 "type" : "Schedule",
 "period" : "1 Hour",
 "startDateTime" : "2013-06-04T00:00:00",
 "endDateTime" : "2013-06-04T01:00:00"
 }
]
}

Syntax

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Required Group (One
of the following is
required)

Description Slot Type

runsOn Specify cluster to run on. Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

dependsOn Specify dependency on another runnable object. Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

API Version 2012-10-29
175

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
HiveCopyActivity

Optional Fields Description Slot Type

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

filterSql A Hive SQL statement fragment that filters a
subset of DynamoDB or Amazon S3 data to copy.
The filter should only contain predicates and not
begin with a WHERE clause, because AWS Data
Pipeline adds it automatically.

String

input The input data source. This must be a
S3DataNode or DynamoDBDataNode.
If you use DynamoDBNode, specify a
DynamoDBExportDataFormat.

Reference Object,
e.g. "input":
{"ref":"myDataNodeId"}

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

output The output data source. If input is S3DataNode,
this must be DynamoDBDataNode. Otherwise,
this can be S3DataNode or DynamoDBDataNode.
If you use DynamoDBNode, specify a
DynamoDBExportDataFormat.

Reference Object,
e.g. "output":
{"ref":"myDataNodeId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

postActivityTaskConfig Post-activity configuration script to be run. This
consists of a URI of the shell script in Amazon S3
and a list of arguments.

Reference Object, e.g.
"postActivityTaskConfig":
{"ref":"myShellScriptConfigId"}

preActivityTaskConfig Pre-activity configuration script to be run. This
consists of a URI of the shell script in Amazon S3
and a list of arguments.

Reference Object, e.g.
"preActivityTaskConfig":
{"ref":"myShellScriptConfigId"}

API Version 2012-10-29
176

AWS Data Pipeline Developer Guide
HiveCopyActivity

Optional Fields Description Slot Type

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

resizeClusterBeforeRunningResize the cluster before performing this activity to
accomodate DynamoDB tables specified as inputs
or outputs

Boolean

resizeClusterMaxInstancesA limit on the maximum number of instance that
can be requested by the resize algorithm

Integer

retryDelay The timeout duration between two retry attempts. Period

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

API Version 2012-10-29
177

AWS Data Pipeline Developer Guide
HiveCopyActivity

Runtime Fields Description Slot Type

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

API Version 2012-10-29
178

AWS Data Pipeline Developer Guide
PigActivity

System Fields Description Slot Type

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandActivity (p. 194)

• EmrActivity (p. 156)

PigActivity
PigActivity provides native support for Pig scripts in AWS Data Pipeline without the requirement to use
ShellCommandActivity or EmrActivity. In addition, PigActivity supports data staging. When the stage field
is set to true, AWS Data Pipeline stages the input data as a schema in Pig without additional code from the
user.

Example

The following example pipeline shows how to use PigActivity. The example pipeline performs the
following steps:

• MyPigActivity1 loads data from Amazon S3 and runs a Pig script that selects a few columns of data and
uploads it to Amazon S3.

• MyPigActivity2 loads the first output, selects a few columns and three rows of data, and uploads it to
Amazon S3 as a second output.

• MyPigActivity3 loads the second output data, inserts two rows of data and only the column named "fifth"
to Amazon RDS.

• MyPigActivity4 loads Amazon RDS data, selects the first row of data, and uploads it to Amazon S3.

{
 "objects": [
 {
 "id": "MyInputData1",
 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },
 "directoryPath": "s3://example-bucket/pigTestInput",
 "name": "MyInputData1",
 "dataFormat": {
 "ref": "MyInputDataType1"
 },
 "type": "S3DataNode"
 },
 {
 "id": "MyPigActivity4",
 "scheduleType": "CRON",
 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },
 "input": {
 "ref": "MyOutputData3"
 },

API Version 2012-10-29
179

AWS Data Pipeline Developer Guide
PigActivity

 "pipelineLogUri": "s3://example-bucket/path/",
 "name": "MyPigActivity4",
 "runsOn": {
 "ref": "MyEmrResource"
 },
 "type": "PigActivity",
 "dependsOn": {
 "ref": "MyPigActivity3"
 },
 "output": {
 "ref": "MyOutputData4"
 },
 "script": "B = LIMIT ${input1} 1; ${output1} = FOREACH B GENERATE one;",
 "stage": "true"
 },
 {
 "id": "MyPigActivity3",
 "scheduleType": "CRON",
 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },
 "input": {
 "ref": "MyOutputData2"
 },
 "pipelineLogUri": "s3://example-bucket/path",
 "name": "MyPigActivity3",
 "runsOn": {
 "ref": "MyEmrResource"
 },
 "script": "B = LIMIT ${input1} 2; ${output1} = FOREACH B GENERATE Fifth;",
 "type": "PigActivity",
 "dependsOn": {
 "ref": "MyPigActivity2"
 },
 "output": {
 "ref": "MyOutputData3"
 },
 "stage": "true"
 },
 {
 "id": "MyOutputData2",
 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },
 "name": "MyOutputData2",
 "directoryPath": "s3://example-bucket/PigActivityOutput2",
 "dataFormat": {
 "ref": "MyOutputDataType2"
 },
 "type": "S3DataNode"
 },
 {
 "id": "MyOutputData1",
 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },
 "name": "MyOutputData1",
 "directoryPath": "s3://example-bucket/PigActivityOutput1",
 "dataFormat": {
 "ref": "MyOutputDataType1"
 },
 "type": "S3DataNode"
 },
 {
 "id": "MyInputDataType1",
 "name": "MyInputDataType1",

API Version 2012-10-29
180

AWS Data Pipeline Developer Guide
PigActivity

 "column": [
 "First STRING",
 "Second STRING",
 "Third STRING",
 "Fourth STRING",
 "Fifth STRING",
 "Sixth STRING",
 "Seventh STRING",
 "Eighth STRING",
 "Ninth STRING",
 "Tenth STRING"
],
 "inputRegEx": "^(\\\\S+) (\\\\S+) (\\\\S+) (\\\\S+) (\\\\S+) (\\\\S+) (\\\\S+) (\\\\S
+) (\\\\S+) (\\\\S+)",
 "type": "RegEx"
 },
 {
 "id": "MyEmrResource",
 "region": "us-east-1",
 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },
 "keyPair": "example-keypair",
 "masterInstanceType": "m1.small",
 "enableDebugging": "true",
 "name": "MyEmrResource",
 "actionOnTaskFailure": "continue",
 "type": "EmrCluster"
 },
 {
 "id": "MyOutputDataType4",
 "name": "MyOutputDataType4",
 "column": "one STRING",
 "type": "CSV"
 },
 {
 "id": "MyOutputData4",
 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },
 "directoryPath": "s3://example-bucket/PigActivityOutput3",
 "name": "MyOutputData4",
 "dataFormat": {
 "ref": "MyOutputDataType4"
 },
 "type": "S3DataNode"
 },
 {
 "id": "MyOutputDataType1",
 "name": "MyOutputDataType1",
 "column": [
 "First STRING",
 "Second STRING",
 "Third STRING",
 "Fourth STRING",
 "Fifth STRING",
 "Sixth STRING",
 "Seventh STRING",
 "Eighth STRING"
],
 "columnSeparator": "*",
 "type": "Custom"
 },
 {
 "id": "MyOutputData3",
 "username": "___",

API Version 2012-10-29
181

AWS Data Pipeline Developer Guide
PigActivity

 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },
 "insertQuery": "insert into #{table} (one) values (?)",
 "name": "MyOutputData3",
 "*password": "___",
 "runsOn": {
 "ref": "MyEmrResource"
 },
 "connectionString": "jdbc:mysql://example-database-instance:3306/example-database",
 "selectQuery": "select * from #{table}",
 "table": "example-table-name",
 "type": "MySqlDataNode"
 },
 {
 "id": "MyOutputDataType2",
 "name": "MyOutputDataType2",
 "column": [
 "Third STRING",
 "Fourth STRING",
 "Fifth STRING",
 "Sixth STRING",
 "Seventh STRING",
 "Eighth STRING"
],
 "type": "TSV"
 },
 {
 "id": "MyPigActivity2",
 "scheduleType": "CRON",
 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },
 "input": {
 "ref": "MyOutputData1"
 },
 "pipelineLogUri": "s3://example-bucket/path",
 "name": "MyPigActivity2",
 "runsOn": {
 "ref": "MyEmrResource"
 },
 "dependsOn": {
 "ref": "MyPigActivity1"
 },
 "type": "PigActivity",
 "script": "B = LIMIT ${input1} 3; ${output1} = FOREACH B GENERATE Third, Fourth,
 Fifth, Sixth, Seventh, Eighth;",
 "output": {
 "ref": "MyOutputData2"
 },
 "stage": "true"
 },
 {
 "id": "MyEmrResourcePeriod",
 "startDateTime": "2013-05-20T00:00:00",
 "name": "MyEmrResourcePeriod",
 "period": "1 day",
 "type": "Schedule",
 "endDateTime": "2013-05-21T00:00:00"
 },
 {
 "id": "MyPigActivity1",
 "scheduleType": "CRON",
 "schedule": {
 "ref": "MyEmrResourcePeriod"
 },

API Version 2012-10-29
182

AWS Data Pipeline Developer Guide
PigActivity

 "input": {
 "ref": "MyInputData1"
 },
 "pipelineLogUri": "s3://example-bucket/path",
 "scriptUri": "s3://example-bucket/script/pigTestScipt.q",
 "name": "MyPigActivity1",
 "runsOn": {
 "ref": "MyEmrResource"
 },
 "scriptVariable": [
 "column1=First",
 "column2=Second",
 "three=3"
],
 "type": "PigActivity",
 "output": {
 "ref": "MyOutputData1"
 },
 "stage": "true"
 }
]
}

The content of pigTestScript.q is as follows.

B = LIMIT ${input1} $three; ${output1} = FOREACH B GENERATE $column1, $column2, Third,
 Fourth, Fifth, Sixth, Seventh, Eighth;

Syntax

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Required Group (One
of the following is
required)

Description Slot Type

script The Pig script to run. String

API Version 2012-10-29
183

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
PigActivity

Required Group (One
of the following is
required)

Description Slot Type

scriptUri The location of the Pig script to run (for example,
s3://scriptLocation).

String

Required Group (One
of the following is
required)

Description Slot Type

runsOn EMR Cluster on which this PigActivity runs. Reference Object,
e.g. "runsOn":
{"ref":"myEmrClusterId"}

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

dependsOn Specify dependency on another runnable object. Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

input The input data source. Reference Object,
e.g. "input":
{"ref":"myDataNodeId"}

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

API Version 2012-10-29
184

AWS Data Pipeline Developer Guide
PigActivity

Optional Fields Description Slot Type

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

output The output data source. Reference Object,
e.g. "output":
{"ref":"myDataNodeId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

postActivityTaskConfig Post-activity configuration script to be run. This
consists of a URI of the shell script in Amazon S3
and a list of arguments.

Reference Object, e.g.
"postActivityTaskConfig":
{"ref":"myShellScriptConfigId"}

preActivityTaskConfig Pre-activity configuration script to be run. This
consists of a URI of the shell script in Amazon S3
and a list of arguments.

Reference Object, e.g.
"preActivityTaskConfig":
{"ref":"myShellScriptConfigId"}

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

resizeClusterBeforeRunningResize the cluster before performing this activity to
accomodate DynamoDB tables specified as inputs
or outputs

Boolean

resizeClusterMaxInstancesA limit on the maximum number of instance that
can be requested by the resize algorithm

Integer

retryDelay The timeout duration between two retry attempts. Period

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

API Version 2012-10-29
185

AWS Data Pipeline Developer Guide
PigActivity

Optional Fields Description Slot Type

scriptVariable The arguments to pass to the Pig script. You can
use scriptVariable with script or scriptUri.

String

stage Determines whether staging is enabled and allows
your Pig script to have access to the staged-data
tables, such as ${INPUT1} and ${OUTPUT1}.

Boolean

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

API Version 2012-10-29
186

AWS Data Pipeline Developer Guide
RedshiftCopyActivity

Runtime Fields Description Slot Type

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandActivity (p. 194)

• EmrActivity (p. 156)

RedshiftCopyActivity
Copies data from DynamoDB or Amazon S3 to Amazon Redshift. You can load data into a new table, or
easily merge data into an existing table.

You can also move data from Amazon RDS and Amazon EMR to Amazon Redshift by using AWS
Data Pipeline to stage your data in Amazon S3 before loading it into Amazon Redshift to analyze it. In
addition, RedshiftCopyActivity supports a manifest file when working with an S3DataNode. You can
also copy from Amazon Redshift to Amazon S3 using RedshiftCopyActivity. For more information, see
S3DataNode (p. 143).

You can use SqlActivity (p. 199) to perform SQL queries on the data that you've loaded into Amazon
Redshift.

Example

The following is an example of this object type.

API Version 2012-10-29
187

AWS Data Pipeline Developer Guide
RedshiftCopyActivity

{
 "id" : "S3ToRedshiftCopyActivity",
 "type" : "RedshiftCopyActivity",
 "input" : { "ref": "MyS3DataNode" },
 "output" : { "ref": "MyRedshiftDataNode" },
 "insertMode" : "KEEP_EXISTING",
 "schedule" : { "ref": "Hour" },
 "runsOn" : { "ref": "MyEc2Resource" },
 "commandOptions": ["EMPTYASNULL", "IGNOREBLANKLINES"]
}

The following example pipeline definition shows an activity that uses the APPEND insert mode:

{
 "objects": [
 {
 "id": "CSVId1",
 "name": "DefaultCSV1",
 "type": "CSV"
 },
 {
 "id": "RedshiftDatabaseId1",
 "databaseName": "dbname",
 "username": "user",
 "name": "DefaultRedshiftDatabase1",
 "*password": "password",
 "type": "RedshiftDatabase",
 "clusterId": "redshiftclusterId"
 },
 {
 "id": "Default",
 "scheduleType": "timeseries",
 "failureAndRerunMode": "CASCADE",
 "name": "Default",
 "role": "DataPipelineDefaultRole",
 "resourceRole": "DataPipelineDefaultResourceRole"
 },
 {
 "id": "RedshiftDataNodeId1",
 "schedule": {
 "ref": "ScheduleId1"
 },
 "tableName": "orders",
 "name": "DefaultRedshiftDataNode1",
 "createTableSql": "create table StructuredLogs (requestBeginTime CHAR(30) PRIMARY KEY
 DISTKEY SORTKEY, requestEndTime CHAR(30), hostname CHAR(100), requestDate varchar(20));",
 "type": "RedshiftDataNode",
 "database": {
 "ref": "RedshiftDatabaseId1"
 }
 },
 {
 "id": "Ec2ResourceId1",
 "schedule": {
 "ref": "ScheduleId1"
 },
 "securityGroups": "MySecurityGroup",
 "name": "DefaultEc2Resource1",
 "role": "DataPipelineDefaultRole",
 "logUri": "s3://myLogs",
 "resourceRole": "DataPipelineDefaultResourceRole",
 "type": "Ec2Resource"
 },
 {

API Version 2012-10-29
188

AWS Data Pipeline Developer Guide
RedshiftCopyActivity

 "id": "ScheduleId1",
 "startDateTime": "yyyy-mm-ddT00:00:00",
 "name": "DefaultSchedule1",
 "type": "Schedule",
 "period": "period",
 "endDateTime": "yyyy-mm-ddT00:00:00"
 },
 {
 "id": "S3DataNodeId1",
 "schedule": {
 "ref": "ScheduleId1"
 },
 "filePath": "s3://datapipeline-us-east-1/samples/hive-ads-samples.csv",
 "name": "DefaultS3DataNode1",
 "dataFormat": {
 "ref": "CSVId1"
 },
 "type": "S3DataNode"
 },
 {
 "id": "RedshiftCopyActivityId1",
 "input": {
 "ref": "S3DataNodeId1"
 },
 "schedule": {
 "ref": "ScheduleId1"
 },
 "insertMode": "APPEND",
 "name": "DefaultRedshiftCopyActivity1",
 "runsOn": {
 "ref": "Ec2ResourceId1"
 },
 "type": "RedshiftCopyActivity",
 "output": {
 "ref": "RedshiftDataNodeId1"
 }
 }
]
}

APPEND operation adds items to a table regardless of the primary or sort keys. For example, if you have
the following table, you can append a record with the same ID and user value.

ID(PK) USER
1 aaa
2 bbb

You can append a record with the same ID and user value:

ID(PK) USER
1 aaa
2 bbb
1 aaa

Note
With an APPEND operation that is interrupted and retried, the resulting rerun pipeline potentially
appends from the beginning. This may cause further duplication, so you should be aware of this
behavior, especially if you have any logic that counts the number of rows.

For a tutorial, see Copy Data to Amazon Redshift Using AWS Data Pipeline (p. 107).

API Version 2012-10-29
189

AWS Data Pipeline Developer Guide
RedshiftCopyActivity

Syntax

Required Fields Description Slot Type

insertMode Determines what AWS Data Pipeline does with
pre-existing data in the target table that overlaps
with rows in the data to be loaded. Valid values
are KEEP_EXISTING, OVERWRITE_EXISTING,
TRUNCATE and APPEND. KEEP_EXISTING
adds new rows to the table, while leaving any
existing rows unmodified. KEEP_EXISTING and
OVERWRITE_EXISTING use the primary key, sort,
and distribution keys to identify which incoming
rows to match with existing rows, according to the
information provided in Updating and inserting
new data in the Amazon Redshift Database
Developer Guide. TRUNCATE deletes all the data
in the destination table before writing the new
data. APPEND will add all records to the end of
the Redshift table. APPEND does not require a
primary, distribution key, or sort key so items that
may be potential duplicates may be appended.

Enumeration

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Required Group (One
of the following is
required)

Description Slot Type

runsOn The computational resource to run the activity or
command. For example, an Amazon EC2 instance
or Amazon EMR cluster.

Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

API Version 2012-10-29
190

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
RedshiftCopyActivity

Required Group (One
of the following is
required)

Description Slot Type

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

commandOptions Takes parameters to pass to the Amazon
Redshift data node during the COPY operation.
For information about Amazon Redshift COPY
parameters, see the Parameters section in the
COPY topic in the Amazon Redshift Database
Developer Guide. If a data format is associated
with the input or output data node, then the
provided parameters are ignored. Because the
copy operation first uses COPY to insert data into a
staging table, and then uses an INSERT command
to copy the data from the staging table into the
destination table, some COPY parameters do
not apply, such as the COPY command's ability
to enable automatic compression of the table. If
compression is required, add column encoding
details to the CREATE TABLE statement.

String

dependsOn Specify dependency on another runnable object. Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

input The input data node. The data source can be
Amazon S3, DynamoDB, or Amazon Redshift.

Reference Object,
e.g. "input":
{"ref":"myDataNodeId"}

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

API Version 2012-10-29
191

AWS Data Pipeline Developer Guide
RedshiftCopyActivity

Optional Fields Description Slot Type

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

output The output data node. The output location can be
Amazon S3 or Amazon Redshift.

Reference Object,
e.g. "output":
{"ref":"myDataNodeId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

queue Corresponds to the query_group setting in Amazon
Redshift, which allows you to assign and prioritize
concurrent activities based on their placement
in queues. Amazon Redshift limits the number
of simultaneous connections to 15. For more
information, see Assigning Queries to Queues in
the Amazon Redshift Database Developer Guide.

String

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

API Version 2012-10-29
192

AWS Data Pipeline Developer Guide
RedshiftCopyActivity

Optional Fields Description Slot Type

transformSql The SQL SELECT expression used to transform
the input data. When you copy data from
DynamoDB or Amazon S3, AWS Data Pipeline
creates a table called staging and initially loads it
in there. Data from this table is used to update the
target table. If the transformSql option is specified,
a second staging table is created from the specified
SQL statement. The data from this second staging
table is then updated in the final target table.
transformSql must be run on the table named
staging and the output schema of transformSql
must match the final target table's schema.

String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

API Version 2012-10-29
193

AWS Data Pipeline Developer Guide
ShellCommandActivity

Runtime Fields Description Slot Type

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

ShellCommandActivity
Runs a command or script. You can use ShellCommandActivity to run time-series or cron-like scheduled
tasks.

When the stage field is set to true and used with an S3DataNode, ShellCommandActivity supports
the concept of staging data, which means that you can move data from Amazon S3 to a stage
location, such as Amazon EC2 or your local environment, perform work on the data using scripts
and the ShellCommandActivity, and move it back to Amazon S3. In this case, when your shell
command is connected to an input S3DataNode, your shell scripts operate directly on the data using
${INPUT1_STAGING_DIR}, ${INPUT2_STAGING_DIR}, etc. referring to the ShellCommandActivity input
fields. Similarly, output from the shell-command can be staged in an output directory to be automatically
pushed to Amazon S3, referred to by ${OUTPUT1_STAGING_DIR}, ${OUTPUT2_STAGING_DIR}, and so on.
These expressions can pass as command-line arguments to the shell-command for you to use in data
transformation logic.

ShellCommandActivity returns Linux-style error codes and strings. If a ShellCommandActivity results in
error, the error returned will be a non-zero value.

API Version 2012-10-29
194

AWS Data Pipeline Developer Guide
ShellCommandActivity

Example

The following is an example of this object type.

{
 "id" : "CreateDirectory",
 "type" : "ShellCommandActivity",
 "command" : "mkdir new-directory"
}

Syntax

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Required Group (One
of the following is
required)

Description Slot Type

command The command to run. Use $ to reference positional
parameters and scriptArgument to specify the
parameters for the command. This value and
any associated parameters must function in the
environment from which you are running the Task
Runner.

String

scriptUri An Amazon S3 URI path for a file to download
and run as a shell command. Only one scriptUri or
command field should be present. scriptUri cannot
use parameters, use command instead.

String

API Version 2012-10-29
195

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
ShellCommandActivity

Required Group (One
of the following is
required)

Description Slot Type

runsOn The computational resource to run the activity or
command. For example, an Amazon EC2 instance
or Amazon EMR cluster.

Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

dependsOn Specify dependency on another runnable object. Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

input Location of the input data. Reference Object,
e.g. "input":
{"ref":"myDataNodeId"}

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

output Location of the output data. Reference Object,
e.g. "output":
{"ref":"myDataNodeId"}

API Version 2012-10-29
196

AWS Data Pipeline Developer Guide
ShellCommandActivity

Optional Fields Description Slot Type

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

scriptArgument A JSON-formatted array of strings to pass
to the command specified by command. For
example, if command is echo $1 $2, you can
specify scriptArgument as "param1", "param2".
If you had multiple arguments and parameters,
you can pass scriptArgument as follows:
"scriptArgument":"arg1","scriptArgument":"param1","scriptArgument":"arg2","scriptArgument":"param2" .
scriptArgument can only be used with command,
and using with scriptUri causes an error.

String

stage Determines whether staging is enabled and allows
your shell commands to have access to the staged-
data variables, such as ${INPUT1_STAGING_DIR}
and ${OUTPUT1_STAGING_DIR}.

Boolean

stderr The path that receives redirected system error
messages from the command. If you use the
runsOn field, this must be an Amazon S3 path
because of the transitory nature of the resource
running your activity. However if you specify the
workerGroup field, a local file path is permitted.

String

API Version 2012-10-29
197

AWS Data Pipeline Developer Guide
ShellCommandActivity

Optional Fields Description Slot Type

stdout The Amazon S3 path that receives redirected
output from the command. If you use the runsOn
field, this must be an Amazon S3 path because of
the transitory nature of the resource running your
activity. However if you specify the workerGroup
field, a local file path is permitted.

String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

API Version 2012-10-29
198

AWS Data Pipeline Developer Guide
SqlActivity

Runtime Fields Description Slot Type

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• CopyActivity (p. 152)

• EmrActivity (p. 156)

SqlActivity
Runs an SQL query (script) on a database.

Example

The following is an example of this object type.

{
 "id" : "MySqlActivity",
 "type" : "SqlActivity",
 "database" : { "ref": "MyDatabaseID" },
 "script" : "SQLQuery" | "scriptUri" : s3://scriptBucket/query.sql,
 "schedule" : { "ref": "MyScheduleID" },
}

API Version 2012-10-29
199

AWS Data Pipeline Developer Guide
SqlActivity

Syntax

Required Fields Description Slot Type

database The database on which to execute the supplied
SQL script

Reference Object,
e.g. "database":
{"ref":"myDatabaseId"}

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

Required Group (One
of the following is
required)

Description Slot Type

script The SQL script to run. You must specify script
or scriptUri. When the script is stored in Amazon
S3, then script is not evaluated as an expression.
Specifying multiple values for scriptArgument is
helpful when the script is stored in Amazon S3.

String

scriptUri A URI specifying the location of a SQL script to
execute in this activity

String

Required Group (One
of the following is
required)

Description Slot Type

runsOn The computational resource to run the activity or
command. For example, an Amazon EC2 instance
or Amazon EMR cluster.

Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

API Version 2012-10-29
200

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
SqlActivity

Required Group (One
of the following is
required)

Description Slot Type

workerGroup The worker group. This is used for routing tasks.
If you provide a runsOn value and workerGroup
exists, workerGroup is ignored.

String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

dependsOn Specify dependency on another runnable object. Reference Object,
e.g. "dependsOn":
{"ref":"myActivityId"}

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

input Location of the input data. Reference Object,
e.g. "input":
{"ref":"myDataNodeId"}

lateAfterTimeout The time period since the scheduled start of the
pipeline within which the object run must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has
not yet been scheduled or still not completed in the
time period since the scheduled start of the pipeline
as specified by 'lateAfterTimeout'.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

output Location of the output data. This is only useful
for referencing from within a script (for example
#{output.tablename}) and for creating the output
table by setting 'createTableSql' in the output data
node. The output of the SQL query is not written to
the output data node.

Reference Object,
e.g. "output":
{"ref":"myDataNodeId"}

API Version 2012-10-29
201

AWS Data Pipeline Developer Guide
SqlActivity

Optional Fields Description Slot Type

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

precondition Optionally define a precondition. A data node is not
marked "READY" until all preconditions have been
met.

Reference Object,
e.g. "precondition":
{"ref":"myPreconditionId"}

queue [Amazon Redshift only] Corresponds to the
query_group setting in Amazon Redshift, which
allows you to assign and prioritize concurrent
activities based on their placement in queues.
Amazon Redshift limits the number of simultaneous
connections to 15. For more information, see
Assigning Queries to Queues in the Amazon
Redshift Database Developer Guide.

String

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

scriptArgument A list of variables for the script. You can
alternatively put expressions directly into the script
field. Multiple values for scriptArgument are helpful
when the script is stored in Amazon S3. Example:
#{format(@scheduledStartTime, "YY-MM-DD
HH:MM:SS"}\n#{format(plusPeriod(@scheduledStartTime,
"1 day"), "YY-MM-DD HH:MM:SS"}

String

API Version 2012-10-29
202

http://docs.aws.amazon.com/redshift/latest/dg/cm-c-executing-queries.html

AWS Data Pipeline Developer Guide
SqlActivity

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

API Version 2012-10-29
203

AWS Data Pipeline Developer Guide
Resources

Runtime Fields Description Slot Type

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

Resources
The following are the AWS Data Pipeline resource objects:

Objects

• Ec2Resource (p. 204)

• EmrCluster (p. 210)

• HttpProxy (p. 221)

Ec2Resource
An EC2 instance that performs the work defined by a pipeline activity.

Examples

EC2-Classic

The following example object launches an EC2 instance into EC2-Classic or a default VPC, with some
optional fields set.

{
 "id" : "MyEC2Resource",
 "type" : "Ec2Resource",
 "actionOnTaskFailure" : "terminate",
 "actionOnResourceFailure" : "retryAll",
 "maximumRetries" : "1",
 "instanceType" : "m1.medium",
 "securityGroups" : [
 "test-group",
 "default"
],

API Version 2012-10-29
204

AWS Data Pipeline Developer Guide
Ec2Resource

 "keyPair" : "my-key-pair"
}

EC2-VPC

The following example object launches an EC2 instance into a nondefault VPC, with some optional fields
set.

{
 "id" : "MyEC2Resource",
 "type" : "Ec2Resource",
 "actionOnTaskFailure" : "terminate",
 "actionOnResourceFailure" : "retryAll",
 "maximumRetries" : "1",
 "instanceType" : "m1.medium",
 "securityGroupIds" : [
 "sg-12345678",
 "sg-12345678"
],
 "subnetId": "subnet-12345678",
 "associatePublicIpAddress": "true",
 "keyPair" : "my-key-pair"
}

Syntax

Required Fields Description Slot Type

resourceRole The IAM role that controls the resources that the
EC2 instance can access.

String

role The IAM role that AWS Data Pipeline uses to
create the EC2 instance.

String

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

API Version 2012-10-29
205

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
Ec2Resource

Optional Fields Description Slot Type

actionOnResourceFailure The action taken after a resource failure for
this resource. Valid values are "retryall" and
"retrynone".

String

actionOnTaskFailure The action taken after task failure for this resource.
Valid values are "continue" or "terminate".

String

associatePublicIpAddress Indicates whether to assign a public IP address to
the instance. If the instance is in EC2-Classic or a
default VPC, the default value is true. Otherwise,
the default value is false.

Boolean

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

availabilityZone The Availability Zone in which to launch the EC2
instance.

String

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

httpProxy The proxy host that clients use to connect to AWS
services.

Reference Object,
e.g. "httpProxy":
{"ref":"myHttpProxyId"}

imageId The ID of the AMI to use for the instance. By
default, AWS Data Pipeline uses the PV AMI
virtualization type. The specific AMI IDs used are
based on region as follows:

• us-east-1: ami-05355a6c

• us-west-1: ami-3ffed17a

• us-west-2: ami-0358ce33

• eu-west-1: ami-c7c0d6b3

• ap-southeast-1: ami-fade91a8

• ap-southeast-2: ami-d16bfbeb

• ap-northeast-1: ami-39b23d38

• sa-east-1: ami-5253894f

• eu-cental-1: ami-b43503a9

If the instanceType specified does not support
PV AMIs (see Amazon Linux AMI Instance Type
Matrix, specify the ID of an HVM AMI or an error
occurs. For more information about AMI types,
see Linux AMI Virtualization Types and Finding a
Linux AMI in the Amazon EC2 User Guide for Linux
Instances.

String

initTimeout The amount of time to wait for the resource to start. Period

API Version 2012-10-29
206

https://aws.amazon.com/amazon-linux-ami/instance-type-matrix/
https://aws.amazon.com/amazon-linux-ami/instance-type-matrix/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html

AWS Data Pipeline Developer Guide
Ec2Resource

Optional Fields Description Slot Type

instanceCount Deprecated Integer

instanceType The type of EC2 instance to start. String

keyPair The name of the key pair. If you launch an EC2
instance without specifying a key pair, you can't log
on to it.

String

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

minInstanceCount Deprecated Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

region The code for the region that the EC2 instance
should run in. By default, the instance runs in
the same region as the pipeline. You can run the
instance in the same region as a dependent data
set.

Enumeration

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

runAsUser The user to run TaskRunner String

runsOn This Field is not allowed on this object. Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

API Version 2012-10-29
207

AWS Data Pipeline Developer Guide
Ec2Resource

Optional Fields Description Slot Type

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

securityGroupIds The IDs of one or more Amazon EC2 Security
Group Ids to use for the instances in the resource
pool.

String

securityGroups The IDs of one or more Amazon EC2 security
group to use for the instances in the resource pool.

String

spotBidPrice The Spot Instance bid price, in dollars. A decimal
value between 0 and 20.00, exclusive.

String

subnetId The ID of the Amazon EC2 subnet in which to start
the instance.

String

terminateAfter Terminate the resource after these many hours. Period

useOnDemandOnLastAttemptOn the last attempt to request a Spot Instance,
make a request for On-Demand Instances rather
than a Spot Instance. This ensures that if all
previous attempts have failed, the last attempt is
not interrupted in the middle by changes in the Spot
market.

Boolean

workerGroup Field not allowed on this object String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

API Version 2012-10-29
208

AWS Data Pipeline Developer Guide
Ec2Resource

Runtime Fields Description Slot Type

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@failureReason The reason for the resource failure. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

API Version 2012-10-29
209

AWS Data Pipeline Developer Guide
EmrCluster

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

EmrCluster
Represents the configuration of an EMR cluster. This object is used by EmrActivity (p. 156) to launch a
cluster.

Schedulers

Schedulers provide a way to specify resource allocation and job prioritization within a Hadoop cluster.
Administrators or users can choose a scheduler for various classes of users and applications. A scheduler
will possibly use queues to allocate resources to users and applications. You set up those queues when
you create the cluster. You can then setup priority for certain types of work and user over others. This
provides for efficient use of cluster resources, while allowing more than one user to submit work to the
cluster. There are three types of scheduler available:

• FairScheduler — Attempts to schedule resources evenly over a significant period of time.

• CapacityScheduler — Uses queues to allow cluster administrators to assign users to queues of varying
priority and resource allocation.

• Default — Used by the cluster, which could be configured by your site.

Amazon EMR 2.x, 3.x vs. 4.x platforms

AWS Data Pipeline supports EMR clusters based on release label emr-4.0.0 or later, which requires the
use of the releaseLabel field for the corresponding EmrCluster object. For previous platforms known as
AMI releases, use the amiVersion field instead. If you are using a self-managed EmrCluster object with
a release label, use the most current Task Runner. For more information about TaskRunner, see Working
with Task Runner (p. 263). You can configure all classifications found in the Amazon EMR configuration
API. For a list of all configurations see the Configuring Applications topic in the Amazon EMR Release
Guide: http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/ as well as the the section
called “EmrConfiguration” (p. 258) and the section called “Property” (p. 261) object references.

Examples

The following are examples of this object type.

Example 1: Launch an EMR cluster using the hadoopVersion field

The following example launches an EMR cluster using AMI version 1.0 and Hadoop 0.20.

{
 "id" : "MyEmrCluster",
 "type" : "EmrCluster",
 "hadoopVersion" : "0.20",
 "keyPair" : "my-key-pair",
 "masterInstanceType" : "m3.xlarge",
 "coreInstanceType" : "m3.xlarge",

API Version 2012-10-29
210

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/

AWS Data Pipeline Developer Guide
EmrCluster

 "coreInstanceCount" : "10",
 "taskInstanceType" : "m3.xlarge",
 "taskInstanceCount": "10",
 "bootstrapAction" : ["s3://Region.elasticmapreduce/bootstrap-actions/configure-
hadoop,arg1,arg2,arg3","s3://Region.elasticmapreduce/bootstrap-actions/configure-hadoop/
configure-other-stuff,arg1,arg2"]
}

Example 1: Launch an EMR cluster with release label emr-4.x or greater

The following example launches an EMR cluster using the newer releaseLabel field:

{
 "id" : "MyEmrCluster",
 "type" : "EmrCluster",
 "keyPair" : "my-key-pair",
 "masterInstanceType" : "m3.xlarge",
 "coreInstanceType" : "m3.xlarge",
 "coreInstanceCount" : "10",
 "taskInstanceType" : "m3.xlarge",
 "taskInstanceCount": "10",
 "releaseLabel": "emr-4.1.0",
 "applications": ["spark", "hive", "pig"],
 "configuration": {"ref":"myConfiguration"}
}

Example 2: Install additional software on your EMR cluster

EmrCluster provides the supportedProducts field that installs third-party software on an EMR cluster,
for example installing a custom distribution of Hadoop like MapR. It accepts a comma-separated list of
arguments for the third-party software to read and act on. The following example shows how to use the
supportedProducts field of EmrCluster to create a custom MapR M3 edition cluster with Karmasphere
Analytics installed, and run an EmrActivity object on it.

{
 "id": "MyEmrActivity",
 "type": "EmrActivity",
 "schedule": {"ref": "ResourcePeriod"},
 "runsOn": {"ref": "MyEmrCluster"},
 "postStepCommand": "echo Ending job >> /mnt/var/log/stepCommand.txt",
 "preStepCommand": "echo Starting job > /mnt/var/log/stepCommand.txt",
 "step": "/home/hadoop/contrib/streaming/hadoop-streaming.jar,-input,s3n://
elasticmapreduce/samples/wordcount/input,-output, \
 hdfs:///output32113/,-mapper,s3n://elasticmapreduce/samples/wordcount/
wordSplitter.py,-reducer,aggregate"
 },
 {
 "id": "MyEmrCluster",
 "type": "EmrCluster",
 "schedule": {"ref": "ResourcePeriod"},
 "supportedProducts": ["mapr,--edition,m3,--version,1.2,--key1,value1","karmasphere-
enterprise-utility"],
 "masterInstanceType": "m3.xlarge",
 "taskInstanceType": "m3.xlarge"
}

Example 3: Disable server-side encryption on 3.x AMIs

An EmrCluster activity with a Hadoop version 2.x created by AWS Data Pipeline enables server-side
encryption by default. If you would like to disable server-side encryption, you must specify a bootstrap
action in the cluster object definition.

API Version 2012-10-29
211

AWS Data Pipeline Developer Guide
EmrCluster

The following example creates an EmrCluster activity with server-side encryption disabled:

{
 "id":"NoSSEEmrCluster",
 "type":"EmrCluster",
 "hadoopVersion":"2.x",
 "keyPair":"my-key-pair",
 "masterInstanceType":"m3.xlarge",
 "coreInstanceType":"m3.large",
 "coreInstanceCount":"10",
 "taskInstanceType":"m3.large",
 "taskInstanceCount":"10",
 "bootstrapAction":["s3://Region.elasticmapreduce/bootstrap-actions/configure-hadoop,-e,
 fs.s3.enableServerSideEncryption=false"]
}

Example 3: Disable server-side encryption on 4.x releases

You must disable server-side encryption using a EmrConfiguration object.

The following example creates an EmrCluster activity with server-side encryption disabled:

 {
 "name": "ReleaseLabelCluster",
 "releaseLabel": "emr-4.1.0",
 "applications": ["spark", "hive", "pig"],
 "id": "myResourceId",
 "type": "EmrCluster",
 "configuration": {
 "ref": "disableSSE"
 }
 },
 {
 "name": "disableSSE",
 "id": "disableSSE",
 "type": "EmrConfiguration",
 "classification": "emrfs-site",
 "property": [{
 "ref": "enableServerSideEncryption"
 }
]
 },
 {
 "name": "enableServerSideEncryption",
 "id": "enableServerSideEncryption",
 "type": "Property",
 "key": "fs.s3.enableServerSideEncryption",
 "value": "false"
 }

Example Configure Hadoop KMS Access Control Lists (ACLs) and Create Encryption Zones
in HDFS

The following objects will create ACLs for Hadoop KMS and create encryption zones and corresponding
encryption keys in HDFS:

{
 "name": "kmsAcls",
 "id": "kmsAcls",
 "type": "EmrConfiguration",
 "classification": "hadoop-kms-acls",
 "property": [

API Version 2012-10-29
212

AWS Data Pipeline Developer Guide
EmrCluster

 {"ref":"kmsBlacklist"},
 {"ref":"kmsAcl"}
]
 },
 {
 "name": "hdfsEncryptionZone",
 "id": "hdfsEncryptionZone",
 "type": "EmrConfiguration",
 "classification": "hdfs-encryption-zones",
 "property": [
 {"ref":"hdfsPath1"},
 {"ref":"hdfsPath2"}
]
 },
 {
 "name": "kmsBlacklist",
 "id": "kmsBlacklist",
 "type": "Property",
 "key": "hadoop.kms.blacklist.CREATE",
 "value": "foo,myBannedUser"
 },
 {
 "name": "kmsAcl",
 "id": "kmsAcl",
 "type": "Property",
 "key": "hadoop.kms.acl.ROLLOVER",
 "value": "myAllowedUser"
 },
 {
 "name": "hdfsPath1",
 "id": "hdfsPath1",
 "type": "Property",
 "key": "/myHDFSPath1",
 "value": "path1_key"
 },
 {
 "name": "hdfsPath2",
 "id": "hdfsPath2",
 "type": "Property",
 "key": "/myHDFSPath2",
 "value": "path2_key"
 }

Example 4: Specify custom IAM roles

By default, AWS Data Pipeline passes DataPipelineDefaultRole as the EMR service role and
DataPipelineDefaultResourceRole as the EC2 instance profile to create resources on your behalf.
However, you can create a custom EMR service role and a custom instance profile and use them instead.
AWS Data Pipeline should have sufficient permissions to create clusters using the custom role, and you
must add AWS Data Pipeline as a trusted entity.

The following example object specifies custom roles for the EMR cluster:

{
 "id":"MyEmrCluster",
 "type":"EmrCluster",
 "hadoopVersion":"2.x",
 "keyPair":"my-key-pair",
 "masterInstanceType":"m3.xlarge",
 "coreInstanceType":"m3.large",
 "coreInstanceCount":"10",
 "taskInstanceType":"m3.large",
 "taskInstanceCount":"10",
 "role":"emrServiceRole",

API Version 2012-10-29
213

AWS Data Pipeline Developer Guide
EmrCluster

 "resourceRole":"emrInstanceProfile"
}

Example Using EmrCluster Resource in AWS SDK for Java

The following shows how to use an EmrCluster and EmrActivity to create an Amazon EMR 4.x cluster to
run a Spark step using the Java SDK:

public class dataPipelineEmr4 {

 public static void main(String[] args) {

 AWSCredentials credentials = null;
 credentials = new ProfileCredentialsProvider("/path/to/
AwsCredentials.properties","default").getCredentials();
 DataPipelineClient dp = new DataPipelineClient(credentials);
 CreatePipelineRequest createPipeline = new
 CreatePipelineRequest().withName("EMR4SDK").withUniqueId("unique");
 CreatePipelineResult createPipelineResult = dp.createPipeline(createPipeline);
 String pipelineId = createPipelineResult.getPipelineId();

 PipelineObject emrCluster = new PipelineObject()
 .withName("EmrClusterObj")
 .withId("EmrClusterObj")
 .withFields(
 new Field().withKey("releaseLabel").withStringValue("emr-4.1.0"),
 new Field().withKey("coreInstanceCount").withStringValue("3"),
 new Field().withKey("applications").withStringValue("spark"),
 new Field().withKey("applications").withStringValue("Presto-Sandbox"),
 new Field().withKey("type").withStringValue("EmrCluster"),
 new Field().withKey("keyPair").withStringValue("myKeyName"),
 new Field().withKey("masterInstanceType").withStringValue("m3.xlarge"),
 new Field().withKey("coreInstanceType").withStringValue("m3.xlarge")
);

 PipelineObject emrActivity = new PipelineObject()
 .withName("EmrActivityObj")
 .withId("EmrActivityObj")
 .withFields(
 new Field().withKey("step").withStringValue("command-runner.jar,spark-submit,--
executor-memory,1g,--class,org.apache.spark.examples.SparkPi,/usr/lib/spark/lib/spark-
examples.jar,10"),
 new Field().withKey("runsOn").withRefValue("EmrClusterObj"),
 new Field().withKey("type").withStringValue("EmrActivity")
);

 PipelineObject schedule = new PipelineObject()
 .withName("Every 15 Minutes")
 .withId("DefaultSchedule")
 .withFields(
 new Field().withKey("type").withStringValue("Schedule"),
 new Field().withKey("period").withStringValue("15 Minutes"),
 new Field().withKey("startAt").withStringValue("FIRST_ACTIVATION_DATE_TIME")
);

 PipelineObject defaultObject = new PipelineObject()
 .withName("Default")
 .withId("Default")
 .withFields(
 new Field().withKey("failureAndRerunMode").withStringValue("CASCADE"),
 new Field().withKey("schedule").withRefValue("DefaultSchedule"),
 new Field().withKey("resourceRole").withStringValue("DataPipelineDefaultResourceRole"),
 new Field().withKey("role").withStringValue("DataPipelineDefaultRole"),
 new Field().withKey("pipelineLogUri").withStringValue("s3://myLogUri"),

API Version 2012-10-29
214

AWS Data Pipeline Developer Guide
EmrCluster

 new Field().withKey("scheduleType").withStringValue("cron")
);

 List<PipelineObject> pipelineObjects = new ArrayList<PipelineObject>();

 pipelineObjects.add(emrActivity);
 pipelineObjects.add(emrCluster);
 pipelineObjects.add(defaultObject);
 pipelineObjects.add(schedule);

 PutPipelineDefinitionRequest putPipelineDefintion = new PutPipelineDefinitionRequest()
 .withPipelineId(pipelineId)
 .withPipelineObjects(pipelineObjects);

 PutPipelineDefinitionResult putPipelineResult =
 dp.putPipelineDefinition(putPipelineDefintion);
 System.out.println(putPipelineResult);

 ActivatePipelineRequest activatePipelineReq = new ActivatePipelineRequest()
 .withPipelineId(pipelineId);
 ActivatePipelineResult activatePipelineRes = dp.activatePipeline(activatePipelineReq);

 System.out.println(activatePipelineRes);
 System.out.println(pipelineId);

 }

}

When you create a custom IAM role, carefully consider the minimum permissions necessary for your cluster
to perform its work. Be sure to grant access to required resources, such as files in Amazon S3 or data in
Amazon RDS, Amazon Redshift or DynamoDB.

If you wish to set visibleToAllUsers to False, your role must have the proper permissions to do so. Note
that DataPipelineDefaultRole does not have these permissions. You must either provide a union of the
DefaultDataPipelineResourceRole and DataPipelineDefaultRole roles as the EmrCluster object role or
create your own role for this purpose.

Syntax

Object Invocation
Fields

Description Slot Type

schedule This object is invoked within the execution of a
schedule interval. Users must specify a schedule
reference to another object to set the dependency
execution order for this object. Users can satisfy
this requirement by explicitly setting a schedule on
the object, for example, by specifying "schedule":
{"ref": "DefaultSchedule"}. In most cases, it
is better to put the schedule reference on the
default pipeline object so that all objects inherit
that schedule. Or, if the pipeline has a tree of
schedules (schedules within the master schedule),
users can create a parent object that has a
schedule reference. For more information about
example optional schedule configurations, see
http://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/dp-object-schedule.html

Reference Object,
e.g. "schedule":
{"ref":"myScheduleId"}

API Version 2012-10-29
215

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html

AWS Data Pipeline Developer Guide
EmrCluster

Optional Fields Description Slot Type

actionOnResourceFailure The action taken after a resource failure for this
resource. Valid values are "retryall", which retries
all taks to the cluster for the specified duration, and
"retrynone".

String

actionOnTaskFailure The action taken after task failure for this resource.
Valid values are "continue", meaning do not
terminate the cluster, and "terminate."

String

additionalMasterSecurityGroupIdsThe identifier of additional master security groups
of the EMR cluster, which follows the form
sg-01XXXX6a. For more information, see Amazon
EMR Additional Security Groups in the Amazon
Elastic MapReduce Developer Guide.

String

additionalSlaveSecurityGroupIdsThe identifier of additional slave security groups
of the EMR cluster, which follows the form
sg-01XXXX6a.

String

amiVersion The Amazon Machine Image (AMI) version that
Amazon EMR uses to install the cluster nodes. For
more information, see AMI Versions Supported in
Amazon EMR in the Amazon Elastic MapReduce
Developer Guide.

String

applications applications to install in the cluster with comma
separated arguments. By default, hive and pig will
be installed.This parameter is applicable only for
releaseLabel emr-4.0.0 and above

String

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

availabilityZone The availability zone in which to run the cluster. String

bootstrapAction An action to run when the cluster starts. You
can specify comma-separated arguments. To
specify multiple actions, up to 255, add multiple
bootstrapAction fields. The default behavior is to
start the cluster without any bootstrap actions.

String

configuration Configuration for the EMR cluster. This parameter
is applicable only for releaseLabel emr-4.0.0 and
above

Reference Object,
e.g. "configuration":
{"ref":"myEmrConfigurationId"}

coreInstanceBidPrice The maximum dollar amount per hour for your
Spot Instance bid. A decimal value between 0 and
20.00, exclusive. Setting this value enables Spot
Instances for the EMR cluster core nodes. Must be
used together with coreInstanceCount.

String

coreInstanceCount The number of core nodes to use for the cluster. Integer

API Version 2012-10-29
216

AWS Data Pipeline Developer Guide
EmrCluster

Optional Fields Description Slot Type

coreInstanceType The type of EC2 instance to use for core nodes.
The default value is m1.small.

String

emrManagedMasterSecurityGroupIdThe identifier of the master security group of the
EMR cluster, which follows the form sg-01XXXX6a.
For more information, see Configure Security
Groups for Amazon EMR in the Amazon Elastic
MapReduce Developer Guide.

String

emrManagedSlaveSecurityGroupIdThe identifier of the slave security group of the
EMR cluster, which follows the form sg-01XXXX6a.

String

enableDebugging Enables debugging on the EMR cluster. String

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

hadoopSchedulerType The scheduler type of the cluster. Valid
types are: PARALLEL_FAIR_SCHEDULING,
PARALLEL_CAPACITY_SCHEDULING, and
DEFAULT_SCHEDULER.

Enumeration

httpProxy The proxy host that clients use to connect to AWS
services.

Reference Object,
e.g. "httpProxy":
{"ref":"myHttpProxyId"}

initTimeout The amount of time to wait for the resource to start. Period

keyPair The Amazon EC2 key pair to use to log onto the
master node of the EMR cluster.

String

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

masterInstanceBidPrice The maximum dollar amount for your Spot
Instance bid. A decimal value between 0 and
20.00, exclusive. Setting this value enables Spot
Instances for the Amazon EMR cluster master
node.

String

masterInstanceType The type of EC2 instance to use for the master
node. The default value is m1.small.

String

maxActiveInstances The maximum number of concurrent active
instances of a component. Re-runs do not count
toward the number of active instances.

Integer

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

API Version 2012-10-29
217

AWS Data Pipeline Developer Guide
EmrCluster

Optional Fields Description Slot Type

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

pipelineLogUri The S3 URI (such as 's3://BucketName/Key/') for
uploading logs for the pipeline.

String

region The code for the region that the EMR cluster
should run in. By default, the cluster runs in the
same region as the pipeline. You can run the
cluster in the same region as a dependent data set.

Enumeration

releaseLabel release label for the Amazon EMR cluster String

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

resourceRole The IAM role AWS Data Pipeline uses to
create the EMR cluster. The default role is
DataPipelineDefaultRole.

String

retryDelay The timeout duration between two retry attempts. Period

role The IAM role passed to EMR to create EC2 nodes String

runsOn This Field is not allowed on this object. Reference Object,
e.g. "runsOn":
{"ref":"myResourceId"}

scheduleType Schedule type allows you to specify whether
the objects in your pipeline definition should be
scheduled at the beginning of interval or end of
the interval. Time Series Style Scheduling means
instances are scheduled at the end of each interval
and Cron Style Scheduling means instances are
scheduled at the beginning of each interval. An on-
demand schedule allows you to run a pipeline one
time per activation. This means you do not have
to clone or re-create the pipeline to run it again.
If you use an on-demand schedule it must be
specified in the default object and must be the only
scheduleType specified for objects in the pipeline.
To use on-demand pipelines, you simply call the
ActivatePipeline operation for each subsequent
run. Values are: cron, ondemand, and timeseries.

Enumeration

subnetId The identifier of the subnet to launch the cluster
into.

String

API Version 2012-10-29
218

AWS Data Pipeline Developer Guide
EmrCluster

Optional Fields Description Slot Type

supportedProducts A parameter that installs third-party software on
an EMR cluster, for example installing a third-party
distribution of Hadoop.

String

taskInstanceBidPrice The maximum dollar amount for your Spot
Instance bid. A decimal value between 0 and
20.00, exclusive. Setting this value enables Spot
Instances for the EMR cluster task nodes.

String

taskInstanceCount The number of task nodes to use for the cluster. Integer

taskInstanceType The type of EC2 instance to use for task nodes. String

terminateAfter Terminate the resource after these many hours. Period

useOnDemandOnLastAttemptOn the last attempt to request a resource, make a
request for On-Demand Instances rather than Spot
Instances. This ensures that if all previous attempts
have failed, the last attempt is not interrupted in the
middle by changes in the Spot market.

Boolean

workerGroup Field not allowed on this object String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

@failureReason The reason for the resource failure. String

@finishedTime The time at which this object finished its execution. DateTime

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

API Version 2012-10-29
219

AWS Data Pipeline Developer Guide
EmrCluster

Runtime Fields Description Slot Type

@healthStatus The health status of the object which reflects
success or failure of the last object instance that
reached a terminated state.

String

@healthStatusFromInstanceIdId of the last instance object that reached a
terminated state.

String

@healthStatusUpdatedTimeTime at which the health status was updated last
time.

DateTime

hostname The host name of client that picked up the task
attempt.

String

@lastDeactivatedTime The time at which this object was last deactivated. DateTime

@latestCompletedRunTimeTime the latest run for which the execution
completed.

DateTime

@latestRunTime Time the latest run for which the execution was
scheduled.

DateTime

@nextRunTime Time of run to be scheduled next. DateTime

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• EmrActivity (p. 156)

API Version 2012-10-29
220

AWS Data Pipeline Developer Guide
HttpProxy

HttpProxy
HttpProxy allows you to configure your own proxy and make Task Runner access the AWS Data Pipeline
service through it. You do not need to configure a running Task Runner with this information.

Example

The following pipeline definition shows an HttpProxy object:

{
 "objects": [
 {
 "schedule": {
 "ref": "Once"
 },
 "pipelineLogUri": "s3://myDPLogUri/path",
 "name": "Default",
 "id": "Default"
 },
 {
 "name": "test_proxy",
 "hostname": "hostname",
 "port": "port",
 "username": "username",
 "*password": "password",
 "windowsDomain": "windowsDomain",
 "type": "HttpProxy",
 "id": "test_proxy",
 },
 {
 "name": "ShellCommand",
 "id": "ShellCommand",
 "runsOn": {
 "ref": "Resource"
 },
 "type": "ShellCommandActivity",
 "command": "echo 'hello world' "
 },
 {
 "period": "1 day",
 "startDateTime": "2013-03-09T00:00:00",
 "name": "Once",
 "id": "Once",
 "endDateTime": "2013-03-10T00:00:00",
 "type": "Schedule"
 },
 {
 "role": "dataPipelineRole",
 "httpProxy": {
 "ref": "test_proxy"
 },
 "actionOnResourceFailure": "retrynone",
 "maximumRetries": "0",
 "type": "Ec2Resource",
 "terminateAfter": "10 minutes",
 "resourceRole": "resourceRole",
 "name": "Resource",
 "actionOnTaskFailure": "terminate",
 "securityGroups": "securityGroups",
 "keyPair": "keyPair",
 "id": "Resource",
 "region": "us-east-1"
 }

API Version 2012-10-29
221

AWS Data Pipeline Developer Guide
Preconditions

],
 "parameters": []
}

Syntax

Required Fields Description Slot Type

hostname Host of the proxy which clients will use to connect
to AWS Services

String

port Port of the proxy host which the clients will use to
connect to AWS Services

String

Optional Fields Description Slot Type

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

*password Password for proxy String

s3NoProxy Disable the HTTP proxy when connecting to
Amazon S3

Boolean

username Username for proxy String

windowsDomain The Windows domain name for NTLM Proxy. String

windowsWorkgroup The Windows workgroup name for NTLM Proxy. String

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

Preconditions
The following are the AWS Data Pipeline precondition objects:

Objects

• DynamoDBDataExists (p. 223)

API Version 2012-10-29
222

AWS Data Pipeline Developer Guide
DynamoDBDataExists

• DynamoDBTableExists (p. 225)

• Exists (p. 227)

• S3KeyExists (p. 230)

• S3PrefixNotEmpty (p. 232)

• ShellCommandPrecondition (p. 234)

DynamoDBDataExists
A precondition to check that data exists in a DynamoDB table.

Syntax

Required Fields Description Slot Type

role Specifies the role to be used to execute the
precondition.

String

tableName DynamoDB Table to check. String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

preconditionTimeout The period from start after which precondition is
marked as failed if still not satisfied

Period

API Version 2012-10-29
223

AWS Data Pipeline Developer Guide
DynamoDBDataExists

Optional Fields Description Slot Type

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

currentRetryCount Number of times the precondition was tried in this
attempt.

String

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

hostname The host name of client that picked up the task
attempt.

String

lastRetryTime Last time when the precondition was tried within
this attempt.

String

node The node for which this precondition is being
performed

Reference Object,
e.g. "node":
{"ref":"myRunnableObjectId"}

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

API Version 2012-10-29
224

AWS Data Pipeline Developer Guide
DynamoDBTableExists

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

DynamoDBTableExists
A precondition to check that the DynamoDB table exists.

Syntax

Required Fields Description Slot Type

role Specifies the role to be used to execute the
precondition.

String

tableName DynamoDB Table to check. String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

API Version 2012-10-29
225

AWS Data Pipeline Developer Guide
DynamoDBTableExists

Optional Fields Description Slot Type

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

preconditionTimeout The period from start after which precondition is
marked as failed if still not satisfied

Period

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

currentRetryCount Number of times the precondition was tried in this
attempt.

String

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

hostname The host name of client that picked up the task
attempt.

String

API Version 2012-10-29
226

AWS Data Pipeline Developer Guide
Exists

Runtime Fields Description Slot Type

lastRetryTime Last time when the precondition was tried within
this attempt.

String

node The node for which this precondition is being
performed

Reference Object,
e.g. "node":
{"ref":"myRunnableObjectId"}

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

Exists
Checks whether a data node object exists.

Note
We recommend that you use system-managed preconditions instead. For more information, see
Preconditions (p. 7).

Example
The following is an example of this object type. The InputData object references this object, Ready, plus
another object that you'd define in the same pipeline definition file. CopyPeriod is a Schedule object.

{
 "id" : "InputData",
 "type" : "S3DataNode",
 "schedule" : { "ref" : "CopyPeriod" },
 "filePath" : "s3://example-bucket/InputData/#{@scheduledStartTime.format('YYYY-MM-dd-
hh:mm')}.csv",
 "precondition" : { "ref" : "Ready" }
},
{
 "id" : "Ready",
 "type" : "Exists"

API Version 2012-10-29
227

AWS Data Pipeline Developer Guide
Exists

}

Syntax

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

preconditionTimeout The period from start after which precondition is
marked as failed if still not satisfied

Period

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

API Version 2012-10-29
228

AWS Data Pipeline Developer Guide
Exists

Runtime Fields Description Slot Type

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

hostname The host name of client that picked up the task
attempt.

String

node The node for which this precondition is being
performed

Reference Object,
e.g. "node":
{"ref":"myRunnableObjectId"}

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandPrecondition (p. 234)

API Version 2012-10-29
229

AWS Data Pipeline Developer Guide
S3KeyExists

S3KeyExists
Checks whether a key exists in an Amazon S3 data node.

Syntax

Required Fields Description Slot Type

role Specifies the role to be used to execute the
precondition.

String

s3Key Amazon S3 key to check for existence. String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

preconditionTimeout The period from start after which precondition is
marked as failed if still not satisfied

Period

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

API Version 2012-10-29
230

AWS Data Pipeline Developer Guide
S3KeyExists

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

currentRetryCount Number of times the precondition was tried in this
attempt.

String

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

hostname The host name of client that picked up the task
attempt.

String

lastRetryTime Last time when the precondition was tried within
this attempt.

String

node The node for which this precondition is being
performed

Reference Object,
e.g. "node":
{"ref":"myRunnableObjectId"}

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

API Version 2012-10-29
231

AWS Data Pipeline Developer Guide
S3PrefixNotEmpty

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandPrecondition (p. 234)

S3PrefixNotEmpty
A precondition to check that the Amazon S3 objects with the given prefix (represented as a URI) are
present.

Example
The following is an example of this object type using required, optional, and expression fields.

{
 "id" : "InputReady",
 "type" : "S3PrefixNotEmpty",
 "role" : "test-role",
 "s3Prefix" : "#{node.filePath}"
}

Syntax

Required Fields Description Slot Type

role Specifies the role to be used to execute the
precondition.

String

s3Prefix Amazon S3 prefix to check for existence of objects. String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

API Version 2012-10-29
232

AWS Data Pipeline Developer Guide
S3PrefixNotEmpty

Optional Fields Description Slot Type

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

preconditionTimeout The period from start after which precondition is
marked as failed if still not satisfied

Period

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do
not report progres for the specified period may be
considered stalled and so retried.

Period

retryDelay The timeout duration between two retry attempts. Period

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

currentRetryCount Number of times the precondition was tried in this
attempt.

String

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

API Version 2012-10-29
233

AWS Data Pipeline Developer Guide
ShellCommandPrecondition

Runtime Fields Description Slot Type

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

hostname The host name of client that picked up the task
attempt.

String

lastRetryTime Last time when the precondition was tried within
this attempt.

String

node The node for which this precondition is being
performed

Reference Object,
e.g. "node":
{"ref":"myRunnableObjectId"}

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandPrecondition (p. 234)

ShellCommandPrecondition
A Unix/Linux shell command that can be run as a precondition.

Example

The following is an example of this object type.

{
 "id" : "VerifyDataReadiness",
 "type" : "ShellCommandPrecondition",

API Version 2012-10-29
234

AWS Data Pipeline Developer Guide
ShellCommandPrecondition

 "command" : "perl check-data-ready.pl"
}

Syntax

Required Group (One
of the following is
required)

Description Slot Type

command The command to run. This value and any
associated parameters must function in the
environment from which you are running the Task
Runner.

String

scriptUri An Amazon S3 URI path for a file to download
and run as a shell command. Only one scriptUri or
command field should be present. scriptUri cannot
use parameters, use command instead.

String

Optional Fields Description Slot Type

attemptStatus Most recently reported status from the remote
activity.

String

attemptTimeout Timeout for remote work completion. If set then a
remote activity that does not complete within the
set time of starting may be retried.

Period

failureAndRerunMode Describes consumer node behavior when
dependencies fail or are rerun

Enumeration

lateAfterTimeout The elapsed time after pipeline start within which
the object must start.

Period

maximumRetries Maximum number attempt retries on failure Integer

onFail An action to run when current object fails. Reference Object,
e.g. "onFail":
{"ref":"myActionId"}

onLateAction Actions that should be triggered if an object has not
yet been scheduled or still not completed.

Reference Object,
e.g. "onLateAction":
{"ref":"myActionId"}

onSuccess An action to run when current object succeeds. Reference Object,
e.g. "onSuccess":
{"ref":"myActionId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

preconditionTimeout The period from start after which precondition is
marked as failed if still not satisfied

Period

reportProgressTimeout Timeout for remote work successive calls to
reportProgress. If set then remote activities that do

Period

API Version 2012-10-29
235

AWS Data Pipeline Developer Guide
ShellCommandPrecondition

Optional Fields Description Slot Type

not report progres for the specified period may be
considered stalled and so retried.

retryDelay The timeout duration between two retry attempts. Period

scriptArgument Argument to be passed to shell script String

stderr The Amazon S3 path that receives redirected
system error messages from the command. If you
use the runsOn field, this must be an Amazon
S3 path because of the transitory nature of the
resource running your activity. However if you
specify the workerGroup field, a local file path is
permitted.

String

stdout The Amazon S3 path that receives redirected
output from the command. If you use the runsOn
field, this must be an Amazon S3 path because of
the transitory nature of the resource running your
activity. However if you specify the workerGroup
field, a local file path is permitted.

String

Runtime Fields Description Slot Type

@activeInstances List of the currently scheduled active instance
objects.

Reference Object,
e.g. "activeInstances":
{"ref":"myRunnableObjectId"}

@actualEndTime Time when the execution of this object finished. DateTime

@actualStartTime Time when the execution of this object started. DateTime

cancellationReason The cancellationReason if this object was
cancelled.

String

@cascadeFailedOn Description of depedency chain the object failed
on.

Reference Object, e.g.
"cascadeFailedOn":
{"ref":"myRunnableObjectId"}

emrStepLog EMR step logs available only on EMR activity
attempts

String

errorId The errorId if this object failed. String

errorMessage The errorMessage if this object failed. String

errorStackTrace The error stack trace if this object failed. String

hadoopJobLog Hadoop job logs available on attempts for EMR-
based activities.

String

hostname The host name of client that picked up the task
attempt.

String

node The node for which this precondition is being
performed

Reference Object,
e.g. "node":
{"ref":"myRunnableObjectId"}

API Version 2012-10-29
236

AWS Data Pipeline Developer Guide
Databases

Runtime Fields Description Slot Type

reportProgressTime Most recent time that remote activity reported
progress.

DateTime

@scheduledEndTime Schedule end time for object DateTime

@scheduledStartTime Schedule start time for object DateTime

@status The status of this object. String

@version Pipeline version the object was created with. String

@waitingOn Description of list of dependencies this object is
waiting on.

Reference Object,
e.g. "waitingOn":
{"ref":"myRunnableObjectId"}

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• ShellCommandActivity (p. 194)

• Exists (p. 227)

Databases
The following are the AWS Data Pipeline database objects:

Objects

• JdbcDatabase (p. 237)

• RdsDatabase (p. 239)

• RedshiftDatabase (p. 240)

JdbcDatabase
Defines a JDBC database.

Example

The following is an example of this object type.

{

API Version 2012-10-29
237

AWS Data Pipeline Developer Guide
JdbcDatabase

 "id" : "MyJdbcDatabase",
 "type" : "JdbcDatabase",
 "connectionString" : "jdbc:redshift://hostname:portnumber/dbname",
 "jdbcDriverClass" : "com.amazon.redshift.jdbc41.Driver",
 "jdbcDriverJarUri" : "s3://redshift-downloads/drivers/RedshiftJDBC41-1.1.6.1006.jar",
 "username" : "user_name",
 "*password" : "my_password"
}

Syntax

Required Fields Description Slot Type

connectionString The JDBC connection string to access the
database.

String

jdbcDriverClass The driver class to load before establishing the
JDBC connection.

String

*password The password to supply String

username The user name to supply when connecting to the
database

String

Optional Fields Description Slot Type

databaseName Name of the logical database to attach to String

jdbcDriverJarUri The location in Amazon S3 of the JDBC driver JAR
file used to connect to the database. AWS Data
Pipeline must have permission to read this JAR file.

String

jdbcProperties Pairs of the form A=B that will be set as properties
on jdbc connections for this database

String

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

API Version 2012-10-29
238

AWS Data Pipeline Developer Guide
RdsDatabase

RdsDatabase
Defines an Amazon RDS database.

Example

The following is an example of this object type.

{
 "id" : "MyRdsDatabase",
 "type" : "RdsDatabase",
 "region" : "us-east-1",
 "username" : "user_name",
 "*password" : "my_password",
 "rdsInstanceId" : "my_db_instance_identifier"
}

For the Oracle engine, the jdbcDriverJarUri field is required and you can specify the following
driver: http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-
download-1958347.html. For the SQL Server engine, the jdbcDriverJarUri field is required and
you can specify the following driver: https://www.microsoft.com/en-us/download/details.aspx?
displaylang=en&id=11774. For the MySQL and PostgreSQL engines, the jdbcDriverJarUri field is
optional.

Syntax

Required Fields Description Slot Type

*password The password to supply String

rdsInstanceId The identifier of the DB instance. String

username The user name to supply when connecting to the
database

String

Optional Fields Description Slot Type

databaseName Name of the logical database to attach to String

jdbcDriverJarUri The location in Amazon S3 of the JDBC driver JAR
file used to connect to the database. AWS Data
Pipeline must have permission to read this JAR
file. For the MySQL and PostgreSQL engines, the
default driver is used if this field is not specified,
but you can override the default using this field. For
the Oracle and SQL Server engines, this field is
required.

String

jdbcProperties Pairs of the form A=B that will be set as properties
on jdbc connections for this database

String

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

API Version 2012-10-29
239

AWS Data Pipeline Developer Guide
RedshiftDatabase

Optional Fields Description Slot Type

region The code for the region where the database exists.
For example, us-east-1.

String

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

RedshiftDatabase
Defines an Amazon Redshift database. RedshiftDatabase represents the properties of the database used
by your pipeline.

Example

The following is an example of this object type.

{
 "id" : "MyRedshiftDatabase",
 "type" : "RedshiftDatabase",
 "clusterId" : "myRedshiftClusterId",
 "username" : "user_name",
 "*password" : "my_password",
 "databaseName" : "database_name"
}

By default, the object uses the Postgres driver, which requires the clusterId field. To use the Redshift
driver, specify the Redshift database connection string from the Amazon Redshift console (starts with
"jdbc:redshift:") in the connectionString field instead.

Syntax

Required Fields Description Slot Type

*password The password to supply String

username The user name to supply when connecting to the
database

String

API Version 2012-10-29
240

AWS Data Pipeline Developer Guide
Data Formats

Required Group (One
of the following is
required)

Description Slot Type

clusterId The identifier provided by the user when the
Amazon Redshift cluster was created. For
example, if the endpoint for your Amazon
Redshift cluster is mydb.example.us-
east-1.redshift.amazonaws.com, the correct
identifier is mydb. In the Amazon Redshift console,
you can get this value from Cluster Identifier or
Cluster Name.

String

connectionString The JDBC endpoint for connecting to an Amazon
Redshift instance owned by an account different
than the pipeline. Note that you can't specify both
connectionString and clusterId.

String

Optional Fields Description Slot Type

databaseName Name of the logical database to attach to String

jdbcProperties Pairs of the form A=B that will be set as properties
on jdbc connections for this database

String

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

region The code for the region where the database exists.
For example, us-east-1.

Enumeration

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

Data Formats
The following are the AWS Data Pipeline data format objects:

Objects

API Version 2012-10-29
241

AWS Data Pipeline Developer Guide
CSV Data Format

• CSV Data Format (p. 242)

• Custom Data Format (p. 243)

• DynamoDBDataFormat (p. 244)

• DynamoDBExportDataFormat (p. 246)

• RegEx Data Format (p. 247)

• TSV Data Format (p. 249)

CSV Data Format
A comma-delimited data format where the column separator is a comma and the record separator is a
newline character.

Example
The following is an example of this object type.

{
 "id" : "MyOutputDataType",
 "type" : "CSV",
 "column" : [
 "Name STRING",
 "Score INT",
 "DateOfBirth TIMESTAMP"
]
}

Syntax

Optional Fields Description Slot Type

column Column name with datatype specified by each
field for the data described by this data node. Ex:
hostname STRING For multiple values, use column
names and data types separated by a space.

String

escapeChar A character, for example "\", that instructs the
parser to ignore the next character.

String

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

API Version 2012-10-29
242

AWS Data Pipeline Developer Guide
Custom Data Format

System Fields Description Slot Type

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

Custom Data Format
A custom data format defined by a combination of a certain column separator, record separator, and
escape character.

Example
The following is an example of this object type.

{
 "id" : "MyOutputDataType",
 "type" : "Custom",
 "columnSeparator" : ",",
 "recordSeparator" : "\n",
 "column" : [
 "Name STRING",
 "Score INT",
 "DateOfBirth TIMESTAMP"
]
}

Syntax

Required Fields Description Slot Type

columnSeparator A character that indicates the end of a column in a
data file.

String

Optional Fields Description Slot Type

column Column name with datatype specified by each
field for the data described by this data node. Ex:
hostname STRING For multiple values, use column
names and data types separated by a space.

String

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

recordSeparator A character that indicates the end of a row in a data
file, for example "\n". Only single characters are
supported.

String

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

API Version 2012-10-29
243

AWS Data Pipeline Developer Guide
DynamoDBDataFormat

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

DynamoDBDataFormat
Applies a schema to a DynamoDB table to make it accessible by a Hive query. DynamoDBDataFormat is
used with a HiveActivity object and a DynamoDBDataNode input and output. DynamoDBDataFormat requires
that you specify all columns in your Hive query. For more flexibility to specify certain columns in a Hive
query or Amazon S3 support, see DynamoDBExportDataFormat (p. 246).

Note
DynamoDB Boolean types are not mapped to Hive Boolean types. However, it is possible to map
DynamoDB integer values of 0 or 1 to Hive Boolean types.

Example

The following example shows how to use DynamoDBDataFormat to assign a schema to a DynamoDBDataNode
input, which allows a HiveActivity object to access the data by named columns and copy the data to a
DynamoDBDataNode output.

{
 "objects": [
 {
 "id" : "Exists.1",
 "name" : "Exists.1",
 "type" : "Exists"
 },
 {
 "id" : "DataFormat.1",
 "name" : "DataFormat.1",
 "type" : "DynamoDBDataFormat",
 "column" : [
 "hash STRING",
 "range STRING"
]
 },
 {
 "id" : "DynamoDBDataNode.1",
 "name" : "DynamoDBDataNode.1",
 "type" : "DynamoDBDataNode",
 "tableName" : "$INPUT_TABLE_NAME",
 "schedule" : { "ref" : "ResourcePeriod" },
 "dataFormat" : { "ref" : "DataFormat.1" }
 },
 {
 "id" : "DynamoDBDataNode.2",
 "name" : "DynamoDBDataNode.2",
 "type" : "DynamoDBDataNode",
 "tableName" : "$OUTPUT_TABLE_NAME",
 "schedule" : { "ref" : "ResourcePeriod" },
 "dataFormat" : { "ref" : "DataFormat.1" }
 },

API Version 2012-10-29
244

AWS Data Pipeline Developer Guide
DynamoDBDataFormat

 {
 "id" : "EmrCluster.1",
 "name" : "EmrCluster.1",
 "type" : "EmrCluster",
 "schedule" : { "ref" : "ResourcePeriod" },
 "masterInstanceType" : "m1.small",
 "keyPair" : "$KEYPAIR"
 },
 {
 "id" : "HiveActivity.1",
 "name" : "HiveActivity.1",
 "type" : "HiveActivity",
 "input" : { "ref" : "DynamoDBDataNode.1" },
 "output" : { "ref" : "DynamoDBDataNode.2" },
 "schedule" : { "ref" : "ResourcePeriod" },
 "runsOn" : { "ref" : "EmrCluster.1" },
 "hiveScript" : "insert overwrite table ${output1} select * from ${input1} ;"
 },
 {
 "id" : "ResourcePeriod",
 "name" : "ResourcePeriod",
 "type" : "Schedule",
 "period" : "1 day",
 "startDateTime" : "2012-05-04T00:00:00",
 "endDateTime" : "2012-05-05T00:00:00"
 }
]
}

Syntax

Optional Fields Description Slot Type

column Column name with datatype specified by each
field for the data described by this data node. Ex:
hostname STRING For multiple values, use column
names and data types separated by a space.

String

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

API Version 2012-10-29
245

AWS Data Pipeline Developer Guide
DynamoDBExportDataFormat

DynamoDBExportDataFormat
Applies a schema to an DynamoDB table to make it accessible by a Hive query. Use
DynamoDBExportDataFormat with a HiveCopyActivity object and DynamoDBDataNode or S3DataNode input
and output. DynamoDBExportDataFormat has the following benefits:

• Provides both DynamoDB and Amazon S3 support

• Allows you to filter data by certain columns in your Hive query

• Exports all attributes from DynamoDB even if you have a sparse schema

Note
DynamoDB Boolean types are not mapped to Hive Boolean types. However, it is possible to map
DynamoDB integer values of 0 or 1 to Hive Boolean types.

Example

The following example shows how to use HiveCopyActivity and DynamoDBExportDataFormat to copy data
from one DynamoDBDataNode to another, while filtering based on a time stamp.

{
 "objects": [
 {
 "id" : "DataFormat.1",
 "name" : "DataFormat.1",
 "type" : "DynamoDBExportDataFormat",
 "column" : "timeStamp BIGINT"
 },
 {
 "id" : "DataFormat.2",
 "name" : "DataFormat.2",
 "type" : "DynamoDBExportDataFormat"
 },
 {
 "id" : "DynamoDBDataNode.1",
 "name" : "DynamoDBDataNode.1",
 "type" : "DynamoDBDataNode",
 "tableName" : "item_mapped_table_restore_temp",
 "schedule" : { "ref" : "ResourcePeriod" },
 "dataFormat" : { "ref" : "DataFormat.1" }
 },
 {
 "id" : "DynamoDBDataNode.2",
 "name" : "DynamoDBDataNode.2",
 "type" : "DynamoDBDataNode",
 "tableName" : "restore_table",
 "region" : "us_west_1",
 "schedule" : { "ref" : "ResourcePeriod" },
 "dataFormat" : { "ref" : "DataFormat.2" }
 },
 {
 "id" : "EmrCluster.1",
 "name" : "EmrCluster.1",
 "type" : "EmrCluster",
 "schedule" : { "ref" : "ResourcePeriod" },
 "masterInstanceType" : "m1.xlarge",
 "coreInstanceCount" : "4"
 },
 {
 "id" : "HiveTransform.1",
 "name" : "Hive Copy Transform.1",

API Version 2012-10-29
246

AWS Data Pipeline Developer Guide
RegEx Data Format

 "type" : "HiveCopyActivity",
 "input" : { "ref" : "DynamoDBDataNode.1" },
 "output" : { "ref" : "DynamoDBDataNode.2" },
 "schedule" : { "ref" : "ResourcePeriod" },
 "runsOn" : { "ref" : "EmrCluster.1" },
 "filterSql" : "`timeStamp` > unix_timestamp(\"#{@scheduledStartTime}\", \"yyyy-MM-
dd'T'HH:mm:ss\")"
 },
 {
 "id" : "ResourcePeriod",
 "name" : "ResourcePeriod",
 "type" : "Schedule",
 "period" : "1 Hour",
 "startDateTime" : "2013-06-04T00:00:00",
 "endDateTime" : "2013-06-04T01:00:00"
 }
]
}

Syntax

Optional Fields Description Slot Type

column Column name with datatype specified by each
field for the data described by this data node. Ex:
hostname STRING

String

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

RegEx Data Format
A custom data format defined by a regular expression.

Example

The following is an example of this object type.

API Version 2012-10-29
247

AWS Data Pipeline Developer Guide
RegEx Data Format

{
 "id" : "MyInputDataType",
 "type" : "RegEx",
 "inputRegEx" : "([^]*) ([^]*) ([^]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*)
 (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^ \"]*|\"[^\"]*\"))?",
 "outputFormat" : "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s",
 "column" : [
 "host STRING",
 "identity STRING",
 "user STRING",
 "time STRING",
 "request STRING",
 "status STRING",
 "size STRING",
 "referer STRING",
 "agent STRING"
]
}

Syntax

Optional Fields Description Slot Type

column Column name with datatype specified by each
field for the data described by this data node. Ex:
hostname STRING For multiple values, use column
names and data types separated by a space.

String

inputRegEx The regular expression to parse an S3 input file.
inputRegEx provides a way to retrieve columns
from relatively unstructured data in a file.

String

outputFormat The column fields retrieved by inputRegEx, but
referenced as %1$s %2$s using Java formatter
syntax.

String

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

API Version 2012-10-29
248

AWS Data Pipeline Developer Guide
TSV Data Format

TSV Data Format
A comma-delimited data format where the column separator is a tab character and the record separator is a
newline character.

Example

The following is an example of this object type.

{
 "id" : "MyOutputDataType",
 "type" : "TSV",
 "column" : [
 "Name STRING",
 "Score INT",
 "DateOfBirth TIMESTAMP"
]
}

Syntax

Optional Fields Description Slot Type

column Column name and datatype for the data described
by this data node. For example "Name STRING"
denotes a column named Name with fields of
datatype STRING. Separate multiple column name
and datatype pairs with commas (as shown in the
example).

String

columnSeparator The character that separates fields in one column
from fields in the next column. Defaults to '\t'.

String

escapeChar A character, for example "\", that instructs the
parser to ignore the next character.

String

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

recordSeparator The character that separates records. Defaults to
'\n'.

String

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

API Version 2012-10-29
249

AWS Data Pipeline Developer Guide
Actions

System Fields Description Slot Type

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

Actions
The following are the AWS Data Pipeline action objects:

Objects

• SnsAlarm (p. 250)

• Terminate (p. 251)

SnsAlarm
Sends an Amazon SNS notification message when an activity fails or finishes successfully.

Example
The following is an example of this object type. The values for node.input and node.output come from the
data node or activity that references this object in its onSuccess field.

{
 "id" : "SuccessNotify",
 "name" : "SuccessNotify",
 "type" : "SnsAlarm",
 "topicArn" : "arn:aws:sns:us-east-1:28619EXAMPLE:ExampleTopic",
 "subject" : "COPY SUCCESS: #{node.@scheduledStartTime}",
 "message" : "Files were copied from #{node.input} to #{node.output}."
}

Syntax

Required Fields Description Slot Type

message The body text of the Amazon SNS notification. String

role The IAM role to use to create the Amazon SNS
alarm.

String

subject The subject line of the Amazon SNS notification
message.

String

topicArn The destination Amazon SNS topic ARN for the
message.

String

Optional Fields Description Slot Type

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

API Version 2012-10-29
250

AWS Data Pipeline Developer Guide
Terminate

Runtime Fields Description Slot Type

node The node for which this action is being performed Reference Object,
e.g. "node":
{"ref":"myRunnableObjectId"}

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

Terminate
An action to trigger the cancellation of a pending or unfinished activity, resource, or data node. AWS Data
Pipeline attempts to put the activity, resource, or data node into the CANCELLED state if it does not start by
the lateAfterTimeout value.

Example

The following is an example of this object type. In this example, the onLateAction field of MyActivity
contains a reference to the action DefaultAction1. When you provide an action for onLateAction, you
must also provide a lateAfterTimeout value to indicate the period of time since the scheduled start of the
pipeline after which the activity is considered late.

{
 "name" : "MyActivity",
 "id" : "DefaultActivity1",
 "schedule" : {
 "ref" : "MySchedule"
 },
 "runsOn" : {
 "ref" : "MyEmrCluster"
 },
 "lateAfterTimeout" : "1 Hours",
 "type" : "EmrActivity",
 "onLateAction" : {
 "ref" : "DefaultAction1"
 },
 "step" : [
 "s3://myBucket/myPath/myStep.jar,firstArg,secondArg",
 "s3://myBucket/myPath/myOtherStep.jar,anotherArg"
]
},
{
 "name" : "TerminateTasks",
 "id" : "DefaultAction1",
 "type" : "Terminate"
}

API Version 2012-10-29
251

AWS Data Pipeline Developer Guide
Schedule

Syntax

Optional Fields Description Slot Type

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

Runtime Fields Description Slot Type

node The node for which this action is being performed Reference Object,
e.g. "node":
{"ref":"myRunnableObjectId"}

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

Schedule
Defines the timing of a scheduled event, such as when an activity runs.

Note
When a schedule's start time is in the past, AWS Data Pipeline backfills your pipeline and begins
scheduling runs immediately beginning at the specified start time. For testing/development, use
a relatively short interval. Otherwise, AWS Data Pipeline attempts to queue and schedule all runs
of your pipeline for that interval. AWS Data Pipeline attempts to prevent accidental backfills if the
pipeline component scheduledStartTime is earlier than 1 day ago by blocking pipeline activation.

Examples
The following is an example of this object type. It defines a schedule of every hour starting at 00:00:00
hours on 2012-09-01 and ending at 00:00:00 hours on 2012-10-01. The first period ends at 01:00:00 on
2012-09-01.

{
 "id" : "Hourly",
 "type" : "Schedule",
 "period" : "1 hours",
 "startDateTime" : "2012-09-01T00:00:00",
 "endDateTime" : "2012-10-01T00:00:00"
}

The following pipeline will start at the FIRST_ACTIVATION_DATE_TIME and run every hour until 22:00:00
hours on 2014-04-25.

API Version 2012-10-29
252

AWS Data Pipeline Developer Guide
Examples

{
 "id": "SchedulePeriod",
 "name": "SchedulePeriod",
 "startAt": "FIRST_ACTIVATION_DATE_TIME",
 "period": "1 hours",
 "type": "Schedule",
 "endDateTime": "2014-04-25T22:00:00"
 }

The following pipeline will start at the FIRST_ACTIVATION_DATE_TIME and run every hour and complete after
three occurrences.

{
 "id": "SchedulePeriod",
 "name": "SchedulePeriod",
 "startAt": "FIRST_ACTIVATION_DATE_TIME",
 "period": "1 hours",
 "type": "Schedule",
 "occurrences": "3"
 }

The following pipeline will start at 22:00:00 on 2014-04-25, run hourly, and end after three occurrences.

{
 "id": "SchedulePeriod",
 "name": "SchedulePeriod",
 "startDateTime": "2014-04-25T22:00:00",
 "period": "1 hours",
 "type": "Schedule",
 "occurrences": "3"
 }

On-demand using the Default object

{
 "name": "Default",
 "resourceRole": "DataPipelineDefaultResourceRole",
 "role": "DataPipelineDefaultRole",
 "scheduleType": "ondemand"
}

The following examples demonstrate how a Schedule can be inherited from the default object, be explicitly
set for that object, or be given by a parent reference:

Schedule inherited from Default object

{
 "objects": [
 {
 "id": "Default",
 "failureAndRerunMode":"cascade",
 "resourceRole": "DataPipelineDefaultResourceRole",
 "role": "DataPipelineDefaultRole",
 "pipelineLogUri": "s3://myLogsbucket",
 "scheduleType": "cron",
 "schedule": {
 "ref": "DefaultSchedule"
 }
 },
 {
 "type": "Schedule",

API Version 2012-10-29
253

AWS Data Pipeline Developer Guide
Examples

 "id": "DefaultSchedule",
 "occurrences": "1",
 "period": "1 Day",
 "startAt": "FIRST_ACTIVATION_DATE_TIME"
 },
 {
 "id": "A_Fresh_NewEC2Instance",
 "type": "Ec2Resource",
 "terminateAfter": "1 Hour"
 },
 {
 "id": "ShellCommandActivity_HelloWorld",
 "runsOn": {
 "ref": "A_Fresh_NewEC2Instance"
 },
 "type": "ShellCommandActivity",
 "command": "echo 'Hello World!'"
 }
]
}

Explicit schedule on the object

{
 "objects": [
 {
 "id": "Default",
 "failureAndRerunMode":"cascade",
 "resourceRole": "DataPipelineDefaultResourceRole",
 "role": "DataPipelineDefaultRole",
 "pipelineLogUri": "s3://myLogsbucket",
 "scheduleType": "cron"

 },
 {
 "type": "Schedule",
 "id": "DefaultSchedule",
 "occurrences": "1",
 "period": "1 Day",
 "startAt": "FIRST_ACTIVATION_DATE_TIME"
 },
 {
 "id": "A_Fresh_NewEC2Instance",
 "type": "Ec2Resource",
 "terminateAfter": "1 Hour"
 },
 {
 "id": "ShellCommandActivity_HelloWorld",
 "runsOn": {
 "ref": "A_Fresh_NewEC2Instance"
 },
 "schedule": {
 "ref": "DefaultSchedule"
 },
 "type": "ShellCommandActivity",
 "command": "echo 'Hello World!'"
 }
]
}

Schedule from Parent reference

{

API Version 2012-10-29
254

AWS Data Pipeline Developer Guide
Syntax

 "objects": [
 {
 "id": "Default",
 "failureAndRerunMode":"cascade",
 "resourceRole": "DataPipelineDefaultResourceRole",
 "role": "DataPipelineDefaultRole",
 "pipelineLogUri": "s3://myLogsbucket",
 "scheduleType": "cron"

 },
 {
 "id": "parent1",
 "schedule": {
 "ref": "DefaultSchedule"
 }

 },
 {
 "type": "Schedule",
 "id": "DefaultSchedule",
 "occurrences": "1",
 "period": "1 Day",
 "startAt": "FIRST_ACTIVATION_DATE_TIME"
 },
 {
 "id": "A_Fresh_NewEC2Instance",
 "type": "Ec2Resource",
 "terminateAfter": "1 Hour"
 },
 {
 "id": "ShellCommandActivity_HelloWorld",
 "runsOn": {
 "ref": "A_Fresh_NewEC2Instance"
 },
 "parent": {
 "ref": "parent1"
 },
 "type": "ShellCommandActivity",
 "command": "echo 'Hello World!'"
 }
]
}

Syntax

Required Fields Description Slot Type

period How often the pipeline should run. The format is "N
[minutes|hours|days|weeks|months]", where N is a
number followed by one of the time specifiers. For
example, "15 minutes", runs the pipeline every 15
minutes. The minimum period is 15 minutes and
the maximum period is 3 years.

Period

API Version 2012-10-29
255

AWS Data Pipeline Developer Guide
Utilities

Required Group (One
of the following is
required)

Description Slot Type

startAt The date and time at which to start the
scheduled pipeline runs. Valid value is
FIRST_ACTIVATION_DATE_TIME, which is
deprecated in favor of creating an on-demand
pipeline.

Enumeration

startDateTime The date and time to start the scheduled runs. You
must use either startDateTime or startAt but not
both.

DateTime

Optional Fields Description Slot Type

endDateTime The date and time to end the scheduled runs.
Must be a date and time later than the value of
startDateTime or startAt. The default behavior is to
schedule runs until the pipeline is shut down.

DateTime

occurrences The number of times to execute the pipeline after
it's activated. You can't use occurrences with
endDateTime.

Integer

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@firstActivationTime The time of object creation. DateTime

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

Utilities
The following utility objects configure other pipeline objects:

Topics

API Version 2012-10-29
256

AWS Data Pipeline Developer Guide
ShellScriptConfig

• ShellScriptConfig (p. 257)

• EmrConfiguration (p. 258)

• Property (p. 261)

ShellScriptConfig
Use with an Activity to run a shell script for preActivityTaskConfig and postActivityTaskConfig. This
object is available for HadoopActivity (p. 162), HiveActivity (p. 168), HiveCopyActivity (p. 174), and
PigActivity (p. 179). You specify an S3 URI and a list of arguments for the script.

Example

A ShellScriptConfig with arguments:

{
 "id" : "ShellScriptConfig_1”,
 "name" : “prescript”,
 "type" : "ShellScriptConfig",
 "scriptUri": “s3://my-bucket/shell-cleanup.sh”,
 "scriptArgument" : ["arg1","arg2"]
 }

Syntax

This object includes the following fields.

Optional Fields Description Slot Type

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

scriptArgument A list of argument(s) to use with the shell script. String

scriptUri The script URI in Amazon S3 that should be
downloaded and run.

String

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

API Version 2012-10-29
257

AWS Data Pipeline Developer Guide
EmrConfiguration

EmrConfiguration
The EmrConfiguration object is the configuration used for EMR clusters with releases 4.0.0 or greater.
Configurations (as a list) is a parameter to the RunJobFlow API call. The configuration API for Amazon
EMR takes a classification and properties. AWS Data Pipeline uses EmrConfiguration with corresponding
Property objects to configure an EmrCluster (p. 210) application such as Hadoop, Hive, Spark, or Pig
on EMR clusters launched in a pipeline execution. Because configuration can only be changed for new
clusters, you cannot provide a EmrConfiguration object for existing resources. For more information, see
http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/.

Example

The following configuration object sets the io.file.buffer.size and fs.s3.block.size properties in
core-site.xml:

[
 {
 "classification":"core-site",
 "properties":
 {
 "io.file.buffer.size": "4096",
 "fs.s3.block.size": "67108864"
 }
 }
]

The corresponding pipeline object definition uses a EmrConfiguration object and a list of Property objects in
the property field:

{
 "objects": [
 {
 "name": "ReleaseLabelCluster",
 "releaseLabel": "emr-4.1.0",
 "applications": ["spark", "hive", "pig"],
 "id": "ResourceId_I1mCc",
 "type": "EmrCluster",
 "configuration": {
 "ref": "coresite"
 }
 },
 {
 "name": "coresite",
 "id": "coresite",
 "type": "EmrConfiguration",
 "classification": "core-site",
 "property": [{
 "ref": "io-file-buffer-size"
 },
 {
 "ref": "fs-s3-block-size"
 }
]
 },
 {
 "name": "io-file-buffer-size",
 "id": "io-file-buffer-size",
 "type": "Property",
 "key": "io.file.buffer.size",
 "value": "4096"

API Version 2012-10-29
258

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/

AWS Data Pipeline Developer Guide
EmrConfiguration

 },
 {
 "name": "fs-s3-block-size",
 "id": "fs-s3-block-size",
 "type": "Property",
 "key": "fs.s3.block.size",
 "value": "67108864"
 }
]
}

The following example is a nested configuration used to set the Hadoop environment with the hadoop-env
classfication:

[
 {
 "classification": "hadoop-env",
 "properties": {},
 "configurations": [
 {
 "classification": "export",
 "properties": {
 "YARN_PROXYSERVER_HEAPSIZE": "2396"
 }
 }
]
 }
]

The corresponding pipeline definition object that uses this configuration is below:

{
 "objects": [
 {
 "name": "ReleaseLabelCluster",
 "releaseLabel": "emr-4.0.0",
 "applications": ["spark", "hive", "pig"],
 "id": "ResourceId_I1mCc",
 "type": "EmrCluster",
 "configuration": {
 "ref": "hadoop-env"
 }
 },
 {
 "name": "hadoop-env",
 "id": "hadoop-env",
 "type": "EmrConfiguration",
 "classification": "hadoop-env",
 "configuration": {
 "ref": "export"
 }
 },
 {
 "name": "export",
 "id": "export",
 "type": "EmrConfiguration",
 "classification": "export",
 "property": {
 "ref": "yarn-proxyserver-heapsize"
 }
 },
 {
 "name": "yarn-proxyserver-heapsize",

API Version 2012-10-29
259

AWS Data Pipeline Developer Guide
EmrConfiguration

 "id": "yarn-proxyserver-heapsize",
 "type": "Property",
 "key": "YARN_PROXYSERVER_HEAPSIZE",
 "value": "2396"
 },
]
}

Syntax

This object includes the following fields.

Required Fields Description Slot Type

classification classification for the configuration String

Optional Fields Description Slot Type

configuration sub-configuration for this configuration Reference Object,
e.g. "configuration":
{"ref":"myEmrConfigurationId"}

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

property configuration property Reference Object,
e.g. "property":
{"ref":"myPropertyId"}

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• EmrCluster (p. 210)

• Property (p. 261)

• Amazon EMR Release Guide

API Version 2012-10-29
260

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/

AWS Data Pipeline Developer Guide
Property

Property
A single key-value property for use with an EmrConfiguration object.

Example

The following pipeline definition shows an EmrConfiguration object and corresponding Property objects to
launch an EmrCluster:

{
 "objects": [
 {
 "name": "ReleaseLabelCluster",
 "releaseLabel": "emr-4.1.0",
 "applications": ["spark", "hive", "pig"],
 "id": "ResourceId_I1mCc",
 "type": "EmrCluster",
 "configuration": {
 "ref": "coresite"
 }
 },
 {
 "name": "coresite",
 "id": "coresite",
 "type": "EmrConfiguration",
 "classification": "core-site",
 "property": [{
 "ref": "io-file-buffer-size"
 },
 {
 "ref": "fs-s3-block-size"
 }
]
 },
 {
 "name": "io-file-buffer-size",
 "id": "io-file-buffer-size",
 "type": "Property",
 "key": "io.file.buffer.size",
 "value": "4096"
 },
 {
 "name": "fs-s3-block-size",
 "id": "fs-s3-block-size",
 "type": "Property",
 "key": "fs.s3.block.size",
 "value": "67108864"
 }
]
}

Syntax

This object includes the following fields.

Required Fields Description Slot Type

key key String

value value String

API Version 2012-10-29
261

AWS Data Pipeline Developer Guide
Property

Optional Fields Description Slot Type

parent Parent of the current object from which slots will be
inherited.

Reference Object,
e.g. "parent":
{"ref":"myBaseObjectId"}

Runtime Fields Description Slot Type

@version Pipeline version the object was created with. String

System Fields Description Slot Type

@error Error describing the ill-formed object String

@pipelineId Id of the pipeline to which this object belongs to String

@sphere The sphere of an object denotes its place in the
lifecycle: Component Objects give rise to Instance
Objects which execute Attempt Objects

String

See Also

• EmrCluster (p. 210)

• EmrConfiguration (p. 258)

• Amazon EMR Release Guide

API Version 2012-10-29
262

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/

AWS Data Pipeline Developer Guide
Task Runner on AWS Data Pipeline-Managed Resources

Working with Task Runner

Task Runner is a task agent application that polls AWS Data Pipeline for scheduled tasks and executes
them on Amazon EC2 instances, Amazon EMR clusters, or other computational resources, reporting status
as it does so. Depending on your application, you may choose to:

• Allow AWS Data Pipeline to install and manage one or more Task Runner applications for you. When a
pipeline is activated, the default Ec2Instance or EmrCluster object referenced by an activity runsOn field
is automatically created. AWS Data Pipeline takes care of installing Task Runner on an EC2 instance or
on the master node of an EMR cluster. In this pattern, AWS Data Pipeline can do most of the instance or
cluster management for you.

• Run all or parts of a pipeline on resources that you manage. The potential resources include a long-
running Amazon EC2 instance, an Amazon EMR cluster, or a physical server. You can install a task
runner (which can be either Task Runner or a custom task agent of your own devise) almost anywhere,
provided that it can communicate with the AWS Data Pipeline web service. In this pattern, you assume
almost complete control over which resources are used and how they are managed, and you must
manually install and configure Task Runner. To do so, use the procedures in this section, as described in
Executing Work on Existing Resources Using Task Runner (p. 264).

Task Runner on AWS Data Pipeline-Managed
Resources

When a resource is launched and managed by AWS Data Pipeline, the web service automatically installs
Task Runner on that resource to process tasks in the pipeline. You specify a computational resource (either
an Amazon EC2 instance or an Amazon EMR cluster) for the runsOn field of an activity object. When AWS
Data Pipeline launches this resource, it installs Task Runner on that resource and configures it to process
all activity objects that have their runsOn field set to that resource. When AWS Data Pipeline terminates the
resource, the Task Runner logs are published to an Amazon S3 location before it shuts down.

For example, if you use the EmrActivity in a pipeline, and specify an EmrCluster resource in the runsOn
field. When AWS Data Pipeline processes that activity, it launches an Amazon EMR cluster and installs
Task Runner onto the master node. This Task Runner then processes the tasks for activities that have
their runsOn field set to that EmrCluster object. The following excerpt from a pipeline definition shows this
relationship between the two objects.

{
 "id" : "MyEmrActivity",
 "name" : "Work to perform on my data",
 "type" : "EmrActivity",
 "runsOn" : {"ref" : "MyEmrCluster"},

API Version 2012-10-29
263

AWS Data Pipeline Developer Guide
Executing Work on Existing Resources Using Task Runner

 "preStepCommand" : "scp remoteFiles localFiles",
 "step" : "s3://myBucket/myPath/myStep.jar,firstArg,secondArg",
 "step" : "s3://myBucket/myPath/myOtherStep.jar,anotherArg",
 "postStepCommand" : "scp localFiles remoteFiles",
 "input" : {"ref" : "MyS3Input"},
 "output" : {"ref" : "MyS3Output"}
},
{
 "id" : "MyEmrCluster",
 "name" : "EMR cluster to perform the work",
 "type" : "EmrCluster",
 "hadoopVersion" : "0.20",
 "keypair" : "myKeyPair",
 "masterInstanceType" : "m1.xlarge",
 "coreInstanceType" : "m1.small",
 "coreInstanceCount" : "10",
 "taskInstanceType" : "m1.small",
 "taskInstanceCount": "10",
 "bootstrapAction" : "s3://elasticmapreduce/libs/ba/configure-hadoop,arg1,arg2,arg3",
 "bootstrapAction" : "s3://elasticmapreduce/libs/ba/configure-other-stuff,arg1,arg2"
}

If you have multiple AWS Data Pipeline-managed resources in a pipeline, Task Runner is installed on each
of them, and they all poll AWS Data Pipeline for tasks to process.

Executing Work on Existing Resources Using Task
Runner

You can install Task Runner on computational resources that you manage, such as an Amazon EC2
instance, or a physical server or workstation. Task Runner can be installed anywhere, on any compatible
hardware or operating system, provided that it can communicate with the AWS Data Pipeline web service.

This approach can be useful when, for example, you want to use AWS Data Pipeline to process data that
is stored inside your organization’s firewall. By installing Task Runner on a server in the local network, you
can access the local database securely and then poll AWS Data Pipeline for the next task to run. When
AWS Data Pipeline ends processing or deletes the pipeline, the Task Runner instance remains running on
your computational resource until you manually shut it down. The Task Runner logs persist after pipeline
execution is complete.

To use Task Runner on a resource that you manage, you must first download Task Runner, and then install
it on your computational resource, using the procedures in this section.

Note
You can only install Task Runner on Linux, UNIX, or Mac OS. Task Runner is not supported on the
Windows operating system.

To connect a Task Runner that you've installed to the pipeline activities it should process, add a
workerGroup field to the object, and configure Task Runner to poll for that worker group value. You do this
by passing the worker group string as a parameter (for example, --workerGroup=wg-12345) when you run
the Task Runner JAR file.

{
 "id" : "CreateDirectory",
 "type" : "ShellCommandActivity",
 "workerGroup" : "wg-12345",
 "command" : "mkdir new-directory"
}

API Version 2012-10-29
264

AWS Data Pipeline Developer Guide
Installing Task Runner

Installing Task Runner
This section explains how to install and configure Task Runner and its prerequisites. Installation is a
straightforward manual process.

To install Task Runner

1. Task Runner requires Java version 1.6 or later. To determine whether Java is installed, and the version
that is running, use the following command:

java -version

If you do not have Java 1.6 or later installed on your computer, you can download the latest version
from http://www.oracle.com/technetwork/java/index.html. Download and install Java, and then proceed
to the next step.

2. Download TaskRunner-1.0.jar from https://s3.amazonaws.com/datapipeline-us-east-1/us-east-1/
software/latest/TaskRunner/TaskRunner-1.0.jar and then copy it into a folder on the target computing
resource. For Amazon EMR clusters running EmrActivity tasks, you will install Task Runner on
the master node of the cluster. Additionally, download mysql-connector-java-bin.jar from http://
s3.amazonaws.com/datapipeline-prod-us-east-1/software/latest/TaskRunner/mysql-connector-java-
bin.jar and copy it into the same folder where you install Task Runner.

3. Task Runner needs to connect to the AWS Data Pipeline web service to process your commands.
In this step, you will configure Task Runner with an AWS account that has permissions to create or
manage data pipelines.

Create a JSON file named credentials.json (you can use a different name if you prefer),
which specifies an access key ID and secret access key using the format { "accessKeyId":
MyAccessKeyID, "secretAccessKey": MySecretAccessKey } . Copy the file to the directory where
you installed Task Runner.

For CLI access, you need an access key ID and secret access key. For more information about
creating access keys, see How Do I Get Security Credentials? in the AWS General Reference.

4. Task Runner connects to the AWS Data Pipeline web service using HTTPS. If you are using an AWS
resource, ensure that HTTPS is enabled in the appropriate routing table and subnet ACL. If you are
using a firewall or proxy, ensure that port 443 is open.

(Optional) Granting Task Runner Access to Amazon
RDS
Amazon RDS allows you to control access to your DB instances using database security groups (DB
security groups). A DB security group acts like a firewall controlling network access to your DB instance.
By default, network access is turned off for your DB instances. You must modify your DB security groups
to let Task Runner access your Amazon RDS instances. Task Runner gains Amazon RDS access from the
instance on which it runs, so the accounts and security groups that you add to your Amazon RDS instance
depend on where you install Task Runner.

To grant access to Task Runner in EC2-Classic

1. Open the Amazon RDS console.

2. In the navigation pane, select Instances, and then select your DB instance.

3. Under Security and Network, click the security group, which opens the Security Groups page with
this DB security group selected. Click the details icon for the DB security group.

API Version 2012-10-29
265

http://www.oracle.com/technetwork/java/index.html
https://s3.amazonaws.com/datapipeline-us-east-1/us-east-1/software/latest/TaskRunner/TaskRunner-1.0.jar
https://s3.amazonaws.com/datapipeline-us-east-1/us-east-1/software/latest/TaskRunner/TaskRunner-1.0.jar
http://s3.amazonaws.com/datapipeline-prod-us-east-1/software/latest/TaskRunner/mysql-connector-java-bin.jar
http://s3.amazonaws.com/datapipeline-prod-us-east-1/software/latest/TaskRunner/mysql-connector-java-bin.jar
http://s3.amazonaws.com/datapipeline-prod-us-east-1/software/latest/TaskRunner/mysql-connector-java-bin.jar
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

AWS Data Pipeline Developer Guide
Starting Task Runner

4. Under Security Group Details, create a rule with the appropriate Connection Type and Details.
These fields depend on where Task Runner is running, as described here:

• Ec2Resource

• Connection Type: EC2 Security Group

Details: my-security-group-name (the name of the security group you created for the EC2
instance)

• EmrResource

• Connection Type: EC2 Security Group

Details: ElasticMapReduce-master

• Connection Type: EC2 Security Group

Details: ElasticMapReduce-slave

• Your local environment (on-premises)

• Connection Type: CIDR/IP:

Details: my-ip-address (the IP address of your computer or the IP address range of your network,
if your computer is behind a firewall)

5. Click Add.

To grant access to Task Runner in EC2-VPC

1. Open the Amazon RDS console.

2. In the navigation pane, click Instances.

3. Click the details icon for the DB instance. Under Security and Network, click the link to the security
group, which takes you to the Amazon EC2 console. If you're using the old console design for security
groups, switch to the new console design by clicking the icon that's displayed at the top of the console
page.

4. From the Inbound tab, click Edit and then click Add Rule. Specify the database port that you used
when you launched the DB instance. The source depends on where Task Runner is running, as
described here:

• Ec2Resource

• my-security-group-id (the ID of the security group you created for the EC2 instance)

• EmrResource

• master-security-group-id (the ID of the ElasticMapReduce-master security group)

• slave-security-group-id (the ID of the ElasticMapReduce-slave security group)

• Your local environment (on-premises)

• ip-address (the IP address of your computer or the IP address range of your network, if your
computer is behind a firewall)

5. Click Save.

Starting Task Runner
In a new command prompt window that is set to the directory where you installed Task Runner, start Task
Runner with the following command.

java -jar TaskRunner-1.0.jar --config ~/credentials.json --workerGroup=myWorkerGroup --
region=MyRegion --logUri=s3://mybucket/foldername

The --config option points to your credentials file.
API Version 2012-10-29

266

AWS Data Pipeline Developer Guide
Verifying Task Runner Logging

The --workerGroup option specifies the name of your worker group, which must be the same value as
specified in your pipeline for tasks to be processed.

The --region option specifies the service region from which to pull tasks to execute.

The --logUri option is used for pushing your compressed logs to a location in Amazon S3.

When Task Runner is active, it prints the path to where log files are written in the terminal window. The
following is an example.

Logging to /Computer_Name/.../output/logs

Task Runner should be run detached from your login shell. If you are using a terminal application to
connect to your computer, you may need to use a utility like nohup or screen to prevent the Task Runner
application from exiting when you log out. For more information about command line options, see Task
Runner Configuration Options (p. 267).

Verifying Task Runner Logging
The easiest way to verify that Task Runner is working is to check whether it is writing log files. Task Runner
writes hourly log files to the directory, output/logs, under the directory where Task Runner is installed.
The file name is Task Runner.log.YYYY-MM-DD-HH, where HH runs from 00 to 23, in UDT. To save storage
space, any log files older than eight hours are compressed with GZip.

Task Runner Threads and Preconditions
Task Runner uses a thread pool for each of tasks, activities, and preconditions. The default setting for --
tasks is 2, meaning that there will be two threads allocated from the tasks pool and each thread will poll the
AWS Data Pipeline service for new tasks. Thus, --tasks is a performance tuning attribute that can be used
to help optimize pipeline throughput.

Pipeline retry logic for preconditions happens in Task Runner. Two precondition threads are allocated to
poll AWS Data Pipeline for precondition objects. Task Runner honors the precondition object retryDelay
and preconditionTimeout fields that you define on preconditions.

In many cases, decreasing the precondition polling timeout and number of retries can help to improve
the performance of your application. Similarly, applications with long-running preconditions may need
to have the timeout and retry values increased. For more information about precondition objects, see
Preconditions (p. 7).

Task Runner Configuration Options
These are the configuration options available from the command line when you launch Task Runner.

Command Line Parameter Description

--help Command line help. Example: Java -jar
TaskRunner-1.0.jar --help

--config The path and file name of your credentials.json
file.

--accessId Your AWS access key ID for Task Runner to use
when making requests.

API Version 2012-10-29
267

AWS Data Pipeline Developer Guide
Task Runner Configuration Options

Command Line Parameter Description

The --accessID and --secretKey options provide
an alternative to using a credentials.json file.
If a credentials.json is also provided, the --
accessID and --secretKey options will take
precedence.

--secretKey Your AWS secret key for Task Runner to use when
making requests. For more information, see --
accessID.

--endpoint An endpoint is a URL that is the entry point for
a web service. The AWS Data Pipeline service
endpoint in the region where you are making
requests. Optional. In general, it is sufficient to
specify a region, and you do not need to set the
endpoint. For a listing of AWS Data Pipeline
regions and endpoints, see AWS Data Pipeline
Regions and Endpoints in the AWS General
Reference.

--workerGroup The name of the worker group that Task Runner
will retrieve work for. Required.

When Task Runner polls the web service, it uses
the credentials you supplied and the value of
workerGroup to select which (if any) tasks to
retrieve. You can use any name that is meaningful
to you; the only requirement is that the string
must match between the Task Runner and its
corresponding pipeline activities. The worker
group name is bound to a region. Even if there
are identical worker group names in other regions,
Task Runner will always get tasks from the region
specified in --region.

--taskrunnerId The ID of the task runner to use when reporting
progress. Optional.

--output The Task Runner directory for log output files.
Optional. Log files are stored in a local directory
until they are pushed to Amazon S3. This option
will override the default directory.

--tasks The number of task poll threads to run
simultaneously. Optional. The default is 2.

--region The region to use. Optional, but it is recommended
to always set the region. If you do not specify
the region, Task Runner retrieves tasks from the
default service region, us-east-1.

Other supported regions are: eu-west-1, ap-
northeast-1, ap-southeast-2, us-west-2.

API Version 2012-10-29
268

http://docs.aws.amazon.com/general/latest/gr/rande.html#datapipeline_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#datapipeline_region

AWS Data Pipeline Developer Guide
Using Task Runner with a Proxy

Command Line Parameter Description

--logUri The Amazon S3 destination path for Task Runner
to back up log files to every hour. When Task
Runner terminates, active logs in the local directory
will be pushed to the Amazon S3 destination folder.

--proxyHost The host of the proxy which Task Runner clients
will use to connect to AWS Services.

--proxyPort Port of the proxy host which the Task Runner
clients will use to connect to AWS Services.

--proxyUsername The username for proxy.

--proxyPassword The password for proxy.

--proxyDomain The Windows domain name for NTLM Proxy.

--proxyWorkstation The Windows workstation name for NTLM Proxy.

Using Task Runner with a Proxy
If you are using a proxy host, you can either specify its configuration when invoking Task Runner or set the
environment variable, HTTPS_PROXY. The environment variable used with Task Runner will accept the
same configuration used for the AWS Command Line Interface.

Task Runner and Custom AMIs
When you specify an Ec2Resource object for your pipeline, AWS Data Pipeline creates an EC2 instance
for you, using an AMI that installs and configures Task Runner for you. Note that a PV-compatible instance
type is required in this case. Alternatively, you can create a custom AMI with Task Runner, and then
specify the ID of this AMI using the imageId field of the Ec2Resource object. For more information, see
Ec2Resource (p. 204).

A custom AMI must meet the following requirements for AWS Data Pipeline to use it successfully for Task
Runner:

• Create the AMI in the same region that the instances will run in. For more information, see Creating Your
Own AMI in the Amazon EC2 User Guide for Linux Instances.

• Ensure that the virtualization type of the AMI is supported by the instance type you plan to use. For
example, the I2 and G2 instance types require an HVM AMI and the T1, C1, M1, and M2 instance types
require a PV AMI. For more information, see Linux AMI Virtualization Types in the Amazon EC2 User
Guide for Linux Instances.

• Install the following software:

• Linux

• Bash

• wget

• unzip

• Java 1.6 or newer

• cloud-init

• Create and configure a user account named ec2-user.

API Version 2012-10-29
269

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-taskrunner-config-options.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-http-proxy.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html

AWS Data Pipeline Developer Guide
Locating Errors in Pipelines

Troubleshooting

When you have a problem with AWS Data Pipeline, the most common symptom is that a pipeline won't run.
You can use the data that the console and CLI provide to identity the problem and find a solution.

Contents

• Locating Errors in Pipelines (p. 270)

• Identifying the Amazon EMR Cluster that Serves Your Pipeline (p. 271)

• Interpreting Pipeline Status Details (p. 272)

• Locating Error Logs (p. 273)

• Resolving Common Problems (p. 273)

Locating Errors in Pipelines
The AWS Data Pipeline console is a convenient tool to visually monitor the status of your pipelines and
easily locate any errors related to failed or incomplete pipeline runs.

To locate errors about failed or incomplete runs with the console

1. On the List Pipelines page, if the Status column of any of your pipeline instances shows a status
other than FINISHED, either your pipeline is waiting for some precondition to be met or it has failed
and you need to troubleshoot the pipeline.

2. On the List Pipelines page, in the Details column of your pipeline, click View instance details.

3. Click the triangle next to an instance; the Instance summary panel opens to show the details of the
selected instance.

4. Click View instance fields to see additional details of the instance. If the status of your selected
instance is FAILED, the details box has an entry indicating the reason for failure. For example,
@failureReason = Resource not healthy terminated.

5. In the Instance summary pane, in the Select attempt for this instance field, select the attempt
number.

6. In the Instance summary pane, click View attempt fields to see details of fields associated with the
selected attempt.

API Version 2012-10-29
270

AWS Data Pipeline Developer Guide
Identifying the Amazon EMR

Cluster that Serves Your Pipeline

7. To take an action on your incomplete or failed instance, select an action (Rerun|Cancel|Mark
Finished) from the Action column of the instance.

Identifying the Amazon EMR Cluster that Serves
Your Pipeline

If an EMRCluster or EMRActivity fails and the error information provided by the AWS Data Pipeline console
is unclear, you can identify the Amazon EMR cluster that serves your pipeline using the Amazon EMR
console. This helps you locate the logs that Amazon EMR provides to get more details about errors that
occur.

To see more detailed Amazon EMR error information,

1. In the AWS Data Pipeline console, on the Instance details: screen, select the EmrCluster, click View
attempt fields, and copy the instanceParent value from the attempt fields dialog as shown in the
example below.

2. Navigate to the Amazon EMR console and search for a cluster with the matching instanceParent
value in its name and click Debug.

Note
For the Debug button to function, your pipeline definition must have set the EmrActivity
enableDebugging option to true and the EmrLogUri option to a valid path.

3. Now that you know which Amazon EMR cluster contains the error that causes your pipeline failure,
follow the Troubleshooting Tips in the Amazon EMR Developer Guide.

API Version 2012-10-29
271

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/Debugging.html

AWS Data Pipeline Developer Guide
Interpreting Pipeline Status Details

Interpreting Pipeline Status Details
The various status levels displayed in the AWS Data Pipeline console and CLI indicate the condition
of a pipeline and its components. The pipeline status is simply an overview of a pipeline; to see more
information, view the status of individual pipeline components. You can do this by clicking through a
pipeline in the console or retrieving pipeline component details using the CLI.

Status Codes

ACTIVATING

The component or resource is being started, such as an EC2 instance.

CANCELED

The component was canceled by a user or AWS Data Pipeline before it could run. This can happen
automatically when a failure occurs in a different component or resource that this component depends
on.

CASCADE_FAILED

The component or resource was canceled as a result of a cascade failure from one of its
dependencies, but the component was probably not the original source of the failure.

DEACTIVATING

The pipeline is being deactivated.

FAILED

The component or resource encountered an error and stopped working. When a component or
resource fails, it can cause cancelations and failures to cascade to other components that depend on it.

FINISHED

The component completed its assigned work.

INACTIVE

The pipeline was deactivated.

PAUSED

The component was paused and is not currently performing its work.

PENDING

The pipeline is ready to be activated for the first time.

RUNNING

The resource is running and ready to receive work.

SHUTTING_DOWN

The resource is shutting down after successfully completing its work.

SKIPPED

The component skipped intervals of execution after the pipeline was activated using a timestamp that
is later than the current schedule.

TIMEDOUT

The resource exceeded the terminateAfter threshold and was stopped by AWS Data Pipeline.
After the resource reaches this status, AWS Data Pipeline ignores the actionOnResourceFailure,
retryDelay, and retryTimeout values for that resource. This status applies only to resources.

API Version 2012-10-29
272

AWS Data Pipeline Developer Guide
Locating Error Logs

VALIDATING

The pipeline definition is being validated by AWS Data Pipeline.

WAITING_FOR_RUNNER

The component is waiting for its worker client to retrieve a work item. The component and worker client
relationship is controlled by the runsOn or workerGroup fields defined by that component.

WAITING_ON_DEPENDENCIES

The component is verifying that its default and user-configured preconditions are met before
performing its work.

Locating Error Logs
This section explains how to find the various logs that AWS Data Pipeline writes, which you can use to
determine the source of certain failures and errors.

Pipeline Logs
We recommend that you configure pipelines to create log files in a persistent location, such as in the
following example where you use the pipelineLogUri field on a pipeline's Default object to cause all
pipeline components to use an Amazon S3 log location by default (you can override this by configuring a
log location in a specific pipeline component).

Note
Task Runner stores its logs in a different location by default, which may be unavailable when the
pipeline finishes and the instance that runs Task Runner terminates. For more information, see
Verifying Task Runner Logging (p. 267).

To configure the log location using the AWS Data Pipeline CLI in a pipeline JSON file, begin your pipeline
file with the following text:

{ "objects": [
{
 "id":"Default",
 "pipelineLogUri":"s3://mys3bucket/error_logs"
},
...

After you configure a pipeline log directory, Task Runner creates a copy of the logs in your directory, with
the same formatting and file names described in the previous section about Task Runner logs.

Hadoop Job and Amazon EMR Step Logs
With any Hadoop-based activity such as HadoopActivity (p. 162), HiveActivity (p. 168), or
PigActivity (p. 179) you can view Hadoop job logs at the location returned in the runtime slot,
hadoopJobLog. EmrActivity (p. 156) has its own logging features and those logs are stored using the
location chosen by Amazon EMR and returned by the runtime slot, emrStepLog. For more information, see
View Log Files in the Amazon EMR Developer Guide.

Resolving Common Problems
This topic provides various symptoms of AWS Data Pipeline problems and the recommended steps to
solve them.

API Version 2012-10-29
273

http://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-manage-view-web-log-files.html

AWS Data Pipeline Developer Guide
Pipeline Stuck in Pending Status

Contents

• Pipeline Stuck in Pending Status (p. 274)

• Pipeline Component Stuck in Waiting for Runner Status (p. 274)

• Pipeline Component Stuck in WAITING_ON_DEPENDENCIES Status (p. 275)

• Run Doesn't Start When Scheduled (p. 275)

• Pipeline Components Run in Wrong Order (p. 276)

• EMR Cluster Fails With Error: The security token included in the request is invalid (p. 276)

• Insufficient Permissions to Access Resources (p. 276)

• Status Code: 400 Error Code: PipelineNotFoundException (p. 276)

• Creating a Pipeline Causes a Security Token Error (p. 276)

• Cannot See Pipeline Details in the Console (p. 276)

• Error in remote runner Status Code: 404, AWS Service: Amazon S3 (p. 276)

• Access Denied - Not Authorized to Perform Function datapipeline: (p. 277)

• Older Amazon EMR AMIs May Create False Data for Large CSV Files (p. 277)

• Increasing AWS Data Pipeline Limits (p. 277)

Pipeline Stuck in Pending Status
A pipeline that appears stuck in the PENDING status indicates that a pipeline has not yet been activated,
or activation failed due to an error in the pipeline definition. Ensure that you did not receive any errors
when you submitted your pipeline using the AWS Data Pipeline CLI or when you attempted to save or
activate your pipeline using the AWS Data Pipeline console. Additionally, check that your pipeline has a
valid definition.

To view your pipeline definition on the screen using the CLI:

datapipeline --get --id df-EXAMPLE_PIPELINE_ID

Ensure that the pipeline definition is complete, check your closing braces, verify required commas, check
for missing references, and other syntax errors. It is best to use a text editor that can visually validate the
syntax of JSON files.

Pipeline Component Stuck in Waiting for Runner
Status
If your pipeline is in the SCHEDULED state and one or more tasks appear stuck in the
WAITING_FOR_RUNNER state, ensure that you set a valid value for either the runsOn or workerGroup
fields for those tasks. If both values are empty or missing, the task cannot start because there is no
association between the task and a worker to perform the tasks. In this situation, you've defined work but
haven't defined what computer will do that work. If applicable, verify that the workerGroup value assigned to
the pipeline component is exactly the same name and case as the workerGroup value that you configured
for Task Runner.

Note
If you provide a runsOn value and workerGroup exists, workerGroup is ignored.

Another potential cause of this problem is that the endpoint and access key provided to Task Runner is not
the same as the AWS Data Pipeline console or the computer where the AWS Data Pipeline CLI tools are
installed. You might have created new pipelines with no visible errors, but Task Runner polls the wrong
location due to the difference in credentials, or polls the correct location with insufficient permissions to
identify and run the work specified by the pipeline definition.

API Version 2012-10-29
274

AWS Data Pipeline Developer Guide
Pipeline Component Stuck in

WAITING_ON_DEPENDENCIES Status

Pipeline Component Stuck in
WAITING_ON_DEPENDENCIES Status
If your pipeline is in the SCHEDULED state and one or more tasks appear stuck in the
WAITING_ON_DEPENDENCIES state, make sure your pipeline's initial preconditions have been met. If the
preconditions of the first object in the logic chain are not met, none of the objects that depend on that first
object will be able to move out of the WAITING_ON_DEPENDENCIES state.

For example, consider the following excerpt from a pipeline definition. In this case, the InputData object
has a precondition 'Ready' specifying that the data must exist before the InputData object is complete. If
the data does not exist, the InputData object remains in the WAITING_ON_DEPENDENCIES state, waiting
for the data specified by the path field to become available. Any objects that depend on InputData likewise
remain in a WAITING_ON_DEPENDENCIES state waiting for the InputData object to reach the FINISHED
state.

{
 "id": "InputData",
 "type": "S3DataNode",
 "filePath": "s3://elasticmapreduce/samples/wordcount/wordSplitter.py",
 "schedule":{"ref":"MySchedule"},
 "precondition": "Ready"
},
{
 "id": "Ready",
 "type": "Exists"
...

Also, check that your objects have the proper permissions to access the data. In the preceding example,
if the information in the credentials field did not have permissions to access the data specified in the path
field, the InputData object would get stuck in a WAITING_ON_DEPENDENCIES state because it cannot
access the data specified by the path field, even if that data exists.

It is also possible that a resource communicating with Amazon S3 does not have a public IP address
associated with it. For example, an Ec2Resource in a public subnet must have a public IP address
associated with it.

Lastly, under certain conditions, resource instances can reach the WAITING_ON_DEPENDENCIES state
much earlier than their associated activities are scheduled to start, which may give the impression that the
resource or the activity is failing. For more information about the behavior of resources and the schedule
type setting, see the Resources Ignore Schedule Type section in the Scheduling Pipelines (p. 15) topic.

Run Doesn't Start When Scheduled
Check that you chose the correct schedule type that determines whether your task starts at the beginning
of the schedule interval (Cron Style Schedule Type) or at the end of the schedule interval (Time Series
Schedule Type).

Additionally, check that you have properly specified the dates in your schedule objects and that the
startDateTime and endDateTime values are in UTC format, such as in the following example:

{
 "id": "MySchedule",
 "startDateTime": "2012-11-12T19:30:00",
 "endDateTime":"2012-11-12T20:30:00",
 "period": "1 Hour",
 "type": "Schedule"
},

API Version 2012-10-29
275

AWS Data Pipeline Developer Guide
Pipeline Components Run in Wrong Order

Pipeline Components Run in Wrong Order
You might notice that the start and end times for your pipeline components are running in the wrong
order, or in a different sequence than you expect. It is important to understand that pipeline components
can start running simultaneously if their preconditions are met at start-up time. In other words, pipeline
components do not execute sequentially by default; if you need a specific execution order, you must control
the execution order with preconditions and dependsOn fields. Verify that you are using the dependsOn
field populated with a reference to the correct prerequisite pipeline components, and that all the necessary
pointers between components are present to achieve the order you require.

EMR Cluster Fails With Error: The security token
included in the request is invalid
Verify your IAM roles, policies, and trust relationships as described in IAM Roles for AWS Data
Pipeline (p. 66).

Insufficient Permissions to Access Resources
Permissions that you set on IAM roles determine whether AWS Data Pipeline can access your EMR
clusters and EC2 instances to run your pipelines. Additionally, IAM provides the concept of trust
relationships that go further to allow creation of resources on your behalf. For example, when you create a
pipeline that uses an EC2 instance to run a command to move data, AWS Data Pipeline can provision this
EC2 instance for you. If you encounter problems, especially those involving resources that you can access
manually but AWS Data Pipeline cannot, verify your IAM roles, policies, and trust relationships as described
in IAM Roles for AWS Data Pipeline (p. 66).

Status Code: 400 Error Code:
PipelineNotFoundException
This error means that your IAM default roles might not have the required permissions necessary for AWS
Data Pipeline to function correctly. For more information, see IAM Roles for AWS Data Pipeline (p. 66).

Creating a Pipeline Causes a Security Token Error
You receive the following error when you try to create a pipeline:

Failed to create pipeline with 'pipeline_name'. Error: UnrecognizedClientException - The security token
included in the request is invalid.

Cannot See Pipeline Details in the Console
The AWS Data Pipeline console pipeline filter applies to the scheduled start date for a pipeline, without
regard to when the pipeline was submitted. It is possible to submit a new pipeline using a scheduled start
date that occurs in the past, which the default date filter may not show. To see the pipeline details, change
your date filter to ensure that the scheduled pipeline start date fits within the date range filter.

Error in remote runner Status Code: 404, AWS
Service: Amazon S3
This error means that Task Runner could not access your files in Amazon S3. Verify that:

API Version 2012-10-29
276

AWS Data Pipeline Developer Guide
Access Denied - Not Authorized

to Perform Function datapipeline:

• You have credentials correctly set

• The Amazon S3 bucket that you are trying to access exists

• You are authorized to access the Amazon S3 bucket

Access Denied - Not Authorized to Perform Function
datapipeline:
In the Task Runner logs, you may see an error that is similar to the following:

• ERROR Status Code: 403

• AWS Service: DataPipeline

• AWS Error Code: AccessDenied

• AWS Error Message: User: arn:aws:sts::XXXXXXXXXXXX:federated-user/i-XXXXXXXX is not authorized
to perform: datapipeline:PollForTask.

Note
In the this error message, PollForTask may be replaced with names of other AWS Data Pipeline
permissions.

This error message indicates that the IAM role you specified needs additional permissions necessary
to interact with AWS Data Pipeline. Ensure that your IAM role policy contains the following lines, where
PollForTask is replaced with the name of the permission you want to add (use * to grant all permissions).
For more information about how to create a new IAM role and apply a policy to it, see Managing IAM
Policies in the Using IAM guide.

{
"Action": ["datapipeline:PollForTask"],
"Effect": "Allow",
"Resource": ["*"]
}

Older Amazon EMR AMIs May Create False Data for
Large CSV Files
On EMR AMIs previous to 3.9 (3.8 and below) AWS Data Pipeline uses a custom InputFormat to read
and write CSV files for use with MapReduce jobs. This is used when the service stages tables to and from
Amazon S3. An issue with this InputFormat was discovered where reading records from large CSV files
may result in producing tables that are not correctly copied. This issue was fixed in later Amazon EMR
releases. Please use Amazon EMR AMI 3.9 or an Amazon EMR release 4.0.0 or greater.

Increasing AWS Data Pipeline Limits
Occasionally, you may exceed specific AWS Data Pipeline system limits. For example, the default
pipeline limit is 20 pipelines with 50 objects in each. If you discover that you need more pipelines than the
limit, consider merging multiple pipelines to create fewer pipelines with more objects in each. For more
information about the AWS Data Pipeline limits, see AWS Data Pipeline Limits (p. 280). However, if
you are unable to work around the limits using the pipeline merge technique, request an increase in your
capacity using this form: Data Pipeline Limit Increase.

API Version 2012-10-29
277

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-data-pipeline

AWS Data Pipeline Developer Guide
AWS Data Pipeline Information in CloudTrail

Logging AWS Data Pipeline API Calls
By Using AWS CloudTrail

AWS Data Pipeline is integrated with CloudTrail, a service that captures API calls made by or on behalf
of AWS Data Pipeline in your AWS account and delivers the log files to an Amazon S3 bucket that you
specify. CloudTrail captures API calls from the AWS Data Pipeline console or from the AWS Data Pipeline
API. Using the information collected by CloudTrail, you can determine what request was made to AWS
Data Pipeline, the source IP address from which the request was made, who made the request, when it
was made, and so on. For more information about CloudTrail, including how to configure and enable it, see
the AWS CloudTrail User Guide.

AWS Data Pipeline Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to AWS Data Pipeline actions
are tracked in log files. AWS Data Pipeline records are written together with other AWS service records in a
log file. CloudTrail determines when to create and write to a new file based on a time period and file size.

All of the AWS Data Pipeline actions are logged and are documented in the AWS Data Pipeline API
Reference Actions chapter. For example, calls to the CreatePipeline action generate entries in the
CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information in the
log helps you determine whether the request was made with root or IAM user credentials, with temporary
security credentials for a role or federated user, or by another AWS service. For more information, see the
userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered if
you want to take quick action upon log file delivery. For more information, see Configuring Amazon SNS
Notifications.

You can also aggregate AWS Data Pipeline log files from multiple AWS regions and multiple AWS
accounts into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a
Single Amazon S3 Bucket.

API Version 2012-10-29
278

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/datapipeline/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/datapipeline/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

AWS Data Pipeline Developer Guide
Understanding AWS Data Pipeline Log File Entries

Understanding AWS Data Pipeline Log File Entries
CloudTrail log files can contain one or more log entries where each entry is made up of multiple JSON-
formatted events. A log entry represents a single request from any source and includes information about
the requested operation, any parameters, the date and time of the action, and so on. The log entries are not
guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public API calls.

The following example shows a CloudTrail log entry that demonstrates the CreatePipeline operation:

 {
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "Root",
 "principalId": "123456789012",
 "arn": "arn:aws:iam::user-account-id:root",
 "accountId": "user-account-id",
 "accessKeyId": "user-access-key"
 },
 "eventTime": "2014-11-13T19:15:15Z",
 "eventSource": "datapipeline.amazonaws.com",
 "eventName": "CreatePipeline",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "72.21.196.64",
 "userAgent": "aws-cli/1.5.2 Python/2.7.5 Darwin/13.4.0",
 "requestParameters": {
 "name": "testpipeline",
 "uniqueId": "sounique"
 },
 "responseElements": {
 "pipelineId": "df-06372391ZG65EXAMPLE"
 },
 "requestID": "65cbf1e8-6b69-11e4-8816-cfcbadd04c45",
 "eventID": "9f99dce0-0864-49a0-bffa-f72287197758",
 "eventType": "AwsApiCall",
 "recipientAccountId": "user-account-id"
 },
 ...additional entries
]
}

API Version 2012-10-29
279

AWS Data Pipeline Developer Guide
Account Limits

AWS Data Pipeline Limits

To ensure there is capacity for all users, AWS Data Pipeline imposes limits on the resources that you can
allocate and the rate at which you can allocate resources.

Contents

• Account Limits (p. 280)

• Web Service Call Limits (p. 281)

• Scaling Considerations (p. 282)

Account Limits
The following limits apply to a single AWS account. If you require additional capacity, you can use the
Amazon Web Services Support Center request form to increase your capacity.

Attribute Limit Adjustable

Number of pipelines 100 Yes

Number of objects per
pipeline

100 Yes

Number of active
instances per object

5 Yes

Number of fields per
object

50 No

Number of UTF8 bytes
per field name or
identifier

256 No

Number of UTF8 bytes
per field

10,240 No

Number of UTF8 bytes
per object

15,360 (including field names) No

Rate of creation of a
instance from an object

1 per 5 minutes No

API Version 2012-10-29
280

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-data-pipeline

AWS Data Pipeline Developer Guide
Web Service Call Limits

Attribute Limit Adjustable

Retries of a pipeline
activity

5 per task No

Minimum delay between
retry attempts

2 minutes No

Minimum scheduling
interval

15 minutes No

Maximum number of
roll-ups into a single
object

32 No

Maximum number of
EC2 instances per
Ec2Resource object

1 No

Web Service Call Limits
AWS Data Pipeline limits the rate at which you can call the web service API. These limits also apply to
AWS Data Pipeline agents that call the web service API on your behalf, such as the console, CLI, and Task
Runner.

The following limits apply to a single AWS account. This means the total usage on the account, including
that by IAM users, cannot exceed these limits.

The burst rate lets you save up web service calls during periods of inactivity and expend them all in a short
amount of time. For example, CreatePipeline has a regular rate of 1 call each 5 seconds. If you don't call
the service for 30 seconds, you will have 6 calls saved up. You could then call the web service 6 times in
a second. Because this is below the burst limit and keeps your average calls at the regular rate limit, your
calls are not throttled.

If you exceed the rate limit and the burst limit, your web service call fails and returns a throttling exception.
The default implementation of a worker, Task Runner, automatically retries API calls that fail with a
throttling exception, with a back off so that subsequent attempts to call the API occur at increasingly longer
intervals. If you write a worker, we recommend that you implement similar retry logic.

These limits are applied against an individual AWS account.

API Regular rate limit Burst limit

ActivatePipeline 1 call per second 100 calls

CreatePipeline 1 call per second 100 calls

DeletePipeline 1 call per second 100 calls

DescribeObjects 2 calls per second 100 calls

DescribePipelines 1 call per second 100 calls

GetPipelineDefinition 1 call per second 100 calls

PollForTask 2 calls per second 100 calls

ListPipelines 1 call per second 100 calls

API Version 2012-10-29
281

AWS Data Pipeline Developer Guide
Scaling Considerations

API Regular rate limit Burst limit

PutPipelineDefinition 1 call per second 100 calls

QueryObjects 2 calls per second 100 calls

ReportTaskProgress 10 calls per second 100 calls

SetTaskStatus 10 calls per second 100 calls

SetStatus 1 call per second 100 calls

ReportTaskRunnerHeartbeat1 call per second 100 calls

ValidatePipelineDefinition 1 call per second 100 calls

Scaling Considerations
AWS Data Pipeline scales to accommodate a huge number of concurrent tasks and you can configure it
to automatically create the resources necessary to handle large workloads. These automatically-created
resources are under your control and count against your AWS account resource limits. For example, if
you configure AWS Data Pipeline to automatically create a 20-node Amazon EMR cluster to process data
and your AWS account has an EC2 instance limit set to 20, you may inadvertently exhaust your available
backfill resources. As a result, consider these resource restrictions in your design or increase your account
limits accordingly.

If you require additional capacity, you can use the Amazon Web Services Support Center request form to
increase your capacity.

API Version 2012-10-29
282

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-data-pipeline

AWS Data Pipeline Developer Guide

AWS Data Pipeline Resources

The following are resources to help you use AWS Data Pipeline.

• AWS Data Pipeline Product Information–The primary web page for information about AWS Data
Pipeline.

• AWS Data Pipeline Technical FAQ – Covers the top 20 questions developers ask about this product.

• Release Notes – Provide a high-level overview of the current release. They specifically note any new
features, corrections, and known issues.

• AWS Data Pipeline Discussion Forums – A community-based forum for developers to discuss
technical questions related to Amazon Web Services.

• Classes & Workshops – Links to role-based and specialty courses as well as self-paced labs to help
sharpen your AWS skills and gain practical experience.

• AWS Developer Tools – Links to developer tools, SDKs, IDE toolkits, and command line tools for
developing and managing AWS applications.

• AWS Whitepapers – Links to a comprehensive list of technical AWS whitepapers, covering topics such
as architecture, security, and economics and authored by AWS Solutions Architects or other technical
experts.

• AWS Support Center – The hub for creating and managing your AWS Support cases. Also includes
links to other helpful resources, such as forums, technical FAQs, service health status, and AWS Trusted
Advisor.

• AWS Support – The primary web page for information about AWS Support, a one-on-one, fast-response
support channel to help you build and run applications in the cloud.

• Contact Us – A central contact point for inquiries concerning AWS billing, account, events, abuse, and
other issues.

• AWS Site Terms – Detailed information about our copyright and trademark; your account, license, and
site access; and other topics.

API Version 2012-10-29
283

http://aws.amazon.com/datapipeline
http://aws.amazon.com/datapipeline/faqs/
http://aws.amazon.com/releasenotes/AWS-Data-Pipeline/
https://forums.aws.amazon.com/forum.jspa?forumID=151
https://aws.amazon.com/training/course-descriptions/
https://aws.amazon.com/tools/
https://aws.amazon.com/whitepapers/
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/terms/

AWS Data Pipeline Developer Guide

Document History

This documentation is associated with the 2012-10-29 version of AWS Data Pipeline.

Latest documentation update: 22 February 2016.

Change Description Release Date

Add support for On-
demand pipelines

• Added support for On-demand pipelines, which allows
you to re-run a pipeline by activating it again. For more
information, see On-demand (p. 16).

22 February 2016

Additional support for
RDS databases

• Added rdsInstanceId, region, and jdbcDriverJarUri
to RdsDatabase (p. 239).

• Updated database in SqlActivity (p. 199) to also support
RdsDatabase.

17 August 2015

Additional JDBC
support

• Updated database in SqlActivity (p. 199) to also support
JdbcDatabase.

• Added jdbcDriverJarUri to JdbcDatabase (p. 237)

• Added initTimeout to Ec2Resource (p. 204) and
EmrCluster (p. 210).

• Added runAsUser to Ec2Resource (p. 204).

7 July 2015

HadoopActivity,
Availability Zone, and
Spot Support

• Added support for submitting parallel work to
Hadoop clusters. For more information, see
HadoopActivity (p. 162).

• Added the ability to request Spot Instances with
Ec2Resource (p. 204) and EmrCluster (p. 210).

• Added the ability to launch EmrCluster resources in a
specified availability zone.

1 June 2015

Deactivating pipelines Added support for deactivating active pipelines. For more
information, see Deactivating Your Pipeline (p. 43).

7 April 2015

Updated templates and
console

Added new templates as reflected in the console. Updated
the Getting Started chapter to use the Getting Started with
ShellCommandActivity template. For more information,
see Creating Pipelines Using Console Templates (p. 18).

25 November
2014

API Version 2012-10-29
284

AWS Data Pipeline Developer Guide

Change Description Release Date

VPC support Added support for launching resources into a virtual
private cloud (VPC). For more information, see Launching
Resources for Your Pipeline into a VPC (p. 48).

12 March 2014

Region support Added support for multiple service regions. In addition to
us-east-1, AWS Data Pipeline is supported in eu-west-1,
ap-northeast-1, ap-southeast-2, and us-west-2.

20 February 2014

Redshift support Added support for Redshift in AWS Data Pipeline,
including a new console template (Copy to Redshift)
and a tutorial to demonstrate the template. For
more information, see Copy Data to Amazon
Redshift Using AWS Data Pipeline (p. 107),
RedshiftDataNode (p. 139), RedshiftDatabase (p. 240), and
RedshiftCopyActivity (p. 187).

6 November 2013

PigActivity Added PigActivity, which provides native support for Pig.
For more information, see PigActivity (p. 179).

15 October 2013

New console template,
activity, and data
format

Added the new CrossRegion DynamoDB Copy console
template, including the new HiveCopyActivity and
DynamoDBExportDataFormat.

21 August 2013

Cascading failures and
reruns

Added information about AWS Data Pipeline cascading
failure and rerun behavior. For more information, see
Cascading Failures and Reruns (p. 53).

8 August 2013

Troubleshooting video Added the AWS Data Pipeline Basic Troubleshooting video.
For more information, see Troubleshooting (p. 270).

17 July 2013

Editing active pipelines Added more information about editing active pipelines and
rerunning pipeline components. For more information, see
Editing Your Pipeline (p. 40).

17 July 2013

Use resources in
different regions

Added more information about using resources in different
regions. For more information, see Using a Pipeline with
Resources in Multiple Regions (p. 51).

17 June 2013

WAITING_ON_DEPENDENCIES
status

CHECKING_PRECONDITIONS status changed to
WAITING_ON_DEPENDENCIES and added the
@waitingOn runtime field for pipeline objects.

20 May 2013

DynamoDBDataFormat Added DynamoDBDataFormat template. 23 April 2013

Process Web Logs
video and Spot
Instances support

Introduced the video "Process Web Logs with AWS Data
Pipeline, Amazon EMR, and Hive", and Amazon EC2 Spot
Instances support.

21 February 2013

 The initial release of the AWS Data Pipeline Developer
Guide.

20 December
2012

API Version 2012-10-29
285

	AWS Data Pipeline
	Table of Contents
	What is AWS Data Pipeline?
	Related Services
	Accessing AWS Data Pipeline
	Pricing

	Data Pipeline Concepts
	Pipeline Definition
	Pipeline Components, Instances, and Attempts
	Task Runners
	Data Nodes
	Databases
	Activities
	Preconditions
	System-Managed Preconditions
	User-Managed Preconditions

	Resources
	Resource Limits
	Supported Platforms
	Amazon EC2 Spot Instances with Amazon EMR Clusters and AWS Data Pipeline
	Spot Instances Considerations

	Actions
	Proactively Monitoring Pipelines

	Setting Up for AWS Data Pipeline
	Sign Up for AWS
	Create the Required IAM Roles (for CLI or API only)

	Getting Started with AWS Data Pipeline
	Create the Pipeline
	Monitor the Running Pipeline
	View the Output
	Delete the Pipeline

	Working with Pipelines
	Scheduling Pipelines
	Creating a Schedule Using the Console
	On-demand
	Time Series Style vs. Cron Style
	Resources Ignore Schedule Type

	Backfill Tasks
	Maximum Resource Efficiency Using Schedules
	Protecting Against Overwriting Data

	Creating a Pipeline
	Creating Pipelines Using Console Templates
	Initialize, Create, and Schedule a Pipeline
	Choose a Template
	Getting Started Using ShellCommandActivity
	Run AWS CLI Command
	Export DynamoDB Table to S3
	Import DynamoDB Backup Data from S3
	Run Job on an Elastic MapReduce Cluster
	Full Copy of RDS MySQL Table to S3
	Incremental Copy of RDS MySQL Table to S3
	Load S3 Data into RDS MySQL Table
	Amazon RDS to Redshift Templates
	Full copy of RDS MySQL table to Redshift
	Incremental copy of RDS MySQL table to Redshift
	Load Data from S3 Into Redshift
	Creating a Pipeline Using Parameterized Templates
	Add myVariables to the Pipeline Definition
	Define Parameter Objects
	Define Parameter Values
	Submitting the Pipeline Definition

	Creating Pipelines Using the Console Manually
	Create the Pipeline Definition
	Define Activities
	Configure the Schedule
	Configure Data Nodes
	Configure Resources
	Validate and Save the Pipeline
	Activate the Pipeline

	Viewing Your Pipelines
	Interpreting Pipeline Status Codes
	Interpreting Pipeline and Component Health State
	Viewing Your Pipeline Definitions
	Viewing Pipeline Instance Details
	Viewing Pipeline Logs

	Editing Your Pipeline
	Limitations
	Editing a Pipeline Using the Console
	Editing a Pipeline Using the AWS CLI

	Cloning Your Pipeline
	Tagging Your Pipeline
	Deactivating Your Pipeline
	Deactivate Your Pipeline Using the Console
	Deactivate Your Pipeline Using the AWS CLI

	Deleting Your Pipeline
	Staging Data and Tables with Pipeline Activities
	Data Staging with ShellCommandActivity
	Table Staging with Hive and Staging-supported Data Nodes
	Table Staging with Hive and Staging-unsupported Data Nodes

	Launching Resources for Your Pipeline into a VPC
	Create and Configure a VPC
	Set Up Connectivity Between Resources
	Configure the Resource
	Example EmrCluster
	Example Ec2Resource

	Using Amazon EC2 Spot Instances in a Pipeline
	Using a Pipeline with Resources in Multiple Regions
	Cascading Failures and Reruns
	Activities
	Data Nodes and Preconditions
	Resources
	Rerunning Cascade-Failed Objects
	Cascade-Failure and Backfills

	Pipeline Definition File Syntax
	File Structure
	Pipeline Fields
	User-Defined Fields

	Working with the API
	Install the AWS SDK
	Making an HTTP Request to AWS Data Pipeline
	HTTP Header Contents
	HTTP Body Content
	Format the Body of an HTTP request
	Handle the HTTP Response
	Sample AWS Data Pipeline JSON Request and Response
	HTTP POST Request
	AWS Data Pipeline Response

	Controlling Access to Pipelines and Resources
	IAM Policies for AWS Data Pipeline
	Policy Syntax
	Controlling Access to Pipelines Using Tags
	Controlling Access to Pipelines Using Worker Groups

	Example Policies for AWS Data Pipeline
	IAM Roles for AWS Data Pipeline
	Update Existing IAM Roles for AWS Data Pipeline
	Change Roles on Existing Pipelines

	Tutorials
	Process Data Using Amazon EMR with Hadoop Streaming
	Before You Begin
	Launch a Cluster Using the AWS Data Pipeline Console
	Create the Pipeline
	Save and Validate Your Pipeline
	Activate Your Pipeline
	Monitor the Pipeline Runs
	(Optional) Delete Your Pipeline

	Launch a Cluster Using the Command Line
	Creating the Pipeline Definition File
	Uploading and Activating the Pipeline Definition
	Monitor the Pipeline Runs

	Import and Export DynamoDB Data Using AWS Data Pipeline
	Part One: Import Data into DynamoDB
	Before You Begin
	Create a DynamoDB Table

	Step 1: Create the Pipeline
	Step 2: Save and Validate Your Pipeline
	Step 3: Activate Your Pipeline
	Step 4: Monitor the Pipeline Runs
	Step 5: Verify the Data Import
	Step 6: Delete Your Pipeline (Optional)

	Part Two: Export Data from DynamoDB
	Before You Begin
	Step 1: Create the Pipeline
	Step 2: Save and Validate Your Pipeline
	Step 3: Activate Your Pipeline
	Step 4: Monitor the Pipeline Runs
	Step 5: Verify the Data Export File
	Step 6: Delete Your Pipeline (Optional)

	Copy CSV Data Between Amazon S3 Buckets Using AWS Data Pipeline
	Before You Begin
	Copy CSV Data Using the AWS Data Pipeline Console
	Create the Pipeline
	Save and Validate Your Pipeline
	Activate Your Pipeline
	Monitor the Pipeline Runs
	(Optional) Delete Your Pipeline

	Copy CSV Data Using the Command Line
	Define a Pipeline in JSON Format
	Schedule
	Amazon S3 Data Nodes
	Resource
	Activity

	Upload and Activate the Pipeline Definition

	Export MySQL Data to Amazon S3 Using AWS Data Pipeline
	Before You Begin
	Copy MySQL Data Using the AWS Data Pipeline Console
	Create the Pipeline
	Save and Validate Your Pipeline
	Verify Your Pipeline Definition
	Activate Your Pipeline
	Monitor the Pipeline Runs
	(Optional) Delete Your Pipeline

	Copy MySQL Data Using the Command Line
	Define a Pipeline in JSON Format
	MySQL Data Node
	Amazon S3 Data Node
	Resource
	Activity

	Upload and Activate the Pipeline Definition

	Copy Data to Amazon Redshift Using AWS Data Pipeline
	Before You Begin
	Copy Data to Amazon Redshift Using the AWS Data Pipeline Console
	Create the Pipeline
	Save and Validate Your Pipeline
	Activate Your Pipeline
	Monitor the Pipeline Runs
	(Optional) Delete Your Pipeline

	Copy Data to Amazon Redshift Using the Command Line
	Define a Pipeline in JSON Format
	Data Nodes
	Resource
	Activity

	Upload and Activate the Pipeline Definition

	Pipeline Expressions and Functions
	Simple Data Types
	DateTime
	Numeric
	Object References
	Period
	String

	Expressions
	Referencing Fields and Objects
	Nested Expressions
	Lists
	Node Expression
	Expression Evaluation

	Mathematical Functions
	String Functions
	Date and Time Functions
	Special Characters

	Pipeline Object Reference
	Data Nodes
	DynamoDBDataNode
	Example
	Syntax

	MySqlDataNode
	Example
	Syntax
	See Also

	RedshiftDataNode
	Example
	Syntax

	S3DataNode
	Example
	Syntax
	See Also

	SqlDataNode
	Example
	Syntax
	See Also

	Activities
	CopyActivity
	Example
	Syntax
	See Also

	EmrActivity
	Examples
	Syntax
	See Also

	HadoopActivity
	Examples
	Syntax
	See Also

	HiveActivity
	Example
	Syntax
	See Also

	HiveCopyActivity
	Example
	Syntax
	See Also

	PigActivity
	Example
	Syntax
	See Also

	RedshiftCopyActivity
	Example
	Syntax

	ShellCommandActivity
	Example
	Syntax
	See Also

	SqlActivity
	Example
	Syntax

	Resources
	Ec2Resource
	Examples
	Syntax

	EmrCluster
	Examples
	Syntax
	See Also

	HttpProxy
	Example
	Syntax

	Preconditions
	DynamoDBDataExists
	Syntax

	DynamoDBTableExists
	Syntax

	Exists
	Example
	Syntax
	See Also

	S3KeyExists
	Syntax
	See Also

	S3PrefixNotEmpty
	Example
	Syntax
	See Also

	ShellCommandPrecondition
	Example
	Syntax
	See Also

	Databases
	JdbcDatabase
	Example
	Syntax

	RdsDatabase
	Example
	Syntax

	RedshiftDatabase
	Example
	Syntax

	Data Formats
	CSV Data Format
	Example
	Syntax

	Custom Data Format
	Example
	Syntax

	DynamoDBDataFormat
	Example
	Syntax

	DynamoDBExportDataFormat
	Example
	Syntax

	RegEx Data Format
	Example
	Syntax

	TSV Data Format
	Example
	Syntax

	Actions
	SnsAlarm
	Example
	Syntax

	Terminate
	Example
	Syntax

	Schedule
	Examples
	Syntax

	Utilities
	ShellScriptConfig
	Example
	Syntax

	EmrConfiguration
	Example
	Syntax
	See Also

	Property
	Example
	Syntax
	See Also

	Working with Task Runner
	Task Runner on AWS Data Pipeline-Managed Resources
	Executing Work on Existing Resources Using Task Runner
	Installing Task Runner
	(Optional) Granting Task Runner Access to Amazon RDS
	Starting Task Runner
	Verifying Task Runner Logging

	Task Runner Threads and Preconditions
	Task Runner Configuration Options
	Using Task Runner with a Proxy
	Task Runner and Custom AMIs

	Troubleshooting
	Locating Errors in Pipelines
	Identifying the Amazon EMR Cluster that Serves Your Pipeline
	Interpreting Pipeline Status Details
	Locating Error Logs
	Pipeline Logs
	Hadoop Job and Amazon EMR Step Logs

	Resolving Common Problems
	Pipeline Stuck in Pending Status
	Pipeline Component Stuck in Waiting for Runner Status
	Pipeline Component Stuck in WAITING_ON_DEPENDENCIES Status
	Run Doesn't Start When Scheduled
	Pipeline Components Run in Wrong Order
	EMR Cluster Fails With Error: The security token included in the request is invalid
	Insufficient Permissions to Access Resources
	Status Code: 400 Error Code: PipelineNotFoundException
	Creating a Pipeline Causes a Security Token Error
	Cannot See Pipeline Details in the Console
	Error in remote runner Status Code: 404, AWS Service: Amazon S3
	Access Denied - Not Authorized to Perform Function datapipeline:
	Older Amazon EMR AMIs May Create False Data for Large CSV Files
	Increasing AWS Data Pipeline Limits

	Logging AWS Data Pipeline API Calls By Using AWS CloudTrail
	AWS Data Pipeline Information in CloudTrail
	Understanding AWS Data Pipeline Log File Entries

	AWS Data Pipeline Limits
	Account Limits
	Web Service Call Limits
	Scaling Considerations

	AWS Data Pipeline Resources
	Document History

